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Abstract

Pressure swing adsorption (PSA) processes are an industrially mature low energy

consumption pathway for gas separations. Due to their performance being linked to

the separation media, they provide an additional degree of freedom for process de-

sign. They are difficult to accurately model due to the propagation of sharp heat and

mass transfer fronts. These are unsteady-state processes and, as such, have to be run

cyclically till a cyclic steady state to measure performance. The highly multivariate

nature of the process inputs also makes them hard to optimize and control. With

the advent of metal-organic chemistry and the almost infinite number of possible

adsorbents, and the possibility of tailor-made adsorbents already being highlighted

in the literature, there is a need for fast and accurate means there is a need for

fast and accurate models. Industrial gas separations such as CO2 capture and O2

concentration can significantly benefit from finding the suitable adsorbent in an op-

timized process. The traditional process design and optimization frameworks require

considerable computation resources, and thus primary screening of adsorbents is per-

formed using simplified metrics. There is no explicit agreement over the link between

process performance and separation media. In this thesis, the modelling, simulation,

optimization, screening and experimental validation of pressure swing adsorption pro-

cesses are investigated using machine learning. The CoRE database of adsorbents is

screened in a multi-scale framework for post-combustion CO2 capture. The GCMC

simulations are used to predict CO2 and N2 equilibria. Using this data, a detailed

process model was used to evaluate over 1500 adsorbents, and the results showed

no statistical correlation to common screening metrics. A machine learning model
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generated using a decision tree algorithm was also presented to screen adsorbents for

CO2 capture. Various machine learning algorithms are investigated for their ability

to accelerate the optimization of PSA processes. Two optimization frameworks, Sur-

rogate Opt. and CSS Opt., were presented to speed up PSA optimization. A neural

network model was trained to learn from the final cyclic steady-state profiles, and

the detailed model was used to initialize at CSS. The models were validated using

lab-scale experimental data. A general adsorbent agnostic machine-assisted process

learner and emulator (MAPLE) was developed to simulate the detailed process model.

The unique aspect of this model is that adsorbent-specific parameters were inputs to

the model along with process inputs. This means that once trained; the model can

predict the performance of any type 1 adsorbent for a given process. The trained

model had high accuracy with R2
ADJ ≥ 0.99 for all the outputs, such as CO2 purity,

recovery. The modelling and optimization framework (MAPLE Opt.) was validated

for a CO2 capture case study using data from the scholastic literature. The question

of process performance limits for PVSA based CO2 capture was analyzed using the

MAPLE model. Various optimization case studies investigated performance limits

of real-world as well as hypothetical best adsorbents at different feed compositions.

The showed that the innovation gap between real-world materials and the hypothet-

ical best was very conservative. It was also shown that significant energy saving is

possible at higher CO2 feed compositions using PSAs. The experimental validation

of the MAPLE model was performed using a O2 concentration case study. The ad-

sorbent agnostic MAPLE model was used to optimize the performance of LiX and

13X of a Skarstrom cycle. The results from the optimization were used to operate

a bench-scale 2-bed lab scale rig to verify the performance. The results show that a

model trained with hypothetical adsorbent equilibria can target performance in an

experiment. This experimentally validated machine learning framework provides an

alternative fast modelling pathway for PVSA process design and optimization.
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Preface

This thesis focuses on the holistic design and optimization of both the adsorbent and

the adsorption-driven separation processes. The research conducted in this thesis was

partly funded by the Canada Foundation for Innovation, Carbon Capture Initiative,

Natural Sciences and Engineering Research Council (NSERC), and Alberta Innovates.

The computational work conducted in this work was thanks to the resources provided

by Compute Canada. A part of this thesis was conducted in collaboration with com-

putational material chemists at the University of Ottawa. The computational mod-

elling of the adsorbents evaluated in this thesis was generated by Sean Collins and

Thomas Burns from the Woo Labs at the University of Ottawa. Alberta Innovates

provided resources for conducting the vacuum swing adsorption experiments. This

thesis is written in a paper-based format; thus, several minor parts might be over-

lapped between chapters. A. Rajendran and V. Prasad were the supervisory authors,

and they were involved in concept formation, analysis and manuscript composition.

Chapter 1 of this thesis introduces the topic of adsorptive separations and con-

tains a literature review of the current state of the art in adsorption and adsorbent

modelling. A part of this chapter that details the adsorbent screening and charac-

terization was written by Kasturi Nagesh Pai and is also submitted for publication

as Sai Gokul Subraveti, Kasturi Nagesh Pai, Vinay Prasad, Arvind Rajendran, Pe-

ter T. Clough et al.“Harnessing the power of machine learning for carbon capture,

utilization, and storage (CCUS) – A state-of-the-art review” in Energy Environ. Sci.

Chapter 2 of this thesis was published by Thomas D Burns, Kasturi Nagesh Pai, Sai

Gokul Subraveti, Sean P Collins, Mykhaylo Krykunov, Arvind Rajendran, Tom K
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Woo, “Prediction of MOF Performance in Vacuum Swing Adsorption Systems for

Post-combustion CO2 Capture Based on Integrated Molecular Simulations, Process

Optimizations, and Machine Learning Models”. In this paper, Thomas D Burns and

Sean Collins generated material-specific isotherms. Kasturi Nagesh Pai and Sai Gokul

Subraveti were responsible for process modelling and simulation. Kasturi Nagesh Pai,

Thomas D Burns and Sai Gokul Subraveti were responsible for data generation, col-

lection and analysis. The manuscript was also composed by Kasturi Nagesh Pai and

Thomas D Burns, and Sai Gokul Subraveti.

Chapter 3 of this thesis was published by Kasturi Nagesh Pai, Vinay Prasad,

Arvind Rajendran, “Experimentally validated machine learning frameworks for ac-

celerated prediction of cyclic steady-state and optimization of pressure swing ad-

sorption processes”. In this paper, Kasturi Nagesh Pai was responsible for process

modelling and simulation. He was also responsible for the design of experiments and

the manuscript composition. The manuscript and analysis were also composed by

Kasturi Nagesh Pai, with the guidance of Arvind Rajendran and Vinay Prasad.

Chapter 4 of this thesis was published as Kasturi Nagesh Pai, Vinay Prasad,

Arvind Rajendran, “Generalized, Adsorbent-agnostic, artificial neural network frame-

work for rapid simulation, optimization, and adsorbent screening of adsorption pro-

cesses”. In this paper, Kasturi Nagesh Pai was responsible for process modelling and

simulation. He was also responsible for the design of experiments and the manuscript

composition. The manuscript and analysis were also composed by Kasturi Nagesh

Pai, with the guidance of Arvind Rajendran and Vinay Prasad.

Chapter 5 of this thesis was published as Kasturi Nagesh Pai, Vinay Prasad,

Arvind Rajendran, “Practically Achievable Process Performance Limits for Pressure-

Vacuum Swing Adsorption-Based Post-combustion CO2 Capture”. In this paper,

Kasturi Nagesh Pai was responsible for process modelling and simulation. He was

also responsible for the design of experiments and the manuscript composition. The

manuscript and analysis were also composed by Kasturi Nagesh Pai, with the guidance
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of Arvind Rajendran and Vinay Prasad.

Chapter 6 of this thesis is in preparation for publishing as Kasturi Nagesh Pai,

Tran Thanh Tai Nguyen, Vinay Prasad, Arvind Rajendran, “Experimental validation

of an adsorbent agnostic machine-assisted adsorption process learning and emulation

(MAPLE) framework”. In this paper, Kasturi Nagesh Pai was responsible for process

modelling and simulation. Kasturi Nagesh Pai was also responsible for the design

of experiments and the manuscript composition. The experiments were run and

analyzed by both Kasturi Nagesh Pai, Tran Thanh Tai Nguyen. The manuscript

and analysis were composed by Kasturi Nagesh Pai, with the guidance of Arvind

Rajendran and Vinay Prasad.

Owing to the format of the thesis, some level of repetition of topics such as process

modelling is unavoidable.
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Chapter 1

Introduction

Physical adsorption is a surface phenomenon in which gas molecules adhere to the

surface of certain solids and is based on weak physical bonds. The materials that

can reversibly adsorb gases on their surface are called adsorbents. Adsorbents are

usually porous solids, and their ability to adsorb varies from one to another and

is dependent on the temperature and pressure of the system. This phenomenon of

differential adsorbent-adsorbate gas affinity can be used in a cleverly designed process

to separate or purify gas mixtures [1, 2]. Adsorption processes separate gas mixtures

by using packed beds filled with porous adsorbents. When a gas mixture is sent

through the bed of the adsorbent, one of them strongly adsorbs to the adsorbent

when compared to the other one. Hence, the less adsorbed gas passes through the

bed with a higher velocity compared to the other. The product rich in the unadsorbed

gas is called the light product or raffinate, while the other is called the heavy product

or extract. After a certain period of operation, the bed is regenerated. The process

of adsorption and regeneration is repeated cyclically to achieve gas separation [1, 2].

Usually, as the system temperature increases or the pressure decreases, the ability

of the material to adsorb decreases [1]. This can be understood further by examining

the equilibrium loading at different temperatures and pressures. The adsorption

equilibria quantify the amount of gas adsorbed onto the adsorbent when the gas

system is brought to a state of equilibrium. The visual representation of this is
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(a)

(b)

Figure 1.1: a) Qualitative adsorption equilibrium isotherm b) Basic cyclic adsorption
process [1].

generally made in the form of an “isotherm”. This plot shows the equilibrium gas

loading as a function of pressure at constant temperature [2–4]. In Fig. 1.1 a) a

qualitative isotherm of gas A is shown of an adsorbent material as a function of

pressure, X-axis represents a changing pressure. The Y-axis represents an equilibrium

gas loading on the adsorbent.

For a given pressure and temperature condition, the solid equilibrium loading can

be quantified using the isotherm. For example in Fig. 1.1 a) F is the equilibrium

loading at feed conditions. F represents the amount of gas adsorbed on the solid

adsorbent at pressure= PH, and temperature = T1. If we apply a temperature change
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to T2 ≥ T1 or change the pressure to PL, we release part of the adsorbed gas ∆q. This

phenomenon is used to construct separation processes such as the one shown in Fig. 1.1

b). Here a basic cyclic adsorption process is shown, with an adsorption step. The gas

is adsorbed at equilibrium conditions, followed by a regeneration step. The adsorbent

can be regenerated in many ways. Two of them, namely, varying the temperature or

the pressure, are standard modes of operation. When a pressure change is applied, the

process cycle is referred to as a Pressure Swing Adsorption (PSA) process, depending

on the range of pressure swings. When a temperature change is applied, the process

is referred to as Temperature or Thermal Swing Adsorption (TSA). The pressure

reduction is generally achieved either by naturally depressuring a column or by using

a vacuum pump. The working principle of a TSA process is similar to a PSA process.

However, temperature reduction is achieved by the use of a cooling and heating

stream [1, 2]. This step is followed by a re-initialization step, where the condition of

the bed is brought back to initial adsorption conditions. This is done by bringing the

temperature and pressurization back to the initial conditions [1].

Beyond the regeneration and adsorption steps, reflux steps (analogous to distilla-

tion) can be added to a process cycle to obtain desired process performance [1, 2,

4]. PSA processes are used mainly in the industry for the purification of H2, O2, N2

and TSA processes are widely used in the industry for applications such as drying

of natural gas, etc [5, 6]. They are less understood for applications such as extract/

heavy product purification [7, 8]. These cyclic adsorption processes can be used as an

alternative to conventional separation processes like distillation and absorption. In

small and medium scales, these processes are energy efficient when compared to the

conventional separation techniques [2–4].
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1.1 Case Study

1.1.1 Carbon Dioxide Capture

Today, the conversation relating to climate change and the future of the world’s energy

infrastructure is predominantly focused on renewable sources. However, globally we

are far from breaking our dependence on fossil fuels [9–11]. Greenhouse gases such

as CO2 and methane are the main contributors to manufactured climate change, and

their effects are mitigated. The world is looking to shift to a low-carbon, high-energy

efficiency infrastructure, and there is a need to find low energy and highly productive

technologies to facilitate this change [12].

Carbon Capture and Storage (CCS) is a field of study dedicated to the capture and

utilization of anthropogenic CO2. It has been projected that CCS, along with other

low carbon emission technologies, is essential for sustained yet sustainable growth [13].

The majority of the CO2 generated is through large point sources of energy such

as fossil fuel-based power plants. The CO2 stream at the outlet of these plants is

very dilute and thus, is energy-intensive to separate and capture effectively [12]. The

current state-of-the-art technology, which is based on a liquid amine-driven absorption

process, is energy-intensive, consuming about 25% of the plants’ energy, and is also

inherently deleterious to the environment [14]. Adsorption technologies are considered

viable option to compete with the absorption-based CO2 capture [15, 16].

1.1.2 Oxygen Generation

Industrial oxygen generation from the air is produced by cryogenic distillation at a

high production rate and using pressure swing adsorption (PSA) at lower production

rates. The product quality of 99% from cryogenic separation and 90+5% is typically

expected from PSAs for various applications. Large industrial-scale PSA plants for

oxygen production have been developed to replace air with 90% oxygen in aquacul-

ture, water treatment, steel, etc. [17]. The main motivation for using PSAs for oxygen
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generation over cryogenic distillation is the lower capital and operational cost at rel-

atively lower scales, with PSAs being cost-competitive at scales below 300 tonnes per

day of oxygen (TPDO). [17]

With the advent of the COVID 19 pandemic and the shortage of O2 it has caused

in many parts of the world, there is a real and immediate need for innovation in

low-cost O2 production. PSA technology, which is industrially mature, is an exciting

candidate for such an application. Especially with the different production scales

and modularity of these units make them easy and quick to deploy without massive

infrastructural investments. The recent innovations in metal-organic chemistry and

our ability to identify and synthesize tailor-made adsorbents for this separation make

this a fascinating and relevant case study, currently and for the future. PSA-based

O2 generation is highly researched and commercially available. However, designing

an optimal operation of such systems is very challenging. The need of the hour is

to democratize this technology and simplify the operation of this process to aid in

remote deployment.

1.2 Gaps in Research

“Many PSA process paths can be designed for the same separation objectives.”-

Sircar et al. [2].

“There are an almost unlimited number of Metal Organic Framework

(MOF) adsorbents.”- R. Snurr et al. [18].

These two statements, made on adsorbent and adsorption process design, bring up

whether there exists an optimum process and magic adsorbent for a given separation

objective. If true, should the two be designed in a collaborative or unified manner?

Many microporous and mesoporous adsorbents exhibit vastly different adsorption

properties, which changes their ability to separate a given gas mixture. The separation

potential of the adsorbents needs to be fully understood before an appropriate process

can be developed around it. Therefore, the best material for a separation process
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should have an accompanying process cycle that can exploit its properties for the

separation goal. This is selected based on the adsorbent’s isotherms or physical

properties, so these properties need to be identified.

Conversely, for a process cycle with a general separation objective, the adsorbent

must have a specific gas adsorption isotherm and physical properties best suited to

the separation objective. Marrying these two procedures with the optimization of the

process and material conditions can, thus, lead to a more productive outcome with a

corresponding reduction in the time for development [4].

Many possible process cycles can be designed. The cycle design is currently based

on a heuristical approach that varies for different separations with little agreement

on the best process cycles [4, 19–21]. Both raffinate and extract purification cycles

are studies to a large extent in the literature. [22–25].

1.3 Traditional adsorptive process design

The existing literature surrounding adsorption process development can be separated

into two main categories—the first consists of studies performed on an atomistic

scale. Chemists and materials engineers perform in-silico or experimental screenings

of material. This involves either simulating or experimentally testing adsorbents

for a specific gas separation process [26–28]. There is currently no consensus on

the definition of a high-performing material in this area. In the literature, different

performance metrics are used in the material discovery process [15, 29]. Metrics

include the gas uptakes, the selectivity of the material, the heats of adsorption, and

the working capacities. Using the information provided by these, simple models can be

applied to provide rough estimates of the separation potential of these materials [26,

30]. Although much can be learned about these materials using these techniques,

very little information can be obtained concerning the actual performance of the

material in the industrial gas separation process, such as the purity of the captured

product or the volumes of the materials which would be required to run the separation
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continuously.

The second category focuses on the process design and optimization of the adsor-

bents in the process. These studies aim to determine how an adsorbent will perform

if placed in an industrial process [15, 19, 31–33]. In Fig. 1.2 a), the schematic of a tra-

ditional process design and optimization scheme is provided. The selected adsorbent

material is evaluated with a specified process cycle. These studies have relied on the

researchers synthesizing promising material and testing its performance on a bench

scale setup or modelling the performance based on experimental isotherm data found

in the literature. The adsorbents are screened by optimizing the performance of each

adsorbent using the detailed model coupled with an optimization routine. Optimiza-

tion of any adsorbent-based separation process is non-trivial as it involves multiple

inputs, and the outputs are highly non-linear by nature [31, 34, 35]. This, coupled

with the vast number of available materials and the slow convergence of the optimal

solution, makes the hunt for a global optimum solution challenging. Recent studies

have also validated the use of the technique in directing experimental campaigns [36].

The results from this type of study are specific to each separation and the process

constraints [19, 29, 35].

Fig. 1.2 b) shows a qualitative plot of the various methods to model and predict

adsorption processes. The x-axis shows the computational time, and the y-axis shows

the accuracy of these models. Generally, material screening in the literature uses sim-

plified metrics [37] that can be calculated quickly but have no significant statistical

correlation to real-world performance [29, 38]. Reduced-order models [39] and batch

adsorber analogues [38] are better at the overall performance of the system but are

lacking in the prediction of process dynamics. Full adsorption models based on first

principles, as explained in the modelling section in the appendix, are accurate but

slow, making optimization of the process difficult. The main bottleneck in this ad-

sorbent screening and evaluation process is the time it takes to accurately screen and

evaluates the adsorbents, both computationally and experimentally.
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The literature is thus segregated into two views, a material perspective and a

process perspective. Large databases with over 1 million such real and in-silico hypo-

thetical porous structures are available to process designers that are already partially

characterized for the application of CO2 capture [40–47]. The Cambridge Structural

Database (CSD) is one of the many available adsorbent databases and contains thou-

sands of adsorbent structures that can be evaluated for various applications [18, 41].

To screen these in an adsorption process, their gas adsorption needs to be quanti-

fied and characterized. This is done either by using in-silico techniques or by using

gravimetric or volumetric adsorption measurements. Grand Canonical Monte Carlo

(GCMC) is one proposed avenue to estimate gas adsorption of thousands of struc-

tures as they are quicker than physical experiments. The adsorption predictions can

then be fitted to functional isotherm forms, which allowed for preliminary screening

of the materials [41, 48, 49]. Other databases like the National Institute of Stan-

dards and Technology (NIST) and literature are available to use with a large data-set

of experimental and theoretical materials that can also be used for process design.

Recent development in the ability to create, tune, and tailor-make adsorbents has

garnered much attention in both the scientific and engineering communities [18, 37].

This means that by performing large-scale screening of adsorbents, faster modelling

techniques need to be developed. With thousands of new materials and hundreds of

cyclic processes possible, the design of an optimum adsorbent-based separation pro-

cess and screening adsorbents is an exciting problem to study [18, 37]. A combined

approach is necessary as this would lead to a more accurate understanding.

This thesis will implement a unified material and process design approach to un-

derstand process design better. The goal of this proposal is to map processes and

relevant material properties to the final process outcomes. The developed models

need to be fast and should emulate the detailed model accurately. This model should

be generalizable over physically relevant input conditions, after which it can be used

as a proxy for the slow, detailed model. This would allow for faster optimizations,

8



material screening, and the investigation of the structure to performance relationship.

1.4 Structure of the thesis

The thesis is divided into five sections and is summarized below:

In chapter 2, atomistic simulations were fully integrated with a detailed VSA sim-

ulator to screen 1632 experimentally characterized MOFs for CO2 capture using de-

tailed process models. A total of 482 materials were found to meet the US DOE

specifications for carbon capture, i.e., 95% CO2 purity and 90% CO2 recovery targets

(95/90-PRTs). 365 of the screened adsorbents have parasitic energies below that of

solvent-based capture (approx290 kWhe/MT CO2) with a low value of 217 kWhe/MT

CO2. Machine learning models were also developed using common adsorption met-

rics to predict a material’s ability to meet the 95/90-PRT with an overall prediction

accuracy of 91%. It was also found that accurate parasitic energy and productivity

estimates of a VSA process require full simulations.

In chapter 3, machine learning-based surrogate models were developed to accel-

erate the process models and optimization. Various supervised machine learning

algorithms, such as decision trees, random forests, support vector machines, Gaus-

sian process regression, and artificial neural networks, were tested for their ability to

predict key performance indicators for a given set of operating conditions. Experi-

ments performed on a lab-scale two-column rig, for the concentration of CO2 from a

mixture of CO2+N2 on Zeolite-13X, confirm performance indicators such as purity,

recovery and axial profiles predicted by the surrogate models.

In chapter 4, a generalized data-driven surrogate model that fully emulates the op-

eration of an adsorption process at the cyclic steady state is studied. This framework

is called machine-assisted adsorption process learning and emulation (MAPLE). This

model is generalized for various inputs, including adsorbent properties, the Langmuir

adsorption isotherm parameters, and operating conditions. The ability of this frame-

work for rapid screening of adsorbents for post-combustion CO2 capture was also
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(a)

(b)

Figure 1.2: Adsorption process simulation from material properties, a) the traditional
approach to adsorption process simulation alongside the proposed machine learning
approach b) a qualitative indication of time and computational effort is shown against
accuracy for different modeling schemes.
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illustrated.

In chapter 5, the practically achievable limits for a PVSA-based carbon capture

were evaluated. Two low-energy process cycles are considered, and a machine learn-

ing surrogate model is trained with inputs from a detailed PVSA model. Several

case studies were considered to evaluate two critical performance indicators: mini-

mum energy and maximum productivity. The genetic algorithm optimizer coupled

to the machine learning surrogate model searches tens of thousands of combinations

of isotherms and process operating conditions for each case study.

Chapter 6 involves the experimental validation of the adsorbent agnostic MAPLE

model using cyclic adsorption experiments. In this work, data obtained from a de-

tailed model using hypothetical inputs for isotherm parameters were used to train a

multi-layer neural network to predict process performance. The system used to vali-

date this methodology was O2 separation from air. The process cycle used was a 4 step

Skarstrom cycle with feed pressurization. The optimized process conditions for both

adsorbents were used to run lab-scale cyclic experiments. The results showed good

agreement between the detailed and MAPLE model and translated on a real-world

physical experiment.
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Chapter 2

Prediction of MOF performance in
vacuum swing adsorption systems
for post-combustion CO2 capture
based on integrated molecular
simulations, process optimizations,
and machine learning models

2.1 Introduction

1 Global warming caused by greenhouse gases, primarily CO2, represents one of the

greatest challenges faced by our generation. Yet, fossil fuels are expected to play an

important role in global energy systems for decades to come. For this reason, most

serious climate assessment models include carbon capture and storage (CCS) as a

route to reduce CO2 emissions. Since ≈35% of the world’s anthropogenic CO2 emis-

sions arise from fossil fuel based power plants, there has been substantial interest in

technology to capture CO2 from the combustion flue gases of such point sources [50,

51]. Although several industrial scale CCS projects exist that capture and store more

than a million tons of CO2 per year, the solvent-based CO2 scrubbing technologies

1This chapter appears as- Burns, T. D., Pai, K. N., Subraveti, S. G., Collins, S. P., Krykunov,
M., Rajendran, A., and Woo, T. K. (2020). Prediction of MOF performance in vacuum swing
adsorption systems for post-combustion CO2 capture based on integrated molecular simulations,
process optimizations, and machine learning models. Environmental science and technology, 54(7),
4536-4544.
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used in these projects are considered too energetically expensive for wide-scale de-

ployment [52].

Several technologies are being explored as energy efficient alternatives to current

solvent based CO2 scrubbing systems. At the forefront, are solid sorbent-based tech-

nologies that use porous materials within pressure and/or temperature swing adsorp-

tion (P/TSA) systems. Techno-economic studies suggest that P/TSA technologies

have the potential to substantially reduce the cost of carbon capture, if the right

solid sorbents can be found [13]. Metal organic Frameworks (MOFs), which are crys-

talline nano-porous materials that are constructed from inorganic and organic build-

ing units, [53, 54] have attracted significant attention as possible sorbents. Due to the

seemingly endless combination of building units that can be combined to construct

them, a dizzying range of MOFs is possible such that they can potentially be tuned for

any given application. Indeed, it is estimated that nearly 70,000 different MOFs have

been synthesized and characterized to date [42]. MOFs are often introduced as out-

standing materials for post-combustion CO2 capture by highlighting a few targeted

adsorption properties, such as high CO2 uptake capacity or CO2/N2selectivity, [55–

59], without a clear understanding of how these properties affect their performance

in a real industrial P/TSA process. Large databases, some containing millions of hy-

pothetical materials, [18] have been screened computationally via detailed atomistic

simulations for their potential to be used as solid sorbents for post-combustion CO2

capture. [26, 41, 60, 61] Again, in most instances, a few targeted adsorption prop-

erties or related figures of merit (FOM) have been used to rank the materials. In a

limited number of cases the parasitic energy (PE) of CO2 capture has been used as

a metric for screening [26, 62, 63]. The PE is the energy required to regenerate the

sorbent during the gas separation process and to compress the CO2 to 150 bar for

transport and storage. In other words, the PE provides an estimate for how much

energy is needed to run a CCS unit on a coal fired-power plant, which is a critical

component in determining its feasibility. Although the PE is a more holistic and
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pragmatic metric, [64] the PEs used in previous most screening studies [62] are based

on simplistic equations using equilibrium adsorption data. As a result, these calcu-

lations cannot determine if the materials can meet the US-DoE targets of achieving

95% CO2 purity while recovering 90% of CO2 from the flue gas. [65] Thus, while valu-

able insights have been inferred from these various screening studies, it is still unclear

how the reported metrics relate to the actual performance of a full-scale P/TSA sys-

tem. In the 2018 Mission Innovation report “Accelerating Breakthrough Innovation

in Carbon Capture, Utilization and Storage”, one major research challenge identified

for solid sorbents was to “Understand the relationship between material and process

integration to produce optimal capture designs for flexible operation – bridging the

gap between process engineering and materials science.” [66] The goal of this work

is to perform a large-scale screening of MOFs using sophisticated process simula-

tions integrated with molecular simulations to examine the performance of MOFs in

an industrial vacuum swing adsorption (VSA) system - thus bridging the gap be-

tween materials design and process engineering. Although full process simulations

have been previously performed on solid sorbents, including MOFs, generally only

a limited number and diversity of sorbents have been studied in this way, [15, 29,

31, 67–71] due in part to the computational intensity of such simulations. Snurr and

coworkers used a multi-scale approach to study a group of 369 MOFS using a 4-stage

flue gas re-pressurization cycle. [72] In that work, the parasitic energy and CAPEX

were used in the costing analysis. However, the estimates of the capital costs in that

work are simplistic compared to those generally reported in the literature [73] and

therefore have particularly large uncertainties associated with them. It is notable,

however, that they found that the N2 adsorption behaviour is the most important

factor in determining if a material will meet the US-DoE 95/90 purity/recovery tar-

gets (95/90-PRT). This is rather non-intuitive since the CO2 adsorption behaviour

most often discussed in evaluating the performance of a MOF. In this work we have

screened 1632 MOFs and related materials with an advanced PSA process simulator
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that has been experimentally validated at the pilot scale using a 4-step light-product

pressurization (LPP) cycle shown in Figure 2.1. This cycle has been shown to be

the most energy efficient cycle for post-combustion CO2 capture. [19] While a cost-

ing algorithm could be used as the objective function, there are large uncertainties

in the costing of MOFs in order to estimate the capital expenditures. Hence, the

goal here was to obtain high reliability results at a scale where our models have been

validated. Therefore, the process conditions have been optimized for each material

to minimize the PE or to maximize the productivity while meeting the 95/90 purity-

recovery targets (PRT). The productivity of a material or how much CO2 the sorbent

can extract per unit volume of the material per unit time is not only important for

determining how much material is required for CO2 capture, it is also vital for deter-

mining the complexity of the VSA system required, and more suitable but essential

considerations such as the capacity of the vacuum pumps that are required.

The screening also provides a unique opportunity to compare the effectiveness of

various metrics that have been used by researchers to evaluate solid sorbents for

post-combustion CO2 capture against actual VSA performance.

2.2 Computations Methods

The CoRE database of materials, containing over 5000 experimentally characterized

MOFs, was used as a starting point for this work. [74] Due to the high computational

costs involved in the simulations, a series of heuristic filters were applied to remove

materials that would not be suitable for a large-scale industrial process, such as MOFs

containing rare or toxic metals. This left 1,584 MOFs from the CoRE database, for

which the CO2 and N2 adsorption isotherms were predicted using atomistic Grand

Canonical Monte Carlo (GCMC) simulations. In addition to materials from the

CoRE database, an additional 32 well-known MOFs, 8 zeolites, and 8 porous polymer

network materials with experimental adsorption properties available at the conditions

of interest were added to the screening for a total of 1632 materials (collectively
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Figure 2.1: a) Process schematic of the 4-step VSA cycle simulated. b) Pressure profile
of the VSA cycle. The times of the adsorption, blowdown and extraction steps (tADS,
tBLOW, tEXTRACT) and the blowdown and extraction pressures (P LOW,PEXTRACT)
shown are 5 of the 7 variables used in the process optimization.
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referred to as MOFs for simplicity). In this work, a dry flue gas composed of 15% CO2

and 85% N2 was used. The process simulation model used in this work has been shown

to reproduce experimental results (both transient and steady-state) from a pilot-scale

column packed with 80 kg of Zeolite-13X pellets. [75] The MOF crystals are considered

to be formed into 1mm diameter spheres using a structuring agent and uniformly

packed in a column of length 1 m and 0.3 m diameter, in order to be consistent with

the scale of the pilot-plant. The model accounts for the dynamics of heat transfer

within the column and across the column walls, mass transfer including diffusion of

gas into the sorbent particles, frictional pressure drops, and the concentration and

temperature changes due to adsorption/desorption. PEs were calculated using well

established efficiencies for vacuum pumps, blowers, and compressors. To summarize,

the model captures the entire physics and the dynamics of the process without any

significant simplifications.

The VSA cycle can be optimized for a given material by varying the following

process variables: the flue gas flow rate, the inlet gas temperature, the times of

the blow-down, adsorption, and extraction steps, and the extraction and blow-down

pressures. For each of the 1632 materials, a grid search of 1000 unique combinations

of the process variables that cover a wide range of operating conditions were run.

From this grid search, materials were ranked by their ability to meet the 95/90-PRT

and their parasitic energies. The process conditions for the top 1022 materials from

this ranking were then fully optimized using a genetic algorithm (GA) to find the best

process conditions that minimizes an objective function that combines both PE and

productivity while maintaining the 95/90-PRT. A minimum of 3 GA optimizations

were performed on each material to provide a robust sampling of the search space

and ensure that a reasonable estimate for the global minimum was found.
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Material Parasitic Energy [kWhe / MT CO2] Productivity [TPD CO2/ m3]

IISERP-MOF-2 [63] 241 5.39

UTSA-16 [76] 249.1 5.15

zif-36-frl [62] 248.9 4.37

Zeolite NaA [77] 248.4 4.76

GAYFODa 249.9 5.53

HUTTIAa 249.4 4.5

IGAHED02a 244.3 4.89

QIFLUOa 249.6 4.29

WUNSIIa 249.9 5.51

XAVQIU01a 246.8 4.78

YEZFIUa 247.7 5.01

ZEGSUBa 250 4.45

Table 2.1: List of the 12 high-performing materials which simultaneously achieve a
parasitic energy less than 250 kWhe /MT CO2 and a productivity greater than Zeolite-
13X (4.2 TPD CO2 /m3). PE and productivities are given for a single process point
that meets the aforementioned criteria while also meeting the 95/90-PRT. aCCDC
identifier for MOFs in the Cambridge Structural Database. [45]
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Figure 2.2: (a) Lowest PEs resulting from process optimization of the top 150 mate-
rials (circles) as a function of the CO2/N2 selectivity. The right-hand vertical axis is
the energy penalty, which is the percentage of the power plant’s energy output that
must be diverted for CO2 capture and compression. (b) The highest productivity of
the same top 150 materials (in units of tonnes of CO2 captured per day per m3 of
sorbent) as a function of the single component working capacity. For IISERP-MOF2,
highlighted in yellow, the productivity is shown for the process conditions that give
the best productivity (circle), best PE (diamond) and a balance of the two (triangle).
All points shown in (a) and (b) meet the 95/90-PRT. Well known materials are high-
lighted in red including those that are not part of the top 150 materials (squares). The
PE of a state-of-the-art liquid amine scrubber was taken from reference [78] while
the thermodynamic separation limit + compression was calculated from Ruthven et
al.[79]
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2.3 Results and Discussion

Over the course of this study, over 5 million unique process simulations were performed

where 392 materials were found to meet the 95/90 purity-recovery target using a 4-

step VSA cycle. Figure 2.2 a) shows the genetic algorithm-optimized PEs from the

top 150 materials that meet the 95/90-PRT plotted against the CO2/N2 selectivity

of the material. We will refer to these 150 materials ranked in terms of the PE as

the ‘top 150’. All top 150 materials out-perform the state-of-the-art liquid amine

system in terms of PE with the best material, IISERP-MOF2, having a PE of 217

kWhe/MT CO2 or 781 kJe/kgCO2. This is a 25% improvement over the state-of-

the-art liquid amine scrubbing system. [78] Another essential quantity in assessing

the operational performance of a solid sorbent is the productivity. The productivity

can be used to determine the size and complexity of a VSA plant and full process

simulations are one of the few ways to estimate it aside from pilot scale experiments.

Figure 2.2 b) shows the best productivities of the top 150 materials plotted against

the CO2working capacity of the material. For reference, we highlight the maximized

productivity of Zeolite-13X (4.2 tonnes CO2captured per day/m3 of sorbent), which

is a sorbent currently used in industrial VSA systems for capturing CO2in methane

rich streams. [77] 67 MOFs that are part of the top 150 have maximum productivities

that are better than Zeolite-13X. It is important to note that Figures 2a and 2b show

the same materials but at different process conditions where the 95/90-PRT can be

achieved. In Figure 2.2a, the conditions have been optimized to give the lowest PE,

while in Figure 2.2b, they have been optimized for the productivity. For example,

when the process conditions for IISERP-MOF2 are optimized for the productivity, its

PE increases to 250 kWhe/MT CO2 (yellow circle in Figure 2.2b) from its minimum

of 217 kWhe/MTCO2. Conversely, when the conditions are optimized for the PE

(yellow diamond), the productivity of IISERP-MOF2 is reduced by approximately

70% from its maximum value. A balanced process point on the PE/productivity
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Pareto front for IISERP-MOF2 is shown as a yellow triangle in Figure 2.2b, where

the productivity is more than double the minimum value, but whose parasitic energy

of 222 kWhe/MT CO2is only slightly higher than the best value.

Given in Table 2.1 is a list of materials which are able to simultaneously achieve par-

asitic energies below 250 kWhe/MT CO2and productivities greater than Zeolite-13X

(4.2 TPD CO2/ m3) with a single process point (or single set of process conditions).

The value of 250 kWhe/MT CO2 is chosen since the materials would still outperform

solvent based capture systems with room to spare once the energetic cost of drying

the flue gas is added (drying to less than 100 ppm has been estimated to be as low as

24 kWhe/MT CO2 [87]). Interestingly the list includes NaA, a Linde Type A (LTA)

zeolite with a 1:1 Al:Si ratio. [88] This is a significant result since industrial scale

synthesis of LTA zeolites is common [76, 89] and therefore could be used as a low cost

CCS sorbent if the flue gas is dried. It is also notable that the best performing mate-

rial, IISERP-MOF2, is stable in moist, acid gas environments and its CO2adsorption

properties are nearly unchanged in high humidity conditions. [63, 90] IISERP-MOF-2

was identified as having the lowest parasitic energy without the constraints imposed

on the PE and productivity with a PE of 217 kWhe/MTCO2. This value which is re-

markably close to the best possible hypothetical minimum-energy material predicted

by Khurana and Farooq, which has a parasitic energy of 213 kWhe/MT CO2 meeting

identical CO2 purity and recovery. [91] The process conditions can also be adjusted

with IISERP-MOF-2 such that the productivity can be relatively large while still

maintaining a low parasitic energy. IISERP-MOF-2 is therefore an ideal candidate

material for the post-combustion carbon capture process and should be considered

for future materials research to provide a pathway for scale up and implementation.

Highlighted in Figure 2.2 as red data points are the optimized PE’s and produc-

tivities some well known materials. Mg-MOF-74 and the porous polymer network

PPN-6-CH2TETA have previously been determined to have amongst the lowest PE’s

based on equilibrium adsorption properties for a P/TSA system. However, for VSA
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Metric number Adsorbent Metric
Correlation R2

Productivity PE

1 CO2 uptake capacity [mmol g−1] 0.07 0.01

2 competitive CO2 uptake capacity [mmol g−1] 0.06 0.02

3 CO2 work capacity [mmol g−1] 0.17 0.01

4 competitive CO2 working capacity [mmol g−1] 0.17 0.01

5 N2 uptake capacity [mmol g−1] 0 0.02

6 competitive N2 uptake capacity [mmol g−1] 0 0.1

7 N2 working capacity [mmol g−1] 0 0.02

8 N2 competitive working capacity [mmol g−1] 0 0.1

9 single component CO2/N2 selectivity CO2 [-] 0.01 0.02

10 competitive CO2/N2 selectivity [-] 0.03 0

11 Henry’s selectivity [-] 0.01 0

12 CO2 heat of adsorption [kJ mol−1] 0 0.06

13 N2 heat of adsorption [kJ mol−1] 0 0.03

14 Sorbent Selection Parameter [80] [mmol g−1] 0.01 0

15 Adsorbent Performance Score [81] [mmol g−1] 0.02 0.01

16 Separation Potential [82] [mmol g−1] 0.06 0.02

17 Percentage Regenerability [83] [%] 0.04 0.02

18 Yang’s FOM [80] [-] 0.01 0.01

19 Wiersum’s FOM [84] [mol3 J−1 kg−2] 0.1 0.03

20 Notaro’s FOM [85] [mmol g−1] 0.01 0

21 Ackley’s FOM [86] [mmol g−1] 0.01 0

22 Huck’s PE [62] [kWhe/t CO2] 0 0

23 Generalize Evaluation Metric (GEM) [-] 0.02 0.03

24 maximum accessible pore diameter [Å] 0.03 0

25 maximum channel diameter [ Å ] 0.02 0

26 maximum pore diameter [ Å ] 0.03 0

27 gravimetric surface area [m2 g−1] 0.07 0.01

28 volumetric surface area [ m2 g−1] 0.1 0.01

29 void fraction [-] 0.04 0

Table 2.2: List of sorbent metrics and the correlation coefficients of the metrics to the
productivity and parasitic energy for all MOFs that meet the 95/90-PRT and whose
process conditions have been fully optimized (392 materials).
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separations we find are not even part of the top 150 in terms of PE. Further, Fig-

ure 2.2a shows that materials with a wide range of selectivities (12 to 20145) can

achieve the 95/90-PRT and that there is no strong correlation between the selec-

tivity and the PE. Similarly, Figure 2.2b suggests there is not a strong correlation

between the CO2working capacity and the productivity as one might intuitively ex-

pect. For example, Mg-MOF-74 which possesses amongst the highest CO2working

capacities known, does not even rank in the top 20% of materials examined in terms

of productivity. Indeed, this screening allows for an examination of which metrics

commonly used to evaluate MOFs (see Table 2.2) are good predictors of a material’s

PE, productivity, or whether it will meet the 95/90-PRT. We have considered the

fitted isotherm parameters for both CO2and N2, 13 conventional adsorption metrics,

such as the CO2working capacity, 9 composite metrics, such as the Adsorption Perfor-

mance Score (APS), [92] and 6 geometric features of the MOF, such as the maximum

pore diameter.

We first examine the PRT of the 1632 materials that were subjected to a grid

search and GA optimization of process conditions. Provided in Figure 2.3 are prob-

ability distribution plots of four common metrics and the N2isotherm parameters for

materials split into three categories: all materials which pass the 95/90-PRT (blue),

those that fail the 95/90-PRT (red), and the Top 150 (black). These distributions

are normalized such that the sum of the pass and fail distributions is 1, which means

that when the lines intersect, the two outcomes are equally probable. Interestingly,

no distinctions can be made between materials that meet or fail the 95/90-PRT for

any of the tested metrics (See Fig. S9-S10 for all metrics) with the exception of the

N2isotherm parameters (Figure 2.3c and d). The absence of this same behaviour

(Figure 2.3a-b) in the CO2isotherm parameters is somewhat surprising given that

the state of materials discovery for CO2separations is largely focused on a material’s

ability to adsorbCO2, with the N2behaviour often only considered implicitly through

a material’s selectivity. We note that that although there is some separation in the
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Figure 2.3: Univariate probability distributions for (a) the CO2/N2 single component
selectivity, (b) the fitted N2 dual-site Langmuir isotherm parameter for the stronger
site, (c) the working capacity, and (d) the N2 saturation uptake for the stronger DSL
site. Shown in the four plots is the probability distribution for the MOFs which
pass the 95/90-PRT (blue), fail the 95/90-PRT (red), and the top 150 MOFs by PE
(black). These distributions have been normalized so that the sum areas under the
curve of the pass and fail distributions equals 1.
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N2isotherm parameters probability plots between MOFs that meet the 95/90-PRT

and those that do not, there is still significant overlap meaning a simple cut-off value

would be insufficient to distinguish between materials.

The relationship between the VSA performance of a material and its gas adsorp-

tion isotherms are further explored in Figure 2.4, which shows a superposition of

the CO2(left) and N2(right) isotherms of all the 1632 MOFs screened, grouped into

different categories. The bold lines in Figure 2.4 are the averaged isotherms for each

group, while the shaded regions in Figures 4g and 4h correspond to the first standard

deviation of each group. It is clear that a wide range of CO2isotherm shapes (linear

to strongly non-linear) are seen in all three categories of MOFs, including the top 150

materials. The behaviour observed between the materials which do and do not meet

the 95/90-PRT demonstrates that there is no clear distinction between the isotherm

behaviour, indicating that MOFs possessing similar CO2isotherms can provide vastly

differing process performance. On the other hand, the range of N2isotherms for ma-

terials which do meet the 95/90-PRT is much narrower, showing a distinct region of

high performance. These “good” MOFs all have comparable N2uptakes and have very

linear isotherms, whereas the MOFs which fail the PRT show a much wider spread of

uptakes with highly non-linear isotherms. Although significant overlap exists between

the sets, these visible trends reinforce that the potential for predicting the 95/90-PRT

based on N2 isotherm behaviour exists.

To explore whether a predictive model can be constructed to determine a material’s

ability to meet the 95/90-PRT, machine learning classifiers were trained on all the

metrics listed in Table 2.2 using a 90%/10% training/validation set split. Random

Forrest models were found to be the most successful with a overall prediction accuracy

of 91% determined with the validation set. More specifically, the best model (avail-

able upon request) was able to recover 85% of the MOFs in the validation set known

to meet the PRT and had a positive predictive rate of 86%. In other words, 86%

of the MOFs predicted to meet the 95/90-PRT actually meet the PRT. Thorough
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Figure 2.4: CO2 (a) and N2 (b) isotherms of all MOFs studied that do not meet the
95/90 PRT. CO2 (c) andN2 (d) isotherms of all MOFs that do meet the 95/90-PRT,
and CO2 (e) and N2 (f) isotherms of the top 150 MOFs. The bold lines correspond
to an ‘average’ isotherm constructed by using the average uptake of all isotherms at
discrete pressure points with red corresponding to MOFs that don’t meet the 95/90-
PRT, blue corresponding to those that do meet the 95/90-PRT and black representing
the top 150. The bottom figures compare the averaged CO2 (g) and N2 (h) isotherms
from each class of MOFs where the shaded regions cover 1 standard deviation in each
class.
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investigation of the metrics utilized by the model reveals that the most important

metrics, present across all 21 decision trees in the random forest, are the Langmuir

isotherm parameters for N2adsorption. For example, the first node in all 21 trees of

the random forest rely on either the N2 Langmuir constant or the N2saturation uptake

of the stronger of the two DSL sites, indicating that nitrogen isotherm behaviour is

the most important predictor of a material’s ability to meet the 95/90-PRT. To cor-

roborate the importance of the N2isotherm parameters, random forest classifiers were

built where they were omitted from the model. Without the N2isotherm parameters,

overall prediction accuracy and positive predictive rate of the best model dropped to

78% and 63%, respectively, demonstrating the importance of the N2parameters for

constructing an accurate model.

We also explored whether the PE or the productivity of a material can be pre-

dicted from any of the common metrics used to characterize solid sorbents. Here it

is important to note that the PE and productivity are only meaningful at process

points that meet the 95/90-PRT constraint since low PE’s or high productivities can

always be achieved without the constraint. For materials that meet the 95/90-PRT,

the third and fourth columns of Table 2.2 show the correlation R2 between 29 metrics

and the productivity and PE, respectively. All metrics show poor linear correlations

with Pearson R2 values of 0.17 or less for either the productivity or PE. To examine if

more complex relationships exist between the PE or productivity and the 29 metrics

including the N2isotherm parameters, we built a series of different machine learning

regression models using data from 435 materials that were able to meet the 95/90-

PRT. The best model, a gradient boosted decision tree model, possessed correlation

R2 values (on the validation set) of only 0.41 for predicting the productivity and 0.18

for predicting the PE. Overall, these results suggest that the most common metrics

used to evaluate MOFs are poor predictors of the material’s PE and productivity.

This indicates that full process simulations are necessary to evaluate PE and produc-

tivity performance of a material for VSA gas separations and likely related P/TSA
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separations. Advanced process simulations of a 4-step VSA system, which have been

validated at the pilot scale, have been integrated with atomistic simulations allow-

ing for the screening of 1632 experimentally characterized MOFs for post-combustion

CO2capture. 392 MOFs were found to meet the 95/90 purity-recovery targets, while

a dozen materials, including IISERP-MOF2, UTSA-16 and zeolite NaA, were able

to simultaneously achieve PE’s ¡250 kWhe/MT CO2and productivities greater than

that of Zeolite-13X. Although we have assumed a dry flue gas, a handful of MOFs

have been reported, whose CO2adsorption properties are nearly unchanged in high

humidity conditions. [63, 90] In those cases, the results of these simulations remain

applicable. For MOFs whose adsorption properties are substantially changed in hu-

mid conditions, the flue gas stream can be dried at an energetic cost estimated to

be as low as 24 kWhe/MTCO2 [93]. In total, 97 MOFs were found to have PE’s

¡250 kWhe/MTCO2, which makes them highly competitive with advanced solvent

based scrubbing systems even when the cost of drying the flue gas is included. This

screening suggests that IISERP-MOF-2 is close to an ideal candidate material for a

VSA post-combustion carbon capture process, since it is stable in moist, acid gas

environments, made from an earth abundant metal (Ni), whose CO2adsorption prop-

erties are minimally effected by humidity and whose PE of CO2capture is close to the

theoretical minimum.

Twenty-nine adsorption metrics and geometric parameters were examined to see

if they are good predictors of a material’s performance in a VSA gas separation

system. N2 rather than CO2 adsorption behaviour is found to be the key metric to

predict whether a material can meet the 95/90 purity-recovery requirements for post-

combustion CO2capture. This contradicts the current consensus in the field, but is in

agreement with the results of other process simulations [29] and the recent screening

study by Snurr and co-workers [32] Machine learning models can be built using the

adsorption metrics that can predict whether a material can meet the 95/90-PRT

with overall prediction accuracies of up to 91%. Analysis of the models corroborates
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that the N2isotherm parameters are the key predictors of whether a material meets

the 95/90-PRT. On the other hand, predicting the PE or productivity based on

the 29 metrics (including the N2isotherm parameters) was found to be much more

difficult with the best machine learning regression models giving correlation R2s of

only 0.41 for predicting the productivity and 0.29 for predicting the PE. Thus, the

PE or productivity of CO2capture with solid sorbents within a VSA system cannot

be accurately predicted from equilibrium adsorption metrics alone - here full process

simulations are required.
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Chapter 3

Experimentally validated machine
learning frameworks for accelerated
prediction of cyclic steady state
and optimization of pressure swing
adsorption processes.

3.1 Introduction

1 Traditional separation processes such as distillation account for 10-15% of the

world’s energy consumption [12]. Hence, there is a need to explore alternative sepa-

ration pathways with the potential to reduce energy consumption. Adsorption-based

processes are one such low energy alternative separation pathway [1, 3]. Adsorption

processes are versatile and flexible for the separation of gases and have been widely

used in the industry for applications such as gas drying, air fractionation [94], hydro-

gen purification [95], etc. [1, 96]. Furthermore, the ability to synthesize a variety of

processes by combining a set of constituent steps is an additional degree of freedom

that can be exploited [2].

Advances in organometallic chemistry have led to the development of thousands

1This chapter has appeared as- Pai, K. N., Prasad, V., and Rajendran, A. (2020). Experimen-
tally validated machine learning frameworks for accelerated prediction of cyclic steady state and
optimization of pressure swing adsorption processes. Separation and Purification Technology, 241,
116651.
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of new adsorbents and have thus brought about a critical need for faster modeling

and optimization of adsorption processes [18]. Most of these metal-organic framework

(MOF) adsorbents are tunable and their properties are being increasingly computed

in-silico [18, 97, 98]. Recent investigations have shown that most commonly used

adsorption screening metrics, which use simple equilibrium data, can be unreliable,

and hence screening should be combined with process design and optimization [29,

32, 38]. This implies that rapid and reliable process optimization tools should be de-

veloped for the screening of very large adsorbent databases. Furthermore, addressing

this problem would contribute to a better understanding of how adsorbent properties

impact process performance [2].

The simulation and optimization of adsorption processes are challenging as they

are operated under cyclic and unsteady state conditions [1, 96]. The models describ-

ing adsorption process consist of a system of coupled partial differential equations

along with nonlinear algebraic equations (together referred here as NLPDEs). Due

to the propagation of sharp temperature and concentration fronts in the process, ob-

taining the numerical solution of these systems is challenging [31]. The application

of advanced numerical schemes, such as finite volume methods (FVM), has enabled

robust and accurate simulations [31, 99]. However, the inherent unsteady state nature

of these processes requires solution of the NLPDEs repetitively until a cyclic steady

state (CSS) is reached [100, 101]. This increases computational effort significantly [39,

100]. The presence of many design parameters such as the number of steps, pressure

levels, feed rates, step times, and column dimension, leads to a large set of possible

combinations, and thus makes the adsorption process optimization challenging [39,

100].

Various methods have been proposed in the literature to reduce the computational

effort for PSA optimization, including reduced order models and meta-models [15, 38,

73, 102, 103]. Data-driven surrogate modeling has been proposed as a potential solu-

tion, as these models are trained using data obtained from validated detailed math-
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ematical models or even experiments. The main advantage of these models is their

ability to reduce computational load without compromising accuracy [104]. Hasan et

al. [105] and Beck et al. [106] presented surrogate-assisted optimization frameworks

and tested successfully with detailed models for the ability to perform multi-objective

optimizations. Recently, Subraveti et al. showed that a surrogate-assisted framework

can reduce the computational time for the optimization of a PSA process by an or-

der of magnitude, using dimension reduction techniques and by training data derived

from the generations of an evolutionary algorithm [107]. On the one hand this ap-

proach can be very advantageous for problems that involves a large number of design

variables. On the other hand, if the objective functions are changed, then the de-

tailed model should be evaluated again resulting in additional computational burden.

Leperi et al. showed that the data from the detailed model can also be used to train

artificial neural network (ANN)-based surrogate models for process optimization and

the prediction of bed profiles at cyclic steady state [72]. In order to improve the con-

fidence in using machine-learning tools routinely in process design and optimization

experimental validation is a critical step and to the best of our knowledge, this has

not be reported in the literature. The development, evaluation and experimental val-

idation of machine-learning models to accelerate the optimization of cyclic adsorption

processes is the core objective of the current work. Further, we also demonstrate how

the prediction of cyclic steady state profiles can be used to accelerate detailed PSA

simulations.

In this work, the separation of CO2 from a mixture containing 15 mol% CO2 and 85

mol% N2 on zeolite 13X using a 4-step vacuum swing adsorption (VSA) process cycle

is considered. This system is well studied, both theoretically [29, 39, 71, 108, 109] and

experimentally, [36, 110, 111] with some work being carried out at pilot plant scales

[75, 112, 113]. This work follows up a recent work from our group, where the reliability

of process optimization techniques was validated experimentally [36]. The objective

of this study is to demonstrate the ability of machine learning (ML)-based surrogate
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models to predict key process indicators, such as purity, recovery, productivity, and

energy consumption, as well as to predict CSS profiles. Various ML-based algorithms

are trained as surrogates using the data from a detailed model generated using Latin

Hypercube (LHC) sampling strategy. The trade-off between training effort and pre-

diction accuracy is used to select the best surrogate model for process optimization.

The ability of the surrogate models to predict Pareto curves for both constrained and

unconstrained multi-objective optimization problems is compared with the results

from a traditional detailed model-based optimization. The ANN-based CSS profile

predictor is also tested for its ability to accelerate the detailed model simulations in a

novel optimization framework. The predictions of the surrogate models are validated

with experimental data from a two-column lab-scale VSA rig.

3.2 Experimental System, Process and Machine-

learning Models

3.2.1 Experimental System

In this work, the experimental results reported by Perez et al. [36] were used and

no additional experiments were performed. Since all the details have been provided

earlier, only a brief description of the unit is provided here. The three experiments

conducted using the 4-step cycle with light product pressurization (LPP) were con-

sidered in this study. The cycle was chosen for its simplicity of implementation and

its effectiveness in concentrating the CO2 from the dilute feed mixture [19]. The VSA

experiments were carried out in a two-bed lab-scale system, the process schematic

of which is shown in Fig. 3.1 a). It consists of two stainless steel columns (30 cm

length and 3.2 cm diameter). Each column was packed with 162 g of Zeolite 13X

(Z10-02) pellets from Zeochem AG, Switzerland. Two vacuum pumps were used to

operate the unit at sub-ambient pressures. Suitable flow controllers and flow meters

were used. The CO2 and N2 isotherms on Zeolite 13X were measured using volumetry
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and confirmed using dynamic column experiments [36]. The VSA experiments were

conducted using certified premixed cylinders containing 15 mol% CO2 and 85 mol%

N2. The VSA experimental rig includes CO2 sensors to collect CO2 composition at

the extract (Z = 0) and raffinate (Z = L) end of the column. Three thermocouples

located at 8, 16, and 24 cm from the column inlet were used to obtain the transient

temperature histories. All cycles were run until cyclic steady state was reached, which

was ≈ 70 cycles.

3.2.2 Process Cycle

The schematic of the VSA process cycle is provided in Fig. 3.1 b). The cycle has an

adsorption step performed at atmospheric conditions. The feed containing 15 mol%

CO2 and 85 mol% N2 enters the column at the feed end (Z = 0) at a fixed flowrate.

The CO2 is preferentially adsorbed in the bed while the light component, N2, is

removed at the outlet of the bed (Z = L). This is followed by a co-current blowdown

step to remove the N2 impurity present in the bed voids. In this step, vacuum is

applied at the Z = L end to reduce the pressure to sub-atmospheric conditions. This

intermediate pressure level, referred to as PINT, has a major influence on the CO2

product purity. The blowdown step is followed by the main product collection step,

referred to as the evacuation step. The counter-current evacuation step is performed

by reducing the pressure of the bed at the feed end to a low pressure (PLOW). The

pressurization step is carried out using the light product from the adsorption step

from the Z = L end. The gas from the adsorption step is predominantly N2 and this

step is referred to as light product pressurization (LPP). Note that the 4-step cycle

with LPP has been shown in earlier studies to be effective for CO2 capture a variety

of adsorbent materials [19, 29, 71].
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3.2.3 Detailed Process Modeling

The detailed mathematical modeling of the VSA process used in this study employs a

uni-bed modeling approach provided in the work presented by Hagpahnah et al. [31].

Here, an adsorbent-filled bed is assumed to undergo all the individual cycle steps in a

cyclic sequence with the final condition of the preceding step being the initial condition

for the next. The flow through the bed is modeled as a one-dimensional axially

dispersed plug flow. The gas phase is assumed to obey the ideal gas law. Mass transfer

kinetics within the solid phase are described by the linear driving force (LDF) model,

with the LDF coefficient being calculated with the understanding that molecular

diffusion in the macropore controls the mass transfer resistance [114]. Darcy’s law

was found to adequately describe pressure drop in the axial direction. Note that longer

columns would require the Ergun equation for an accurate estimation of the pressure

drop. Bed voidage and particle size are assumed to be uniform across the column.

The fluid and adsorbent are assumed to be in thermal equilibrium. Temperature,

pressure, and concentration gradients in the radial direction are neglected. The outer

column wall is assumed to be in equilibrium with the ambient temperature. Under

these assumptions, mass, energy, and other transport equations can be obtained and

are provided in Table S1 of the supporting information. Danckwerts’s boundary

conditions as shown in Table S2 of the supporting information are used to simulate

the individual steps.

A dual-site Langmuir (DSL) model, is used to describe the equilibrium loading.

The DSL model is given by:

q∗i =
qsb,ibiCi

1 + ΣbiCi

+
qsd,idiCi

1 + ΣdiCi

(3.1)

where Ci and q∗i are the fluid phase concentration and the equilibrium solid phase

loading, respectively, qsb,i and qsd,i are the saturation capacities, and bi and di are

the affinity parameters for the first and second site, respectively. The temperature
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dependence of the affinity parameters are described by the following relationships:

bi = b0,ie
−∆Ub,i/RT (3.2)

di = d0,ie
−∆Ud,i/RT (3.3)

b0,i and d0,i are the pre-exponential factors while ∆Ub,i and ∆Ud,i are the internal

energies of adsorption of the two sites. The isotherms are shown in Fig. S2, while the

DSL isotherm parameters are provided in Table S3. The other simulation parameters

are provided in Table 3.1. The equations are discretized in space and solved using

a finite volume method (FVM) with a van Leer flux limiter. The system of coupled

equations is solved in MATLAB 2017b using the ode23s solver until cyclic steady state

(CSS) is reached. In this work, attainment of cyclic steady state is determined when

the mass balance error on CO2 is below 0.5% for 5 consecutive cycles. Beyond this

condition, the key performance indicators did not show much variation. In addition

to the key performance indicators (PIs), the axial profiles of the intensive variables,

namely, bed temperature, fluid and solid phase CO2 and N2 loadings at the end of

the different steps are collected at CSS. The key process performance indicators (PI)

are defined as follows:

Purity, Pu CO2 [%] =
nEVAC
CO2

nEVAC
CO2

+ nEVAC
N2

× 100 (3.4)

Recovery, Re CO2 [%] =
nEVAC
CO2

nFEED
CO2

× 100 (3.5)

where nEVAC
i is the number of moles of component i collected in a single evacuation

step, while nFEED
i is the number of moles of component i in the feed. The energy

consumption of the process is defined below:

Energy, En

[︃
kWhe

tonne CO2 captured

]︃
=

EADS + EBLO + EEVAC

Mass of CO2 in evacuation product
(3.6)
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Energy consumption, which is indicative of the operational cost, is defined as the

electrical energy equivalent required to capture one tonne of CO2. The terms EADS,

EBLO and EEVAC refer to energy consumption in the adsorption step, co-current blow-

down, and counter-current evacuation steps, respectively. In the above expression,

EADS is the energy spent in overcoming the pressure drop during the adsorption step

and is evaluated as

EADS =
1

η
ϵπr2in

γ

γ − 1

∫︂ t=tADS

t=0

(vP )

⎡⎢⎣(︃ ∆P

Patm

)︃γ − 1

γ − 1

⎤⎥⎦ dt (3.7)

The equations for the energy consumption for the other two steps is given by

Estep =
1

η
ϵπr2in

γ

γ − 1

∫︂ t=tstep

t=0

(vP )

⎡⎢⎣(︃Patm

P

)︃γ − 1

γ − 1

⎤⎥⎦ dt (3.8)

where Patm is 1 bar, η represents the efficiency of the vacuum pumps/blower, which

is considered to be 72%, γ is the adiabatic constant, P is the Pressure, v is the

interstitial velocity and rin is the inside diameter of the column. Note that industrial-

scale vacuum pumps that operate at very low pressures are known to provide lower

efficiency [115]. In the experimental study, the vacuum pumps were oversized and

did not show any variation in power consumption over the steps. Hence,in this study

the efficiency of 72% was used merely to demonstrate the efficacy of the ML-based

surrogates to predict the energy consumption calculated by the detailed model. The

productivity of the process is defined as:

Productivity, P r

[︃
mol CO2

m3 ads s

]︃
=

nEVAC
CO2

( Vol of ads ) (Cycle time )
(3.9)

The cycle time in the Eq. 3.9 is the sum of the duration of the different steps

in the cycle. It is important to note that certain simplifying model assumptions,

e.g. the use of Darcy’s equation, requirement of scheduling, etc., that hold for small

scale adsorbent beds, may need to be revisited if scale-up is necessary. However, the

framework for developing the surrogate models will remain essentially the same.
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Parameter Symbol Value Units

Column length L 0.3 [m]

Inner column radius rin 0.014 [m]

Outer column radius rout 0.016 [m]

Column void fraction ε 0.41 [-]

Particle voidage εp 0.35 [-]

Particle radius rp 0.75×10−03 [m]

Tortuosity τ 3 [-]

Column wall density ρs 7800 [kgm−3]

Molecular diffusivity Dm 1.53×10−05 [m2 s−1]

Adiabatic constant γ 1.4 [-]

Thermal conductivity of column wall Kw 16 [Jm−1K−1 s−1]

Inside heat transfer coefficient hin 8.6 [Jm−2K−1 s−1]

Outside heat transfer coefficient hout 10 [Jm−2K−1 s−1]

Solid phase specific heat capacity Cps 900 [J kg−1 K−1]

Universal gas constant R 8.314 [m3 Pamol−1K−1]

Ambient temperature Ta 298.15 [K]

Vacuum pump efficiency η 0.72 [-]

Parameter for blowdown pressure profile αBLOW 0.174 [s−1]

Parameter for evacuation pressure profile αEVAC 0.027 [s−1]

Table 3.1: Parameters used for simulations.

3.2.4 Process Optimization

Owing to the transient nature of adsorption process and the complex relationship

of operating conditions, optimization of the PSA process is challenging. In previ-

ous studies, it has been shown that the non-dominated sorting genetic algorithm-II
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(NSGA-II) can be used to optimize the process conditions. It is robust at optimizing

this system for various multi-objective problems [19, 31, 106, 116]. The algorithm

can escape local minima and can be parallelized easily for multi-core processing [116].

This method of optimizing the VSA process has been reported in earlier studies [19,

29, 31] and has also successfully been verified using experiments [75]. In a recent

study by Perez et al., the authors have also shown that this optimization technique

can help guide the design of experiments to obtain the optimum performance [36].

3.2.5 Machine Learning Models

In the absence of knowledge of the specific input-output(I/O) relations, supervised

machine learning (ML) can be used to construct predictive models using sufficient

training data. Improvements in ML algorithms, especially for function approxima-

tion via supervised machine learning-based regression, now enable the modeling of

complex multivariate phenomena as simple input-output relations [104]. A compu-

tationally expensive model, y = f(X), where f(X) can be any continuous quantity,

e.g. a key performance indicator of a process, which is defined by a k-vector of

design variables X ∈ D ⊂ Rk, can be emulated as a “surrogate” f̂ . The output

data y1, y2, y3, · · ·, yn that result from inputs X1, X2, X3, · · ·, Xn can be mapped as

y = f(Xi), where Xi = {x(1)
j , x

(2)
j , x

(3)
j , · · ·, x(n)

j } is the matrix of inputs [104]. In

this paper, supervised machine learning techniques were used to generate approxi-

mate models ŷ = f̂(X) for the data obtained from the detailed VSA model. Many

machine learning methods are available to develop regression relationships. In this

paper, the following were evaluated: decision trees (DT) [117], ensemble bagged trees

(EBTs), which employ a random forest algorithm [118, 119], support vector machines

(SVMs) [120], ANNs [121] and Gaussian process regression (GPR) [122]. All ML

studies were implemented using MATLAB’s machine-learning toolbox.

Decision trees are simple prediction models that are used to classify based on a

tree or graph structure of conditions. They can also be used as regression models
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for cases where the outputs are numerical responses. Random forest models such as

EBTs use multiple learner DTs that are trained to solve the same problem. In clas-

sification, the mode of the DTs, and in regression, the mean of the DTs, are used for

prediction. They, therefore, become versatile in developing regression models for large

complex data-sets that may involve many different trends. Support vector machines

are another type of classification model that can also be used to build multivariate

input-output regression relationships. The objective of this method is to find a hyper-

plane that can segregate the multidimensional data into classes. The algorithm tries

to maximize the distance between this hyperplane and the data-set. In classification

tasks, the SVM attempts to find the hyperplane that provides the maximum margin,

i.e. the distance between the hyperplane and the nearest point in each class is maxi-

mized. Support vector regression attempts to constrain all predictions of the response

variable y to be within an epsilon-threshold of the data. Various kernel functions such

as linear, quadratic, cubic, Gaussian, etc. can be used for the classification or regres-

sion of nonlinear data-sets. Gaussian process regression is a powerful regression tool

for complex functions that can be trained with a relatively small amount of data [104].

Gaussian process regression uses a non-parametric kernel-based probabilistic model.

Here, a probability distribution is defined over the entire function space; inferences

taken from the model are thus based on the local probability distribution [122]. Ar-

tificial neural networks use multiple layers of “neurons” to build nonlinear models

between inputs and outputs. Each neuron performs a nonlinear transformation on

the weighted sum of its inputs from the neurons in the previous layer. In training of

the ANN, the weights in the network are adjusted to minimize the error between the

ANNs outputs and the corresponding training data.
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Figure 3.1: Experimental set-up and cycle studied (a) Schematic diagram of the
bench-scale VSA test apparatus. (b) Illustration of the 4-step cycle with LPP. Note
that the thermocouples TC-1, TC-2, and TC-3 are at 8, 16, and 24 cm from the
column inlet.

3.3 Surrogate Models: Training and Validation

Surrogate models should be trained using data that is representative of the entire in-

put space. A Latin Hypercube (LHC) design was used to generate a set of operational

inputs. The range of the input space were as follows: tADS[s]: 20 − 200, P INT[bar]:

0.03−0.3, P LOW[bar]: 0.03−0.1, and vFEED[ms−1]: 0.05−1. A physical constraint of
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P INT ≥ P LOW + 0.01 [bar] was imposed while generating the data-set. A set of 800

samples was evaluated using the detailed VSA model and the outputs; namely the

four performance indicators, viz., PuCO2 , ReCO2 , E, and Pr. The input and output

data-set distributions are provided in Figs. S3 and S4 of the supporting information.

The two sets of data obtained from the detailed model that are used in this paper

include the scalar key performance indicators (purity, recovery, energy, productivity)

and vectors of CSS axial profiles (gas phase and solid phase compositions of CO2 and

N2, and the internal bed temperature). All the above-mentioned machine learning

models can be used to develop surrogates to predict the scalar performance indicators.

The training of the surrogate models is performed using a five-fold cross validation

technique, to ensure that over-fitting the data is avoided. A test-set (number of sam-

ples = 200) was also obtained using the detailed model and was used to test all the

trained models.

To compare the predictive capabilities of the surrogate models for key performance

indicators, the adjusted coefficient of determination is used as the evaluation metric:

R2 = 1−
Σn

j=1(yj − yî)
2

Σn
j=1(yj − yj̄)2

(3.10)

R2
ADJ = 1− (1− R2)(n− 1)

(n− k − 1)
(3.11)

where n is the number of training or testing samples and k is the number of input

descriptors, yj is the actual observed output, yĵ is the predicted output, and yj̄ is the

mean of the set of actual outputs. Although other metrics are available for model

evaluation, R2
ADJ is chosen because it was independent of the scale of the output

and number of samples. The magnitude of the output data does not matter in

computing the R2
ADJ value, and it varies between -∞ and 1. An R2

ADJ of 1 would

mean perfect prediction and negative R2
ADJ would imply the predictions are worse

than the actual mean of the data-set. Evaluating the surrogate models using an

independently generated test-set is important, because models that may have high
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training accuracy may not predict the outputs for new inputs accurately.

To evaluate this surrogate model for CSS profiles, the predictions of the ANN-based

surrogate model for the CSS profile is evaluated using a L1 norm of the intensive

variables. The L1 for a intensive variable is defined as

L1,f =

∑︁30
m=1 |fref,m − fm|∑︁m

m=1 fref,m
(3.12)

where f is an intensive variable (temperature, gas composition and solid phase load-

ings) at node m. Here, the fref reference state is the CSS profiles obtained from

detailed model simulations of the test-set simulated to CSS conditions. The denom-

inator ensures that all the compared quantities are on the same scale, and the total

of the 4 intensive variables gives the total L1 norm, L1,T ot:

L1,T ot = L1,yCO2
+ L1,qCO2

+ L1,qN2
+ L1,T (3.13)

3.3.1 Surrogate Model for Performance Indicators

Each key performance indicator was trained independently with a surrogate model

to maintain accuracy, i.e. the surrogate models for purity, recovery, energy, and

productivity are trained independently. The main goal of this work is to reduce

computational load for the design and optimization of the VSA process, the largest

contribution to which is the solution of the detailed model. This means the ability

of the ML algorithm to correctly map the input to the corresponding output needs

to be as good as possible with the least training effort. The training data-set which

consists of 800 samples was randomly divided into 8 data-sets of increasing sample

size (100, 200, 300, · · ·, 800). The data-sets were then used to train surrogate models.

This process was repeated 10 times, each time with a new set of randomly selected

data-sets.

The sampled means and one standard deviation of the test R2
ADJ from all the trained

models is shown in Fig. 3.2. In Fig. 3.2 a), the R2
ADJ of CO2 purity surrogate model
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is plotted against the R2
ADJ of CO2 recovery for the different sample sizes starting

from N=100 (closed symbol) moving upto 800. Note that the shaded areas represent

one sample standard deviation based on the 10 repeat training runs. As expected,

a general upward trend in model predictive capability was observed for increasing

training sample size for all the models. The linear SVM regression model performed

poorly with the highest R2
ADJ for purity and recovery being less than 0.9, indicating

that the output data had nonlinear trends. The higher order polynomial and Gaussian

kernel-based SVM performed better than the linear case. The DT model performed

better than the linear models in predicting the CO2 recovery as the sample size is

increased. The EBT model performed better than the DT model with the R2
ADJ =

0.95 for the best case. The performance of the SVM model with a cubic kernel was

also found to be good with a test R2
ADJ > 0.95. The ANN model for the purity did not

improve with increasing sample size for the chosen shallow network. The GPR model

had the highest predictive capability for even small data-sets. Purity and recovery of

the VSA process are usually the primary design objectives and the surrogate models

need to be accurate in predicting these quantities. All the kernel functions tested

for the GPR model gave good predictive results. Note that in Fig. 3.2 a) the results

obtained from the marginally better GPR model with the Matern kernel is plotted.

The models that showed R2
ADJ > 0.95, were the SVM model with cubic and Gaussian

kernels, the EBT model, and the GPR model. Note that with just small (100 samples)

training data-set, the GPR (Matern) provides a R2
ADJ > 0.98.

In Fig. 3.2 b), the R2
ADJ of surrogate model for the energy consumption is plotted

against the R2
ADJ of productivity for the different sample sizes. Of the seven algorithms

tested to model the energy and productivity of the VSA process, the GPR performed

the best, followed by the SVM and ANN models. The SVM model with the Gaussian

kernel, which worked well in predicting the purity and recovery of the process, did not

predict the energy of the process well with (R2
ADJ < 0.9). The GPR model performed

well in predicting both energy and productivity (R2
ADJ > 0.95). The minimum number
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of samples that are required to train the GPR model for an R2
ADJ > 0.98 for all cases

was 400. This was considered as the least training effort required while maintaining

a high model prediction accuracy. It should be noted that even though the training

time for these models are insignificant in a computational sense, as we increase the

training sample size, training ML models like GPR to screen large databases could

become computationally restrictive.

3.3.2 Surrogate Model for CSS Profiles

Unlike the case of the key performance indicators, the CSS profiles are vectors, while

surrogate models such as SVM and GPR provide only scalar outputs. Hence, an ANN-

based method is used to predict CSS profiles. It is worth noting that Leperi et al.

have reported a similar approach to predict the CSS profiles recently [72]. The ANN-

based CSS profile predictor is trained using the samples generated from the previous

section. MATLAB 2017b Neural Network Toolbox is used for the model training and

the trained model is used to predict the CSS profiles for new inputs. In this study,

Bayesian regularization technique is used to train the model [107]. The ANN-based

CSS profile predictors are trained individually with four operational conditions as

inputs in order to predict the CSS profiles for four intensive variables, namely, gas

phase CO2 composition; bed temperature; and the solid phase CO2 and N2 loading

for the various cycle steps. Physical constraints such as the gas composition should

be between 0 and 1, and solid loadings should be positive are imposed. This means

that each model has 4 inputs and the output contains 30 scalar values of the intensive

variables for the 30 finite volume discretization. Note that this means a total of 16

individual surrogate models are trained, each one to predict one intensive variable for

each of the 4 different steps at the CSS conditions.

The algorithm was used to train the ANN-based CSS prediction model for different

number of neurons, varying from 5 to 100, and the error between the test-set and the

model predictions was calculated. Of the different number of nodes that were tested
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Figure 3.2: Impact of the size of training set on the accuracy of the surrogate models.
a) Evolution of the R2

ADJ for CO2 purity and CO2 recovery from an initial training
sample size of 100 points (shown as a filled symbol) upto 800 points, each symbol
depicts the addition of 100 more points. b) Evolution of the R2

ADJ for energy con-
sumption and productivity from an initial training sample size of 100 points (shown
as a filled symbol) upto 800 points.The R2

ADJ values for Energy and Productivity for
SVM (Linear) are outside the range plotted. The shaded region represents the sample
standard deviation in model prediction for 10 different randomly sampled runs.
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during ANN training, it was found that the best performance was obtained with a

hidden layer containing 30 neurons to predict the 30 nodes of the adsorption bed. Note

that only one hidden layer was sufficient in fitting the profile data. To understand

the trade-off between training effort and accuracy of predictions, the training data

was randomly divided into 8 data-sets of increasing sample size (100, 200, 300, · · ·,

800). These data-sets were used to train the ANN-based surrogate models for the

different steps and intensive variables. Like in the previous section, the standard test-

set (n=200) was used to predict the CSS profiles using the trained models. Figure 3.3

shows the variation of the average L1,T ot norm of the test-set for each cycle step as

a function of the different training sample sizes. The L1 norm for the test-set tends

to reduce with increase of training samples, but the rate of reduction in the L1 norm

plateaus after models trained with 400 samples. This means that a model trained

with sample size of 400 can adequately predict the CSS profiles, with the least training

effort.
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Figure 3.3: The average total L1 norm for each cycle step as a function of the different
training sample sizes. Note that the results shown are the sample mean and the shaded
area represents the sample standard deviation from the test-set (n =200).

To highlight the accuracy of the predictions from the surrogate, an operating con-
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dition from the test-set is shown in Fig. 3.4. The solid lines show the results from

the detailed model and the dashed lines represent the results from the ANN-based

surrogate model. Fig. 3.4 c) and d) shows the variation of the solid phase profiles for

CO2 and N2 loadings along the adsorption bed. Note that the time required to solve

the detailed model for the operating conditions plotted in Fig. 3.4 was ≈ 15 minutes

while for ANN model produced an instantaneous solution. Note that in Fig. 3.3, the

blowdown step has the highest L1,T ot norm among all the cycle steps; this is because

the blowdown step has the most irregular profile for the intensive variables. The evac-

uation and LPP steps have the least L1,T ot norm and this is because the profiles of

the intensive variables in these steps are simpler as observed in Fig. 3.4. The trained

and validated ANN-based surrogate CSS profile predictor can be used to predict CSS

profiles for new operating conditions.
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Figure 3.4: Cyclic steady state profiles of the intensive variables at the end of the
steps for are a sample VSA simulation. The dashed lines are predictions from the
ANN surrogate model and the solid lines are the detailed model simulations. CSS
profiles of a) the gas phase composition of CO2. b) the bed temperature. c) the solid
phase loading for CO2 d) the solid phase loading for N2.
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Accelerated CSS Identification

Due to the cyclic nature of the VSA process, the process performance is evaluated at

CSS. The solution of the detailed model is computationally demanding and it can be

argued that the most computational effort results from the repeated computation of

the constituent steps until the attainment of CSS. Hence, if this computational effort

devoted to the calculation of CSS can be reduced, PSA design and optimization can

be accelerated. Having said that, it is also illustrative to consider that ANN-based

CSS predictions are only an approximation of the actual profiles. In rare cases it is

possible that the predicted profiles are not representative of the actual CSS profiles.

In such cases it would be pertinent to not rely on these profiles, but instead treat them

as initial conditions and simulate the detailed model until CSS criterion is satisfied.

This approach provides two key advantages. First, it irons out unrealistic profiles that

could be predicted by the ANN model. Second, the results that will be obtained are

from a detailed model, significantly improving reliability. Depending on the accuracy

of the surrogate profile predictions, this methodology could significantly reduce the

solution time of the detailed model.

To understand the advantage in convergence, the operating conditions from the

test-set were run in the detailed model initialized with the ANN-based CSS predic-

tions. The results were than compared to the results obtained from the detailed model

initialized with feed conditions. Figure 3.5 shows the average convergence of the de-

tailed model to cyclic steady state for a test-set consisting of 200 samples (See Fig.

S5, for the contributions of the various intensive variables towards the total L1 norm).

The results from the detailed model initialized with the feed (15 mol% CO2) shown as

solid lines and the ANN-based CSS accelerated detailed model shown as dashed lines.

Fig. 3.5 a) shows the variation of the L1. A lower value of L1 norm indicates that

the profiles are closer to the actual CSS conditions. In the case of the ANN-based

CSS accelerated detailed model the L1 norm is always lower when compared to the
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detailed model initialized with feed conditions. Since the mass balance error is used

in this study to estimate CSS conditions, the variation of average mass balance error

of the test-set is shown as a function of the number of cycles in Fig. 3.5 b). The

horizontal dotted line indicates the 0.5% error, which is the criterion for CSS in this

study. The vertical dashed line indicates the average of the number of cycles to reach

CSS conditions for the two approaches. We can observe that the process has reached

the mass balance criteria for CSS, the condition is measured only after 5 cycles, hence

the average number of cycles for the CSS accelerated detailed model case is 6. In the

case where the detailed model was initialized with the feed, the average number of

cycles to reach CSS was 24. This highlights the effectiveness of the surrogate profile

predictor in accelerating the detailed model convergence. Although this methodology

can be used in accelerating the identification of the CSS profiles, the real application

of this methodology would be in optimizing systems that are slow to converge to the

CSS conditions.

3.4 Process Optimization

Separation processes like CO2 capture must satisfy certain process targets for product

purity and recovery. Along with achieving the minimum product purity and recovery

stipulations, it is also necessary to optimize the process energy consumption and the

process productivity for the minimum stipulated process purity and recovery. The

schematic of the genetic algorithm framework is shown in Fig. 3.6, and is implemented

as follows: a set of decision variables such as step times, pressure levels, feed veloc-

ities, are chosen using a Latin Hypercube (LHC) sampling technique. This is called

the initial population. For this study, the initial population consisted of a set of 96

unique operating conditions. The objective functions are calculated by running either

the detailed model or the surrogate model. Based on the objective functions for each

individual simulation, the next “generation” is chosen. In order to avoid convergence

to local minima, operations such as mutations and cross over ensure that sufficient
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Figure 3.5: Convergence to cyclic steady state as a function of number of cycles of
the detailed model for two cases, namely, cycle initialised with feed conditions (15
mol% CO2) shown as solid lines, and the dashed lines are the result for the cycle
initialised with ANN-based CSS predictor trained with 400 samples. The L1 norms
and the mass balance errors are the average values from the test-set comprising of
200 samples. a) the variation of the average L1 norm for both cases. b) the average
mass balance error for both cases, the horizontal dotted line shown the 0.5% error
line and the vertical dotted lines indicating the average CSS criteria for the test set.
Note that criterion for CSS requires a mass balance error of <0.5% for 5 consecutive
cycles.
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diversity is maintained in the population. The stopping criteria for the algorithm is

set at 50 generations, which means that 4800 unique operating conditions are evalu-

ated in total. The Pareto curve is obtained by choosing the best trade-off between

the multiple objectives. In this work, three different optimization approaches are

considered and are shown in Fig. 3.6.

• Detailed Opt.: In this approach, the multi-objective optimization is coupled

with the detailed model. For a given set of operating conditions, the detailed

model is run until CSS is reached and the performance indicators are returned

to the optimizer.

• Surrogate Opt.: In this approach, the multi-objective optimization is coupled

with the GPR-based surrogate model for the key performance indicators instead

of the detailed model.

• CSS-Opt.: In this approach, the optimizer provides the set of decision variables

to the CSS predictor that estimates the profiles of the intensive variables at the

end of the LPP step. This profile is then used as the initial conditions(ICs) for

the detailed model, which is then solved until the CSS condition is reached. In

essence, this is identical to Detailed Opt. with one exception, i.e., the detailed

model is initialized with profiles obtained from the CSS predictor.

Note that the results of the Detailed Opt. were considered as the reference. All other

optimization parameters were kept the same for the various optimization approaches.

To identify the optimum operating conditions that achieve all the stipulated targets,

two scenarios were tested in this section.
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Figure 3.6: Optimization approaches considered in this study. DV and IC stand for
decision variables and initial conditions, respectively.

• Unconstrained optimization of purity and recovery

• Constrained optimization of energy and productivity

For the first scenario, a multi-objective optimization was carried out to improve

the CO2 purity and CO2 recovery of the system by reducing the following objectives

simultaneously.

minJ1 =
100

PuCO2

(3.14)

minJ2 =
100

ReCO2

(3.15)

For the second scenario, to check the ability of the surrogate optimization frame-

works to perform multi-objective optimization with constraints, a multi-objective

optimization for the minimization of energy and the maximization of productivity

was carried out, with purity and recovery requirements set as constraints. The CO2

purity constraint was set ≥ 95%. This target was chosen as it is necessary for seques-

tration of the captured CO2. The CO2 recovery constraint was chosen to be 80% for

the 4-step cycle with LPP. Note that a low value of recovery was chosen to merely
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test the efficacy of the optimizer. Any other achievable value can indeed be chosen.

The objective functions are defined as

minJ3 =
En

100
+ 500 ∗ [max(0, Putgt − PuCO2)]

2 + 500 ∗ [max(0, Retgt − ReCO2)]
2

(3.16)

minJ4 =
1

Pr
+ 500 ∗ [max(0, Putgt − PuCO2)]

2 + 500 ∗ max[(0, Retgt − ReCO2)]
2

(3.17)

where Putgt is 95% and Retgt is 80%.

The Pareto curves from the maximization of purity-recovery from the three opti-

mization approaches are shown in Fig. 3.7 a). The solid line, red dashed line, and

the blue dashed line represent the Pareto obtained with the Detailed Opt., Surro-

gate Opt. (trained with a sample size 400), and CSS Opt. (trained with a sample

size 400). The surrogate predictions are all within a 3% difference of the detailed

model predictions (shown as a shaded region on the Detailed Opt. Pareto curve).

Figures. 3.7 b) and c) show the variation of the decision variables with respect to an

objective function from the three optimization approaches. Note that these points

correspond to the Pareto curve shown in Fig. 3.7 a). It is indeed encouraging that

all the three approaches not only yield similar Pareto curves but also identify similar

optimal operating conditions.

Figure 3.7 d) shows the results of the multi-objective optimization to minimize

energy and maximize productivity. It should be noted that these constrained opti-

mizations take longer to converge. The Pareto curve with the solid lines shows the

results from the Detailed Opt. The Pareto curve with the dashed line represent the

results from the Surrogate Opt. Both approaches provide similar results and the

results are again in good agreement. The surrogate prediction for the second opti-

mization scenario is also within the 3% difference of the detailed model prediction

(shown as a shaded region on the Detailed Opt. Figs. 3.7 e) and f) show the variation
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of the decision variables with respect to an objective function from the three opti-

mization approaches. Note that these points correspond to the Pareto curve shown

in Fig. 3.7 d). It is worth noting that not only are the Pareto curves predicted ac-

curately, but the decision variables are also predicted well. This indicates that the

Surrogate Opt. and CSS Opt. can be used with confidence to design experimental

campaigns. These results are also significant because the surrogate is trained using

data from a large input range, but the optimum conditions occupy a small range of

decision variables. This implies that the surrogate model developed for the larger

input range is sufficiently accurate in the neighbourhood of the optimum.

3.4.1 Computational Advantage

The main reason to use a surrogate model for optimization is to reduce the compu-

tational load. A direct substitution of the detailed model with the trained surrogate

model reduces the computational load considerably. Additionally, once the samples

are generated and the models trained, the surrogate model approach can be used in

multiple optimization runs for different objectives. A considerable amount of compu-

tation is required to solve the detailed model repetitively to reach CSS. Initializing

the detailed model with a very close approximation of the CSS would reduce compu-

tational load. In this section, the three optimization approaches tried in this work,

namely the Detailed Opt., CSS Opt. and Surrogate Opt., are compared for their com-

putational load. Since the Detailed Opt. is run iteratively through 50 generations

the accounting of computational time for the optimization was analysed by using the

Purity-Recovery Pareto curves. The Pareto curves were evaluated using a normalized

area metric (A [%]), which is defined as

A[%] =
AUPDetailed Opt. − AUP

AUPDetailed Opt.

(3.18)

where AUPDetailedOpt. corresponds to the area under the Pareto obtained from the De-

tailed Opt. shown in Fig. 3.7 a) and AUP corresponds to the area under the Pareto
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Figure 3.7: Process optimization for the two scenarios (a) the Pareto curves obtained
from the multi-objective maximization of purity and recovery for the three optimiza-
tion approaches. b) Variation of PINT for the Pareto points shown in (a); and (c)
Variation of tADS × vFEED for the Pareto points shown in (a); (d) the Pareto curves
obtained from the multi-objective maximization of productivity and minimization of
energy for the three optimization approaches, subject to constraints of CO2 purity
≥ 95% and CO2 recovery ≥ 80%; e) Variation of PINT for the Pareto points shown in
(d); and (f) Variation of tADS × vFEED for the Pareto points shown in (c). The Surro-
gate Opt. and the CSS Opt, used a GPR(Matern) kernel(trained with 400 samples)
and an ANN model (trained with 400 samples), respectively.
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obtained from Surrogate Opt. and CSS Opt., where n is the training sample size.

The area under the Pareto is evaluated in the region Pu ≥ 70% and Re ≥ 70%, which

covers the region of interest. Figure 3.8 a) shows the variation of the normalized area

A versus the computational effort shown interms of core hours. The closed black

symbols show the progression of the Detailed model Pareto through the generations

of the purity-recovery optimization. The red symbol show the normalized area A for

the Surrogate Opt. trained with 400 samples. The blue symbol show the normal-

ized area obtained from running the CSS Opt. using a CSS profile predictor trained

with 400 samples. It can be observed that both the surrogate-assisted optimization

frameworks required less computational time to achieve comparable accuracies with

the Detailed Opt. In Fig. 3.8 b), the computational time for the three tested opti-

mization frameworks is shown. The Detailed Opt. results in 1550 core-hours, with

the unconstrained purity-recovery optimization accounting for 550 core-hours and the

energy-productivity optimizations accounting for the rest. The CSS Opt. accounts

for 260 core-hours, with the sample training accounting for 70 core-hours, the uncon-

strained purity-recovery optimization accounting for 75 core-hours and the rest for

the energy-productivity optimization. In the case of Surrogate Opt., the time taken

to simulate the training data-set was 64 core-hours, and the training and surrogate

optimization together consumed less than 1 core hour. A large computational saving

was observed for both surrogate-assisted frameworks. Compared to Detailed Opt., the

CSS Opt. and Surrogate Opt showed a ≈ 6× and ≈ 23× reduction in computational

load, respectively, while providing identical Pareto curves.

3.5 Experimental Validation of the Surrogates

It is important to validate the surrogate model predictions with independently ob-

tained experimental data. The experimental data is obtained from the work of Perez

et al. [36] performed for the same system. The specific details of experimental runs

and the surrogate model for purity and recovery are also tabulated in Table 3.2 and
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Figure 3.8: a) The normalized area under the Pareto curve obtained from a max-
imization of purity and recovery, is shown as a function of computational time for
all three optimization approaches. The results of Detailed Opt. are shown as black
symbols, the Surrogate Opt. is shown as red symbols, and the CSS Opt. shown in
blue symbols. b) Computational effort for optimization using the three optimization
approaches.

58



are also plotted in Fig. 3.7 a) as symbols. Note that the closed black symbols cor-

respond to the experimentally measured purity and recovery, and the red symbols

correspond to the results for the same operating conditions obtained from the GPR-

based surrogate model. The surrogate purity and recovery predictions are well within

the 5% error that is associated with the experimental runs.

Experiment
tADS PINT PLOW vFEED Experimental Surrogate Model

[s] [bar] [bar] [m s−1] Purity Recovery Purity Recovery

[%] [%] [%] [%]

A 142 0.0720 0.0300 0.0799 97.10 86.10 96.28 87.16

B 140 0.0912 0.0308 0.0588 88.50 91.70 89.44 92.03

C 117 0.1335 0.0318 0.0611 77.70 95.60 77.10 93.80

Table 3.2: Optimal operating conditions and the measured performance of the VSA
experiments [36], shown alongside the surrogate model predictions for the same con-
ditions.

The CSS profile predictions from the ANN model were also validated by comparing

them with those from the detailed model and experimentally measured values. The

results from experiment A are shown in Fig. 3.9. The dashed lines represent the ANN-

based surrogate profile predictions (trained with a sample size 400) and the solid lines

represent the profiles from the detailed model simulations for the same conditions.

Figure 3.9 a) and b) shows the gas phase CO2 and temperature profiles of each cycle

step at the CSS conditions, respectively. It is worth noting that only the temperature

profile is measured experimentally. In order to verify the gas phase composition, it is

possible to extract values from the composition histories. For the case of solid phase

loading, there was no way to experimentally obtain these values either directly or

indirectly. The CO2 analyser histories at the two ends of the column as well as the

temperature histories from the three thermocouples were compared with the surrogate

profile predictions. In Fig. 3.9 a), the CO2 concentration at the Z = 0 and Z = L

end of the column at the end of each step are plotted as symbols. In Fig. 3.9 b), the
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temperatures measured at the three thermocouples in the experimental setup at the

end of each process step are plotted against the axial CSS predictions as symbols.

It can be observed that the CSS predictions from the ANN model and the detailed

model are within 5% error from the experimentally measured CO2 concentration, and

the three temperature measurements along the axial are also in good agreement, with

the detailed model and surrogate profile predictions. The surrogate models trained

with sampled training data can predict the performance indicators as well as the CSS

profiles of optimized operating conditions. Note that the profile predictions for the

other two experiments can be found in the supporting information. (Figs.S6 and S7)

3.6 Conclusions

Fast and robust surrogate models were developed using supervised machine learning

algorithms to model a VSA process for a CO2 capture case-study. The surrogates

were trained using sampled data obtained from a computationally expensive detailed

model and acted as fast function approximations of the process performance indica-

tors. Various machine learning algorithms were tested for their ability to predict the

performance indicators of the VSA process, such as purity, recovery, energy, and pro-

ductivity. The effect of training sample size on predictive performance of the various

machine learning algorithms were tested. The Gaussian process regression (GPR)

model was found to be the best at approximating the above-mentioned quantities

with the least number of training data points. An ANN-based model was also trained

to emulate the detailed model by predicting the internal cyclic steady state (CSS)

profiles from the same sampled data. The trained ANN-based CSS profile predictor

was tested, and the predictions were compared to the detailed model predictions. The

CSS profile predictor showed good agreement with the detailed model predictions for

all the concentration and temperature profiles. The surrogate model results were

validated experimentally using data obtained from a bench-scale VSA set-up from a

previous study for the same system. The resulting surrogate predictions for purity
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Figure 3.9: Cyclic steady state profiles of the intensive variables at the end of the
cycle steps for the experimental run A from Table 3.2; the dashed lines are predictions
from the ANN surrogate model and the solid lines are the detailed model simulations.
CSS profiles of a) the gas phase composition of CO2, the symbols are the CO2 con-
centrations measured at the Z = 0 and Z = L end of the column at the end of each
cycle step. b) the bed temperature, the symbols in a) and b) represent the average
of experimental measurements from the last 5 cycles.
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and recovery were in good agreement with the experimental results. The ANN CSS

predictions were also validated using the experimental temperature and concentration

histories for the same experimental case. A 4 times reduction in the number of cy-

cles to reach CSS was observed by using the ANN-based CSS predictor as the initial

conditions for the detailed model. The ability of the surrogates to handle different

optimization objectives was tested using two cases, a) purity/recovery maximization

and b) energy minimization and productivity maximization, under constraints of pu-

rity and recovery. Two new surrogate assisted optimization frameworks, namely the

Surrogate Opt. and the CSS Opt. were tested. These optimization frameworks were

tested, and the results compared with the traditional Detailed Opt. The CSS Opt.

showed a ≈ 6× reduction in computational load. There was a ≈ 23× reduction in

computational load for optimization using the Surrogate Opt.

The main challenge with rigorous optimization of a cyclic adsorption process is

the large computational load associated with it, two major contributors of which

are: the need to solve many unique operating condition combinations over a multi-

variable design space, and the computation required to accurately estimate the cyclic

steady state for each of these cases. In this work, we addressed these problems using

machine learning, by reducing a dynamic process to a static surrogate, and by using an

estimated cyclic steady state to accelerate the convergence of the simulation. Overall,

the observations and findings from this study can be used to develop static surrogate

models to assist and replace computationally expensive detailed dynamic adsorption

process models, as these models have been validated against both simulation and

experimental cases and in regions of optimal operation. This framework can now

be extended for computational screening of adsorbent and process cycles to better

understand the process and material linkage in performance. It can also be extended

to design optimal adsorbent-based processes for the separation of various gas mixtures

that involve computationally costly cyclic adsorption process simulations.
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Chapter 4

Generalized, Adsorbent-agnostic,
artificial neural network framework
for rapid simulation, optimization,
and adsorbent screening of
adsorption processes

4.1 Introduction

1 Cyclic adsorption processes such as pressure/vacuum/temperature swing adsorption

(P/V/T-SA) are used extensively for a variety of gas separation applications [2, 3,

96]. In their simplest manifestation, an adsorbent capable of selectively retaining one

of the components in a gas mixture is packed in a column and the gas is routed in a

variety of ways to perform a separation. The ability to configure a variety of “cycles”

by altering the sequence of steps is a particularly attractive feature of cyclic adsorption

processes. The processes are rather complex owing to the simultaneous propagation

of heat and mass transfer fronts. Hence, designing these processes invariably requires

numerical simulations. The numerical simulations require the solution of coupled

partial differential equations with non-linear algebraic equations until a cyclic steady

state (CSS) is reached. Depending on the nature of the system, it is quite possible

1Pai, K. N., Prasad, V., and Rajendran, A. (2020). Generalized, Adsorbent-agnostic, artificial
neural network framework for rapid simulation, optimization, and adsorbent screening of adsorption
processes. Industrial and Engineering Chemistry Research, 59(38), 16730-16740.
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that hundreds of cycles need to be simulated to in order to determine the performance

indicators for a single operating condition [101]. This makes P/V/T-SA simulations

computationally intensive and prohibits their use for many practical applications that

have presented themselves in recent years.

In recent years, the development of advanced numerical techniques [99, 123] and

the availability of inexpensive computing power have allowed researchers to solve op-

timization problems that explore thousands of possible operating conditions using

detailed simulations [71, 123–126]. The explosive growth in metal-organic chemistry

and molecular simulations have led to the synthesis of hundreds of thousands of both

real and hypothetical adsorbents [26, 41]. Further, many research groups now confirm

that potential of adsorbents cannot be evaluated by simple metrics such as selectivity,

working capacity, etc., and process simulations combined with optimization is essen-

tial [20, 30, 33, 127, 128]. This means that future efforts in adsorbent screening will

require process optimization tools that are reliable and fast.

Current simulation tools are time consuming and the computational effort to screen

large databases is still substantial. Leperi, et al. [32] and Burns, et al. [129] used

detailed process models and optimization to screen > 560, and > 1500 metal organic

frameworks (MOFs), respectively. These represent evaluating millions of unique op-

erating conditions. From our own experience, large-scale screening requires several

hundred (possibly thousand) core-years of computational power. Several approaches,

including the development of simplified analogue models [130–133] and surrogate

models [134] have been used to overcome these challenges.

Advances in machine-learning have opened up an exciting opportunity to signifi-

cantly reduce computational times associated with P/V/T-SA simulations. This topic

has been recently explored by several research groups. Khurana and Farooq devel-

oped an artificial neural network (ANN) model to relate adsorbent characteristics with

the minimum energy and maximum productivity achievable for a VSA process [20].

Using this model, they were able to evaluate the performance of 75 adsorbents for
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post-combustion CO2 capture. Subraveti, et al. developed an optimization technique

where an ANN model is trained for one specific adsorbent internally in an optimiza-

tion framework to reduce the dimensionality of the problem and to aid the speed-up

of the optimization [107]. Leperi, et al. developed an ANN model to emulate a

PSA process for a given set of operating conditions [72]. Pai, et al. developed a

variety of regression models to predict the performance indicator and axial profiles

of intensive variables of a VSA process that employs Zeolite 13X and proposed a

novel optimization framework that enables rapid identification of cyclic steady state

performance [135]. They also validated the ANN predictions against experiments

thereby confirming that these approaches can be used reliably. All of these models

were trained for a combination of specific cycle and an adsorbent.

The above summary indicates that supervised machine-learning models have been

developed to predict the performance of a specific process using a specific adsorbent.

However, using such models for adsorbent screening is a rather insurmountable task

since the number of adsorbents that are being developed are in the order of hun-

dreds of thousands. Hence, there is a clear need to develop generalizable surrogate

models that can predict the performance of an arbitrary adsorbent when subject to a

specific operating condition (without being trained for that specific adsorbent). The

development of such a model will provide a powerful tool that could enable not only

the optimization of a process for a specific adsorbent, but also the screening of large

databases in a more reliable manner. This is the central goal of the current work.

This is referred to as the machine assisted adsorption process learning and emulation

(MAPLE) framework. First, we discuss the development of the MAPLE framework.

The trade-off between training effort and accuracy is evaluated and the ability of the

framework to predict the performance of an arbitrary adsorbent is evaluated by com-

paring the results to a detailed mathematical model. The ability of the framework for

is illustrated by first evaluating it for the optimization of the industrial benchmark

Zeolite 13X for different conditions and objectives. The framework is then used to
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screen a host of adsorbents presented in the literature [15].

4.2 Machine-assisted Adsorption Process Learn-

ing and Emulation (MAPLE) framework

The MAPLE framework consists of three stages: 1. Development of a detailed math-

ematical model; 2. Training and validation of an ANN model; 3. Deployment of

the ANN model for simulation, optimization, and adsorbent screening. Each of these

stages are described below. The goal of the current work is to describe the devel-

opment of the data-driven surrogate framework and prove its effectiveness. To do

so, the case of post-combustion CO2 from dry flue gas is considered. Specifically, a

4-step VSA process with light-product pressurization (4-step with LPP), a simple yet

effective process that has been demonstrated in both lab-scale [36] and pilot-scale [75]

is considered. A similar framework can be extended to other cycles and separations.

4.2.1 Detailed model

The simulation of any cyclic adsorption process requires a robust mathematical model

that describes the key physical phenomena that occur within the column. In this

study, the column dimensions and other key simulation parameters are provided in

Table 4.1. This study does not aim to design a new process, but considers the question:

if a laboratory-scale VSA system of a fixed dimension and a given range of operating

conditions is available, how could different adsorbents perform when deployed in the

rig ? The entire framework is designed with this objective in mind.

The detailed model used in this study has been described in several of our previous

works [123]. The key assumptions being: 1. The gas phase is ideal; 2. The flow in the

column is described by an axially dispersed plug flow model; 3. The fluid and solid

phases are in thermal equilibrium and the column is adiabatic; 4. The mass transfer

between the gas and solid phase can be described by a linear-driving force (LDF)

model, with the molecular diffusion in macropores controlling the mass transfer; 5.
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The pressure drop in column is described by Darcy’s law (for the column dimensions

chosen and the operating conditions encountered here, this assumption was found to

be sufficient). The models thus obtained, along with the suitable boundary conditions,

are provided in the supporting information.

The competitive adsorption equilibrium is assumed to be described by the single-

site Langmuir (SSL) isotherm:

q∗i =
qsatbiCi

1 + bCO2CCO2 + bN2CN2

, i = CO2,N2 (4.1)

where q∗i is the equilibrium solid phase loading, bi and is the equilibrium constant

for component i, and qsat is the saturation capacity. The temperature dependence of

the equilibrium constant is described by

bi = b0,ie
−∆Ui
RT (4.2)

It is worth noting that the equilibrium of CO2 and N2 cannot be accurately de-

scribed by the Langmuir isotherm for all the adsorbents; often more complex forms

such as the dual-site Langmuir (DSL) would be needed [110, 136]. The main reason

for choosing the SSL isotherm is that it is generic enough to capture the behaviour

of many practical systems with a small set of parameters namely, qsat, b0,CO2 , b0,N2 ,

∆UCO2 , and ∆UN2 . It is worth noting that including more complex isotherm descrip-

tions, e.g., DSL, is likely to increase the training effort significantly and were not

considered at this moment. In addition to the equilibrium, the other key aspect to

consider is the mass transfer within the adsorbent particle. In this study, we assume

that the adsorbent is prepared in a pelletized form and that the diffusion within the

crystals is fast. However, during the pelletization process, the diffusional resistance

that will arise in the macropores cannot be avoided. Hence, the current description of

the mass transfer depicts the minimum resistance that would be seen. Further within

the range of velocities chosen for this study, the macropore resistance is expected to

stronger than the film resistance.
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The specific process used in this study is shown in Fig. 4.1. The cycle consists of

four steps: 1. The feed step, in which the feed mixture containing yF mole-fraction of

CO2, and the rest being N2, is fed from the bottom of the column with an interstitial

velocity vF. The product leaving from the top of the column is predominantly N2.

The feed step is carried out at a fixed pressure of PH =1 bar for a duration of tADS.

2. The blowdown step, in which vacuum is applied from the top of the column

and the column pressure is reduced to PINT. The aim of this step is to remove as

much N2 as possible, while reducing CO2 loss. 3. The evacuation step, in which

vacuum is applied from the bottom of the column reduces the pressure to PL. The

CO2 product is collected in this step. 4. The LPP step, in which the product from

the feed step is used to pressurize the column to bring it back to PH. This step

has been shown to improve CO2 recovery [36]. Each step in the cycle is simulated

assuming that one column undergoes all the steps in the given sequence. The partial

differential equations arising from the mass and energy balances are discretized in the

axial direction using a finite-volume scheme and the ordinary differential equations

obtained are solved using ode23s, an inbuilt solver in MATLAB. Four key performance

indicators are calculated, viz., CO2 Purity, CO2 Recovery, Energy consumption and

Productivity. These are defined in the supporting information and briefly described

here. The purity (in %) represents the ratio of the moles of CO2 to the moles of

CO2+N2 recovered in the product stream while the recovery represents (in %) the

ratio of CO2 obtained in the product stream and in the amount feed stream. The

energy consumption for the process comes from three steps: In the feed-step, the

energy required to pressurize the gas in order to overcome the pressure drop in the

column; In the blowdown and evacuation, the energy consumption relates to the

energy spent for evacuating the column. In all these steps, the isentropic efficiency

of the prime mover is assumed to be 72%. The productivity is defined as the moles

of CO2 collected in the product step per unit volume of the adsorbent per unit cycle

time. The cycle time in this case is the sum of the duration of the four steps. In all the
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Figure 4.1: The 4-step with light-product pressurization (LPP) process used in this
study.

simulations, a single-bed is allowed to transition from one-step to the other until cyclic

steady state (CSS) is reached, The efficiency of this model to describe experimental

measurements has been demonstrated in many of our previous studies [36].

4.2.2 Machine-learning training and validation

The machine-learning framework is shown in Fig. 4.2. The framework comprises

of three blocks: the inputs; the neural network; and the outputs. Three steps are

typically involved in developing neural network models, namely training, validation

and testing. The input block consists of key inputs comprising of operating conditions

shown in Fig. 4.2 and adsorption isotherm parameters of CO2 and N2. The neural
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network block consists of a set of ANN models whose architecture is described below.

The output block consists of key process indicators. In the training step a large

enough dataset comprising of the inputs and the corresponding outputs are used

to train the ANN model. In the testing step the ability of ANN to predict purity,

recovery, energy, and productivity is evaluated. Each of these features is described

below.

In this work, four independent neural networks were used to predict the key per-

formance indicators, viz. Purity, Recovery, Energy, and Productivity. Each neural

network model has ten inputs, including five isotherm parameters and five process

operating conditions. The specific variables are shown in Figure 4.2 and their ranges

are provided in Table 4.1. The range for the training variables have been chosen based

on experience from previous studies where meaningful process performance was ob-

served for a wide range of adsorption isotherm parameters [129]. A latin Hypercube

sampling technique was used to generate 21,000 unique combinations of the input

variables; and for each set, the detailed process model was run until CSS was reached

and the performance indicators at CSS were used to train the ANN models. These

values at CSS were used for training, i.e., no transients are considered. A total of

1,000 randomly selected data-points were removed from this set and used as a test-

set. Note that this data was not used in training the model. The distributions of the

various variables used for the training set is provided in the supporting information.

A deep neural network is made up of an input layer followed by a series of hid-

den layers with different number of nodes/ neurons followed by an output layer.

A sigmoidal activation function was used in the hidden layers and a linear activa-

tion function was used for the output layer. The neural networks were trained with

a Bayesian regularization with backpropogation technique trainbr, implemented in

MATLAB 2019b [107, 121, 135]. The algorithm was run for 200 epochs with 5% of

the training set randomly selected in the algorithm as a validation set (referred in

the trainbr documentation as the test-set) to observe the training and validation loss
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Inputs

Operating conditions:
• Adsorption time, tADS
• Inlet velocity, vF
•  Intermediate Pr., PINT
• Low Pr., PL
•  Feed comp, yF

Isotherm parameters:
• Equil. const, b0,CO2,b0,N2
• Int. Energy, ΔUN2,ΔUCO2
•  Sat. cap, qsat

Outputs*

ANN Outputs:

• Purity 
• Recovery
•  Productivity
• Energy consumption

* An indpendent ANN is 
trained for each output

Input 
Layer

Hidden
Layer

Output
Layer

Machine-assisted Adsorption Process 
Learning and Emulation Framework

ANN

APLE

Figure 4.2: Key components of the MAPLE framework.

to avoid over-fitting. Note that the mean squared error between the predicted and

measured outputs was treated as the loss function. All the computation required for

data generation was carried out in Compute Canada advanced research computing

systems and the training and validation of the neural network models was performed

on desktop workstation with a dual 18 core Intel Xeon 2.7 GHz processors and 128

gigabytes of RAM.

Training effort vs model accuracy

It is important to note that neural network models are highly parametrizable and very

flexible, which also makes them prone to over-fitting and over-parametrizing [137].

Over-fitting can be avoided by techniques such as cross-validation and measuring

the accuracy against the test-set that has not been included in model training. In

this work, the difference between the validation and training losses was taken as

an indication of over-fitting. It is well known that the most computational effort in

training machine learning models for PSA processes is spent in generating the training

data-set [135]. A parametric study was performed to evaluate the trade-off between
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Parameter Type Value

Column properties

Bed length, L [m] Fixed 1.0

Column inner radius, rin [m] Fixed 0.1445

Column outer radius, rout [m] Fixed 0.1620

Particle voidage, ϵp [-] Fixed 0.35

Particle radius, rp [m] Fixed 1×10−3

Density of the column wall, ρw [kg m−3] Fixed 7,800

Bed voidage, ϵ [-] Fixed 0.37

Tortuosity factor, τ [-] Fixed 3.0

Fluid properties

Effective heat conduction coefficient, Kz [J m−1 s−1 K−1] Fixed 0.0903

Thermal conductivity of the wall, Kw [W m−1 K−1] Fixed 16.0

Inside heat transfer coefficient, hin [W m−2 K−1] Fixed 0

Outside heat transfer coefficient, hout [W m−2 K−1] Fixed 0

Gas specific heat capacity, Cp,g[J kg−1 K−1] Fixed 1010.6

Adsorbed phase specific heat capacity, Cp,a [J kg−1 K−1] Fixed 1010.6

Wall specific heat capacity, Cp,w [J kg−1 K−1] Fixed 502.0

Adiabatic constant, γ [-] Fixed 1.4

Universal gas constant, R [m3 Pa mol−1 K−1] Fixed 8.314

Fluid viscosity, µ [kg m−1 s−1] Fixed 1.72×10−5

Molecular diffusivity, DM [m2 s−1] Fixed 1.60×10−5

Adsorbent properties

Density of the solid particle, ρs [kg m−3] Fixed 1130

Adsorbent specific heat capacity, Cp,s [J kg−1 K−1] Fixed 1070

Adsorption saturation capacity, qsat [mol kg−1] Variable 0.8 to 1.2

Adsorption equilibrium constant of CO2, b0,CO2 [ m3 mol−1 ] Variable 10−12 to 101

Adsorption equilibrium constant of N2, b0,N2 [ m3 mol−1 ] Variable 10−9 to 103

Heat of adsorption of CO2, ∆UCO2 [kJ mol−1] Variable -20 to -42

Heat of adsorption of N2, ∆UN2 [kJ mol−1] Variable -5 to -18

Process properties

Ambient temperature, T a [K] Fixed 298.15

Feed temperature, TF [K] Fixed 298.15

Compression/evacuation pump efficiency, η [-] Fixed 0.72

Blowdown step exponential pressure history term, αBLO [s] Fixed 0.5

Evacuation step exponential pressure history term, αEvac [s] Fixed 0.5

Pressurization step exponential pressure history term, αPRESS [s] Fixed 0.5

High pressure, PH [bar] Fixed 1

Adsorption step time, tADS [s] Variable 10 to 110

Intermediate pressure, PINT [bar] Variable 0.05 to 0.45

Evacuation pressure, PL [bar] Variable 0.01 to 0.05

Feed rate, vF [m s−1] Variable 0.1 to 2

CO2 feed composition, yF [-] Variable 0.05 to 0.7

Table 4.1: Parameters used for detailed model simulations. Those indicated as vari-
able are used for training the MAPLE framework and used as decision variables.
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training effort and model accuracy. The impact of the ANN architecture was also

studied. In this work, the training effort was quantified as the total time required

for sample generation and the neural network training time. However, in all cases

the sample generation using the detailed model required a substantially large time

when compared to neural network model training time. The corresponding training

accuracy was quantified using a R2
Adj metric, the adjusted coefficient of determination:

R2
Adj = 1− (1−R2)(n− 1)

(n− k − 1)
(4.3)

where

R2 = 1−
Σn

j=1(fj − fĵ)
2

Σn
j=1(fj − f̄)2

(4.4)

where n is the number of testing samples and k is the number of input descriptors,

which in this work is 1000 and 10, respectively. fj is the actual observed output, fĵ

is the predicted output, and f̄ is the mean of the set of actual outputs. Note that the

R2
Adj value was obtained using a independent test-set consisting of 1,000 simulated

VSA data samples. These data-points where unique and was not included in the

training of the ANN models.

The basic neural network model, in this study, made up of one input layer and

one hidden layer with 10 neurons. Progressively, the complexity of the model was

increased by using additional neurons. The 20,000 samples were randomized and

smaller sets were formed. The distribution of the various inputs in the training set

is provided in the supporting information. Figure 4.3 a) shows the resulting average

R2
Adj of all the predicted quantities as a function of training sample size for different

number of neurons. It can be observed from the figure that increasing the number of

neurons improves the overall predictive capability of the neural network for all sample

sizes. It is interesting to note that even with a relatively small number of training

samples (7,500) the network can achieve a R2
Adj as high as 0.98. Further, it can be
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Figure 4.3: The effect of neural network architecture on model prediction accuracy:
Average test R2

Adj is shown as a function of the training-set size a) The effect of number
of neurons and training samples on R2

Adj b) The effect of number of hidden layers;
ten neurons were used in each hidden layer. The test-set contains 1000 samples.
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seen that for a given number of training samples the addition of neurons in the hidden

layer increases the predictions accuracy from an R2
Adj. However, beyond 30 neurons,

no significant gain in accuracy can be obtained. The other neural network component

that can help improve predictive capability is the number of hidden layers. So again,

keeping the base case as one hidden layer with 10 neurons, the number of hidden layers

was progressively increased. Figure 4.3 b) shows the resulting average test R2
Adj of

all the predicted quantities as a function of training sample size for different number

of hidden layers. The addition of hidden layers improves the predictive capability

of the neural network. The number of sample points that are needed to achieve an

average test R2
Adj ≥ 0.99 is as low as 10,000 with just 2 hidden layers. There is no

significant improvement in model accuracy beyond 2 hidden layers. Note that the

variation of the R2
Adj for the individual performance indicator models are provided in

the supporting information.

Following the procedure as above it was found that a neural network with 2 hidden

layers with 20 neurons in each hidden layer reduces the number of parameters while

keeping a high test R2
Adj ≥ 0.995 with just 10,000 points. The four performance

indicators corresponding to the test set, calculated from the ANN model and the

detailed model are compared in Figure 4.4. The results show an excellent correlation,

thus confirming accuracy of the surrogate model.

4.2.3 Process Optimization

The transient nature of adsorption process and the numerous possible operating con-

ditions makes the optimization of the P/VSA process challenging. In this work, an

evolutionary algorithm, non-dominated sorting genetic algorithm-II (NSGA-II), is

used to optimize the process conditions. It is been shown in the literature to opti-

mize PVSA systems for various multi-objective problems [70, 106]. In this study, two

optimization approaches were considered. In the first one, called “Detailed-Opt.”,

the genetic algorithm optimizer is coupled with the detailed model. The optimizer
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Figure 4.4: Parity plot of the detailed model and MAPLE surrogate results for a
test-set of 1000 samples shown for the four key performance indicators a) Purity, b)
Recovery, c) Productivity, d) Energy.
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chooses an initial population that comprises of a set of decision variables. These are

sent to the detailed model, which simulates each step of the VSA process until CSS

is reached. At this point, the performance indicators are returned to the optimizer

where the objective functions are calculated. If constraints are present, a suitable

penalty function is applied and the objective function values are re-calculated. Based

on the objective function values the next generation is generated and the process is

repeated. This technique has been shown to be very effective for VSA simulations

and has also been shown to compare well with experiments [36]. The second opti-

mization approach is called “MAPLE-Opt.”. In this case, the detailed model in the

Detailed-Opt. is replaced by the MAPLE model. Instead of computing each step

in the adsorption cycle, the MAPLE model directly estimates the CSS performance

indicators and returns them to the optimizer. As expected, this significantly reduces

the computational time.

4.3 Performance evaluation of MAPLE

The trained and validated neural network models obtained with MAPLE framework

can, in principle, now be used to predict the performance of any adsorbent-adsorbate

system that can be described by a Langmuir isotherm. To highlight this feature,

a series of case studies were performed. The first case study relates to testing the

ability of the MAPLE framework for simulating specific operating conditions when

the VSA process is operated using an adsorbent that was hitherto not present in the

training set. The second case study extends the first by considering multi-objective

optimization of the process, and screening adsorbents screened in the literature.

4.3.1 Simulation of a VSA process

Among the several potential applications of the MAPLE framework is the simulation

of a process for a given adsorbent and operating conditions. Although the high

accuracy of the predictive capability has been demonstrated above, it is necessary
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to verify its performance for an adsorbent that was not “seen” by the model in the

training set. For this purpose, the isotherms of CO2 and N2 on Zeolite 13X were

considered. While the isotherm of this system, strictly requires a DSL model, for

the purpose of this study, a SSL model was fitted to the data. The SSL isotherm

parameters are provided in the supporting information. For this study, the cycle

specific inputs were fixed as follows: tADS = 92.4 s, P INT = 0.08 bar, P L = 0.03 bar,

vF = 0.64 ms−1, and yF = 0.15. For the first case, the intermediate pressure (P INT)

was varied from 0.08 to 0.18 bar. For each value of P INT, both the detailed model and

MAPLE were run using the SSL isotherm parameters and the resulting performance

indicators are compared in Figure 4.5 a) - d). The results confirm the predictive

capability of MAPLE where each performance indicator was predicted within 2% of

the detailed model. As expected, an increase in P INT results in the reduction of CO2

product purity as N2 is not sufficiently removed in the blowdown steps. A second

parametric study was performed by varying the feed composition of CO2 (yF) from

0.05 to 0.18 and the results are shown in the supporting information. Again, the

MAPLE framework is able to predict every performance indicators with an error less

than 2%.

4.3.2 VSA optimization

One of the key understanding from large scale screening studies has been that measur-

ing key performance indicators such as energy consumption or cost of separation, etc.,

cannot be accurately predicted without full process simulation coupled with robust

multivariate optimization [129]. While this represents a computationally challenging

proposition, MAPLE has the potential to overcome this bottleneck. This feature of

MAPLE needs to be evaluated in order to confirm its suitability for use in robust

multi-objective optimizations. A series of optimization case-studies were performed

to examine this claim using the detailed model. In order to illustrate this capability

we employ two optimization approaches, viz., “Detailed-Opt.”, and “MAPLE-Opt.”,
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Figure 4.5: Parametric study showing the variation of key performance indicators a)
CO2 Purity b) CO2 Recovery c) Productivity d) Energy, for Zeolite 13X as a function
of intermediate pressure PINT. Solid lines show the results from MAPLE and symbols
correspond to the detailed model results. The shaded area represents a 2% error
band.

both of which have been explained earlier. Three cases were chosen to highlight the

ability of MAPLE to achieve the above-mentioned requirements. The first case study

considered the unconstrained simultaneous maximization of CO2 purity and recovery

for four different feed composition of 10, 12, 15, 18% with the balance being N2. In

this case, the isotherm inputs were fixed to SSL parameters of Zeolite 13X.

Figure 4.6 a) shows the optimized Pareto curves for the different feed composition.

The solid lines represent the Pareto predicted by MAPLE-Opt. framework, with

the shaded area representing a 2% error bar on the abscissa and the symbols the

Pareto curve obtained with the Detailed-Opt. Both the optimization frameworks

result in essentially the same Pareto curves. For the case of constrained optimizations,

two case studies were considered. The first case involved minimizing the energy

consumption while maximizing the recovery of CO2 of Zeolite 13X for at different

feed compositions for a CO2 purity constraint of 95%. Similar to the previous study,

the cycle specific operating conditions such as adsorption time, pressure levels, and

feed velocity were the decision variables and these bounds are shown in Table 4.1.
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Figure 4.6: Pareto curves resulting from the multi-objective optimization of the 4-step
cycle with LPP process employing Zeolite 13X. Symbols are from the Detailed-Opt.
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Figure 4.6 b) shows the optimized Pareto curves for the different feed composition

provided in the legend. The solid lines represent the Pareto predicted by MAPLE-

Opt., with the shaded area representing a 2% error bar on the abscissa. The symbols

represent the Pareto curve obtained from Detailed-Opt. As expected, the Pareto curve

move towards the bottom right of the plot with increasing feed composition. This

indicates that better recovery at a lower energy consumption can be achieved at higher

feed compositions. The plot illustrates the ability of MAPLE to accurately predict

the results of the constrained multi-objective optimization problems. In the second

case of the constrained optimization, the simultaneous maximization of productivity

and recovery is carried out for a purity ≥ 95%. The results shown in Figure 4.6 c).

shows the optimized Pareto curves for the different feed compositions. The solid lines

represent the Pareto predicted by optimizing the MAPLE-Opt., with the shaded area

representing a 2% error bar on the abscissa. The symbols represent the Pareto curve

obtained with the Detailed-Opt. As expected with the increase in feed composition

of CO2, the Pareto curve moves to the top right. Finally, it is also worth noting

that the Pareto curves obtained from MAPLE-Opt. and Detailed-Opt. are nearly

identical, indicating the high model accuracy achievable using the MAPLE framework.

It should be noted that it took less than 2.4 core-mins to generate one Pareto curve

using MAPLE-Opt., while Detailed-Opt. required ≈ 500 core hours for the same.

This simple comparison illustrates the significant savings in computational effort that

can be achieved by using MAPLE.

4.3.3 Adsorbent screening through process optimization

One of the key applications of the MAPLE framework is anticipated to be in screening

adsorbents for specific separations. In order to illustrate this potential we consider

two illustrative examples. In the first example, we consider the detailed optimization

of three materials. Such a detailed optimization is essential as each adsorbent is

expected to perform at its best for a unique set of operating conditions. Hence, any
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Figure 4.7: Results from the unconstrained multi-objective maximization of purity
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meaningful screening should consider the entire range of operating conditions. To

illustrate this aspect, three adsorbents, namely Zeolite 13X and two MOFs (UTSA-

16 and Mg-MOF-16) are considered [29]. The SSL isotherm parameters are provided

in the Supporting information. For each of these adsorbents, both the MAPLE-Opt.

and Detailed-Opt. were run in order to maximize CO2 purity and recovery. The

cycle specific operating conditions such as adsorption time, pressure levels, and feed

velocity were the decision variables and were allowed to vary within bounds provided

in Table 4.1. The resulting Pareto curves for both Detailed-Opt. and MAPLE-Opt.

are compared in Figure 4.7 a). The solid lines represent the Pareto predicted by

optimizing the MAPLE-Opt., with the shaded area representing a 2% error bar on

the abscissa. The symbols represent the Pareto curve obtained with the Detailed-Opt.

Among the three adsorbents, UTSA-16 has the best potential for separation followed

by Zeolite 13X and Mg-MOF-74. The trends and the absolute values are consistent

between MAPLE-Opt. and Detailed-Opt. Figure 4.7 b) shows the variation of the

decision variables, tADS× vF, which is a estimate of the bed utilization vs purity of

the CO2 product. The optimization results clearly indicate a larger bed utilization

favours higher purity (at the cost of lower recovery). Further, both MAPLE-Opt. and

Detailed-Opt. show identical values of bed utilization, confirming that the MAPLE-

Opt. not only predicts the performance indicators correctly but also provides an

exact mapping to the decision variable space. This is an important confirmation

that increases the confidence in using MAPLE for routine process optimization-based

adsorbent screening.

In the final illustration, MAPLE-Opt. was used to screen a group of 75 adsorbents

that were reported by Khurana and Farooq [15]. It is worth noting that the original

data provided by the authors described the CO2 and N2 equilibrium using a DSL

isotherm. It is well-known that competitive adsorption has a major impact on process

calculations [33, 110]. Hence, in order to adopt the data reported by the authors

within this current framework, it was important to identify those materials that can
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be adequately represented by the SSL. In order to do this, the isotherms of both

CO2 and N2 were generated upto 1 bar pressure using the DSL parameters reported

in the original paper. Using these points, the SSL isotherm was fitted at 3 different

temperatures. Those materials that yielded a R2 of less than 0.95 were removed.

This yielded 53 materials. Then the competitive loadings of both CO2 and N2 were

calculated at 1 bar total pressure and a CO2 composition of 0.15, using both the

DSL and SSL parameters. If the absolute difference between the two loadings was

greater than 30%, then those materials were also eliminated. This ensured that only

those materials whose single and competitive isotherms can be reasonably described

by the SSL isotherm are considered. This resulted in a total of 36 materials. The

SSL parameters can be found in the supporting information. These adsorbents were

optimized first to verify if they achieve the United States Department of Energy

(DOE) guidelines for post-combustion carbon capture, i.e, ≥ 95% CO2 purity and

≥ 90% CO2 recovery. This screening was carried out by running the unconstrained

MAPLE-Opt. The confusion matrix comparing the results of classification from this

study and the original one is shown in Fig. 4.8 a). A high classification accuracy of

97.22% was achieved, with no false negatives. Additionally, the adsorbents that met

the DOE target were further considered to identify the minimum energy at which the

DOE targets can be achieved. The minimum energy from MAPLE-Opt. is tabulated

against the results from the detailed model optimization reported by Khurana and

Farooq in the supporting information. Figure 4.8 b) shows the parity plot between the

two results as blue squares. As shown, it is clear that the minimum energy calculated

by MAPLE-Opt. correlates well with an independent source confirming its accuracy.

The outliers in the plot are to due to the characterization of the dual site behaviour

using a SSL. Although the single component isotherms for both SSL and DSL forms

are comparable, there was a higher degree of mismatch in the competitive loadings of

CO2 and N2. This points to the importance of an accurate description of competitive

adsorption equilibria.
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Figure 4.8: Comparison of screening results from MAPLE with those reported by
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4.4 Conclusions

In this paper, the development of a material-agnostic machine-learning model for

the rapid simulation of VSA processes was presented. The key difference between

this study and the ones in the literature is the inclusion of the adsorption isotherm

parameters. The model is trained not using properties of real adsorbents, but rather

by parametrizing the Langmuir adsorption isotherm of the two components. It is

important to highlight that the current machine-learning model has been trained for

a limited set of variables over a specific range. For instance, the column size and cycle

are fixed; only a selected number of operating parameters are varied over a certain

range; the feed temperature is fixed; the description of the adsorption isotherm is

limited to single-site Langmuir function; the mass transfer resistance is considered

to be confined to the macropores; the adsorbent properties, e.g., density, specific

heat are held constant. Barring these few properties, the model can be considered

as being agnostic even to the two species to be separated. It was further shown that

the framework can be reliably used for calculating the performance of adsorbents

that were not used in the training set. This means that such a model can be used

for describing the process performance of any arbitrary adsorbent as long as the

equilibrium data can be adequately represented by the SSL. This was demonstrated

by calculating the performance of over 40 adsorbents. It is important to caution

that the optimal conditions for a specific material can indeed lie beyond the range of

conditions that the model is trained for. Further modeling and optimization might

be required to fully understand the potential of the material.

MAPLE can be used in a variety of ways: design/describe experimental campaigns,

perform parametric studies, perform screening of large adsorbent databases for any

arbitrary set of constraints and objective functions. The most important advantage

of this approach lies in the ability to screen large databases. Experimental and hy-

pothetical materials are rapidly increasing and databases that contain hundreds of
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thousands of such material are now common and there is an increasing urge to mine

them to identify adsorbents for further development. Many research groups have now

confirmed that the process configuration has a major impact on the material perfor-

mance. Hence, tools such as MAPLE are expected to provide researchers the ability to

optimized the process for each adsorbent before a more meaningful evaluation can be

made. Further, for the process considered in this study, the entire training effort for

generating 10,000 training sets and training the framework costed ≈ 1,700 core-hours.

Once trained, the MAPLE-Opt. takes ≈ 0.04 core hours to optimize one adsorbent.

Hence, for a database consisting of 10,000 materials, assuming about 3,000 unique

simulations are required to identify the optimum condition per adsorbent, a detailed

model would take a total of 5,125,000 core-hours to screen, while MAPLE would be

completed (including the time for training) in 2,100 core-hours. This is a significant

computational advantage, especially when very large databases are considered. Nat-

urally, there are many other advances that are required in order to be able to perform

a thorough optimization of any arbitrary adsorbent. We highlight two here: Develop-

ing frameworks for systems that require more complex description of the equilibrium

and/or kinetics; and developing superstructures that not just optimize the operat-

ing conditions but also the cycle configuration. This study also clearly demonstrates

that machine-learning approaches have the potential to tackle such computationally

intensive problems and should be explored further.
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Chapter 5

Practically Achievable Process
Performance Limits for
Pressure-Vacuum Swing
Adsorption-Based Post-combustion
CO2 Capture.

1

5.1 Introduction

Carbon capture and storage (CCS) is a critical component of the suite of technologies

needed to fulfill the goals of the Paris agreement [138]. Carbon capture, i.e., concen-

trating CO2 from flue gas or other intermediate streams, is the most expensive step in

the CCS chain. Reducing the cost of capture is critical to the large-scale deployment

of CCS [13]. Post-combustion CO2 capture refers to the concentration of CO2 from

flue gas that contains N2, CO2 and other impurities. Absorption using liquid solvents,

typically amines and their derivatives, is currently the preferred industrial technology

for large-scale CO2 capture. High regeneration costs, degradation of the solvent, and

equipment corrosion are significant bottlenecks that have motivated researchers to

1Pai, K. N., Prasad, V., and Rajendran, A. (2021). Practically Achievable Process Performance
Limits for Pressure-Vacuum Swing Adsorption-Based Postcombustion CO2 Capture. ACS Sustain-
able Chemistry and Engineering, 9(10), 3838-3849.
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look for alternatives [13]. Carbon capture using solid adsorbents is one such promis-

ing alternative. These adsorbents can be deployed in both pressure-vacuum swing

adsorption (PVSA) or temperature swing adsorption (TSA) processes [13, 108]. The

advent of novel adsorbents, such as metal-organic frameworks (MOFs), and covalent

organic frameworks (COFs), has intensified the search for suitable capture materi-

als [13, 139].

Traditionally, the selection of adsorbents has heavily relied on simplified pro-

cess metrics that are calculated from simple equilibrium measurements/ calculations.

However, in recent years, there seems to be a consensus that these metrics are not

reliable and that detailed process simulations and optimization essential to reliably

evaluate the true separation potential of adsorbents [29, 30, 32, 33, 40, 129]. Exploring

this adsorbent-process relationship can be classified into two approaches: screening

and process inversion. In screening, the critical question is, “If we know the char-

acteristics of an adsorbent, what is the best process outcome that can be achieved?”.

Both simple and detailed process models have been used for screening, and a variety

of studies have been published [15, 32, 129, 131, 140]. In process inversion, the cen-

tral question is: “What should be the characteristic of the adsorbent that produces the

best process outcome?”. A few studies have explored this “inverse” problem. Maring

and Webley used a simplified batch-adsorber model to vary adsorbent-specific prop-

erties such as Henry’s constant and heat of adsorption to explore the features of an

adsorbent that minimizes energy [130]. Rajagopalan and Rajendran used detailed

models to explore how the competitive nature of CO2 and N2 impacts the separation

and identified regions where low energy consumption can be achieved [141]. Danaci

extended the Maring-Webley model and explored adsorbent features that would min-

imize the cost of capture [132]. Khurana and Farooq used detailed process models

and examined the characteristics of the CO2 and N2 isotherms that enhance process

performance [15] and cost [73] for the case of post-combustion CO2 capture from coal

plants.
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The above-mentioned studies have allowed the scientific community to make progress

in understanding the relationship between adsorbent characteristics and process per-

formance. While this pursuit is far from over, [40] the question “What are the best

performance indicators, namely energy consumption and productivity, that are practi-

cally achievable by using adsorption processes?” remains open. While the (technology-

agnostic) thermodynamic minimum energy consumption, based on the free-energy of

mixing, is undoubtedly helpful, it is well known that practical separation processes

consume significantly higher energy compared to these values. It is, in fact, the

practically achievable minimum energy and maximum productivity values that will

permit objective technology evaluation. These limits also indicate the “innovation

potential” that is possible, thereby providing useful information to both materials

chemists and process engineers. It is worth noting that such limits, for the case of

adsorption, are currently not known. In this work, we restrict ourselves to the case

of pressure-vacuum swing adsorption (PVSA) applied to post-combustion CO2 cap-

ture, a class of adsorption process that has been extensively studied. Accordingly,

the critical question that we seek to answer in this work is “If we can design the

ideal adsorbent(s), what are the practically achievable limits of minimum energy and

maximum productivity for PVSA?”. It is well known that adsorption process simula-

tions are time-consuming, and hence deploying them for large-scale optimization and

screening remains a challenge [40, 135]. In this work, we exploit recent innovations

in machine learning to accelerate adsorption process simulations [72]. Specifically, we

employ the machine-assisted process learning and evaluation (MAPLE) framework, a

data-driven modelling framework trained using a detailed process model suitable for

accepting both process operating conditions and adsorbent properties as inputs [142].

Several case studies are presented to explore the operation, performance, and material

limits.
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5.2 Methodology

5.2.1 Separation System and Performance Metrics:

CO2 capture is modelled as the separation and concentration of CO2 from a binary

gas mixture of CO2 and N2. While most flue gas contains impurities including,

water, we assume that they are removed upstream of the capture unit. This seems

reasonable since most adsorbents, barring a few exceptions, adsorb water strongly,

and their performance is likely to deteriorate in the presence of water. The CO2

purity, PuCO2= (moles of CO2 in the product)/(moles of CO2 + N2 in the product)

× 100 [%] and CO2 recovery, ReCO2=(moles of CO2 in the product)/(moles of CO2

in the feed) × 100 [%] are important metrics to evaluate CO2 capture performance.

The US-Department of Energy (US-DOE) targets require PuCO2 ≥ 95% and ReCO2

≥ 90%. The key performance metrics that are used to evaluate the process include

energy consumption, En =(energy consumption / tonne CO2 captured) the process

productivity, Pr =(moles of CO2 captured/ unit volume of adsorbent/second). It

is worth noting that a proper scale-up and techno-economic analysis is required to

evaluate the potential of any capture technology [73, 143]. However, since the cost of

many novel adsorbents is not known, full-scale costing may not be feasible without

making assumptions. Under such circumstances, energy and productivity estimates

are valuable in making critical decisions about technology selection and evaluation.

5.2.2 PVSA Process Modelling:

The accurate modelling of an adsorbent-based separation process requires a detailed

description of mass and heat transfer and fluid dynamics. Since adsorptive processes

are inherently cyclic, the equations describing each step are iteratively solved until a

cyclic steady state. In this study, we keep the column dimensions and the sizes of fluid

movers fixed to match the scale of a PVSA-based CO2 capture pilot plant described

Krishnamurthy et al.[75]. The model is based on the following key assumptions: 1.

91



The ideal gas law is obeyed; 2. An axially dispersed plug flow model describes the

flow in the column; 3. The solid and fluid phases are in thermal equilibrium, and that

the column is assumed to be adiabatic; 4. The adsorbent is assumed to be particles of

2 mm in diameter. Mass transfer is described by a linear-driving force (LDF) model,

assuming that the molecular diffusion in macropores controls the mass transfer; 5.

Darcy’s law is used to describe the pressure drop in the column (It has been shown that

for the current process scale under investigation and the operating conditions studied,

this assumption is satisfactory). The column mass and energy balances result in a

system of partial differential equations (PDEs). The PDEs are reduced to ordinary

differential equations (ODEs) system using a finite-volume scheme. They are solved

using ode23s, an inbuilt solver in MATLAB. Appropriate boundary conditions are

applied for the specific step. Model equations and boundary conditions are provided

in the supporting information. Properties associated with the column are provided

in Table 5.1. The entire simulation strategy is detailed in a previous work [19] and

validated experimentally both at lab-scale [36] and pilot-scales [75].

In this study, we use a constant-selectivity single-site Langmuir (SSL) isotherm to

describe the competitive adsorption equilibrium:

q∗i =
qsatbiCi

1 + bCO2CCO2 + bN2CN2

=
HiCi

1 + bCO2CCO2 + bN2CN2

, , i = CO2,N2 (5.1)

where qsat is the saturation capacity, bi is the equilibrium constant for component i,

and q∗i is the equilibrium solid phase loading. The product of qsat and bi is the Henry

constant, Hi. The temperature dependence of the equilibrium constant is described

by

bi = b0,ie
−∆Ui
RgT (5.2)

where ∆Ui is the internal energy of adsorption for component i, Rg is the universal gas

constant and, T is the temperature. The SSL isotherm comprises of five parameters,

viz., qsat, b0,CO2 , b0,N2 , ∆UCO2 , and ∆UN2 . It is worth noting that in many cases, more
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complicated forms of the isotherm, e.g., dual-site Langmuir, are needed to describe

the equilibrium loading [136], and the use of an SSL can limit the range of isotherm

behaviours that can be studied. While we acknowledge that this can be considered a

limitation, it is worth pointing out that the SSL isotherm does provide a simple and

elegant formulation to describe competitive behaviour for several systems of practical

interest [26, 129]. Further, since the isotherm uses just five parameters, it allows for

the understanding and visualization of the interplay between material properties and

process configurations.

5.2.3 Process Cycles:

The PVSA processes used in this study are shown in Fig. 5.1. A 4-step cycle with

light product pressurization (LPP) is shown in Fig. 5.1 a), and a 4-step cycle with

feed pressurization (FP) is shown in Fig. 5.1 b). Both cycles consist of four steps:

1. An adsorption step, where the feed mixture consisting of yF mole-fraction of CO2,

with the balance being N2, is introduced at the feed end (z = 0) of the column with an

interstitial feed velocity vF and pressure PH, for a period of tADS. The light product,

which is predominantly N2, is collected at the outlet end (z = L). 2. A blowdown

step, where a vacuum pump removes gas from the top of the column and the column

pressure is reduced to an intermediate value, PI. This step aims to remove the N2

while reducing CO2 loss. 3. An evacuation step, where another vacuum pump further

reduces the pressure to a low value, PL and high purity CO2 product is collected at

the feed end (z = 0). 4. A pressurization step, where the pressure of the column is

brought back from the PL to PH using either the feed stream (F) or the light-product

(LP). The cycles are called 4-step with LPP and 4-step with FP depending on how

the pressurization step is performed. Although the two differ in just one step, they

are known to show measurably different performances [19, 36]. While it is certainly

possible to construct more complex cycles, we limit ourselves to these two cycles, as

they have been used by several research groups as a benchmark [33, 73, 128, 129],
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and they have been demonstrated in lab-scale [36] and pilot-scale experiments [75].

At a process scale, four performance indicators, PuCO2 , ReCO2 , En, and Pr, are

considered and have been defined earlier. The energy consumption for the process

comes from four steps: the energy required to pressurize the gas from atmospheric

pressure to the PH and to overcome the pressure-drop in the column during the pres-

surization and adsorption steps; and the energy consumption of the vacuum pumps in

the blowdown and evacuation steps. The vacuum pump efficiency, while in many pro-

cess studies were fixed to ≈ 70−80%, is now assumed to vary with pressure according

to the expression given in Table 5.1. The cycle-time used to calculate productivity is

the sum of the duration of the four steps. Each of the pressure reduction steps has a

dedicated vacuum pump that operates at a constant volumetric flow rate. This means

that the duration of the blowdown (tBLO) and evacuation (tBLO) steps are dependent

on the flow rate. Naturally, using a pump with a higher flow rate will reduce the

duration but could result in a higher cost. This study considers the vacuum pump,

and the column dimensions are fixed. Finally, the pressure drops in the lines can be

detrimental for energy consumption for systems working under vacuum conditions.

The pressure drop can result in increased energy consumption and slower evacuation,

both of which will worsen the process performance. In this study, such pressure drops,

external to the columns, are considered to be negligible. It is important to consider

the results in light of these assumptions.

5.2.4 The MAPLE Framework and Process Optimization:

The MAPLE framework, is a data-driven surrogate model trained to emulate an

adsorbent process using supervised machine learning [142]. The main advantage of

this framework lies in its ability to have both adsorbent and process-related inputs.

Compared to the full models, MAPLE is orders of magnitude faster to train and

deploy [142]. The operating conditions and their training ranges for the two process

cycles are shown in Fig: 5.1 a) and b). The adsorbent and operationally related trained
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input space is shown in Figs. S2 and S3 of the supporting information and in Ta-

ble 5.1. Physically meaningful constraints were applied while generating the samples.

For instance, CO2 is always the strongly adsorbed gas, i.e. bCO2 ≥ bN2+3.1 [m3/mol].

The heat of adsorption of CO2 is always greater than N2, i.e., |∆UCO2| ≥ |∆UN2|+2

[kJ/mol]. The ranges for the isotherm parameters were selected to cover the range of

adsorbents from the carbon capture materials database [26, 131]. The high pressure

is always greater than the intermediate pressure (PH ≥ PI + 0.5[bar]). The interme-

diate pressure is always greater than the low pressure (P I ≥ PL + 0.05[bar]). The

selectivity of the adsorbent, α = HCO2/HN2 , is in the range of 3≤ α ≤ 107. It is worth

pointing out that the equilibrium constant bi and ∆U are (at least weakly) correlated.

However, in this study, no such constraints are imposed, implying that a hypothetical

adsorbent can be defined by any random combination of the five SSL parameters.

The training variables are shown along with a visual representation of the MAPLE

framework in Fig: 5.1 c). The trained variables consist of five SSL parameters, three

pressure levels (PH, PI, PL), the duration of the adsorption step (tADS), feed velocity

(vF), feed concentration (yF) and adsorbent particle density (ρADS). Recent studies

have pointed out that performance gains can be obtained by also varying particle

sizes and porosities [33, 128]. In this study, we settle for conservative values of these

parameters that are based on commercially available materials. The dataset consist-

ing of 50,000 samples was run in the detailed model. This data was then split into a

training and testing ratio of 90:10 and the model accuracy was evaluated using the

R2
Adj of the test-set. A network consisting of 3 hidden layers with 30 neuron layers was

chosen. A test R2
Adj ≥ 0.99 was obtained for all the performance indicators, signifying

high prediction accuracy. The testing and validation results can be found in Fig S4

of the supporting information. The MAPLE model is then coupled with a genetic

algorithm optimization tool non-dominated sorting genetic algorithm-2 (NSGA-2)

available in MATLAB for performing all the case studies described below. We call

this optimization framework MAPLE-Opt. [142, 144]. For each optimization, an ini-
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tial population of 96× [Number of decision variables] is chosen, and MAPLE-Opt. is

run for 60 generations. MAPLE-Opt. is run multiple times with varying the initial

populations to avoid local minima and or stochastic variations in the final result.

The optimized decision variables obtained from MAPLE-Opt. are then re-run in the

detailed model until cyclic steady state (CSS) is reached to increase the certainty of

prediction. Summarizing, the final results presented in this paper are from a dynamic

PVSA model.

5.3 Results and discussions

5.3.1 Limits for US-DOE targets:

In order to compare various technologies, it is important their performance is com-

pared only under conditions where the US-DOE targets are met. One of the continu-

ing questions concerning PVSA processes is the low-pressure (PL) required to achieve

these targets. Most studies in the literature that have considered flue gas from coal,

i.e., yF ≈ 0.12 − 0.15, and have focused on vacuum swing adsorption (VSA), i.e.,

PH = 1, since pressurizing the flue gas, that consists mainly of N2, was considered

to be expensive. Those that have performed rigorous modelling, and experimenta-

tion, indicate that extremely low pressures, i.e., < 0.05 bar, are required to meet the

US-DOE target [15, 71]. Quite a few articles have rightfully questioned the feasibil-

ity of scaling-up such operations [40]. Most industrial adsorption processes operate

at pressures > 0.1 bar; vacuum pump efficiencies deteriorate below this value, and

the volumetric flow-rates increase requiring very large piping, valves and equipment.

Some studies have suggested that this can be either overcome by pressurizing the flue

gas [19] or by using multiple stages [145]. It is also generally believed that the chal-

lenge of requiring low vacuum pressures can be overcome by designing an appropriate

adsorbent.

In order to explore the question “If we were able to design a hypothetical mate-
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Figure 5.1: Process cycles used in this study a) 4-step with feed pressurization (FP),
b) 4-step with light-product pressurization (LPP). c) The key components of the
MAPLE framework.

97



5

4

3

2

1

H
ig

h
 P

re
ss

u
re

 [
b

ar
]

0.01
2 3 4 5 6 7 8 9

0.1
2 3 4 5 6 7 8 9

1
Low Pressure [bar]

 yF=0.05
 yF=0.15
 yF=0.25
 yF=0.35

Figure 5.2: Pareto curves obtained from a multi-objective optimization for maximiz-
ing low-pressure (PL) and minimizing high-pressure (PH) to achieve US-DOE targets
(CO2 purity > 95% and recovery ≥ 90% )for various feed compositions using the 4-
step with LPP cycle. Both operating and isotherm parameters were used as decision
variables. The region to the right of each curve is infeasible.

rial, what will be the maximum value of PL that will allow us to achieve the US-DOE

target?” a series of optimization runs were performed for various values of yF using

the 4-step with LPP cycle. For these runs, PuCO2 ≥ 95%, and ReCO2 ≥ 90%, were

considered as constraints. Multi-objective optimization to simultaneously maximize

PL, and minimize PH was performed for a variety of yF for the 4 step with LPP pro-

cess. All material and process variables used for training were considered as decision

variables. The resulting Pareto curves are shown in Fig. 5.2. The region towards the

right of the Pareto curve is infeasible. For instance, for yF = 0.15, in order to achieve

US-DOE targets, a maximum PL of ≈ 0.04 bar is required to be operated as a VSA

process. Further if the lowest PL allowed is 0.1 bar, the feed has to be pressurized

at-least a value of 1.8 bar. If operation at a higher value of PL is expected, a different

cycle should be adopted or an adsorbent whose isotherms are markedly different from

a Langmuir form is required. For instance, Khurana and Farooq considered a more

complex dual-reflux cycle configuration that could achieve the DOE-Targets at higher

PL, albeit at the cost of significantly higher energy [91]. The figure also shows that
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even if the flue gas is pressurized upto 5 bar pressure, a vacuum pressure of ≈ 0.2 bar

is required to barely satisfy the US-DOE target. This indicates that pressurizing the

flue gas should be considered and it might be difficult to avoid vacuum operations.

As expected dilute feeds require lower values of PL at any given PH. This study in-

dicates that PVSA processes, merely from the requirement of avoiding deep vacuum,

are unfavourable for dilute feeds.

5.3.2 Process limits:

Four case studies were considered to identify the practically achievable performance

limits and the results are plotted in Fig 5.3 as a function of yF. Typical ranges of yF

(CO2 composition in the feed stream) for flue gases from natural gas combined cycle

(NGCC), coal, cement and steel plants are also highlighted for convenience [146]. For

case study 1, the key question posed was “If one can synthesize ideal hypothetical

adsorbents, what are the limits of minimum energy and maximum productivity while

satisfying the constraints imposed by US-DOE targets”. Hence, for this study, the

optimizer considers all the operating conditions and adsorbent properties, described

earlier, as decision variables with an aim to either minimize energy or maximize pro-

ductivity, with PuCO2 and ReCO2 as constraints. The results are shown in Fig. 5.3

(a) and (b). Each curve in this figure is associated with a label and parameters of

the power-law expression fitted to these curves are provided in Table 5.2. Figure 5.3

(a) shows the results of the minimum energy for four different cases: the thermody-

namic minimum based on the free-energy of mixing (E1) [147]; the minimum energy

for a four-step with LPP with the assumption that vacuum pumps and compressors

operate at 100% isentropic efficiency (E2); the minimum energy with the assumption

that vacuum pumps and compressors operate with a pressure-dependent efficiency for

the cases of a four-step with LPP (E3) and four-step with FP (E4) process configu-

rations. It is important to point out for E2, E3, and E4, each point on the Pareto

curves represents a unique combination of adsorbent property and process configu-
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ration. As expected, the minimum energy reduces with the increase in yF. The gap

between the thermodynamic minimum and the 100% efficiency gives the limit that

can be achieved with the 4-step LPP processes. It is worth noting that at low values

of yF, the ratio of the achievable minimum energy for the 4-step LPP process, and the

thermodynamic minimum is significantly larger as compared to the ratio at higher

values of yF. This result demonstrates that PVSA is energetically unfavourable at low

yF, even if the ideal adsorbent is deployed. This arises from the need to deploy very

low vacuum levels in order to achieve the desired purity and recovery constraints,

i.e., a result that is fully consistent with the observation in Fig. 5.2. The gap be-

tween curves E2 and E3 indicates the impact of finite prime-mover efficiency. Over

the entire range of yF, the average efficiency of the pumps and compressors varies

between ≈ 45 to 60%. Finally, the difference between curves E3 and E4 indicates the

impact of changing the cycle configuration by just one step. This highlights why a

combined search of best process configuration and adsorbent is critical. For the sake

of comparison, the reboiler duty of 2.3 GJ/tonne CO2 captured (at Pu = 99.8% and

Re = 90%) for a commercial absorption process, i.e., CanSOLV, is provided [148].

A reasonable thermal to electrical conversion factor of 40% is used to represent the

equivalent energy in electrical units. It can be seen that for yF < 0.12, the PVSA

process cannot compete with the CanSOLV process even if the ideal adsorbent can

be made. Again, it is important to point out that the energy value of absorption

was obtained from an experimental pilot-scale system, whereas all the values for the

PVSA processes are considering the “best-possible” scenarios. If pressure drops in

the lines, valves are considered, each of the PVSA curves will shift up, and the yF

value at which PVSA can be competitive with absorption will increase. The results

of the productivity maximization problem are shown in Fig. 5.3 (b). Since there are

no theoretical limits, akin to the thermodynamic minimum, there is no reference to

compare the productivity values. Nevertheless, it is interesting to see that the maxi-

mum productivity curve corresponding to the 4-step with LPP process (P3) and that
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of the FP process (P4) are close to each other at very low values of yF but show a

modest difference at higher feed compositions.

The values of the decision variables corresponding to curves E3 and P3 for a se-

lected set of yF are shown in Fig 5.4 a) and b), respectively, as a radar plot. Each line

on the radar plot represents a unique set of decision variables for the different feed

compositions for E3 and P3 shown in the legends. The relative position of the lines

on each spoke/radii represents the magnitude/value of that decision variable. For the

case of energy minimization, the PH value remains low, compared to the range over

which the optimizer could have chosen. This relates to the fact that pressurizing the

feed any more than what is required to meet the US-DOE targets results in higher

energy consumption. The values of PL again are low enough. The feed velocity has

converged to a value that is not close to either bound. Increasing the velocity any

further results in increased pressure drop in the adsorption step resulting in addi-

tional energy consumption. With respect to the material properties, the optimizer

converged on values of qsat that were not close to either bound. The N2 affinity param-

eter, bN2 , has converged to very low values, reiterating that negligible N2 adsorption

favours lower energy consumption [132, 141]. The CO2 affinity parameter also puts

the isotherms closer to in a linear region. These are also confirmed by the ∆U values

that have both converged to the lower bounds. Fig 5.4 b) shows the spider plot for

P3. Some salient differences compared to Fig 5.4 a) can be noticed. The PH values

converged at the upper bound, while the PL values did not go to their minimum. The

behaviour of the PH values is rather understandable as the optimizer tends to maxi-

mize the so-called working capacity. However, the behaviour of PL values highlights

a subtle aspect that is associated with the dynamics of the vacuum pump. Since we

have assumed a constant volumetric flow of the pump, it is understandable that the

pump would need to run longer in order to evacuate a given amount (moles) of the

product compared to operation at higher pressures. This results in longer cycle times

that act to reduce productivity. The vF in all cases has now converged at its maxi-
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mum limit in-order to increase productivity. It is also worth noting that qsat values

have hit the upper bound as the optimizer tries to maximize the working capacity.

The corresponding ∆U values consistently converge to their lower bound. The corre-

sponding CO2 and isotherms are plotted, along with the isotherms of the three real

adsorbents, in Fig. 5.4. Since the N2 affinity in all cases was negligible, its isotherms

are not shown. It can be seen that all isotherms are closer to being linear and the

capacities for P3 are larger than those for E3. This clearly points to the fact that very

nonlinear isotherms are not desired as they adversely affect processes that require low

vacuum pressures. These observations are consistent with other studies [91].

In Case study 2, the key question posed was, “How does the performance of real ad-

sorbents compare to the limits determined in Case study 1?”. Three adsorbents were

considered, namely, zeolite 13X (the current benchmark material), IISERP-MOF2, a

MOF that was found to provide the minimum energy from an extensive search of the

literature [129], UTSA-16, another well-studied MOF that has been known to provide

low energy consumption. Each of these materials was fitted to a Langmuir isotherm

and was used in the optimization (see Table S3 for parameters). Since the material

properties are fixed, only process variables were chosen as decision variables for these

optimization runs. Figure 5.3 (c) compares the performance of these three materials

with the achievable limit (E3). Of the three, IISERP-MOF2 (E5) performs the best,

followed by UTSA-16 (E6) and Zeolite 13X (E7). From the perspective of minimum

energy, the difference between the two MOFs is rather marginal. This trend confirms

earlier studies that have attributed the superior performance of the two MOFs to

their lower N2 affinities. [129]. The gap between E3 and E5 can be considered as the

innovation gap for material development. Within the range yF = 0.1 to yF = 0.45,

the difference between the curves E5 and E3 reduces from ≈ 20% to 2.5%. This is an

interesting result that shows that in the range of operating conditions at which PVSA

may be favourable, i.e., at high yF, the material innovation-gap is very small, indi-

cating that further improvements in material development can be very challenging,
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and the focus will need to be on other attributes such as stability, sensitivity to mois-

ture, cost, etc. Figure 5.3 (d) shows maximum achievable productivity for the three

materials. The productivity achievable using Zeolite 13X (P7) is very low compared

to the others. Unlike the case of energy, where the higher N2 affinity contributed to

the higher energy consumption, in the case of productivity, the impeding factor is

the higher non-linearity of the CO2 isotherm. Vacuum pumps take a longer time to

evacuate columns filled with materials that have a nonlinear isotherm and this leads

to lower productivity. This is highlighted in Fig. 5.4 d). Further, the innovation

gap in terms of productivity shows the opposite trend compared to energy. In other

words, at lower values of yF, IISERP is close to the achievable target, but at higher

values of yF, there seems to be some opportunity to innovate.

In Case study 3, the key question posed was “How does the recovery constraint

affect the achievable limits?”. The CO2 recovery is a key constraint that can have

a major impact on the performance [70]. In this case, the assumption is that all

the feed enters the adsorption column, but the process operating conditions can be

altered such that the target CO2 recovery can be achieved. The typical US-DOE

requirement is 90%, while for deep-decarbonization scenarios, higher recoveries are

desired and if the goal is to reduce the cost of CO2 capture, lower recoveries might

be tolerated. In this case study, the recovery constraint was set at 70, 80 and 95%

while maintaining PuCO2 ≥ 95%. The difference between the 95% case (E10) and

the 90% case (E3) is much larger than the difference between the 90% (E3) and 80%

(E9). This trend is consistent with previous studies which showed that the energy

consumption increases exponentially with the recovery [70]. It is also interesting to

note that at 95% recovery, the minimum energy limit corresponding to yF = 0.15,

i.e., corresponding to flue gas from coal plants is comparable to that of absorption.

The productivity limits are shown in Fig. 5.3 (f). The trends are similar to the

energy values. High productivity gains can be achieved when the recovery constraint

is relaxed from 95 to 90%. Below that, the gains are modest.
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In Fig. 5.2, we explored the pressure ranges that will satisfy US-DOE targets. In

case study 4, we move a step further and ask “How does the low pressure affect the

performance?”. The achievable energy limits are shown in Fig. 5.3 (g). For this

study, we considered three additional lower bounds for the low-pressure, namely, 0.1

bar (E11), 0.25 bar (E12) and 0.4 bar (E13). There is a significant difference between

E3 and E11. This arises from the fact that in order to achieve the US-DOE targets,

the flue gas has to be pressurized, and the energy consumption for that step is quite

high. It is worth pointing out that if we are restricted to PL ≥ 0.1 bar, the achievable

energy, corresponding to yF = 0.18, exceeds the reboiler energy in absorption. This

clearly indicates that PVSA is unlikely to compete with absorption processes for coal-

based flue gas, even if the best adsorbent can be synthesized. For the same limit of

PL, the maximum achievable productivity (P11) is not markedly different compared

to P3. However, constraining PL to even higher values has a marked impact on

productivity. The mapping of key decision variables for each case study is provided

in the supporting information, along with an MS Excel file with the numerical values.

5.3.3 Adsorbent limits:

The previous sections explored the practically achievable limits, where we solved the

inverse problem. In this section, we attempt to explore the forward problem, i.e., how

materials properties map to process performance, specifically using the 4-step with

LPP cycle. Within the materials properties, we focus our attention on the isotherms

of CO2 and N2. As seen earlier, the Langmuir isotherms for two components can be

described using five parameters. For ease of visualization, we fix three of them. From

the inverse problem solutions, we observed that the |∆U | for both components reached

its minimum limit, and accordingly, we fix them to |∆UCO2|=7 kJ/mol and |∆UN2|=3

kJ/mol. We also fix the qsat values for both components to 6 mol/kg (comparable to

those of Zeolite 13X). In this context, the isotherms of the two components can be

completely specified by the Henry constants of the two components, HCO2 and HN2 .
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Figure 5.3: Practically achievable performance limits for a variety of case studies. The figures in
the left column refer to minimum energy, while those on the right indicate maximum productivity
case studies. a) and b) are results from case study 1, where both isotherm and process operating
parameters are used as decision variables. c) and d) are results from case study 2, where the aim
was to evaluate the performance of some real adsorbents with the 4-step LPP process. Here only
operating parameters are used as decision variables. e) and f) are results from case study 3 that
explored the impact of CO2 recovery on the achievable limits with the 4-step LPP process. Here
both isotherm and operating parameters were treated as decision variables. g) and h) are results
from case study 4 that explored the impact of the low pressure with the 4-step LPP process. Here
both isotherm and operating parameters were treated as decision variables. The reboiler duty for
adsorption was obtained from the literature [148] and a 40% efficiency was used to convert from ther-
mal to electrical units. Note: 100 kWhe/tonne CO2 cap = 0.36 GJ/tonne, 10 molCO2

/m3 ads s =
38 tonne CO2/m

3 ads day

105



At this point, several combinations of HCO2 and HN2 can be generated and each pair

represents a hypothetical material, whose isotherms can be fully reconstructed using

the five isotherm parameters. The plot of HCO2 vs. HN2 is called the nonlinearity plot

(NLP) as it denotes the nonlinearity of the isotherms [141]. Since the qsat value is fixed,

a low value of Hi represents a linear isotherm and a high value denotes a nonlinear

isotherm. Note that in the NLP, since CO2 is considered as the stronger component,

only the region above the diagonal is feasible. Further, any line parallel to the diagonal

represents hypothetical materials with identical selectivities (α = HCO2/HN2). As

expected, the diagonal represents α = 1.

Case study 5 concerns the question “For a fixed composition, what is the prac-

tically achievable minimum energy and maximum productivity for each hypothetical

material?”. In this case study, for each material, i.e., a combination of HCO2 and HN2 ,

the process variables were treated as decision variables, and the objective functions

were set to either minimize energy or maximize productivity, both subject to US-DOE

targets. The results are depicted in the NLP, as shown in Fig. 5.5 (a) and (b) for

yF = 0.15. The region denoted by the grey dots was explored, but the optimizer was

not able to fulfil the US-DOE constraints. Within the range of values where feasible

conditions were found, many interesting observations can be made. First, materials

with fixed values of α do not result in identical performance. For instance, consider

materials with α = 1000. At the bottom left, we have a region where the US-DOE

targets are not met, then we pass through a region where the separation is feasible,

but the energy consumption is high, then a region where energy consumption reduces,

and then another region where the energy increases. Finally, we are back in a region

where the US-DOE targets are not met. A very similar trend is observed when con-

sidering productivity values. This clearly indicates that the selectivity, which is often

used as a parameter to screen materials, does not provide a good correlation to the

process performance. Second, the behaviour described here can be rationalized by

understanding that in the bottom left of the NLP, it is not possible to achieve separa-
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tion because of the low CO2 affinity and at the top right of the figure, the limitation

comes from the high N2 affinity. Hence, it is clear that, even at a fixed value of α,

there is an optimal value of HCO2 and HN2 where the energy is minimized (or the

productivity is maximized). Now, let us consider traversing along a path where HN2

is fixed, say at HN2 = 10−4 m3/kg. Close to the diagonal, there is a region where the

targets are not achieved. As we move up, i.e., as HCO2 increases, we traverse through

a region where the energy is first high, then decreases, and finally increases again. In

other words, the energy goes through a minimum with HCO2 . Similarly, when consid-

ering Fig. 5.5 b, the productivity goes through a maximum. At lower values of HCO2 ,

the separation is challenging and hence very high values of energy need to be spent.

Beyond the minimum, as the Henry constant increases, the isotherm becomes more

nonlinear, and since the operating pressure range is fixed (as it would be in a real

process), the working capacity decreases. This translates into poorer performance.

Finally, let us consider points that lie on a constant HCO2 value. As we move from

higher values of HN2 to lower values, the performance improves. This observation

is consistent with previous observations that pointed to the fact improvement of the

performance of materials can be achieved by aiming to reduce N2 adsorption. Finally,

it is also worth noting that within the region where the DOE targets are met, there is

a wide variation in the energy consumption, i.e., between ≈ 150 to 400 kWhe/tonne

CO2 cap. with the minimum around α = 1000 and HCO2 ≈ 0.033m3/kg. Interest-

ingly, this region also corresponds to where the maximum productivity is achieved.

Hence, from both the energy and productivity perspectives, this region appears to

be optimal for yF = 0.15. Note that the IISERP-MOF2 and UTSA-16 are closer to

this region, while Zeolite 13X is further away. Comparing their relative performances

from Fig. 5.3, the trends seem consistent.

In case study 6, the key question was, “How does the NLP vary when the feed

composition is changed?”. Hence, the optimization reported in Fig. 5.5 (a) and (b)

was repeated, now for feed compositions of 0.25. The results are shown in Fig. 5.5 (c)
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and (d). All the qualitative trends observed in Fig. 5.5 (a) and (b) are also observed

when the feed composition is increased. However, it is worth noting that the region

of feasible separation is now, understandably, enlarged. Note that the energy values

are much lower, and the productivity values are higher compared to the results for

yF = 0.15. Finally, the energy and productivity landscape seems to be much shallower

compared to the case of yF = 0.15. In other words, a much broader range of HCO2

and HN2 values result in comparable values of energy (or productivity) than the case

of yF = 0.15. The corresponding values of PH and PL, for each hypothetical adsorbent

is provided in Figs. S5 and S6 of the supporting information.

5.3.4 Perspective:

This study shows that it will be challenging for PVSA processes to out-compete

established absorption-based processes when CO2 composition in the feed is below

yF = 0.15. At higher feed compositions, PVSA seems to have a clear opportunity

to offer lower energy consumption compared to absorption, with the possibility of

operating at practical vacuum conditions. However, in this range, the innovation gap

between existing materials to the hypothetical best in terms of energy is marginal. It

is worth noting that this study considers PVSA processes using beaded adsorbents

that follow a Langmuir isotherm. While these can be considered as limitations, it is

worth pointing out that most current work on material development can be reasonably

captured within these assumptions. Hence, we argue that the results of this study

can have broad implications for both adsorbent and process development. It is also

important to note that the ability of an adsorbent is not just dependent on its ability

to concentrate CO2 from N2. Other factors, including, but not limited to, stability,

inertness to impurities and moisture, and structurability, play a critical role, and

the optimal adsorbent is often a compromise of many parameters. Nevertheless, this

work provides broad guidelines on what practical limitations exist and where future

research could be focused on. While we have considered only performance metrics in
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Figure 5.4: Mapping of decision variables corresponding to curves E3 and P3in
Fig. 5.3. a) Radar plot of decision variables corresponding to minimum energy (i.e.,
curve E3 in Fig 5.3), and b) Radar plot of decision variables corresponding to max-
imum productivity (i.e., curve P3 in Fig 5.3). c) and d) show the isotherms of CO2

(and N2, its very low) corresponding to isotherm parameters shown in a) and b). The
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studied are shown in sub-figures c) and d), respectively.
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Figure 5.5: The impact of adsorption isotherm on process performance. The subplots
a) and c) show minimized energy, while b) and d) show maximized productivity of the
4-step with LPP cycle. For each combination of HCO2 and HN2 , the process operating
conditions are optimized to either minimize energy or maximize productivity. The
diagonal lines on the plot represent the lines of constant selectivity, the symbols
correspond to the adsorbents used in this study as a reference. Note that the isotherm
parameters for these materials are provided in the supporting information. The results
are shown for two different feed compositions yF = 0.15 (top row), yF = 0.25 (bottom
row)

this work, challenges in scaling-up the processes especially for treating large flue gas

volumes should not be underestimated [143]. We have to caution the reader not to

extrapolate the conclusions made here for other adsorption separation processes, e.g.,

TSA, since they operate on very different principles. Finally, the study reiterates

the need for synergistic development of processes and materials and highlights the

possibilities that could arise through the use of machine learning tools.
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Parameter Type Value

Column properties

Bed length, L [m] Fixed 1.0

Column inner radius, rin [m] Fixed 0.14

Column outer radius, rout [m] Fixed 0.16

Particle voidage, ϵp [-] Fixed 0.35

Particle radius, rp [m] Fixed 1×10−3

Density of the column wall, ρw [kg m−3] Fixed 7,800.00

Bed voidage, ϵ [-] Fixed 0.37

Tortuosity factor, τ [-] Fixed 3.00

Fluid properties

Effective heat conduction coefficient, Kz [J m−1 s−1 K−1] Fixed 9.03 ×10−2

Thermal conductivity of the wall, Kw [W m−1 K−1] Fixed 16.00

Inside heat transfer coefficient, hin [W m−2 K−1] Fixed 0.00

Outside heat transfer coefficient, hout [W m−2 K−1] Fixed 0.00

Gas specific heat capacity, Cp,g[J kg−1 K−1] Fixed 1010.60

Adsorbed phase specific heat capacity, Cp,a [J kg−1 K−1] Fixed 1010.60

Adiabatic constant, γ [-] Fixed 1.40

Universal gas constant, Rg [m3 Pa mol−1 K−1] Fixed 8.314

Fluid viscosity, µ [kg m−1 s−1] Fixed 1.72×10−5

Molecular diffusivity, DM [m2 s−1] Fixed 1.60×10−5

Adsorbent properties

Adsorbent specific heat capacity, Cp,s [J kg−1 K−1] Fixed 1070.00

Density of the solid particle, ρs [kg m−3] Variable 800.00-1200.00

Adsorption saturation capacity, qsat [mol kg−1] Variable 0.50 to 10.00

Adsorption equilibrium constant of CO2, b0,CO2 [ m3 mol−1 ] Variable 10−12 to 10−1

Adsorption equilibrium constant of N2, b0,N2 [ m3 mol−1 ] Variable 10−11 to 10−1

Internal energy of adsorption of CO2, ∆UCO2 [kJ mol−1] Variable -7.00 to -47.00

Internal energy of adsorption of N2, ∆UN2 [kJ mol−1] Variable -3.00 to -25.00

Process properties

Feed temperature, TF [K] Fixed 298.15

Blowdown step vacuum pump flow-rate, vBLO [m s−1] Fixed 0.59

Evacuation step vacuum pump flow-rate, vEVAC [m s−1] Fixed 0.90

Pressurization step exponential pressure history term, αPRESS [s] Fixed 0.50

Vacuum pump efficiency, η [%] Variable 15.84P
1+19.8P

Adsorption step time, tADS [s] Variable 10.00 to 110.00

High pressure, PH [bar] Variable 1.00 to 5.00

Intermediate pressure, PI [bar] Variable 0.07 to 4.00

Evacuation pressure, PL [bar] Variable 0.01 to 1.00

Feed rate, vF [m s−1] Variable 0.10 to 1.50

CO2 feed composition, yF [-] Variable 0.05 to 0.65

Table 5.1: Parameters used for detailed model simulations. Those indicated as vari-
able are used for training the MAPLE framework and used as decision variables.
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Curve # Constraints α β

[PuCO2/ReCO2 ]

E1 95/90 14.590 -0.458

E2 95/90 11.669 -1.078

E3 95/90 19.594 -1.182

E4 95/90 21.723 -1.186

E5 95/90 20.301 -1.235

E6 95/90 23.645 -1.119

E7 95/90 25.097 -1.262

E8 95/70 14.286 -1.170

E9 95/80 15.013 -1.230

E10 95/95 22.046 -1.297

E11 95/90 16.725 -1.554

E12 95/90 19.096 -1.616

E13 95/90 15.896 -1.923

P3 95/90 40.185 1.159

P4 95/90 32.633 1.115

P5 95/90 33.760 1.136

P6 95/90 21.734 1.257

P7 95/90 15.388 1.040

P8 95/70 43.780 1.014

P9 95/80 42.668 1.089

P10 95/95 33.558 1.186

P11 95/90 47.347 1.335

P12 95/90 72.070 1.799

P13 95/90 152.800 2.694

Table 5.2: The data from the fitting of the various optimizations cases discussed
in Fig. 5.3 to performance indicator (PI), PI = αeβyF . Energy values are in
(kWhe/tonne CO2 cap) and productivity values are in (molCO2/m

3 ads s). These fits
are valid for values of yF between 0.05 and 0.45. However for the cases of E11, E12,
E13, P11, P12, P13, the applicable ranges are provided in Fig. 5.3

.
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Chapter 6

Experimental validation of
MAPLE: an adsorbent agnostic
neural network VSA model

6.1 Introduction

Modelling adsorption processes accurately and predicting process performance at

steady-state conditions is computationally expensive due to its inherent cyclic nature.

Hence simulating these processes in-silico or in-process optimization or screening large

databases of adsorbents is a challenge [40, 135]. To understand gaps in knowledge,

such as how adsorption equilibria affect the final performance, or identifying the

optimum operating conditions for a given adsorbent using detailed process models

becomes computationally challenging. In this work, we exploit recent innovations in

machine learning to accelerate adsorption process simulations [72, 73, 135].

Recently, a generalized data-driven surrogate model based on a deep neural net-

work: the machine-assisted adsorption process learning and emulation (MAPLE)

framework, was shown to fully emulate an adsorption process cyclic steady state [142].

The training data was generated using a detailed 1D finite volume model with inputs

generated by using a Latin Hypercube (LHC) sampling. The model has multiple

inputs such as step times, pressures, Langmuir parameters, particle density and can

predict outputs such as product purity, recovery, energy, and productivity. As such,
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the model is trained to be adsorbent agnostic so that it can predict the performance

of the cycle for a set of arbitrary adsorbent and process parameters [142]. The main

advantage of this approach is that once trained. It can be used for applications such

as adsorbent screening, predictive control, targeted optimizations, etc. In previous

studies, we have validated the framework using numerical simulations and demon-

strate its advantages [142, 149]. In this work, we provide the experimental validation

for the concentration of O2 from air.

Traditional large-scale air separation processes in the chemical industry are based

on the cryogenic distillation process [2, 94, 150]. At a smaller scale range, where

the need is only O2 at purities above 90%, air separation is performed using PVSA

processes. They can separate O2 at relatively wide range, from small scales ranging

from 5 LPM personal O2 concentrators to 300 TPDO O2 generation units [17]. The

current benchmark adsorbent for this separation is zeolite-based such as LiX, CaX,

and 13X. The process cycle used to perform this separation is usually a Skarstrom

cycle or some modification of the same [2, 17, 94, 151].

In this work, the MAPLE model is trained for a Skarstorm cycle suitable for

raffinate purification in a VSA process. To test the efficacy of the model, a case

study of air separation to produce high purity O2 is considered. Two commercial

adsorbents, JLOX LiX and UOP−HP Zeolite 13X were chosen for validation. A

series of characterization experiments allowed the description of the isotherms of N2,

O2 and Ar on these adsorbents. Their Langmuir isotherm parameters were taken as

the input to the MAPLE model. Multi-objective optimizations to maximize purity,

recovery, the productivity of the process for each of these adsorbents were performed

by coupling MAPLE with an optimizer [144]. Several points on the Pareto curves were

chosen, and the corresponding operating parameters were translated into experiments

on a two-column lab-scale PSA rig [36]. This study paves the path for the reliable use

of the MAPLE framework for process optimization, predictive control and screening

adsorption performance.
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6.2 Adsorbent Equilibria

Two commercial adsorbents: JLOX 103, which included lithium exchanged zeolite

manufactured by JALON corporation, China and a zeolite 13X sorbent UOP HP was

used. As a first step, the adsorption equilibria of the adsorbents for the three gases

considered were measured using a Micrometrics ASAP 2020C volumetric system for

N2, O2, and Ar. The detailed measurement procedure can be found in our previous

work [110]. In this study, we use a constant-selectivity single-site Langmuir (SSL)

isotherm to describe the competitive adsorption equilibrium:

q∗i =
qsatbiCi

1 + ΣibiCi

=
HiCi

1 + ΣibiCi

, , i = N2,O2,Ar (6.1)

Here qsat is the saturation capacity of the adsorbing gas, bi is the equilibrium constant

for component i, and q∗i is the equilibrium solid phase loading. The product of qsat

and bi is the Henry constant, Hi. The temperature dependence of the equilibrium

constant is described by:

bi = b0,ie
−∆Ui
RgT (6.2)

Here ∆Ui is the internal energy of adsorption for component i, Rg is the universal

gas constant and, T is the temperature. For the three components, the SSL isotherm

comprises of seven parameters, namely, qsat, b0,O2 , b0,N2 , b0,Ar, ∆UO2 , ∆UN2 , and

∆UAr. These parameters were fitted to the experimental measured data using non-

linear regression. The qsat values are fit to the strongest of the three component,

namely, N2, and was fixed to be a constant for O2, and Ar. The equilibrium data

along with the fitted isotherms are shown in Fig. 6.1. The SSL shows an excellent fit

of the experimental data. The fitted isotherm parameters are provided in Table 6.1.

A quick estimate of the the N2/O2 defined as:

αi,j =
Hi

Hj

(6.3)
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Figure 6.1: Characterization of adsorption equilibria. The left column are the
isotherms for LiX, and the right column are the isotherms for 13X. The symbols
are experimentally measured values and the lines are the SSL fit.
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shows that LiX, to be a superior adsorbent when compared to 13X, an observa-

tion that is well documented in the literature. for instance αN2,O2|LiX ≈ 12 and

αN2,O2|13X ≈ 3

6.3 Experimental System and process cycle

In this work, VSA experiments were carried out in a two-bed lab-scale system, the

process schematic of which is shown in Fig. 6.2 a). It consists of two 300 cc stainless

steel columns (≈ 18 cm length and 2.52 cm diameter). Each column was packed with

≈ 200 g of adsorbent. The bed voidages for the LiX case was estimated to be ≈

0.42, and 13X = 0.41. The average particle size (rp) of the LiX ≈ 1.5 × 10−3, 13X

≈ 0.8×10−3[m]. The particle density used in the study for LiX is 1100 [kg/m3], 13X:

1050 [kg m−3]. The particle voidage, (ρP) for LiX was assumed to be 0.65, and 13X =

0.5. A vacuum pump (Pfeiffer VacuumMVP 040-2, Germany) was used to operate the

unit at sub-ambient pressures. Appropriate flow meters and flow controllers (Alicat

Scientific, Tucson, AZ, USA) were used to measure and control the gas flows, and

the mass-flow controllers have a maximum flowrate rating of 10 SCCM. An oxygen

analyzer (Quantek Instruments, Model 906A, USA) was used to measure the outlet

O2 composition. The composition of the extract product is measured using a mass

spectrometer (MS, Pfeiffer Vacuum OmniStar GSD 320, Asslar, Germany). One

thermocouple located at 16 cm from the column inlet was used to obtain the transient

temperature histories. A metering valve (MV-1) is placed between the light reflux line

to maintain the pressure of the donor column in the coupled light-reflux step. The

VSA experiments were conducted using certified premixed cylinders containing air

consisting of 20.5 mol% O2, 78.5 mol% N2, and 1 mol% N2. The VSA experimental

rig includes O2 sensors to collect O2 composition at the raffinate (z = L) and extract

(z = 0) end of the column. All experiments were run for 100 cycles, although the

cyclic steady state was reached, ≈ 25 cycles.
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6.4 Process cycle

The VSA process used in this study, A 4-step cycle with light product reflux (LR)

and feed pressurization (FP), is shown in Fig. 6.2 b). This is popularly known as

the Skarstrom cycle and consists of the following steps:

• An adsorption step, where the feed mixture consisting of synthetic dry air is

introduced at the feed end (z = 0) of the column with an interstitial feed

velocity vF and pressure PATM, for a period of tADS. The light product, which

is predominantly O2, is collected at the outlet end (z = L).

• A light reflux donor (D) step, where the outlet stream from the adsorption step,

is used to purge the column in the light reflux receiver (R) step.

• An evacuation step, where a vacuum pump reduces the pressure to a value, PL

at the feed end (z = 0) and column is regenerated to remove the adsorbed N2.

• A light reflux(R) step, where a portion of the product from the light reflux donor

(D) step is directed to purge the column, which is maintained at PL. This step

helps to remove the N2 adsorbed on the bed and keep the product end of the

column filled with high purity O2.

• A pressurization step, where the pressure of the column is brought back from the

PL to PATM using the feed stream (FP) at the same flowrate as the adsorption

and light reflux (D) steps.
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Zeolite Type Gas qsat [mol/kg] b0 [m3/mol] ∆U [kJ/mol]

Value 95%- 95%+ Value 95%- 95%+ Value 95%- 95%+

13X N2 2.471 2.051 2.871 9.35×10−6 1.19×10−5 7.38×10−6 -14.96 -15.59 -14.34

LiX N2 2.279 2.247 2.311 1.44×10−6 1.60×10−6 1.30×10−6 -23.85 -24.13 -23.57

13X O2 2.471 2.051 2.871 2.02×10−5 2.21×10−5 1.84×10−5 -9.92 -10.16 -9.675

LiX O2 2.279 2.247 2.311 1.69×10−5 1.77×10−5 1.61×10−5 -11.71 -11.84 -11.58

13X Ar 2.471 2.051 2.871 1.67×10−5 1.78×10−5 1.57×10−5 -10.25 -10.41 -10.09

LiX Ar 2.279 2.247 2.311 6.38×10−5 7.01×10−5 5.79×10−5 -7.801 -8.043 -7.56

Table 6.1: Single site Langmuir isotherm model fitting parameters for three gases, namely, N2, O2, and Ar along with the 95%
confidence interval from the isotherm fitting.
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Figure 6.2: Experimental set-up and cycle studied (a) Schematic diagram of the
bench-scale VSA test apparatus. (b) Illustration of the 4-step cycle with LPP. Note
that the thermocouple TC-1 is at 17 cm from the column inlet.

6.5 Performance Indicators

At a process scale, four performance indicators, O2 purity (PuO2), O2 recovery (ReO2),

and process productivity Pr, are considered. The experimental purity was calculated

as the moles of O2 in the product tank over the total number of moles in the product

tank. The experimental recovery was calculated as the number of moles of O2 in the

product tank over the total number of moles feed into the bed in the pressurization,
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adsorption, and light reflux steps. The experimental productivity was calculated as

the moles of O2 collected each cycle over the volume of the bed. The cycle-time used to

calculate productivity is the sum of the duration of the four steps. The evacuation step

has a dedicated vacuum pump that operates at a constant volumetric flow rate, the

flow rate of which is fixed at 30 SLPM. This means that the duration of the evacuation

(tEVAC) is dependent on the flow rate. This study considers the size of the vacuum

pump, and the column dimensions are fixed to be consistent with the experimental rig.

Note that the flow rate of the vacuum pump varies with the low pressure. However,

it is considered to be fixed for modelling purposes. Finally, the pressure drops in the

lines can be detrimental to energy consumption for systems working under vacuum

conditions. The pressure drop can result in increased energy consumption and slower

evacuation, which will worsen the process performance. In this study, such pressure

drops, external to the columns, are considered to be negligible. It is important to

consider the results in light of these assumptions.

6.6 VSA Process Modelling

Modelling an adsorbent-based separation process requires a detailed description of

mass and heat transfer and fluid dynamics inside the adsorption bed. Since these

adsorptive processes are inherently cyclic, the equations describing each step are it-

eratively solved until a cyclic steady state (CSS). In this study, we fix the column

dimensions and the sizes of fluid movers fixed to match the scale of a lab-scale VSA

testing rig first described in Perez et al.[36]. The model has the following key assump-

tions: 1. The ideal gas law; 2. An axially dispersed plug flow model describes the

flow in the adsorption bed, meaning there are no radial effects; 3. The solid and fluid

phases are in thermal equilibrium; 4. Mass transfer is described by a linear-driving

force (LDF) model, assuming that the molecular diffusion in macropores controls the

mass transfer; 5. Darcy’s law is used to describe the pressure drop in the column.

It has been shown that this assumption is sufficient for the testing rig used in this
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work and for the operating conditions studied. The column mass and energy balances

result in a system of partial differential equations (PDEs). The PDEs are reduced to

ordinary differential equations (ODEs) systems using a finite-volume scheme. They

are solved using ode23s, an inbuilt solver in MATLAB. Boundary conditions for the

different steps are applied as appropriate. Model equations and boundary conditions

are provided in the supporting information. Properties associated with the column

are provided in Table 6.2. The entire simulation strategy is detailed in a previous

work [19] and validated experimentally both at lab-scale [36] and pilot-scales [75].

6.7 MAPLE Sampling and Training

The MAPLE modelling framework is a data-driven surrogate model trained to em-

ulate an adsorbent process using supervised machine learning [142]. This model

is trained for a generalized with both adsorbent and process-related inputs. Once

trained, this model can predict VSA process performance instantaneously.

Meaningful constraints while generating the samples were applied such as, N2 is al-

ways the strongly adsorbed gas, i.e. bN2 ≥ bO2+0.5 [m3/mol]. The heat of adsorption

of N2 is always greater than O2, i.e., |∆UN2| ≥ |∆UO2|+ 1 [kJ/mol]. The adsorption

step duration is longer than the Light reflux duration, i.e., tADS ≥ tLR + 1[s]. The

purge to feed ratio Θ is defined as the ratio of tLR/tADS. For the sake of simplicity,

the isotherm inputs for Ar are assumed to be the same as that of O2. While we

acknowledge that this can be a limitation, it is worth pointing out that in several

adsorbents, as can been seen here, have very similar equilibria for O2 and Ar. The

selectivity of the adsorbent, α = HN2/HO2 , is in the range of 3≤ α ≤ 106. In this

study, a hypothetical adsorbent can be defined by any random combination of the

five SSL parameters. The inputs and their training ranges are shown in Fig: 6.2 b)

and the ranges are provided in Table 6.2.

The trained variables consist of five SSL parameters, the low pressure ( PL), the

duration of the adsorption step (tADS), inlet feed flowrate (vF), the light reflux step
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Parameter Type Value

Column properties

Bed length, L [m] Measured 0.18

Column inner radius, rin [m] Measured 0.025

Column outer radius, rout [m] Measured 0.027

Density of the column wall, ρw [kg m−3] Fixed 7,800.00

Tortuosity factor, τ [-] Fixed 3.00 [31]

Fluid properties

Effective heat conduction coefficient, Kz [J m−1 s−1 K−1] Fixed 9.03 ×10−2 [31]

Thermal conductivity of the wall, Kw [W m−1 K−1] Fixed 16.00 [31]

Inside heat transfer coefficient, hin [W m−2 K−1] Fitted 8.20

Outside heat transfer coefficient, hout [W m−2 K−1] Fitted 3.00

Gas specific heat capacity, Cp,g[J kg−1 K−1] Fixed 1010.60 [31]

Adsorbed phase specific heat capacity, Cp,a [J kg−1 K−1] Fixed 1010.60 [31]

Adiabatic constant, γ [-] Fixed 1.40

Universal gas constant, Rg [m3 Pa mol−1 K−1] Fixed 8.314

Fluid viscosity, µ [kg m−1 s−1] Fixed 1.72×10−5

Molecular diffusivity, DM [m2 s−1] Fixed 1.60×10−5

Adsorbent properties

Adsorbent specific heat capacity, Cp,s [J kg−1 K−1] Fixed 1070.00 [31]

Particle radius, rp [m] Variable 0.25×10−3-2.5×10−3

Bed voidage, ϵ [-] Variable 0.35-0.45

Density of the solid particle, ρs [kg m−3] Variable 800.00-1200.00

Particle voidage, ϵp [-] Variable 0.35-0.7

Adsorption saturation capacity, qsat [mol kg−1] Variable 0.50 to 10.00

Adsorption equilibrium constant of CO2, b0,CO2 [ m3 mol−1 ] Variable 10−12 to 10−1

Adsorption equilibrium constant of O2, b0,O2 [ m3 mol−1 ] Variable 10−11 to 10−1

Internal energy of adsorption of N2, ∆UN2 [kJ mol−1] Variable -7.00 to -30.00

Internal energy of adsorption of O2, ∆UO2 [kJ mol−1] Variable -3.00 to -25.00

Process properties

Feed temperature, TF [K] Fixed 298.15

High pressure, PH [bar] Fixed 1.00

Evacuation step vacuum pump flow-rate, vEVAC [SLPM] Fixed 30

Adsorption step time, tADS [s] Variable 10.00 to 110.00

Evacuation pressure, PL [bar] Variable 0.1 to 0.6

Feed flowrate, vF [SLPM] Variable 1 to 30

Table 6.2: Parameters used for detailed model simulations. Those indicated as vari-
able are used for training the air separation MAPLE framework and used as decision
variables.
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(tLR), the particle morphology, such as the particle diameters ( RP), particle voidage

( ϵP), bed voidage (ϵB), and adsorbent particle density (ρADS). Recent studies have

pointed out that performance gains can be obtained by also varying particle sizes and

porosities [33, 128]. In this study, we settle for conservative ranges of these parameters

based on commercially available materials. The dataset consisting of 20,000 samples

was run in the detailed model. This data was then split into a training and testing

ratio of 90:10, and the model accuracy was evaluated using the R2
Adj of the test-

set. A network consisting of 3 hidden layers with 20 neuron layers was chosen. A test

R2
Adj ≥ 0.99 was obtained for all the performance indicators, signifying high prediction

accuracy. The testing and validation results are shown as a parity plot for the various

KPIs in Fig. 6.3. The results from the MAPLE model are comparable with a high

degree of accuracy with the detailed model. The MAPLE model is then coupled

with a genetic algorithm optimization tool non-dominated sorting genetic algorithm

(NSGA-2), available in MATLAB for performing all the case studies described below.

We call this optimization framework MAPLE-Opt. [142, 144]. For each optimization,

an initial population of 96× 4 = 384 was chosen and was run for 50 generations. The

optimization was repeated multiple times by varying the initial populations to avoid

local minima and stochastic variations in the final result. The optimized decision

variables obtained from MAPLE-Opt. are then re-run in the detailed model and the

experimental set-up until cyclic steady state (CSS). This increases the reliability of

the entire process. Hence, thus results shown in this work are indeed from the detailed

model.

6.8 Results and Discussion

Once trained and tested, the MAPLE neural network model will predict the perfor-

mance of any adsorbent that agrees with a Langmuir isotherm function in the process.

In this study, we are considering two commercial zeolite-based adsorbents, namely,

13X and LiX. The objective is to use the trained model in an optimization framework
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Figure 6.3: The parity plots of the prediction from MAPLE for different performance
indicators against those obtained from the detailed model for a test-set of 1000 sam-
ples as inputs for the Skarstrom cycle. a) Purity, b) Recovery, c) Productivity. The
shaded area indicates a 5% deviation from the diagonal.

to obtain trade-offs of various performance indicators and process variables. The op-

erating conditions obtained from such case studies can be used to target performance

in the lab-scale VSA rig described in the previous section. The isotherm inputs for

the model are the operating conditions and particle morphology, and the values are

provided in Table 6.2.

6.8.1 Purity-Recovery Optimization

One of the vital trade-off when designing an adsorption process are the countering

objectives of process purity and recovery. In this case study, we run the optimization

to maximize these objectives. The resulting optimization routine (MAPLE-Opt) is

run with fixed isotherm and particle parameters to the values of the two adsorbents

shown in Table 6.2. The range of the operating parameters like step times, low

pressure, and feed rate are also provided in Table 6.2. The resulting Pareto curves

for the two materials are shown in Figure 6.4 as solid lines. This curve represents the

best possible purity and recovery obtained for the two adsorbents in the given range

of operating conditions. The region to the top right of the curves is infeasible for the

said adsorbent, and the area below is sub-optimal. The small sample of the operating

conditions obtained from the MAPLE Opt was re-run in the detailed model to ensure

the accuracy of prediction. It is clear from the plots that the MAPLE model and

the detailed model are in excellent agreement with minor deviation in the high purity
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Figure 6.4: Pareto fronts for the multi-objective optimization of purity and recovery
of the four-step Skarstrom VSA cycle for the two adsorbents. The solid blue line cor-
responds to LiX, and the red line corresponds to 13X. The closed symbols represent
the purity and recovery obtained from running operating conditions in the experimen-
tal rig, and the open symbols the results from the same operating conditions in the
MAPLE model. The dashed lines indicate the 95% confidence interval for isotherm
parameters.

region. The LiX sorbent outperforms 13X, for a purity ≥90% the 13X adsorbent

provides the best recovery of 35%, while the LiX sorbent yields 75%.

6.8.2 Purity-Productivity Optimization

The performance indicator, recovery only provides the highest amount of O2 we can

recover and as such only provides us with a potential for separation and may not

provide the best conditions to operate the process. To run the process, in reality,

one must optimize its productivity, which by definition offers the highest amount of

product gas that can be collected per unit adsorbent mass and for unit time. Hence for

the second case, we optimize the productivity and purity trade-off. Figure 6.5 shows
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Figure 6.5: Pareto fronts for the multi-objective optimization of purity and produc-
tivity of the Skarstrom VSA cycle for the two adsorbents are shown. The solid blue
line corresponds to LiX, and the solid red line corresponds to 13X. The closed mark-
ers represent the purity and productivity and the open markers the results from the
same operating conditions in the MAPLE model. The dashed lines indicate the 95%
confidence interval for isotherm parameters

the Pareto curves for the performance indicators of purity and productivity for the

two different adsorbents. The trend is very similar to the previous case; however, it is

clear from the figure that LiX performs far better than the 13X when considering the

process productivity. In fact, in the high purity region, LiX has ≈ 2× the productivity

offered by 13X. This trend is again explained by the higher selectivity offered by LiX

compared to 13X. The higher loading of N2 on the LiX allows for the processing of

more feed and hence can obtain higher O2 production capacity. In the previous case

study, the inlet flow rate is limited to 10 SLPM in the optimizations since this is the

limiting flow rate for the flow controllers in the lab-scale rig. Hence the performance

shown in this work is not necessarily the best that the adsorbents can offer, but what

can be achieved in the lab-scale rig.
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A sensitivity analysis on the Pareto curves was carried out to obtain a 95% con-

fidence interval for the predictions. In this study, the effect of the isotherm fitting

parameters was analyzed. To do this, the DVs from the Pareto curves were varied

and re-ran as inputs in the MAPLE model. In the first case, only the isotherm inputs

were changed to the upper and lower values of the 95% confidence of the SSL fit. The

values are provided in Table 6.1. The results were analyzed, and a ±2σ is plotted

around the Pareto curves as dashed lines.

6.8.3 Experimental Validation

This study aims to verify the validity of the MAPLE framework experimentally. This

study aims to validate the MAPLE model at different performance regions and to

check if the model is truly general and adsorbent agnostic. To this effect, we choose

operating conditions obtained from the various cases. Here, the outputs of the opti-

mizer, namely, the decision variables, i.e., the low-pressure values, are programmed

into the control system. The inlet flow rate is set in the flowmeter (MFC-2), and was

kept the same for the pressurization, adsorption and light reflux(D) steps. Before the

start of the experiment, the bed was saturated with the feed composition. The cycle

was repeated for 100 iterations for both beds. The outlet flows, and composition was

recorded along with the dynamic bed pressure and temperature histories. Integrating

the inlet and outlet flows along with provided the purity, recovery, and productivity

values.

The resulting experimental performance for the different experimental runs is sum-

marized in Table 6.3. The first four experiments shown are for the LiX adsorbent, and

the next five are for the 13X adsorbent system. Expt 1-3 are obtained from the purity

productivity optimization for the LiX adsorbent and are shown in figure 6.5 and filled

squares. Expt 5-7 are for the 13X adsorbent purity productivity optimizations and

are shown as filled circles. The open symbols show the MAPLE model predictions for

the same operating conditions. Experiments 4, 8, 9 are obtained from purity recovery
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optimizations, Expt 4 is for LiX adsorbent, and Expt 8 and 9 are for 13X adsorbent

are shown in figure 6.4. The experimental performance for all three experimental

KPIs are in good agreement with the MAPLE model predictions. The results can

be visualized with the Pareto curves in Fig 6.4 - 6.5. Variations in performance are

expected due to practical challenges and operational variations. The results show an

excellent match between the predictions of the MAPLE model and the experiment.

The experimental conditions were simulated in the detailed model to analyze, and

the process was simulated dynamically to a cyclic steady state—the simulation results

were plotted alongside the experimentally obtained transients. Figure 6.6 a) shows

the pressure history over one cycle for all the experiments conducted in Table 6.3,

the symbols from experiments, and the solid lines are obtained from the detailed

dynamic model. Note that the idle steps needed to schedule the two-bed VSA process

are removed in the figure 6.6 to match the simulation. The feed flowrate in the

adsorption step, light reflux step, and pressurization step are kept the same in the

simulation. The pressure history for the evacuation step is predicted based on a

constant volumetric boundary condition and has been shown in previous modelling

works [143, 149]. The bottom two panels show the adsorption product outlet flow

measured in MFM-1 and the evacuation flow rate measured in MFM-2. Figure 6.7

shows the experimentally obtained purity and recovery are plotted as a function of

the number of cycles along with the detailed model predictions for the same. The

results show good agreement between the two quantities over the entire duration of

the experiment, particularly at CSS. This further validates the detailed model and

MAPLE model. The general observation is that the detailed model results and the

experimental histories agree with each other.
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Adsorbent Expt

Operating conditions Experiment MAPLE Model Detailed model

Tads TLR PL VF Purity Recovery Prod Purity Recovery Prod Purity Recovery Prod

[s] [s] [bar] [SLPM] [%] [%] * [%] [%] * [%] [%] *

LiX

1 11.0 3.0 0.1 9.7 95.2 64.2 1.5 95.6 61.6 1.4 95.2 60.2 1.5

2 11.0 4.0 0.4 9.8 60.9 65.9 2.7 59.3 69.8 3.0 62.4 70.6 3.2

3 15.0 4.0 0.4 9.8 44.8 71.3 3.4 40.4 71.6 3.5 44.1 72.4 3.5

4 23.0 0.0 0.1 6.0 58.7 84.5 1.0 60.1 84.9 0.9 60.6 84.9 1.0

13X

6.0 4.0 0.3 4.5 91.9 27.5 0.3 92.2 26.7 0.2 93.9 27.1 0.4

6 7.0 5.0 0.3 5.5 90.5 31.3 0.3 89.4 26.2 0.3 93.2 30.5 0.6

7 6.0 4.0 0.4 6.9 75.7 32.8 0.8 76.8 32.5 0.7 82.3 35.9 1.0

8 6.0 5.0 0.4 4.3 93.7 12.6 0.1 94.6 12.4 0.1 95.3 12.1 0.2

9 6.0 3.0 0.2 5.8 82.7 45.3 0.5 84.8 41.9 0.5 85.3 44.0 0.8

Table 6.3: Optimal operating conditions and the measured performance of the VSA experiments, shown alongside the MAPLE
model predictions for the same conditions. * the units of productivity are molO2 / m3 ads /s.
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Figure 6.6: Comparison of experimental and simulated transients for the experimental runs. The pressure history for one cycle
is shown along with the detailed model results for the same inputs. The middle row and bottom row in each sub figure shows
the outlet flow rate of the raffinate and extract product step, respectively. The symbols are from the experimental measurement
and the line is obtained from the detailed simulations.
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Figure 6.7: Comparison of experimental and simulated values of purity and recovery over 100 cycles for the Skarstrom cycle
from dry air. Open markers represent the experimental purity and recovery at each cycle, and solid lines is from the detailed
model simulation.
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6.9 Conclusions

In this study, the machine-assisted process learner and emulation framework (MAPLE)

was trained to learn from data obtained from a detailed model. The detailed model

simulated the performance of a lab-scale VSA rig, and the adsorbent inputs were

parametrized. A Latin Hypercube sampling strategy was used to sample input data,

including operating conditions and hypothetical adsorbent inputs. The trained model

is now adsorbent agnostic as it can predict the performance of any given adsorbent at

a given operating condition at a cyclic steady state. This was tested by carrying out

multi-objective optimizations for various performance objectives for two commercially

available adsorbents. The resulting optimized operating conditions for both adsor-

bents were used as inputs to the experimental lab-scale rig to confirm the predictions.

A sensitivity analysis was carried out on the MAPLE model predictions by varying

the isotherm fitting parameters and particle morphology—the results were used to

construct confidence intervals for the MAPLE model. The experimental profiles were

also compared to the detailed model results and fit the histories satisfactorily. Ad-

ditionally, the experimental performance was matched with the detailed model and

MAPLE model results and was comparable.

This study aimed to verify if the adsorbent agnostic model trained with only hy-

pothetical adsorbents could predict, with sufficient accuracy, the performance of a

commercial adsorbent. This was shown to be the case for various objectives and at

optimized conditions. This study shows that neural network models such as this one

can not only be used to predict the performance in-silico but can also be used to

target specific performance. This work shows an alternative approach to performing

expensive and time-consuming experimental runs currently used to optimize process

performance. Since these models can be trained for different input conditions such

as feed composition or feed temperature etc., coupled with instantaneous prediction,

these models can also be used for predictive control in the future.
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Chapter 7

Conclusions, Recommendations, &
Future Work

7.1 Conclusions

This thesis investigated various aspects of adsorption process design using analytical

data-driven techniques such as machine learning and artificial intelligence. The surro-

gate models obtained from such studies were used to predict, optimize, validate both

experimentally and using detailed simulations. In chapter 2, an extensive database of

adsorbents was screened, first using GCMC based in-silico prediction of equilibrium

characteristics on the adsorbents for CO2 and N2 gas. The predictions fit a Langmuir

isotherm model and were used as inputs to a detailed experimentally validated finite

volume-based model to predict adsorbent performance in a benchmark VSA process.

The study required over 32 million core years of computation to optimize and screen

over 1500 materials for the case of CO2 capture from post-combustion flue gas accu-

rately. In addition to this, the data obtained were analyzed using various data-driven

techniques to find underlying trends and to find a suitable screening model. A model

based on decision trees was shown to have high accuracy in predicting the better

adsorbents from the database. A list of twenty-nice adsorption metrics and geometric

parameters traditionally reported in the literature of adsorbent screening and show-

casing potential in adsorbents was analyzed for predictive capability. It was found

that non of the simplified metrics individually or in tandem did not predict the VSA
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performance with sufficient accuracy. It was shown that the energy consumption or

productivity of CO2capture with solid sorbents within a VSA system could not be

accurately predicted from equilibrium adsorption metrics alone and that full process

simulations are required.

In chapter 3, machine learning techniques were tested to accelerate full process

simulations and validated with experimental results. In this work, a slew of machine

learning and AI algorithms were evaluated for their ability to be used as predictive

surrogate models for full VSA simulations. In addition to this, an artificial neural

network model was trained to learn the internal bed profiles at cyclic steady-state

conditions. This trained model was used to predict the approximate cyclic steady

state in an optimization framework to accelerate full model performance. Both the

surrogate Opt. and CSS Opt. where shown to decrease the optimization load by a fac-

tor of 25×, and 6×, respectively. Additionally, both the surrogate model predictions

and the internal bed profiles were validated with lab-scale experimental data.

In chapter 4, an adsorbent agnostic framework was developed using artificial neural

networks to emulate a full PVSA process model. This was called the machine-assisted

process learner and emulator (MAPLE). The effect of the ANN architecture on pre-

diction accuracy was analyzed to find the best architecture. The accuracy of the

trained model was first tested using real-world adsorbents such as Zeolite 13X de-

tailed process simulations. The model was then used in an optimization framework

to perform constrained and unconstrained multi-objective process optimizations. The

results of MAPLE-based optimizations (MAPLE Opt.) were tested against detailed

model-based optimization for various case studies. The modelling and optimization

framework was validated using external literature. The modelling framework was

shown to learn from data derived from a purely hypothetical set of isotherm and op-

erating conditions and then predict the performance of actual real work adsorbents.

This tool can find its application in unsteady processes in nature to simulate, opti-

mize, and screen adsorbents for adsorption-driven processes. This model can also find
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applications in dynamic process control and model predictive control of adsorption-

driven processes.

In chapter 5, the machine-assisted process learner and emulator (MAPLE) frame-

work to find the practical limits of PVSA based carbon capture. A machine learning-

based model was trained to emulate a dynamic PVSA process model. The results

highlighted the various gaps in research for PVSA based carbon capture. The study

showed that PVSAs need to focus on higher feed compositions for practical implemen-

tation and realistic advantages over current benchmarks. The study also optimized

the hypothetical best adsorbents for different feed compositions and different con-

straints, such as recovery and pressures. The results also showed regions on the

adsorbent Henry’s constant space where the optimum adsorbents lay and showed

their isotherm characteristics.

In chapter 6, the experimental validation of the machine-assisted process learner

and emulator (MAPLE) framework was tested using a O2 generation process as a case

study. The detailed model was used to generate data using a sampled set of inputs

containing hypothetical isotherm inputs and operating conditions for a 4 step with

Light reflux and feed pressurization cycle. Two different adsorbents, namely LiX and

13X, were considered for this study. A series of process optimizations were carried out

for different objectives for both materials. The optimization results were consolidated,

and the operating conditions were used to drive the experimental campaigns. The

experimental results obtained were a close match to the generalized MAPLE model

predictions. The neural network model was used in an interpretive manner for the

first time in literature to visualize the performance landscape of VSA performance for

the two adsorbents. The results showed that the adsorbent agnostic MAPLE model

is very well suited to target required performance.
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7.2 Future Work

In addition, the material databases almost include more than 500,000 structures (both

experimental and hypothetical) that can be evaluated for different gas mixtures. Such

huge databases can be screened for best performers using machine learning models

such as MAPLE. Unsupervised/semi-supervised learning methods can be applied to

classify the databases’ materials into different clusters and know the underlying pat-

terns/distributions within the databases.

Further, supervised learning techniques can be used to map the structures and

material properties without the associated computational burdens of solving physi-

cal models. Models like MAPLE can generate computationally cheap process data

that allows the process designer to investigate the structure to process performance

relationship. A large amount of data generated during the process design is hard

to analyze since it is unstructured and unbalanced. Semi-supervised/unsupervised

algorithms can be utilized on unlabeled, unstructured data to find causal relation-

ships between the inputs and the final performance. Clustering algorithms can reduce

the high dimensionality of the inputs to reduce human intervention during sampling.

Large-scale adsorbent screening requires robust and fast optimization algorithms to

overcome issues such as local minima, etc. An area of further exploration could be

to test various optimization algorithms such as coordinate search or PSO to find

a more robust framework. The adsorbent agnostic framework can also be used in

steady-state process models to perform plant-wide optimization and explore hybrid

concepts, which were previously computationally restrictive.

In adsorption-driven carbon capture, the presence of water and other impurities

may affect the final process performance. Thus, the inclusion of water and other

gases in models becomes very important. Modelling water in detailed process models

increases the computations load of the detailed models. Models like MAPLE and

CSS Opt. can reduce the computational load of such complex simulations. With a
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fast CSS initialized detailed modelled, these studies could be carried out with relative

ease and with a high degree of accuracy. The identification and prediction of cyclic

steady-state profiles can predict new process cycles if sufficient data is collected.

Learning from bed profiles and hybrid AI modes also leads to the possibility of cycle

agnostic neural networks that create new and novel cycle sequences. Finally, neural

networks could correctly target optimized conditions to avoid expensive experimental

campaigns to optimize the process. This leads to the possibility of digital twinning

of the PSA process and predictive model control of unsteady-state processes.
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Appendix A: Supporting
information for: Prediction of
MOF performance in vacuum
swing adsorption systems for
post-combustion CO2 capture
based on integrated molecular
simulations, process optimizations,
and machine learning models.

A.1 Grand Canonical Monte Carlo Simulations

Grand Canonical Monte Carlo (GCMC) simulations were performed with an in-house
developed code [152] based on the DL POLY Classic code [153]. The material is repre-
sented with a 3×3×3 super cell with 3-dimensional boundary conditions. Interactions
between the gas molecules and the MOF framework are calculated as the sum of atom
pair Lennard-Jones and Coulomb potentials. The Lennard-Jones parameters for the
framework atoms were taken from the DREIDING [154] and when such parameters
were not available the Universal Force Field (UFF) [155] parameters were used. The
charges on the framework atoms were calculated using the REPEAT method, [156]
which fits partial atomic charges to best match a quantum mechanical (QM) elec-
trostatic potential (ESP). The QM ESPs were calculated using the Vienna Ab Initio
Simulation Package (VASP) [157, 158] using the PBE functional [159, 160] with a
plane-wave cutoff of 400 eV. To model the guest molecules, we used Garcia-Sanchez
parameters for CO2, [161] and an in-house parameters for N2 which have been opti-
mized to reproduce N2 adsorption isotherms of MOFs. [162] The N2 parameters are
presented Table A.1. Single componentCO2 and N2 isotherms were calculated at 298
K with 18 pressures between 0.01 and 1.20 bar. All simulations were performed using
the Peng-Robinson Equation of State [163]. These calculations were performed using
30,000 cycles equilibration cycles and 30,000 production cycle. A cycle consists of N
Monte Carlo steps where N is the number of guest molecules present at any given
point. For example, if a system adsorbed 100 guest molecules at equilibrium, 3 mil-
lion MC steps would be performed. This methodology has been shown to accurately
reproduce experimental isotherms [26, 67, 164].
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Atom bl (Åa) q(e) /kb (K) ρ (Å)

N 0.5500 -0.4820 39.966 2.4549

COM 0.0000 0.9640 0.000 0.0000

Table A.1: N2 potential parameters used in GCMC simulations. abl is the distance
of the atom to the molecular centre of mass (COM)

A.2 Validation of Competitive Isotherm Model

The VSA simulation code relies on inputs of dual-site Langmuir (DSL) isotherm and
uses a competitive DSL model to calculate competitive adsorption. The competitive
loadings for each guest are given by the equation A.1, which assumes that the stronger
binding sites for each guest will compete for the same binding sites. This assumption
was validated by comparing the competitive isotherms generated by this competitive
DSL model to isotherms generated using GCMC simulations with both gases. Fig-
ure A.1 shows the comparison between the competitive DSL model and these binary
simulations for a few of the top performing MOFs. The GCMC simulations and the
competitive DSL generated isotherms in good agreement with one another.

q∗i =
qsb,ibiPi

1 + ΣbiPi

+
qsd,idiPi

1 + ΣdiPi

(A.1)

bi = b0,ie
−∆Hb,i/RT (A.2)

di = d0,ie
−∆Hd,i/RT (A.3)

Where:

• qsb,i = saturation uptake for site 1

• b and d = Langmuir constants

• b0 and d0 = Temperature independent Langmuir Constant

• Px = Partial Pressure of component x

• ∆Hads = Isosteric Heat of adsorption

• ∆U = Change in internal energy

• R = Gas Constant

• T = Temperature

A.3 Removal of Toxic and Rare Atom Types

To reduce the set of materials being studied, a decision was made to remove elements
with high toxicity, such as mercury, as well as expensive and rare elements such as
platinum. The atom types considered in this study are: H, Li, B, C, N, O, F, Na,
Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Br, Zr, C, Sn, and I.
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Figure A.1: Loading as a function of the total pressure for a 15% CO2/85% N2 mix-
ture for binary GCMC simulations (circles) and the competitive dual-site Langmuir
isotherms (lines) fit using single component GCMC for a. PESTUD, b. LABGAY, c.
OPENON, and d. UFUMUD02.
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Model equations

Overall mass balance 1
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Wall energy balance ρwCp,w
∂Tw
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∂2Tw

∂z2
+ 2rinhin

r2out−r2in
(T − Tw)− 2routhout

r2out−r2in
(Tw − Ta)

Table A.2: Equations for modeling adsorption column dynamics.

A.4 Geometric Property Calculations

All geometric properties of the materials reported in this study were calculated using
the zeo++ software package [165].

A.5 VSA Simulator

The constitutive transport equations were obtained based on the following assump-
tions:

• Axially dispersed plug flow model was employed to represent the bulk gas flow

• The gas-phase obeys ideal gas law

• Particle size was assumed to be constant for all the MOFs

• The solid-phase mass transfer was described using a linear driving force (LDF)
model. Just as is the case for Zeolite 13X pellets, The mass transfer in the
crystals are assumed to be fast and resistance is controlled by molecular diffusion
in macropores.

• No radial gradients for concentration, temperature and pressure along the col-
umn

• Darcy’s law accounts for frictional pressure drop along the column in the axial
direction

• Thermal equilibrium exists between the gas-phase and solid-phase inside the
column

• The outer surface of the column is maintained at a constant temperature and
heat transfer occurs across the column wall

• The particle properties and bed voidage are uniform across the column
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Figure A.2: Typical operating configurations of the constituent steps in a P/VSA
cycle

Step z=0 z=L

OPEN-CLOSED
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Table A.3: Boundary conditions for the typical steps in a cyclic adsorption process.

157



Key Performance indicators

Energy
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kWhe
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Table A.4: Equations for the key performance indicators.

A.6 Parasitic Energy

A.6.1 VSA Energy

Ei represents the energy consumption in step i. The energy consumption Ei for
blowdown and evacuation steps represent the vacuum pump energy consumption
with a delivery pressure of 1 bar. In the above equation, a vacuum pump efficiency
of 72% was used.

A.6.2 Compression Energy Contribution

An additional compression term was added to the VSA simulator to include the
energetic requirement of compressing the outlet gas to 150 bar [26, 67, 165] for trans-
portation. An approach proposed in the literature is followed to compute energy
contribution towards multi-stage compression. The compression term is split into
two components (equation A.4): the energy required (ECompressor) to compressCO2 in
multiple stages up to 80 bar [166], and the energy required (EPump) to run the pump
to deliverCO2 at 150 bar and 313.15 K.

EnergyCompression = EnergyCompressor + EnergyPump (A.4)

In equation A.4, S represents the number of compression stages required to com-
press CO2 to pressure of 80 bar from an initial pressure of 1 bar. The value of S can
be calculated using equation A.5.

Ecomp = S
ntotalRT

ηcomp

γ − 1

γ
[Y

γ−1
γ − 1]dt (A.5)

S =
lnrT
lnri

(A.6)

ri =
PHigh

PLow

(A.7)

The variables rT and ri are the total compression ratio and the maximum com-
pression ratio achievable in a single stage. A single stage compressor is set to provide
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Figure A.3: Fitted plot of the average fluid density of CO2/N2 mixture as a function
of the mole fraction of CO2. Points represent the NIST values and the dotted line
represents the fit.

a maximum compression ratio of 2.518. A compressor efficiency of 85% was used in
this work. The second term in equation A.4 is calculated using,

EPump =
∆Pmtot

ηpumpρ
(A.8)

The variables mtot and η pump are the mass flow rate and pump efficiency. The
pump efficiency used for this calculation was 75% [19]. The ∆P term is the change
in pressure resulting from the use of the pump. The density of the supercritical fluid,
ρ, is the average density of the fluid in kg/m3 over the change in pressure and is
defined below as a function ofCO2 purity. The density of the supercritical fluid (ρ) in
equation A.8, can be calculated as a function of CO2 purity. To accurately determine
the average fluid density over the pressure ranges being tested, a quadratic equa-
tion was fit to density values obtained from the NIST Standard Reference Database
(equation A.8). The values in the equation being used were fit specifically for the
defined pressure range at 313.15 K. The fit is representative of a range of CO2 molar
ratios from 0.6 to 1 and is presented in Figure A.3. If any of these properties are
altered, fitting to an appropriate set of data would be required to calculate accurate
fluid densities.

A.7 Simulation Methodology

The column was initially saturated withN2 at 1 bar pressure and 25 ◦C. The partial
differential equations (PDEs) shown above were converted to ordinary differential
equations (ODEs) in time by discretizing the spatial terms using finite volume meth-
ods. The resulting ODEs were solved in MATLAB using ode23s solver. The cycles
were simulated until the system has reached a cyclic steady state (CSS). The process
was considered to attain CSS if the mass balance error for five consecutive cycles was
less than or equal to 0.5%. The parameters used for VSA simulations are given in
Table A.5.
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Parameter Type Value

Column properties

Bed length, L [m] Fixed 1.0

Column inner radius, rin [m] Fixed 0.1445

Column outer radius, rout [m] Fixed 0.1620

Particle voidage, ϵp [-] Fixed 0.35

Particle radius, rp [m] Fixed 1×10−3

Density of the column wall, ρw [kg m−3] Fixed 7,800

Bed voidage, ϵ [-] Fixed 0.37

Tortuosity factor, τ [-] Fixed 3.0

Properties and Constants

Effective heat conduction coefficient, Kz [J m−1 s−1 K−1] Fixed 0.0903

Thermal conductivity of the wall, Kw [W m−1 K−1] Fixed 16.0

Inside heat transfer coefficient, hin [W m−2 K−1] Fixed 8.6

Outside heat transfer coefficient, hout [W m−2 K−1] Fixed 2.5

Gas specific heat capacity, Cp,g[J kg−1 K−1] Fixed 1010.6

Adsorbed phase specific heat capacity, Cp,a [J kg−1 K−1] Fixed 1010.6

Wall specific heat capacity, Cp,w [J kg−1 K−1] Fixed 502.0

Adiabatic constant, γ [-] Fixed 1.4

Universal gas constant, R [m3 Pa mol−1 K−1] Fixed 8.314

Fluid viscosity, µ [kg m−1 s−1] Fixed 1.72×10−5

Molecular diffusivity, DM [m2 s−1] Fixed 1.60×10−5

Adsorbent specific heat capacity, Cp,s [J kg−1 K−1] Fixed 1070

Operating Conditions

Heat of adsorption of CO2, ∆UCO2 [kJ mol−1] Variable -20 to -42

Heat of adsorption of N2, ∆UN2 [kJ mol−1] Variable -5 to -18

Table A.5: Simulation parameters for VSA simulations
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Figure A.4: Effect of (a) adsorption step time (b) blowdown pressure on purity and
recovery. Symbols represent the pilot plant experiments while the lines represent the
model predictions. [75]

Figure A.5: Convergence of (a) mass balance error (b) CO2 purity and recovery after
the VSA process has reached CSS. LABGAY MOF with isotherm shown in Fig.A.1
(b) was used for this case study.

A.7.1 Validation of VSA model

The VSA model used in this work was validated using pilot-scale experiments. Fig-
ure A.4 represents the effect of adsorption time and blowdown pressure on the purity
and recovery of the CO2. As it can be seen from the figure, the model predictions are
matched well with the experimental CO2 purities and recoveries [75].

The VSA process is said to attain CSS when the mass balance error is less than 0.5%
for five consecutive cycles and there are no changes in column state variables. The
criteria for stopping the simulation is attaining the CSS. The performance indicators
for the VSA process viz. Purity, Recovery, Energy and Productivity are calculated
after CSS. For LABGAY MOF with isotherm shown in Fig. A.4 (b), the convergence
of mass balance error, purity and recovery as calculated by the model are shown in
Fig. A.5 and the operating parameters used were: tpress =20 s, tads =126 s, tbd =21
s, tevac =91 s, PI =0.15 bar, PL =0.02 bar. The axial profiles of CO2 solid phase
concentration, gas phase concentration and temperature across the column at the
end of each step in the VSA process after CSS condition was attained are shown in
Fig. A.6.

A.7.2 Grid-Search of Process Conditions

To provide an estimate of a material’s performance and allow for the identification
of high-performing materials without a full optimization of the process conditions,
a grid-search was performed on 3 of the process variables. A total of 1000 process
points were calculated for each material. The process parameters tested during this
grid-search are given in Table A.6.
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Figure A.6: Axial profiles of (a) CO2 solid phase concentration (b) CO2 gas phase
concentration (c) Temperature across the column at the end of each step in the
VSA process after the system reached CSS. LABGAY MOF with isotherm shown in
Fig. A.1 (b) was used for this case study.

Parameter Minimum Maximum Interval

Adsorption Time (tads), s 30 120 10

Blowdown Time (tblow), s 30 Fixed

Evacuation Time (tevac), s tads + 10 Fixed

Blowdown Pressure (Pblow), bar 0.06 0.15 0.01

Evacuation Pressure (Pevac), bar 0.03 Fixed

Feed Velocity (v0), ms−1 0.1 1 0.1

Table A.6: Values and ranges used in the grid-search
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Figure A.7: CO2 purity vs recovery obtained for LABGAY MOF during grid-search
simulations.

Parameter Minimum Maximum

Adsorption Time (tads)), s 20 200

Blowdown Time (tblow)), s 20 50

Evacuation Time (tevac), s 20 200

Blowdown Pressure (Pblow), bar 0.03 0.15

Evacuation Pressure (Pevac), bar 0.01 0.06

Feed Velocity (v0)), ms−1 0.1 2.0

Feed Temperature, K 293.15 328.15

Table A.7: Process parameter ranges allowed during the GA optimization.

A.7.3 Genetic Algorithm (GA)

A genetic algorithm (GA) was used to optimize all 7 process parameters to maximize
a material’s productivity, minimize the parasitic energy, and attain the minimum DoE
purity-recovery target (PRT) requirement of 95/90. GA is a powerful optimization
technique based off Darwinian evolution used for optimization in high dimensional
search spaces. These optimizations involve the generation and mating of individuals,
with the 7 process parameters (Table A.7) acting as optimization values, or ‘genes’.
Fitness values are calculated for each member in the population, and the most fit
individuals are carried forward to the next generation, whereas the remainder of the
next generation is generated by combining the genes of the high performers. To ensure
sampling of the whole search space, random mutations are also introduced after the
mating process.
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Figure A.8: CO2 recovery vs purity obtained for LABGAY MOF for 5 generations of
a genetic algorithm optimization.

Seeding is used in the GA where 10 candidate solutions (CSs) are selected randomly,
where CSs with lower fitness values are more likely to be selected. The rest of the
GA’s initial population was generated using Latin Hypercube Sampling23 selecting
CSs within the ranges described in Table S5. A population size of 100 was used. To
generate subsequent generations elitism was used where the top 5 most fit CSs from
the previous generation are passed unchanged into the new generation. The remaining
CSs are created by using a mating procedure where the parents are selected using a
roulette wheel selection based on their fitness function. Each parameter has a value
randomly selected that lies between each of the parents’ parameter values. After that
mutations are applied where each ‘gene’ has a 20% chance to be mutated. If a gene is
chosen to be mutated, its value can change up to 20% of the total range for that value,
shown in Table A.7 (i.e. up to 18 s if the value is the adsorption time). The new
generation is tested using the PSA simulator, at which point the procedure repeats.
This process continues until the top performing structure remains constant for 10
consecutive generations. Each material had GA optimization performed a minimum
3 times to ensure the search space is well sampled by the GA. The effectiveness of
this optimization procedure is demonstrated in Figure A.14, where the purity and
recovery values of each generation show a marked improvement as the number of
generations tested is increased. The poorest distribution of purity/recovery values is
seen in the 1st generation compared to the high purity/recovery values predicted by
the 22nd generation.

A.7.4 Objective Function

To achieve a multi-objective optimization a fitness function needed to be devised to
appropriately scale all target variables. The GA begins by optimizing the purity and
recovery while ignoring the productivity and parasitic energies. This step was found
to be essential during this study, as GAs attempted without this initial optimization
had great difficulty meeting the DoE requirements. The fitness function for this initial
optimization is calculated using a scaled distance function:
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Parameter Minimum Target Unit

Purity 95 100 %

Recovery 90 100 %

Parasitic Energy 250 135 kWh/t

Productivity 0.5 3.5 mol/m3s

Table A.8: Values used in the fitness function to scale the performance parameters.

Fitness =

√︄
PTarget − Pi

PTarget − PDOE

2

+
RTarget −Ri

RTarget −RDOE

2

(A.9)

Pi = purity at point i
Ri = recovery at point i
target = 100 %
DoE = Minimum value set by DoE
Once 20% of a generation’s population has met the DoE PRT, the GA switches

to a constrained energy/productivity optimization, with a penalty function for any
individuals in the population which do not meet the DoE targets. The new fitness
function used is:

Fitness=
√︂

ETarget−Ei

ETarget−EDOE

2
+

PrTarget−Pri
PrTarget−PrDOE

2
+ PErr +RErr

PErr = {ifPi ≤ PDoE, 10, 000× (PDoE − Pi)PErr = {ifPi ≥ PDoE, 0) (A.10)

RErr = {ifRi ≤ RDoE, 10, 000× (RDoE −Ri)

RErr = {ifRi ≥ RDoE, 0)(A.11)
Ei = parasitic energy at point i
Pri = productivity at point i
target = best possible energy/productivity
min = minimum value chosen to balance the fitness function
These fitness functions are distance functions which the GA attempts to minimize,

with the ideal value being 0. The denominators in the fitness function act to scale
each individual target variable to ensure that no one variable dominates the fitness
function. The error functions introduced in the Energy/Productivity optimization’s
fitness function act to constrain the fitness function so that points below the DoE
PRT are heavily penalized and therefore get rejected by the GA. The behavior of the
fitness values as a function of GA population is shown in Figure S8 for the LABGAY
MOF material. This figure shows a distinct improvement in the average fitness of
the population as the number of generations increases. The best candidate solution
for each generation (shown in blue diamonds) shows only minor improvement. This
can be explained by the seeding of the initial population providing a good guess of
the global minimum value, and therefore only minor improvement is made to those
candidate solutions over the course of the optimization.

165



Figure A.9: The average population fitness value (green circles) and the best can-
didate solution fitness values (blue diamonds) as a function of generation over the
course of a single optimization of LABGAY MOF.

Parameter Minimum Target Unit

Parasitic Energy 300 200 kWh/t

Productivity 1.0 3.0 mol/m3/s

Table A.9: Values used in the fitness function to scale the performance parameters.

A.7.5 Top 12 Materials

Table 1 of the main text describes balanced process points selected for each of the top
12 materials. The balanced points were those process points which met the 95/90-
PRT while having PE values below 250 kWh/MT CO2 and productivities greater
than Zeolite-13X (1.1 molCO2 m−3 s−1). The points were selected based on the
fitness function described by equation S41 with slightly modified boundaries. The
boundaries were updated once the GA’s were completed and reflect a better balance
of PE and productivity. These new boundaries are given in Table A.9.

A.7.6 Random Forest Decision Tree Modelling

Random forest models were built using decision trees generated with the scikit-learn
decision tree package in python 2.7.17 For these fittings, 2 classifications were used: 1)
MOFs which are able to meet the DoE Purity/Recovery Target (PRT) and 2) MOFs
which fail the DoE PRT. This target is the bare minimum requirement for material
to be a viable candidate for use in this separation and therefore the ability to predict
this property is crucial for the materials discovery process. All classifications were
performed using a rigid cut-off of 95% purity and 90% recovery was used. The data
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Figure A.10: Single component a) CO2 isotherms and b) N2 isotherms for the 12
materials in Table 2.1.

set consisted of 1632 MOF structures which had undergone a full grid-search or GA
optimization. Out of the total 1632 MOFs, only 392 materials met the DoE PRT.
This means that if one were to randomly select a material there is a 24.0% chance
it can meet the DoE PRT. These models were fit using the geometric descriptors
used are presented in Table A.10 as well as the conventional metrics fittings were
performed using the descriptors listed in Table 2.2 For each random forest model
fitting, the data set was randomized with 90% of the MOFs selected for training and
the remaining 10% set aside for validation. Each forest contained 21 decision trees,
each of which were fit at depths from 1 to 10. Selection of the depth used in the
model for each individual tree was done by selecting the depth which returned the
highest Matthews correlation coefficient (MCC) value given by equation S47 from a
five-fold cross validation. The decision to use MCC over other performance metrics
because it is designed for imbalanced datasets such the one used in the study. Once
each tree is fit to the optimal depth, the random forest model is then assembled, and
the validation set is tested. Each individual MOF in the validation set passes through
each tree in the forest and therefore gets classified 21 times. The random forest model
then considers the results of the 21 classifications and returns the classification that
appears most frequently for that MOF. For example, a MOF is fed into the random
forest and 8 of the 21 trees return a pass whereas the remaining 13 trees return a fail.
The model therefore determines that this material will fail the DoE PRT. Several
accuracy metrics can be used to measure the effectiveness of this classifier, all of
which give a different view of the data. Precision determined using equation S43, is a
representation percentage of materials classified as DoE materials using the decision
tree which can meet the DoE PRT. For example, a precision of 50% would mean that
only half of the materials the decision tree classifies as a DoE material will be able to
meet the PRT. Negative Predictive Value (NPV), given by equation S44, is analogous
the precision but considers the fraction of materials classified as failing to meet the
DoE PRT which are true negative values. Recall, given by equation S45, is a measure
of how accurately the decision tree model can find true positive values, or values
which meet the DoE. Overall accuracy given in equation S46 is a representation of
the model’s ability to correctly classify all materials. Finally the Matthews correlation
coefficient (MCC), given by equation S47, is an overall representation of the model’s
effectiveness, where a value of -1 means that the model is completely inaccurate, 1
means the model is perfectly accurate, and a value of 0 is returned when all points
are either assigned to a “pass” state or a “failed” state (for example TP + FP = 0
or TN + FN = 0).

Precision =
TP

(TP + FP )
× 100% (A.12)
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Geometric Descriptors Units

Maximum Accessible Pore Diameter Å

Maximum Channel Diameter Å

Maximum Pore Diameter Å

Gravimetric Surface Area m2/g

Volumetric Surface Area m2/cm3

Void Fraction [-]

Free Volume cm3/g

Crystal Density kg/m3

Table A.10: List of all geometric descriptors used in decision tree fittings.

NV P =
TN

(TN + FN)
× 100% (A.13)

Recall =
TP + TN

(TP + FN)
× 100% (A.14)

Overallaccuracy =
TP

TN + FN + TP + FP
× 100% (A.15)

MCC =
((TP × TN)− (FP × FN))√︁

((TP + FP )(TP + FN)(TN + FP )(TN + FN))
(A.16)

A.7.7 Univariate Analysis

In this section, statistical analysis was performed for all the MOFs that were con-
sidered for grid-search simulations. The univariate probability distributions based on
different metrics and structural properties were obtained to identify the characteris-
tics of different classes of materials i.e. 1) Top 150 (coded in black); 2) DOE (coded
in blue) and; 3) Non-DOE (coded in red). Fig. S10 compares the univariate proba-
bility distributions of different metrics for three classes of materials. The univariate
probability distributions are obtained using kernel (Gaussian) density estimation in
MATLAB.18 The kernel density estimator is given by:

fh(x)ˆ =
1

nh
Σn

j=1K
x− xi

h
(A.17)

Where x1, x2, x3..xn are the data samples from an unknown distribution, n is the
sample size and K is the normal (Gaussian) kernel smoothing function employed in
this analysis; h is the default bandwidth which is theoretically optimal for estimating
normal distribution densities.19 The black shaded area represents the Top 150 MOFs;
blue shaded area represents the MOFs that met 95/90 PRT requirements; and the
red shaded area represents the MOFs that did not meet 95/90 PRT requirements. As
it can be seen from the Fig. A.11, all the three curves overlap for most of the metrics,
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Figure A.11: Comparison of univariate probability distributions of different metrics
for three classes of materials, i.e. 1) Top 150 (shaded in black) 2) DOE (shaded in
blue) 3) Non-DOE (shaded in red)
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Figure A.12: Comparison of univariate probability distributions of structural proper-
ties for three classes of materials, i.e. 1) Top 150 (shaded in black), 2) DOE (shaded
in blue), 3) Non-DOE (shaded in red)

indicating that there is no clear distinction for these three classes of materials. Some
of the metrics like Separation potential and Notaro show targeted regions for achieving
good MOFs but cannot guarantee because the targeted regions are contaminated with
poor performing MOFs as well.

Figure A.12 represents the univariate probability distributions of structural proper-
ties for the three classes of materials. Similar to Fig. S10, there is no clear distinction
among the curves indicating that the desired characteristics cannot be targeted during
the synthesis.

A.7.8 Linear Discriminant Analysis (LDA)

Linear discriminant analysis was performed on up to 2 metrics listed in Table 1. The
goal of the classifications was to attempt the prediction of whether a material can
meet the DoE PRT using the data gathered from the grid-search. This analysis was
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Figure A.13: Best accuracy points from LDA analysis for all 22 performance metrics,
with the numbers on the axes corresponding to the metrics in Table1. The diagonal
on these matrices contain the 1-dimensional LDA results for each parameter and the
off-diagonal entries contain the 2-dimensional LDA model results.

performed on 1632 materials in which 370 (22.7%) met the DoE PRT. Since 77.3% of
the data set failed the DoE PRT, there was a data imbalance which would cause the
LDA to always set every material to fail, resulting in an overall accuracy of 77.3%.
To improve the classification of these models, a cost of misclassification was added
to the “pass” cases to optimize the Matthews correlation coefficient (MCC) instead
of the overall accuracy. The cost was varied from 0 to 1, and the value with the
highest MCC was chosen for each metric, or combination of metrics. This improved
the models, allowing for a more balanced and representative separation in the data.
Figure A.13 shows all accuracy values for LDAs consisting of a single metric along the
diagonal, and the combinations of metrics in the off-diagonal region of the matrix.
Figure A.14 shows MCC values, Figure S14 shows the precision values, and Figure
S15 show the recall values for those same metrics at the best MCC point. Figure
S16a, b, c, and d present the, accuracies, MCC values, precision values, and the recall
values for the geometric properties, respectively.

A.7.9 Principal Component Analysis (PCA)

Kernel Principal Component Analysis (PCA) allows us to eliminate some of the fea-
tures from the descriptor matrix that have a very small variance, and thus are not
very important for the description of a given dataset. Moreover, PCA can be used
for clear and more understandable visual representation, because it is very convenient
to visualize data in two dimensions. Thus, we have performed PCA of the process
simulation data described by a set of 24 parameters (the features) and collected for
1550 (number of samples) experimental Metal Organic Frameworks (MOFs). Note
that none of the geometrical descriptors have been included in that set of 24 parame-
ters. Further, all MOFs in our data set belong to one of the three classes: MOFs that
do not meet the 95/90 purity-recovery requirements, MOFs that meet 95/90 purity-
recovery targets but whose parasitic energy is above 257 kWh/t CO2 or 925.2 kJ/kg
CO2, and MOFs that meet 95/90 purity-recovery targets whose parasitic energy is
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Figure A.14: Best MCC points from LDA analysis for all 22 performance metrics,
with the numbers on the axes corresponding to the metrics in Table1. The diagonal
on these matrices contain the 1-dimensional LDA results for each parameter and the
off-diagonal entries contain the 2-dimensional LDA model results.

Figure A.15: Precision for the best MCC points from LDA analysis for all 22 per-
formance metrics, with the numbers on the axes corresponding to the metrics in
Table1. The diagonal on these matrices contain the 1-dimensional LDA results for
each parameter and the off-diagonal entries contain the 2-dimensional LDA model
results.
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Figure A.16: Number of 95/90-PRT MOFs identified out of 392 for the best MCC
points from LDA analysis for all 22 performance metrics, with the numbers on the
axes corresponding to the metrics in Table1. The diagonal on these matrices contain
the 1-dimensional LDA results for each parameter and the off-diagonal entries contain
the 2-dimensional LDA model results.

Figure A.17: Results from the 1 and 2-dimensional LDA analysis for the 6 structural
properties. The metric numbers correspond to the metrics in Table 1. These plots
present a) the overall accuracy [%] of the models, b) the MCC × 100 values of the
models, c) the precision [%] of the models, and d) the recall [%] of the models. The
diagonal on these matrices contain the 1-dimensional LDA results for each parameter
and the off-diagonal entries contain the 2-dimensional LDA model results.
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Figure A.18: Results from the 1 and 2-dimensional LDA analysis for isotherm pa-
rameters showing a) the overall accuracy of the models, b) the MCC of the models,
c) the Precision of the models, and d) the number of 95/90 PRT MOFs identified by
the models. The diagonal on these matrices contain the 1-dimensional LDA results
for each parameter and the off-diagonal entries contain the 2-dimensional LDA model
results.
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Figure A.19: Kernel PCA plots for materials separated by a) parasitic energy, and
b) productivity where blue points represent MOFs which failed the DoE PRT, red
points are materials which meet the PRT and the best points are worse than the
Pe/Prod median value, and green are materials which meet the PRT and whose best
points outperform the median value.

below 257 kWh/t CO2. The mentioned classes are shown in Figure S18 as blue, red
and green circles, respectively, in the space of the first two principal components.
The PCA features are dimensionless and constructed from linear combinations of all
metrics.

As we can see, the three classes of MOFs are not distinguishable and are on top
of each other. To investigate further, the PCA was performed on one the materials
which met the DoE PRT to determine whether this method could distinguish the two
remaining classes of materials. This analysis was performed for both the Parasitic
Energy, the results of which are shown in Figure 3c, and for the Productivity shown in
Figure A.20. For both the parasitic energy and the productivity, this analysis showed
that the PCA is not able to distinguish between the two classes, indicating that the
set of descriptors used in this analysis are not suitable for use in predicting these two
valuable industrial performance metrics.

A.7.10 Machine Learning Models for Parasitic Energy and
Productivity

The objective of this work was to determine whether the parasitic energies or produc-
tivities of the MOF materials optimized for post-combustion PSA capture could be
predicted using conventional metrics and isotherm parameters. This was attempted
using three different techniques: support vector regression (SVR), gradient boosted
decision tree regression (GBR), and an artificial neural network regression (NNR).
The scikit-learn python package was used for all three methods.

The data set for this work was pulled from the original set used in the fitting of our
random forest classifiers for the prediction of a material’s ability to meet the DoE-
PRT. The full list of descriptors used can be found in Table 1, lifted verbatim from the
paper’s manuscript, with the addition of the Dual-Site Langmuir parameters for CO2
and N2 for each material. Among the 1022 materials which have been fully optimized,
482 were able to meet the DoE-PRT. Of those 482 materials, 47 were removed since
they were materials whose isotherm parameters were found in literature and whose
cifs we do not have and as a result no geometric descriptors were available for these
structures. The fittings were therefore performed on the remaining materials, with
the best energy and best productivities selected given the DoE constraints. The data
was randomly shuffled and split into training and test sets with 75% of the data being
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Figure A.20: Kernel PCA plots for materials separated by productivity where red
points are materials which meet the PRT and the best points are worse than the
Pe/Prod median value, and green are materials which meet the PRT and whose best
points outperform the median value.

used for training. The data was shuffled once upon the code’s import of the data sets,
however each time the code is rerun the data is re-shuffled.

5-Fold Cross Validation

A 5-fold cross validation was implemented for optimizing the hyper parameters of
the SVR and GBR fittings. This was done by splitting the training set into 5 equal
sets. One of the sets was then put aside for validation and the model was fit using
the remaining 4 parts. This process was then repeated 5 times, allowing each of the
5 sets to be used once as the validation set. The reported cross validation scores are
the averages of the 5 fittings, and the error bars represent the standard deviations of
those scores. This method was used to select the best hyperparameters for the model.
Once the parameters with the highest R2 in the cross-validation were identified, the
model was then re-fit using those hyperparameters on the full training set.

Support Vector Regression Fitting

The support vector regression was performed using the scikit-learn SVR package.
Fittings were attempted with all available pre-programmed kernels (rbf, polynomial,
linear, and sigmoid) with two key hyperparameters: Gamma and tolerance. The
‘auto’ function for selecting the Gamma parameter was used. The tolerance parameter
was then tested over a range of 1.0×10−10 to ×105 , calculating the Pearson R2 value
for the training set, the test set, and the 5-fold cross validation. The highest R2 values
for the Parasitic Energy and was 0.12 whereas productivity did not exceed 0.1, both
utilizing the rbf kernel.
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Figure A.21: The GBR performance results showing the 5-fold cross-validation Pear-
son R2 (green), the test set R2 values (blue), and the Training Set R2 (red) for a) the
Parasitic Energy using a min sample size of 4 and a learning rate of 0.01, and b) the
productivity using the min sample size of 4 and a learning rate of 0.1.

Gradient Boosted Decision Tree Regression

Training of the GBR models was performed in a similar fashion to the SVR models
and was attempted using all four pre-programmed loss function. Out of the available
loss functions, the best results were obtained using the Huber loss function. For the
GBR models, three hyperparameters were varied: min sample split, learning rate, and
maximum tree depth. The min sample split, which is defined as the minimum number
of samples on a node of the decision tree needed for any splitting to be attempted,
was ranged from 2 to 10 with the best results obtained at a value of 4. A value of 4
for this hyperparameters means that if there are fewer that 4 samples on a node of
the decision tree, the GBR code will not attempt to further separate those samples
and the branch of that tree will end. The learning rate, which determines the size of
the step of the along the gradient the optimizer takes, was varied from a value of 1
to 1.0×10−5 with the best results obtained at 0.01. The third hyperparameter, the
maximum depth was ranged from 1 to 10, with the best results obtained between 4
and 6. The best model fit for the PE based on the 5-fold cross-validation had a test
set R2 of approximately 0.41. For the productivity, the best model obtained yielded
a test set R2 of approximately 0.18.

Artificial Neural Network Regression

The sklearn NNR models were tested using all pre-programmed optimizers, including
the Adam optimizer, as well as all pre-programmed activation functions. The learning
rate was set to constant with a validation fraction of 0.1 and the batch-size was set
to auto. The best results obtained from these fittings was a test set R2 value of 0.1,
using the Adam optimizer, the Relu activation function, and a learning rate of 0.01.

Effect of the Diffusion Coefficient

Industrial PSA units require a constant flow of gas through the column. As a result,
the separations are dependant on the kinetics of adsorption. The rate limiting step
of these kinetics is the macropore diffusion in structured Zeolite-13X [114]. Since the
formation of these macropores is a result of the pelletization of nanoporous materials
using a binder, it was assumed that all materials studied here-in undergo a compa-
rable pelletization process. This assumption was made due to a lack of experimental
data relating to macropore diffusion in structured MOFs. The diffusion coefficient
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Figure A.22: Plots of the a) Productivity, b) Parasitic Energy, c) Purity, and d) Re-
covery as a function of feed velocity for different orders of magnitude of the macropore
diffusion coefficient.

controlling the rate limiting step was calculated using the concentration of the gas
components in each section of the column. This coefficient based on a molecular
diffusivity of 1.2×10−5 m2/s in Zeolite-13X [114]. To validate this approximation, a
sensitivity analysis was performed on IISERP-MOF2. Although no data is available
relating to the macropore diffusion in IISERP-MOF2, the micropore diffusion coeffi-
cient has been found to be 2 orders of magnitude larger than that of Zeolite-13X. The
diffusion coefficient was tested across 6 orders of magnitude and a one-dimensional
search was performed using the best parasitic energy process point, varying only the
feed velocity from 0.9 to 1.4 m/s. Based on the results of this sensitivity analysis
presented in Figure A.21, we see a minimal effect on the results when the diffusion
coefficient is increased, and we see a dramatic drop in performance when this value
is decreased. This indicates that using the diffusion coefficient of Zeolite-13X is a
valid approximation provided the material being tested has a macropore diffusion
coefficient with the same order of magnitude as that used Zeolite-13X or greater.

A.8 Vacuum Pump Efficiencies

The vacuum pump efficiency used in our simulations was 72%. This value is on the
higher end of the range of commercially available vacuum pumps, which range in
efficiency from 50% to 80%. Changing this efficiency has a direct impact on the PSA
Work term in the parasitic energy, as this is the step which utilizes vacuum pumps.
As such, changing this efficiency will impact on our genetic algorithm optimization
which may result in different optimal process points. To test this, we re-ran GA
optimizations on IISERP-MOF2 using an efficiency of 50%. The results of this opti-
mization yielded a different set of best process points. This means that to ensure a
material’s top performance, these process points would require re-optimization if the
vacuum pump efficiencies differ.

178



Appendix B: Supporting
information for: Experimentally
validated machine learning
frameworks for accelerated
prediction of cyclic steady state
and optimization of pressure swing
adsorption processes.

B.1 Process Modeling

B.1.1 Model Equations

Model equations

Overall mass balance 1
P

∂P
∂t

− 1
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∂T
∂t

= −T
P

∂
∂z

(︁
P
T
v
)︁
− 1−ϵ

ϵ
RT
P

ncomp∑︁
i=1

∂qi
∂t

Component mass balance ∂yi
∂t

+ yi
P

∂P
∂t

− yi
T

∂T
∂t

= T
P
DL

∂
∂z
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P
T

∂yi
∂z

)︁
− T

P
∂
∂z

(︁
yiP
T
v
)︁
− RT

P
1−ϵ
ϵ

∂qi
∂t

Mass transfer rate ∂qi
∂t

= ki (q
∗
i − qi); ki =

ci
q∗i

15ϵPDP

r2P

Pressure drop −∂P
∂z

= 150
4

1
r2p

(︁
1−ϵ
ϵ

)︁2
µv

Column energy balance

[︃
1−ϵ
ϵ

(︃
ρsCp,s + Cp,a

ncomp∑︁
i=1

qi

)︃]︃
∂T
∂t

= Kz

ϵ
∂2T
∂z2

− Cp,g

R
∂
∂z
(vp)− Cp,g

R
∂P
∂t
−

1−ϵ
ϵ
Cp,aT

ncomp∑︁
i=1

∂qi
∂t

+ 1−ϵ
ϵ

ncomp∑︁
i=1

(︁
(−∆Hi)

∂qi
∂t

)︁
− 2hin

ϵrin
(T − Tw)

Wall energy balance ρwCp,w
∂Tw

∂t
= Kw

∂2Tw

∂z2
+ 2rinhin

r2out−r2in
(T − Tw)− 2routhout

r2out−r2in
(Tw − Ta)

Table B.1: Equations for modeling adsorption column dynamics.
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B.1.2 Boundary Conditions

Figure B.1: Typical operating configurations of the constituent steps in a PSA cycle

Step z=0 z=L

OPEN-CLOSED

P |z=0 = P2 + (P1 − P2)e
(−αpt)

DL
∂yi
∂z

⃓⃓
z=0

= −v|z=0 (yi,feed − yi|z=0)

∂T
∂z

⃓⃓
z=0

= −ϵ v|z=0 ρgCpg(Tfeed − T |z=0)

Tw|z=0 = Ta

∂yi
∂z

⃓⃓
z=L

= 0

∂P
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Tw|z=L = Ta

OPEN-OPEN

v|z=0 = vfeed

DL
∂yi
∂z

⃓⃓
z=0

= −v|z=0 (yi,feed − yi|z=0)

∂,T
∂z

⃓⃓
z=0

= −ϵ v|z=0 ρgCp,g(Tfeed − T |z=0)

Tw|z=0 = Ta

P |z=L = P2

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Tw|z=L = Ta

CLOSED-OPEN

v|z=0 = 0

∂yi
∂z

⃓⃓
z=0

= 0

∂T
∂z

⃓⃓
z=0

= 0

∂P
∂z

⃓⃓
z=0

= 0

P |z=L = P1 + (P2 − P1)e
(−αpt)

∂yi
∂z

⃓⃓
z=L

= 0

∂T
∂z

⃓⃓
z=L

= 0

Tw|z=L = Ta

Table B.2: Boundary conditions for the typical steps in a cyclic adsorption process.
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B.1.3 Simulation Parameters

Isotherm parameter CO2 N2

b0 [m3 mol−1] 3.93×10−7 3.13×10−6

d0 [m3 mol−1] 1.25×10−7 3.13×10−6

∆Ub [J mol−1] -40,981 -15,715

∆Ud [J mol−1] -34,188 -15,715

qsb [mol m−3] 2,768 2,768

qsd [mol m−3] 2,758 2,768

Table B.3: Dual-site Langmuir isotherm parameters for CO2 and N2 on Zeochem
Zeolite 13X [36]
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Figure B.2: Characterization of adsorption equilibria. a) CO2 isotherms with symbols
representing experimentally measured values and the lines showing the DSL fit. b) N2

isotherms with symbols being experimentally measured values and the lines showing
the DSL-EES fit. c)Competitive equilibria of CO2 and N2 at 1.01 bar and 22◦C. The
symbols were measured from DCB experiments. The lines show the calculated values
from the DSL-EES isotherm. Reproduced from Perez et al. [36]
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Figure B.3: The input sample distribution of the different unique operating conditions, namely, tADS, PINT, PLOW, and vFEED,
for the 4-step cycle with LPP
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Figure B.4: The output distribution of the key performance indicators for the 4-step cycle with LPP obtained from the LHC
sampling from Fig. B.3, i.e. Purity, Recovery, Productivity, and Energy. Note that the sub-plots in the diagonal are the
univariate distributions for the key performance indicators.
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Figure B.5: Cyclic steady state profiles of the state variables at the end of the cycle
steps for the experimental run B from Table 3; the dashed lines are predictions from
the ANN surrogate model and the solid lines are the detailed model simulations. a)
CSS profiles of the gas phase composition of CO2, the symbols are the CO2 concen-
trations measured at theZ = 0 and Z = L end of the column at the end of each cycle
step. b) CSS profiles for the solid state loading for CO2 d) CSS profiles for the solid
state loading for N2. d) CSS profiles for the bed temperature, the symbols are the
temperatures measured at TC-1, TC-2, TC-3 along the column at the end of each
step averaged over the last 5 cycles.
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Figure B.6: Cyclic steady state profiles of the state variables at the end of the cycle
steps for the experimental run C from Table 3; the dashed lines are predictions from
the ANN surrogate model and the solid lines are the detailed model simulations. a)
CSS profiles of the gas phase composition of CO2, the symbols are the CO2 concen-
trations measured at theZ = 0 and Z = L end of the column at the end of each cycle
step. b) CSS profiles for the solid state loading for CO2 d) CSS profiles for the solid
state loading for N2. d) CSS profiles for the bed temperature, the symbols are the
temperatures measured at TC-1, TC-2, TC-3 along the column at the end of each
step averaged over the last 5 cycles.
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Appendix C: Supporting
information for: Generalized,
Adsorbent-agnostic, artificial
neural network framework for
rapid simulation, optimization, and
adsorbent screening of adsorption
processes

C.1 Process Modeling

C.1.1 Model Equations

Model equations

Overall mass balance 1
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Table C.1: Equations for modeling adsorption column dynamics.
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C.1.2 Boundary Conditions

Figure C.1: Typical operating configurations of the constituent steps in a P/VSA
cycle

Step z=0 z=L

OPEN-CLOSED

P |z=0 = P L + (PH − PL)e
(−αPRESSt)

DL
∂yi
∂z

⃓⃓
z=0

= −v|z=0 (yi,F − yi|z=0)

∂T
∂z

⃓⃓
z=0

= −ϵ v|z=0 ρgCp,g(TF−T|z=0)

Tw|z=0 = Ta

∂yi
∂z

⃓⃓
z=L

= 0

∂P
∂z

⃓⃓
z=L

= 0
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∂z

⃓⃓
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= 0

Tw|z=L = Ta

OPEN-OPEN
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CLOSED-OPEN (BLO)
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P |z=0 = PINT + (PL − PINT)e
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Table C.2: Boundary conditions for the typical steps in a cyclic adsorption process.
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C.1.3 Key process performance indicators (PIs)

Key Performance indicators

Purity [%]
nEVAC
CO2

nEVAC
CO2

+nEVAC
N2

× 100
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[︂
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]︂
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[︂
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]︂
EADS + EBLO + EEVAC
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1
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ϵπr2in

γ
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dt

EEVAC
1
η
ϵπr2in

γ
γ−1

∫︁ t=tEVAC

t=0
(vP (t))

[︃(︂
Patm

P (t)

)︂ γ−1
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]︃
dt

Table C.3: Equations for the key performance indicators.

Table C.4: Single Site Langmuir (SSL) isotherm parameters for the adsorbents in the
literature [15]. Only those adsorbents that met the criteria for representation by an
SSL isotherm are provided here. Some duplicate occurences refer to different data
sources reported in the original paper.

Adsorbent qsat b0,CO2 b0,N2 −∆UCO2 −∆UN2

[molm−3] [m3mol−1] [m3mol−1] [kJmol−1] [kJmol−1]

MgMOF-74 5331.29 6.38×10−7 2.06×10−6 33.73 18.32

UTSA-16 8385.87 6.15×10−7 2.06×10−6 30.57 9.91

Zeolite 13X 4960.70 2.50×10−6 2.70×10−6 31.19 16.38

MOF-177 800.00 4.66×10−6 1.27×10−4 20.00 8.00

NAB 7477.28 2.53×10−7 5.94×10−6 25.71 8.55

h8291835 5278.94 5.98×10−7 1.46×10−5 24.03 8.00

h8155527 4300.50 2.13×10−7 1.17×10−5 30.67 8.00

CaX 7745.77 6.52×10−7 8.50×10−5 32.52 8.00

MgX 8026.19 2.15×10−7 3.27×10−7 33.80 20.00

NaA 5112.23 3.09×10−6 2.83×10−5 27.59 8.00
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Table C.4 continued from previous page

Adsorbent qsat b0,CO2 b0,N2 −∆UCO2 −∆UN2

[molm−3] [m3mol−1] [m3mol−1] [kJmol−1] [kJmol−1]

NaX 8125.71 2.82×10−7 1.04×10−5 35.88 12.65

PS-MFI 6322.72 2.08×10−6 5.12×10−7 23.71 19.74

Zn-MOF-74 12000.00 4.07×10−6 1.00×10−5 23.02 10.94

Co-MOF-74 10223.22 1.19×10−7 3.82×10−5 34.02 9.88

Ni-MOF-74 8510.18 4.63×10−6 1.54×10−6 25.20 20.00

MOF-177 880.55 5.07×10−6 7.22×10−5 20.00 8.74

CuBTC 11342.63 2.87×10−7 3.65×10−6 27.27 12.60

mmen-CuBTTri 5242.98 1.18×10−8 4.28×10−7 40.39 17.72

ZIF-68 5126.00 1.79×10−6 3.16×10−6 21.58 12.86

ZIF-69 5850.63 3.76×10−6 8.48×10−6 20.01 10.68

ZIF-70 2452.20 4.90×10−6 1.03×10−5 20.00 11.45

ZIF-78 3654.30 3.04×10−6 1.78×10−5 24.11 10.75

ZIF-79 3339.58 1.49×10−6 6.78×10−6 23.46 12.06

ZIF-81 4359.92 1.88×10−6 7.90×10−6 23.00 11.50

ZIF-82 4033.62 2.87×10−6 9.17×10−6 22.40 11.15

PPN-4 800.00 4.38×10−6 1.24×10−4 20.00 8.00

PPN-6-SO3H 3852.00 1.39×10−6 3.01×10−5 25.30 8.00

ZIF-36-CAG 2970.81 3.21×10−7 3.84×10−6 45.00 20.00

ZIF-39-DIA 9811.80 1.00×10−7 5.80×10−7 26.51 13.82

ZIF-39-ZNI 2111.13 8.01×10−8 6.80×10−7 27.14 19.76

ZIF-116-MER 10718.71 1.89×10−6 1.33×10−5 20.16 9.02

HMOF-MOF-5 875.51 7.86×10−6 1.52×10−4 20.02 8.00

HMOF-16 11762.36 1.13×10−6 9.68×10−6 21.35 8.00

HMOF-27 845.91 5.57×10−6 1.73×10−4 20.00 8.00

HMOF-96 906.68 6.17×10−6 1.67×10−3 20.00 8.00

HMOF-602 2605.99 3.50×10−6 5.93×10−5 20.05 8.00

HMOF-972 848.34 7.02×10−6 1.64×10−4 20.00 8.00
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Table C.4 continued from previous page

Adsorbent qsat b0,CO2 b0,N2 −∆UCO2 −∆UN2

[molm−3] [m3mol−1] [m3mol−1] [kJmol−1] [kJmol−1]

HMOF-992 6894.91 1.62×10−6 1.52×10−5 20.00 8.00

HMOF-1041 855.48 7.34×10−6 1.38×10−4 20.00 8.00

Table C.5: Comparison of DOE classification and minimum energy calculations of
MAPLE with those from Khurana and Farooq . [15]. A flag of “1” represents that
the material can satisfy DOE target, while a“0” indicates that it cannot. Note that the
Detailed model results from Khurana and Farooq use a dual-site Langmuir isotherm
to describe the equilibria, whereas the MAPLE-Opt. uses a single-site Langmuir
fitted to the the data generated using the dual-site Langmuir parameters provided by
Khurana and Farooq.

Adsorbent

MAPLE-Opt. Detailed-Opt.

DOE Energy DOE Energy

[1 0] [kWhe/tonne CO2 cap] [1 0] [kWhe/tonne CO2 cap]

MOF-177 0 0 0 1

NAB 1 124.24 1 123.41

h8291835 1 138.36 1 136.76

h8155527 1 121.6 1 117.44

CaX 1 192.6 1 189.21

MgX 1 158.32 1 156.61

NaA 1 133.17 1 13N.51

NaX 1 176.16 1 173.73

PS-MFI 1 183.4 1 216.57

Zn-MOF-74 1 168.71 1 162.14

Co-MOF-74 0 0 0 1

Ni-MOF-74 0 0 0 1

MOF-177 0 0 0 1

CuBTC 1 177.45 1 161.11
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Table C.5 continued from previous page

Adsorbent

MAPLE-Opt. Results from the literature [15]

DOE Energy DOE Energy

[1 0] [kWhe/tonne CO2 cap] [1 0] [kWhe/tonne CO2 cap]

mmen-CuBTTri 1 0 1 131.65

ZIF-68 1 153.6 1 155.26

ZIF-69 1 156.74 158.27

ZIF-7N 0 0 1 181.31

ZIF-78 1 152.3 1 146.64

ZIF-79 1 158.17 1 151.51

ZIF-81 1 154.49 1 148.54

ZIF-82 1 149.16 1 141.17

PPN-4 0 0 0 0

PPN-6-SO3H 0 0 1 129.63

ZIF-36-CAG 1 217.17 1 188.44

ZIF-39-DIA 1 157.12 1 136.23

ZIF-39-ZNI 0 0 0 0

ZIF-116-MER 1 189.53 1 218.57

HMOF-MOF-5 0 0 0 0

HMOF-16 1 218.14 1 139.84

HMOF-27 0 0 0 0

HMOF-96 0 0 0 0

HMOF-6N2 0 0 0 0

HMOF-972 0 0 0 0

HMOF-992 1 164.79 1 195.89

HMOF-1N41 0 0 0 0

192



100

95

90

85

80

75

70

Pu
rit

y 
[%

]

0.180.160.140.120.100.080.06
yF [-]

 MAPLE 
 Detailed model

a)
100

90

80

70

60

50

R
ec

ov
er

y 
[%

]
0.180.160.140.120.100.080.06

yF [-]

 MAPLE
 Detailed model

b)

1.0

0.8

0.6

0.4

0.2

Pr
od

uc
tiv

ity
 [m

ol
 C

O
2 /

 m
3  a

ds
 /s

]

0.180.160.140.120.100.080.06
yF [-]

 MAPLE 
 Detailed model

c)
350

300

250

200

150

En
er

gy
 [k

W
h e/t

on
ne

 C
O 2

 c
ap

]

0.180.160.140.120.100.080.06
yF [-]

 MAPLE
 Detailed model

d)

Figure C.2: Parametric study showing the variation of key performance indicators a)
CO2 Purity b) CO2 Recovery c) Productivity d) Energy for Zeolite 13X as a function
of intermediate pressure yF. Operating parameters tADS[s]: 92.4, P INT[bar]: 0.08,
P L[bar]: 0.03, vF[m s−1]: 0.64. Solid lines show the results from MAPLE surrogate
framework and symbols correspond to the detailed model results, the shaded area
represents a 2% error band.
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Figure C.3: Distribution of operating conditions used in the training set. A total of
21000 sample’s are shown here.
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Figure C.4: Distribution of CO2 (top) and N2 (bottom) isotherms used in the training
set.
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Figure C.5: The effect of neural network architecture on model prediction accuracy:
Test R2

Adj for Purity is shown as a function of the training-set size a) The effect of
number of neurons and training samples on R2

Adj b) The effect of number of hidden
layers. Ten neurons were used in each hidden layer. The test-set contains 1000
samples.
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Figure C.6: The effect of neural network architecture on model prediction accuracy:
Test R2

Adj for Recovery is shown as a function of the training-set size a) The effect of
number of neurons and training samples on R2

Adj b) The effect of number of hidden
layers. Ten neurons were used in each hidden layer. The test-set contains 1000
samples.
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Figure C.7: The effect of neural network architecture on model prediction accuracy:
Test R2

Adj for Energy is shown as a function of the training-set size a) The effect of
number of neurons and training samples on R2

Adj b) The effect of number of hidden
layers. Ten neurons were used in each hidden layer. The test-set contains 1000
samples.
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Figure C.8: The effect of neural network architecture on model prediction accuracy:
Test R2

Adj for Productivity is shown as a function of the training-set size a) The
effect of number of neurons and training samples on R2

Adj b) The effect of number
of hidden layers. Ten neurons were used in each hidden layer. The test-set contains
1000 samples.
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Appendix D: Supporting
information for: Practically
Achievable Process Performance
Limits for Pressure-Vacuum Swing
Adsorption-Based Post-combustion
CO2 Capture.

D.1 Process Modeling

D.1.1 Model Equations

Overall mass balance:

1

P

∂P

∂t
− 1

T

∂T

∂t
= −T

P
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v
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− 1− ϵ
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ncomp∑︂
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∂qi
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(D.1)

Component mass balance:
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ϵ

∂qi
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(D.2)

Mass transfer rate:

∂qi
∂t

= ki (q
∗
i − qi) ; ki =

Ci

q∗i

15ϵPDP

r2P
;DP =

DM

τ
(D.3)

Pressure drop:

− ∂P

∂z
=

150

4

1

r2p
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µv (D.4)

Column energy balance:[︃
1−ϵ
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(︃
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)︁ (D.5)
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Step z=0 z=L

OPEN-CLOSED (FP)

P |z=0 = P L + (PH − PL)e
(−αPRESSt)

DL
∂yi
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⃓⃓
z=0

= −v|z=0 (yi,F − yi|z=0)

∂T
∂z
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z
= 0 = −ϵ v|z = 0ρgCp,g(TF − T |z = 0)
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z=L

= 0
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Table D.1: Boundary conditions for the typical steps in a cyclic adsorption process.

D.1.2 Boundary Conditions

Figure D.1: Typical operating configurations of the constituent steps in a P/VSA
cycle

D.1.3 Key process performance indicators (PIs)

PuCO2 =
nEVAC
CO2

nEVAC
CO2

+ nEVAC
N2

× 100 (D.6)

ReCO2 =
nEVAC
CO2

nF
CO2

× 100 (D.7)

Pr =
nEVAC
CO2

( Vol of ads. ) (tADS + tBLO + tEVAC + tLPP/PRESS)
(D.8)
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Figure D.2: Training sample distributions of the SSL isotherm parameters. A total
of 50000 sample’s are shown here.

En =
EADS + EBLO + EEVAC + EPRESS

Mass of CO2 in evacuation product
(D.9)
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(vP (t))

[︄(︃
P (t)
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]︄
dt (D.13)

Note that EPRESS=0 for the case of the 4 step with LPP cycle.
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Figure D.3: Training sample distributions of the cycle specific operating parameters.
A total of 50000 sample’s are shown here.
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Figure D.4: The parity plots of the prediction from MAPLE for different performance
indicator against those obtained from the detailed model for a test-set of 1000 samples
as inputs for the 4 step with LPP cycle. a) Purity, b) Recovery, c) Energy, d)
Productivity. The shaded area indicates a 5% deviation from the diagonal.
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Table D.2: Single site Langmuir (SSL) isotherm parameters for the adsorbents used
in this study.

Adsorbent qsat b0,CO2 b0,N2 −∆UCO2 −∆UN2 ρs

[mol kg−1] [m3mol−1] [m3mol−1] [kJmol−1] [kJmol−1] [kgm−3]

UTSA-16 4.478 4.70×10−7 1.400×10−6 30.57 9.91 1000

Zeolite 13X 4.390 2.50×10−6 2.70×10−6 31.19 16.38 1130

IISERP-MOF2 5.000 2.02×10−7 2.64×10−7 31.13 11.89 1000
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Appendix E: Supporting
information for: Experimental
validation of MAPLE: an
adsorbent agnostic neural network
VSA mode

E.1 Process Modeling

E.1.1 Model Equations

Overall mass balance:
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Table E.1: Boundary conditions for the typical steps in a cyclic adsorption process.

E.1.2 Boundary Conditions

Figure E.1: Typical operating configurations of the constituent steps in a P/VSA
cycle

E.1.3 Key process performance indicators (PIs)

PuCO2 =
nADS
O2

nADS
O2

+ nADS
N2

nADS
Ar2

× 100 (E.6)

ReCO2 =
nADS
O2

nFeed
O2

× 100 (E.7)

Pr =
nADS
O2

( Vol of ads. ) (tADS + tLR(D) + tLR(R) + tEVAC + tPRESS)
(E.8)
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