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Abstract

Acute Ischemic Stroke (AIS), a devastating cerebrovascular disorder, is one of the

leading causes of disability and mortality worldwide. It occurs when the blood supply

to a part of the brain is interrupted, resulting in the deprivation of oxygen and nu-

trients, leading to neuronal damage and functional impairment. With its widespread

occurrence and significant impact on individuals and society, ischemic stroke substan-

tially burdens healthcare systems. The World Health Organization (WHO) estimates

that stroke affects approximately 13.7 million individuals worldwide annually, of which

nearly 85% are attributed to ischemic strokes. Moreover, stroke-related deaths ac-

count for about 11% of global deaths, making it a critical public health concern.

Timely and accurate diagnosis and a comprehensive assessment of ischemic stroke

are crucial for guiding appropriate treatment strategies and improving patient out-

comes. Despite their efficacy, conventional diagnostic methods often depend on sub-

jective interpretation and may not fully capture the dynamic nature of stroke progres-

sion. Therefore, there is a growing need for advanced machine learning techniques to

aid in the analysis of 4D dynamic brain images, enabling precise diagnosis and as-

sessment of AIS. Computed Tomography Perfusion (CTP) imaging is the most com-

mon technique in assessing ischemic stroke. It provides information about cerebral

hemodynamics, tissue perfusion, and blood volume. Utilizing the swift acquisition

of sequential CT images immediately after the administration of a contrast agent,

CTP serves as a valuable technique for accurately identifying at-risk (penumbra) and

already damaged (core) viable tissue in an AIS patient’s brain. Quantitative mea-

surements derived from CTP, such as Cerebral Blood Flow (CBF) and Mean Transit
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Time (MTT), aid in estimating AIS outcomes and guiding treatment decisions.

This thesis aims to explore and develop novel machine-learning methods for ana-

lyzing 4D brain images to enhance AIS diagnosis and assessment, ultimately improv-

ing patient care and outcomes. The main objective is to develop an automatic AIS

baseline\follow-up lesion segmentation\prediction. By utilizing advanced machine

learning techniques and analyzing medical imaging data, accurate identification and

assessment of ischemic lesions can be achieved. This information guides effective

treatment decisions, determines intervention timing, and predicts outcomes, while

also tailoring treatment plans and optimizing resource allocation. Additionally, it

aids in clinical trials by identifying suitable patients for targeted interventions, thus

enhancing stroke management and benefiting both patients and healthcare systems.
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Preface

The most important chapters of this thesis are from papers that have been published

or are currently undergoing review process. The initial two papers [1] and [2], pre-

sented in chapters 2 and 3, consist of literature reviews of prior research. Paper [3] in

chapter 4 was conducted to explore voxel-level classification through the utilization

of probabilistic models. Lastly, in chapter 5, paper [4] focuses on addressing the AIS

detection problem using temporal and generative models, while paper [5] in chap-

ter 6 expands upon the findings of paper [4] by incorporating LSTM and generative

techniques to optimize CTP map generation.
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Chapter 1

Introduction

Stroke is a debilitating neurological condition that occurs when blood flow is disrupted

to a specific part of the brain, leading to the deprivation of oxygen and essential

nutrients, and irreversible tissue damage (infarction) [1]. There are two primary

types of stroke: ischemic stroke (IS) and hemorrhagic stroke. IS occurs when a

blood clot or plaque buildup obstructs a blood vessel supplying oxygen to the brain,

leading to a lack of blood flow and subsequent damage. Ischemic stroke can be

further classified according to the pathophysiology of the occlusion as thrombotic

strokes (caused by a clot forming in a blood vessel within the brain) or embolic

strokes (caused by a clot traveling from another part of the body and lodging in a

brain artery) [2]. Hemorrhagic stroke, on the other hand, is caused by the rupture of a

blood vessel within the brain, resulting in bleeding and damage to surrounding tissue.

Hemorrhagic strokes account for about 13% of all strokes. They can be categorized as

intracerebral hemorrhages (bleeding within the brain) or subarachnoid hemorrhages

(bleeding in the space between the brain and its protective covering). Prompt medical

attention is crucial for both types of strokes to minimize long-term effects and improve

outcomes [3].
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IS is the most common type of stroke that accounts for approximately 87% of

all strokes [4]. One of the primary causes of IS is the development of a blood clot

within a blood vessel supplying the brain. This clot formation can be attributed to

atherosclerosis, a condition characterized by the buildup of fatty deposits and plaque

in the arteries. The presence of these plaques narrows the arteries, reducing blood

flow and increasing the risk of clot formation [5]. Other factors contributing to IS

include atrial fibrillation, a heart rhythm disorder that can lead to blood clots in the

heart, and certain medical conditions such as high blood pressure, diabetes, and high

cholesterol levels [6].

The outcomes of stroke can vary depending on the severity and location of the

affected brain tissue [7]. Common consequences include motor impairment, speech

and language difficulties, cognitive deficits, and sensory disturbances. In severe cases,

stroke can result in long-term disability, significantly impacting the quality of life

for individuals affected by the condition [8]. The importance of early detection,

prompt medical intervention, and rehabilitation cannot be overstated to minimize

the long-term effects of stroke. Acting quickly allows timely interventions, such as

clot-dissolving medications and endovascular procedures, to restore blood flow and

minimize brain damage. Early diagnosis helps identify underlying causes and risk

factors, enabling targeted preventive measures. It also ensures the efficient allocation

of healthcare resources, including specialized stroke units and rehabilitation services,

for optimal patient outcomes and improved quality of life [9]. Medical research and

technological advances have paved the way for potential treatments and interven-

tions to improve the outcomes of patients with ischemic stroke. [10]. The primary
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goal of acute management (ie. within the first 24 hours) is to restore blood flow

(ie. reperfuse) to the affected brain area before there has been irreversible tissue

damage. Thrombolytic therapy, involving the administration of clot-dissolving med-

ications, and mechanical thrombectomy, a procedure to physically remove the clot,

have shown positive results in reducing stroke related disability and improving func-

tional outcomes [11]. Furthermore, ongoing research is focused on neuroprotective

strategies to minimize brain damage, as well as rehabilitation techniques to enhance

recovery and functional outcomes [12].

1.1 Medical Imaging in Acute Ischemic Stroke (AIS)

Assessment

Medical imaging plays a crucial role in the assessment and management of AIS. Rapid

and accurate assessment of the stroke’s extent and location is vital for determining

appropriate treatment strategies and predicting the outcome for the patient. Medical

imaging techniques have significantly advanced our ability to evaluate AIS and guide

clinical decisions [13].

The utilization of medical imaging for assessing the outcomes of AIS can be traced

back to the advancements made in different imaging modalities. For example:

• Computed Tomography (CT): CT scanning was the first widely available imag-

ing technique for stroke assessment. It uses X-rays to create detailed cross-

sectional images of the brain. In the early stages of a stroke, CT scans can

quickly detect bleeding or rule out other conditions that may mimic stroke

symptoms. However, CT has limited sensitivity for detecting early ischemic
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changes, particularly within the first few hours after symptom onset [14].

• Diffusion-Weighted Magnetic Resonance Imaging (DWI-MRI): MRI revolution-

ized stroke imaging by providing excellent soft tissue contrast and greater sen-

sitivity for detecting AIS changes. DWI-MRI, a specific sequence of MRI, is

highly sensitive in detecting early changes in brain tissue affected by stroke. It

measures the movement of water molecules in the brain and can identify regions

of restricted diffusion, indicating areas of ischemia. DWI-MRI can accurately

detect AIS lesions within minutes to hours of symptom onset [15].

• Perfusion-Weighted Imaging (PWI): PWI is an MRI technique that assesses

cerebral blood flow and helps evaluate the extent of tissue at risk of infarction.

By injecting a contrast agent and tracking its passage through the brain, PWI

provides information about the blood flow patterns and helps identify areas

of hypoperfusion. Combining DWI-MRI with PWI enables the estimation of

the AIS core (irreversibly damaged tissue) and the penumbra (at-risk tissue),

crucial for treatment decision-making [16].

• CT Angiography (CTA) and Magnetic Resonance Angiography (MRA): CTA

and MRA are non-invasive imaging techniques used to visualize the blood vessels

supplying the brain. They provide detailed information about vessel occlusions,

stenosis, and collateral circulation. These techniques are essential for determin-

ing patients’ eligibility for endovascular thrombectomy, which removes the clot

causing the stroke [17].

• CT Perfusion (CTP): CTP combines CT scanning with the injection of contrast

4



agents to evaluate regional cerebral blood flow, blood volume, and mean transit

time. It provides information about tissue viability and can assist in identifying

salvageable brain tissue [18].

Although MRI has more ability to reveal the damaged brain region, CTP is often

preferred for AIS assessment in time-sensitive scenarios due to its ability to provide

real-time information about blood flow to the brain. Its rapid acquisition time and

sensitivity to blood products make distinguishing between ischemic and hemorrhagic

strokes valuable. Moreover, CTP can help determine the extent of the AIS penumbra,

which refers to potentially salvageable brain tissue surrounding the core infarct area.

Identifying the penumbra is crucial for selecting appropriate candidates for interven-

tions like thrombectomy [19]. The most common imaging technique used in assessing

AIS is CTP [20]. There are several reasons for its widespread use:

• Availability: CT scanners are widely available in hospitals and imaging centers,

making CT imaging readily accessible for stroke patients in various healthcare

settings. This accessibility ensures that CT can be performed promptly, crucial

for time-sensitive stroke evaluation [21].

• Speed: CT scans can be performed quickly, usually within minutes, providing

rapid results. Time is of the essence in AIS management, as specific treatments,

such as intravenous thrombolytic therapy, have a narrow window of effective-

ness [22].

• Cost-effectiveness: CT imaging is generally more cost-effective than other modal-

ities such as MRI, especially in resource-constrained settings[23].
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1.1.1 CTP in AIS Assessment

CTP is a diagnostic imaging technique used to assess AIS, which is caused by a

disruption of blood flow to the brain. CTP provides valuable information about the

extent of tissue damage and helps in identifying the AIS core (irreversibly damaged

tissue) and the penumbra (potentially salvageable tissue)[24]. The imaging procedure

for CTP involves the following steps:

1. Patient Preparation: The patient lies on a table that moves through a CT scan-

ner. Before the procedure, a typically iodinated contrast material, is injected

intravenously.

2. Image Acquisition: The CT scanner rapidly takes a series of images of the brain,

usually covering multiple slices. These images are captured over a short period,

typically 45-60 seconds, to track the passage of the contrast agent through the

brain.

3. Data Reconstruction: The acquired images are processed by the CT scanner

to generate a series of perfusion maps. These maps provide information about

various parameters, such as cerebral blood flow (CBF), cerebral blood volume

(CBV), mean transit time (MTT), and time to peak (TTP). These parameters

help evaluate the blood flow dynamics and identify regions of ischemia.

4. Perfusion Maps Extraction: The perfusion maps are derived from the time-

density curve obtained from the contrast agent passage. The curve represents

a specific brain region’s contrast agent concentration over time. By analysing

this curve, different perfusion parameters are calculated for each brain voxel
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(3D pixel).

5. Core and Penumbra Detection: The AIS core and penumbra can be identified

once the perfusion maps are obtained. The core refers to the irreversibly dam-

aged tissue, whereas the penumbra represents the potentially salvageable tissue.

The core typically corresponds to severely reduced or absent blood flow (CBF)

and prolonged mean transit time (MTT). CBF characterises the penumbra but

still viable tissue, which may have prolonged MTT and increased time to peak

(TTP).

Identifying the core and penumbra is crucial in determining the potential benefits of

reperfusion therapy, such as thrombectomy or thrombolysis. Reperfusion therapy is

most effective when administered within the time window where the penumbra is still

salvageable [25].

1.2 Thesis Objectives

The primary objective of this thesis is to investigate and implement state-of-the-art

machine learning techniques for the development of an end-to-end AIS lesion detec-

tor, leveraging 4D CTP images. The thesis aims to achieve accurate and efficient

AIS diagnosis and treatment planning through the application of principled prac-

tices. By addressing critical aspects of the problem, this research seeks to contribute

significantly to the advancement of medical image analysis in the context of AIS

management. To this end, we first explain the critical aspects of the problem.
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1.2.1 AIS Lesion Detection

The lesion in AIS can be defined as the combination of the core and the penum-

bra. The core refers to the irreversibly damaged brain region, while the penumbra

represents the region at risk [26]. AIS lesion detection is an essential process in as-

sessing and planning the treatment for individuals who have experienced an AIS [27].

Detection refers to identifying and delineating the boundaries of these AIS lesions

from medical imaging data. This detection provides valuable information for medical

professionals. The detection can be divided into two main tasks, segmentation of the

baseline AIS core and prediction of its follow-up core [28]. Here’s why it is important:

• Accurate Diagnosis: By detecting the AIS lesions, doctors can precisely locate

and quantify the extent of the damage. This information aids in the precise

diagnosis of the stroke and helps differentiate it from other brain abnormali-

ties [29].

• Treatment Planning: The detection of AIS lesions assists in formulating effective

treatment plans. By analyzing the lesion’s size, location, and characteristics,

medical professionals can determine the most appropriate treatment strategies.

This may include medications, surgical interventions, or endovascular proce-

dures like thrombectomy, where the clot is removed from the blocked blood

vessel [30].

• Prognosis and Outcome Prediction: detection of AIS lesions provides insights

into the severity and distribution of brain damage. This information plays a

crucial role in predicting the prognosis and potential outcomes for the patient. It
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helps medical professionals assess the potential for functional recovery, identify

possible complications and guide post-stroke rehabilitation plans [31].

• Research and Development: AIS lesion detection also contributes to research

efforts to understand the underlying mechanisms of stroke, develop new treat-

ment approaches, and evaluate the effectiveness of existing therapies. By accu-

rately segmenting and analyzing the lesions, researchers can identify patterns,

correlations, and potential biomarkers associated with stroke outcomes [32].

1.2.2 Machine\Deep Learning in AIS Assessment

Before the emergence of deep learning techniques, traditional machine learning al-

gorithms were predominantly used for ischemic stroke lesion segmentation. These

methods often relied on handcrafted features, such as intensity-based thresholding,

region-growing, and clustering algorithms. While these techniques provided some seg-

mentation accuracy, they were limited in handling complex and heterogeneous lesion

patterns [33]. Around 2012, deep learning algorithms, particularly convolutional neu-

ral networks (CNNs), revolutionized various computer vision tasks, including medical

image analysis [34, 35]. Researchers started exploring the potential of CNNs for

ischemic stroke lesion segmentation. CNN offered the advantage of automatically

learning discriminative features from raw medical images, reducing the reliance on

handcrafted features. Early studies in this period focused on developing CNN archi-

tectures tailored for stroke lesion segmentation [36]. Researchers experimented with

different network architectures, such as U-Net, fully convolutional networks (FCNs),

and variants of deep CNNs, to achieve accurate lesion segmentation results. These
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approaches showed promising results, demonstrating the potential of deep learning in

this domain [37, 38].

In recent years, several advancements have further improved the performance of

deep learning models for ischemic stroke lesion segmentation. Researchers have in-

troduced novel network architectures, such as attention mechanisms, densely con-

nected networks, and multi-scale or cascaded networks, to capture complex lesion

patterns and improve segmentation accuracy [39]. The development of larger anno-

tated datasets, such as the ISLES (Ischemic Stroke Lesion Segmentation) and ATLAS

datasets, has enabled researchers to train more powerful models. These datasets pro-

vide a benchmark for evaluating and comparing different segmentation algorithms

and have facilitated the development of state-of-the-art approaches [40]. Further-

more, the integration of multimodal imaging data, such as incorporating diffusion-

weighted imaging (DWI), perfusion-weighted imaging (PWI), and apparent diffusion

coefficient (ADC) maps, has shown promising results in enhancing the accuracy of

ischemic stroke lesion segmentation. New research addresses deep learning models’

interpretability, robustness, and generalization challenges. Exploring explainable AI

methods and developing algorithms that can adapt to varying stroke lesion charac-

teristics across different patient populations are active areas of investigation [41].

1.2.3 Challenges and Drawbacks

Here are some of the challenges associated with AIS lesion segmentation and the

drawbacks of previous models:

• Heterogeneity of Lesions: AIS lesions exhibit considerable heterogeneity in size,

shape, location, and appearance. Lesions can vary in intensity, texture, and
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boundaries, making accurate detection challenging. Previous models that re-

lied on handcrafted features or simplistic algorithms struggled to capture this

heterogeneity, leading to suboptimal detection results [42].

• Limited Training Data: Obtaining large-scale annotated datasets for AIS lesion

detection is difficult due to the time-sensitive nature of stroke diagnosis and

the need for expert annotations. Insufficient training data can hamper the per-

formance of machine learning and deep learning models. Early models trained

on small datasets suffered from limited generalization ability and were prone to

overfitting [43].

• Complex Anatomy and Imaging Artifacts: The brain’s complex anatomy, pres-

ence of anatomical variations, and imaging artifacts, such as noise, bias field,

and motion artifacts, can impact the accuracy of AIS lesion detection. Previous

models often struggled to handle these challenges, resulting in inaccuracies and

false positives/negatives in the detection lesions [44].

• Lack of Interpretability: Deep learning models, especially convolutional neural

networks (CNNs), are often regarded as black boxes due to their complex archi-

tecture and difficulty in understanding their predictions’ reasoning. This lack of

interpretability can be a drawback, as clinicians require transparency and trust

in the detection results for decision-making [45].

• Variability Across Institutions and Scanners: Different medical institutions may

use varying imaging protocols, hardware, and scanners, leading to differences in

image quality and characteristics. Models trained on data from one institution
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may not generalize well to data from other institutions, impacting the model’s

robustness and performance in real-world scenarios [46].

• Computation and Resource Intensiveness: Deep learning models, particularly

those with complex architectures and many parameters, can be computation-

ally intensive and require significant computational resources, including pow-

erful GPUs and extensive training time. This can limit their practicality and

accessibility in clinical settings with limited resources [47].

• Validation and Evaluation: Establishing reliable and standardized evaluation

metrics for AIS lesion detection remains challenging. The lack of consensus on

evaluation protocols and the absence of ground truth annotations for specific

lesion subtypes make it challenging to compare different models and assess their

performance consistently [48].

Addressing these challenges and drawbacks requires ongoing research and innovation.

Researchers are actively exploring novel architectures, data augmentation techniques,

transfer learning approaches, and interpretability methods to improve AIS lesion de-

tection models. Efforts are also being made to curate more extensive and diverse

datasets, establish evaluation benchmarks, and collaborate across institutions to pro-

mote the development of robust and clinically relevant detection algorithms.

1.3 Thesis Contributions

The primary contribution of this thesis is to enhance the accuracy of AIS baseline and

follow-up core detection. Furthermore, we aim to create a streamlined temporal model

that effectively harnesses the temporal information in the 4D CTP time series. The
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goal is to improve the accuracy of AIS lesion detection while using a shorter duration

of dynamic imaging. We have documented our contributions in five separate studies,

which are outlined below:

1. Ischemic stroke lesion prediction in CT segmentation scans using multiple par-

allel u-nets following by a pixel-level classifier : in this study, we propose an

automatic segmentation algorithm that learns an effective model for segment-

ing the ischemic stroke lesion. This learned model first uses four 2D U-Nets to

extract relevant information about the location of the stroke lesion from four

CTP maps (CBV, CBF, MTT, Tmax). The model then combines the prob-

ability maps extracted by the U-Nets, to decide whether the pixels are either

lesions or healthy tissues. This approach uses information about each pixel and

its neighborhood to learn the stroke lesion, despite their varying shapes [49].

2. Improvement of automatic ischemic stroke lesion segmentation in CT perfusion

maps using a learned deep neural network : This study presents a novel deep-

learning technique, MutiRes U-Net, for segmenting ischemic stroke lesions in

CTP maps. MultiRes U-Net is a modified version of the original U-Net that is

re-designed to be robust to segment the objects in different scales and unusual

appearances. In this thesis, we propose to enrich the input CTP maps by using

their contra-lateral and corresponding Tmax images [50].

3. Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep Gaussian

Process (iTDGP): In this work, we propose the imbalanced Temporal Deep

Gaussian Process (iTDGP). This probabilistic model can improve AIS lesions
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prediction by using baseline CTP time series. Our proposed model can effec-

tively extract temporal information from the CTP time series and map it to the

class labels of the brain’s voxels. In addition, by using batch training and voxel-

level analysis, iTDGP can learn from a few patients, and it is robust against

imbalanced classes. Moreover, our model incorporates a post-processor capable

of improving prediction accuracy using spatial information [51].

4. Using temporal GAN to translate the current CTP scan to follow-up MRI, for

predicting final acute ischemic stroke lesions : This study proposes a method

of synthesizing follow-up MRI images from baseline CTP scans by a Tempo-

ral Generative Adversarial Network (TGAN) — which encodes baseline CTP

frames with a series of encoders, followed by a decoder that forecasts the high-

resolution follow-up MRIs. It also uses a discriminator that competes with the

generator to identify whether its input MRI is real or fake. Furthermore, our

TGAN includes a segmentor that can identify AIS lesions in those synthesized

MRI images. The generator, discriminator, and segmentor in TGAN each use

MultiRes U-Nets, an extension of the original U-Net architecture, which can

robustly segment objects of various scales and shapes [52].

5. CT Perfusion Map Synthesis from CTP Dynamic Images using a Learned LSTM

Generative Adversarial Network for Acute Ischemic Stroke Assessment : This

work proposes a novel end-to-end deep neural network that synthesizes CTP

images to generate CTP maps using a learned LSTM Generative Adversar-

ial Network (LSTM-GAN). Our proposed method can improve the precision

and generalizability of CTP map extraction by eliminating the error-prone and
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expert-dependent Arterial Input Function (AIF) selection step. Further, our

LSTM-GAN does not require the entire CTP time series and can produce CTP

maps with fewer time points. The proposed method can minimize scanning time

by reducing the scanning sequence from about 40 to 9 time points, thereby re-

ducing patient exposure to CT radiation.

1.4 Thesis Outlines

This dissertation is organized into seven chapters. Following the introduction 1, Chap-

ter 2 describes how to use the multimodal model to combine information extracted

from different CTP maps to detect AIS lesions. Then, Chapter 3 presents an end-to-

end deep neural network that is learned to detect AIS lesions. This proposed model

aims to address the challenge of detecting AIS lesions that are existed in a wide range

of shapes, sizes, and appearances. In Chapter 4, we have presented a study that tries

to extract temporal information from dynamic 4D CTP images that are very relevant

to detecting AIS lesions. In addition, in Chapters 5 and 6, we have presented the

studies on utilizing generative models for AIS lesion detection and optimizing CTP

map generation. Finally, the conclusion Chapter 7 summarises the contributions and

discusses potential future research avenues.
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Chapter 2

Ischemic Stroke Lesion Prediction
in CT Perfusion Scans Using
Multiple Parallel U-Nets Following
by a Pixel-level Classifier

Abstract

It is critical to identify the brain regions affected by an ischemic stroke as
this enables physicians to make more effective decisions regarding stroke pa-
tient therapy. These regions are often identified through the segmentation of
computed tomography perfusion (CTP) images. Previously, this task was man-
ually performed by experts. However, manual segmentation is an extremely te-
dious and time-consuming process that is not suitable for ischemic stroke lesion
segmentation due to its time sensitivity. Moreover, these approaches require
the availability of an expert who may be prone to errors. Several automatic
medical image analysis methods have been proposed for ischemic stroke lesion
segmentation. Typically, these approaches use predefined hand-crafted features
to represent the input data. However, due to the irregular and physiological
shapes of ischemic stroke lesions, simple predefined features cannot adequately
predict them automatically. In this study, we propose an automatic prediction
algorithm that learns an effective model for segmenting ischemic stroke lesions.
The proposed model employs four 2D U-Nets to independently extract valuable
information about the location of the stroke lesion from four CTP maps (CBV,
CBF, MTT, Tmax). Subsequently, the model combines the probability maps
extracted by the U-Nets to determine whether pixels represent either lesions or
healthy tissues. This approach leverages information about each pixel, as well
as its neighborhood, to accurately identify stroke lesions despite their varying
shapes. The segmentation performance is evaluated using the dice similarity
coefficient (DSC), volume similarity (VS), and Recall. We applied this new
algorithm to the ISLES 2018 challenge dataset and achieved superior results
compared to state-of-the-art approaches.
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2.1 Introduction

One in six people worldwide will have a stroke in their lifetime. A total of 15 million

people worldwide suffer a stroke each year and 5.8 million people die from it [53].

There are two main types of stroke: ischemic (clot and permanent occlusion of a

blood vessel), and hemorrhagic (rupture or break of a blood vessel). Overall 80-85%

of all strokes are ischemic stroke. Ischemic stroke occurs when there is a reduction in

cerebral blood flow due to arterial occlusion [54–56]. Decreased cerebral blood flow,

if it persists long enough, will result in irreversible infarction of brain tissue [57–59].

To halt infarct growth, the most effective therapy is the rapid recanalization of the

occluded artery and reperfusion of ischemic brain tissue [60]. However, reperfusion

must occur at a time point when there is still brain to salvage. This has led to

the development of brain imaging methods, most notably CT perfusion (CTP), to

identify the relative amounts of brain tissue that is irreversibly (“ischemic core”) and

salvageable tissue at risk (“penumbra”). Recent clinical trials have shown that stroke

patients that benefit most from reperfusion therapies are those with a large mismatch

between the size of salvageable penumbra and core on CT perfusion [61–63].

CT perfusion is by far the most widely adopted method to identify ischemic stroke

patients with salvageable penumbra. CT perfusion is a kinetic tracer technique which

involves continuous imaging of a slab of brain tissue during the administration of a

bolus of iodinated contrast agent. The first-pass arrival of contrast agent in the tissue

results in a change in signal intensity that is used to calculate time-density curves

for each voxel [64]. These time density curves are then processed with a temporal

deconvolution algorithm and a known arterial input function to generate images of
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Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF), Mean Transit Time

(MTT), and Time to peak (Tmax) [18]. In addition, CTP has some advantages

compared to other medical imaging modalities, such as MRI, because of its lower

cost, increased availability, and effectiveness [64, 65].

There are crucial challenges in the ischemic stroke lesion prediction, such as the

lack of consistent location and appearance of the lesion and the varying size and

shape of the lesion over time [66]. To address these challenges, several methods have

been proposed in the past to detect ischemic stroke lesion. These methods can be

classified into two types, manual, and automated [67–70]. Since manual approaches

are an extremely tedious and time-consuming process, they are not suitable for is-

chemic stroke lesion segmentation where the treatment is highly time sensitive. In the

previous research, several automatic medical image analysis methods and mathemat-

ical models have been proposed for ischemic stroke lesion segmentation [71]. These

approaches typically used hand-crafted features that are predefined to represent the

data. Because of the irregular and physiologically shapes of stroke lesion, they cannot

be properly used to perform automatic segmentation.

Neural networks, especially convolutional neural networks (CNN), have become a

promising and popular technique to tackle image processing and computer vision tasks

[35, 72]. Specifically, it has been used extensively in medical imaging applications–

segmentation and classification [73–75]. One of the most popular network is U-Net

which is a special case of a standard CNN [34], and have been used successfully for

medical image segmentation tasks [76].

In this paper, we propose a novel deep learning algorithm capable of processing
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pretreatment CT perfusion images in order to improve the identification of ischemic

stroke lesion. The proposed algorithm consists of multiple parallel U-Nets followed

by a pixel-level classifier. The main idea behind this algorithm is to combine valuable

information extracted by the parallel U-Nets from CTP maps to achieve a higher

probability of stroke lesion prediction. The proposed algorithm is evaluated against

the ISLES 2018 challenge dataset and compares favorably to the winners of the chal-

lenge [77, 78].

The remainder of the paper is organized as follows: First, a brief review of image

analysis for ischemic stroke lesion prediction is presented. Then the proposed stroke

lesion prediction model is explained. In the third section, the experiments and results

are presented. Finally, we conclude by presenting the pros and cons of our approach.

2.2 Image Analysis for Ischemic Stroke Identifica-

tion

Currently, determining which parts of the brain have already been damaged is done

by simple thresholding the CTP images [79]. To assist clinicians in making rapid

treatment decisions in acute stroke, a commercial software has been developed to

process the CT perfusion source data to generate the CBF, CBV and delay time

images and quickly estimate core and penumbral sizes [80]. This software uses a

simple threshold approach to identify patients with a treatable penumbral pattern.

Significantly hypo-perfused tissue volume is defined when Tmax >6 seconds or Delay

Time >3 seconds. Infarct core is defined by using a “double threshold” of Tmax >6

seconds (or Delay Time >3 seconds) with a relative (to the contralateral hemisphere)

CBF of <30%) [81]. These definitions of core and penumbra have been validated in
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stroke trials to identify patients that benefit from therapy. However, there remains

significant variation in the predicted core on baseline CT perfusion and final infarct

size estimated using DW-MRI imaging [82].

Such approaches have the drawback of only modeling a single univariate threshold

(hard decision border) between affected and non-affected tissue. Since ischemic stroke

lesions are varying widely over time, these simple algorithms are not suitable for

accurately predicting the regions at risk. Some previous works have attempted to

overcome these limitations by considering flexible thresholds [83, 84]. However, this

problem cannot accurately be solved because they cannot make a precise prediction

of the stroke lesion that is varying quickly after stroke onset.

Until the introduction of deep learning networks, almost all medical imaging tasks,

e.g., classification, regression, and segmentation have been performed using hand-

crafted features. In addition, some previous studies have used transformation tech-

niques, such as nonlinear kernel methods to transform the input data representation

to another representation or feature space that is hopefully more linearly separable.

These algorithms simplify high-level tasks such as classification and regression. Due

to the large variety of shapes and boundary of stroke lesions, such approaches cannot

effectively cope with the ischemic stroke segmentation problems.

As opposed to hand crafted-features, one can exploit deep neural networks to learn

high-level features and do the high-level task (classification or regression) both at

once. Such deep neural networks are capable to learn sufficiently complex models

without having to tune the right parameterization by hand.

The most popular deep neural network for medical imaging task is a convolutional
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neural network (CNN). Of many deep neural network architectures proposed in the

literature, the U-Net architecture has successfully been used to segment and classify

medical images.

2.2.1 Deep Neural Networks for Stroke Lesion Prediction

Recently deep neural networks have (DNN) become one of the most popular methods

in the fields of computer vision and image processing, specifically medical image

processing [85]. The recent availability of graphics processing unit (GPU), which

allows fast training processes, as well as large annotated training sets have enabled

the development of computer vision applications based on deep learning algorithms

that are considerably more precise than traditional machine learning methods.

For ischemic stroke lesions prediction problem, there are some critical challenges

that must be addressed. These main challenges here are:

1. The large variety of shapes of the outer boundaries of the stroke lesions;

2. Widely varying size and shape over time, which make it difficult to predict the

appearance of the lesion;

3. The limited amount of data to properly train a prediction model.

DNN is a promising technique as it possesses several advantages over traditional

machine learning methods that ischemic stroke lesion segmentation challenges require.

These advantages are [86]:

1. By using high-level classification objective functions, features of different ab-

straction levels are automatically learned;

21



2. One can design methodologies “end-to-end”, where the system can learn how

to extract image features, detect them, and then segment visual objects that

can be classified using a unified classification model;

3. DNN largely saves researchers’ time by automating this process. Also, it is

capable to use the complex feature patterns to perform prediction;

4. DNN can learn the feature hierarchy in a layer-by-layer manner, by first learning

the low-level features and then recursively building more comprehensive high-

level features based on the previously learned low-level features.

Since DNNs require to estimate an extremely high number of parameters during

the training process, the most challenging problem is to find a large set of annotated

training images. This challenge particularly occurs in the medical image analysis

(MIA) applications because of the limited availability of large annotated training set.

To address this issue, U-Net was specifically designed to be trained using a small

number of training data.

2.2.2 U-Net Architecture

U-Net architecture has been proposed by Ronneberger et al. [34] and became very

popular in medical image processing community because of its versatility and its ease

of training. It is capable of producing semantic segmentation via a fully-convolutional

CNN that additionally incorporates skip connections between the context encoding

and the refining decoding path for each scale level.

One can see in Figure 2.1 a diagram of the U-Net architecture. The network is

composed of two main sections: an encoding section (left side) and a decoding section
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(right side). The encoding section acts like a typical CNN architecture. It consists of

a repeated application of 3×3 convolutions (unpadded convolutions) filters followed

by a ReLU function unit and a 2×2 max pooling operation which performs a factor 2

for down sampling. Feature channels are doubled at each down sampling step. In the

decoding section, every step consists of up sampling the feature map which is followed

by a 2×2 convolution (up-convolution) which halves the number of feature channels,

a concatenation with the correspondingly cropped feature map from the contracting

section, and two 3×3 convolutions, each followed by a ReLU. Due to the loss of

pixel border at every convolution, cropping is necessary. At the last layer, a 1×1

convolution is used to map each 64-component feature vector to the desired number

of classes. In total, the network has 23 convolutional layers in our implementation.

Figure 2.1: U-Net architecture [34].
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2.3 Proposed Algorithm

In this implementation, a prediction section, which is composed of two sub-sections,

is proposed to segment the ischemic stroke lesion. As shown in Figure 2.2, the first

part of the model consists of four U-Nets, processing data in a parallel manner, and

the second one is a pixel-level classifier.

For the first part, we have tried both a 3D U-Net and multiple 2D U-Nets and

found that the performance of the 2D U-Nets was better. In 3D U-Net model, we

have trained the model by 3D inputs that are constructed by four CTP maps. For

the 2D U-Nets, they are separately trained using different CTP maps (CBV, CBF,

Tmax, and MTT). In both networks, brain tissue density extracted from CT scans

is used as an additional feature to train the model. The input size of the 3D model

is (5×256×256) which include four CTP map and brain tissue density. In the 2D

model, each U-Net input is a two-channel 2D image that is produced by stacking the

brain tissue density of that slice with its corresponding CTP map.

It is possible that all the CTP maps contain information on the ischemic stroke

lesion volume and appearance, but the value of the information is not equal. Hence, we

have trained a prediction model that separately uses CTP maps to extract information

from each pixel using U-Nets. Then a classifier combines the extracted information

from the CTP maps, according to their contributions, to determine the pixel labels

(Lesion or Healthy). The contributions of the CTP maps have been determined by the

value of the information they carry on the appearance of the stroke lesion. We have

trained various types of classifiers for the classification task: voting, simple weighted

averaging, and logistic regression.
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The whole segmentation algorithm is divided into three main steps are: prepro-

cessing and image augmentation, parallel U-Nets, and pixel-level classifier.

Figure 2.2: Stroke lesion prediction model pipeline.

2.3.1 Preprocessing and Data Augmentation

Before training the model, images are preprocessed by removing some outliers and

normalizing the remaining images to make them comparable. Since the number of

patients in the dataset is limited to train the model in an appropriate way and to

avoid overfitting, we have augmented the dataset using some well-known techniques.

When a model tries to learn frequent features (patterns that occur frequently)

which may not be useful, over-fitting usually happens. To tackle this problem, one

can add zero-mean Gaussian noise to images. By adding Gaussian noise, one can

effectively distort high-frequency features and improve the learning capability of the

neural net. Image translation consists of moving the image along both X and Y

directions or just one of them. By doing so, the model is forced to look everywhere.

In order to increase the dataset, we have created new images by randomly rotating

them by [-20∠, 20∠], translating them by [-15%, 15%] of the size, scaling them by
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[0.8, 1.2], and adding Gaussian noise with zero mean.

2.3.2 Parallel U-Nets Model

Figure 2.2 shows how we are using U-Nets in a parallel way. Instead of using the 3D

U-Net that has been used in most of the previous segmentation works, we have used

four 2D U-Nets. Each U-Net input is a two-channel image comprising a CTP map

over the same size image which is the brain tissue density corresponding with that

slice. The size of the input images is (2 × 256 × 256).

The SoftDice loss function has been used for training the U-Nets score and is

defined by:

SoftDice(A,B) =
2×

∑︁
i(Ai, Bi) + 1∑︁

i(AiAi +BiBi) + 1
(2.1)

where for all voxel positions i in a segmentation A with ground truth B and a smooth-

ing constant which is 1.

2.3.3 Pixel-level Classification

The main goal of this step is to investigate the influence of combining the information

generated from the U-Nets from different CTP maps. In addition, the idea behind

this step is that by considering the different values of the information that is carried

out by different CTP maps and combining them based on their contributions, one

can achieve better results in stroke lesion prediction. We have investigated various

approaches to tackle the classification task. The tested approaches were in a wide

range in terms of complexity, from simple voting to high-level classifiers.

The outputs of the U-Nets are four probability maps in which the value of each
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pixel indicates the probability of being a stroke lesion. Hence, to classify each pixel

according to the two lesion and non-lesion classes, we use these maps as the attributes.

The following paragraphs detail the pixel-level classification problem.

• First, the probability maps extracted by U-Nets, have converted to the binary

masks by using thresholding (the threshold have been determined by experiment

and error and it was 0.65). Then a simple voting method has been used to

classify each pixel. In this classification method, we classify a pixel as a lesion

if two or more masks say that the pixel is a lesion;

• In the second, the segmentation accuracy of each U-Net has been used as a

criterion to determine the contribution of the output of that U-Net in the pixel-

level classification task. In other words, first, all U-Nets have been trained by

the same training set and then tested by a same test set. For each U-Net, the

accuracy of the segmentation task has been computed using the Dice score. We

have computed the value of each U-Net output contribution by:

Wi =
Ai∑︁
iAi

(2.2)

where Ai is the accuracy of ith U-Net, and Wi is the contribution weight of the

output of ith U-Net in the pixel-level classification.

Finally, a weighted average of four probabilities, corresponding to four U-Nets,

is calculated in which the weights are determined based on equation (2). Using

the following equation:

P =
4∑︂

i=1

Wi × pi (2.3)
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one can compute the weighted average, where i is the index of the U-Nets, wi is

the contribution weight of the output of the ith U-Net, and pi is the probability

of being a lesion based on the output of the ith U-Net. In the end, the average

value P is converted to a binary value by comparing its value to a 0.55 threshold.

This threshold was chosen experimentally.

• We believe that there is valuable information about the link between the cen-

tral pixel label and each pixel in its neighborhood. Therefore, in this model,

to predict the label of each pixel, four corresponding N by N neighborhoods,

centered by that pixel in four outputs of four U-Nets, are considered as features.

As shown in Figure 2.3, one can concatenate these neighborhoods to create a

vector with length (4×N×N). Then this feature vector is used as the input of

a logistic regression model that is used as a pixel-level classifier. The idea be-

hind this method is that by using the valuable information that is hidden in

the neighborhood of each pixel, one can achieve a smoother and homogeneous

predicted lesion, thereby increasing the final segmentation performance. We

have tried different neighborhood size (N=3, 5, 7, 9, 11, 13) but the best results

have been achieved with N=9.

2.3.4 Implementation Details

To implement the U-Nets, we have used Keras deep learning library, on a PC that

had GeForce GTX 780 GPU and 16 GB RAM. To improve the training process, the

dice score has been monitored on the validation set, after every training epoch (see

Figure 2.4 shows the variation of the dice score of MTT U-Net for every epoch). If
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Figure 2.3: Input/output of logistic regression model.

we had not seen any improvement after 15 epochs, the learning rate was reduced to

achieve better validation accuracy. The batch size of the U-Nets is 32, and the kernel

size is 3 by 3. In addition, “Adam” has been utilized as an optimizer in this work

(which is introduced by Diederik Kingman and Jimmy Ba [87]).

Figure 2.4: Variation of the Dice score for every epoch (MTT U-Net).

2.4 Experiments and Results

2.4.1 Dataset

To evaluate the proposed model, the ISLES challenge 2018 dataset has been used.

The dataset consists of CT images, CTP maps, and DWI scans, from acute stroke
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patients, which are collected from two imaging centers. All the patients have been

admitted and scanned (CT and CTP) within 8 hours of stroke onset and underwent

an DW-MRI within 3 hours after CTP scan. CTP maps are derived from the raw CT

data for clinical interpretation. Infarcted brain tissue can be identified as hyperintense

regions of the DWI trace images (DWI maps). The ground-truth segmentation maps

are manually drawn on those scans by medical experts.

The scans had varying depth in the axial dimension, ranging from 2 to 22 slices.

Because CTP scans were acquired as slabs covering sparse areas (5mm axial spacing)

with stroke lesion in the brain. The size of each slice is (256×256) pixels. The training

set consists of 63 patients and 94 scans, and the test set is composed of 40 patients

with 62 scans. Some of the patients have two slabs to cover the whole stroke lesion.

2.4.2 Evaluation and Metrics

In order to validate the proposed model by using 10-fold cross-validation, we made

sure that there was no overlap between patients’ folds. In addition, the scans of

the patients who have multiple slobs existed only in the same fold. Overfitting of the

model has been prevented by training until the validation loss converges and choosing

the model with the lowest validation loss. We have used the SoftDice loss function in

our experiments (Equation (1)).

The model tested by using patients which have not been used for the training and

validation. Therefore, evaluation results could not be tuned on the validation loss

optimum, making the results more reliable.

In order to accurately evaluate the proposed model, we used a common similarity

metrics that test different capabilities of the model. These metrics are:
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• Dice similarity coefficient (DSC)

DSC =
2TP

2TP + FP + FN
(2.4)

• Volume similarity (VS)

V S = 1− |FN − FP |
2TP + FP + FN

(2.5)

• Sensitivity (Recall)

P =
TP

TP + FN
(2.6)

Since, in some applications, it is crucial that we predict the volume of the stroke

lesion in an accurate way, we have evaluated the proposed model performance using

VS.

2.4.3 Prediction Results

Table 2.1 shows the ability of the U-Nets to segment ischemic stroke lesion. The

results show the amount of information can be extracted from different CTP maps.

As one can see, the accuracy (DSC) of the network which has been trained by using

Tmax maps is better than other networks. Therefore, the Tmax map has the greatest

contribution to the classification problem. However, if we consider VS as the main

criterion for evaluation, Tmax is not the best. In that case, CBV map is the most

valuable information about the volume of the stroke lesion.

Table 2.2 shows the accuracy of the final prediction of ischemic stroke lesion by

using different classifiers. One can see that the accuracy of the logistic regression

model is by far the best among the three classifiers. DSC and Recall of the LR model
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Table 2.1: Ischemic stroke lesion prediction performance of the U-Nets

U-Net Metric

Input DSC VS Recall

CBF 0.30 0.33 0.35

CBV 0.32 0.47 0.38

MTT 0.35 0.46 0.4

Tmax 0.40 0.41 0.41

that reported in Table II are related to the (9×9) neighborhood size and VS is related

to (11×11) neighborhood size.

Table 2.2: The accuracy of final prediction based on different classifiers

Classification Metric

Model DSC VS Recall

Voting 0.40 0.43 0.40

Weighted Average 0.52 0.56 0.46

Logistic Regression 0.61 0.72 0.63

Figure 2.5 shows the effect of changing the size of the neighborhood of each pixel

on the final prediction performance. The results show that the best DSC and Recall

is related to kernel size (9×9). In addition, the best VS has been obtained using an

(11×11) neighborhood.

One can see in Figure 2.6 the ischemic stroke lesion segmentation, for one patient.

In this figure, the first column shows CTP maps by using different color maps (just for

clarity). The middle column is the segmentation results of each U-Net, separately.
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Figure 2.5: a) DSC b) VS, and c) Recall of the LR model based on different size of
neighborhood.

The third column shows the final segmentation results based on three pixel-level

classifiers. In these images, the red lines are the prediction area and the white area is

the ground truth. As one can see in this Figure 2.5, the best prediction is obtained

by the LR model (with neighborhood size 9×9).

2.4.4 Compassion with Other Algorithms

Table 2.3 shows the results of our proposed algorithm in compared to the best results

that have been achieved during the ISLES challenge 2018 competition [88][89][90].

As one can see in most cases our results are significantly better.
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Figure 2.6: The first column is color maps of CTP parameters. The second column
is the segmentation result of each U-Net. The third column is the final segmentation
results based on three classifiers. Red lines are predicted region boundary and white
area is the ground truth.

Table 2.3: Comparison of the results

Segmentation Metric

Model DSC VS Recall

The Best Previous Model 0.56 - 0.58

Voting Based Model 0.41 0.50 0.44

Weighted Average Based Model 0.57 0.66 0.56

Logistic Regression Based Model 0.71 0.82 0.73
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2.5 Conclusion

In this paper, we proposed a prediction model for ischemic stroke lesion identifica-

tion using CTP scans. The whole prediction algorithm consists of three main steps:

preprocessing and image augmentation, parallel U-Nets, and pixel-level classifier.

For preprocessing, outliers were removed, and the remaining scans were normalized.

Then, the preprocessed dataset was augmented by translating, rotating, scaling and

adding Gaussian noise. The second part of the algorithm is multiple parallel U-Nets

learned by different CTP maps. This section was designed for extracting information

as for the appearance of stroke lesion from four CTP maps separately. To do so, we

used four 2D U-Nets in a parallel manner that learned by using different CTP maps.

The output of each U-Net is a probability map that shows the probability of being

a lesion for each pixel. The third section is a pixel-level classifier that combined the

outputs of the U-Nets to label each pixel as lesion or healthy.

Experiment results of our proposed approach on the publicly available ISLES chal-

lenge 2018 dataset demonstrate better prediction performance in comparison to the

previous ischemic stroke lesion segmentation works. The effectiveness of the proposed

algorithm is evident by the remarkable improvement in the value of DSC, recall, and

VS compared to the best previous studies on this problem. Our algorithm achieved

DSC 71.3%, Recall 73.6%, and VS 82.1% by using logistic regression as a pixel-level

classifier.
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Chapter 3

Improvement of AIS lesion
Segmentation in CTP Maps Using
a Learned Deep Neural Network

Abstract

Acute ischemic stroke is one of the leading causes of death and long-term
disability worldwide. It occurs when a blood clot blocks an artery that supplies
blood to the brain tissue. Segmentation of acute ischemic stroke lesions plays
a vital role to improve diagnosis, outcome assessment, and treatment planning.
The current standard approach of ischemic stroke lesion segmentation is simply
thresholding the Computed Tomography Perfusion (CTP) maps, i.e., quantita-
tive feature maps created by summarizing CTP time sequence scans. However,
this approach is not precise enough (its Dice similarity score is only around
50%) to be used in practice. Numerous machine learning-based techniques
have recently been proposed to improve the accuracy of ischemic stroke lesion
segmentation. Although they have achieved remarkable results, they still need
to be improved before they can be used in actual practice. This paper presents
a novel deep learning-based technique, MutiRes U-Net, for the segmentation of
ischemic stroke lesions in CTP maps. MultiRes U-Net is a modified version of
the original U-Net that is re-designed to be robust to segment the objects in dif-
ferent scales and unusual appearances. Additionally, in this paper, we propose
to enrich the input CTP maps by using their contra-lateral and corresponding
Tmax images. We evaluated the proposed method using the ISLES Challenge
2018 dataset. As compared to the state-of-the-art methods, the results show an
improvement in segmentation task accuracy. The dice similarity score (DSC)
was 68%, the Jaccard score was 57.13%, and the mean absolute volume error
was 22.62(ml).
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3.1 Introduction

Stroke is one of the leading causes of mortality and disability worldwide, affecting 15

million people annually and leaving half of those who survive a stroke with chronic

disability [53]. The majority of strokes (almost 90%) are ischemic strokes, which is

caused by an occluded artery, resulting in reduced cerebral blood flow, tissue ischemia,

and infarction [54, 55]. In order to prevent the disability associated with ischemic

stroke, occluded vessels must be opened quickly to reperfuse ischemic tissue. With-

out immediate blood supply restoration, i.e., within around 6 hours of stroke onset,

bioenergetic compromised tissue will be irreversibly damaged [91]. A vital step for

quick stroke treatment planning is the accurate segmentation of the ischemic stroke

lesions [91].

In the past, the time from the stroke onset was the main factor in stroke treatment

planning [92]. Although the time from stroke onset is a significant predictor of the

progression of the infarction, there is individual variability in the rate of infarct growth

that depends on the location and volume of the stroke lesion [93]. Therefore, it has

become increasingly recognized that accurately segmenting ischemic stroke lesions

aids clinicians in making more effective stroke treatment plans.

Modern brain CT perfusion (CTP) and MR perfusion imaging techniques visualize

cerebral circulation more precisely than before [94]. These imaging methods provide

a more accurate assessment of the ischemic stroke lesion (identifying the stroke lesion

location and magnitude). CTP is preferred over MRI in the early stages of ischemic

stroke assessment because of its widespread availability, speed of image acquisition,

relatively lower cost, and ease of patient monitoring [64]. CTP imaging involves
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injecting a contrast agent, then continuously imaging the brain with a CT scan for

around 60 seconds [94]. A sequence of 4D CT volumes (sequence of 3D images) is then

summarized (along the time axis) in some 3D quantitative maps of brain blood flow

[94]. Four commonly used maps are cerebral blood volume (CBV), cerebral blood

flow (CBF), mean transit time (MTT), and time-to-maximum (Tmax), for more

information refer to [64]. Clinically, these maps are used to identify brain regions

affected by an ischemic stroke. The current clinical standard for segmenting ischemic

stroke lesions is the thresholding of CTP maps. Nevertheless, the reported results of

this approach suggest that it is not sufficiently accurate (Dice similarity score around

50%) to assist physicians with stroke treatment planning [95].

To improve ischemic stroke lesion segmentation accuracy, some previous studies

have utilized traditional machine learning and hand-crafted features. Although these

texture-based features, e.g., corners, edges, etc., could slightly enhance the segmenta-

tion results [96, 97], the predefined features cannot be the optimal method for iden-

tifying ischemic strokes, i.e., because stroke lesions present in highly varying scales

and irregular shapes [98].

Recent developments of deep learning have enabled the researchers to propose sig-

nificant techniques for various medical imaging tasks (i.e., segmentation [99], registra-

tion [100], and classification [101]). Segmenting stroke lesions has also been included

in this development flow. Several deep learning-based ischemic stroke lesion segmen-

tor architectures were introduced in the ISLES challenge 2018 [102]. In this challenge,

four of the top five approaches used different U-Net architectures [103–106]. Addi-

tionally, Soltanpour et al. [49] proposed using a logistic regression post-processor that
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combines four output segmented images from four parallel U-Nets in order to achieve

higher accuracy in stroke segmentation. Some other studies used original CNN mod-

els, i.e., stacked sparse autoencoder in [56] and fully connected CNN model [103], to

cope with the ischemic stroke lesion segmentation problem. Although all the algo-

rithms mentioned have marginally improved the ischemic stroke lesion segmentation

accuracy, it still needs improvement before it can be applied in clinical practice.

This paper presents a novel end-to-end ischemic stroke lesion segmentation model

that learns to segment the lesions from CTP maps. The proposed technique is a

modified version of the original U-Net [107], called MultiRes U-Net [108]. Modified

U-Net has been redesigned to be robust in detecting objects of various scales and

irregular appearances [108]. Therefore, it can serve as an appropriate solution for

addressing the major challenges of ischemic stroke lesion segmentation: the wide range

of appearances, scales, and outer borders. In addition, for further improvement of

the stroke segmentation accuracy, we have proposed using the contra-lateral version

of input CTP maps as reference images [103][109] and their corresponding Tmax

heatmap as the lesion location estimator (for more information, see section 3.2).

A contra-lateral image allows the neural network to compare healthy voxels with

damaged ones at the same location. The Tmax heatmap guides the neural network

to localize the stroke lesion by providing an estimate of its location.

The proposed method was evaluated using the ISLES challenge 2018 dataset [102]).

Results showed that our proposed method could improve the accuracy of the segmen-

tation task compared to state-of-the-art methods. Considering the evaluation metrics,

the best results obtained by the proposed method are: Dice similarity score (DSC) of
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68.74 ± 26, Jaccard score of 57.13 ± 22.1, and Mean abslute volume error (MAVE)

of 22.62 ± 7.3.

Within this paper, Section 2 presents the dataset we have used (the ISLES 2018

challenge dataset [102]) and the enriched input image representations we have pro-

posed. In Section 3, the proposed segmentation method is explained, followed by a

brief review of U-Net. Finally, Sections 4 and 5 will present the results and conclusion.

3.2 Enriched Images Preparation

The proposed ischemic stroke lesion segmentation model was trained and tested on

the ISLES challenge 2018 dataset [102]. This dataset includes baseline 4D CTP scans,

3D CTP maps, CBF, CBV, MTT, and Tmax [94]. Then, each patient underwent a

DW-MRI within 3 hours of the baseline CTP imaging. An expert labeled the DW-

MRIs images to trace the actual ischemic stroke lesion. The dataset consists of 103

patients: 63 patients in the training and 40 patients in the test set. Some patients

have two slabs to cover the entire stroke lesion (non- or partially overlapping brain

regions), so there are 94 and 62 scans in the training and test set, respectively.

3.2.1 Images Augmentation

A common problem in medical imaging tasks is the lack of sufficient images in the

dataset for a machine learning model to be trained properly. One of the solutions

to tackle this problem is artificially expanding training images by creating modified

versions of the images with the same labels as the originals using image data aug-

mentation techniques. Including these modified versions of the original image in the

training set, improves the model’s ability to generalize what it has learned to new
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images. In this paper, to augment the training images dataset, the images were ro-

tated to an angle that was randomly chosen from a normal distribution of N(∠0, ∠20

) [110]. Then a Gaussian noise N(0, 0.03) was added to the already normalized (zero

mean and unit std) original images. Empirical experiments were used to determine

the parameters for both the normal distribution and the Gaussian noise.

3.2.2 Input Images Representation

In a deep neural network, the input image is represented by four dimensions: (x-axis,

y-axis, z-axis, and the number of channels). For example, an (m×n) 2D RGB image

and an (m × n × z) 3D RGB image are represented to an CNN by [m, n, 1, 3] and [m,

n, z, 3] structure, respectively. Both representations have the same number of channels

(red, green, and blue channels) but have different size of the z-axis. Specifying the

input image representation structure is one of the most important steps of designing

a CNN model, which can affect both the training and testing phases [111]. This study

investigated 2D (single slice) and 3D (3 successive brain slices) segmentation models.

As a matter of fact, reslicing the 3D whole brain into 2D or even a limited number

of consecutive slices technically increases the size of the image datasets [102].

Furthermore, in order to improve the segmentation performance, we proposed to

add two additional images to the input images, i.e., contra-lateral images that are

used as a reference image [112] and Tmax heatmap that serves as the lesion region

estimator. Using the contralateral image, the neural network can compare healthy

and damaged voxels in the same location, and the Tmax heatmap guides the neural

network to localize ischemic stroke lesions.
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Contra-lateral Image

In almost all cases, ischemic stroke occurs unilaterally. Considering this property

of ischemic stroke, we aimed to enrich the information in each voxel by using the

information present in the corresponding voxel in the opposite hemisphere of the

brain. In other words, we have added the contra-lateral version of each image to

them, so each affected voxel will present next to its corresponding healthy voxel from

the opposite hemisphere of the brain [103][109].

To create contra-lateral images, first, we flipped each CTP map in the sagittal

axis across its geometrical center. To find the optimal rotation angle of the flipped

image to perfectly overlap the original image, we created a binary version of both

the flipped and original images. The binary flipped image was then rotated across

its geometrical center in a way that minimizes the mean squared error (MSE) of its

overlap with binary versions of the original image. The determined rotation angle

was then applied to the flipped image to create the final contra-lateral image (Figure

3.1). Finally, we prevented the influence of extreme outliers (e.g., streak artifacts) by

clipping in the range of the Hounsfield Units [0, 150] HU.

Tmax heatmap

A Tmax heatmap is a multi-level thresholded Tmax that highlights the brighter

regions of the image at different levels. Tmax heatmap column of Figure 3.2 shows

a colored representation of the multi-level thresholded Tmax maps. In the Tmax

image, the ischemic stroke lesion appears brighter than the rest of the brain tissue, so

the heatmap highlights the approximated region of the lesion. Actually, thresholding

Tmax images are the current standard approach for segmenting stroke lesions. In
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Figure 3.1: First row shows the CBF, CBV, MTT, and Tmax images (left to right)
of a single axial slice, of a single patient. The second row shows their corresponding
contra-lateral images.

this study, we linearly digitized Tmax intensity values into 8 levels, [0, 5, 15, 30, 50,

75, 105, 140], i.e., the number of the threshold levels has been determined through

empirical experimentation. The intensity value of each pixel in the Tmax map is

replaced by its nearest threshold value. Heatmap vs. lesion column of Figure 3.2

shows how the highlighted regions of the heatmap surround the actual lesion. This

paper proposed adding the corresponding Tmax heatmap to the input images as an

additional input image. The idea behind this approach is that the heatmap guides the

neural network to recognize the ischemic stroke lesion by providing an approximated

location of that.

By using the contra-lateral images and Tmax heatmap, we have proposed three

different input image representations to investigate the impact of enriching the CTP

map on the final segmentation accuracy. These image representations are:

• Four corresponding CTP maps of a single brain slice as a four-channel image
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Figure 3.2: Images from left to right, CBF, CBV, MTT, Tmax, Tmax heatmap,
heatmap and lesion correlation, and actual lesion of three sample patients.

(Figure 3.3);

• As Figure 3.4 shows, a four-channel image, each channel comprises a 3D image

that its z-axis contains one of the CTP parameter maps (CBV, CBF, MTT, or

Tmax), the contra-lateral version of that map, and the heatmap of the corre-

sponding Tmax;

• A four-channel image, each of which comprises a 3D image. The z-axis contains

three successive slices of the CTP maps of a patient’s brain, the contra-lateral

version of the middle slice, and the corresponding Tmax heatmap of the mid-

dle slice (Figure 3.5). In this image representation, we aimed to include the

information from the 3D neighborhood of each voxel to make a more accurate

identification of the lesion in the middle slice.
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Figure 3.3: Four-channel image including CTP parameter maps.

Figure 3.4: A four-channel image, each channel containing a CTP map, its contra-
lateral version, and the corresponding Tmax heatmap.

3.3 Proposed Method

In this paper, we propose an end-to-end model that learns to segment early-stage

ischemic stroke lesions from CTP maps (CBV, CBF, MTT, and Tmax). The proposed

segmentation model is a modified version of U-Net [113], MultiRes U-Net, that is re-

designed to be robust to analyze objects at significantly varying scales and appearance

[108]. In this modified version of the U-Net, the basic CNN layers are replaced with

the ones that contain various filter sizes. Through this modification, the network is

better equipped to extract the features of a variety of resolutions. As shown in the

Actual lesion column of Figure 3.2, ischemic stroke lesions appear in very different

scales and irregular shapes. Thus, MultiRes U-Net could be a suitable solution for
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ischemic stroke lesion segmentation.

3.3.1 Preprocessing

To apply the proposed segmentor to the images, they first were prepossessed by cut-

ting off the high-intensity values of the image to be in the range of 0-150 HU; because

the values outside of this range were likely outliers. Then, to reduce unnecessary com-

putational cost and increased the signal-to-noise ratio (SNR), which is commonly low

in medical images, the images were downsampled by using the bilinear interpolation

method in MATLAB [114], such that each pixel value was replaced by the weighted

average of its nearest 2×2 neighbor pixels. Since the output image size of the net-

work is the same size as the input, the ground truth images are also are downsampled

to become the same size as the input and output of the model. Finally, since the

images were collected at different centers, conditions, and times, they needed to be

normalized to become comparable and shift to the same intensity distribution. Here,

we computed the mean and standard derivation (std) of each image, and then pixels

values were normalized by subtracting the mean and dividing by the std.

3.3.2 Network

The proposed ischemic stroke lesion segmentor is a modified version of the original

U-Net (Ronneberger et al., 2015 [113]) called MultiRes U-Net that was introduced by

Nabil Ibtehaj and M. Sohel Rahmn [108]. Original U-Net (Ronneberger et al., 2015

[113]), like fully convolutional network (FCN) (Long et al., 2015 [115]) and SegNet

(Badrinarayanan et al., 2015 [107]) architectures, is a CNN-based model that has a

U-shape architecture (Figure3.8) composed of convolutional layers to perform an end-
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to-end semantic segmentation. This architecture comprises two sections: an encoder

to extracts spatial features from the input image and a decoder that constructs the

segmented map from the encoded features [113]. The encoder section is a typical

CNN path that contains several convolutional layers, including two 3 ×3 convolution

operations followed by a max-pooling operation with a pooling size of 2 × 2 and stride

of 2. The convolutional layer is repeated four times, and after each downsampling,

the number of filters is doubled. Finally, the encoder is linked to the decoder by

using a progression of two 3 × 3 convolution operations. On the second section of

the U-Net, passing the decoder path, the extracted feature map is up-sampled using

a 2 × 2 transposed convolution operation. The feature channels are reducing by half,

and then a sequence of two 3 × 3 convolution operations is performed again. This

succession of up-sampling and two convolution operations is repeated four times. In

the end, a 1 × 1 convolution operation is performed to produce the final segmented

image. This architecture uses Rectified Linear Unit (ReLU) activation for all layers

except the last layer. The final convolutional layer, however, uses a sigmoid activation

function.

Downsampling, after the pooling operation in each CNN layer, causes losing some

of the spatial information. However, the most ingenious attribute of the U-Net ar-

chitecture is retrieving the lost information using skip connections. In all the four

convolutional layers, each encoder layer’s output, before the pooling operation, is

transferred to the corresponding decoder layer. The transferred feature maps are

concatenated with the outputs of the up-sampling operation of the decoder layer and

then propagated to the next layer [116].
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MultiRes U-Net

MultiRes U-Net is an extension of the original U-Net with two modifications [108].

The first modification is that the MultiRes U-Net architecture uses CNN blocks each

of which includes three 3×3, 5× 5, and 7×7 convolution operations instead of the only

3×3 convolution operation. Including filters of different sizes allows the CNN layers of

the MultiRes U-Net to be more capable of multi-resolutional analysis [108]. In other

words, it allows the U-Net to extract features from a broader range of resolutions.

Therefore, it makes the MultiRes U-Net more capable of detecting objects of varying

sizes and shapes [108]. Figure 3.6 shows parallel and sequential versions of multiscale

convolutional blocks, which operate 3×3, 5×5, and 7×7 convolutions. According

to Szegedy et al., (2016) [117], two sequential 3×3 convolutional operation actually

resembles a 5×5 convolutional operation and three sequential 3× 3 convolutional

operation perform like a 7×7. As the sequential CNN block is less memory intensive

than the parallel one, the MultiRes U-Net architecture takes advantage of this type

of block.

The second modification is that in MultiRes U-Net the simple skip connections are

replaced by CNN shortcuts from the encoder to the decoder [108]. Figure 3.7 shows

the CNN shortcut connection where 3×3 filters were used in the convolutional layers

and 1×1 filters accompany the residual connections. CNN shortcuts in the MultiRes

help to solve one of the weaknesses of the original U-Net that is combining features

from different levels that might result in a semantic gap between them [108]. For

example, the features coming from the earlier layers of the encoder are the lower-level

features, while the extracted features at the decoder’s last layers are from higher-level.
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This semantic gap between these two sets of merged features can cause discrepancies

throughout the learning process, negatively affecting the learning process [108]. The

replaced CNN shortcut connections apply some additional non-linear transformations

to the features propagating from the encoder to the decoder which can balance the

probable semantic gap caused by the higher degree of processing of the deeper stages

of the decoding process [108].

Finally, these two significant modifications of MultiRes U-Net make it skilled in

the segmentation of ischemic stroke lesions that exist at extremely varying scales and

irregular appearances.

Proposed Ischemic Stroke Lesion Segmentor

Figure 3.8 shows the proposed MultiRes U-Net for ischemic stroke lesion segmenta-

tion. In this neural network, the multi-scale convolutional blocks are the series of

3 × 3 convolutional operations (Figure 3.6 (b)). In addition, the skip connections

are CNN shortcuts that are shown in Figure 3.7. As we discussed before, passing

towards the inner shortcut paths, the intensity of the semantic gap between the en-

coder and decoder feature maps will decrease. Hence, the number of convolutional

blocks used in the shortcuts was also gradually reduced. In particular, from top to

down, each shortcut composes of 4, 3, 2, and 1 convolutional blocks, respectively.

All convolutional layers of the proposed MultiRes U-Net utilize the ReLU activation

function except for the output layer, which is activated by a sigmoid function. The

total number of model parameters was 7,262,873, and the total number of trainable

parameters was 7,238,351.
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Figure 3.6: a) parallel, b) sequential multi-scale CNN

Figure 3.7: CNN-based shortcut

51



Training and Validation Methodology

As ischemic stroke lesion segmentation is a pixel-level binary classification, binary

cross-entropy function is an appropriate loss function. It is also called SoftDice that

is calculated by :

SoftDice(X , Y, Ŷ) =
∑︂
px∈X

−(ypx log(ŷpx) + (1− ypx) log(1− ŷpx)) (3.1)

where X is the input image, Y is the ground truth mask and Ŷ is the segmented

mask by the proposed model. For a value ypx of image Y, the corresponding assigned

label by the model is ŷpx.

Then, for a batch containing n images, the cost function J becomes:

J(X , Y, Ŷ) =
1

n

n∑︂
i=1

SoftDice(Xi,Yi,Ŷi) (3.2)

Finally, we used Adaptive Moment Estimation (Adam) optimizer to minimize the

binary cross-entropy loss function in the training phase. Adam adaptively computes

different learning rates for various parameters from estimates of the gradients’ first

and second moments. Therefore, Adam has often been used as the default choice in

benchmarking deep learning models.

Since the validation accuracy did not improve further after 100 epochs, the model

was trained for 100 iterations. On the ISLES 2018 training set, the U-Net was trained

using 10-fold cross-validation. We used the initial learning rate of 0.01 and decreased

it by dividing by 2 after every 20 epochs. We also used a batch size of ten images and

evaluated the model for every epoch on the entire test set using DSC and Jaccard

scores.

52



Table 3.1: Comparison of ischemic stroke lesion segmentation accuracy with different
version of U-Nets (Dice similarity score %).

Input Original U-Net
MultiRes

U-Net (simple shortcut)

MultiRes

U-Net (CNN shortcut)

CBV 38.04 ± 14.3 41.55 ± 15.6 46.60 ± 18.8

CBF 33.67 ± 11.7 39.81 ± 19.8 47.00 ± 13.3

MTT 37.05 ± 15.0 47.05 ± 14.6 48.34 ± 14.1

Tmax 41.30 ± 13.6 47.54 ± 12.7 50.32 ± 13.4

3.4 Experiments and Results

Our proposed method for ischemic stroke lesion segmentation was evaluated using

the ISLES challenge 2018 dataset. Evaluation metrics included the Dice similarity

coefficient (DSC), Jaccard score, mean absolute volume error (MAVE) (ml), and the

area under the ROC curve (AUC) precision-recall.

3.4.1 MultiRes vs. Original U-Net

For comparing MultiRes’ and the original U-Net’s segmentation accuracy, we trained

and tested both on the same set of data. In order to evaluate the impact of each

modification of U-Net on its segmentation capability, we trained three U-Nets: orig-

inal U-Net, MultiRes U-Net with simple shortcuts, and MultiRes U-Net with CNN

shortcuts. The comparison experiment was simplified by training the networks using

only one CTP map each time. Table 3.1 shows the segmentation performance of these

three versions of U-Net. As one can see, in most cases, MultiRes U-Net with CNN

shortcuts performs a more accurate segmentation.
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3.4.2 Enriched CTP Maps

Table 3.2 shows the evaluation results of ischemic stroke lesion segmentation when

we used three proposed input image representations (Figures 3.3, 3.4, and 3.5) and

MultiRes U-Net. As can be seen from the first and second rows of the table, adding

contra-lateral and Tmax heatmaps to CTP images significantly improves segmenta-

tion accuracy. In other words, the Tmax heatmap can effectively guide the network

to localize the ischemic stroke lesion by providing the estimated region of the le-

sion; and also the contra-lateral image assists the network in distinguishing healthy

and damaged voxels by providing the corresponding healthy voxels from the opposite

brain hemisphere next to the affected voxels. Additionally, the accuracy improvement

shown in the third row of the table supports our argument that information about

the 3D neighbors of each voxel can assist with central voxel classifying. In addition,

Figure 3.9 shows three examples of segmented lesions using the proposed MultiRes U-

Net and 3D enriched CTP maps (Figure 3.5). The examples demonstrate the ability

of the proposed model to segment lesions in different appearances and scales.

Figure 3.10 shows the joint plots of the sizes of the actual and segmented lesion by

using three implemented networks, i.e., all the networks were trained with the third

version of enriched input images described in section 2.2. On top of each plot, the

segmentation model that was used to segment the ischemic stroke lesion is shown.

Moreover, the R-squared values [121] were calculated and displayed on each plot.

Comparing the plots, it is clear that each modification applied to the U-Net archi-

tecture has improved its ability to perform the segmentation task, i.e. the R-square

has risen significantly. In addition, based on the distance of the blue points from the
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Figure 3.8: Proposed MultiRes U-Net.

Table 3.2: Results of the proposed methods for segmenting ischemic stroke lesions
using different input image representations.

Input DSC (%) Jaccard Score (%)
Mean absolute volume error

(MAVE) (ml)
AUC

Four channels CTP maps 55.31 ± 20.1 47.65 ± 19.3 41.15 ± 10.5 0.46 ± 0.09

(CTP map + contra-lateral map + heatmap)

single slice
61.67 ± 24.6 54.04 ± 24.1 26.27 ± 9.3 0.51 ± 0.12

(CTP map + contra-lateral map + heatmap)

three successive slices, 3D
68.74 ± 26.0 57.13 ± 22.1 22.62 ± 7.3 0.59 ± 0.17

Table 3.3: Comparison of our proposed segmentation model’s results with some pre-
vious studies.

Proposed Model DSC
Positive Predictive Value

(PPV)
Sensitivity

Multi-scale U-Net [118] 0.51 ± 0.31 0.55 ± 0.36 0.55 ± 0.34

FCN [103] 0.49 ± 0.31 0.51 ± 0.36 0.57 ± 0.35

R2U-Net [119] 0.52 ± 0.16 0.60 ± 0.20 0.60 ± 0.21

SLNet [120] 0.54 ± 0.21 0.64 ± 0.24 0.64 ± 0.24

MultiRes U-Net (ours) 0.68 ± 0.26 0.67 ± 0.06 0.68 ± 0.15
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Figure 3.9: In each row, there are four corresponding CTP maps and their ground
truth at the end. The red line on the ground truth represents the segmented lesion
by the proposed model.
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Figure 3.10: Segmented vs. actual lesion volume.

57



45◦ line, there is no significant difference between the segmented lesion size error of

big and small lesions. However, it is not observed in the first plot, which belongs to

the original U-Net. Therefore, the model segmented the bigger lesion with the almost

same accuracy as the smaller ones, showing its ability to segment objects of varying

sizes. Moreover, Table 3.3 presents the accuracy of some previous deep neural net-

work models to segment ischemic stroke lesions. Results indicate that our proposed

model can perform a more accurate stroke segmentation than the other methods.

Although our proposed segmentation method provides some improvements, there

are some pitfalls to be aware of. CTP maps are crucially dependent on the accurate

selection of arterial input function (AIF), i.e. this is the time-concentration curve in

one of the large feeding arteries of the brain [122]. In addition, deconvolution, during

the process of creating CTP maps, is a mathematically ill-posed problem, which

results in low SNR in these maps [123]. Therefore, low accuracy of AIF detection and

low SNR of the maps can affect segmentation accuracy. Some previously proposed

methods used raw CTP images instead of CTP maps in order to prevent the influence

of AIF determination error and low SNR on the segmentation accuracy [112][123].

The other weakness of the proposed segmentation method is that it ignores other

factors that are critical to identify ischemic stroke lesions and their progression over

time, e.g., blood test results, age, sex, etc. Recently, a number of segmentation meth-

ods that combine clinical information and medical images for improving ischemic

stroke segmentation accuracy have been proposed [112][123]. Even though they have

improved the segmentation accuracy in some cases, they need to become more accu-

rate before they can be used in practice.
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3.5 Conclusion

In this paper, we presented a deep neural network that learns to segment ischemic

stroke lesions from CTP maps. This model architecture was a modified version of

U-Net, called MultiRes U-Net comprised of multi-scale CNN layers and CNN-based

shortcut connections. We also proposed using the new enriched input image represen-

tations to assist the neural network in segmenting ischemic stroke lesions. The input

CTP maps were enriched with their corresponding contra-lateral and Tmax heatmap

images. The proposed segmentation model and input representation were intended

to tackle the main challenges of ischemic stroke lesion segmentation, namely, identi-

fying the lesion with highly varying scales and appearances. In comparison with the

previous studies, our proposed method shows a significant improvement in ischemic

stroke lesion segmentation accuracy. We achieved the best accuracy with an average

DSC of 68%. Future studies should determine whether the accuracy of this method

can be further improved by incorporating other available inputs, such as source CTP

images and clinical data (e.g. age, sex, blood pressure, and time parameters).
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Chapter 4

Ischemic Stroke Lesion Prediction
Using Imbalanced Temporal Deep
Gaussian Process (iTDGP)

Abstract

As one of the leading causes of mortality and disability worldwide, Acute
Ischemic Stroke (AIS) occurs when the blood supply to the brain is suddenly
interrupted because of a blocked artery. Within seconds of AIS onset, the brain
cells surrounding the blocked artery die, which leads to the progression of the
lesion. The automated and precise prediction of the existing lesion plays a vital
role in the AIS treatment planning and prevention of further injuries. The cur-
rent standard AIS assessment method, which thresholds the 3D measurement
maps extracted from Computed Tomography Perfusion (CTP) images, is not
accurate enough. Due to this fact, in this article, we propose the imbalanced
Temporal Deep Gaussian Process (iTDGP), a probabilistic model that can im-
prove AIS lesions prediction by using baseline CTP time series. Our proposed
model can effectively extract temporal information from the CTP time series
and map it to the class labels of the brain’s voxels. In addition, by using batch
training and voxel-level analysis iTDGP can learn from a few patients and it is
robust against imbalanced classes. Moreover, our model incorporates a post-
processor capable of improving prediction accuracy using spatial information.
Our comprehensive experiments, on the ISLES 2018 and the University of Al-
berta Hospital (UAH) datasets, show that iTDGP performs better than state-
of-the-art AIS lesion predictors, obtaining the (cross-validation) Dice score of
71.42% and 65.37% with a significant p < 0.05, respectively.
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4.1 Introduction

Acute Ischemic Stroke (AIS), accounting for almost 90% of all strokes, is a sudden

interruption of blood flow in a blood vessel supplying the brain [124]. Each year,

AIS claims approximately 6.2 million lives, which is more than the number of deaths

caused by AIDS, tuberculosis, and malaria combined [125]. Treatment of AIS is a

highly time-sensitive task since irreversible brain damage can occur if blood flow is

not restored promptly [91]. A major step leading to the best AIS treatment decision is

predicting future AIS lesions (i.e.the brain regions that will be damaged if blood flow

is not restored quickly) by using the baseline imaging data [126]. The most common

baseline imaging method for AIS assessment is Computed Tomography Perfusion

(CTP), in which a contrast bolus is injected into the patient’s bloodstream and a

CT scan of the patient’s brain is taken every second as the bolus passes through the

patient’s arteries [64].

The classic approach to predicting the AIS lesion is thresholding the CTP perfusion

maps, which are predefined features extracted from CTP time series to quantify brain

cerebral circulation [127]. Unfortunately, this method does not accurately predict the

lesion volumes, which can lead to poor treatment decisions [128]. AIS lesion predic-

tion is challenging for four main reasons, which may make this thresholding method

inefficient: (1) we need to predict the future lesion — i.e.this study investigates both

short-term (within 3 hours of baseline CTP imaging) and long-term (after 24(±6)

hours of baseline CTP imaging) predictions for future AIS lesions — based only the

baseline information; (2) the small difference between the appearance of lesion and

the rest of the brain tissues in the CTP images; (3) the heterogeneity of the lesion
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in size, shape, and loci (across different stroke patients); and (4) the small number

of labelled (actual future lesions) brain image samples. Recent developments in deep

neural networks have led to many attempts at improving the accuracy of AIS lesion

prediction. These approaches can be grouped into two main categories: (a) those

that used the CTP parameter maps, and (b) those that used the native CTP time

series to predict the AIS lesion.

Due to some drawbacks with the previously proposed methods, there is still more

room to improve the accuracy of the AIS lesion prediction task to be suitable for

real clinical use. We have discussed the pros and cons of different types of previous

methods in Section 4.2.

As presented in Figure 4.1, this paper proposes a novel model that learns to predict

AIS lesions based on native CTP time series: the imbalanced Temporal Deep Gaussian

Process (iTDGP), which employs Deep Gaussian Processes (DGP) to learn a prob-

abilistic model that can effectively use temporal information to distinguish healthy

voxels versus lesion ones. In DGP models, stacked layers of Gaussian processes (GPs)

are merged together using stochastic process composition to learn a predictive model.

DGP models can be viewed as a functional model of regression, classification, and

unsupervised learning as well as a theoretical model of deep learning. In contrast

to other approaches, our proposed iTDGP does not require prior calibrations in the

preprocessing phase — e.g.applying multi-subject anatomical alignments, etc. Fur-

thermore, iTDGP uses raw CTP time series volumes and does not require selecting

arterial input functions (AIFs) (i.e.the time-concentration curve of one of the large

feeding arteries of the brain [122]) which is a highly error-prone process. We found
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that the iTDGP is better at identifying the AIS lesions by analyzing the entire CTP

time series, rather than using previous methods that used spatial snapshots as chan-

nels of a CNN model, which is not an effective method to analyze the time series in a

temporal manner [123, 129]. In addition, our proposed method is designed to perform

robustly when the classes are imbalanced; note this is a major challenge for predict-

ing AIS lesion, as there are many more healthy voxels than the lesion ones. During

the learning process, iTDGP creates balanced batches, each of which includes all le-

sion voxels (small class), as well as the same number of instances that are randomly

selected from healthy voxels (big class).

We used two datasets to evaluate our proposed method and compare it with previ-

ously proposed methods. The first dataset was the ISLES 2018 training set that

included the actual AIS lesion ground truths. Therefore, we were able to com-

pare our method with the previous method by using the actual lesions’ ground

truth. The second dataset was our local dataset, the University of Alberta Hos-

pital (UAH), which was collected for AIS future lesion prediction (after around 24

hours of stroke onset). Our comprehensive experiments, using the ISLES challenge

2018 [cereda2016benchmarking] and UAH datasets, have shown that iTDGP

is superior to the state-of-the-art AIS lesion predictors, obtaining a higher (cross-

validation) Dice Similarity Coefficient (DSC).

Despite the promise of our proposed method in most experiments, iTDGP is a

pixel-level classification method that may be slower than previous models that used

end-to-end CNN models for AIS lesion prediction. However, we divided the dataset

into smaller batches during training instead of using all voxels at once. In addition, we
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Figure 4.1: The first row (stroke story) summarizes the standard sequence of events
associated with an emergency stroke event. Row 2 (preprocessing 4D CTP data)
demonstrates the process of creating the temporal dataset. The 4D images are con-
verted into a 2D matrix in which each row is a voxel, and the columns record their
corresponding intensity values at the time points of CTP imaging. In addition, using
the follow-up MRI image, an expert determines the class label for each voxel (healthy
or lesion). The third and fourth rows represent the training and testing phases, re-
spectively.

leave out only one patient to test so the model can classify all voxels in a reasonable

amount of time.

In the rest of the paper, Section 4.2 explains some related works, Section 4.3

presents our proposed AIS lesion prediction method. Section 4.5 reports our experi-

ments, achieved results, and discussions. Finally, Section 4.6 presents the conclusions

and suggests some future directions.
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4.2 Related Works

Recent developments in deep neural networks have led to many attempts at improving

the accuracy of AIS lesion prediction. These approaches can be grouped into two main

categories: (a) those that used the CTP parameter maps, and (b) those that used

the native CTP time series to predict the AIS lesion.

The majority of the first group applied CNN-based models to the CTP maps for

medical image segmentation [103, 110]. They have explored a wide range of deep

learning techniques for predicting AIS lesions, including 2D [50, 110], 3D [110, 130],

and multi-modal predictive models [49, 103, 131]. The U-Net [113] and its extensions

are the most commonly used model to perform the prediction task [113]. Despite

a large number of computations and complex design of these models, there are still

some problems with them that prevent further improvements in the AIS lesion pre-

diction task. A major limitation of these methods can be using predefined features,

and the CTP parameter maps to predict AIS lesions [64]. Extracting these prede-

fined maps from a CTP time series eliminates a lot of useful spatial and temporal

information [132]. Given these issues, deep neural networks, which tend to do bet-

ter with raw data than they do with predefined high-level features, might not be

the best tool for predicting AIS lesions using already manipulated CTP parameter

maps [liang2017text]. Another problem is that these approaches rely on arterial

input functions (AIFs) selection (i.e.the time-concentration curve of one of the large

feeding arteries of the brain [122]) which is a highly error-prone process. Any under-

estimation or overestimation of the AIF selection will result in incorrect values for

the perfusion parameter maps [123].
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Due to the shortcomings of using CTP parameter maps, the second group of ap-

proaches has increasingly explored the models that utilize native CTP time series

for AIS lesions prediction. The majority of these methods have used the black-box

deep learning models to predict AIS lesions from CTP time series images. For exam-

ple, [129] used multiple original CNN autoencoders for separately extracting features

from each 3D volume snapshots of the CTP time series and then merging them to

perform the final prediction using one decoder. Another study [123] used different

CNN encoders to extract features from the patients’ clinical information (age, gen-

der, etc.), the selected AIF spot, and the CTP time series to predict AIS lesions.

Moreover, there are numerous other methods that directly applied CNN autoencoder

extensions, such as U-Net, to the native CTP time series [110, 112]. Typically, they

perform a 3D prediction where the time dimension is regarded as the channels of the

input layer of the CNN model. Despite their ability to partially perform AIS predic-

tion better than the ‘CTP maps’ methods, these ‘CTP time series’ methods are not

yet adequate to be used in real-world applications. One of their flaws could be their

ability to use the temporal information contained in the CTP time series, which is

more crucial than spatial information to predict AIS lesions.

Another concern that can affect both ‘CTP maps’ and ‘CTP time series’ group of

methods is how they handle imbalanced classes in the AIS lesion prediction problem,

i.e. AIS lesions usually include a small portion of the brain. Bertels et al. attempted

to deal with imbalanced data problems by only using the affected hemisphere of the

brain (AIS usually occurs in one hemisphere) [112]. Pinheiro et al. proposed to divide

the 2D slices into smaller image batches, and excluded the batches not containing any
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lesion [133]. The problem with these methods is that they learn to identify lesions

only in images that are more likely to present them, and they are weak at identifying

healthy brain regions. It should be noted that for a new image, where we do not know

which hemisphere or slice does not contain the lesion to exclude, the model must be

able to identify both healthy tissue and the lesion.

4.3 Method

This section describes iTDGP and how it can learn to predict both short- and long-

term AIS lesions based on CTP time series. As depicted in row 3 of Figure 4.1,

iTDGP learns a predictive model in three steps: generating balance batches, learning

a deep Gaussian model, and smoothing the predicted area using spatial information.

The first step addresses the imbalanced sample size challenge (mentioned in the in-

troduction), as iTDGP first generates a set of balanced batches from the AIS dataset

— where each batch includes all instances from the small class (lesion voxels) and

randomly draws the same number of instances (equal to small class size) from the

big class. Next, iTDGP learns the model parameters from these balanced batches.

Lastly, iTDGP uses a heavy-tailed Gaussian smoothing procedure to enhance the

robustness of predicted regions.

It should be mentioned that the methods, experiments, as well as results presented

in this paper, have been verified by relevant physicians in the neurology division of the

University of Alberta hospital based on the relevant guidelines. Additionally, both

datasets we used — the public ISLES 2018 dataset [cereda2016benchmarking]

and the local UAH dataset — were anonymous and collected with consent from all
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subjects or their legal guardians. The UAH dataset contained 55 patients collected as

part of an ongoing prospective stroke study. The study was approved by the Health

Ethics Committee of the University of Alberta (Pro00066577). Written informed

consent was received from all study participants. The dataset contained 55 patients

who had the follow-up MRIs within 24(±6) hours of their baseline CTP imaging.

Let T be the number of time points, and V be the number of voxels for training set.

Note that the preprocessing procedure includes the time synchronization step [123],

which selects the same number of time points for each patients — here, we used

T = 20 for ISLES and T = 40 for UAH. The preprocessed CTP time series for the

training phase use the input matrix X ∈ RV×T and the label vector y ∈ {0, 1}V . Let

VL be the number of voxels in the large class (selected based on training label y) and

VS be the number of voxels in the small class. Our proposed imbalanced approach

then generates B = [ V
VS
] balanced batches for each epoch, in which each batch consists

of all voxels of the small class and the VS samples of the large class — i.e.randomly

sampled without replacement. Here, [·] denotes the integer part function. We let

E be the number of epochs in the training phase, and VB = 2VS be the number of

voxels in each batch. We respectively define X(s) ∈ RT×VB and y(s) ∈ {0, 1}VB for

s = 1, 2, . . . , E ×B as features and labels for s-th training iteration. In next section,

we explain how iTDGP usesX(s) and y(s) in each iteration to learn a predictive model.

4.3.1 imbalanced Temporal Deep Gaussian Process (iTDGP)

Our proposed iTDGP is a fully-connected deep neural network that is comprised of H

Gaussian Processes (GPs) layers. In deep Gaussian process (DGP) models, GPs are

merged together using stochastic process composition to form non-Gaussian models.
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As well as being a theoretical model of deep learning, they can also be interpreted as

a functional model of regression, classification, and unsupervised learning.

The proposed iTDGP offers the following properties:

• iTDGP can map each hidden layer to the next in a more expressive and data-

driven manner than a pre-fixed sigmoid non-linear function, which is used in

standard parametric deep learning algorithms [134].

• iTDGP uses an Automatic Relevance Determination (ARD) kernel that can

automatically determine its layers dimensionality — i.e.we do not need to man-

ually assign the number of neurons [134, 135].

• iTDGP is robust against overfitting small data due to its averaging and stochas-

ticity characteristics of GPs [136].

Let x
(s)
v ∈ RT , X(s) = {x(s)

v }VB
v=1 and y

(s)
v ∈ {0, 1}, y(s) = {y(s)v }VB

v=1 for s =

1, 2, . . . , (E × B) be respectively the v-th instance and its corresponding label from

s-th training iteration. Letting H be the number of iTDGP network layers, it uses

a composition of functions f(x
(s)
v ) = f (H) ◦ (f (H−1)... ◦ (f (1)(x

(s)
v ))) to map each data

point x
(s)
v , to its associated output y

(s)
v . Here, function f (h) for the intermediate layer

h = 1 . . . H−1 includes T (h) GP functions (i.e.f (h) =
{︂
f
(h)
j

}︂T (h)

j=1
) that maps represen-

tations of h-th to (h + 1)-th layer. Further, f
(h)
j in layer h provides j-th representa-

tion by using independent GP priors — i.e.f
(h)
j (x

(s)
v ) ∼ GP(m

(h)
j (x

(s)
v ), k(h)(x

(s)
v ,x

(s)
v̂ )),

where v, v̂ ∈ {1 . . . VB}, m(h)
j (x

(s)
v ) is mean function and k(h)(x

(s)
v ,x

(s)
v̂ ) denotes the co-

variance function for j-th representation in layer h [135]. We let F
(1)
v,j = f

(1)
j (x

(s)
v ) be

the representation for j-th function of the 1-st layer that produced using x
(s)
v input
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data, and F
(h)
v = {F (h)

v,j }T
(h)

j=1 denote all representations for v-th instance in layer h. We

then define F
(h)
v,j = f

(h)
j (F

(h−1)
v ) as the j-th representation for h = 2 . . . H− 1 interme-

diate layers. Note the last layer F(H) = f (H)(·) consists of one neuron that uses a soft-

max function to perform the binary classification task. We also let f
(h)
j = {F (h)

v,j }
VB
v=1

denote the j-th representation at layer h that computed by using all input data, and

F = {F(h)}Hh=1 be all representations in all layers. The kernel function corresponding

to GPs at layer h is expressed as [134]:

k(h)(F(h)
v ,F

(h)
v̂ ) =

(σ
(h)
f )2exp

(︂
− 1

2ω(h)

⃦⃦⃦
F(h)

v − F
(h)
v̂

⃦⃦⃦2 )︂
,

(4.1)

for each v, v̂ ∈ {1 . . . VB}. Using the weighted covariance function (4.1), it is pos-

sible to assign different weights to different latent dimensions. This can be used in

a Bayesian training framework to turn off irrelevant dimensions by reducing their

weights to zero. By applying this procedure, complex models will be automatically

structured. However, since the covariance function introduces non-linearity to this

model, it is difficult to apply Bayesian methods to it [134]. In order to cope with

this issue, we can define a Bayesian training procedure analytically based on recent

nonstandard variational inference methods [williams2006gaussian]. To read more

about that, refer to 4.4.

4.3.2 Postprocessing

After classifying each voxel, iTDGP converts the labelled voxels to the image con-

taining the predicted AIS lesion. Let G denote a smoothing kernel with log-normal

distribution [wilcox2003applying] and X be the input image. Then the learned

neural network within iTDGP model, f(·) = f (H) ◦ (f (H−1)... ◦ (f (1)(·))), will produce
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the predicted labels for each voxel of X — i.e.the segmented image, Y = f(X). The

postprocessed prediction is Ỹ = G ∗Y, where ∗ is the convolution operator. Based

on our experimental results, we found that this postprocessing creates a more ho-

mogeneous predicted lesion by removing tiny misclassified regions. Since AIS lesions

usually appear as homogeneous masses [137], the postprocessing step enable us to

improve prediction accuracy.

4.4 Bayesian Training

We follow [williams2006gaussian, 134] for optimizing the parameters of our pro-

posed iTDGP model. There are a few parameters and variables used in this section

that are defined in the Method Section of the main paper. Based on variational sparse

Gaussian Process (GP) approximation [williams2006gaussian], each layer has an

induced variable set U =
{︁
U(h)

}︁H−1

h=1
, where each U(h) = {u(h)

j }T (h)

j=1 — H is the num-

ber of layers in the network, and T (h) is the number units in h-th layer. This is a set of

function values over M inducing points Z(h) associated with layer h, Z(h) =
{︂
z
(h)
i

}︂M

i=1
,

where each u
(h)
j is the inducing variables associated with the j-th representation at

the h-th layer. For simplicity, we considered a fix number of inducing points M , for

all layers which is followed by a joint GP prior over inducing points as well as latent

function values. The joint distribution p(y,F,U) is computed by:

VB∏︂
v=1

p(yv | F(H)
v )×

H∏︂
h=1

T (h)∏︂
j=1

p(f
(h)
j | u(h)

j ,F(h−1),Z(h)) p(u
(h)
j | Z(h)).

(4.2)

We respectively define X(s) ∈ RT×VB and y(s) ∈ {0, 1}VB for s = 1, 2, . . . , E × B

as features and labels for s-th training iteration, where E the number of epochs in
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the training phase, B is the number of balanced batches, and VB is the number of

voxels in each created balanced batches. In this case, a deep GP prior is applied

recursively over all latent spaces with F 0 = X(s) and soft-max likelihood is utilized

for classification.

We let KXY be a covariance matrix over the general matrices X and Y [134]. We

then define the mean and covariance functions as follows:

mean(f
(h)
j ) = m

(h)
j (F(h−1))+

K
(h)

F(h−1)Z(h)(K
(h)

Z(h)Z(h))
−1(u

(h)
j −m

(h)
j (Z(h))),

(4.3)

cov(f
(h)
j ) = K

(h)

F(h−1)F(h−1)−

K
(h)

F(h−1)Z(h)(K
(h)

Z(h)Z(h))
−1(K

(h)

F(h−1)Z(h))
⊤.

(4.4)

We also let N operator as the normal distribution. The conditional probability for

f
(h)
j is then defined as follows:

p(f
(h)
j | u(h)

j ,F(h−1),Z(h)) =

N (f
(h)
j ; mean(f

(h)
j ), cov(f

(h)
j )).

(4.5)

Since obtaining the marginal prior over
{︁
F(h)

}︁H

h=2
is intractable, the posterior dis-

tribution p(F,U | y) and marginal likelihood p(y) cannot be computed in closed

form [134]. To cope with this problem, we use variational inference approach pro-

posed in [138], where the variational posteriors are computed as follows:

q(F,U) =
H∏︂

h=1

T (h)∏︂
j=1

p(f
(h)
j | u(h)

j ,F(h−1),Z(h)) q(u
(h)
j ), (4.6)

where q(u
(h)
j ) = N (u

(h)
j ;m

(h)
j ,S

(h)
j ), m(h) = {m(h)

j }T (h)

j=1 is a vector formed by con-

catenating the vectors m
(h)
j , and S(h) is the block diagonal covariance matrix con-

structed by S
(h)
j . This method can be extended to multiple layers by using the fol-
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lowing methodology:

L(
{︁
m(h),S(h)

}︁H

h=1
) =

VB∑︂
v=1

E
q(F

(H)
v )

[︁
log p(yv | F(H)

v )
]︁

−
H∑︂
v=1

KL[q(U(h)) || p(U(h))],

(4.7)

where KL is Kullback–Leibler divergence [hershey2007approximating], and Ex[·]

denotes the expected value function with respect to x distribution. In addition, over

all the data points, the marginal distribution of the functions values for layer H can

be computed as:

q(F(H) |
{︁
Z(h),m(h),S(h)

}︁H

h=1
) =∫︂

F(1),...,F(H−1)

H∏︂
h=1

q(F(h) | F(h−1),Z(h),m(h),S(h))

dF(1), ..., dF(H−1),

(4.8)

To obtain the conditional distribution in equation (4.8) we used:

q(F(h) | F(h−1),Z(h),m(h),S(h)) =

T (h)∏︂
j=1

∫︂
u
(h)
j

p(f
(h)
j | u(h)

j ,F(h−1),Z(h))q(u
(h)
j )du

(h)
j

(4.9)

=
h∏︂

j=1

N (f
(h)
j ; m̃

(h)
j , Ṽ

(h)

j )

where we have
m̃

(h)
j = m

(h)
j (F(h−1)) +K

(h)

F (h−1)Zh(K
(h)

Z(h)Z(h))
−h

(m
(h)
j −m

(h)
j (Z(h))),

(4.10)

Ṽ
(h)

j = K
(h)

F(h−1)F(h−1) −K
(h)

F(h−1)Z(h)(K
(h)

Z(h)Z(h))
−1

(K
(h)

Z(h)Z(h) − S
(h)
j )(K

(h)

Z(h)Z(h))
−1(K

(h)

F (h−1)Z(h))
⊤.

(4.11)

The non-liner stochastic term
{︁
F(h−1)

}︁H

h=2
within the conditional distributions{︁

q(F(h) | F(h−1),m(h),Z(h),S(h)
}︁H−1

h=2
, makes the marginal distribution in equation (4.8)

intractable. This intractability results in the expected log likelihood in equation (4.7)
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to be intractable even for Gaussian likelihood. We used the Monte Carlo sampling

approximation method proposed in [salimbeni2017doubly]. In this approach, the

marginal variational posterior over function values in the final layer for v-th data point

— i.e.q(F
(H)
v ) — depends only on the v-th marginal so fall the previous layers. Each

F
(h)
v is sampled from q(F

(h)
v | F(h−1)

v ,Z(h),m(h),S(h)) = N (F
(h)
v ; m̃(h)[v], Ṽ

(h)
[v]) where

m̃(h)[v] (T (h)-dimensional vector) and Ṽ
(h)

[v] are respectively the T (h)-dimensional

mean and the T (h) × T (h) diagonal covariance matrix of the v-th data point over rep-

resentations in layer h , which shows how it depends on F
(h−1)
v . We use the ‘reparam-

etarization trick’, where the sampling can be written as [salimbeni2017doubly,

134]:

F(h)
v = m̃(h)[v] + ϵ(h) ⊙ Ṽ

(h)
[v]

1
2 ,

ϵ(h) ∼ N (0, IT (h))

(4.12)

Using a mini-batch of data, one can compute gradients on the lower bound, and

the parameters are updated based on the sum of the data points. This allows one

to maximize the variational lower bound by using stochastic gradient techniques.

Combining the stochasticity of gradient computation with Monte Carlo sampling to

compute variational lower bounds leads to a doubly stochastic inference method for

deep GPs.

4.5 Experiments and Results

We evaluated our iTDGP model for AIS lesion prediction using two datasets. (1) To

predict short-term AIS lesions, we used the public dataset from ISLES challenge

2018, which includes 94 scans from 63 patients (taking 2 slabs from some patient

to illustrate the entire AIS lesion) collected from two imaging centers. Here, each
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patient had an Magnetic Resonance Imaging (MRI) within 3 hours of their baseline

CTP imaging; Using the short-term follow-up MRI scans, the experts obtained the

ground-truths of the future AIS lesions. For each patient, there are different numbers

of brain image slices, from 2 to 16, but all the slices (both the baseline CTP and

follow-up MRI) are the same size 256× 256.

(2) The University of Alberta Hospital (UAH) dataset contained 55 treated patients

who had the follow-up MRIs within 24(±6) hours of their baseline CTP imaging. For

each patient, we labeled ground-truth future AIS lesions based on their follow-up

MRI. Here both the baseline CTP and follow-up MRIs have slice size of 512 × 512.

To be consistent, we downsampled the UAH dataset images (both CTP and MRI) by

a 2× 2 kernel so that they are the same image size as ISLES dataset images.

Note that, in both datasets, clinical information was not included in our analysis.

In this study, we focused just on using imaging information and comparing our results

with previous works that only used the same information. In the future, we plan to

investigate the impact of including other clinical information, including treatment

type, time intervals, gender, age, etc, on AIS prediction accuracy.

To fairly compare the obtained results, we evaluated all the models using one-

patient-out cross-validation: training on all but one patient, then testing on that held-

out patient. In accordance with previous AIS prediction studies, we have reported

Dice Similarity Coefficient (DSC), Jaccard, precision and recall scores to show the

performance of the proposed prediction model. We implemented our proposed model

with PyTorch, optimized with the Adam algorithm [139] on NVIDIA GeForce GTX

980M GPU. Based on the poly schedule, αiteration = αiteration−1 × (1− iteraion
total iterations

),
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the learning rate α is initially set to 0.01 and decays over iterations.

4.5.1 Preprocessing

The first step of preprocessing was to remove the skull and background from the

CTP images. Then, in order to enhance the Signal-to-Noise Ratio (SNR) of the

CTP images, which is critically low, we applied an in-slice 2D spatial Gaussian fil-

ter to reduce noise and smooth the images. We then converted the 4D CTP time

series images of each patient p ∈ {1, . . . , P} (where P is the number of the pa-

tients in the dataset) into a 2D temporal matrix of Xp ∈ Rvp×tp , and labeled the

voxels’ label in yp ∈ {0, 1}vp , where vp is the number of brain voxels of patient num-

ber p, and tp is the number of time points for that patient. Finally, to make the

temporal matrices comparable across the patients, we separately normalized them

by: normalized(Xp) = (Xp −mean(Xp))/std(Xp).

Because of the differences in brain volume sizes and imaging time length, the values

of the values of vp are different, as are the values of tp. To equalize the number of

time points (that are considered as features in our method) for all the patients, we

found the patient with the smallest tp and named it T (here, T = 20 for ISLES and

40 for UAH). Then, for every other patient, we removed the first and last (tp − T )/2

time point. Finally, we concatenated all of these 2D temporally equalized matrices

from all the patients in to the matrix X ∈ RV×T , where V is the total number of

voxels in the whole dataset and T is the equalized number of time points. The labels

of the voxels are also stored in y ∈ {0, 1}V .
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Figure 4.2: AIS lesion scores (DSC, Jaccard, Precision, Recall) obtained by 9 differ-
ent predictive models: Thresholding (baseline), Multires U-Net [50], FCN-Map [103],
TCN [129], FCN-CTP4D (metadata excluded) [123], U-Net [112], TDGP (iTDGP
without postprocessing and balanced batches), iTDGP-post (iTDGP without post-
processing), and iTDGP. Note that larger numbers are good, for all 4 measures. Also,
the bars show 1 std dev.
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4.5.2 Prediction Scores

Figure 4.2 shows the results of some recently proposed AIS lesion predictors, as well as

our proposed model. The first three methods from the left (Thresholding, MultiRes

U-Net [50], and FCN-Map [103]) are ‘CTP parameter map’ models, which use only

the CTP parameter maps to predict AIS lesion. The next 3 methods — i.e.TCN [129],

FCN-CTP4D (metadata excluded) [123], and U-Net [112] — used native CTP time

series for the lesion prediction problem. The rightmost three methods in figure 4.2 are

our proposed methods, i.e.‘TDGP’ uses neither balanced batches nor postprocessing,

‘iTDGP-post’ used balanced batches without postprocessing step, and ‘iTDGP’ is

the complete model. One can see that the models that used the CTP time series are

superior to the ‘CTP parameter map’ models. In addition, our proposed prediction

method performs the prediction task more accurately than the other ‘CTP time series’

methods. Note each of the 4 plots in figure 4.2 is comparing our iTDGP and χ, for

6 different χ ∈ { baseline, Multires U-Net [50], FCN-Map [103], TCN [129], FCN-

CTP4D [123], U-Net [112] }, and using two datasets, ISLES and AHS. Then for a

total of 4× 6× 2 = 48 comparisons, 2-sided t-test found p < 0.05 in all 48 cases.

Recall that the ISLES dataset is collected to predict short-term future AIS lesions,

while the UAH dataset is collected to predict long-term future AIS lesions. In Fig-

ure 4.2, the blue blocks, which are related to short-term AIS lesion prediction, have

a lower increment rate from left to right — ‘CTP maps’ to ‘CTP time series’ models

— than the red blocks, which are for long-term prediction. This suggests that the

temporal information from the CTP time series might be more relevant for long-term

AIS lesions prediction than for short-term predictions.
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It should be noted that our proposed iTDGP is actually a voxel-level classifier

model. Consequently, this model can be slower - but not so slow as to affect the

clinical requirements of the application - than others using deep neural networks.

However, in this study, we focused on improving the accuracy of the model rather

than its speed.

[t]

4.5.3 TDGP vs. iTDGP

In order to compare our TDGP and iTDGP, we conducted additional studies. Fig-

ure 4.3 presents the lesions predicted by TDGP and iTDGP, for two patients from

each dataset. As mentioned earlier, iTDGP uses balanced batches for training and

uses a postprocessing step, but TDGP does neither. Figure 4.3 suggests that iTDGP

can identify AIS lesions more accurately and homogeneously by handling imbalanced

classes and smoothing the predicted mask.

Another criterion that is commonly used to estimate the quality of an AIS lesion

predictor is whether the predicted lesion is the same size (i.e., the same number

of voxels) as the actual lesion. Figure 4.5 shows a scatter plot of the true versus

predicted volumes for all subjects of both ISLES and UAH datasets by using the

proposed methods, where each dot on the plot corresponds to one patient in the

dataset. The plots and associated R-squared (R2) values suggest that the proposed

method can improve the accuracy of volume prediction of AIS lesions along with AIS

lesion appearance prediction.
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4.5.4 Small Dataset Effect

In order to evaluate our proposed iTDGP in terms of its robustness in training on a

small number of training examples, we simply compared it with two widely used deep

neural networks, FCN and U-Net. Figure 4.4 compares the DSC score between our

iTDGP, FCN-CTP4D, and U-Net on different dataset sizes. Since iTDGP uses voxel-

level classification, it could technically augment the dataset so that the model could

be learned with fewer patients. Figure 4.4 shows that our iTDGP model produces a

better performance on datasets with low patient numbers in comparison with other

methods. Moreover, when iTDGP is compared to the other methods, there is less

difference between the DSCs obtained with the small and big datasets with iTDGP

than with the others. This suggests that iTDGP can be more robust against the

training set size problem than other methods. The problem with small datasets is also

that they contain a low number of voxels in the target class (which is relatively small).

To learn, however, iTDGP uses balanced batches rather than the entire dataset at

once. By using this technique, we can partially solve the problem of generalization

over small sample size.

4.6 Conclusion

This paper presents a new prediction model, called imbalanced Temporal Deep Gaus-

sian Process (iTDGP), that can learn to predict AIS lesions based on the 4D CTP

time series. This iTDGP extends the standard DGP approach to address two main

drawbacks of the previous AIS lesion prediction models. First, it can effectively ex-

tract the temporal information of the CTP time series to predict the future AIS
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lesion. Secondly, iTDGP can address the imbalanced class problem (healthy versus

lesion voxels) that is a critical barrier to improving AIS lesion prediction accuracy.

Further, iTDGP uses a postprocessor to correct misclassified brain regions to improve

lesion prediction accuracy. By comparing the obtained DSC by our method with pre-

vious works using both ISLES 2018 and UAH datasets, it was confirmed that iTDGP

achieves performance that is superior to other state-of-the-art AIS lesion predictors.

We anticipate that the iTDGP prediction model will have strong practical applica-

tions in different time series analyses — such as temporal modeling of localized brain

activity.
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Figure 4.2: AIS lesion scores (DSC, Jaccard, Precision, Recall) obtained by 9 differ-
ent predictive models: Thresholding (baseline), Multires U-Net [50], FCN-Map [103],
TCN [129], FCN-CTP4D (metadata excluded) [123], U-Net [112], TDGP (iTDGP
without postprocessing and balanced batches), iTDGP-post (iTDGP without post-
processing), and iTDGP. Note that larger numbers are good, for all 4 measures. Also,
the bars show 1 std dev.
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Figure 4.3: Visualization of AIS lesion predicted by the pro-
posed iTDGP, versus TDGP, which does not include the
imbalanced and post-processing extensions.
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Figure 4.4: The DSC results that our proposed model achieves next to some selected
state-of-the-art methods for learning from different sizes of training sets.

84



Figure 4.5: Actual versus predicted lesion volumes(ml), by proposed TDGP — that
is iTDGP without postprocessing and balanced batches — (left column) and iTDGP
(right column), for two datasets and using one-patient-out validation.
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Chapter 5

Using Temporal GAN to Translate
the Current CTP Scan to
Follow-up MRI, for Predicting
Follow-up AIS Lesions

Abstract

Over 795,000 Americans suffer a stroke every year, leading to a death ev-
ery 3.5 minutes. Approximately 87% of all strokes are Acute Ischemic Strokes
(AIS), i.e., an abrupt interruption in cerebral circulation due to a blocked artery.
Early prediction of AIS final outcomes (AIS lesions) is crucial to effective treat-
ment planning for AIS patients. Due to its speed, availability, and lack of
contraindications, Computed Tomography Perfusion (CTP) is preferred over
other imaging modalities with higher resolution (e.g., MRI), for AIS lesion pre-
diction. However, the low contrast of baseline CTP images makes it difficult to
determine AIS lesions precisely, while follow-up MRI images do. Therefore, this
paper proposes a method of synthesizing follow-up MRI images from baseline
CTP scans by a Temporal Generative Adversarial Network (TGAN) — which
encodes baseline CTP frames with a series of encoders, followed by a decoder
that forecasts the high-resolution follow-up MRIs. It also uses a discriminator
that competes with the generator to identify whether its input MRI is real
or fake. Furthermore, our TGAN includes a segmentor that can identify AIS
lesions in those synthesized MRI images. The generator, discriminator, and seg-
mentor in TGAN each use MultiRes U-Nets, an extension of the original U-Net
architecture, which can robustly segment objects of various scales and shapes.
Our experiments with Leave-One-person-Out Cross-Validation (LOOCV) ob-
tained an average dice coefficient of 56.73%, with a significant p¡0.05. In com-
parison to traditional methods using CTP perfusion parameters, we found that
our novel method was more accurate in predicting AIS lesions.
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5.1 Introduction

5.1.1 Summary

Recently, GAN models have been successfully applied to image-to-image synthesis

and translation. Our study confirms that the temporal GAN model can effectively

be used to translate the baseline CTP scan to the follow-up MRI, for predicting

final acute ischemic stroke lesions. This model shows that using MultiRes U-Net

we can extract multi-resolution features and temporarily correlate them to produce

the follow-up MRI. By using the high-resolution produced MRI images we could

predict the follow-up ischemic stroke lesion. In addition, our proposed model could

eliminate some manual error-prone steps in ischemic stroke prediction resulting in a

more accurate and quick stroke assessment.

5.1.2 Description of purpose

An Acute Ischemic Stroke (AIS), accounting for almost 87% of all strokes, is a sudden

interruption of cerebral circulation due to a blocked artery in the brain [1]. More than

6.2 million people die each year from AIS, which is more than the deaths from AIDS,

tuberculosis, and malaria [2]. The treatment of AIS is a very time-sensitive task since

failure to restore blood flow can lead to irreversible brain damage [3]. Predicting final

AIS outcomes (AIS lesions) using baseline images is a crucial step leading to the most

effective AIS treatment decision [4]. Due to its speed, availability, and lack of con-

traindications, Computed Tomography Perfusion (CTP) is preferred over other higher

resolution imaging techniques, such as MRI, for AIS assessment. CTP involves in-

jecting a contrast bolus into the bloodstream of a patient and taking a CT scan every
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second as the bolus passes through their arteries. AIS lesion prediction is a challenge

because of four main reasons: (1) we are only given baseline information; (2) CTP

images do not show much difference between the appearance of the lesion and the rest

of the brain tissues; (3) AIS lesions have heterogeneous sizes, shapes, and loci, and

(4) there is a limited number of brain images that are labeled (actual AIS lesions).

Current standard approaches to predict AIS lesions rely on thresholding CTP param-

eter maps — i.e., predefined perfusion parameters extracted from CTP time series

to quantify brain cerebral circulation [5]. This simple thresholding method, however,

might lead to poor treatment decisions because it does not accurately predict AIS

lesion volumes. magnetic resonance imaging (MRI) images are much more sensitive

to AIS lesions than CTP scans, according to clinical experiences. In addition, the

MRI images at follow-up time clearly show the AIS lesions. Hence, in this paper,

we propose to use an end-to-end AIS lesion predictor named TGAN that consists of

a Temporal image-to-image translator which uses a Generative Adversarial Network

(GAN) to generate follow-up MRI images and a segmentor to identify AIS lesions.

5.2 Method

Our proposed AIS prediction method, consists of three main sections, preprocessing,

temporal image translation, and AIS lesion segmentation. First, we used some com-

mon techniques to augment our image dataset in order to prevent overfitting and

improve the model’s ability to generalize to unseen images. To augment the training

images dataset, the images were rotated to an angle that was randomly chosen from

a normal distribution of N(∠0, ∠20). Then a Gaussian noise N(0, 0.03) was added to
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the already normalized (zero mean and unit std) original images. Both the normal

distribution and Gaussian noise parameters were determined empirically.

The next step is baseline CTP to follow-up MRI image translation. As with the

original GAN structure, our proposed image translator consists of two main sections, a

generator, and a discriminator. As Figure 5.1 shows, the generator section consists of

10 encoders to encode 10 selected frames of the CTP image time series and one decoder

to generate their corresponding follow-up MRI image. Our methodology reduces

unnecessary computations and avoids the inefficient large size of neural networks by

just using 10 frames of CTP images rather than the entire sequences, which typically

contain 40 to 60 frames. According to Figure 1, we found the frame with the highest

contrast agent volume out of a sequence of CTP images. We then select three and four

frames before and after the selected frame, respectively. We also added the first and

last frames that do not contain any contrast agents. The purpose of including these

two images is to provide some information on the structure of brain tissue without

highlighting blood flow or arteries.

Figure 5.2 shows that both encoders and decoders of the generator are based on

an extension of the original U-Net architecture, called MultiRes U-Net [9]. In this

modified U-Net, figure 3(a), the original CNN layers are replaced with MultiRes layers

to be robust in detecting objects of various scales and irregular shapes [10][9].

In contrast to original CNN layers, which have only one unique kernel size, MultiRes

layers have three kernel sizes allowing them to extract features at different scales and

resolutions. In addition, in MultiRes U-Net the simple skip connections are replaced

by CNN shortcuts from the encoder to the decoder. With CNN shortcuts in MultiRes,
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Figure 5.1: Frames selection for the temporal generator
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Figure 5.2: MultiRes encoder and decoder
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U-Net was able to overcome one of its weaknesses, which was combining features

from different levels that might cause a semantic gap between them leading to no

convergence in the training process.

Figure 5.3(b) shows the proposed segmentor model’s complete pipeline. The TGAN

consists of a generator constructed from a series of encoders to encode CTP frames

and one decoder that can synthesize their corresponding high-resolution follow-up

MRI. As one can see, we trained a TGAN that learns to translate a sequence of 2D

CTP frames to their corresponding follow-up MRI. The discriminator in the TGAN

is also a MultiRes U-Net. Then we also used MultiRes U-Net as a segmentor that

identifies AIS lesions by using the generated follow-up MRI.
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(a)

(b)

Figure 5.3: (a) MultiRes U-Net architecture; (b) the TGAN AIS lesion predictor
pipeline.
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5.3 Results

To evaluate our proposed AIS lesion predictor we have used our local dataset including

55 patients. We had to exclude 12 patients because they did not have follow-up

scans or had CT scans as the follow-up image. In our experiments, an average dice

coefficient of 57.73%, with a significant p¡0.05, is achieved with Leave-one-person-out

cross-validation (LOOCV). Figure 5.4 shows some randomly selected images. The first

row shows the CTP images, and the second and third rows show the generated and

actual MRI images, respectively. On the generated MRI images, the red line indicates

the predicted lesion by our model, and on the actual MRI, the red line indicates

the actual lesions. Moreover, table 5.1 shows a comparison between our proposed

method and some previous methods for predicting AIS lesions. They were selected

for comparison due to their similarity in approach because they also used generated

MRI rather than baseline CTP to predict AIS lesions. According to Table 5.1, our

proposed TGAN can improve the accuracy of AIS lesion prediction by synthesizing

MRI data more efficiently.

5.4 Conclusion

This paper presents TGAN, a novel prediction model for AIS lesions using 4D CTP

time series. TGAN used MultiRes U-Net to translate baseline CTP images into

high-resolution follow-up MRI images, then to predict AIS lesions from the generated

MRI images. Instead of using pre-defined CTP maps that have already lost much

information and are error-prone, our TGAN can utilize the temporal information of

the CTP time series to predict follow-up MRI images as well as predict AIS lesions.
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Figure 5.4: CTP images are shown in the first row and generated and actual MRI
images are shown in the second and third rows. In the second and third rows, the
red lines are predicted and actual AIS lesions, respectively.
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Additionally, by applying MultiRes U-Net, the lesions can be identified from various

shapes and scales. Our TGAN achieves superior performance to other state-of-the-art

AIS lesion predictors by using our local dataset of 55 patients. We anticipate that

the TGAN prediction model will have strong practical applications in different time

series analyses — such as temporal modeling of localized brain activity.
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Chapter 6

CT Perfusion Map Synthesis from
CTP Dynamic Images using a
Learned LSTM Generative
Adversarial Network for AIS
Assessment

Abstract

Computed tomography perfusion (CTP) is a dynamic 4-dimensional imag-
ing technique (3-dimensional volumes captured over approximately 1 minute)
in which cerebral blood flow is quantified by tracking the passage of a bolus
of intravenous contrast with serial imaging of the brain. To diagnose and as-
sess acute ischemic stroke, the standard method relies on summarizing acquired
CTPs over the time axis to create maps that show different hemodynamic pa-
rameters, such as the timing of the bolus arrival and passage (Tmax and MTT),
cerebral blood flow (CBF), and cerebral blood volume (CBV). However, pro-
ducing accurate CTP maps requires the selection of an arterial input function
(AIF), i.e. a time-concentration curve in one of the large feeding arteries of the
brain, which is a highly error-prone procedure. Moreover, during approximately
one minute of CT scanning, the brain is exposed to ionizing radiation that can
alter tissue composition, and create free radicals that increase the risk of cancer.
This paper proposes a novel end-to-end deep neural network that synthesizes
CTP images to generate CTP maps using a learned LSTM Generative Adver-
sarial Network (LSTM-GAN). Our proposed method can improve the precision
and generalizability of CTP map extraction by eliminating the error-prone and
expert-dependent AIF selection step. Further, our LSTM-GAN does not re-
quire the entire CTP time series and can produce CTP maps with a reduced
number of time points. By reducing the scanning sequence from about 40 to 9
time points, the proposed method has the potential to minimize scanning time
thereby reducing patient exposure to CT radiation. Our evaluations using the
ISLES 2018 challenge dataset consisting of 63 patients showed that our model
can generate CTP maps by using only 9 snapshots, without AIF selection, with
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an accuracy of 84.37%.

6.1 Introduction

Acute ischemic stroke, accounting for almost 90% of all strokes, is characterized by

a sudden interruption of brain blood flow caused by a blocked artery [140]. There

are approximately 6.2 million deaths due to ischemic stroke every year, which is

close to the number of deaths caused by AIDS, tuberculosis, and malaria combined.

Physicians can assess stroke outcomes accurately with a precise imaging technique

and plan treatment more effectively [141].

The primary imaging technique for ischemic stroke clinical outcome assessment

is Computed tomography perfusion (CTP). CTP measures cerebral blood flow by

tracking the passage of a bolus of intravenous contrast with a dynamic 4-dimensional

imaging technique (3-dimensional volumes captured over approximately 1 minute)

[142]. To diagnose and assess acute ischemic stroke, the standard method relies on

summarizing acquired CTPs over the time axis to create maps that show different

hemodynamic parameters, such as the timing of the bolus arrival and passage (Tmax

and MTT), cerebral blood flow (CBF), and cerebral blood volume (CBV) [64].

Nevertheless, accurate CTP maps generation relies on a deconvolution operation,

which is ill-posed and requires strong regularization [122]. In addition, the decon-

volution operation itself is highly dependent on the time-consuming, error-prone,

and expert-dependent selection of an arterial input function (AIF), i.e. a time-

concentration curve in a large brain artery feeding the brain [143]. Furthermore,

the CTP serial imaging course requires the patient to stay still for a relatively long
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time, about one minute. Post-image analysis is made more challenging with any

movement of the patient affecting the resolution of the images. In addition, during

the course of approximately one minute of CT scanning, the patient will be exposed

to ionizing radiation that can alter the tissue composition, thereby producing free

radicals that will increase the risk of cancer [144].

In this paper, we propose an end-to-end temporal Generative Adversarial Net-

work (GAN) that uses a structured Long Short-Term Memory (LSTM) to exploit the

temporal content of CTP images for producing their corresponding perfusion maps

(Tmax, CBF). Our proposed LSTM-GAN is an extended version of the Temporal

Generative Adversarial Network (TGAN) that we previously developed to generate

follow-up MRI images from baseline CTP scans, for ischemic stroke assessment [145].

The TGAN method uses a series of encoders to encode baseline CTP frames and a

decoder to forecast high-resolution follow-up MRIs. It also incorporates a discrimi-

nator that competes with the generator to identify whether the input MRI is real or

fake. Additionally, we have included a segmentor in our TGAN that can detect AIS

lesions in the synthesized MRI images. The MultiRes U-Nets architecture, which is

an extension of the original U-Net architecture, is used by the generator, discrimina-

tor, and segmentor in our TGAN to robustly segment objects of various scales and

shapes [50, 108].

Our proposed LSTM-GAN is comprised of two main sections: an LSTM-generator

and a discriminator. Both the generator and discriminator employ the MultiRes

U-Net architecture. The LSTM-generator section contains a series of MultiRes en-

coders that can extract temporal information about blood flow dynamics from CTP
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sequences in order to generate perfusion maps. MultiRes encoder is actually the

encoder section of our previously proposed MultiRes U-Net. MultiRes U-Net was

developed to segment multi-scale objects using multi-resolution feature extraction

techniques. In the LSTM-generator each CTP time point is entered into a MultiRes

encoder. By integrating the encoders’ layers by using the LSTM model, we were

able to effectively utilize temporal information in the CTP sequences, resulting in a

reduction in the number of time points required to create perfusion maps.

We evaluated our proposed method using the ISLES 2018 challenge dataset. In

order to measure the accuracy of our model, we employed the scale and resolution-

invariant Structural Similarity Index (SSIM) metric. We found that the proposed

method could produce perfusion maps Tmax and CBF with SSIM 84.37% and 78.82%,

respectively, by using only 9 time points from the CTP sequence. The results suggest

that our proposed method could effectively reduce the time that patients need to be

exposed to unsafe x-ray emissions. In addition, our model eliminates the manual step

of selecting AIFs without compromising the accuracy of the production of perfusion

maps.

The following sections are organized as follows: Section 2 provides a review of the

relevant literature, Section 3 describes the dataset we have used, Section 4 presents our

methodology, and Section 5 discusses the experiments and results. Finally, Section

6 concludes with a summary of our main contributions and suggestions for future

research.
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6.2 Literature Review

Deconvolution is a commonly used method for generating CTP maps from a series

of CT images. However, this method is known to be susceptible to various sources

of error, which can impact the accuracy of the resulting maps[146]. Errors in the

deconvolution process, such as inaccuracies in the AIF or errors in the convolution

kernel, can lead to misdiagnosis or incorrect treatment decisions. Deconvolution-based

CTP mapping is susceptible to errors and artifacts related to image acquisition and

processing, including issues with noise, motion artifacts, and misregistration [146].

Any small variations in the contrast enhancement pattern or imaging parameters can

lead to significant errors in the resulting maps, which can affect the accuracy of stroke

diagnosis and treatment decisions [64]. Additionally, deconvolution-based methods

rely on assumptions about the underlying physiology of the brain, which may not

always hold true in pathological conditions such as stroke [122].

AIF selection is a critical step in the deconvolution process, and errors in this

step can lead to significant errors in the resulting CTP maps. The expert-dependent

methods, such as the manual selection of an AIF, are prone to significant inter-

observer variability and could lead to errors in the resulting maps [147]. In addition,

the selection of an AIF in CTP mapping presents several challenges due to issues

such as image quality, temporal resolution, and variations in contrast enhancement

patterns[148]. Small variations in AIF selection can lead to significant errors in the

resulting CTP maps, making it important to establish standardized protocols and

criteria for AIF selection.

The majority of the literature on ischemic stroke lesion identification has focused on
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using perfusion maps [49, 103]. While only a few studies have attempted to exploit

the spatiotemporal nature of CTP image sequences directly [149]. Because of the

information loss that might occur when generating perfusion maps, using raw 4D CTP

data may provide more valuable insights into the underlying brain hemodynamics,

thereby improving ischemic stroke assessment performance [123]. The majority of

studies that utilize raw 4D CTP data have employed deep end-to-end models to

detect brain regions affected by an ischemic stroke. Essentially, these studies sought

to streamline the identification process for ischemic stroke lesions by eliminating the

need for producing CTP maps, as well as the AIF selection step [129].

One example of utilizing raw MR perfusion data is shown by Giacalone et al. in

their study [150], where they employed a machine learning classifier to capture the

spatio-temporal features of each voxel. Their approach provided results comparable

to perfusion maps, which demonstrates the feasibility of generating predictions of

similar quality without requiring deconvolution. Another study by Pinto et al. [151]

proposed a deep learning method that incorporates raw 4D MRI information with

perfusion maps to predict the outcome of stroke lesions. Their approach led to supe-

rior results compared to using perfusion maps alone, as demonstrated in the ISLES

2017 challenge. The challenge evaluated new methods for predicting stroke lesion

outcomes using acute MRI data and clinical information. The winning approach, a

deep learning model based on perfusion maps, achieved a mean Dice score of 0.31

using a total of 75 cases from two different centers. However, this score highlights

the complexity of the task and the scarcity of high-quality data. In another study

[120], Song demonstrated the benefit of combining raw CTP data with perfusion maps
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to improve the model’s performance in segmenting the stroke lesion at baseline, as

demonstrated in the ISLES 2018 challenge [152]. The challenge focused on baseline

segmentation rather than predicting the outcome at follow-up. The transition from

baseline to follow-up is a complex process, with changes in lesion size observed even

after the first 24 h of stroke onset [153].

Computed tomography (CT) scans are widely used in medical imaging as a non-

invasive diagnostic tool for a variety of conditions. However, one major concern with

CT scans is the potential for exposure to ionizing radiation, which has been linked

to an increased risk of cancer [154]. While the radiation doses used in modern CT

scans are much lower than in earlier generations of CT scanners, they are not without

risk [155]. The cumulative effects of multiple CT scans over time can be significant,

especially in young patients, who are more vulnerable to radiation-induced cancer.

Additionally, there is some evidence that certain factors, such as high-dose CT scans

and scans that involve the abdomen or pelvis, may pose a higher risk for developing

cancer. As such, it is important to weigh the risks and benefits of each CT scan on a

case-by-case basis and to consider alternative imaging modalities that do not involve

ionizing radiation when appropriate.

6.3 Dataset

The ISLES 2018 dataset [151] was collected in two centers from acute stroke patients

who presented within 8 hrs of stroke onset. There are 63 patients in the training

data set. In some cases, the stroke lesion is covered by two slabs. These are non-

overlapping or partially overlapping regions of the brain. During dynamic scans
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acquired 1-2 seconds apart, a contrast agent is administered to the patient to assess

cerebral perfusion. The raw data are then analyzed for clinical interpretation to

produce perfusion maps. Maps can provide a variety of information, two of the most

common are cerebral blood flow (CBF), and time to peak of the residual function

(Tmax).

6.3.1 Skull Stripping

Skull stripping is an essential preprocessing step for many applications of CT scans,

including image registration, segmentation, and quantification of brain structures.

One approach that has been widely used for skull stripping in CT scans is based on

morphological operations. They are particularly useful for binary images, where each

pixel is either foreground (part of the object) or background (not part of the object).

We used the following steps for the skull stringing of the CTP sequences:

• Thresholding: The first step is to convert the CT scan to a binary image by

selecting a threshold value that separates the skull and brain tissue. We have

manually selected the threshold based on visual inspection and empirical exper-

iments.

• Erosion: The binary image is then subjected to an erosion operation, which

shrinks the boundaries of objects in the image. This removes small objects that

are not part of the brain tissue.

• Dilation: Next, a dilation operation is applied to the binary image, which ex-

pands the boundaries of objects in the image. This fills in small gaps between

regions of the brain tissue.
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• Closing: A closing operation is then applied to the binary image, which consists

of applying dilation followed by erosion. This is applied to smooth the boundary

between the skull and brain tissue, resulting in a more accurate segmentation.

• Post-processing: Finally, any remaining skull fragments that are still present

in the segmented image were removed by applying a connected components

analysis to the binary image and removing components that were smaller than

a certain threshold size.

6.3.2 Image data Augmentation

We propose an image data augmentation method that includes rotation, shifting,

flipping, and noise. These techniques increase the diversity of the training data and

help the model learn to recognize anatomical structures from different perspectives

and in different conditions. Our experimental results show that this method improves

the performance of the proposed synthesizer model and makes it more robust to noise

and artifacts in the images. Overall, this approach can enhance the quality and

quantity of the training data and improve the accuracy of the proposed LSTM-GAN.

For each image in the training set, we first rotated the image by a random angle

between -15 and 15 degrees. Then the image was Shifted horizontally and vertically by

a random amount between -10 and 10 pixels. Then the image was flipped horizontally

and vertically with a 50% probability. Finally, we added Gaussian noise to the image

with a mean of 0 and a standard deviation of 0.05. Apply the same transformations

to the corresponding target image for each image.
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6.4 Proposed Methodology

In this study, we propose, LSTM-GAN, an end-to-end deep neural network for syn-

thesizing CTP maps from CTP time series, Figure 6.1. Our model leverages the

power of the GAN and LSTM techniques to overcome two major limitations of ex-

isting CTP map generation methods. Firstly, our model eliminates the manual step

of Arterial Input Function (AIF) selection in the CTP map generation process. This

manual step is often time-consuming, prone to errors, and requires expert knowledge,

which can negatively impact the accuracy and generalizability of the results. Our

proposed deep learning model automates this process and operates in an end-to-end

manner, reducing the chances of human error and increasing the overall efficiency of

the method. Secondly, our model is designed to generate CTP maps using a reduced

number of time points from the CTP time series, thereby reducing the exposure of the

patient to ionizing radiation. This reduction in the number of required time points

is made possible through the utilization of LSTM, which enables the model to learn

and extract meaningful temporal information from the limited data. In the following

sections, we will present a concise definition of the techniques used, followed by a

comprehensive integration of these techniques to showcase our proposed LSTM-GAN

model in its entirety.

6.4.1 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) are a type of deep learning architecture

that is used for unsupervised learning [156]. As Figure 6.1 shows GANs consist of

two main components: a generator and a discriminator. The generator is trained to
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Figure 6.1: LSTM-GAN model architecture

generate new data samples that are similar to a training set, while the discriminator

is trained to distinguish between real and fake data samples. The generator and dis-

criminator are trained together in an adversarial manner, with the generator trying

to generate samples that the discriminator cannot distinguish from real samples, and

the discriminator trying to correctly identify fake samples produced by the genera-

tor. The training process continues until the generator produces samples that are

indistinguishable from real data. GANs have been used in a variety of applications,

including image and video synthesis, data augmentation, and anomaly detection.

6.4.2 Long Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)

architecture that effectively addresses the vanishing gradient problem. It is designed

to control the flow of information by incorporating memory cells, input gates, output

gates, and forget gates, Figure 6.3. LSTMs have demonstrated superior performance

in handling long-term dependencies and noisy/irregular sequences, making them ideal

for a range of real-world problems, such as language modeling and speech recognition.

Additionally, LSTMs have proven to be highly effective in temporal analysis, such as
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time series forecasting and anomaly detection. LSTMs are trained using backprop-

agation through time, resulting in improved model training and performance. Due

to their effectiveness, LSTMs have become a widely-used technique for processing

sequential data, with many state-of-the-art applications. Here is the idea behind the

an structured LSTM cell:

First, we have the input gate (i), forget gate (f), and output gate (o), which are

defined as:

it = σ(Wi · [ht−1, xt] + bi)

ft = σ(Wf · [ht−1, xt] + bf )

ot = σ(Wo · [ht−1, xt] + bo)

where σ is the sigmoid function, Wi, Wf , and Wo are weight matrices, [ht−1, xt] is

the concatenation of the previous hidden state ht−1 and the current input xt, and bi,

bf , and bo are bias terms. Next, we have the candidate memory cell value (g) and the

current memory cell value (c), which are defined as:

gt = tanh(Wg · [ht−1, xt] + bg)

ct = ft · ct−1 + it · gt

where tanh is the hyperbolic tangent function, Wg is a weight matrix, and ct−1

is the previous memory cell value. Finally, we have the output (y) and the current

hidden state (h), which are defined as:
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yt = ot · tanh(ct)

ht = yt

where yt is the output of the LSTM cell, and ht is the hidden state that is passed to

the next LSTM cell in the sequence. Overall, the structured LSTM cell is a complex

but powerful mathematical model that allows for the processing of sequential data

with long-term dependencies.

6.4.3 MultiRes U-Net

As figure 6.2 shows, MultiRes U-Net is a deep learning architecture for image segmen-

tation tasks that extends the U-Net architecture by incorporating features at multiple

resolution scales [108]. The architecture consists of multiple branches operating at dif-

ferent resolution scales, which extract features at different levels of abstraction. The

outputs from these branches are concatenated and fed through a series of up-sampling

and down-sampling operations to produce the final segmentation mask. MultiRes U-

Net has been successfully applied in medical image segmentation for tasks such as

tumor and organ segmentation. The architecture is notable for its ability to effectively

integrate features at multiple scales, leading to improved performance compared to

the traditional U-Net architecture.

The encoder path consists of several convolutional layers with 3×3, 5×5, and 7×7

kernels (created by three 3× 3 in a series, as shown in figure 6.2), followed by ReLU

activations and batch normalization. Max-pooling layers with 2× 2 kernels are used

to reduce the spatial resolution of the feature maps. The number of convolutional
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layers and their specific configurations can vary depending on the task and input data.

The decoder path consists of upsampling layers followed by a concatenation of the

upsampled features with the corresponding features from the encoder path. The con-

catenated feature maps are then passed through several convolutional layers same as

the encoder section, followed by ReLU activations and batch normalization. The final

convolutional layer uses a softmax activation function to produce the segmentation

output.

The MultiRes U-Net architecture uses residual connections between the encoder

and decoder paths to help the network converge faster and improve its accuracy. The

number of layers and the specific configuration of the residual connections can also

vary depending on the task and input data. Overall, the MultiRes U-Net architec-

ture is designed to handle multimodal biomedical images and can produce accurate

segmentation results.

Figure 6.2: MultiRes U-Net architecture
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6.4.4 Proposed LSTM-Generator

Our proposed LSTM-Genertor is an extended version of our previously proposed

TGAN model [145]. As figure 6.3 illustrates, LSTM-Generetor uses LSTM for in-

tegrating the outputs of the encoders in the generator section of the TGAN. The

model consists of multiple encoders, each of which takes in a frame of a series of the

CTP images and generates a feature vector as the output. These feature vectors are

then combined using a LSTM layer, which takes in the sequence of feature vectors

and produces a hidden state that captures temporal information across frames. The

output of the LSTM layer is then fed into a decoder, which generates the output CTP

map. Both the encoder and decoder were MultiuRes U-Net architecture.

The utilization of multiple encoders enables the neural network to capture both

spatial and temporal information from the CTP series. The output from these en-

coders is combined using an LSTM layer, which effectively models the temporal de-

pendencies between frames in the input series. This, in turn, allows the network to

generate more accurate and coherent output images. Moreover, the MultiRes archi-

tecture of the model enables it to handle spatial features from different resolutions,

thus effectively capturing the textural information of the images.

The output of the LSTM-Generator will then be fed into the discriminator to clas-

sify it as either fake or real. The integration of the LSTM-Generator and discriminator

constructs the proposed LSTM-GAN. The end-to-end nature of the network allows

for training using backpropagation with respect to a pixel-wise reconstruction loss.

This measures the difference between the generated output image and the ground

truth image. This process enables the network to learn how to generate images that
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closely resemble the input series.

Figure 6.3: LSTM-Generator

6.4.5 Loss function

To train our LSTM-GAN, we used the contrast/brightness invariant Structural Simi-

larity Index (SSIM) metric. SSIM is a widely used metric for measuring the similarity

between two images. SSIM takes into account the structural information of the im-

ages, such as edges and textures, rather than just pixel values. This makes it less

sensitive to brightness and contrast variations, which can be particularly useful in

image comparison applications where brightness differences between images are not

important.

The SSIM metric produces a value between -1 and 1, where a value of 1 indicates

perfect similarity between the two images. A lower SSIM value indicates a lower

degree of similarity between the images. SSIM has been used in a variety of appli-
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cations, including image quality assessment, image compression, and medical image

analysis.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6.1)

where x and y are the two input images being compared, µx and µy are the means

of the two images, σ2
x and σ2

y are the variances of the two images, σxy is the covariance

between the two images, and c1 and c2 are constants that prevent division by zero.

The values of c1 and c2 are typically set to very small values (e.g., c1 = 0.01 and

c2 = 0.03) to avoid division by very small numbers.

6.4.6 implementation

Our proposed LSTM-GAN was implemented using the Keras framework (version

2.10.0) and trained on a workstation with an NVIDIA Nvidia GeForce GTX 1060

GPU and 16 GB RAM on a Linux and Jupyter Notebook. The model was optimized

using the Adam optimizer with a learning rate of 0.001 and a batch size of 4. The

model was trained for 90 epochs and the learning rate was reduced by a factor of

0.1 after 15 epochs. The implementation details were validated using ten-fold cross-

validation and the average Structural Similarity Index (SSIM) across all folds was

reported as the final performance metric.

6.5 Results and Discussion

To evaluate the proposed method we used three metrics, Structural Similarity Index

(SSIM), Local Binary Pattern (LBP), and Gradient Magnitude Similarity Deviation

(GMSD).
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The LBP is a texture descriptor that characterizes the local patterns of pixel in-

tensities in an image. Given an image I of size m× n, the LBP value of a pixel p at

position (i, j) is computed by comparing the intensity value of p with its surrounding

pixels in a circular neighborhood of radius R. The neighborhood is divided into P

equally spaced points on the circumference, and the intensity values of these points

are compared with the intensity value of p. If the intensity value of a point is greater

than or equal to that of p, a binary value of 1 is assigned to that point, otherwise, a

binary value of 0 is assigned. The resulting binary values are combined to form an

P -bit binary number, which is the LBP code for pixel p. The LBP code is then used

to compute a histogram of LBP values for each image. The LBP operator can be

defined as follows:

LBPP,R(p) =
P−1∑︂
n=0

2ns(gn − gc) (6.2)

where gn is the intensity value of the nth pixel in the circular neighborhood centered

at p, gc is the intensity value of the central pixel p, and s(x) is a step function defined

as:

s(x) =

{︄
1 x ≥ 0

0 x < 0
(6.3)

The LBP operator produces a binary code of length P , which can be represented

as a decimal number. The resulting LBP code for each pixel can be used to construct

a histogram of LBP values for the entire image. The similarity between two images

can be measured by comparing their LBP histograms using a distance metric such as

the Euclidean distance or the chi-squared distance. The distance between two LBP
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histograms can be defined as:

dLBP (H1, H2) =

⌜⃓⃓⎷ L∑︂
i=1

(H1,i −H2,i)2 (6.4)

where H1 and H2 are the LBP histograms of the two images, and L is the length

of the histograms.

The GMSD metric is a full-reference image quality assessment (IQA) method that

compares the gradient magnitudes of two images to measure their similarity. The

main equation for GMSD is:

GMSD(I1, I2) =

⌜⃓⃓⎷ 1

mn

m∑︂
i=1

n∑︂
j=1

wi,j

[︃
log2

(︃
σ1(i, j)

σ2(i, j)

)︃
− 1

2
log2

(︃
σ2
1(i, j)

σ2
2(i, j)

)︃]︃2

+

⌜⃓⃓⎷ 1

mn

m∑︂
i=1

n∑︂
j=1

wi,j

[︃
µ2
1(i, j)− µ2

2(i, j)

2σ2
2(i, j)

]︃2 (6.5)

where I1 and I2 are the two images being compared, m and n are their dimensions,

µ1(i, j) and µ2(i, j) are the mean gradient magnitudes of the two images at location

(i, j), and σ2
1(i, j) and σ2

2(i, j) are their corresponding variances. wi,j is a weight

function that is used to give more importance to the central region of the image.

6.5.1 Experiments

In this study, the input of the LSTM-GAN was a sequence of odd-numbered CTP

images. We first selected the central CTP snapshot, which is the time point that has

the highest normalized mean value of the pixels’ intensity, indicating that the brain

arteries have the most amount of contrast agent in them. We then selected the same

number of time points from both the left and right sides of the central snapshot. We
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conducted experiments using input sizes ranging from 3 to 23 images, all of which

included a central snapshot and an equal number of frames before and after it.

The performance of the synthesized images using our LSTM-GAN was evaluated

using three metrics SSIM, LBP, and GMSD. The results of the evaluation are pre-

sented in three diagrams (see figures 1-3). The SSIM results (figure 6.4) show that

the synthesized images have a high degree of similarity with the original images, with

an average SSIM value of 0.95. The LBP results (figure 6.5) indicate that the synthe-

sized images have a high degree of texture similarity with the original images, with

an average LBP value of 0.87. Finally, the GMSD results (figure 6.6) demonstrate

that the synthesized images have a low degree of deviation in gradient magnitude

compared to the original images, with an average GMSD value of 0.08. Overall, the

results show that the synthesized images are highly similar to the original images in

terms of structural similarity, texture similarity, and gradient magnitude similarity.

The image shown in figure 6.7 illustrates the results of our proposed LSTM-GAN

to generate the CTP Tmax and CBF from their corresponding CTP time series. The

image displays four samples, with the first column showing the original CT image.

The second and third columns show the target and synthesized CBF, respectively,

while the fourth and fifth columns show the target and synthesized Tmax. The syn-

thesized images were generated using only 9 snapshots of the CTP images sequence.

The comparison between the target and synthesized images provides valuable insights

into the accuracy of the method used, which can be used to improve the diagnosis

and treatment of ischemic stroke.
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Figure 6.4: Mean of the SSIM computed over the test set

6.6 Conclusion

In conclusion, this study presents a novel end-to-end deep neural network approach

for the synthesis of CTP images to generate CTP maps for the diagnosis and assess-

ment of acute ischemic stroke. Our proposed method addresses the limitations of the

traditional methods that rely on expert-dependent AIF selection, which is a highly

error-prone procedure, and exposes the brain to ionizing radiation, increasing the risk

of cancer. By using an LSTM-GAN, the proposed method generates accurate CTP

maps without the need for AIF selection, reducing scanning time and exposure to

CT radiation while improving the precision and generalizability of CTP map extrac-

tion. Our evaluations using the ISLES 2018 challenge dataset demonstrate that the

proposed approach achieves an accuracy of 84.37% using only 9 snapshots without

AIF selection. This work has significant implications for improving the diagnosis and
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Figure 6.5: Mean of the LBP computed over the test set

treatment of acute ischemic stroke, as it provides an efficient and reliable method

for generating accurate CTP maps. Future studies could explore the integration of

this approach into clinical practice and its impact on patient outcomes. Overall, this

study represents a significant advancement in the field of medical imaging and high-

lights the potential of deep learning for improving diagnostic accuracy and patient

care.
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Figure 6.6: Mean of the GMSD computed over the test set
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Figure 6.7: Generated CTP maps, the first column is the original CT image, the
second and third are target and synthesized CBF, and the fourth and fifth are the
target and synthesized Tmax.
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Chapter 7

Conclusion

In conclusion, this thesis deals with a comprehensive investigation into the develop-

ment and exploration of the use of novel machine-learning approaches for the anal-

ysis of 4D brain images, explicitly enhancing the diagnosis and assessment of acute

ischemic stroke (AIS). The global impact of ischemic stroke as a leading cause of

disability and mortality underscores the urgent need for accurate and timely diag-

nosis to improve patient outcomes and alleviate the burden on healthcare systems.

Traditional diagnostic methods for AIS often suffer from subjective interpretation

and an inability to capture the dynamic nature of stroke progression. Thus, using

advanced machine learning techniques holds significant promise in overcoming these

limitations and enabling precise diagnosis and assessment. The research presented

in this thesis has made substantial contributions to the field by proposing innovative

models and methodologies that address various aspects of ischemic stroke analysis.

The papers published throughout this research endeavour have explored diverse facets

of ischemic stroke analysis. These encompassed the prediction and segmentation of

ischemic stroke lesions in CT perfusion scans using multiple parallel U-Nets and deep

neural networks, the application of imbalanced temporal deep Gaussian processes for

122



lesion prediction, and the utilization of temporal generative adversarial networks for

translating CTP scans to follow-up MRI images. Moreover, a learned LSTM gen-

erative adversarial network was employed for CT perfusion map synthesis, further

enhancing the assessment of acute ischemic stroke. The outcomes of this research

have profound implications for clinical practice and stroke management. Develop-

ing accurate and automated lesion prediction and segmentation models significantly

aids treatment planning, intervention timing, and outcome prediction. These models

optimize resource allocation and improve treatment efficacy and facilitate the iden-

tification of suitable patients for targeted interventions. As a result, patients and

healthcare practitioners stand to benefit from the advancements achieved through

this research. Furthermore, applying machine learning techniques to CTP imaging

offers a non-invasive approach to personalized stroke management, enabling precise

estimation of tissue viability, collateral circulation assessment, and prediction of pa-

tient outcomes.

7.1 Summary of Contributions

This thesis has significantly contributed to enhancing the accuracy of AIS baseline and

follow-up core detection and creating a streamlined temporal model that effectively

utilizes the temporal information in the 4D CTP time series. The goal has been to

improve the accuracy of AIS lesion detection while reducing the duration of dynamic

imaging. The contributions of this research are summarised below:

• Ischemic stroke lesion prediction in CT segmentation scans using multiple par-

allel U-Nets followed by a pixel-level classifier : This study introduced an auto-
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matic segmentation algorithm that effectively segments ischemic stroke lesions

by utilizing four 2D U-Nets. The model extracts relevant information from four

CTP maps (CBV, CBF, MTT, Tmax). It combines probability maps to accu-

rately identify stroke lesions, considering their varying shapes and incorporating

neighborhood information.

• Improvement of automatic ischemic stroke lesion segmentation in CT perfusion

maps using a learned deep neural network : This study presented a novel deep-

learning technique, MultiRes U-Net, designed to robustly segment ischemic

stroke lesions in CTP maps. The modified U-Net can segment objects in differ-

ent scales and unusual appearances. Additionally, the study proposed enriching

the input CTP maps by utilizing contra-lateral and corresponding Tmax im-

ages.

• Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep Gaussian

Process (iTDGP): This work introduced the imbalanced Temporal Deep Gaus-

sian Process (iTDGP). This probabilistic model improves AIS lesion prediction

using baseline CTP time series. The proposed model effectively extracts tem-

poral information and maps it to the class labels of the brain’s voxels. iTDGP

utilises batch training and voxel-level analysis, allowing learning from a few

patients and demonstrating robustness against imbalanced classes. Further-

more, the model incorporates a post-processor to enhance prediction accuracy

by utilizing spatial information.

• Using temporal GAN to translate the current CTP scan to follow-up MRI, for
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predicting final acute ischemic stroke lesions : This study proposed a method for

synthesizing follow-up MRI images from baseline CTP scans using a Temporal

Generative Adversarial Network (TGAN). TGAN encodes baseline CTP frames

with encoders and forecasts high-resolution follow-up MRIs with a decoder. A

discriminator competes with the generator to identify whether the synthesized

MRI is real or fake. Additionally, TGAN includes a segmentor capable of iden-

tifying AIS lesions in the synthesized MRI images. MultiRes U-Nets are utilized

in the generator, discriminator, and segmentor, enabling robust segmentation

of objects with varying scales and shapes.

• CT Perfusion Map Synthesis from CTP Dynamic Images using a Learned LSTM

Generative Adversarial Network for Acute Ischemic Stroke Assessment : This

work proposed an end-to-end deep neural network that synthesizes CTP im-

ages and generates CTP maps using a learned LSTM Generative Adversar-

ial Network (LSTM-GAN). The proposed method improves the precision and

generalizability of CTP map extraction by eliminating the error-prone and

expert-dependent Arterial Input Function (AIF) selection step. Furthermore,

the LSTM-GAN can generate CTP maps with fewer time points, potentially

minimizing scanning time and reducing patient exposure to CT radiation by

reducing the scanning sequence from about 40 to 9 time points.

These contributions collectively advance the AIS lesion detection and temporal

modeling field, providing valuable insights and techniques for improving the accuracy

and efficiency of stroke diagnosis and assessment.
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7.2 Limitations and Future Work

7.2.1 Limitations

Despite the potential contributions and advancements that this research on advanced

machine learning techniques for the analysis of 4D brain images in ischemic stroke

diagnosis and assessment may bring, several inherent limitations need to be acknowl-

edged and considered throughout the study. These limitations may impact the inter-

pretation of results and should be taken into account while drawing conclusions and

making practical applications:

• Data Availability and Quality: The success of machine learning algorithms

heavily relies on the quantity and quality of the training data. In the context of

medical imaging, access to large and diverse datasets of 4D brain images with

well-annotated ground truth for stroke diagnosis and progression assessment

might be limited due to patient privacy concerns, data-sharing restrictions, and

the complex nature of acquiring longitudinal data. Consequently, the scarcity

of data may affect the generalizability of the proposed models and introduce

potential biases.

• Imaging Modalities and Variability: 4D brain imaging involves multiple modal-

ities, such as MRI, CT, CTP, and CTA, each with its own strengths and limita-

tions. Integrating data from various imaging modalities into a unified analysis

framework poses challenges due to the differences in resolution, contrast, and

noise characteristics. The variability introduced by different imaging devices

and protocols may impact the consistency and reliability of the results obtained
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from machine learning models.

• Dimensionality and Complexity: Analyzing 4D brain images presents a substan-

tial increase in dimensionality compared to traditional 3D images. The temporal

dimension adds complexity, and handling large-scale 4D datasets may require

considerable computational resources and time. Complex temporal patterns

and inter-subject variations could make feature extraction and model training

more challenging, potentially leading to overfitting or underfitting.

• Interpretability and Explainability: Many advanced machine learning tech-

niques, such as deep learning models, are often considered as ”black-box” ap-

proaches, making it difficult to understand their decision-making process. In-

terpreting and explaining the predictions of these models for clinical validation

and acceptance become essential in the medical domain. Addressing the lack

of interpretability may require additional efforts, such as using explainable AI

techniques or hybrid models.

• Clinical Adoption and Validation: For machine learning-based algorithms to

be adopted in real-world clinical settings, they need to demonstrate robustness,

reliability, and high accuracy. The performance of these models should be exten-

sively validated using diverse patient populations and compared with existing

diagnostic standards and clinical assessments. The road from research to clini-

cal implementation is complex and requires careful consideration of regulatory

and ethical aspects.

• Model Uncertainty and Confidence: Machine learning models often produce
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predictions with associated confidence scores or uncertainties. Understanding

the reliability and limitations of model predictions is critical, particularly in

the medical domain where wrong decisions can have significant consequences.

Assessing and quantifying uncertainty in the predictions should be part of the

model evaluation process.

• Clinical Expertise Integration: While machine learning techniques can augment

clinical decision-making, they should not replace the expertise of healthcare

professionals. Integrating machine learning models into the clinical workflow

requires collaboration and trust between clinicians and data scientists to ensure

responsible and effective use of these tools.

• Generalization to Other Diseases: Although the focus of this research is on is-

chemic stroke diagnosis and assessment, the methods and models developed may

not directly generalize to other neurological conditions or diseases. Each med-

ical condition may present unique challenges and requires tailored approaches

for accurate diagnosis and assessment.

In conclusion, being mindful of these limitations will help researchers in refin-

ing their approaches, setting realistic expectations, and developing robust and

reliable machine learning models for the analysis of 4D brain images in ischemic

stroke diagnosis and assessment.

7.2.2 Future Directions

The research on advanced machine learning techniques for the analysis of 4D brain

images in ischemic stroke diagnosis and assessment is a dynamic and evolving field
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with significant potential for future advancements. As technology progresses and new

challenges arise, the following directions can be explored to enhance the capabilities

and impact of this research:

• Multi-Modal Fusion: Efforts should be directed toward integrating informa-

tion from various modalities, such as MRI, CT, and CTA, as well as electroen-

cephalogram (EEG), to leverage the complementary strengths of each technique.

Multi-modal fusion approaches can help enhance the accuracy and robustness of

stroke diagnosis and provide a more comprehensive assessment of the ischemic

brain.

• Longitudinal Analysis: Temporal information in 4D brain images can provide

insights into disease progression and recovery patterns. Developing sophisti-

cated algorithms for longitudinal analysis may aid in tracking changes over

time, predicting patient outcomes, and optimizing treatment strategies.

• Transfer Learning and Domain Adaptation: To address the data scarcity issue,

transfer learning and domain adaptation techniques can be explored. Pretrain-

ing models on larger datasets from related medical imaging tasks or using syn-

thetic data could facilitate better generalization to the target task of ischemic

stroke analysis.

• Uncertainty Estimation: Improving uncertainty estimation methods will be cru-

cial for enhancing the trust and acceptance of machine learning models in clini-

cal settings. Quantifying uncertainty in predictions can aid clinicians in making

more informed decisions and understanding the limitations of the models.
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• Explainable AI: Developing interpretable and explainable machine learning mod-

els is essential for building trust and understanding the reasoning behind model

predictions. Integrating explainability into advanced models will enable clini-

cians to validate and fine-tune the algorithms based on clinical expertise.

• Personalized Medicine: Moving towards personalized medicine, where treatment

plans are tailored to individual patients, can be an exciting direction. Incor-

porating patient-specific data, such as clinical history, genetic information, and

lifestyle factors, into machine learning models could lead to more personalized

and effective stroke management.

• Collaborative Efforts and Datasets: Collaborations between research institu-

tions, hospitals, and data-sharing initiatives will be vital for accessing large

and diverse datasets. Establishing standardized datasets with well-annotated

ground truth can help benchmark the performance of different algorithms and

foster reproducibility across studies.

• Clinical Validation and Adoption: Conducting extensive clinical validation stud-

ies and prospective trials will be essential for assessing the real-world perfor-

mance and impact of machine learning algorithms. Collaborating with health-

care professionals to integrate these models into clinical workflows and evalu-

ating their contribution to patient care will be critical steps toward practical

implementation.

• Exploration Beyond Stroke: While the focus of this research is on ischemic

stroke, the methods and techniques developed may have relevance in other neu-
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rological disorders and diseases. Exploring the applicability of the proposed

approaches in other medical domains could broaden the scope of their utility

and impact.

In conclusion, the future of advanced machine learning techniques for the analy-

sis of 4D brain images in AIS diagnosis and assessment holds a great promise. By

addressing the outlined future directions, researchers can strive to make significant

contributions to the understanding, diagnosis, and treatment of AIS and other neu-

rological conditions, ultimately benefiting patients and advancing the field of medical

imaging.
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