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Abstract—This paper presents a novel, simple, yet powerful
texture analysis method inspired by the well-known Local Binary
Patterns (LBP ) method called the Local Frequency Descriptors
(LFD). Like LBP , the proposed method is invariant to rotation
and linear changes of illumination; however,it does not suffer
from the limitations of LBP such as exponential growth of
features with an increment in the number of neighbors. The
experimental results on the Outex and CUReT datasets show
that the proposed LFD method outperforms state-of-the-art
texture analysis methods. In addition, LFD is very robust to
noise and can improve LBP results up to 50% in extremely
noisy conditions. In this paper, we discuss different aspects of
the LFD and explain how it addresses the main limitations of
LBP and of its variants.

I. INTRODUCTION

TEXTURE analysis is an important topic in image pro-
cessing and has been used in many applications including

automated inspection, image retrieval and medical image anal-
ysis. Image textures are defined as visual patterns appearing in
images. Texture analysis methods use chromatic and structural
characteristics of images to characterize textures. The methods
usually consist of five steps:

1) Pre-processing: The images are normalized in this step.
The purpose of normalization is to bring the images to
a standard range, such that the extracted properties from
the images are comparable.

2) Feature extraction: Textural features of images are ex-
tracted in this step. Different methods are used to find the
textural features (e.g., statistical information, frequency
analysis, etc.).

3) Feature selection: In this step, useful features are selected.
Sometimes the number of features is huge. As well, some
features may not be informative. The goal of this step is
to reduce the number of extracted features by selecting
those giving important textural information.

4) Classification: In this step, each image is assigned to one
of the known texture classes. Basically, there are two sets:
a training set and a test set. Classification is performed to
assign images in the test set to one of the texture classes
learned from the training set. Different classification
methods can be used in this step. Some examples are
Support Vector Machine (SVM), and Nearest neighbor
(NN) classifiers.
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All methods referred to as texture analysis methods are
used in the second step to extract textural features. The
contribution of this paper is to present a new method based
on the local frequencies in images. The proposed method is
inspired by the successful and popular Local Binary Patterns
(LBP) method [1]; however, it addresses the key problems
of the LBP . The features defined in the proposed method
are (1) invariant to rotation, (2) invariant to linear changes of
illumination, (3) robust to noise , (4) tunable, and (5) fewer
in number.

In the next sections, this paper reviews relevant previous
works (Section II), presents our method (Section III), explains
the experimental results (Section IV), and concludes in Sec-
tion V.

II. RELATED WORKS

There are many different methods for texture analysis;
however, they can be categorized into four general groups.
The first group uses statistical features. The main motivation
behind these methods is based on the fact that the human visual
system uses statistical features to distinguish textures. The co-
occurrence matrix proposed by Haralik and Shanmugam [2] is
one of the first known methods using this approach. The co-
occurrence matrix represents the relationship between intensity
levels for a given direction and distance in the image. Co-
occurrence matrices with different directions and distances
provide a popular method to distinguish textures. The Run
Length Matrices (RLM) [3], [4] method defines a gray level
run as consecutive pixels of the same gray level in a given di-
rection, and the length of the runs is used to describe textures.
There are other statistical methods such as using higher order
statistics [5], [6] and invariant moments of the images [7],
[8]. Recently, Local Binary Patterns (LBP ) proposed by Ojala
et al. [1] has been recognized as one of the most successful
statistical methods and has been extended by different research
groups [9], [10], [11], [12], [13]. The method represents the
relationship of each pixel and its neighbors (located on a circle
around the pixel) by a binary pattern and uses the histogram
of these patterns for texture classification. The main drawback
of LBP , however, is the exponential growth of the number
of patterns with respect to the number of neighbors. We will
also show in the experimental results that the LBP and its
variants are not robust to noise.

The second group of texture analysis methods uses struc-
tural features of images. These methods decompose textures
into elements known as primitives or texels. The primitives and
their spatial arrangements are used to characterize textures. For
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example, Hanbury et al. [14] used morphological operations to
characterize textures. Song [15] decomposed textures into a set
of scale images, found square texels of the same size at each
scale and used the histogram of the texels as texture features.
Gui et al. [16] extracted the size, position, periodicity, and
spatial organization of texels to analyze textures. Khellah [17]
used the similarity between pixels and their surrounding
neighbors within a predefined window and generated a global
map called the dominant neighborhood structure. The features
extracted from this map along with the features obtained
from the LBP were used for texture classification. The key
problem of the structural based methods is how to define texels
that represent all different texture structures. In general, the
structural-based methods are better suited for textures with
large structures (macrostructure) and do not work well on non-
structural textures and microtextures [18].

The third class of texture methods defines textures as
probability models. Some well-known models are Markov
Random Field (MRF) [19], Auto Regressive (AR) model [20],
and Gibbs random field [21]. The key issue in these models
is how to choose the correct model for a given texture and
how to effectively map a texture into the selected probability
model [18]. In addition, each model imposes some assump-
tions that may not be true for all textures. For instance, MRF
assumes that the probability of each pixel depends only on its
neighbors which may not be correct for all textures.

The fourth and last approach to analyze textures applies
filters on images in spatial domains or analyzes images in
frequency domain. For instance, Azencott et al. [22] made use
of windowed Fourier filters for texture analysis. Chang and
Kuo [23] used tree-structured wavelet transform on textures
to extract features. Jafari-Khouzani and Soltanian-Zadeh [24]
extracted rotation invariant features by using Radon trans-
form and a translation-invariant wavelet transform. Chu and
Chan [25] used tunable Gabor filter banks to define rotation
and scale invariant features. The main advantage of these
methods that use frequency components is the capability of
handling noise. However, the frequency-based methods usually
cannot capture local changes in textures. As a result some
research studies use spatial domain to define textural features.
Leung and Malik [26], Cula and Dana [27], and Varma and
Zisserman [28] applied spatial filters on the textures, and com-
puted the frequency histogram of filter response cluster centers
as features. Later, Varma and Zisserman [29] substituted the
local patches of the original image for the filter responses.
Nonetheless, these spatial filter methods are not able to handle
noise like their counterparts that use frequency information.

Our proposed method can be categorized in the last group;
however, it is inspired by the LBP method (i.e., statistical).
The proposed method addresses some important issues of
LBP such as reducing the number of patterns and noise
sensitivity.

III. THE PROPOSED METHOD

In this section we explain the proposed method. Since the
method is inspired by LBP, we give a brief overview of the
LBP approach and its variants in section III-A. The proposed
method is then introduced in section III-B.

Fig. 1. Three common neighbor settings in LBP.

A. LBP and Its Variants

Traditionally, LBP considers N points on a circle with
radius R at center pixel, tc. These N points (t0, t1, ..., tN−1)
are the neighbors of the center pixel and their gray level values
are determined by interpolation if they are not located at the
center of pixels. Figure 1 shows three popular configurations
with radius of one, two, and three and their corresponding
neighboring size of 8, 16 and 24. The eight neighbors in the
first neighbor setting are labeled.

The sign of the differences of the gray value of the center
pixel with the neighboring pixels are computed. The sign is
one if the difference is greater than or equal to zero, and
zero otherwise. By assigning a binomial factor 2n to the sign
of differences and summing them together, a binary number
(pattern) is created:

LBPN,R =

N−1∑
n=0

s(tn − tc).2n, s(x) =

{
1 x ≥ 0
0 x < 0

, (1)

where s is the sign function, and N is the number of neighbors.
To have rotation invariance, the binary pattern is circularly
shifted and the minimum value is kept as the final binary
pattern. In other words, the rotation invariant LBP is defined
as:

LBP riN,R = min{ROR(LBPN,R, i)|i = 0, 1, ..., N−1}, (2)

where ROR(x, i) performs i times bitwise circular right shift
on the binary number x.

The major problem of LBP is the exponential growth of
the number of patterns with respect to the neighborhood size.
To address this problem, several methods have been proposed.
Ojala et al. [1] observed that some binary patterns are more
common than others in some textures. These patterns known
as uniform patterns have a common property: the number of
spatial transition between zero and one in the binary pattern
(i.e., uniformity) is at most two. The uniformity measure is
defined as:

U(LBPN,R) = |s(tN−1 − tc)− s(t0 − tc)|+
N−1∑
n=1

|s(tn − tc)− s(tn−1 − tc)|.
(3)

Rotation invariant uniform patterns have the uniformity of
two or fewer and are defined as:

LBP riu2
N,R =

{ ∑N−1
n=0 s(tn − tc).2n if U(LBPN,R) ≤ 2

N + 1 otherwise.
(4)
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To further improve the results, they also introduced
V ARN,R operation as follows and used the joint histogram
of LBP riu2

N,R /V ARN,R for classification [1]:

V ARN,R =
1

N

N−1∑
n=0

(tn − µ)2, µ =
1

N

N−1∑
n=0

tn. (5)

Later, Guo et al. [13] argued that the V AR operation pro-
duces continuous values and the correct quantization of these
values is challenging. They proposed LBP Variance (LBPV) in
which the histogram of LBPN,R is weighted by the V ARN,R
instead of using the joint histogram of LBP riu2

N,R /V ARN,R.
The histogram of LBPVN,R is computed as:

LBPVN,R(k) =

N∑
i=1

M∑
j=1

w(LBPN,R(i, j), k), k ∈ [0,K],

(6)
where N and M are, respectively, the number of rows and
columns of LBP , and the weight is computed as follows:

w =

{
V ARN,R(i, j) if LBPN,R(i, j) = k
0 otherwise. (7)

Before computing LBPVN,R, they use LBP to find the
principal orientation of texture and align the binary patterns
to that orientation (i.e. global matching).

The next approach for an efficient reduction of the number
of binary patterns was presented by Liao et al. [10]. They
showed that the uniform patterns are not necessarily the
dominant patterns in all datasets. They suggested choosing
the dominant patterns in the textures instead of the uniform
ones. Unlike the uniform patterns, the number of patterns for
classification is not constant and is determined by choosing
the dominant patterns such that they consist of 80% of the
whole patterns:

k = argmin
k

( ∑k−1
n=0H[n]∑2N−1
n=0 H[n]

≥ 80%

)
, (8)

where N is the neighborhood size in LBPN,R, and H the
histogram of patterns sorted in a descending order. The final
histogram for classification is H[0...k]. They also used the
Normalized Gabor Filter (NGF) responses of the frequency
spectrum to improve the classification rate.

Guo et al. [30] used the Fisher separation criterion to choose
patterns. In their approach, the dominant patterns in each
image are found. The representative patterns of each texture
class are computed as the intersection of patterns that are
dominant in all images of the same texture class. Finally, the
union of all class representative patterns is used to select the
final patterns. The proposed approach tries to maximize the
inter-class distance and to minimize the intra-class similarity
(i.e., the Fisher separation criterion).

Recently, Guo et al. [12] suggested the completed model
of LBP (CLBP) in which they used not only the sign of
the difference between the center pixel and its neighbors,
but also the magnitude of this difference and the magnitude
of the center pixel. They defined three operators: CLBP S,
CLBP M , and CLBP C. The first operator is the same as
the ordinary LBPN,R and makes a binary pattern based on the

sign of the difference of the center pixel and its neighbors.
To make a binary pattern from the magnitude of difference
CLBP M is defined as follows:

CLBP MN,R =

N−1∑
n=0

s(tn − c).2n, (9)

where s is the sign function defined in equation (1) and c an
adaptive threshold set to the mean value of tn. Finally, to take
the center pixel’s value into account CLBP C is defined as:

CLBP CN,R = s(tc − cI), (10)

where s is the sign function and cI a threshold set to the
average gray value of all pixels. They used the joint and
concatenated frequency histogram of patterns produced by
CLBP S, CLBP M , and CLBP C.

B. Local Frequency Descriptors

Our approach is based on the same sampling method of
LBP . A circle with radius R and N samples is considered for
each pixel (t0, t1, ..., tN−1). The arrangement of these samples
results in a function called LBP FUNN,R in this paper. Re-
call equation (1), we see that LBP uses the value of the center
pixel as a threshold to encode LBP FUNN,R to a binary
number. Similarly, CLBP uses two different thresholds to make
two binary patterns from this function using CLBP S and
CLBP M operations.

Our method is based on the fact that the LBP FUNN,R
function carries important textural features which is the rea-
son that LBP and its variants have become so successful.
Nonetheless, thresholding the function by LBP-based methods
will remove some important information. To preserve the
information we transform the LBP FUNN,R function into
the frequency domain using the Discrete Fourier Transform
(DFT). It is noteworthy that rotation makes a circular shift
on the function and does not change the magnitude of its
frequency components. The frequency components generated
from the LBP FUNN,R function are called local frequencies
in this paper and used to define texture features.

To formally define the local frequencies, consider N neigh-
bors ti(i = 0, ..., N − 1) of R for each pixel. If a center pixel
is located at (x, y) then the coordinates of ti are given by
(x−R.sin(2iπ/N), y+R.cos(2iπ/N)). The local frequency
components fn are defined as follows:

fn =

N−1∑
k=0

tke
−2πink/N . (11)

Applying the DFT to a discrete function with N points gen-
erates N complex numbers the magnitudes of which are used.
Since N/2-1 components have the same magnitude, we have
N/2+1 components with different magnitudes (f0...fN/2+1).
Therefore, there are N/2+1 frequency channels, in which each
channel consists of the absolute value of the nth frequency
component of LBP FUNN,R. Figure 2 shows some sample
textures and the magnitude of the first two frequency compo-
nents computed by (N,R)=(8,1).

The local frequencies capture local texture properties. To
analyze these properties we consider each frequency channel
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Fig. 2. Five texture samples and their first two frequency channels. The first
row shows the five texture samples taken from Outex TC10 dataset [31]. The
second and third rows show the first and second frequency channels of the
textures computed by (N,R)=(8,1).

separately. To get the correlation between local frequency
components in each channel, we employ the 2D DFT. In other
words, we consider each channel as an image and compute the
Fourier transform of that channel. The 2D frequency spectrum
of each channel CHn is computed as:

CHn(k, l) =

X−1∑
x=0

Y−1∑
y=0

|fn(x, y)|.e−2πi( xkX + yl
Y ), (12)

where X and Y are the number of columns and rows re-
spectively, assuming that the coordinate system ranges from
[0,0] to [X-1,Y-1], and |fn(x, y)| is the magnitude of the
nth frequency component of local function LBP FUNN,R
computed at (x,y). It is noteworthy that although the magnitude
of the frequency components of LBP FUNN,R does not
change by rotation, the location of the functions rotates by
rotation.

To have rotation invariant features we define circular disks
filters on the spectrum of frequency channels CHn. These
filters are defined as:

Dr1,r2(x, y) =

{
1 if r1 ≤

√
x2 + y2 ≤ r2

0 otherwise,
(13)

where r1 and r2 are the radii representing the inner and outer
boundaries of the disk. We may note that before applying these
circular disks, we circularly shift the spectrum to translate the
frequency component (0,0) to the center of the spectrum. We
define the rotation invariant features by applying these circular
band-pass filters to the magnitude of spectrum of frequency
channels CHn. We call these features LFD C (C stands for
Circular filter used for computing the features):

LFD C(r1, r2, n) =

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|CHn(k, l)|.Dr1,r2(k, l)

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

Dr1,r2(k, l)

,

(14)
where |CHn| is the magnitude of shifted spectrum of fre-
quency channels computed by (12) and K and L are the
number of columns and rows, respectively. The factor in

Fig. 3. Directionality of textures. The first row shows three texture samples
taken from Outex TC10 dataset [31]. The second and third rows show the
logarithm of the magnitude of CH1 and CH2 computed by (N,R)=(8,1).

Fig. 4. Directional filters equally distributed in eight directions. First row,
directional Gaussian filters. Second row band-pass directional Gaussian filters.

the denominator averages the response of the disk filter and
removes the effect of the disk’s size.

Although using disks makes the features rotation invariant,
it removes the directionality information of the spectrum.
In fact, some textures have directionality and capturing that
information can lead to better discrimination. Figure 3 shows
an example in which the texture has directional information
appeared in the spectrum of frequency channels.

To capture the directionality information, we use directional
filters inspired by Varma and Zisserman [28]. We define the
directional filter-bank by means of Gaussian filters at multiple
orientations:

Gθ,σ1,σ2
(x, y) =

1

2πσ1σ2
e
−(

(x cos(θ)−y sin(θ))2

2σ
2
1

+
(x sin(θ)+y cos(θ))2

2σ
2
2

)

(15)
where θ is the direction of the filter and σ1 and σ2 control
the width and length of the filter, respectively. We combine
these filters with the previously mentioned disk filters to have
directional band-pass filters. The combination of the disk and
Gaussian filters (called DG in this paper) are formally defined
as the multiplication of the two filters:

DGθ,σ1,σ2,r1,r2(x, y) = Dr1,r2(x, y)×Gθ,σ1,σ2
(x, y). (16)

Figure 4 shows the directional and band-pass directional
Gaussian filters. The first row consists of directional Gaussian
filters with σ1 = 64 and σ2 = 2 equally distributed on eight
directions. The second row shows the band-pass version of the
same filters.

These directional band-pass filters are applied to the spec-
trum of frequency channels CHn. However, to have rotation
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invariant features, we keep the maximum, the minimum, and
the median responses. The idea is similar to the work of Varma
and Zisserman [28]; however, they keep only the maximum
response. The directional features (LFD D(θ, σ1, σ2, r1, r2))
produced by directional band-pass Gaussian filters are for-
mally defined as (we drop the subscript variables r1, r2, θ, σ1,
and σ2 from the notation of DG and LFD D for brevity):

LFD Dmin = min
θ∈Θ

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|CHn(k, l)|.DG(k, l)

(17)

LFD Dmax = max
θ∈Θ

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|CHn(k, l)|.DG(k, l)

(18)

LFD Dmed = median
θ∈Θ

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|CHn(k, l)|.DG(k, l),

(19)
where Θ is the set of directions (e.g., for a set of eight
directions Θ = {0, 2π/8, 4π/8, ..., 14π/8} ).

The third set of features in this paper is obtained from
the energy of the local frequency patterns. This energy is
computed from the local frequency components. First, we find
the local frequency components by (11) and then we compute
the energy at each pixel as follows:

E(x, y) =

N/2∑
n=1

|fn(x, y)|2, (20)

where N is the number of samples in circles with radius R
(i.e., the number of all frequency channels).

Finally we use the global frequencies of the textures as the
last set of features by applying the 2D Fourier transform to the
image. The last two sets of features are defined by applying
the disk filters (defined in (13)) to the energy and the global
frequencies. These two sets are called LFD E and LFD G
and defined formally as follows:

LFD E(r1, r2) =

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

E(k, l).Dr1,r2(k, l)

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

Dr1,r2(k, l)

(21)

LFD G(r1, r2) =

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

|G(k, l)|.Dr1,r2(k, l)

K/2−1∑
k=−K/2

L/2−1∑
l=−L/2

Dr1,r2(k, l)

,

(22)
where G is the 2D Fourier transform of the texture image, and
the coordinates range from [−K/2,−L/2] to (K/2, L/2).

The final feature vector consists of these four sets
of features: LFD C(r1, r2, n) , LFD D(r1, r2, n),
LFD E(r1, r2), and LFD G(r1, r2).

To classify data the nearest neighborhood (NN) classifier
with χ2 distance is used. The chi-square distance between two

Fig. 5. The Outex dataset includes 24 different texture classes.

Fig. 6. The CUReT dataset includes 61 different texture classes.

feature vectors v1 and v2 is computed as follows:

D(v1, v2) =

N∑
n=1

(v1(n)− v2(n))2

v1(n) + v2(n)
, (23)

where v(n) is the nth feature in the vector and N is the total
number of features. The experimental results are discussed in
the next section.

IV. EXPERIMENTAL RESULTS

To assess our proposed method, we use two well-known
comprehensive datasets designed for evaluation of rotation
and illumination changes: the Outex [31] and the Columbia-
Utrecht Reflectance (CUReT) [32] datasets. The Outex dataset
includes 24 texture classes shown in Figure 5.

The CUReT dataset consists of 61 real-world textures
acquired under different viewing angles and illumination con-
ditions. Figure 6 shows the texture classes in the CUReT
dataset. The experimental results on each of these datasets
are demonstrated in the next subsections.

A. Outex Dataset

The Outex dataset is one of the well-known datasets used
for evaluation. The images are produced by rotating textures
by nine different angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦,
and 90◦) and under three different illuminations conditions
(“horizon”, “inca”, and “t184”). There are 20 non-overlapping
128×128 gray-level images for each class produced under
each condition. The dataset consists of two test suites: Ou-
tex TC10 and Outex TC12.
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TABLE I
CLASSIFICATION RATE ON THE OUTEX DATASET

Method TC10 TC12-“t184” TC12-“horizon”

V Z Joint 92.00 91.41 91.82
V Z MR8 93.59 92.55 92.99
LBP riu2

24,3 95.07 85.04 80.78
LBP riu2

24,3 /V AR24,3 98.15 87.13 87.08
DLBP16,2 +NFG [10] 99.1 93.2 90.4
DNS + LBP24,3 [17] 99.27 94.40 92.85
CLBP Sriu2

24,3 /Mriu2
24,3 99.32 93.58 93.35

CLBP Sriu2
24,3 /Mriu2

24,3 /C 98.93 95.32 94.53
LBPV u2

24,3GMES 97.76 95.39 95.57
LFD24,3 99.84 97.69 98.47

The Outex TC10 has been designed for rotation invariant
analysis. In this test suite, the training set consists of images
acquired under illumination condition “inca” and angle 0◦ (i.e.,
24×1×1×20=480 samples). The test set includes images pro-
duced by the same illumination condition, “inca”, but rotated
by eight different angles, resulting in 3840 (24×1×8×20)
images.

The Outex TC12 test suite aims to analyze both rotation
and illumination invariance. The training set is the same as
the one in Outex TC10. However, the test set consists of two
datasets: the first test set includes the images produced under
“t184” illumination condition and the second test set consists
of images acquired under “horizon” illumination condition.
Each set includes all rotation conditions which makes each
has 4320 (24×1×8×20) samples.

Table I compares classification rate for the proposed
method and some state-of-the-art methods on the Ou-
tex dataset. In each LBP-based method the results are
shown for the (N,R) setting which has the highest clas-
sification rate. For CLBP , the 2D joint histogram of
CLBP S and CLBP M (CLBP Sriu2

N,R/M
riu2
N,R ) and the

3D joint histogram of CLBP S, CLBP M and CLBP C
(CLBP Sriu2

N,R/M
riu2
N,R /C) are shown which produce the high-

est classification rate in the CLBP method. Sixteen bins were
used for LBP riu2

24,3 /V AR24,3 quantization according to [1].
LBPV u2

N,RGMES uses the histogram of LBP weighted by
variance and an exhaustive search for global matching [13].
The proposed LFD24,3 uses four frequency channels.

As one can see, the LFD method outperforms in all test
suites of the Outex dataset. The CLBP operators are next in
TC10 while LBPV GM stands higher than CLBP in TC12
test suites. The non-LBP methods, V Z Joint and V Z MR8,
have the lowest performance for TC10, but are better than
the original LBP method, LBP riu2

24,3 and LBP riu2
24,3 /V AR24,3,

for TC12. It can be observed that the accuracy of LFD
is remarkably better than the other methods particularly for
Outex TC12. For instance, the method is about 2% and 3%
more accurate than the second top method in TC12-“t184”
and TC12-“horizon” and the results are better than that of the
original LBP by more than 12% and 17% on TC12-“t184”
and TC12-“horizon”, respectively.

TABLE II
CLASSIFICATION RATE ON THE CURET DATASET

Method Accuracy

V Z Joint 97.15
V Z MR8 97.51
LBP riu2

24,3 87.53
LBP riu2

24,3 /V AR24,3 92.23
CLBP Sriu2

24,3 /Mriu2
24,3 93.83

CLBP Sriu2
24,3 /Mriu2

24,3 /C 96.12
LBPV u2

24,3GMES 94.44
LFD24,3 97.93

B. CUReT Dataset

The CUReT dataset is the other famous dataset that we
used for evaluation. The dataset includes 205 images from 61
texture types. This dataset is very challenging because some of
the samples are visually very similar. Similar to [28] and [12],
we select 92 images that are large enough to be cropped to
an area of 200×200 pixels. The selected images are converted
to gray-level before analysis. These 92 images are selected
alternatively for training and testing, that is, the odd numbered
images are chosen for the training set and the even numbered
images are used as the test set. As a result, each training
and test set includes 46 images. Similar to [12] we use the
first 23 samples in each class for learning texton dictionary in
the VZ Joint and VZ MR8 methods and for computing the
cutting value of V AR operation. In this dataset, we used nine
frequency channels to compute the LFD24,3 features. Table II
compares the classification rate achieved by different methods
on the CUReT dataset.

We can see that the LFD method has the highest classifi-
cation rate. The method improves the accuracy of the original
LBP by more than 10%. Next to the LFD, the VZ MR8 and
VZ Joint stand. This is interesting that these two methods are
among the lowest performing methods on the Outex dataset.

C. Noise Robustness

In many applications we need to deal with noisy images.
As a result, robustness to noise is considered as one of the
most important factors to assess texture methods. The three test
suites of the Outex dataset are used for the noise robustness
experiments. In each experiment, a random Gaussian noise
with a specific Signal to Noise Ratio (SNR) is added. To
reduce variability of the randomness, each experiment is
repeated five times. Table III shows the average and standard
deviation of the classification rate for the TC10 test suite.

We can see from Table III that the LFD method out-
performs other methods in all levels of noise. The main
reason is that the proposed LFD is a filter-based method
and has a great advantage of handling noise in comparison
with the other LBP-based methods. Noise usually affects high
frequency components. The disk filters (Dr1,r2 defined in (13))
are band-pass filters and therefore remove the unwanted noisy
information. We can see that not only LFD is robust to noise
level of up to SNR=5, but also it outperforms in situations
with higher levels of noise.
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TABLE III
CLASSIFICATION RATE ON TC10 WITH DIFFERENT SIGNAL TO NOISE RATIO.

SNR=30 SNR=15 SNR=10 SNR=5 SNR=4 SNR=3

LBP riu2
24,3 93.76±0.07 91.97±0.27 85.46±0.13 59.27±0.23 45.98±0.22 33.36±0.10

LBP riu2
24,3 /V AR24,3 97.25±0.09 96.98±0.12 96.01±0.11 73.82±0.28 60.71±0.29 43.12±0.16

CLBP Sriu2
24,3 /Mriu2

24,3 98.90±0.07 98.86±0.09 98.32±0.11 72.79±0.21 53.49±0.16 36.81±0.25
CLBP Sriu2

24,3 /Mriu2
24,3 /C 99.01±0.08 98.89±0.05 98.55±0.10 82.67±0.21 61.73±0.19 40.38±0.17

LBPV u2
24,3GMES 98.08±0.13 97.86±0.10 97.06±0.11 91.10±0.12 86.44±0.11 68.65±0.26

LFD24,3 99.84±0.00 99.82±0.02 99.80±0.04 98.79±0.04 95.64±0.15 83.48±0.15

The interesting observation is the remarkably huge gap in
performance between LFD and other methods in extremely
noisy conditions (SNR=4,3) where the LFD can improve the
accuracy of the original LBP by about 50%. The second best
method in high levels of noise is LBPV which is about 7%,
9%, and 15% less accurate than LFD when SNR is equal to
5, 4, and 3, respectively. It is noteworthy that the LBPV is
inferior to CLBP methods in low levels of noise. It can also
be observed that the original LBP is the most noise sensitive
method in this dataset.

D. Discussion

As shown by the experimental results, the proposed LFD
method is an accurate and robust method. In this section we
discuss some advantages and challenges of the method. The
first and the most important advantage of the proposed method
is accuracy. The state-of-the-art methods investigated in this
paper usually outperform on one test suite. For instance, if
we disregard LFD then the best methods for TC10, TC12,
and CUReT are CLBP S/M , LBPV , and V Z MR8 re-
spectively. These methods do not outperform on all test suites
and in fact they sometimes perform very poorly on the other
test suites (e.g., V Z MR8 on TC10 and TC12). Nonetheless,
the LFD method outperforms consistently on all these test
suites.

Another advantage of the method is that it can provide
good results in extremely noisy situations. The main reason
is that the LFD is a filter-based method and can handle noise
effectively. This advantage can be used to get even higher
accuracy by tuning the disk filters to remove higher frequency
components in noisy situations.

V. CONCLUSIONS

This paper presents a new, simple and powerful method
called local frequency descriptors (LFD). The method uses
local frequency components extracted from the LBP function.
Similar to LBP , the proposed method provides features invari-
ant to rotation and linear changes of illumination. However, the
proposed method does not suffer from the limitations of LBP
and its variants. For example, the proposed LFD method
does not have the exponential growth of patterns problem
that is common among all LBP-based methods. Indeed, LFD
uses the frequency representation which is compact and more
informative than the binary patterns. The binary pattern rep-
resentation is also sensitive to noise because only one outlier
can change the pattern; however, the frequency representation

in LFD can address the problem by removing the higher
frequency components that are usually susceptible to noise.
The experimental results show that it outperforms state-of-the-
art texture analysis methods on the Outex and CUReT datasets.
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