
International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

Comparative Analysis of Operational Malware Dynamic Link

Library (DLL) Injection Live Response vs. Memory Image

Ahmed Alasiri, Muteb Alzaidi , Dale Lindskog, Pavol Zavarsky, Ron Ruhl, Shafi Alassmi

Master of Information Systems Security Management

Concordia University College of Alberta

Edmonton, Canada

ahmed_alasiri@yahoo.ca, muteb.alzaidi@gmail.com, {pavol.zavarsky, dale.lindskog,

ron.ruhl}@concordia.ab.ca, alassmi.shafi@gmail.com,

Abstract :

One advanced tactic used to deliver a malware payload to a target operating system is Dynamic Link Library

(DLL) injection, which has the capabilities to bypass many security settings. In cases of compromise involving

DLL injection, volatile memory contains critical evidence, as these attacks typically leave no footprint on the

hard disk. In this paper, we describe the results of our comparative analysis between a particular live response

utility, Redline, and a particular memory image utility, Volatility, in cases where malware is using DLL

injection. We show that Redline is significantly limited, by comparison with Volatility, in its ability to collect

relevant evidence from memory. Based upon these observations, we draw general conclusions about the

advantages of memory image analysis over live response.

Keywords - DLL; Memory Image; Live Response; DLL Injection; Create Remote Thread

I. INTRODUCTION

This Dynamic Link Library (DLL) injection is an advanced malware payload delivery technique, used

by attackers against a target system, and which has the capability to bypass most security settings. For instance,

DLL injection can be employed to exploit a process like Internet Explorer, which can then be used as the

process gateway to circumvent a firewall. As a result of DLL injection’s security evasion capabilities, many

researchers have emphasized the importance of collecting evidence from volatile memory on the victim

machine, since there is usually no footprint left on the hard disk after an attack [2]. Volatile memory forensics

initiatives have recently gained prominence, as they constitute an effective tool in digital forensics analysis

[3][4]. ‘Live response’ is the term used to refer to the traditional technique for collecting evidence from volatile

memory. Utilities used during a live response normally rely on kernel system calls. A system call is a request of

a service from an application programming interface (API) to the operating system’s kernel However, it is well

known that system calls may be intercepted or compromised by malware, which of course will impact the

veracity of the data collected by these live response utilities.

Memory image analysis is another technique for collecting evidence from volatile memory. Since live

response utilities generally rely on system calls, memory image analysis is perhaps more dependable, because it

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

cannot easily be affected by malware in the kernel. In addition, a memory image may give us more vital

evidence, since it directly accesses the memory, rather than relying on the API to the operating system's kernel.

The potential for, and the problems associated with collecting volatile data after a DLL injection attack

are explored in this paper, through a comparison of the evidence collecting capabilities of a particular live

response utility, Redline, and a particular memory image analysis utility, Volatility, both of which are

commonly used in forensic investigations. This paper is organized into six sections. Section II describes how

DLLs function. Section III is an overview of DLL injection. Section IV describes our methodology and

experimental design, and also information concerning the tools used in the comparative analysis. Section V

contains our results and some discussion of them. Section VI is our conclusion and recommendations for future

investigations within this area of study.

II. DYNAMIC LINK LIBRARY (DLL) OVERVIEW

A Dynamic Link Library (DLL) is a module that contains functions which can be shared by a number

of applications [5]. DLLs are a means “to modularize applications so that their functionality can be updated and

reused more easily” [5]. A DLL is loaded once into memory address space, and can be accessed by any running

application. When several applications share the same module it reduces memory overhead “because although

each application will receive its own copy of the DLL data, the applications share the DLL code”[5].

Kernel32.dll, User32.dll, and GDI32.dll are the important DLLs on the Windows operating system. Kernel32.dll

is used to control memory, processes, and threads; User32.dll is used to control the user interface; GDI32.dll is

used to draw graphical images and display text [5][7].

The functions that DLLs contain fall into two categories: exported functions and internal functions.

Exported functions are functions that can be called by other modules as well as within the DLLs where they are

defined; whereas the internal functions are intended to be called only from within the DLLs where they are

defined [5].

There are two ways that an executable can dynamically link to a function exported by a DLL:

1) Load-time dynamic linking:

 A vital portion of the executable module is the “import section that lists all the DLL module names required

by this executable”[7]. Once the DLL and the executable modules are assembled, an application’s operation can

commence. Before the executable starts, the operating system loader will perform certain procedures. The loader

will develop a virtual address space for the new process and the executable module will be mapped to those new

spaces. The executable module’s import section will be parsed by the loader. The loader then pinpoints the

DLL module for every DLL name listed in the section and then maps that DLL into the process’ address space.

To simplify this process, the application’s code references the required DLL before it executes. The

DLL module can then share the functions and variables from another DLL that helps the executable to be fully

initialized on the system. [7][10].

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

2) Run-time dynamic linking:
At the point that the application is operating, the process may load the necessary DLL explicitly and

will then precisely link to the desired exported symbol. In fact, the thread that is contained in the

process can decide whether it wants to call a function within a DLL or not. Specifically, the thread can

“load the DLL into the process’ address space, get the virtual memory address of a function contained

within the DLL, and then call the function using this memory address”[7]. This can be accomplished

by requesting one of these functions, LoadLibrary() and LoadLibraryEx():

HMODULE

LoadLibrary(PCTSTR

pszDLLPathName);

HMODULE

LoadLibraryEx(PCTSTR

pszDLLPathName,

HANDLE

hFile,DWORD

dwFlags);

The LoadLibrary and LoadLibraryEx functions will assist in locating DLL files on the user’s system

using a particular search order and map the DLL’s file image into the calling process’ address space. The

virtual memory address where the file image is mapped is identified when the HMODULE value is returned

from both functions [7][6][11].

III. DLL INJECTION

Injection involves influencing the application’s behavior in memory in a way that the user did not

anticipate or intend. According to Skape et al, “DLL Injection is the process by which a dynamically linked

library is injected, or forcibly loaded, into a process’ address space” and it occurs after a program has been

executed [8][32].

There are two modes dynamic DLL injection, and each mode is performed by an attacker as a series of steps:

A. Remote Thread Injection

The mechanism of this mode of attack is to load the malicious DLL through the creation of a thread on

the target process, which is then used to call LoadLibrary. In this fashion, LoadLibrary is therefore used to load

the malicious DLL. As a result, the attacker must fabricate a new thread in the target’s process, as one cannot

easily control the threads in a process that one did not initially create [7] .In this way, by generating the thread,

the attacker gains control over the process. The CreateRemoteThread function on Windows operating systems

can be used to achieve this type of injection. Below is the declaration for the CreateRemoteThread function on

Windows [7][12].

HANDLE

CreateRemoteThread(

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

HANDLE

hProcess,

PSECURITY_ATTRIBUTES

psa,DWORD

dwStackSize,

PTHREAD_START_ROUTINE

pfnStartAddr,PVOID

pvParam,

DWORD

fdwCreate,PDWORD

pdwThreadId);

Fig.1 shows, in simplified form, the method that can be employed by malware to inject the malicious

DLL into other processes. First, the malware will open the process using the OpenProcess function, which

returns an open handle that is responsible for checking the process privileges; this handle is used to grant the

right access to the target process. Secondly, malware will allocate memory using the VirtualAllocEx function in

order to specify the correct path for the malicious DLL. Thirdly, it will write the DLL path using the

WriteProcessMemory function. Once the path has been created, the malware will initiate the

CreateRemoteThread function to create a thread on the target process, instructing the thread to load the

malicious DLL remotely. As a result, the malware will have attached the malicious DLLs on the target process,

and is able to compromise critical data on the victim’s machine. As long as the target process is still running,

the attacker will have back-door access to it [9].

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

B. Windows Registry DLL Injection:

Most malware in fact uses this method and it can be executed through the registry key AppInit_DLLs .

According to Graham et al, “In Windows NT4, 2000, and XP, AppInit_DLLs is a registry key commonly used

to inject DLLs into processes”[9]. The AppInit_DLLs key may be given a value corresponding to a single DLL

or to a list of DLLs, and it is located in the registry thus [9] :

HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVersion\Windows\AppInit_DLLs

 When a new process has the User32.dll library mapped, it receives a DLL_PROCESS_ATTACH

notification [7]. When the notification is processed, the User32.dll will call LoadLibrary for each DLL specified

in this key. The entire library is loaded, and the library’s associated DllMain function is called with fdwReason

set to DLL_PROCESS_ATTACH to load the library. The fdwReason parameter can be set to one of the values

shown in table 1 [7][13].

To simplify the procedure, malware usually modifies the AppInit_DLLs registry key by injecting the

malicious DLLs into its list. user32.dll, which is responsible for the Windows interface, loads DLLs on

AppInit_DLLs during DLL_PROCESS_ATTACH. If the injection succeeds, the applications will call user32.dll

in order to load the AppInit_DLLs list, which will include the malicious DLLs. However, this type of attack is

restricted only to applications that interact with AppInit_DLLs [10][14].

IV. REVIEW OF THE LITERATURE

Skape , J Turkulainen described the DLL injection method on two different operating systems, namely

Linux and Windows, including such details as On-Disk Library Injection and In-Memory Library Injection,

which are two ways of injecting the library remotely. On-Disk Library Injection, as could be inferred from its

title, indicates “the library is written to disk and then loaded into the processes address space” [8]. In contrast, In

Memory Library Injection loads the library into a running process in memory without writing it to the disk.

Skape et al concluded that DLL injection makes it possible for malware developers to write extremely advanced

worms and viruses that are capable of executing their payload under the radar of present day virus scanners [8].

S. Daly discussed the inability of current countermeasures to detect or prevent DLL injection. He

demonstrated a method by which attackers can create malware which is difficult to detect, even by the latest

antivirus products, thereby allowing data to be leaked while bypassing firewalls. Daly also examined the

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

effectiveness of modern anti-virus products such as Viper, Comodo and Kaspersky to detect DLL injection

techniques. The findings of this noteworthy research can be used by anti-virus developers in order to enhance

their applications’ ability to deal with DLL injection [1].

C. Waits et. al., in a paper entitled “Computer Forensics: Results of Live response Inquiry vs. Memory

Image Analysis” compared these two forensics techniques by comparing the evidence collected with various

'live response' tools, such as pslist, ListDLLs, FPort, PTFinder, with the evidence collected using the memory

image analysis tool, Volatility. The paper illustrates the benefits and drawbacks of both techniques, but

concludes that memory image analysis is generally speaking more useful [3].

Work carried out by A. Aljaedi et al. shows that one of the drawbacks of live response is the

overwriting of critical evidence. Additionally, this research shows that memory image analysis can be leveraged

as an alternative in mitigating the risk of losing volatile evidence such as terminated and cashed processes,

which are generally missed during the live response. He conducted several experiments to emphasize the

importance of using a memory image instead of the actual RAM. This research has also demonstrated that

dumping the memory image using advanced tools can extract critical data such as passwords and credit card

details even though they are encrypted on disk [4].

V. METHODOLOGY

Our experiments relied upon five machines; the host machine was running on a Windows 7

Professional platform with 4 GB RAM, equipped with Intel (R) Core (TM) 2 CPU T7250 2.00GHz and hosting

four other virtual machines; three virtual machines were running Windows XPSP3 targeted by DLL injections,

while the fourth machine, running Windows XP SP3, was the machine on which we investigated the memory

image.

Our experimentation involved three cases, corresponding to the three randomly chosen DLL injection

exploits. In each case, we launched one of the malware against the victim machines running Windows XPSP3.

At this point, the memory image was taken from the victim machine via a virtual machine snapshot. The

memory image was investigated using Volatility, including the use of several plug-ins helpful when

investigating DLL injection. At the same time, the live response investigation was conducted on the victim

machines using Redline to observe malicious DLLs and score the “riskiness of DLLs based on how many

process load them”[20]. The results of these two investigations (live response using Redline and memory image

analysis using Volatility) were then compared in terms of the evidence gained from both techniques. The

investigation process for both techniques was repeated three times in order to observe any dynamic change that

would occur, as well as increase the reliability of the analysis. Table 2 below illustrates that our research was

conducted as three separate cases.

As noted, the experimental methods were identical in each case, with the exception of the specific

malware samples.

International Conference on Computing, Communication System and Informatics

Venue : Hotel RAMADA , Bur Dubai, UAE

A. Memory Image Analysis

Until very recently, forensic investigation of raw memory consisted of little more than string searches

on a memory dump. Investigators now have much more powerf

memory, including tools and methods for malware reverse

experiments we relied on Volatility Framework and Interactive Disassembler Professional [9] for these

purposes. Volatility Framework is an open collection of tools, and supports in

injection using various plug-ins, such as imageinfo, malfind, psscan, dlllist, procmemdump, ldrmodules and

Vadinfo. There are many alternate plug

Disassembler Professional (IDA PRO) is a dissembler and debugger used to analyze malware code

the most commonly used software to disassemble binary code, in order to extract asse

machine level language [19].

B. Live response Analysis

Live incident response entails gathering forensic evidence from a machine while it is still operating.

Traditionally, this is the first (and sometimes the lone) step in a forens

returning vital data, live response is imperfect, since the forensic investigator must rely on the execution

environment of the system being investigated. In a typical live incident response, the investigator will

into the infected computer a trusted set of volatile data collection utilities, and will direct the output from their

execution to an external USB or network drive, or live

matter how the live incident response is carried out, the responder necessarily relies on the suspect environment.

Redline is an example of a tool that can be employed in live response. It is designed to detect malware

generally, and is capable of investigating DLL injection

a system according to its perceived level of risk [15][20].

VI. DISCUSSION AND RESULTS

This section discusses the results of our experiments; the following observations are noteworthy. First,

in all three cases DLL injection was detected by both Redline and Volatility. However, there were number of

injection processes involved in the cases, but unrelated to the malware, due to the fact that injection techniques

can be used by any application. Som

Workstation uses this technique to allow copy and paste features between the host and guest machines.

three cases (clampi, Win32.Scar, shylook) injected the malicious DLLs in

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

Until very recently, forensic investigation of raw memory consisted of little more than string searches

memory dump. Investigators now have much more powerful tools and methods for the investigation of

including tools and methods for malware reverse-engineering tasks and malware detection. In our

we relied on Volatility Framework and Interactive Disassembler Professional [9] for these

Volatility Framework is an open collection of tools, and supports in-depth investigation of DLL

ins, such as imageinfo, malfind, psscan, dlllist, procmemdump, ldrmodules and

many alternate plug-ins that can further assist investigation and analysis [16].

Disassembler Professional (IDA PRO) is a dissembler and debugger used to analyze malware code

the most commonly used software to disassemble binary code, in order to extract assembly instructions

Live incident response entails gathering forensic evidence from a machine while it is still operating.

Traditionally, this is the first (and sometimes the lone) step in a forensic investigation. Though it is capable of

returning vital data, live response is imperfect, since the forensic investigator must rely on the execution

environment of the system being investigated. In a typical live incident response, the investigator will

into the infected computer a trusted set of volatile data collection utilities, and will direct the output from their

execution to an external USB or network drive, or live-stream the data over an encrypted network channel. No

incident response is carried out, the responder necessarily relies on the suspect environment.

Redline is an example of a tool that can be employed in live response. It is designed to detect malware

generally, and is capable of investigating DLL injection specifically. Redline also rates every running process on

a system according to its perceived level of risk [15][20].

VI. DISCUSSION AND RESULTS

This section discusses the results of our experiments; the following observations are noteworthy. First,

three cases DLL injection was detected by both Redline and Volatility. However, there were number of

injection processes involved in the cases, but unrelated to the malware, due to the fact that injection techniques

can be used by any application. Some applications make legitimate use of DLL injection; for example, VMware

Workstation uses this technique to allow copy and paste features between the host and guest machines.

three cases (clampi, Win32.Scar, shylook) injected the malicious DLLs into particular processes such

International Conference on Computing, Communication System and Informatics

Until very recently, forensic investigation of raw memory consisted of little more than string searches

ethods for the investigation of

engineering tasks and malware detection. In our

we relied on Volatility Framework and Interactive Disassembler Professional [9] for these

depth investigation of DLL

ins, such as imageinfo, malfind, psscan, dlllist, procmemdump, ldrmodules and

can further assist investigation and analysis [16]. Interactive

Disassembler Professional (IDA PRO) is a dissembler and debugger used to analyze malware code [17]. It is

mbly instructions from

Live incident response entails gathering forensic evidence from a machine while it is still operating.

ic investigation. Though it is capable of

returning vital data, live response is imperfect, since the forensic investigator must rely on the execution

environment of the system being investigated. In a typical live incident response, the investigator will introduce

into the infected computer a trusted set of volatile data collection utilities, and will direct the output from their

stream the data over an encrypted network channel. No

incident response is carried out, the responder necessarily relies on the suspect environment.

Redline is an example of a tool that can be employed in live response. It is designed to detect malware

specifically. Redline also rates every running process on

This section discusses the results of our experiments; the following observations are noteworthy. First,

three cases DLL injection was detected by both Redline and Volatility. However, there were number of

injection processes involved in the cases, but unrelated to the malware, due to the fact that injection techniques

e applications make legitimate use of DLL injection; for example, VMware

Workstation uses this technique to allow copy and paste features between the host and guest machines. Second,

to particular processes such as Internet

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

Explorer and Explorer.exe during run time dynamic linking. Additionally, these three trojans waited until the

injection process succeeded, and then terminated themselves in order to hide their activities. Redline was not

able to detect terminated processes, whereas this information was available by memory image analysis using

Volatility. This difference is explained by the fact that information about terminated processes is not mapped to

the kernel mode, but rather, is found in the unallocated data in memory (RAM). Since Redline relies on system

calls to interact with the kernel as a means to gain access to memory, it has no method by which to access this

data, whereas a memory image tool like Volatility can bypass this and directly access this unallocated data.

Detecting terminated processes can simplify the investigation by providing valuable information such

as the target process, name of the malware on the victim machine, the registry key used to maintain itself, and

the point of origin on the system. It must be acknowledged, however, that in our experiments memory image

analysis was unable to provide information about these terminated process in the second and third images,

acquired further subsequent to exploitation, and this underscores the fact that a live response can overwrite

critical data, as demonstrated e.g. by A. Aljaedi et al.

Third, the list of loaded DLLs for each process was obtained during both live response and memory

image analysis; however, the hidden/unlinked DLLs were not obtainable during the live response. Fig. 2 shows

the functions which were requested by Redline, in order to show the listed DLLs. Figure 2.

Figure 2. functions requested by the live response utility

Two of the trojans (Clampi, Win32.Scar) used in our experiment hid their malicious DLLs by remotely

loading them, without calling the LoadLibrary or LoadLibraryEx functions on the host system. This is known as

reflective injection which means “the reflective loader does not register the loaded DLL within the process list

of loaded modules”[9]. Consequently, no entry was created in the Process Environment Block (PEB) that used

by API calls to retrieve this information of the target process. Since no entry was created in PEB, Redline was

unable to detect the hidden /unlinked DLLs.

The results were quite different when using Volatility’s virtual address descriptor (vadinfo) plug-in,

which successfully tracked these DLLs. A Virtual Address Descriptor (VAD) shows the start and end address

for each process, along with the corresponding DLL file. The VAD is “used by the Windows memory manager

to describe memory ranges used by a process as they are allocated” [23]. When the process allocates virtual

memory space using the VirutalAlloc function, the VAD creates entry points for each DLL loaded by the

process, as illustrated below in Fig. 3 [23].

International Conference on Computing, Communication System and Informatics

Venue : Hotel RAMADA , Bur Dubai, UAE

The first row represents the address of the VAD entry in kernel memory, while the second row is

arepresentation of the virtual addresses in t

name of a memory-mapped file (ntdll.dll). This information is only available if the tag is type “Vad” or “Vadl”

[14]. The DLLs can be found in the virtual memory of the host process even

PEB.

We used Volatility’s VAD plug

information for each running process. Memory Manager Virtual Ad

significant part of the EPROCESS and hold information about the virtual start and end address and mapped

DLL. [31]

Fig. 4. is an example of a suspicious VAD entry that we found in our investigation and, although it

does not have a corresponding file map

(MM_EXECUTE_READWRITE) on the target process. The vaddump command is able to reconstruct the

entry and dump it to disk for analysis[16].

Our successful identification of hidden /

guided our investigation of the memory image. First, we were able to extract significant information about the

malware and what actions were performed on the victim machine. Second, we were able to

used by the malware to evade firewalls. For example, the Calmpi trojan used Internet Explorer, and the Shylock

trojan used Explore.exe. Finally, we discovered the Registry key value that was created by the all malware in

order to position itself on a system and ensure its execution. We also noticed that two troj

Win32.Scar) communicate with their own malicious server. For example, the Win32.Scar trojan established a

session with a server named prettylikeher.com, in order to

Fig 5.

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

The first row represents the address of the VAD entry in kernel memory, while the second row is

arepresentation of the virtual addresses in the process’s memory space [14]. Finally, the third row represents the

mapped file (ntdll.dll). This information is only available if the tag is type “Vad” or “Vadl”

[14]. The DLLs can be found in the virtual memory of the host process even though they do not exist in the

We used Volatility’s VAD plug-in to access the EPROCESS structure that contains kernel mode

each running process. Memory Manager Virtual Address Descriptors (MMVAD) are a

S and hold information about the virtual start and end address and mapped

Figure 4. Suspicious VAD entry

Fig. 4. is an example of a suspicious VAD entry that we found in our investigation and, although it

not have a corresponding file mapped to it, the protection nonetheless indicates that there was execution

(MM_EXECUTE_READWRITE) on the target process. The vaddump command is able to reconstruct the

entry and dump it to disk for analysis[16].

Our successful identification of hidden / unlinked DLLs that were used to inject processes further

investigation of the memory image. First, we were able to extract significant information about the

what actions were performed on the victim machine. Second, we were able to

malware to evade firewalls. For example, the Calmpi trojan used Internet Explorer, and the Shylock

Explore.exe. Finally, we discovered the Registry key value that was created by the all malware in

on itself on a system and ensure its execution. We also noticed that two troj

communicate with their own malicious server. For example, the Win32.Scar trojan established a

server named prettylikeher.com, in order to upload information from the victim host, as shown in

International Conference on Computing, Communication System and Informatics

The first row represents the address of the VAD entry in kernel memory, while the second row is

he process’s memory space [14]. Finally, the third row represents the

mapped file (ntdll.dll). This information is only available if the tag is type “Vad” or “Vadl”

though they do not exist in the

in to access the EPROCESS structure that contains kernel mode

dress Descriptors (MMVAD) are a

S and hold information about the virtual start and end address and mapped

Fig. 4. is an example of a suspicious VAD entry that we found in our investigation and, although it

ped to it, the protection nonetheless indicates that there was execution

(MM_EXECUTE_READWRITE) on the target process. The vaddump command is able to reconstruct the VAD

unlinked DLLs that were used to inject processes further

investigation of the memory image. First, we were able to extract significant information about the

what actions were performed on the victim machine. Second, we were able to discover methods

malware to evade firewalls. For example, the Calmpi trojan used Internet Explorer, and the Shylock

Explore.exe. Finally, we discovered the Registry key value that was created by the all malware in

on itself on a system and ensure its execution. We also noticed that two trojans (Clampi,

communicate with their own malicious server. For example, the Win32.Scar trojan established a

upload information from the victim host, as shown in

International Conference on Computing, Communication System and Informatics

Venue : Hotel RAMADA , Bur Dubai, UAE

Table 3 depicts in brief the data we observed and investigated, and whether that data was discovered

during our live response using Redline, or during our memory image analysis using Volatil

symbol P�’ on the table represents successful detection, whereas an ‘x’ symbol represents the failure. The

graph also therefore depicts concisely the final results of our comparisons between Redline and Volatility. It is

clear that the live response utility, Redline, is less effective than the memory image analysis utility, Volatility.

As noted above, these results are substantially explained by the fact that malware can be, and in our cases often

were designed cleverly enough to n

hide the malicious DLL from detection methods that rely on system calls.

VII. CONCLUSION

It is a continuous struggle to protect our systems and networks from malware, and researchers

persist in uncovering new and enhancing existing methods of gathering evidence. An important component of

this is the examination of volatile memory.

A partial answer to the problems faced by traditional live response forensics, when presented with

injection attacks but also generally, is to ensure that procedures are in place for the timely and forensically

sound acquisition of memory images of victim hosts. In considering both the role that DLL injection plays in

deceiving the system operator, as well as the method that DLL injection uses to carry out its attack, it is

necessary to consider combined approaches to properly analyze the nature and sc

live response can be considered an initial step towards diagnos

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

Table 3 depicts in brief the data we observed and investigated, and whether that data was discovered

our live response using Redline, or during our memory image analysis using Volatil

’ on the table represents successful detection, whereas an ‘x’ symbol represents the failure. The

therefore depicts concisely the final results of our comparisons between Redline and Volatility. It is

the live response utility, Redline, is less effective than the memory image analysis utility, Volatility.

above, these results are substantially explained by the fact that malware can be, and in our cases often

designed cleverly enough to not load the DLL via the LoadLibrary or LoadLibraryEx function, and hence

the malicious DLL from detection methods that rely on system calls.

It is a continuous struggle to protect our systems and networks from malware, and researchers

uncovering new and enhancing existing methods of gathering evidence. An important component of

examination of volatile memory.

A partial answer to the problems faced by traditional live response forensics, when presented with

injection attacks but also generally, is to ensure that procedures are in place for the timely and forensically

acquisition of memory images of victim hosts. In considering both the role that DLL injection plays in

r, as well as the method that DLL injection uses to carry out its attack, it is

consider combined approaches to properly analyze the nature and scope of the attack. In this way,

can be considered an initial step towards diagnosing the range of the at

International Conference on Computing, Communication System and Informatics

Table 3 depicts in brief the data we observed and investigated, and whether that data was discovered

our live response using Redline, or during our memory image analysis using Volatility, or both. A check

’ on the table represents successful detection, whereas an ‘x’ symbol represents the failure. The

therefore depicts concisely the final results of our comparisons between Redline and Volatility. It is

the live response utility, Redline, is less effective than the memory image analysis utility, Volatility.

above, these results are substantially explained by the fact that malware can be, and in our cases often

ot load the DLL via the LoadLibrary or LoadLibraryEx function, and hence

It is a continuous struggle to protect our systems and networks from malware, and researchers must

uncovering new and enhancing existing methods of gathering evidence. An important component of

A partial answer to the problems faced by traditional live response forensics, when presented with DLL

injection attacks but also generally, is to ensure that procedures are in place for the timely and forensically

acquisition of memory images of victim hosts. In considering both the role that DLL injection plays in

r, as well as the method that DLL injection uses to carry out its attack, it is

ope of the attack. In this way,

ing the range of the attack and to help

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

investigators to determine further courses of action. In situations where live response is unable to resolve the

conflict, a more complete analysis of the machine’s operating state must be taken. Therefore, memory image

analysis has to be performed as well. By performing these two approaches in concert, the digital forensic

examination will be more reliable.

ACKNOWLEDGMENT

I am heartily thankful to my Country Saudi Arabia for offering my this opportunity, and my supervisor,

Pavol Zavarsky, Dale Lindskog, Ron Ruhl, whose encouragement, guidance and support from the initial to the

final level enabled me to develop an understanding of the subject. I also wanted to thank my family who

inspired, encouraged and fully supported me for every trial that comes in my way, and In giving me not just

financial, but morally and spiritually. Lastly, I offer my regards and blessings to all of those who supported me

in any respect during the completion of the project, Sami Alshaheri, Steve McGowan, Eyad Bogari, Scott

Mcintyre, and Des Fernando.

REFERENCES

1. Scott Daly, “Preventing Malicious Dll Library Injection,” M.S. thesis, Dept. Comput and Eng

Systems., Abertay Univ., Dundee, UK, 2011.

2. Brian D. Carrier, Joe Grand (2004, March). Hardware – Based Memory Acquisition Procedure for

Digital Investigations. [Online]. Available:http://www.digital-evidence.org/papers/tribble-preprint.pdf

3. Cal Waits, Joseph Ayo Akinyele , Richard Nolan, Larry Rogers (2008): [Online]:

ftp://ftp.sei.cmu.edu/pub/documents/08.reports/08tn017.pdf

4. Amer Aljaedi , Dale Lindskog, Pavol Zavarsky, Ron Ruhl, Fares Almari ,“Comparative Analysis of

Volatile Memory Forensics” IEEE International Conference on Privacy, Security, Risk and Trust and

IEEE International Conference on Social Computing, Boston, USA , pp 1253-1258 ,Oct. 2011.

5. (2011) Windows Dynamic-Link Libraries [Online]: http://msdn.microsoft.com/en

us/library/windows/desktop/ms682589(v=vs.85).aspx

6. (2011) The Dynamic-Link Library Search Order [Online]: http://msdn.microsoft.com/enus/

library/windows/desktop/ms682586(v=vs.85).aspx

7. Jeffrey Richter, Christophe Nasarre “DLL Advanced Techniques” , “Windows via C/C++ (softcover)”,

Fifth Edition, Microsoft Press,2011, ch 20 , pp 553-595.

8. Skape, Jarkko Turkulainen (2004) Remote Library Injection [Online]. Available:

http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf

9. James Graham , Richard Howard, Ryan Olson (2011) “DLL Injection”, “Cyber Security Essentials”,

CRC Press, 2011 , ch 4, pp 253- 259.

10. (2011) Using Load-Time Dynamic Linking (2011), [Online].:

http://msdn.microsoft.com/enus/library/ms684184(v=VS.85).aspx

11. (2011) Using Run-Time Dynamic Linking , [Online]. http://msdn.microsoft.com/enus/

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

library/windows/desktop/ms686944(v=vs.85).aspx

12. (2011) CreateRemoteThread function, [Online]:

http://msdn.microsoft.com/enus/library/windows/desktop/ms682437(v=vs.85).aspx

13. 2011) DllMain entry point [Online].

 http://msdn.microsoft.com/enus/library/windows/desktop/ms682583(v=vs.85).aspx Hale Ligh, Adair,

14. Michael Hale Ligh, Steven Adair, Blake Hartstein , Matthew Richard “Working with DLL” “Malware

Analyst’s Cookbook and DVD: Tools and Techniques for Fighting Malicious Code”, Wiley

Publishing, Inc 2011,ch 13, pp 487- 510.

15. Bill Blunden ”Hooking Call Table”, “The Rootkit Arsenal”, Wordware Publishing, Inc, 2009, ch 5, pp

246 . 255.

16. (2006) Volatility [Online]: https://www.volatilesystems.com/default/volatility#overview

17. (2011) IDA Pro, [Online] http://www.hex-rays.com/products/ida/index.shtml

18. Ulrich Bayer, Andreas Moser, Christopher Kruegel , Engin Kirda(2006) [Online]. Available: Journal in

Computer Virology

19. Abhishek Singh, Baibhav Singh “Assembly Language” ,”Identifying Malicious Reverse Engineering

Code”, (2009), Springer,2009, ch 1 , pp 1-28.

20. Redline Mandiant [Online]: http://www.mandiant.com/products/free_software/redline/

21. Nicolaou George, (2009) Win Vista DLL Injection (32bit) ,[Online]. Available:

http://www.insecure.in/papers/vista_dll_injection.pdf

22. Mark E Russinovich, David A. Solomon, Alex Ionescu “Processes, Threads, and Jobs” ,”Windows

Internals”, 5th Edition Microsoft Press, 2009, ch 5, pp 320- 419.

23. Brendan Dolan Gavitt , “The VAD tree: A process-eye view of physical memory”, DFRWS, US , pp

s62- s64, 2007.

24. VirScan.org [Online]: http://r.virscan.org/bb9f65800c81c2c3c832ace29a966715

25. Clampi trojan [Online]. http://www.kernelmode.info

26. Win32.Scars trojan [Online]: http://contagiodump.blogspot.com

27. Shylock trojan [Online]: http://contagiodump.blogspot.com

28. StraceNT - A System Call Tracer for Windows [Online]. at

http://www.intellectualheaven.com/default.asp?BH=projects&H=strace.htm

29. (2008) The WIN32 Memory Model, [Online]:

http://grayscaleresearch.org/new/pdfs/The%20WIN32%20Memory%20Model.pdf

30. (2008) Reconstructing the Scene of the Crime, [Online]: http://www.blackhat.com/presentations/bh-

usa-09/SILBERMAN/BHUSA09-Silberman-MetasploitAutopsy-PAPER.pdf

31. Alex Ionescu ,“Processes, Threads, Fibers and Jobs” (2004), [Online]:

http://www.alexionescu.com/part1.pdf

32. James Shewmaker , “Analyzing DLL Injection” (2006), [Online]:

International Conference on Computing, Communication System and Informatics

Venue : Hotel RAMADA , Bur Dubai, UAE

http://www.scribd.com/rahul_agarwal_42/d/75989904

Shewmaker- 2006

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

http://www.scribd.com/rahul_agarwal_42/d/75989904-Analyzing-DLL-Injection

International Conference on Computing, Communication System and Informatics

Injection-by-James-

International Conference on Computing, Communication System and Informatics

Venue : Hotel RAMADA , Bur Dubai, UAE

International Conference on Computing, Communication System and Informatics

Management (ICCCSIM)

Venue : Hotel RAMADA , Bur Dubai, UAE

Date : 29 – 30 July, 2012

International Conference on Computing, Communication System and Informatics

