International Conference on Computing, Communica8gstem and Informatics
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

Comparative Analysis of Operational Malware Dynamic Link

Library (DLL) Injection Live Response vs. Memory Image
Ahmed Alasiri, Muteb Alzaidi , Dale Lindskog, Pavol Zavarsky, Ron Ruhl, Shafi Alassmi

Master of Information Systems Security Management
Concordia University College of Alberta
Edmonton, Canada
ahmed_alasiri@yahoo.ca, muteb.al zaidi @gmail.com, { pavol.zavarsky, dale.lindskog,

ron.ruhl} @concordia.ab.ca, alassmi.shafi @gmail.com,
Abstract :

One advanced tactic used to deliver a malware payload to a target operating system is Dynamic Link Library
(DLL) injection, which has the capabilities to bypass many security settings. In cases of compromise involving
DLL injection, volatile memory contains critical evidence, as these attacks typically leave no footprint on the
hard disk. In this paper, we describe the results of our comparative analysis between a particular live response
utility, Redline, and a particular memory image utility, Volatility, in cases where malware is using DLL
injection. We show that Redline is significantly limited, by comparison with Volatility, in its ability to collect
relevant evidence from memory. Based upon these observations, we draw general conclusions about the

advantages of memory image analysis over live response.
Keywords- DLL; Memory Image; Live Response; DLL Injection; Create Remote Thread
I.INTRODUCTION

This Dynamic Link Library (DLL) injection is an adnced malware payload delivery technique, used
by attackers against a target system, and whishh®acapability to bypass most security settifgs.instance,
DLL injection can be employed to exploit a procdike Internet Explorer, which can then be used les t
process gateway to circumvent a firewall. As a ltestiDLL injection’s security evasion capabilitiegany
researchers have emphasized the importance ofctioieevidence from volatile memory on the victim
machine, since there is usually no footprint lefttbe hard disk after an attack [2]. Volatile meyntorensics
initiatives have recently gained prominence, ay tbenstitute an effective tool in digital forensiasalysis
[3][4]. ‘Live response’ is the term used to referthe traditional technique for collecting eviderican volatile
memory. Utilities used during a live response ndiynaly on kernel system calls. A system call issguest of
a service from an application programming interf@&Bl) to the operating system’s kernel Howevers itvell
known that system calls may be intercepted or comjsed by malware, which of course will impact the

veracity of the data collected by these live respautilities.

Memory image analysis is another technique foreatithg evidence from volatile memory. Since live

response utilities generally rely on system cafismory image analysis is perhaps more dependadtaube it

International Conference on Computing, Communica8gstem and Informatics
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

cannot easily be affected by malware in the kerhreladdition, a memory image may give us more vital

evidence, since it directly accesses the mematler than relying on the API to the operatingetyss kernel.

The potential for, and the problems associated @otlecting volatile data after a DLL injection atk
are explored in this paper, through a comparisothefevidence collecting capabilities of a paréculive
response utility, Redline, and a particular memanage analysis utility, Volatility, both of whichre
commonly used in forensic investigations. Thisgraig organized into six sections. Section Il diéss how
DLLs function. Section Ill is an overview of DLL jection. Section IV describes our methodology and
experimental design, and also information concerrihre tools used in the comparative analysis. &eci
contains our results and some discussion of thextidh VI is our conclusion and recommendationsfditure

investigations within this area of study.
[I.DYNAMIC LINK LIBRARY (DLL) OVERVIEW

A Dynamic Link Library (DLL) is a module that coita functions which can be shared by a number
of applications [5]. DLLs are a means “to moduarapplications so that their functionality canupelated and
reused more easily” [5]. A DLL is loaded once imemory address space, and can be accessed byramirygu
application. When several applications share timeesmodule it reduces memory overhead “becauseugtho
each application will receive its own copy of thd lDdata, the applications share the DLL code”[5].
Kernel32.dll, User32.dll, and GDI32.dll are the ionfant DLLs on the Windows operating system. Ke3gdlll
is used to control memory, processes, and thré#sks,32.dll is used to control the user interfacB]32.dll is

used to draw graphical images and display tex¥[5][

The functions that DLLs contain fall into two cateigs: exported functions and internal functions.
Exported functions are functions that can be cdtfedther modules as well as within the DLLs whigvey are
defined; whereas the internal functions are intdntebe called only from within the DLLs where thase
defined [5].

There are two ways that an executable can dynalyioai to a function exported by a DLL:

1) Load-time dynamic linking:

A vital portion of the executable module is the fiont section that lists all the DLL module nameguiesd
by this executable”[7]. Once the DLL and the exabi¢ modules are assembled, an application’s tperean
commence. Before the executable starts, the opgrsgistem loader will perform certain procedurdse Toader
will develop a virtual address space for the neacpss and the executable module will be mappeubtetnew
spaces. The executable module’s import section bwillparsed by the loader. The loader then pinpdhw

DLL module for every DLL name listed in the sectimmd then maps that DLL into the process’ addspase.

To simplify this process, the application’s codérences the required DLL before it executes. The
DLL module can then share the functions and vaemlfilom another DLL that helps the executable téubg

initialized on the system. [7][10].

International Conference on Computing, Communica8gstem and Informatics
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

2) Run-time dynamic linking:
At the point that the application is operating, finecess may load the necessary DLL explicitly and

will then precisely link to the desired exportedrbpl. In fact, the thread that is contained in the
process can decide whether it wants to call a fonatithin a DLL or not. Specifically, the threadrc

“load the DLL into the process’ address space thyetvirtual memory address of a function contained
within the DLL, and then call the function usingsttmemory address”[7]. This can be accomplished

by requesting one of these functionsdLibrary() and LoadLibraryEx():

HMODULE

LoadLibrary(PCTSTR

pszDLLPathName);

HMODULE

LoadLibraryEx(PCTSTR

pszDLLPathName,

HANDLE

hFile, DWORD

dwFlags);

The LoadLibrary and LoadLibraryEx functions willsést in locating DLL files on the user’s system
using a particular search order and map the Dlifilésimage into the calling process’ address spdde
virtual memory address where the file image is peapis identified when the HMODULE value is retutne

from both functions [7][6][11].
[I1. DLL INJECTION

Injection involves influencing the application’s Havior in memory in a way that the user did not
anticipate or intend. According to Skape et al, tDInjection is the process by which a dynamicaihkéd
library is injected, or forcibly loaded, into a pess’ address space” and it occurs after a prognasnbeen
executed [8][32].

There are two modes dynamic DLL injection, and aadile is performed by an attacker as a seriegpést
A. Remote Thread Injection

The mechanism of this mode of attack is to loadniadicious DLL through the creation of a thread on
the target process, which is then used to caltLdmary. In this fashion, LoadLibrary is therefareed to load
the malicious DLL. As a result, the attacker mfadiricate a new thread in the target’s processnascannot
easily control the threads in a process that achaak initially create [7] .In this way, by genéray the thread,
the attacker gains control over the process. Tieat€RemoteThread function on Windows operatintesys
can be used to achieve this type of injectionofgek the declaration for the CreateRemoteThreadtfon on
Windows [7][12].

HANDLE

CreateRemoteThread(

International Conference on Computing, Communica8gstem and Informatics
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

HANDLE

hProcess,
PSECURITY_ATTRIBUTES
psa,DWORD

dwStackSize,
PTHREAD_START_ROUTINE
pfnSartAddr,PVOID

pvParam,

DWORD

fdwCreate, PDWORD

pdwThreadld);

OpenProcess
Allocate memory
Write DLL path
Createremotethread

G

Load the malicious DLL

Target Process

el

"~ Virtual Memory
3 a4
cp s ol Thread

5
Malicious DLL - >

Figure 1. Remote Thread Injection

Fig.1 shows, in simplified form, the method thah dse employed by malware to inject the malicious
DLL into other processes. First, the malware wiplen the process using the OpenProcess functioichwh
returns an open handle that is responsible forkthgahe process privileges; this handle is usedrtmt the
right access to the target process. Secondly, analwill allocate memory using the VirtualAllocExriction in
order to specify the correct path for the malisioDLL. Thirdly, it will write the DLL path using #n
WriteProcessMemory function. Once the path hasnbeeeated, the malware will initiate the
CreateRemoteThread function to create a threadhentarget process, instructing the thread to Itheed
malicious DLL remotely. As a result, the malwarell vave attached the malicious DLLs on the taiy®eicess,
and is able to compromise critical data on thetimis machine. As long as the target process lsratining,

the attacker will have back-door access to it [9].

International Conference on Computing, Communica8gstem and Informatics
Management (ICCCSIM)
Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

B. Windows Registry DLL Injection:

Most malware in fact uses this method and it capxseuted through the registry key Applnit_DLLs .
According to Graham et al, “In Windows NT4, 2008daxP, Applnit_ DLLs is a registry key commonly used
to inject DLLs into processes”[9]. The Applnit_Dklkey may be given a value corresponding to a aibglL

orto alist of DLLs, and it is located in the istgy thus [9] :
HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CuentVersion\Windows\Applnit_DLLs

When a new process has the User32.dll librarypedpit receives a DLL_PROCESS_ATTACH
notification [7]. When the notification is process the User32.dll will call LoadLibrary for eachh.Dspecified
in this key. The entire library is loaded, and libeary’s associated DIIMain function is called vitdwReason
setto DLL_PROCESS_ATTACH to load the library. The'Reason parameter can be set to one of the values
shown in table 1 [7][13].

TABLE I: FDWREASON PARAMETER VALUES

Value Meaning

DLL PROCESS ATTACH | Attached process (Load library)

DLL THREAD ATTACH Attached new thread

DLL THREAD DETACH Detach thread

DLL PROCESS DETACH | Detach process (unload library)

To simplify the procedure, malware usually modifiee Applnit_DLLs registry key by injecting the
malicious DLLs into its list. user32.dll, which igsponsible for the Windows interface, loads DLLs o
Applnit_DLLs during DLL_PROCESS_ATTACH. If the imjdon succeeds, the applications will call userB2.d
in order to load the Applnit_DLLs list, which wilhclude the malicious DLLs. However, this type tthak is
restricted only to applications that interact withplnit_ DLLs [10][14].

IV.REVIEW OF THE LITERATURE

Skape , J Turkulainen described the DLL injecticgthiod on two different operating systems, namely
Linux and Windows, including such details as OslDLibrary Injection and In-Memory Library Injectip
which are two ways of injecting the library remgteDn-Disk Library Injection, as could be inferrédm its
title, indicates “the library is written to disk éthen loaded into the processes address spacdh [@ntrast, In
Memory Library Injection loads the library into amming process in memory without writing it to tHisk.
Skape et al concluded that DLL injection makgsoisible for malware developers to write extrenaglyanced

worms and viruses that are capable of executirigplagload under the radar of present day virusisees [8].

S. Daly discussed the inability of current counteasures to detect or prevent DLL injection. He
demonstrated a method by which attackers can createare which is difficult to detect, even by tla¢est

antivirus products, thereby allowing data to bekésh while bypassing firewalls. Daly also examinée t

International Conference on Computing, Communica8gstem and Informatics
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

effectiveness of modern anti-virus products suchVger, Comodo and Kaspersky to detect DLL injectio
techniques. The findings of this noteworthy reskaran be used by anti-virus developers in ordeentoance

their applications’ ability to deal with DLL injeicin [1].

C. Waits et. al., in a paper entitled “Computerdrsics: Results of Live response Inquiry vs. Memory
Image Analysis” compared these two forensics taphes by comparing the evidence collected with wario
'live response’ tools, such as pslist, ListDLLspEPPTFinder, with the evidence collected using themory
image analysis tool, Volatility. The paper illuggs the benefits and drawbacks of both techniqbes,

concludes that memory image analysis is generpéigleing more useful [3].

Work carried out by A. Aljaedi et al. shows thateonf the drawbacks of live response is the
overwriting of critical evidence. Additionally, thresearch shows that memory image analysis clvéemged
as an alternative in mitigating the risk of losimglatile evidence such as terminated and cashecepses,
which are generally missed during the live respoiée conducted several experiments to emphasize the
importance of using a memory image instead of tteiah RAM. This research has also demonstrated that
dumping the memory image using advanced tools sé&naat critical data such as passwords and credd c

details even though they are encrypted on disk [4]
V. METHODOLOGY

Our experiments relied upon five machines; the hwsichine was running on a Windows 7
Professional platform with 4 GB RAM, equipped witttel (R) Core (TM) 2 CPU T7250 2.00GHz and hosting
four other virtual machines; three virtual machimese running Windows XPSP3 targeted by DLL injeqs,
while the fourth machine, running Windows XP SPaswhe machine on which we investigated the memory

image.

Our experimentation involved three cases, corredipgnto the three randomly chosen DLL injection
exploits. In each case, we launched one of the ar@hagainst the victim machines running Windows RB.S
At this point, the memory image was taken from tetim machine via a virtual machine snapshot. The
memory image was investigated using Volatility, liming the use of several plug-ins helpful when
investigating DLL injection. At the same time, thee response investigation was conducted on tle@invi
machines using Redline to observe malicious DLLY acore the “riskiness of DLLs based on how many
process load them”[20]. The results of these twestigations (live response using Redline and mgnmage
analysis using Volatility) were then compared inme of the evidence gained from both techniques Th
investigation process for both techniques was tepethree times in order to observe any dynamiagbadhat
would occur, as well as increase the reliabilitytlté analysis. Table 2 below illustrates that asearch was

conducted as three separate cases.

As noted, the experimental methods were identicatédch case, with the exception of the specific

malware samples.

International Conference on Computing, Communica8gstem and Informati
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

TABLE 2: THREE CASES IN THE RESEARCH EXPERIMENT

Malware Name Operating system

Clampi trojan (case 1)

; . Windows XPSP3
Wimn32.Sear trojan (case 2) Hee

Shylock trojan (case 3)

A. Memory Image Analysis

Until very recently, forensic investigation of ramemory consisted of little more than string seas:
on a memory dump. Investigators now have much more pkul tools and rathods for the investigation
memory,including tools and methods for malware rev-engineering tasks and malware detection. In
experimentswe relied on Volatility Framework and InteractiveisBssembler Professional [9] for the
purposesVolatility Framework is an open collection of topland supports -depth investigation of DLI
injection using various plugs, such as imageinfo, malfind, psscan, dlllispgmemdump, Idrmodules al
Vadinfo. There aranany alternate pli-ins thatcan further assist investigation and analysis Interactive
Disassembler Professional (IDA PRO) is a dissemiatel debugger used to analyze malware [17]. It is
the most commonly used software to disassemblebirzde, in order to extract ambly instruction from

machine level language [19].
B. Liveresponse Analysis

Live incident response entails gathering forensicence from a machine while it is still operat
Traditionally, this is the first (and sometimes thae) step in a foreic investigation. Though it is capable
returning vital data, live response is imperfeéhce the forensic investigator must rely on the cexier
environment of the system being investigated. typ&al live incident response, the investigatoll introduce
into the infected computer a trusted set of vadadihta collection utilities, and will direct thetput from thei
execution to an external USB or network drive,iee-stream the data over an encrypted network chahw
matter how the livéncident response is carried out, the respondezssecily relies on the suspect environn
Redline is an example of a tool that can be employelive response. It is designed to detect mad
generally, and is capable of investigating DLL atjen specifically. Redline also rates every running pssco

a system according to its perceived level of riK[20].
VI. DISCUSSION AND RESULT:

This section discusses the results of our expetsnéime following observations are noteworthy. &
in all three cases DLL injection was detected by both iRedind Volatility. However, there were numbe
injection processes involved in the cases, butlate® to the malware, due to the fact that injectechnique
can be used by any application. e applications make legitimate use of DLL injectifor example, VMwar
Workstation uses this technique to allow copy aaste features between the host and guest mac Second,

three cases (clampi, Win32.Scar, shylook) injettedmalicious DLLs ito particular processes st as Internet

International Conference on Computing, Communica8gstem and Informatics
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

Explorer and Explorer.exe during run time dynanm&ihg. Additionally, these three trojans waitedtilithe
injection process succeeded, and then terminatmigélves in order to hide their activities. Redhves not
able to detect terminated processes, whereasrtfugriation was available by memory image analysiag
Volatility. This difference is explained by the fabat information about terminated processes tamapped to
the kernel mode, but rather, is found in the urtaited data in memory (RAM). Since Redline reliesgstem
calls to interact with the kernel as a means to gacess to memory, it has no method by which tescthis

data, whereas a memory image tool like Volatiliy dypass this and directly access this unallocadeéal

Detecting terminated processes can simplify thestigation by providing valuable information such
as the target process, name of the malware owi¢tiem machine, the registry key used to maintéself, and
the point of origin on the system. It must be aciiedged, however, that in our experiments memorgge
analysis was unable to provide information abdweisé terminated process in the second and thirdesya
acquired further subsequent to exploitation, and timderscores the fact that a live response camwoite
critical data, as demonstrated e.g. by A. Aljaadile

Third, the list of loaded DLLs for each process wasained during both live response and memory
image analysis; however, the hidden/unlinked DLlesevnot obtainable during the live response. Figh@ws

the functions which were requested by Redlinerdeoto show the listed DLLs. Figure 2.

1955 | O:lct [WSVCRIO0 CLROMO.., | GetMocueHandeW [KERNELSZOLLY) |
1939 0xdb8 .l W { "KERMEL32"

1935 0:9b8 okl , "GetlastEmror')

19% 0u9ha k.l 0. "EncodePanter')

Figure 2. functions requested by the live respaniigy

Two of the trojans (Clampi, Win32.Scar) used in experiment hid their malicious DLLs by remotely
loading them, without calling the LoadLibrary orddi ibraryEx functions on the host system. Thisriewn as
reflective injection which means “the reflectiveatter does not register the loaded DLL within thecpss list
of loaded modules”[9]. Consequently, no entry waesated in the Process Environment Block (PEB) tised
by API calls to retrieve this information of therget process. Since no entry was created in PEBIjrie was
unable to detect the hidden /unlinked DLLs.

The results were quite different when using Valgtd virtual address descriptor (vadinfo) plug-in,
which successfully tracked these DLLs. A Virtualdkdss Descriptor (VAD) shows the start and end esidr
for each process, along with the corresponding Blel. The VAD is “used by the Windows memory manage
to describe memory ranges used by a process asatbegllocated” [23]. When the process allocatesiai
memory space using the VirutalAlloc function, thélY creates entry points for each DLL loaded by the

process, as illustrated below in Fig. 3 [23].

International Conference on Computing, Communica8gstem and Informati
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

¥

Vad @ 821c3d18

7¢900000 - 7cOb1

AWINDOWS\system3 2\ntdll.dll

T

Figure. 3 Example of VAD entry with corresponding file [14]

The first row represents the address of the VADyemt kernel memory, while the second row
arepresentation of the virtual addressethe process’s memory space [14]. Finally, the thind represents tl
name of a memoryapped file (ntdll.dll). This information is onlyailable if the tag is type “Vad” or “Vad
[14]. The DLLs can be found in the virtual memorytibe host process ev though they do not exist in ti
PEB.

We used Volatility’'s VAD plurin to access the EPROCESS structure that contansek mode
information for each running process. Memory Manager Virtualdress Descriptors (MMVAD) are
significant part of the EPROCEKSand hold information about the virtual start amti address and mapr.
DLL. [31]

VAD node (@82288938 Start ©20c0eee End 620cefff Tag vads
Flags: MemCommit, PrivateMemory
Commit Charee: 1 Protection: 6

Figure 4. Suspicious VAD entry

Fig. 4. is an example of a suspicious VAD entryt thva found in our investigation and, althoug|
does not have a corresponding file nped to it, the protection nonetheless indicates ttiere was execulti
(MM_EXECUTE_READWRITE) on the target process. Tlldump command is able to reconstruc VAD

entry and dump it to disk for analysis[1

Our successful identification of hidderunlinked DLLs that were used to inject processathéu
guided our investigation of the memory image. First, we welnkedo extract significant information about 1
malware andwhat actions were performed on the victim mach8econd, we were able discover methods
used by thenalware to evade firewalls. For example, the Caltmgyan used Internet Explorer, and the Shyl
trojan used Explore.exe. Finally, we discovered the Registry alue that was created by the all malwar
order to positin itself on a system and ensure its execution. afge noticed that two trans (Clampi,
Win32.Scar) communicate with their own malicious server. Foaraple, the Win32.Scar trojan establishe
session with aserver named prettylikeher.com, in orde upload information from the victim host, as show
Fig 5.

International Conference on Computing, Communica8gstem and Informati
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

seqUuo DO00sL5A0 4O B9 1A 90 SC 00 00 60 64 A6 B2 60 57 81 OA 60 Q)N.\...0.0.VEN.
eqBE0: G00%4SE0 EB 29 10 B8 708 72 65 74 74 79 60 69 6B &5 6B €5 F)E.prettylikehe

e DiA: p0ALLSCA 72 2E 63 6F 6D 00 G0 @@ G5 00 B4 OO SB 01 OB 08 v.con...B.H.[NN.
Seqeuaodpnispn o0 00 PO OO 5S4 DE FC 77 @0 46 17 00 08 3B 17 00T+nw.Fl.B).

Figwe 5. The W32 Scan nojun connmumcales with pretiylikeher com seiver

TABLE 3:THE FINAL RESULT OF COMPARING THE LIVE RESPONSE UTILITIES WITH MEMORY IMAGE ANALYSIS

Case 1 Case 2 Case 3

R \ R \ R A4
Processes List v v v v v v
Terminated x v « v « v
Processes
DLL List v v v v v v
DLL Injection v v v v v v
Hide / Unlinked % v « v v
DLL
Registry Key X v X v % v
Server x | v x v v
Communication
Processes Dump X v X v % v
DLL Dump x v X v x v

R=Redline

V= Volatility

Table 3 depicts in brief the data we observed amdstigated, and whether that data was disco\
during our live response using Redline, or during our mgnimage analysis using Volaty, or both. A check
symbol P71’ on the table represents successful detectionramsean ‘x’ symbol represents the failure.
graph alsaherefore depicts concisely the final results of comparisons between Redline and Volatility. |
clear thatthe live response utility, Redline, is less effeetthan the memory image analysis utility, Volatil
As noted above, these results are substantially explainetthdyact that malware can be, and in our cases
were designed cleverly enough tot load the DLL via the LoadLibrary or LoadLibraryHEunction, and henc

hide the malicious DLL from detection methods that refysystem call
VIl. CONCLUSION

It is a continuous struggle to protect our systamd networks from malware, and researc must
persist in uncovering new and enhancing existing methods tifegang evidence. An important component

this is the examination of volatile memot

A partial answer to the problems faced by traddidive response forensics, when presented DLL
injection attacks but also generally, is to endinagt procedures are in place for the timely anersically
sound acquisition of memory images of victim hosts. Imsidering both the role that DLL injection plays
deceiving the system operat@s well as the method that DLL injection usescaory out its attack, it i
necessary toconsider combined approaches to properly analyzedture and ope of the attack. In this wa

live response can be considered an initial step towards diaing the range of the tack and to help

International Conference on Computing, Communica8gstem and Informatics
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

investigators to determine further courses ofoactin situations where live response is unableesolve the
conflict, a more complete analysis of the mactirgierating state must be taken. Therefore, memuage
analysis has to be performed as well. By perfogimese two approaches in concert, the digitalnfgioe

examination will be more reliable.
ACKNOWLEDGMENT

| am heartily thankful to my Country Saudi Araba bffering my this opportunity, and my supervisor,
Pavol Zavarsky, Dale Lindskog, Ron Ruhl, whoseoenagement, guidance and support from the initidhe
final level enabled me to develop an understandihthe subject. | also wanted to thank my familiion
inspired, encouraged and fully supported me fargvrial that comes in my way, and In giving md just
financial, but morally and spiritually. Lastlyoffer my regards and blessings to all of those sinoported me
in any respect during the completion of the prpj&ami Alshaheri, Steve McGowan, Eyad Bogari, Scot

Mcintyre, and Des Fernando.
REFERENCES

1. Scott Daly, “Preventing Malicious DIl Library Injgon,” M.S. thesis, Dept. Comput and Eng
Systems., Abertay Univ., Dundee, UK, 2011.

2. Brian D. Carrier, Joe Grand (2004, March). HardwarBased Memory Acquisition Procedure for
Digital Investigations. [Online]. Available:httpaivw.digital-evidence.org/papers/tribble-preprint.pd

3. Cal Waits, Joseph Ayo Akinyele , Richard Nolan, ryar Rogers (2008): [Online]:
ftp://ftp.sei.cmu.edu/pub/documents/08.reports/08thpdf

4. Amer Aljaedi , Dale Lindskog, Pavol Zavarsky, RonHR Fares Almari ,“Comparative Analysis of
Volatile Memory Forensics” IEEE International Corgace on Privacy, Security, Risk and Trust and
IEEE International Conference on Social ComputBagston, USA , pp 1253-1258 ,Oct. 2011.

5. (2011) Windows Dynamic-Link Libraries [Online]: http://msdn.microsoft.com/en

us/library/windows/desktop/ms682589(v=vs.85).aspx
6. (2011) The Dynamic-Link Library Search Order [@w]: http://msdn.microsoft.com/enus/
library/windows/desktop/ms682586(v=vs.85).aspx

7. Jeffrey Richter, Christophe Nasarre “DLL Advancesgthniques” , “Windows via C/C++ (softcover)”,
Fifth Edition, Microsoft Press,2011, ch 20 , pp &%5.

8. Skape, Jarkko Turkulainen (2004) Remote Librargdtipn [Online]. Available:
http://www.nologin.org/Downloads/Papers/remotedityrinjection.pdf

9. James Graham , Richard Howard, Ryan Olson (2011} “jection”, “Cyber Security Essentials”,
CRC Press, 2011, ch 4, pp 253- 259.

10. (2011) Using Load-Time Dynamic Linking (2011), [ve].:
http://msdn.microsoft.com/enus/library/ms684184(%-85).aspx

11. (2011) Using Run-Time Dynamic Linking , [Onlindittp://msdn.microsoft.com/enus/

International Conference on Computing, Communica8gstem and Informatics

Management (ICCCSIM)
Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

library/windows/desktop/ms686944(v=vs.85).aspx

(2011) CreateRemoteThread function, [Online]:
http://msdn.microsoft.com/enus/library/windows/degkms682437(v=vs.85).aspx

2011) DlIMain entry point [Online].
http://msdn.microsoft.com/enus/library/windowsktep/ms682583(v=vs.85).aspx Hale Ligh, Adair,
Michael Hale Ligh, Steven Adair, Blake HartsteiMatthew Richard “Working with DLL” “Malware
Analyst’'s Cookbook and DVD: Tools and Techniques feighting Malicious Code”, Wiley
Publishing, Inc 2011,ch 13, pp 487- 510.

Bill Blunden "Hooking Call Table”, “The Rootkit Aenal”, Wordware Publishing, Inc, 2009, ch 5, pp
246 . 255.

(2006) Volatility [Online]: https://www.volatilesstems.com/default/volatility#overview

(2011) IDA Pro, [Online] http://mwww.hex-rays.comdalucts/ida/index.shtml

Ulrich Bayer, Andreas Moser, Christopher Kruegéhgin Kirda(2006) [Online]. Available: Journal in
Computer Virology

Abhishek Singh, Baibhav Singh “Assembly Languadé&dentifying Malicious Reverse Engineering
Code”, (2009), Springer,2009, ch 1, pp 1-28.

Redline Mandiant [Online]: http://www.mandiant.cqmdducts/free_software/redline/

Nicolaou George, (2009) Win Vista DLL Injection (39 ,[Online]. Available:
http://www.insecure.in/papers/vista_dll_injectiodf.p

Mark E Russinovich, David A. Solomon, Alex lonestRrocesses, Threads, and Jobs” ,"Windows
Internals”, 5th Edition Microsoft Press, 2009, ¢lpp 320- 419.

Brendan Dolan Gavitt , “The VAD tree: A proceseesew of physical memory”, DFRWS, US , pp
s62- s64, 2007.

VirScan.org [Online]: http://r.virscan.org/bb9f698fB1c2c3c832ace29a966715

Clampi trojan [Online]. http://www.kernelmode.info

Win32.Scars trojan [Online]: http://contagiodumpgspot.com

Shylock trojan [Online]: http://contagiodump.blogsgom

StraceNT - A System Call Tracer for Windows [Onl]ire
http://www.intellectualheaven.com/default.asp?BHxiects&H=strace.htm

(2008) The WIN32 Memory Model, [Online]:
http://grayscaleresearch.org/new/pdfs/The%20WIN32Rk2mory%20Model.pdf

(2008) Reconstructing the Scene of the Crime, if@fl http://www.blackhat.com/presentations/bh-
usa-09/SILBERMAN/BHUSAO09-Silberman-MetasploitAutgpBAPER.pdf

Alex lonescu S“Processes, Threads, Fibers and Jobq2004), [Online]:
http://www.alexionescu.com/partl.pdf

James Shewmaker , “Analyzing DLL Injection” (200f)nline]:

International Conference on Computing, Communica8gstem and Informati
Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

http://www.scribd.com/rahul_agarwal 42/d/759839-Analyzing-DLL-Injectior-by-James-

Shewmaker2006
APPENDIX
C:\volatility 2.8>python vol.py -f "C:\Documents and Settings\test\Desktop\test,ymem" pssd
Volatile Systems Volatility Framework 2.1_alpha
Offset(P) Name PID PPID PDB Time created Time exiteq
AxA2161dad cmd. exe 748 564 ax@7e8@228 2811-11-83 @6: 52 A11-11-83 A6:5
@x021ad9fd System32.exe 120 1432 ©x@7c80180 2011-11-23 06:54:0 2011-11-03 @7:]
@xP23f2dad IEXPLORE.EXE 608 126 @x07ed0360 2011-11-93 06:54:138
@x0242d6a8 IEXPLORE.EXE 428 1952 Ox07c803cO 2011-11-93 06:54:53
------------------------------- SR = m oo s s oo oo s s s e e e
Figure 6: terminated Process on the memory imags

Name WinNth VAD

PACE_NOACCESS 0xl 0x0

PAGE_READONLY 0x2 0x1

PACE_EXECUTE 0x10 0x2

FAGE_EXECUTE_READ 0x20 0x3

PAGE_READWRITE x4 Oxd

PAGE_WRITECOPY 0x8 0x5

FPAGE_EXECUTE_READWRITE 0x40 0x6

PAGE_EXECUTE_WRITECOPY 0x80 07

Figure 7: Sample of Page Protection Translations [14]

@ 004ma21c AdjustTokenPrvieges ADVAPI32
800401220 OpenProcessToken ADVAPIZ2
B 004mzze FindResourced KERNEL32
E%UDMI'I 22C CreateRemateT hread KERMEL32
% 00401230 GetProchddiess KERNEL3Z
E%UEI&U] 234 GetModuleHandled KERMEL32
@'g 004m 236 WhiteProcesshemory KERNEL32
E% 004m 23C VitualdliocE KERNEL32
E%EIEIJU‘I 240 GetExtCodeProcess KERMEL3Z
B 004071 244 Skeep KERNEL32
B}E' 00401248 GelCunentPracess KERMEL32

Figure 8: Dumping Suspicious DLL is used to inject the Internet Explorer which used the create remote thread injection
method

International Conference on Computing, Communica8gstem and Informati

Management (ICCCSIM)
Venue : Hotel RAMADA , Bur Dubai, UAE
Date : 29 — 30 July, 2012

e ——yer
.rdata:10808430C ; char aExplorer_exe[]
rdata:1080430C aExplorer_exe db ‘explorer.exe’,f
taz 10804300

; DATA XREF: StartAddress+16ATo
; sub_18803078+9CTo .

-rdata:10884319 align &
.rdataz1080431C ; char String2[]
-rdata:1880431C String2 db ‘suchost.exe’,B8 ; DATA XREF: StartAddress:loc_10082E92To

Figure 9: Two processes is implied by (Shylock trojan) to ensure the existence and remain hidden

VAD node {@81d4efed Start 7e410000 End 7ed4adfff Tag Vadl
Flags: Imagelap

Commit Charge: 3 Protection: 7

ControlArea @81fad638 Segment 1719008

Dereference list: Flink 00000000, Blink 20000000

WaitingForDeletion Event:

2o0oesane

NumberOf SectionReferences: 1 NumbsrOfPfnReferences: 115
Numbe rOfMappedVieys : 29 NumberOfUserReferences: 30

Flags: Accessed, File, HadUserReference, Image

FileObject @81fad465¢ FileBuffer @ el6fefas , Name: \WINDOWS\system32\user32.dll
First prototype PTE: e1719048 Last contiguous PTE: fffffffc

Flags2: Inherit, LongVad, ReadOnly

File offset: 00020000

Figure 10: Trusted VAD entry

| Vadl
03d90000 - 0397
—

__// \‘\x—ﬂi
VadS |
e ||>4muou- oM —
—_— o ——
T —
Vadl VadS
0320000 - 0323t 03650000 - O3eBM
e
Wadl | i Vad
03af0000 - 03af74f | 03450000 - 03d53fif 03d=0000 - 03deTf | | 030000 - 042ttt
— |]
] \ « 1
Vadl | Vadl | | Vad Vadl Vad Vads. Vad
03h30000 - 03 b1ff | 03440000 - 03d4cffF | | 034000 - 0346THF | | D3e0000 - O3dc3FF | | 03470000 - 03dFTFF | | 0300000 - 030k | | 0420000 - D4300KFF
“a
Vadl Vadl Vad! | 7 Vadl Vads Vad Vads
3600000 - D360cfit | | 03620000 - 03ALAFF | | 03430000 - O3ccfF | | 0370000 - CIGB6HF | | 0300000 - 03db3F | | 03e10000 - 0364 | | 03490000 - D3ecHiF | | 04260000 - D420afif | | 04310000 - O
Vad
10000 - C3a80fH
|
1 =
Vad| Vad|
03880000 - D3aadft

0000 - 03al0iff

Figurel 1: Partial structure of VAD tree for the Internet Explorer which is available on memory image utility

