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Abstract 

As a result of economic pressures from agricultural development, timber extraction, tourism and 

the expansion of cattle ranching, Tropical Dry Forests (TDFs) are considered one of the most 

threatened and least protected ecosystems in the neotropics. Interacting with these human-

induced effects, natural disturbances resulting from climate change are also affecting their 

capacity to provide key ecosystem services. One of the most recurrent effects associated to 

climate change is the increase in the frequency, and intensity of meteorological droughts driven 

by the El Niño-Southern Oscillation (ENSO). The former in turn leads to changes in the structure 

and function of these tropical ecosystems. Despite the importance that drought plays on the 

provision of ecosystem services, the response of TDFs to meteorological droughts is not fully 

understood. In this context, the utility of remote-sensing drought indices in the context of the 

ENSO was evaluated in this doctoral dissertation via four chapters. Chapter 1 conducts a review 

of droughts in the context of the ENSO. Chapter 2 evaluates the utility of three remote-sensing 

drought indices: the Vegetation Condition Index (VCI), the Temperature Condition Index (TCI), 

and the Vegetation Health Index (VHI), in a TDF located at the Santa Rosa National Park 

Environmental Monitoring Super site (SRNP-EMSS), Guanacaste, Costa Rica.  This evaluation 

was done at multiple temporal scales (year, month and season). Chapter 2 findings suggests that 

the TCI performed best over the VCI and the VHI.   Chapter 3 assesses the response of Gross 

Primary Productivity of the SRNP-EMSS to meteorological droughts. The former is done using a 

temporal correlation analysis of the Normalized Difference Vegetation Index (NDVI), Land 

Surface Temperature (LST), and the Standard Precipitation Index (SPI) at monthly and seasonal 

scales. Results indicate that the NDVI and LST are largely influenced by seasonality as well as 

the magnitude, duration, and timing of precipitation. The responses of the NDVI and the LST to 

meteorological droughts mainly reflect how greenness and evapotranspiration at the SRNP-
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EMSS TDFs respond to precipitation.  Chapter 4 assesses the response of TDFs to Sea Surface 

Temperature (SST) anomalies in Niño 3.4 (a proxy for ENSO) across multiple TDFs sites in the 

Americas. This analysis was conducted from both, a long-term (18-years) and a short-term (1-

year) perspective. Selected sites were chosen at the Chamela-Cuixmala Biosphere Reserve (CC-

BR; Jalisco, Mexico); the Parque Estadual da Mata Seca (PEMS; Minas Gerais, Brazil); the 

Tucabaca Valley Municipal Wildlife Reserve (TV-MWR; Santa Cruz, Bolivia); and SRNP-

EMSS (Guanacaste, Costa Rica). Results indicate that the Gross Primary Productivity at the 

SRNP-EMSS and the PEMS are negatively impacted by the long-term SST anomaly, while there 

is no long-term impact at the CC-BR and the TV-MWR. The long-term effect of the SST 

anomaly is more significant during the dry season at the SRNP-EMSS and the PEMS. Findings 

from a short-term perspective, suggest that the SRNP-EMSS and the CC-BR are sensitive to the 

ENSO warm phase, but not the other two sites. Finally, Chapter 5 addresse’s general conclusions 

and provides ideas for future research.  
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Chapter 1 

Introduction 

1.1 Background 

Tropical Dry Forests (TDFs) are ecosystems dominated by deciduous trees, with a mean 

annual precipitation of 700-2000 mm per year, an annual average temperature of at least 25°C, and 

a dry season (precipitation less than 100 mm) for three or more months (Sanchez-Azofeifa et al. 

2005). TDFs have a strong connection to the social and economic development in Latin America 

(Maass et al., 2005). TDFs supply agricultural and urban areas with various ecosystem services, 

such as food, timber, biofuels, regulation of soil fertility and water purification (Balvanera et al., 

2011; Calvo-Rodriguez et al., 2017; Maass et al., 2005). 

TDFs cover approximately 42% of all tropical forests worldwide (Murphy & Lugo, 1986) 

and support a large diversity of plant and animal species, many of them endemic (Mooney et al., 

1995, Trejo & Dirzo 2002; Du et al., 2013). TDFs are currently considered the most heavily 

threatened and least protected ecosystem in the Neotropics, due to anthropogenic activities such 

as agricultural development, timber extraction, tourism and expansion of cattle ranching (Janzen, 

1988; Sanchez-Azofeifa et al. 2005; Calvo-Alvarado et al. 2009). In Latin America, roughly 60% 

of all TDFs have been converted to other land uses (Portillo & Sanchez-Azofeifa, 2010). With 

TDFs suffering from extensive human and natural disturbances (Rodriguez et al., 2017), there is 

concern these disturbances are impacting the provision of ecosystem services (Kalacska et al., 

2004). Droughts are one of the most significant natural disturbances impacting these services 

(Zhang et al., 2013). Global climate models predict an overall reduction in precipitation amount 

and an extension of dry intervals in the tropical region (Chadwick et al., 2016), increasing TDF 

susceptability to drought. 

Droughts are classified into four categories: (1) meteorological droughts, (2) hydrological 

droughts, (3) vegetation droughts , and (4) economic droughts. Meteorological droughts are 

recurring climate phenomena, which occur when rainfall is significantly lower than average for a 

sustained period (Olukayode Oladipo, 1985). High temperatures and associated increases in 

potential evapotranspiration are also factors which induce a meteorological drought (Williams et 
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al., 2013). Meteorological droughts can lead to hydrological droughts (defined as lower stream-

flows or reductions in reservoir storage  below average), vegetation droughts (defined as a lack of 

soil moisture in the root zone), and economic droughts (defined as shortage of water supply for 

economic goods) (Olukayode Oladipo, 1985; Patel et al., 2007). Meteorological drought 

monitoring, therefore, is crucial for developing strategies which allow the preservation of 

ecosystem services and biodiversity. 

Meteorological drought indices were developed by integrating in-situ variables, including 

precipitation, evapotranspiration, and temperature, into one single value (Patel et al., 2007). The 

Standardized Precipitation Index (SPI; McKee et al., 1993), the Standardized Precipitation 

Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010), and the Palmer Drought Severity 

Index (PDSI; Palmer, 1965) are the most commonly used meteorological drought indices. SPI is a 

precipitation-based drought index which considers the essential character of droughts as a 

deficiency of usable water, including soil moisture, rivers/streams, groundwater, and reservoirs. 

SPI is calculated by fitting precipitation totals over different time scales to a gamma distribution 

and, subsequently, transforming the gamma distribution into a standard normal distribution 

(McKee et al., 1993). The SPI is particularly useful when rainfall variability is much higher than 

the other climate variables, or when other climate variables are constant (Vicente-Serrano et al., 

2010). SPEI is an extension of the SPI; however, SPEI uses the difference between precipitation 

and potential evapotranspiration (PET) as an input, instead of just precipitation. One of the main 

shortcomings of SPEI is the amount of data needed for calculation, as PET requires many variables 

including relative humidity, temperature, wind speed, and solar radiation (Vicente-Serrano et al., 

2010). The PDSI is a drought index calculated based on previous precipitation, soil moisture 

supply, runoff, and evaporation demand; however, PDSI can only be calculated at a fixed time 

scale of between 9 and 12 month, reducing its utilization for identifying droughts lasting shorter 

time periods (Guttman, 1999).  

Uncertainties associated with the in-situ indices largely depend on the density and 

distribution of the meteorological stations (Brown et al., 2008), which restrict their widespread 

application. Many remote sensing-based drought indices have been proposed as substitutes to in-

situ drought indices due to higher temporal and spatial resolutions (Kogan, 1995; Ji & Peters, 2003; 

Quiring & Ganesh, 2010; Rhee et al., 2010; Zhang et al., 2013; Nichol et al., 2015; Zhang et al., 
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2017). These remote-sensing indices use image-based parameters to indirectly reflect a 

meteorological drought. The Vegetation Condition Index (VCI) represents the greenness and vigor 

of vegetation, while the Temperature Condition Index (TCI) indicates the evapotranspiration on 

the canopy surface and the Vegetation Health Index (VHI) reflects the health condition of 

vegetation (Kogan, 1995; Kogan, 1997). The effectiveness of remote-sensing drought indices vary 

with climate zone, ecosystem, and land cover (Zhang et al. 2017). To date, there are no published 

studies which  assess remote-sensing drought indices in TDFs. 

Increases in the frequency, interval, and severity of meteorological droughts contribute to 

changes in the structure, function, and composition of tropical ecosystems (Allen, Breshears, & 

McDowell, 2015; Choat et al., 2012). The primary response of  tropical forests to meteorological 

drought is to reduce primary production and water use (Dale et al., 2001). Under severe droughts, 

forest mortality increases due to carbon starvation and carbon failure (McDowell et al., 2008), 

ecosystems are susceptible to insects and disease (Rouault et al., 2006),  and there are increases in 

the frequency and intensity of wildfires (Dale et al., 2001). 

Several studies report the response of tropical forests to a meteorological drought during 

that drought year or drought event (Asner et al ., 2004; Anderson et al., 2010; Castro et al., 2018)). 

Asner et al. (2004) found canopy water content, light-use efficiency, and Net Primary Productivity 

(NPP) were sensitive to the meteorological drought in Amazon forests. Anderson et al. (2010) 

found that the Gross Primary Productivity (GPP) was associated with radiation income, regardless 

of precipitation amount during the 2005 drought. Castro et al. (2018) found the gross primary 

productivity (GPP) in TDFs in the Santa Rosa National Park (SRNP), Costa Rica declined by 13% 

and 42% during the meteorological drought that took place in 2014 and 2015.  To my knowledge, 

there have been no studies aimed to quantify how TDF respond to meteorological droughts over a 

long-term (decadal) perspective. 

The El Niño Southern Oscillation (ENSO) is one of the drivers of regional and local 

drought (Fuller & Murphy, 2006) in the tropics. ENSO is a coupled oscillation of ocean surface 

temperature and air surface pressure in the central Pacific Ocean that affects the global climate and 

weather in the world (Propastin et al., 2010). This phenomenon is defined by the National Oceanic 

and Atmospheric Administration (NOAA) when, over five consecutive three-month periods, mean 

Sea Surface Temperature (SST)anomalies are at or above +0.5°C in the Niño 3.4 region (warm 
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phase). When the anomaly is below -0.5°C, a cold phase is present (La Niña). In general, ENSO 

can lead to the redistribution of precipitation and temperature patterns for certain regions (IPCC, 

2007) with significant impacts in the tropical ecosystems.  

SST anomalies associated with the coupled ocean-atmosphere system have been found to 

be a key indicator of climate variability at regional scales which, in turn, influence the vegetation 

state (Kassas, 1998; Propastin et al., 2010). Several studies reported the response of vegetation to 

El Niño events based on the relationship between SST anomalies and drought indices around the 

world (Kogan et al., 2000; Mennis, 2001; Anyamba et al.,2002; Erasmi et al., 2009; Propastin et 

al.,2010). Kogan (2000) reported that in central Argentina, northern Brazil and southern Africa 

vegetation was sensitive to El Niño events during the boreal winter (1997 to 1998). Anyamba et 

al. (2002) found that NDVI variations had a positive correlation with SST anomalies during the El 

Niño in 1997 and 1998, and a negative correlation during the La Niña event in 1999 and 2000 in 

eastern Africa,  a reversal of the southern Africa response. Erasmi et al. (2009) illustrated that only 

1982-1983 and 1997-1998 El Niño events significantly influenced the vegetation drought 

condition for the period 1982-2006, which is also echoed by Propastin et al. (2010) in Africa. 

The response of vegetation to El Niño events varied by climate zone, ecosystem, and land 

cover (Zhang et al., 2017). Research associated with the response of TDFs to El Niño is limited. 

Campos (2018) conducted a correlation between SST anomaly and precipitation in the Santa Rosa 

National Park (SRNP), Costa Rica where massive TDFs inhabit. They found the driest and wettest 

periods on record happened in connection with strong El Niño and cold La Niña, respectively. 

Castro et al. (2018) explored the impact of drought on the productivity of TDFs in Santa Rosa 

National Park, Costa Rica, and found that gross primary productivity declined during drought 

seasons; however, a direct and quantitative analysis of the response of TDFs to El Niño is not 

reported. 

Despite the importance of drought in TDFs, there are limited studies associated with 

effective drought indices, and the response of TDFs to meteorological droughts and its drivers. To 

fill these knowledge gaps, Chapter 2 evaluates the utility of popular remote-sensing indices to 

monitor meteorological drought in TDFs, Chapter 3 assesses the response of TDFs to 

meteorological drought, Chapter 4 assesses the response of TDFs to SST anomalies (a ENSO 
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proxy) at multiple sites across Americas, and Chapter 5 reports the main conclusions, the 

limitations, and future work. 

1.2 Thesis overview 

The overall objective of this dissertation is to assess various remote-sensing drought 

indices and the response of TDFs to meteorological drought and its drivers. To this end, I evaluated 

the utility of various remote-sensing drought indices to monitor the meteorological drought in 

TDFs at the Santa Rosa National Park Environmental Monitoring Super Site (SRNP-EMSS), 

Guanacaste, Costa Rica. This analysis was conducted over multiple temporal scales. In addition, 

the temporal response of TDFs to the meteorological drought at the SRNP-EMSS was 

assessed.The response of TDFs to Sea Surface Temperature (SST) anomalies in Niño 3.4 across 

multiple TDFs sites in  the Americas  was also  explored. As such, the dissertation is divided into: 

Chapter 2. Evaluating the utility of various drought indices to monitor meteorological drought in 

Tropical Dry Forests.  

While existing remote sensing-based drought indices are widely used in many different 

types of ecosystem, their utility in TDFs has not been assessed. The aim of this chapter, therefore, 

is to evaluate the performance of three remote sensing-based drought indices, the Vegetation 

Condition Index (VCI), the Temperature Condition Index (TCI), and the Vegetation Health 

Index(VHI), for meteorological drought monitoring in TDFs using the Moderate-resolution 

Imaging Spectroradiometer (MODIS) NDVI (MOD13Q1, collection v006) and LST 

(MOD11A12, collection v006) product.The correlation between VCI, TCI and VHI and multiple 

time scales of Standardized Precipitation Indexes (SPIs) (1-, 3-, 6-, 9-, 12-, 15-, 18-, 21-, 24-

months) for each month (January to December) and each season (dry season, dry-to-wet season, 

wet season, and wet-to-dry season) was conducted using a Pearson correlation analysis . I also 

correlated year-to-year changes of satellite-based drought indices with the changes on in-situ 

annual SPI (A_SPI) which can be considered a proxy of annual mean meteorological drought 

conditions. 

Chapter 3. Assessing the temporal response of Tropical Dry Forests to the meteorological 

drought.  
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Due to excessive human disturbances such as deforestation, as well as predicted changes 

in precipitation regimes, TDFs are susceptible to meteorological droughts. The purpose of  this 

chapter is to assess the response of a TDFs to a meteorological drought by conducting temporal 

correlations between the MODIS-derived Normalize Difference Vegetation Index (NDVI) and 

Land Surface Temperature (LST) to a Standarized Precipitation Index (SPI) between March 2000 

and March 2017 at the SRNP-EMSS.  This analysis is conducted at montlhy and seasonal scales. 

The NDVI-LST correlation was conducted to analyze the dominant factor for growth in different 

seasons. Additionally, the primary response of TDFs to meteorological drought was estimated 

indirectly based on the results of the temporal correlations. 

Chapter 4. Assessing the response of Tropical Dry Forests across the Americas to El Niño 

Southern Oscillation.  

As an indicator of ENSO, SST anomalies in the tropical Pacific Ocean have been found to 

be a key indicator of climate variability in the tropical region (Kassas, 1998). As a result, they  can 

affect vegetation state of tropical ecosystems. The objective of this chapter is to assess the response 

of TDFs  across multiple sites in Meso- and South America to SST anomalies in Pacific Ocean 

Niño 3.4 from both short- and long-term perspectives. For the short-term perspective, I conducted 

a Window Moving Correlation Analysis (WMCA) during the five El Niño events between March 

2000 and March 2017. For the long-term pespective, I conducted a temporal correlation between 

MODIS-derived VCI and TCI across multiple TDFs sites (CCBR, Mexico; PEMS, Brazil; 

TVMWR, Bolivia; and SRNP-EMSS, Costa Rica) and SST anomalies for dry and wet season.  
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Chapter 2 

Evaluating the utility of various drought indices to monitor 

meteorological drought in Tropical Dry Forests 

2.1 Introduction 

Tropical Dry Forests (TDFs), are defined as a vegetation type where more than half of its 

species are drought deciduous, there are four to six months with low or no precipitation (<100 mm 

per month), a mean annual temperature of 25°C, and total annual precipitation between 700 and 

2000 mm (Sanchez-Azofeifa et al., 2005). TDFs comprise about 42% of all tropical forests 

worldwide (Murphy & Lugo, 1986). TDFs are habitats with abundant plant and animal species, 

many of them endemic (Du et al., 2013). In Latin America, 60% of all TDFs have been replaced 

by other land cover types such as agriculture and pasture for cattle ranching (Portillo-Quintero & 

Sanchez-Azofeifa, 2010). This ecosystem is estimated to store close to 22 Pg of carbon (Du et al., 

2013). 

As TDFs undergo tremendous human disturbances (Rodriguez et al., 2017), ongoing 

climate change is affecting the provision of ecosystem services (Kalacska et al., 2004). Much of 

these changes are via droughts (Zhang et al., 2013). In general, drought is defined as a precipitation 

deficit that occurs over a period of time and that impacts both water resources and ecosystem 

services (Du et al., 2013). Droughts can introduce great damage to tropical forests in terms of their 

biophysical properties and ecosystem services (Portillo-Quintero et al., 2015).   

Increases in the frequency, duration, and severity of droughts can change the structure, 

composition, and function of tropical forests, which in turn contribute to declines in forest 

productivity (Choat et al., 2012; Engelbrecht et al., 2007; Zhang et al., 2013). Droughts can also 

lead to an increase in tree mortality rates of tropical forests, and an impact on the hydrological 

dynamics in the neotropics (Allen et al., 2010; Phillips et al., 2009; 2010; Portillo-Quintero et al., 

2015). Allen et al. (2010) reviewed the potential of droughts to amplify tree mortality around the 

world, and found any forest type and any climate zone is vulnerable to climate change in terms of 

tree mortality. Phillips et al (2009) found the Amazon forests were vulnerable to growing moisture 

deficit, with the potential for losing large amounts of carbon (1.2 to 1.6 petagrams) in response to 

drought. Phillips et al. (2010) indicated that mortality rates of tropical forests tended to increase 
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disproportionately when the moisture stress is at higher levels, and trees in Borneo are more 

vulnerable than those in the Amazon. Portillo-Quintero et al. (2015) indicated droughts are 

potential threatens to water resources in the neotropics where a large fraction of population 

(approximate 90 million) lived.  

Meteorological drought occurs mainly when rainfall is significantly lower than the average 

precipitation for a sustained period of time (Olukayode Oladipo, 1985). High temperatures and 

associated increases on potential evapotranspiration are important drivers associated to 

meteorological droughts (Williams et al., 2013). Many drought indices have been developed to 

characterize meteorological drought in terms of its severity, magnitude, duration, and spatial 

extent. Popular drought indices, such as the Palmer Drought Severity Index (PDSI, Palmer, 1965) 

and the Standardized Precipitation Index (SPI, McKee et al., 1993), are derived from data coming 

from in-situ weather stations. The PDSI considers prior precipitation, soil moisture, runoff and 

evaporation demand; however, its fixed time scale (between 9 and 12 months) precludes its use 

for identifying drought lasting shorter time periods (e.g., less than 9 months). The PDSI has been 

widely applied to determine the areal extent and severity of the drought in the northeastern United 

States over the years (Alley, 1984; Palmer, 1965). The SPI is a precipitation-based drought index, 

which considers the essential character of the drought as the deficiency of usable water, including 

the soil moisture, rivers and streams, groundwater and reservoirs (McKee et al., 1993). The SPI 

can be calculated for flexible scales depending on the purpose of the study. Its applications have 

encompassed a wide range of ecosystems at varying scales (Guttman, 1999; McKee et al., 1993; 

Patel et al., 2007).  

Uncertainties associated with the in-situ meteorological indices depend on the density and 

distribution of the meteorological stations (Brown et al., 2008).  In a remote area where the 

meteorological stations are limited, the use of the in-situ indices for drought monitoring faces a 

great risk of low accuracy (Rhee et al., 2010).  Remote sensing, which can characterize 

meteorological and terrestrial biophysical attributes from a regional to global coverage, has gained 

much attention over the past several decades in drought monitoring. Many remote sensing-based 

drought indices have been proposed as substitutes to in-situ drought indices (Kogan, 1995; Ji & 

Peters, 2003; Quiring & Ganesh, 2010; Rhee et al., 2010; Zhang et al., 2013; Nichol et al., 2015; 
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Zhang et al., 2017). Their abilities vary with climate zone, ecosystem, and land cover (Zhang et 

al. 2017).  

Among remote sensing vegetation indices, the Normalized Difference Vegetation Index 

(NDVI) and the Vegetation Condition Index (VCI, scaled inter-annual NDVI), have been 

extensively used for drought monitoring (Kogan, 1995; 1997; Quiring & Ganesh, 2010). Bhuiyan 

et al. (2006) carried out a detail analysis of spatial and temporal drought dynamics during monsoon 

and non-monsoon seasons for the years 1984 to 2003 in Rajasthan (India), and found the 

correlation between the VCI and SPI increased in the monsoon season because the growth of 

vegetation was largely dependent on rainfall, while it was partly controlled by irrigation in the 

non-monsoon season.. Dutta et al. (2008) conducted the correlation analysis of NDVI and VCI 

derived from NOAA-AVHRR data and precipitation in the northwest of Iran between 1997 and 

2001, and correlations were obtained between average NDVI and VCI and average three-month 

precipitation, indicating NOAA-AVHRR derived NDVI can reflect the precipitation fluctuation in 

the study area. Quiring and Ganesh (2010) examined the relationship between the VCI, and 

meteorological drought indices during Texas’ growing seasons. Results suggested that the VCI 

responded to relative prolonged moisture stress instead of short-term precipitation deficiency. The 

authors also reported that the correlations between the VCI and meteorological indices varied 

significantly across the state; being the correlation between the SPI and PSDI weaker in east Texas 

than west Texas due to higher permeable soils in the east. 

The Temperature Condition Index (TCI, scaled inter-annual LST) is another index that has 

been proposed for drought monitoring due to its potential ability to quantify evapotranspiration 

(Kogan, 1995). Seiler et al. (1998) used the TCI and VCI to assess drought conditions in Argentina, 

and found a close relationship with precipitation patterns. Karnieli et al. (2006) compared satellite-

based drought indices, such as the TCI and VCI, with the PDSI across the desert regions of 

Mongolia, and concluded that there was little agreement among those indices. The vegetation 

Heath index (VHI), a combination of the VCI and TCI (Kogan; 2002), was an early warning tool 

for drought. Rhee et al. (2010) tested various remote sensing-based drought indices in the arid 

regions of Arizona and New Mexico and humid regions of North Carolina and South Carolina, 

and found that the VHI performed better than the VCI and TCI in both arid and humid regions 

when tested against in-situ meteorological drought indices. Shamsipour et al. (2011) conducted 
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correlation analysis of various remote-sensing indices and meteorological drought indices in semi-

arid central plains of Iran confined to the spring season from 1998 to 2004 and found that VCI 

better correlated to meteorological drought indices than TCI, and VHI is not a reliable measure of 

drought condition in this region. Amalo1 & Hidayat. (2017) compared the remote-sensing-based 

drought indices in East Java, and found TCI was sensitive to drought in dry season or months; VCI 

is proved to detect drought more sensitive in wet season than TCI and VHI; VHI provided better 

comprehension about drought occurrence.Zhang et al. (2017) compared various satellite-based 

drought indices to monitor drought events in the Continental United States. They found that VHI 

performed better than the VCI and TCI in most climate regions. 

Despite the fact that there is a considerable amount of scientific literature associated to the 

development, testing, and evaluation of drought indexes across many different types of 

ecosystems, little has been done in tropical dry forests ecosystems. As such, the objective of this 

study is to evaluate the performance of three remote sensing-based drought indices to monitoring 

meteorological drought conditions in a TDF at the local scale. We focus this study on the monthly, 

seasonal and yearly correlations between remote sensing-based drought indices and SPIs. This 

evaluation uses the MODIS NDVI and LST products from 2000 to 2017, as well as local 

precipitation data from 1979 to 2017. Figure 2.7 shows the flowchart for this study. 

2.2 Methods 

2.2.1 Study area 

This study was conducted at the Santa Rosa National Park Environmental Monitoring 

Super Site (SRNP-EMSS), Northwest Costa Rica (Figure 2.1). The total study area covers 109 

km2 with an average slope of 7%. For over 200 years, the region was part of a cattle ranch until it 

became a National Park in the early 1970s (Castillo et al., 2012; Janzen, 2000; Cao & Sanchez-

Azofeifa, 2016). Currently, the SNRP-EMSS is a mosaic of diverse vegetation types dominated 

by secondary tropical dry forests with three stages of ecological succession: early, intermediate 

and late (Kalacska et al., 2004; Cao & Sanchez-Azofeifa, 2016; Li et al., 2017). The early stage of 

regeneration is composed of shrubs, small trees with grasses and bare soil in open areas. The 

intermediate stage is composed of fast growing deciduous species, Lianas, and shade tolerant 
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species. The late succession is consisted of dominant evergreen species and regeneration of 

tolerant shade species (Kalacska et al., 2004). 

This area receives between 915 mm and 2558 mm of annual precipitation, and mean annual 

temperature is stable at 26.6 °C (Sanchez-Azofeifa et al., 2005). The SNRP-EMSS experiences a 

three-month dry season (January to March) when the precipitation is extremely scarce (Figure 2. 

2), and the majority of the deciduous vegetation loses its leaves (Figure 2.3). April and May are 

considered as a transition from dry to wet season (dry-to-wet season) because precipitation starts 

to grow in April and sharply increases in May. The wet season is usually from June to October. 

Then SNRP-EMSS goes through a transitional season from November to December (wet-to-dry 

season) when the rainfall decreases significantly. The dominant factor that affects the phenology 

of secondary TDFs with various successions at this TDF site is water availability (Sanchez-

Azofeifa et al., 2005). 

2.2.2 Data preprocessing 

This study employed a set of Terra Moderate Resolution Imaging Spectroradiometer 

(MODIS) products between March 2000 and March 2017. Specifically, the 16-day MODIS NDVI 

product at 250 m resolution (MOD13Q1, collection v006) and the 8-day MODIS LST product at 

1000 m resolution (MOD11A12, collection v006) were obtained at the "Reverb Echo" portal 

(http://reverb.echo.nasa.gov/reverb/). Both products were re-projected to WGS 1984 UTM Zone 

16 North. The Land Surface Temperature (LST) product was then resampled to 250 m so that it  

had the same resolution with the NDVI product. We converted the 16-day NDVI and 8-day LST 

products to monthly data by considering the number of days belonging to each month for each 

phase of image products (Rhee et al., 2010). Quality flags in both products were used to extract 

the ideal quality pixels for reliable analysis. Specifically, the pixels where the values in the quality 

flags layer of MODIS products equal to zero, were selected as ideal quality pixels. 

We also collected daily precipitation data between June 1979 and March 2017 in a 

meteorological station (10°50.408' N, 85°37.055' W) within the SNRP-EMSS. The daily 

precipitation data were also aggregated to monthly data. 

2.2.3 Remote sensing drought indices 

The Normalized Difference Vegetation Index (NDVI) is a good indicator of the chlorophyll 

content and vegetative cover, and indicates the capacity of the photosynthesis of the canopy 
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(Karnieli et al., 2010); in addition, the LST is a proxy for assessing the evapotranspiration of 

vegetation canopy and soil moisture (Karnieli et al., 2010). The VCI and the TCI, calculated on 

monthly NDVI and LST data using the equation (1) and (2), reflect relative greenness and 

temperature of plants (Kogan, 1995; Kogan, 1997). Specifically, VCI and TCI as the 

normalizations of NDVI and LST, emphasize the relative changes in the local NDVI and LST 

through time while reducing the influences of local climate conditions and ecosystems. The VHI, 

indicating vegetation health, is an additional combination of the VCI and TCI with the same weight 

assuming an even contribution from two elements (equation (3)), indicating the health condition 

of the vegetation. 

 𝑉𝐶𝐼𝑖𝑗 = (𝑁𝐷𝑉𝐼𝑖𝑗 − 𝑁𝐷𝑉𝐼𝑗 𝑚𝑖𝑛) (𝑁𝐷𝑉𝐼𝑗 𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑗 𝑚𝑖𝑛) ∗ 100⁄  (1) 

 𝑇𝐶𝐼𝑖𝑗 = (𝐿𝑆𝑇𝑗 𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑗 ) (𝐿𝑆𝑇𝑗 𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑗 𝑚𝑖𝑛) ∗ 100⁄     (2) 

 𝑉𝐻𝐼𝑖𝑗 = 0.5 ∗ (𝑉𝐶𝐼𝑖𝑗 + 𝑇𝐶𝐼𝑖𝑗)    (3) 

Where i describes the ith year; and j represents the jth month. 

These indices could indirectly reflect the meteorological drought conditions based on 

vegetation stress related to leaf vigor, evapotranspiration in the leaf or surface temperature in the 

leaf. The values of these drought indices range from 0 to 100, the low values (close to 0) show the 

stressed vegetation condition, middle values show fair conditions (close to 50), and high values 

(close to 100) indicate the optimal conditions (Kogan, 1995; Kogan, 1997). Specifically, the 

drought grades based on three drought indices can be defined as following (Table 2. 1). 

2.2.4 In situ meteorological drought index (SPI) 

The Standardized Precipitation Index (SPI) is a ground station-based meteorological 

drought index (McKee et al., 1993). As a standardized index, the SPI is comparable both 

temporally and spatially. Higher values of the SPI indicate humid conditions, and lower SPI values 

represent drought. McKee et al. (1993) proposed a classification for the SPI as follows: extremely 

wet (SPI>2.0), very wet (1.5<SPI<1.99), moderately wet (1.0<SPI<1.49), near normal (-

0.99<SPI<0.99), moderately dry (-1.49<SPI<-1.0), severely dry (-1.99<SPI<-1.5), and extremely 

dry (SPI<-2.0). Because the SPI is strongly affected by the record length and longer records 

provide more consistent and accurate SPI values (Quiring 2009), the calculation of an SPI requires 

long-term historical precipitation data. As such, this study used information from the local 

meteorological station from June 1979 to March 2017. In calculation of the SPI, we assumed that 
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the precipitation records followed a Gamma distribution (Patel et al., 2007) as such the data will 

be transformed, using studentized residual normalization techniques, to a normal distribution, with 

a mean value of 0 and a variance value of 1. The z-scores for each record is therefore calculated 

as the SPI. 

This study calculated SPIs of different time scales from short- and medium-term to long-

term (1-, 3-, 6-, 9-, 12-, 15-, 18-, 21-, and 24-month) (McKee et al., 1993). One- and three-month 

SPIs reflect short-term drought conditions, indicating soil moisture and vegetation stress; six- and 

nine-month SPIs reflect medium-term precipitation trends, showing the precipitation over distinct 

seasons; twelve-month or more SPIs indicate long-term precipitation trends, which are tied to 

streamflow and groundwater level (Zargar et al., 2011).  

2.2.5 The correlation and regression analysis 

To evaluate the performance of the remote sensing-based indices in monitoring 

meteorological droughts in TDFs, we built relationships between the VCI, TCI and VHI and the 

multiple-scale SPIs using the Pearson correlation analysis (Quiring & Ganesh, 2010; Rhee & 

Carbone, 2010). Since the relationships could vary with season timing and time scales (Quiring & 

Ganesh, 2010), the Pearson correlation analysis was conducted at multiple time scales (1-, 3-, 6-, 

9-, 12-, 15-, 18-, 21-, 24-months) for each month (January to December) and each season (dry 

season, dry-to-wet season, wet season, and wet-to-dry season), respectively. We also correlated 

year-to-year changes of satellite-based drought indices with the changes of in situ annual SPI 

(A_SPI) which was calculated as 12- month SPI ending in December of each year. The A_SPI is 

considered as the annual mean meteorological drought condition. Correlation coefficients (r) and 

p values were obtained to determine whether and how meteorological drought conditions affect 

vegetation conditions in different phases of the phenology cycle.  

2.3 Result 

2.3.1 The precipitation distribution at SRNP-EMSS 

Figure 2. 2 shows monthly and seasonal precipitation distributions at the SRNP-EMSS 

based on historical records from 1979 to 2017. The precipitation in the dry season is extremely 

low with a median amount of 2.9 mm and average amount of 7.9 mm. The precipitation increases 
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sharply in the dry-to-wet season (median rainfall: 188.2 mm; average rainfall: 236.6 mm).  In the 

wet season, the precipitation is generally abundant (median rainfall: 1152.9 mm; average rainfall: 

1389 mm) even though July is a relatively dry month (median rainfall: 117.2 mm; average rainfall: 

144.5 mm). The SNRP-EMSS experiences a sharp decline in the wet-to-dry season (median 

rainfall: 115.8 mm; average rainfall: 157.4 mm). 

2.3.2 Seasonal correlations between remote sensing-based drought indices and 

multiple-scale SPIs 

Figure 2.4 shows the correlation coefficients between satellite-based drought indices and 

multiple-scale SPIs over the SRNP-EMSS in four seasons. The correlations varied with season 

timing. The TCI had an overall better performance than the VCI and VHI in terms of seasonal 

scale.  

In the dry season, three remote sensing-based drought indices had very similar correlations 

with SPIs: they had moderate correlations with the short- (3-month) and long-term (18-, 21-, and 

24-month) SPIs (r≈0.5); and they had high correlations with the medium- to long-term (6-, 9-, 

12- and 15-month) SPIs (r ≈0.70). The maximum correlated values for VCI, TCI and VHI (dry 

season) and SPI (12-, 12-, and 12-month) are 0.69, 0.64, and 0.72 respectively. The VCI, TCI, and 

VHI also presented similar correlations with the SPIs in the wet season: for all time scales except 

for the 24-month SPI with which VCI was not significantly correlated, they were moderately 

correlated (r ≈ 0.40) with SPIs. The maximum correlated values for VCI, TCI and VHI (wet 

season) and SPI (9-, 12-, and 12-month) are 0.38, 0.47, and 0.43 respectively. In the dry-to-wet 

season, three drought indices had poor performances: none of them could reflect meteorological 

drought conditions for any given scales. The performance of three drought indices differed in the 

wet-to-dry season: the VCI did not correlate with SPIs at all the time scales; the TCI had significant 

correlations with SPIs at all time scales, especially for 6-, 9-, 12-month SPIs; and the VHI had 

moderate correlations with SPIs from 1-month to the 12-month time scale. The maximum 

correlated values for TCI and VHI (wet-to-dry season) and SPI (12-, and 12-month) are 0.62 and 

0.38 respectively. 
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2.3.3 Monthly correlations between remote sensing-based drought indices and 

multiple-scale SPIs 

Figure 2. 5 describes monthly correlations of the VCI-SPIs, TCI-SPIs, and VHI-SPIs at the 

SRNP-EMSS. Three drought indices had a similar performance in February, June, and July: they 

responded to the short-, medium-, and long-term SPIs in February (1- to 15-month) and July (1- 

to 24-month) and the medium- and long-term SPIs in June (9- to 24-month). The VCI and VHI 

performed better than the TCI in February. The TCI and VHI performed better than the VCI in 

June. The VHI performed best in July.  

Three drought indices had different performances in January, March, April, August, and 

December. In January, the VCI moderately responded to the middle-term SPIs; meanwhile, the 

TCI and VHI can respond to the short-, medium-, and long-term SPIs. In March and April, the 

VCI was more sensitive to shorter-term SPIs than TCI and VHI while TCI and VHI could also 

well monitor the medium- and long-term SPIs. In August, the VCI and VHI responded to short- 

and medium-term SPIs; and the TCI only responded to 24-month SPI. In December, there were no 

correlations between the VCI and SPIs, the TCI was able to respond to SPIs of all-time scales and, 

the VHI was significantly correlated the SPIs of 1 to 12 months. All of the three-remote sensing-

based drought indices failed to correlate to SPIs in May, September, October, and November. 

2.3.4 Yearly correlations between remote sensing-based drought indices and A_SPI 

Figure 2. 6 shows the correlations between the annual mean values of satellite-based 

drought indices, the VCI, TCI and VHI, and the A_SPI. The TCI presented a significantly strong 

correlation (r2=0.63, p<0.01, and RMSE=0.81) with the A_SPI, the VHI presented a moderate 

correlation (r2=0.39, p<0.01, and RMSE=1.03) and the VCI did no significantly respond to the 

A_SPI (r2≈0, p=0.92, and RMSE=1.03) 

2.4 Discussion 

The performance of the remote sensing-based drought indices in monitoring droughts is 

phenologically and seasonally dependent at the SRNP-EMSS. In the dry season, the correlation 

between the remote sensing indices and the SPIs became significant when the time scale was larger 

than 3-months (i.e., 3-, 6-, 9-, 12-, 15-, 18-, 21-, and 24-month). This means that the remote sensing 

indices can better reflect the rainfall deficiency in previous (≥3) months rather than the current 
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month during the dry season. The fact that the remote sensing indices performed badly in the dry-

to-wet season may be due to an insignificant correlation with the SPIs in May when the leaves of 

TDFs develop quickly fast (Figure 2.3). The remote-sensing indices moderately reflected 

meteorological condition in the wet season, probably associated with the water content in the root 

regions. In the early stage of wet season (June, July, and August), significant correlations between 

remote sensing-based indices, the VCI, TCI and VHI, and the SPIs were found when the soil 

moisture was not much high; when the water content in the root regions was much abundant 

(September and October), the remote sensing indices could no longer reflect the meteorological 

condition probably because TDFs, with sufficient water content in the root regions, were resistant 

to meteorological drought. Ji & Peters (2003) found similar patterns in areas of the northern Great 

Plain where high correlations between the NDVI and the SPIs occurred in the middle (June, July 

and August) of the growing season and low correlations occurred at the start (May) and end 

(September and October) of the same season.  

Observed significant differences for the VCI, TCI and VHI reflected meteorological 

drought in the wet-to-dry season. We found that remote-sensing indices could not reflect the 

meteorological drought condition at the early stage of the wet to dry season (November), because 

the water content in the root regions was still saturated though its leaves started falling. But in the 

late stage of the wet-to-dry period (December) when falling leaves dramatically and water content 

being not saturated, the TCI reflected all the time-scale meteorological drought conditions. 

Moreover, the VHI described the precipitation deficiency within one year, and the VCI did not 

respond to the rainfall. 

The varying performances of the VCI, TCI, and VHI reflect the seasonal and monthly 

dynamics of TDFs in different biochemical or biophysical manners. The VCI detected the canopy 

greenness, leaf vigor, and the deciduousness during the growing season (Kogan, 1995; 1997). The 

TCI is more sensitive to the soil moisture when the leaf falls during the dry season and is more 

sensitive to the water content in the canopy when the leaf is saturated during the wet season 

(Karnieli, 2010). The VHI, which indicates the vegetation health condition, inherits characteristics 

of the VCI and TCI. These indices performed similarly to reflect meteorological drought 

conditions except for the wet-to-dry season in terms of seasonal scales. The variation of 

precipitation regime triggered the changes in the canopy greenness and leaf vigor, in the 

evapotranspiration of the canopy and soil, and in the health conditions of TDFs. Thus, the VCI, 



22 

 

TCI, and VHI have the potential to detect meteorological drought indirectly. The biophysical and 

biochemical parameters responding to the VCI, TCI, and VHI in the dry seasons were associated 

with the rainfall in previous (≥3) months because the precipitation in the current dry season was 

pretty low.  In the dry-to-wet season, the variabilities of the biophysical and biochemical 

parameters were related to the rapid growth of TDFs in May (Figure 2. 3) which was driven by the 

precipitation regime in previous months rather than in the current month, although the rainfall in 

May was pretty much (Figure 2. 2).  

In the wet season, meteorological droughts can lower VCI by altering the leaf reflectance 

at both the red and near-infrared wavelength (Carter et al., 1996). In detail, when a leaf is in the 

water-stressed condition, the chlorophyll concentration would decrease and results in higher 

reflectance in the red band; meanwhile spaces within the spongy mesophyll would be enlarged and 

lead to an increase of the scattering effect for near-infrared photons at the cell wall-air interface 

and eventually increase the near-infrared reflectance (Carter et al., 1996; Asner, 1998). The 

sensitivity of red reflectance to decreased water content in the leaf was much more than near-

infrared reflectance, resulting in lower values of the VCI while suffering from meteorological 

droughts. At the same time, meteorological droughts can trigger the closure of the leaf stomata 

leading to an increase in the surface temperature at the canopy (Carter et al., 1996). As such, the 

TCI also decreased under water stress. As a linear combination of VCI and TCI, VHI declined 

with VCI and TCI when suffering from drought. During the wet-to-dry period, the role of 

precipitation was no longer to sustain the canopy greenness (because phenologically falling leaves) 

but to promote evapotranspiration of plants and soil (Karnieli et al., 2010). As a result, the VCI 

did not reflect the precipitation deficiency (SPIs) in December while TCI was able to depict the 

evapotranspiration process in TDFs and thus well responded to variations in precipitation and soil 

moisture (Cao et al., 2017). 

The remote sensing-based drought indices performed significantly different to reflect 

annual meteorological drought condition. The annual mean TCI and VHI explained 63% and 39% 

variability of the A_SPI respectively, and annual mean VCI was a poor indicator to account for 

the change in the A_SPI. This was because the evapotranspiration of TDFs was more sensitive 

than canopy greenness to the inter-annual precipitation deficiency.     

The performance of a specific remote sensing-based drought index for the early, 

intermediate, and late stage of TDFs should be similar. This is because time-series of leaves 



23 

 

intensity for intermediate and late are very close during the whole period, and three stages of TDFs 

have similar leaves intensity during May and November. The changes in leaf intensity for early, 

intermediate and late stages of TDFs, driven by the effect of phenology, are simultaneous (no time 

lag) and have the same direction (Lopezaraiza-Mikel et al., 2013). The remote-sensing drought 

indices (e.g. VCI and TCI) emphasize the relative changes in the biophysical parameters (NDVI 

and LST) through time. As a result, the values of a specific remote sensing-based drought index 

for three stages of TDFs should be similar in each month, under the assumption that the difference 

in leaf intensity between early and intermediate/late stage in a certain month (from December to 

April) does not vary with a given year. Furthermore, the element of vegetation heterogeneity is 

buffered by the available MODIS satellite information (250 m and 1 Km), which prevents to fully 

consider differences between the different levels of successional stages present in our study area

2.5 Conclusion 

In this study, we evaluated the use of three popular remote sensing-based vegetation 

indices, i.e., the Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and 

Vegetation Health Index (VHI), calculated on MODIS the NDVI and LST products, towards the 

monitoring of the meteorological drought in a TDF at SRNP-EMSS. Multiscale Standard 

Precipitation Index (SPIs) calculated on precipitation data from a meteorological station was used 

to evaluate satellite-based indices. Pearson correlation analysis was performed between remote-

sensing indices and SPIs. We concluded that the ability of these remote sensing-based drought 

indices to monitor meteorological drought varied with timing, and TCI outperformed VCI and 

VHI in terms of seasonal and annual scale. They performed similarly in the dry, dry-to-wet and 

wet season while TCI performed best to monitor meteorological drought in the wet-to-dry period, 

followed by VHI, and VCI did worst. These remote-sensing indices performed well in monitoring 

meteorological drought in the dry season, poorly in the dry-to-wet season, and moderately reflected 

rainfall deficiency in the wet season. However, these remote-sensing indices were not suitable to 

reflect meteorological drought in the dry-to-wet season.  

The utility of remote-sensing indices was also assessed in terms of the monthly scale. The 

varying performance of remote sensing indices can be mostly explained by their nature in 

describing the biophysical and biochemical properties in TDFs. All of them failed to well monitor 

the drought in May when the leaf flushed sharply and in September, October and November when 
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the water content in the root region was abundant. Besides, the inter-annual analysis showed that 

the evapotranspiration of TDF was more sensitive than canopy greenness to precipitation 

deficiency. Our study effectively increased the ability to provide real-time drought monitoring and 

early warning of drought in the TDF. 
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2.7 Tables and Figures 

 

Table 2. 1 Classification of remote sensing-based drought indices VCI, TCI, and VHI. 

Name of class VCI TCI VHI 

Extreme drought 0-10 0-10 0-10 

Severe drought 10-20 10-20 10-20 

Moderate drought 20-30 20-30 20-30 

Mild drought 30-40 30-40 30-40 

Abnormally dry 40-50 40-50  

No drought 50-100 50-100 40-100 
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Figure 2. 1 Study area: Santa Rosa National Park Environmental Monitoring Super Site (SRNP-

EMSS), and the location of the source of meteorological information used in this study. 
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Figure 2. 2 Monthly precipitation distribution at the SRNP-EMSS in the dry, dry-to-wet, wet, 

and wet-to-dry seasons from June 1976 to March 2017. The dry season include January to March 

(Red); the dry-to-wet transitional season include April and May (Blue); the wet season include 

June to October (Green); the wet-to-dry transitional season include November and December 

(Yellow). 
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Figure 2. 3 The Monthly NDVI distribution at the SRNP-EMSS in the dry, dry-wet, wet, and 

wet-dry seasons from March 2000 to March 2017. The dry season includes January-March 

(Red); the dry-wet transitional season includes April-May (Blue); the wet season includes June-

October (Green); the wet-dry transitional season includes November-December (Yellow). The 

monthly NDVI distributions were extracted from MODIS products (MOD13Q1, collection 

v006). 
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Figure 2. 4 The correlation coefficients (r) between remote sensing-based drought indices (the 

VCI, TCI, and VHI) and multiple-scale SPIs in four seasons at the SRNP-EMSS. Blank places 

represent p-values that are not significant (significance level=0.05). Purple circles indicate 

significantly positive relationships and yellow circles indicate significantly negative 

relationships. The darker and bigger circles stand for higher absolute r values. 
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Figure 2. 5 The correlation coefficients (r) between the remote sensing-based drought indices 

(the VCI, TCI, and VHI) and the multiple-scale SPIs for each month at the SRNP-EMSS. Blank 

places represent p-values that are not significant (significance level=0.05). Purple circles indicate 

significantly positive relationships and yellow circles indicate significantly negative 

relationships. The darker and bigger circles stand for higher absolute r values.  

 

(a). the VCI-SPIs correlation 

 

(b). the TCI-SPIs correlation 

 

(c). the VHI-SPIs correlation 
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Figure 2. 6 The correlation coefficients between the annual satellite-based drought indices (the 

VCI, TCI, and VHI) and the A_SPI which indicates annual mean meteorological drought 

condition. 
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Figure 2. 7 Flowchart for evaluating the utility of remote sensing drought indices 
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Chapter 3 

Assessing the temporal response of Tropical Dry Forests to 

meteorological drought 

3.1 Introduction 

Tropical Dry Forests (TDFs) are defined as a vegetation type of which at least 50% of the 

trees are drought deciduous, with a dry season of three or more months (precipitation < 100 

mm/month), a mean temperature of 25°C or higher, and a total annual precipitation of 700–2000 

mm (Sanchez-Azofeifa et al., 2005). TDFs are considered the first frontier for economic and social 

development in Latin America (Calvo-Rodriguez et al., 2017) and account for roughly 42% of all 

tropical forests worldwide (Murphy & Lugo, 1986; Quesada et al., 2009). They provide diverse 

ecosystem benefits, such as food, timber, non-timber forest products, biofuels, soil erosion control, 

soil fertility regulation, water quality improvements, carbon storage, and they help control carbon 

emissions (Maass et al., 2005; Balvanera et al.,2011; Calvo-Rodriguez et al., 2017). TDFs have 

greatly benefitted human development and are considered the most excessively utilized and least 

protected forest ecosystems of the Americas (Janzen, 1988; Sanchez-Azofeifa et al., 2005; Calvo-

Alvarado et al., 2009; Portillo-Quintero & Sanchez-Azofeifa, 2010). More than 60% of TDFs have 

been destroyed in Latin America, and approximately half of all TDFs in the world have been 

converted to other land use types (Hoekstra et al.,2005; Portillo-Quintero & Sanchez-Azofeifa, 

2010).  

As TDFs undergo excessive human disturbances, ongoing climate change is interfering 

with the provision of ecosystem services (Kalacska et al., 2004). Global climate models have 

predicted an increase in the frequency, intervals, and severity of meteorological droughts in 

tropical regions (Chadwick et al., 2016). TDFs are particularly sensitive to meteorological 

droughts because water dynamics determine the alternating seasonality between wet and dry 

seasons (Castro et al., 2018).  

Meteorological droughts are recurring climate phenomena that mainly occur when rainfall 

is significantly less than the normal level for a sustained period (Olukayode Oladipo, 1985; 

Thenkabail & Gamage, 2004). They can also be related to high temperature and high potential 

evapotranspiration (Williams et al., 2013). Meteorological droughts can cause other types of 
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droughts, such as agricultural (lack of soil moisture in the root zone), hydrological (lower than 

normal stream-flow or reservoir storage), and economic droughts (shortage of water supply for 

economic goods) (Olukayode Oladipo, 1985; Patel et al.,2007).  

To quantify a meteorological drought, including its severity, magnitude, duration and 

spatial extent, many drought indices have been developed by integrating ground-station variables, 

including precipitation, evapotranspiration, and temperature, into one single variable (Patel et al., 

2007). Popular meteorological indices include the Standardized Precipitation Index (SPI; McKee, 

et al.,1993), the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et 

al., , 2010), and the Palmer Drought Severity Index (PDSI; Palmer, 1965). The calculation of the 

PDSI is based on prior precipitation, moisture supply, runoff and evaporation demand. It was 

designed for long-time scales (between 9 and 12 months) and is not able to identify droughts of 

shorter periods. Both the SPI and SPEI are multiscale meteorological drought indices. The SPI is 

a precipitation-based drought index that considers the essential character of a drought as the 

deficiency of usable water, including water from soil moisture, rivers, streams, groundwater and 

reservoir storages. The SPI is calculated by fitting precipitation totals to a gamma distribution in 

different time scales and then transforming the gamma distribution to the standard normal 

distribution. The SPEI is an extension of the SPI, which considers both precipitation and 

temperature as factors that can to trigger drought. The calculation of the SPEI requires multiple 

data sources as input, including relative humidity, temperature, wind speed and solar radiation 

(Vicente-Serrano et al., 2010). The high data requirement for the SPEI restricts its wide 

application, and the SPI is considered the most widely used and valid meteorological drought index 

(Zargar et al., 2011). 

Increases in the frequency, intervals, and severity of meteorological droughts have led to 

changes in the structure, function, and composition of tropical ecosystems (Allen et al.,2015; Choat 

et al., 2012). The primary response of forests to drought is to reduce the net primary production 

(NPP) and water use as a result of reduced soil moisture and stomatal conductance (Dale et al., 

2001). Secondary effects occur under severe meteorological drought conditions with an extreme 

decline in NPP. In this case, forest mortality is increased due to carbon starvation and hydraulic 

failure (McDowell et al., 2008), and susceptibility to insects and disease increases due to 
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physiological changes experienced by host trees (Rouault et al., 2006), and the frequency or 

intensity of wildfires increases due to a reduction in decomposition processing (Dale et al., 2001).  

Some studies have focused on the primary effects of meteorological droughts on forest 

ecosystems during drought years or the years following a drought. Asner et al. (2004) analyzed 

the monthly meteorological precipitation and biophysical parameters of Amazon forest using 

spaceborne hyperspectral metrics from January 2001 to January 2002 and found that canopy water 

content, light-use efficiency, and NPP were highly sensitive to drought. Anderson et al. (2010) 

analyzed the impacts of a 2005 drought on the gross primary productivity (GPP), expressed as the 

Enhanced Vegetation Index (EVI), of Amazonia and concluded that EVI was associated with 

radiation income rather than the precipitation amount. Castro et al. (2018) found that GPP in TDFs 

in Santa Rosa National Park (SRNP), Costa Rica declined by 13% and 42% during drought seasons 

of 2014 and 2015, respectively. Other studies assessed the primary impacts of droughts on the 

forest ecosystem from a long-term perspective. Phillips et al. (2009) found that relative to pre-

2005 conditions (1980–2004), Amazon forest subjected to a 100-mm increase in water deficit lost 

5.3 mg of aboveground biomass of carbon per hectare. Brando et al. (2010) concluded that GPP 

declined with Vapor Pressure Deficit (VPD) and decreased precipitation and Plant Available 

Water (PAW) in sparse forested areas in the Amazon from 2000 to 2008. In densely forested areas, 

EVI was associated with leaf flushing rather than Leaf Area Index (LAI) or any climate variables. 

Williams et al. (2013) found that the Forest Drought Stress Index (FDSI), which is associated with 

tree productivity, was approximately equally influenced by warm-season temperature and cold-

season precipitation for the forest ecosystem in the southwestern United States from 1896 to 2007.  

There were only a few studies on the primary effects of meteorological droughts on TDFs 

from a long-term perspective. This study employed remote sensing-based indices, i.e., the 

Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as proxies 

for forest productivity (Liu et al., 2011). The NDVI reflected canopy greenness (Ji & Peters, 2003), 

and the LST reflected the evapotranspiration of plants (Cao & Sanchez-Azofeifa, 2017).  

Relationships between remote-sensing drought indices (NDVI and LST) and 

meteorological drought indices have been explored in different regions. Ji & Peters (2003) 

quantified the relationship of monthly NDVI with multiscale SPIs in the growing season across 

the north and central U.S. Great Plains from 1989 to 2000. They found that NDVI-SPI correlations 
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varied significantly by month, and the best correlations occurred in the middle of the growing 

season. Wang et al. (2003) tested the temporal response of the satellite-derived NDVI to 

precipitation in Kansas, U.S. from 1989 to 1997. They concluded that the average NDVI values 

during the growing season had a high correlation with the cumulated precipitation of the current 

growing season plus the preceding seven months (15-month duration). Nichol & Abbas (2015) 

related the Normalised Vegetation Supply Water Index (NVSWI), (calculated using the NDVI and 

LST) to the Precipitation Condition Index (PCI) in Yunnan province of China from 2008 to 2011. 

They found that the NVSWI correlated best with 64 days of earlier rainfall in terms of the cropland 

and shrubland, while evergreen forest was sensitive to precipitation 90 days earlier. 

The correlation between the NDVI and LST was also explored around the world (Prihodko 

& Goward, 1997; Goward et al. 2002). This is because the correlation can reflect the limiting factor 

for vegetation growth, which is a key component for drought monitoring Specifically, when the 

NDVI-LST correlation is significantly negative, resulting from the cooling effect of canopy 

transpiration, water is a limiting factor for vegetation growth; when the NDVI-LST correlation is 

significantly positive, attributable to warming inducing an increase in plant biomass, cover, and 

net primary productivity, energy is a limiting factor (Karnieli et al., 2006). In TDFs, the limiting 

factor for plant growth is water (Cao et al., 2016; Castro et al., 2018). However, the importance of 

water for TDFs growth in different seasons (i.e., dry, wet, and transitional seasons) is not discussed 

in detail. 

 In this context, the objective of this study is to explore how TDFs temporally respond to 

meteorological drought at monthly and seasonal scales from a long-term perspective and how 

water is important to the growth of TDFs in different seasons (dry, dry-to-wet transitional, wet, 

and wet-to-dry transitional seasons). Specifically, we try to answer the following questions: (1) 

How do the NDVI and LST temporally respond to SPIs in TDFs? And (2) what is the relationship 

between the NDVI and LST in different seasons in TDFs? This study will contribute to a deeper 

understanding of the primary response of TDFs to meteorological drought triggered by climate 

change and the importance of water to the growth of TDFs. Figure 3.6 shows the flowchart for this 

chapter. 
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3.2 Methods 

3.2.1 Study area 

The study was conducted at the Santa Rosa National Park Environmental Monitoring Super 

Site (SRNP-EMSS; Figure 3.1) in Guanacaste province of Costa Rica. The SRNR-EMSS is part 

of the regional conservation area known as the Area de Conservacion Guanacaste (ACG) in the 

northwest of Costa Rica. The SRNP-EMSS ranges from 85°31’W–85°39’W and 10°48’N–10° 

56’N, covering approximately 109 km2 with a mean slope of 7%. The SRNP-EMSS had been a 

part of a cattle ranch hacienda for almost 200 years until 1971. After that, the SRNP-EMSS was 

developed into a mosaic of diverse vegetation cover dominated by secondary forests in various 

stages of regeneration (Cao & Sanchez-Azofeifa, 2017; Janzen, 2000; Kalacska et al., 2004). The 

SRNP-EMSS receives a mean annual rainfall of 1391 mm with high variability (915–2558 mm 

per year) and has a stable mean annual temperature of 26°C (Cao & Sanchez-Azofeifa, 2017; 

Kalacska et al., 2004). The SRNP-EMSS is characterized by a three-month dry season from 

January to March when there is almost no rainfall, and the majority of deciduous vegetation loses 

its leaves (Figure 3. 2). After the dry season, the rainfall starts to increase in April and sharply rises 

in May. As such, April and May are considered the dry-to-wet transitional season. The wet season 

is between June and October, when the precipitation stays at a high level. A short dry period can 

occur in late July or August caused by a short intensification of trade wind activity (Campos, 

2018). November and December are considered a wet-to-dry transitional season, when the 

precipitation declines sharply. 

3.2.2 The NDVI and LST as response variables to drought 

As a widely used vegetation index, the Normalized Difference Vegetation Index (NDVI) 

is calculated based on reflectance at the red and near-infrared wavelengths. It can be used to reflect 

the vegetation vigor and greenness (Karnieli et al., 2010). The Land Surface Temperature (LST) 

derived from the thermal band is related to vegetation water stress, soil moisture, and 

evapotranspiration (Karnieli et al., 2010). The NDVI and LST are widely used in the drought 

monitoring of terrestrial ecosystem dynamics on remote sensing (Ji & Peters, 2003) because 

temporal variations in the NDVI and LST can represent the primary response, the reduction in 

productivity, to meteorological drought. Sixteen-day and eight-day Terra Moderate Resolution 



42 

 

Imaging Spectroradiometer (MODIS) products with 250-m (MOD13Q1, collection v006) and 

1000-m resolutions (MOD11A2, collection v006), respectively, from March 2000 to March 2017 

were downloaded from NASA’s website (http://reverb.echo.nasa.gov/reverb/). We first resampled 

the LST images to 250 m and then converted the NDVI and LST images to a Universal Transverse 

Mercator projection with central zone 16 N° and WGS84 using the nearest interpolation algorithm. 

Then, monthly NDVI and LST products were aggregated by considering the weight of the number 

of days belonging to each month after removing the missing data (Rhee et al., 2010). 

3.2.3 Temporal correlations between the NDVI and LST and SPIs 

We used the SPI as the meteorological drought index due to its lower requirement of data 

and its multiscale character (Vicente-Serrano et al., 2010). The responses of the NDVI and LST to 

meteorological drought were conducted using temporal correlation analysis of the NDVI and LST 

and multiple SPIs. Time duration and time lag are integrated into the temporal correlation analysis 

(Ji & Peters, 2003). Time duration refers to the time scales of SPIs (McKee, Doeskin, & Kleist, 

1993). In this case, time lag refers to the interval between the occurrence of precipitation and the 

change in remote-sensing parameters (Ji & Peters, 2003). 

In each month, from January to December, the correlations between the monthly NDVI 

and LST and the corresponding SPIs were calculated, with SPIs in twelve different time durations 

(1–12 months) and six different time lags (0–5-month lags). As a result, there were 72 correlation 

coefficients for each month as shown in Table 3.1. We can assess the temporal patterns (duration 

and lag) of SPIs that most significantly affected the current NDVI and LST in each month using 

the maximum SPI-NDVI and the minimum SPI-LST coefficients, respectively, based on the 

assumption that a meteorological drought can lead to lower NDVI and higher LST. 

  We also calculated the correlation coefficients between the average NDVI and LST in the 

dry, dry-to-wet, wet, and wet-to-dry season for various years and the corresponding temporal 

patterns of the SPIs. In Santa Rosa, the four seasons experienced 3 months, 2 months, 5 months, 

and 2 months respectively. Thus, the time duration of the SPIs for the four seasons ranged from 3 

months (the current dry season), 2 months (the current dry-to-wet season), 5 months (the current 

wet season), and 2 months (the current wet-to-dry season) to 2 years ago (24 months ago). The SPI 

that most significantly affected the seasonal average NDVI and LST was obtained as the maximum 

SPI-NDVI and the minimum SPI-LST coefficients respectively. 
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3.2.4 The seasonal correlation between the average NDVI and LST 

The NDVI-LST correlations vary spatially and temporally. To evaluate the predominant 

factors for the growth of TDFs in four seasons, Pearson Correlation Analysis was conducted 

between the average NDVI and the average LST in the dry, dry-to-wet, wet and wet-to-dry season, 

respectively. 

3.3 Result 

3.3.1 The monthly distribution of the NDVI and LST in SRNP-EMSS 

Figure 3.3 shows the monthly distribution of NDVI and LST in each month. Overall, the 

median NDVI in the dry and the dry-to-wet seasons was lower than in the wet and wet-to-dry 

seasons, while the LST shows completely opposite trends. As is shown in Figure 3.3 (a), the 

median value of the NDVI decreased from 0.71 to 0.52 in the dry season from January to March. 

In the dry-to-wet season, it reached the lowest level at around 0.50 in April and increased to 0.55 

in May. In the wet season, the median NDVI dramatically increased to 0.81 in June and stayed at 

a high level (around 0.85) through the wet season. In the wet-to-dry season, the NDVI stayed at a 

high level (around 0.8) with a slight decline.  

The median LST increased from 302.3 K to 308 K in the dry season (Figure 3.3 b). During 

the dry-to-wet season, it increased to 309 K in April and decreased to 308.2 K in May. It sharply 

declined to around 302 K in June and kept relatively stable (between 301 K and 302 K) during the 

wet season. In the wet-to-dry season, the median LST slightly declined to 301 K in November and 

increased to 302 K in December. The NDVI and LST variations in the dry season were much 

higher than in the wet season. Both the NDVI and LST experienced the largest variations in May. 

3.3.2 The temporal response of the NDVI and LST to meteorological drought  

Table 3.2 shows the maximum SPI-NDVI correlation and the minimum SPI-LST 

correlation among 72 temporal relationships (time durations (1–12 months) and time lags (0–5-

month lags)) in each month. The NDVI and LST can be well explained by the SPIs for most 

months. Low maximum SPI-NDVI correlations were seen in August, October, November and 

December, and high minimum SPI-LST correlations were seen in November. The maximum SPI-
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NDVI and the minimum SPI-LST correlation varied with the combination of the time duration, 

time lag and month. The maximum SPI-NDVI and the minimum SPI-LST correlations were 

obtained at the same combination of the time durations and time lags in January, February, and 

March (the dry season). They also had the same time lags in April and May (the dry-to-wet season). 

The combinations for each month during June and December (the wet season and wet-to-dry 

season) were different, except for September. The time lags for the significant minimum SPI-LST 

correlations were no longer than the corresponding maximum SPI-NDVI during June and 

December. 

Table 3.3 shows the maximum SPI-NDVI correlation and the minimum SPI-LST 

correlation in each season. The seasonal temporal correlations varied with the time duration, time 

lag and season. The maximum SPI-NDVI correlations are significant (p<0.05) except in the wet-

to-dry season, and the minimum SPI-LST correlations are significant (p<0.05) for all the seasons. 

In addition, the absolute values of the minimum SPI-LST correlations in the dry, wet, and wet-to-

dry seasons (0.83, 0.69, and 0.82, respectively) are higher than the maximum SPI-NDVI 

correlations (0.78, 0.78 and 0.27, respectively). In the dry-to-wet season, the maximum SPI-NDVI 

correlation (0.78) was higher than the absolute minimum SPI-LST correlation (0.55). In addition, 

the time durations for the maximum SPI-NDVI correlations (9 , 2, 6, and 3 months) were shorter 

than the corresponding absolute minimum SPI-LST correlations (11, 3, 13, and 3 months) in each 

season. The time lag for the maximum SPI-NDVI correlation in the wet season (4 months) was 

longer than the minimum SPI-LST correlation (1 month). They had the same time lags in the dry, 

dry-to-wet, and wet-to-dry season (0, 1, and 0 months, respectively). 

Figure 3.4 shows the SPIs-NDVI and SPIs-LST correlations as a function of time duration, 

with 1-month increments given the fixed time lags in each season. The time lags were selected 

based on the maximum SPI-NDVI and the minimum SPI-LST correlations in each season (Table 

3. 3). In the dry season, with the same 0-month time lag, the SPIs-NDVI correlations reached a 

very high level (r-values>0.75) at durations between 8 and 17 months, and the SPIs-LST 

correlations were at a very low level (r-values<-0.8) at durations between 11 and 16 months. In 

the dry-to-wet season, given the same 1-month time lag, the SPIs-NDVI correlation reached a very 

high level (r-values>0.75) at 2- and 3-month durations, and the SPIs-LST correlation reached a 

moderately low level (r-values<-0.5) at the 2-month duration. In the wet season, the SPIs-NDVI 
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correlation reached a high level (r-values>0.65) at durations between 5 months and 7 months given 

a time lag of 4 months. The SPIs-LST correlations reached a low level at durations between 5 

months and 10 months given a time lag of 1 month. In the wet-to-dry season, the SPIs-LST 

correlations reached (r-values<-0.8) a very low level at durations between 8 and 13 months. The 

SPIs-LST correlations were not significant for the entire duration. 

3.3.3 The correlation between the seasonal average NDVI and LST 

Figure 3.5 shows the correlations between the average NDVI and the average LST in each 

season. In the dry and dry-to-wet season, they were strongly negatively correlated (r-value=-0.85 

and -0.88, p-value<0.001 and 0.001). In the wet season, they had a medium negative correlation 

(r-value=-0.52, p-value=0.029). In the wet-to-dry season, the average NDVI and the average LST 

had a low negative (r-value=-0.11, p-value=0.672) correlation. 

3.4 Discussion 

3.4.1 Phenologically dependent responses of NDVI and LST to meteorological 

drought 

The patterns of the NDVI and LST in response to meteorological drought strongly depend 

on the seasonality in the SRNP-EMSS. NDVI was highly sensitive to precipitation in the dry and 

dry-to-wet season (r-value =0.78 and 0.78) and highly sensitive in the wet season (r-value =0.66), 

and was not sensitive in the wet-to-dry season (r-value =0.27). LST was strongly affected by 

rainfall in the dry and wet-to-dry season (r-value =-0.83 and -0.82), highly affected in the wet 

season (r-value =-0.69), and moderately impacted in the dry-to-wet season (r-value =-0.55). 

  This is due to the NDVI and LST reflecting different biophysical processes in TDFs. The 

NDVI describes the vegetation greenness and deciduousness of TDFs and LST describes the 

temperature and evapotranspiration on the surface. In the dry season, the deciduousness and 

evapotranspiration in the TDFs were highly sensitive to precipitation due to less water storage in 

the roots of TDFs. In the dry-to-wet season, the NDVI grew sharply due to leaf flush in May, 

which was driven by precipitation. The evapotranspiration in TDFs was impacted by not only the 

precipitation but also the amount of new leaves. In the wet season, although precipitation can affect 

the greenness and evapotranspiration in TDFs, they were resistant to meteorological drought due 

to the abundant water storage in the roots, especially in October, during the late stage of the wet 
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season. The response of LST was a deceasing trend, as expected. The response of the NDVI was 

weak (r-value =0.41) in August but very strong (r-value =0.81) in September. This resulted from 

TDFs experiencing a short-term rainfall deficiency at the end of July (Figure 3.2). This result 

indicates the greenness is more resistant to a short-term rainfall deficiency than evapotranspiration 

in TDFs, but the greenness is more sensitive to precipitation after a period of water deficiency. In 

the dry-to-wet season, the defoliation of TDFs, especially in December, is due to the phenological 

timing instead of precipitation; however, rainfall can still have a strong impact on the 

evapotranspiration on the canopy surface. 

 

3.4.2 Water availability, duration, and timing as key factors controlling the NDVI 

and LST 

The temporal responses of the NDVI and LST to water deficiency (magnitude of 

meteorological drought) largely depend on its duration (the period for precipitation accumulation) 

and the timing (the onset for precipitation) of precipitation. 

In the dry season, the strongest correlations between NDVI and LST and SPIs (r-

value=0.78 and -0.83) were found when the precipitation was integrated over 9 and 11 months, 

which included the entire current dry season (3 months) plus the 6 and 8 preceding months, 

respectively. The average NDVI was affected by the precipitation of not only the current dry 

season, but also the precipitation of the wet and wet-to-dry season of the preceding year, and the 

average LST was influenced by the precipitation of the current dry season as well as the previous 

dry-to-wet, wet, and wet-to-dry seasons. This indicates that the greenness and evapotranspiration 

of TDFs in the dry season were strongly influenced by a relatively long period of precipitation. 

This is because much of the precipitation is stored in the root zone when the rainfall is abundant 

in the previous year, which can mitigate defoliation and provide water for evapotranspiration in 

TDFs in the dry season.  

In the dry-to-wet season, the SPI-NDVI correlation peaked at the duration of 2 months and 

the lag of 1 month. This means the average NDVI was strongly affected (r-value=0.78) by the 

accumulated precipitation in March and April of the current year. The SPI-LST reached the bottom 

(r-value=-0.55) at the duration of 3 months and the lag of 1 month, showing that the average LST 

was moderately influenced by the total rainfall received during February to April of the current 
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year. This is because the leaf flush in the dry-to-wet season, especially in May, was strongly 

controlled by the sporadic rainfall during March to April instead of in May when the precipitation 

was abundant. Also, the evapotranspiration was partially influenced by the accumulated 

precipitation during February to April of the current year when the rainfall was less. The result 

illustrates that evapotranspiration and especially leaf flush in TDFs are sensitive to the timing of 

precipitation. 

In the wet season, the average NDVI was highly affected (r-value=0.66) by the 

accumulated precipitation during January to June of the current year, and the average LST was 

highly influenced (r-value=-0.69) by the total rainfall during the previous August to the current 

September. This indicates that greenness is affected not only by the magnitude of precipitation but 

also the timing of precipitation. The evapotranspiration is more affected by the magnitude of 

precipitation rather than the timing of precipitation. 

 In the wet-to-dry season, the average NDVI did not significantly correlate with SPIs, 

indicating that water availability is not a factor that affects the greenness of TDFs. The average 

LST was strongly influenced (r-value=-0.82) by the accumulated precipitation during the previous 

November to the current December, indicating that the evapotranspiration in TDFs is only 

sensitive to the magnitude of precipitation for a long period. 

 

3.4.3 Estimate of the primary response of TDFs to meteorological drought 

The primary response of TDFs to water deficiency is a decline in primary productivity 

(Dale et al., 2001; Xiao et al., 2004). The MODIS Gross primary productivity (GPP) algorithm 

(Running et al., 2004) estimates the GPP as a function of the photosynthetically active radiation 

(PAR), NDVI, LST, air temperature, and maximum light use efficiency (εmax). Among them, the 

NDVI, LST, and εmax are relative to vegetation characteristics. The MODIS GPP algorithm 

estimates the εmax based on the Biome Properties Look-Up Table (BPLUT), which mistakes TDFs 

for desert. However, the primary response of TDFs to meteorological drought can be indirectly 

estimated based on the temporal correlation analysis of NDVI and LST and SPIs (Figure 3.4 and 

Figure 3.5), based on the hypothesis that εmax varies with season but not with year. The GPP of 

TDFs is considered to be affected by meteorological drought when both NDVI and LST have 

significant correlations with specific SPIs simultaneously. 
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In the dry season, the SPI-NDVI correlations reached a high level from a duration of 8 

months to a duration of 17 months for the fixed lag of 0 month, and the SPI-LST correlations 

reached a low level from a duration of 11 months to a duration of 16 months for the fixed lag of 0 

months (Figure 3.4). GPP was considered to respond to the precipitation with a duration of 11 

months (the minimum intersection) and a lag of 0 months. The NDVI-LST correlation (r-value=-

0.85) was highly negative (Figure 3.5), indicating that water is the predominant factor for the 

growth of TDFs in the dry season. We inferred that the average GPP is strongly influenced by the 

accumulated precipitation from the preceding February to the current March. In the dry-to-wet 

season, the SPI-NDVI correlations reached a high level from a duration of 2 to 3 months for the 

fixed lag of 1 month, and the SPI-NDVI correlations reached a low level at a duration of 3 months 

for the fixed lag of 1 month (Figure 3.4). GPP s responded to the precipitation with a duration of 

3 months and a lag of 1 month. The NDVI-LST correlation (r-value=-0.85) was highly negative 

in the dry-to-wet season (Figure 3.5). We inferred that the average GPP was strongly affected by 

the total precipitation from February to April of the current year. In the wet season, the average 

NDVI was highly affected by the total precipitation from January to June of the current year. The 

average LST was highly influenced by the accumulated precipitation from the previous December 

to the current September. The NDVI-LST correlation was moderately negative (r-value=-0.52). 

We inferred that GPP is moderately influenced by the precipitation from January to June of the 

current year based on the hypothesis that the greenness is a more important parameter than 

evapotranspiration for calculating GPP. In the wet-to-dry season, the NDVI-LST correlation was 

not significant (Figure 3.5), indicating that water is not the dominant factor in the growth of TDFs. 

We can infer that GPP is not influenced by precipitation in the wet-to-dry season. 

 

3.5 Conclusion 

The response of the NDVI and the LST to the SPIs, is crucial to understand how TDFs 

respond to meteorological droughts. In this study, I conducted temporal correlations between the 

MODIS-derived NDVI and LST to the SPIs between March 2000 and March 2017 in the TDFs at 

the Santa Rosa National Park Monitoring Super Site (SRNP-EMSS) at monthly and seasonal 

scales. 
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I found that the NDVI and LST largely depend on the seasonality as well as the magnitude, 

duration, and timing of precipitation. In the dry season, the average NDVI and LST were sensitive 

to the magnitude of a long period of precipitation. In the dry-to-wet season, the average NDVI and 

LST were strongly and moderately sensitive to the magnitude of short-term precipitation and the 

timing of precipitation, respectively. In the wet season, the average NDVI was highly sensitive to 

half-year accumulated precipitation. The average LST was highly sensitive to the magnitude of 

long-term precipitation. In the wet-to-dry season, precipitation is not a key factor controlling 

NDVI, but average LST is highly sensitive to the magnitude of long-term precipitation.  

  Regarding the GPP response of the SRNP-EMSS to meteorological drought, I conclude 

that GPP is affected by yearly, short-term, and half-year accumulated precipitation in the dry, dry-

to-wet season, and wet season respectively. In the wet-to-dry season, GPP was not influenced by 

precipitation. 
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3.7 Tables and Figures 

Table 3. 1 The temporal patterns (12 time durations * 6 time lags) of correlations between the 

SPIs and the NDVI and LST in each month. The numbers in the cells show the time period of the 

SPIs. For example, zero shows the current month, one indicates the first previous month, and 0–1 

shows the period from the current month to the first current month. 

 Duration 

Lag 1 2 3 4 5 6 7 8 9 10 11 12 

0 0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 

1 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 

2 2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 

3 3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 

4 4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 

5 5 5-6 5-7 5-8 5-9 5-10 5-11 5-12 5-13 5-14 5-15 5-16 
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Table 3. 2 The maximum temporal correlation coefficients (r-value) between the NDVI and the 

corresponding SPIs with 12 different time durations (1–12 months) and 6 different time lags (0–5 

months), and the minimum temporal correlation coefficients (r-value) between the LST and the 

corresponding SPIs with 12 different time durations (1–12 months) and 6 different time lags (0–5 

months) in each month. The asterisk indicates that the p-value is less than 0.05. Red, blue, green 

and yellow shades indicate the dry season, dry-to-wet season, wet season and wet-to-dry season, 

respectively. The red, blue, green, and yellow indicate the dry, dry-to-wet, wet, and the wet-to-

dry season, respectively. 
 

 The maximum SPI-NDVI 

correlation 

The minimum SPI-LST correlation 

Period Time r-value Time r-value 

January Duration=5    

Lag=0 

0.55* Duration=5   Lag=0 -0.68* 

February Duration=10  

Lag=0 

0.79* Duration=10 Lag=0 -0.70* 

March Duration=12  

Lag=0 

0.87* Duration=12 Lag=0 -0.64* 

April Duration=12  

Lag=0 

0.63* Duration=10 Lag=0 -0.62* 

May Duration=2    

Lag=1 

0.76* Duration=3   Lag=1 -0.55* 

June Duration=11  

Lag=2 

0.65* Duration=12 Lag=1 -0.76* 

July Duration=2    

Lag=4 

0.66* Duration=6   Lag=2 -0.77* 

August Duration=3    

Lag=0 

0.41 Duration=9   Lag=0 -0.70* 

September Duration=1    

Lag=4 

0.81* Duration=1   Lag=4 -0.69* 

October Duration=8    

Lag=5 

0.34 Duration=1   Lag=0 -0.54* 

November Duration=1    

Lag=2 

-0.04 Duration=5   Lag=5 -0.42 

December Duration=3    

Lag=0 

0.38 Duration=7   Lag=0 -0.79* 
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Table 3. 3 The maximum temporal correlation coefficients (r-value) between the average NDVI 

and the corresponding SPIs with different time durations (the current season - 24 months) and 6 

different time lags (0–5 months), and the minimum temporal correlation coefficients (r-value) 

between the average LST and the corresponding SPIs with different time durations (the current 

season - 24 months) and 6 different time lags (0–5 months) in each season. The asterisk indicates 

that the p-value is less than 0.05. 

 The maximum  

SPI-NDVI correlation 

The minimum  

SPI-LST correlation 

Period Time r-value Time r-value 

Dry season Duration=9    Lag=0 0.78* Duration=11   Lag=0 -0.83* 

Dry-to-Wet 

season 

Duration=2    Lag=1 0.78* Duration=3     Lag=1 -0.55* 

Wet season Duration=6    Lag=4 0.66* Duration=10   Lag=1 -0.69* 

Wet-to-Dry 

season 

Duration=3    Lag=0 0.27 Duration=13 Lag=0 -0.82* 
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Figure 3. 1 Study area: Santa Rosa National Park Monitoring Super Site (SRNP-EMSS). 
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Figure 3. 2 The monthly precipitation distribution in each month (SRNP-EMSS) from June 1976 to March 2017. 
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(a)  NDVI distribution                                                          

 
                          (b) LST distribution 

 

 

Figure 3. 3 The monthly distribution of the NDVI and LST in each month in Santa Rosa (SRNP-

EMSS) from March 2000 to March 2017. 

  



61 

 

  
(a) Dry Season (b) Dry-to-Wet Season 

  
(c) Wet Season (b) Wet-to-Dry Season 

  

Figure 3. 4 Correlation coefficients as a function of time duration in the fixed time lag 

corresponding to the maximum SPI-NDVI correlation and the minimum SPI-LST correlation in 

the dry, dry-to-wet, wet and wet-to-dry season. Red dots and green dots indicate the SPI-NDVI 

and SPI-LST correlations with p-values less than 0.05 and no less than 0.05, respectively. 
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Figure 3. 5 The correlations between the average NDVI and the average LST in the dry, dry-to-

wet, wet, and wet-to-dry season. 
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Figure 3. 6 Flowchart for assessing the temporal response of TDFs to meteorological drought 
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Chapter 4 

Assessment of the response of Tropical Dry Forests to El Niño 

Southern Oscillation 

4.1 Introduction 

Tropical Dry Forests (TDFs) are ecosystems dominated by deciduous species, with a mean 

annual precipitation of 700–2000 mm, an average annual temperature greater than 25°C, and a dry 

season between 4 to 6 months where the precipitation is less than 100 mm (Sanchez-Azofeifa et 

al., 2005).  

 Global climate models predict more severe droughts, in terms of magnitude and duration, 

will occur in TDFs (Chadwick et al., 2016; Castro et al., 2018). TDFs are susceptible to droughts 

because the regimes of precipitation determine phenological patterns and water availability is the 

limiting factor for plant growth and regeneration (Lopezaraiza-Mikel et al., 2013). One important 

source of droughts is the El Niño Southern Oscillation (ENSO; Murphy, 2006). ENSO is defined 

as a coupled mechanism between large-scale oceanic and atmospheric circulation processes in the 

equatorial Pacific Ocean that affects global climate and weather (Propastin et al., 2010).  This 

mechanism leads to the redistribution of precipitation and temperature patterns for certain regions 

of the world (IPCC, 2007). El Niño is the warm phase of ENSO resulting from a weakening of 

trade winds and warmer Sea Surface Temperature (SST) across the east and central tropical 

Pacific, while La Niña is the cold phase of ENSO associated with stronger trade winds and cooler 

SST (Trenberth, 1997).  

El Niño-induced droughts are pronounced in the central America, north and northeast of 

South America, Southeast Asia, northern Australia, northern and central India, and southwest 

Africa (Holmgren et al., 2001) where massive TDFs are located (Miles et al., 2006). Severe El 

Niño-induced drought can change the structure and function of the forest ecosystem, destroy 

biodiversity, increase the mortality rate, and cause wildfires (Allen et al., 2010). Satellite remote 

sensing has been broadly used to identify terrestrial biospheric dynamics linked to El Niño due to 

its advantages of high temporal resolution and large and consistent coverage areas (Kogan, 1998; 

Brown et al., 2008; Erasmi et al., 2009; Bi et al., 2016). The satellite-derived Normalized 

Difference Vegetation Index (NDVI) is one of the most commonly used vegetation indices; it 
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reflects greenness and vigor because it is highly correlated with green leaf density and chlorophyll 

content in plants (Sellers et al., 1997; Heinsch et al., 2006). As a complement, Land Surface 

Temperature (LST) is a biophysical parameter that reflects canopy water content and 

evapotranspiration on the surface (Karnieli et al., 2010; Cao & Sanchez-Azofeifa, 2017). Remote 

sensing drought indices, such as the Vegetation Condition Index (VCI; Kogan, 1995) and the 

Temperature Condition Index (TCI; Kogan, 1995) have been derived using time series of remotely 

sensed parameters (NDVI and LST) to monitor vegetation stress and the effects of El Niño on 

vegetation (Kogan, 1998). These drought indices allow vegetation stress and the impacts of El 

Niño on vegetation to be compared in different ecosystems in various regions (Kogan et al., 1995; 

1997; 2004). 

A number of studies have analyzed and described the ENSO-related impacts on various 

ecosystems in tropical regions (Kogan, 1998; Mennis 2001; Anyamba, 2002; Boyd & Phipps, 

2002; Nagai et al. 2007; Erasmi et al., 2009; Propastin et al., 2010). Some studies devoted to 

monitoring the short-term response of the vegetated surface to ENSO during an individual El Niño 

event (Kogan, 1998; Anyamba, 2002; Boyd & Phipps, 2002). Kogan (1998) recognized the 

vegetation stress occurring in land ecosystems in Southern Africa during the 1997–1998 El Niño 

using an anomaly in the vegetation and temperature index. Anyamba et al. (2002) analyzed 

vegetation response patterns over East and Southern Africa during El Niño in 1997 and 1998 and 

found that the NDVI anomaly had a positive correlation with SST anomalies for East Africa but a 

negative correlation for Southern Africa. Boyd & Phipps (2002) explored the impact of El Niño-

induced drought stress on tropical rainforests in Sabah, Malaysia during 1997 and 1998 and 

concluded that middle infrared reflectance (MIR) is more sensitive to precipitation deficits caused 

by El Niño than NDVI in tropical rainforest ecosystems. However, such studies failed to assess 

the impacts of El Niño on ecosystems precisely because the El Niño-affected areas cannot be 

coherent between different El Niño events (Erasmi et al., 2009).  

To solve this problem, a Moving Window Correlation Analysis (MWCA) is used to assess 

the teleconnection between El Niño and ecosystems based on multiple El Niño events (Erasmi et 

al., 2009; Propastin et al., 2010). Erasmi et al. (2009) investigated El Niño-related impacts on 

various tropical ecosystems in Indonesia during the period 1982–2006, by analyzing the 

relationship between monthly ENSO proxies and NDVI based on a MWCA. They found that the 
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resistance of vegetation to drought stress is strongly affected by land-use intensity, and degraded 

forest areas and croplands are more sensitive to drought conditions than natural forests. Propastin 

et al., (2010) analyzed the vulnerability of vegetated surfaces over Africa to El Niño using MWCA 

for the period 1982–2006. They concluded that the impacts of El Niño on vegetation largely 

depend on the vegetation type, and wooded and non-wooded vegetation types are more sensitive 

than tropical rainforests.  

Other studies focused on the long-term response of ecosystems to ENSO (Mennis 2001; 

Nagai et al. 2007). Mennis (2001) explored the relationship between the SST anomaly in Pacific 

Niño 3.4 and NDVI in the Southeast USA for the period 1982–1992. The result indicated that El 

Niño events triggered a decline in vegetation vigor, and the SST anomaly had the strongest 

correlation with the NDVI for deciduous forests and a weak correlation with the NDVI for 

evergreen forests and croplands. Nagai et al. (2007) examined the relationship among time-series 

NDVI, climate indices (precipitation, temperature, and incoming surface solar radiation), and 

ENSO proxy over tropical rainforests in the Amazon basin and southeastern Asia from 1981 to 

2000. The result revealed that precipitation and temperature affected by ENSO are more important 

factors in controlling vegetation activities over tropical rainforests than incoming surface solar 

radiation. The teleconnections between ENSO and climate variables (e.g. precipitation and 

temperature) were reported by Campos (2018) in Santa Rosa National Park, Costa Rica, where 

TDFs inhabit. The result revealed that the driest and wettest periods on record happened in 

connection with strong El Niño and La Niña, respectively. In addition, Castro et al. (2018) explored 

the impact of drought on the productivity of TDFs in Santa Rosa National Park, Costa Rica during 

the 2014–2016 El Niño event. They found that gross primary productivity declined by 13% and 

42% during the 2014 and 2015 drought seasons, respectively. However, no research on the 

teleconnection between ENSO and vegetation variability in TDFs has been published. 

The objective of this study is to quantify the response of TDFs to ENSO from long-term 

and short-term perspectives at multiple sites across the Americas. We use time-series VCI and TCI 

as the response variables, and the SST anomaly in the Niño 3.4 region as the ENSO proxy. Here I 

try to answer the following questions from a long and a short term response, respectively: (1) From 

a long term perspective, what is the temporal correlation between VCI and TCI and SST anomalies 

at the seasonal scale? And (2) from a short-term perspective, what are the impacts of El Niño 
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events on the TDFs based on the MWCA? This analysis is expected to contribute towards a deeper 

understanding of the vulnerability of TDFs to ENSO and the teleconnection between ENSO and 

climate variability across the Americas. Figure 4.7 shows the flowchart for this study. 

4.2 Methods 

4.2.1 Study sites 

This study was conducted in four conservation areas of TDFs in the Americas: Chamela-

Cuixmala Biosphere Reserve (CCBR) in Mexico, Parque Estadual da Mata Seca (PEMS) in Brazil, 

Tucabaca Valley Municipal Wildlife Reserve (TVMWR) in Bolivia, and Santa Rosa National Park 

Environmental Monitoring Super Site (SRNP-EMSS) in Costa Rica (Figure 4.1). These study 

areas cover different latitudes ranging from 18°15'S to 19°30'N in the Americas. Mean Annual 

Precipitation (MAP) in CCBR (763 mm) and PEMS (818 mm) is less, and that in SRNP-EMSS 

(1390 mm) and TVMWR (1234 mm) is abundant. These sites have a similar Mean Annual 

Temperature (MAT), around 25°C. The start time and end time of the dry season and wet season 

are different (Table 4.1). The study sites comprise of secondary TDFS on different levels of 

ecological succession. (Janzen, 1998; Maass et al., 2005; Miles et al., 2006; Madeira et al.,2009; 

Portillo-Quintero et al., 2015). Figure 4.2 present the different phenological phases as a function 

of their local NDVI and LST.   

4.2.2 Remote sensing drought indices 

As one of the most widely used drought indexes, the Vegetation Drought Index (VCI; 

Kogan 1995; 1997) was calculated using the Normalized Difference Vegetation Index (NDVI), 

which is highly relevant to greenness and vegetation vigor and can be viewed as a proxy of 

photosynthetic activity (Sellers et al. 1997). As a complement, the Temperature Drought Index 

(TCI) is calculated from Land Surface Temperature (LST), which is closely related to vegetation 

water stress, soil moisture, and evapotranspiration (Kogan 1995; 1997; Karnieli et al., 2010). The 

monthly VCI and TCI were obtained using the following formula: 

𝑉𝐶𝐼𝑖𝑗 = (𝑁𝐷𝑉𝐼𝑖𝑗 − 𝑁𝐷𝑉𝐼𝑗 𝑚𝑖𝑛) (𝑁𝐷𝑉𝐼𝑗 𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑗 𝑚𝑖𝑛) ∗ 100⁄  (1) 

𝑇𝐶𝐼𝑖𝑗 = (𝐿𝑆𝑇𝑗 𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑗 ) (𝐿𝑆𝑇𝑗 𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑗 𝑚𝑖𝑛) ∗ 100⁄  (2) 
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Where i describes the i th year, j represents the j th month, and NDVI j max and NDVI j min represent 

the maximum and minimum NDVI value in the j th month across all the years, respectively. LST 

j max and LST j min represent the maximum and minimum LST value in the j th month across all the 

years, respectively. The values of VCI and TCI between 0 and 35 represent extreme drought 

conditions; the values between 35 and 50 show moderate drought conditions, and values between 

50 and 100 illustrate normal and humid conditions (Kogan, 1995; 1997). 

I retrieved the sixteen-day and eight-day Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS) NDVI (MOD13Q1, collection v006) and LST (MOD11A2, 

collection v006) products with 250-m and 1-km resolution from March 2000 to March 2017 at 

reverb echo (http://reverb.echo.nasa.gov/reverb/). These images were re-projected to Universal 

Transverse Mercator with central zone 16 N° and WGS84. The monthly NDVI and LST were 

aggregated on a linear weight average of sixteen-day NDVI and eight-day LST after removing the 

missing data based on the quality file. The weight for each sixteen-day NDVI and eight-day LST 

imagery is calculated by the number of days belonging to each month divided by the total number 

of days in the month (Rhee et al., 2010). 

4.2.3 ENSO index 

The intensity of a specific ENSO event can be described via various ENSO proxies. 

According to the definition of the National Oceanic and Atmospheric Administration (NOAA), an 

ENSO warm (cold) event is a phenomenon in the equatorial Pacific Ocean characterized by five 

consecutive three-month running mean of SST anomalies at or above +0.5°C (at or below -0.5°C) 

in the Niño 3.4 region (5°S–5°N, 120°W–170°W). ENSO events can be classified as neutral (|SST 

anomaly|<0.5), weak (0.5<|SST anomaly|<1.0), moderate (1.0<|SST anomaly|<1.5), strong 

(1.5<|SST anomaly|<2.0) and very strong (|SST anomaly ≥ 2.0) events. As such, El Niño events 

in 08/2004–03/2005 and 10/2006–02/2007 were classified as weak, those in 07/2002–03/2003and 

08/2009–04/2010 were classified as moderate, and those in 12/2014–06/2016 were classified as 

very strong (Figure 4.3). Each El Niño event was inter-seasonal for four study sites. Therefore, I 

selected an SST anomaly in the Niño 3.4 region as an ENSO proxy in this study. The monthly SST 

anomaly can be obtained at (http://www.cpc.ncep.noaa.gov/). The teleconnection between SST 

anomalies in Niño 3.4 and the terrestrial biosphere has been documented for South America, 

http://reverb.echo.nasa.gov/reverb/
http://www/
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Southeast Asia, and Africa (Anyamba et al. 2001; Mennis 2001; Anyamba, 2002; Nagai et al. 

2007; Propastin et al., 2010).  

4.2.4 Temporal correlations between VCI and TCI and SST anomalies at the 

seasonal scale 

To understand the teleconnection between ENSO and TDFs from a long-term perspective, 

the temporal correlations between time series of VCI and TCI and SST anomalies in Niño 3.4 were 

conducted for the dry and wet season, respectively. Time duration and time lag are two key 

parameters for temporal correlations. Time duration refers to the period of the mean of SST 

anomalies. The value of an SST anomaly in a specific duration is the mean of the monthly SST 

anomalies in the period. Time lag refers to the interval between the occurrence of the change in an 

SST anomaly and the change in drought indices. A time duration from 1 to 24 months and a time 

lag from 0 to 5 months were adopted in the temporal correlation analysis. As a result, there are 144 

(24*6) correlation coefficients for the dry season and wet season in each study site (Table 4. 2). 

4.2.5 Moving Window Correlation Analysis (MWCA) 

To evaluate the impacts of different El Niño events from March 2000 to March 2017 on 

TDFs in our study sites, a Moving Window Correlation Analysis (MWCA) approach was used 

(Erasmi et al., 2009). MWCA is a powerful statistical method used to investigate variations in 

relationships between two variables in time. The MWCA uses a window with a defined size 

moving across two time-series data, and the local correlation coefficient is retrieved at each time 

point. The result of a MWCA is a time series of correlation coefficients with the same dimension 

as the input of two time-series data. In addition, the result of MWCA varies with the window size 

(Erasmi et al., 2009). 

In this study, MWCA was conducted through two steps. In the first step, the optimal 

window size was selected by minimizing the four-study-site mean of one-step root mean square 

forecast errors (RMSFEs; Inoue et al., 2017). The one-step RMSFEs were obtained from monthly 

VCIs and TCIs as functions of monthly SST anomalies for the window sizes from 5 to 24 months 

in four sites. Then, eight one-step RMSFEs (2 response variables*4 sites) were averaged for each 

window size. The optimal window size was selected as the one corresponding to the minimum 

four-study-site mean of one-step RMSFEs. In the second step, the time-series correlation 
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coefficients and p-values were extracted, with VCI and TCI as response variables, and the SST 

anomaly as an independent variable using MWCA at the optimal window size, imposing different 

time lags from 0 to 5 months into correlation analysis.  

4.3 Result 

4.3.1 Monthly variation of NDVI and LST 

The phenological characteristics of NDVI and LST were similar for CCBR in Mexico, and 

SRNP-EMSS in Costa Rica, both of which are located in the northern hemisphere (Figure 4.2 a-

d). PEMS in Brazil and TVMWR in Bolivia located in the southern hemisphere have similar trends 

(Figure 4.2 e-h). 

Overall, the median NDVIs in the dry season were lower than those in the wet season, 

while the median LSTs in the dry season were higher than those in the wet season in the four sites 

of TDFs (Figure 4.2). The NDVIs increased sharply when the wet season arrives. They grew 

slowly in the early stage of the wet season until to a high level (about 0.85) in the late wet season. 

NDVIs decreased slowly when the dry season began and then decreased gradually to a low level 

(under 0.6) in the late dry season. LSTs in our study sites increased mildly when the dry season 

started and reached high values (above 308 K) in the dry season. However, the temporal variations 

for the LSTs in our study sites were not consistent in the wet season, although all of them showed 

low values (under 302 K) in the wet season. LSTs decreased mildly when the wet season started, 

and sharply in the second month of the wet season at CCBR in Mexico, and SRNP-EMSS in Costa 

Rica. The sharp decrease occurred in the first month of the wet season at PEMS in Brazil. The 

decrease at TVMWR in Bolivia was gradual during the wet season. The largest variations occurred 

in the transitional season from dry to wet season in terms of both NDVI and LST in the four sites. 

4.3.2 Temporal response of TDFs to the SST anomalies in the dry and wet season 

Table 4.3 shows the teleconnection of the SST anomaly to the VCI and the TCI in the dry 

and wet season for each study site. At CCBR, Mexico, the VCI in the dry season (November–

May) was positively affected by the 3-month average of SST anomalies without a time lag. At 

SRNP-EMSS, Costa Rica, the VCI and TCI in the dry season (December–April) were negatively 

influenced by the 2-month average of SST anomalies with a 5-month lag and 1-month SST 
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anomalies with a 1-month lag; the TCI in the wet season (May–November) was negatively affected 

by the 3-month average of SST anomalies. At PEMS, Brazil, the VCI and TCI in the dry season 

(May–October) were negatively affected by the 3-month average of SST anomalies without a time 

lag and the 2-month average of SST anomalies without a time lag; the TCI in the wet season (Nov–

April) was negatively affected by the 2-month average of SST anomalies without a time lag. At 

TVMWR, Bolivia, VCI in the wet season (Nov–May) was positively affected by 21- month 

averages of SST anomalies without a 5-month lag. 

 Table 4.3 illustrates that both the VCI and TCI of SRNP-EMSS, Costa Rica and PEMS, 

Brazil were negatively affected by SST anomalies in the dry seasons. For the further analysis, 

Figure 4.3 shows the correlation coefficients between the VCI and TCI at SRNP-EMSS, Costa 

Rica and PEMS, Brazil and multiple SST anomalies (time durations from 1 to 24 months; time lag 

from 0 to 5 months). The results illustrate that both the VCI and TCI at SRNP-EMSS, Costa Rica 

and PEMS, Brazil in the dry season were negatively affected by several specific SST anomalies 

simultaneously. In particular, the duration of these SST anomalies was less than 13 months. The 

lag time of these SST anomalies ranged from 0 to 5 months in SRNP-EMSS, Costa Rica and from 

0 and 3 months in PEMS, Brazil. 

4.3.3 The impacts of El Niño events on TDFs 

Figure 4.5 shows the average of eight one-step RMSFEs obtained from the VCIs and TCIs 

of four study sites as the function of SST anomalies for different window sizes (5 to 24 months). 

The result indicated low average one-step RMSFEs occurred at window sizes of 15 and 16 months. 

Lower RMSFEs can also be observed in larger window sizes, but in these cases, the window sizes 

exceed the total lengths of El Niño events. Thus, the optimal window size is selected as 15 months, 

as an odd number is more convenient for the further MWCA. 

Figure 4.6 shows MWCAs based on monthly VCIs and TCIs of four study sites and the 

monthly SST anomaly in the Niño 3.4 region, employing a window size of 15 months and multiple 

time lags (0 to 5 months) from March 2000 to March 2017. The results revealed that temporal 

patterns in responses of VCIs and TCIs to SST anomalies were nonstationary. Time lag is a key 

parameter affecting the MWCA between VCIs and TCIs and SST anomalies. The temporal regions 

of significantly negative correlations between VCIs and TCIs and SST anomalies illustrated the 
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potential occurrence of El Niño-related drought. The temporal patterns of El Niño periods and the 

corresponding periods and time lags of El Niño-driven VCI and TCI decrease in four study sites 

are summarized in Table 4.4. This reveals the impacts of El Niño events on TDFs over the four 

study sites from March 2000 to March 2017. Five El Niño events led to 3, 2, 2, 2, and 1 times of 

VCI decrease, and 2, 1, 2, 1, and 4 times of TCI decrease in four study sites in turn. 

4.4 Discussion 

4.4.1 Teleconnection between ENSO and precipitation over TDFs 

The predominant factor for the growth of TDFs is water availability (Cao et al., 2016; 

Castro et al., 2018). Thus, the response of TDFs to SST anomalies are largely influenced by the 

teleconnections between ENSO and precipitation. The VCI and TCI are complementary indicators 

that reflect the precipitation conditions over TDFs (Kogan 1995; 1997; Cao et al., 2016; Castro et 

al., 2018). As such, ENSO is considered to play a key role in precipitation over TDFs when either 

the VCI or TCI is significantly influenced by SST anomalies.  

Table 4.3 indicates that SST anomalies across multiple ENSO phases (warm, neutral, and 

cold phases) can affect precipitation regimes in study sites. Precipitation patterns at CCBR, 

Mexico, SRNP-EMSS, Costa Rica, and PEMS, Brazil were influenced by short-duration SST 

anomalies. The precipitation patterns at TVMWR, Bolivia was affected by the long-duration SST 

anomalies. In additions, higher SST anomalies across multiple ENSO phases tend to trigger 

excessive precipitation at CCBR, Mexico and TVMWR, Bolivia, and less precipitation at SRNP-

EMSS, Costa Rica and PEMS, Brazil. 

Table 4.5 reveals that SST anomalies during the ENSO warm phase can lead to droughts 

in study sites. It implies that the intensity of an El Niño event plays an important role in drought 

conditions for a wide region instead of a specific local region. In other words, stronger El Niño 

events can lead to severe droughts in larger areas over the four sites, but there is no direct 

relationship between the intensity of an individual El Niño event and the precipitation condition 

in each study site. Table 4.5 also indicates that the climate conditions at SRNP-EMSS, Costa Rica, 

CCBR, Mexico and TVMWR, Bolivia are sensitive to El Niño events. The short-term 

teleconnection between SST anomalies during the ENSO warm phase and precipitation was weak 

for PEMS, Brazil. But long-term teleconnection between SST anomalies across multiple ENSO 
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phases (warm, neutral, and cold) and precipitation was significant. It revealed that the precipitation 

over PEMS, Brazil should be strongly influenced by the ENSO cold phase (La Niña) instead of 

the warm phase (El Niño).  

4.4.2 Teleconnection between ENSO and productivity of TDFs 

The primary response of forests to climate anomalies is a decline in productivity. The Gross 

Primary Productivity (GPP) is the function of the NDVI and LST (Xiao et al., 2004). Thus, the 

productivity of TDFs is considered to be affected by ENSO when both VCI and TCI have 

significant correlations with specific SST anomalies.  

Table 4.3 also indicates that SST anomalies across multiple ENSO phases (warm, neutral, 

and cold phases) potentially affect the GPP of TDFs in the dry season rather than wet season. One 

of the reasons is that the abundant precipitation in the wet season (Figure 4. 2) which can mitigate 

the effect of climate anomalies (Rhee et al., 2010). The GPP at CCBR, Mexico and TVMWR, 

Bolivia in the dry season were not significantly influenced by SST anomalies. This is because the 

TCI at CCBR, Mexico and both the VCI and TCI at TVMWR, Bolivia in the dry season did not 

respond to the specific precipitation pattern related to ENSO. The GPP at SRNP-EMSS, Costa 

Rica and PEMS, Brazil in the dry season were significantly influenced by SST anomalies (Figure 

4.4). 

Table 4.6 reveals that the GPP of TDFs in SRNP-EMSS, Costa Rica are the most sensitive 

to El Niño events, followed by those in CCBR, Mexico. It implies that the teleconnections between 

SST anomalies during ENSO warm phases and climate conditions are strong, and TDFs are 

sensitive to El Niño-driven droughts. However, the GPP of TDFs over PEMS, Brazil and 

TVMWR, Bolivia are resistant to El Niño events. Although the ocean-atmosphere coupling for 

TVMWR, Bolivia during El Niño events is strong (Table 4.5), the TDFs are resistant to El Niño-

driven droughts due to deep roots, which can be reflected indirectly by higher greenness and lower 

evapotranspiration (Figure 4.2). The weak ocean-atmosphere coupling during ENSO warm phase 

for TVMWR, Brazil is the reason for the resistance of TDFs to El Niño events (Table 4.6). It also 

implies that the primary response of TDFs to SST anomalies does not depend on the intensity of 

El Niño events for each site and the whole region. This is due to two reasons. First, the effects of 
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SST anomalies on precipitation in a specific site are not consistent between El Niño events. On 

the other hand, TDFs have some resistance to the El Niño driven drought. 

4.4.3 Comparison of greenness and evapotranspiration in response to precipitation  

The relationship between the VCI and TCI and SST anomalies can indirectly reflect how 

greenness and evapotranspiration respond to climate conditions. The capacities of greenness and 

evapotranspiration over TDFs reflecting climate conditions vary with season and site. Greenness 

is sensitive to precipitation at CCBR, Mexico in the dry season and at TVMWR, Bolivia in the wet 

season. On the other hand, although both greenness and evapotranspiration are good indicators to 

reflect the climate condition at SRNP-EMSS, Costa Rica and PEMS, Brazil in the dry and wet 

seasons, evapotranspiration is more sensitive to precipitation than greenness (Table 4.3). Table 4.4 

reveals that greenness and evapotranspiration at TDFs are complementary biophysical properties 

which can reflect the intensity of El Niño-driven droughts. The shorter time lags of TCI-SST 

anomalies for CCBR, Mexico and SRNP-EMSS, Costa Rica (Table 4.4) hints that 

evapotranspiration has a stronger capacity to capture the onset of El Niño-driven droughts in 

CCBR, Mexico and SRNP-EMSS, Costa Rica, where El Niño tends to trigger severe impacts on 

the GPP of TDFs (Table 4.6). 

4.5 Conclusion 

The relationship between SST anomalies in the Pacific Niño 3.4 region, and remote sensing 

drought indices is key to understand how ENSO influences climatology, and therefore GPP over 

TDFs in the Americas. In this study, a temporal correlation analysis at a seasonal scale and an 

optimized Moving Window Correlation Analysis (MWCA) between VCI, TCI and SST anomalies 

were conducted to analyze the long-term and short-term responses of TDFs to ENSO.  

I found that long-term SST anomalies across multiple ENSO phases (warm, neutral, and 

cold phases) can impact the GPP of TDFs over SRNP-EMSS (Costa Rica), and the PEMS (Brazil) 

in the dry season. The GPP of TDFs in the wet season were not influenced by long-term SST 

anomalies due to availability of enough precipitation to sustain basic ecosystem services. In the 

other hand, I conclude that high short-term SST anomalies during ENSO warm phases tend to 

trigger severe droughts at the selected study sites. GPP was sensitive to El Niño-driven droughts 

over CCBR (Mexico) and SRNP-EMSS (Costa Rica). GPP response at the PEMS (Brazil) was 
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weak to El Niño events, because the site tends to be more influenced by La Niña than El Niño. 

Although high SST anomalies tends to lead to drought at the TVMW (Bolivia), the GPP response 

is weak because the biophysical and ecological characteristics of this forest. 

I also found that ecosystem level greenness and evapotranspiration are complementary 

indicators to better understand climatic conditions at TDFs in the Americas. The greenness at the 

CC-BR (Mexico) during the dry season, and at the TVMW (Bolivia) in the wet season can 

significantly respond to the precipitation conditions. The canopy evapotranspiration at the SRNP-

EMSS (Costa Rica) and the PEMS (Brazil) is more sensitive to precipitation conditions than 

greenness in both the dry and wet seasons. In addition, canopy evapotranspiration is a better 

indicator than greenness to capture the onset of El Niño-driven droughts at the CCBR (Mexico) 

and SRNP-EMSS (Costa Rica), where the teleconnection between El Niño and climate parameters 

is significant. 
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4.7 Tables and Figures 

Table 4. 1 Description of the study sites. 

Site Location Area Mean Annual 

Precipitation 

(MAP) 

Mean Annual 

Temperature 

(MAT) 

Dry 

season 

Wet  

season 

CCBR,  
Mexico 

19°30'N, 

104°58'W 

127 km2 763 mm 24.6° Nov-May Jun-Oct 

SRNP-EMSS, 

Costa Rica 

10°48'N, 

85°36'W 

108 km2 1390 mm 26.6° Dec-Apr May-Nov 

PEMS, 

 Brazil 

14°51'S, 
43°59'W 

116 km2 818 mm 24° May-Oct Nov-Apr 

TVMWR, 
Bolivia 

18°15'S, 

59°15'W 

1937 km2 1234 mm 23.9° Jun-Oct Nov-May 
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Table 4. 2 Temporal patterns (24 time durations * 6 time lags) of correlations between the VCI 

and TCI and the corresponding multi-scale SST anomalies. The numbers in the cells show the 

time period for the mean of SST anomalies. Zero corresponds to the current month, one indicates 

the first previous month, and zero to one shows the period from the current month to the first 

previous month. 

 Duration 

Lag 1 2 3 4 5 6 7 8 9 … 23 24 

0 0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 … 0-22 0-23 

1 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 … 1-23 1-24 

2 2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 … 2-24 2-25 

3 3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 … 3-25 3-26 

4 4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 … 4-26 4-27 

5 5 5-6 5-7 5-8 5-9 5-10 5-11 5-12 5-13 … 5-27 5-28 
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Table 4. 3  The extremums of temporal correlations between the VCI and TCI and SST 

anomalies in the dry and wet season across the latitudinal gradients of TDFs. The extremum 

(Rmax (duration, lag) or Rmin (duration, lag)) for the dry season and wet season in each study site 

was selected from 144 (24 duration*6 lag) correlation coefficients. If the maximum absolutes are 

obtained by the positive correlations, the extremums are chosen as the maximum values; if the 

maximum absolutes are obtained by negative correlations, the extremums are chosen as the 

minimum values. The stars indicate significant correlations with a p-value less than 0.05. No 

stars indicate that p-values greater than 0.05. Yellow shades indicate significant correlations. 

. 

  VCI-SST anomaly correlation TCI-SST anomaly correlation 

Dry season Wet season Dry season Wet season 
CCBR, 

 Mexico 
Rmax(3,0)=0.34* Rmin(3,5)=-0.13 Rmin(24,5)=-0.14 Rmin(5,3)=-0.17 

SRNP-
EMSS, 

 Costa Rica 

Rmin(2,5)=-0.42* Rmax(24,5)=0.14 Rmin(1,1)=-0.58* Rmin(3,0)=-0.32* 

PEMS, 
Brazil 

Rmin(3,0)=-0.38* Rmin(14,0)=-0.27 Rmin(2,0)=-0.45* Rmin(2,0)=-0.36* 

TVMWR, 

Bolivia 
Rmax(1,0)=0.20 Rmax(21,5)=0.35* Rmax(24,5)=0.12 Rmax(16,5)=0.27 
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Table 4. 4  El Niño periods and corresponding periods and time lags of El Niño-driven VCI and 

TCI decrease. The periods of El Niño-driven VCI and TCI decrease are the intersections of three 

periods: (1) the periods between El Niño outbreaks and El Niño ending plus the maximum lag 

time (5 months), (2) the periods in which the results of MWCA based-VCIs and TCIs and SST 

anomaly were negatively significant, and (3) the periods in which VCIs and TCIs are less than 

50 (threshold for drought). 

El Niño  

episode 

El Niño-

driven VCI 
decrease 

(CCBR, 

Mexico) 

El Niño-

driven TCI 
decrease 

(CCBR, 

Mexico) 

El Niño-

driven VCI 
decrease 

 (SRNP-

EMSS,  

 Costa Rica) 

El Niño-

driven TCI 
decrease 

 (SRNP-

EMSS,  

 Costa Rica) 

El Niño-

driven VCI 
decrease 

 (PEMS, 

Brazil) 

El Niño-

driven TCI 
decrease 

 (PEMS, 

Brazil) 

El Niño-

driven VCI 
decrease 

(TVMWR, 

Bolivia) 

El Niño-

driven TCI 
decrease 

(TVMWR, 

Bolivia) 

07/2002-
03/2003 

(9 month) 
Moderate 

02/2003-
06/2003 

Time lag=4 

02/2003- 
05/2003 

Time lag=3 

01/2003- 
03/2003 

Time lag=2 

02/2003-
04/2003 

Time lag=1 

None None 07/2002- 
12/2002 

Time lag=0 

None 

08/2004-
03/2005 

(8 month) 
Weak 

10/2004- 
05/2005 

Time lag=5 

09/2004- 
04/2005 

Time lag=4 

12/2004- 
07/2005 

Time lag=5 

None None None None None 

10/2006-

02/2007 
(5 month) 

Weak 

01/2007- 

07/2007 
 

Time lag=5 

01/2007- 

06/2007 
 

Time lag=4 

01/2007- 

03/2007 
 

Time lag=3 

10/2006, 

01/2007/- 
02/2007 

Time lag=2 

None None None None 

08/2009-
04/2010 

(9 month) 
Moderate 

None None 08/2009 
 

Time lag=2 

09/2009- 
04/2010 

Time lag=0 

None None 09/2015 
 

Time lag=5 

None 

12/2014-
06/2016 

(19 month) 
Very strong 

None 08/2015- 
09/2015 

 
 

Time lag=2 
11/2015 

 
Time lag=5 

03/2015 
 
 
 

Time lag=5 
01/2016- 
04/2016 

Time lag=2 

03/2015- 
08/2015, 
12/2015- 
04/2016 

Time lag=0 
06/2016- 
10/2016 

Time lag=2 

None 01/2015- 
06/2015 

 
 

Time lag=2 
12/2015- 
08/2016 

Time lag=1 

None 04/2016-
05/2016 

 
 

Time lag=2 
07/2016 
08/2016 

Time lag =1 

 

 

  



83 

 

 

Table 4. 5 Five El Niño events and corresponding El Niño-driven droughts in each study site. 

One indicates that the El Niño event trigger drought. Zero indicates the El Niño event does not 

trigger drought. Total El Niño percentage is the total times of occurrence of droughts in each site 

divided by the total times of El Niño events. Total sites percentage is the total times of 

occurrence of droughts in El Niño event divided by the total number of study sites. 

El Niño  

episode 

El Niño-driven 

drought 

(CCBR, 

Mexico) 

El Niño-driven 

drought 

 (SRNP-EMSS,  

 Costa Rica) 

El Niño-driven 

drought 

 (PEMS, 

Brazil) 

El Niño-

driven drought 

(TVMWR, 

Bolivia) 

Total sites 

percentage 

07/2002-03/2003 

(9 month) 

Moderate 

1 1 0 1 75% 

08/2004-03/2005 

(8 month) 

Weak 

1 1 0 0 50% 

10/2006-02/2007 

(5 month) 

Weak 

1 1 0 0 50% 

08/2009-04/2010 

(9 month) 

Moderate 

0 1 0 1 50% 

12/2014-06/2016 

(19 month) 

Very strong 

1 1 1 1 100% 

Total El Niño  

percentage 

80% 100% 20% 60% 65% 
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Table 4. 6 Five El Niño events and corresponding El Niño-driven productivity declines in each 

study site. One indicates that the El Niño event trigger drought. Zero indicates the El Niño event 

does not trigger productivity decline. Total El Niño percentage is the total times of occurrence of 

productivity declines in each site divided by the total times of El Niño events. Total sites 

percentage is the total times of occurrence of productivity declines in El Niño event divided by 

the total number of study sites. 

El Niño  

episode 

El Niño-driven 

productivity 
decline  

(CCBR, 

Mexico) 

El Niño-driven 

productivity 
decline   

(SRNP-EMSS,  

 Costa Rica) 

El Niño-driven 

productivity 
decline 

 (PEMS, 

Brazil) 

El Niño-driven 

productivity 
decline 

(TVMWR, 

Bolivia) 

Total  

percentage 

07/2002-03/2003 

(9 month) 

Moderate 

1 1 0 0 50% 

08/2004-03/2005 

(8 month) 

Weak 

1 0 0 0 25% 

10/2006-02/2007 

(5 month) 

Weak 

1 1 0 0 50% 

08/2009-04/2010 

(9 month) 

Moderate 

0 1 0 0 25% 

12/2014-06/2016 

(19 month) 

Very strong 

0 1 0 0 25% 

Total  

percentage 

60% 80% 0% 0% 35% 
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Figure 4. 1 Study sites. 
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(a) NDVI in CCBR, Mexico (b) LST in CCBR, Mexico 

  
(c) NDVI in SRNP-EMSS, Costa Rica (d) LST in SRNP-EMSS Costa Rica 

  
(e) NDVI in PEMS, Brazil (f) LST in PEMS, Brazil 
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(g) NDVI in TVMWR, Bolivia (h) LST in TVMWR, Bolivia 
 

Figure 4. 2 Monthly NDVI and LST distributions across the latitudinal gradient of TDFs in the 

Americas from March 2000 to March 2017 
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Figure 4. 3 The monthly SST anomaly in the Niño 3.4 region. The five El Niño events from 

March 2000 to March 2017 have been highlighted. 
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VCI-SST anomaly 

 

 
TCI-SST anomaly 

 
VCI-SST anomaly 

 
TCI-SST anomaly 

(a) Dry season in SRNP-EMSS, Costa Rica (b) Dry season in PEMS, Brazil  

 

Figure 4. 4 The response of TDFs to SST anomalies from a long-term perspective in SRNP-

ENSS and PEMS in the dry season. Orange circles represents negative correlations (significance 

level=0.05).The blank gaps showed no significant correlations. The circle sizes are 

corresponding to the absolute values of correlation coefficients. 

  



90 

 

 

Figure 4. 5 The mean of 8 one-step RMSFEs derived from VCIs and TCIs of four study sites as 

the function of the SST anomalies, using different window sizes (5 to 24 months). 
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(a) CCBR, Mexica 

  
(b) SRNP-EMSS, Costa Rica 

  
(c) PEMS, Brazil 

  
(d) TVMWR, Bolivia 

 

MWCAs based on VCIs and SST anomaly 

 

MWCAs based on TCIs and SST anomaly 
 

Figure 4. 6 Moving window correlation analyses of monthly VCIs and TCIs of the four sites and 

the monthly SST anomaly in the Niño 3.4 region from March 2000 to March 2017, calculated 

with a 15-month moving window and multiple time lags from 0 to 5 months. Two dashed lines 

are corresponding to the positive and negative thresholds with statistical significance (p<0.05).
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Figure 4. 7 Flowchart for assessing the response of TDFs to ENSO 
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Chapter 5 

 Synthesis 

5.1 Conclusions and contributions 

The main objective of my Ph.D. dissertation was to evaluate remote-sensing drought 

indices and to assess the response of Tropical Dry Forests (TDFs) to meteorological drought and 

El Niño Southern Oscillation (ENSO). In this context, my research focused on the evaluation of 

the utility of three commonly used remote sensing indices, Vegetation Condition Index (VCI), 

Temperature Condition Index (TCI), and Vegetation Health Index (VHI), to monitor 

meteorological drought in TDFs. In addition, the response of TDFs to meteorological drought was 

assessed by conducting the temporal correlations between biophysical parameters, Normalized 

Difference Vegetation Index (NDVI) and Land Surface Temperature (LST), and a meteorological 

index, the Standardized Precipitation Index (SPI), at the monthly and seasonal scale. Furthermore, 

the response of TDFs to meteorological drought was evaluated by exploring the relationship 

between time-series remote sensing drought indices, VCI and TCI, and an ENSO proxy, SST 

anomaly, from long-term and short-term perspectives. 

The main conclusions and contributions for each chapter in the present thesis are 

summarized as follows: 

Chapter 2. Evaluating the utility of various drought indices to monitor meteorological drought in 

Tropical Dry Forests.  

The study in Chapter 2 is the first to assess the utility of remote sensing parameters to 

monitor the meteorological drought in TDFs. To date, such studies were conducted in the Tropical 

Moist Forests instead of TDFs (Phillips et al., 2009; Anderson et al., 2010; Williams et al., 2013). 

To my knowledge, no studies of drought monitoring based on remote sensing indices in TDFs 

have been reported. In the study, I assessed the ability of three remote sensing indices, the 

Vegetation Condition Index (VCI), the Temperature Condition Index (TCI), and the Vegetation 

Health Index (VHI) to monitor the meteorological drought for the monthly, seasonal, and yearly 

scales in the TDFs. The result shows that the ability of these indices for meteorological drought 
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monitoring varies with timing. Overall, the TCI outperforms the VCI and VHI in terms of seasonal 

and annual scale. These indices performed well in monitoring meteorological drought in the dry 

season, poorly in the in the dry-to-wet season, and moderately in the wet season. The TCI 

performed best in monitoring meteorological drought in the wet-to-dry period, followed by VHI, 

whereas the VCI performed worst. All of these remote sensing-based drought indices failed to 

detect drought in May during the green-up period and in September, October and November when 

the water content in the root regions was abundant. Our results indicate that the evapotranspiration 

of TDFs is more sensitive than canopy greenness to detect meteorological drought. 

    The remote sensing indices used in this study can increase the ability to provide a real-

time meteorological drought monitoring and an early warning of drought events in TDFs. 

Chapter 3. Assessing the temporal response of Tropical Dry Forests to the meteorological 

drought. 

Research related to the assessment of the response of TDFs to climate anomalies is very 

limited. The study in Chapter 3, using the temporal correlations analysis of NDVI, LST and 

Standard Precipitation Indexes (SPIs) is the first one to assess the response of TDFs to a 

meteorological drought from a long-term perspective. Our results indicate that the NDVI and LST 

are largely influenced by seasonality as well as the magnitude, duration, and timing of 

precipitation. The responses of the NDVI and LST to meteorological drought mainly reflect how 

greenness and evapotranspiration in the TDFs respond to precipitation. We find that greenness and 

evapotranspiration are highly sensitive to precipitation when TDFs suffer from long-term water 

deficiency, and they tend to be slightly resistant to meteorological drought when precipitation is 

abundant. Greenness is more resistant to short-term rainfall deficiency than evapotranspiration, 

but greenness is more sensitive to precipitation after a period of rainfall deficiency. Precipitation 

can still strongly influence evapotranspiration on the canopy surface, but greenness is not 

controlled by the water availability but rather phenological timing when the leaves begins to fall 

in the dry-to-wet season. In addition, the primary response of TDFs to meteorological drought was 

also estimated. In the dry season, the average Gross Primary Productivity (GPP) was strongly 

influenced by the accumulated precipitation from the preceding February to the current March. In 

the dry-to-wet season, the average GPP was strongly affected by the total precipitation from 

February to April of the current year. In the wet season, the GPP was moderately influenced by 



 

95 

 

precipitation from January to June of the current year. In the wet-to-dry season, the GPP was not 

influenced by precipitation.  In general, these results can be used to increase our understanding of 

how TDFs respond to water deficiency, and of its sensitivity and resilience to climate disturbance 

in the face of climate change in the future. 

Chapter 4. Assessing the response of Tropical Dry Forests across the Americas to El Niño 

Southern Oscillation. 

The study in Chapter 4 is the first to assess the response of TDFs across the Americas to 

ENSO. The study is based on the assumption these forests along a latitudinal gradient in the 

Americas are significantly affected by drought related to El Niño Southern Oscillation (ENSO). 

The analysis builds upon two drought indices: the Vegetation Condition Index (VCI) and 

Temperature Condition Index (TCI) calculated from Moderate Resolution Imaging 

Spectroradiometer (MODIS) products and an ENSO proxy, the Sea Surface Temperature (SST) 

anomaly in the Niño 3.4 region. The long-term and short-term responses of TDFs at multiple sites 

(Chamela-Cuixmala Biosphere Reserve (CCBR) in Mexico, the Parque Estatual da Mata Seca 

(PEMS) in Brazil, the Tucabaca Valley Municipal Wildlife Reserve (TVMWR) in Bolivia, and the 

SRNP-EMSS in Costa Rica) from March 2000 to March 2017 were analyzed. Temporal 

correlation analysis for seasonal scale and Moving Window Correlation Analysis (MWCA) at an 

optimal window size were used to explore the long-term and short-term responses of TDFs to 

ENSO. Our results indicate that both long-term and short-term responses depend on the 

teleconnections between ENSO and climate parameters and the biophysical characteristics of 

TDFs at multiple sites. My results suggest that the GPP of TDFs at SRNP-EMSS and the PEMS 

in the dry season were significantly influenced by ENSO signals because of strong long-term 

Ocean-Atmosphere coupling and their sensitivity to climate conditions at these sites. TDFs at the 

CCBR and the SRNP-EMSS were sensitive to El Niño events because higher SST anomalies 

during ENSO warm phase are likely to induce severe drought, and these forests are sensitive to 

precipitation deficiencies over these sites. TDFs at the PEMS were resistant to El Niño events due 

to weak short-term Ocean-Atmosphere coupling. Even though El Niño events tended to cause 

drought at TVMWR, TDFs were resistant to El Niño drought due to its deeper roots. In addition, 

the variations in VCI and TCI reflect the response of greenness and evapotranspiration to 

precipitation. They are complementary drought indicators. Greenness of TDFs at the CCBR in the 

dry season, and TVMWR in the wet season can reflect rainfall precipitation. Canopy 
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evapotranspiration in the dry and wet season was sensitive to water deficiency at the SRNP-EMSS 

and the PEMS. Besides, it also had a stronger capacity than greenness to capture the onset of El 

Niño-induced droughts in CCBR and SRNP-EMSS.  

My results conclude that the assessment of the response of TDFs to SST anomalies can 

increase our knowledge of how TDFs in central and South America respond to ENSO, and of  the 

sensitivity and resilience of TDFs to drought driven by El Niño events. 

5.2 Limitations to Research Projects 

Several factors are limiting the accuracy and generalization of the results and conclusions, 

including the Study Area, Data Sources, Temporal Resolution, Remote-sensing Indices, and 

Vegetation Types. 

Study Area: The assessment of the utility of various drought indices and the temporal 

correlation analysis of NDVI and LST and SPIs in Chapter 2 and 3 were conducted on a single 

TDFs (the SRNP-EMSS), therefore it is difficult to extrapolate these findings to other TDFS across 

the Americas. Thus, further analysis should be conducted in multiple TDFs regions like Chapter 

4. 

Data Sources: In Chapter 2 and 3, I focused on the relationship between the abiotic factors, 

mainly the meteorological parameters, and remote-sensing indices reflecting vegetation condition 

in Santa Rosa National Park. The biotic factors such as the biodiversity influenced the vegetation 

condition significantly during the growth of TDFs. I considered the biotic factors did not change 

much a the SRNP-EMSS during March 2000 and March 2017, which is not very precise. To make 

the result more reliable, the biotic factors should be added in the model in future work.  

Temporal Resolution: In Chapter 3, the 16-day NDVI and 8-day LST MODIS products 

were aggregated to 1-month temporal resolution. The response of TDFs to the meteorological 

drought is very sensitive to the time lags. The TDFs in the transitional dry-to wet season are very 

sensitive to sporadic rainfall in the dry season, the time lag between TDFs and precipitation in this 

period tends to be less than 1 month. The similar situation also occurred in the short-term rainfall 

deficiency period in late July. As such, future work should be conducted on higher temporal-

resolution MODIS products.  
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Remote-sensing Indices: In Chapter 2, I assessed the utility of commonly used remote-

sensing indices, VCI, TCI, and VHI, to monitor the meteorological drought. These indices are 

constructed on the visible, near-infrared, and thermal bands. Besides,the short-wave bands are 

sensitive to the water content in the canopy and microwave bands are sensitive to soil moisture 

content. Thus, the remote-sensing indices derived on short-wave bands, such as Normalized 

Difference Water Index (NDWI), and microwave bands, such as the Tropical Rainfall Measuring 

Mission(TRMM) should be added in future studies. 

Vegetation types: In Chapter 2,3 and 4, I used the spatial averages of drought indices to 

evaluate the performance of remote sensing indicesand to assess the response to meteorological 

drought and SST anomalies. Different vegetation types and locations may have different 

performances and responses. Therefore, an extra analysis should be added based on different 

vegetation types in future work. 

5.3 Future research 

In the future, I will focus on increasing the accuracy of the models and improving the ability 

of its generalization via adopting extra data resource. In addition, I will expand my research to 

some new fields.  

5.3.1 Improve previous work: 

1. Multiple TDFs sites: I will adopt multiple TDFs sites across the America, including Chamela, 

Mexico; Santa Rosa, Costa Rica; Mata Seca, Brazil; and Santa Cruz, Bolivia, to assess the 

utilities of remote sensing indices and the temporal response of TDFs to meteorological 

drought. 

2. High temporal remote-sensing indices: 16-day NDVI and 8-day LST MODIS products will be 

used. The Eight-day LST products will be aggregated to 16-day instead of one month. The 

temporal resolution, therefore, for the temporal correlation analysis will be 16-day. 

3. More remote-sensing indices: The NDWI and TRMM as complementary indices will be added 

to assess their utilities to monitor the meteorological drought.  

4. Vegetation types: The GIS data classifying the TDFs into three successions (Early, 

Intermediate, and Late) will be integrated to analyze the response of TDFs to the 
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meteorological drought. ANOVA could be used to analyze how different successional TDFs 

respond to the meteorological drought. 

5.3.2 New research avenues: 

1. Phenological changes in TDFs due to climate change 

Climate change has changed the overall magnitude of rainfall, the timing and inter-annual 

variability worldwide (Zeng et al., 1999). Changes in the rainfall patterns will occur in TDFs 

regions in America (Castro et al., 2018) where rainfall amount and timing are key factors 

controlling primary productivity and phenology of growth (Feng et al., 2013). The primary 

response of tropical forests to climate anomalies is the decline in primary productivity (Xiao et al., 

2004). In Chapter 3, I have analyzed how TDFs respond to the meteorological drought. But the 

impact of climate change on the phenology is understudied. In the future, I will learn and conclude 

how the phenology shifts with climate change. 

 

2. Analysis of the relationship between remote sensing indices and meteorological indices based 

on the wavelet analysis 

Remote sensing indices, such as NDVI and LST, are key indicators to reflect the 

biophysical processes. As such, the relationship between these remote-sensing indices and 

meteorological indices is key to understand the impact of climate anomalies on vegetation, 

including TDFs ecosystems. The correlation analysis of remote-sensing indices and 

meteorological indices is based on the assumption that the time-series remote-sensing indices are 

stationary (Ji & Peters, 2003; Rhee et al., 2010; Zhang et al., 2017), including the Chapter 2, 3 and 

4. However, these indices are not always stationary. In further studies, a multi-resolution analysis 

(MRA) based on the wavelet transform (WT) will be implemented to study NDVI and LST time 

series in the TDFs. These non-stationary NDVI and LST time series can be decomposed using this 

MRA as a sum of series associated with different temporal scales. The MRA can help build the 

relationship between remote-sensing indices and meteorological indices by taking the biotic 

factors into consideration, which will increase the ability of the proposed procedure to monitor 

vegetation dynamics in the TDFs. 
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3. The differences in the response of Tropical Moist Forests and Tropical Dry Forests to the 

meteorological drought and El Niño Southern Oscillation 

Tropical moist forests (TMFs) are characterized by low variability in annual temperature 

and high levels of rainfall (>200 cm). TMFs are dominated by semi-evergreen and evergreen 

deciduous tree species (Bierregaard et al., 1992). Many studies investigated the response of TMFs 

to meteorological drought and the ENSO (Phillips et al., 2009; Propastin et al., 2010; Williams et 

al. 2013; Brum et al., 2018). Besides, in Chapter 3 and Chapter 4, the response TDFs to the 

meteorological drought and ENSO are also analyzed. The limiting factor for the growth is 

irradiance and temperature for TMFs but is precipitation for TDFs. Therefore, the growth period 

for TMFs and TDFs are dry and wet season respectively. The different phenology and biotic 

characteristics may lead to the differences in the response to climate anomalies. In my future, the 

comparison of the responses of TMFs and TDFs will be conducted. I will focus on the impacts in 

terms of productivity, phenology, and water use. Additionally, I am also interested in the 

sensitivity and resilience of TMFs and TDFs to climate anomalies. 
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