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A bstract

System identification deals with the problem of building mathematical models of dynam­

ical systems based on the observed data. Most contemporary studies in this field have a 

fundamental assumption: the observed data are stationary, which means that statistical 

characteristics of the data do not change with time. The thesis is motivated by an “ambi­

tious” thought: is it possible to remove or weaken this assumption so that the knowledge in 

the field can be advanced? The answer is positive by introducing cyclo-stationary signals, 

which exhibit periodicity in their mean, correlation, and spectral descriptions.

The thesis consists of two parts. The first part studies cyclo-stationary signal analysis, 

including cyclo-period estimation, cyclo-statistic estimation and cyclo-spectral theory; they 

provide the second part with powerful computational tools and build up a solid theoreti­

cal background. The second part is to exploit cyclo-stationarity in system identification, 

including finite-impulse-response modeling for errors-in-variables/closed-loop systems, and 

blind identification of Hammerstein nonlinear systems. The main contributions achieved 

are briefly described as follows:

1 . Cyclo-period estimation: A new method, named as the variability method, is proposed 

to estimate the cyclo-period of a discrete-time cyclo-stationary signal. Properties of 

the variability method are analyzed and compared with three existing cyclo-period 

estimation methods via simulation and real-life examples.

2. Cyclo-statistic estimation: We summarize the existing estimators of the time-varying 

mean/correlation and cyclic correlation/spectrum, and supplement a new cyclic spec­

trum  estimator: the blocking-based estimator, and discuss implementation issues of 

these estimators.

3. Cyclo-spectral theory: Two problems in the spectral theory of discrete-time cyclo- 

stationary signals are studied: (i) four types of the cyclospectrum representation are 

presented and their interrelationships are explored; (ii) the problem of the cyclospec-
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trum transformation is attacked in the framework of multirate systems using the 

blocking technique as a systematic solution.

4. Finite-impulse-response modeling for errors-in-variables/closed-loop systems: A com­

plete study of the cyclic correlation analysis, which consistently estimates finite- 

impulse-response models, is developed including the time- and frequency-domain sta­

tistical performance of the models.

5. Blind identification of Hammerstein nonlinear systems: A new blind approach is pro­

posed for identification of Hammerstein nonlinear systems by exploiting input’s piece- 

wise constant property. In a real-time laboratory experiment, the proposed approach 

is successfully applied to modeling of a magneto-rheological damper.
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C hapter 1

Introduction

System identification deals with the problem of building mathematical models of dynamical 

systems based on the observed data [122, 85]. As dynamical systems are abundant in our 

environment, the techniques of system identification have a wide application area includ­

ing engineering and science. Most contemporary studies in this field have a fundamental 

assumption, namely, the observed data are wide-sense stationary, which basically means 

that statistical characteristics of the data do not change with time. The thesis is essentially 

motivated by an “ambitious” thought: is it possible to remove or weaken this assumption 

so that the knowledge in the field can be advanced? The answer is positive by introducing 

cyclo-stationary signals.

Discrete-time signals are said to be wide-sense cyclo-stationary, if their correlations 

and/or means are periodically time-varying sequences [62, 56, 61]. Cyclo-stationary signals 

often arise from the time-varying nature of physical phenomena such as the weather [2 0 , 

91], and more importantly from certain man-made operations, e.g., amplitude modulation, 

time index modulation, fractional sampling and multirate system filtering [56, 61]. Under 

these circumstances, exploring cyclo-stationarity is more reasonable and promising than 

ignoring and treating cyclo-stationary signals as if they were stationary. In particular, 

system identification often has a freedom of designing identification tests/experiments to 

make the observed data sufficiently informative. By this freedom, cyclo-stationarity can 

be readily introduced into system identification by man-made operations when it does not 

exist naturally.

The fore-mentioned “ambitious” thought is challenging but feasible. As a m atter of 

fact, we have done/seen some contributions towards this direction. In [133, 151], cyclo- 

stationarity was introduced by sampling outputs faster and updating control inputs slower 

by zero-order hold, and identifiability was achieved in principle for closed-loop systems

1
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without external excitation. This result overrides a well-known theorem in the system 

identification theory and brings a new possibility into the horizon. In the field of com­

munication, cyclo-stationarity spurs a substantial breakthrough in the blind identification 

[142, 83], a problem closely related to system identification. The fast-sampling technique 

converts stationary communication outputs into cyclo-stationary sequences, whose second- 

order statistics contain enough information, particularly the phase information, to identify 

the possibly non-minimum phase communication channels.

The idea of exploiting cyclo-stationarity for system identification1 possibly originated 

from [53], where time-difference-of-arrival, namely, an errors-in-variables (EIV) system with 

only time delay, was attacked by an algorithm that is a prototype of the cyclic correlation 

analysis (CCRA) studied later in Chapter 6 . The CCRA, a technique of estimating finite- 

impulse-response (FIR) coefficients of linear-time invariant (LTI) systems, was formally 

presented in [60, 61] without a detailed analysis. The frequency-domain counterpart of 

the CCRA, namely, the cyclic spectral analysis (CSPA), was proposed in [53, 55] to give 

asymptotically unbiased frequency-response estimates for EIV systems. The CSPA was 

generalized for identification of closed-loop systems in [60] and was completed in [7] in the 

sense of developing the statistical performance (means and variances) of the estimated fre­

quency responses. In [47], frequency responses were estimated from spectral cross-moments 

and cumulants of high-order cyclo-stationary signals by an algorithm whose computational 

complexity is comparable to the CSPA. In terms of parametric identification of LTI systems, 

cyclo-stationarity has received little attention. In [132, 145], the CSPA was taken as the 

first step to estimate frequency responses, which were treated as data to give parametric 

models in the second step. By sampling outputs faster and updating control inputs slower, 

cyclo-stationarity was brought up to achieve identifiability of the direct approach for closed- 

loop systems without external excitation [133, 151]. Cyclo-stationarity has also occasionally 

been introduced for nonlinear systems such as Volterra kernels [58, 92], polyperiodic systems 

[57, 81, 93] and block-oriented nonlinear systems [105, 131, 14]. To summarize, the study of 

exploiting cyclo-stationarity in system identification is only at the early stage, except that 

the CSPA has been fully developed [53, 55, 60, 7].

B efore  e x p lo it in g  c y c lo -s ta t io n a r ity  in  sy s te m  id en tifica tio n , w e n eed  a  so lid  th eo re tica l  

background of cyclo-stationary signals and some efficient computational tools. Hence, the

1 Cyclo-stationarity has received considerable attention for the blind identification during the last two 
decades; however, the blind identification is very different from system identification in the sense that the 
former is solely based on outputs. Hence, literatures on the blind identification and other related areas are 
omitted here — see [116] for a recent comprehensive bibliography on cyclo-stationarity.

2
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first part of the thesis studies the following three topics of cyclo-stationary signal analysis:

1. Cyclo-period estimation — Determine from observed data the cyclo-period of a discrete­

time cyclo-stationary signal.

2. Cyclo-statistic estimation — Estimate the first- and second-order statistics of cyclo- 

stationary signals from observed data.

3. Cyclo-spectral theory — Study the spectral descriptions of cyclo-stationary signals, 

and the cyclospectrum transformation by linear systems.

The second part of the thesis aims at two specific system identification topics:

4. FIR modeling for EIV/closed-loop systems — Develop a complete study of the CCRA 

including the statistical performance of the estimated FIR coefficients for EIV/closed- 

loop LTI systems.

5. Blind identification of Hammerstein systems — Propose a new approach to blind 

identification of Hammerstein systems, where a static nonlinearity precedes a linear 

dynamical subsystem.

The overall structure of the thesis is schematically illustrated in Figure 1.1.

FIR modeling for 
EIY/closed-loop systems

Blind identification o f 
Hammerstein systems

ZZ

Cyclo-period estimation

ZZ

Cyclo-statistic estimation Cyclo-spectral theory

Figure 1.1: A schematic diagram of the thesis structure

The rest of the thesis is organized as follows. Chapter 2 introduces some preliminary 

concepts such as stationarity and cyclo-stationarity. Each of the above five topics is studied 

in Chapters 3-7, respectively. Chapter 8  summarizes the thesis by listing its main contri­

butions. The thesis is written in the paper format since most of the chapters are actually 

published in journals or conferences [152]-[160].

3
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C hapter 2

Prelim inary

This chapter reviews some basic concepts of stationary and cyclo-stationary signals with 

their blocked representation.

2.1 Stationary Signals

A discrete-time signal x  is said to be stationary or wide-sense-stationary [100] if its mean 

is constant,

E  {x(t  +  t)}  =  E  (x(t)} =: m x, Vr G Z, (2.1)

and its autocorrelation depends only on the time difference,

E  {x(t  +  r)x*(t)} = R xx(r), Vr G Z. (2.2)

The power spectrum of x  is defined as the discrete-time Fourier transform (DTFT) of the

autocorrelation,
OO

M e * 1') -  5 3  R x x ( r ) e ^ T. (2.3)
T  =  — OO

It is well known that when a stationary signal x  with power spectrum Sxx (e-,1J) is passed 

through an LTI system with transfer function G(z), the output y is also a stationary signal 

with power spectrum [100, 85]

Syy ( e ^ )  -  G (e ^ )  Sxx (<>) G* (e ^ )  . (2.4)

2.2 C yclo-Stationary Signals

A discrete-time signal x  is said to be cyclo-stationary or strictly cyclo-wide-sense-stationary, 

if its mean and/or correlation are periodic sequences [62, 56]. In particular, x  is called first- 

order cyclo-stationary [61] if its time-varying mean m x (t ) := E  {x(t)} is periodic,

m x (t + Ipi) = m x ( t ) , Vt, / G Z. (2.5)

4
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Similarly, x  is second-order cyclo-stationary [61] if its time-varying correlation

Rxx(t;r)  := E  {x(t  + t ) x * (t)} (2.6)

is periodic in t for a fixed r ,

Rxx (i +  iP2 ] t ) = R xx (t; r ) , 'it, I € Z. (2.7)

Here p\ and p2 are the smallest positive integers such that (2.5) and (2.7) hold, respectively. 

If pi = p2 = 1, (2.5) and (2.7) imply that the mean is time invariant, and the correlation 

depends on the time difference only; thus, x  is wide-sense stationary. In other words, 

stationary signals can be regarded as cyclo-stationary signals with period 1 .

A cyclo-period inconsistency problem occurs frequently; in this case, the periods of m x (t) 

and R xx ( t;r )  are different. First, the second-order cyclo-stationarity can arise alone, i.e., 

pi — 1 and p2 7  ̂ 1. Second, if the first- and second-order cyclo-stationarities coexist, the two 

periods may not be the same, i.e., pi ^  p2 , pi ^  1 and P2 7  ̂ 1. Therefore, the cyclo-period

p is defined as the least common multiple of p\ and P2 - x  is said to be cyclo-stationary with

period p, abbreviated as (CS)p.

E xam ple  2.1 Let us see the cyclo-period inconsistency problem via an example: x (t) =  

cos (27rt/4) w (f), where w is stationary with constant mean m w and delay-dependent cor­

relation R ww(t ). The time-varying mean and the time-varying correlation of x  respectively 

are
. ( 27r t \  ^  . . ., ( 27rA

m x (t ) =  cos I —  1 E { w  (t)} =  cos I —  I m w,

and

Rxx (t\ t ) =  cos ( cos ( 2n ^4+  } E { w ( t  + r )  w* (t)}

. 2ttt\  ( 27rr
cos I 7rt H— — I +  cos I R ’WW ) •

Two cases exist: (i) If m w = 0, then m x(t) =  0 and x  is second-order cyclo-stationary only; 

the cyclo-period is 2. (ii) If m w ^  0, the first- and second-order cyclo-stationarities coexist, 

but with different periods 4 and 2, respectively; the cyclo-period is 4. □

2.3 Blocked R epresentation

Let x(t) be a discrete-time signal defined on Z+ . The n-fold discrete blocking operator Ln 

is defined as the mapping from a scalar sequence r  to a n-dimensional vector sequence x n •
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where underlining denotes blocking [96, 147]1

r T(°) i x ( 0 ) x (n) x (2 n) -
T(i)'Ln := <

x ( l)
1

x (n +  1)
5

x (2 n + 1)

J n- 1)n x (n — 1) x  (2 n — 1) x (3n — 1)

(2 .8)

In the subsequent chapters, x n may be denoted as x for simple notation if the subscript is 

obvious from the context. The dimension and the sampling period of x n equal n times those 

of x, but no information is lost in the blocking operation [28]. Thus, x n can be regarded as 

the blocked representation of x(t). The blocked signal x n has other names in the literature, 

e.g., the time series representation [56] and the decimated component [61]. The inverse of 

the blocking operator, L ~x, is defined as the reverse operation of (2.8); thus, L ~ l Ln = I  

and LnL ~ r = / ,  where I  denotes the identity system. Important relationships between 

blocked signals and original signals are: x(t) is (CS)P if and only if xp is stationary; x(t) 

and y{t) are jointly (CS)P if and only if xp and y are jointly stationary [113, 1 1 2 , 2 , 152].

:The blocking in signal processing is also known as lifting in control [78, 28].
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C hapter 3

C yclo-Period E stim ation

This chapter1 presents a new method, named as the variability method, to estimate the 

cyclo-period of a discrete-time cyclo-stationary signal. The method is essentially based on 

the time-varying correlation and/or the time-varying mean, whose estimators are associated 

with some statistics of blocked signals; a plot of variability of these statistics as a function of 

the blocking operator index visually reveals a periodic pattern, from which the cyclo-period 

is obtained. Properties of the variability method are analyzed and compared with three 

existing cyclo-period estimation methods via simulation and real-life examples.

3.1 Introduction

The cyclo-period, defined as the least common multiple of periods of mean and correlation 

sequences (Section 2.2), is the most fundamental parameter of a cyclo-stationary signal; 

hence, estimation of the cyclo-period should be regarded as the first step whenever the 

cyclo-period is required to be known a priori. The purpose of this chapter is to present a 

new method to estimate the cyclo-period from a time series2, i.e., given a realization of a 

cyclo-stationary signal x  with unknown cyclo-period p,

:= {x (0) , x  (1), ■ ■ ■ , x  (N  — 1)} , (3.1)

how to estimate p?

In the literature, there have been some methods aiming to or being applicable to esti­

mating the cyclo-period. Herbst [70] tested the periodic fluctuation in the variance function 

of a cyclo-stationary signal via periodogram, which can be adapted to estimate the cyclo- 

period. Tian [141] inferred the period via a limiting property of sample autocovariances.

xThe chapter has been published in [153, 156].
2The proposed variability method can actually detect cyclo-stationarity because it observes a periodic 

pattern that is from the periodic variability of the time-varying correlation/mean; even though there are 
possibilities that time-varying correlation/mean are aperiodic, the possibilities are really dim in practice.
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Observing a phenomenon that the period of the mean function may be different from that 

of the variance function, M artin and Kedem [90] formed a new periodic sequence having the 

period equal to the least common multiple of periods of the mean and variance functions 

of the original cyclo-stationary signal, and then detected the period via the periodogram 

associated with the new sequence. Later, Martin [91] was motivated by some special cyclo- 

stationary signals having zero-means and unit variances, e.g., a seasonal time series, and 

formed a stationarity test (not cyclo-period estimation) based on a relationship between 

the correlation function and the probability of zero-crossing. Hurd and Gerr [72] obtained 

the cyclo-period from the bispectrum, which was estimated using the two-dimensional peri­

odogram. Dandawate and Giannakis [37] aimed at the detection of cyclo-stationarity under 

a broader context, almost cyclo-stationary signals, through a statistical x 2 test based on the 

cyclic covariance and cyclic spectrum, where the cyclo-period was actually estimated as well. 

Among these methods, Hurd-Gerr’s, Martin-Kedem’s, and Dandawate-Giannakis’s methods 

are more complete than the others and will be compared with our proposed method. Their 

main ideas and algorithms are summarized in Section 3.5. Besides the above explicitly- 

related methods, the cyclo-period can also be obtained from those statistic estimators for 

cyclo-stationary signals that do not assume knowledge of the cyclo-period a priori, e.g., 

the cyclic periodogram in [53, 54, 110, 25]; however, the estimated result may suffer from 

a phenomenon called the cycle leakage, resulting in a poor resolution; this is due to lack 

of mechanisms like those in Hurd-Gerr’s and Dandawate-Giannakis’s methods, which are 

specifically designed to eliminate noise effects.

The new method to be proposed, referred to as the variability method, has many at­

tractive features comparing to the other three methods mentioned earlier. First, it is not 

sensitive to stationary noises while Hurd-Gerr’s and Martin-Kedem’s methods are. Second, 

it is equally applicable to different types of ill-cyclo-stationary signals (to be clarified later), 

while Martin-Kedem’s method cannot handle a special ill-cyclo-stationarity. Third, it can 

deal with the cyclo-period inconsistency problem (see Section 2.2), while Hurd-Gerr’s and 

Dandawate-Giannakis’s methods cannot. Finally, it provides the best resolution and is eas­

ier to use than other methods. On the other hand, the price of these attractive features is 

th a t  a fter  e s t im a t in g  th e  c y c lo -p er io d  correctly , th e  v a r ia b ility  m e th o d  ca n n o t d e te c t  th e  

simultaneous existence of two or more cyclo-stationarities, while the other three methods 

may be capable of the detection. It is also worthy to mention that the variability method 

works for cyclo-stationary signals exclusively, while Dandawate-Giannakis’s method is ap­

plicable to almost cyclo-stationary signals where the cyclo-period may not be an integer

8
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but a real-valued number.

The rest of the chapter is organized as follows. Section 3.2 establishes the theoretical 

foundation of the variability method. Properties of the variability method are illustrated 

through examples in Section 3.3, followed by a conclusion in Section 3.4. Section 3.5 is the 

appendix summarizing the main ideas and algorithms of Hurd-Gerr’s, Martin-Kedem’s, and 

Dandawate-Giannakis’s methods.

3.2 Variability A nalysis

The purpose of this section is to build a theoretical foundation for the variability method. 

The exposition is based on the time-varying correlation, because the first-order cyclo- 

stationarity sometimes may not exist (see Section 2.2) and the methodology to be used 

is equally applicable if the time-varying correlation is replaced by the time-varying mean. 

First, the time-varying correlation of a cyclo-stationary signal is connected with some statis­

tics of a blocked signal formed from the original signal (Theorem 3.1). Next, those statistics 

of blocked signals are proved to have the largest variability measured by sample variance 

when the blocking operator index is an integer multiple of the cyclo-period (Theorem 3.2). 

Finally, the above two conclusions are generalized to the case that the variability method 

is based on the time-varying mean (Theorems 3.3 and 3.4).

3 .2 .1  R e la t io n s h ip  b e tw e e n  T w o  E s t im a to r s

We present an estimator of R xx (t: r)  defined in (2.6) and an estimator of “correlation” 3 of 

r ®  defined in (2.8), and explore the relationship between the two estimators. In the sequel, 

x(t) is assumed to be real-valued and univariate for the sake of an easier presentation. 

Given {x (t) } ^ ) 1 in (3.1), an estimator of R xx (t; r )  is,

L(JV—■r)/p j—i

Rxx(t- , r)  = j   ̂ x { k p  + t ) x ( k p  + t + r ) , (3.2)

where 0 < t < p — 1 and 0 < r  <  N  —p [3, 94, 61]. For fixed t and r ,  u{k) := x(kp + t) and 

v(k) x(kp + t + r) are the components of the blocked signal xp and are jointly stationary 

[113, 112]; h en ce , R xx ( £ ; t )  is th e  sa m e as th e  w ell-k n o w n  co rre la tio n  e s t im a to r  d efin ed  for 

stationary signals and is asymptotically unbiased and consistent, i.e., R Xx{t',T) converges 

to R xx (t; r )  as N  —> oo.

Correlation is an appropriate term only if n  is an integer multiple of p.

9
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The k-th component of the blocked signal x n = Lnx  defined in (2.8) is4

= {x (k) , x (n +  k ) , x  (2n +  k ) , • • •, x  ( ([N/n\  -  1) n +  k)} . (3.3)

Even though Xn'1 's are jointly stationary only at n  =  Ip [113, 112], the following statistics 

are still computed using the correlation estimator defined for stationary signals,

 ̂ lyv/nj—T—1

R j ki ) M  {d) = I ATI I E  X (rn + h )  x (rn + k2 + d n ) , (3.4)xn An \ 1\ / Tl\
L  t  _i r = .Q

i b \ I ^2 I (^2 — ̂  | I ^
where 0 < r  < [N/n\  — 1, 0 < k\ < n — 1, k\ < k%, and x„ =  gL " Jx„

T h eo rem  3.1 Given a fixed r  and { ^ (t ) } ^ - ] ) 1 in (3.1), the two estimators in (3.2) and 

(3.4) are connected as

1 p~x .

R p k) T(k+r) (0 ) — “  'y {Rxx ( m  +  k \ r ) , (3-5)An An T) '■
r=0

where p = p /  gcd(p, n) and 0 < k < n — 1. The difference is ignorable for a large N  and

reduces to zero under some configurations, e.g., t  — 0 and N  is a common multiple of n

and p.

Proof of Theorem 3.1: Let c =  gcd(p, n), i.e.,

p =  p ■ c, n — n - c , (3.6)

which imply that p and n  are coprime or relatively prime. From (3.4),

E i fcb4 fe+T)(0) =  [N/fiJ  £  x ( ln  + k ) x ( l n  + k + T)

l iATM^rl i  
p - 1  L v Jh Z  Z  x (mpn + rn + k ) x  (mpn + rn + k + t )

Rxx { m  +  k;r)

[N/n\  r=o m=o

_j_v [NM
l N / n \ L P  
i  p~l

-  -  E  ^  ( m  + k;r) .
y  r=0

Here the second approximate equality is achieved by changing I to (mp + r ) and by replacing 

pn with ph (see (3.6)); it holds for a large N  comparing to r , n and p, and becomes an

4The data points x  (\_N/n\ n), x  (\_N/n\ n  +  1), ■ • x  (N)  may be discarded in the blocking operation.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



equality for some configurations, e.g., r  =  0 and N  is a common multiple of n and p: the

third equality is from the definition in (3.2); the last approximate equality holds for a large

N  and reduces to an equality if p =  1 or iV is a common multiple of n  and p. □

R em ark : In practice, r  =  0 or 1 is usually enough to estimate the cyclo-period for most 

cyclo-stationary signals; in addition, R xx(t',r) maY decay rapidly with respect to r , which 

implies that choosing a large r  is not desirable. If the two estimators in Theorem 3.1 are 

different, they converge to each other in a rate proportional to 1/IV, as implied by the above 

proof.

Let us look at Theorem 3.1 in detail.

• If n = Ip for I e Z+, (3.5) reduces to

1 P_1 „
R rr(k')rr(k+T) (0) — ~ ^  ' Rxx (rip +  fc; t )xn xn r) < ■«

y  r= 0

1 ?_1 *
=  _ y  '  Rxx (fc; t  )

P r —0

= Rxx{k-,r),  (3.7)

where the second equality is from the periodicity in (2.7). Eq. (3.7) says that if n = 

Ip, computing the statistics of the blocked signal, R  tk) ik+r, (0), actually estimates
Xn %n

Rxx (k',r), the time-varying correlation of the original signal.

• Another special case is that p and n  are coprime or relatively prime. A result from

the number theory is needed (e.g., Theorem 2 on page 44 in [45]):

L em m a 3.1 I f  p and n are relatively prime integers, k is an arbitrary integer, and

{r 0> r l> '  • •! r p - 1} a complete residue system modulo p, then

{nr0 +  k, nr\  +  k, ■ ■ ■, nrp - 1  +  k}

is a complete residue system modulo p.

Since {0,1, • • • ,p — 1} is a complete residue system modulo p, Lemma 3.1 gives that 

if p and n are coprime, i.e., p = p, (3.5) becomes

1 P_1 -
&WJk+T)(0) -  ~ ' y ' R x x { m  + k-,T)Xn xn D • ^

y  r= 0 

1 P_1 »
=  - 'Y ^ R x x { t ' , T) ■ (3.8)

p  t= o

11
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n R x(°) (0) R x(,p R x(v (o) R x( 3) (o) R xw  (°) R xm (9) R xi e) (0) R  <7) (0)Tt
2 1.9916 0.9988
3 1.4900 1.4937 1.5011
4 3.9832 1.0007 0 0.9970
5 1.5020 1.4914 1.4908 1.5035 1.4884
6 1.9829 1.0001 2.0042 0.9974 1.9875 0.9990
7 1.4901 1.4909 1.4905 1.5000 1.4955 1.4996 1.4998
8 3.9862 1.0002 0 0.9936 3.9801 1.0011 0 1.0005

Table 3.1: Sample means of R  (k) (/c)(0) in the 100 trials

Eq. (3.8) says, if p and n are coprime, R (k> (k+T) (0) is invariant to k, i.e.,

#  (o) (t) (0) =  R (i) (i+T) (0) =  • •
J-'Yi •*/n

and is equal to the average of the whole set of

p- i

T(r‘- 1)T(r*-1+T) (0) •*'71 •*' n
(n — 1

^  }  fc o ' — (®> 7") > Rxx (1) 7") i ' ' ' j Rxx (jP 1) 7") ^ • (3.9)

• Besides the above two cases, (3.5) says that R (k) (k+T) (0) is the average of some3'n
subsets of < R xx (fc; r)  [■

I J k=0

E xam ple  3.1 We verify Theorem 3.1 via a numerical example. It is adapted from an 

example in [72]:

x ( t ) 1 2?rA1 +  cos I —  J w (t )

where w is white noise with zero-mean and unit variance, abbreviated as W N (0,1). The 

time-varying mean is a constant,

m x (t ) =
27tA1 + cos ( —  J E { w ( t ) }  = 0; (3.10)

the time-varying correlation is R xx (t; r)  =  0, Vr ^  0 and

/  S.TTT. t  2

Rxx (t; 0) 27rt
1 +  cos ( —

=  1 +  2 cos ( ] +  cos
2irt

E { w 2 («)} 
2irt

(3.11)

Thus, R x x {0; 0) -  4, ^ ( l j O )  =  1, R Xx { 2;0) =  0, R x x {3; 0) =  1, and R x x (t + 4;0) =  
Rxx (t; 0). In other words, x is second-order cyclo-stationary with period 4. A Monte Carlo

simulation of 100 independent trials with N  — 104 is implemented to compute R .WJk) (0)

for different n. Sample means of R x(k)x(k){0) in the 100 trials are shown in the Table 3.15; 

the simulation results support Theorem 3.1. □

5R  (*) (0) is a short notation of R  (it) (it) (0).
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3 .2 .2  L a rg e s t  V a r ia b i l i ty  a t  n  = Ip

For a fixed r , the sequence

1  A c (fc,;c(fc+T) n : =  ^  ’ A e (1 ) z (1 + t )  ^  ’ ' ’ ' ’ A n ( n ~ 1 , x ( n ~ 1+T) ( ^ - 1 2 ) ̂ O/n 't' n  )  fc =  (J  ̂ 1X1 t i  t i  J/n u' n  •Xjn  •X/n  J

is to be shown having the largest variability at n = Ip, VI € Z+, which is intuitively true:

• If n = Ip, (3.7) gives R  (fc) (fc+r) (0) =  R x x (k\T); cyclo-stationarity implies that
x n  x n

Rxx (fc;T)’s are generally not same for all integers k, i.e., some variability exists.

• If p and n are coprime, (3.8) says that R x(k)x(k+r) (0)’s are the same for all integers k, 

i.e., the variability is zero.

• Besides the above two cases, R  (*> (k+r) (0) is the average of some subset of
x n  x n

f * V p— 1
{ Rxx (&;T) f ; hence, there may exist some variability, but the variability is gener-
I J k= 0
ally smaller than that at n — Ip because of the averaging effect.

Before proving this heuristic argument, we need a new definition for some special cyclo- 

stationary signals.

D efin ition  3.1 A discrete-time (CS)P signal x  is called i ll-cyc lo-s ta tionary  in corre­

lation at lag r  i f  R Xx{t’, t )  ’s are the same for all integers t, i.e.,

RxxiQi t ) “  Rxx(^-> ~  — R xx{p 1; t ) .

Ill-cyclo-stationary signals arise frequently in practice. For example, the output of a discrete­

time zero-order hold (ZOH) is ill-cyclo-stationary in correlation at lag t  =  0 (see Exam­

ple 3.3); the output of an upsampler is ill-cyclo-stationary in correlation at lag r  ^  Ip for 

I e Z. Ill-cyclo-stationarity conceptually has some overlaps with the first- and second- 

order cyclo-stationarities. For instance, the signal in Example 3.1 is both second-order 

cyclo-stationary only and ill-cyclo-stationary in correlation at lag r ,  Vr ^  0.

T h eo rem  3.2 I f  x is not ill-cyclo-stationary in correlation at lag t ,  the sequence 
f ~ 1 n~ 11 R  (/=) (fc+r) (0) > def ined  in  (3 . 12 )  has  the  la rges t  va r iab i l i t y  a t n  =  Ip, VI £  Z + , in  t e r m s
L Xn. x n J k  = 0

of the sample variance

X I ( Rf ik)x(k+r'> (0) — ~  X I  •^x(fc)3;('c+T) ) ‘ (3.13)71. ^ \  X n  X n  n  t  *  X n  X n  I

n - 1 /  1 n - 1 v 2

*" '—4  I X n  X n  Y l  f  **
k~Q \  k=0

13
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, n —1

is in-
1 k = 0

Proof of Theorem, 3.2: First, the sample mean of the sequence x(*+t) (0)

variant to n  and is equal to the average of the whole set of j  R xx ( t;t ) |  defined in (3.9), 

shown as follows:
n —1 n —1 - p — 1

77, < * **>n
k = 0

(o) =  - E i E ^ r a (r a  +  fc;r )T ) * ^  %n  77, • 7 )  * ^
k = 0 r= 0

p n - 1

—  y '  #xx (m; r)r)?7 ' ^
m— 0  

p- i
^  ( f  > t ) ,

pn

1

P t=o
where the first equality uses (3.5); the second equality is obtained from (3.6) and by changing 

(■r n + k ) to a new variable m; the last equality is from the periodicity of R xx (t; r). Therefore, 

without loss of generality, the sample mean of ^R-xw x(k+r) (0 )} assumed to be zero in 

order to ease the illustration.

Second, if n — Ip, the sample variance of | ^ x(fe)a.('=+o (0)}fc Q *s the same as 

p Z)t=o (t'>T)> because R xw x(k+r) (0) =  R xx (k\r)  (see (3.7)) and R xx (fc;r) is periodic 

in k with period p. Thus, the difference between the sample variance at n =  Ip and that at 

n  7  ̂Ip is
p - 1 n —1

I )  r  f l  * n
y  t= 0 fc=0

p - l  . n - l  r -  p - l

i= 0
n  z '  p

/c=0 . r = 0

np—1 n —1

t=0  

n —1 | p - l

fc=0

p - l

^  (rn  +  k- r)
,r=0

k —0 I r= 0

p - l

Rxx (rn + k; r)
,r= 0

> o,

where the first equality is from (3.5), the second uses the periodicity of R xx (t; r )  and (3.6), 

the third is obtained by changing the variable t to (rn +  k), and the last inequality is from 

the non-ill-cyclo-stationarity assumption and Chebyshev Sum Inequality (see e.g., [67]): For 

a univariate real-valued sequence {xo,x\,  ■ ■ •, xn_i},
71—1 f n — 1

' Y , x ^  E ;
8 = 0

where the equality holds iff xq = x\ =
\ i =o

%n—1 • □
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3.2.3 G eneralization  B ased  on th e  T im e-V arying M ean

The generalization is mainly motivated by the cyclo-period inconsistency problem intro­

duced in Section 2 .2 . The exposition in Sections 3.2.1 and 3.2.2 reveals that the method­

ology is applicable to the case based on the time-varying mean in a completely parallel 

fashion; hence, proofs of the theorems are omitted. First, a time-varying mean estimator

for &  (WZTo1 is>
j  [N /P l - I

^  =  [N/p\  ^  x (k p  + t ) ,  (3.14)

where 0 < t < p — 1. Analogously to (3.4), the “mean” estimator for defined in (3.3) is,
l  \_N/n\ — 1

™*lk) = T N M  S  *{™ + k) ,  (3.15)
L / J r = 0

where 0 < k < n  — 1. Next, the following are the counterparts of Theorem 3.1, Definition 3.1 

and Theorem 3.2.

T h eo rem  3.3 Given {^ (f ) } ^ 1 in (3.1), the two estimators in (3.14) and (3.15) are con­

nected as -l
■W ^  -  Y ] r h x {rn + k ) ,
X n  71 • ■*

TO
P r = 0

where p = p /  gcd(p,n) and 0 < k < n — 1. The difference is ignorable for a large N  and 

reduces to zero if  N  is a common multiple of n and p.

D efin ition  3.2 A discrete-time (CS)P signal x is called i ll-cyc lo-s ta tionary  in mean if

m x {t) ’s are the same for all integers t, i.e.,

m x (0 ) =  m x ( 1 ) =  • • • =  m x (p -  1 ).

T h eo rem  3.4 I f  x is not ill-cyclo-stationary in mean, the sequence
i n —1

{m  (fc) \  (m  (o), m (i), * • •, m (n~i)j
t  X Kn  ’ J L xn xn X (n  J

has the largest variability at n — Ip, Vi G in terms of the sample variance
n —1 /  n —1 2

~  ( " y fc) -  t  X ] ™xw  I • (3-16)
71 k= 0 \  " fc= 0 " /

3.3 Properties of the Variability M ethod

This section first presents simulation and real-life examples in a comparative manner to 

analyze the variability method and confirm its performance. Second, the properties of the 

variability method are summarized with the underlying rationales.
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3 .3 .1  A lg o r ith m  a n d  E x a m p le s

Algorithm: Given {x (t) } ^ 1 in (3.1), the cyclo-period p can be estimated by the following 

steps:

1. Start with n = 2, i.e., block x  by L 2 as defined in (2.8). Select an integer lag t  (usually 

0  or 1 ) if the variability method is to be based on the time-varying correlation.

sample variance in (3.13) or/and that in (3.16).

3. Repeat Steps 1 and 2 by increasing n  until a reasonable number n max, where nmax > Ip 

for some positive integer I. A good rule of thumb is 50nmax < N  [22]6.

4. Plot the sample variance as a function of the blocking operator index n, where the 

largest peaks display a periodic pattern at n = Ip, i.e., p is the smallest integer among 

the cluster of the largest peaks.

R em ark : The cyclo-period p is visually picked in the above algorithm. Sometimes it would 

be practically sensible to obtain p by an embeddable algorithm, namely, an algorithm detects 

the periodicity of and estimates the period of the sample variance computed in the above 

step 2. Standard techniques such as spectral estimation [106], auto-correlation [106] and 

wavelet transforms [26] may not work well for such a short-length sequence (the length 

of the sample variance is nmax)• The periodic-subspace projection/decomposition method 

[117, 97] is more suitable here.

Let us apply the variability method with the other three existing methods (see Sec­

tion 3 .5 ) to different examples, starting from investigating the effects of stationary noises.

E xam ple  3.2 The example is from [72] (see Eq. (14) therein):

where w is W N (0,1), v is WN(0, <j )̂, and w and v are mutually independent. It is seen from 

Example 3.1 that x  is second-order cyclo-stationary with period p  =  16. First, to study the 

noise-free performance, i.e., cr̂  =  0, a Monte Carlo simulation of 100 independent trials is

im p lem en ted  w ith  th e  p a ra m eter  co n fig u ra tio n s a s  fo llow s:

• The variability method: Since only R xx(t; 0) is non-zero (see Example 3.1), let r  =  0; 

the maximum blocking operator index nmax — 40; the data length N  in (3.1) is 1024, 

the same as the fast Fourier transformation (FFT) lengths in the other three methods.

6The ratio 50 has to be higher if the noise level is high.

2. Compute R  (*,1 <k+r) (0) in (3.4) or/and m__(k) in (3.15) for k = 1,2, and the 
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Figure 3.1: = 0, 20 independent trials (a) The variability method (n = 16/), (b) Hurd-
Gerr’s method ([1024/64] =  16), (c) Martin-Kedem’s method ([1024/64] =  16), (d) Dan­
dawate-Giannakis’s method ([1024/64] =  16) with Pp =  1% (dashline).

Hurd-Gerr’s method: The FFT length T  in (3.22) is 1024, the parameter M  in (3.23) 

is 64 and the confidence level Pq in (3.24) is 95%.

Martin-Kedem’s method: The parameter K  in (3.25) is 20, the FFT length T  in (3.27) 

is 1024 and the parameter M  in (3.26) is chosen as (T + K).

Dandawate-Giannakis’s method: The smoothing window W i  in (3.28) and (3.29) is 

a Kaiser window with parameter 1 and length L  =  61, the FFT length T  in (3.30) is 

1024 and the false alarm level Pp is 1%.

The first 20 samples and the sample mean of the 100 trials are shown in Figures 3.1 

and 3.2, respectively. All four methods estimate the cyclo-period p = 16 correctly. Second, 

the effect of a stationary noise is investigated by increasing the noise variance to 5. 

To cope with such a high level noise, the data length and all FFT lengths are increased 

to 4096, while the other parameter are unchanged7. Figure 3.3 shows the results of one 

typical sample of 100 trials. The variability method and Dandawate-Giannakis’s method 

correctly estimate the cyclo-period, while Hurd-Gerr’s and Martin-Kedem’s methods fail. 

The periodic patterns in Figures 3.1-(a) and 3.3-(a) are very similar, which shows that the 

variability method is insensitive to noise; see also Example 3.6. □

7In the subsequent examples, the parameter configurations of the four methods are the same as those 
used to generate Figures 3.1 and 3.2 unless stated explicitly.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 4

uil 1J
2 0 0  4 0 0  6 0 0 6 4  2 0 0  3 0 0  4 0 0  6 0 0

Figure 3.2: cr% — 0, sample mean of 100 trials (a) The variability method, (b) Hurd-Gerr’s 
method, (c) Martin-Kedem’s method, (d) Dandawate-Giannakis’s method.
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Figure 3.3: =  5 (a) The variability method (n =  16/), (b) Hurd-Gerr’s method, (c)
Martin-Kedem’s method, (d) Dandawate-Giannakis’s method ([4096/256] =  16).

It seems that for most second-order cyclo-stationary signals, R (0 ) provides enough

information for cyclo-period estimation. However, if the ill-cyclo-stationarity in correla­

tion at lag r  =  0 arises (see Definition 3.1), the variability method needs to rely upon 

R  w (k+r> (0) for r / 0 .  Let us look at an interesting example. A discrete-time ZOH with 

an integer factor p, Hp. takes an input sequence x  and produces an output sequence

y( t ) = x (3.17)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The discrete-time ZOH is an useful operator, e.g., in the scenario of fast sampling the output 

of a closed-loop system [151]. Eq. (3.17) implies that if y is blocked by Lp,

J L  =  L p V  = yp0) y p ] ■■■ yp 1}

where y^ ’s are all identical to x (see (2.8)); hence, y is stationary iff x  is. In addition, the 

power spectrum of y is not pseudo-circulant [113], which implies that if x  is stationary, y 

is (CS)P and p ^  1. Moreover, due to the uniformity of y ^  and Theorem 3.1, R yy (f;0)’s 

are the same for all integers t, i.e., y is ill-cyclo-stationary in correlation at lag 0.

E xam ple  3.3 We estimate the cyclo-period of the output of a discrete-time ZOH Hy driven 

by a stationary input x, where x is generated by passing a W N (0,1) signal through an 

autoregressive (AR) filter with poles 0.45 ±  j0.35. Figure 3.4-(a) displays the variability of 

R  (/c) (ao (0) as a function of n, where an aperiodic pattern occurs, as expected. Figure 3.4-Vn Un
(b) is based on R  (k) (a+i) (0), i.e., r  =  1, where the cyclo-periodp =  7 is correctly estimated.

Vn Vn

Since Martin-Kedem’s method is based on the mean and variance (corresponding to r  =  

0) functions , it can not deal with such an ill-cyclo-stationary signal, which is confirmed 

by Figure 3.4-(c). Both Hurd-Gerr’s and Dandawate-Giannakis’s methods succeed in the 

estimation, for they are capable of using all the second-order statistical information; Figure 

3.4-(d) shows the result obtained by Hurd-Gerr’s method. □

1 4  2 1  2 8  3 6

10

i
i

4 0 0

S
3 0 0

Figure 3.4: Ill-cyclo-stationarity in correlation at lag 0 (a) The variability method based 
on R  (k> (A) (0), (b) The variability method based on R  <*,) (k+i) (0) (n =  71), (c) Martin-

Vn Vn Vn Vn
Kedem’s method, (d) Hurd-Gerr’s method ([1024/146] =  7).
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Figure 3.5: Cyclo-period inconsistency (a) The variability method based on m x(t) (n =  
10Z), (b) The variability method based on R Xx{t\0) (n =  51), (c) Martin-Kedem’s method 
([1024/102] =  10), (d) Dandawate-Giannakis’s method ([1024/204] =  5).

Martin and Kedem [90] solved the cyclo-period inconsistency problem (see Section 2.2) 

by finding the least common multiple of periods of mean and variance functions (see Sec­

tion 3.5). The same idea is adopted here by simultaneously applying the variability method 

on the time-varying mean and the time-varying correlation.

E xam ple  3.4 This is an example in [90] with

'2nt
x ( t ) cos

10
w(t)

where w is generated by filtering a W N (0,1) signal through an AR filter with parameter

0 .3 .x  can be shown to be both first- and second-order cyclo-stationary with periods 10 and 

5, respectively (see also Lemma 2.1 in [90]). A simulation using Martin-Kedem’s method 

gives the correct cyclo-period p = 10, shown in Figure 3.5-(c). Figure 3.5-(a) and (b) are the 

variability methods based on m x (t) and R x (t ; 0), respectively; the former estimates pi  =  10 

and the latter gives p2 =  5; thus, their least common multiple is the correct cyclo-period 

p =  10. Hurd-Gerr’s and Dandawate-Giannakis’s methods are exclusively based on some 

second-order statistics; therefore, they give half of the cyclo-period, p =  5. Figure 3.5-(d) 

shows the result of Dandawate-Giannakis’s method. □

R em ark : The signals like x  in Example 3.4 are also known as sinusoidal or harmonic 

signals; thus, the cyclo-period p can be estimated by some well-known frequency estima-
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tion techniques such as the Pisarenko harmonic decomposition, the MUSIC and ESPRIT 

algorithms (see e.g., Section 9.6 in [89]).

0 .2 5

0.1

o
B lo c k in g  f o ld  I n d e x

5 0 0

4 0 0

i
S '

4 0 0 5 0 0

3 0

2 5

1 1 5

10

2 5 6 5 0 0

Figure 3.6: Two cyclo-stationarities (a) The variability method (n =  121), (b) Hurd-Gerr’s 
method ([1024/256] =  4, [1024/170] =  6), (c) Martin-Kedem’s method ([1024/256] =  4, 
[1024/170] =  6), (d) Dandawate-Giannakis’s method ([1024/256] =  4, [1024/170] =  6).

Sometimes, two (or more) cyclo-stationary signals appear at the same time8. If both 

are of interest, the cyclo-period of the integrated signal is the least common multiple of 

individual cyclo-periods and the detection of multiple cyclo-stationarities may be meaningful 

as well. On the other hand, if one of them is interpreted as noise, all the four methods are 

strongly affected by the noise.

E x am p le  3.5 This is a modified version of an example in [37] (see Eq. (71) therein and 

Example 17.3 in [61]):

x  (t ) =  cos m  (t) +  cos u>2 ( t ) ,

where w\  and W2 are W N (0,1) and mutually independent, x  has two second-order cyclo- 

stationary components, one with cyclo-period 4 and the other with 6. If both components 

are of interest, the cyclo-period of x  is the least common multiple of 4 and 6, i.e., p =  12. In 

terms of cyclo-period estimation, all methods perform well, as shown in Figure 3.6. However, 

the variability method cannot tell the existence of two cyclo-stationarities since the peaks at 

4 and 6 may arise from a single (CS)i2 signal, as implied by Theorem 3.2. On the contrary, 

the other three methods may be capable of detecting the two cyclo-stationarities. If one of

8Such signals are also named as polycyclo-stationary signals [54, 56]
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the two cyclo-stationary components is regarded as noise, it is clear that all methods are 

sensitive to it: the signal of interest may be dominated by the cyclo-stationary noise if the 

signal-to-noise ratio is low. □

Finally, a real-life example is presented to further testify performances of the four cyclo- 

period estimation methods.

E xam ple  3.6 The global irradiance was measured hourly for three years (1990-1992) at 

a meteorological station DELTA on Ellsmere Island, N.W.T., Canada. Data and more 

information are available at the Taconite Inlet Project website9. As the global irradiance 

is one of the measurements of the solar radiation, it is plausible to conjecture that some 

statistic of the global irradiance has a 24 hour period rhythm; in other words, the global 

irradiance can be modeled as a cyclo-stationary signal with period 24 (hours). The four 

cyclo-period estimation methods are applied with results shown in Figure 3.7. The available 

data length is 4196 and the FFT lengths are chosen to be the integer in the form of 2J 

( J  e  Z+ ) closest to 4196, namely, 4096; while nmax =  60 and the rest parameters are the 

same as those used to generate Figures 3.1 and 3.2. The variability method displays a very 

clear periodic pattern giving p =  24 that is consistent with the conjecture. However, the 

other three methods more or less suffer from some disturbing lines/peaks. □

.5

A .* i#'-’ ' , .

A-

• '  •

o'

Figure 3.7: Global irradiance (a) The variability method (n = 241), (b) Hurd-Gerr’s 
method ([4096/170] =  24), (c) Martin-Kedem’s method ([4096/170] =  24), (d) Dan­
dawate-Giannakis’s method ([4096/170] =  24).

9 http://w w w . geo. umass.edu/climate/TILPHTML/TILPhome.html
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3.3.2 P roperties o f th e  V ariability M ethod

In terms of advantages, the variability method has the following properties:

• Insensitive to stationary noises: In the variability method, a stationary noise equally 

contributes to R  (*,) (*+,■) (0) and rh (*) for a fixed n  (consider a stationary signal as anXn Xu X-n
ill-cyclo-stationary signal and apply Theorem 3.1 or Theorem 3.3); hence, the station­

ary noise has no effect on the variability of these statistics. Dandawate-Giannakis’s 

method has a noise effect cancelation in the inversion operation in (3.31). In ad­

dition, Dandawate-Giannakis’s and Hurd-Gerr’s methods have thresholds to further 

eliminate the noise effects, but their performances are quite different in the examples. 

Martin-Kedem’s method has a similar but somewhat incomplete cancelation in (3.26). 

See Examples 3.2 and 3.6.

• Applicable to ill-cyclo-stationary signals: Ill-cyclo-stationarity has different types in 

terms of R xx (t; r )  (Definition 3.1) and rnx (t) (Definition 3.2). According to the type 

of ill-cyclo-stationarity, the variability method can extract the cyclo-period from the 

corresponding time-varying statistics. Martin-Kedem’s method is based on the mean 

and variance and thus is unable to deal with ill-cyclo-stationarity in R xx (t; 0). See 

Example 3.3.

• Capable of dealing with the cyclo-period inconsistency problem: As explained in Ex­

ample 3.4, the variability method and Martin-Kedem’s method are able to solve the 

cyclo-period inconsistency problem, while Hurd-Gerr’s and Dandawate-Giannakis’s 

methods cannot, because they are exclusively based on some second-order statistics.

• With the best resolution: Dandawate and Giannakis [37] pointed out that (3.30) was 

usually computed via FFT, which would limit the resolution of the cyclo-period esti­

mation. For instance, the cyclo-period p in Example 3.3 is an odd number p = 7, while 

a typical FFT length T  is 2J (J  £ Z y ), thus, p  may not be estimated precisely from 

(3.32), i.e., p = |_2J /fc], where k £ Z+ . Hurd-Gerr’s and Martin-Kedem’s methods 

have the same problem if (3.22) and (3.27) are implemented using FFT. On the con­

trary, th e  v a r ia b ility  m e th o d  d o es  n o t requ ire F F T  an d  p ro v id es th e  b e s t  reso lu tio n  

by searching the cyclo-period directly within the integer set.

• Easier to use: Besides the FFT length, other parameters have to be tuned carefully in 

Hurd-Gerr’s, Martin-Kedem’s and Dandawate-Giannakis’s methods, e.g., parameters 

of spectral windows, because they highly affect performances of these methods; the
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effect is essentially due to the bias and variance tradeoff of the estimators used in 

the three methods (see e.g., Theorem 3.5 in [36]). On the contrary, the variability 

method has only one parameter to concern, namely, either the data length N  or the 

largest blocking operator index nmax■ In terms of computational complexity10, if the 

correlations in (3.4) and (3.13) are computed via FFT [128], then the implementa­

tion of the variability method approximately involves 37VTog2 [N/n\  operations for 

n = 2,3, • • •, nmax (see Algorithm in Section 3.3.1). Loosely speaking, the variability 

method performs the correlation computation (or equivalently three FFT computa­

tions) on N  data points for nmax times; Martin-Kedem’s and Dandawate-Giannakis’s 

methods require one and several N - point FFT computations, respectively (see Sec­

tion 3.5); Hurd-Gerr’s method is usually more computational expensive than the oth­

ers, as (3.23) needs the M-point FFT computation for T2 times. The execution time 

in one trial (Pentium 4, CPU 2.80GHz, RAM 768MB) shown in Figure 3.1 gives a 

rough idea on this aspect: the variability method — 1.172 sec, Hurd-Gerr’s method — 

39.579 sec, Martin-Kedem’s method — 0.312 sec, and Dandawate-Giannakis’s method 

— 0.312 sec. Certainly, more efficient algorithms exist to reduce the computation costs 

of the four methods, e.g., the correlation algorithm at Section 5.2 in [89].

In terms of drawbacks, the variability method has the following properties:

• Incapable of detecting the existence of two or more cyclo-stationary signals: Hurd- 

Gerr’s method essentially estimates and displays the bispectrum defined in (3.20), 

from which multiple cyclo-stationarities can be detected. Martin-Kedem’s and Dan­

dawate-Giannakis’s methods more or less have similar mechanisms. In the variability 

method, the cyclo-period is obtained from the variability of the time-varying cor­

relation R xx(t',T) and/or the time-varying mean m x(t), not from these two statistics 

directly; when R xx(t\t ) and/or m x{t) are collapsed into the variability measurements, 

some information is lost. See Example 3.5.

• Reliant on a relatively large data length if  the cyclo-period is large: In the variabil­

ity method, R  «  (*+,-) (0) or equivalently R xx{ t \r ) (see Theorem 3.1) and m  <fc) or 

equivalently rhx(t) (see Theorem 3.3) may be unreliable because of insufficient data 

points. Hence, if the cyclo-period and consequently nmax are large, N  has to be large 

enough to guarantee a good estimation.

10The computational complexity is usually expressed by the number of complex multiplications and ad­
ditions required or, simply, by the number of operations [34],
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R em ark : The accuracy of the variability method is essentially determined by the 

two estimators R xx{t\ t ) and fhx(t), which are asymptotically unbiased and consistent. 

Theorems 3.1 and 3.3 imply that the two estimators R xx{t \r ) and m x(t) converge to 

R  (fc) (fc+r) (0) and rh (fc), respectively, in a rate of 1 /N  (see Remark after Theorem
X n  X n  X n

3.1); thus, the rate of convergence for the variability method is mainly determined 

by those of R  (k) (k+T) (0) and m  (k), i.e., 1/VfV (note that R  (k) (k+r) (0) and m  (k)
X n  X n  X n  X n  X n  X n

are the well-known correlation and mean estimators defined for stationary signals; see 

Section 3.2.).

3.4 Conclusion

A new method, named as the time-varying mean/correlation variability method, is proposed 

to estimate the cyclo-period p of a discrete-time cyclo-stationary signal x. If x  is blocked 

by the blocking operator L n, x n =  Lnx  defined in (2.8), estimators of the time-varying 

correlation and the time-varying mean are associated with some statistics of x n in Theorems

3.1 and 3.3, respectively. When n is an integer multiple of p, Theorems 3.2 and 3.4 show 

that variability of these statistics of x n achieves the maximum, from which the cyclo-period 

p is obtained. A detailed algorithm is given in Section 3.3.1, where simulation and real-life 

examples confirm the effectiveness of the variability method. The advantages and drawbacks 

of the variability method are summarized with the underlying rationales in Section 3.3.2.

3.5 A ppendix

The purpose of this appendix is two-fold: (i) main ideas of Hurd-Gerr’s, Martin-Kedem’s, 

and Dandawate-Giannakis’s methods are introduced in detail to prepare a comparison of 

them with the variability method; (ii) it is meaningful to present algorithms of the three 

methods, since Hurd and Gerr [72] and Martin and Kedem [90] did not provide such de­

tailed algorithms and Dandawate and Giannakis [37] had one in a broader context. Before 

introducing the three methods, three concepts are reviewed, namely, the cyclic covariance, 

the cyclic spectrum and the bispectrum.

Cyclic Covariance and Cyclic Spectrum: As R xx (f; r )  in (2.6) is a periodic sequence of t 

with period p for a fixed r , it has a discrete Fourier series expansion for a = ‘Ink/p,

1 p~l
Cx x {a-,T) = - Y ^ R x x {t -T)e- iai. (3.18)

PT^o

For a fixed a, Cxx ( a ;r ) , called the cyclic covariance [62, 56, 37], is a sequence in r; thus,
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it has a DTFT with respect to r ,

oo
Sxx (a; w) =  Cxx (a; r) e juT (3.19)

which is defined as the cyclic spectrum of x  [56].

Bispectrum: The bispectrum11 S x x (v , uj) is defined as the two-dimensional DTFT of the

correlation R Xx{t 1 ^ 2 ) =  E{x(t i )x*( t 2 )} [100, 2],

OO OO
(3.20)

11 = —00 £2 ——00

The bispectrum is a very general concept describing the second-order statistical property 

of a non-stationary signal. Specifically, the bispectrum of a cyclo-stationary signal lies on 

some parallel lines in the v-u  plane [2, 62],

The bispectrum component on the k-th line is equal to the cyclic spectrum Sxx (2ttk/p;co)

x, the discrete Fourier transformation (DFT) coefficients of a finite length sample of x  

exhibit (spectral) correlation in disjoint frequency bands described in (3.21). Alternatively, 

a more transparent interpretation is the following: it is well-known that the power spectrum 

of a stationary signal can be estimated by a nonparametric method, the periodogram (see 

e.g., [68, 89]); analogously, the bispectrum defined in (3.20) can be estimated by a two- 

dimensional periodogram; the estimated bispectra lie on the parallel lines represented in

(3.21), from which the cyclo-period is obtained.

Algorithm: Given {x (f)}^]]1, the cyclo-period p can be estimated by the following steps:

1. Compute the DFT of {x ( f ) } ^ 1 (usually implemented by FFT),

t -  1

XT (wt ) =  X ] * ( t ) e “M t , (3-22)
t=o

where T  is a selected DFT length and u>k = 27rk/T .

n The terminology “bispectrum” has a different meaning in the literature, namely, the two-dimensional 
DTFT of the third-order cumulant [135].

uj — v -1-------- =  0, fceZ .
p

(3.21)

in (3.19) [112, 2].

H urd-G err’s M ethod

Hurd and Gerr [72] developed their method by observing that for a cyclo-stationary signal
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2. Select a positive integer M  <C N  and compute a normalized12 two-dimensional peri­

odogram

,  S/c=0 X t  (u>m+k) ( u n + k)
h ( m , n , M ) \  = — tv—-----------------=— tt—,------------------------------ (3.23)

E ^ l o  \ X T  (wn»+fc)| E f c lo  \X T  K + f e ) |

for m, n =  0,1, • • •, T  — 1.

3. Pick up a confidence level Pq, e.g., 99% or 95%, and calculate a threshold I7 0 12 from

Pr ^ |7 (m ,n ,M )|2 > I7 0 I2) =  ( l  -  |7o|2) =  1 -  Po- (3.24)

4. Map I7 (m ,n ,M )\2 that exceeds |7 o|2 proportionally to its magnitude on the m-n 

plane13, from which the cyclo-period is estimated as

p = [ T / d \ ,

where d is the minimum difference between m  and n giving off-diagonal bispectrum 

lines.

M artin -K edem ’s M ethod

Martin-Kedem’s method was mainly motived by a specific case of the cyclo-period incon­

sistency problem introduced in Section 2.2, namely, the period of mean function is p while 

that of variance function is p/2  [90]. To deal with this problem, a new sequence is formed 

from the original data such that the new sequence is periodic with the same period as

the least common multiple of the periods of mean and variance functions of the original

cyclo-stationary signal; next, the periodogram of the new sequence displays peaks at certain 

frequencies, from which the cyclo-period can be estimated.

Algorithm: Given { ^ ( t ) } ^ 1, the cyclo-period p can be estimated by the following steps:

1. Choose an integer K  so that x  is K-dependent in terms of covariance, i.e.,

E  {[x (t) — m x(t)\[x (t + k) — m x (t + k)]} — 0, Vfc > K.  (3.25)

2. Select an integer M  such that K  < M  < N,  and form a new sequence s,

1 N - k - i

s <*> =  a m  E \ x { t ) - x ( t  + k)\, K  < k < M.  (3.26)
-  t = 0

1 2 Eq. (3.23) implies that 0 < I7  (m ,n, M ) \2 < 1 and I7  (m ,n , M ) \ 2 — 1 if m  =  n  and x  is real-valued. 
13The mapping can be implemented, e.g., by Matlab function “contour”.
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3. Form a shifted version of s, ss (k ) =  s ( k  + K )  and compute the periodogram of ss for 

a selected DFT length T,

2

Is (n) =  y j2 irkn /T

k = l

, for n =  1,2, • • •, T. (3.27)

4. Locate the smallest n  giving the highest peak of I s (n) and estimate the cyclo-period

P = [T/n] .

D andaw ate-G iannakis’s M ethod

The main idea of Dandawate-Giannakis’s method is to consistently estimate Cxx (a; r )  in 

(3.18) that is zero except at a — 2tvk/p  (k € Z); thus, a  and equivalently p can be obtained 

by checking if Cxx (a; r )  is zero from a statistical x 2 test, which is based on the asymptotic 

distribution of estimation error and a consistent estimator of Sxx (a;u>) defined in (3.19). 

Note that both time- and frequency-domain methods were given in [37], whereas only the 

time-domain method is presented here because it is more computationally convenient in the 

context of cyclo-stationary signals [37].

Algorithm: Given { x ( t )}^g 1 and a fixed delay r , the cyclo-period p  can be estimated by 

the following steps:

1. Compute a row vector for some integer k  e  [1,T] (T  is a selected DFT length),

ck:T = R e j ^ E L i ^  ( f ) s ( t + r ) e _J^ }  Im x (t) x  (t +  r)  e- ^  } ] ,

where Re{-} and Im{-} represent the real and imaginary parts, respectively.

2. Estimate an error covariance matrix

Re

where

}k,T + Qlc T

Qk, T
:

T L

1
TL

( L - 1 ) /2

E  w L{t)F,
t=—(L—1)/2 

(£,-1)/2

Im

Re

Q k , r - Q (: l

Q {: l - Q k , r

2i r  ( k  — t )

T

/  27t  ( k  +  t )

t = - ( L - 1 ) / 2

Ft

2 tx ( k  +  t )  

T

27t ( k  +  t )

(3.28)

(3.29)
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Here Wp is a smoothing window with an odd length L, e.g., Kaiser window (see e.g. 

[68, 104]), and
T

Ft (lo) = Y ,  x  (t ) x ( t  + t ) e~Ja)t. (3.30)
t=l

3. Compute a real-valued test statistic

T/k.r =  , (3.31)

choose a false alarm level Pp, e.g., 1% or 5%, and find a threshold T from the %2 

table with 2 degrees of freedom so that Pr{rfc)T > F} =  Pp under a hypothesis 

Cxx (2ttk /T ; r )  = 0.

4. Repeat the above steps with different ft’s and find the smallest ft such that I \ r > F; 

the cyclo-period is estimated as

p -  [T/k] . (3.32)
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C hapter 4

C yclo-S tatistic  E stim ation

This chapter1 studies the first- and second-order statistic estimators for discrete-time cyclo- 

stationary signals, with a focus on those of practical interests — the estimators of the 

time-varying mean/correlation and the cyclic correlation/spectrum. A new cyclic spectrum 

estimator, based on the blocked representation of cyclo-stationary signals, is proposed. The 

rationale of an implementation shortcut for the cyclic m ean/correlation/spectrum estimator 

is explored from the relationship between cyclo-stationarity and quasi-stationarity. Perfor­

mance of the cyclo-statistic estimators is validated via simulation examples.

4.1 Introduction

A new cycle domain appears in cyclo-stationary signals due to the time-varying features of 

mean and correlation functions; thus, cyclo-statistics are much richer than those of station­

ary signals. Among all cyclo-statistics, the time-varying mean/correlation and the cyclic 

correlation/spectrum are of practical interests (to be discussed later). The contribution of 

this chapter, which also has some tutorial value, is to summarize the existing estimators of 

these cyclo-statistics, to supplement a new blocking-based cyclic spectrum estimator, and 

to discuss implementation issues of these estimators.

Some conditions being generalized from those for stationary signals are assumed to 

hold in order to consistently estimate cyclo-statistics from one sample realization, e.g., 

cyclo-ergodicities [24] and finite memories of the time-varying correlation and the cyclic 

co rre la tio n  [36]. A lo n g  w ith  cy c lo -e r g o d ic itie s , B o y le s  an d  G ard ner [24] p resen ted  e s t im a ­

tors of the time-varying mean and the cyclic mean, which also appeared in bits and pieces 

in other work, e.g., [37, 94]. By dropping limits and expectations from the corresponding 

definitions, estimators of the cyclic correlation and the cyclic spectrum were proposed and

1The chapter has been published in [155].

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



analyzed from various perspectives. Dandawate and Giannakis [36] defined the higher-order 

cyclic auto-cumulants/spectra and developed an asymptotic theory for the higher-order 

cyclic auto-spectra in a broader context of almost cyclo-stationary signals; they further 

completed the asymptotic theory for the higher-order cyclic auto-cumulants in [38]. Later, 

Sadler and Dandawate [111] generalized the asymptotic theory to the cyclic cross-spectrum 

between jointly cyclo-stationary signals. Genossar et al. [59] investigated conditions to guar­

antee consistency of the cyclic auto-correlation estimator. Schell [115] explored asymptotic 

moments of the cyclic cross-correlation estimators for multivariate cyclo-stationary signals. 

Alternatively, the cyclic correlation/spectrum and the time-varying correlation/spectrum 

can be estimated by taking advantage of the inherent periodicity. Alekseev [3] estimated 

the cyclic spectrum starting from a time-varying correlation estimator, which was the same 

as the synchronous average in [94], Sakai and Ohno [112] pointed out a possibility of es­

timating the cyclic spectrum from spectra of blocked signals, which is formally proposed 

as the blocking-based estimator of the cyclic spectrum in this chapter (see Section 4.4). In 

terms of implementation, Gardner [56] offered an observation, which has been ignored in 

the literature, that the cyclic auto-spectrum is equivalent to a particular cross-spectrum de­

fined for stationary signals. In fact, the observation is applicable for a class of cyclo-statistic 

estimators; its underlying rationale is based on the relationship between cyclo-stationarity 

and quasi-stationarity (see Section 4.5). Note that some of the above estimators have their 

counterparts for continuous-time cyclo-stationary signals [52, 73, 25, 41].

The rest of the chapter is organized as follows. Cyclo-statistic estimators are studied in 

Sections 4.2, 4.3 and 4.4, on the cyclo-mean, correlation and spectrum, respectively. Section 

4.5 explores the relationship between cyclo-stationarity and quasi-stationarity in order to 

theoretically support an implementation shortcut of a class of cyclo-statistic estimators. 

Finally, Section 4.6 provides concluding remarks.

4.2 Cyclo-M ean Estim ators

Estimators of the time-varying mean and the cyclic mean are summarized in this section 

with an emphasis on the former for its practical usages: before estimating the second-order 

cyclo-statistics, the time-varying mean usually has to be subtracted from data in order 

to avoid spectral leakages around low frequencies — similar to a common data processing 

step for stationary signals (see e.g., [89, 119]); moreover, valuable information, e.g., the 

cyclo-period p can be extracted from the time-varying mean (see Chapter 3).

The time-varying mean m x (t ) of a (CS)P signal x( t ) has a Discrete Fourier Series (DFS)
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expansion because of the periodicity in (2.5), i.e.,

p - i

m ,  (<) =  £  M x {k)e’2vkt/p, (4.1)
k = 0

where -l

P t=o
Here k and M x (k) are usually named as the cycle index and the cyclic mean, respectively 

[56, 61]. Eq. (4.2) implies that M x (k ), like m x (t ), is a periodic sequence with period p. 

Given one sample realization of x(t),

{x := {x (0), x (1), • ■ •, x (AT -  1)} , (4.3)

the first estimator of m x (t ) is based on the periodicity in (2.5) [24, 94],

1 L_1
™£l) (*) =  J  ^ 2  x  (lP + t )» (4-4)

1=0

where L  =  [N/p \2 and t 6 [0,p — 1], The second estimator is from the definitions in (4.1) 

and (4.2) [24, 37, 94],
p - i

M  =  £  M x {k)e>2M !p, (4.5)
k = 0

where Mx (k) is a cyclic mean estimator,

J V - l

M x (k) = ~ - Y ^ x ^ e~j2nkn/P- (4-6)
n= 0

, W  ( + \  o r , n  r r , ( “ )

(t )

m4 (t) and m , (f) are connected

p - i  /  ,  N - 1p - i  /  J V - i  \E f iE  x (n) e~i27rkn/P j ̂ jZnkt/p
k = 0 V n = 0  J

p - l  [ N / p \ - l  p - l
i E  E  E  x (Ip _|_ r ) e- j 2̂ k(lp+r)/p^j2vkt/p

k = 0  1=0 r = 0

L J V / p J - l p - l  1 p - l

1=0 r = 0 y  fc=0

[ J V / p j - 1

—  ^  ®(/p +  t) ,  (4.7)
(=o

2Data points a: (p  LAf/pJ), x  (p  \_N/p\ + 1 ) ,  • • •, x  (N)  may be discarded in the blocking operation.
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where the last equality is from an identity

p— 1
I  V '  e- j 2 irk(r~t)/P = f i, { r -  t ) /p  is an integer,
n 2—/ 1 0, otherwise.y  fc=o k

Therefore, if [A7”/pj =  A /p, m x  ̂ (t) and (t) are the same; otherwise, they have a minor 

difference that is negligible for a large N.

Properties of (t) can be obtained from the blocked representation of x(t), shown 

as follows. A new signal ut (l) x(lp + t ) in (4.4) for a fixed t is the same as the t-th 

component of x p(l) in (2.8) that is stationary (see Section 2.3). Thus, mi* (f) is the same as 

the familiar mean estimator defined for stationary signals and is unbiased and consistent.

In particular, the variance of rh$  (t ) is obtained from the variance expression of the mean

estimator of ut {l) (see e.g., Section 3.6.2 in [89]),

{ ± ‘> (*)} L> < (4.9)

where 'jUtUt (•) and cr̂  are the covariance sequence and the variance of ut(l), respectively.

E xam ple  4.1 A (CS)4  signal is

x( t )  =  ^ 1 + c o s ^ ^ ^  (1 +  e (£)),

where e(t)  is a white noise with zero-mean and unit-variance, abbreviated as W N (0,1). 

Table 4.1 presents the true time-varying mean m x (t) and its estimates (t) and (t) 

from one typical Monte Carlo trial. In addition, rh$  (t) is given with the 95% confidence 

level that is developed from (4.9) and the central limit theorem. The simulation results show 

that m x (t ) is effectively estimated by rh$  (i) and (t) ; rh$ (t) and m x ^  (t ) are almost

the same (N  =  4001 and p =  4); the variance of (t ) is validated by the reasonable

confidence level. □

N  = 4001 t =  0 t =  1 t  = 2 t = 3
m x (f) 2 1 0 1

r h $  (t) 2.0561 ±  0.0714 0.9852 ±  0.0152 0 ± 0 0.9834 ±0.0158
rrixl) (t) 2.0556 0 .9 8 5 3 0 0 .9832

Table 4.1: Estimate the time-varying mean
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4.3 Cyclo-Correlation Estim ators

This section studies estimators of the time-varying correlation and the cyclic correlation for 

jointly cyclo-stationary signals. These estimators are the bases of the cyclic correlogram (see 

Section 4.4); more importantly, they have some direct applications, e.g., cyclic correlation 

analysis based on the cyclic correlation (Chapter 6), and cyclo-period estimation based on

the time-varying correlation (Chapter 3) and on the cyclic correlation [37].

The time-varying correlation rxy (t; r )  := E  {x{t  +  r)y*(t)} of two jointly cyclo-stationary 

signals x(t) and y(t) is periodic in t for any fixed r , i.e.,

rxv {t + lp\ t ) =  rxy (t; r ) , Vi, I € Z. (4.10)

The periodicity leads to a DFS expansion,

p - i

rxy (t-,T) = Y / R Xy ( k - , T ) ^ kt^ ,  (4.11)
fc=0

where

Rxy  (fc; r) = - J 2  r*y (*;T) e~j2*kt/p. (4.12)
p - i  

y  t= 0

Here R x y (k;T) is usually called the cyclic correlation [62, 56]. Eq. (4.12) implies that 

Rxy (fc; t ) is periodic in k with period p.

Given {x and {y (t)}^.)]1 as that in (4.3), the first estimator of rxy (t; r )  is from

the periodicity in (4.10) [3, 94, 61],

L2 —1

r (xy (*;r ) =  j -  Y l x<ylP + t + r ) y *(lP +  > (4-13)
1 ( = 0

where Li — [N/p\,  L 2 =  [(N -  r) /p \ ,  t e [0 ,p—1] and r  e  [0,1V -  1], Alternatively,

I'xy can be estimated based on the definitions in (4.11) and (4.12) [36, 38, 59],

p - i

rM(t-,T) = ' £ R x v {k-,T)e>2*ktfr, (4.14)
k—0

where r  € [0,1V — 1] and R xy (fc;r) is a cyclic correlation estimator,

1 N —t — 1

Rxy (k;r) = — +  (4.15)
n ~  0

For a negative time difference r ,  the above estimators work with the periodicities of rxy (f; r) 

and R xy (fc; r)  and the following properties:

rxy (t- ~ t ) = r*x (t -  r; r ) , R xy (fc; - r )  =  R*yx (-fc; r )  e~ ^ kT^ ,  Vt, k j e  Z. 
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It can be shown via a derivation similar to (4.7) that f xy and f xy (t',r) are the same 

for N  = Ip (I €E Z+) or almost the same otherwise.

The estimators fxy (t;r), fxy and R xy (fc;r) are asymptotically unbiased and con­

sistent. The mean and variance of R xy (k; r )  were given in [59, 115], while those of fxy (t; r )  

can be reached with the help of the blocked representations of x(t) and y(t) as follows. Let 

0  := x (lp + t + t )  and vt{l) '•= y{lp +  t) for fixed t and r. Revisiting (2.8) gives that 

ut,r{0 and Vf(l) are the components of the blocked signals xp(l) and yp{l), respectively. 

Since ut,T(l) and vt(l) are jointly stationary (see Section 2.3), rxy is the same as the 

well-known correlation estimator of stationary signals at lag 0, i.e., f UtTvt (0)- Thus, the 

mean and the variance of f xy ( t \r )  are ready to be obtained from those of f Ut rVt (0) (see 

e.g., Section 9.2 in [119]),

E { f 'xy (* ;^ )}  =  j ^ r xy  (t; t )

and

1 00
Var jrW  (t; r )}  ~  ^  [rUt TUtiT (k) rVtVt (k ) + rUt TVt (k) rVtUttT (k)] . (4.16)

k ——oo

t=i

cO)(0S

Lag index  ?

t=3

'5
co

- 0 .5

Lag index  t

t=2
1.5

1

0 .5

0

•0.50 5 10 15 20
L ag  index x 

t=4

1
'cO)COS

Lag index x

Figure 4.1: Estimate the time-varying correlation (N  — 4001): rxx ( t;r )  (solid), f xx (t\r)  
(d o t ts ) ,  fxx  ('t \ r ) (c irc les) an d  th e  95% co n fid en ce  in terv a l o f  r£*2 (t' ,T ) (d a sh ).

E xam ple  4.2 This is one of a class of cyclo-stationary signals [90]:

x{t) = cos ( ^ ]  + e ( t ) .
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Here e(t )  is W N (0 ,1). The time-varying correlation of x(t)  is

1  f  2nt 2it t \  1  f  2 t t t \  .

r Xx (*;r) = 2 C0S( T '  + _8_ J + 2 C°S I I T  J +

where 8 (r) is the discrete Delta function,

1,
elsewhere.

Figure 4.1 presents the true time-varying correlation rxx ( t;r )  and the estimates rxx ( i;r )  

and f xx (£; r)  in one typical Monte Carlo trial. The 95% confidence interval of f xl  ( f ; r )  is 

obtained based on (4.16). The simulation results show that rxx (t ; r ) is effectively estimated 

by f xl  (f;r)  and f xx (t\r); rxl  (t ; r ) and f xx ( t;r )  are almost the same (N  — 4001 and 

p =  4); the variance of rxl  (t; r )  gives a reasonable confidence interval. □

4.4 Cyclic Spectrum  Estim ators

Cyclo-stationary signals have at least four spectral representations that are closely related 

and mutually convertible (Chapter 5), namely, the cyclic spectrum, the time frequency rep­

resentation, the bispectrum and the 2-D spectrum, among which the cyclic spectrum is the 

most common and convenient and hence is the one to be focused on. This section presents 

three types of cyclic spectrum estimators: the cyclic periodogram, the cyclic correlogram 

and the blocking-based estimator.

For jointly cyclo-stationary signals x ( t ) and y(t), their cyclic spectrum is defined as the 

DTFT of the cyclic correlation R xy (fc;r) with respect to r  [62, 56],
OO

SxV {k\e>u) =  J 2  ^ ( f c ; r ) e - ^ T. (4.17)
T =  — OO

Equivalently, Sxy (k\ eJW) can be represented in terms of the time-varying correlation rxy (<; r)  

by inserting (4.12) into (4.17),

1 p - l  oo

Sxy (fc; = r*y (*;T) e - ^ ^ e - * " - .  (4.18)
P  t= 0 T  =  -  OO

A different viewpoint defines Sxy as the cyclic power spectral density [61],

Sxy (fc; ej“) = {X N (e ^ )  Y£  } . (4.19)

Here X n  (eJaJ) and Yn  respectively are the A'-point DFTs of x(t) and y(t), e.g.,

JV-l

X N {e^)  = ' £ x ^ e~j “t-
t=o 
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Either (4.17), (4.18) or (4.19) implies that Sxy (fc;eJW) is periodic in k  with period p.

Given M t ) } ^ 1 and { y W j f , 1, Sxy ( f c ; e f  can be estimated by the following three 

types of estimators.

Cyclic Periodogram:  The cyclic periodogram is obtained by dropping the limit and the 

expectation from the definition of Sxy ( f c j e f  in (4.19),

S fy (*; e f  =  ^ X N (eJa)) Yfc . (4.20)

Unfortunately, Sxy (k\e*u ) is inconsistent [36, 37, 111]. To achieve the consistency, a 

smoothed cyclic periodogram is often used [36, 111],

i /  o  7 \
*?“) = -  Y .  S ^ { k - e > 2̂ L) - W ^  (4.21)

f = - ( L - 1 ) / 2  ^  '

Here ( •) is a spectrum smoothing window having some properties as those in assump­

tions 3.1-3.6 in [36] or assumption 2 in [111]. Sxy (fc;eJa') actually adopts the idea in 

Blackman-Tukey’s estimator that estimates spectra of stationary signals (see e.g., Chapter 

8 in [68] or Chapter 5 in [89]) by smoothing contiguous values of one single cyclic pe­

riodogram. As Blackman-Tukey’s estimator, S^y (/c; e f  is asymptotically unbiased and 

consistent [36, 111]. Note that 5 f  (k;e?u) is not the only choice to make Sxy ( f c j e f  

consistent; see Section 4.5.

Cyclic Correlogram:  The definitions in (4.17) and (4.18) lead to two cyclic correlograms:

N - 1

5 < f ) (fc; e f  =  R xy (fc; r) e ~ ^  (4.22)
T = - ( J V - 1 )

and
1 p - 1  i V - l

5 ( f )  (fc; eJW) = - Y  E  (*;r ) e - ^ ^ / P e " ^ .  (4.23)
P  i = 0 r = - ( i V - l )

Here rxy (t ; r ) and R xy (k ; r ) are given in (4.13) and (4.15), respectively. In practice, a good 

modification to (4.22) or (4.23) is to assign different weightings, say w(r), to rxy (t ; r ) or 

Rxy (fcjr ) in order to penalize points with higher variances. The estimators SxyA) (/c; e - f  

and 5 i f ) J f e f  are the same or almost the same because of (4.14) and the closeness 

between f xy ( t;r )  and f xy ( t;r); in addition, they are equivalent to the smoothed cyclic 

periodogram S^y (/c; e f , if the window W (i ) (■) in (4.21) is the DTFT of the weighting 

w ( t )  assigned to f xy (t \ r ) or R x y ( k \ T ) .  This equivalence can be proved by generalizing 

the relationship between Blackman-Tukey’s estimator and the correlogram defined for sta­

tionary signals (see e.g., Section 5.3.2 in [89]). Therefore, SxyA) ( f c j e f  and SxyB) ( f c ; e f
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are asymptotically unbiased and consistent, as f xy ( t;r) , R xy (k\r)  and S^y (k;e?u) posses 

these properties.

Blocking-Based E stim ator:  Considering a fact that the blocked signals xp(l) and yp(l) 

are jointly stationary (see Section 2.3), the cyclic spectrum can be estimated as

S M  (k; ePu ) = \UP (e ^ )  • ( e ^ )  • U*p (e*")
0 ,k

(4.24)

Here SXpy (eJpw) is an estimate of the spectrum of xp(l) and yp(l)S; Up (e ^ )  is a unitary 

matrix whose element at the fc-th row and the 1-th column is

where k £ [0,p — 1] and I £ [0 ,p— 1]. The estimator (k;e>u) is asymptotically unbi­

ased and consistent, as long as SXpV (eJp0J) is obtained from some asymptotically unbiased 

and consistent spectrum estimator, e.g., Welch-Barlett estimator and Thomson’s estimator 

(see e.g., [68, 89]). In general, (4.24) can be proved by generalizing Theorem 5.1 appeared 

later that involves one cyclo-stationary signal. Even so, let us see (4.24) through a case of 

p = 2 so that the mechanism of Sxy^ (k\ePM) is explicitly revealed. That is, Sxy  ̂ (fc;eJW) is 

reconstructed from all spectral components of xp(l) and y (I) with spectrum cancelation.

E xam ple  4.3 Let x( t )  and y( t )  be jointly (CS)2 - The correlation of the blocked signals 

x 2(l) and y2{l) is associated with the time-varying correlation of x(t) and y(t)\

' x 2y, (t ) = E { x 2 (l +  r )y * (0 }

=  E
x  (21 -f 2t) 

x  (21 + 2r + 1) y* (21) y* (21 +  1) ]

I'xy (0;2r) r x y ( l \ 2 T  1) 
xxy (0;2r + 1) r x y ( l ; 2 r )

Here the last equality utilizes the periodicity in (4.10). Then, the spectrum of x 2 and y2 is
OO

s x2y2 =  ^ 2  r^2v2 (r ) e J

= E iE
n ~ —oo m —0 

- 1 oo

= E
m —0 n — — oc 

1

j n m n fxy {Q] Tl) 1)
. VxV(0; n  +  1) rxy (1; n)

-jojn

E L q R xy(k\n)  E L o  R x y ( k \ n - l ) e > vk
. E L o  R x y  (fc; n + l) E L o R x y  (fc; n) eJ7rfe

j  (u+Trm)n

— r, Sx y (k]w + nm)  eJ(u,+7rm)
m,/c=0

— j(u+7r(m—k))

pjxk

3Note that w is the normalized frequency and the sampling periods of x p(l) and yp(Q are p times those 
of x(t)  and y(t)  (see Section 2.3).
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where the second equality performs a variable change n := 2 r based on the identity in (4.8). 

Thus,

1 e~J0J 
1 —

1 e~JU}
1 - e - J "

1 e - j ( w + 7 r ( m - f c ) )

^(ui+nm) gjnk
1 1l

y  ( fc ;  uj +  77 m )

m,/c=0
(0; <u) + 'S'aiy ( l ; w  +  77) S x y ( 1 ;  lo)  +  S Xy  ( 0 ;  uj +  tt)

( Sxy (0; uj) -  Sxy (1; ui  +  77) )  eju ( Sxy (1; uj) -  Sxy (0; cj  +  77) )  &>

S x y  ( l j  ^ - 0SXy (0; uj)

Sx y (l;uj + 7r) Sxy ( 0 ;  w  +  77)

whose first row consists of the cyclic spectra to be estimated. □

The next example validates performance of the smoothed cyclic periodogram and the 

blocking-based estimator, while the cyclic correlogram is omitted because of its equivalence 

to the smoothed cyclic periodogram.

E xam ple  4.4 An AR system (see Example 5.3.2 in [89])

1
G(?) = 1 -  2.7607q - 1 +  3.8104?-2 -  2.6535?~3 +  0.9238?' 

is driven by a (CS)4  signal (see Example 4.1),

'277+
x  (t) — ( 1 +  cos ( t ) ,

where e(t)  is W N (0,1). As G (?) is LTI, its output y( t )  is (CS)4 ; the cyclic spectrum of 

y(t) is (see (5.15) appeared later)

Jw (k-,e>u) = G (e>u) Sxx (fc;e^) G* , (4.25)

where Sxx (fc; e3'") can be shown as

Sxx (fc;e^) =

1.5, k — 0
j, k =  1

-0 .5 , k = 2
- j ,  k = 3

, Vw.

Figure 4.2 presents the true cyclic spectrum Syy (fc;e^w) and its two estimates Syy* (fc; e7̂ ) 

and Syy1'* (fc;e-7a'). Both estimators capture most parts of Syy (fc; eJaJ) , with some discrepan­

cies at low-magnitude areas. The discrepancies between Syv (A;;©7̂ ) and Syy1* (Aj;eJu;) are

larger, possibly due to the incomplete spectrum cancelation inherent in Sy y * (fc;©7̂ ). □
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O -th  cyclic sp e c tru m 1 - th  cyclic sp e c tru m10'

N.co>IQ2 1 0 ° a 10

0 2 4
F re q u e n c y  (0-27t)

6 0 2 4
F re q u e n c y  (0~2n)

6

2 - th  cyclic sp e c tru m

SP 10

0 2  4
F re q u e n c y (0 -2 n )

6
F r e q u e n c y (0 -2 n )

3 - th  cyclic sp e c tru m
10 '

CD

4>2 
1 1°° s

0 2 4 6

Figure 4.2: Estimate the cyclic spectrum (N  — 4096): Sy y ^k;e^u ) (smooth & solid), 
W or,u c(m)Syy (A:;©7") (thick solid) and Syy (fcje^) (dash).

4.5 C yclo-Stationarity and Q uasi-Stationarity

Estimators m x ') ( t ) ,  r Xy { t ' , T )  and Sx y  ̂ (fc;eJu;) are based on the periodicities of cyclo- 

statistics and the blocked representations of cyclo-stationary signals; they can be conve­

niently implemented via the corresponding statistic estimators defined for stationary signals. 

This section shows that the other cyclo-statistic estimators can be similarly implemented 

via these stationary statistic estimators after a data transformation. The rationale of such 

an implementation shortcut is explored from the relationship between cyclo-stationarity 

and quasi-stationarity.

It is straightforward to see from (4.6) and (4.15) that M x (k ) and R xy {k\t ) can be imple­

mented by applying stationary estimators of the mean and the correlation to x(t)e~i2'Kkt/p 

and (x(t), y(t)ei27Tkt/p), respectively. Similarly, the cyclic periodogram is equivalent to the 

stationary periodogram applying to x(t) and y( t)&>27rkt/p, shown as follows. By defining 

z (f) := y (t ) e ^ ^ P ,  (4.20) can be re-written as

S^(k-,e>u) = ^ X N (e>u’) Y ^ ( e j^ - 2vk/p^
1

N

\ x N (eju) (  y W e - i ^ - ^ / p A

N - 1
J 2 ir k t / p ^ j u t
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=  ± X N (e?u) z*N {e?“) . (4.26)

The right-hand side of (4.26) is the same as the stationary periodogram of x(t) and z(t),

denoted as Sxz (e ^ ) , i.e.,

(fc; =  Sx(t)Mt)ej2, kt/p (e7̂ ) • (4.27)

The significance of (4.27) is not confined to a reliable and simple implementation of Sxy {k;

or S^y (k', e ^ ) ; more importantly, it implies that Sxy (fc; e-^) can be estimated by all consis­

tent spectrum estimators for stationary signals, e.g., Welch-Barlett’s estimator and Thom­

son’s estimator (see e.g., [68, 89]), not just S&y (fc;©7̂ ) .

A question arises naturally: how to theoretically justify the shortcut of applying sta­

tionary statistic estimators to cyclo-stationary signals? The rationale lies on a fact that 

cyclo-stationary signals are quasi-stationary. Quasi-stationarity is defined in the same way 

as stationarity except that the expectation E  {•} is replaced by [85]

1 jV“ 1
E  {■} — lim — E  {■} .

1 J iV —>oo N  ^
t - 0

Quasi-stationarity has been shown to be a suitable unifying framework for signals appearing 

in the practice. It is an extension of stationarity and encloses more types of signals, e.g., 

stationary signals and deterministic periodic signals; meanwhile, quasi-stationary signals 

inherit many properties from stationary signals [85]. Specifically, the similarity between 

E  {■} and E  {■} implies that quasi-stationary signals share the same statistic estimators 

with stationary signals. The following two equations show that cyclo-stationarity and quasi- 

stationarity are connected:

fhx{t)e- j m  = E { x ( t ) e ~ ^ p }
N - 1

lim (t) e~j2nkt/p
J — l\l • ^N —>OO N  .

t = 0

N - l p - 1

N —>oo N
t = 0 n —0

=  M x (k ) (4.28)

and

=  JL“N —*oo N
t = 0
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1 N - l p - 1

=  j ™ ,
t = 0  n = 0

=  R x y {k-r).  (4.29)

Here the identity in (4.8) is used to achieve the last equalities of (4.28) and (4.29). Since 

fhx^ ej2^kt/p and f  ̂ ^ y ^ k t / p  (r) are time independent, x{t) and y(f)eJ'27rW/p are jointly 

quasi-stationary. Therefore, (4.28), (4.29) and

^x(t),y(t)ei2nkt/P (e,?W) ~  Rxy ,

which is implied by (4.29), are the theoretical counterparts of (4.6), (4.15) and (4.27), 

respectively.

R em ark : Gardner [56] had an observation similar to (4.27),

SXx (fc;eJ ) =  Sx^ e-j-Kkt/rtX(tjej-Kkt/p (eJ ) , (4.30)

which was realized via the subband representation4 of x(t). Note that the rationale of (4.30) 

was not studied in [56].

4.6 Conclusion

This chapter studies the cyclo-statistic estimators, including the first class of estimators, 

rhx^ (t ) in (4.4), fxy (t;r) in (4.13), S XyA  ̂ (fc;eJW) in (4.23) and SXy^ (fc;e^w) in (4.24), and 

the second class of estimators, fhx ^ (t) in (4.5), f xy ( t;r )  in (4.14), R x y {k\T) in (4.15), 

SXy (fcje-7̂ )  in (4.21) and SxyB  ̂ (/c;e-7̂ ) in (4.22). The second class of estimators has an 

implementation shortcut, e.g., (4.27) for the cyclic periodogram. The rationale of the 

shortcut is explored from the fact that cyclo-stationary signals are quasi-stationary (see 

(4.28) and (4.29)).

4The subband representation of a discrete-time cyclo-stationary signal was formally proposed in [112, 61].
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C hapter 5

C yclo-Spectral T heory

This chapter1 studies two problems in the spectral theory of discrete-time cyclo-stationary 

signals: the cyclospectrum representation and the cyclospectrum transformation by linear 

multirate systems. Four types of cyclospectra are presented and their interrelationships are 

explored. In the literature, the problem of cyclospectrum transformation by linear systems 

was investigated only for some specific configurations and was usually developed with inor­

dinate complexities due to lack of a systematic approach. A general multirate system that 

encompasses most common systems — linear time-invariant systems and linear periodically 

time-varying systems — is proposed as the unifying framework; more importantly, it also 

includes many configurations that have not been investigated before, e.g., fractional sample- 

rate changers with cyclo-stationary inputs. The blocking technique provides a systematic 

solution as it associates a multirate system with an equivalent linear time-invariant system, 

and cyclo-stationary signals with stationary signals; thus, the original problem is elegantly 

converted into a relatively simple one, which is solved in the form of matrix multiplication.

5.1 Introduction

The spectral theory of cyclo-stationary signals has applications in different areas, e.g., blind 

channel identification and equalization by fractional sampling received signals [143, 144], 

filter bank optimization by minimizing averaged variances of reconstruction errors [112, 99], 

system identification by introducing cyclo-stationary external excitation [55, 60] and by fast 

sa m p lin g  sy s te m  o u tp u ts  [132, 151].

The spectral theory of discrete-time cyclo-stationary signals mainly consists of two parts, 

namely, the cyclospectrum representation and the cyclospectrum transformation by linear 

systems. Here the cyclospectrum is the counterpart of the power spectrum defined for

1The chapter has been published in [152].
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discrete-time stationary or strictly speaking wide-sense-stationary signals. The theory was 

first developed by Gladyshev [62]: a complex function that is currently referred to as the 

cyclic spectrum was defined as the spectrum of a p-periodically correlated2 sequence; the 

spectral relationship between the original sequence and a higher dimensional sequence that 

is actually the blocked signal was discussed. Motivated by the sampling operation, the cyclic 

spectrum of discrete-time cyclo-stationary signals was defined but only a very limited study 

has been given in Gardner’s books [54, 53]; as a complement, LTI and linear periodically 

time-varying (LPTV) filtering of cyclo-stationary signals was discussed briefly in [56]. Using 

the Gardner’s notation (e.g., that in [54]), Ohno and Sakai [99] derived the output cyclic 

spectrum of a filter bank (an LPTV system) mostly from definitions and used it in the 

optimal filter bank design. To avoid the cumbersome derivation in [99], Sakai and Ohno 

[112] studied the cyclic spectrum relationships among the original, the modulated, and the 

blocked signals, and obtained the same expression of the cyclic spectrum in [99] via these 

relationships. In an excellent overview [61], Giannakis presented some results in terms of 

the cyclic spectrum on the LPTV filtering, fractional sampling and multirate processing. 

Besides the cyclic spectrum, there are some other cyclospectra, namely, the time frequency 

representation (TFR), the bispectrum and the 2-D spectrum. After giving an observation 

that the cyclic spectrum is not “very illustrative” (a character actually caused by derivation 

without a systematic approach), Lall et al. [79] analyzed the output of a filter bank in terms 

of the TFR. Akkarakaran and Vaidyanathan [2] used the bispectrum as a tool to generalize 

most results in [113] (studying effects of multirate blocks on scalar cyclo-stationary signals) 

into the vector case; they also gave the bispectrum of the output of a single-input and single­

output (SISO) LPTV system and found the conditions under which a SISO LPTV system 

would produce stationary outputs for all stationary inputs. The 2-D spectrum, indeed a 

coordinate transform of the bispectrum, was proposed in the context of periodic random 

processes in [136, 138, 137] where it was related to the cyclic spectrum and the TFR.

These four types of cyclospectra should have some interrelationships, since they all 

describe second-order statistical properties of cyclo-stationary signals. The first contribution 

of this chapter, which is also of some tutorial value, is to summarize these cyclospectra and 

find their interrelationships. As shown later, they are indeed related to each other and 

mutually convertible, even though each has its own features and may be superior to others 

in one specific context or other.

The kernel problem of the spectral theory is the cyclospectrum transformation by linear

2 “Periodically correlated” is a synonym of “cyclo-stationary” mainly used in the mathematical field [41].
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systems, i.e., to represent the cyclospectrum of the system output in terms of that of the 

input. For this problem, there exist two limitations in the above cited literature: first, 

only some specific configurations have been investigated, e.g., the input of an p-band filter 

bank has to be either stationary [99, 112] or cyclo-stationary with the same period as p 

[79]; second, most of existing results, e.g., the cyclic spectrum of the output of an LPTV 

system (Eq. (17.44) in [61]), are developed via definitions and hence their derivations are 

so overwhelming that generalization to more complex systems, e.g., multirate systems, 

becomes almost impossible unless a systematic approach is adopted (see the proof of (5.15) 

in Example 5.4). The second contribution of this chapter is to remove these limitations: 

the problem of the cyclospectrum transformation is attacked in the framework of multirate 

systems using the blocking technique.

A discrete-time linear system can always be represented by a Green’s function g(k, I) as

OO

y ( k) =  9 (kJ)x{l ) ,  Vfc, (5.1)
I  —  —  OO

where k, l  £ Z [35]. A linear SISO multirate system3 G has the so-called (m, n)-shift invari­

ance property (m and n  are integers) if shifting the input by n samples results in shifting 

the output by m  samples [29]. In terms of the Green’s function, (to, n)-shift invariance is 

characterized by

g(k + m , l  + n) = g(k,l), Vk,l. (5.2)

G : (m,n)

Figure 5.1: A linear SISO multirate system

Figure 5.1 depicts such a linear SISO multirate system G , in which the notation “G : (m, n)” 

denotes that G is (m, n)-shift invariant. Such a multirate system G covers many familiar 

systems as special cases, e.g., the LTI system (m =  n = 1), the LPTV system (to =  n), and 

the cascade of upsampler, LTI system and downsampler (m and n  are coprime) depicted in 

Figure 5.2.

'[m — ► H —► i n

Figure 5.2: A cascade of upsampler (j m), LTI system (H) and downsampler (J, n)

3SISO multirate systems are also called dual-rate systems [29].
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Blocking has been shown to be a powerful technique in dealing with cyclo-stationary 

signals and multirate systems: blocking the cyclo-stationary signal can result in a higher 

dimensional stationary signal (see Section 2.3); by the blocking technique, one can associate 

the multirate system with an equivalent multi-input and multi-output LTI system [96, 78].

Therefore, our main idea is to block multirate systems and cyclo-stationary signals 

properly and convert the original problem into one involving LTI systems and stationary 

signals only that can be readily solved using some well-known results. More specifically, the 

kernel problem is separated into the following two sub-questions:

• Given a linear SISO multirate system G : (m ,n) in Figure 5.1 and the input x  is 

(CS)P, is the output y stationary or cyclo-stationary? If y is cyclo-stationary, what is 

its period?

• W hat is the cyclospectrum transformation in Figure 5.1, i.e., how to represent the 

cyclospectrum of y in terms of that of x l

The rest of the chapter is organized as follows. Section 5.2 summarizes the different 

cyclospectra and explores their interrelationships. Section 5.3 studies the effects of the 

blocking operation on statistical properties of cyclo-stationary signals. Section 5.4 answers 

the two sub-questions and presents some examples as illustration. Finally, Section 5.5 

provides concluding remarks.

5.2 C yclospectrum

We first review four types of cyclospectra and show that these cyclospectra are related to 

each other. After presenting the cyclospectrum transformation by LTI systems, we choose 

the cyclic spectrum as the representation of the cyclospectrum in the rest sections.

There are mainly four types of cyclospectra, namely, the cyclic spectrum, the time 

frequency representation, the bispectrum and the 2-D spectrum.

Cyclic Spectrum: To parallel with other cyclospectra, we introduce the cyclic spectrum 

that appeared in previous chapters again with slightly different notation. Denote the time- 

va ry in g  co rre la tio n  by  R xx ( t  +  x , t )  : =  E { x ( t  +  r ) x * ( t ) } .  E qs. (2 .6 ) a n d  (2 .7 ) sa y  th a t  

Rxx{t +  t , t) is a periodic sequence of t with period p for a fixed t . So R xx(t +  t,  t) has the 

following discrete Fourier expansion

p - l

Rxx (t + r, t) = £  (r) e ^ / p ,  (5.3)
k=0

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where the discrete Fourier series coefficient Cxx (T) is

(r) = 1 ^ 2  R xx (t + r, t) (5.4)
p t=o

The DTFT of Cxk]  (r) is defined as the cyclic spectrum of x  [62, 53],
OO

( ^ ) c p s  = E We ~ i < J T ’ (5-5)
T =  — OO

where the subscript ( c p s )  stands for “cyclic power spectrum”. In the sequel, the symbol 

(e ^ )  is often shorten as (w) for simple notation. It follows from (2.7) and (5.4) that 

Sxx {u'jcps is periodic in k with period p,

S i kx + l p )  ( u ) c p s  =  s £ >  { u ) C P S  , Vfc, I  e  Z. (5.6)

The set j s i ?  (w)c.PS ’ R&c (u ) c p s  > "  ' > ^  (w) c p s |  ^ us f°rms a full description of the

cyclospectrum of a (CS)P signal x. The cyclic spectrum can be considered as a generaliza­

tion of the power spectrum in (2.3); that is, if x  is stationary, S^J {w)cps = Sxx (w) and 

s f x  ( u ) c p s  =  0 for k = 1,2, • • • ,p -  1.

Time Frequency Representation: R xx(t +  r, t) can be considered also as a sequence of 

r  for a fixed t. The time frequency representation is defined as the DTFT of R xx{t + r, t) 

taking r  as the changing variable [79],
OO

SXx (L0)t f r  = X^ R xx(t + T,t)e  . (5-7)
T  =  — OO

It follows from (2.7) that Sxx (u)TFR is periodic in t with period p,

S x x lv  ̂ (w)T F R  =  RXX (w)T F R  ) Vt, Z € Z.

If p = 1, i.e., x  is stationary, Sxx {u)TFR =  Sxx(ui), for all t. The TFR is a broad concept

that characterizes non-stationary signals over a jointly time-frequency domain [21, 69]. It

is also known as Rihaczek spectrum [108] or the time-varying spectrum [114]. 

Bispectrum: The bispectrum Sxx (a>i,u>2 ) is defined as the two-dimensional DTFT of the 

autocorrelation R Xx ( t i , t 2 ) [2, 100]
-  OO OO

5**(w1,w2) =  —  ^  E R x x ( t i , t 2 ) e - ^ e ^ t\  (5.8)
t \  — — OO t2 =  — OO

Like the TFR, the bispectrum is also a very general concept that can describe the second- 

order statistical property of non-stationary signals. Specifically, the bispectrum of a cyclo- 

stationary signal lies on some parallel lines in the u\-u)2 plane [2],

2vrfc „
U1 2 - U 11 H — -  0, (5.9)

V
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where k £ Z. It is shown later that the bispectrum component on the fc-th line is exactly 

the fc-th cyclic spectrum defined in (5.5). Note that the terminology “bispectrum” has a 

different meaning in the literature — the two-dimensional DTFT of the third-order moment 

[135],

2-D S p ec tru m : The 2-D spectrum is defined as the two-dimensional Fourier transform of 

R xx(t + r , t )  [136, 138, 137],

OO OO
S 2 x° ( \ , w ) = J 2  E  Rxxi t  + T ^ e - W e - i ™ .  (5.10)

T  —  —  0 0  t —  — OO

The 2-D spectrum and bispectrum are very similar (see (5.12) later); however, for a cyclo- 

stationary signal x ,  Sxx (A, u > )  is continuous in co and discrete in A, but Sxx ( l o x , u > 2 )  in (5.8) 

is continuous both in u>x and 0 J 2 . The 2-D spectrum is also referred to as the dual-frequency 

spectrum [114] defined for non-stationary signals.

These cyclospectra are related to each other. First, it follows from (5.4), (5.5) and (5.7) 

that the cyclic spectrum and the TFR are a discrete Fourier transform pair [79]

1 P_1
S ikJ  (U )CP S  = -  E 5-  ( ^ T F R ^ j2nkt /P- (5.H)

p  t=0

Second, it follows easily from (5.8) and (5.10) that the bispectrum and the 2-D spectrum 

are a coordinate transform of each other with a scaling factor,

Sxx (X,u>) = 2t:Sxx (uj, uj -  A). (5.12)

Third, the fc-th cyclic spectrum is exactly the bispectrum component that lies on the fc-th

line described in (5.9), i.e.,

p-i / 2 fc \
Sxx (cox, V2 ) =  £  S£> ( l o x ) c p s  5 f W2 -  +  —  +  27x1) , (5.13)

fc= 0 ^ V J

where I is an integer and S(-) denotes the Dirac delta function [61]. Certainly, the fc-th 

cyclic spectrum is also related to the 2-D spectrum [138]

s i kJ ( u ) Cps  = ^ S ™

Finally, the TFR and the 2-D spectrum are a DTFT pair [136],

OO

S ^ ( A ,W) =  £  S ^(co )TFRe ~ ^ .  (5.14)
t ~  — OO

These interrelationships are shown in Figure 5.3.
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Figure 5.3: Interrelationships among the four cyclospectra

Since these cyclospectra are mutually convertible, it is sufficient to use only one of 

them to represent the cyclospectrum in the rest of the development. Before making a 

choice, we introduce the cyclospectrum transformation by LTI systems to further capture 

the characteristics of these cyclospectra.

Let a (CS)p signal x  be the input of a discrete-time LTI system G with transfer function 

G(z). As LTI systems preserve the cyclo-stationarity [113, 79, 2], the output y is (CS)P. The 

cyclospectrum of y is associated with that of x  as follows. In terms of the cyclic spectrum,

4 ?  H o p s  =  G (e*-) S™ {u)CPS G* ( e ^ * ) )  , (5.15)

where u>o =  2n/p. Similar observations to (5.15) were noticed in [56, 144] without proofs,

which are provided in Example 5.4. The TFR and bispectrum of y were given in [79] and 

[2], respectively,

OO

s $  (u )t f r  = G (e ^ )  £  S t l) M r FRg* (5.16)
I  —  — OO

Syy (v!,UJ2) =  G ( e ^ 1) (Wl) wa) G* ( e ^ 2) . (5.17)

Here g(-) is the impulse response of G. Eqs. (5.12) and (5.17) give the 2-D spectrum of y,

S™  (A,u>) -  G (e ^ )  S™  (A, u) G* . (5.18)

The TFR is introduced because “the representation of the cyclo-stationary processes, in 

terms of cyclic spectral density4, which, although a means of characterization, is not very 

illustrative, particularly in the context of filter bank analysis” [79]; however, (5.16) reveals 

that the TFR is not compact. The bispectrum is originally defined for non-stationary sig­

nals so that it has been cautioned to be unwieldy in mathematics [103] or too general and

4The cyclic spectral density is synonymous to the cyclic spectrum.
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inefficient for indiscriminate use [2], The 2-D spectrum is simply a coordinate transfor­

mation of the bispectrum, and thus they share the same problems. The cyclic spectrum is 

defined in the way of incorporating the spectral information along with periodicity and thus 

it displays directly the fundamental characteristic of cyclo-stationary signals; even though 

(5.15) is not as compact as (5.17) and (5.18), the cyclic spectrum is very convenient once 

all the fc-th cyclic spectra are enclosed in the so-called cyclic spectrum matrix [62, 112]. 

Therefore, we will use the cyclic spectrum in the sequel and the subscript (c p s ) is dropped 

without confusion.

5.3 Blocking Operator

In Section 5.1 we have briefly discussed the idea of blocking multirate systems and cyclo- 

stationary signals properly to form a relatively simple problem. Based on Section 2.3, 

this section studies further the effects of the blocking operator on multirate systems and 

cyclo-stationary signals.

X

G : (m , n )
y

A, —► —► —► K —►L-J
y

Figure 5.4: Blocking a linear SISO multirate system

One of the advantages of the blocking operator is that it can associate multirate systems 

that are essentially time varying with some equivalent LTI systems to which many existing 

LTI techniques can be applied. For the multirate system in Figure 5.1, blocking the input x  

and the output y by L n and Lm respectively yields a blocked system G := L mGL~l , which 

has n inputs and m  outputs. The blocking procedure is depicted in Figure 5.4. As G is 

(m, n)-shift invariant (see (5.2)), G is LTI [96] and has an m  x n  transfer matrix [29]

Goo (z) Goi {z) ■ ■ ■ Go,n-l (z)
Gio(z) Gu (z) ••• Gi,n_ i(z )

G{z)

_ Gm—1,0  ( z ) Gm—1,1 (z) ' ' ' Gm—i<n—i (2 ) _ 

whose entries relate to the Green’s function of G (see (5.1)) as

(5.19)

Gk,i{z) = ^ 2  9 {k + m t , l ) z
t = —OO

- t (5.20)

Gladyshev [62] first proposed the relationship between a cyclic spectrum matrix of the 

original signal and the power spectrum of the blocked signal, which was proved by Sakai
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and Ohno [112] for scalar signals. Akkarakaran and Vaidyanathan [2] also noticed this kind 

of relationship between bispectra. Here we offer a theorem describing this relationship in 

terms of the cyclic spectrum for vector signals.

Theorem 5.1 The cyclic spectrum matrix (w) of a (CS)p q-dimensional vector signal 

x is connected with the power spectrum SXx (to) of its p-fold blocked version x as

(to) =  uplq (u) S x x  (p t o ) u;]q (uj), (5.21)

where ®xx (uj) is an qp x qp matrix whose kl-th q x q block component is determined by the 

cyclic spectrum of x,

[*xx(u)]kl = S ! f r lH u  + kuo), (5.22)

and Up\q (uj) is an qp x qp unitary matrix whose kl-th q x q block component is

(5-23)

Here k =  0 ,1, • • • ,p — I, I =  0,1, • • • ,p — 1, u>o =  2ir/p and Iq is a q x q identity matrix.

Proof of Theorem 5.1: Since the blocked signal xp is stationary (see Section 2.3), it has a 

power spectrum S Xx(to).  Prom (2.3) and (2.8), the kl-th  component of SXx(pto)  is

OO
[ S x x ( p t o ) ] k i  =  E[xk (t + t )  x*i (£)] e~3pu)T

T  =  —  OO 

OO
=  E  [x (pt + pr  +  k) x* (pt + 1)] e~ipuJT.

An identity
i p- 1 ( i
_  - ju o m v  _  J

~  I  0‘m — n 'm~ 0

is used to change pr  by a new variable v,

oo .  p —l

v/p  is an integer, 
0, otherwise,

[Sxx (pto)]ki = ^ 2  e~3U!°mvRxx (pt + v + k ,pt  + l) e~J“v
v= —oo P  m —0 

.. oo  p — 1

=  -  e~jWomiT+l~k)Rxx (pt + T + l,pt + I) e-ju(T+l-k)
t = — oo m = 0 

.  00 p - 1

=  -  5Z  J ]  e - ^ m^ - V Rxx (I +  r, I) e - ^ +l- k\
V r ——oo  m = 0
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where the second equality is reached by replacing v with a variable r  := v + k — I and the 

last equality follows from the cyclo-stationarity property described in (2.7). From (5.3) and 

(5-5),

1 oo  p —1 p - 1

[5xx(pw)]w =  -  J 2  Y J ^ om{T+l~k)Y . C {l H r ) ^ arl^ MT+l- k]
P r = —oo m = 0 r —0

-1 t' r  *
-  E E  ej(com +c)fce -ja J0 (m -r)Ie - ^ I (SM  ^  +  ^  24)

P m= 0 r~0

Next, we show that (5.24) is equivalent to

e - j ( w 0n+w)lS (m -n )  ^  +  ^

P m = 0 n= 0

Comparing (5.24) and (5.25), their difference for a certain m e  [0,p — 1] is

p— 1 p ~ 1

e -jw o (m -r)ig (r ) ^  +  ^  e ~ i “onl g ( m - n )  ^  +  Worn)

r—0 n=0
p - 1

=  ^  e - ^ m ~ r ) l S i rJ  ( u j  +  w0 m)
r= 0

m p— 1

-  J ] e - ^ 0,li5 ^ - n )(a; +  wom )+ ^  e^ o (p -« ) ; 5 (p+rn-ri) (w +  w0m)
_n= 0  n= m + l

p- i

=  e - ^ m ~ r ) l S i rJ  (w +  w0m)
r~ 0

m p— 1

_ ^ e - ^ 0(m- r)'5W (w +  cuom)+ e- iM™-r)iS (r) (w +  Wom)
_r= 0  r=ro+l

=  o,

where the second equality uses the periodicity of the cyclic spectrum in (5.6) and the third 

equality is obtained by changing variables r := m  — n and r \= p + m  — n in the last two 

summing terms, respectively. Finally, (5.21) is obtained from (5.25). □

R em ark : There are two important differences between Theorem 5.1 and its counterpart in 

[112]: first, the proof in [112] takes a modulation representation of cyclo-stationary signals 

as an intermediate step, whereas we attack the problem more directly and thus the proof 

is much simpler; second, the result in [112] holds under a condition

|w| < a>o/2, (5.26)

which is actually introduced by the modulation representation, whereas our proof shows 

that (5.26) is superfluous. Removing the limiting condition (5.26) is extremely important,
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because the valid range of using the blocking technique will become too small to be mean­

ingful, if (5.26) has to be satisfied.

5.4 C yclo-Stationary Signals in M ultirate System s

We are ready to attack the two sub-questions proposed in Section 5.1 using the blocking 

technique. The first sub-question is answered in Theorem 5.2; the second is solved in 

the form of matrix multiplication. Both are followed by some specific configurations as 

illustration.

5.4.1 C yclo-S tationarity  o f th e  O utput

There are basically three approaches to answer the first sub-question: (i) to explicitly write 

out some statistics of the system output, e.g., the autocorrelation or the cyclic spectrum, 

as what was done in [2, 79]; (ii) to reduce the multirate system into simpler building blocks 

such as: upsamplers, LTI systems and downsamplers and study cyclo-stationary properties 

of each block, as in [2, 113]; (iii) to use the blocking technique. The last approach is the 

simplest for most systems and hence is adopted here.

G

qm

1 l x l
wss (cwss),
qmx  1l x l  qnx l

(CWSS);, WSS

qn qn qm

Figure 5.5: A blocked SISO multirate system

T h eo rem  5.2 Given a linear SISO multirate system G : (m, n) in Figure 5.1 and an (CS)p 

input x, the output y is (CS)pm/ gcd(p ,n ) ■

Proof of Theorem 5.2: The use of the blocking operator needs to comply with two principles: 

the blocked system needs to be LTI and the blocked signal is stationary. Thus, the fold of 

th e  b lo ck in g  o p era to r  at th e  in p u t sid e  m u st b e  an  in teg er  m u ltip le  o f  n  as L m G L ~ l  is LTI 

(see Figure 5.4) and at the same time be an integer multiple of p. Blocking x  by Lqn and 

y by L qm as depicted in Figure 5.5 will satisfy the two principles, where

q = p /gcd (p ,n ) .  (5.27)
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In Figure 5.5, the blocked system G_ := LqmGLq̂  is LTI and the blocked input x  is station­

ary. The blocked output y is stationary, which implies that y is (CS)pm/ gcd(p<ny  □

Example 5.1 The multirate system G is indeed an LTI system if m  — n =  1, under 

which Theorem 5.2 says that if the input is (CS)P, then the output is (CS)P too. In other 

words, LTI systems preserve the cyclo-stationarity, which is consistent with the conclusions 

in [113, 79, 2, 61]. □

Example 5.2 If m  =  n ^  1, the multirate system G : (m , n ) reduces to an LPTV system 

that appears frequently in signal processing and control, such as multirate filter banks 

[147] and LPTV controllers [78, 50]. More specifically, if the input is stationary or (CS)P, 

Theorem 5.2 gives that the output of an LPTV system with period p (i.e., m  =  n =  p) is 

(CS)P. This conclusion is consistent with those in [2, 113, 61]. □

Examples 5.1 and 5.2 are both with m  = n. For m  ^  n, the multirate system is 

also named the fractional sample-rate changer, which has two configurations as follows. 

First, if m  and n  are coprime, the multirate system G is equivalent to the cascade of 

upsampler, LTI system and downsampler, depicted in Figure 5.2, which has been studied 

extensively [147, 87, 113, 48, 118]. Second, if m  and n have some nontrivial common factor, 

G is not equivalent to the cascade system in Figure 5.2 [118, 29]; it stands for a more 

general building block that finds applications in the nonuniform filter banks [29] and the 

multichannel nonuniform transmultiplexers [83].

Example 5.3 For the cascade system in Figure 5.2 (m and n  are coprime), if the input x  

is stationary (p =  1), Theorem 5.2 says that the output y is (CS)m, which is consistent with 

that in [113] obtained by analyzing the cascade in Figure 5.2. As a comparison, the other 

two approaches mentioned at the beginning of this subsection are explored for the same 

configuration. Clearly the first approach has difficulties as the explicit statistical expression 

of the system output has not been given in the literature. The second approach proceeds 

as follows. The upsampler and downsampler have the properties: if the input of a fc-fold 

upsampler is (CS)P, the output will be (CS)fcp [79]; if the input of a fc-fold downsampler is 

(CS)p, th e  o u tp u t  is (CS)p/ gCd(p,fc) [113]- A p p ly in g  th e  tw o  p r o p e r t ie s  to  th e  c a s c a d e  s y s te m  

in Figure 5.2 gives the same result. □

Remark: Theorem 5.2 can be verified by estimating the period of the output via some nu­

merical methods, e.g., Hurd-Gerr’s method [72], Martin-Kedem’s method [90], Dandawate- 

Giannakis’s method [37] and the variability method (Chapter 3).
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5.4.2 C yclospectrum  of th e O utput

We follow the same idea used in Section 5.4.1. Specifically, the multirate system and cyclo- 

stationary signals are blocked as that in Figure 5.5 (see the proof of Theorem 5.2). Blocking 

the (CS)P input x  by Lqn for the q in (5.27) implies that pr = qn, where r is an integer. A 

general solution of the second sub-question consists of two cases.

Case 1: r = 1. From Theorem 5.1, we have (see Figure 5.5)

Sxx(po.0 =  U;{1 ( lo)^x x (lu)Up1i (u;), (5.28)

$„„(w) =  Uqmll(w )Syy{qm u)U *m l l {w ) , (5.29)

where q — p /n .  Since x  is stationary and G L qmG L qnL is LTI, (2.4) gives

Syy (u>) =  G (e ^ )  (uj) G* ) ,  (5.30)

where G(z) is represented by the Green’s function of G  in (5.19). Therefore, the cyclic 

spectrum of y is associated with that of x  via (5.28), (5.29) and (5.30),

$yy  ( p w )  =  Uq m |i  (pw) G (ejpqmu) U*{1 (qmw) $ xx (q m u ) Up\i (qmu) G* (e>Pqmu)) [7*m |1  (puj ) .

(5.31)

l x l
WSS (cwss){

p x  1 qmx  1l x l
(CWSS)p WSS

qn qm qmG : (m, n)

Figure 5.6: An equivalent blocked SISO multirate system: pr =  qn

Case 2. r > 1: W ith q = p /  gcd(p,n), (5.29) and (5.30) still hold. However, one more step 

is needed: Lqn is decomposed into a series of L.p and L r, which makes Figure 5.5 equivalent 

to Figure 5.6. Theorem 5.1 gives

Svv (pw) — GpH (cu) (w) Cp|i (u>). (5.32)

S in ce  v is s ta tio n a ry , it s  cy c lic  sp ec tru m  m a tr ix  is b lo ck  d ia g o n a l. T ak in g  it  as a  sp ec ia l 

case of Theorem 5.1 results

S x x  (ruj) = u*]p (to) ■ diag

S v v  ( ^ )
Svv +  27r/r)

Svv (lj +  2 ir(r -  l ) / r )  
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where r  =  n/gcd(p, n) and diag([ ]) denotes a diagonal matrix taking the elements of the 

operand vector as the diagonal entries. Prom (5.29), (5.30), (5.32) and (5.33), the cyclic 

spectrum of y is associated with that of x,

$vv (prv)
= Uqm{i (pro) G ( e ^ m“ ) U;ip (pqmiu)

(
■diag

U*\i {qmw) $ xx {qmw) f/p|1 {qmw)
U*|j (qmu + 2ir/pr) $ xx {qmu + 2ir/pr) Up|j {qmw + 2n/pr)

Up\i (9mw + 27f(r -  1 )/pr) $ xx {qmu + 2 n{r -  1 )/pr) Up\i {qmw + 27r(r -  l)/pr)V
■Ur[p{pqmw)G: ( e ^ m“ ) (pro;)

/
(5.34)

R em ark : For a fixed frequency w, either (5.31) or (5.34) can be numerically computed as 

the matrix multiplication.

The next example is on the cyclospectrum transformation by LTI systems. The purpose 

of the example is three-fold: (i) to illustrate what happens beyond the matrix multiplication 

in (5.31) and (5.34); (ii) to give a concrete example showing a realization of (5.19); (iii) to 

provide an alternative proof of (5.15).

E xam ple  5.4 Let G be LTI and x  be (CS)2 , i.e., m  =  n =  1 and q = p — 2 in Figure 5.5. 

Eq. (5.31) becomes

M  =  u 2ll H  G ( e ^ )  H  ( u 2]1 m  g  ( ^ )  u ; tl n ) *. (5 .3 5 )

The unitary matrix U2\i (u>) is (see (5.23))

U2 \i M  =
-jw

I e-j'(«+7r)

An LTI system is fully characterized by its impulse response h (•), i.e.,

y ( k ) = h ik ~ ■

(5.36)

(5.37)
/=—oo

Comparing (5.1) and (5.37) gives the connection between the Green’s function and the 

impulse response

g (k, I) — h{k — I ) . (5.38)

The blocked system G =  L 2 GL2 l has a transfer matrix (see (5.19))

G{z) Goo(z) Goi(z]
L Gw (z) Gn  (z) J

(5.39)
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where (5.20) and (5.38) result
00

Gki (z) = ^ 2  g {k  + 2t , l )
t —  — OO 

OO

=  Y 1  h(2 t  + k - l )

- t

t——oo

Thus, (5.39) becomes5

G(z) G0 (z) z~1Gi (z)
I Gx (z) Go (z)

where Go (z) and G\ (z) are the well-known type-1 polyphase components of G [147],

(5.40)

G(z)  =  h(0) + h ( l ) z  1 + h ( 2 ) z  2 + h (3 ) z  3 +  g (4) z 4 -1- g (5) z 5 +  ---

=  (h (0) -I- h (2) z~2 + h (4) z~4 +  ■•■) +  z~ l (h (1) +  h (3) z~2 +  h (5) z~4 +  ■ • •) 

=: Go (z2) + z - 1̂  (z2) . (5.41)

From (5.36) and (5.40), the product of the first three matrices in (5.35) is

U2\i M  Q. (ei2aJ) (w)

1 e-J"
1 e-i(w+7r)

1 1
Q}(u+ir)

Go (ej2w) e ^ G i  (G2“)
. Gi  (e>'2" ) Go {e>2“ )

Go {G2u) +  e -^ G i (G2“) 0
0 G0 (eJ'2w) +  e - i ^ + ^ G i  (ej2u)

G (e>u) 0
(5.42)

(uj)

0 G ( e ^ +7r)) _

where the last equality follows from (5.41). Note that the zeros on the off-diagonal entries 

imply an exact spectrum cancelation. From (5.35), (5.42) and the cyclic spectrum matrix 

of x  (see (5.22))
s i0]  M  s i1]  (u)

_ six (w + 7r) s i° j (uj + 7T)
<&yy (cu) is obtained,

S $  M  S $  ( uj)

S y y  (w + ?r) S y y  ( uj +  7r)

G (e ^ )  0
0 G ( G ^ +n'>) _

G si°] (to) G* (e>“) G (e»") s i1]  (uj) G* ( e ^ +7r))
G ( e ^ + ^ )  s i1]  ( u j  + tt) G* (e»'w) G ( e ^ +7r)) si°] ( u j  + tt) G* ( e ^ +7r>)

which also proves (5.15). □

5Theorem 8.2.1 in [28] gives the generalization of (5.40).

s i° ]  ( u j )  s Q  ( u j )  

S x J  ( u j  +  i t )  Si°] ( u j  + 7r)

G* (e*") 0

0 G* ( e ^ + ’O)
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M ultirate filter banks are typical examples of LPTV systems and have been of partic­

ular interest in signal processing [147]. Unlike the approaches in [113, 99, 112, 79, 2], the 

statistical properties (in terms of cyclic spectrum) of the output or the reconstructed signal 

of the filter bank are elegantly found by the blocking technique in the next example.

o*( I P )— K  TP

p - 1p - 1

Figure 5.7: A maximally decimated filter bank

c(/)
►U

— ► D,

y{t)

p ) - ^
t

Figure 5.8: Polyphase representation of a filter bank

E xam ple  5.5 Figure 5.7 depicts a maximally decimated filter bank [147], where Hi and 

Fi (i =  0,1, • • ■ ,p — 1) are analysis filters and synthesis filters, respectively. Let the input 

x  be (CS)P. W ith the type-1 polyphase representation of [147], the type-3 polyphase 

representation of Fk [48], and noble identities [147], Figure 5.7 is equivalent to Figure 5.8 

6. It is easy to see from (2.8) that u =  [uo, u i, • ■ •, Wp-if and v — [uo, vy, ■ ■ ■, vp^  in 

Figure 5.8 are exactly the blocked versions of x  and y, respectively. Thus, the original filter 

bank in Figure 5.7 is represented in terms of the blocked signals u and v with an LTI system 

D'jEh. Here both E/, and D j  are p x p systems; the fc/-th elements of their transfer matrices 

are

E h {z)\ = H l f ( z ) ,  \ t)f  (z) 
J kl L kl

6A similar observation was also noticed in [30].
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where H ^  (z ) and F (z )7 relate to the impulse responses hk(-) and /*(•) of Hk and Fk, 

respectively,

00

= 5 3  hk{tp + l ) z~ l ,
t= — OO 

CO

= 5 3  f k { t p - i ) z ~ i .
t= — 0 0

Finally, the cyclic spectrum of the output y can be associated with that of the input x  via 

the following three equations (see (5.31)),

Sun (pu) = U*|i (w) (w) Up\i (w) ,

Svv (w) =  D'f  (e ^ )  E h (e^“ ) Suu (uj) (b ' f  {e>^) E h (*>"))* .

%v  H  =  J7P|1 H 5 w (pW)i7;i l M .

□

5.5 Conclusion

In this paper, we have studied the spectral theory of discrete-time cyclo-stationary signals: 

the cyclospectrum representation and the cyclospectrum transformation by linear multirate 

systems. The four types of cyclospectra, namely, the cyclic spectrum, the time frequency 

representation, the bispectrum and the 2-D spectrum are shown to be closely related and 

mutually convertible (see Figure 5.3). The cyclospectrum transformation by linear systems 

are solved in a systematic manner by using multirate systems as the unifying framework 

and the blocking technique as the main tool. The effects of the blocking operator on cyclo- 

stationary signals are investigated in Theorem 5.1. The cyclo-stationarity of the output 

of the multirate system is studied in Theorem 5.2 and the cyclospectrum of the output is 

associated with that of the input in the form of matrix multiplication in (5.31) and (5.34).

Superscripts and (*p3') mean the type-1 and type-3 polyphase representations, respectively.
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C hapter 6

FIR  M odeling for 
E IV / C losed-Loop System s

Finite impulse response (FIR) modeling of errors-in-variables (EIV)/closed-loop systems 

by the traditional correlation analysis usually yields biased estimates due to the additive 

noises on inputs and outputs. A non-parametric approach, the cyclic correlation analysis 

(CCRA), provides asymptotically unbiased and consistent estimates. The main feature 

of the CCRA is to eliminate the adverse effects of stationary noises by exploiting cyclo- 

stationarity that may exist naturally or be induced artificially. This chapter1 developes a 

complete study of the CCRA, including the statistical performance of the estimated FIR 

model. Frequency-domain expressions of the statistical performance provide guidelines in 

designing a class of cyclo-stationary signals for modeling. Effectiveness and properties of 

the CCRA are validated and illustrated by numerical examples.

6.1 Introduction

Consider a setup depicted in Figure 6.1: G(q) is an unknown discrete-time LTI system with 

impulse response coefficients g(-), i.e.,
OO

G(q) ■= Y j 9 ( 0 q~1-, 
i—o

Fy(q) and I^iq)  are some unknown LTI systems in the feedforward and feedback paths, 

resp ectiv e ly ; th e  in p u t-a d d it iv e  n o ise  n „ (t )  p erh a p s o r ig in a tes  from  th e  m ea su rem en t n o ise , 

quantization noise and self-noise [39]; the output-additive noise ny(t) possibly consists of 

the measurement noise, disturbance, and model mismatch [85]; z(t) is an external signal 

to be defined later. The objective2 is to estimate the first M  impulse response coefficients

lrThe chapter has been published in [154, 158].
2The objective is very different from the blind identification (e.g., [143]) that only explores output data.
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Figure 6.1: A general framework including open-loop, EIV, and closed-loop systems

of G(q), {(/(0), g(l), • • ■ , g (M  — 1)}, from the measured input-output data {u (t ) , y  ( f ) } ^ .  

We assume:

A6.1 G(q) is asymptotically stable; in addition, if F-^iq) ^  0, the closed-loop system [1 +  

F2 (q)Fi(q)G(q) ] ~ 1 is asymptotically stable.

A6.2 Both nu(t) and ny(t) are wide-sense stationary, possibly colored and mutually corre­

lated.

A6.3 nu(t) is uncorrelated with the noise-free input and output, uo(t) and yo(t); if ̂ 2 (9 ) =  0, 

so is ny{t).

The setup in Figure 6.1 is a general framework, and reduces to three common systems after 

imposing some restrictions: (i) an open-loop system if ^ 2 (9 ) =  0  and nu(t) is absent, (ii) 

an (open-loop) EIV system if F%(q) — 0, and (iii) a closed-loop system if n u(t) is absent.

Estimation of the FIR coefficients of an unknown discrete-time LTI system has found 

extensive applications in the areas of control and signal processing [22, 77, 122]. First, FIR 

models are required by some of PID control and model predictive control (MPC) technolo­

gies. For example, DMC-plus and RMPCT, the representatives of the fourth generation 

MPC technologies, estimate the FIR models as the first step upon which low-order para­

metric models are fixed afterwards [80, 107]. Second, FIR modeling is a simple and effective 

approach to gain the system knowledge on the variable interaction, dominating time con­

stants, and time delays [19, 49], Most importantly, the FIR model provides an indispensable 

comparison with parametric models that have to “guess” the unknown system structure: 

If the impulse response of a parametric model has good agreement with the FIR model, 

one would be confident that correct features of the unknown system have been picked up 

[8 6 ]. On the other hand, FIR models are non-parsimonious, i.e., a large number of impulse 

response coefficients usually have to be estimated; as a result, more data points are needed 

to reduce the estimation variance [75, 162], Irrespective of its drawbacks, FIR modeling
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has long been advocated as a useful non-parametric analysis accompanying with parametric 

identification.

The correlation analysis (CRA) is a well-established non-parametric approach to consis­

tently estimate FIR models of open-loop systems without input-additive noises; see details 

in some books, e.g., [22, 85, 122], and a historical review in [162], The estimates from the 

CRA, however, are biased for EIV and closed-loop systems.

EIV systems with noise-corrupted inputs and outputs appear in various applications, 

e.g., system identification, adaptive signal processing, and time series modeling [148]. When 

only second-order statistics are exploited, a unique solution generally cannot be admitted 

without imposing additional assumptions [5, 123]. The FIR modeling in [121, 164] requires 

that nu(t) and ny{t) in Figure 6.1 are white noises with known variances or a given ratio be­

tween the unknown variances. By contrast, the approaches based on higher-order statistics 

such as the 3rd-order cross-cumulants [6, 146] can give consistent estimates under the noise 

assumption A6.2; however, they typically need a large number of data points to achieve 

estimates with tolerable variances.

Closed-loop systems often arise due to inherent feedback mechanisms, or production, 

economic and safety reasons [85, 122]. If some external signals outside the feedback loop, 

like z(t) in Figure 6.1, are available, a so-called joint correlation analysis (JCRA) treats the 

external signals as instrumental variables, removes the adverse effect of ny(t) via feedback, 

and provides asymptotically unbiased FIR models [23, 109]. The main problem of the JCRA 

is that z(t) may not be strongly correlated with u(t) and y(t), which is mainly determined by 

closed-loop dynamics; due to the problem, the JCRA may result in unreliable FIR models 

with large variances (see Example 6.3 later). To alleviate the problem, external signals have 

to appear at the points as close to system inputs as possible, but the number of such signals 

would quickly become prohibitive for multivariable systems.

This chapter studies another non-parametric approach, the CCRA, which yields asymp­

totically unbiased and consistent FIR models for EIV and closed-loop systems. The key 

characteristic of the CCRA is that the external signal z(t) in Figure 6.1 is assumed to 

be cyclo-stationary and independent to nu(t) and n y(t). Besides being induced by human 

o p era tio n s , e .g ., a m p litu d e  m o d u la tio n  in  S ec tio n  6 .4 .1 , c y c lo -s ta t io n a r ity  o ften  e x is ts  n a t­

urally in industry, e.g., vibrations in rotating machinery [94, 8] and control-loop oscillations 

[139, 140]. Under these circumstances, exploiting cyclo-stationarity is more reasonable and 

promising than stalling at stationarity.
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Cyclo-stationarity was exploited in estimating the time-difference-of-arrival, namely, an 

EIV system with only time delay, by a cyclic-correlation-based algorithm [53] that is a special 

case of the CCRA. Cyclic spectral analysis (CSPA), the frequency-domain counterpart of 

the CCRA, was proposed in [53, 55] to give asymptotically unbiased frequency-response esti­

mates for EIV systems. The CSPA was generalized for identification of closed-loop systems 

in [60], where the CCRA was presented without a detailed analysis (Eq. (12) therein and see 

also [61]). The study of the CSPA was completed in [7] in the sense of developing the sta­

tistical performance of the CSPA, including variances of the estimated frequency responses. 

In [47], frequency responses were estimated from spectral cross-moments and cumulants 

of high-order cyclo-stationary signals by an algorithm whose computational complexity is 

comparable to the CSPA.

It is well-known that the CRA and its frequency-domain counterpart, the spectral anal­

ysis (SPA), are complementary to each other; so are the CCRA and the CSPA. Hence, 

this chapter can be regarded as the time-domain counterpart of the work on the CSPA in 

[53, 55, 7]. In particular, our contribution is three-fold: (i) It provides a relatively complete 

study of the CCRA in Section 6.3, including its statistical performance, which have not 

been studied in [53, 60]; (ii) Design a class of cyclo-stationary signals is investigated in 

Section 6.4 by the aid of analytical results of the statistical performance; (iii) Properties 

and effectiveness of the CCRA are illustrated and compared with those of the CRA and 

JCRA via numerical examples in Section 6.5.

6.2 Joint C yclo-Stationary Signals

This section prepares for the subsequent sections by introducing the concept of joint cyclo- 

stationary signals and their cyclic correlation and cyclic spectrum. Let us introduce the 

cyclic correlation/spectrum of jointly (CS)P signals x\( t)  and X2 (t), whose time-varying 

cross-correlation rXlX2 (f; r )  := E  — r)}  is periodic in t with period p. Considering

the periodicity of rXlX2 (f;r)  in t, the cyclic correlation of x\(t)  and X2(t) is defined as the 

coefficients of the discrete Fourier series of rXl X2  (f;r)  [56, 62],

R X1X2 (k; r)  =  -  V  rXl X2 (t; r )  e ~ ^ kt/p. (6.1)

Rxix2 (k',r) is periodic in k with period p, i.e., {R Xl X2  (0;r ) , R Xl X2 (1; r) , • • ■, R Xl X2  (p -  l ;r )}  

forms a complete set of cyclic correlations, k is the index of a so-called cycle-frequency do­

main. Given collected data {x\  (t ) ,X2 (£)}£Li> R Xlx2 (k',r) can be consistently estimated as
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[38, 59, 115],

1 N - t

Rx i X2 (fc; t )  = J j ' 5 2 x i ( t + T) x2 (t) e_j2irfct/p, r  > 0, (6.2a)
t= l

1 N
^ ^ 2  (fc; r )  =  — ^  x\ (t + t ) x 2  (t ) e t  < o. (6.2b)

£ =  — T

Eq. (6.2) implies that R Xl X2 (0 ;r) is the same as the estimate of the stationary cross­

correlation rXlX2 (t) := E  {x\{ t )x2{t — r)}. The DTFT of R Xl X2 (fc;r) with respect to t  is

named the cyclic spectrum [56, 62],

OO

SXlx2 { k ; e ^ ) =  ^ 2  RxlX2 (k- ,T)e-^T. (6.3)
r = —oo

Sxiu  [k',e^w) inherits the periodicity of R Xl X2 {k',r). If p =  1, SXl X2  (O;©5̂ ) reduces to the 

stationary (power) spectrum,

OO 

T  =  — OO

6.3 Cyclic Correlation Analysis

This section presents the definition of the CCRA and the statistical performance of the 

estimated FIR model. To avoid cumbersome notation, G(q) is assumed to be a SISO system. 

This is not a restrictive assumption. The FIR model in (6.5) is a linear regression equation 

without output-relevant terms on the right-hand side of (6.5). Thus, FIR modeling of a 

multivariable system with m  inputs and n  outputs is equivalent to modeling of n systems 

with m  inputs and one output, to which the CCRA developed for SISO systems can be 

extended easily by properly increasing dimensions of matrices and vectors; see e.g., the 

multivariable CRA in [49, 82], Note that treating all outputs simultaneously may have 

numerical benefits if impulse responses in some channels are the same [40].

6.3.1 D efin ition

First of all, we introduce an equality that makes the appearance of the CCRA resemble the 

CRA: For jointly (CS)P signals Xi(t) and X2 (t),

E  {x! (t) x*2 (t -  t )  e - ^ / p }  =  R Xl X2  (k- r ) , (6.4)
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where k € [0,p — 1] (see (4.29)). Based on the equality in (6.4), multiplying both sides of 

the process-model equation
M —l

y ( t ) = ^2 9 (0 [u {t - l ) -  nu(t -  0] +  n y {t ) (6.5)
/=o

by u{t — r)e~-j27rfct/p and taking the operation of E  {•} yield

M —l

R y u  ( k )  7") — ^   ̂ 9 (Z) [R u u  { k ,  T  Z) R n u u ( k , T  Z)] T R n y u  { k ‘, 7") (6 .6)
1=0

The noise-related terms R nuU  {k',r) and R HyU {k\r)  in (6.6) are non-zero for k =  0, which 

make the CRA yield biased estimates for closed-loop and EIV systems. On the contrary, 

R n uU (k; r )  and R n y U  (k\ r )  vanish for k £ [l,p  — 1] and all r ’s:

• As the noise-free input uo(t) is uncorrelated to n u(t), we have R n u U  { k \  r )  —  R nuUo (k ' ,  t )  +

R n (Zc;r), and R nuUo(k-,T) =  0,Vr and k e  [0,p — 1]. The ;e nu(t) is sta­

tionary; thus, (6.1) implies that -Z?n„n„(fc;r) =  0,Vr and k 6 [l,p  — 1]. Hence, 

Rnuu (k-,T) =  0,V t  and k e  [1 ,p -  1].

• Since ny(t) and uo(t) are possibly connected via the LTI system 1*2(?) in the feedback 

path, Rnyuo (0 ;r) may not vanish, but R nyUo (k ; r ) =  0 for k e  [1 ,p -  1] and all r ’s. 

Because both nu(t) and ny(t) are stationary, R nynu (k]T~) =  0 for k G [1 , p — 1] and all 

r ’s. Overall, R UyU (fc; r )  =  RnyUo {k; r) + Rnynu (k\ r )  =  0 for k £ [ l , p -  1] and all r ’s.

Thus, (6.6) is simplified to

M —l

R y u  { k i  n) — ^  ) Q (Z) R u u  (k ,  t  Z), (6.7)
(=0

where k € [1,p — 1], Writing out (6.7) for r  =  0,1, • • •, M —l, the impulse response coefficients 

are estimated as,

[ g (  0) s ( l )  g (M — 1) ]' =

. (6 .8 )

Here R uu (k;r)  and R yu (k',r), obtained from (6.2), are consistent estimators of R uu (fc;r) 

and RyU (Zc;r), respectively. Eq. (6.8) can be written in a concise form by introducing some 

obvious definitions,

R u u  ( k ; 0 ) R u u  [k't 1 ) • R u u  ( k ; 1 -  M)  "
- l

Ryu(k-,0)
R u u  [k] 1 ) R u u  ( k ; 0 ) • R u u  {k; 2  — M) R y u  {k'i 1 )

. R u u  (k ]  M  — 1) R u u  {k 'i  M  —  2 ) R u u  { k i  0 ) . Ryu {k'i M  -  1)

$ ( fc) 
*1 I U
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For a unique solution in (6.9), the square matrix must be nonsingular. This is sat­

isfied by a generalization of the well-known concept of persistent excitation [122, 85]: A 

(CS)P signal u(t ) is said to be persistently excited in the cyclo-stationary sense, if  its cyclic 

spectrum Suu (k ; e?u) is non-zero for almost all w and at least one h e  [l,p  — 1],

Besides (6.8), an over-determined version of the CCRA can be formed in order to at­

tenuate effects of noises, disturbances and model mismatch,

[ g ( 0) g(  1) . . .  g ( M - l )  ] ' =

R u u { k \  0) R u u  (k'i  1) • R u u  ( k ;  1 -  M) t
R y u  ( k ;  0)

R u u  (&) 1) R u u  ( k ;  0) ■ R u u  { k ;  2 - M ) R y u  {k'i  1)

e e 'i?
' 

si 
■

'

1 t—1 R u u  (As; M  -  2) • R u u {k-,  0) R y u  ( k -  M  -  1)

.  R u u  ( k -  M 0 -  1) R u u  ( k \ M0 -  2) • • R u u  [ k ]  M o - M )  _

.."11-ifS

Here Mo > M  and the superscript 0)  denotes the left pseudo-inverse. The matrix inverse 

in (6.8) or the pseudo-inverse in (6.10) is realized by the QR-method, because a direct 

computation is sensitive to rounding errors (see e.g., Section 4.5 in [122] and Chapter 5 in 

[65]).

The CCRA in (6.8) encloses the CRA and JCRA as special cases. Let the setup in 

Figure 6.1 reduce to a normal open-loop system, i.e., Fi(q) — 0, ^ 2 (9 ) =  0, and nu(t) — 0. 

Eq. (6.8) reduces to the counterpart of the CRA for k = 0, because R yu (0; r)  and R uu (0; r)  

are the same as the estimators of ryu (r) and ruu (r), respectively (see Section 6.2). Let us 

look at the JCRA for closed-loop systems. If z(t) in Figure 6.1 is available, multiplying 

both sides of (6.5) by zi t  — 7-)e_J'2lrfct/p and taking the operation of E  {•} yield

M —l

R y z  (fc; r) =  ^ 2  g (I) [Ruz (fc; r  -  I) -  R nuz{k\  r  -  I)] + R nyZ (k\ r ) . (6.11)
1=0

Based on (6.11), another version of the CCRA can be obtained analogously to (6.8) by 

replacing R yu{k\T) with R y z (k;T), and R uu(k\T) with R u z {k\r). If k = 0, this version 

of the CCRA is the same as the JCRA proposed in [23, 109], as R yz (0;r )  and R uz (0;r )

becom e th e  estim ato rs of r yz ( t )  and  r uz ( t ) ,  respectively.
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6.3.2 S ta tistica l Perform ance

Substituting the cyclic correlation estimator in (6.2) into (6.8) yields

ff(O) 1 

9(1)  1
: iV : 

J ( M - i )  \  L e ^ t

E t = 2  u ( t - l ) u  (t ) e - ^ fct/P
V ' N  „,2 i27r/ct/p

IV

it (t +  Af -  1) u (t) e - i 2vkt/P

E*=m u (* -  M  +  !) u W e“M / p
E ^ M- i « ( ^ - ^  +  2)W( t ) e - W / P

E ^ M+2 « (t +  M  -  2) u (t) u 2 (i) e^ '27rfct/pJ V - M + 2

r  E f = i y  W « ( i ) e - M / P
1 E ^ S ( i  + i ) « W e - ^ /p

(6 .12)
N

EZ~iM + 1  y ( t  + M  - l ) u { t )  e~i2vkt/P

Eq. (6.12) implies that the CCRA is approximately equivalent to the instrumental variable 

method (IVM) [122, 85],

and C (t) is a complex-valued instrumental variable,

C' (t) =  [ u (t) e~j2vkt/P u (t -  1) e- i 2*kt/p ■■■ u ( t  — M  + 1) e- ^ kt/p ] . (6.15)

The approximation error arises from the different numbers of data points used in (6.12) 

and (6.13). For example, the 1-th diagonal elements of the square matrices in (6.12) and

(6.13), respectively, are E t l i u<i W e~j27rkt^p and ^  E t l i  u 2  (1 ~  0  e~j27rfet/p. Hence, the 

approximation error is negligible for N  M ,  with the convergence rate of 1 / N .

The approximate equivalence between the CCRA and the IVM implies that the statis­

tical performance of 9 in (6.9) could be developed in a manner similar to the asymptotic 

theory of the IVM; however, special attention has to be paid, since the asymptotic theory 

of the IVM that holds for stationary signals cannot be in general immediately extended to 

the CCRA that exploits cyclo-stationarity. In particular, a so-called mixing condition that 

is exclusive to cyclo-stationary signals has to be satisfied. The mixing condition has several

- l

(6.13)

Here ip(t) is the regressor of the FIR model in (6.5), i.e.,

<p' (t) = [ u( t )  u( t  — 1) ■ • ■ u (t — M  + 1) ] (6.14)
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forms in the literature, e.g., Conditions a)-d) in Proposition 2 in [73], Assumption 1.1 in 

[38] and Assumptions A-3 and A-4 in [115]; here we adopt the last one as follows:

A6.4 The cyclo-stationary signals u(t) and y(t) satisfy the mixing condition consisting of 

[115]

OO OO

E E  \Rab (a; I +  r)  Rcd (/3; I -  r ) | < oo,
m = 0 l = m  

oo
^ 2  \ R a b * c * d ( a - ( 3 ] l  +  T i , l , T 2 ) \  <  O O ,  

l= —oo

for all possible choices of elements a(t)  ,b (t ) , c (t ) and d (t ) from u (t ) , u* (t ) , y (t ) and 

y* (t ), and all cycle frequencies a  and (3, and all r ,  t i ,  T2 ’s. Here the cyclic cumulant 

is defined as

l  N - 1

R a b c d ( r , n , T 2 , r 3 ) = lim — V  [£; {a (n +  T i )  6 (n +  r2) c ( n +  r3)d(n)}
N —>oc i v

71=0

{a (n + n )  b (n + t 2 ) }  E { c ( n  + r3) d (n)}

- E  {a (n +  n )  c(n + r3) } E  {b (n + t 2 )  d (n)}

—E  {a (n + r i)  d (n)} E  {b(n + t2) c (n  + 7 3 )}] e-J’27r7n.

Loosely speaking, the mixing condition in A6.4 says that the statistical dependence between 

any two samples of u(t) and y(t) decays rapidly enough as the temporal separation between 

them increases, and u(t) and y(t) have finite fourth-order cumulants.

P ro p o s itio n  6.1 Under assumptions A 6 . I -A 6 . 4  and u(t) being persistently excited in the 

cyclo-stationary sense, 9 in (6.9) is the asymptotically unbiased and consistent estimate of 

the true impulse response coefficients 9 := [ g(0) g(  1) • • • g ( M  — 1) j 7; in particular,

6 is asymptotically normal-distributed (AsN) with zero mean and variance Pg/N,

V n  — 9̂ J —> A s N  (0, Pq) ,  as N  —> 0 0 , (6.16a)

where

Pr A[JE {C (f)¥/ ( f ) } ] '1 [^{Cf (0Cf (*)}] { [ ^ { C W ^ W } ] -1 } '- (6.16b)

Here ip (t ) and £ (t ) are given in (6. I f )  and (6.15), respectively. The vector O  (t) and the

noise variance A are defined in the following proof.
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Proof of Proposition 6.1: As N  —> oo, the CCRA estimate in (6.9) is equivalent to 6  in

(6.13). Prom (6.5) and (6.13),

where

e (t) := ny (t ) -  G {q) nu (t ).

Assumptions A6.1, A6.2 and A6.3 imply that the residual e (t ) is stationary and uncorrelated

with £ (t) in (6.15) for k £ [l,p  — 1] (see the paragraph between (6.6) and (6.7)). Prom the 

Wold representation, the stationary signal e (t ) can be modeled as the output of an LTI

e (t ) are stochastic signals with decaying dependence and finite fourth-order cumulants. As 

a result, we have [84]

P  =  lim E { C ( t ) e ( t ) e * ( t ) C ( t ) }
N —>oo

Here (p  (t ) is obtained by filtering £ (t ) in (6.15) through H  (<Z-1), i.e., £F {t) = H  (q-1 ) £ (t).

Propositions 6.2 and 6.3 constitute the frequency-domain counterpart of Proposition 6.1. 

However, (6.19) and (6.22) cannot be obtained directly from the results of the IVM, e.g., 

(8.102) and (9.84) in [85], in spite of the resembling forms, because their proofs require sev­

eral results involving cyclic correlation/spectra instead of (stationary) correlation/spectra.

P ro p o s itio n  6.2 The convergence of the estimate from the CCRA is asymptotically char­

acterized in the frequency domain as

system H  (q)3 driven by white noise with variance A. Under assumption A6.4, ( (t) and

(6.18)

where

The convergence in distribution (6.16) follows directly from (6.17) and (6.18). □

0 -  solg { ̂  f  [G (e?u , e ) - G  ( e ^ ,  6)] Wx (e~*u ) S uu (fc; e>u ) cLo = 0 j , (6.19)
J  —7T

with Wi (eiu) =  [ 1 e>u ■■■ e f ^ - 1̂  ]'.

Proof of Proposition 6.2: The CCRA is approximately equivalent to the IVM; thus, 6  

convergences to the solution to the function E  (t) [y (t ) — G (q, 0) u (t)] } =  0 as N  —> oo,

3 T o  avoid nonlinear optimization, H  (q) is usually confined to a high-order AR model.
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i.e.,

9 -> solg [E { (  (it) [y (t) -  G (q, 9) u (t)] } =  0] .

With £ (t) in (6.15), the I-th element of the vector E  {£ (t ) [y (t) — G (q, 0) u (f)] } is

[^ { C (0  [y (t) - G ( g ,0 ) u ( t ) ] } ] ,

=  E ^ u ( t - l )  e~:>2*kt/p ■ [G (q, 6 ) (u (t ) -  n u (t)) + ny (t ) -  G (q, 9) u (f)] j

=  E { u ( t - l )  e - j2M/p ■ [G (q, 9) -  G (q, 0)] u (i)}

~  Rvu (k\ ,

where the last equality comes from (6.4) and a definition, v (f) := [G (q, 9) — G (q, 0)] u (t ). 

The cyclic spectrum between v (t ) and u(t)  is [55, 60],

Svu (fc; eJW) =  [G (e**\ 0) -  G (e>'“ , 0)] Suu (fc; e>“) . (6.20)

Eq. (6.19) is obtained from (6.20) and the inverse version of (6.3),

R v u  (fc; T ) =  ^ f  S ™ (fc; ej") e ’U}Td u .  (6.21)

□

P ro p o s itio n  6.3 The asymptotic covariance of the estimate from the CCRA has a frequency- 

domain expression:
A

Cov (6 .22 )

where

P  =
2tt

J * W 2 (e?(-+2^/p)) Suu (fc; e>“) du>,
-7T

Q = h  f * W2 H  Suu (0; ^  H * ^ dJ)-7T

with

W 2 (eJ'w)

1 e~jv . . . l)w
gju i  . . .  e-i(M-2)w

g j ' ( M - l ) w  e j ( M - 2 ) a >  . . .  ^

Proof of Proposition 6.3: The objective is to find the frequency-domain expression of 

(6.16b). The m -th row and n-th column element of the matrix E  {£ (t ) <pf (f)} is,

=  E  |  u (t — m) e~i27rkt/pu (t — n) j 
-  R uu{ k - m - n ) ^ k(m- n)/p

= T  Suu eja>) ej{m~n ) i M k / p ) dw, (6.23)
2 ? r  7  — 7J-
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where the second and last equalities are from (6.4) and (6.21), respectively. The m-th row 

and n-th column element of the matrix E  {<0 (t) (p  (t)} is,

[E{CF (t)CF (t)}]mn

E  { #  (g^1) u ( t - m )  e~j 2nkt/pH * (q_1) u* (t -  n) e>27rkt/p} 

E  {v (I) v* (I — m  + n)}

^ Svv (0; ejw) eM m - n)du" Svv (0; eju>) eM m - n)du
— 7T

* H  (e-JW) Suu (0; e3UJ) H* (e~ju) e ^ m~n^ d u .  (6.(6.24)
— 7r

Here v (t ) := H  (g 1) u (t), and the last equality is obtained from the cyclic-spectrum trans­

formation relationship [56],

S™ (fc;e^) =  H  (e-*") (fc;e^) H* ( e ~ E M k / P)^

Substituting (6.23) and (6.24) into (6.16) gives (6.22). □

6.4 D iscussion

Two important elements of the CCRA need to be determined, namely, the cyclo-period

whether cyclo-stationarity is induced artificially or exists naturally.

6.4.1 Induced C yclo-Stationarity

There are several artificial operations to generate cyclo-stationary signals, such as amplitude 

modulation, time-index modulation, multirate sampling, and multirate filtering [61]. The 

massive possibilities in these operations imply that it is difficult to have a general solution 

of designing cyclo-stationary signals for modeling. Here, we focus on a class of amplitude 

modulation signals and select its configurations based on the statistical performance of the 

CCRA developed in Section 6.3.2.

The class of amplitude modulation signals is

where s(t) is a zero-mean stationary signal to be defined. z(t) is (CS)p, for its time-varying 

correlation is

p  and the cycle frequency k. The discussion is classified into two situations according to

(6.25)
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z(t) and its relatives, e.g., z(t) =  cos(wot)s(t), have been studied in [55, 94, 61, 145]; 

however, these studies did not discuss how to choose p or wo.

A good index in determining p and k is the degree of cyclo-stationarity (DCS) that 

measures the distance between stationarity and cyclo-stationarity. Several definitions of 

the DCS were proposed in [166]; one of them is

n r s fc _  J - „ \ S u u  (fc;e^) \dw 
uu / : ff|5uu(0 ;e f-) |d W’

which is a ratio of the energy in the k-th cycle-frequency domain to the energy of stationary 

components. DCS*M matches the signal-to-noise ratio in Proposition 6.3, and is suitable in 

this context. A property of the DCS is [166],

DCS£u < 1. (6.26)

It is desired to select p and k (k € [l,p  — 1]) so that DCS* 

possible. The cyclic spectrum of z(t) in (6.25) is

uu or DCS*Z is as close to 1 as

S z z { h , e > u )  =

+ -

S ( k - 1 )  +  - S s , 5 ( k - p  + 1)

+  S S:
J[u- ■ f ) 6 (k). (6.27)

Here <5 (•) is Kronecker’s delta function,

<5(0 =
1, 1 = 0 , 
0, else.

If p = 2 ,  S zz (O;eJ“0  and Szz ( l;e JW) are the same, and the maximum of the DCS*Z is 

achieved, i.e., DCSZ2 =  1; if p > 3, only Szz ( l;e JaI) and S zz (p — l ;e JaJ) are non-zero, and 

contain at most the half energy of Szz (0; e-^), i.e., 0 < DCS*Z < 0.5.

If P > 3, the multiple estimates obtained from the CCRA for different fc’s, denoted 

as Of- = [5 /c(0 ), §k (1), • • •, g k ( M - l ) ] ' ,  could be combined to reach an estimate with 

smaller variance. Since 0k is normal-distributed (see Proposition 6.1), the weighted linear 

combination
p - 1

6(0 opt =  wk(l)gk (I), I = 0,1, ■ ■ ■, M  -  1.
fc=i

achieves the minimum variance [51]. It is known from Lemma 2 in [115] that R uu (fc; r ) ’s for 

different k  and r  are correlated to each other; as a result, 6/c(0>s are correlated, and com­

putation of the optimal weight wk(l) requires the unknown correlation coefficients among
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gk( iys. Alternatively, we propose an aggregated CCRA,

^UU
t r n(1) 1i/yu

6 = ^UU
(2)

Vyu

uu 11

Proposition 6.1 is applicable to 9 in (6.28) by using a different instrument variable,

c( t )  =  [ c [ ( t )  a w  c ; _ i W  ] ,

where (t ) is given in (6.15). Eq. (6.28) is solved by the QR-method, and encloses the 

CCRA in (6.9) as a special case. The estimated impulse response coefficients from the 

aggregated CCRA have the variances no larger than the estimates from the CCRA exploiting 

one single k. In addition, Propositions 6.2 and 6.3 imply that the improvement achieved 

by the aggregated CCRA depends on the cyclic spectra of u(t); see Example 6.2 in Section 

6.5. For z(t) in (6.25), only two estimates of the CCRA for k =  1 and k = p — 1 are 

to be aggregated. Due to the possible correlation between ^ ( l j r )  and R uu{p — 1; t) , 

or Suu(l',e?u ) and Suu(p — l ;e ?w), the aggregation at best has the effect of decreasing the 

variances by half. Therefore, we select p =  2 and fc =  1 as final choices, since D CS^ < 0.5 

for p > 3 and D CS^ =  1 for p — 2.

6.4.2 E xistin g  C yclo-Stationarity

When cyclo-stationarity exists naturally in some instances, the CCRA becomes a natural 

choice. Vibration signals in rotating machinery can be modeled in the form of (see e.g., 

Eq. (9) in [7])

x(f) =  ] T A 8 (t ) ^ ' i .
i

Under certain conditions, A i (t) is stationary and oVs are in harmonic, so that the vibra­

tion signal x(t) is cyclo-stationary. The auto-covariance function of an oscillating signal 

is oscillatory with the same period as the oscillation in the time trend [139, 140]; thus, 

the control-loop oscillations are conjectured to be cyclo-stationary. If the cyclo-period p 

is not known a priori, it can be estimated by one of cyclo-period estimation methods in 

Chapter 3. If p > 3, the cycle frequency k should be chosen after estimating SUu (k'i 

by smoothed cyclic periodograms or correlograms (see e.g., Eq. (17.22) in [61]), and the 

aggregated CCRA in (6.28) can be used for those k ’s with non-zero DCS*U. Applying the 

CCRA in these applied situations is one of our ongoing studies.
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6.5 Num erical Illustration

This section presents three numerical examples to illustrate the properties and effectiveness 

of the proposed CCRA. First, Example 6.1 shows that the CCRA yields asymptotically 

unbiased estimates for EIV systems, while estimates from the CRA are biased due to the 

input-additive noise. The asymptotic variance in (6.16) is consistent with the result obtained 

from the multiple Monte Carlo simulations in Example 6.1.

E xam ple  6.1 An EIV system depicted in Figure 6.1 has the configuration:

0.09516g-3 
1 -  0.9048(7“= * !(? ) =  1, M<D = 0.

nu(t) is white noise with zero mean and variance 0.2, abbreviated as WN(0,0.2); ny(t) is 

the output of an LTI filter

H v (q)
0.125 +  0.033(7- l

1 -  0.3679Q-1

driven by nu(t)\ thus, ny(t) and nu(t) are mutually correlated. z(t) is the same as that 

in (6.25) with p =  2, i.e., z( t )  — cos ( ^ ) s ( f ) .  Here s(t) is a stationary random-binary 

sequence (RBS) with normalized frequency band [0,1] and values {1 ,-1} . The input and 

output signal-to-noise ratios (SNR) are defined as,

C1T.IT, N  S A o 1 E  { u o ( 0 }  q . r p  _

v — e k  <*)} ’ m E { ( t)}

In this example, SNR* «  1.58 and SNR0 «  2.32.

100 Monte Carlo simulations are performed with different realizations of nu(t) and z{t). 

FIR models are estimated from the CCRA (k = 1 in (6.8)) and CRA with the measured 

input-output data {u (t ), y (C}<-i°- The sample mean of FIR models from the CCRA and 

that from the CRA are shown in Figures 6.2 and 6.3, respectively. Clearly, the CCRA yields 

unbiased estimates of impulse response coefficients, while the estimates from the CRA are 

biased due to nu(t). The sample mean of the asymptotic variances calculated from (6.16) 

is presented in the form of 3-standard deviation (dash lines in Figure 6.2), and is consistent 

with the sample variances of the FIR models obtained from the 100 simulations, also shown 

in the form of 3-standard deviation (plus lines in Figure 6.2) — see Appendix B.9 in [122] 

for the accuracy of Monte Carlo analysis. The 3-sample time delay of G{q) is correctly 

estimated by looking at the first three impulse response coefficients and their asymptotic 

variances in Figure 6.2
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Figure 6.2: FIR modeling of an EIV system from the CCRA (N  =  2000): the true impulse 
response coefficients (solid) and the estimates from the CCRA (circle) with the 3-standard 
deviation band from (6.16) (dash) and that from 100 Monte Carlo simulations (plus).
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Figure 6.3: FIR modeling of an EIV system from the CRA (N  =  2000): the true impulse 
response coefficients (solid) and the estimates from the CRA (dot) with two 3-standard 
deviation band from (6.16) (dash) and that from 100 Monte Carlo simulations (plus).
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Figure 6.4: NRMSEs of the CCRA (circle) and CRA (dot) for different N
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Figure 6.5: NRMSEs of the CCRA (circle) and CRA (dot) for different noise levels
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Both the CCRA and CRA require sufficient data points to exhibit their asymptotic 

properties. A normalized root-mean-square-error (NRMSE) is adopted as a measurement 

of the identification performance,

NRMSE =
'  ' " 2 \

1 M —l

C0TW  “ £ l W 0 ' - ‘ -  d“'
C o v { 4 }  «  I   ——^ rd w

(=0

Figure 6.4 presents the sample means of the NRMSEs from the CCRA and CRA as a 

function of the data length TV. 100 Monte Carlo simulations are performed for each TV. A 

moderate value of TV, e.g., 1000 or 2000, is sufficient to eliminate the adverse effects of nu(t) 

and ny(t).

Proposition 6.3 and (6.26) imply that the estimate from the CCRA, denoted as 9 

generally has the variance greater or equal to that from the CRA, denoted as 9q. This is 

due to a fact that the noise component of u(t) contributes in reducing the variance of 9q, 

and has no such a good effect on 9

1
—7r I ^ o m o  ( 0 ;  “h  S n u n u ( e - f u , ) |
rit

Suouo (fc ;e^ )r

Note that the noise component of u(t) in a closed-loop system may come from ny(t) via 

feedback. Figure 6.5 assesses the CRA and CCRA in terms of the NRMSE for different 

noise levels, i.e., the variance of nu(t), denoted as cr^u, varies from 0 to 0.5. For each noise 

level, 100 Monte Carlo simulations are performed with fixed TV =  2000; to see the effect of 

nu(t) only, the noise source of ny(t) is fixed to be WN(0,0.2) and is independent of nu(t). 

The CRA yields the estimate with smaller NRMSE than the CCRA only at a very low noise 

level, e.g., NRMSEjf?oj =  0.0831 and NRMSEj(? ij  =  0.0837 at cr%u = 0.005. However, 

the CCRA quickly outperforms the CRA in terms of smaller NRMSE as the noise level 

increases. □

In Example 6.1, the cyclo-period p — 2 and the CCRA in (6.8) is exploited with k = 1. 

The selection of p is based on the discussion in Section 6.4.1; Example 6.2 is to confirm the 

d iscu ss io n  b y  co m p a r in g  th e  a g g reg a ted  C C R A  in  (6 .2 8 ) an d  th e  C C R A  w ith  o n e  s in g le  k.

E xam ple  6.2 Let us look at the EIV system in Example 1 under the same configuration 

generating Figures 6.2 and 6.3 with one modification: the cyclo-period p of z(t) in (6.25) 

varies from 2 to 7. For each cyclo-period, 100 Monte Carlo simulations are performed. 

Tables 6.1 lists the sample mean of the NRMSEs of 9\ from the CCRA with k =  1, and of
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[0,1] n r m s e { ^ } NRMSE |  §1# - 1}

p =  2 0.1398 0.1398
p = 3 0.2137 0.2111
p = 4 0.2006 0.1988
p — 5 0.2031 0.2010
p = 6 0.2060 0.2024
p = 7 0.2073 0.2039

Table 6.1: NRMSEs of 6 \ (CCRA) and 6 \ tP- i  (aggregated CCRA) for s(t) with frequency- 
band [0,1]

[0.2,0.8] NRMSE {<?! j- NRMSe { ^ ,p_ i }

p = 2 0.1543 0.1543
p =  3 0.2108 0.1882
p — 4 0.2283 0.1808
p = 5 0.2482 0.2028
p = 6 0.3087 0.2723
p = 7 0.3574 0.3333

Table 6.2: NRMSEs of 9\ (CCRA) and (aggregated CCRA) for s(t) with frequency- 
band [0.2,0.8]

9\,p-i from the aggregated CCRA with k = 1 and k — p — 1. The aggregated CCRA has 

little improvement over the CCRA, because Suu ( l ;e JW) and Suu (p — 1; eJt"’) are the same 

for white noise s(t) in (6.25) (see (6.27)). Table 6.2 presents another group of results with 

a different s(t) in (6.25): the frequency-band of s(t) is [0.2,0.8]. In this case, Suu 

and Suu (p — l j e ^ )  have different magnitude distributions. The aggregated CCRA always 

performs better than the CCRA; the improvement is more significant than that in Table 

6.1. In Table 6.1 or 6.2, the case of p — 2 achieves the smallest NRMSE, which is consistent 

with the discussion in Section 6.4.1. □

Finally, Example 6.3 illustrates that both CCRA and JCRA give unbiased estimates 

for closed-loop systems, whereas the estimates from the CRA are biased due to the effect 

of output-additive noise via feedback. Moreover, the CCRA does not suffer from the main 

problem of the JCRA (see Section 6.1) and provides reliable estimates.

E xam ple  6.3 A testing closed-loop system in [161] is adopted here (see Figure 6.1):

G W = 1 +  C - i ° + o " 4 ^ ' n  (5) =  0.33 +  0 .0 3 3 ,- ' - 0 .4 ,- 2, FM  =  1.

Here nu (t ) is absent; ny (t ) is W N(0,0.05); z  (t ) is the same as that in Example 6.1; SNR0 «  

2.40.
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Figure 6.6: FIR modeling of a closed-loop system (TV =  2000): the true impulse response 
coefficients (solid), the estimates from the CRA (dot), from the CCRA (circle) with 3- 
standard deviation band (short-dash), from the JCRA (star) with 3-standard deviation 
band (long-dash).

We perform 100 Monte Carlo simulations with different realizations of ny(t) and z(t), 

and estimate FIR models from the CCRA (k — 1 in (6.8)), CRA and JCRA. Besides 

{u ( t ) , y (t)}(™°, {z (t)}t^i  has t°  be assumed available for the JCRA. As expected, the 

CRA results in a biased FIR model (dots in Figure 6.6) due to the correlation between 

ny(t) and u(t) via feedback; on the contrary, the CCRA and JCRA both give asymptotically 

unbiased estimates (circles and stars in Figure 6.6). However, the FIR model from the JCRA 

is not reliable due to the large variances (long-dash lines in Figure 6.6) obtained from 100 

Monte Carlo simulations, in contrast to the CCRA (short-dash lines in Figure 6.6). The 

condition number of the corresponding matrix in the JCRA is at the mercy of the closed- 

loop dynamics, and has a possibility of being ill-conditioned. In this example, the averaged 

condition number in the CCRA is 23.65, while that in the JCRA is 139.57! □

6.6 Conclusion

This chapter studies a non-parametric identification approach, the CCRA, to estimate 

asymptotically consistent and unbiased FIR models for EIV systems and closed-loop systems 

by exploiting cyclo-stationarity. The CCRA is studied in a complete manner, including its
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statistical performance in Propositions 6.1-6.3. We believe that the proposed CCRA would 

be a useful non-parametric technique for its effectiveness and properties illustrated by the 

numerical examples in Section 6.5.

One of the important open problems is to design cyclo-stationary input signals. In this 

paper, a class of cyclo-stationarity signals, z(t) in (6.25), is investigated. In [7], another class 

of amplitude modulation signals, namely, a periodic rectangular sequence a(t) = a(t + T)  

modulating white noise, was studied with a partial solution: the ratio of the burst-time to 

the period T  was optimized to minimize the variances of estimated frequency responses, 

whereas the important parameter T  was left to user’s decision. There may be other cyclo- 

stationary signals that lead to better properties or new features in certain sense for system 

modeling. This certainly deserves attention in the future study.
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C hapter 7

B lind Identification of 
H am m erstein  System s

This chapter1 proposes a new blind approach to identification of Hammerstein systems, 

where a static nonlinearity precedes a linear dynamic system. By exploiting input’s piece- 

wise constant property, the parameters of the linear dynamics are consistently estimated 

from the information of the output only, after which the unmeasurable inner signal is 

uniquely reconstructed. The noise effect is explicitly considered in both the parameter and 

inner signal estimation. The estimation of the system orders and time delay are studied on 

the basis of two groups of basic equations obtained by polyphase decomposition. Magneto- 

rheological (MR) dampers are semi-active control devices to reduce vibrations of various 

dynamic structures. By designing a real-time laboratory experiment, we apply the proposed 

blind approach and build a Hammerstein model for MR dampers.

7.1 Introduction

Hammerstein systems form a class of block-oriented nonlinear models, where a static non- 

linearity precedes a linear dynamic subsystem. Many real-time processes can be well repre­

sented by Hammerstein models, such as heat exchangers [46], electrical drives [16], thermal 

microsystems [134], physiological systems [43] and sticky valves [127].

Identification of Hammerstein systems can be classified according to whether the non- 

linearity and linear system are identified together or separately. In the former class, there 

are many existing methods, e.g., iterative methods [98, 129, 165, 43] and non-iterative two- 

stage methods [27, 130, 150, 9, 63, 64] — see e.g., Chapter 5 in [74] for a recent overview 

of these methods. The later class basically has three groups of approaches, namely, the 

lrThe chapter has been published in [159, 157, 160].
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correlation stochastic approaches, the relay feedback approaches and the blind approaches. 

A major distinction among them is the assumption on input properties. The correlation 

stochastic approaches [18, 66, 102] require white Gaussian inputs to isolate the nonlinearity 

and estimate impulse response coefficients of the linear system first. The relay feedback 

approaches [4, 88, 16, 134, 101, 11] introduce binary-valued inputs by user’s design in open- 

loop systems or by relay feedback-controllers in closed-loop systems; under binary-valued 

inputs, identification of the linear system is decoupled from that of the nonlinearity. The 

blind approaches [131, 14] aim at the main difficulty in identification of Hammerstein sys­

tems: the inner signal between the nonlinearity and linear system is unmeasurable. Inputs 

are assumed to be piece-wise constant for certain consecutive samples, based on which the 

linear system is estimated separately from identification of the nonlinearity.

The blind approaches are very useful for the case where the structure of the nonlin­

earity is unknown, because they visualize the shape of the nonlinearity by estimating the 

unmeasurable inner signal beforehand and avoid a wild guess on the structure. Such a case 

arises when the nonlinearity has many possible structures or is hard to be represented by 

parametric models. In particular, one real-time application is to capture the nonlinearities 

of actuators in feedback control systems. It has been found that control valves account for 

about one third of control-loop oscillations [17, 44]. The nonlinearity of an actuator has a 

variety of possible structures, e.g., deadband, saturation, backlash and hysteresis [33]. Srini- 

vasan et al. [127] demonstrated the potentiality of exploiting the Hammerstein identification 

in diagnosing valve stiction; however, their approach was based on a separable least-squares 

identification algorithm proposed in [10] and applicable to only the nonlinearity with known 

structure and one single unknown parameter.

The first contribution of this chapter is to propose a new blind approach to identification 

of Hammerstein systems. The new approach has two main differences with the existing 

blind approaches [131, 14], (i) The noise-corrupted cases are considered instead of the 

noise-free ones in [14], The battle against noises leads to a new series of static errors- 

in-variables (EIV) systems. By contrast to [131], the realization of static EIV systems 

significantly reduces the complexity of estimating the numerator parameters (Section 7.3).

(ii) T h e  in term ed ia te  s ig n a l w as e s t im a te d  in  [14] b y  p a ss in g  o u tp u t m ea su rem en ts  th ro u g h  

an inverse2of the identified linear system; its drawback is the propagation of the output 

noise into the estimates. The counterpart in [131] is unnecessary complicated due to the 

way in estimating the numerator parameters. We estimate the inner signal differently by a

2A special treatment is necessary if the linear system is non-minimum phase [1 1 ].
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least-squares method borrowed from the blind equalization; by doing so, the noise effect is 

reduced. On the other hand, the proposed blind approach inherits some technical features 

from those in [131, 14], e.g., Assumptions A7.1 and A7.5 in Section 7.2 and the estimation 

of the denominator parameters in Section 7.3.2.

The second contribution lies at modeling of magneto-rheological (MR) dampers in a 

real-time experiment. MR dampers are semi-active control devices to reduce vibrations of 

various dynamic structures. MR fluids, whose viscosities vary with input voltages/currents, 

are exploited in providing controllable damping forces. MR dampers were first introduced 

by B.F. Spencer to civil applications in mid 1990s. In 2001, MR dampers were applied to the 

cable-stayed Dongting Lake Bridge in China and the National Museum of Emerging Science 

and Innovation Building in Japan, which are the world’s first full-scale implementations in 

civil structures [31]. Modeling of MR dampers has received considerable attention [126, 163, 

32], Recently, Song, Ahmadian & Southward [124] proposed a nonparametric model that 

becomes a Hammerstein system if the input current/voltage is constant. We will design a 

real-time identification experiment for MR dampers and build a Hammerstein model by the 

proposed blind approach.

The rest of the paper is organized as follows. Section 7.2 describes the problem and gives 

some necessary assumptions. Section 7.3 estimates the parameters of the linear system 

as well as the system orders and time delay. W ith the identified linear dynamics, the 

inner signal is estimated in Section 7.4. The consistency of parameter estimation and the 

uniqueness of inner signal estimation are proved in Section 7.5. Section 7.6 illustrates the 

proposed blind approach by a simulated numerical example. Modeling of MR dampers by 

the proposed blind approach is presented in Section 7.7, followed by concluding remarks in 

Section 7.8.

7.2 Problem  D escription

Consider a discrete-time Hammerstein system with sampling period h depicted in Figure 7.1. 

Our objective is to identify an LTI causal dynamic system G(q) and a static nonlinearity 

/(•) from the measured input u(t) and measured output y(t) that is contaminated by colored 

noise v(t). The inner signal x(t) is unmeasurable — the main difficulty in identification of 

Hammerstein systems.

We make the following assumptions throughout the paper:

A7.1 The input u(t) is piece-wise constant for p consecutive samples. Because the nonlin-
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Figure 7.1: A discrete-time Hammerstein system with sampling period h 

earity /  is static3, the inner signal x(t) inherits the same property, i.e.,

x(t)  — x(t  — 1) =  0, for (kp + 1) < t < (kp + p — 1), Vf, k E Z+. (7.1)

A7.2 The input u(t) is persistently excited and has more than two different values. In

addition, u(t) may be correlated to the noise v(t — d) for d > 1, for instance, if a

feedback loop exists between y{t) and u(t).

A7.3 The linear system and noise dynamics can be described by an autoregressive with 

exogenous variables (ARX) model,

’,<f) =  f i y I < f “ r) +  i M e ( t ) ' <7-2)

where

A(q)  = 1 +  aiq~l +  a2 q~ 2 +  h anaq~na,

B(q)  = bxq~l +  b2 q~ 2 H \-bnbq~Uh.

Here the noise source e(t) is white with zero mean and variance a2.

A7.4 If the time delay is decomposed as r  =  kp +  To for k G Z+ and To G [0,jp), then k is 

known a prior.

A7.5 The upper bound n° of the numerator order rib is known a prior, and p is no less than 

(■n°b +  1), i.e., p >n° b + 1.

A7.6 B(q) does not have a zero at 1, i.e., Y^=  l 7̂  0.

Assumption A7.1 is satisfied in several scenarios. A common one arises from user’s 

design, e.g., the modeling experiment for MR dampers in Section 7.7. Another scenario 

occurs in sampled-data systems depicted in Figure 7.2. The output is sampled with period 

h, p times faster than the input updating period T  := ph. Because of the ZOH, a fast-rate

3In fact, /  does not have to be static in order to pass the piece-wise constant property of u(t)  to x(t), 
e.g., the backlash nonlinearity in Example 7.1.
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Figure 7.2: A sampled-data Hammerstein system

input with sampling period h is available by interpolation and has the piece-wise constant 

property in (7.1).

Assumption A7.2 is a standard identifiability condition. For Hammerstein systems, 

“identifiability” is understood with a gain ambiguity between /(■) and G(q); the ambigu­

ity can be removed by letting b\ =  1. Assumption A7.3 is based on a well-known fact 

that a high-order ARX model is capable of approximating any linear system arbitrarily 

well (Page 336 in [85]). Assumption A7.4 essentially arises from a character of the blind 

identification that the information of output only cannot distinguish time delays t \  =  k\p 

and T2 =  k2P for fci ^  k2 (to be clarified in Section 7.3.4). We assume r  £ [0,p) in the 

sequel without loss of generality, because the known portion of r  can be removed by shifting 

output data. Assumption A7.5 is inherent in the existing blind approaches as well; in fact, 

Theorem 2.1 in [15] says that Assumption A7.5 is a sufficient and necessary condition for 

G(q) to be blindly identifiable. Assumption A7.6 is a mild assumption satisfied by many 

systems.

7.3 Identification of Linear D ynam ics

Two groups of equations are obtained by the polyphase decomposition of involved signals. 

Based on them, the parameters in the linear system, the orders na, rib and the time delay 

r  are estimated.

7.3.1 Two G roups o f B asic Equations

For the time being, the orders na and rib and the time delay t are assumed to be known; 

thus, r  becomes zero after shifting data properly. We will return to the estimation of na, 

rib and r  later in Section 7.3.4. By denoting w(t) := A  (q) y (t), (7.2) becomes

w(t )  = B(q)x( t )  + e(t)
nb

=  Y l b j x ( t - j )  + e(t ) .  (7.3)
j =i
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Subtracting two consecutive samples w(t) and w(t — 1) yields

nb

w ( t ) - w ( t - l )  = Y ^  bj (x  (t  1)) + e { t ) - e ( t -  1). (7.4)
j= i

Define the difference signals Aw (t) := w (t) — w( t  — 1), and Ax (t) and Ae (t) likewise. 

Eq. (7.4) can be rewritten as

nb

A w (t ) =  bjAx (t -  j ) +  Ae (t) ,
j= i

whose ^-transformation is
n b

A w (z) = Y ^ b j z ^ :)A x (z) + A e (z).  (7.5)
j'=i

The polyphase decomposition of A^ (z) for the factor of p is [147, 48]

A w (z) = ^ A w (t) z~l
t

=  Y , i i ^ ^ p + i ) z ~{kp+i)
k 1=1 

1=1 k

=: £ V 'A < i V ) .  (7.6)
l=l

Similarly, the polyphase decomposition of A x (z) is

Ax(z) = j 2 z - l^ H z p), (7-7)
l=i

where

A «  (**) : = £ A x (kp + l )(zV)-1.
h

Thanks to the property of x  (t ) in (7.1), A x (t ) is nonzero only at t = kp, Wk £ Z+. Thus, 

we have

A V ( ZP) = 0, 1 = l , 2 , - - - , p -  1,

A <M(**) ^  0.

Eq. (7.7) reduces to

Ax (z) = z ~pAW (*p) . (7.8)
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Substituting (7.6) and (7.8) into (7.5) yields

p  n b p

Y  z - 1 A&> (zp) = Y  biz~lz - pAM (z») + Y  (zp) . (7.9)
j=i i=i i=i

W ith Assumption A7.5, i.e., p > (n° +  1) >  rib, (7-9) implies

and

A£“ +1>(*p) =  A<n‘+1) (zp) , (7.10a)

A %b+2) (zp) = A ̂ b+V{ z p),  (7.10b)

A $ ( z p) = AeW ( / ) ,  (7.10c)

A W ( z p) = blZ- pA ^  (zp) +  AW (zp) , (7.11a)

A ^ ( z p) =  b2 Z~pA ^  (zp) +  A<2> (zp) , (7.11b)

A ^ ( z p) =  bnbz - pA ^ { z p) + A ^ { z p).  (7.11c)

The two groups of equations (7.10) and (7.11) are the bases to estimate the parameters 

in A(q) and B(q). Moreover, they make the estimation of the numerator order rib and the 

time delay r  possible. The idea of exploiting the polyphase decomposition is inspired by [13] 

where only noise-free cases were considered. A timing diagram of polyphase decomposition 

of signals is available in many textbooks, e.g., Figure 1.4 in [48]. The two groups of equations

(7.10) and (7.11) can also be seen from Figure 7.3 appeared later.

7 .3 .2  E s t im a t io n  o f  A(q)

In the time domain, (7.10) implies

A w (kp + I) = A e (kp + I ) , I = rib +  1, rif, +  2, • ■ • ,p, Vfc e  Z+. (7-12)

D efin e  A y a n a lo g o u s ly  to  A w a n d  Ae, i.e ., A y (kp +  I) '■= y  (kp  +  V)—y  (kp  4- / — 1). Eq. (7.12) 

is written in terms of A y as

n a

Ay (kp +  I) =  Y j  ~ ai A y (kp + I -  i) +  Ae (kp + I)
i= l

= 4>'y (k) 9a + A e (kp +  I ) , I = nb +  l , n b + 2, • • • , p,  Vfc G Z+, (7.13) 
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where

* * * &na ] ?

4>y{k) = [ ~ A y (kp + l - l )  —A y (kp + l — 2) ••• - A  y (kp +1 — na) ]' .

Eq. (7.13) is linear in the parameter cq. However, if the ordinary least-squares method 

(LSM) is applied to (7.13) with the collected data i.e.,

K - 1 - l K - 1

j ^ Y ^ y  W  t v  M  J t Y ^ y  W  A y (kp + ’Kk=0 J k=0

the resulted estimate 9a is biased. Here K  is the largest integer less than or equal to N/p.  

The bias arise from the correlation between the noise term Ae(kp+l)  with the first regressor 

Ay(kp + 1 — 1), which can be resolved by a bias-compensated LSM. The difference between

9a and 9a is

As K  —> oo,

1 K~l 
x Y ^ y  t'v WK k=0

K - 1

k=0

K - l
lhn^— ^ 2  (/)y ( k ) A e (kp +I )  = E{<py { k ) Ae (kp +I ) }  = [  a 2 0 ••• 0 ] ' ^ .
~̂ °° k=0

Recall that a2 is the variance of the noise source e(t). Thus, 9a can be estimated without 

bias by explicitly compensating the noise effect, i.e.,

9 i l) =
K - 1

— Y  <f>y (k) 4>'y ( k )
k=o

- 1

<

K - l

Y  4v (fe) Av (kP + 0
k=0

<b >

0
— >

i
• 

o
1 >

> . (7.14)

A consistent estimate of a 2 was developed in Theorem 1 of [76]: a 2 is the smaller one of 

the roots ( x i , x 2) of a quadratic equation in x,  i.e.,

The quadratic equation in x  is

where

5ii =

d2 =

=  min ( x i , x 2) ■

0.5<?nx2 — x + a 2 = 0,

(7.15)

K
k = 0 11

K - l

K Y  (A v ( kP + l) ~(i>y(k) ea.y
k=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here {-}n stands for the first-column and first-row element of the operand m atrix.

7.3.3 E stim ation  o f B (q)

Let 61 =  1 to remove a scalar ambiguity between the process G (q) and the nonlinearity / ;  

thus, (7.11a) gives

(z>) =  A «  (z») -  (zp) . (7.16)

Substituting (7.16) into the other equations in (7.11) yields

AW (z*>) = k  (AW (z*) -  AW (zP)) + A «  (zP) , I =  2,3, • • •, nb, 

which implies that in the time domain,

Aw (kp + 1) = bi ( Aw (kp +  1 ) -  Ae (kp + 1 )) +  Ae (kp + I ) , I = 2,3, • • •, nb: V k e Z + .

(7.17)

Taking A w (kp +  1) and A^ (kp +  I) as the input and output, respectively, (7.17) is a static 

EIV system with the input and output noises, Ae (kp + 1) and Ae (kp + l), respectively. 

It is straightforward to derive the following properties of Ae ( kp+  1) and Ae (kp + l) by 

considering the facts that p > 2  and e(t) is white noise with variance cr2:

1. Both Ae (kp + 1) and Ae (kp + I) are white noises, having the same variance 2a2.

2. If I — 2, Ae (kp + 1) and Ae (kp + I) are correlated; their correlation is equal to cr25 (k), 

where S (■) denotes the Dirac delta function.

3. If I =  3,4, • • •, nb, A e (kp + 1) and Ae (kp +  I) are mutually independent.

Due to the second property, some of the existing identification methods for EIV systems, 

e.g., the total least-squares method, cannot be applied directly to estimate &2 - In parallel 

to Section 7.3.2, we propose a new bias-compensated LSM to estimate bi,

k  =
K - l  - - 1

- £ A ^  ( kp+  l ) - 2 d ;
k = 0

1 K~l
- 5 2  A^ (kp + 1) A w (kp + I) + a25 (I -  2)
K fc=o

(7.18)

Here d2 has been obtained in (7.15). Under Assumptions A7.1-A7.5, Theorem 7.1 in Sec­

tion 7.5 proves that bi in (7.18) is a consistent estimate.
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7 .3.4  D eterm ination  o f n a, rib and r

This subsection briefly describes the principles to determine the orders na, rib and the 

time delay r; these principles are implemented in a slightly complicated way in Section 7.6 

and are also illustrated by a simulation example therein and another real-time example in 

Section 7.7.3.

As da  ̂ in (7.14) is based on the linear regression in (7.13), the determination of n a is 

rather standard by the model structure determination methods in Section 11.5 in [122] and 

Section 16.4 in [85]. Here the so-called Akaike information criterion (AIC) is adopted,

V «  (na) = ( l  +  2 V )  1  £  (Ag) (k) -  [ $  (k)]’ li(J)V  (7.19)
fc=o '  '

for I £ [rib + 1, p\. Thus, n a would be the integer associated with the minimum value of

[ h a ).

The time delay r  is determined by a careful observation of the two groups of equations in

(7.10) and (7.11). If r  is nonzero, to let the counterpart of (7.4) reach one of the equations 

in (7.10) needs two inequalities: kp <  t — t  — rib —  1 and t — t  — 1 <  kp +  p — l f o r  some 

integer k £ Z+ . The inequalities say that two time delays t \  =  k\p + to and T2 =  k2P +  To 

for k\ ^  k r2 and to € [0,p) cannot be distinguished from the information of y(t) only. Hence, 

the time delay r  in (7.2) is assumed in the range of [0,p) without loss of generality under 

Assumption A7.4. In this case, (7.10) and (7.11) respectively hold for

n(, +  l +  T < Z < p  +  T and 1 + t  < I < rib + t .

They imply that V ^  (na) defined in (7.19) has a non-zero contribution from Au extra to 

that from Ae for rib times, and a sole contribution from Ae for (p — rib) times, when the 

output is consecutively shifted forward by I = 0,1, ■ ■ • ,p — 1 samples, i.e., y(t) = y(t + I). 

Therefore, f  is the largest number of the consecutive shifts resulting (p — rib) equivalent 

smallest numbers among all the p values of V l-P') (na). As rib is unknown in practice, we may 

choose I =  p. Then, na and r  would be the integers associated with the minimum value of 

(ha)’s among different combinations of na and f  — see the examples in Sections 7.6 

and 7.7.3.

The two groups of equations in (7.10) and (7.11) also tell the order rib once na, r  and A(q) 

have been estimated. Due to the contribution from Au, the first rib A $ ’s have the larger 

variances than the rest, A ^ 6+1\  A ^ !,+2\  ■ • •, A ^ \  which have the same variance 2er2; thus, 

rib is determined as the difference between p and the number of equivalent smallest A ^ ’s.
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In fact, rib can also be determined from the number of equivalent (na)’s; however, we 

would prefer to decouple the estimation of na and r  from that of rib, which is found in 

simulations to be easier and more robust.

7.4 Inner Signal Estim ation

W ith A(q) and B(q ) in hand, the second step of the blind Hammerstein identification is to 

estimate the unmeasurable inner signal x(t), or equivalently its slow-rate version X  (n) := 

x(pn). We first connects the special FIR system in (7.3) with its equivalent single-input 

and multiple-output (SIMO) counterpart, and then estimate X  (n ) by a method borrowed 

from the blind equalization (see e.g., [1]). The method has no differentiation on minimum 

or non-minimum phase systems.

In general, a fast-rate FIR model like (7.3) with the sampling period h can be described

as
OO

w(t )  = ^ 2 h { j ) x { t - j )  + e{t ) .  (7.20)
i =i

Owing to the property in (7.1), (7.20) is equivalent to a slow-rate SIMO FIR model with 

the sampling period T,

where

W{ n)  = J 2 H (k ) X { n ~ k )  + E n

W  (n)

E ( n ) 

X ( n ) x  (pn ).

w\  (n ) w (pn +  1)
W2 (n)

:=
w (pn + 2)

. wp (n) w (pn + p)

ei (n) e (pn +  1)
e 2 {n) • —

e (pn +  2)

_ ep (n ) _ e (pn + p)

(7.21)

By substituting (7.20) into (7.21) and exploiting the property in (7.1), the impulse response 

of the SIMO model is connected with that of the fast-rate model in (7.20) as

'  hi  (k)
h2 (k)

H( k )  =

hp(k)

EL o h(kp + l - l )
Ef=o h( kp + 2 - l )

. E?=o h( kp + p - l ) .
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Figure 7.3: An equivalent slow-rate SIMO FIR model

We now return to the special fast-rate FIR model in (7.3) that has the impulse responses,

h(0) =  0, h(l) =  bi,h{2 ) = b2, ■ • •, h(nb) = bnb,h (nb+1) =  0, • ■ •, h(p) = 0, • • •

Its equivalent slow-rate SIMO model according to (7.22) has only two non-zero impulse 

responses, i.e.,

M o ) h h i (1) r sr nb h iL , j= 2 °3
h2 (0) b\ + b2 M i) j =3

h nb (0) — W"6 h , H ( l )  = hnb (1) = bnb
hnb+l (0) V "1 h hn6+ i  (1) 0

hp (0) W"6 b L 2 ^ j= i  J hp ( 1) 0

and H(k)  =  0pXi> Vfc > 2. For clarity, the SIMO model is depicted in Figure 7.3. The data

o f  th e  i - th  o u tp u t  w-i (n ) are a sso c ia te d  w ith  th o se  o f  th e  u n k n ow n  in p u t X (n ) as

wi  =  [ Wj(l) W i { 2) ••• W i ( K -  1) ]'

=  [ w (p +  i) w (2p +  i) • • • w ((K  — 1) p + i) ] /
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' K (l ) M  o) o • • ■ o ' X( 0) G (0)

0 M l )  M O) : X ( l )
+

M  1)

: 0

1
ol—ioo

1 X ( K - l ) _ e i ( K -  1) _

Wl H ' '  Ex ’
w2 h 2 e 2

W = x  +

. w p _ .  Hp . . Ep .

=  : H jX  +  Ej,

where hi(0) and /)■,(!) are given in (7.23). Since ex, e2) • ■ ■, ep are mutually independent and 

have the same variance, it is reasonable to stack all y^’s together, i.e.,

=:HX +  E. (7.24)

Based on (7.24) with w{t) — A(q)y(t) and 6;, a least-squares estimate is obtained,

X =  ( H ' H ^ H ' W ,  (7.25)

which is also a maximum-likelihood estimate if e; is white and Gaussian noise.

7.5 Theoretical A nalysis

This section analyzes the consistency of the estimated parameters a*, bj and the uniqueness 

of the inner signal estimation in Sections 7.3 and 7.4, respectively.

L em m a 7.1 Under Assumptions A7.1-A7.5, the matrix

i  h t ' v
k=0

is positive definite.

Proof of Lemma 7.1: It follows with some modifications from Lemma 1 in [131] □

T h eo rem  7.1 Under Assumptions A7.1-A7.5, the estimated parameters 8 $  in (7.I f )  and 

bi in (7.18) are consistent, i.e., 8 $  —> 8 ^  and bi —> bi, as K  —> oo.

Proof of Theorem 7.1: Based on Lemma 7.1, the consistency of 8 ^  can be proved anal­

ogously to the counterpart proof of Theorem 1 in [131]. We only provide the proof for 

the consistency of 6;. Under Assumptions A7.1-A7.5, (7.17) holds once na, nb and r  are
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obtained as shown in Section 7.3.4. Assuming the noise A e (t) available and applying the 

ordinary LSM to (7.17) yields

bi =
K - l

4  (Aw (kp +  !) -  Ae (kp + l ) )2K

1
"K

k = 0 

K - l

- 1

y. (A«) (kp +  1) -  Ae (kp +  1 )) (A w (kp + I) -  Ae (kp +  I ) ) . (7.26)
k=0

The condition that
K - l

y  ( Aw (kp +  1) -  Ae (kp +  l ) )2 ^  0
k=0

is always fulfilled under Assumption A7.2. As K  —> oo, A  (q) converges into A (q) so that 

w (t) —> A  (q) y(t )  = B  (q) x( t )  + e (t ). The time-domain expression of (7.11) is

A w (kp + I) = bt A x (kp -  p) +  Ae (kp + I) , I -  1,2, • ■ •, nb, VA: 6 Z+. (7.27)

Since x (t) is only possibly correlated with e( t  — d) for d > 1, A x (kp — p) and Ae (kp + I) 

for I =  1,2, • • •, nb are mutually independent, which, together with (7.27), implies

E { A W (kp + 1) Ae ( kp+  1)} =  2<r2,

E  [ A w (kp + 1) A e (kp + I)} = -cr2 5 ( l -  2),

E  {Ae (kp + 1) A w (kp +  I)} =  —a 25 (I — 2),

E  { A w (kp + 1) A e (kp + I)} — — a2S (I — 2).

Therefore, as K  —* oo, (7.26) becomes

bt = \jd |  (Am (kp +  1) — Ae (kp + I))2 j ] _1

■E{(Aw (kp + 1) -  Ae (kp + 1)) ( Aw (kp + I) -  A e (kp + I))}

= [E {A2 (kp +  1)} -  2a2] -1 [E {A^ (kp + 1) A^ (kp +  /)} +  (I ~  2)] -(7.28)

Comparing (7.18) with (7.28), we have the consistency of f>;, i.e., limx-»oo bi =  6;. □

T h eo rem  7.2 Under Assumption A7.6, the estimated inner signal X( n)  is uniquely deter­

mined in (7.25) for a given realization.

Proof of Theorem 7.2: The uniqueness of X ( n ) in (7.25) requires that the p (K  — 1) x K  

matrix H  has full-column rank, which is true if and only if all the channels Hi(q)  for 

i =  1,2, ••• , p do not share any common zero except at infinity (Lemma 2 in [71] and 

Corollary 3.1 in [12]). Specifically, in this context,

Hi ( q)  =  MO) +  h i ( l ) q ~ l .
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To make all the channels Hi(q) for i = 1,2, • • • ,p  do not share any common zero except at 

infinity is equivalent to the condition that the matrix

' h  (0) hi (I) '

h  
b\ + 62

h.M = 2  1 
sr nb b

h2 (0) M i) = E j i l 1 ^ bnb

. hp (0) hp (1) _ £ " = 1  bi 0

0

has a trivial null space, which is satisfied by Assumption A7.6, i.e., E j= i  bj 7  ̂ 0. □

7.6 A lgorithm  and Simulation

This section summarizes the detailed steps of the proposed blind approach and presents a 

simulated numerical example to illustrate them.

Algorithm:

1. The order na and time delay r  are obtained as discussed in Section 7.3.4 by looking 

at yW  (hay s in (7.19) with I = p for different combinations of na and f .

2. The output y (t) is shifted properly according to f  to make (7.3) hold. The denomina­

tor parameters in 9a are estimated with na = na and I = p from the bias-compensated 

LSM in (7.14).

3. The order rib is obtained on the basis of the filtered output w(t) =  A(q)y(t), as 

discussed in Section 7.3.4.

4. The numerator parameters 6 2 , fyj, ■ ■ ■, b.-ril] are estimated by the bias-compensated LSM 

in (7.18).

5. From ai and bj, the unmeasurable inner signal X ( n ) is estimated in (7.25). Owing 

to the property in (7.1), the fast-rate inner signal x(t) is also available from X (n )  by 

piece-wise constant interpolation.

6 . The nonlinearity /  can be seen from a graph of x(t)  v.s. u(t). If /(■) has a parametric 

model, its parameters can be estimated via least-squares nonlinear curve fitting based 

on the input U(n) and X (n ), or u(t) and x(t), e.g., by the ‘lsqcurvefit’ function in 

Matlab Optimization Toolbox.
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7. To compensate the errors contained in x(t), G(q) may be identified again from x(t) 

and y(t) to compensate the errors contained in x(t), e.g., by the ‘arx’ function in 

Matlab System Identification Toolbox.

E xam ple  7.1 In Figure 7.2, the process Gc(s) is the same as that in [14] except that it has 

an additional time delay 0.36 sec and works in a feedback loop with a pure gain controller,

G c ( s ) = ° ^ »  +  1.0921 c ( ^ a L

Here the updating period of the ZOH is T  =  0.6 sec. The nonlinearity f c is a backlash 

with deadband 0.1. The process noise is generated by passing zero-mean white noise having 

variance er2 through 1/ (s2 +  0.32s +  0.02). The upper bound of the order rib is known a 

prior as n° =  4. The fast-sampling ratio is chosen as p =  n° +  1 =  5. Thus, the fast-rate 

process G(q) at the sampling period h = T /p  = 0.12 sec is

0 ( , )  = 0 .0 5 5 9 7 ,- 1 -  1.962Q-1 +0.9623<r2 '

The reference signal r is a random binary sequence with frequency band [0,0.5] and values 

±1. The simulation duration is 500 sec and the slow-rate inner signal X (n )  has around 800 

data points to be estimated.

Now we illustrate the estimation of na — 2, rib =  2 and r  =  3. First, na and r  are 

obtained together by looking at the AIC (n a) defined in (7.19) for different combinations 

of fia and f . One typical realization (<r2 =  0.001) gives the AICs (xlO -7 ) in Table 7.1. By

FW  (ha) T — 0 f  =  1 T — 2 T — 3 T — 4
ha =  1 1 2 . 0 1 0 11.235 9.941 8.948 82.172

il 4.619 0.992 0.982 1.073 152.020
ha = 3 1.543 1 . 0 1 2 1.735 2.093 152.370
ha = 4 1.256 1.111 1.620 1.181 151.480
ha = 5 1.148 1.172 1.304 1.204 151.800

Table 7.1: AIC for different combinations of na and t

looking at the columns with r  — 1,2,3 in Table 7.1, the AICs do not have significant 

improvement after na =  2; by looking at the rows with h a =  2, the AICs are almost 

the same for the consecutive shifts 1,2,3 and are smaller than the rest two, i.e., f  — 3. 

The parsimony principle rules out another possible pair (ntt =  3, f  =  3). In fact, the pair 

(na =  3 , f  =  3) yields the almost same inner signal estimation as our choice (na =  2, f  =  3). 

Second, after shifting y{t) by r  and estimating the parameters in A(q), the filtered output
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w(t) = A(q)y(t) is formed; then, the true order rib is obtained, i.e., fib =  2 , because p = 5 

and the variances of A ^ ’s have three almost same smallest numbers (x lO -7 ) in Table 7.2.

1 1 2 3 4 5

V a r{ A # } 31.591 59.353 0.9974 0.9920 0.9463

Table 7.2: The variance of

Remark: Some modifications are perhaps necessary in estimating r . For instance, if r  =  1, 

one realization (a2 — 0.001) gives the AICs (x l0 ~ 7) in Table 7.3. The smallest (n0)’s in 

Table 7.3 are at three inconsecutive shifts 0,1, and 4; thus, the shift 4 needs to be regarded 

as —1 , because the sole information of y (t ) cannot tell the difference between r  and (r +  kp) 

for k G Z+.

v w  (na) T =  0 f  =  1 f  =  2 f  =  3 f  =  4
h a = 2 0.9948 1.0182 122.03 3.2380 1.0146

Table 7.3: AICs for time delay estimation

a 2 x n r 2 SNR ai =  —1.9620 a2 =  0.9623 62 =  0.7244
0 0 0 -1.9620 0.9623 0.7244
0 . 0 1 16.2627 -1.9623 ±0.0018 0.9626 ±  0.0019 0.7240 ±  0.0027
0.05 7.2287 -1.9634 ±0.0038 0.9638 ±  0.0038 0.7242 ±  0.0053
0.1 5.1003 -1.9651 ±0.0054 0.9656 ±  0.0055 0.7247 ±  0.0085
0.5 2.4956 -1.9723 ±0.0112 0.9735 ±0.0113 0.7252 ±  0.0240
1 1.8889 -1.9781 ±0.0150 0.9799 ±0.0151 0.7232 ±  0.0348

Table 7.4: Estimated parameters and their standard deviations

Next, we investigate the performance of the parameter and inner signal estimation 

by multiple Monte Carlo simulations. Table 7.4 presents the averaged estimates of the 

parameters ai, a2 and &2 and their standard deviations for different noise levels; 100 Monte 

Carlo simulations are performed for each non-zero noise level. Here the signal-to-noise ratio 

is defined as SNR =  ||yo (t)|j2 /  llu WII2 > where yo(t) is the noise-free component of y (t) 
and | | - | | 2 denotes the Euclidean norm. As expected, the estimates are consistent. Using the 

estimated parameters, the unmeasurable inner signal X (n )  is obtained in (7.25); a graph of 

the controller output u(n) v.s. X (n )  from one typical realization with a 2 =  0.001 is shown 

in Figure 7.4. As a comparison, Figure 7.5 shows the graph of u{n) v.s. the true inner signal 

X (n ). Since the gain of G(q) is impossible to get in practice from the information of the
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Figure 7.4: A graph of the controller output u(n) v.s. the estimated inner signal X (n)

0.25

0.2

0.15

(0co>
■5> 0.05
a5cc

-0.05

- 0.1

-0.15

- 0.2
-0.4 -0.3 - 0.2 - 0.1  0 

Controller output
0.2 0.3

Figure 7.5: A graph of the controller output u(n) v.s. the true inner signal X (n)

output only, the vertical axes of Figures 7.4 and 7.5 have different scales. Nevertheless, the 

nonlinearities in Figures 7.4 and 7.5 have a good match in terms of the backlash structure; 

the deadband is read from the graph to be approximately 0.1.

For the purpose of comparison, the gain of G(q) is assumed to be known, and X (n )  is 

scaled properly. The error between the two signals is measured numerically by a fitness in
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cr‘z x 10~2 SNR Flsm Flsm Fin v
p 0

INV
0 00 100 100 100 100
0.01 16.2627 95.1989 ±  1.6295 97.2922 93.8494 ±  1.4933 95.6009
0.05 7.2287 89.4944 ±  3.8574 93.8981 86.4244 ±  3.5078 90.1067
0.1 5.1003 85.0520 ±  5.2490 91.3634 80.7704 ±  4.7868 86.0497
0.5 2.4956 62.1737 ±  16.5220 80.9620 53.0911 ±  15.5598 69.2815
1 1.8889 | 49.0576 ±  24.8790 73.2331 36.0619 ±  24.0173 57.4234

Table 7.5: Averaged fitnesses and their standard deviations: the standard deviations of 
Flsm  and Fin v  are omitted

% (see ‘compare’ command in Matlab System Identification Toolbox),

X s (n) -  X  (n)
F (X S, X )  = 100 I 1 -  . F f y 7 -v r r  I ■ (7-29)\ \X ( n ) - E { X ( n ) } \ \

Here X s{n) stands for the estimated inner signal after scaling. Table 7.5 lists the averaged 

fitnesses and their standard deviations from the same Monte Carlo simulations as those in 

Table 7.4. Flsm  is the fitness between X (n )  and X s{n) obtained from the LSM in (7.25). 

The upper bound of Fl s m , denoted by F®SM, is calculated by using the true parameters 

a* and bj in (7.25); the standard deviation of F®SM is relatively small and is omitted here. 

In this example, G(q) is minimum phase so that X (n )  can also estimated by passing y(t) 

through the direct inverse of G(q) and downsampling the resulted signal x(t) by p = 5. The 

corresponding fitness and its upper bound are denoted by Fin v  and FfNV, respectively. 

Eq. (7.25) reduces the noise effect in the inner signal estimation, as F®SM and Flsm  are 

always larger than F fNV and Fj n v , respectively. The difference between F°SM and Flsm  is 

getting larger as the SNR decreases; this is due to the propagation of the errors in parameter 

estimation into the inner signal estimation. □

7.7 M R  D am per M odeling

The proposed blind approach is applied for modeling of MR dampers. First, we briefly 

introduce the Hammerstein model of MR dampers. Next, the setup and result of the 

modeling experiment are presented.

7.7.1 H am m erstein  M odel

The nonparametric model for MR dampers proposed in [124] has demonstrated two merits 

so far: (i) the model can be numerically solved much faster than the existing parametric
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Figure 7.6: Experim ental devices

models; (ii) the stability of an MR damper control system can be proved by adopting 

the nonparametric model [125]. If currents/voltages of MR dampers are constants, the 

nonparametric model becomes a Hammerstein system depicted in Figure 7.1. Here the 

input u(t) and output y(t) stand for the velocity and damping force, respectively. Song, 

Ahmadian & Southward [124] proposed a first-order model for the linear system,

big' 1 
1 4 -  a i < T

G ( q ) = i (7.30)

and three candidate functions for the nonlinearity,

/  (u ) =  ci tanh ( c q u ) , (7-31)

/ («)

/  (u ) =  cisgn (u ) [1 -  exp ( - c 0 |u |)] ,

(CO +  d  Iu -  C3 | ) C2(U- C3) -  (CO +  C! | «  -  C3 | ) - C2(“ - C3)

c2(ti-c3) , - c 2(u -c3)
c0 +  c0

Our objective is to design an identification experiment and estimate G(q) and /(•) from the 

measured damping force y(t) and velocity u(t) by the proposed blind approach.

7.7.2 E xperim ent Setup

Experimental devices and a diagram of the experimental setup are depicted in Figures 7.6 

and 7.7, respectively. Two ends of the MR damper (RD-1097-01) provided by Lord Corp. are
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connected to the shake table and ground, respectively. The shake table generates necessary 

vibrations; in other words, the velocity of the MR damper is determined by the displacement 

of the shake table. Since the shake table weights about 60 lbs leading to a large inertia, 

it has to be controlled under a closed-loop operation. The proportional-derivative (PD) 

controller in Figure 7.7 is implemented in Computer #1 , and reads the displacement by 

countering turns of a circulating shaft and sends out currents to drive the shake table at 

sampling period 0.001 sec. Simultaneously, Computer # 2  reads the damping force via a 

strain meter and the displacement via an infrared sensor at sampling period 0.005 sec. 

After downsampling the measurements from Computer # 1  by a factor 5, we synchronize all 

measurements from the two computers by comparing the two displacement measurements. 

Eventually, displacement measurements from Computer # 2  are discarded because they 

are much nosier. No velocity sensor is available so that the velocity is calculated as the 

first derivative of displacement measurements from Computer #1. The voltage of the MR 

damper is fixed to 1.25 v.

Assumption A7.1 in Section 7.2 requires the velocity to be piece-wise constant for p con­

secutive samples. We let the desired displacement in Figure 7.7 take uniformly-distributed 

random values within the range [-1.5, 1.5] cm and have a constant increment every 0.2 sec. 

As a result, the velocity is approximately piece-wise constant for every 40 samples (the 

sampling period h is 0.005 sec). Figure 7.8 shows some enlarged parts of the measured dis­

placement, the calculated velocity and the measured damping force (bottom to top). The 

duration 0.2 sec is confined by the closed-loop settling time, as the shake table has a rather 

large inertia.

M easured
D isplacem ent

D esired
D isplacem ent C urrent

M R
D am perShake TablePD

C ontroller

Figure 7.7: A diagram of the experimental setup

7.7.3 E xperim ent R esult

The selected experimental data with 3500 samples are presented in Figure 7.9. The first half 

of the data is used for parameter estimation, while the other half is for model validation.

Let us first look at some assumptions. By our design in Section 7.7.2, Assumption A7.1 

is approximately satisfied, i.e., the velocity is approximately piece-wise constant for every 40
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Figure 7.9: Selected experimental data

samples. The integer p could be as large as 40; however, a larger p implies that fewer data 

points are exploited and the inner signal estimation needs higher computational costs. The 

linear system G(q) in (7.30) is expected to be the first order one, i.e., na = 1 and rib =  1- 

Hence, p — 5 (a factor of 40) seems a well-balanced choice to safely satisfy Assumption A7.5 

and meet the above consideration on the data length and computational cost.

The identification algorithm in Section 7.6 is proceeded as follows. First, the order 

na and time delay r  are determined from Table 7.6 that lists (na)’s in (7.19) under 

different combinations of na and f . Looking at the rows of Table 7.6, (ha) for r  =  4
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V W  (ha) T  — 0 f  =  1 f  =  2 f  =  3 T  = 4
fla = 1 7.927 11.113 12.713 10.844 5.027
ha = 2 13.866 18.366 21.837 15.012 5.171
ha = 3 13.391 18.420 21.618 15.027 5.063

3
>

11 13.379 18.483 21.711 15.378 5.092
ha = 5 12.970 18.558 21.824 15.406 5.121

Table 7.6: The AICs under different combinations of ha and f

2 5  j - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - r- - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - ]
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Figure 7.10: The estimated inner signal X (n )

(0cS>
v>
Q>cc

-5

-1 0

-15

-20

-25
-1 0-15

Velocity (cm/sec)

Figure 7.11: The nonlinearity (dots) revealed by U(n) and X (n), and the estimated non- 
linearity (smooth line)
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achieves the smallest number at each row. In the column of f  =  4, V^p) (na) is almost the 

same for all ha’s. In fact, h a = 1 and t  =  4 lead to the smallest AIC. W ith na =  1, f  =  4 

and I = p +  f ,  the denominator parameter is obtained in (7.14):

A(q) =  1 — 0.8433gr_1. (7.32)

There is no need to estimate the numerator parameters, because = 1 and b\ =  1 (see 

Section 7.2). Second, the slow-rate inner signal X (n )  is estimated in (7.25); X (n )  is shown in 

Figure 7.10. Third, the shape of the nonlinearity is revealed from U(n) and X (n )  displayed 

by dots in Figure 7.11. It seems that /(•) in (7.31) would be sufficient to capture the 

revealed nonlinearity,

/  (U) =  0.5080 tanh (16.232017). (7.33)

Interpolating X (n )  by the property in (7.1) gives x(t), the estimate of the inner signal x(t) 

with sampling period 0.005 sec. The linear system G(q) is ready to be identified from x(t) 

and y(t),
. . . 0.5357(7-1
G(9)= 1 - 0.8856,-" <?'34)

Finally, the simulated damping force y(t) is obtained by passing u(t) through /(•) and G(q),

i.e.,

y(t) = G {q)f (u(t) ) .

Figure 7.12 compares y(t) with the measured damping force y(t). The fitness between y(t) 

and y(t), F  (y,y)  defined in (7.29), is 70.5102%, The other half of the data in Figure 7.9 is 

used for the cross validation. The corresponding y(t) and y(t) are compared in Figure 7.13 

with fitness 63.1926%.

Since the actual inner signal x(t) or X(ri) is unavailable in the experiment, the fitness 

between the measured and simulated damping forces is the single index to evaluate the 

model quality. In Figures 7.12 and 7.13, the estimated Hammerstein model consisting of 

/ ( • )  in (7.33) and G (q) in (7.34) performs very well in terms of dynamics tracking, but 

has relatively large errors at some smaller peaks. Numerically, the Hammerstein model is 

validated by the fair fitness 63.1926% between the simulated and measured outputs in the 

cross validation. The modeling errors may arise from the noises in the measured damping 

force and the approximation in achieving the piece-wise constant velocity.
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Figure 7.12: The measured (solid) and simulated (dotted) damping forces using the esti­
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Figure 7.13: The measured (solid) and simulated (dotted) damping forces using the valida­
tion data: fitness =  63.1926%

7.8 Conclusion

W e have p ro p o sed  a n ew  b lin d  ap p roach  to  id en tifica tio n  o f  H a m m erste in  sy s te m s. In p u ts  o f  

Hammerstein systems are assumed to be piece-wise constant for certain consecutive samples. 

Such an assumption can be satisfied by user’s design, e.g., in the MR modeling experiment 

in Section 7.7, or by output fast-sampling, e.g., in Example 7.1. In a laboratory experiment, 

the proposed approach has been applied to identify a Hammerstein model for MR dampers.
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An interesting issue for further study is to compare the proposed approach with the existing 

ones [131, 14] by simulation comparison and theoretical analysis. The two differences with 

the existing approaches stated in Section 7.1 imply that the proposed approach may have 

a better performance in reducing noise effects.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 8

C onclusion

The thesis consists of two parts, namely, cyclo-stationary signal analysis and its applications 

in system identification. To get a clear overall picture, we list the main contributions of the 

thesis as follows.

Main contributions:

1. Cyclo-period estimation (Chapter 3): A new method, named as the variability method, 

is proposed to estimate the cyclo-period of a discrete-time cyclo-stationary signal. The 

variability method has many attractive properties, e.g., it is not sensitive to stationary 

noises. These properties are analyzed and compared with three existing cyclo-period 

estimation methods via simulation and real-life examples.

2. Cyclo-statistic estimation (Chapter 4): The first- and second-order cyclo-statistic esti­

mators are summarized, namely, the estimators of the time-varying mean/correlation 

and cyclic correlation/spectrum. A new cyclic spectrum estimator, the blocking- 

based estimator, is proposed. The rationale of an implementation shortcut for the 

cyclic m ean/correlation/spectrum estimator is explored from the relationship between 

cyclo-stationarity and quasi-stationarity. Performance of the cyclo-statistic estimators 

is validated via simulation examples.

3. Cyclo-spectral theory (Chapter 5): Two problems are studied for the spectral theory 

of discrete-time cyclo-stationary signals: the cyclospectrum representation and the cy- 

clospectrum transformation by linear multirate systems. The first contribution, which 

is also of some tutorial value, is to summarize four types of cyclospectra and find their 

interrelationships. In the literature, the problem of cyclospectrum transformation by 

linear systems was investigated only for some specific configurations and was usually 

developed with inordinate complexities due to lack of a systematic approach. The
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second contribution is to attack the problem of the cyclospectrum transformation in 

the framework of multirate systems using the blocking technique.

4. FIR modeling for ElV/closed-loop systems (Chapter 6): A non-parametric approach, 

the CCRA, yields asymptotically unbiased and consistent FIR models for EIV and 

closed-loop systems. A complete study of the CCRA is developed, including the 

statistical performance of the estimated FIR model. Frequency-domain expressions of 

the statistical performance provide guidelines in designing a class of cyclo-stationary 

signals for modeling. Effectiveness and properties of the CCRA are validated and 

illustrated by numerical examples.

5. Blind identification of Hammerstein systems (Chapter 7): The first contribution is 

to propose a new blind approach to identification of Hammerstein systems. The 

new approach has two main differences with the existing blind approaches, (i) The 

noise-corrupted cases are considered instead of the noise-free ones, leading to a new 

series of static EIV systems, (ii) The inner signal is estimated by a least-squares 

method borrowed from the blind equalization; by doing so, the noise effect is reduced. 

The second contribution lies at modeling of MR dampers. We design a real-time 

identification experiment for MR dampers and build a Hammerstein model by the 

proposed blind approach.
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