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Abstract

Animal learning has interested ecologists and psychologists for over a century. Mathematical

models that explain how animals store and recall information have gained attention recently.3

Central to this work is statistical decision theory (SDT), which relates information uptake in

animals to Bayesian inference. SDT effectively explains many learning tasks in animals, but

extending this theory to predict how animals will learn in changing environments still poses a6

challenge for ecologists. We addressed this shortcoming with a novel implementation of Bayesian

Markov Chain Monte Carlo (MCMC) sampling to simulate how animals sample environmental

information and learn as a result. We applied our framework to an individual-based model9

simulating complex foraging tasks encountered by wild animals. Simulated “animals” learned

behavioral strategies that optimized foraging returns simply by following the principles of an

MCMC sampler. In these simulations, behavioral plasticity was most conducive to efficient for-12

aging in unpredictable and uncertain environments. Our model suggests that animals prioritize

highly concentrated resources even when these resources are less available overall, in line with

existing knowledge on optimal foraging and ideal free distribution theory. Our innovative com-15

putational modelling framework can be applied more widely to simulate the learning of many

other tasks in animals and humans.
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Introduction18

Animals do not know everything about the environments they live in (Fagan et al., 2013), and

even if they did, the world is becoming more unpredictable every day (Masson-Delmotte et al.,

2021). While evolutionary adaptations are typically too slow to match these changes (Bell and21

Collins, 2008; Chevin et al., 2010; Merilä and Hendry, 2014), many animals can exhibit multiple

behavioral responses to a changing environment without modifying their genetic code in a phe-

nomenon known as behavioral plasticity (DeWitt et al., 1998; Schmidt et al., 2010; Snell-Rood,24

2013; Wong and Candolin, 2015). Examples of behavioral plasticity range from temporal adjust-

ments in the phenology of frogs in the temperate forests of the eastern United States (Gibbs and

Breisch, 2001) to the settlement of urban areas by birds in Europe (Møller, 2009). The ability to27

incorporate external information into a revised behavioral strategy may confer a fitness benefit to

animals living in uncertain environments (Donaldson-Matasci et al., 2008; Parrish, 2000), but the

conditions in which behavioral plasticity is adaptive are not well-understood (Wong and Can-30

dolin, 2015). Most forms of behavioral plasticity involve learning (Snell-Rood, 2013), which has a

rich theoretical background (Pearce, 2008) that could provide important context to the problem.

Our understanding of how animals learn is largely derived from laboratory studies of simple33

tasks (Pearce, 2008), which elucidate important cognitive mechanisms for learning but do not

particularly resemble the natural world. This rich field of study can be traced back to Pavlov’s

work on conditioning and associative learning (Harris and Bouton, 2020; Pavlov, 1927), which36

spawned theoretical and experimental work assessing the formation and extinction of these as-

sociative relationships, along with an animal’s ability to categorize stimuli into different groups

(Katz and Wright, 2006; Pearce, 1987; Rescorla and Wagner, 1972; Spence, 1936). As food is often39

used as a positive reinforcer for animals (Pavlov, 1927), it follows logically that “foraging” tasks

can effectively display how animals learn to prioritize different food resources based on their

relative reward (Krebs et al., 1978; Lea et al., 2012). Many of these conclusions draw heavily42

from optimal foraging theory (Charnov, 1976), generating a connection between cognitive and
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spatial ecology. When the proper data are available, animal movement and foraging processes

are among the easiest methods for characterizing memory and learning in wild animals (Fagan45

et al., 2013; Lewis et al., 2021). The mechanistic clarity of laboratory experiments and the realism

of animal movement models are difficult to combine into one analysis, but individual-based sim-

ulation modelling may be an effective tool for generating realistic patterns with clear mechanistic48

origins (DeAngelis and Diaz, 2019; Murphy et al., 2020; Tang and Bennett, 2010).

Cognitive psychologists and ecologists have identified a striking resemblance between learn-

ing and Bayesian inference. This is most clear when couched in terms of statistical decision51

theory (SDT; Berger, 1985). Broadly speaking, SDT is a mathematical framework describing the

optimal way animals or humans should make decisions according to learned information (Dall

et al., 2005; Dayan and Daw, 2008; Schmidt et al., 2010). A key component of SDT is the use54

of Bayes’s theorem to represent how prior knowledge is updated through learning to produce

a refined, posterior distribution of belief (Berger, 1985). Bayes’s theorem and its key principles

have been used to explain many learning processes (Griffiths et al., 2001; McNamara et al., 2006),57

including Pavlovian conditioning (Courville et al., 2006), mate choice (Castellano et al., 2012;

Luttbeg, 1996), and optimal foraging (Green, 1980, 2006; Valone, 2006). The application of SDT

to optimal foraging problems has inspired the term “Bayesian foraging”, which describes how60

animals update their foraging preferences in a decision-theoretic manner (Green, 1980; Valone,

2006). Most of this work has focused on small-scale foraging tasks, but in reality, foraging is a

very complex process influenced by many cognitive cues (Fagan et al., 2013). Extending SDT to63

a model that wholly encompasses animal movement and foraging will produce results that are

more realistic and applicable to vulnerable wildlife populations.

Bayesian Markov Chain Monte Carlo (MCMC) sampling is a simple algorithm that we can66

use to simulate how animals learn. MCMC sampling uses a stochastic approach to calculate

the posterior distribution of a set of parameters based on prior distributions and data supplied

by the user (Raftery and Lewis, 1992). When applied to learning, these parameters represent69

biological qualities of an animal, and the data represent information collected by animals through
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empirical experience. The structure of the prior and posterior distributions reflects the relative

“belief” an animal possesses in a certain behavioral strategy (i.e., combination of parameters)72

before and after incorporating “data”, respectively. The data enforce revised posterior belief in

certain behavioral strategies through an objective function, which depends on the parameters and

may also be stochastic. While the objective function in a MCMC sampling procedure is typically75

a probability distribution function (or likelihood function) of some sort, it does not need to be

continuous nor does it need to integrate to 1 over the sampled domain. Instead of using MCMC

to find the global optimum of a likelihood function, we can use it to identify behavioral strategies78

that result in globally optimal fitness. In this example, the objective function would represent

the net energetic yield afforded by a specific strategy. Under this framework, MCMC simulates

how “animals” sample information by executing the task and evaluating the energy afforded81

by different behavioral strategies (i.e., parameter values). Behavioral strategies that consistently

produce less favorable objective function values are less likely to accumulate probability mass in

the posteriors.84

One complete run of the MCMC algorithm, which we henceforth refer to as a “chain”, con-

sists of many iterations. In each iteration the sampler draws random parameter values and calls

the objective function at those values, either accepting or rejecting the parameters based on the87

function value. The number of iterations in a chain has important mathematical and biologi-

cal interpretations. Chains with more iterations allow for more extensive modification of the

priors, which biologically represent a simulated animal’s relative belief in different behavioral90

strategies. With that in mind, we suggest that the number of iterations in a chain represents the

amount of information the animal gathers in its environment. We can more effectively ensure

that the animal consistently develops the same posterior belief in identically parameterized, but93

randomly independent, chains when these chains have more iterations (this is mathematically

akin to ensuring the algorithm converges; Cowles and Carlin, 1996; Raftery and Lewis, 1992).

Some MCMC algorithms leave iterations at the beginning of the chain out of the posterior dis-96

tribution, classifying them as “burn-in” iterations. The burn-in period was designed to enhance
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chain convergence (Cowles and Carlin, 1996) but by omitting the behavioral strategies employed

at the beginning of the simulation process, the posterior distributions no longer include infor-99

mation the animal gathered during the unrealistically “naive” (given the structure of the priors)

stages of learning.

During the sampling process, MCMC allows for the acceptance of suboptimal objective func-102

tion values (i.e., lower than previous values) to search the parameter space more completely and

avoid local optima. The rate at which these suboptimal values are accepted can be likened to the

range of behavioral strategies an animal may try in a given environment. Animals that accept a105

wide variety of strategies, even when they may not be optimal, could be thought of as displaying

behavioral plasticity. Consistently following the optimal behavioral strategy could be thought

of as displaying environmental canalization, a term used to characterize a lack of phenotypic108

variation in reaction to environmental change (Gaillard and Yoccoz, 2003; Gibson and Wagner,

2000; Liefting et al., 2009). The simplest way to enforce this in the model is to introduce an

exponent k > 0 which is applied to the objective function during sampling. We can think of k111

as an index of canalization, implying that lower values of k correspond to high behavioral plas-

ticity. Animals that possess high plasticity frequently sample many behavioral strategies amid

environmental uncertainty in what is commonly referred to as bet-hedging (Donaldson-Matasci114

et al., 2008; Nevoux et al., 2010).

We expanded on existing implementations of SDT by coupling an individual-based simula-

tion model for animal movement with memory (Avgar et al., 2013) to a Bayesian model simu-117

lating how animals learn to forage optimally. Our algorithm incorporates an objective function

measuring the net energetic intake of a foraging bout, given a set of parameters controlling ani-

mal behavior. To this end, the posterior distribution of these parameters obtained after sampling120

reflects what simulated animals learned about the relative optimality of different foraging tech-

niques. We tested how effectively animals adjusted to unexpected and abrupt changes in the

distribution and abundance of resources on the landscape. We found that animals with higher123

behavioral plasticity performed more efficient foraging returns after these abrupt changes, but
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were less efficient when the environment did not change. Our framework displays how SDT can

be extended to the simulation of realistic ecological processes that, if formulated correctly, can126

make effective predictions when data are lacking.

Methods

The learning model129

We used Bayesian Markov Chain Monte Carlo (MCMC) sampling to simulate how animals learn

to adjust their behavior based on indicators of success. The effectiveness with which an animal

executes a certain task was quantified by an objective function f . Animals “sample” different132

parameter values (i.e., behavioral strategies) and evaluate their optimality by calculating f ; de-

pending on the value of f , the animal may be more or less likely to attempt similar strategies as

represented by the posterior distribution of behavioral strategies.135

We parameterized the MCMC sampler in a way that produced consistent and biologically

realistic results. We used uniform priors for each of the behavioral parameters under the as-

sumption that animals were not initially biased towards any strategy. Using relatively uninfor-138

mative priors necessitated that we added a burn-in period to our chains, and we chose to omit

the first Nburn = 500 iterations of each chain from the posterior distribution to this end. Choos-

ing the number of iterations per chain (including burn-in), Niter, was a careful optimization of141

the trade-off between computational expense and consistency. Chains with more iterations take

longer to simulate but they also more accurately represent what simulated animals have learned.

We analyzed chains of different sizes to evaluate the fewest iterations necessary to produce con-144

sistent posterior distributions, finding that Niter = 2000 optimized the trade-off (see Appendix

B for more detail). This produced posterior distributions with Niter − Nburn = 1500 parameter

values. We also tested many different values for k, the exponent applied to f during sampling:147

k = 5, 10, 20, 50, 100, 200, 500, 1000. Parameter values used in this study are summarized in Table

1. We ran our algorithm in Julia 1.6.2 using the Turing library, which offers a number of different
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Par Description Value
MCMC algorithm parameters

Niter Number of MCMC iterations per chain 2000
Nburn Number of iterations in burn-in period 500

k Exponent of objective function f Many values
Behavioral parameters

β Degree of reliance on memory Not fixed
γ Likelihood to make long navigations Not fixed
q Default expectation of habitat quality Not fixed
h Relative preference for resource Q1 Not fixed

Movement parameters (see Appendix A)
Nr Number of potential points of interest simulated 1000
λ Exponent of C values when choosing point of interest 10
ρ Average step length on navigations 2
κ von Mises angular correlation parameter for navigations 10

Objective function parameters
Ttrain Length of training portion of each track 1000
Ttest Length of test portion of each track 1000

v Energetic loss per 1 cell length of movement 0.05
Navg Number of tracks incorporated into one f call 5

Landscape parameters (see Appendix A)
Q Threshold for landscape patches 0.6 or 0.9
dL Rate of resource depletion per time step 1.0
rL Recovery rate of depleted resources per time step 0.025

Table 1: Description of model parameters. The four parameters under the section “Behavioral
parameters” are incorporated into the objective function f , and sampled in the Bayesian MCMC
algorithm.
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MCMC samplers. We used a static sampler that did not require tuning or calculating a proposal150

function, which typically requires a function gradient (Sengupta et al., 2015). Parameters with

infinite support were log-transformed and bounded on finite intervals determined by assessing

their biological meaning.153

Application of the model to foraging

We tested our modelling framework with an optimal foraging task involving the individual-

based simulation of animal movement across a continuous-space landscape. Our individual-156

based model (IBM) for movement is heavily inspired by Avgar et al. (2013) and contains four

parameters mediating the behavioral strategy of simulated animals. We provide a summary of

the model and parameters below, but see Appendix A for a more detailed explanation of the159

process using the ODD (Overview, Design Concepts, and Details) protocol (Grimm et al., 2006).

Simulated animals move on a landscape characterized as a a 100 x 100 arbitrary length unit

(lu) square in two-dimensional continuous space. The landscape has two independently dis-162

tributed “resources” that provide an energetic benefit to the animal. In the interest of producing

movements similar to empirically observed location data, animals take discrete-time “steps” ev-

ery 1 aribtrary time unit (tu). Animals perceive, remember, and recall the quality of previously165

visited foraging patches to make informed movement decisions. We make four key assumptions

about how animals do this, listed below:

(A1) Animals exhibit a preference for one of the two resources on the landscape and bias their168

movements accordingly.

(A2) Animals remember the resource density of areas they have previously visited, but the ani-

mals’ reliance on memory decreases over time.171

(A3) All points that the animal has not visited are perceived by the animal as having equal value,

regardless of their spatial or temporal position.
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(A4) Animals are more likely to navigate to nearby points, all else held equal.174

The foraging quality of any point x at any time t, which we denote Q(x, t), ranges from 0 to

1 and is composed of two independent foraging resources, Q1(x, t) and Q2(x, t). While Q(x, t) =

(Q1(x, t) + Q2(x, t))/2 across the landscape, we allow animals to exhibit “habitat selection” for177

the different resources on the landscape (Assumption A1). The behavioral parameter h ranges

from 0 to 1 and mediates the animal’s relative preference for Q1 and Q2. Simulated animals

perceive Q1 and Q2 as independent entities, and when computing the animal’s perceived foraging180

quality for any point x and time t, we use Q̃(x, t) = hQ1(x, t) + (1− h)Q2(x, t) as opposed to

Q(x, t) (Figure 1).

Simulated animals perceive new information about resources on the landscape and encode183

this information into spatial memory. Many different animals use memory to guide their foraging

movements (Bracis et al., 2018; Clayton and Dickinson, 1998; Panakhova et al., 1984; Potts and

Lewis, 2016; Ranc et al., 2021; Schlägel and Lewis, 2014), but heavy reliance on spatial memory is186

accompanied by numerous energetic costs (Fagan et al., 2013). The behavioral parameter β ≥ 0

quantifies the extent to which simulated animals rely on their memory of previous foraging

experiences. As β increases the animal relies less on its memory, potentially a strategy to adapt189

to temporally variable environments (Fagan et al., 2013). We note that unlike memory decay, a

neurological process (Thomas and Riccio, 1979), the mechanism displayed here represents the

animal’s conscious choice not to rely on the memory of previous experiences.192

Animals make a naive, uninformed “guess” about the resource quality of locations they have

not visited, and per Assumption A3, this guess is constant across space and time. Specifically,

any location will be assigned the value q ∈ [0, 1] as long as that location remains unvisited by195

the animal. Larger values of q suggest that the animal is more “optimistic” about the quality of

unexplored areas (Avgar et al., 2013; Berger-Tal and Avgar, 2012), and will more frequently visit

these areas as a result.198

Once the animal generates an expectation of resource quality across the landscape, it must

choose a location to navigate to. Assumption A4 states that animals are more likely to navigate

10



Figure 1: Schematic describing the generation of C(x, t), the animal’s estimation of resource
quality across the environment. The animal weights two independently distributed resources
and incorporates newly perceived information into C based on the perception function p(x, xt).
Note the incremental updating of C as the animal moves to a new location (xt, pictured in blue
on the bottom right).
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towards nearby points than faraway points. This idea follows logically from the marginal value201

theorem (Charnov, 1976), which considers the energetic cost of travel to other patches. We in-

cluded behavioral parameter γ ≥ 0 to quantify this relationship. As γ increases, the probability

that the animal will navigate to a faraway point decreases; even if the animal believes there are204

resources far away, it may opt for nearby resource patches instead, a tactic many animals adopt

as a risk avoidance mechanism (Gehr et al., 2020).

The animal’s perceived resource quality for any point x and time t, denoted C(x, t), depends207

on these four assumptions. This function consists of a weighted average of three quantities:

newly perceived information (weighted by perception function p(x, y)), memorized information

(weighted by memory function m(t)), and the naive expectation q.210

p(x, y) = exp
(
−d(x, y)

ρ

)
, (1)

m(t) = exp(−βt), (2)

C(x, t) = p(x, xt)Q̃(x, t)︸ ︷︷ ︸
perception

+

(1− p(x, xt))
(

m(1)C(x, t− 1)︸ ︷︷ ︸
memory

+ (1−m(1))q︸ ︷︷ ︸
expectation

)
. (3)

The perception function relies on the assumption that animals perceive nearby information

more accurately than faraway information (Avgar et al., 2015; Fagan et al., 2017; Fletcher et al.,

2013), where d(x, y) is the distance between x and y and ρ is the animal’s average movement213

speed in lu/tu. A positive association between movement capability and perceptual range has

been documented across many animal taxa (Kiltie, 2000; Møller and Erritzøe, 2010).

Calculating the objective function216

We designed an objective function f measuring the energetic benefit afforded by a certain be-

havioral strategy. We divided these simulated foraging bouts into “training” and “test” sections
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of durations Ttrain and Ttest, respectively, and only measured f over the test section. Avgar et al.219

(2013) made a similar correction to allow animals to develop an initial memory of their simulated

landscape, producing movement paths that resemble empirically collected animal location data.

We subtracted the animal’s total resource intake across the simulation by the energetic loss as222

a result of movement, calculated as the animal’s total distance traveled multiplied by a propor-

tionality constant v ≥ 0 (Table 1). Our function f consists of an average of Navg independent

movement tracks so it effectively characterizes the expected value of any parameter combination.225

We define fi, the net energetic intake from the ith of these tracks, by summing the energetic gains

collected at each location xt along the animal’s path:

fi(β, γ, q, h|Q) =
∑Ttrain+Ttest

t=Ttrain+1 Q(xt, t)− v ∑Ttrain+Ttest
t=Ttrain+1 d(xt, xt−1)

Ttest
, (4)

f (β, γ, q, h|Q) =
1

Navg

Navg

∑
i=1

fi(β, γ, q, h|Q). (5)

Scenarios of environmental change228

We randomly generated spatially autocorrelated resource landscapes (see Appendix A for further

detail) and used them to simulate abrupt landscape-level changes in the environment. Bayesian

inference allows for the iterative updating of prior expectations based on previous analyses (El-231

lison, 2004). The posterior distributions of our behavioral parameters represent knowledge ac-

cumulated by a simulated animal, which we can use as more “informative” priors for a second

MCMC chain. Each of our “scenarios” of environmental change contains two stages, where each234

stage has a unique Q1 and Q2 (Figure 2). The scenarios we generated incorporate two “types” of

landscape, which can be visually compared in the first chain of Scenario A (Figure 2). Here, Q1 is

much more abundant and widely distributed than Q2, but Q2 is richer than Q1 in the small area237

where it can be found. Scenario A serves as a “control” where the environment does not change;

we would expect the animal to identify an optimal strategy and retain this strategy for both
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chains. In Scenarios B and C, only one of the resources switches between being widely abundant240

and locally available (the difference being the directionality of this change), and in Scenario D,

both resources swap.

We ran the MCMC algorithm with each of the four scenarios and a suite of k values (5, 10, 20,243

50, 100, 200, 500, 1000) to evaluate how these quantities affected optimal foraging behavior. For

each value of k and scenario, we ran algorithm 12 independent times. We obtained posteriors

for the first and second chains of each run for the four parameters β, γ, h, and q, along with a246

posterior distribution of fi values (1500 iterations after burn-in × 5 fi per f call × 12 chains =

90000 total fi calls) for each k and scenario.

Results249

Posterior distribution of parameters

Under the same environmental circumstances, 12 independently simulated MCMC runs pro-

duced similar posterior distributions, suggesting that Niter = 2000 and Nburn = 500 is sufficient252

for convergence (a subset of these are displayed in Figure 3). In most circumstances, simulated

animals displayed a relatively “pessimistic” expectation of unvisited food patches, as suggested

by posterior distributions concentrated around low values of q. Posterior distributions of β were255

relatively spread out across all values, suggesting that long-term reliance on memory only has

a minimal advantage over short-term reliance in these simulations. Simulated animals avoided

long-distance navigations, opting instead for values of γ close to 1 frequently (Figure 3). Most258

notably, though, animals simulated in Scenario A (Figure 2) exhibited a strong preference for

resource Q2, which was much less abundant across the landscape than Q1. This is indicated by

posterior distributions for h concentrated around lower values.261
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Figure 2: Different scenarios of environmental change used in our simulations. Scenario A is
a “control” where the environment, composed of two resources Q1 and Q2, does not change at
all. In Scenarios B and C, Q1 stays the same, but Q2 becomes more or less abundant than Q1,
respectively. In Scenario D, the distributions of Q1 and Q2 “swap”.
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Figure 3: Posterior density plots for one independent runs of the MCMC algorithm, taken from
the first chain of Scenario A (see Figure 2) with k = 10. Greater probability mass at certain
parameter values indicates higher belief in that value optimizing the net energetic gain function
f . Note, in particular, the animal’s preference for resource Q2, which in this case is much less
widely available but provides a larger energetic benefit than Q1 where it can be found (Figure 2).
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Figure 4: Example violinplots detailing the distribution of objective function fi, which represents
the net energetic gain from a simulated animal foraging bout. These two violinplots are taken
from the second chain of Scenario A (see Figure 2), with k taking on two different values.

Posterior distribution of objective function values

Both the scenario of environmental change and the MCMC parameter k affected the second

chain’s posterior distribution of fi values. Typically, the spread of these distributions increased264

as k decreased, especially in Scenario A, where they appear similar to delta functions at k = 500

and k = 1000 (Figure 4). In scenarios where the environment changed dramatically (e.g., Scenario

D; Figure 2), these distributions took on different shapes, sometimes becoming bimodal (Figure267

5).

More specifically, the effect of MCMC parameter k on the distribution of objective function

fi values depended on the scenario of environmental change (Figure 6). In Scenario A (Figure270

2), simulated animals performed more consistently and efficiently with large values of k than

with small k. In Scenario B, k had a much smaller effect on foraging success than Scenario A,

although the spread of fi values was larger with smaller k (Figure 6). The posterior distributions273

of fi from Scenario C resemble those from Scenario A at low k, but appear to take on a skewed,

slightly bimodal shape at higher k. In Scenario D, intermediate values of k (k = 100 and k = 200)

17



Figure 5: Example violinplots detailing the distribution of objective function fi, which represents
the net energetic gain from a simulated animal foraging bout. These two violinplots are drawn
from the second chain of Scenarios A and D (Figure 2), respectively, with k = 200 for each.

produced foraging bouts that were, on average, more efficient than at large values of k (Figure276

6). The distribution of fi values was distinctly bimodal with large k, and as k increased, more

probability mass was concentrated in the second, lower mode.

Discussion279

Predicting how animals will adjust to environmental change is an important but complex ecolog-

ical problem. We developed a Bayesian model that simulates how animals sample information

about their environments to develop a posterior distribution of optimal foraging behavior. Our282

model builds on statistical decision theory, which has long been used to explain how animals

learn from a Bayesian perspective (Berger, 1985; Dall et al., 2005; McNamara and Houston, 1980).

We applied our learning model to a complex, continuous-space foraging task to be completed by285

simulated spatially informed foragers (Avgar et al., 2013). In the presence of two independently

distributed resources with equal energetic return, animals simulated in our model prioritized

resources that were concentrated within small, sparsely distributed patches. Animals that ex-288
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Figure 6: Effect of MCMC parameter k on foraging efficiency in simulated animals under four
different scenarios of temporal environmental change (see Figure 2 for detail on each scenario).
Each individual violinplot represents a sample of 90000 fi values (12 independent runs of MCMC
× 1500 f values per run × 5 fi values per f call) representing the net energetic gain from a single
simulated movement track. The red line represents the mean of all fi values from each k value.
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hibited canalized behaviour displayed consistently efficient foraging returns in temporally pre-

dictable environments, but environmental canalization became maladaptive when we introduced

sudden, unpredictable changes to the landscape. Our results suggest that Bayesian MCMC can291

be used to simulate how animals, and potentially even humans, learn a wide variety of tasks in

an ever-changing world.

When faced with the choice of two resources, simulated animals chose the resource that was294

available in smaller, but more heavily concentrated patches (Figure 3). We expected to observe

a preference for the more abundant Q1, but our model showed that they instead opted for the

less abundant but richer Q2. This finding suggests that simulated animals occupy areas with the297

highest possible habitat suitability, a key principle of ideal free distribution (IFD) theory (Cantrell

et al., 2007; Fretwell and Lucas, 1969). Many patterns predicted by IFD theory can be seen in our

results even though our IBM did not incorporate competition between individuals (this could be300

an interesting topic for future work). Specifically, IFD theory predicts that individuals residing

in poor habitat will adjust for the lack of resource abundance by adopting larger home ranges

(Haché et al., 2013). Simulated animals in our model centralized their movements around small303

plentiful resource patches, producing smaller home range sizes than individuals that foraged on

less concentrated resources. Similarly, the resource dispersion hypothesis predicts that animals

will occupy larger home ranges when resources are less spatially concentrated (Macdonald, 1983;306

Macdonald and Johnson, 2015). Increasing the speed or breadth of resource depletion or further

decreasing the spatial availability of these concentrated resources could modify this relationship.

The wide variety of behavioral strategies adopted by simulated animals with high behavioral309

plasticity during sampling produced variable energetic outcomes. Behavioral plasticity allows

animals to exhibit a variety of foraging strategies simply as a result of learning and adjusting

to new environmental drivers (Parrish, 2000). Animals with highly canalized behavior (i.e., low312

plasticity) would be expected to perform one foraging strategy consistently (Gaillard and Yoccoz,

2003; Snell-Rood, 2013; Wong and Candolin, 2015), and we frequently saw that in our simulations.

This is also unsurprising from an analytical perspective, since k (specificity) also resembles the315
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number of “clones” used in data cloning algorithms (Lele et al., 2007). This consistency also

suggests that there is minimal stochastic variation in the value returned by our objective function

fi when our behavioral parameters were held constant.318

Our simulations strongly suggest that behavioral plasticity is adaptive when the environment

changes dramatically and unexpectedly. Animals simulated in temporally constant environments

had unimodal distributions of energetic return, but those simulated in temporally unpredictable321

environments had a second mode centered around a lower energetic intake (Figure 5). The

latter group of simulated animals foraged efficiently until the distribution of resources suddenly

changed, rendering the original strategy suboptimal. Animals with high behavioral plasticity324

shifted their resource preferences depending on the environment, for better or for worse (Dunn

et al., 2020; Parrish, 2000; van Baaren and Candolin, 2018). Animals with very low behavioral

plasticity continued to forage according to their initial, now suboptimal, strategy, while animals327

with intermediate levels of behavioral plasticity adjusted their foraging strategies more effectively

(Figure 6). Animals with very high behavioral plasticity performed a diverse array of foraging

strategies, many of which were too inefficient to produce optimal foraging returns.330

While behavioral plasticity is typically considered an adaptive trait, some animals suffer from

it. Ecological traps are resources that appear beneficial to animals but, in reality, do not confer a

fitness benefit (e.g., mayflies lay their eggs on asphalt because it reflects light similarly to water;333

Kriska et al., 1998). Ecological traps have become more frequent in the Anthropocene due to the

proliferation of man-made novel objects in natural environments (Robertson and Chalfoun, 2016).

A typical consequence of behavioral plasticity is an increased likelihood to explore unfamiliar336

stimuli (Mettke-Hofmann et al., 2009; Snell-Rood, 2013), which is believed to associate behavioral

plasticity and vulnerability to ecological traps (Robertson and Chalfoun, 2016). The results from

our simulation study corroborate empirical evidence that environmental canalization can be more339

effective than behavioral plasticity in some environments.

Translocated animals represent an effective way to test our model, displaying behavior simi-

lar to our simulations. Animal translocation and reintroduction protocols have many purposes,342
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ranging from the displacement of potentially dangerous animals (Milligan et al., 2018) to the

restoration of populations and ecosystems (Polak and Saltz, 2011; Seddon et al., 2007). Translo-

cated animals are abruptly brought to entirely new environments where they must learn to345

forage optimally or face heightened mortality risk. The nature of these protocols makes them

an effective real-life test for our model, and many of the predictions offered by our model are

verified from translocation studies. Translocated elk (Cervus canadensis) displayed different for-348

aging behavior depending on the environmental conditions in their original home range and the

environmental change they underwent (Falcón-Cortés et al., 2021). Specifically, elk translocated

between two very different environments (resembling our Scenario D) were more exploratory351

and less reliant on memory than those translocated between similar environments, suggesting a

shift in behavior from their original home ranges (Falcón-Cortés et al., 2021). As another case

study, greater prairie-chickens (Tympanuchus cupido) typically sought out habitat similar to that354

of their natal ranges, suggesting a strong prior preference for resources found in their old envi-

ronments (Kemink and Kesler, 2013). Here, canalization was detrimental to the birds’ survival,

adding support to the pattern observed in panel D of Figure 3. Translocations and reintroduc-357

tions are frequently practiced across a wide array of animal taxa, but they are still risky and

unpredictable (Berger-Tal and Saltz, 2014). The principles drawn from our analysis provide an

improved forecast for the efficacy of these protocols in different ecological systems.360

Conclusion

We developed a modelling framework that innovatively applies the principles of Bayesian statis-

tics to animal foraging and learning. Much of what we currently know about animal learning363

comes from manipulative experiments conducted with captive animals (Pearce, 2008). Many of

these studies have been critical for unearthing the mechanisms behind animal cognition, mem-

ory, and learning (Pavlov, 1927; Rescorla and Wagner, 1972), but they do not replicate the con-366

ditions wild animals experience. By incorporating the prevailing mathematical theory behind
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animal learning, our modelling framework fills this gap. Our results with respect to continuous-

space foraging align with optimal foraging theory (Charnov, 1976), ideal free distribution theory369

(Fretwell and Lucas, 1969), and prevailing knowledge on behavioral plasticity (Robertson et al.,

2013; Wong and Candolin, 2015). With that being said, our model for learning is general enough

that it need not be confined to optimal foraging. Specifically, any problem that can be char-372

acterized in the form of an objective function and a set of parameters representing behavior is

tractable for our framework. This could include movement on different spatial or temporal scales,

social learning, or communication. Even more thought-provoking is the potential for our mod-375

elling framework to predict how humans learn and make decisions. While the decisions made

by animals can affect the individual’s fitness and survival, human decisions have the potential

to reverberate much more widely, which has become even more apparent during the COVID-19378

pandemic (Bavel et al., 2020). Through these potential applications and more, our computational

modelling framework has the capacity to address challenging problems in cognitive science.
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Appendix A: ODD Protocol

Purpose

We developed a model heavily influenced by Avgar et al. (2013) to simulate the movement of387

spatially informed foragers. The model includes four parameters that, when combined, quantify

an animal’s foraging strategy. These parameters are intended to measure behaviorally plastic

qualities of an animal as opposed to genetic or morphological traits. We assessed the adaptive390

value of different foraging strategies using a net energetic gain metric, which weighs the animal’s

resource intake against the energetic cost of movement. We do not specifically liken the model

to any animal taxon, but we note that many common behavioral processes (e.g., migration and393

sociality) are not included in the model.

State variables and scales

The model consists of one individual (henceforth referred to as an “animal”) that moves through-396

out a bounded spatial landscape. The animal performs discrete-time, continuous-space move-

ments at constant temporal intervals of 1 arbitrary time unit (tu). The landscape is a 100 x 100

arbitrary length unit (lu) square in two-dimensional space. Each spatial point on the landscape399

x and time index t has a resource quality Q(x, t) ∈ [0, 1] representing the energetic value of

resources at that point. For mathematical convenience, we formulated Q(x, t) as a piecewise

constant function; all x in any 1x1 lu “grid cell” have the same value of Q(x, t) at any time t. To402

prevent animals from getting “trapped” in corners or boundaries of the landscape, we assume

that landscapes have wrap-around boundaries (e.g., if the animal moves far enough to the left, it

will eventually end up on the right side of the grid).405

The landscape has two unique resources that are added together to produce the total resource

quality Q(x, t) for each point and time. We define Q1(x, t) and Q2(x, t) to be the quality values

for the first and second resources at point x and time t, respectively. Both of these resource408
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functions can take on values between 0 and 1, so to ensure that Q(x, t) is defined properly, we

set Q(x, t) = (Q1(x, t) + Q2(x, t)) ∗ 0.5 for every point x and time t.

We incorporated depletion-recovery dynamics to the landscape to ensure animals would be411

incentivized to move. When the animal visits any point in a grid cell, it consumes and depletes

that cell’s resources. Specifically, we decrement Q1(x, t) and Q2(x, t) by resource depletion pa-

rameter dL for every point x in the cell the animal visits at time t. If dL is greater than the resource414

value at that time, the cell is depleted entirely and is assigned a resource value of 0. Each de-

pleted resource recovers by rL units each time step until reaches its original, pre-depletion value.

We fixed dL and rL for all simulations (Table 1).417

Process overview and scheduling

We tracked information storage in simulated animals using C(x, t), which represents the animal’s

estimation of resource quality for each point and time. As the animal perceives and remembers420

new information through movement, C is updated. The animal moves by choosing a “point of

interest” to navigate to based on C. Points of interest may take more than 1 tu to reach, reflecting

the numerous timescales at which animals make movement decisions (Blackwell et al., 2016;423

McClintock et al., 2014).

Design concepts

Fitness: Simulated animals perform the most basic version of “fitness-seeking” in that they search426

for points with a higher concentration of resources. Following Assumption A1, animals exhibit

“habitat selection” for the different resources on the landscape. We introduce the parameter

h ∈ [0, 1] to quantify this relationship. When the animal visits a new location, it stores the429

value of that location as Q̃(x, t) = hQ1(x, t) + (1− h)Q2(x, t) rather than Q(x, t) (Figure 1). Per

Assumption A4, animals will be more likely to navigate to nearby points, as this minimizes lo-

comotive cost as well as the opportunity cost of navigating through potentially resource-poor432
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habitat on the way to a faraway point of interest.

Sensing: Animals are not omniscient and must obtain information via perception. Typically,435

animals perceive nearby information more accurately (Avgar et al., 2015; Fagan et al., 2017).

Mathematically, we formalize this using a perception function p(x, y). This function measures

how accurately (ranging from 0 to 1) an animal located at x perceives information about y. We438

chose an exponential decay function (similar to Avgar et al., 2013) to represent this relationship:

p(x, y) = exp
(
−d(x, y)

ρ

)
, (A1)

where d(x, y) is the distance between x and y, accounting for wrap-around boundaries. We as-

sume that the animal’s perceptual ability increases with ρ, the parameter governing the animal’s441

locomotive capability.

Memory: Assumption A2 states that the animal’s reliance on memory decreases as the time since

the formation of that memory increases. Mathematically, we used an exponential decay function444

to represent this (similarly to Avgar et al., 2013). The function m(t) ranges between 0 and 1

and quantifies the animal’s reliance on memory as a function of how long ago the memory was

formed. Simply put, m(t) = exp (−βt). If β = 0, the animal effectively has an infinite memory,447

and as β becomes infinitely large, the animal begins to neglect its memory entirely.

Prediction: The animal estimates the resource quality at any point on the landscape using per-450

ception and memory, but if it has never visited a location on the grid, it must still make a naive

“guess” about the resource quality there (Avgar et al., 2013; Berger-Tal and Avgar, 2012). As-

sumption A3 states that this guess is constant across space and time; in other words, the animal453

will treat all unvisited points equally throughout the simulation. We can represent this guess

with q ∈ [0, 1]. Larger values of q will result in more exploratory movement as animals assign

higher value to unvisited areas.456

26



Figure A0: Flowchart describing the individual-based simulation model for animal movement.
At each time step, animals update their perception of the environment C, occasionally using it
to choose a point of interest (POI) to navigate to. This navigation can take any number of time
steps, as the animal does not typically stop navigating until it reaches the point.

Stochasticity: Animal movement paths are stochastic, and as a result animals will not always visit

the patch that confers the highest expected benefit (i.e., the highest value of C). That being said,459

points with higher values of C are still more likely to be chosen as points of interest. When

the animal is not currently en route to a point of interest, a new point of interest is picked

using a Monte Carlo sampling technique. This involves simulating Nr = 1000 possible points of462

interest xt,1, xt,2, ..., xt,Nr and randomly picking one (denoted xP
t ) based on the value of C. More

specifically,

P(xt,i = xP
t ) =

C(xt,i, t)λ

∑Nr
j=1 C(xt,j, t)λ

, (A2)

for any positive integer i ≤ Nr. We include a fixed constant λ ≥ 0 that controls the “determinism”465

of the animal’s movements: as λ increases, it is more likely to choose the point with the highest

value of C.

We simulate the xt,i as end points of a movement “step” beginning at xt−1, where the lengths468

of each step follow an exponential distribution. The shape of this distribution results in smaller
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step lengths being more frequently sampled, following Assumption A4. We define γ ≥ 0 as

the “rate” parameter of the exponential distribution, quantifying the strength of the relationship471

between distance and point-of-interest selection. As γ approaches 0, every point on the grid has

an equal chance of being selected (assuming equal values of C). If γ is large, all xt,i will be close

to the animal and it will not undertake long-distance navigations very often.474

The animal navigates to points of interest by performing a biased random walk (Figure A0).

The lengths of each step along the navigation are simulated from a gamma distribution with

mean and variance ρ. This distribution has an entirely positive support and is roughly bell-477

shaped for most values of ρ, including the value we used (Table 1). If simulated step lengths are

longer than the distance to the point of interest (i.e., the animal would “overshoot” its destina-

tion), the animal goes directly to the point of interest instead. Otherwise, it takes a step of the480

simulated length towards the point of interest. The heading of this step is simulated from a von

Mises distribution where the mean heading is the heading required to reach the point of interest.

The concentration parameter for this distribution, κ ≥ 0, is a fixed quantity in this model (Table483

1). It is recommended that large values of κ, which cause more directed movement to the point

of interest, are used here. If one of the steps on the animal’s navigation ends on a point that has

better resources than the point of interest (i.e., Q̃(xt+1, t + 1) > C(xP
t , t + 1)), the animal “forgets”486

about the point of interest and prioritizes foraging at the newfound location. The algorithm

restarts whenever the animal arrives at its point of interest.

489

Observation: We collected information about the animal’s movement as well as its cumulative

resource intake. We keep track of the animal’s location xt, as well as the value of Q(xt, t), for

each time step t in the track. Note that while the animal exhibits relative preference for resources492

using Q̃, it still takes in equal amounts of both resources when it visits a patch.

Our model does not implement interaction or collectives since animals are solitary on the land-495

scape. While we assume that animals can “adapt” to environmental conditions by modifying
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β, γ, q, and h between simulations, we do not allow for adaptation within a single simulation. We

are not particularly focused on emergent properties such as home range formation.498

Initialization

At the beginning of each simulation, we randomly generate a landscape and initialize the animal

at a random point on that landscape. Initially, C(x, 0) = q for every point x, as the animal has no501

prior experience on the grid.

Input

For each simulated animal movement path, we supplied two randomly generated landscapes504

(for Q1 and Q2 respectively) as inputs. We simulated our landscapes as Gaussian random fields,

implying that each cell on the grid is a component of a multivariate Gaussian random variable

(Schlather, 2012). In this case, the covariance between any two cells depends on the wrap-around507

distance between the two cells (closer cells have higher covariance). We then scaled the values

such they all fell between 0 and 1.

To more accurately capture the patchiness of many real-world habitats, we defined a cut-off510

value Q that could be used to make these landscapes more patchy. Under this rule, any grid cell

with a value of Q below Q would be set to 0. Increasing Q decreases the overall resource quality

of the landscape and is more likely to confine the animal to specific high-quality patches. Here,513

we used landscapes with Q = 0.6 and Q = 0.9 (Figure 2).

Submodels

Our main submodel is the calculation of C, the animal’s spatial map of perceived resource quality.516

This calculation is composed of three mechanisms: perception (p(x, y)), memory (m(t)), and

default expectation (q). Figure 1 displays how these quantities are combined and weighted to

produce C. This is mathematically formalized below:519
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C(x, t) = p(x, xt)Q̃(x, t)︸ ︷︷ ︸
perception

+

(1− p(x, xt))
(

m(1)C(x, t− 1)︸ ︷︷ ︸
memory

+ (1−m(1))q︸ ︷︷ ︸
expectation

)
. (A3)

Note that m(1) = exp(−β), which resembles the model from Avgar et al. (2013).
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Appendix B: Determining the appropriate number of MCMC

iterations522

We determined an optimal number of iterations per MCMC chain by identifying when additional

iterations did not substantially affect the posterior distribution of the four behavioral parameters.

If some value N were to be sufficient as the number of iterations per chain, we would expect that525

a chain simulated for N iterations would produce similar posteriors when we added additional

iterations to the chain. If simulating more iterations produced negligibly different posteriors, it

is not computationally worthwhile to perform those iterations. To that end, we ran a chain of the528

MCMC sampling algorithm for our foraging task with 5000 iterations (what we deemed to be

the largest computationally reasonable value). We then took the first N iterations of that chain

and compared the posterior distribution from that subset with a slightly larger subset, the first531

N + 500 iterations. We used a static MCMC sampler in our analysis so the individual iterations

were independent of each other, rendering this process similar to comparing two separate chains.

We compared posterior distributions using the earth mover’s distance, also known as the534

Wasserstein distance, a common tool for comparing multivariate distributions across many fields

(Potts et al., 2014; Rubner et al., 2000; Vaserstein, 1969). The earth mover’s distance approximates

the energy required to spatially transform one probability distribution such that it resembles537

another. As a result, lower values of this metric suggest higher distributional similarity, and an

earth mover’s distance of 0 is only achieved between two perfectly identical probability distri-

butions. Plotting the earth mover’s distance against N, the proposed number of iterations, for540

many different values of N (ranging from 500 to 4500 by 100) led us to identify Niter = 2000

as the appropriate number of iterations (Figure B0). We ran the process described above five

independent times to ensure that this relationship was similar with different random runs of the543

algorithm.
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Figure B0: Relationship between the number of iterations in a MCMC chain used to simulate
the foraging task and distributional similarity, measured using the earth mover’s distance. We
calculated the earth mover’s distance between the first N iterations of the chain and the first N +
500 iterations to evaluate the difference that adding 500 iterations would make to the posterior
distribution of animal behaviour. The coloured lines represent five individual runs of the process,
and the thicker black line represents the mean earth mover’s distance across these runs.
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Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (2021). Climate change 2021: The physical666

science basis. contribution of working group i to the sixth assessment report of the intergov-

ernmental panel on climate change. Technical report, Intergovernmental Panel on Climate

Change.669

McNamara, J. and Houston, A. (1980). The application of statistical decision theory to animal

behaviour. Journal of Theoretical Biology, 85(4):673–690.

McNamara, J. M., Green, R. F., and Olsson, O. (2006). Bayes’ theorem and its applications in672

animal behaviour. Oikos, 112(2):243–251.
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