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Abstract 
 

Estimating tissue perfusion has great clinical applications such as the prediction 

of anti-angiogenic therapies and stroke management. Ultrasound perfusion 

imaging is preferable than other methods since it has real time capabilities, and 

it is inexpensive. The method proposed in this study shows the relationship 

between tissue perfusion and speckle decorrelation rate when high-frequency, 

high-frame rate ultrasound is used. We also investigated the use of lower 

frequency ultrasound transducers with high-frame rate, plane wave 

compounding imaging, and the results are promising. This new approach to 

estimate tissue perfusion waves the need for contrast agents while providing 

quantitative information on tissue perfusion (consequently, outperforming PD 

imaging) as well as morphological information. We combined adaptive block-

wise SVD filter, AM2D algorithm for tissue motion compensation and Golay 

sequences to substantially increase the SNR and therefore increase perfusion 

sensitivity with the ultimate goal of proving the robustness of this new method 

and its capability to being used in clinical applications.  
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Chapter 1 

 
Introduction 
 

1.1 Motivation 

The main goal of the circulatory system is to provide cells with oxygen and 

nutrients and remove products, such as carbon dioxide, from tissue [9,19]. This 

exchange takes place in small vessels called capillaries that connect arterioles 

with venules [9] and estimating the efficacy of this transport mechanism is of 

great clinical value [9,25].  

However, estimating blood flow in a single capillary is a challenge since its 

diameter varies from 5𝜇m to 200𝜇m [8]. Fortunately, this is not an important 

parameter to evaluate the efficacy of the microcirculatory system, instead, it is 

more important to focus on the amount of blood supplied to a tissue [9]. This is 

called blood perfusion and it is defined as the blood volume flowing through a 

unit volume of tissue per second (ml/(cm3.s)) [1,9,19]. In other words, it 

corresponds to the total amount of blood flowing through the microcirculatory 

system in a tissue, e.g., muscle, tumors, placenta or brain.  

Perfusion imaging also provides important information to assess a variety of 

physiological processes, either normal or pathological, that are related to the 

changes in blood perfusion [25]. For instance, diseases such as diabetes and 

cancer, show changes in microvasculature [8,14]. Specifically, in oncologic 

diseases, an increase of vasculature around a tumor (angiogenesis) is an 

important indicator of tumor aggressiveness, and can indicate a difference 

between a malignant or benign cancerous growth [4], or be related with 

subsequent metastasis [18]. With current oncologic treatments focusing on 
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controlling angiogenesis [8,14], perfusion imaging techniques are important not 

only for diagnosing, but also for treatment monitoring [6,7,15,18]. Furthermore, 

estimating perfusion is a promising tool to discriminate between cancer and 

inflammation [26], since a relative increase in blood perfusion is observed in soft 

tissue inflammation [25].  

Several non-invasive imaging modalities can be used to quantify tissue 

perfusion, such as single photon computed tomography (SPECT), multidetector 

computed tomography (CT), magnetic resonance imaging (MRI), and positron 

emission tomography (PET). Nevertheless, these techniques are expensive, and 

expose the patient to radiation or nuclear tracers, limiting their popularization 

[1,8].  

Laser Doppler Flowmetry (LDF) is another non-invasive technique that 

provides continuous measurement of tissue perfusion [9,19,27]. In this case, laser 

light is scattered by moving red blood cells, which, according to the Doppler 

effect, causes a frequency shift that can be detected [9]. Nevertheless, this 

technique has a limited penetration depth (0.5mm to 1mm), therefore, it is 

mostly used to detect skin perfusion [9,19], even though advances in data 

processing to increase signal-to-noise ratio (SNR) can lead to increasing 

measurement depth.  

Ultrasound (US) perfusion imaging is preferable than previous methods since 

it has real time capabilities, it is relatively inexpensive, and it is non-ionizing and 

non-invasive [1,4,8,9,26]. Moreover, in comparison with LDF it provides a larger 

penetration depth [9,19].  

However, there are some limitations related to conventional US, for instance, 

images are often of poor quality and suffer from many artifacts (attenuation) 

[26]. Furthermore, the demands to measure perfusion are higher than the ones 

to measure flow in large vessels [9], and therefore, conventional Doppler and 
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Color Doppler US systems, which are widely used to estimate blood flow in large 

vessels [28], may not be suited for this application.  

For instance, the low velocity in which red blood cells are moving in the 

microcirculatory system (0.1 to 10mm/s) [1,3,8], results in small Doppler 

frequency shifts and consequently a good frequency resolution is needed [9]. 

Additionally, conventional Doppler US systems operating at 2-10MHz do not 

provide sufficient spatial resolution to image vessels in the microcirculatory 

system [1,3,8] and the US system needs to have a good SNR, so that the weak 

signal backscattered from blood in microvascular structures can be distinguished 

from clutter [8,9].  

To overcome the above problems, it is possible to inject brighter ultrasonic 

scatterers, often gas-filled microbubbles, in the vascular system [3,8,14]. 

Therefore, enhancing the intensity and contrast of the signal backscattered from 

blood, and improving sensitivity [2,3,4,5,7,8,14]. Despite that, microbubbles are 

only approved by FDA for use in certain cases such as echocardiology and 

radiology [34]. 

This thesis proposes primarily the use of high frequency ultrasound, which 

automatically enhances the resolution and increases the backscattering 

coefficient of blood and a speckle tracking technique to estimate blood perfusion. 

Also, we propose the use of ultrafast ultrasound to increase the ensemble size and 

consequently increase the signal-to-noise + clutter ratio. Low-frequency 

ultrasound using diagnostic frequencies was also used with the designed 

algorithm and results were promising. 

Furthermore, using the estimation of blood oxygen saturation (sO2) one can 

also estimate the rate of oxygen consumption (MRO2), which is important for 

studying tissue metabolism and diseases related to oxygen metabolism such as 

diabetes [29,30]. Combining the proposed method to estimate blood perfusion 
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with photoacoustic signals for estimation of sO2 leads to estimation of oxygen 

metabolism which is also proposed in this work.  

 

1.2 Key Contributions 

This thesis investigates the potential of ultrasound and photoacoustic signals 

for estimating blood perfusion rates along with oxygen metabolism.   

Compared to other techniques for estimating tissue perfusion, ultrasound is 

a better option since it is inexpensive and has a scalable penetration depth. 

Nevertheless, conventional US techniques used to estimate blood flow in large 

vessels, such as Doppler ultrasound, are not well suited to obtain information 

about the low blood flow in microcirculation. To increase blood scattering 

coefficient, it is possible to use microbubble contrast-agents or high-frequency 

ultrasound systems.  

Power Doppler (PD) images combined with high-frequency ultrasound 

systems and advanced clutter filtering techniques has shown a significant 

improvement in perfusion sensitivity and provide information about 

microcirculation morphology in many organs. Nonetheless, this technique lacks 

information about blood speed and therefore it is not possible to estimate 

perfusion quantitatively which is a disadvantage compared to contrast-enhanced 

ultrasound (CEUS) and other non-invasive techniques.  

To fill that gap this work proposes the use of speckle tracking methods. Those 

methods were first proposed to overcome limitations of conventional Doppler 

ultrasound [19]. Echo signals backscattered from blood and tissue can be tracked 

since they behave in a pattern that remains relatively constant as blood or tissue 

moves. Nevertheless, to the best of our knowledge, no one has proposed the use 

of a speckle-tracking technique to generate perfusion mapping images and 

provide quantitative measurements of tissue perfusion.  
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The first contribution hence demonstrates the use of high-frame-rate 

ultrasound imaging, which has been employed on detecting subtle blood flows by 

tracking flow at thousands of frames per second, combined primarily with high-

frequency (diagnostic frequencies were also addressed) US systems where the 

echogenicity of blood is significantly higher than at low diagnostic frequencies. 

Furthermore, we propose the use of Golay excitation combined with block-wise 

SVD filter and the AM2D algorithm for tissue motion compensation to increase 

SNR, and consequently increase perfusion sensitivity while preserving 

resolution.  

The second and final contribution is to use photoacoustic (PA) imaging to 

determine sO2 (multiwavelength PA measurements were used to determine the 

sO2 defined as the ratio of oxyhemoglobin concentration ([HbO2]) to total 

hemoglobin concentration ([HbO2] + [HbR])) and consequently MRO2 when 

combined with the speckle tracking technique proposed.  

Accordingly, this work introduces a new method for estimating perfusion 

using high-frequency, high-frame-rate ultrasound imaging by estimating speckle 

decorrelation rate that when combined with PA imaging will be able to estimate 

oxygen metabolism in the future. 

 

1.3 Layout of Thesis 

This thesis is organized as follows: Chapter 2 will provide a background and 

literature review of ultrasound blood flow techniques and photoacoustic imaging, 

therefore, giving context to the research presented in the thesis. Chapter 3 

introduces a new method for estimating blood perfusion and providing perfusion 

mapping validating it using simulations carried out on a powerful software called 

Field II. Chapter 4 validates the proposed method of estimating blood perfusion 

on experiments on phantoms and in-vivo by using a Visualsonics LZ250 21MHz 

linear array transducer as well as an ATL L7-4 linear ultrasound transducer 
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connected to a Verasonics Vantage programmable ultrasound system. 

Ultimately, Chapter 5 will conclude the work described in this thesis underlining 

applications and future work that can be accomplished.  
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Chapter 2 

 
Background 
 
2.1 Tissue Perfusion  

Tissue perfusion is crucial for organ functions such as muscle 

contractions and exchange of oxygen and carbon dioxide. Sufficient tissue 

perfusion and oxygenation are of major importance in metabolic processes and 

influence tissue repairs and resistance to infectious organisms [45].  

Furthermore, tissue perfusion should be evaluated on local tissue level and 

evaluation of this important physiological parameter is of fundamental 

significance for the outcome of medical treatments in patients diagnosed with 

cancer, for instance. 

Moreover, tissue perfusion is extremely valuable in assessing organs for 

transplants and to monitor the function of organs in transplant recipients.  

However, most methods of evaluating perfusion in transplanted organs, such as 

scintigraphy, are expensive and use radiating substances.  

Therefore, new non-invasive and non-radiating techniques for measuring 

tissue perfusion are needed and this research aims to bridge this gap. 

 

2.2 Ultrasound Theory  

The frequency range of audible sound goes from 20Hz to 20kHz. Any 

acoustic wave with frequency above 20kHz is considered an ultrasound wave. As 

any pressure wave, ultrasound waves need a medium to propagate. This 

propagation is mostly due to longitudinal motion (compression/expansion) in 
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most media including air, water, and tissue. The exception happens in non-

gaseous media where ultrasound waves propagate in the form of shear wave 

(side-to-side motion).  

The speed of ultrasound, 𝑐, depends on the properties of the medium and 

can be calculated as [51]: 

 

𝑐 =  √
1

𝑘⍴
      (2.1) 

 

Where 𝑘 is the material compressibility and ⍴ is the density of the 

material. The denser the medium, the slower the speed of propagation. 

The foundation of ultrasound imaging techniques lies on measuring 

reflected echoes after transmitting ultrasound waves in a medium. The concept 

of acoustic impedance is important in describing the propagation of ultrasound. 

The acoustic impedance 𝑍 is defined in Equation 2.2 [51]. 

 

𝑍 = ⍴𝑐     (2.2) 

 

The ultrasound wave is generated by an ultrasound transducer. Several 

transducers are currently available in the market, such as linear array 

transducers, phased-array transducers and convex transducers, which are used 

to image different body parts. To image the microvasculature, linear array 

transducers are generally used given the good near-field resolution. [48]. 

Ultrasound transducers are responsible for transmitting ultrasonic pulses 

and receiving the backscattered echo. Within each transducer there is a single 

element or an array of piezoelectric crystal elements.  When a transient voltage is 

applied to a piezoelectric element, it vibrates at its resonant frequency (based on 

the width of the crystal) and generates an ultrasound pulse. Likewise, when 

piezoelectric crystals receive the backscattered echo sound waves, they produce 

an output voltage.  Signals are detected by measuring the output voltage on a 



9 
 

subset of elements and by performing beamforming operations. All backscattered 

echoes from one transmitted pulse must be collected before transmitting the next 

pulse and the time-of-flight is proportional to the depth [49]. 

The transmitted echoes are backscattered due to reflection and scattering. 

Reflection is caused by an abrupt change in acoustic impedance and it provides 

information about the structural components of the tissue being imaged. The 

strength of the scattered signal and the variable intensity of the scattered signal 

with respect to angular direction (anisotropy) are determined by the physical 

properties of the scatterer [51].  

Furthermore, for acoustic waves traveling in a medium, the pressure 

amplitude will decrease exponentially due to the continuous acoustic absorption 

and scattering as it collides with molecules, an effect known as attenuation. 

Attenuation is a non-linear and frequency dependent process. For soft tissue, 

attenuation can be estimated using Equation 2.3 [51]. 

 

𝛼 =  𝛼0𝑓𝑛      (2.3) 

 

 Where 𝛼0 is the temperature dependent factor, f is the central frequency 

of the transducer and n is defined by the material parameter that is between 1 

and 2 for soft tissues. Due to attenuation the acoustic wave amplitude decay can 

be defined as shown in Equation 2.4 [51]. Where A0 is the original acoustic 

amplitude and z is the distance traveled by the wave in a medium. Ultrasound 

attenuation is also related to the frequency and higher frequencies will attenuate 

faster in tissues.  

 

𝐴(𝑧) =  𝐴0𝑒−𝛼(𝑧)𝑧      (2.4) 

 

When longitudinal waves travel from one isotropic medium to another 

with a smooth interface, the angle of incidence on the interface and the difference 

in acoustic impedance causes transmitted wave to both reflect and refract. The 
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material properties and the incident angle determine the angles of reflection and 

transmittance and their respective wave amplitudes. The relationship between 

angles of incidence, reflectance and transmission are governed by the law of 

reflection and Snell’s Law, which can be expressed as 𝜃𝑖 =  𝜃𝑟 and 
sin 𝜃𝑖

𝑠𝑖𝑛 𝜃𝑡
=  

𝑐𝑖

𝑐𝑡
 , 

where 𝜃𝑖 is the angle of incidence, 𝜃𝑡 is the angle of transmission, ci is the speed 

of the sound in the incident medium and ct is the speed of the sound in the 

transmitted medium.  

Snell’s Law also states the existence of a critical angle, which, in the case 

the angle of incidence is greater than the critical angle, the acoustic wave will be 

reflected completely with no energy loss. The critical angle, 𝜃𝑐𝑟, can be calculated 

as arcsin (
𝑐𝑖

𝑐𝑡
), ci < ct.  

For an acoustic wave changing mediums the reflection and transmission 

coefficients of the pressure wave intensity can be expressed as [51]: 

 

𝑅 =  
𝑍𝑡 cos 𝜃𝑖 − 𝑍𝑖 cos 𝜃𝑡

𝑍𝑡 cos 𝜃𝑖 + 𝑍𝑖 cos 𝜃𝑡
      (2.5) 

 

𝑇 =  
2𝑍𝑡 cos 𝜃𝑖

𝑍𝑡 cos 𝜃𝑖 +  𝑍𝑖 cos 𝜃𝑡
     (2.6) 

 

Where Zi and Zt are the acoustic impedance of the media for the incident 

and transmitted wave respectively. 

 

2.3 Ultrasound Imaging  

Ultrasound imaging has become a popular clinical imaging modality due 

to its low-cost, portability and non-invasiveness. Applications on ultrasound 

imaging go from imaging the eye to visualizing blood flow and destructing kidney 

stones [50].  
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In order to acquire appropriate images based on the different 

applications, one would have to choose a proper transmit pulse sequence. For 

instance, it is possible to focus ultrasound signals on a small focal region within 

the image by using curved arrays to increase signal-to-noise ratio (SNR). For 

linear arrays, multiple focal points can be transmitted at once to increase 

acquisition speed at the cost of resolution (decreased due to interference between 

multiple focal zones).  

Furthermore, the use of ultrafast ultrasound imaging combined with 

specific reconstruction techniques made real time, non-invasive ultrasound 

applications for functional brain imaging and imagining of mechanical properties 

of tumors tangible [52].  

In this section, two ultrasound imaging techniques will be explained: 

plane wave and focused ultrasound. 

 

2.3.1 Plane Wave Imaging  

 

Conventional medical ultrasound images are generally acquired 

sequentially one line at the time, which results in limited frame rate and an 

optimal focus at one depth. An alternative method is plane wave imaging. As the 

name suggests, plane wave imaging uses unfocused plane-wave transmissions. 

This technology, together with advancements in digital signal processing units, 

field programmable gate arrays (FPGAs) and graphical processing units (GPUs), 

allows imaging at frame rates higher than 1000 frames per second  [54].  

Nevertheless, for a single plane-wave transmission, lateral resolution and 

SNR are compromised due to lack of transmit focusing.  

To overcome this limitation, it is possible to transmit several tilted 

ultrasound beams with different angles and the backscattered signals will be 

combined together to produce a full image. The angle compounding method 
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significantly improves image quality and enables blood flow imaging even though 

the frame rate improvement is partially sacrificed.   

 

 

Figure 2.1 – Ultrafast ultrasound imaging sequences for a typical medical 
imaging setup by Tanter et al. [52], IEEE Transactions on Ultrasonics, 
Ferroelectrics and Frequency Control © 2014 IEEE. 
 

 

Viti et al.  [55] compared the use of compounded plane wave and focused 

wave transmission in detecting contrast agents. The conclusion was that 

compounded angle significantly improved contrast-to-noise (CNR) ratio as can 

be seen in Figure 2.1. Therefore, this method is going to be used throughout the 

research.   

 

2.3.2 Focused Imaging 

 

Traditional ultrasound systems used focused pulses meaning that they 

transmit and receive pulses one line at the time. However, this method has a 

limited frame rate, which is strongly related to penetration depth, due to the 
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time-of-flight of ultrasound and the necessity to acquire several scan lines (A-

scans) to form a 2D B-scan image.  

An ultrasound transducer transmits focused ultrasound beams in different 

lines of the image and use the reflected backscattered echoes to generate one A-

scan line of a 2D B-scan image as seen on Figure 2.2.  

The maximum frame rate that can be generated using focused ultrasound is 

as follows [51]:  

𝐹𝑅𝑓𝑜𝑐𝑢𝑠𝑒𝑑 =  
𝑐

2𝑑
 .

1

#𝑙𝑖𝑛𝑒𝑠
    (2.7)     

 

Where c the speed of ultrasound in tissue, d Is the distance from the 

ultrasound transducer and #lines is the number of lines for one whole frame.  

The limitation of using focused ultrasound in estimating tissue perfusion is 

exactly due to its limited frame rate since highly effective clutter filters rely on 

large ensemble sizes that are not possible to achieve using focused ultrasound 

imaging.  

 

Figure 2.2 – Conventional focused ultrasound by Tanter et al. [52], IEEE 
Transactions on Ultrasonics, Ferroelectrics and Frequency Control © 2014 IEEE. 
 

 

 



14 
 

 

2.4 Ultrasound Perfusion Imaging  

Ultrasound perfusion imaging has real time capabilities is relatively 

inexpensive, non-ionizing and non-invasive which gives it an advantage 

compared to other methods of imaging perfusion.  

This section describes the theory behind contrast-enhanced ultrasound 

imaging (CEUS) and other US techniques capable of estimating tissue perfusion 

without the need of contrast enhancement.  

 

2.4.1 Perfusion Imaging Using Contrast Agents 

 

Microbubble contrast agents have magnitude ranging from 2µm to 6µm [1] 

and are filled with perfluorocarbon or another low-solubility gas. The 

microbubble is stabilized by a thin shell that can be either stiff or flexible and it 

is usually made of lipid, protein or polymer to enhance circulation in the 

bloodstream [1,2].  

The basic idea is that microbubbles (MB) will increase the echogenicity of 

blood [2,3,4,5,6,7,8,9], but there are other relevant characteristics related to MB. 

For instance, microbubbles are designed to resonate at a frequency in the range 

used in US systems, therefore, the scattering cross-section does not depend only 

on the microbubble size, but it can increase dramatically at resonant frequency 

[1,9].  

In addition, at high acoustic pressures near or at the resonant frequency, 

microbubbles behave as nonlinear scatterers producing a wide range of frequency 

components (harmonic frequencies) at the receiver [1,7,9,10]. These frequency 

components range from subharmonic (f0/2) to ultra-harmonic frequencies (n.f0) 
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[7,10], where f0 is the transmitted frequency. By selecting the appropriate 

frequency components, it is possible to improve contrast detection by 

suppressing tissue signal [7]. One contrast specific imaging model widely used is 

called harmonic imaging (HI) or second harmonic mode [7,9,10]. In this respect 

the signal is received at the second harmonic (twice the fundamental), at which 

the magnitude of the signal backscattered from blood is greater than that of a 

tissue [9].  

At even higher pressure the bubbles are disrupted, and a transient signal is 

emitted. This signal can be interpreted as a MB signature [1,8].  

Essentially, there are two different approaches to estimate perfusion using US 

harmonic imaging techniques. The first one uses a continuous infusion of MB and 

low-frequency, high-pressure pulses to image. The second one is based on a bolus 

injection and low-power imaging [11,12]. This section will describe both 

techniques. 

 

2.4.1.1 Microbubble Destruction/Replenishment Model   

  

Wei et al. [13] was the first to analyze the replenishment kinetics following 

the destruction of a microbubble. He used the transient response effect to assess 

myocardial perfusion [5,8,9,12], and this process can be described as follows.  

Figure 2.3(a) it is possible to notice that MB are injected with velocity 𝜐. When 

high-pressure pulses destroy microbubbles in a sample volume with width E 

(Figure 2.3(b)), the echo intensity would suddenly drop generating a “negative-

bolus”. The intact MB will then reperfuse this volume at velocity 𝜐, and after some 

time T, microbubbles would fill the entire volume and the echo intensity would 

be restores to the original one (𝐼0). This process is monitored by acquiring a 

sequence of B-mode images to produce the wash-in time-intensity curve (TIC) 

[8,9,14]. 
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Figure 2.3 – Microbubble destruction/replenishment model. Captions and print 
from Microvascular flow estimation by contrast-assisted ultrasound B-scan and 
statistical parametric images by Tsui et al. [14], IEEE Transactions on 
Information Technology in Biomedicine © 2009 IEEE. 
 
 

Ideally, the echo intensity should change as the dashed curve in Figure 2.3(c), 

however, the TIC behaves more curvilinear as shown by the solid line in Figure 

2.3(c). Therefore, Wei et al. [13], proposed a mono-exponential function to model 

TIC, as can be seen in Equation 2.8 [8,9,14].  

𝐼 = 𝐼𝑐 + (𝐼0 +  𝐼𝑐)(1 − 𝑐𝑒−𝛽(𝑡− 𝑡0))      (2.8)           

Where 𝐼𝑐 is the clutter echo intensity, 𝛽 is the constant related to the rate at 

which the echo intensity increases, and c describes the degree of destruction of 

MB, which also affects 𝐼0 and 𝛽 [8,14]. In the case where the clutter was 

completely removed, and microbubbles have been completely destroyed, 

Equation 2.8 can be simplified as [8,14]: 



17 
 

𝐼 =  𝐼0(1 − 𝑒−𝛽)      (2.9)          

By taking the first order derivative, the slope of the tangent of the TIC at the 

origin can be expressed as [14]:  

𝑠 =  𝐼0𝛽      (2.10) 

From Figure 2.3(c), we can notice that s is also equal to 
𝐼0

𝑇
, therefore [14]:  

𝛽 =  
1

𝑇
      (2.11)            

Consequently, the flow velocity can be calculated as [14]:  

𝜐 = 𝐸𝛽      (2.12) 

Moreover, the flow rate f can be further expressed as the product between the 

cross-sectional area and the flow velocity. It is important to notice that 𝛽 depends 

on 𝑇𝐼0, but this is a hard parameter to measure due to the fluctuations of the TIC 

in the plateau phase, therefore, according to [14], 𝛽 is calculated by:  

𝛽 =  
− ln(0.2)

𝑇80%
   (2.13)         

Where 𝑇80% represents the time to achieve 80% replenishment.  

From the above description, it is clear that choosing proper region-of-interest 

(ROI) or volume (represented by the width E in the description above) is crucial 

for a good perfusion estimation. When the ROI is composed by perfused and non-

perfused areas it is difficult to estimate the TIC since, at low frequency, clutter 

filter appear at 40-60 dB higher than blood flow and the 8-25 dB blood flow signal 

enhancement generated by MB is not enough to compensate for the clutter signal. 

Therefore, a clutter filter needs to be applied which can increase considerably the 

computational complexity. Furthermore, the use of high-pass filters can remove 

some flow information when signals associated with clutter and blood overlap 

[8,14].  
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At face of this, Tsui et al. [8] proposed the use of ultrasound images that are 

independent of the backscattering intensity to monitor microbubble 

replenishment. Therefore, a new imaging method based on the Nakagami 

statistical parameter was proposed to estimate the so-called time-Nakagami-

parameter curve (TNC), which is analogous to the TIC. The Nakagami image 

allows only the visualization of scatterers concentration by analyzing the 

probability density function of the backscattered signal [8,14]. From there, the 

TNC curve was also fitted according to the monoexponential model.  

This hypothesis was tested in phantom and in vivo. For the phantom 

experiment the TNC proved to be more robust than the TIC when tissue clutter 

was present, and it did not require additional wall-filter. However, the in vivo 

experiment showed that, if no wall-filter is used, the TNC cannot be used to 

estimate microcirculation flow. This happens because the excess of tissue affects 

TNC and TIC in a way that they do not behave exponentially [8]. Still, when a 

wall-filter was applied to both TNC and TIC, Tsui’s method [8] outperformed 

Wei’s [13] as can be seen in Figure 2.4, where it is possible to notice that the TIC 

designated a perfusion area as non-perfused as indicated by the white arrow.  

Another issue that is raised by this technique is that US images can show 

artefacts created by motion related to patient’s respiration or probe 

displacement. These artefacts affect the calculation of perfusion parameters, and 

therefore must be removed from the interested ROI [15]. According to [2], 

Pollard et al. [100], combined destruction -reperfusion imaging with real-time 

motion correction to make the technique more robust in case of tissue motion.  

Moreover, Rognin et al. [16] developed an automatic motion compensation 

strategy based on multi-mask which tried to assure the reliability of perfusion 

parameters as can be seen in Figure 1 from [16] . It is possible to notice that the 

low frequency component was removed which allowed a better fit of the signal by 

a mono-exponential model.  
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Figure 2.4 –  Flow velocity parametric images of rabbit eye by using (a) 
conventional B-mode image and (b) Nakagami image. Captions and print from 
Microvasculature flow estimation by microbubble-assisted Nakagami imaging by 
Tsui et al. [8], Ultrasound in medicine & biology (2009). 
 

 
However, these methods assume that the motion is always on the acquisition 

plane, which is not necessarily true for in vivo experiments.  

Therefore, Mulé et al. [15], proposed a method that selects the frames 

acquired at the same respiratory cycle by using Principal Component Analysis 

(PCA). This is based on the assumption that not only one, but several components 

held information about the respiratory cycle. In addition, some information 

about the respiratory frequency need to be known a priori to estimate respiratory 

motion, and therefore generate the two subsequences. The preliminary results of 

this study were promising.  
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The destruction/replenishment model has proven to be a reliable technique 

for obtaining semi-quantitative parameters related to tissue perfusion, and it also 

provides information about the morphology of microcirculation. Nevertheless, 

there is still room for improvement mainly on fields such as motion 

compensation, and finding better fits for the time-intensity curve in situations 

where it does not obey the exponential model.  

 

2.4.1.2 Microbubble Non-Destructive Model  

 

With the development of contrast-specific imaging strategies such as 

Vascular Recognition Imaging, which combines Doppler information with phase 

analysis [1], and Cadence Contrast Pulse Sequencing, which interrogates each 

image line with pulses with different amplitudes and phases [1,2], it was possible 

to detect microbubbles non-destructively at high contrast-to-tissue ratios [2].  

As mentioned before, the second harmonic imaging (HI) is widely spread and 

commercially available combined with the contrast-specific imaging strategy 

called pulse inversion [10]. In this case, a pulse pair 180 degrees out of phase 

from one another is transmitted and the received signals are superimposed in 

order to cancel odd harmonics [3,10].  

Nonetheless, nowadays, it is well known that there is second harmonics 

generation and accumulation in surrounding tissues, culminating with reduced 

blood-to-tissue contrast. A solution for this problem is to receive at subharmonic 

frequencies (
𝑓0

2
) at which it is possible to achieve near complete tissue suppression 

since there is no generation of subharmonics in surrounding tissues [7,10].  

Therefore, it is possible to track the bolus of microbubbles in order to 

generate time-intensity curve to follow the wash-in and wash-out of MB [1]. This 
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time-intensity curve is also fitted following the monoexponential model as 

described on the previous section.  

For both, destruction/replenishment and bolus kinetics analysis, ideally the 

raw radiofrequency (RF) signal should be used for curve-fitting [17]. However, 

RF data is not always made available by ultrasound manufacturers, therefore, the 

log-compressed signal needs to be converted before curve-fitting. This can 

generate errors in perfusion parameter estimation unless two conditions are 

respected: a) the gain settings of the system should be adjusted to prevent 

saturation and b) sufficiently high dynamic range log-compression (>45dB) 

should be used [17] so the signals from blood flow and tissue can be well 

distinguished [15].  

 

2.4.1.3 Applications     

 

Contrast-enhanced ultrasound imaging (CEUS) is approved in the United 

States for enhancing heart structures such as the ventricular chamber. 

Furthermore, it has been used off-label in applications suchlike breast, liver and 

kidney imaging [2].  

Bruce et al. [3] used microbubbles contrast agents at a low mechanical index 

(MI), which avoids microbubbles destruction, to acquire flow information in 

large and small vessels simultaneously. By using harmonic imaging combined 

with pulse inversion acquisition the group discriminated perfusion and vascular 

flow based on parallel processing of signals and considering that, for 

microbubbles moving at higher speeds, the Doppler shift can be easily detected. 

This technique was able to produce a signal-to-clutter ratio as good as -4dB and 

provides additional perfusion information when compared with color Doppler. 

Figure 2.5 illustrates the parallel signal paths. The top path illustrates 

conventional pulse inversion processing for perfusion while the other two 
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illustrate the detection of fundamental and harmonic signals for higher velocity 

MB circulating in larger vessels.  

 

Figure 2.5– Illustration of parallel processing for simultaneous detection of 
perfusion and vascular flow using contrast-agents. Captions and print from 
Vascular flow and  perfusion  imaging  with  ultrasound  contrast  agents   by  
Bruce  et al [3] Ultrasound in medicine & biology (2004). 

 

Nonetheless, this method still relies on MB moving at considerable higher 

speed which is not suitable to estimating perfusion in the microvasculature, a gap 

this research aims to fill. 

Perfusion imaging using contrast agents has also been used to provide 

information about tumor perfusion and morphology simultaneously [4]. Hoyt et 

al. [4] analyzed how breast tumors in six female patients responded to treatment. 

The results were promising. The high-contrast perfusion profile due to 

angiogenesis made possible the analysis of tumor morphology, while the time-

intensity curve changed over time as the tumor responded to drug treatment, as 

expected.  

Chomas et al. [5] also monitored tumor therapy by using CEUS in 

subharmonic imaging (SHI) setup. Experiments in vitro suggest that this method 
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is able to estimate flow velocities in the range of 0.1mm/s and 1cm/s. The 

contrast-agent-to-tissue ratio was as good as 23dB, and the results were 

compared with contrast-assisted CT and histology as shown in Figure 2.6. 

 

 

Figure 2.6 – Comparison of contrast-enhanced US, histological staining, and 
contrast enhanced CT of a rat breast tumor. (a) B-mode US (b) Contrast- 
enhanced US (c) Contrast-enhanced CT (d) Histology staining. Captions and 
print from Subharmonic phase-inversion for tumor perfusion estimation by 
Chomas et al. [5], IEEE Ultrasonics Symposium © 2001 IEEE.  
 
 

Perfused regions in the tumor correlated with histology findings, but this 

method provides a better spatial resolution when compared with CT, and it 

provides additional information about perfusion parameters when compared 

with histology [2].  

Furthermore, CEUS is a promising technique for detection of molecular 

response. Targeted contrast agents have been developed by linking specific 

ligands to microbubbles shells therefore favoring adhesion to specific markers of 

disease progression [18].  Korpanty et al. [18] targeted microbubbles to evaluate 

the efficacy of anti-angiogenic therapy of pancreatic tumor in animal models. The 

results showed significant enhancement in tumor perfusion when targeted MB 

were used instead of non-targeted ones.  
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Hence, studies have demonstrated the potential of CEUS in several 

applications such as the prediction of anti-angiogenic therapy response, liver 

lesion detection and characterization, and stroke management [2,18]. This is 

extremely important because it shows the advantage of ultrasound imaging 

compared with other perfusion imaging modalities. 

However, perfusion parameters measured through CEUS are not well-

established clinical tools yet and the use of contrast-agents is a concern in several 

applications and therefore its real life medical significance is still limited 

evidencing the importance of a method for estimating tissue perfusion free of 

contrast-agents such as the one proposed in this study. 

 

2.4.2 Perfusion Imaging Without Contrast 

Enhancement 

 

Microbubbles can be metabolized by humans. The gas content is exhaled by 

the lungs and shell components re-metabolized by the liver or filtered by the 

kidney. Adverse human reactions are rare, but low blood pressure has been 

observed after MB injections, and some deaths have been reported in cardiac 

patients [1]. For this reason, microbubbles are not approved by the Food and 

Drug Association (FDA) for use in many applications. Therefore, the capability of 

estimating tissue perfusion without the need of contrast enhancement has 

gaining more focus.  

One technique used to display the scattered ultrasound power from moving  

blood in tissue is ultrasonic Power Doppler (PD) imaging, which is highly 

sensitive to slow disorganized movements of red-blood-cells (RBC) [9,19,20,21]. 

PD does not provide any information about the rate of flow of blood and is 

insensitive to blood speed and direction. It is also extremely vulnerable to tissue 
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clutter and acquisition noise [21]. Therefore, the one main challenge of this 

technique is to increase signal-to-noise + clutter ratio (SNCR) [20]. This can be 

done by suppressing noise and clutter components [20,21], and by using high-

frequency US systems since at higher frequencies the echogenicity of blood is 

significantly higher than at low diagnostic frequency.  

Extensive work has been done over the years in order to suppress clutter 

signal originated from stationary and slowly moving tissue. Several clutter filters 

have failed their purpose due to the assumption that tissue and blood flow signals 

have completely different spectrums, which is not true in cases where blood flow 

has the same magnitude as tissue motion [22].  

Based on this assumption, US data was usually filtered based exclusively on 

the temporal dimension using finite impulse response (FIR) or infinite impulse 

response (IIR) filters [20,21,23,56]. However, tissue and blood flow also present 

different spatial characteristics since tissue movement towards the transducer 

can be seen as a shift in the RF data while RBC movement changes the profile of 

the RF data [22]. Therefore, it is now well accepted that Fourier filters do not 

provide the best result for separating tissue from slow blood flow signal [20,21]. 

As an option, it is possible to extend the filter dimension to use information from 

both spatial and temporal domains to isolate blood signal. Eigenfilters, 

specifically singular-value decomposition (SVD) filters, decompose this 

multidimensional data using eigenvectors or singular vectors of the correlation 

matrix or Casorati matrix [20], which contains all statistical information 

[20,21,23,22]. The eigenvectors or singular vectors are orthogonal and 

statistically independent from each other whereas the normalized eigenvalues or 

singular values represent the amount of variance contributed by each eigenmode 

or singular mode. Since tissue is more echogenic than blood, and both contribute 

more to the variance than noise, it is possible to assume that the first few 

eigenvalues will be dominated by tissue clutter, followed by blood eigenvalues 

and then noise. Therefore, isolating the blood subspace is possible by identifying 
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the clutter-blood and blood-noise interfaces and suppressing the eigenvalues or 

singular values outside this range [20,21].  

The theory behind SVD filters is as follows: 

Data from ultrasound acquisition can be organized as a spatiotemporal 

matrix of the form s(x,z,t). This 3D matrix has dimensions (nx , nz , nt ), where nx 

is the number of spatial samples on the x-direction, nz is the number of spatial 

samples on the z-direction, and nt is the number of time samples. The matrix is 

then reshaped into a 2D matrix, with one spatial domain and dimensions (nx x nz, 

nt ), called the Casorati matrix S [22, 23].  

The singular value decomposition of the Casorati matrix relies on finding 

three matrices such as [22]:  

𝐒 = 𝐔𝐕∗    (2.14) 

Where  is a non-square (nx x nz, nt) diagonal matrix, U and V are 

orthonormal matrices of dimensions (nx x nz, nx x nz) and (nt , nt) respectively, and 

“*” stands for conjugate transpose. The columns of U and V represent the spatial 

and temporal eigenvectors respectively. Moreover, U is also the eigenvector of 

the covariance matrix SS* and V is the eigenvector of the covariance matrix S*S 

[22].  

 Matrix S can be considered a sum of separable matrices Ai, that in turn can 

be written as the outer product of two vectors Ai = Ui  Vi. Therefore, S can be 

decomposed as [22]:  

𝑆 =  ∑𝑖𝐴𝑖 

𝑖

= ∑𝑖𝑈𝑖 𝑉𝑖 

𝑖

    (2.15)  

Ui and Vi are the ith columns the orthonormal matrices U and V and i are the 

ordered singular values. Ui corresponds to the spatial signal with length nt and Vi 

corresponds to the temporal signal also with length nt. Each vector Ui describes 



27 
 

the 2D image Ii with dimensions (nx, nz) and modulated by Vi, and S comprises 

on the addition of all Ii images. As previously explained the blood signal can be 

isolated by identifying the clutter-blood and blood-noise interfaces and the blood 

signal is calculated using Equation 2.16 [22].  

𝑺𝒇 = 𝑼𝒇𝑽∗    (2.16).  

Where Sf is the filtered data (blood signal),  and f is the diagonal matrix of 

singular values suppressing tissue and noise signals. Figure 2. illustrates how the 

ultrasound data is reorganized so singular value decomposition can be 

performed. 

 

Figure 2.7- (a) The ultrafast Doppler acquisiton forms a 3D stack of images with 
2 spatial dimensions and one temporal dimension. It is reshaped in one 
spatiotemporal representation (Casorati matrix) where all pixels at one time 
point are arranged in one column. As a consequence all time points for one pixel 
are arranged in one row. (b) The covariance matrix is presented here in 
magnitude and is of dimension nt x nt. Captions and print from Spatiotemporal 
clutter filtering of ultrafast ultrasound data highly increases Doppler and 
fUltrasound sensitivity by Demene et al. [22]. IEEE transactions of medical 
imaging © 2015 IEEE . 
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Additionally, researchers started to use ultrafast ultrasound imaging based 

on unfocused wave transmissions to acquire wide fields of view (FOV) at a very 

high frame rate. The use of this method came with a loss in focusing capabilities, 

even when a set of tilted plane waves was used to increase resolution. However, 

the use of SVD on those large datasets improved Doppler sensitivity considerably 

[24,22]. This is because large Doppler ensemble sizes (>100) were possible due 

to whole frame acquisitions per transmit, unlike in scanline imaging, where 

scanline ensemble sizes (the number of repeated ultrasonic emissions along a line 

of sight) were limited to around 10. The longer Doppler ensembles associated 

with unfocused wave transmissions resulted in greater sensitivity to slow blood 

flows.  

Demene et al. [22] analyzed the performance of the SVD filter in different 

applications and compared it with temporal filters. They concluded that the SVD 

filter removes strong motion artifacts occurring during freehand exams and 

improve the detection of small vessels characterized by low flow speeds even if 

tissue motion is present. The group showed the impact of SVD filtering in clinical 

applications such as kidney, liver and thyroid imaging. Figure 2.8 shows PD 

images illustrating how the SVD filter outperforms Butterworth filters for 

imaging a transplanted kidney. They also imaged neonate brains which was 

interesting since it was not possible to ask patients to hold their breath, and 

therefore motion was unavoidable.  
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Figure 2.8- PD images comparing between SVD and IIR filter shows how SVD 
outperforms the later in imaging low flow speed. Captions and print from 
Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases 
Doppler and fUltrasound sensitivity by Demene et al. [22], IEEE transactions of 
medical imaging © 2015 IEEE. 

 

The SVD filter proposed by Demene was applied in the entire three-

dimensional data set (2D of space plus time) assuming that the noise in the whole 

image is independent and identically distributed (i.i.d). This assumption may be 

valid for functional ultrasound brain imaging in mice where the imaging FOV is 

small and shallow. However, for in vivo human imaging the nature of noise varies 

spatially within the FOV due to depth-dependent attenuation [23].  

Thus, Song et al. [23] proposed a new block-wise local SVD clutter filter 

technique (for ultrafast plane wave imaging) that operates in local data blocks 

where the local noise distribution is approximately i.i.d [23]. Furthermore, it 

addressed a limitation presented in Demene’s study where no adaptive method 

for the choice of the threshold used for singular vector rejection was proposed. In 

Song’s study the singular value cutoff thresholds for tissue-blood and blood-noise 

separation were adaptively determined based on the local signal and noise 

characteristics.  
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This new method provided an increase of more than two-fold in SNR and 

more than three-fold in contrast-to-noise (CNR) ratio when compared with 

existing SVD-based clutter filtering methods. More detailed vasculature could be 

resolved and a significant amount of background noise was suppressed by using 

this method. The spatial resolution of small vessels which is mostly determined 

by the ultrasound imaging resolution (e.g. frequency, pulse length, etc.) was not 

compromised by this method since no spatial averaging was performed within 

each processing block. Furthermore, the use of adaptive methods to choose 

block-wise SVD filter thresholds made it more robust in processing data acquired 

from different organs with different tissue and blood signal characteristics [23]. 

Figure 2.8 shows PD images to compare global and local SVD filters. This 

illustrates how the later outperforms the first. 
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Figure 2.9 – (a) Clutter filtering using global SVD filtering approach (b) clutter 
filtering after noise equalization (c) Clutter filtering on the same dataset using 
block-wise adaptive local SVD filter. Captions and print from Ultrasound small 
vessel imaging with block-wise adaptive local clutter filtering by Song et.al [23], 
IEEE transactions on medical imaging © 2017 IEEE.  
 
 

The limitations of the block-wise SVD filter as well as Eigenfilters in general 

uses high computational cost compared to conventional high-pass clutter filters. 

Moreover, the user needs to adjust the block size according to the ensemble 

length to achieve optimal performance and no adaptive method was proposed to 

facilitate this choice. In addition, this method still models the noise as Gaussian 

which may not be the best noise model to simulate spatially varying complex 

noise seen in vivo [23].  
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The exponential evolution of computational power of GPU based electronics 

changed ultrasonic imaging. Therefore, Kim et al. [20] was able to propose the 

use of SVD filter for scanline pulse-echo PD imaging instead of ultrafast plane 

imaging. This substantially improved SNCR and Doppler Frequency resolution 

enabling the visualization of slow perfusion that was not visible using other PD 

techniques.  

The acquired data array has initially two spatial dimensions (axial and lateral) 

and two temporal dimensions (slow-time and frame-time). Temporal sampling 

was adjusted to increase the density of independent samples in the low-frequency 

Doppler spectrum where perfusion signals dominate. This 4D data was then 

reorganized by combining the two spatial components into one, resulting in a 3D 

data array [20].  

In order to overcome the issue of SVD filters suppressing perfusion signal 

when operating on slow-time echo signals, Kim et al. [21] proposed an extension 

of the SVD filter to work on this new 3D dataset. The increased dimension of the 

clutter filter was then called higher order SVD (HOSVD) technique and facilitated 

the isolation of signals coming from slow tissue motion and spatially disorganized 

RBC movement [20].  

The construction of the HOSVD filter is based on the analysis of three basis 

vectors (one for each dimension), instead of two, which effectively separate signal 

components and enhance perfusion sensitivity in PD imaging. This technique 

was tested in vivo by analyzing muscle-perfusion of healthy and ischemic mouse 

limbs using a high-frequency ultrasound system [20]. 

Figure 2.10 shows PD images overlaid on B-mode US images to compare 

HOSVD and conventional temporal filters. The images show the signal power 

that describes relative flow and perfusion patterns. The extra data dimension 

analyzed by HOSVD allowed an increasing perfusion sensitivity through a longer 
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acquisition period (more than 1s) without discarding fast blood flow signals (as 

illustrated in Figure 2.10) [20].  

 

Figure 2.10 – PD images compared by using FIR filter and HOSVD applied to the 
same dataset. Captions and print from Expanding dimensions for improved 
perfusion sensitivity by Kim et al. [20] IEEE transactions on ultrasonics, 
ferroelectrics, and frequency control © 2017 IEEE.  
 
 

The challenge for users is to define the proper subspace to isolate blood 

perfusion signals. Thus, the same research group proposed a statistical classifier 

that is applied at each of the three dimensions (slow-time, spatial and frame-

time) in order to identify a proper blood subspace. This is done by analyzing five 

features estimated from the decomposition of eigenvalues and eigenvectors. 

Three of the features are related to the eigenvalue energy and two are similarity 

measurements. The results showed that blood and clutter power were well 

separated by using this method for the case of a narrow clutter bandwidth [21]. 

However, blood and clutter signals overlap when the bandwidth of the later 

increases as tissue moves with high amplitude. Moreover, the transducer was 

placed into a fixture and therefore free from hand motion which is unusual in 

clinical ultrasound.  
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The methods previously described to analyze tissue perfusion without 

contrast agents provide information mostly about the morphology of the 

microvasculature. PD imaging is highly sensitive to disorganized movements of 

RBCs, and it displays the signal power rather than the more physiologically 

relevant parameter, the blood flow itself. Therefore, those methods still lack the 

capability of providing quantitative perfusion measurements as it is possible to 

get from analyzing time-intensity curves generated by microbubbles.  

Choi et al. [59] demonstrated a method to image the perfusion rates in 

superficial tissues using a combination of ultrasound and photoacoustic imaging 

systems. That study addressed the limitation of the power Doppler imaging mode 

in estimating flow change on capillary beds when tissue was compressed and then 

released, a scenario where flow signals from vessels are overwhelmed by tissue 

motion. Therefore, a new method relying on changes in PA signals during 

compression and release was proposed. A first-order negative exponential model 

was fit to PA signals and used to quantify perfusion rates. Ultrasound signals were 

used to track tissue motion adaptively using a strain estimation algorithm called 

AM2D [62].  

The AM2D algorithm uses the RF signal to estimate the axial and lateral 

displacements of the tissues creating a deformation map. We found value in using 

the same algorithm during our in vivo experiments where subjects’ movements 

are inevitable, and the failure of tracking tissue motion would affect the capability 

of the method proposed here to quantify tissue perfusion.  

Although Choi’s perfusion-rate estimation method [59] is a great 

advancement towards quantitatively estimating tissue perfusion it does not 

provide information on the morphology of the microvasculature since the 

photoacoustic signals from capillaries are spatially unresolvable. 

Hence, there is still a need for a method that is able to provide those 

quantitative measurements without contrast enhancement combined with 
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information about the morphology of the microvasculature. We hypothesize that 

speckle tracking methods are able to provide important quantitative metrics. 

Those methods were first proposed to overcome the limitations of conventional 

Doppler ultrasound where only motions in the axial direction could be identified 

[25].  

Echo signals backscattered from blood and tissue can be tracked since they 

behave in a pattern that remains relatively constant as blood or tissue moves. The 

speckle tracking can be done in one, two or three dimensions, depending on the 

dimensions of the ultrasound data available and the analysis of it leads to blood 

flow estimation [25]. Even though multidimensional speckle tracking is known 

to be computational expensive this is becoming less of a problem with advances 

in processing power.  

In this study we provide perfusion mapping images and quantitative 

measurements of tissue perfusion by combining data acquired using speckle 

tracking methods, advances in clutter filtering and tissue motion compensation.  

 

2.5 Photoacoustic Effect and Photoacoustic 

Imaging 

Photoacoustic imaging systems rely on two main components: a source of 

energy and an acoustic detector [60]. The acoustic detector is usually an 

ultrasound transducer while the source of energy can be a pulsed nanosecond 

laser [47, 60] or microwave and radio-frequency (RF) waves [47]. Due to its long 

wavelength, RF waves cannot provide a good spatial resolution, while with short 

pulse lasers, it is possible to provide images with high resolution in larger 

volumes of tissue [47].  

The photoacoustic effect and the process of acquiring photoacoustic signal 

happens as follows: when the tissue absorbs an EM pulse, the optical energy of 
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the signal is also absorbed. This generates a thermoelastic expansion producing 

acoustic waves [60]. Those acoustic waves reach the tissue surface at different 

times, and the ultrasound transducer is responsible to measure such waves, 

which will be used to generate the acoustic source distribution to mapping 

absorption properties [47]. Spatial resolution and the penetration depth can be 

adjusted based on the central frequency and the bandwidth of the ultrasound 

transducer [47,60].  

To deliver EM pulses to the tissue it relies on optical fibers and mirrors. 

Moreover, the whole system should be connected to a microprocessor responsible 

for data acquisition, imaging reconstruction and image display [60].  

The images are formed based on different optical absorption coefficients of 

tissues, and the magnitude of the photoacoustic (PA) signal depends on several 

factors such as the physiological condition of the tissue and the excitation beam 

wavelength (when the laser is the source of energy) [60].  

To image the microvasculature, it is possible to use lasers with wavelength in 

the visible and near infrared spectrum where the main endogenous contrast is 

hemoglobin [43, 44, 47]. In addition, the image is practically speckle free, due to 

the low concentration of hemoglobin in tissue.  

Based on the penetration depth in units of the transport mean free path 

(TMFP), there are three different types of photoacoustic imaging (PAI): quasi-

ballistic, quasidiffusive and diffusive. The first is used for depths smaller than 1 

TMFP, the second for depths between 1 and 10 TMFP, and the latter for depths 

larger than 10 TMFP [60].  

In the quasiballistic regime the main implementation of the photoacoustic 

system is the optical-resolution photoacoustic microscopy (OR-PAM). 

Theoretically, the ballistic regime would measure only unscattered photons, but, 

to increase the signal, “scattered quasiballistic photons are also measured” [60]. 

The OR-PAM system consists of an objective lens used to tightly focus the laser 

beam into the tissue, and even though the ultrasound transducer is also focused, 

the optical focus is tighter than the acoustic one [43]. Therefore, the lateral 
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resolution is defined by the optical system, while the axial resolution is 

determined by the bandwidth of the transducer [60]. The OR-PAM can provide 

a high spatial resolution of 1-2µm [43].  

The acoustic-resolution photoacoustic microscopy (AR-PAM) is the main 

implementation in the quasidiffusive regime. When using a high frequency 

ultrasound transducer the spatial resolution is around 50µm [43]. The system 

consists of conical lens used to widely focus the laser beam, and, as doing so, the 

acoustic focus gets tighter than the optical focus. As in the OR-PAM, the axial 

resolution is defined by the bandwidth of the transducer, while the lateral 

resolution depends on the numerical aperture (NA) of the lens and central 

frequency of the ultrasound transducer [60].  

In the diffusive regime the main implementation is the photoacoustic 

computed tomography (PACT), where a diffusor is used to expand the beam and 

illuminate a larger region of the tissue while a transducer array is used to detect 

the PA waves all at once. Low frequency ultrasound transducers are used to 

increase penetration depth at the cost of spatial resolution.  

  

2.5.1 Estimation of sO2 from PA Signals 

 

Estimating blood oxygen saturation (sO2) provides important information 

about the vasculature in the macro and micro level [ 57]. For instance, oxygen 

saturation is an important factor on the process of healing burns and wounds [32, 

57, 58], and for the analysis of brain activities in small animals [32]. Moreover, 

abnormal oxygenation levels are related to the advent of ocular diseases such as 

cataract and glaucoma [59].  

Furthermore, estimating blood oxygen saturation is critical in cancer 

research [25,32,57,58]. It is known that cancer microenvironments present 

abnormal levels of protein, oxygenation and PH values, besides of being 

associated with angiogenesis and metastasis [58]. Also, tumour hypoxia has a 
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close relationship with the resistance to chemotherapy and radiotherapy [25, 32, 

57, 58]. Therefore, oxygenation measurements can help choosing the best 

treatment for different kinds of cancerous lesions.  

Currently there are several techniques used to measure blood oxygen 

saturation. The traditional method is by using diffuse optical spectroscopy (DOS) 

[25,32, 57]. However, due to low spatial resolution (caused by optical scattering), 

oxygenation measurements need to be averaged over the volume of the biological 

tissue [32]. Another widely used technique is pulse oximetry, which is based on 

near infrared spectroscopy (NIRS), also lacking spatial resolution [25, 57].  

Functional magnetic resonance imaging (fMRI) monitoring blood oxygen 

level dependent (BOLD) contrast can be used to quantify sO2 with high spatial 

resolution [25,29,30,57]. However, BOLD MRI is only sensitive to 

deoxyhemoglobin (HbR) and it cannot distinguish between change in blood 

oxygenation and perfusion [29, 30]. Other techniques such as positron emission 

tomography (PET) [25, 29, 30, 57], electron paramagnetic resonance imaging 

(EPRI) and single photon emission computed tomography (SPECT) can also 

quantify blood oxygen saturation [57]. Nevertheless, every technique described 

so far has disadvantages, the most common one being the need of exogenous 

contrast agents to provide functional information [57].  

As explained in section 2.5 photoacoustic (PA) imaging is based on the 

detection of acoustic waves generated by thermal expansion when optical energy 

is absorbed by a sample [25, 29, 30, 32, 57, 58]. The pressure generated is 

proportional to the optical absorption coefficient of the tissue, therefore, 

multiwavelength measurements of PA signals can lead to information about the 

optical spectrum [32,57]. Since blood is rich in oxy- (HbO2) and 

deoxyhemoglobin, which are the strongest chromophores in the 650-900nm 

wavelength range, PA imaging can provide structural images of blood vessels 

[32]. Moreover, considering that blood absorption is determined only by HbO2 

and HbR, multiwavelength PA measurements can be used to determine sO2 [32], 
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which is defined by the ratio of oxyhemoglobin concentration ([HbO2]) to total 

hemoglobin concentration ([HbO2]+[HbR]) [57].  

Furthermore, using the estimation of sO2 one can also estimate the rate of 

oxygen consumption (MRO2), which is important for studying tissue metabolism 

and diseases related to oxygen metabolism such as diabetes [29, 30]. In a single 

vessel, oxygen flux can be estimated based on three parameters: cross-section 

area of vessel, sO2, and mean flow speed [30].  

While photoacoustic Doppler flowmetry can be used to estimate flow speed, 

until now, accurate measurements can only be done for shallow depths [29,30]. 

Therefore, the use of ultrasound-based techniques as proposed in this study 

would be more appropriate to estimate flow speed deeper in the tissue. The use 

of Doppler ultrasound combined with photoacoustic has proven to provide a good 

estimation of MRO2 both in phantom and in vivo [29, 30]. However, measuring 

flow speed using Doppler ultrasound which is based on the phase shift of the 

received signal, is not accurate when the Doppler angle approaches 90 degrees 

[29, 30]. Thus, the autocorrelation method proposed in this study will be used to 

measure blood flow based on movement of scatterers inside the vessel, rather 

than based on the phase shift of the received signal. This approach uses a linear 

array high-frequency ultrasound transducer, instead of a single element 

ultrasound transducer, which has been used before.  

In addition, it is known that tissue scattering is more echogenic than blood 

scattering [20,30], so we used a clutter filter. For the purpose of estimating blood 

oxygen saturation, we used a block-wise SVD filter. Since the tissue scattering 

and blood scattering contribute more to the variation of the signal than noise, 

and tissue is more echogenic than blood, we used the block-wise SVD to suppress 

all the eigenvalues outside the blood subspace. From the correlation matrices we 

calculate the temporal and spatial eigenvectors, which will be used to estimate 

the blood signal matrix as explained on Section 2.4.2.  

The cross-section area of a single vessel can be quantified using the power 

Doppler technique on the filtered data [30]. This technique shows the strength of 
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scattering movement due to blood flow and the intensity of the power Doppler 

image is proportional to the number of scatterers moving within the vessel 

volume.  

   Throughout the years different approaches were proposed to estimate blood 

oxygen saturation from PA signals. For instance, Esenaliev et al. [99] proposed 

the use of exponential rise in PA signals [32, 57]. This approach is self-calibrating 

since it does not deal with absolute values of the PA signal, but rather its relative 

change. Therefore, the use of this method on PA signals acquired at different 

wavelengths lead to accurate values of sO2, independently of the surrounding 

tissue [57]. Nonetheless, this approach can only be used in vitro since it requires 

vessels with a predictable shape, such as planar boundaries, which is not feasible 

for in vivo applications [57].  

Thus, in order to estimate sO2 in vivo, it is possible to analyse the peak 

amplitude of PA signals. The amplitude of a PA signal depends on three physical 

quantities: optical fluence, optical absorption coefficient, and the Gruneisen 

parameter [32, 57]. The local value of the optical absorption coefficient is based 

on the concentration of optical chromophores [32]. However, the relationship 

between chromophore concentration and optical fluence is not straightforward 

since optical fluence depends on the distribution of chromophores and scatteres 

in the whole region exposed to optical energy [32, 57].  

Therefore, due to the unknown spatial distribution of fluence, estimating 

blood oxygen saturation becomes a hard task to accomplish using 

multiwavelength PA signals [32]. Knowing the photoacoustic signals at the 

surface p(x,λk) and extinction coefficients ƐHbO2(λk) and ƐHb(λk) one can solve the 

inverse problem of calculating the concentrations of oxy-and deoxyhemoglobin 

using the following Equation 2.17  [30]. 

 

[

𝑝(𝑥, 𝜆1)

⋮
𝑝(𝑥, 𝜆𝑛)

] =  𝛤(𝑥) [

𝛷(𝑥, 𝜆1)Ɛ𝐻𝑏(𝜆1) 𝛷(𝑥, 𝜆1)Ɛ𝐻𝑏𝑂2(𝜆1)

⋮ ⋮
𝛷(𝑥, 𝜆𝑛)Ɛ𝐻𝑏(𝜆𝑛) 𝛷(𝑥, 𝜆𝑛)Ɛ𝐻𝑏𝑂2(𝜆𝑛)

] [
𝐶𝐻𝑏(𝑥)

𝐶𝐻𝑏𝑂2(𝑥)
]   (2.17) 
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Where the term Γ(x) represents both the relative Gruneisen parameter and 

the relative sensitivity, being wavelength independent. Therefore, not impacting 

the sO2 [30]. However, the wavelength dependent fluence Φ(x,λk) cannot always 

be neglected [29].  

Under the assumption that the excitation wavelengths are considerably close, one 
can drop the wavelength dependent scattering, and therefore consider the optical 
fluence constant, assuming that the PA signal is proportional only to the local 
absorption coefficient [59]. In that case, solving the system of equations based on 
Equation 2.17 would lead to estimating sO2 [30].  

 

µ𝑎(𝜆𝑖) =  Ɛ𝐻𝑏(𝜆𝑖)[𝐻𝑏] +  Ɛ𝐻𝑏𝑂2(𝜆𝑖)[𝐻𝑏𝑂2]     (2.18) 

 

The number of equations in the system depends on the number of excitation 

wavelengths used to generate PA signals. Moreover, the same assumption can be 

used if the laser wavelength corresponds to the transparency window (650nm-

1300nnm) [32]. Nevertheless, the absorption by blood at these wavelengths are 

low, which can lead to errors [32].  

The problem of choosing the optimal wavelength for estimating sO2 have 

been addressed by several studies, but it depends on the application and may vary 

for different investigation depths. Furthermore, in most of these studies, the 

optical fluence is considered known from the scattering and absorption 

coefficient of tissues, which are usually treated as homogeneous. However, most 

of these methods require sophisticated models for absorption and optical 

transportation, which is an issue for real-time imaging [25]. In addition, 

heterogeneity of tissue prevents modeling fluence with sufficient accuracy [32].  

Therefore, in this study sO2 will be estimated using the system of equations 

based on Equation 2.15, which, indeed, has limitations, but has proven to provide 

a good estimation of blood oxygen saturation [29,30,58,59].   
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Chapter 3 
 

Simulations 
 

3.1 Introduction 

Simulations are an inexpensive and safe way to experiment with system 

models while providing a deeper understanding about the system. Moreover, it 

provides effective system analysis if the model is simulated under different 

operating conditions and with different system parameters [35]. In order to 

validate our hypothesis that speckle-tracking methods can generate perfusion 

mapping images and ultimately provide quantitative measurements of tissue 

perfusion this study uses a powerful software called Field II.  

Field II was created by Jensen et al. [36,37] and it makes possible to model 

arbitrary transducers and to use realistic image scan sequencing. The approach 

is based on spatial impulse response estimation and makes use of linear system 

theory to determine the ultrasound field based on an excitation pulse, temporal 

impulse responses of the transmitting and receiving transducers, and the spatial 

impulse response at a given point.  

Tissue is modeled as a collection of point scatterers and blood is modeled as 

a randomly distributed point scatterers that move during the simulation. Each 

ultrasound beam is simulated individually so it is possible to update the position 

of moving scatterers between beam acquisitions.  

Computational fluid dynamics (CFD) played an important role in the 

simulation allowing the acquisition of realistic flow fields (blood) in complex 

geometries that are known to be related to physiological and pathological 

conditions. During development and validation of the proposed method vessel 
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wall movement was omitted. Still, the combination of CFD and ultrasound 

simulations allowed for a realistic understanding of blood perfusion.  

This chapter makes use of a bottom up approach while having ultimate 

control of actual perfusion values for different microvasculature patterns. We 

started simulating blood flowing on straight tubes where it was relatively easy to 

calculate perfusion and prove that the proposed method is able to estimate blood 

perfusion and generate perfusion mapping images. Then, it moved on to more 

complex patterns such as kidney and tumor like vasculature. At that point only 

on plane vessels were considered, however, this is not very realistic since when 

estimating perfusion out of plane vessels have a crucial role. Therefore, a 

simulation using 3D random walk vessels was developed.  

 The effect of noise had to be analyzed for different vasculature depths. 

Ultrasound transducers add electronic noise to the system degrading SNR. 

Considering that blood flows very slowly in micro vessels, the electronic noise 

could degrade blood signal to the point that perfusion estimation would be 

compromised. To boost SNR we made use of Golay sequences and their 

effectiveness was investigated through simulations. The combination of block-

wise SVD filter and the AM2D algorithm for tissue motion compensation 

increased perfusion sensitivity. Only after proving the robustness of the proposed 

method to estimate tissue perfusion the research moved forward to in vivo 

experiments.  

We used Plane Wave Compounding (PWC) imaging which needs only few 

insonifications to reconstruct a full image [38]. This allows acquisition at a very 

high frame rate which increases the ensemble size and consequently increases 

signal-to-noise + clutter ratio when combined with SVD filters.  

Finally, it was proven that, even though Power Doppler imaging is a very 

powerful tool in providing important morphological information it cannot 

provide information about blood perfusion in microvasculature evidencing the 

value of this research in estimating perfusion. 
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3.2 Plane Wave vs. Scan-Line Acquisition  

Considering the bottom-up approach it was necessary to replicate the second 

order SVD filter (to be used with PWC imaging) and the high-order SVD  filter 

(used on focused ultrasound imaging) mentioned on Chapter 2 Section 2.4.2 to 

decide what acquisition method to use. Both algorithms were first implemented 

by other research groups, but the algorithms were not open source.  

When this research was initiated the papers about the block-wise SVD filter 

[23], which provides an adaptive method to isolate the blood subspace, and the 

statistical classifier proposed by Kim et al. [21], which is used to isolate the blood 

bandwidth when pulse-echo acquisition is used were not yet published.  

Therefore, the process of tuning an SVD filter was very meticulous to ensure that 

only the eigenvalues related to blood flow were being considered, which may 

differ depending on the application. An effort to automate the important 

eigenvalues was made and the use of machine learning was considered, but this 

work was not finalized by the time this research was completed. 

Viti et al. [55] investigated the trade-off between SNR, resolution and 

framerate when plane-wave compounding and scan-line acquisition were used to 

image ultrasound contrast agents using the non-destructive model. Based on that 

research, on average, when compared with focused imaging, the use of plane-

wave compounding showed a 10dB increase on contrast values when 63 angles 

were used and 7dB increase when 9 angles were compounded. Since higher 

contrast values are related to higher sensitivity to perfusion while suppressing 

tissue and noise signals, and that plane-wave compounding provide the 

capability of acquiring large datasets, PWC was the acquisition method of choice 

to be used throughout the research. 

In PWC each plane wave k is emitted with a steering angle defined as 𝛼𝑘 =

arcsin (
𝑘

𝑥𝑙𝑎𝑡
) , 𝑘 {−

𝑁𝑝𝑤

2
, … ,

𝑁𝑝𝑤

2
− 1}. Where Npw is the total number of waves to be 

emitted. The emission delays of the plane wave k for each element i of the transducer 

is as follows 𝑡𝑖
𝑘 = (𝑖 − 1)𝑝𝑖𝑡𝑐ℎ ∗ tan (𝛼𝑘)/𝑐, where pitch represents the distance 
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between the center of the two elements of the probe and c is the propagation speed 

of the ultrasound wave in soft tissues. The final PWC image is obtained by adding all 

the Npw low resolution images [38].  

The easiest way to understand and implement the SVD filter was to design 

simulations with straight tubes with a static background (to simulate tissue) and 

moving scatterers to simulate red blood cells. Speckles inside and outside the 

tube had the same density. To make the blood flow more realistic we used of CFD 

and, therefore, blood was flowing in a parabolic trajectory.  

This simulation used a linear array with 256 lambda-pitch elements of center 

frequency 21MHz. Field II was used to model blood and tissue scatters, with the 

ratio between the amplitude of blood to stationary tissue set to 0.7. The largest 

velocity of scatterers was defined as 1mm/s, and the ultrasound propagation 

velocity in tissue was 1540m/s. Field II was used to simulated both scanline 

imaging and plane wave imaging (with 9 plane wave angles spanning -5 to +5 

degrees). The acquired dataset was used to implement the second order SVD 

filter algorithm used in this research. 

  

3.3 Perfusion Mapping 

Before moving forward with simulations that mimicked real life 

microvasculature, we had to define what method for estimating speckle 

decorrelation would be best suited for the proposed application. We investigated 

two methods, one based on the width of the autocorrelation function of each pixel 

in time (Method 1) and the second that fitted the main-lobe of the autocorrelation 

function to a Gaussian parameterized by the standard deviation (Method 2). In 

the latter the standard deviation is defined as the reciprocal of the speckle-

decorrelation rate.  Figure 3.1 illustrates how the autocorrelation function was 

obtained.  
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Figure 3.1 – Illustration of data frames used to calculate autocorrelation function 
in time. 

 

In order to decide which method would provide the best estimation for the 

speckle-decorrelation rate we ran a series of experiments.  The setup shown in 

Figure 3.2 was used to acquire ultrasound data that was later used to estimate 

speckle decorrelation. The ultrasound transducer was placed on top the sample 

for water coupling.  

 

 

Figure 3.2 – System setup for imaging the flow phantom. Flow speed is the 
controlled variable and preset at the syringe pump. 

 

The experiments were performed on a flow phantom and transparent 

polyurethane tubing (SAI Infusion Technologies, IL, USA) with inner diameter 

(ID) of 1.016mm was used to mimic a blood vessel. One vessel was embedded at 

5mm deep inside the phantom. A non-scattering phantom composed of 10% 
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gelatin by mass was used. The fluid flowing through the tube was a mixture of 

water and cornstarch that mimics blood flow dynamics. The syringe pump was 

used to setup speed flow varying from 1mm/s to 10mm/s. A linear array 

transducer LZ250 (Fujifilm, VisualSonics, Inc.) combined with the Verasonics 

Vantage 256 (Verasonics, Inc.) ultrasound acquisition system was used. 

 Several sets of data were acquired and later processed using MATLAB (The 

MathWorks, Inc., Natick, MA, USA).  

Firstly, we used Method 1 to estimate speckle-decorrelation. Figure 3.3 shows 

the difference in width for a static point outside of the tube (Point 2),  and for a 

moving point inside of the tube (Point 1). The width of the autocorrelation 

function decreases as an inverse proportion of fluid flow. However, the several 

lobes made it difficult to define what width would best characterize speckle-

decorrelation rate. Still, we were able to appropriately differentiate the speckle-

decorrelation for higher and lower speed flows as can be seen on Figure 3.4.  

  

  

Figure 3.3 – Left: Autocorrelation function in time for a location outside the flow 
tube (Point 2) and for a location inside of the tube (Point 1). Right: B-mode 
scanline image showing the two point locations.  
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Figure 3.4 – Speckle-decorrelation rate calculated using Method 1 (a) for speckles 
moving at 2mm/s (b) for speckles moving at 10mm/s. Colormap represents the 
normalized speckle-decorrelation rate. 

 

 

Secondly, we used Method 2 to estimate speckle-decorrelation.  This method 

proved to be more robust and to minimize noise interference when instead of 

fitting the autocorrelation curve of one pixel in time, we analyzed the 

autocorrelation function on a square window of pixels (4x4). Figure 3.5 shows 

the Gaussian curve parametrized by the standard deviation that was used to 

calculate the speckle decorrelation rate. Figure 3.6 shows the estimated speckle 

decorrelation rate for different blood flows when Method 2 was used. 
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Figure 3.5 – Description of Method 2: autocorrelation function fitted with a 
Gaussian curve parametrized by the standard deviation. The speckle-
decorrelation rate is defined as the reciprocal of the standard deviation.  
 

 

 

Figure 3.6 – Speckle-decorrelation rate calculated using Method 2 (a) for 
speckles moving at 2mm/s (b) for speckles moving at 10mm/s. Colormap 
represents the normalized speckle-decorrelation rate. 
 

 

To validate Method 2 even further we expanded the phantom experiment by 

using a tissue mimicking phantom composed of 10% gelatin and 10% cornstarch 
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by mass, which provides ultrasonic and mechanical properties similar to human 

tissue [29]. We also used a transparent polyurethane tubing (SAI Infusion 

Technologies, IL, USA) with inner diameter (ID) of 0.0348mm to mimic a blood 

vessel 5mm deep into the phantom. This time we used blood as fluid and used 

Method 2 to estimate the speckle-decorrelation rate. We filtered the dataset using 

the proposed second-order SVD filter algorithm we implemented. Figure 3.7 

show the results.  

 

 

Figure 3.7 – Scattering phantom imaged using plane wave compounding image 
(a) original data frame (b) data filtered using second-order SVD filter (c) PD 
image of the acquired data. Gray colormap represents the ultrasound 
backscattered signal normalized and the hot colormap represents the normalized 
PD signal. 
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This validated Method 2 as the method of choice for calculating the speckle-

decorrelation rate for the rest of this research.  

 

 

3.3.1 2D Microvasculature 

 

Karshafian et al. [39] proposed two vascular models that represent “kidney-

like” and “tumour-like” structures using rules of branching and fractal geometry 

in two dimensions. These structures are proven to match networks of real kidney 

and tumour vascular trees and therefore are a great tool to simulate 

microvasculature characterized by small size (<50m diameter) and blood 

speeds of less than 1mm/s.  

By simulating microvasculature that mimics real life structure we can test our 

hypothesis that high-frequency ultrafast ultrasound combined with the proposed 

perfusion mapping algorithm can estimate blood perfusion without contrast 

agents.  

The computational vascular network model proposed by Karshafian et al. 

[39], is based on two principles that can be summarized as follows. Firstly, both 

vascular networks (kidney and tumour like) have a fractal-like branching where 

a parent vessel bifurcates into daughter vessels of shorter lengths, a process that 

is repeated successionally. Secondly, the total resistance of the system is 

minimized which provides a relationship for the diameter of vessels at the 

bifurcation.  

The difference between generating a “tumour-like” and a “kidney-like” 

structure lies in changing parameters such as vessel diameter, length and 

branching angle.   

The relationship between the diameter of a parent vessel (D0) and its 

daughter vessels (D1 and D2) is given as [39]: 

D0  =   D1 + D2  (3.1) 
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Where  represents is the bifurcating exponent and assumed to be 3.  

The symmetry of the daughter vessels is given by the bifurcation index () 

defined as [39]:  

 = 
𝐷1

𝐷2
  (3.2) 

Real life vascular structures are asymmetric, therefore, we assume that the 

diameters of the daughter vessels are different. In this research we assume 

=0.95.  

The length of each daughter vessel is proportional to the length of a parent 

vessel by a factor k as seen on Equation 3.3 [39]. k is set for simulation purposes 

to 0.9 +/- a length span to add a degree of randomness. For “kidney-like” 

structures the length span was 0.05 and for “tumour-like” structures the length 

span was 0.1.  

 

Ldaughter = kLparent (3.3) 

 

A uniformly distributed function is used to assign branching angles in the 

vascular models. For “kidney-like” structures branching angles vary from 25.5° 

to 28.5°, but for “tumour-like” structure since a random like structure is desired 

branch angles vary from 25° to 140°.  

The network hemodynamics is assumed to be steady, laminar flow of varying 

viscosity and the vessels are assumed to be rigid, cylindrical and impermeable.  

Poiseuille’s law is used to estimate flow resistance. This model accounts for 

several effects such as the Fahraeus-Lindqvist effect that states the dependence 

of the apparent viscosity of blood flow based on vessel diameter and the Fahraeus 

effect that states the reduction of intravascular hematocrit relative to the inflow 

of a vessel [40].  

To create tumour like and Kidney like vasculature the initial conditions had 

to be changed and are shown in Table 3.1. Parameters changed based on the type 

of vasculature we were analyzing. We had to combine this network morphology 
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and hemodynamics with the Field II software so we could use ultrasound theory 

to acquire data using plane wave compounding imaging while blood was flowing 

through the structure.  

 

Parameter Degree of Randomness 

 Kidney Tumour 

Length 85-95% 80-100% 

Diameter 95-105% 90-110% 

Angle 25.5°-28.5° 25°-140° 

 

Table 3.1 Global parameters used to generate “kidney-like” and “tumour-like” 
random walk microvasculature.  
 

To implement the microvascular beds in Field II we had to define some global 

parameters based on the information in Table 3.1. For both “kidney-like” and 

“tumour-like” microvasculature the maximum node length was set to be 2.5mm, 

the maximum diameter was 500µm and the minimum diameter was set to 5µm. 

The bifurcation exponent is γ = 3 and the bifurcation index (related to the 

asymmetry in diameters) is β = 0.95 with a randomness asymmetry constant of 

0.04. We had 100,000 scatterers flowing through the microvasculature at all 

times.  

To define flow through the vasculature we must define the flow through the 

root vessel which was done by defining the volumetric flow [m3/s] in the fist 

vessel. The volumetric flow ranged from 0.1mm3/s to 5mm3/s in most 

simulations. 

The flow speed in each vessel is calculated by dividing the volumetric flow by 

the area of the node (all the relevant parameters of a node including diameter 

were stored in the “vascular” object in Matlab). The velocity of each scatterer 

depends on the framerate and it is constant for the same width, that is if the 

scatterer is travelling through the same node. The scatterer velocity is used to 

calculate the position of speckles on each frame.  
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Pressure at each node was calculated based on the principle of conservation 

of mass where the volumetric flow from the two daughters must be equal to the 

volumetric flow on the parent node. The flow resistance was calculated based on  

Equation 4 presented in Karshafian et al. [39].  

The number of nodes will vary from simulation to simulation since we will 

keep generating daughter nodes until their diameter is smaller than the 

minimum diameter specified.  

The scatterers are populated in the microvasculature based on a randomly 

chosen “radius position” that is normalized to the diameter of the vessel, which 

will be constant throughout the entire run for the scatterer. Scatterers will move 

towards the next node with a parabolic velocity profile and when reaching a node 

it will randomly choose which vessel it will continue on. This choice is weighed 

towards the vessel with higher flow speeds. Moreover, when the vessels get really 

small the RBCs tend to choose only one vessel to travel to. The scatterers 

positions are collected to be used with Field II. 

To image the microvasculature we used a linear array with 256 lambda-pitch 

elements of center frequency 21MHz. The pulse repetition rate was adjusted for 

different simulations and scatterers positions were updated between 

acquisitions. 

Several microvascular beds for both kidney-like (Figure 3.8) and tumour-like 

(Figure 3.9) microvasculature were created with different velocities. We used the 

proposed perfusion rate estimation method on each simulation to analyze the 

relationship between the correlation coefficient and the change in flow speed to 

ensure it was possible to estimate tissue perfusion from speckle decorrelation 

rate. 
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Figure 3.8 – 2D random walk microvasculature (a) “Kidney-like” structure where 
colormap represents the normalized PD signal (b) Perfusion mapping at the ROI 
shown in Figure 3.9(a) for speckles moving at 1.889mm/s (c) Perfusion mapping 
at the ROI shown in Figure 3.9(a) for speckles moving at 2.8222mm/s (d) 
Perfusion mapping at the ROI shown in Figure 3.9(a) for speckles moving at 
5mm/s (e) correlation coefficient as a function of the flow speed (f) calculated 
velocity vs. true velocity. Colormap on figures (b), (c), and (d) represents the 
speckle-decorrelation rate. In the pictures speckles speeds refers to the 
volumetric flow at the root node. 
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Figure 3.9 - 2D random walk microvasculature (a) “Tumour-like” structure where 
colormap represents the normalized PD signal (b) Perfusion mapping at the ROI 
shown in Figure 3.9(a) for speckles moving at 1.889mm/s (c) Perfusion mapping 
at the ROI shown in Figure 3.9(a) for speckles moving at 2.8222mm/s (d) 
Perfusion mapping at the ROI shown in Figure 3.9(a) for speckles moving at 
5mm/s (e) correlation coefficient as a function of the flow speed (f) calculated 
velocity vs. true velocity. Colormap on figures (b), (c), and (d) represents the 
speckle-decorrelation rate. In the pictures speckles speeds refers to the 
volumetric flow at the root node. 
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The ratio that represents the calculated velocity (velocity / beamwidth) in 

Figures 3.8(f) and 3.9(f) were calculated using Equation 3.5 [101] that states that 

the normalized autocorrelation function modelled by a Gaussian curve is 

proportional to flow speed.  

 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∿ exp (−
𝛥𝑡2

2
|

𝑉

𝜎(𝑦)
|

2

)    (3.5) 

 

Where Δt is the framerate, V is the fluid velocity and σ(y) is the beamwidth 

[101]. When plane-wave imaging was used  is considered the lateral width of the 

received point spread function (PSF).  

The results in Figure 3.8 (e) and Figure 3.9 (e) that evidenced that the 

correlation coefficient is inversely related to the flow speed as we were expecting. 

Therefore, we could compare the estimated perfusion (speckle-decorrelation 

rate) with the calculated perfusion (Equation 3.4).  

 

𝑃𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =  
𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑟𝐹𝑙𝑜𝑤

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑅𝑂𝐼
   (3.4) 

 

Here scatterer flow is defined as the number of scatterers crossing the 

boundary of a ROI per unit time.  
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For several simulations we compared the calculated and estimated perfusion 

(speckle-decorrelation rate) to validate the proposed method. For each 

simulation indicated in Figure 3.10(d) and 3.10(e) scatterers had the same 

volumetric flow at the root node, and only like structures were compared 

(“kidney-like” and “tumour like”). However, due to the degree of randomness on 

each structure no two like structures were exactly the same, which added to the 

level of robustness since in clinical situations the microvasculature is not 

identical on different subjects. 

Figure 3.10 – Calculated perfusion and estimated perfusion as a function of the 
true velocity for three different 2D tumour-like random walk microvasculature 
generated using like parameters (a) Random Walk Microvasculature 1 (b) 
Random Walk Microvasculature 2 (c) Random Walk Microvasculature 3 (d) 
Calculated Perfusion as a function of the true velocity on all 3 Microvasculature 
(e) Estimated Perfusion as a function of the true velocity on all 3 
Microvasculature. 
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The simulation results shown in Figure 3.10 demonstrate that for “kidney-

like” and “tumour-like” microvascular cases speckle-decorrelation rate follow 

similar trends with true perfusion rate over a range of root vessel velocities. 

The statistical analysis provides an overview about the relationship between 

frame rate, maximum and minimum detectable speeds and the number of frames 

needed to provide a good perfusion estimation. The results can be seen on Table 

3.2.  

 

Frame Rate 

(Hz) 

Min. Speed 

(mm/s) 

Max. Speed 

(mm/s) 

Number of 

Frames 

10 - - - 

25 0.1 0.5 50 

50 0.1 0.8 100 

100 0.1 2 50-200 

250 0.1 4.5 250-500 

500 0.1 10 500-1000 

 

Table 3.2 – Blood flow sensitivity as a function of frame-rate for datasets coming 
from the same population (“tumour-like” 2D random walk microvasculature). 

 

It is possible to notice that the higher the frame rate the greater the maximum 

detectable flow speed. Moreover, increasing the framerate and the number of 

frames acquired improves the robustness of the proposed method to a certain 

extent as per Figure 3.11. That is consistent with other studies that showed that  

the increase in ensemble size is related to a better perfusion sensitivity when SVD 

based filters were used.  
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Figure 3.11 -  Speckle-decorrelation rate as a function of the true velocity (a) for 
frame rate =100Hz (b) for frame-rate = 500Hz.  
 

 

We also analyzed the impact of noise on perfusion measurements since good 

SNR is crucial for perfusion sensitivity. Therefore, investigating the minimum 

SNR required for calculating speckle decorrelation rates was an important 

limiting factor. The SNR was calculated as the reciprocal of the coefficient of 

variation (CV).  

 

𝐶𝑉 =  
𝜎

µ
   (3.6) 

 

Where σ is the population standard deviation and µ is the population mean. 

It is possible to notice based on Figure 3.12 that increasing the noise in the system 

hinders the capability of the proposed method in estimating tissue perfusion and 

the minimum SNR required for estimating tissue perfusion was found to be 

2.3dB. Later on, in an attempt to improve SNR we implemented the adaptive 

block-wise SVD filter (to increase SNCR) and used Golay sequences.  
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Figure 3.12 – Impact of noise on estimating the speckle-decorrelation rate.  

 

3.3.2 3D Microvasculature 

 

Up to this point we used the Karshafian et al. [39] study to create 2D 

microvascular structures. However, in reality, the microvasculature is composed 

of “on plane” and “out of plane” vessels. To address this issue we had to expand 

their study to create a 3D microvasculature as shown on Figure 3.13. Figure 3.14 

shows the US image of a 3D random walk microvasculature.  
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Figure 3.13 – 3D “Tumour- Like” random walk microvasculature mimicking the 
disorganized microvasculature of a tumor. 
 
 

 

 

Figure 3.14 – 3D random walk microvasculature mimicking “kidney-like” 
structure (a) US image (b) PD image.  

 

 

The new calculated perfusion is shown on Equation 3.7. 

 

𝑃𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =  
𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑟𝐹𝑙𝑢𝑥

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑂𝐼
  (3.7) 
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Analysis of the new simulation showed that the proposed method to estimate 

tissue perfusion was robust even when 3D microvascular structures were 

analyzed. Therefore, the hypothesis that the speckle decorrelation rate can be 

used to estimate tissue perfusion was validated even when “out of plane” vessels 

were imaged, a case that satisfies real life scenarios and exposes the value of the 

proposed method to estimate tissue perfusion for clinical applications. Figure 

3.15 shows the perfusion mapping for the true perfusion rate and the speckle 

decorrelation rate while Figure 3.16 shows the relationship between speckle-

decorrelation rate and calculated perfusion.  We performed a linear regression 

that indicates a relationship with a correlation R2 = 0.98. 

 

 

Figure 3.15 – Perfusion mapping comparing true perfusion rate calculated using 
Equation 3.6 and the speckle-decorrelation rate calculated using the proposed 
method. 
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Figure 3.16 – Relationship between speckle-decorrelation rate and calculated 
perfusion.  

 

We also added noise and tunned our clutter filter to suppress the last 

eigenvalues which are known to be related to noise. However, the size of the blood 

subspace was defined arbitrarily and on an attempt of automating this process 

we implemented our version of the adaptive block-wise SVD filter that defines 

the size of the blood subspace on small windows rather than on the full image.  

In Figure 3.17(a) we made use of a 1st order SVD filter that relies on the fact 

that a matrix with full rank can be approximated by another with lower rank 

through Singular Value Decomposition [79]. Assuming that we have a matrix A 

with rank r that can be approximated to one of lower rank  Ã = UssV*, s < r, 

where “*” denotes the conjugate transpose, Us and Vs are the orthogonal matrices 

and s is a diagonal matrix of singular values I sorted in descending order. The 

matrix Ã is the best approximation of A in the least square sense ||A – Ã||2. 

For the implementation of the first order SVD filter, one needs to first reshape 

the acquired 3D ultrasound data to a spatiotemporal matrix form as was done in 

[22]. This is achieved by transforming the 3D dataset consisting of dimensions 

(Nz, Nx, Nt) into a 2D spatiotemporal matrix of dimensions (Nz x Nx, Nt). One can 

now apply singular value decomposition (SVD) to this matrix to deconstruct it to 

its eigenimages.  

As mentioned in Section 2.4.2, it is commonly assumed that tissue scattering 

is more echogenic than blood scattering [102] and that tissue and blood 
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contribute more to the variance than noise. Therefore, we can assume that the 

first eigenvalues in s belong to tissue, followed by blood and noise. We can 

obtain an image of the blood signal by simply zeroing the tissue and noise 

eigenvalues. Thus, the lower rank approximation matrix containing only the 

eigen-images belonging to the blood subspace can be represented by the 

following: Ã =  ∑ 𝒊𝒖𝒊𝒗𝒊
∗𝒄+𝒅

𝒊=𝒄+𝟏  .  

Where c and d represent the rank of the clutter and blood signal. This can be 

thought of as decomposing our spatiotemporal matrix into a weighted, ordered 

sum of separable matrices Ai (eigen-images). Moreover, ui and vi are the ith 

column of the corresponding SVD matrices, and i are the ordered singular 

values. It is important to keep in mind that each column vi corresponds to a 

temporal signal with length Nt and each column ui corresponds to a spatial signal 

with length Nt. The overlay in Figure 3.17(a) represents the eigen-image 

belonging to the blood subspace when first order SVD filter is used.  

Figure 3.17(b) represents the eigen-image of the blood subspace when the 

second order SVD filter is used. This filter is very similar to the first order SVD, 

however, rather than having only regular frames the dataset is composed of super 

frames and in our simulations each super frame was a collection of 15 frames.  

Therefore, we would exercise the same process used for the first order SVD 

filter on each super-frame (set of 15 frames) and only then we would apply the 

SVD filter on the eigen-images from the super-frames. Applying the SVD filter 

twice on the dataset proved to increase perfusion sensitivity.  

However, due to the lack of a standardized approach to choosing the proper 

eigenvalues, selecting the optimal thresholds that separate the clutter-blood and 

blood-noise interface was a challenge especially when noise was added as can be 

seen in Figure 3.17(a) and Figure 3.17(b) where it is evident the existence of signal 

unrelated to tissue perfusion surrounding the “tumour-like” microvasculature.  

To overcome this challenge, we made use of the block-wise SVD filter that 

adaptively define the eigenvalues related to the clutter-blood and blood-noise 

interface based on local data statistics [23].  
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Song et al. [23] proposed the use of two clutter filtering approaches to 

adaptively determine the eigenvalue representing the interface between clutter 

and blood. First, the gradient of the singular value curve was analyzed and the 

turning point was identified (cutoff 1A). Second, the curve of mean Doppler 

frequency of each singular vector (related to vectors V) was analyzed and cutoff 

1B was identified as the singular value above a pre-defined tissue motion 

frequency threshold. The greater of cutoff 1A and cutoff 1B was chosen as the 

proper eigenvalue to represent the clutter-blood interface.  

To determine the eigenvalue related to the blood-noise interface it was 

assumed a Gaussian noise distribution throughout the local data. Therefore, the 

eigenvalues related to noise should follow a linear distribution in the logarithm 

scale (gradient of the singular value curve). By linear fitting the tail of the gradient 

of the singular value curve it was possible to identify the point where the curve 

deviates from the linear fitting and that will be considered the eigenvalue 

representing the blood-noise interface [23].  

For each block in the original dataset, the blood subspace is defined using the 

adaptive method proposed by Song et al. [23] to identify the eigenvalues related 

to the clutter-blood and blood-noise interface. Moreover, an inverse SVD 

calculation described by Equation 3.8 must be performed to calculate the blood 

flow signal S(x, z) for each pixel.  

 

𝑆(𝑥, 𝑧) =  
1

𝑁
∑

𝑆𝑛

∑ 
𝐻𝑖𝑔ℎ−𝑐𝑢𝑡𝑜𝑓𝑓
𝐿𝑜𝑤 𝑐𝑢𝑡𝑜𝑓𝑓 

𝑁
𝑛=1    (3.8) 

 

Where N is the total number of overlapped blocks containing the target pixel 

(x, z), Sn is the clutter-filtered signal from block n, and  are the remaining 

eigenvalues related to blood signal. 

The use of the adaptive block-wise SVD filter considerably increased 

perfusion sensitivity as can be seen in Figure 3.17 (c). Furthermore, the use of the 

block-wise SVD filter allowed us to keep the spatial resolution since spatial 
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averaging similar to the one described on Section 3.3 (4x4 windows combined 

with 2nd order SVD filter) was no longer required.  

Despite the great advances in adaptively choosing proper threshold values, 

the method proposed by Song et al. [23] had limitations related to the arbitrary 

choice of the tissue motion frequency threshold and the block size. To estimate 

the optimal block-size and block overlap percentage we had to consider that if the 

block size is too big the noise variance may change in the ROI and if the block size 

is too small (nx* nz < nt) we would face insufficient degrees of freedom. 

Determining the block overlap is a trade-off between image quality and 

computational cost.  

We investigated the optimal block size and block overlap for our application, 

and for the ensemble size of the simulated data (500 frames) a block-size of 80 

was chosen and the block overlap was set to be 85%.  

 

 

 

Figure 3.17 – Effectiveness of the adaptive block-wise SVD filter in isolating the 
blood subspace (a) when data is filtered used 1st Order SVD Filter (b) when data 
is filtered using 2nd Order SVD Filter (c) when data is filtered used Block-Wise 
SVD Filter. Gray colormap represents the normalized ultrasound backscattered 
signal  and the overlay represents the normalized speckle decorrelation rate. 
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Upon initial in vivo experiments we were faced with an issue when tissue 

motion was on the same magnitude as blood flow. Moreover, just the movement 

of the transducer was affecting speckle decorrelation rate estimation.  

Therefore, we made use of the AM2D [60] algorithm to calculate axial and 

lateral displacements. This algorithm was applied on the RF data of one specific 

frame the frame immediately after to create the ultrasound deformation map. 

This deformation map was used to properly define the autocorrelation function 

in time and consequently better estimate the speckle decorrelation rate.  

Moreover, the AM2D algorithm improved the capability of the block-wise 

SVD filter since by tracking tissue motion it is possible to better reorganize the 

3D dataset into the 2D spatiotemporal matrix used to perform the singular value 

decomposition. We validated the AM2D algorithm on a 3D random walk 

microvasculature. Considerable motion to the background speckles was added to 

simulate tissue motion and movement of the transducer. Using the second order 

SVD alone in order to create PD images was not sufficient to suppress tissue 

motion with similar order of magnitude as blood flow as can be seen on Figure 

3.18(b). However, combining block-wise SVD filter and the with the AM2D 

algorithm increased sensitivity which consequently increased the performance of 

the proposed method in estimating speckle decorrelation rate.  
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Figure 3.18 – 3D random walk microvasculature with tissue motion (a) original 
dataset (b) PD image generated using second-order SVD filter (c) PD image 
generated using the adaptive block-wise SVD filter in combination with the 
AM2D algorithm. Gray colormap represents the ultrasound backscattered signal 
normalized and the overlay represents the normalized PD signal. 

 

3.4 Golay Encoding 

The implementation of the block-wise SVD filter improved the robustness of 

the proposed method to noise. However, this algorithm considers the noise 

strictly as Gaussian noise which is not the best approach to simulate the spatially 

varying and complex noise seen in vivo.  

Therefore, we hypothesized that Golay codes can increase perfusion 

sensitivity for the proposed method especially on in vivo experiments.  

Golay sequences are suitable for ultrasound applications because of their 

complementarity property, which limits side lobe levels. If we suppose a = a0, a1, 

…, an-1 and b=b0, b1, …, bn-1, to be a pair of Golay binary sequences of length n bits 

with aj, bj  {-1,1}. Since a and b are complementary then:  
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𝑅𝑎𝑎(𝑗) + 𝑅𝑏𝑏(𝑗) = 2𝑛    (3.7) 

 

Where Raa(j) and Rbb(j) represent the autocorrelation products of sequences 

a and b respectively, and (j) is the delta function. However, in order to emit a 

plane wave that carries the sequences a or b, these binary codes need to be 

modulated at a central frequency inside the bandwidth of the ultrasound probe 

[40]. The modulation chosen in this study is the Binary Phase Shift Keying 

(BPPSK) technique which consists in shifting the phase of a sinusoid (carrier) 

between two possible values 0 and  corresponding respectively to the code bit 1 

or -1.  

Therefore, the data acquisition is performed in two different steps, one for 

each plane wave k (as described in Section 3.2). Firstly, the signal related to the 

first Golay sequence a is emitted by the probe and backscattered signal ya(t) is 

recorded. Secondly, the signal related to the Golay sequence b is emitted and new 

backscattered signal yb(t) is recorded. In order to perform the pulse compression, 

one needs to assume the medium does not move between the two acquisitions, 

so the proper matching filter can be applied to each of the backscattered signals. 

After pulse compression the signals can be added to obtain the final image. 

A 3D random-walk microvasculature phantom was created similar to the 

microvasculature described on Section 3.3.2. Scatterers were moving at different 

speeds, and ground truth perfusion was calculated based on Equation 3.7. 

Phantoms for scatterers moving from 1mm/s to 5mm/s were created.  

All simulations were performed for a 256-element linear transducer array 

excited by one sine cycle burst pulse at nominal frequency of 21MHz. The echo 

signals are sampled independently at a frequency of 100MHz. The data was 

acquired at 500 frames per second.  

The microvasculature phantom was imaged by using one cycle plane wave 

imaging as well as by using complementary Golay pairs of length 8 and 16 bits. 

The effect of the noise for every case is shown on Table 3.3. The standard 
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deviation of the noise was chosen based on the linear value of the IQ beamformed 

data.  

 

Standard 

Deviation of 

Noise 

SNR - One 

cycle 

excitation 

SNR- Golay 

8 bits 

SNR- Golay 

16 bits 

2.02 x 10-25 -3dB 7dB 11dB 

6.93 x 10-26 6dB 16dB 21dB 

1.24 x 10-26 20dB 31dB 36dB 

3.99 x 10-27 30dB 41dB 46dB 

1.24 x 10-27 40dB 51dB 55dB 

 
Table 3.3 – Comparison of SNR between one cycle plane wave imaging and Golay 
code plane wave imaging.  

 

 

From Table 3.3 it is possible to see that the use of Golay sequences increase 

the signal to noise ratio. In general, the use of an 8-bit Golay sequence increased 

SNR in 10dB, while the use of a 16-bit Golay sequence increased SNR in 15dB 

when compared to one cycle excitation plane wave imaging. The difference in 

SNR resulting from doubling the length of the Golay sequence is reasonable since 

theoretically it would provide an increase of 6dB (SNR=20log10(2)). However, 

we would expect an increase of about 24dB (SNR = 20log10(16)) and not 15dB 

when 16-bit Golay sequences are used, therefore, it is reasonable to say that plane 

wave compounding has an effect on the final SNR, a problem that could lead to a 

full research by itself, and therefore it is not further analysed at this point.  

The speckle-decorrelation rate was calculated using the data from one cycle 

excitation and for 16-bit Golay sequences when no noise was added. The results 

were then compared with the calculated perfusion and the results are consistent 

since there is no noise and therefore no increase in SNR is seen when Golay 16-

bits sequences are used (Figure 3.19).   
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Figure 3.19 – Relationship between Speckle-Decorrelation and Calculated 
Perfusion when imaging one-cycle excitation and 16 bits Golay plane wave 
imaging when no noise is added. 

 

 

The fact that the relationship is not perfectly linear can be explained by the 

fact that the datasets were not large enough (only 250 frames were acquired for 

a frame rate of 500 frames per second) to achieve SVD filter full potential and it 

was due to computational constraints.  

The effect of noise on speckle-decorrelation rate calculation can be seen in 

Figure 3.20. When Golay sequences were used to calculate speckle decorrelation 

rates, even though different than when no noise was present, the values were 

consistent for different SNR proving the robustness of the proposed method. 

While the speckle-decorrelation calculated from data acquired using one cycle 

varied significantly for different SNR. Therefore, this validates that the use of 

Golay Sequences improves perfusion sensitivity.  
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Figure 3.20 – Relationship between Speckle-Decorrelation and Perfusion when 
noise is added.  

 

 

It is valid to notice that for speckle- decorrelation rates related to Golay 

Codes, a decrease in the speckle-decorrelation rate is seen when scatterers are 

moving at 5mm/s. This is due to the fact that we need to assume that the medium 

is not moving to perform pulse compression, however, the particles are moving 

too fast and this hypothesis does not hold. Therefore, the estimated speckle-

decorrelation rate is compromised.  

Nevertheless, such high flow speeds are not the interest of this research 

whereas blood flow speed in the microvasculature is in the order of  0.1 to 

1.5mm/s. Hence, the decision was made to implement Golay Codes on the 

Verasonics Vantage programmable ultrasound system to increase the perfusion 

sensitivity for in vivo experiments.  
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3.5 Limitations of Power Doppler on Perfusion 

Estimation  

In Chapter 1 it was also hypothesized that Power Doppler, even though being 

a powerful tool on estimating blood flow, is not able to quantitatively estimate 

perfusion which adds to the novelty of this method. As can be seen in Figure 3.21, 

there is no difference in mean power of the signal when scatterers are moving at 

1mm/s or 5mm/s.  

Power Doppler played an important role on identifying regions where blood 

was flowing and was used as a mask on the automation of the presented method. 

The algorithm here implemented does not require a physician or technician to 

identify the region of interest where the blood is flowing since it is done 

automatically.  

However, the proposed method to estimate tissue perfusion by calculating the 

speckle-decorrelation rate is superior to the Power Doppler imaging because it 

provides quantitative information and not only information on the morphology. 

Furthermore, the proposed method is also superior to the perfusion estimation 

proposed by Choi et al. [59] which is compression-based and uses photoacoustic 

signals. In the latter, it is possible to obtain quantitative information on tissue 

perfusion, but not information on the morphology since PA signals are spatially 

unresolvable.  

This study provides a method to provide simultaneously quantitative and 

morphologic information on tissue perfusion. 
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Figure 3.21 – Power Doppler images (a) for scatterers moving at 5mm/s and 
(b)for scatterers moving at 1mm/s. 
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Chapter 4 
 

Experiments 
 
4.1 Introduction 

Even though simulations were a great tool in developing and fine tunning the 

method proposed by this study, the necessity of proving that speckle 

decorrelation rate is proportional to tissue perfusion for in vivo experiments was 

critical to ensure that this method can be used in clinical applications in the 

future.  

Therefore, a relatively simple experiment was proposed that could be 

replicated several times to provide enough data to statistically analyze the 

population. The experiment in question involves submerging the subject’s hand 

in cold water (to decrease perfusion) and in hot water (to increase perfusion). 

 

4.2 Perfusion of the Palm 

4.2.1 Hot and Cold Water Experiments  

 

Initial in vivo study was conducted by imaging the hand of a human subject. 

The experiments were performed using Visualsonics LZ250 21MHz linear array 

transducer connected to a Verasonics Vantage programmable ultrasound system. 

We used plane wave compounding imaging with seven different angles at a frame 

rate of 500 frames per second. 
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The hand of the human subject was submerged in either hot (45°C) or cold 

(12°C) water baths for 45 seconds. The hot water enhanced perfusion while the 

cold water decreased it. The system setup can be shown on Figure 4.1.  

 

 

 

Figure 4.1 – System setup for acquiring US images. 
 

 

The results can be shown on Figures 4.2 where for different data acquisitions 

the perfusion mapping for like temperatures is similar which validates the 

proposed method. Moreover, as one would expect, the speckle decorrelation rate 

increased when the subject’s hand was submerged in hot water. 
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Figure 4.2 – Perfusion mapping generated by imaging the speckle decorrelation 
rate for cold and hot water submersion. Gray colormap represents the normalized 
backscattered signal and the overlay represents the normalized speckle-
decorrelation rate. 

 

 

Figure 4.3 shows the mean speckle decorrelation rate for the different 

datasets which the perfusion mapping is shown in Figure 4.2. It is possible to see 

a considerable high standard deviation that can be explained by the fact that 

perfusion would change faster on the superficial layer of the skin and the same 

change is not seen deeper in the tissue.  

Furthermore, we performed a t-test on the data acquired at the same 

temperature and were able to conclude that similar datasets came from the same 

data population with a 5% confidence.  

 



79 
 

  

 

Figure 4.3 – Mean speckle decorrelation rate for different datasets acquired at 
the same temperatures (a) mean speckle decorrelation rate for cold water 
submersion (b) mean speckle decorrelation for hot water submersion.  
 

 

Initial in vivo experiment results were promising. However, not all data 

acquired could be considered good data since transducer movements was being 

interpreted by the proposed algorithm as change in tissue perfusion. In addition, 

the subject had to stay still which is not always the case in clinical applications.  

To address the clutter motion (also responsible for the high standard 

deviation), we used the AM2D algorithm to track tissue motion and analyse the 

correlation of the same speckles frame by frame. Moreover, we use the adaptive 

block-wise SVD filter to also increase perfusion sensitivity. 

This increased the robustness of the proposed method as shown on Figure 

4.4. For the same dataset (that was not considered “good data” previously due to 

considerable clutter motion) we were able to improve the sensitivity of the 

perfusion estimation data by combining the AM2D algorithm and the adaptive 

block-wise SVD filter.   
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Figure 4.4 – Perfusion sensitivity increased after using the AM2D algorithm and 
the adaptive block-wise SVD filter on the same dataset (a) AM2D is absent (b) 
AM2D was implemented. Gray colormap represents the normalized 
backscattered signal and the overlay represents the normalized speckle-
decorrelation rate. 

 

 

Even after implementing the adaptive block-wise SVD filter the system noise 

was still an issue and we used Golay sequences to improve the sensitivity of our 

method. Due to setup constraints we investigated the use of a different transducer 

(Philips L7-4) that has a much lower central frequency but provided us the 

capability of seeing live PD images which made it easier to image the same region 

of the palm and assuring the same population was being considered. Our first 

hypothesis was that lower frequency transducer would not be sensitive to blood 

flow in microvasculature given the lower resolution.  However, the combination 

of the AM2D algorithm on the RF data combined with the use of block-wise SVD 

filter with adaptive threshold on the reconstructed data proved to isolate the 

blood signal very well to the point a lower frequency transducer could be used. 

The results are shown on Figure 4.5. 
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Figure 4.5 – Speckle-decorrelation rate for images acquired with the lower 
frequency transducer (a) cold water submersion (b) room temperature 
submersion (c) hot water submersion. Gray colormap represents the normalized 
backscattered signal and the overlay represents the normalized speckle-
decorrelation rate. 

 

 

Figure 4.6 shows a statistical analysis for the data acquired using the lower 

frequency transducer when 10 datasets were acquired for each temperature. For 

the cold water the mean speckle-decorrelation rate was 5.47 (1/s) and the 

standard deviation was found to be 3.49 (1/s). For the room temperature the 

mean speckle-decorrelation rate was 24.06 (1/s) and the standard deviation was 

found to be 8.57 (1/s).  For the hot water the mean speckle-decorrelation rate was 

42.08 (1/s) and the standard deviation was found to be 15.79 (1/s).  A t-test was 

performed on the datasets acquired at the same temperature and a 5% level of 

confidence that the data comes from the same population was achieved.  
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Figure 4.6 – Mean speckle decorrelation rate when using the lower frequency 
transducer.  

 

 

We expanded the experiment to use the high-frequency transducer after 

implementing the Golay sequences code to be used in the Verasonics system. 

Figure 4.7 shows the perfusion mapping at different temperatures when the 

Visualsonics LZ250 21MHz linear array transducer was used. 
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Figure 4.7 – Speckle-Decorrelation Rate of human palm at different 
temperatures when 16-bit Golay sequences were used to acquire the data. Gray 
colormap represents the normalized backscattered signal and the overlay 
represents the normalized speckle-decorrelation rate. 

 

 

Moreover, Figure 4.8 shows the perfusion mapping (for data roughly at same 

location) when only one cycle was used, and it is possible to notice weaker signals 

even when perfusion should be enhanced in the hot water bath. It is valid to 

notice that all post-processing methods were the same, including the block-wise 

SVD filter and the use of the AM2D algorithm. 
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Figure 4.8 – Speckle decorrelation rate of human palm when one cycle plane 
wave compounding imaging was used. Gray colormap represents the normalized 
backscattered signal and the overlay represents the normalized speckle-
decorrelation rate. 

 

 

However, when using Golay sequences, as was indicated by simulation 

results, one needs to be careful about scatterers moving at higher speeds since in 

order we assume that the medium in not moving between two insonifications as 

mentioned in Chapter 3. 

We also analyzed the effect of the frame rate when using Golay sequences and, 

as shown on Figure 4.9, it is noticeable that for a lower frame-rate the speckle-

decorrelation rate is compromised for scatterers moving at lower speeds, in this 

case at 4mm/s. This leads us to hypothesize that increasing the frame rate would 

allow the creation of perfusion mapping images when the blood flow is higher. 

Further studies need to be done to confirm this hypothesis. It is evident that the 

change in framerate also impacts the value of the speckle decorrelation rate and 

this relationship must be investigated further and be weigh in when providing 

perfusion values that can be used in clinical applications. 
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Figure 4.9 – Speckle-decorrelation rate being compromised by scatterers speed 
and the effect of the frame-rate.  
 

 

The hypothesis that speckle-decorrelation rate relates to tissue perfusion 

were confirmed by this study. Moreover, we validated that a combination of 

block-wise SVD filter, AM2D algorithm for tissue motion compensation and the 

use of Golay sequences significantly increase perfusion sensitivity. 

 

 

4.3 Photoacoustic Data  

4.3.1 Estimation of Oxygen Saturation in Phantom 

 

Combining the proposed method to estimate tissue perfusion, which shows 

great potential to estimating blood flow speed, with PA signals that can be used 
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to estimate sO2 as described on Section 2.5.1 can lead to estimating blood oxygen 

saturation and rate of oxygen consumption, two parameters that are extremely 

important when studying tissue metabolism and diseases related to oxygen 

metabolism. 

We performed a simple experiment that allowed us to estimate blood oxygen 

saturation as well as blood flow speed. To accomplish that we used a tunable 

optical parametric oscillator (Surelite OPO Plus, Continuum, CA, USA) that was 

pumped by a Q-Switch Nd: YAG nanosecond-pulsed laser (Surelite III, 

Continuum, CA, USA) at repetition rate of 10Hz. The laser beam passed through 

a lens in order to focus it to a fiber bundle light-guide, and it was also split in 

order to be detected by a photodiode (Thorlabs, DET100A/M) the fiber bundle is 

connected to a linear array ultrasound transducer LZ250 (FUJIFILM, 

VisualSonics, Inc.). A Verasonics Vantage 256 (Verasonics, Inc., Remon, WA, 

USA) ultrasound acquisition system was used in conjunction with this 

transducer. The computer was responsible for triggering the Q-Switch, and the 

raw data collected was postprocessed using MATLAB (The MathWorks, Inc., 

Natick, MA, usa). Figure 4.10 shows the schematic of the constructed system used 

on the in vivo experiments.  

 

 

Figure 4.10 – Schematic of light deliver and data acquisition setup. 
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An appropriate software was used to tune the excitation wavelength, and a 

wavelength calibration system (Ocean Optics USB400) was used to determine 

the precise excitation wavelength.  

In order to estimate blood oxygen saturation, PA signals were obtained using 

wavelengths between 705nm and 820nm, which are in the transparent window 

range, where optical fluence varies slowly. In one set of data (non-scattering 

phantom) three wavelengths were used: 705nm, 750nm and 810nm. While for 

the scattering phantom, PA signals were acquired using seven different 

wavelengths: 705nm, 720nm, 740nm, 760nm, 780nm, 800nm, and 820nm.  

The setup for the in vitro experiment is shown on Figure 4.11. The same setup 

was used to acquire the PA data and the high frequency ultrasound data, which 

was used to estimate blood flow. In the schematic the ultrasound transducer is 

right on top of the sample for water coupling. 

 

 

 
Figure 4.11 – Setup for in vitro experiment using rat blood. 

 
 

To have control of the oxygenation level the sensor FireStingO2 (PyroScience, 

Aachen, Germany) was used. The sensor was calibrated using nitrogen until the 

measured oxygen level was close to zero.  

The FireStingO2 was placed in the task with a four-hole stopper and filled 

with rat blood, which was also connected through a tube to the oxygen cylinder. 

To change the oxygenation level inside the task, the O2 cylinder was open, while 

the blood was being stirred by the magnetic stirrer. When the oxygen level was 
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close to the desired preset value, the oxygen cylinder was closed, the magnetic 

stirrer turned off and blood was withdrawn to the vessel inside the phantom. This 

process was repeated many times in order to get oxygen levels varying from 20% 

to 80%. Moreover, for each preset level a different set of data was obtained for 

each wavelength.  

To acquire the blood flow data we used a syringe pump. Speed rates were 

calculated based on the diameter of the tube in the phantom, and on the desired 

speed flow. Speed flows of 0.1mm/s, 0.3mm/s, 0.5mm/s, 0.7mm/s, 1mm/s and 

5mm/s were used to acquire data using the high-frequency ultrasound (US) 

transducer with central frequency at 21MHz.  

The experiments were performed on flow phantom. Transparent 

polyurethane tubing (SAI Infusion Technologies, IL, USA) with inner diameter 

(ID) of 1.016mm was used to mimic a blood vessel. One vessel was embedded at 

5mm deep inside a phantom. A non-scattering phantom with 10% gelatin by mass 

as well as a tissue mimicking phantom composed of 10% gelatin and 10% 

cornstarch by mass (this composition provides ultrasonic and mechanical 

properties similar to human tissue) were used.  

The ultrasound transducer was responsible for delivering the laser beam and 

acquiring the acoustic waves generated by the photoacoustic effect.  

PA images of the cross-sectional view of the vessel were obtained when there 

was no blood flow. Preset values of sO2 varying from 3% to 80% for the non-

scattering phantom, and 20% to 80% for the scattering phantom were used. For 

each preset sO2 100 PA images were taken for each wavelength. The photodiode 

was used for laser-pulse normalization. The 100 normalized PA images related to 

one wavelength were averaged.  

Blood flow data was acquired at a constant oxygenation level and flow speed 

varying from 0.1mm/s to 5mm/s were evaluated for frame rates of 100Hz, 

250Hz, and 500Hz using plane wave imaging.  

Figure 4.12 shows the measured sO2 for the scattering phantom. The 

maximum error between measured sO2 and the preset values was around 16.8% 
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(sO2 equals to 50%) while the minimum error was 1.21% for a preset sO2 equaling  

90%. The linear regression indicates a relationship with a correlation coefficient 

R2 = 0.85. 

Using the proposed speckle-decorrelation method and comparing with the 

values set at the pump we were able to estimate the velocity (Figure 4.12) which 

is another important parameter on estimating sO2. 

 

 

Figure 4.12 – Estimated sO2 (from peak amplitude PA signal) vs. Preset sO2. 
Estimated Velocity (from ultrafast speckle decorrelation method) vs. True 
Velocity. 
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In a single vessel the rate of oxygen consumption is estimated based on three 

parameters: cross-section area of the vessel, sO2 and the mean flow speed. The 

estimated velocity shown in Figure 4.12 was calculated based on Equation 3.5 and 

the remaining cross-section parameter can be calculated using the PD image of 

the cross-section of the tube. Figure 4.13 shows that PD imaging outperforms PA 

imaging in providing cross-section information.  

 

 

 

Figure 4.13 – (a) normalized Power Doppler image (b) Normalized PA image 
overlaid on B-scan ultrasound image. 

 

 

The method proposed here to estimate velocity makes use of a linear array 

ultrasound transducer instead of the single element transducer that is usually 

used for this purpose. Several advantages are related to this including no need for 

mechanical scanning and the lack of moveable parts makes it less hazardous to 

patients.   

During the cold and hot water experiments we also analyzed the 

photoacoustic data. We used deep PAM to estimate oxygen saturation by using 

photoacoustic signals at 7 different wavelengths (680 to 800nm).  
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Figure 4.14 – Oxygen saturation estimation using 7 wavelengths (a) hot water 
submersion (b) cold water submersion. Gray colormap represents the normalized 
backscattered signal and the overlay represents the normalized PA signal. 

 

 

We found no statistically-significant difference in sO2 observed between hot 

and cold-water as one would expect. Moreover, similarly to what happens in 

capillaries where small diameters makes it a challenge to estimate blood flow, 

and therefore, the tissue perfusion defined as the blood volume provided to a unit 

volume of tissue per second becomes the parameter of interest to assess 

microvascular beds, to estimate MRO2 in the microvasculature one can rely on 

tissue perfusion and sO2 quantification alone (waving the need to assess cross-

section area and velocity separately). Consequently, the method proposed in this 

study that uses speckle decorrelation rate to estimate tissue perfusion is a strong 

option to be used in the future to estimate rate of oxygen consumption. 



92 
 

However, to fully estimate MRO2 one needs to account for the oxygen carried 

by RBCs and by the plasma. The amount of oxygen carried by plasma or 

hemoglobin depends on the pressure of oxygen (pO2), but since the solubility of 

oxygen in plasma is limited, most of the oxygen carried by hemoglobin can be 

calculated using the following formula [29]:  

 


𝑂2,𝐻𝑏

=   ∗  𝐶𝐻𝑏 ∗  𝑠𝑂2   (4.1)  

 

       Where   is the oxygen-binding capacity to Hb, which previous studies found 

to be 1.34ml/gHb when the hemoglobin is completely saturated by oxygen, and 

CHb and sO2 can be estimated using multiwavelength photoacoustic methods 

[29]. Also, the oxygen carried in the plasma can be calculated using the following:  

 


𝑂2,𝑝𝑙𝑎𝑠𝑚𝑎

=  𝑂2
(𝑇) ∗  𝑝𝑂2  (4.2) 

 

      Where O2 is the solubility of oxygen in plasma as a function of temperature. 

Therefore, estimating pO2 is also important to provide accurate estimation of 

oxygen flux. 

There is still a long way in combining the proposed speckle-decorrelation 

method and photoacoustic data to fully estimate oxygen saturation. However, 

initial results are promising adding to the great benefits the proposed method can 

bring to the clinical domain including tissue perfusion estimation and estimation 

of higher blood flow speeds when the proper framerate is chosen. 
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Chapter 5 
 

Conclusion 
 

There is great relevancy in estimating tissue perfusion and the clinical 

applications are several, including assessment of peripheral vascular disease, 

management of diabetic feet and limbs, management of angiogenic therapies, 

stroke management and assessment of transplanted organs.  

Ultrasound perfusion imaging is preferable to other non-invasive methods 

(SPECT, CT, MRI, PET, etc.) since it is relatively inexpensive. Two main 

ultrasound imaging techniques are currently used in estimating perfusion: power 

Doppler and contrast-enhanced ultrasound.  

Nevertheless, the use of contrast agents is not approved by FDA for several 

applications and mostly CEUS still depends on Doppler shift to estimate blood 

flow and therefore microbubbles must be flowing at speeds higher than the ones 

found in capillary beds. Furthermore, PD imaging combined with advanced 

clutter filtering techniques significantly increased perfusion sensitivity, but only 

provides information about the morphology and not necessarily quantitative 

perfusion information provided by CEUS.  

This study bridged the gap between PD imaging and CEUS by using speckle-

tracking techniques to provide both morphological and quantitative perfusion 

information. Moreover, the proposed method also outperforms the non-invasive 

method proposed by Choi et al., [59] that provides quantitative perfusion 

information, but lacks morphological information since PA signals are non-

resolvable.  

Still, previous research around tissue motion compensation for use with 

CEUS and the method proposed by Choi et al. were of great value for this research 

since suppressing tissue signal is a great challenge when imaging microvascular 

beds and estimating tissue perfusion. Furthermore, the advancements in PD 
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imaging when complex clutter filters are used allowed us to use the PD data as a 

mask to isolate the microvasculature (to subsequently calculate the speckle 

decorrelation rate) to minimize the need for doctors and technicians to specify a 

ROI. 

We validated that the use of PWC combined with adaptive block-wise SVD 

filter increases perfusion sensitivity to a level where reliable speckle decorrelation 

rates can be calculated. However, we did not pursue calculating the speckle 

decorrelation for the case when scan-line acquisition and the HOSVD filter 

proposed by Kim et al. [21] is used which similarly could lead to great speckle 

decorrelation estimation.  

We successfully proved that perfusion rate is proportional to the speckle-

decorrelation rate calculated as the reciprocal of the standard deviation of the 

Gaussian curve fitted to the autocorrelation function in time. The same Gaussian 

curve can also lead to estimating flow velocity when the lateral width of the 

received point spread function (PSF) is known for plane wave acquisition.  

 The hypothesis that speckle-decorrelation rate is proportional to tissue 

perfusion was proven by implementing realistic 2D and 3D random walk 

microvasculature simulations that were based on hemodynamics theory to assure 

speckles were moving similarly to RBCs and parameters such as change in 

pressure and flow from parent nodes to daughter nodes were considered.   

Nonetheless, despite the great progress and foundation laid by the use of 

simulations, in vivo experiments exposed the need of a tissue motion 

compensation technique to account for axial and lateral displacements of tissue 

when clutter signal has the same order of magnitude as blood signal. To address 

this issue, we used the AM2D algorithm that increased sensitivity. However, this 

algorithm relies on RF data that is not always provided by ultrasound 

manufacturers and the conversion of log compressed signals can decrease the 

efficacy of the algorithm.  

The use of the adaptive block-wise SVD filter also increased perfusion 

sensitivity while maintaining the spatial resolution that had been compromised 
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by spatially averaging the data when 2nd order SVD filter was used. However, the 

block-wise SVD filter considered noise to be Gaussian, which is not necessarily 

true in most in vivo applications. 

Therefore, we used Golay codes to increase SNR and consequently perfusion 

sensitivity. When 16 codes were used the SNR was increased by 15dB.  

We first had hypothesized that we could only use high-frequency ultrasound 

transducers to estimate tissue perfusion since blood is more echogenic than 

tissue at higher frequencies. Nevertheless, the combination of the adaptive block-

wise SVD filter, AM2D algorithm for tissue motion compensation and Golay 

codes, significantly improved SNR to the point that a transducer with central 

frequency of 7MHz was used to successfully estimate tissue perfusion in vivo. 

However, spatial resolution was still lacking.  

We initiated the effort to estimate MRO2 with experiments in phantoms, and 

were able to estimate sO2, flow velocity and the cross-section are of one vessel 

which are the 3 main parameters used for estimating MRO2 in one vessel. 

Furthermore, estimating sO2 in vivo at different temperatures showed no 

statistically significant difference as one would expect and combining such 

information with the proposed method to estimate perfusion based on speckle 

decorrelation can lead to estimating oxygen metabolism in the microvasculature. 

However, more experiments and research must be done to fully estimate MRO2 

in vivo.  

In conclusion, the use of high-frequency high-frame rate ultrasound shows 

promise for estimating tissue perfusion rates without contrast agents. The 

hypothesis that speckle-decorrelation rate relates to tissue perfusion was 

confirmed in this study. To ensure the robustness of the method in vivo and 

focusing on future clinical applications we used of the adaptive block-wise SVD 

filter, the AM2D algorithm for tissue compensation and Golay sequences to 

significantly increase perfusion sensitivity to the point diagnostic lower 

frequency transducers could be used in perfusion estimation.  
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Future studies are needed to calibrate speckle-decorrelation rate with the 

framerate to provide people in the medical field with the proper perfusion values. 

In addition, there is still a long way in combining perfusion estimation with blood 

oxygen saturation to estimate oxygen metabolism, but initial findings are 

promising.  
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