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Abstract

In this thesis, we study direction-dependent communication mechanisms in individual-

based models (IBMs) of collective behaviour. Previously, direction-dependent communi-

cation mechanism were incorporated into a non-local hyperbolic PDE model for collective

behaviour. The PDE model exhibits numerous spatial patterns observed in nature by consid-

ering a variety of communication mechanisms. Like the PDE model, the IBM is formulated

in terms of three social interaction forces: repulsion, alignment, and attraction, and the

IBM includes information regarding conspecifics’ direction of travel. We find that the IBM

produces a variety of spatial patterns such as stationary groups, traveling groups, zigzag-

ging aggregations, feathers, and ripple-like patterns, matching the rich behaviour of the PDE

model. We also investigate the effect of incorporating density-dependent speed. We find that

if individuals slow and speed in response to conspecifics, group splitting and group merging

patterns arise. While the PDE model allows for the effect of direction-dependent commu-

nication mechanisms on collective behaviour to be seen at the population density level, the

IBM model reveals how individuals move within these spatial patterns. To complete the

study of direction-dependent communication mechanisms, 2-particle models are proposed as

a framework for understanding how individuals respond to their neighbours. The foundation

for this work is the anti-symmetric exclusion process that describes the movement of two

particles on a infinite one-dimensional lattice when the particles exclude each other from

space yet and have an anti-symmetric movement bias. We incorporate non-local repulsion

and attraction interactions in the anti-symmetric exclusion process, and study this model

by developing a master equation. Stochastic simulations reveal that non-local repulsion and

attraction interactions result in group behaviour, with a finite mean separation distance.

We also consider alignment interactions by considering the position and direction of travel
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of the particles, and develop a master equation for this process. Moving groups result from

the inclusion of alignment interactions. We find that the 2-particle model framework reveals

inter-individual behaviour that is characteristic of group patterns and provides a founda-

tion for analytical work. Studying direction-dependent communication with these three

perspectives (PDE, IBM, and 2-particle model) reinforces the important role that direction-

dependent communication mechanisms have in producing the complex spatial patterns in

nature.
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Preface

A manuscript containing versions of Chapter 1, Chapter 3, and Chapter 4 is in preparation

for publication.
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Chapter 1

Introduction

1.1 Overview

Flocks of birds, schools of fish, and insect swarms provide examples of animals exhibiting

collective behaviour. These groups of animals form complex spatial patterns as individuals

coordinate their movements in efforts to search for a mate, forage for sustenance, or to evade

predation. It is scientifically important to understand the underlying decisions and rules

that lead groups of individuals to form complex spatial patterns as it is often necessary

to understand how to develop controls to these behaviours. For instance, understanding

animal behaviour is useful in efforts to develop effective fishing strategies [32], to predict

and prevent insect outbreaks [37], or to manage the movements of collections of robots. For

example, in [27], a group of robots is able to preform collective tasks without centralized

control or explicit instructions, demonstrating that an understanding of collective behaviour

has application to robotics and autonomous systems.

In this thesis, we only focus on groups of individuals that are self-organized. We do not

include external factors such as environmental conditions or spatial structures that lead to

group formation, but instead on those complex spatial patterns that result from interactions

between conspecifics. Within this context, there are two general methodologies for studying

collective behaviour. On the one hand, continuum models track the dynamics of the density

of individuals throughout time and space. On the other hand, an individual-based approach

can be taken, were a set of rules guides the decision-making and subsequent movement of

members of the population in question. A variety of analytical methods exist for continuum

models, and the study of these types of models is quite active [11]. Individual-based models

(IBMs) rely on computer simulations and qualitative results; however, a few quantitative
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methods are beginning to become prevalent such as coarse-grained analysis [25, 26].

Mathematical models of collective behaviour seek to understand the basic interactions

between individuals that lead to pattern formation. By incorporating different assumptions

regarding an individual’s movement and interactions with conspecifics into models, links

between mechanism and emergent phenomena can be created. Eftimie et al. [10, 12, 14]

incorporated direction-dependent animal communication mechanisms into a partial differ-

ential equation (PDE) model of collective behaviour, resulting in a wide variety of spatial

patterns, including some novel patterns. These spatial patterns are visible at the level of the

population density, and it is unknown exactly how individuals in a population respond to

conspecifics. The main purpose of this thesis is to understand direction-dependent communi-

cation from the perspective of an individual in a population by studying an individual-based

model (IBM) with direction-dependent communication mechanisms.

To provide background, some continuum models are reviewed in Section 1.2 and some

individual-based models are reviewed in Section 1.3. Animal communication mechanisms

are discussed in Section 1.4, and an outline of this thesis is presented in Section 1.5.

1.2 Eulerian Models

In this section, we briefly review selected Eulerian models of collective behaviour. These

models describe the dynamics of the population density of individuals, typically using partial

differential equations (PDEs). The interactions between individuals in these models is often

restricted to attractive and repulsive interactions alone, or to alignment interactions alone.

Attractive interactions refer to the impetus for individuals separated by large distances to

move together; repulsive interactions refer to individuals to avoid collision with neighbours

in their immediate vicinity; and alignment interactions refer to the tendency to align in

the same direction of travel as neighbours at intermediate distances. These interactions are

viewed as intervals surrounding a reference individual in one-dimension, as circles in two-

dimensions, and as spheres in three-dimensions. A cartoon of the interaction zones and their

relation to the reference individual is presented in Figure 1.1. Moreover, these interactions

can be local, where very close neighbours are important, or these interactions can be nonlocal,

where distant individuals are prioritized. Typically, these models are adapted from other

models, derived using correlated random walk methods, or by using Fick’s law [10]. The

advantage of using partial differential equation models in the study of collective behaviour is

the well-developed study of these equations and their solutions. The biggest disadvantage,
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repulsion

alignment

attraction

Figure 1.1: Cartoon depiction of the social interaction zones. Repulsion acts on short dis-
tances from the target individual, alignment acts on intermediate distances from the target
individual, and attraction acts on large distances from the target individual.

however, is that many of the PDE models are only biologically realistic for large numbers of

individuals.

Eulerian models of collective behaviour fall into two types: parabolic and hyperbolic

models. The type depends on the partial differential equation used to describe the dynamics

of the population. In the remainder of this section, we will review the complex spatial

patterns produced by parabolic and hyperbolic PDE models for collective behaviour.

The use of parabolic PDE in models of collective behaviour is widespread [10,11]; however,

these models unrealistically imply infinite propagation speed of population density. Parabolic

models are well-suited to measure the population as a whole using mean square displacement

and mean population drift [11]. Typically, these equations take the form

∂u(x, t)

∂t
= ∇ · (D∇u)−∇ · (V u) +G(u), (1.1)

where u(x, t) is the population density at x at time t, D is the diffusion coefficient, V is the

advection coefficient, and G(u) is an optionally included reaction term (modelling popula-

tion dynamics). Biological aggregations have well defined boundaries, with the population

density falling to zero outsize of the group. When biologically realistic models with lo-

cal interactions failed to exhibit travelling pulses, the research direction changed to focus

on non-local interactions. To incorporate non-local interactions, Mogilner and Edelstein-

Keshet use an integro-differential equation model to incorporate non-local attraction and
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repulsion to investigate the formation of traveling bands of individuals [30]. They consider

a one-dimensional equation of the form

∂u(x, t)

∂t
=

∂

∂x

(
D
∂u

∂x
− V (u)u

)
, (1.2)

where V (u) is a non-local density-dependent velocity of the form

V (u) = K ∗ u =

∫
Ω

K(x− x′)u(x′, t)dx′. (1.3)

In this case, K is a kernel associating an interaction strength per unit of density. Interaction

kernels are common in models of collective behaviour and will be discussed in this thesis.

Mogilner and Edelstein-Keshet find traveling pulses, provided that diffusion is also density-

dependent. Other parabolic models give rise to rippling patterns [23] as well as stationary

pulses [39].

Although the choice of hyperbolic models also requires a large population of individuals,

the advantage is finite propagation speeds and the ability to incorporate data from individual-

tracking experiments [11]. The general equation for hyperbolic models is

∂u

∂t
+
∂H(u)

∂x
= f(u), (1.4)

where u(x, t) is the population density, H(u) is a function describing the advective movement,

and f(u) is a reaction term modelling the population dynamics. Typically, however, one

considers right- and left-moving population densities, and derives a PDE via Goldstein-Kac

theory for correlated random walks in one-dimension [18, 24]. This leads to the following

hyperbolic equations for the right- (u+) and left-moving (u−) population densities:

∂u+

∂t
+ γ

∂u+

∂x
= −λ+u+ + λ−u−,

∂u−

∂t
− γ ∂u

−

∂x
= λ+u+ − λ−u−, (1.5)

where λ± are turning rates, and γ is the constant movement speed.

Lutscher and Stevens [28] use this type of model to describe the formation and movement

of colonies of Myxobacteria. In their model, the turning rates are allowed to depend point-

wise on the population density, that is, the interactions are local. This model reproduces the

rippling behaviour found in Myxobacteria colonies. Pfistner [33] considers non-local align-
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ment interactions into a model for Myxobacteria colonies, producing stationary and moving

swarms. Overall, these models, however apt at explaining a particular behaviour observed in

nature, are unable to account for the wide variety of complex spatial patterns found. Eftimie

et al. [10, 12, 14] address this issue and suggest that animal communication mechanisms are

an important ingredient. We will review the work of Eftimie et al. in Chapter 2, as it forms

the foundation for the work in this thesis.

1.3 Lagrangian Models

In this section, we briefly review selected Lagrangian models of collective behaviour. In these

models, a set of decision rules govern the movement of individuals, and the resulting group-

level behaviour is studied. Typically, these individual-based models (IBMs) rely on three

types of social interactions: repulsion from nearby neighbours, alignment with neighbours

at intermediate distances, and attraction to distant neighbours. These zones surround each

individual in the population, as sketched in Figure 1.1. The social interactions are dependent

on presence or absence of conspecifics in these zones. Typically these social interactions are

considered to additively affect the movement of neighbours; however, they may also be

considered in a hierarchical decision making process.

To observe the effect of the social interactions on the group-level pattern formation,

IBMs use simulations to investigate the structure of the group in response to changes in the

social interactions. An early model of collective behaviour is the three-dimensional model for

schooling fish proposed by Huth and Wissel [22]. Huth and Wissel assume that individuals

move in response to repulsion, attraction, and those conspecifics with parallel orientation,

with these effects averaged over a minimum number of neighbours. This model verified the

use of repulsion, alignment, and attraction interactions by comparing the model results with

experimental data. Simple patterns, such as a highly polarized school, a loosely polarized

school, and the merging behaviour of two small schools, result from the model. This polarized

behaviour is lost in the absence of attractive and alignment interactions.

In [7], Couzin et al. present a three-dimensional model of collective behaviour, and

show that group-level behavioural transitions are related to minor changes in individual-

level interactions. The model produces four collective behaviours: swarm, torus, dynamic

parallel group, and highly parallel group. The collective behaviour of the group depends on

the size of the zone of alignment and the zone of attraction, that is, the distance over which

alignment and attraction forces are considered, respectively. Small changes in individual
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responses, for example, changing the size of the zone of repulsion, influences a large change

in group properties. Moreover, the patterns produced by the group depend on the previous

arrangement of the individuals. These results suggest that the magnitudes of the social

interaction forces strongly influence the group behaviour.

The model proposed by Gueron et al. [20] is a two-dimensional stochastic model based

on a hierarchical set of decisions made by individuals. Surrounding an individual are several

interaction zones of variable size and the presence or absence of conspecifics in these zones

govern an individuals’ behaviour. Most models of collective behaviour assume that individu-

als move with constant speed; however, this assumption is not biologically realistic. Gueron

et al. include a density-dependent speeding and slowing mechanism, leading to group split-

ting. When leading individuals in the model reduce speed in response to conspecifics behind,

group cohesion is maintained, provided the speed of the leaders is not too large. The balance

between speeding and slowing in response to conspecifics is responsible for the cohesion or

fragmentation of the groups in this stochastic model.

As these examples show, individual-based models of collective behaviour produce a wide

variety of spatial patterns. More contemporary approaches also successfully model collective

behaviour. For instance, Hildenbrandt et al. [21] incorporate additional information from the

specific species’ biology to accurately model large flocks of starlings. Aside from the three

social interaction zones, Hildenbrandt et al. include flight mechanics, movement toward a

roosting area, and restrict the number of conspecifics that an individual can interact with.

As a result of the incorporation of these added ingredients, the model is complicated, but

simulated flocks are almost indistinguishable from video of real flocks.

Instead of complicated social interactions, the Cucker-Smale model [9] uses a simple

weighted velocity-averaging process to show the emergence of flocking behaviour in contrast

to the usual three-zone framework. Cucker-Smale models are often adapted to incorporate

other mechanisms, for example to examine the effect of noisy communication [4, 8]. Other

models seek to understand collective behaviour in groups with leaders or in other environ-

ments (see [42] for an extended review of individual-based models).

In general, some complex spatial patterns form in these models, but the models do

not suggest mechanisms for the formation of the multitude of spatial patterns observed in

nature. Following the idea of Eftimie et al. that animal communication mechanisms are

an important ingredient, we include direction-dependent communication mechanisms in an

one-dimensional IBM of collective behaviour in Chapter 3, revealing that all of the complex

spatial patterns formed by the PDE model are also produced by the IBM.
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1.4 Animal Communication Mechanisms

Eftimie et al. [10, 12, 14] were the first to suggest animal communication mechanisms as an

important ingredient in models of collective behaviour. Eftimie et al. superimpose mech-

anisms that describe not only how much information an individual receives, but also the

manner in which that information is received. The three social interaction forces incorpo-

rate this additional directional information. This addition complicates the model, but is

biologically well motivated as it is known that individuals tend to respond to signals from

their conspecifics by changing their behaviour [29]. Many examples of communication can be

found in biological systems. The movement of Mormon crickets, for example, is influenced

by the signals perceived from conspecifics moving in the same direction as the target indi-

vidual [38]. In some species of fish, neighbours directly ahead are used to guide movements

in place of fish directly adjacent [31], and some species of birds use directional sound signals

to coordinate movements where the signal receiver must be faced by the signal emitter [40].

These examples illustrate the importance of incorporating direction-dependent communi-

cation mechanisms in animal groups, and we consequently focus on direction-dependent

communication mechanisms in this thesis.

1.5 Thesis Outline

The outline of this thesis is the following. In Chapter 2, we review the PDE model of

Eftimie et al. [10, 12, 14] with direction-dependent communication mechanisms. This non-

local hyperbolic PDE model is one-dimensional and describes the dynamics of the densities of

the left- and right-moving populations. We review the development of the PDE model from

an existing PDE model, and its derivation from a correlated random walk. The correlated

random walk links individual-level behaviour to the PDE model, and we focus on how the

social interaction forces are modelled in terms of the location and direction of travel of

conspecifics.

Given the rich pattern formation behaviour of the PDE model with communication mech-

anism, a question that arises immediately is whether the complex spatial patterns formed are

unique to hyperbolic models. Can an individual-based model reproduce the same patterns?

The goal of Chapter 3 is to understand better how individuals respond to direction-

dependent communication mechanisms. We hypothesize that an individual-based model with

direction-dependent communication mechanisms will enrich pattern formation and match the

rich behaviour of the Eftimie PDE model. We develop a new one-dimensional IBM using the

7



social interactions and communication mechanisms described in the random walk derivation

of the PDE model. Numerical simulations of the IBM with a variety of parameters and

communication mechanisms reveals that the IBM matches the rich behaviour of the PDE

model. The inherent stochasticity in the IBM adds biological realism to the model, and

most importantly the IBM reveals the behaviour of individuals interacting with direction-

dependent communication mechanisms.

An assumption of the IBM is that individuals move with a constant speed and only

change direction in response to communication from distance neighbours. This assumption

is not biologically realistic, and the incorporation of density-dependent movement speed is

the subject of Chapter 4. Density-dependent speed has been introduced previously to the

PDE model in [10,17], and we briefly review this work in Chapter 4. As a result of including

density-dependent movement speeds, splitting and merging patterns are observed. We hy-

pothesize that incorporating density-dependent speed to the new IBM with communication

mechanisms will also lead to splitting and merging behaviour. Numerical simulations of the

IBM with density-dependent speed reveal a qualitative match to the patterns produced by

the PDE model.

To better understand the response of individuals to communication mechanisms, 2-

particle models are discussed in Chapter 5. A focus on group-level pattern formation does

not reveal how each individual in the group responds to other individuals, motivating the use

studying the interaction of just two individuals. 2-particle models have previously been used

to study particle interactions on a one-dimensional lattice, and in these cases, the process is

solved analytically. We begin by studying the solution to the one-dimensional anti-symmetric

exclusion process given by Potts et al. [34], as this process provides the foundation for incor-

porating social interactions. Attractive and repulsive interactions alter the behaviour of the

anti-symmetric exclusion process by forming stationary groups, and alignment interactions

allow for the formation of moving groups. We also state master equations for these processes.

Finally, considering fully direction-dependent communication mechanisms as in the PDE or

IBM results in a complicated master equation yet stochastic simulations reveals a connection

group-level pattern characteristics and individual-to-individual interactions. The 2-particle

model framework is a foundation for further analytical work in the study of communication

mechanisms.

Finally, in Chapter 6, we conclude with a discussion of these results, and present di-

rections for future work on this subject. Overall, this thesis highlights the importance of

direction-dependent communication mechanisms in the formation of complex spatial patterns

8



in models of collective behaviour.
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Chapter 2

The Eftimie Model

2.1 Introduction

In this chapter, a one-dimensional PDE model for animal collective behaviour with direction-

dependent communication mechanisms is reviewed. Direction-dependent communication

mechanisms were first incorporated into a model of collective behaviour by Eftimie et al. in

two papers [12,14], and in Eftimie’s doctoral thesis [10]. This addition modifies the assump-

tion that social interactions depend only on the distance between conspecifics to include a

dependence on the direction that conspecifics travel. Direction-dependent mechanisms are

considered to be facilitated by animal communication, and this addition was hypothesized

to account for the variety of complex spatial patterns observed in nature.

In Section 2.2, we briefly review the development of the PDE model and how direction-

dependent communication mechanisms are incorporated. In Section 2.2.2, we review the

development of the PDE model from a correlated random walk, providing insight into the

guiding mechanisms for the IBM presented in Chapter 3. The key results of [10, 12, 14] are

summarized in Section 2.3 to offer a comparison to the new IBM developed in Chapter 3.

In Section 2.4, we conclude with a discussion.

2.2 Model Development

The PDE model with direction-dependent communication mechanisms is derived under the

assumption that animals move as a result of their own volition and that movement is influ-

enced by interactions with conspecifics. The novelty of the PDE model is the combination

of the modelling approach where individuals turn randomly and the approach where indi-

10



viduals turn in response to conspecifics. The response to conspecifics is assumed to result

from animal communication. Communication signals not only include information about

the distance between conspecifics but also the direction of travel. These direction-dependent

communication mechanisms are translated into 5 submodels, each capturing a hypotheti-

cal communication scheme. These submodels distinguish the communication mechanisms,

consequently defining the rates at which individuals change direction. In this section, two

derivations of the PDE model will be reviewed. The first derivation adapts an existing model

to include direction-dependent communication mechanisms, and the second derivation ar-

rives at the PDE model by considering direction-dependent communication mechanisms in

a correlated random walk.

2.2.1 Adaptation of Existing PDE Model

A population of right- and left-moving individuals is considered on a one-dimensional domain.

The evolution of the density of right-moving (u+(x, t)) and left-moving (u−(x, t)) individuals

is governed by the hyperbolic equations:

u+(x, t)t +
(
γu+(x, t)

)
x

= −λ+u+(x, t) + λ−u−(x, t),

u−(x, t)t −
(
γu−(x, t)

)
x

= +λ+u+(x, t)− λ−u−(x, t),

u±(x, 0) = u±0 (x). (2.1)

The turning rates, λ+ and λ−, describe the rate at which right-moving individuals turn

left, and left-moving individuals turn right, respectively. These turning rates are assumed

to depend on the density of conspecifics and communication mechanisms. Individuals are

assumed to move with constant speed γ in their direction of travel. Boundary conditions

are periodic throughout the analysis and simulation of the PDE model. This PDE model

was first used to describe alignment behaviours in Myxobacteria colonies, but the turning

rates depended only on alignment interactions [33]. Here, the turning rates depend on repul-

sive, alignment, and attractive interactions as prescribed by the directional communication

mechanism. That is, the turning rates are

λ± = λ1 + λ2f
(
y±r − y±a + y±al

)
, (2.2)

where the constants λ1 and λ2 describe a base-line turning rate and the bias turning rate,

respectively, the turning function f is a dimensionless, bounded, and increasing function, and

11



x

r al aala

Figure 2.1: Cartoon depiction of the three social interaction zones surrounding an individual
at location x. Repulsion (r) acts over short distances from the reference individual at x,
alignment (al) over intermediate distances, and attraction (a) over longer distances.

y±r , y
±
al, y

±
a are functionals of the density of individuals in the surrounding zones of repulsion

(r), alignment (al) and attraction (a). The social interaction zones surround an individual,

as depicted in Figure 2.1. Repulsion acts on short distances, alignment on intermediate

distances, and attraction over large distances to be biologically accurate. Right- and left-

moving individuals may have different social interaction forces due to asymmetry in the

communication mechanism, requiring the need to distinguish y+
r,al,a from y−r,al,a in some cases.

Here, f is chosen to be a logistic function,

f(x) =
1

1 + e−2(x−y0)
=

1

2
+

tanh(x− y0)

2
, (2.3)

with y0 = 2, chosen so that in the absence of social interactions, movement is dominated by

random turning.

To understand the turning rates and social interactions,(2.2), consider a right-moving

individual at location x at time t. For example, suppose that there are a large number of

conspecifics in this individual’s zone of repulsion immediately ahead of it and only a few

conspecifics in the zone of repulsion behind this individual. In this case, the individual

should change direction to avoid the large group of individuals ahead of it. Correspondingly,

the repulsive social interaction force, y+
r , should be large. This large social interaction

force contributes additively to λ+, the turning rate, via the turning function f(x) in (2.3).

Similarly, if there are many conspecifics in the target individual’s zone of attraction ahead

and few conspecifics behind, the individual is not motivated to change direction, but rather

to continue ahead and join the larger group. Hence, the attractive social interaction force,

y+
a , should also be large, as this will decrease the turning rate λ+ via the turning function

f(x) and the negative sign in front of y+
a in (2.2).

To weight the influence of individuals in each of the social interaction zones, Gaussian
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x sr sal sa−sr−sal−sa

Figure 2.2: The social interaction kernels, Kj(s), j = r, al, a. The repulsion kernel (red, solid)
weights conspecifics close the target individual, the alignment kernel acts on intermediate
distances (blue, dashed), and the attraction kernel acts over large distances (green, dotted).

kernels are chosen:

Kj(s) =
1√

2πm2
j

exp

(−(s− sj)2

2m2
j

)
, (2.4)

j = r, al, a. Here, sj describes the centre of the Gaussian kernel and mj describes the width

(j = r, al, a). The parameters sj and mj are chosen to arrange the social interaction zones in

a biologically meaningful way, namely, with repulsion acting on short distances, alignment

on intermediate distances, and attraction on larger distances. In practice, these kernels are

truncated to have compact support. The social interaction kernels are sketched in Figure

2.2.

Direction-dependent communication mechanisms are prescribed via 5 hypothetical sub-

models. For instance, in submodel M1, the reference individual uses information about all

conspecifics regardless of their direction of travel for repulsive and attractive signals, but only

information from those neighbours who are moving toward the reference individual. The 5

hypothetical submodels are easily described pictorially, as shown in Figure 2.3. The social

interaction forces reflect these communication mechanisms by considering the appropriate

density of right- or left-moving (or both) individuals. The social interaction forces dictated

13



by submodel M1 are:

y±r,a = qr,a

∫ ∞
0

Kr,a(s) (u(x± s)− u(x∓ s)) ds, (2.5)

y±al = qal

∫ ∞
0

Kal(s)
(
u∓(x± s)− u±(x∓ s)

)
ds. (2.6)

The parameters qj, j = r, al, a are the magnitude of the social interaction forces, and

u(x, t) = u+(x, t) +u−(x, t) is the total density. The repulsive and alignment forces compare

the strength of the forces ahead and behind the reference individual, whereas the alignment

forces compare the strength of forces exerted by right- or left-moving individuals. This

matches with the biological interpretation of these social forces as it is biologically relevant

for an individual be repelled by nearby individuals or to be attracted to distant individu-

als, regardless of their direction of travel. On the other hand, alignment is to adjust one’s

direction to match that of neighbours at an intermediate distance. Direction-dependent com-

munication mechanisms are not limited to submodel M1, and 4 other hypothetical submodels

are considered. These five submodels capture various information receiving mechanisms, and

exemplify how different environmental or biological constraints may be incorporated into this

model. The submodels are defined as follows:

M1: the repulsion and attraction social interaction forces depend on information from all

individuals in the repulsion and attraction zones, respectively; however, the alignment

social interaction force only depends on individuals heading towards the reference in-

dividual (as above);

M2: all three social interactions depend on all individuals, regardless of their direction of

travel within the social interaction zones;

M3: all three social interaction forces depend only on the information received from individ-

uals ahead of the reference individual;

M4: all three social interaction forces depend on the information from the zones ahead

and behind, but only from those neighbours who are moving toward the reference

individual;

M5: all three social interaction forces depend only on the information from individuals ahead

and moving toward the reference individual.

14



Submodel Repulsion Alignment Attraction

M1 all toward all
M2 all all all
M3 all ahead all ahead all ahead
M4 toward toward toward
M5 ahead & toward ahead & toward ahead & toward

Table 2.1: Summary of direction-dependent interactions with conspecifics. Each commu-
nication mechanism is described as a submodel (M1-M5). The submodel indicate which
individuals contribute to the social interaction forces based upon their direction of move-
ment and location relative to the target individual. In the table, “all” refers to all neighbours,
“all ahead” refers to all neighbours ahead, “toward” refers to all neighbours moving toward
the target individual, and “ahead & toward” refers to all neighbours ahead of the target
individual that are moving toward the target individual.

A summary of the direction-dependent interactions is presented in Table 2.1, and the social

interaction forces for the 5 submodels are listed in Table 2.2. The 5 submodels are easily

understood graphically, and cartoons are presented in Figure 2.3.

2.2.2 Derivation from Correlated Random Walk

The PDE model, (2.1), can be derived from a correlated random walk, as in Section 2.4 of [10].

This derivation provides insight into the direction-dependent mechanisms that lead to group

pattern formation, and forms the basis for the new individual-based model developed in

Chapter 3.

To describe the correlated random walk, one-dimensional space is discretized into intervals

of length ∆x, and time is discretized into intervals of length ∆t. Let p+(x, t) denote the

probability of finding a right-moving individual in the interval [x − ∆x
2
, x + ∆x

2
) at time t

and p−(x, t) denote the probability of finding a left-moving individual in the interval [x −
∆x
2
, x + ∆x

2
) at time t. A right-moving individual can be at x at time t + ∆t if either the

individual was left-moving at x+∆x at time t and turns in response to distant neighbours at

x±k∆x, k ∈ N, describing the social interaction zones, or if the individual was right-moving

at x−∆x at time t and does not change direction, as illustrated in Figure 2.4. That is,

p+(x, t+ ∆t) = p+(x−∆x, t)(1− λ+∆t) + p−(x+ ∆x, t)λ−∆t. (2.7)
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xx − s x + s

λ+

(a) M1 Repulsion and Attraction

xx − s x + s

λ+

(b) M1 Alignment

xx − s x + s

λ+

(c) M2 Repulsion and Attraction

xx − s x + s

λ+

(d) M2 Alignment

xx − s x + s

λ+

(e) M3 Repulsion and Attraction

xx − s x + s

λ+

(f) M3 Alignment

xx − s x + s

λ+

(g) M4 Repulsion and Attraction

xx − s x + s

λ+

(h) M4 Alignment

xx − s x + s

λ+

(i) M5 Repulsion and Attraction

xx − s x + s

λ+

(j) M5 Alignment

Figure 2.3: Cartoon depiction of the direction-dependent communication mechanisms in
submodels M1 through M5. A right-moving reference individual at x receives signals from
distant individuals, to the right at x+s, and from the left at x−s. Arrows at x+s and x−s
indicate whether the reference individual will receive stimuli from distant right-moving (right
arrow) and distant left-moving (left arrow) neighbours. For example, the direction-dependent
communication mechanism in submodel M3 ((e) and (f)) uses information from both left-
and right-moving neighbours ahead of the reference individual for repulsion, attraction, and
alignment.
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Submodel Repulsion & Attraction interaction force
Alignment interaction force

M1 y±r,a = qr,a
∫∞

0
Kr,a(s) (u(x± s)− u(x∓ s)) ds

y±al = qal
∫∞

0
Kal(s) (u∓(x± s)− u±(x∓ s)) ds

M2 y±r,a = qr,a
∫∞

0
Kr,a(s) (u(x± s)− u(x∓ s)) ds

y±al = qal
∫∞

0
Kal(s) (u∓(x± s) + u∓(x∓ s)− u±(x± s)− u±(x∓ s)) ds

M3 y±r,a = qr,a
∫∞

0
Kr,a(s) (u(x∓ s)) ds

y±al = qal
∫∞

0
Kal(s) (u∓(x± s)− u±(x± s)) ds

M4 y±r,a = qr,a
∫∞

0
Kr,a(s) (u∓(x± s)− u±(x∓ s)) ds

y+
al = qal

∫∞
0
Kal(s) (u∓(x± s)− u±(x∓ s)) ds

M5 y±r,a = qr,a
∫∞

0
Kr,a(s) (u∓(x± s)) ds

y±al = qal
∫∞

0
Kal(s) (u∓(x± s)) ds

Table 2.2: The social interaction forces in the PDE model. These forces depend directly
on the direction-dependent communication mechanism prescribed by each submodel. The
repulsive and alignment forces compare the strength of the forces ahead and behind the
reference individual; whereas, the alignment forces compare the strength of forces exerted
by right- or left-moving individuals. u = u+ + u− is the total density of individuals, qj,
j = r, al, a, are the magnitudes of the social interaction forces, and Kj, j = r, al, a, are
Gaussian kernels described in Equation 2.4.
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Similarly, the probability of finding a left-moving individual at x at time t+ ∆t is

p−(x, t+ ∆t) = p−(x+ ∆x, t)(1− λ−∆t) + p+(x−∆x, t)λ+∆t. (2.8)

Here, λ± are the turning rates, and so λ±∆t is the probability that an individual changes

direction. A Taylor expansion of (2.7) and (2.8) about (x, t) gives

p+(x, t) + ∆t p+
t (x, t) =

[
p+(x, t)−∆x p+

x (x, t)
]

(1− λ+∆t) +
[
p−(x, t) + ∆x p−x (x, t)

]
λ−∆t

+O(∆x2,∆t2) (2.9)

p−(x, t) + ∆t p−t (x, t) =
[
p−(x, t) + ∆x p−x (x, t)

]
(1− λ−∆t) +

[
p+(x, t) + ∆x p+

x (x, t)
]
λ+∆t

+O(∆x2,∆t2), (2.10)

where the subscripts denote partial derivatives, for example, p+
x (x, t) = ∂p+

∂x
(x, t). Omitting

the function arguments and neglecting higher order terms, we find,

p+
t +

∆x

∆t
p+
x = −λ+p+ + λ−p− + ∆xλ+p+

x + ∆xλ−p−x ,

p−t −
∆x

∆t
p−x = λ+p+ − λ−p− −∆xλ+p+

x −∆xλ−p−x . (2.11)

Taking the limit as ∆x→ 0, ∆t→ 0, with ∆x
∆t

= γ results in the PDE model:

u+(x, t)t +
(
γu+(x, t)

)
x

= −λ+u+(x, t) + λ−u−(x, t),

u−(x, t)t −
(
γu−(x, t)

)
x

= +λ+u+(x, t)− λ−u−(x, t), (2.12)

where u± are interpreted as probability density functions.

Typically, the turning rates λ± are only random, that is, individuals change direction

according to Poisson processes with rates λ±; however, to incorporate direction-dependent

mechanisms, a nonlocal response is added to the turning rates. This leads to the definition

of the turning probability

λ± =
λ1

2
+
λ2

2
F±, (2.13)

where λ1 and λ2 describe a base-line and bias turning probabilities, and F is a increasing,

uniformly continuous, function of distant conspecifics, with 0 < λ1, λ2, F < 1. In order to

calculate the function F , a Poisson point assumption needs to be imposed [10,19]. Formally,

a group of individuals are Poisson points if
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xx − ∆x x + ∆x

xx − ∆x x + ∆x

t

t + ∆t

(a) p+(x, t+ ∆t)

xx − ∆x x + ∆x

xx − ∆x x + ∆x

t

t + ∆t

(b) p−(x, t+ ∆t)

Figure 2.4: The movement of right- and left-moving individuals. A right-moving individual
at x at time t + ∆t, (a), was either right-moving at x − ∆x at time t and did not change
direction or was left-moving at x + ∆x at time t and changes direction. Similarly, a left-
moving individual at x at time t + ∆t, (b), was either left-moving at x + ∆x at time t and
does not change direction or was right-moving at x − ∆x at time t and changes direction.
These jumps and direction changes describe the correlated random walk that lead to the
hyperbolic PDE model (2.1).

1. the probability of ν individuals being present in a sample from an interval [a, b] depends

only on ν, a, b,

2. the probabilities of n samples from n distinct intervals are independent, and

3. there is a zero probability that a sample on a finite interval is infinite.

Here, 1 and 2 are not explicitly satisfied, as one of the fundamental assumptions of the

movement model is that a large number of individuals in an interval may be correlated with

a change of individuals in a neighbouring interval. The Poisson point assumption is therefore

necessary to calculate the expected number of individuals at distant spatial locations from

the reference individual. That is, if the reference individual is at x, the expected number of

individuals at x + k∆x, k ∈ Z, is Np±(x + k∆x, t), where N is the total population size.

Without the Poisson point assumption, this expected number of individuals is conditional

upon the location and direction of other individuals. Hence, the probability of turning in

response to distant neighbours, assuming the communication mechanism in submodel M1,

is

λ± =
λ1

2
+
λ2

2
F

(
±N

∞∑
j=−∞

Kr(k∆x) (p(x+ j∆x, t)− p(x− j∆x, t))

∓N
∞∑

j=−∞

Ka(j∆x) (p(x+ j∆x, t)− p(x− j∆x, t))

±N
∞∑

j=−∞

Kal(j∆x)
(
p−(x+ j∆x, t)− p+(x− j∆x, t)

))
, (2.14)
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where p = p+ + p−. Since F is uniformly continuous, we find the turning rate as given by

equation (2.2) as the same limit from (2.12) is taken.

2.3 Key Results

In [10], the numerical method used to study the PDE model, (2.1), is described. These

details are omitted here, and this section focus on the complex spatial patterns formed by

varying communication mechanisms and by exploring parameter space. An analysis of the

PDE model reveals that the stability of the steady states depend on the magnitude of the

interaction parameters (qr, qal, qa) and the magnitude of the turning rates (λ1, λ2). Unsur-

prisingly, these are the parameters that can be used to characterize animal groups during

movement and different behaviours. The goal of parameter exploration in [10] was not to

find all the patterns, but rather to demonstrate the variety of complex spatial patterns that

result from varying direction-dependent communication mechanisms. Example patterns are

shown in Figure 2.5 (from [10]). Not only does the PDE model reproduces classic patterns

such as stationary pulses, ripples, and traveling trains, but also produces novel patterns,

namely, zigzag pulses, semi-zigzag pulses, breathers, traveling breathers, and feathers. Sta-

tionary pulses (Figure 2.5 (1) and (2)) are aggregations that remain at a spatial location.

Ripples (Figure 2.5 (3)) form when a right-moving aggregation and left-moving aggregation

pass through each other. Feathers form when individuals are lost from the boundary of sta-

tionary pulses (Figure 2.5 (4)). Traveling pulses and traveling trains are aggregations that

move across the domain. Traveling pulses are characterized by a large aggregation moving

(Figure 2.5 (5), whereas traveling trains consist of many small groups, like train cars, that

travel in unison (Figure 2.5 (6)). Zigzag pulses (Figure 2.5 (7)) are pulses that travel across

the domain while occasionally changing direction. Breathers and traveling breathers (Figure

2.5 (8) and (9)) are groupings that expand and contract throughout time, and are either

stationary or traveling. A portion of parameter space was also explored in each submodel.

Three cases were considered:

Case (a): attraction and repulsion only,

Case (b): alignment only,

Case (c): all three social interaction forces.

For details, refer to Section 3.3, as the same parameter space is sampled when simulating

the IBM, or refer to [10]. Table 2.3 summarizes the results of this parameter exploration.
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Figure 2.5: Examples of patterns produced by the PDE model. Figure from [10]. Boundary
conditions are periodic, and parameters listed in Table 3.2.
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2.4 Discussion

This chapter briefly reviewed a one-dimensional PDE model for animal collective behaviour

with direction-dependent communication mechanisms developed by Eftimie et al. This model

is the first to incorporate direction-dependent communication mechanisms, and consequently,

the model behaviour is greatly enriched. The PDE model was formulated in two ways, firstly,

by adapting the turning rates in an existing hyperbolic PDE model for Myxobacteria colonies,

and secondly, from a correlated random walk with nonlocal communication mechanisms. The

correlated random walk derivation provides a foundation for the individual-based model with

direction-dependent communication mechanisms, as discussed in Chapter 3.

The inclusion of direction-dependent communication mechanisms to the PDE model en-

riches the model behaviour. To incorporate nonlocal communication mechanisms, a Poisson

point assumption was necessary. The validity of including this Poisson point assumption can

be asserted if the movement of individuals is sufficiently random. In this case, the assump-

tion can be validated if a stochastic IBM can match the model behaviour. Another question

that arises immediately is whether the complex spatial patterns formed are unique to hyper-

bolic models [11]. Will an individual-based model with direction-dependent communication

mechanisms produce the same patterns? This is the subject of Chapter 3.
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Chapter 3

IBM with Communication

Mechanisms

3.1 Introduction

In this chapter, an individual-based model with direction-dependent communication mecha-

nisms is formulated to match the behaviour of the PDE model in Chapter 2. Here, it is hy-

pothesized that an individual-based model (IBM) with direction-dependent communication

mechanisms will enrich pattern formation, and thus suggest the importance of communica-

tion mechanisms as a factor in complex group formations.

The mechanisms behind the IBM follow from the correlated random walk that results in

the PDE model, as described in Section 2.2.2. This random walk describes the movement

of right- and left-moving individuals, and how individuals change direction due to the social

interaction forces. However, the random walk was concerned with the time evolution of the

probability of finding a right- or left-moving individual at x at time t, that is, p±(x, t). In

place of describing the probability of finding an individual at x at time t or the population

density, u(x, t), the IBM is strictly Lagrangian, and tracks the position and velocity of an

individual over time.

In Section 3.2, we describe the development of the IBM, specifically how the population

of right- and left-moving individuals move and change direction. The social interaction forces

and communication mechanisms are described in detail. In Section 3.3, we present numerical

simulations of the IBM and the formation of complex spatial patterns. Finally, in Section

3.5, we discuss how communication mechanisms enrich pattern formation in this IBM.
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3.2 Model Development

Individual interactions with conspecifics are described through three social interaction forces:

repulsion, alignment, and attraction. Repulsion describes the tendency for individuals at

close distances to avoid each other, alignment describes the tendency for individuals to align

with individuals at intermediate distances, and attraction describes the tendency for indi-

viduals to be attracted toward distant individuals. In one-dimension, the social interaction

forces manifest as intervals surrounding a target individual at location x as in Figure 2.1.

Conspecifics in these intervals exert a social force and affect the movement of the target indi-

vidual. For example, if many conspecifics are found in the zone of attraction of an individual,

that individual will move towards the individuals in the zone of attraction.

An individual-based model, consisting on N individuals moving in one dimensional space,

can be used to describe this social interaction mechanism. Following the development of

the model in [12–14, 41], but using a Lagrangian approach, we track the position and the

direction of individuals moving on a line throughout time. Individual i has position xi(t)

and direction vi(t) at time t, with xi(t) ∈ R and vi(t) = ±1. An individual with vi(t) = 1

(−1) is considered to be right- (left-) moving, and individuals change direction in response

to conspecifics in their interaction zones. The social interaction forces felt by individual i are

denoted by y±j,i, where the ± sign indicates whether an individual is right-moving (+) or left-

moving (−), and j = r, al, a denotes repulsion (r), alignment (al), or attraction (a). A right-

or left-moving individual i changes direction with rate λ+
i or λ−i , respectively, dependent on

the social interaction forces:

λ±i = λ1 + λ2f
(
y±r,i − y±a,i + y±al,i

)
, (3.1)

where the constants λ1 and λ2 describe a base-line turning rate and the bias turning rate,

respectively, and the turning function f is some dimensionless, bounded, and increasing

function. Here, f is chosen to be a logistic function,

f(x) =
1

1 + e−2(x−y0)
=

1

2
+

tanh(x− y0)

2
, (3.2)

with y0 = 2, chosen so that in the absence of social interactions, movement is dominated by

random turning. Moreover, the repulsion and attraction social interaction forces enter the

turning function with the opposite sign as these two interactions have opposite biological

effects. Hence, the movement of individuals is influenced by both the base-line turning rate
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as well as the bias turning rate, which depends on the social interaction forces.

In each time step, individuals first receive stimuli based on the social interaction forces

and calculate their turning rate. They then update their position by moving in their direction

of travel with constant speed γ. Lastly, individuals change direction if their probability of

turning, λ±i ∆t, is sufficiently large. That is, the change of direction of an individual is a

Bernoulli random variable with probability of success λ±i ∆t. That is,

xi(t+ ∆t) = xi(t) + γvi(t)∆t, (3.3)

vi(t+ ∆t) =

−vi(t), if λ±i ∆t ≥ X,

vi(t), otherwise.
(3.4)

To complete the model development, the social interaction forces and direction-dependent

communication mechanisms need to be described. In Section 3.2.1, we describe how an in-

dividual measures the social interaction forces. Direction-dependent communication mech-

anisms directly influence which signals, and how much of those signals are received by an

individual.

3.2.1 Social Interaction Forces and Communication Mechanisms

As in the PDE model, the social interaction forces of repulsion (y±r,i) and attraction (y±a,i) enter

the turning function, (3.2), with opposite signs, as repulsion and attraction have opposite

effects. The turning function additively depends on alignment (y±al,i). This is to capture the

biological mechanisms of avoiding close individuals, aligning with nearby individuals, and

moving toward distant individuals.

The formula for y±j,i, j = r, al, a, not only depends on the weighting of conspecifics in the

interaction zones as described above, but also upon how information between individuals

in interaction zones is shared. A communication mechanism could, for example, be purely

directional, and individuals could only receive information from individuals traveling towards

them.

Communication mechanisms describe which signals, and how much of those signals, are

received by the target individual. By way of example, one could define a communication

mechanism to be that the target individual uses information from all neighbours in the re-

pulsion and attraction zones, but only information from individuals heading toward in the

alignment zone, as illustrated in Figure 3.1. A right-moving reference individual i at xi

is surrounded by individuals to the right (x + s) and individuals to the left (x − s). For
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xx − s x + s

λ+

(a) Repulsion and Attraction

xx − s x + s

λ+

(b) Alignment

Figure 3.1: The direction-dependent communication mechanism in submodel M1. A right-
moving reference individual at x receives signals from distant individuals, to the right at
x + s and from the left at x − s. For attraction and repulsion (a), this individual uses
all information from neighbours regardless of their direction of travel. Arrows pointing left
and right indicate this. For alignment (b), the reference individual only uses information
from neighbours heading toward it, as indicated by the arrows heading toward the reference
individual.

repulsion and attraction, the target individual uses information from all neighbours in these

zones as indicated by the right and left moving arrows in Figure 3.1(a). For alignment, the

target individual only uses information from individuals moving toward it as indicated by

right facing arrow at x− s and by the left facing arrow at x+ s in Fig. 3.1(b). In the PDE

model, this is called submodel M1, and we will adopt this naming scheme. The communi-

cation mechanism in submodel M1 is direction-dependent as information transfer between

individuals depends on the direction in which conspecifics are traveling. The social inter-

action forces for submodel M1 thus need to reflect this direction-dependent communication

mechanism.

To incorporate the direction-dependent communication mechanism as described in sub-

model M1 in the social interaction forces, y±j,i, j = r, al, a, we consider how a reference

individual i at xi receives information from conspecifics in its social interaction zones. For

repulsion and attraction, this individual uses information about all neighbours in its repul-

sion and attraction zones, regardless of the neighbours’ direction of travel. For alignment,

this individual uses information about only those neighbours who are traveling toward it in

the alignment zone. Define qj, j = r, al, a, to be the magnitude of the repulsive, alignment,

and attractive force, respectively. Individual i at xi experiences a repulsive force, y±r,i, given

by

y±r,i = ±qr
∑
j∈ZR

r,i

Kr(|xi − xj|)∓ qr
∑
j∈ZL

r,i

Kr(|xi − xj|), (3.5)

where Kr(s) is defined in (2.4) and ZR,L
r,i represents individual i’s zone of repulsion, to the

right (superscript R) or to the left (superscript L). The + and − superscripts represent the

direction of the target individual i, and the ± and ∓ signs are responsible for comparing
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the social interaction forces between left (L) and right (R) zones. Similarly, as information

is used from all neighbours in the zone of attraction, individual i at xi then experiences an

attractive force, y±a,i, given by

y±a,i = ±qa
∑
j∈ZR

a,i

Ka(|xi − xj|)∓ qa
∑
j∈ZL

a,i

Ka(|xi − xj|), (3.6)

where ZR,L
a,i represents individual i’s zone of attraction to the right (R) or to the left (L).

The repulsive and alignment forces compare the strength of the forces ahead and behind

the reference individual, as it is biologically relevant for an individual be repelled by nearby

individuals or to be attracted to distant individuals, regardless of their direction of travel. On

the other hand, the alignment forces compare the strength of forces exerted by right- or left-

moving individuals (subject to the communication mechanism), as the biological meaning

of alignment is to adjust one’s direction to match that of neighbours at an intermediate

distance. Since individual i uses information about only those neighbours who are traveling

toward it in the alignment zone, the alignment force selects only those individuals who are

left-moving (vj < 0) to right (R) of individual i, or those individuals who are right-moving

(vj > 0) to the left (L) of individual i. Thus, the alignment force is given by

y±al,i = ±qal
∑
j∈ZR

al,i
vj<0

Kal(|xi − xj|)∓ qal
∑
j∈ZL

al,i
vj>0

Kal(|xi − xj|), (3.7)

where ZR,L
al,i represents individual i’s zone of attraction to the right (R) or to the left (L).

Direction-dependent communication mechanisms are not restricted to the mechanism de-

scribed as submodel M1. In the PDE model, submodel M1 is one of five direction-dependent

communication mechanisms considered. This submodel paradigm allows for communication

mechanisms to be varied beyond the five mechanisms proposed above and studied via sim-

ulations of the IBM. To incorporate a direction-dependent communication mechanism into

the IBM, it is only necessary to specify which conspecifics a reference individual will interact

with for the repulsive, alignment, and attractive social interaction forces. These interactions

for the five submodels studied here are summarized in Table 2.1 and are illustrated in Figure

2.3. The social interaction forces for each submodel are given in Table 3.1.
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Submodel Repulsion & Attraction interaction force
Alignment interaction force

M1 y±r,a,i = ±qr,a
∑

j∈ZR
r,a,i

Kr,a(dij)∓ qr,a
∑

j∈ZL
r,a,i

Kr,a(dij)

y±al,i = ±qal
∑

j∈ZR
al,i

vj<0

Kal(dij)∓ qal
∑

j∈ZL
al,i

vj>0

Kal(dij)

M2 y±r,a,i = ±qr,a
∑

j∈ZR
r,a,i

Kr,a(dij)∓ qr,a
∑

j∈ZL
r,a,i

Kr,a(dij)

y+
al,i = qal

(∑
j∈ZR

al,i
vj<0

Kal(dij) +
∑

j∈ZL
al,i

vj<0

Kal(dij)−
∑

j∈ZR
al,i

vj>0

Kal(dij)−
∑

j∈ZL
al,i

vj>0

Kal(dij)
)

y−al,i = qal

(∑
j∈ZL

al,i
vj>0

Kal(dij) +
∑

j∈ZR
al,i

vj>0

Kal(dij)−
∑

j∈ZL
al,i

vj<0

Kal(dij)−
∑

j∈ZR
al,i

vj<0

Kal(dij)
)

M3 y+
r,a,i = qr,a

∑
j∈ZR

r,a,i
Kr,a(dij)

y−r,a,i = qr,a
∑

j∈ZL
r,a,i

Kr,a(dij)

y+
al,i = qal

∑
j∈ZR

al,i
vj<0

Kal(dij)− qal
∑

j∈ZR
al,i

vj>0

Kal(dij)

y−al,i = qal
∑

j∈ZL
al,i

vj>0

Kal(dij)− qal
∑

j∈ZL
al,i

vj<0

Kal(dij)

M4 y±r,a,i = ±qr,a
∑

j∈ZR
r,a,i

vj<0

Kr,a(dij)∓ qr,a
∑

j∈ZL
r,a,i

vj>0

Kr,a(dij)

y±al,i = ±qal
∑

j∈ZR
al,i

vj<0

Kal(dij)∓ qal
∑

j∈ZL
al,i

vj>0

Kal(dij)

M5 y+
r,a,i = qr,a

∑
j∈ZR

r,a,i
vj<0

Kr,a(dij)

y−r,a,i = qr,a
∑

j∈ZL
r,a,i

vj>0

Kr,a(dij)

y+
al,i = qal

∑
j∈ZR

al,i
vj<0

Kal(dij)

y−al,i = qal
∑

j∈ZL
al,i

vj>0

Kal(dij)

Table 3.1: The social interaction forces depend directly on the direction-dependent com-
munication mechanism prescribed by each submodel. Here, dij = |xi − xj| is the distance
between individuals i and j, qj, j = r, al, a, is the magnitude of the interaction force, Kj,

j = r, al, a, are the social interaction kernels, (2.4) , and ZR,L
j,i , j = r, al, a, describe individ-

ual i’s zone of repulsion, alignment, or attraction to the right (superscript R) or to the left
(superscript L). The direction of individual j, vj, is necessary to distinguish between right-
and left-moving individuals in the social interaction zones. The repulsive and alignment
forces compare the strength of the forces ahead and behind the reference individual, as it is
biologically relevant for an individual be repelled by nearby individuals or to be attracted to
distant individuals, regardless of their direction of travel. On the other hand, the alignment
forces compare the strength of forces exerted by right- or left-moving individuals, as the
biological meaning of alignment is to adjust one’s direction to match that of neighbours at
an intermediate distance.
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3.3 Numerical Simulations

In this section, we simulate the model using a variety of communication mechanisms and a

wide range of parameters. The previous investigation into the behaviour of the PDE model

revealed formation of complex spatial patterns as in Chapter 2. Here, we aim to reproduce

the complex spatial patterns previously seen in the analogous PDE model.

N = 500 individuals are randomly scattered on a domain of length L = 10 with periodic

boundary conditions. The social interaction kernels are truncated at 2sj, j = r, al, a, re-

spectively, to avoid infinite interaction ranges. Individuals continue to move with a constant

speed γ = 0.1. To ensure that we can translate between the parameter space in the anal-

ogous PDE model, we normalize the social interaction forces by multiplying by AL
N

, where

A = 2 is the total population size in the PDE model. This normalization ensures that the

magnitudes of the social interaction forces are scaled to match the choices of λ1, λ2, and the

turning function, (3.2). The normalization constant, in effect, scales the social interaction

forces by the reciprocal of the density, L
N

, then by A = 2, to match the total population size

from [10,12,14].

Examples of the complex spatial patterns observed are shown in Figure 3.2. Correspond-

ing density plots are shown in Figure 3.3. The density plots in Figure 3.3 allow the interior

structure of the aggregations to be observed and for the patterns to be compared to the PDE

model. Stationary pulses consist of an aggregation that does not travel and can have high-

density subgroups, or have constant internal density. Figure 3.2(a) and Figure 3.3(a) show

stationary pulses with high-density subgroups, and Fig. 3.2(b) and 3.3(b) show stationary

pulses with constant internal density. Ripples are formed when left-moving and right-moving

groups of individuals intersect but continue moving apart. Figure 3.2(c) and Figure 3.3(c)

show the formation of the ripple pattern. Figure 3.2(d) and Figure 3.3(d) show stationary

pulses that lose individuals from the edges of the groups, but eventually rejoin a group. This

creates a feather-like pattern as individuals move away from the larger stationary pulse. A

traveling pulse is a large group of individuals that travels together; whereas, a traveling train

consists of multiple small groups of individuals that travel together. An example traveling

pulse is shown in Figure 3.2(e) and Figure 3.3(e). Figure 3.2(f) and Figure 3.3(f) reveal mul-

tiple small groups moving across the domain in the traveling train pattern. When an group

of individuals behaves like a traveling pulse but reverses direction sporadically, a zigzagging

pulse is formed, as in Figure 3.2(g) and Figure 3.3(g). Aggregations that expand and contract

over time are called breathers. Breathing patterns can be stationary, as in Figure 3.2(h) and

Figure 3.3(h), or can travel across the domain, as in Figure 3.2(i) and Figure 3.3(i). Feath-
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Pattern Submodel λ1 λ2 qr qal qa

Stationary pulse with high density subgroups M1 0.2 0.9 2.4 0 2
Stationary pulse with constant internal density M2 0.2 0.9 0.5 0 4
Ripples M5 0.2 0.9 1.1 2 1.5
Feathers M3 0.2 0.9 6.4 0 6
Traveling pulse M1 0.2 0.9 0.5 2 1.6
Traveling train M3 6.67 30 0 2 6
Zigzag pulse M2 0.2 0.9 1 2 6
Breathers M4 0.2 0.9 1 0 2
Traveling breathers M4 0.2 0.9 4 2 4
Semi-zigzag pulse M4 0.667 3 0 2.2 0

Table 3.2: Example parameter values and submodels that produce complex spatial patterns.
In this study, fixed model parameters are N = 500, L = 10, ∆t = 0.05 and γ = 0.1.

ers, zigzag pulses, breathers, and traveling breathers are novel patterns that have not been

previously observed in individual-based models of collective behaviour. Another previously

unobserved pattern is the semi-zigzag pulse, as shown in Figure 3.4. Semi-zigzag pulses are

obtained by movement in one direction alternated by periods of stationary rest.

Simulations of the IBM with the parameter values in Table 3.2 provide specific examples of

well-defined patterns that match the PDE model. To ensure the IBM matches the behaviour

of the PDE model throughout parameter space, numerical simulations of the IBM were

performed using the same parameter spaces described in [10]:

Case (a): Repulsion and attraction only. In this case, the fixed parameters are qal = 0,

γ = 0.1, λ1 = 0.2, and λ2 = 0.9. The magnitude of the repulsive and attractive social

interaction forces, qr and qa, are varied, with (qr, qa) ∈ [0.5, 9].

Case (b): Alignment only. In this case, the fixed parameters are qr = qa = 0, γ = 0.1, and

the influence of turning rates is investigated. Set λ1 = 0.2
α

and λ2 = 0.9
α

. α and qal are

varied, with α ∈ [0.006, 1] and qal ∈ [0.5, 10].

Case (c): All social interactions. In this case, we fix γ = 0.1, λ1 = 0.2, and λ2 = 0.9. The

magnitudes of the social interaction forces are varied, with (qr, qal, qa) ∈ [1, 10].

Each of these parameter regimes was investigated using the communication mechanisms

described by submodels M1 through M5. Numerical simulations reveal that the patterns

formed by the IBM match those patterns formed by the PDE model throughout parameter

space, and among submodels. The results of this investigation are described in Table 3.3 by
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(a) Stationary pulse 1 (b) Stationary pulse 2 (c) Ripples

(d) Feathers (e) Traveling pulse (f) Traveling train

(g) Zigzag pulse (h) Breathers (i) Traveling breathers

Figure 3.2: Examples of patterns obtained by the IBM with various communication mech-
anisms. Parameters and communication mechanism (submodel) are described in Table 3.2,
and boundary conditions are periodic.
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(a) Stationary pulse 1 (b) Stationary pulse 2 (c) Ripples

(d) Feathers (e) Traveling pulse (f) Traveling train

(g) Zigzag pulse (h) Breathers (i) Traveling breathers

Figure 3.3: Density plots of patterns obtained by the IBM with various communication
mechanisms. Subfigures correspond to the patterns shown in Figure 3.2. Parameters and
communication mechanism (submodel) are described in Table 3.2.
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(a) Semi-zigzag pulse (b) Semi-zigzag pulse density

Figure 3.4: Semi-zigzag pulse produced by submodel M4 with alignment only. Semi-zigzag
pulses are characterized by alternating periods of stationary rest and travel. Parameters are
listed in Table 3.2.

indicating which patterns form as a result of considering a certain submodel and parameter

regime (Case (a), (b), or (c)). For example, the communication mechanism described by

submodel M1 produces traveling trains using parameters in case (b), traveling pulses using

parameters in case (c), stationary pulses can be observed for cases (a), (b), and (c). Dashes

indicated that the particular pattern has not been observed for that range of parameters.

This investigation reveals the importance of alignment in the formation of moving groups.

Traveling groups, such as the traveling pulse and traveling train, require non-zero alignment

forces. Traveling breathers can be produced without alignment; however, in this case, at-

traction and repulsion have the same magnitude. This allows individuals to escape the group

and subsequently rejoin, leading to the expansion and contraction of the group.

The parameter investigation reveals that the PDE model and the IBM model generally

have the same behaviour. Pattern formation of the PDE model is summarized in Table 2.3

across parameter space and the five submodels. Comparing the patterns formed by the IBM

(Table 3.3) with those patterns formed by the PDE model (Table 2.3) demonstrates that the

two modelling approaches reveal the same group formation patterns. However, it also reveals

the subtle differences between the IBM and the PDE model, namely which submodels and

parameter regimes produce patterns. The ripples, breathers, and semi-zigzag pulse patterns
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are produced by both the IBM and PDE model using the same communication mechanisms

and in the same parameter regimes. Other patterns are, in general, produced in both models

using the same parameter regimes and the same communication mechanisms. For example,

feathers appear in the PDE model only in submodel M3 with parameters from cases (a) and

(c), but they appear in the IBM in submodel M3 with parameters from cases (a) and (c)

as well as in submodel M4 with parameters from case (c). These differences likely result

from the stochasticity built into the IBM. Stochasticity allows for individuals to escape large

aggregations on occasion, and given enough escapees, these individuals may alter the group

level patterns.

Stochasticity is built into the IBM in two ways. Firstly, the base-line turning rate, λ1,

describes how often individuals change direction in the absence of signals from conspecifics.

Secondly, at each time step, individuals change direction if their turning probability is greater

than a randomly chosen number between 0 and 1, as in (3.3). Case (b) of the parameter

investigation investigates the effect of varying the base-line and bias turning rates. This

is accomplished by adjusting λ1 and λ2, the base-line and bias turning rates, respectively.

Patterns formed in this investigation are mainly stationary aggregations. When λ1 and λ2 are

increased, the groups become less cohesive and it is qualitatively apparent that individuals

are turning more often. Case (b) restricts the investigation to the case where repulsion and

attraction signals are not considered, and does not describe how pattern formation is affected

by varying the turning rates in the IBM. To investigate the effect of stochasticity, that is, the

effect of modifying the turning rates on the pattern formation, simulations were performed

with increased or decreased turning rates. Specifically, the turning rate for each individual

i, (3.1), was modified to become

λ±i = c
(
λ1 + λ2f

(
y±r,i − y±a,i + y±al,i

))
, (3.8)

where c ∈ R is a constant. Increasing the constant c increases individual i’s turning rate;

similarly, decreasing the constant c decreases individual i’s turning rate. Increased turning

rates lead to less cohesive aggregations and rougher patterns, as observed in the parameter

investigation in case (b). On the other hand, for c approximately equal to 1, pattern forma-

tion is largely unaffected. For c� 1, individuals are not likely to change direction, and will

move in their initial direction, vi(0). The zigzag pattern reveals the sensitivity of pattern

formation to the turning rates, as the time between direction reversals increases with the

turning rates. For example, Figure 3.5 shows three patterns formed using the same param-

eters but with increasing c. In Figure 3.5(a), the turning rates are λ1 = 0.04 and λ2 = 0.18
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(a) c = 0.8, λ1 = 0.16, λ2 = 0.72 (b) c = 1, λ1 = 0.2, λ2 = 0.9 (c) c = 1.2, λ1 = 0.24, λ2 = 1.08

Figure 3.5: The turning rates, λ1 and λ2, effect the time between direction reversals in the
zigzag pulse pattern. For smaller turning rates (a), such as c = 0.2, individuals do not
frequently change direction, but generally travel in their initial direction, vi(0). Here, the
turning rates are still sufficiently large to result in some group formation. For increased
turning rates (c), c = 1.2, the zigzag changes direction frequently.

(c = 0.2), resulting individuals mostly traveling in their original direction. In Figure 3.5(b),

the turning rates are λ1 = 0.2 and λ2 = 0.9 (c = 1), resulting in the zigzag pattern shown in

Figure 3.2(g). Finally, as λ1 = 0.24 and λ2 = 1.08 (c = 1.2) are increased, the time between

direction reversals is smaller, as in Figure 3.5(c).

3.4 Social Interaction Kernels

The choice of the social interaction kernels in the PDE model and IBM is biologically mo-

tivated. Individuals should be repelled by conspecifics at close ranges to avoid collisions;

individuals wish to orient their velocity with individuals at intermediate distances or dis-

tances that are “just right”; individuals wish to move toward distant individuals in order to

remain in contact with them. The kernels discussed above do not adequately capture this

biological motivation, as neighbours very close to an individual are not weighted as heavily

in the repulsion interaction force as those neighbours who are located near ±sr. To add

biological realism to the repulsion kernel, we consider a shallower repulsion kernel that is

centered about 0, i.e., the reference individual as illustrated in Figure 3.6. Let m̃r = sr/2

and define

K̃r(s) =
1√

2πm̃2
r

exp

(−s2

2m̃2
r

)
. (3.9)
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x sal sa−sal−sa

Figure 3.6: The revised repulsion kernel (red, solid) is centered over the target individual,
adding biological realism as the conspecifics very close to the target individual are weighted
most heavily for the repulsion social interaction force. The alignment (blue, dashed) and
attraction (green, dotted) kernels remain unchanged.

Using K̃r(s) as the repulsion kernel weights nearest neighbours more strongly than other

individuals for the repulsion interaction force.

This can be observed in numeric simulations with the revised repulsion kernel K̃r(s).

Firstly, pattern formation is unaffected as simulations show the formation of the same pat-

terns using the same parameters as in previous simulations. Minor differences in pattern

formation exist, such as with the stationary pulse formation. In simulations with the orig-

inal repulsion kernel, small high density subgroups of individuals form within the pulse;

however, these small high density groups of individuals do not form using the revised repul-

sion kernel (compare Fig. 3.2(a) and Fig. 3.7). This results from the removal of the valley

between the peaks formed by the original repulsion kernel (Fig. 2.2), as previously, individ-

uals sufficiently close could remain together as a group without exerting a large repulsive

force on each other by aggregating in this valley. The revised repulsion kernel, K̃r(s), does

not permit individuals to cluster this closely without exerting a strong repulsive force upon

each other.

To ensure that the complex spatial patterns form as a result from the incorporation of

direction-dependent communication mechanisms and not from the specific choice of social

interaction kernel, a wider range of kernels was considered. In place of the truncated Gaussian

kernels as in (2.4) and (3.9), rectangular and triangular kernels were chosen. Numerical

simulations reveal that the spatial patterns formed with non-Gaussian kernels have small
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Figure 3.7: Stationary pulse formed using the revised repulsion kernel, K̃r(s). Parameters
are identical to those for the stationary pulse observed in Fig. 3.2(a) (M1, λ1 = 0.2, λ2 = 0.9,
qr = 2.4, qal = 0, qa = 2). Note the loss of high-density subgroups within each stationary
pulse. The revised repulsion kernel does not permit conspecifics to remain together as a
small group without exerting a large repulsive force on each other.

quantitative differences. For example, the rate of direction reversal in the zigzag patterns

and the small well-defined groups in the traveling train pattern differ from simulations with

Gaussian kernels. Nonetheless, the patterns are qualitatively unaffected by variations in the

choice of social interaction kernel.

3.5 Discussion

Existing IBMs are successful in producing spatial patterns (see Section 1.3). IBMs with ad-

ditional biological background can also reproduce the most complicated behaviours, such

as the amazing displays of flocking starlings [21]. However, these IBMs are unable to

account for the multitude of complex spatial patterns observed in nature. Here, a one-

dimensional individual-based model of collective behaviour with direction-dependent com-

munication mechanisms was developed. The complex spatial patterns generated with our

model result from the incorporation and exploration of various direction-dependent commu-

nication mechanisms.

Following the use of direction-dependent communication mechanisms as in the PDE

model, we formulated the IBM on a one-dimensional domain with periodic boundary condi-
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tions, upon which individuals can move to the right or left. Direction-dependent communi-

cation mechanisms were superimposed upon the traditional social interactions of repulsion,

alignment, and attraction. These direction-dependent communication mechanisms describe

how and how much information is received by a target individual from conspecifics. A variety

of communication mechanisms can be imagined, but only five are considered as submodels.

The behaviour of the IBM is enriched by the incorporation of direction-dependent com-

munication mechanisms. The complex spatial patterns form as a result of various submodels

and varied parameter space. The IBM reproduces more classical patterns, such as stationary

aggregations, ripples, traveling pulses, and traveling trains, and produces novel patterns such

as feathers, zigzag pulses, breathers, and traveling breathers. The complex spatial patterns

observed here are noisier than the analogous patterns formed in the PDE model. In the

IBM, individuals change direction if their turning probability, λ±i ∆t, is larger than a uni-

formly distributed random variable. This added stochasticity adds biological realism as it is

unlikely that individuals will always respond to the stimuli from conspecifics and may act

in an unpredictable manner. The effect of stochasticity can be seen very well in the trav-

eling train pattern (Fig. 3.2(f)), as individuals will occasionally leave the group they have

been traveling with and are subsequently absorbed by another group. In the zigzag pattern

(Fig. 3.2(g)), the majority of individuals travel with the main zigzagging group; however,

a small number of individuals continue to travel past the turning main group. Eventually,

they return to the main group after being attracted by the large number of distant individ-

uals. As defined in (3.3), in a time step individuals first update their position and secondly

update their direction of travel. Considering an alternate “turn-then-move” scheme where

individuals first update their direction of travel, then update their position has no observable

qualitative effect on pattern formation.

Aside from the noise introduced by considering a IBM, the patterns formed throughout

parameter space match those patterns formed by the PDE model. Moreover, considering al-

ternate social interaction kernels did not have a large qualitative effect on pattern formation.

Investigating three cases of parameters reveals a strong match between the behaviours of the

two models. In Chapter 2, a Poisson point assumption was necessary to derive the hyperbolic

PDE from the correlated random walk. This Poisson point assumption was imposed as a

separate condition, as when social interactions are added, the number of individuals observed

within non-overlapping intervals is not necessarily independent. Provided the movement of

individuals is sufficiently random, the Poisson point assumption can be added. The incorpo-

ration of the Poisson point assumption to the PDE model is substantiated as the behaviour
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of the stochastic IBM, which includes random movements of individuals, matches that of the

PDE model across parameter space. Overall, the incorporation of direction dependent com-

munication mechanisms to an IBM of collective behaviour demonstrates that the complex

spatial patterns are not unique to the PDE model. Moreover, the IBM’s behaviour demon-

strates that the communication mechanisms modelling paradigm permits the formation of a

wide variety of complex spatial patterns.

Here, individuals move with constant speed γ = 0.1 as in the PDE model from Chapter

2. This assumption may not be biologically realistic, as individuals may speed up or slow

down to move towards or away from neighbours. Density-dependent movement speed is the

subject of the next chapter.
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Chapter 4

Density-Dependent Speed

4.1 Introduction

In this chapter, density-dependent speed is incorporated into the individual-based model

with direction-dependent communication mechanisms. Animals do not move at a constant

speed in nature, but rather speed up and slow down in response to their environment and

the location and behaviour of conspecifics. Further motivation for investigating density-

dependent speed results from the fact that it has been investigated in the context of the

PDE model with direction-dependent communication mechanisms. In Chapter 2 and 3,

the turning rate of an individual was assumed to dependent on nonlocal social interactions

with neighbours. In this chapter, we ignore environmental factors that may speed or slow

an individual’s movement and focus on those social interactions which may influence an

individual’s speed. The incorporation of density-dependent speed in the existing PDE model

and the IBM studied in this thesis leads to the formation of splitting and merging groups.

Splitting and merging behaviour is not observed in the PDE model described in Chapter 2

or the new IBM model described in Chapter 3.

In Section 4.2, we review the incorporation of density-dependent speed in to the PDE

model as in [10] and [17]. In Section 4.3, we present a modification of the IBM with direction-

dependent communication mechanism that includes density-dependent speeds. Patterns pro-

duced by the IBM with direction-dependent communication and density-dependent speeds

do not exactly match those of the PDE model presented in [10]; however, density-dependent

speeds in the IBM lead to aggregations that split and merge. In Section 4.4, we modify

the IBM to use exponential-type kernels and present a comparison of the IBM with density-

dependent speed to the results from [17].
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4.2 Density-Dependent Speed in the PDE model

In [10] and [17], density-dependent speed is added to the PDE model from Chapter 2. This

addition is biologically motivated by the simple fact that animals do not always move with a

constant speed, but rather speed up or slow down in response to conspecifics. To incorporate

density-dependent speed into the the PDE model from Chapter 2, the PDEs are modified:

u+(x, t)t +
(
Γ+u+(x, t)

)
x

= −λ+u+(x, t) + λ−u−(x, t),

u−(x, t)t −
(
Γ−u−(x, t)

)
x

= +λ+u+(x, t)− λ−u−(x, t),

u±(x, 0) = u±0 (x), (4.1)

where Γ± are the density-dependent speeds. The density-dependent speed is assumed to

be a positive, bounded, and increasing function of the perceived signals. That is, the speed

depends on the communication signals from conspecifics in the attractive and repulsion zones.

Biologically, this corresponds to the individuals speeding up to join a larger group in their

attraction zone, or slowing down to avoid collision with those in front of them. In [10], the

non-local speeds are Γ±(y±) = γ (1 + tanh(y±a − y±r )). Using the communication mechanisms

described by submodel M1 (see Chapters 2 and 3), the density-dependent speeds are defined

in [10]:

Γ+(y+) = γ

(
1 + tanh

(
qa

∫ ∞
0

Ka(s) (u(x+ s)− u(x− s)) ds

− qr
∫ ∞

0

Kr(s) (u(x+ s)− u(x− s)) ds
))

,

Γ−(y−) = γ

(
1 + tanh

(
−qa

∫ ∞
0

Ka(s) (u(x+ s)− u(x− s)) ds

+ qr

∫ ∞
0

Kr(s) (u(x+ s)− u(x− s)) ds
))

. (4.2)

Here, u(x, t) = u+(x, t) + u−(x, t) is the total density (t-dependence omitted above for

brevity), and qa and qr are the magnitude of attraction and repulsion signals. As before, γ

is a constant baseline speed with which individuals move in the absence of attractive and

repulsive interactions, and Kj(s), j = r, al, a describe the translated Gaussian kernels (2.4).

The initial investigation in [10] considered two cases:

Case (a): where individuals turn only in response to conspecifics in the zone of alignment;
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Pattern Submodel λ1 λ2 qr qal qa

(a) Stationary Pulses M1 0.2 0.9 0.1 0 0.5
(b) Stationary Pulses M1 0.2 0.9 0.1 2 0.7
(c) Stationary Pulses M1 0.2 0.9 0.1 2 0.3
(d) Splitting and Merging Groups M1 0.2 0.9 0.05 3.5 0.2
(e) Irregular Splitting and Merging M1 0.2 0.9 0.5 0 0.1
(f) Diagonal Grid M1 0.2 0.9 0.1 0 0.1

Table 4.1: Sample parameter values for patterns produced by the PDE model with density-
dependent speed.

Case (b): where individuals turn in response to individuals in all social interaction zones.

Numerical simulations were performed in [10], and these results are summarized here. The

numerical simulations revealed no qualitative differences between the behaviour of the model

in case (a) or case (b). Consequently, patterns from case (a) are presented in [10], and this

is the work that is summarized in this section. As in Chapter 2, many parameters are fixed

for numerical simulation, in particular, the domain size, L = 10, the location of the social

interaction ranges, sr = 0.25, sal = 0.5, sa = 1, the baseline speed γ = 0.1, and the width

of the interaction kernels mj =
sj
8

. Figure 4.1 and Table 4.1 describe example patterns

formed by the PDE model. Figure 4.1(a), (b), (c) show stationary pulses. The stationary

pulses in Figure 4.1(a) results from large values of attraction, but without alignment. As

attraction increases, the groups become more compact in Figure 4.1(b). For smaller values of

attraction, the patterns become stationary, as in Figure 4.1(c), or form groups that split and

merge, as in Figure 4.1(d). An irregular splitting and merging pattern forms when repulsion

is larger than attraction in the absence of alignment, as in Figure 4.1(e). Finally, when

repulsion and attraction are of similar magnitude, a grid-like pattern is formed by groups

of individuals passing through each other. The patterns formed by the PDE model with

density-dependent speed tend to be more transient than patterns formed in the PDE model

without density-dependent speed. In [10], additional transient patterns are discussed. For

some cases, these transient patterns evolve into more stable patterns, namely splitting and

merging groups.

In [17], the PDE model with density-dependent speed is analyzed and simulated numer-

ically. This analysis examines the solutions to (4.1) after modifying the social interaction

kernels. The biological motivation for the study is to examine those cases where species form

very dense groups or clusters, and the authors seek conditions for dispersive aggregations,
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Figure 4.1: Examples of patterns produced by the PDE model with density-dependent speed.
Boundary conditions are periodic, and parameters listed in Table 4.1. Figure from [10].
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finite-size groups, and blow-up patterns. Solutions to the PDE that exhibit blow-up cor-

respond to those biological aggregations that collapse to a very high-density group. These

high-density groups are observed in some insect swarms and in some schools of fish. Very

dense patterns appear in schools of fish when under the threat of predation. The PDE

model or IBM in Chapter 2 and 3 does not exhibit blow-up behaviour in the parameter

space explored.

The social interaction kernels in the PDE model or IBM, (2.4), assume that when individ-

uals are very close together, the repulsion force is very weak (see Section 3.4). On the other

hand, the PDE model with density-dependent speed assumes that the attraction and repul-

sion social interactions are discontinuous at the origin, accounting for the strong repulsive

interactions which should act over short distances. That is, the kernel for density-dependent

speed is chosen to be

K(x) = sgn(x) (−qaKa(x) + qrKr(x)) , (4.3)

where qr and qa represent the magnitudes of the repulsion and attraction forces, respectively,

and

Kj(x) = e
− |x|

sj , (4.4)

where sr and sa represent the widths of the repulsion and attraction zones, respectively. The

alignment kernel is chosen as before, as in (2.4). The social interaction kernels are depicted

in Figure 4.2. The turning rates also remain unchanged.

In [17], analytical results regarding the local existence and uniqueness of solutions to

(4.1) demonstrate that the model does not develop shock solutions, but rather that solutions

either exist globally in time or exhibit finite-time amplitude blow-up. The behaviour of the

solution depends on the relative magnitudes of repulsion and attraction, with finite-time

amplitude blow-up corresponding to those groups which collapse to a very dense cluster.

Equation (4.1) was analyzed and numerically simulated in two cases in [17]. The first case is

with repulsion stronger than attraction (qr > qa), and second with attraction stronger than

repulsion (qa > qr). In the first case, qr > qa, blow-up solutions are not possible; however,

in the second case, when qa < qr, the amplitude of the solution may blow up in finite time.

This is consistent with the biological interpretation of qr and qa. That is, if the attraction

force is sufficiently stronger than repulsion, individuals will forego their “personal space”

and allow neighbours at close distances. Moreover, the random turning rate, λ1, influences

the transition between low and high density aggregations. Numerical simulations of (4.1)

investigate the behaviour of the model in the case when qr > qa or in the case when qr < qa
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Fig. 1 Examples of kernels used for social interactions. These kernels describe how signals from different
distances are weighted. a, b The interaction kernel given by (5). In a repulsion is stronger than attraction
(qa = 0.8, qr = 1), while in b the situation is reversed (qa = 1, qr = 0.8). In both cases, sa = 1, sr = 0.5.
c Translated Gaussian kernel for alignment—see (10), where sal = 1.25 and mal = sal/8. Note that all
these parameter values are used in the numerics section

The alignment terms are given by

y+
al [u+, u−] = qal

∞∫

0

Kal(z)(u−(x + z, t) − u+(x − z, t))dz, (9a)

y−
al [u+, u−] = qal

∞∫

0

Kal(z)(u+(x − z, t) − u−(x + z, t))dz, (9b)

where Kal represents the alignment kernel, defined on (0,∞), and qal measures the
magnitude of the alignment. In this paper, we consider the same alignment kernel Kal
used in Eftimie et al. (2007a), given by a Gaussian function (see Fig. 1c):

Kal(x) = 1√
2πm2

al

exp
(
−(x − sal)

2/(2m2
al)

)
, x ∈ [0,∞). (10)

Here mal = sal/8 represents the width of the alignment kernel, while sal represents
the length of the alignment range. The constant mal is chosen such that the support of
more than 98% of the mass of the kernel is inside the interval [0,∞).

123

Figure 4.2: Social interaction kernels in the PDE model with density-dependent speed. These
kernels are more realistic than translated Gaussian kernels, as short-range repulsion is very
strong. (a) K(x) from (4.3), with repulsion stronger than attraction, qr > qa; (b) K(x) from
(4.3), with attraction stronger than repulsion, qr < qa; (c) Kal(x) from (2.4) is a translated
Gaussian kernel. Here, sr = 0.5, sal = 1.25, sa = 1, and mal = sal

8
. Figure from [17].
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Pattern λ1 λ2

(a) Right- and left-moving groups 0 0
(b) Spatially homogeneous steady-state 0.2 0.5
(c) Spatially homogeneous steady-state 1 0.5
(d) Compact stationary aggregation 10 0.5

Table 4.2: Parameter values for patterns when qr > qa (PDE model). Patterns are shown
in Figure 4.3. Submodel M1 is used throughout and the fixed parameters are qr = 1, qal =
1, qa = 0.8, sr = 0.5, sal = 1.25, sa = 1 and γ = 1.

by varying the turning rates λ1 and λ2.

In the first case, when qr > qa, and using parameter values as summarized in Table 4.2, the

patterns observed are dispersive aggregations that approach two moving compact groups or

spatially homogenous steady states, or stationary finite-size aggregations, as shown in Figure

4.3. Initial conditions for the simulations are a Gaussian distribution, as shown in Figure 4.3.

In the absence of turning, individuals do not change direction, and the right- and left-moving

individuals form moving aggregations. Increasing the random turning rate with respect to

the bias turning rate results in the solution settling to a spatially homogeneous steady

state. As the random turning rate is increased further, the solution approaches the spatially

homogenous steady state but without any directed left- or right-ward movement. Finally, as

the random turning rate becomes much larger than the bias turning rate, the aggregation

becomes stationary and compact. This corresponds to the stationary aggregations found in

nature, where individuals exhibit a large degree of random turning, like some insect swarms.

This investigation reveals the influence of the random turning rate, λ1, on the looseness of

an aggregation.

In the second case, when qa > qr, and using parameter values as summarized in Table

4.3, the patterns observed are blow-up patterns and a spatially homogenous steady state, as

shown in Figure 4.4. Note that qr is varied; this is to ensure a blow-up condition from [17]

is satisfied. Initial conditions for the simulations are again Gaussian distributions. In the

absence of turning, strong attraction leads to blow-up. When turning is only random and

does not depend on social interactions (λ1 6= 0 and λ2 = 0), moving blow-up forms. When

random turning and bias turning are both included, the aggregation becomes stationary. The

density of this aggregation depends on the magnitude of the random turning rate, λ1. The

stationary aggregation becomes denser as λ1 is increased. Another feature of the solutions

in this case is the higher density at the group edges, as in Figure 4.4(c) and Figure 4.4(d).
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Fig. 2 Examples of patterns displayed by system (2), when qr > qa . All cases show finite-size patterns.
The parameter values are as follows: a a = 0, b = 0 (zero turning rates); b a = 0.2, b = 0.5; c a = 1,
b = 0.5; d a = 10, b = 0.5. In all cases, a–d, the rest of the parameters are: qa = 0.8, qr = 1, qal = 1,
sa = 1, sr = 0.5, sal = 1.25, x0 = 2 and γ = 1

respectively. However, the amplitude of the two profiles decreases in this case. Due to
conservation of the total mass, the two diminishing bumps stay connected by a curve
that straightens up, and the solution eventually settles into a constant spatially homo-
geneous steady state. When we increase a to 1 (see Fig. 2c), we notice that the turning
rates are large enough to hold the left-moving and right-moving individuals together.
However, the group as a whole will disperse as the profiles decrease in a stationary
fashion to a spatially homogeneous steady state. Finally, a large increase in the turning
rate has a major effect on the qualitative behaviour of the solution. Namely, by making
a = 10 (see Fig. 2d), we obtain spatially non-homogeneous steady states, similar to
the ones presented below, when attraction dominates repulsion. The finite-size station-
ary aggregations obtained when the turning rates are mainly random (a > b) are in
agreement with observations in nature, where many insect swarms (e.g., mosquito and
midges swarms) are stationary or quasi-stationary, with individuals executing rapid
random turnings (Downes 1969; Okubo and Chang 1974).

To summarize, the patterns observed when qr > qa are: (1) dispersive aggregations
approaching two moving compactly supported clumps, or a spatially homogeneous
steady states, and (2) stationary finite-size aggregations. Of course, our parameter
domain is very large, and it is very reasonable to expect other patterns as well. We
intend to make more extensive numerical investigations of this model in future work.

123

Figure 4.3: Patterns formed in the PDE model when repulsion is stronger than attraction,
qr > qa. Parameter values in Table 4.2. (a) right- and left-moving groups form in the
absence of turning; (b) the aggregation tends to a spatially homogenous steady state with
directed left- and right-moving groups; (c) the aggregation tends to a spatially homogenous
steady state without left- and right- moving groups; (d) the aggregation becomes compact
and stationary. Figure from [17].
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Pattern λ1 λ2 qr

(a) Blow-up 0 0 0.5
(b) Right- and left-moving blow-up 0.2 0 0.8
(c) Stationary aggregation 1 0.5 0.8
(d) Compact stationary aggregation 10 0.5 0.8

Table 4.3: Parameter values for patterns when qa > qr (PDE model). Patterns are shown
in Figure 4.4. Submodel M1 is used throughout and the fixed parameters are qal = 1, qa =
1, sr = 0.5, sal = 1.25, sa = 1 and γ = 1.

This results from individuals turning around to remain in the group, and is consistent with

observations in empirical studies and other models [17].

Including of density-dependent speed in the PDE model and modifying the social in-

teraction kernels to be of exponential type explains some animal behaviour patterns. In

particular, the model is able to explain the dispersion of an aggregation, the long-time exis-

tence of groups, and blow-up patterns. These patterns correspond to observed behaviours,

such as foraging, grouping behaviours, and collapse of some schools of fish to tight groups,

respectively. The turning rates impact the behaviour of solutions, with large random turning

rates leading to dense stationary aggregations.

4.3 Density-Dependent Speed in the IBM

In this section, we modify the IBM presented in Chapter 3 to include density-dependent

speed interactions. As before, individual social interactions are divided into three groups:

repulsion, alignment, and attraction. Following Section 4.2, we initially consider only align-

ment interactions in an individual’s turning rates, and allow individuals to adjust their speed

as a result of repulsive and attractive interactions. Subsequently, we investigate more general

turning rates which are a function of all three social interactions.

The IBM consists of a population of N individuals moving on a one-dimensional domain

with periodic boundary conditions. Here, individual i has position xi(t) and direction vi(t)

at time t, where xi(t) ∈ R and vi(t) = ±1. Recall that the social interaction forces felt

by individual i are denoted y±j,i, j = r, al, a, where ± indicates the individual’s direction,

and j = r, al, a denotes repulsion (r), alignment (al), or attraction (a). A right-moving and

left-moving individual i changes direction with rate λ+
i or λ−i , respectively, dependent on the

50



566 R. C. Fetecau, R. Eftimie

(a)

5 5.5 6 6.5 7
0

20

40

60

80

100

 x−axis

 u
(x

,t)

t =0
t =1
t =1.05
t =1.07

(b)

5 5.5 6 6.5 7
0

20

40

60

80

100

120

 x−axis

 u
(x

,t)

t =0

t =2

t =2.15

t =2.2325

(c)

5 5.5 6 6.5 7
0

2

4

6

8

10

12

 x−axis

 u
(x

,t)

t = 0
t = 5
t = 45
t = 60

(d)

5 5.5 6 6.5 7
0
6
12
18
24
30
36
42
48
54
60

 x−axis

 u
(x

,t)

t = 0
t = 2.5
t = 20
t = 40

Fig. 3 Examples of patterns displayed by system (2), when qr < qa . Case a shows the blow-up pattern
obtained when condition (35) holds. Cases b–d show the finite-size or blow-up patterns obtained when
condition (35) does not hold. The parameter values are as follows: a a = 0, b = 0, qa = 1, qr = 0.5,
qal = 1, sa = 1, sr = 0.5, sal = 1.25, γ = 1, x0 = 2; b a = 0.2, b = 0; c a = 1, b = 0.5;
d a = 10, b = 0.5. In cases b–d, all parameters except a and b are the same: qa = 1, qr = 0.8, qal = 1,
sa = 1, sr = 0.5, sal = 1.25, γ = 1, x0 = 2

well defined, with the density outside the group being essentially zero. The densities
u+ and u− are greater at the leading edges, due to individuals turning around to return
to the group. The formation of biological aggregations with sharp edges has been pre-
viously reported in both empirical studies (Uvarov 1966; Bumann and Krause 1993)
and numerical simulations of various mathematical models (Topaz et al. 2006; Topaz
and Bertozzi 2004).

Other numerical experiments We investigated the role of the initial group density on
group patterns, by increasing the amplitude A in the initial condition (34) from A = 1
to A = 5. We noted the following differences compared to the case A = 1. When
qr > qa and the values of the parameters are the same as in Fig. 2b and c, we no
longer observe dispersal to a constant spatially homogeneous steady state. Because
of the large initial group density, the interactions between group members are much
stronger. In this case, repulsion is not enough to disperse the group. On the contrary,
the group becomes even tighter, with the magnitude of the total density approaching
53.02 (when the parameters are as in Fig. 2b) or 56.28 (when the parameters are as
in Fig. 2c). Note that for zero turning rates (a = b = 0), the increase in the initial

123

Figure 4.4: Patterns formed in the PDE model when attraction is stronger than repulsion,
qr < qa. Parameter values in Table 4.3. (a) stationary blow-up (b) moving blow-up; (c)
stationary aggregation; (d) very dense stationary aggregation. Figure from [17].
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social interaction forces:

λ±i = λ1 + λ2f(y±al,i), (4.5)

where λ1 and λ2 describe the base-line and bias turning rate, respectively. The turning

function f is chosen as before, (3.2), to be a logistic function. Here, the social interaction

forces, y±r,i, y
±
al,i and y±a,i, are chosen to be the social interactions from submodel M1. The

exact definitions of the social interactions are can be found in Section 3.2, equations (3.5),

(3.7), and (3.6).

Individuals adjust their speed by comparing individuals in the attraction and repulsion

zones. It is biologically reasonable for social individuals to speed up to join distant groups,

or to slow down to avoid collision with nearby individuals. Motivated thus, we let individuals

move with speed Γ±i (y±i ), where

Γ±i (y±i ) = γ
(
1 + tanh(y±i )

)
, (4.6)

γ = 0.1 is a base-line movement speed, and y±i = y±a,i − y±r,i compares the attraction and

repulsion social interaction forces. To understand how the non-local speeds depend on indi-

viduals in the repulsion and attraction interaction zones, consider a right-moving individual

i at x. For the sake of example, ignore conspecifics to the left of the individual. If y+
a,i > y+

r,i,

then this individual senses a large number of individuals in its zone of attraction relative

to the number of individuals in its zone of repulsion. Consequently, the individual will be

motivated to speed up and join the distant group. This results in the speed of individual i to

increase since Γ+
i (y+

i ) is an increasing function. Thus, the individual increases its speed to

join the distant group of individuals. On the other hand, if y+
a,i < y+

r,i, the individual would

be motivated to slow down to avoid collision. This is reflected in (4.6). To incorporate

this density-dependent speed into the IBM, the position and velocity updating rule, (3.3), is

modified and becomes

xi(t+ ∆t) = xi(t) + Γ±i (y±i )vi(t)∆t,

vi(t+ ∆t) =

−vi(t), if λ±i ∆t ≥ X,

vi(t), otherwise,
(4.7)

where X is a uniformly distributed random variable on [0, 1]. To ensure that the individuals

do not erroneously respond to conspecifics, we use a time-splitting approach. In the first

half-time step, individuals respond to conspecifics by changing direction. In the second half-
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step, individuals re-calculate the social interaction forces, y±i , with their new velocity, and

then update their speed.

The IBM with density-dependent speed was numerically simulated to not only under-

stand the behaviour of the model but also in an attempt to match those patterns formed

by the PDE model with density-dependent speed as in Figure 4.1. To this end, the same

parameter space as explored in Section 4.2 was used to numerically simulate the IBM. More-

over, the patterns presented in Figure 4.1 are produced in the case that the turning rates

only depend on alignment forces and not repulsion or attraction. That is, for the initial

numerical investigation, the turning rates are

λ±i = λ1 + λ2f(y±al,i), (4.8)

Although the same parameter space is used, we do not expect the patterns to match exactly

due to the stochasticity in the IBM and how density-dependent speed is incorporated into

the advection term of the PDE, (4.1). Stochasticity results in noisier patterns in the IBM

than in the PDE model, as seen in the patterns presented in Figure 3.2. Density-dependent

speed is incorporated inside the spatial derivative in (4.1), for instance:

∂u+

∂t
+

∂

∂x

(
Γ+(y+)u+

)
. (4.9)

This construction describes the flux of the population density, whereas the IBM describes

the speed at which each individual moves at:

xi(t+ ∆t) = xi(t) + Γ±i (y±i )vi(t)∆t. (4.10)

Nonetheless, the IBM is able to reproduce the qualitative behaviour of the PDE in the same

parameter space.

The patterns produced by the IBM with density-dependent speed are shown in Figure 4.5,

and density plots of these patterns are presented in Figure 4.6. The patterns and parameters

are given in Table 4.4. Several parameters are fixed. In particular, the domain size, L = 10,

the location of the social interaction ranges, sr = 0.25, sal = 0.5, sa = 1, the baseline speed

γ = 0.1, and the width of the interaction kernels mj =
sj
8

are fixed.

Stationary aggregations and groups that split and merge are examples of patterns formed.

Splitting and merging behaviour is a new pattern which is not observed in either the PDE

model or IBM with constant movement speed. In Figure 4.5(a), (b), and (c), three examples
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Pattern Submodel λ1 λ2 qr qal qa

(a) Stationary Pulses M1 0.2 0.9 0.1 0 0.5
(b) Stationary Pulses M1 0.2 0.9 0.1 2 0.7
(c) Stationary Pulses M1 0.2 0.9 0.1 2 0.3
(d) Splitting and Merging Groups M1 0.2 0.9 0.1 3.5 0.2
(e) Irregular Splitting and Merging M1 0.2 0.9 0.5 0 0.1
(f) Diagonal Grid M1 0.2 0.9 0.1 0 0.1

Table 4.4: Example parameter values for patterns produced by the IBM model with density-
dependent speed. In this study, the fixed model parameters are N = 500, L = 10, and
∆t = 0.05.

stationary pulses are shown. These pulses can be of a variety of sizes. In the absence of

alignment, qal = 0, individuals only turn randomly and respond to neighbours only through

density-dependent speed. This results in stationary pulses as in Figure 4.5(a). When align-

ment is included, the size of the pulses depends on the magnitude of attraction. For relatively

large attraction, the pulses are dense (Figure 4.5(b)) and for relatively small attraction, the

pulses remain large (Figure 4.5(c)). The behaviour of the IBM and PDE model match well

in these cases.

Figure 4.5(d) appears to be an aggregation without order or patterning; however, the

corresponding density plot in Figure 4.6(d) shows a high-density aggregation splitting and

merging. The density plot for the pattern in Figure 4.6(e) is not particularly revealing of

pattern formation or group behaviour, but the plot of the individuals’ trajectories in Figure

4.5(e) reveals small groups that split apart and merge with other small groups repeatedly.

This behaviour is shown in detail in Figure 4.7. A diagonal grid pattern forms in the plot of

the individual trajectories, Figure 4.5(f); however, the corresponding density plot in Figure

4.6(f) reveals some level of grouping with an expansion and contraction similar the breather

pattern as observed in the PDE model and IBM without density-dependent speed.

The IBM with density-dependent speed generally reproduces the patterns produced by

the PDE model. In Figure 4.1(d), the spitting and merging behaviour appears to consist of

very well-defined groups that travel throughout the domain. Using the same parameters in

the IBM the splitting and merging behaviour is not immediately apparent in Figure 4.5(d).

Instead, we find many individuals outside these main aggregations. Upon closer investigation,

this is also the case with the PDE model, as in Figure 4.1(d) a non-zero density outside of

the main aggregations is observed.

The initial numerical investigation of the behaviour of the IBM considered the turning
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rates λ±i to be a function of the alignment interaction force, see (4.8). Attraction and

repulsion were excluded from the turning as this is how the PDE model was investigated

in [10]. Nonetheless, using all social interactions for the turning rates as in (4.5) does not

qualitatively change pattern formation using the parameters in Table 4.4.

By relaxing the restriction on using the social interaction forces from submodel M1,

we introduce alternate communication mechanisms to the density-dependent speed model.

Using the parameters that produce the patterns using the IBM with constant movement

speed as presented in Figure 3.2, we investigated the behaviour of the IBM with density-

dependent speed. Although the constant speed and density-dependent speed models are

fundamentally different, it would not be unexpected if the density-dependent speed model

also produced a wide variety of patterns. A numerical investigation reveals a smaller array

of patterns. The patterns formed consist of groups that are typically more stationary, and

may exhibit some traveling or meandering behaviour. The wide variety of patterns similar

to those obtained in Figure 3.2 may result from the IBM with density-dependent speed,

however, a much larger parameter space exploration would be required.

Splitting and merging groups are a new feature of both the PDE model and IBM with

density-dependent speed and direction-dependent communication mechanisms. Interestingly,

splitting and merging groups can result from either the inclusion or exclusion of alignment.

This is revealed by the numerical investigation of the IBM with density-dependent speed.

Splitting and merging groups are observed when qal = 3.5, and irregular splitting and merging

behaviour is also observed when qal = 0 (see Table 4.4(d) and (e)). The turning rates in the

investigation that produces the splitting and merging patterns and the irregular splitting

and merging patterns depend only on alignment. Since splitting and merging behaviours

result with and without alignment, we conclude that density-dependent speed, not direction-

dependent communication, is responsible for splitting and merging behaviours.

4.4 Density-Dependent Speed and Exponential Ker-

nels

In this section, the IBM is adapted to incorporate exponential-type kernels as in [17]. In

Section 4.2, the motivation of the study in [17] was summarized. The main idea is to look

for conditions for the dispersal of aggregations, the formation of groups, or exhibit blow-up

behaviour. In the context of an individual-based model, blow-up behaviour corresponds to

a very dense group interacting over a small area, that is, a very high-density group. These
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(a) Stationary pulses (b) Stationary pulses

(c) Stationary pulses (d) Split and merge

(e) Irregular split and merge (f) Diagonal grid

Figure 4.5: Examples of patterns obtained by the IBM with various communication mecha-
nisms and density-dependent speed. Parameters and communication mechanism (submodel)
are listed in Table 4.4, and boundary conditions are periodic.
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(a) Stationary pulses (b) Stationary pulses

(c) Stationary pulses (d) Split and merge

(e) Irregular split and merge (f) Diagonal grid

Figure 4.6: Density plots of examples of patterns obtained by the IBM with various commu-
nication mechanisms and density-dependent speed. Parameters and communication mecha-
nism (submodel) are listed in Table 4.4, and boundary conditions are periodic.
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Figure 4.7: Splitting and merging behaviour in the IBM with density-dependent speed.
Magnifying a section of Figure 4.6(e) reveals small groups of individuals merging and splitting
over time.

very high-density groups can be viewed to be analogous to some schools of fish or swarms

of insects that form tightly-packed clusters. The major modification is to incorporate social

interaction kernels that better model the repulsion force. The translated Gaussian kernels,

(2.4), assume that when individuals are very close together the repulsion force is very weak,

whereas it should be strongest. The kernel for density-dependent speed is chosen to be

K(x) = sgn(x)(−qaKa(x) + qrKr(x)), (4.11)

where qr and qa are magnitudes of the repulsion and attraction forces, and

Kj(x) = e
− |x|

sj , (4.12)

where sr and sa represent the widths of the repulsion and attraction zones. The movement

speed is assumed to only be a function of the repulsion and attractive interactions, and the

turning rates only a function of the alignment social interaction force. The translated Gaus-

sian alignment kernel remains suitable. This choice of social interaction kernel is sketched

in Figure 4.2.

Numerical simulations of the IBM with density-dependent speed and exponential-type

kernels consider two cases, as in the investigation of the PDE model. We use the same
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Pattern λ1 λ2

(a) Right- and left-moving groups 0 0
(b) Stationary aggregation 0.2 0
(c) Compact stationary aggregation 1 0.5
(d) High-density stationary aggregation 10 0.5

Table 4.5: Parameter values for patterns when qa < qr (IBM model). Patterns are shown in
Figure 4.8 and in Figure 4.9. Submodel M1 is used throughout and the fixed parameters are
qr = 1, qal = 1, qa = 0.8, sr = 0.5, sal = 1.25, sa = 1 and γ = 1.

Pattern λ1 λ2

(a) Right- and left-moving groups 0 0
(b) Dispersive aggregation 0.2 0
(c) Compact stationary aggregation 1 0.5
(d) High-density stationary aggregation 10 0.5

Table 4.6: Parameter values for patterns when qa > qr (IBM model). Patterns are shown in
Figure 4.10 and in Figure 4.11. Submodel M1 is used throughout and the fixed parameters
are qr = 0.8, qal = 1, qa = 1, sr = 0.5, sal = 1.25, sa = 1 and γ = 1.

parameters as in [17] and in Section 4.2 to compare the PDE model and IBM behaviours.

In [17], the authors seek conditions which lead to the formation of blow-up patterns, finite-size

groups, and dispersive aggregations. In the first case, repulsion is stronger than attraction,

qr > qa, and blow-up patterns are not expected. Thus, we investigate the effect of varying the

turning rates on the group structure. Conversely, when attraction is stronger than repulsion,

qr < qa, blow-up solutions are possible, and again, we investigate the effect of varying the

turning rates on the group structure.

Parameters for the investigation of the IBM in the case qr > qa, and in the case qr < qa,

can be found in Table 4.5 and Table 4.6, respectively. As we will see below, patterns obtained

in the case when qr > qa are moving groups, stationary aggregations, and high-density

stationary groups. When qr < qa, not only are moving groups and stationary aggregations

found but dispersive aggregations as well. The turning rates have an impact on the structure

of the group in both cases.

When repulsion is stronger than attraction, qr > qa, we fix qr = 1, qal = 1, qa = 0.8,

sr = 0.5, sal = 1.25, sa = 1 and γ = 1. The initial conditions for this investigation are

again a small translated Gaussian, with N = 500 individuals, chosen to investigate the

dispersal or collapse of a group to a very dense cluster. Pattern formation is presented in
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two ways. Firstly, plots of individual trajectories are shown in Figure 4.8, and the estimated

probability density is shown in Figure 4.9, to better compare with Figure 4.3 and Figure 4.4.

The estimated probability density plots are produced via a kernel smoothing method. The

method used is the MATLAB subroutine, ksdensity, which computes a probability density

estimate from a sample [3].

In Figure 4.8(a), λ1 = λ2 = 0, so individuals do not change direction. Here, although

repulsion is stronger than attraction, two groups form, one of right-moving individuals and

the other of left-moving individuals. This can be seen in Figure 4.9(a). In Figure 4.8(b)

and Figure 4.9, λ1 = 0.2 and λ2 = 0. In this case, the nonzero random turning rate is

sufficient to stop the formation of a right- and left-moving group, and instead results in a

loose stationary aggregation. The last two cases look at the effect of including turning in

response to neighbours, that is, λ2 6= 0. In Figure 4.8(c) and Figure 4.9(c), λ1 = 1 and

λ2 = 0.5, resulting in a stationary aggregation. Finally, in Figure 4.8(d) and Figure 4.9(d),

λ1 = 10 and λ2 = 0.5 resulting a high-density stationary aggregation. The large value

of λ1 = 10 in (d) leads to a very dense aggregation as individuals change direction with

a very high probability. The stationary groups obtained using parameters in (b) and (c)

differ from the patterns obtained with the PDE model (Figure 4.3(b) and (c)). In the PDE

model, parameters in (b) and (c) lead to spatially homogenous steady-states, i.e., dispersive

aggregations. In the IBM, parameters in case (b) and (c) lead to compact stationary groups;

however, the group in (b) tends to be more dispersive.

When attraction is stronger than repulsion, qa > qr, we fix parameters are qr = 0.8, qal =

1, qa = 1, sr = 0.5, sal = 1.25, s1 = 1, and γ = 1. The initial conditions for this investigation

are again chosen to be a small translated Gaussian, with N = 500 individuals, chosen to

investigate the dispersal or collapse of a group to a very dense cluster. As in the case when

qr < qa, the results of the numerical simulations are presented in two ways: the individual

trajectories are plotted in Figure 4.10, and an estimated probability density is plotted in

Figure 4.11.

In Figure 4.10(a) and Figure 4.11(a), the turning rates are zero, λ1 = λ2 = 0, and the

aggregation splits into a right- and left-moving group. Non-zero random turning rates lead

to a dispersive group, as seen in Figure 4.10(b) and Figure 4.11(b). Stationary groups form

in Figure 4.10(c) and (d) (see also Figure 4.11(c) and (d)), with λ1 = 1 and λ2 = 0.5 in (c),

and λ1 = 10 and λ2 = 0.5 in (d). In this case, pattern formation matches the PDE model

reasonably well, except in case (a) and (b). In case (a), the PDE model exhibits blow-up

solutions, and right- and left- moving groups form in the IBM. In case (b), right- and left-
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moving blow-up is exhibited in the PDE model; however, a dispersive aggregation forms in

the IBM.

4.5 Discussion

In the first part of this Chapter, we reviewed how density-dependent speed was incorporated

into the PDE model with direction-dependent communication mechanisms in [10, 17]. This

material was reviewed to provide background for the second part of this Chapter, namely

incorporating density-dependent speed into the new IBM with direction-dependent commu-

nication mechanisms.

Motivated by the biological fact that individuals in a group do not travel at a con-

stant speed, and the splitting and merging behaviour described in [20], density-dependent

speed is incorporated into the PDE model with direction-dependent communication mech-

anisms in [10, 17]. In [10], density-dependent speed is assumed to be a function of the

difference between attractive and repulsive social interactions, and the turning rates depen-

dent only on the alignment interactions. Numerical simulations reveal that the patterns

formed with density-dependent speed included are mostly stationary pulses and groups that

split and merge. Splitting and merging groups form when alignment is included and ex-

cluded, demonstrating the importance of density-dependent movement speeds for splitting

and merging behaviours. Additional analysis of the PDE model with density-dependent

speed is presented in [17]. Here, the repulsion and attraction social interaction kernels are

modified to be of exponential type, i.e., Laplace distributions. This modification attempts

to address the shortfall that translated Gaussian kernels do not sufficiently weight very close

range repulsion. This investigation is placed in the biological context of aggregations that

remain stationary, disperse, or collapse to a high-density cluster, and so blow-ups and steady

state solutions are sought. These patterns are investigated through two cases. Case one is

when repulsion is stronger than attraction, and case two is when attraction is stronger than

repulsion. Initial conditions for analysis are groups with Gaussian density, and this group

remains stationary, moves, disperses or collapses to a high-density group depending on the

turning rates λ1 and λ2.

In Section 4.3, density-dependent speed is introduced into the IBM with direction-

dependent communication. The turning rates are assumed to depend only on the alignment

interaction force and the density-dependent speed on the difference between the attraction

and repulsion forces, as in the PDE model. Numerical simulations of the IBM reveal a
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(a) λ1 = λ2 = 0 (b) λ1 = 0.2 and λ2 = 0.

(c) λ1 = 1 and λ2 = 0.5. (d) λ1 = 10 and λ2 = 0.5.

Figure 4.8: Patterns formed in the IBM model when repulsion is stronger than attraction.
The effect of changing the base-line (random) turning rates, λ1, and the bias turning rate,
λ2, is investigated. Parameters are listed in Table 4.5. In (a), the absence of turning rates
lead to compact left- and right-moving groups. In (b), small random turning leads to a
stationary aggregation. In (c), a small random turning rate and a small bias turning rate
leads to a compact stationary aggregation, and in (d), a large random turning rate leads to
a high-density stationary aggregation.
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(a) λ1 = λ2 = 0 (b) λ1 = 0.2 and λ2 = 0.

(c) λ1 = 1 and λ2 = 0.5. (d) λ1 = 10 and λ2 = 0.5

Figure 4.9: Estimated probability density corresponding to the trajectories shown in Figure
4.8. In (a), the initial group turns into a right-moving and left-moving group. In (b), (c),
and (d), the group becomes compact and remains stationary. The group in (b) does not
becomes as compact as in (c) or (d) and become more dispersive as time progresses.
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(a) λ1 = λ2 = 0 (b) λ1 = 0.2 and λ2 = 0

(c) λ1 = 1 and λ2 = 0.5 (d) λ1 = 10 and λ2 = 0.5

Figure 4.10: Patterns formed in the IBM model when attraction is stronger than repulsion.
The effect of changing the base-line (random) turning rates, λ1, and the bias turning rate,
λ2, is investigated. Parameters are listed in Table 4.6. In (a), the absence of turning rates
lead to compact left- and right-moving groups. In (b), small random turning leads to a
dispersive aggregation. In (c), a small random turning rate and a small bias turning rate
leads to a compact stationary aggregation, and in (d), a large random turning rate leads to
a high-density stationary aggregation.
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(a) λ1 = λ2 = 0 (b) λ1 = 0.2 and λ2 = 0

(c) λ1 = 1 and λ2 = 0.5 (d) λ1 = 10 and λ2 = 0.5

Figure 4.11: Estimated probability density corresponding to the trajectories shown in Figure
4.10. In (a), the initial group splits into a right-moving group and left-moving group. In (b),
the group disperses. In (c) and (d), the group becomes compact and remains stationary.
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qualitative match to the behaviour of the PDE model with density-dependent speed. This

demonstrates that the splitting and merging behaviour is again a result of the incorporation

of density-dependent speed. The numerical simulations also reveal the nature of how indi-

viduals behave with respect to density-dependent speed. Comparing the stationary pulses

in Figure 4.5(a), for example, with those stationary pulses in Figure 3.2(a) reveals that

without density-dependent speed, individuals near the edge of the group may escape due to

repulsion only to later turn and rejoin the group due to attraction. However, with density-

dependent speed, individuals near the edge of the group do not escape the pulse, but rather

form a well-defined edge. If an individual nears the edge, they tend to be moving slowly,

and at some point will change direction and speed up to return to the dense group centre.

Splitting and merging behaviour is not seen in the IBM without density-dependent speed,

again alluding to the importance of density-dependent movement speeds. Interestingly, when

density-dependent speed is combined with a wide variety of direction-dependent communi-

cation mechanisms, the patterns obtained with constant speed, as in Figure 3.2, do not form

using the same parameters. Instead, the patterns that form are typically stationary or may

be slowly traveling groups, with qualitatively less direction-switching. This suggests that

group formation and group dispersal may rely on speeding and slowing behaviours resulting

from density-dependent speed mechanisms, whereas detailed pattern formation may rely on

direction-switching mechanisms resulting from non-local communication mechanisms.

The IBM with modified repulsion and attraction kernels of exponential type, studied in

Section 4.4, does not match the behaviour of the PDE model with modified social interaction

kernels across parameter regimes quantitatively. Nonetheless, the two models behaviour

matches in the types of patterns obtained: dispersive aggregations, moving groups, and very

dense stationary aggregations. The turning rates, λ1 and λ2 influence pattern formation in

either case: qa < qr or qr < qa. Even when attraction is weaker than repulsion, high random

turning rates, λ1 = 10, for example, result in stationary groups. Paradoxically, in the case

when the turning rates are small and turning does not depend on social interactions, λ1 = 0.2

and λ2 = 0, a loose stationary aggregation forms when qa < qr, while a dispersive aggregation

forms when qr < qa. Intuition dictates that repulsion forces should lead to the dispersion of

the aggregation. Instead, the dispersion in Figure 4.10(b) appears to result from individuals

leaving the traveling high-density groups and subsequently attracted to other escapees.

Previously, the added stochasticity in the IBM was hypothesized to play a role in the

not-so-perfect match of patterns between the two models in the same parameter regimes, and

this may again be the case here. A larger parameter exploration could clarify the behaviour

66



of both the PDE model and IBM. Another hypothesis for the variation is that density-

dependent speed is introduced ad hoc to the IBM. As discussed in Section 4.3 (equation

(4.9)), the density-dependent speed appears within the advection term of the PDE model

(4.1). This construction describes the flux of the population density through space and

does not prescribe the speeds at which individuals move at. The IBM, on the other hand,

describes the speeds at which individuals move, and is not concerned with a spatial change

in population density. A better understanding of the first principles that lead to the non-

local hyperbolic PDE with density-dependent speed and direction-dependent turning rates,

(4.1), may better describe the speeds at which individuals move at. A random walk with

density-dependent speeds and the resulting limiting PDE is studied in [6], and may provide

insight to the nature of density-dependent speeds in the IBM.
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Chapter 5

2-Particle Model with

Communication Mechanisms

5.1 Introduction

In this chapter, we continue to focus on understanding the behaviour of individuals in re-

sponse to social interactions, specifically direction-dependent communication mechanism as

studied in Chapters 2 and 3. The modelling approaches in the previous chapters have been fo-

cused on population-density and group level pattern formation. Studying pattern formation

reveals, for instance, how different direction-dependent communication mechanisms result

in stationary versus moving groups. The disadvantage to studying pattern formation as an

emergent group-level phenomena is that it does not reveal how each individual in the group

responds to others. Understanding interactions and responses on an individual-to-individual

level is equally as important as understanding the collective behaviour. For instance, in [27],

a group of robots without centralized control worked collectively to accomplish a complex

task, which they are unable to complete individually. In this case, the group level task

has priority over the organization of the individuals; however, when thinking of modern

applications, such as a system of driverless cars, the collective task of transport is equally

as important as the car-to-car individual interactions. Focusing on individual-to-individual

interactions allows for a complete understanding of how direction-dependent communication

mechanisms affect collective behaviour.

To study individual-to-individual interactions, we focus on 2-particle models in this Chap-

ter. In Section 5.2, we review an anti-symmetric exclusion process, which was defined by

Potts et al. in [34] and completely solved. This review provides background for introducing
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social interactions to 2-particle systems, as in Section 5.3, and direction-dependent commu-

nication, as in Section 5.4. In Section 5.5, the main ideas from the Eftimie model (Chapter

2 and Chapter 3) are studied in the context of a 2-particle model. Finally, in 5.6, the

significance and limitations of these results are discussed.

5.2 Anti-symmetric Exclusion Process

In this section, we review work from Potts et al. [34], where an anti-symmetric exclusion

process for two particles on an infinite one-dimensional lattice is studied. Potts extends the

work of Aslangul [1], who completely characterized the diffusion of two repulsive particles on

a one-dimensional lattice. Aslangul solves this problem by deriving a master equation and

solving it using elementary methods. Potts follows Aslangul’s construction and methodology;

however, Aslangul only considers unbiased movement while Potts considers a movement bias.

The purpose of this summary is to provide background for including social interactions and

direction-dependent interactions in a 2-particle system.

Exclusion processes are common in applications such as RNA transcription, wireless

networking, and in the case of [34], territorial behaviour in the animal kingdom. The primary

characteristic of exclusion processes is that the agents in the system exclude each other from

the space they occupy. If, in one dimension, the individuals hop to the right or left with equal

probability, we call the movement unbiased. If the probability of hopping to the right or to

the left is not equal, the movement is called biased. Potts et al. studies an anti-symmetric

exclusion process where the two particles have a directional bias, but the bias of each particle

is the opposite of the other, i.e., the particles have anti-symmetric biases.

The anti-symmetric exclusion process is studied by considering two particles, that ran-

domly walk on an infinite one-dimensional lattice. The probability of the left-hand particle

jumping to the right at each step is p and the right-hand particle jumping to the left at each

step is p. Thus, the probability of the left-hand particle jumping to the left at each step is

1−p and the probability of the right-hand particle jumping to the right at each step is 1−p.
Figure 5.1 shows the two particles and their anti-symmetric movement biases. If p > 1

2
, then

the two particles are biased to hop towards each other; and if p < 1
2
, then the two particles

are biased to hop away from each other.

The model assumes that both particles cannot occupy the same site at the same time, the

hopping rate is F , and the lattice spacing is a. Ensuring that the two particles cannot occupy

the same site is the same as assuming a contact-based repulsion mechanism. The beginning of
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1 − p p p 1 − p

n m

Figure 5.1: Cartoon depiction of the one-dimensional anti-symmetric exclusion process. The
left-hand particle is at lattice site n, hops to the right with probability p, and hops to the
left with probability 1 − p. The right-hand particle is at lattice site m, hops to the right
with probability 1− p, and hops to the left with probability p.

this investigation is to write a master equation for the joint occupation probability P (n,m, t)

of the two particles being at lattice site n and m at time t. The master equation for P (n,m, t)

is

P (n,m, t+ ∆t) = P (n,m, t)

− F∆t p P (n,m, t) (1− δn,m−1) (1− δn,m)

− F∆t (1− p) P (n,m, t) (1− δn,m+1) (1− δn,m)

− F∆t (1− p) P (n,m, t) (1− δn,m+1) (1− δn,m)

− F∆t p P (n,m, t) (1− δn,m−1) (1− δn,m)

+ F∆t (1− p) P (n+ 1,m, t) (1− δn,m−1) (1− δn,m)

+ F∆t p P (n− 1,m, t) (1− δn,m+1) (1− δn,m)

+ F∆t p P (n,m+ 1, t) (1− δn,m+1) (1− δn,m)

+ F∆t (1− p) P (n,m− 1, t) (1− δn,m−1) (1− δn,m)

+O(∆t2). (5.1)

Here, δn,m = 1 if n = m and δn,m = 0 if n 6= m. This master equation looks at how

individuals end up at lattice sites n and m at time t + ∆t, and how individuals at lattice

sites n and m at time t leave these lattice sites. There are eight possible hops, as depicted

in Figure 5.2. These hops and the corresponding term in the master equation are:

1. n hops to n+ 1: −F∆t p P (n,m, t) (1− δn,m−1) (1− δn,m)

2. n hops to n− 1: −F∆t (1− p) P (n,m, t) (1− δn,m+1) (1− δn,m)

3. m hops to m+ 1: −F∆t (1− p) P (n,m, t) (1− δn,m+1) (1− δn,m)

4. m hops to m− 1: −F∆t p P (n,m, t) (1− δn,m−1) (1− δn,m)
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n m

Figure 5.2: Cartoon depiction of particle movement in the anti-symmetric exclusion process.
Each row represents a possible hop that occurs in time step ∆t.

5. n+ 1 hops to n: F∆t (1− p) P (n+ 1,m, t) (1− δn,m−1) (1− δn,m)

6. n− 1 hops to n: F∆t p P (n− 1,m, t) (1− δn,m+1) (1− δn,m)

7. m+ 1 hops to m: F∆t p P (n,m+ 1, t) (1− δn,m+1) (1− δn,m)

8. m− 1 hops to m: F∆t (1− p) P (n,m− 1, t) (1− δn,m−1) (1− δn,m)

These hops occur with rate F and probability p or 1 − p. To ensure that each of these

hops occur only when allowed, Potts includes factors of the form (1 − δn,m), (1 − δn,m−1),

and (1− δn,m+1). The factors of the form

• (1− δn,m) ensure that individuals do not hop to the same lattice site;

• (1− δn,m−1) ensure that if the left-hand particle is adjacent to the right-hand particle

that they do not hop toward each other (n = m− 1);

• and (1 − δn,m+1) ensure that if the right-hand particle is adjacent to the left-hand

particle that they do not hop toward each other (n = m+ 1).
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For example, if at time t a particle hops from n to n + 1, the term it contributes to the

master equation is

−F∆t p︸ ︷︷ ︸
hopping

probability

P (n,m, t)︸ ︷︷ ︸
probability of particles

at n and m

(1− δn,m−1)︸ ︷︷ ︸
do not hop
if adjacent

(1− δn,m)︸ ︷︷ ︸
exclude from

the same spot

. (5.2)

Here, the minus sign indicates that this particle is leaving site n, F∆tp gives the hopping

probability, P (n,m, t) gives the probability that the particles are at n and m. (1−δn,m−1) = 0

if n = m−1, that is, the particle at n cannot hop to site n+1 as the two particles are adjacent

(the left-hand particle is at n, and the right-hand particle is at n + 1 = m). (1− δn,m) = 0

ensures the particles exclude each other.

Re-writing (5.1), we find

P (n,m, t+ ∆t)− P (n,m, t)

∆t
= −2FpP (n,m, t)(1− δn,m−1)(1− δn,m)

− 2F (1− p)P (n,m, t)(1− δn,m+1)(1− δn,m)

+ F (1− p)[P (n+ 1,m, t) + P (n,m− 1, t)](1− δn,m−1)(1− δn,m)

+ Fp[P (n− 1,m, t) + P (n,m+ 1, t)](1− δn,m+1)(1− δn,m)

+O(∆t). (5.3)

Hence, as ∆t→ 0,

dP (n,m, t)

dt
= −2FpP (n,m, t)(1− δn,m−1)(1− δn,m)

− 2F (1− p)P (n,m, t)(1− δn,m+1)(1− δn,m)

+ F (1− p)[P (n+ 1,m, t) + P (n,m− 1, t)](1− δn,m−1)(1− δn,m)

+ Fp[P (n− 1,m, t) + P (n,m+ 1, t)](1− δn,m+1)(1− δn,m). (5.4)

The method of solution to (5.4) is given in [34]. Asymptotic analysis of the solution allows

for the mean position of the left-hand (or right-hand) particle as well as the second moment

of the distribution. Dimensionless time τ = tF is considered, and x1(τ) and x2(τ) are defined

to be the positions of the left- and right-hand particles at time τ , respectively. The mean

separation distance is defined to be d(τ) = 〈x2(τ) − x1(τ)〉. Potts et al. states that the

second moments of the positions of the particles coincide and this is denoted as 〈x2(τ)〉. The

mean square displacement (MSD) is defined as ∆x2(τ) = 〈x2(τ) − 〈x(τ)〉2〉, where x2(τ) is
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the second moment and 〈x(τ)〉 is the first moment of the position probability distribution.

Recall that a is the lattice spacing. For τ � 1, the following asymptotic expressions are

reported in [34]:

d(τ) ∼


4a(1− 2p)τ if 0 < p < 1

2
,√

8
π
a
√
τ if p = 1

2
,

p
2p−1

a if 1
2
< p < 1,

(5.5)

〈x2(τ)〉 ∼


4a2(1− 2p)2τ 2 if 0 < p < 1

2
,

2a2τ if p = 1
2
,

2a2(1− p)τ if 1
2
< p < 1.

(5.6)

∆x2(τ) ∼


2a2τ if 0 < p < 1

2
,

2a2
(
1− 1

π

)
τ if p = 1

2
,

2a2(1− p)τ if 1
2
< p < 1.

(5.7)

The asymptotic results reveal that the behaviour of the anti-symmetric exclusion process

is influenced by the value of p. In particular, the separation distance and mean square

displacement (MSD) differ depending on the value of p. When 0 < p < 1
2
, the separation

distance is asymptotically linear in time; when p = 1
2
, the separation distance increases

with the square root in time; and when 1
2
< p < 1, the separation distance saturates. These

results coincide with the bias of the particles. For instance, when 0 < p < 1
2
, the particles are

biased to hop apart and we expect the distance between the particles to grow. On the other

hand, when 1
2
< p < 1, the particles are biased to hop toward each other. Since the particles

cannot cross, they achieve a steady state at a separation distance that depends on the value

of p. The asymptotic expression for the MSD reveals that the asymptotic diffusion constant,
∆x2(t)

2t
, takes a different value depending on the value of p. These results are summarized

in detail in [34]. The separation distance and MSD allow for the anti-symmetric exclusion

process to be studied quantitatively.

Most importantly, we can interpret these results in a biological context. In terms of

collective behaviour, the particles in the anti-symmetric exclusion process discussed above

can be considered to be two randomly walking individuals each having an intrinsic bias

to hop toward or away from each other, depending on the value of p. These individuals

thus can have a intrinsic attractive force or an intrinsic repulsive force. Moreover, since the

individuals exclude each other from the same lattice sites, they also interact via a contact-
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repulsion process. This is easily seen to be analogous to individuals in a population that

change direction upon bumping into each other. In this way, the anti-symmetric exclusion

process provides a framework for a 2-particle collective behaviour model. In this model,

when 1
2
< p < 1, the individuals exhibit grouping and the mean separation distance between

them approaches a constant value; when p = 1
2
, the individuals drift apart with the square

root of time; and when 0 < p < 1
2
, the individuals are repelled away from each other and

the mean separation distance between them grows linearly in time.

5.3 Anti-symmetric Exclusion Process with Social In-

teractions

The anti-symmetric exclusion process reviewed in Section 5.2 provides a framework for study-

ing how individuals respond to animal communication mechanisms. To study the process,

a master equation for the joint occupation probability, P (n,m, t), the probability that the

left-hand particle is at n and the right-hand particle at m at time t, was derived and studied.

This probability distribution describes the likelihood of finding the two individuals at lattice

sites n and m. Understanding the time evolution of this probability distribution is analo-

gous to understanding the particle’s interactions. In the anti-symmetric exclusion process,

each walker hopped toward the other with probability p, and away from each other with

probability 1− p. Moreover, the individuals excluded each other from adjacent lattice sites,

that is, they experienced contact repulsion. This short-range repulsion can be considered a

social interaction, although it is not non-local like the repulsion force in the PDE model or

IBM from Chapter 2 or Chapter 3.

In this section, we extend the contact repulsion to be non-local and add a non-local

attraction interaction to the anti-symmetric exclusion process, by modifying the probability

p of the individuals hopping toward each other to be a function of the distance between the

particles, d = m−n. A cartoon of this process is presented in Figure 5.3. To understand this

new process, we will write a master equation for the joint occupation probability, P (n,m, t).

In place of an analysis of the master equation, stochastic simulations of the process reveal

the behaviour of the model, and provide statistics that reveal the characteristics of the

probability distribution.

Consider two particles on an infinite one-dimensional lattice, with lattice sites separated

by a. We assume that both particles cannot occupy the same site at the same time, exhibit

contact repulsion, and hop with rate F . Additionally, we assume that each hop depends
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1 − p(d) p(d) p(d) 1 − p(d)

n m

Figure 5.3: Cartoon depiction of the one-dimensional anti-symmetric exclusion process with
social interactions. The left-hand particle is at lattice site n, hops to the right with probabil-
ity p(d), and hops to the left with probability 1− p(d). The right-hand particle is at lattice
site m, hops to the right with probability 1−p(d), and hops to the left with probability p(d).

only on the distance between the particles, and that each hop is independent of any other

hops. As in Section 5.2, we write a master equation for the joint occupation probability

P (n,m, t) for the left-hand particle to be at n and the right-hand particle to be at m at time

t. Accounting for all the possible hops, we find:

P (n,m, t+ ∆t) = P (n,m, t)

− F∆t p(d) P (n,m, t) (1− δn,m−1) (1− δn,m)

− F∆t (1− p(d)) P (n,m, t) (1− δn,m+1) (1− δn,m)

− F∆t (1− p(d)) P (n,m, t) (1− δn,m+1) (1− δn,m)

− F∆t p(d) P (n,m, t) (1− δn,m−1) (1− δn,m)

+ F∆t (1− p(d)) P (n+ 1,m, t) (1− δn,m−1) (1− δn,m)

+ F∆t p(d) P (n,m+ 1, t) (1− δn,m+1) (1− δn,m)

+ F∆t p(d) P (n− 1,m, t) (1− δn,m+1) (1− δn,m)

+ F∆t (1− p(d)) P (n,m− 1, t) (1− δn,m−1) (1− δn,m)

+O(∆t2), (5.8)

where d = m − n is the distance between the particles and p : R+ → [0, 1] is a function

describing the non-local repulsion and attraction interactions. In (5.8), the factors (1 −
δn,m) = 0 whenever n = m, to ensure that individuals do not hop to the same lattice site,

and the factors (1 − δn,m−1) and (1 − δn,m+1) ensure that the particles hop away from each
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other if they are adjacent. Re-writing (5.8), we find

P (n,m, t+ ∆t)− P (n,m, t)

∆t
= −2F p(d) P (n,m, t) (1− δn,m−1) (1− δn,m)

− 2F (1− p(d)) P (n,m, t) (1− δn,m+1) (1− δn,m)

+ F (1− p(d)) [P (n+ 1,m, t) + P (n,m− 1, t)] (1− δn,m−1) (1− δn,m)

+ F p(d) [P (n,m+ 1, t) + P (n− 1,m, t)] (1− δn,m+1) (1− δn,m)

+O(∆t), (5.9)

so that as ∆t→ 0, we find the master equation for the joint occupation probability:

dP (n,m, t)

dt
= −2F p(d) P (n,m, t) (1− δn,m−1) (1− δn,m)

− 2F (1− p(d)) P (n,m, t) (1− δn,m+1) (1− δn,m)

+ F (1− p(d)) [P (n+ 1,m, t) + P (n,m− 1, t)] (1− δn,m−1) (1− δn,m)

+ F p(d) [P (n,m+ 1, t) + P (n− 1,m, t)] (1− δn,m+1) (1− δn,m). (5.10)

To fully describe the system, it is necessary to prescribe an initial condition, P (n,m, 0), as

well as to choose a suitable function p(d). For the initial condition, we seek to release two

particles at lattice sites n0 and m0. That is, P (n,m, 0) = δn−n0 + δm−m0 , where δx is the

Kronecker delta function (δx = 1 if x = 0 and δx = 0 if x 6= 0).

The choice of the interaction function p(d) is motivated by the biological meaning of

repulsion and attraction, as well as the results from Section 5.2. In the anti-symmetric

exclusion process, Potts found that the asymptotic distance between particles depends on

the value of p. When 0 < p < 1
2
, the particles drift apart linearly in time; when p = 1

2
,

the particles drift apart with the square root of time; and when 1
2
< p < 1, the distance

between particles is asymptotic to a constant. This motivates the choice of p(d). For small

d, the particles should drift apart in order to avoid collision, hence p(d) should be less than
1
2

in the zone of repulsion. When the distance between the particles is such that they are

in each other’s zone of attraction, p(d) should be greater than 1
2

to ensure that the particles

hop toward each other. For larger distances, we can allow p(d) → 1 as d → ∞, or choose

more complicated p(d). We expect the choice of p(d) to strongly impact the behaviour of

the model, and explore several choices. These functions are sketched in Figure 5.4.

In Figure 5.4, three choices of p(d) are presented. In Figure 5.4(a), the Heaviside function
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(a) Heaviside (b) Piecewise linear

(c) Saturating

Figure 5.4: Example interaction functions, p(d). In (a), a Heaviside function is chosen:
p(d) = H(d− sr), with sr = 3 representing the width of the repulsion zone. In (b), a linear
function is chosen: p(d) = d

sr
χ[0,sr)(d) + χ[sr,∞)(d), with χ(a,b)(d) is an indicator function on

(a, b), with sr = 4. In (c), a saturating function is chosen: p(d) = d
1+d

.
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is used to model the repulsion and attraction interaction forces. Specifically,

p(d) = H(d− sr) =


1, d > sr,

1
2

d = sr,

0, d < sr.

(5.11)

Effectively, the parameter sr = 3 gives the length of the repulsion zone: if the particles are

at a distance d < sr, then p(d) = 0, ensuring that the particles do not hop toward each

other. On the other hand, if d ≥ sr, then p(d) = 1, and the particles hop toward each other

with probability 1. In Figure 5.4(b), a piecewise linear function is chosen:

p(d) =

 d
sr
, d ≤ sr,

1, d > sr.
(5.12)

Again, sr is a parameter modifying the length of the repulsion zone. In this case, sr = 4

is chosen differently than sr = 3 in the Heaviside function due to the model assumptions.

If sr = 3 and p(d) is piecewise linear as in (5.12), and the particles are 1 lattice site apart,

then at the first time step they will hop apart and sit separated by 3 lattice sites. If sr = 3,

then p(3) = 1, and the two particles will hop toward each other again, only to be separated

by one lattice site. This cycle will dominate the movement of the particles for all time t. A

final choice of p(d) is presented in Figure 5.4(c). In this case,

p(d) =
d

1 + d
(5.13)

is a saturating function, with the probability of hopping toward each other increasing as the

inter-particle distance increases.

In place of an analysis of (5.10) explicitly describing the time evolution of P (n,m, t), we

use stochastic simulations to understand the model behaviour. Using MATLAB, we simulate

the 2-particle model by ensuring particles exclude each other from space, by calculating p(d)

at each time step, and deciding to hop to the right or the left by comparing p(d) to a

uniform random variable. Sample particle trajectories are presented in Figure 5.5; however,

to understand the joint probability distribution, P (n,m, t), we measure statistics over many

runs of the stochastic simulation, as the sample trajectories do not appear qualitatively

different. The quantities of interest are the average distance between the particles, the

variance of one of the particles position, and the mean square displacement (MSD) of one of
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the particles. These quantities are of interest in this case, as they allow us to characterize

P (n,m, t) given a certain choice of social interaction, that is, given a choice of p(d).

Let x1(t) and x2(t) represent the position of the left-hand and right-hand particles re-

spectively. Define d(t) = x2(t) − x1(t) to be the distance between the particles at time t.

The quantities measured over many runs of the stochastic simulations are d(t), the mean

separation distance, and ∆x2(t), the MSD of the left-hand particle. Figure 5.6, Figure 5.7,

and Figure 5.8 present average values from 10000 runs of the stochastic simulations, with

p(d) the Heaviside function, (5.11), piecewise linear function,(5.12), and saturating func-

tion, (5.13), respectively. The initial conditions for these simulations are that the left-hand

particle is at n = 0 and the right-hand particle’s position is randomly chosen from the set

A = {1, 2, . . . , 10}. This choice is made randomly to ensure that the initial condition does

not affect the results. The size of the set A was chosen |A| = 10 to limit the size of the

transient before the particles approached their asymptotic mean separation distance. In each

of Figure 5.6, Figure 5.7, and Figure 5.8, the mean separation distance as a function of time,

〈d(t)〉 is shown in (a); and sample displacements for the left-hand particle trajectories are

shown as blue curves and three lines representing the diffusion coefficients in part (b). These

diffusion coefficients are calculated using least squares regression. The slope of the green line

is Dm, the short-term (or microscopic) diffusion coefficient, calculated by using only the first

4 displacements. The slope of the red line is DM , the long-term (or macroscopic) diffusion

coefficient, calculated by using one-third of the displacements. Lastly, the slope of the black

line is Df , a diffusion coefficient calculated using all of the displacements (f subscript refers

to full time). For a discussion on estimating diffusion coefficients from random walk data,

see [36] or Rajani’s thesis on single particle tracking [35].

The behaviour of the 2-particle system depends on the choice of p(d). The differing be-

haviour is evident in the statistics shown in Figure 5.6, 5.7, and 5.8. These statistics are

summarized in Table 5.1. The time-averaged mean separation distance was obtained by

averaging the mean separation distance after excluding the first 10 time steps. The aver-

age separation distance for the Heaviside function is largest, around 3 lattice sites. This is

consistent with the choice of the Heaviside p(d): if the particles are separated by exactly

3 lattice sites, they hop symmetrically; if the particles are separated by less than 3 lattice

sites, the particles hop apart with probability 1; and if the particles are separated by more

than 3 lattice sites, the particles hop toward each other with probability 1. The average

separation distance for the piecewise linear function and the saturating function is less than

the Heaviside function; however, the piecewise linear function has the lowest average sepa-
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(a) Heaviside (b) Piecewise linear (c) Saturating

Figure 5.5: Sample trajectories of the 2-particle model with social interactions. In (a), p(d)
is chosen to be the Heaviside function, (5.11). In (b), p(d) is chosen to be the piecewise
linear function, (5.12). In (c), p(d) is chosen to be the saturating function, (5.13).
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(a) Separation distance 〈d(t)〉 (b) MSD ∆x2(t)

Figure 5.6: Statistics for 10000 samples with the Heaviside p(d), (5.11). In (a), mean
separation distance, d(t), is shown as a function of time. In (b), the MSD of the left-
hand particle is shown for several trajectories (blue curves). The slope of the green line is
Dm, the slope of the red line is DM , and the slope of the black line is Df .

(a) Separation distance d(t) (b) MSD ∆x2(t)

Figure 5.7: Statistics for 10000 samples with the piecewise linear p(d), (5.12). In (a), mean
separation distance, d(t), is shown as a function of time. In (b), the MSD of the left-hand
particle is shown for several trajectories (blue curves). The slope of the green line is Dm,
the slope of the red line is DM , and the slope of the black line is Df .
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(a) Separation distance d(t) (b) MSD ∆x2(t)

Figure 5.8: Statistics for 10000 samples with the saturating p(d), (5.13). In (a), mean
separation distance, d(t), is shown as a function of time. In (b), the MSD of the left-hand
particle is shown for several trajectories (blue curves). The slope of the green line is Dm,
the slope of the red line is DM , and the slope of the black line is Df .

p(d) average d(t) Dm DM Df

(a) Heaviside 3.0010 0.3595 0.1991 0.1840
(b) Piecewise linear 2.5263 0.4679 0.3084 0.2982
(c) Saturating 2.7177 0.5325 0.3465 0.3296

Table 5.1: Mean separation and diffusion coefficients for 10000 samples with different p(d).
The time-averaged mean separation distance was obtained by averaging d(t) over time after
excluding the first 10 steps. Diffusion coefficients are calculated by least squares regression.

ration distance. The choice of sr likely plays a role in the model behaviour. The calculated

diffusion coefficients agree with expected model behaviour. The Heaviside p(d) interaction

function is the most restrictive as p(d) = 1 or p(d) = 0 for almost all d. This prescribes the

movement and interaction of the individuals very well, and hence does not let them diffuse

greatly. On the other hand, the saturating interaction function p(d) = 0 only when d = 0

and p(d) < 1 for all d. This allows for stochasticity in the individuals’ response to each

other, i.e., even if they are strongly attracted to each other, they may still jump apart. This

leads to a higher diffusion coefficient, DM (or Df ).

Incorporating attractive and repulsive interactions into the anti-symmetric exclusion pro-

cess alters the model behaviour. Without these interactions, the anti-symmetric exclusion

behaviour exhibited two behaviours. The separation distance between the particle either

saturated (when 1
2
< p < 1) or the distance between the particles increased (linearly in
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time when 0 < p < 1
2

or with the square root of time when p = 1
2
). Attraction-repulsion

interactions lead to a constant mean separation distance, i.e., a grouping behaviour with a

preferred inter-individual distance.

The choices of p(d) studied above model an infinite zone of attraction. For large distances

between particles, p(d) = 1 in the case of the Heaviside and piecewise linear functions, and

p(d) ≈ 1 for the saturating function. The Heaviside and piecewise linear p(d) prescribe

that the particles may not move apart from each other if they are in each other’s zone of

attraction, and if d is sufficiently large, it is very unlikely that the particles will move apart

when p(d) is chosen to be saturating. Although this is not biologically realistic, as individuals

do not have infinite interaction zones. Moreover, it is unlikely that individuals will always

respond to neighbours. Instead, some stochasticity is expected. To adjust for this, we choose

p(d) with restricted range. This incorporates stochasticity as p(d) is never 0 or 1. We modify

the choices of the Heaviside, piecewise linear, and saturating function to have range in the

interval [0.25, 0.75], and repeat our investigation. It is expected that on average, grouping

will still occur, but the separation distance and diffusion coefficients will be larger. These

modified interaction functions are plotted in Figure 5.9.

In Figures 5.10, 5.11, and 5.12, the behaviour of the 2-particle model with p(d) with

range in [0.25, 0.75] is shown. The two quantities most revealing of behaviour are the mean

separation distance and the MSD. From these quantities, the asymptotic spacing between

individuals and the diffusivity of the individuals can be measured. In part (a) of Figures

5.10, 5.11, and 5.12, the mean separation distance is shown as a function of time. In part

(b), the MSD of the left-hand particle is shown. Blue curves show sample displacements, and

the slopes of the lines give diffusion coefficients. The slope of the green line is the short-time

diffusion coefficient, Dm; the slope of the red line is the long-time diffusion coefficient, DM ,

measured using the first one-third time steps; and the slope of the black-line is a diffusion

coefficient calculated by considering all the time steps, Df .

In Table 5.2, we present statistics from 10000 samples of the random walk model with

different p(d) with restricted range in [0.25, 0.75]. In this case, the piecewise linear function

exhibits the smallest mean separation distance. The Heaviside function and saturating func-

tion exhibit similar mean separation distances, with the saturating function slightly larger.

Diffusion coefficients follow a different trend: the Heaviside function resulting in the least

diffuse system over long time periods, followed by the piecewise linear system and the satu-

rating function. Interestingly, over short-time, we find that the piecewise linear function is

the least diffuse system, followed by the Heaviside and the saturating system.
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(a) Heaviside (b) Piecewise linear

(c) Saturating

Figure 5.9: Example interaction functions, p(d), with range [0.25, 0.75]. In (a), a modified

Heaviside function is chosen: p(d) = H(d−sr)
2

+ 1
4
, with sr = 3 representing the width of the

repulsion zone. In (b), a linear function is chosen: p(d) = d
2sr
χ[0,sr)(d) + 1

4
+

3χ[sr,∞)(d)

4
, with

χ(a,b)(d) is an indicator function on (a, b), with sr = 4. In (c), a saturating function is chosen:
p(d) = d

2(1+d)
+ 1

4
.

p(d) average d(t) Dm DM Df

(a) Heaviside 3.3108 0.6570 0.4305 0.4029
(b) Piecewise linear 3.0199 0.6484 0.4333 0.4128
(c) Saturating 3.4009 0.7153 0.4773 0.4461

Table 5.2: Mean separation and diffusion coefficients for 10000 samples with different p(d)
with range [0.25, 0.75]. The time-averaged mean separation distance was obtained by aver-
aging d(t) over time after excluding the first 10 steps. Diffusion coefficients calculated by
least squares regression.
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(a) Separation distance 〈d(t)〉 (b) MSD ∆x2(t)

Figure 5.10: Statistics for 10000 samples with the modified Heaviside p(d) with range
[0.25, 0.75]. In (a), mean separation distance, d(t), is shown as a function of time. In
(b), the MSD of the left-hand particle is shown for several trajectories (blue curves). The
slope of the green line is Dm, the slope of the red line is DM , and the slope of the black line
is Df .

(a) Separation distance d(t) (b) MSD ∆x2(t)

Figure 5.11: Statistics for 10000 samples with the modified piecewise linear p(d) with range
[0.25, 0.75]. In (a), mean separation distance, d(t), is shown as a function of time. In (b),
the MSD of the left-hand particle is shown for several trajectories (blue curves). The slope
of the green line is Dm, the slope of the red line is DM , and the slope of the black line is Df .
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(a) Separation distance d(t) (b) MSD ∆x2(t)

Figure 5.12: Statistics for 10000 samples with the modified saturating p(d) with range
[0.25, 0.75]. In (a), mean separation distance, d(t), is shown as a function of time. In
(b), the MSD of the left-hand particle is shown for several trajectories (blue curves). The
slope of the green line is Dm, the slope of the red line is DM , and the slope of the black line
is Df .

In this section, distance-dependent social interactions were added to the anti-symmetric

exclusion process. The choice of the interaction function p(d) affects the behaviour of the

model. Even so, the choices of functions investigated here reveal that there is a relationship

between the choice of p(d), the mean separation distance, d(t), and the diffusion coefficient

of the left-hand particle, DM . It is difficult to quantify the relationship between p(d) and

these quantities; however, as shown in Figure 5.13, there may be a linear relationship be-

tween the diffusion coefficient and the separation distance between individuals. Investigating

distance-dependent social interactions in this context raises several questions. For instance,

is it possible to predict the characteristics of the joint occupation probability from the choice

interaction function? Another question is whether mean separation distance and diffusion

coefficients can be measured from biological aggregations and the social interactions subse-

quently inferred. Most importantly, we find the 2-particle framework useful for investigating

the behaviour of individuals in response to social interactions.

5.4 Incorporating Directionality

In this section, we continue investigating the anti-symmetric exclusion process. In Section

5.3, we added distance-dependent social interactions to the anti-symmetric exclusion process,

and we investigated the behaviour of the 2-particle system. The choice of the interaction
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Figure 5.13: Relationship between mean separation distance and DM . Black circles are pairs
(DM , 〈d(t)〉) for p(d) with range in [0, 1]. Blue markers are pairs (DM , 〈d(t)〉) for p(d) with
range in [0.25, 0.75]. The red line is best fit to these data points.

function, p(d), greatly impacted the behaviour of the model, especially the inter-individual

distance, and the diffusivity of the individuals. The goal of this section is to modify the

interaction function to include alignment interactions, as studied throughout this thesis.

To incorporate directionality, we add an alignment interaction force to the anti-symmetric

exclusion process with social interactions. The biological motivation for incorporating an

alignment term comes from the relatively constant inter-individual distance observed in

many animal groupings. The alignment interaction models the tendency of individuals to

travel in the same direction as neighbours, provided the inter-individual distance is not too

small, which would lead to repulsion, or not too big, which would lead to attraction.

The foundation for the model consists of two particles on an infinite one-dimensional

lattice with spacing a. Let n denote the position of the left-hand particle and m denote the

position of the right-hand particle. The model assumes that both particles cannot occupy the

same site, and hop toward each other with probability p(d), where d = m−n is the distance

between the particles. The choice of p(d) will have an impact on the model behaviour, and

this will be investigated below. Recall that the individuals in the 2-particle anti-symmetric

exclusion process hop toward each other with probability p and away from each other with

probability 1 − p. Directionality is not a characteristic of the particles; they simply hop to

the right or to the left, but do not “face” in a certain direction. To incorporate alignment,
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each particle requires a direction. Let vn and vm be the direction (v representing velocity) of

the left-hand and right-hand individual, respectively. In a one-dimensional setting, the two

directions are right and left, whence vn, vm ∈ {−1, 1}. To flush out the social interactions,

we introduce constants sr ∈ R and sal ∈ R which represent the width of the repulsion and

alignment zones. Repulsion acts on shorter distances than alignment, and for biologically

meaningful interaction zones we require sr < sal. We assume that the two particles interact

according to the anti-symmetric exclusion process when in the zone of repulsion or attraction,

i.e., d ∈ [0, sr) ∪ [sal,∞). However, when the particles are in the zone of alignment, i.e.,

d ∈ [sr, sal), we forgo the anti-symmetric hopping if both the left-hand particle and right-

hand particle are traveling in the same direction, that is, if vnvm = 1. In this case, we allow

the individuals to continue moving in their direction of travel. If the two individuals are in

the zone of alignment but are not traveling in the same direction, we allow them to interact

according to the anti-symmetric exclusion process.

Again, the distribution of interest is P (n,m, t), the joint occupation probability at time

t. Writing a master equation for this process is not as straightforward as the master equation

for the anti-symmetric exclusion process with social interactions. Previously, in (5.8), we

assumed that an individual’s hop is independent of any other hop and only depends on the

distance between individuals. Here, not only do we assume that each hop is independent of

the previous one, but we also assume that each hop depends only on the distance between

particles and the direction of each particle. This leads to a much more complicated master

equation:

dP (n,m, t)

dt
=

g(n,m, t), d ∈ [sr, sal) and vnvm = 1,

f(n,m, t), otherwise,
(5.14)

where f(n,m, t) is the right-hand side of the master equation for the anti-symmetric random

walk, (5.10), and g(n,m, t) describes the hopping process when the two particles are in the

alignment zone. In this case,

g(n,m, t) =− 2FP (n,m, t)

+ F (P (n+ 1,m, t) + P (n,m+ 1, t)) δvn,−1

+ F (P (n− 1,m, t) + P (n,m− 1, t)) δvn,1, (5.15)

where F is the hopping rate. If the two particles at n and m are in the zone of alignment

and are traveling in the same direction, then they will both hop in the direction of travel,
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leaving site n and m, hence the −2FP (n,m, t) in (5.15). The remaining terms account for

the individuals hopping to sites n and m from n+1 and m+1 if the particles are left moving

(δvn,−1 = 1), or to sites n and m from n − 1 and m − 1 if the particles are right moving

(δvn,1 = 1). Writing the master equation reveals the two distinct behaviours of this model:

anti-symmetric repulsion and attraction versus directed movement when the individuals are

aligned.

In place of an analysis of the master equation, (5.14), we use stochastic simulations to

understand the model behaviour. For our investigation, we will consider the three social in-

teraction functions p(d) from before, a Heaviside function, (5.11), a piecewise linear function,

(5.12), and a saturating function, (5.13). The initial conditions for the simulations are that

the left-hand particle is at n = 0 and the right-hand particle’s initial position is randomly

chosen from the set A = {1, 2, . . . , 10}. The initial directions, vn(0) and vm(0) are chosen

randomly from {−1, 1}. Not only will the choice of the interaction function, p(d), influence

the model behaviour, but also the size of the repulsion and alignment zones will influence

behaviour. The master equation for this process, (5.14), contains two distinct behaviours

depending on the model’s state and the sizes of the interaction zones. Thus, we focus on

investigating the mean separation distance and diffusion coefficients for different p(d) and

different interaction zone sizes (sr and sal).

In Figure 5.14, sample particle trajectories are plotted for sr = 3 and sal = 6. In (a),

p(d) is a Heaviside function, (5.11); in (b), p(d) is piecewise linear, (5.12); and in (c), p(d)

is the saturating function, (5.13). In (a) and (c), the two particle ensemble travels to the

right, as the particles are in each other’s zone of alignment. In (a), the particles are in each

other’s zone of alignment are both initially traveling to the right. In (c), the particles are

initially attracted to each other; however, as the distance between them decreases so that

they are in the alignment zone, the right-hand particle changes direction. At this point, the

two particles are traveling in the same direction and are in the zone of alignment, hence they

travel across the lattice as a group. This behaviour is not observed in the anti-symmetric

random walk with social interactions, and may indicate that alignment is required to have

traveling groups.

To compare the model behaviour to the anti-symmetric exclusion processes studied in

this Chapter, we present statistics from 10000 stochastic simulations. The quantities of

interest are again the mean separation distance, d(t), and the mean square displacement

(MSD) of the left-hand particle. From the MSD data, we can calculate an average MSD as

well as diffusion coefficients to understand how the particles interact and move. In Figures
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(a) Heaviside (b) Piecewise linear (c) Saturating

Figure 5.14: Example trajectories of the 2-particle model with alignment. In (a), p(d) is
chosen to be the Heaviside function, (5.11). In (b), p(d) is chosen to be the piecewise linear
function, (5.12). In (c), p(d) is chosen to be the saturating function, (5.13).
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p(d) average d(t) Dm DM Df

(a) Heaviside 3.1812 0.1677 0.8303 2.3937
(b) Piecewise linear 1.9610 0.2692 0.9305 2.5414
(c) Saturating 3.1493 0.7080 4.6118 12.63214

Table 5.3: Mean separation and diffusion coefficients for 10000 samples with different p(d)
and alignment. The time-averaged mean separation distance was obtained by averaging d(t)
over time after excluding the first 10 steps. Diffusion coefficients calculated by least squares
regression.

5.15, 5.16 and 5.17, part (a) shows mean separation distance as a function of time, 〈d(t)〉,
with the average ignoring the first 10 transient time-steps. Part (b) shows the MSD for

several simulations as blue curves, with the average MSD, 〈∆x2(t)〉, as a thick blue line.

The slopes of the three lines represent diffusion coefficients. The slope of the green line is

Dm, the short-term (or microscopic) diffusion coefficient, calculated by using only the first

4 displacements. The slope of the red line is DM , the long-term (or macroscopic) diffusion

coefficient, calculated by using one-third of the displacements. Lastly, the slope of the black

line is Df , a diffusion coefficient calculated using all of the displacements (f subscript refers

to full time).

In Figures 5.15, 5.16, and 5.17, we fixed the length of the interaction zones at sr = 3 and

sal = 6 and varied p(d). The mean separation distance, 〈d(t)〉, approaches a constant value

in the case of the Heaviside and piecewise linear interaction function; however, appears to

increase over time when the interaction function is saturating. This differs from the anti-

symmetric random walk with social interactions (without alignment), as the mean separation

distance approached a constant with all three interaction functions. More interestingly, the

MSD for many trajectories increases very quickly with time, as seen in part (b) of Figures

5.15, 5.16, and 5.17. This rapid increase in MSD is seen in the trend exhibited by the mean

MSD, 〈∆x2(t)〉, thick blue curves. This convex average MSD indicates anomalous diffusion,

and in this case, results from the alignment mechanism. Summary statistics are presented in

Table 5.3. The piecewise linear choice of p(d) presents the smallest mean separation distance,

with the separation distance for the other two choices of functions similar. Comparing these

mean separation values with those in Table 5.1 and Table 5.2, we see that the values are of

a similar magnitude, indicating that group formation is similar among these models. The

diffusion coefficients, on the other hand, are much larger when alignment is included. These

large diffusion coefficients, along with convex mean MSD, is indicative of a traveling group.
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(a) Separation distance 〈d(t)〉 (b) MSD ∆x2(t)

Figure 5.15: Statistics for 10000 samples with the Heaviside p(d) and alignment interactions.
In (a), mean separation distance, d(t), is shown as a function of time. In (b), the MSD of
the left-hand particle is shown for several trajectories (blue curves), and the average MSD
is shown as a thick blue curve. The slope of the green line is Dm, the slope of the red line is
DM , and the slope of the black line is Df . Here, sr = 3 and sal = 6.

(a) Separation distance d(t) (b) MSD ∆x2(t)

Figure 5.16: Statistics for 10000 samples with the piecewise linear p(d) and alignment inter-
actions. In (a), mean separation distance, d(t), is shown as a function of time. In (b), the
MSD of the left-hand particle is shown for several trajectories (blue curves), and the average
MSD is shown as a thick blue curve. The slope of the green line is Dm, the slope of the red
line is DM , and the slope of the black line is is Df . Here, sr = 3 and sal = 6.
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(a) Separation distance d(t) (b) MSD ∆x2(t)

Figure 5.17: Statistics for 10000 samples with the saturating p(d) and alignment interactions.
In (a), mean separation distance, d(t), is shown as a function of time. In this case, the mean
separation distance appears to be increasing (for t > 30). In (b), the MSD of the left-hand
particle is shown for several trajectories (blue curves), and the average MSD is shown as a
thick blue curve. The slope of the green line is Dm, the slope of the red line is DM , and the
slope of the black line is is Df . Here, sr = 3 and sal = 6.

To complete the investigation of the anti-symmetric exclusion process with all three social

interactions: repulsion, alignment, and attraction, we will investigate the behaviour of the

model with respect to the sizes of the interaction zones. We expect that a larger zone of

repulsion will result in a larger mean separation distance. Traveling groups are expected to

result from a large zone of alignment, as indicated by a rapidly increasing mean MSD and

large diffusion coefficients. For a biologically realistic model, we require sr < sal, and hence

we allow sal to take integer values between 4 and 15, and in each of these cases allow sr to

vary between 3 and sal. For this investigation, we consider the piecewise linear interaction

function over the Heaviside and saturating functions. We do this because the Heaviside

function is slightly slower to evaluate using MATLAB, and because the saturating function

reveals a non-constant separation distance and a relatively quickly increasing 〈∆x2(t)〉. The

results of this investigation are shown in Figure 5.18. In Figure 5.18(a), a box plot shows

the value of the mean separation distance, 〈d(t)〉, averaged over 10000 simulations of the

alignment model for each pair of interaction zone lengths, (sr, sal). In Figure 5.18(b), a

box plot shows the value of the diffusion coefficient, Df , averaged over 10000 simulations of

the alignment model for each pair of interaction zone lengths, (sr, sal). The full diffusion

coefficient, Df , which is measured using all time steps of the MSD data, qualitatively appears

to better estimate the average MSD trend in Figures 5.15, 5.16, and 5.17, and is consequently
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(a) Separation distance d(t) (b) Diffusion coefficient Df

Figure 5.18: Mean separation distance and diffusion coefficient for different interaction zone
sizes. In (a), the mean separation distance is measured over 10000 simulations for each pair
(sr, sal) of interaction zone sizes. As the size of the repulsion and alignment zones increase,
the mean separation distance increases. In (b), the full diffusion coefficient, Df , is measured
over 10000 simulations for each pair (sr, sal) of interaction zone sizes. Note the change in axis
direction in part (b) to better show the data. For fixed sr, the diffusion coefficient increases
with sal.

shown in Figure 5.18. As the size of the repulsion and alignment zones increases, the mean

separation distance, 〈d(t)〉, increases. This result is biologically consistent: larger inter-

individual distances result from repulsive interactions taking place over larger distances.

Similarly, a large zone of alignment will allow for a large inter-individual distance to occur

while still maintaing group cohesiveness. In Figure 5(b), large alignment zones results in

large diffusion coefficients, Df , especially for small zones of repulsion.

5.5 2-particle Eftimie Model

In this section, we investigate a 2-particle formulation of the IBM with direction-dependent

communication mechanisms. We seek to understand how two individuals in a population re-

spond to communication mechanisms, first by proposing a master equation for the 2-particle

process with direction-dependent communication mechanisms, and second, by studying mean

separation distance and mean square displacement over stochastic simulations.

To begin, we study the interaction of two individuals on an infinite one-dimensional

lattice with spacing a. In this section, we relax the condition that the individual cannot
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cross, and simply label the individuals 1 and 2. This condition is relaxed as the individuals

in the PDE and IBM with direction-dependent communication mechanisms do not exclude

each other from space, but instead are allowed to cross. We denote the positions of the

two individuals as n and m respectively, and allow the particles to interact according to the

direction-dependent communication mechanisms as in the IBM with direction-dependent

communication mechanisms (Chapter 3). Recall that the direction-dependent communica-

tion mechanisms rely on both the position and direction of the signal emitter and receiver,

whence we explicitly track the direction of each individual. Let vn and vm be the directions

of the two individuals, with vn, vm ∈ {−1, 1} indicating either to the left (−1) or to the right

(1). The distribution of interest is P (n,m, vn, vm, t), the joint occupation probability that

individual 1 is at n moving with direction vn and that individual 2 is at m with direction vm

at time t. To describe the time evolution of P (n,m, vn, vm, t), we consider a master equation

for each of the marginal distributions, P (n,m, 1, 1, t), P (n,m, 1,−1, t), P (n,m,−1, 1, t), and

P (n,m,−1,−1, t). The marginal distributions are considered individually as the movement

rules track how a right-moving or left-moving individual arrives at a spatial point. For

instance, a right-moving individual arrives at location x at time t + ∆t if it was either left-

moving at x+ ∆x and turns to the right, or if it was right-moving at x+ ∆x and does not

turn to the right.

To write the master equation for P (n,m, 1, 1, t), we account for all possible jumps that

lead to right-moving individuals arriving at n and m at time t+ ∆t and those right-moving

individuals leave n and m, where ∆t is the timestep. We find:

P (n,m, 1, 1, t+ ∆t) = P (n,m, 1, 1, t)

+ P (n+ 1,m,−1, 1, t)T (n+ 1,−1;m, 1, t)∆t

+ P (n,m+ 1, 1,−1, t)T (m+ 1,−1;n, 1, t)∆t

+ P (n− 1,m, 1, 1, t)N(n− 1, 1;m, 1, t)∆t

+ P (n,m− 1, 1, 1, t)N(m− 1, 1;n, 1, t)∆t

− 2P (n,m, 1, 1, t)∆t

+O(∆t2). (5.16)

In (5.16), T (n, vn;m, vm, t) describes the rate that the individual at n heading in direction vn

moves to n+ avn and turns (T ) to direction −vn, given that the other individual is located

at m with direction vm at time t. N(n, vn;m, vm, t) describes the rate that the individual at

n heading in the direction vn moves to n + avn, but does not (N) change direction, given
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that the other individual is located at m with direction vm at time t.

The master equations for the remaining marginal distributions are written similarly:

P (n,m, 1,−1, t+ ∆t) = P (n,m, 1,−1, t)

+ P (n+ 1,m,−1,−1, t)T (n+ 1,−1;m,−1, t)∆t

+ P (n,m− 1, 1, 1, t)T (m− 1, 1;n, 1, t)∆t

+ P (n− 1,m, 1,−1, t)N(n− 1, 1;m,−1, t)∆t

+ P (n,m+ 1, 1,−1, t)N(m+ 1,−1;n, 1, t)∆t

− 2P (n,m, 1,−1, t)∆t

+O(∆t2), (5.17)

P (n,m,−1, 1, t+ ∆t) = P (n,m,−1, 1, t)

+ P (n− 1, 1,m, 1, t)T (n− 1, 1;m, 1, t)∆t

+ P (n,m+ 1,−1,−1, t)T (m+ 1,−1;n,−1, t)∆t

+ P (n+ 1,m,−1, 1, t)N(n+ 1,−1;m, 1, t)∆t

+ P (n,m− 1,−1, 1, t)N(m− 1, 1;n, 1, t)∆t

− 2P (n,m,−1, 1, t)∆t

+O(∆t2), (5.18)

and

P (n,m,−1,−1, t+ ∆t) = P (n,m,−1,−1, t)

+ P (n− 1,m, 1,−1, t)T (n− 1, 1;m,−1, t)∆t

+ P (n,m− 1,−1, 1, t)T (m− 1, 1;n,−1, t)∆t

+ P (n+ 1,m,−1,−1, t)N(n+ 1,−1;m,−1, t)∆t

+ P (n,m+ 1,−1,−1, t)N(m+ 1,−1;n,−1, t)∆t

− 2P (n,m,−1,−1, t)∆t

+O(∆t2). (5.19)

As in the previous sections, we can form differential equations for the time-evolution for
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each of the marginal distribution. These differential equations are not complete without an

initial condition, which in the case of a 2-particle system corresponds to the point release

of individuals at lattice sites n0 and m0. It remains to describe the functions that prescribe

the rates at which individuals turn (T ) and do not turn (N).

To describe T (n, vn;m, vm, t), recall that, subject to the direction-dependent communica-

tion mechanisms as described in Chapter 2 and Chapter 3, a right- or left-moving individual

i changes direction with rate

λ±i (y±i ) = λ1 + λ2f
(
y±i
)
, (5.20)

where

y±i = y±r,i − y±a,i + y±al,i, (5.21)

is the integrated interaction force experienced by individual i resulting from interactions

from conspecifics. y±r,i is the repulsive force; y±al,i is the alignment force; and y±a,i is the

attractive force experience by individual i. These forces depend on the specific direction-

dependent communication mechanism considered (submodel), and the magnitudes of the

social interaction forces, namely parameters qr, qal, and qa. Several example interaction

forces are described in Table 3.1. In this case, the interaction with conspecifics only depends

on the direction and location of the other individual, hence to calculate the turning rate,

(5.20), we need only n, vn,m and vm. That is, the turning rate T (n, vn;m, vm, t) is simply

λ±i (y±i ), where i represents the individual at n, and the sign of vn prescribes ±. Thus, in place

of λ±i (y±i ), we write λvnn . Since y±i depends only on n, vn,m and vm, we write n, vn,m, vm in

place of y±i . That is,

T (n, vn;m, vm, t) = λvnn (n, vn,m, vm), (5.22)

is the rate at which individual 1 changes direction as a result of interacting with individual 2

subject to the social interactions prescribed by the direction-dependent communication mech-

anism. It should be noted that the parameters, λ1, λ2, qr, qal, and qa enter T (n, vn;m, vm, t)

via the calculation of y±i . The rate of not turning, N(n, vn;m, vm, t), describes the rate at

which individuals move, but not change direction. This quantity should be low when the

turning rate is high and vice versa. Given that the turning rate is T (n, vn;m, vm, t), the

not-turning rate is given by

N(n, vn;m, vm, t) = T − T (n, vm;m, vm, t), (5.23)
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where

T = sup
x∈R

(λ1 + λ2f(x)) . (5.24)

The supremum exists since we assume that f is a bounded and increasing function of the

social interaction forces. That is, the rate of not-turning can be found by calculating the

maximal turning rate for the current state of the 2-particle system and subsequently sub-

tracting the turning rate for the current state of the system. The rate of not turning is

not given by 1 − T (n, vn,m, vm), as the turning rate is not a probability, nor is necessarily

bounded by 1.

To investigate the behaviour of the 2-particle system with direction-dependent commu-

nication mechanisms, we present statistics from 1000 stochastic simulations of the IBM with

direction-dependent communication mechanisms. The mean separation distance and the

mean square displacement (MSD) are the quantities of interest. The mean separation dis-

tance gives the average distance between individuals, and allows for an understanding of

how tightly packed the individuals tend to be. The MSD allows for the diffusivity of the ag-

gregation to be understood. From each simulation, the MSD, ∆x2(t), of one of the particles

is calculated. From this information, the average MSD, 〈x2(t)〉, reveals the diffusive trend

of the system. We also calculate short-time, long-time, and full diffusion coefficients, Dm,

DM , and Df , respectively, from the MSD data. These diffusion coefficients are described in

Sections 5.3 and 5.4. The initial conditions for these simulations place the individuals one

lattice site apart, and are run for 300 timesteps to ensure asymptotic behaviour is visible

in the mean separation distance. The parameters and direction-dependent communication

mechanisms used are chosen to be those parameters that produced complex spatial patterns

in the investigation of the IBM with direction-dependent communication mechanisms (Sec-

tion 3.3). These parameters and the pattern they produce in the IBM are listed in Table

5.4.

In Figure 5.19, the mean separation distance, d(t), is plotted as a function of time for

each set parameter set listed in Table 5.4. Similarly, in Figure 5.20, the MSD of particle 1

is shown for several trajectories (blue curves), and the average MSD, 〈x2(t)〉 is shown using

a thick blue line. The slope of the green line is Dm; the slope of the red line is DM ; and the

slope of the black line is Df . The average mean separation distance, diffusion coefficients,

and diffusion type is summarized in Table 5.5.

The statistics presented in Table 5.5 reveal some characteristics of pattern formation.

For example, using parameters that produce stationary pulses, traveling groups, and zigzag

pulses, the mean separation distance saturates. On the other hand, for ripples, feathers,
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Pattern Submodel λ1 λ2 qr qal qa

(a) Stationary pulse M1 0.2 0.9 2.4 0 2
(b) Stationary pulse M2 0.2 0.9 0.5 0 4
(c) Ripples M5 0.2 0.9 1.1 2 1.5
(d) Feathers M3 0.2 0.9 6.4 0 6
(e) Traveling pulse M1 0.2 0.9 0.5 2 1.6
(f) Traveling train M3 6.67 30 0 2 6
(g) Zigzag pulse M2 0.2 0.9 1 2 6
(h) Breathers M4 0.2 0.9 1 0 2
(i) Traveling breathers M4 0.2 0.9 4 2 4

Table 5.4: Example parameters and patterns for investigation using the 2-particle Eftimie
model. The pattern names will be used to refer to each parameter set.

Pattern 〈d(t)〉 Dm DM Df Diffusion type

(a) Stationary pulse 4.3853 0.0159 0.1287 0.1511 normal
(b) Stationary pulse 4.1860 0.0159 0.1258 0.1450 normal
(c) Ripples increasing 0.0162 0.2269 0.3888 super
(d) Feathers increasing 0.0162 0.2269 0.3522 super
(e) Traveling pulse 5.5860 0.0160 0.1850 0.2693 normal/super
(f) Traveling train increasing 0.0071 0.0110 0.0169 normal/super
(g) Zigzag pulse 4.6233 0.0160 0.1830 0.2711 normal
(h) Breathers increasing 0.0162 0.2020 0.2794 super
(i) Traveling breathers increasing 0.0162 0.2060 0.3074 super

Table 5.5: Mean separation distance and diffusion coefficients for patterns produced by the
IBM. The mean separation distance is calculated by averaging the last 50 time steps of
d(t), and is said to be increasing if saturating behaviour does not appear within 300 time
steps. The type of anomalous diffusion is also stated: super-diffusion, normal diffusion, and
sub-diffusion.
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(a) Stationary pulse 1 (b) Stationary pulse 2 (c) Ripples

(d) Feathers (e) Traveling pulse (f) Traveling train

(g) Zigzag pulse (h) Breathers (i) Traveling breathers

Figure 5.19: Mean separation distance, d(t), for patterns produced by the IBM. Note that
the y-axis has been scaled by 0.1. Parameters are listed in Table 5.4.
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(a) Stationary pulse 1 (b) Stationary pulse 2 (c) Ripples

(d) Feathers (e) Traveling pulse (f) Traveling train

(g) Zigzag pulse (h) Breathers (i) Traveling breathers

Figure 5.20: MSD for patterns produced by the IBM. The blue curves are MSD curves for
individual trajectories and the dark blue curve is the average MSD, 〈∆x2(t)〉. The slope of
the green line is Dm; the slope of the red line is DM ; and the slope of the black line is Df .
Parameters are listed in Table 5.4.
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traveling trains, breathers, and traveling breathers, individuals tend to move further from

neighbours, as indicated by the increasing mean separation distance. The full diffusion

coefficient, Df , qualitatively matches best with the mean MSD for those parameter sets

investigated. This diffusion coefficient is much higher for those patterns with very mobile

individuals, such as ripples and feathers. In these patterns, individuals travel throughout

the entire domain or are shed from a stationary group, respectively. This diffusive behaviour

is suggested in large values of Df . Finally, for those groups that form stationary or traveling

groups have normal diffusion properties, as the average MSD is linear (stationary pulse and

zigzag pulse) or very close to linear (traveling pulse and traveling train). One expects very

small or zero MSD for stationary patterns, and this is likely the case when MSD is measured

for stationary patterns produced by the IBM. This results from the fact that those patterns

may be stationary at the group level, but the individual particles which form these groups

may continue to move within the larger aggregations. For those patterns in which individuals

are very mobile, the average MSD is qualitatively convex. This suggests super-diffusion, i.e.,

a mechanism propelling individuals throughout space. The investigation of the 2-particle

model with direction-dependent communication mechanisms reveals a connection between

mobile patterns and increasing mean separation distance and high diffusion coefficients. It

also reveals a connection between stationary or well-grouped patterns and saturating mean

separation distance and relatively small diffusion coefficients.

5.6 Discussion

In this Chapter, we focused on 2-particle models in efforts to understand the response of

individuals to social interactions. This modelling approach contrasts with that taken in

Chapters 2 and 3, where group-level pattern formation is studied.

In Section 5.2, we reviewed the work of Potts et al., [34], who explicitly solved the anti-

symmetric exclusion process for two particles on a one-dimensional lattice. This process

involves two particles which randomly hop to the left or to the right. The particle’s have

an intrinsic direction bias: they hop together with probability p, and apart with probability

1−p. A master equation for this process describes the time evolution of the joint occupation

probability distribution, P (n,m, t); analysis reveals that the asymptotic behaviour of the

system depends on p. For 0 < p < 1
2
, the distance between the particles grows linearly in

time; when p = 1
2
, the distance grows with the square root of time; and when 1

2
< p < 1, the

distance saturates. Similarly, the asymptotic diffusion coefficient varies with the value of p.
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In Section 5.3, social interactions were added to the anti-symmetric exclusion process.

The anti-symmetric exclusion process already includes a contact repulsion mechanism, by

which individuals would be excluded from the same lattice site. In order to incorporate

repulsive and attractive interactions, the probability of hopping toward each other, p, was

modified to depend on the separation distance, d = m− n, of the two particles. We develop

a master equation for the joint occupation probability, and study it using stochastic simula-

tions. The model behaviour depends on the choice of the interaction function, p(d); however,

the model exhibits a predictable attraction-repulsion behaviour, with the mean separation

distance between the particles approaching a constant. With attraction-repulsion social in-

teractions, the simulations reveal the formation of a group with constant inter-individual

separation, that diffuses normally throughout the domain.

In order to incorporate direction-dependent mechanisms, we added alignment interactions

to the attraction-repulsion interactions in Section 5.4. To incorporate alignment, we consider

the direction of travel of each individual, and we specified the sizes of the social interaction

zones. In the zone of repulsion and in the zone of attraction, the 2-particle system was

assumed to hop according to the anti-symmetric exclusion process with social interactions,

i.e., non-constant p(d); however, if the distance between the two particles places them in

the zone of alignment and if the two particles are traveling in the same direction, then they

are assumed to continue traveling in this direction. This alignment mechanism describes

the tendency of individuals in a group to align their velocity with that of their neighbours

over intermediate distances. Again, a master equation for this process was studied through

stochastic simulations. In comparison to the anti-symmetric exclusion process with only

attraction-repulsion interactions, the inclusion of alignment results in 2-particle groups that

move across the lattice. This behaviour does not appear with only attraction-repulsion

interactions, and is evident in large diffusion coefficients and convex average MSD. The

phenomena that moving groups result from including alignment interactions in this 2-particle

system is consistent with results from the PDE model and IBM model from Chapters 2 and

3.

In Section 5.5, we began by writing a master equation for the 2-particle model with

direction-dependent communication mechanisms. To understand this process, it was neces-

sary to explicitly track the direction of travel of each individual. To write a master equation

for the joint occupation probability, P (n,m, vn, vm, t), we considered a master equation for

each of the marginal distributions, P (n,m, 1, 1, t), P (n,m, 1,−1, t), P (n,m,−1, 1, t), and

P (n,m,−1,−1, t). This leads to a complicated system of master equations, which were sim-
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ulated using the IBM from Chapter 3 with N = 2 individuals. Parameters were chosen as

those parameter sets which produce examples of complex spatial patterns as shown in Figure

3.2. The investigation reveals a relation between mobile patterns and increasing 〈d(t)〉 and

high diffusion coefficients. It also reveals a relation between stationary and well-grouped pat-

terns and saturating 〈d(t)〉 and small diffusion coefficients. The behaviour of the 2-particle

model with direction-dependent communication mechanisms reveals that basic characteris-

tics of group-level pattern formation results from individual-to-individual interactions. In

this chapter, a few first steps towards understanding the relationship between group-level

pattern formation and individual-level social interactions were taken. Solving the master

equations in Sections 5.3, 5.4, and 5.5, following the method of solution in [1,34] remains as

the next step to make this relationship explicit.
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Chapter 6

Discussion

In this thesis, we examined direction-dependent communication mechanisms in the context

of mathematical models for collective behaviour. Direction-dependent communication mech-

anisms are motivated biologically, as there are many species which form aggregations and

communicate using directional means. The importance of understanding the mechanisms

that lead to collective behaviour of groups is twofold: firstly, it is scientifically important

to discover those mechanisms that lead to collective behaviour and group patterns; and

secondly, understanding these group patterns has application to biological controls, and to

robotics and other autonomous systems.

To understand the importance of direction-dependent communication mechanisms, we

reviewed an existing one-dimensional partial differential equation model which incorporated

direction-dependent communication mechanisms. This PDE model was the first collective

behaviour model to incorporate directional communication mechanisms, and pattern forma-

tion in this model was consequently enriched. The framework studied in this PDE model

allows for a wide variety of communication mechanisms to be studied, and a wide variety

of patterns to be linked with particular communication mechanisms. By construction, the

PDE model describes the dynamics of the population density, and does not reveal an in-

dividual’s response to direction-dependent communication. Nonetheless, a wide variety of

analytical techniques allow for pattern formation to studied in great detail, and numerical

simulations reveal a rich model behaviour. This lead to the question as to whether or not

an individual-based model can reproduce the same patterns.

A new one-dimensional IBM with direction-dependent communication mechanisms was

developed in this thesis. Following the ideas presented by Wong, [41], we developed an

individual-based model to study direction-dependent communication mechanisms. Existing
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IBMs are successful in producing spatial patterns, but are unable to produce a wide variety

of patterns observed in nature. The new IBM matches the rich behaviour of the PDE model

by producing complex spatial patterns using a variety of communication mechanisms. The

effects of stochasticity are observed in the IBM, as some individuals escape larger groups.

This added detail is significant as it reveals the behaviour of individuals in response to

communication mechanisms and conspecifics. Moreover, the IBM formulation allows for

changes to be easily made. We have found that revising the social interaction kernels to be

more biologically realistic does not highly impact the qualitative model behaviour. Finally,

the fact that the stochastic individual-based model reproduces the behaviour of the PDE

model across parameter regimes validates the Poisson point assumption, which was necessary

to derive the PDE model from a random walk.

The numerical implementation and simulation of the IBM is a relatively straightforward

process, and consequently an individual-based approach would be fruitful for the investi-

gation of patterns in two- or three-dimensions. A PDE model with direction-dependent

communication mechanisms has been briefly studied in two-dimensions by Fetecau [16]. Ex-

tending the new IBM to two- or three-dimensions may allow for not only new patterns to be

found, but also for a comparison to biological groups in nature.

Another direction for future work is in investigating scale-free interactions and topolog-

ical interactions in models of collective behaviour. In [5], Cavagna et al. measured the

fluctuations of different birds in large flocks of starlings. They found that the range of spa-

tial correlation of behaviour does not have a fixed value; however, the correlation length

scales linearly with the size of the flock (hence the name scale-free). It may be enlightening

to investigate this correlation length using the IBM, as scale-free interactions indicate that

these interactions do not act over a fixed metric distance as in our models, but over a certain

number of neighbours. Moreover, there is evidence that those interactions ruling collective

behaviour depend on the this “topological distance”, i.e, the number of neighbours between

individuals [2]. Finally, linking mechanistic models with topological interactions and PDE

models via a mean-field limit (individual-based model and PDE model) is a new area of

research [15].

Density-dependent speed, which is studied in the Eulerian model literature, is also con-

sidered in our IBM with direction-dependent communication mechanisms. This study is

motivated by the fact that individuals in a group do not always move at a constant speed.

That is, in addition to turning in response to their neighbours, individuals are allowed to

adjust their speed in response to neighbours. As a result of including density-dependent
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movement speeds, we observe group splitting and merging behaviour. Moreover, the turning

rates were found to have an effect on the cohesiveness of aggregations. Large random turn-

ing rates lead to compact stationary groups, and small random turning rates in the absence

of a biased turning lead to loose or dispersing groups. When individuals do not change

direction, but only speed up and slow down in response to neighbours, a compact right-

and a compact left-moving group form and travel across the domain. Since splitting and

merging behaviour is not observed in the IBM with constant movement speed, we conclude

that density-dependent speeds play an important role in group cohesion. It should be noted

that the patterns produced by the IBM with density-dependent speed do not match those

patterns produced by the PDE model; however, there is a qualitative agreement between the

types of behaviours observed. This difference likely results from the differing implementa-

tions of density-dependent speed: in the PDE model, the speed appears inside of the spatial

derivative in the advection term of the PDE; but in the IBM, we allow each individual to

move at the speed prescribed by density-dependent interactions. A full understanding of

the correlated random walk that leads to the PDE model with density-dependent speed is

needed. A similar PDE model with density-dependent speeds but without direction switch-

ing is derived and studied in [6], and may be useful in linking the density-dependent speed

with the individual movement mechanics.

The use of the PDE model and IBM to study the effect of direction-dependent commu-

nication mechanisms on group level pattern formation allows us to link the complex spatial

patterns to animal communication mechanisms. Although the IBM reveals added detail

about the behaviour of individuals, the individual response to conspecifics remains unstud-

ied. To describe explicitly how two individuals respond to each other via direction-dependent

communication mechanisms, 2-particle models are considered. We began our investigation

by reviewing the solution and behaviour of the two particle anti-symmetric exclusion pro-

cess, which was explicitly solved by Potts et al. [34]. In this process, the behaviour of the

model depends on the value of p, the probability that the particles will hop toward each

other. When p > 1
2
, Potts et al. found that the mean separation distance between the

particles saturates, suggesting a balance between contact repulsion and the tendency for the

particles to hop towards each other. When p < 1
2

or p = 1
2
, Potts et al. found that the mean

separation distance grow linearly with time or with the square root of time, respectively. We

added non-local attraction and repulsion social interactions to the anti-symmetric exclusion

process by assuming that the probability of hopping toward each other, p, depends on the

distance between the particles, d. In this case, the behaviour of the 2-particle ensemble
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exhibits stationary groups. The formation of stationary groups is evident in the appearance

of a constant mean separation distance and small diffusion coefficients. As a next step to-

ward studying direction-dependent communication mechanism with 2-particle models, we

added alignment social interactions to the 2-particle model. Incorporating alignment inter-

actions required tracking both the position and direction of travel of the two particles, and

this addition complicated the master equation for the process. Stochastic simulations re-

veal large diffusion coefficients and convex average mean square displacement. This suggest

that the alignment interaction forces are critical for obtaining traveling groups. Finally, to

understand the fully direction-dependent communication mechanisms, we state a system of

master equations. Stochastic simulations reveal that basic characteristics of the complex

spatial patterns are evident in the 2-particle ensemble. For example, using parameters that

lead to stationary patterns in the IBM and PDE model, the 2-particle ensemble tends to

have small diffusion coefficients and has a bounded mean separation distance. On the other

hand, using parameters that lead to patterns with very motile groups, such as feathers or

ripples, we find an increased mean separation distance and large diffusion coefficients. The

use of the 2-particle model framework provides a foundation for further analytical work in

studying direction-dependent communication mechanisms. Potts et al. presents a lengthy,

but straightforward solution to the anti-symmetric exclusion process by introducing a gen-

erating function, using a Laplace transform, and solving the resulting Fredholm integral

equation [34]. By using similar methods, it is likely that solutions to the master equations

described in Chapter 5 can be found. These solutions will likely provide insight into the

effect that direction-dependent communication mechanisms have on pattern formation and

individual interactions.

In this thesis we studied direction-dependent communication mechanisms from three

perspectives: PDE, IBM, and 2-particle model. The work of Eftimie et al. demonstrates

that complex spatial patterns can be explained by considering a variety of communication

mechanisms using only one model. The new IBM developed in this thesis reveals that these

complex spatial patterns are not unique to the PDE model, and the added individual-based

detail shows how individuals move within these groups. The 2-particle model framework

provides further insight into how individuals respond to direction-dependent communication

mechanisms, and provides a foundation for further mathematical analysis of communication

mechanisms in models of collective behaviour.
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