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Abstract

Introduced over two decades ago, model predictive control (MPC) is nowadays ar­

guably the most widely accepted advanced control design technique in control of 

industrial processes. It is featured by invoking system input and output constraints 

into system regulation and guaranteeing the closed-loop stability for nominal MPC 

systems. However, researchers currently notice tha t two main barriers hinder the 

further development of MPC: one is the ubiquitous model uncertainties of industrial 

processes; and the other is the implementation efficiency of MPC controllers. To 

improve its adaptability, this thesis proposes a novel MPC scenario -  explicit robust 

model predictive control.

One of the contributions of this thesis is to separate MPC optimization from 

online implementation, and convert MPC design into multiple parametric sub­

quadratic programming (mp-SQP). It is shown th a t the analytic solution to mp- 

SQP problems can be represented by a set of piece-wise affine functions associated 

with state space partitions. Consequently, online MPC implementation is simplified 

as an affine function evaluation. Thanks to a novel prediction pattern  introduced 

in this thesis, no high order uncertain terms occur in the MPC optimization, and 

the critical challenge of finite horizon robust MPC, high computational complexity, 

is solved skillfully.

As a natural extension of explicit RMPC, robust moving horizon state observa­

tion (RMHSO) is also covered in this thesis. The essential point th a t distinguishes 

RMHSO from conventional state observation is tha t RMHSO explicitly combines 

physical state constraints with the robust observer formulation. This thesis devel­

ops two offline RMHSO algorithms, namely, RMHSO with the forward open-loop 

prediction and RMHSO with the recursive closed-loop prediction. Roughly speak­

ing, the former is less time-consuming than the latter, but the later is less memory­
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consuming than the former.

K eyw ords. MPC, robust MPC, robust moving horizon state estimation, stability, 

robustness, recursive closed-loop prediction, affine function control.
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Chapter 1

Introduction

Model predictive control (MPC), also known as moving horizon control (MHC), 

originated in the late seventies, and has developed considerably since then. Due 

to the potential to incorporate system constraints into controller design, MPC has 

attracted  extensive attention in both academia and industry. This chapter discusses 

the principle of MPC, the basic elements of MPC, and some open topics involved 

in MPC. The major contributions of this thesis are also summarized at the end of 

this chapter.

1
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1.1 A  survey on  m odel pred ictive  control (M P C )

The first version of MPC, model predictive heuristic control (MPHC), was intro­

duced by Richalet in 1976, and later summarized in an Automatica paper [84]. 

The paper signalled the birth  of a novel, advanced control methodology, namely, 

model predictive control, which formulates controller design as an optimization 

problem and explicitly represents system’s physical constraints by optimization pro­

gramming. Currently, more than 3000 commercial MPC implementations span 

in different industries as varied as petro-chemicals, food processing, automotives, 

aerospace, metallurgy, and pulp and paper processing [28, 76]. This section pro­

vides an overview of MPC characteristics.

1 .1 .1  T h e  p r in c ip le  o f  M P C

The principle of MPC schemes can be demonstrated by a typical tracking problem. 

Consider a discrete-time nonlinear system

where k £ Z+ is the time variable, and u{k) £ Rp and y(k)  £ R9 are inputs and 

outputs, respectively. Uk-b^k  € and Y k-a-^k- 1  £ K9'a are stacked inputs and 

outputs with Uk-b-^k ■= \u(k-b) , - - -  ,u(k)} &ndYk- a^ k - i  ■= [y { k - a ),••• , y ( k - 1)]. 

a, b £ Z+ stand for the delay factors of moving-average and auto-regressive terms. 

The control objective here is to design a control policy

so th a t y(k)  is able to follow a prespecified reference input r (r £ R9). To this end, 

an MPC regulator is formulated as an open-loop optimization problem,

y { k )  — f y  ( U k—b—>ki Y k —a—>fc—lj fc) > (1 .1)

u(fc) — f u i d ’t U k—b—>k—1, Y k —a—+ki k ) ( 1 .2 )

min J
u(k\k) ■ -u(k+Nu-i\k)

Np N u - 1

s.t. J  = Y J \\v(k + i \ k ) - r ( k  + i \k) fQ. + ^  I M f c  +  * l f c ) l l 2
Ri >

i= 0
u(k + i\k) £ Au, y{k + i\k) £ Ay, y{k\k) = yk, 

u(k + i\k) = u(k + N u\k) if N u < i < Np, (1.3)

2
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where N p and N u are the prediction and control horizons; Qi and R t are the input 

and output weighting matrices. The notation ||-||p denotes the weighted 2-norm of 

a vector, namely ||u ||p := vTPv.  A u and A y are the admissible input and output 

sets determined by system’s physical constraints. For simplicity, we define them by 

a series of element-wise linear inequalities, i.e., the slab sets

Au  := {U £ ^min 7: W tlmax, nm;n, Umax £ M^}, ,
Ay  ■ —- { !J £  2/min JJ ^  J/maxj V n n u • 2/max £

where is the element-wise inequality sign, meaning u < umax uj  <  Umax, j  for 

V j  (the index of the vector elements). From (1.1), the future output y(k + i\k) can 

be expressed in terms of past inputs and outputs, and future manipulated inputs,

(U  4- d i d    j  f v  ( U k —b + i —*k—h  £^fc|/c—t k + i \ k i  Y k —a + i - * k —l i  &) > i f  0  <  I <  ft,

y[ + 1 J ~ \  fv ( U k - w + k - u U k ^ k + n k ,  k ) ,  i i a < i < N p,
(1.5)

where Uk-b+i^k-i  and Yk- a+i ^ k - i  are past data, and Uk\k^ k+i\k '■= [u{k\k), ■■■ , u(k+  

i\k)] stacks future data. Inserting (1.5) into (1.3), the objective function is recast 

into

J  =  f j  ( U k —b + i —*k— 1 > U k \k— k/c—a —>k—l i  • (-^ '^ )

The derivation from (1.5) to (1.6) is the so-called “prediction” and the procedure 

leads to the notion of MPC. By optimizing the stacked input Uk\k->k+Nu\k> sending 

the first element u(k\k)  to the real process, and iterating the same procedure, we 

can obtain an online MPC regulator, which is capable of driving the output y(k) 

approaching the reference r(k)  in the sense of minimal 2-norms of tracking errors. 

Obviously, this procedure consists of four steps: 1) modelling controlled systems, 2) 

predicting future signals, 3) optimizing manipulated inputs, and 4) implementing 

optimal inputs. Actually, some traditional control algorithms can be converted 

possibly into such a framework, too. For example, constrained linear quadratic 

regulation (CLQR) [92] can be regarded as a special case of MPC with k = 0, N u = 

Np = oo.

Several excellent MPC survey papers can be found in the literature, for example, 

[5, 29, 34, 67, 80], among others.

3
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1.1.2 Basic elem ents o f M PC

MPC has four basic elements: model structure, objective function, constraint form, 

and prediction and control horizons.

•  M odel structure

Researchers are used to using model structure as a criterion to classify dif­

ferent MPC algorithms, and also based on different model structures, they 

have developed various MPC algorithms. In current academic papers, re­

searchers always employ state space (SS) model to represent system dynamics, 

but in commercial implementations, practitioners utilize several other models 

for MPC application. For example, model predictive heuristic control (MPHC) 

uses the finite impulse response model (FIR); dynamic m atrix control (DMC) 

uses the finite step response model (FSR); predictive functional control (PFC) 

uses the time-invariant discrete state space model; and general predictive con­

trol (GPC) uses the auto-regressive integrated moving average plus exogenous 

input model (ARIMAX). The model structure is tightly related to computa­

tional complexity and signal’s prediction accuracy. Especially for robust MPC 

design, it is critical to choose an appropriate model structure to  describe the 

system dynamics in the presence of both internal and external uncertainties.

• O bjective function

MPC mostly defines an objective function in the form of the summation of the 

weighted 2-norms of input and ou tpu t/sta te  deviations from the desired steady 

state, since a quadratic objective facilitates the closed-loop stability analysis 

of resulting MPC systems. By defining the objective as a Lyapunov candi­

date function and regulating the convergence of the candidate along system 

trajectories, MPC is able to utilize the principle of optimality [2] and combine 

the stability analysis with online optimization. Consequently, the resulting 

closed-loop MPC system is stable if the MPC controller is feasible. W ith the 

development of more and more elaborate forms of MPC, some other objective 

structures have emerged in the MPC literature. As an example, a nonlin­

ear MPC for a cyclopentenol reactor adopts the production of cyclopentene 

as the objective function which maintains the reactor’s optimal yield points

4
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[1], Moreover, robust MPC sometimes adopts a mixed l/o o  norm function as 

the objective which facilitates the calculation of uppers bound of suboptimal 

problems [4],

•  C onstraint form

Past Trajectory Future Trajectory

Negative Hard Constraint

(a)

Positive Soft Constraint

Future TrajectoryPast Trajectory

Negative Soft Constraint

Figure 1.1: Hard and soft constraints

MPC usually defines input and output constraints in the form of element-wise 

linear inequalities and these inequalities form the admissible input and output 

polyhedrons with MPC programming. We can easily determine these polyhe­

drons from physical limitations of each individual input and output channel. 

For example, the MPC of a boiler system, the output steam tem perature is 

bounded by upper- and lower- bounds. Therefore, the maximal and minimal 

tem peratures of each boiler’s outputs form an admissible output set. There 

are two types of constraints in MPC implementation: the constraint which 

is strictly inviolated is called hard constraints; and the constraint for which 

small violations are acceptable is called soft constraints. Fig. 1.1 illustrates 

the difference between these two types of constraints. The shaded regions in 

Part (b) show the violation of soft constraints which must be penalized in the 

objective functions. To scale the violation of soft constraints, slack variables

5
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are introduced and penalized as optimization variables. By tuning the weight­

ing matrices associated with slack variables, we can maintain the violation of 

soft constraints in an acceptable region.

•  P red iction  horizon and control horizon

P ast da ta Future data
Reference input r

Timek+1 k+2 . . .  k+Nu k+Np

Control Horizon Nu

Prediction Horizon Np

Figure 1.2: Prediction and control horizons

Fig. 1.2 illustrates the concepts of the prediction horizon and the control hori­

zon. The dashed lines in Fig. 1.2 form a dynamic horizon window. In MPC 

schemes, future outputs of a period Np, called the prediction horizon, are first 

predicted, and then manipulated inputs over a period N u, called the control 

(or input) horizon, are optimized. Driving the first element of optimized in­

puts into real processes and shifting both Np and N u one step forward, we 

can realize “moving horizon.” This is why MPC is also referred to  as moving- 

horizon control. From the different settings of prediction and control horizons, 

MPC is divided into finite horizon MPC (FH-MPC) and infinite horizon MPC 

(IH-MPC). Roughly speaking, the former is superior to the latter in the sense 

of feasibility and flexibility; but the latter is better in the sense of stability 

and computational complexity.

In industrial applications, horizons are implemented in several different ways: 

N y is realized by multiple moving (MM) or coincidence points (CP); and N u 

is realized by multiple moving or single moving (SM). Actually, the different

6
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types of horizons correspond to  the different objective criteria. Table 1.1 ex­

plains the relationship between the objective function and the type of horizons. 

For ease of notation, here we assume tha t the objective function is formulated 

in the form of weighted 2-norms. Fig. 1.3 shows the definition of coincidence 

points. Note here th a t the reference input r  in Part (b) is regulated offline.

r ?able 1.1: The realization of horizons
Horizons Objective function

MM N y , MM N u J  =  £ f = i  IIV(fc +  Ak) -  r{k  +  i \ k ) f Qi +  S U V 1 ||U (k +  i|fc)||2Ri

MM N y , SM N u J  =  E &  IIW (fc +  *lfc) -  r (k  +  <l*)llo, +  H“  ( W I l L
C P N y , MM N u j  =  e  ||v (fc +  i|fc) -  r  (k +  i|fc)||J4 +  E S -1 11“ (* + *1*011*,

3
(j  is the  index of coincidence points)

C P N y , SM N u j  = £  \\y (k +  i\k) -  r ( k  +  iffc)||Q4 +  ||u
3

Future

Setting  point

Multiple Moving

(a)

P as t
Setting point

R eference Input r

C oincidence  po in ts

Figure 1.3: Multiple moving and coincidence points

The above four elements are very im portant for MPC design; and they tightly related 

to performance of resulting MPC systems, i.e., stability, feasibility, computational 

complexity, implementation efficiency, and aggressiveness and conservativeness.

7
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1.1.3 Open topics in M PC

Although MPC has been widely accepted in industry, it is still far from enjoying 

a complete theoretical analysis. For example, the polices of tuning parameters are 

still open issues, and currently these parameters are determined by trial-and-error. 

Moreover, some advanced MPC, e.g., nonlinear MPC (NMPC) and robust MPC 

(RMPC), have only recently begun to be discussed in literature. In this subsection, 

some open topics involved in MPC are extensively addressed.

•  Closed-loop stability

Consider a system defined by

x ( k  + l) = f ( x ( k ) ,  u(k)).  (1.7)

To realize some control objective, the cost is formulated by minimizing

Np- 1
V  (x , k, u) — ^  W  (x (k +  i\k) , u (k +  i\k)) + F  (x (k  + Np\k )) , (1.8)

i= 0

where W  (•) denotes the predicted internal energy. If VP(-) is defined in the 

form of (1.3), (1.8) implies th a t the weighting matrices R  and Qi are time- 

invariant. F  (•) > 0 is called the terminal cost, and its linear counterpart can 

be expressed by

F  (x (k  + Np\k)) =  ||m (k + Np\k)\\2p  (P  is a positive symmetric matrix).

Let V°  (■) denote the optimal value of V  (•), corresponding to the optimal 

input sequence with

Uk^k+Nu-i  :=  [u(k\k) ••• u ( k  + Np - l \ k ) ]  .

In the context, the superscript “o” stands for optimal solutions. Setting V°  (•) 

to be a Lyapunov function at instant k, and then by the principle of optimality

[2] we have

Vfe-fc+Wp (x(k)  , k , u a (k\k))

= W 0 (x (k ) ,  u0 (k)) +  Vk°+1^ k+Np (x (k + 1), (fc +  1), u0 (k +  1)), 

8
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where the total objective is separated into the initial internal energy and the 

rest of the piece objective. The notation V̂ ’+i_>fe+J- (•) stands for the piece 

objective spanning from the predicted instant (k + i) to instant (k +  j )  (0 < 

i < j  < Np). Thus the difference between the Lyapunov functions at horizon 

k and (k +  1) is

VNP ( x ( k  + l ) , ( k  + l ) , u 0 (k + l \k + l)) -  V°Np ( x ( k ) , k , u 0 (k\k)) 

= F° (x (k + N p + 1)) +  W ° (x (k + N p) , u ( k  + Np)) 

- F °  (x  (k + Np)) - W ( x  (k ) , u0 (k) ) .

Because W ( x  (k ) ,  ua (k\k)) is a nonnegative function, the closed-loop stability 

of the MPC system in (1.7) can be guaranteed by adding the extra terminal 

constraint

F°  (x  (k + Np + 1)) +  W ° {x (k + Np) , u ( k  + N p)) -  F° (x (k + N p)) < 0.

(1.9)

How to define the internal energy function W(-) and the terminal cost F(-) 

to satisfy the condition in (1.9) becomes pivotal to the stability analysis of 

the resulting MPC systems. Moreover, the condition in (1.9) is only effective 

for nominal MPC design, but for RMPC systems, it is unreasonable to derive 

the optimal solution V°  (•) and keep using Bellman’s principle of optimality. 

Consequently, we can not easily derive a similar condition to (1.9) for RMPC. 

How to guarantee the closed-loop stability for RMPC systems still remains an 

open problem [63].

•  Tuning parameters

Prom Section 1.1.2, we know th a t weighting matrices are effective approaches 

to MPC tuning, and the major usage of weighting matrices is to adjust rel­

ative priorities of penalized variables in an objective function. Moreover, to 

facilitate closed-loop stability, a terminal weighting is separated from the out­

put weighting QL, and constructed to guarantee the shrinking of a selected 

Lyapunov candidate. However, how to choose the proper terminal weighting 

to satisfy closed-loop stability as well as feasibility is a nontrivial problem. On

. 9
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the other hand, MPC always fixes weighting matrices as constant for individ­

ual penalty terms in objective functions, except for the terminal weighting for 

stability. The fixed weightings facilitate the stability and feasibility analysis 

but possibly impair closed-loop dynamics. Although there are some software 

packages th a t support varying weightings, e.g., MATLAB-MPC Toolbox [7], 

the trend of the weighting’s change has to  be determined by trial-and-error. 

As another effective tuning parameters, horizon length impacts on MPC dy­

namics dramatically too. Prom industrial implementations, we know tha t dy­

namics of closed-loop MPC systems are normally dependent on the difference 

between the prediction horizon Np and the control horizon N u instead of their 

individual values. Increasing the difference results in faster responses but im­

pairs closed-loop stability of resulting MPC systems. Conversely, stability is 

improved, but performance is not. Prom another point of view, the freedom of 

an optimization problem is dependent on the number of manipulated variables 

and hard constraints. By increasing the horizon length of the variables which 

are not bounded by any hard constraints, the feasibility of algorithms may 

be improved. The rules mentioned above are derived only from MPC imple­

mentations. The theoretical analysis on MPC schemes with varying horizons 

remains an open problem.

• System uncertainties and robust MPC

To improve flexibility, researchers recently extended nominal MPC into the 

area of robust MPC (RMPC), which incorporates system internal uncertain­

ties (modelling perturbation) and external uncertainties (input/output dis­

turbances) into controller design. However, a number of barriers exist in 

RMPC. The major difficulty comes from the computational complexity of 

future state /ou tpu t predictions. As an example, for systems with linear dis­

crete state space models and a perturbed system A  — matrix, high-order 

uncertain terms appear in the expressions of predicted signals. Normally it is 

d iff icu lt  t o  g e n e r a liz e  th e  e ffe c ts  o f  th e s e  te r m s  o n  M P C  o n lin e  o p t im iz a t io n  

and implementation. Therefore, for a successful RMPC algorithm, it becomes 

critical to construct a proper framework describing the characteristics of these

10
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high-order uncertain factors. Over the past several years, various strategies 

have been developed: Langson et al. proposed an uncertain “tube” to main­

tain controlled trajectories inside of the tube under an associated piecewise 

affine control policy [49]. Park and Jeong modified system param eter pertur­

bations into the structured uncertainties bounded by a parametric increment 

rate [73]. Casavola et al. kept using the traditional norm-bounded uncer­

tainties in the feedback loop and took advantage of the robustness analysis 

tool developed by Primbs and Nevistic [75] to  realize robust moving hori­

zon control [15]. Fukushima and Bitmead constructed a comparison model 

for the worst-case analysis and combined it with a robust Lyapunov func­

tion to simplify quadratic programming with uncertain terms [31]. Wang and 

Rawlings developed a convex hull set for all possible system uncertain terms 

and used a family of the subsystems (no uncertain terms) in the structure of 

the node-branch-tree to predict future variables [105]. Although these algo­

rithms facilitate s ta te /ou tpu t predictions, to some extent, they increase the 

computational complexity and hinder the effectiveness of the RMPC imple­

mentation. Furthermore, few of them are capable of incorporating both system 

internal uncertainties and external disturbances with system regulation. The 

discussion on RMPC with internal and external uncertainties is covered by 

[71, 72, 68], but these papers postulate tha t external disturbances were con­

stant unknown variables, which is not the case in most real processes. How 

to attenuate both internal uncertainties and external disturbances without 

aggravating the computational complexity remains an open problem.

• Implementation efficiency and explicit MPC

The efficiency of online MPC implementation is another major barrier for 

advanced MPC algorithms, e.g., RMPC and NMPC. This point can be under­

stood from the “tetralogy”of traditional RMPC: determine initial parameters, 

perform state /ou tpu t predictions, optimize stacked input sequence, and im­

p le m e n t  first o p t im a l in p u t . F or o n lin e  M P C , a ll o f  th e  fou r  s t e p s  h a v e  t o  b e  

completed within one sampling period. Considering the nature of computa­

tional complexity, it takes a long time to complete the whole procedure. This

11
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limitation restricts the application of advanced MPC in industry. Evidence 

of this is tha t most existing RMPC algorithms are applicable only to slow 

systems; otherwise, some additional work has to be done to avoid the risk 

of inconsistent implementation [66, 99, 104]. Furthermore, to guarantee the 

feasibility of algorithms, system time constants should be no larger than the 

prediction horizon [81]. The additional requirement leads to further computa­

tional burdens (References [43, 44] show tha t the minimal prediction horizon 

N_y can be determined to ensure the feasibility of algorithms). A natural 

strategy to overcome this barrier is to  employ offline RMPC, namely offline 

calculation of optimal inputs and online implementation of manipulated in­

puts. Offline or explicit MPC, however, remains an open problem, especially 

for robust cases.

1.2 T h e m ajor contrib utions o f th e  th esis

This thesis introduces a novel prediction pattern  to reduce the computational com­

plexity of RMPC and proposes the recursive closed-loop prediction pattern  to sim­

plify multiple-horizon prediction. By taking advantage of convex optimization tech­

niques, the thesis accomplishes RMPC programming offline and separates RMPC 

optimization from online implementation. MPC implementation in this thesis es­

sentially becomes function evaluation so th a t the implementation efficiency is im­

proved dramatically. The thesis defines a novel multiple-parametric sub-quadratic 

programming (mp-SQP) problem, and by iterating mp-SQP it achieves robust MPC 

through a series of piece-wise affine functions of current state measurement associ­

ated with state space partitions (called Critical Regions in Reference [11]). The 

explicit RMPC presented in this thesis can guarantee asymptotic closed-loop stabil­

ity of resulting MPC systems and by setting two tuning variables, namely terminal 

weighting and terminal feedback gain, it is capable of adjusting the tradeoff between 

system robustness and performance. This thesis also discusses a nontrivial problem: 

given admissible output sets, how to derive the admissible state set. The problem 

is solved by two approaches: piece-wise linear norm of output disturbances [12] and 

polyhedral Voronoi sets of admissible states [13]. Chapter 5 discusses the details 

relative to the explicit RMPC in recursive closed-loop prediction.

12
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In the current literature, researchers always formulate MPC in state space mod­

els. Therefore, to obtain state feedback, state observers are necessary for MPC sys­

tems with unmeasured or partially unavailable states. To overcome this limitation, 

this thesis proposes two robust moving horizon state observer (MHSO) algorithms in 

Chapter 6, which are the extension of explicit RMPC. These two algorithms are able 

to handle system’s nonlinear uncertainties and sta te’s physical constraints. By em­

ploying open-loop and closed-loop prediction, the algorithms convert robust MHSO 

to an mp-SQP problem; and meanwhile they guarantee the convergence of observa­

tion errors by solving an algebraic Riccati equation and a semi-definite optimization 

problem. Chapter 6 also introduces another robust observer which formulates the 

design as a Maximizing Determinant (MAXDET) problem. The major feature of 

this approach is tha t the observer guarantees the convergence of the observer error 

in the sense of Lyapunov and ensures the observer error bounded by an ellipsoidal 

invariant set. Therefore, regarding the bounded error as modelling uncertainties, 

we can easily associate robust observer with RMPC formulation.

Chapter 3 describes a finite horizon RMPC (FH-RMPC) algorithm using linear 

matrix inequality (LMI) techniques; this is an im portant complement of offline finite 

horizon RMPC discussed in Chapter 5. The motivation for this work comes from the 

seminal paper published by Kothare et al. in 1996 which solved the problem of infi­

nite horizon robust MPC (IH-RMPC) using LMIs [45]. Compared with IH-RMPC, 

FH-RMPC has more tuning freedom and can deal with more general uncertainty 

structures. To capture modelling uncertainties and facilitate future sta te /ou tpu t 

prediction, the thesis constructs a moving average system m atrix for system un­

certainties, and it is pivotal for this algorithm. By adding two additional terminal 

cost constraints, FH-RMPC guarantees the closed-loop stability of resulting MPC 

systems if the optimization problem for FH-RMPC is feasible. From simulation 

examples, we can see that FH-RMPC using LMIs is more flexible and reliable than 

IH-RMPC using LMIs.

1.3 O utline o f  th e  th esis

Chapter 2 investigates four typical MPC algorithms: dynamic m atrix control (DMC) 

[23, 24], model algorithm control (MAC) [37], predictive functional control (PFC)
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[82], and general predictive control (GPC) [21, 22]. These four algorithms are 

adopted in various commercial packages and are able to demonstrate most of the 

characteristics of nominal MPC.

Chapter 3 discusses RMPC algorithms using LMIs. It includes two parts: IH- 

RMPC and FH-RMPC. The former was proposed by Kothare et al. in 1996; the 

latter is the algorithm proposed in this thesis [19]. This chapter first reviews two 

types of structured uncertainties which axe widely used in MPC design, and then 

discusses the impact of uncertainties on computational complexity and the predic­

tion of future signals. The closed-loop stability issues for both algorithms are also 

covered in this chapter: the former utilizes the invariant set theorem to drive the 

convergence of system trajectories and the latter develops two extra terminal cost 

constraints for the convergence of Lyapunov candidacy functions.

Chapter 4 reviews explicit model predictive control for nominal systems, i.e., 

no internal or external uncertainties are included in the MPC formulation. It first 

introduces a type of optimization problem, multiple-parametric quadratic program­

ming (mp-QP) [26], and then shows tha t explicit MPC may be converted into an 

mp-QP problem. The control policies of nominal explicit MPC are represented by a 

set of affine functions associated with state space partitions. All techniques covered 

in this chapter are quite new (developed after 2002), and they are the basis for 

Chapter 5.

Chapter 5 is the essential part of this thesis, i.e., explicit robust model predic­

tive control using recursive closed-loop prediction. Although explicit robust MPC 

is based on nominal explicit MPC, it is not a direct extension of the latter. Chapter 

5 solves three key problems associated with explicit robust MPC, including admis­

sible state sets, recursive closed-loop prediction, and asymptotic closed-loop robust 

stability. To solve these problems, it proposes a new type of optimization problem, 

multiple-parametric sub-quadratic programming (mp-SQP). Here the letter “5 ” is 

added to distinguish it from existing mp-QP problems.

Chapter 6 is a natural extension of robust MPC. We know tha t the optimal 

policies of explicit robust MPC are piece-wise affine functions of the current state 

measurement associated with some state space partition. In the case tha t states are 

unmeasurable or partially unmeasurable, it is necessary to combine the controller
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design with state estimation. Chapter 6 first presents several difficulties involved in 

robust observer design: 1) the system is corrupted by internal and external distur­

bances; 2) the state constraints have to be incorporated with state observation; and 

3) to  preserve the advantages of offline MPC (with its low implementation cost), 

an offline robust state observation approach is indispensable. Chapter 6 addresses 

these three challenges in the sequel.

Chapter 7 considers industrial applications of the algorithms developed in this 

thesis. It uses a SYNSIM model to evaluate the effectiveness of our algorithms. 

SYNSIM is a software package developed by researchers at the University of Alberta 

and engineers at the Syncrude Canada Ltd. (SCL) [86]. It is a simulation for the 

utility plant of SCL in Fort McMurray, Alberta, Canada, which is a co-generation 

system composed of boilers, turbines, headers, and let-down sub-systems. Here, we 

try  to design an MPC controller for the boiler plus header sub-systems, i.e., a master 

controller. The combined system model is first identified using the MATLAB system 

identification toolbox [52], and then an explicit robust MPC regulator is developed 

based on the identified model. Finally, the master controller is able to demonstrate 

the effectiveness of the algorithms proposed in this thesis.

Chapter 8 discusses some future research topics on MPC.

1.4 N o ta tio n  and sym b ols

•  §” (§++) denotes the space of symmetric nonnegative (positive) definite n x n  

matrices, and B” (B "+ ) stands for the space of diagonal nonnegative (positive) 

matrices.

•  ||-Y||p := X TP X  denotes the weighted 2 -norm of a matrix X ,  where P  €  §" . 

a ( X ) , a (X)  are minimal and maximal singular values of X .

• x  (k + i) denotes the predicted states over the kth  prediction horizon, similar 

to the definitions of u (k +  i) and y (k + i ) , i.e., x  (k + i) := x  (k +  i\k) without 

special indication.

•  Xj is the j t h  element of a vector x, X j  is the j t h  row of a m atrix X ,  and Xij  

is the i j th  element. The superscript ‘ o’ stands for the corresponding optimal 

or sub-optimal solution, e.g., x°.
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• d  (-<) and >: (>-) denote the generalized element-wise (strict) inequality signs, 

i.e., X ^  3?max ^  •Ej — 2-max, j  for V j .

• x ( k  — N  + i) denotes the jth  predicted estimation over the fcth prediction 

horizon given the initial value x ( k  — N ), i.e., x ( k  — N  + i) x ( k  — N  + i\k) 

for ease of notation.

•  The sign of is defined as independent variables of a function, whose defini­

tion can be inferred from contexts, e.g., f ( x , k )  is sometimes written as /(•) 

without special indication.

• fki->k2 denotes the sequence of {/(fci), • • • , /(fo )} , similar to the definitions 

of Ukx-^k2 i %ki—>k2 and

1.5 A cronym s

A R E  Algebraic Riccati Equation

A R IM A X  Auto-Regressive Integrated Moving Average plus eXogenous input model 

C LQ R Constrained Linear Quadratic Regulation 

C R  Critical Region

C ST R  Continuous Stirred Tank Reactor

D M C  Dynamic M atrix Control

E M P C  Explicit Model Predictive Control

E R M P C  Explicit Robust Model Predictive Control

F H -M P C  Finite Horizon Model Predictive Control

F IR  Finite Impulse Response

F S R  Finite Step Response

G E V P  Generalized Eigenvalue Programming

G P C  Generalized Predictive Control
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ID C O M  Identification and Command

IH -M P C  Infinite Horizon Model Predictive Control

L M I Linear M atrix Inequality

L Q R  Linear Quadratic Regulation

M A C  Model Algorithm Control

M A X D E X  Maximizing Determinant programming

M H C  Moving Horizon Control

M H S E  Moving Horizon State Estimation

M H S O  Moving Horizon State Observer

M IM O  Multiple Input Multiple O utput

M P C  Model Predictive Control

M P H C  Model Predictive Heuristic Control

m p -Q P  multi-parametric Quadratic Programming

m p -S Q P  multi-parametric Sub-Quadratic Programming

N M P C  Nonlinear Model Predictive Control

P F C  Predictive Functional Control

Q P  Quadratic Programming

R M H S O  Robust Moving Horizon State Observer

R M P C  Robust Model Predictive Control

SC L Syncrude Canada Ltd.

S D P  Semidefinite Programming 

SO C P  Second Order Cone Programming
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Chapter 2

M odel predictive control 
algorithms

This chapter reviews four of the most popular MPC algorithms: DMC, MAC, PFC, 

and GPC. Dynamic M atrix Control (DMC) is the first commercial MPC package. 

It uses an identification and Command (IDCOM) software [37] to achieve system 

identification and control optimization at the same time. Model Algorithm Control 

(MAC) uses a similar scenario to that of DMC, but makes two innovations: an 

impulse response model replaces the step response model, and an approximated 

function replaces the fixed reference input. Predictive functional control (PFC) 

is developed for fast linear and nonlinear processes. It proposes the concept of 

coincidence points along horizon windows and constructs a linear combination of 

parameterized basis functions as optimal manipulated inputs. General predictive 

control (GPC) is the first version of stochastic MPC. It uses an ARIMAX model to 

perform both future output and disturbance prediction. Diophantine equations are 

employed to  facilitate future disturbance prediction.
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2.1 D yn am ic m atrix  control

Before stating the mathematical details, we choose to list the major features of

DMC:

• Use the step response model to describe system dynamics.

• Employ a quadratic performance objective over a finite prediction horizon to 

penalize the deviations between outputs and prespecified set points.

• Assume tha t the output disturbances are constant. The difference between the 

current output measurement and the current predicted output is implemented 

as future disturbances along all horizons.

• Convert DMC programming into a QP problem. It is possible to obtain an 

explicit solution of DMC problems in the case of no input and output distur­

bances.

Besides the above features, DMC inherits some disadvantages:

•  Works with only asymptotically stable systems.

• Cannot handle systems with large internal and external uncertainties (mod­

elling uncertainties is called as internal uncertainties and inpu t/ou tpu t distur­

bances is referred to as external uncertainties in this thesis).

• May be impractical for multiple-input-multiple-output (MIMO) systems with 

high dimensions because step response matrices for an MIMO system are mem­

ory consuming.

• Require th a t all controlled outputs be measured.

DMC can be formulated as a QP problem as follows:

J  S  +  m f Q ' +  S  "A“  “  +  iW ll" ‘ • (“ >
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subject to

i N

y ( k  + i\k) =  ^  S j A u  (k + i — j\k )  +  S j A u  (k + i — j ) 
j = 1 j = i + 1

+  d(fc +  f|&), (2 *2 )
i

u (k  + i\k) = u (k  — 1) + ^  A u (fc +  jjfc ) , (2.3)
i=o

Au (fc +  i\k) = A u  (k + N u\k) if N u < i < N p,
N P n u - l

C lytiy(k  + i \ k ) + Y ,  Clu,i< k + W  + C l < 0 , ( 0 < 1 < N C). (2.4)
i —1 2—0

N p and N u stand for the prediction horizon and control horizon. A u (k  + i\k), 

y ( k  + i\k), and d{k +  i\k) are the predicted input derivation, predicted output and 

future disturbance over the fcth horizon, respectively. Qi € §+ and Rj € § + are 

weighting matrices, and S j  is a step response, i.e.,

S  := [si, ■ • • , sjv] • (2.5)

The sequence S  is usually obtained by system identification, and pre-stored in a 

computer for output prediction. For simplicity, here we first consider the step re­

sponses for a single-input-single-output system (SISO). The truncation scalar N  of 

the step response satisfies

N  > Np +  1 > N u +  1.

The future disturbances are assumed to be constant along all horizons, satisfying

d(k +  i\k) = d(k\k) =  y(k) — y(k\k),

where y(k) is the output measurement at instant k, and y(k\k) is the predicted 

output derived by
N

y{k\k) = Y ^ si A  u ( k - j ) .  
j =i

N o te  t h a t  b o t h  y ( k )  a n d  y { k \ k )  c a n  b e  c a lc u la te d  o fflin e , so  d ( k  -I- i \ k)  =  d ( k )  is

also calculated offline. Eqs. (2.2) - (2.3) express the future outputs and inputs, and 

(2.4) describes the future input/output constraints. The coefficients of (2.4), namely
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Cyi, C lu i , C l, are constant, I is the index of the constraints, and N c is the number 

of constraints. Rewriting (2.2) in the form of stacked matrices, we have

Yk+i-*k+Np = M fAUk\k—ik+Nu—i\k +  M pA U k-N + i^k-i + l-d(k\k) (2 .6 )

where

’  si 0 0 0

S2 si 0 0

M f  : =
SNU Sjv„ - 1 Sjv„ - 2 • • • si

SNP SjVp —1 SjVp-3 ' ' ' SNp-Nu+l +

SJV SjV- 1 SN -3 • • • s2 '
0 Sn SN -2 ' ' ' S3

M p : =
0 0 SJV • • SNu+1

_ 0 0 0  S n • • SjVp+l_

(2.7)

In (2.7), “1” stands for a full-one vector with an appropriate dimension. AU k\k-+k+Nu- i  

is the stacked matrix with predicted input derivations to be optimized. AUk-N+i->k-i 

is the m atrix of past data  and pre-stored in a computer. M f  reflects the future sys­

tem  dynamics and M p reflects the past ones. Due to the physical meaning of M f 

and M p (dynamic matrices), the algorithm is referred to as DMC.

In the same fashion, the objective in (2.1) and the constraints in (2.4) can be 

recast into the form of stacked matrices. Consequently, DMC programming is con­

verted into a quadratic programming (QP) problem.

C o n c lu sio n  2 . 1  The manipulated inputs of DMC programming can be optimized 

by a QP problem, namely

M ° klk^ k+Nu_ n k : = [ A u ° ( k \ k )  A u ° ( k + l \ k )  • • •  A u ° ( k  +  N u - l \ k ) ] T ,

is the solution to a Q P  problem,

J  =  . . .  min ll-R _  Pfc->fe+iVp||n +  ||A[/fc|fc_ft+jvll_i|fc||i ) (2.8)
^ k \ k - > k + N u - l \ k
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subject to

Yk-^k+Np =  M f& U k\k^ k+Nu_i\k + MpAUk-N+i-*k-i +  1 -d(k),

C ly,l-> N pYk-+k+Np  +  C t , f l ^ N u - lU k \k - ^ k + N u - l \ k  +  C l < 0 (0 < I < N c).

where

Q := diag(Qi, • •• ,  QNp), U  := diag(i?i, ••• ,  R Nu),

'u, N u -  1 J  •

The above discussion just concentrates on SISO systems, but it can easily extended 

to MIMO systems, using the stacked step response m atrix to replace the scalar Sj,

i.e., setting

Here p  is the dimension of inputs and q is the dimension of outputs. From (2.9), it can 

be seen th a t DMC is memory consuming for MIMO systems with high dimensions.

2.2 M odel a lgorithm  control

Model algorithm control (MAC) is a variant of model predictive heuristic control 

(MPHC), and marketed widely under the software package IDCOM-M (M is used 

to distinguish it from a SISO version of IDCOM) [37]. It differs from DMC in the 

following aspects:

•  Controlled systems are modelled using impulse responses.

•  Penalized variables in objective functions are in terms of u instead of Au.

•  MAC set the control horizons equal to the predictive horizon, and output 

weighting Qi = I  and Ri = \ I .  Therefore, the tuning parameters N u, Q i, and 

Ri are replaced by a positive scalar A.

•  The reference trajectory is a smooth approximation from the previous pre­

dicted output towards the prespecified setting point,

w (k+ i\k) = a w (k+ i—l |fc )+ (l—a )r  (1 < i < Np), with w(k) = y(k). (2.10)

s ii(i)  ••• sip(i)
(2.9)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a  is a tuning parameter bounded by [0 , 1 ) and is able to adjust the tradeoff 

between aggressiveness and conservativeness of the MAC design.

Because MAC uses the impulse response to perform output prediction, the future

output of an MAC system over the fcth horizon can be expressed by

i N
y (k + i\k) = ' ^ h j u ( k  + i — j\k )  + ^  hjii (k +  i — j )  + d(k + i\k), (2 .1 1 )

j =i j =<+1

and the future constant disturbance is

N
d (k  + i\k ) =  d (k\k ) =  y (k )  — ^  hjU (k -  j ) .

j =i
(2 .12)

where

H := [ h i  ■■■ hN] ( N > N p + l) .  (2.13)

Similar to DMC, H  is the impulse sequence and derived by system identification 

packages. In the same fashion, MAC can be converted into a QP problem.

C o n clu sio n  2.2 The manipulated inputs of M AC programming can be optimized 

by a QP problem; namely

TT°u k\k-*k+Nv-l\k := [u °(k \k) u°{k + l\k)  ••• u° (Jfe +  Np -  l\k)] , 

is the solution to a QP problem,

J =  m in \\Wk+i->k+Np ~  Pfe+i^fc+JVpH +  A ||brfe|fc_>fe+jvp_ i |1
U k  | k —► k +  N p  — 1 | A:

(2.14)

s-t. Yk+i^k+Np =  H f Uk\k_k+Nu- i \k + HpUk-N + i-^k-i + l-d(k\k),

Cly,l->NpYk-*k+Np + ^'ufl—*Np—lUk\k—>k+Np—l\k + Cl <  0 (0 < I < N c).

where

W k+i->/c+jvp [w(k +  l|fc), • • • , w (k + N p\k)] (Stacked reference inputs)
' hi 0 • • O' hpf • • hiV-i ' h2

h2 hi •• 0 0  • • h ff- j  ■ /l3
H f-= , Hp :=

h-Np hjVp-i • • hl_
.  0  • hjv • hNp+i_
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Comparing the problems in (2.8) and (2.14), we can see tha t MAC and DMC 

share a similar setup, but have different tuning parameters. The influence of the tun­

ing param eter a  on the shape of reference trajectories can be illustrated by Fig. 2.1. 

The shape of the reference determines the speed of system responses approaching 

the setting point. From implementations, a  is a more direct and intuitive tuning 

parameter than weighting matrices and prediction/control horizons. Similar to the

w(k) Setting point

Reference trajectories

Decreasing a

Time (fc)

Figure 2.1: Influence of a  on the reference trajectory

analysis of DMC, the above discussion focuses on only SISO systems. To extend 

MAC to the MIMO cases, what we need to do is only replacing the stacked impulse 

response hi by

Hstacki*) —

hu{i) h\p(i)
(2.15)

h q \ { l )  * • '  hqp{%)"

Moreover, if there are no constraints imposed on controlled processes, MAC can be 

solved explicitly by least square optimization, i.e.,

Uk\k-> fc+jv„—i|fc - (H jH f  + \ I ) - l H ]{W k+i ^ k+Np -  Dpast), 

where Dpast :=  HpUk-N+i->k-i + l-d(k) denotes the past data.

2.3 P red ictive  fun ctional control

P r e d ic t iv e  fu n c t io n a l c o n tr o l (P F C )  w a s  p r o p o se d  b y  R ic h a le t  in  199 2  for t h e  c a se s  o f  

fast linear/nonlinear processes [82]. It has several distinctive characteristics superior 

to both DMC and MAC:
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• The objective function is evaluated at coincidence points along predictive hori­

zons.

• The manipulated inputs are constructed by a linear combinations of parame­

terized basis functions.

•  A state space model is employed to describe process behavior.

• The reference trajectory is regulated by a linear function with the power terms 

of the tuning parameter a.

• It can be extended easily to nonlinear systems.

In past decades, PFC has been extensively studied and applied to various plants 

[83, 95, 102],

Consider a system

x(k  +  1) =  A x(k) + B u(k),

y(k) =  C x(k), (2.16)

where x  € R", u G Rp and y  £ Rq stand for state, input and output, respectively. 

A, B , C  are constant matrices with appropriate dimensions. The control policy is 

constructed as a linear combination of parameterized basis functions, i.e.,

n b

u(k + i\k) = Y n r n j i i ) ,  (2 .1?)
3=1

where M j(i) stands for a basis function and Aj(k )  is the corresponding coefficient 

over the fcth horizon, “j ” is the index of the basis functions and TVg is the number 

of the basis functions. M j(i) is always represented by polynomial functions, e.g., a 

set of eligible candidates are

M x{i) = 1, M 2 (i)  =  (i — t ),  M nb {i) = (i — t ) N b ~ 1, (2.18)

where r  is a time constant. For simplicity, here we just focus on SISO systems, but 

PFC is possible to extend to MIMO systems. The objective function is evaluated
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at the coincidence points along a prediction horizon, i.e.,

J  ~~ . ... min + ~  w (k +
Ai(&), AjvB (fe) .

D  %

(i = N i, N 2, ••• , N r) (2.19)

where (i =  N \, N 2 , ••• , lVr ) is a set of coincidence points, “i” is the index 

of coincidence points and iVr is the largest index of coincidence points (refer to 

Fig. 1.3 for the definition of coincidence points). w (k + i\k) is the predicted reference 

trajectory satisfying

w (k + i\k) = r — a k(r — y(k)). (2 .20 )

In order to  obtain smooth manipulated inputs, a quadratic factor of the form of 

fi(A u(k  +  i\k))2 may enter in (2.19), similar to the objective in (2.14). From the 

system model in (2.16), the predicted output y(k + i\k ) can be expressed by the 

current state measurement x(k) and future inputs,

i

y ( k  + i\k) = C A ix(k) + ^  C A ^ B u i k  + I -  1|k). (2.21)
;=i

From (2.17) and (2.18), we know tha t the predicted inputs are a linear combination 

of the basis functions B j(i). Therefore, (2.21) can be rewritten as

i  N b

y ( k  + i\k ) =  C A ix{k) + Y ^ (C A i- lB Y ^ \ j (k)M j { l - l ) )
(=1 3 =1

N b

= C A ix(k) + ' £ / \ j (k)yMj(i), (2.22)
3 =1

where
X

VMj (*) := Y , C A i~lB M j ( l -  !)> (2-23)
1=1

is called the response of the basis function M j. Rewriting (2.22) in the form of 

stacked matrices, it derives

y (k + i\k) = C A ^ ik )  +  YM(i)A(k), (2.24)

where

t  r i TA(k) := [Ai(fc) ••• ANB{k)} , YM(i) ~  2/mx(*) ••• UMNB{i)
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Inserting (2.24) and (2.20) into (2.19), the objective is recast into

Nr
J  — min ((1 — a k)(C A lx(k) +  Yj/(i)A(/:) — r) )2. 

A(k)
%

(i = N \, N 2, ■■■ , N r) (2.25)

So, if there are no input and output constraints, the explicit solution to (2.25) can 

be obtained by

a  °(k) = 2 (1  -  ak)yTy ( n  -  x),

where

y
' YM(i) ' r ' C A ix(k) '

, K  = , X  =
YM (Nr)_ r _CANrx(k)_

In summary, the optimal manipulated input at instant k is

u°{k) = M ( 0 )A°(k), where M (0) := [Afi(O) • • • MjvB(0)] .

(2.26)

(2.27)

Here, we just concentrate on the cases of unconstrained PFC. Actually combining 

with the condition in (2.4), the constrained PFC can be also converted into a QP 

problem.

C o n c lu sio n  2.3 The optimal coefficients of the basis functions in constrained PFC  

problems can be derived by a QP problem; namely

A°(k) := [Ar(fc) ••• AiVaW]7 ,

is the solution to a QP problem:

N r

J  =  min ((1 -  a k)(C A lx(k) +  YM(i)A(k) -  r ) )2,
A(fc) i

C ly,i_+Nr(X + 3>A) +  C lu^ Nr M A  + C l < 0 ( 0 < l < N c),

(2.28)

where the stacked matrices X , y  and M  are defined in (2.26) and (2.27). The 

manipulated input at instant k can be defined by

u°(k) = M (0)A °(k).
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2.4 G eneralized  m odel pred ictive  control

The development of MPC has two branches: Deterministic MPC and Stochastic 

MPC [67]. All algorithms mentioned above belong to the family of deterministic 

MPC. In 1987, Clarke et al. originated GPC and it became the first stochastic MPC 

algorithm [21, 2 2 ], The original version of GPC only treated stable SISO systems, 

but after a short time, it was extended to MIMO systems [94], At present, GPC can 

even deal with uncertain systems with parameter perturbation [9]. Because exten­

sively studying GPC is outside the scope of this thesis, this section only discusses 

the GPC for stable SISO systems.

Consider a system represented by an ARIMAX model [53],

A{q)y{k) = qTB(q)u(k  -  1) +  (2.29)

where r  is the pure-delay of the system, q = z _ 1  is the backward shift operator, 

and A =  1 — q is the difference operator. y(k) and u(k) are output and input,

respectively, and e(k) is the white noise with zero mean. A, B  are two polynomials

in terms of q,

A{q) — I + a\q + a2q2 + ■ ■ • + anaqna,

B(q) =  b0 + biq +  b2q2 + • • • +  bnbqnb. (2.30)

The objective function for GPC is given by
NP Nu

J =  min \ J i ) ( y ( k  +  i\k) -  w (k + i))2 +  y ^  Xu(i)(A u(k  + i -  l|/c) ) 2

(2.31)

where Ay(i) and Au(i) are the scalar weightings. w (k + i) is the reference trajectory 

defined in (2.10). To solve the problem in (2.31), y(k  +  i\k) is predicted by a set 

of recursive Diophantine equations, i.e., constructing a Diophantine equation pair 

(.Mi{q), Ni(q)) by

l  = M i ( q ) A A ( q ) + q iN i (q). (2.32)

Because the pair (AA(q), ql) is co-prime, (2.32) uniquely determines (Mi (q), Ni(q)), 

satisfying

Mi(q)

Ni(q)

28

— Mifi + M ^iq A  M it2q2 + • • ■ + M iti - iq i 1 ,

=  N ifl +  N itiq + N i>2q2 + ■ ■ ■ + N it BO qna, (2.33)
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where i is the index of recursive Diophantine equations. Note th a t the order of 

Ni(q) equals to tha t of A(q) and the order of Mi(q) equals to (i — 1). By the 

method of undetermined coefficients, it is easy to obtain Mi (q) and N t(q) from

(2.32). Multiplying Mi (q) A to both sides of (2.29), we have

y(k + i\k) = Ni{q)y{k) + M i{q)B(q)Au(k + i -  r  -  1|k) + M i(q)e(k + i\k). (2.34)

Note th a t the order of Mi(q) is (i — 1), so th a t the last term  in (2.34) expresses 

the future noise which is never predicable. Rewriting (2.34), the predicted output 

is expressed by

y(k  + i\k) = G i(q)Au(k + i -  r  -  l|fc) +  Ni(q)y(k). (2.35)

The coefficients of Gi(q) and Ni(q) can be obtained iteratively, i.e.,

9i+i,i+j =  9i,i+j T N jflb j (j =  0,1, • • • ,n6),

where gi+\^+j denotes the (i +  j ) th  coefficient of the polynomial Gi+i(q) over the 

(i + l ) th  iteration. The previous i coefficients of Gl+\(q) have to be determined by 

the method of undetermined coefficients. Refer to [14] for the details.

Another challenge of GPC is the effect of the pure-delay factor r .  Due to  the 

existence of r ,  A u(k  +  i — r  — l|fc) can be either future data or past data. Rewriting 

the problem in (2.31) in the form of stacked matrices, we have

J  =  min ||G(ACf) +  N y(k) -  W \\2A2y +  ||A C f||^  (2.36)

where

' 9 0 0 • O' (Gr+i(q) ~9o)q  1

91 90 • 0 (GT+2 (q) ~  9o -  9iq)q~2

9 n 9n -  1 • • ffo.

, G :=

[{GT+N(q) 9o ••• 9 N -i9N 1)? N\
~NT+1(qY A u{k) w (k  +  r  +  1 )
N T+2(q)

, A U :=
A  u(k + 1)

, W :=
w (k  +  r  +  2 )

_NT+N(q). A u(k + N  — 1) w(k + t  + N)

and Ay :=  diag(Aj,(fc+r+l), • • • \ v(k+ r+ N ))  and A„ :=  diag(A„(A:+r+l), • • ■ Au(fc+ 

r  +  N )). Eq. (2.36) is a standard QP problem; therefore, if there are no constraints 

imposed on the controlled system, the optimal input can be derived from the fol­

lowing conclusion.

29
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C o n clu sio n  2.4 The unconstrained GPC problem can be solved by quadratic pro­

gramming, and the optimal stacked input equals to

AU °  =  (GTA2yG +  A 2u) - 1GTA2y(W  -  N y{k)). (2.37)

Because G has full column rank and both Ay and Au are non-singular diagonalized 

weightings, the composition (GTAyG + A2) is certainly invertible, i.e., the problem 

in (2.36) is always feasible.

In the above discussion, we assume tha t there are no auto-regressive terms of mea­

surement disturbances, i.e., the measurement noises are assumed to be white noises. 

Actually GPC can be extended to the case of the systems with colored noises. Two 

operations are necessary for such an extension:

1. Replace the model in (2.29) by

A(q)y(k) = qTB(q)u(k  -  1) +  ^ ^ e ( f c ) ,

C(q) = 1 +  c\ql +  C2Q2 H 1- Cncqnc.

2. The Diophantine equation pairs should be derived by

C(q) =  Mi (q) A A(q) + ^ N ^ q ) .  (2.38)

Because GPC is not the focus of this thesis, we will not pursue these topics here. 

An extensive discussion of GPC can be found in [21, 22, 14, 59].

2.5 C onclusions

This chapter surveys the conventional MPC algorithms: DMC, MAC, PFC, and

GPC. These four algorithms are adopted in various commercial packages and are

able to  demonstrate most of the characteristics of nominal MPC.
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Chapter 3

Robust m odel predictive control 
Using LMIs

Robust MPC refers to the MPC schemes which incorporate system uncertainties 

with the MPC formulation. W ith different horizon settings, robust MPC is divided 

into infinite horizon robust MPC (IH-RMPC) and finite horizon robust MPC (FH- 

RM PC). In this chapter, we introduce two RMPC schemes: IH-RMPC using linear 

m atrix inequalities (LMIs) and FH-RMPC using LMIs. From theoretical analysis, 

it can be seen tha t the former is superior in the sense of stability and complexity, 

but the latter is better in flexibility and feasibility.
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3.1 S ystem  un certa in ties

System uncertainties have two major sources: modelling uncertainties (called as 

internal uncertainties in this thesis) and input/ou tput disturbances (referred to as 

external uncertainties). The former is usually led by parameter perturbation and 

modelling mismatch, and the latter is possibly derived from measurement noises and 

unmeasured inputs and outputs. Fig. 3.1 shows a classical MPC feedback system 

corrupted by internal and external uncertainties. In the figure, the MPC block pro­

vides manipulated inputs from measured outputs and measured disturbances, but 

excludes unmeasured outputs and measurement noises from the MPC formulation. 

MPC schemes with the framework of Fig. 3.1 are called nominal MPC, which as­

sumes system models with 1 0 0 % fitness and predicted outputs with 1 0 0 % accuracy. 

If the system in Fig. 3.1 is corrupted by serious internal or external uncertainties, 

MPC regulators normally can not achieve pre-specified control performance. Exam­

ple 3.1 illustrates the impact of internal and external uncertainties upon closed-loop 

MPC dynamics.

M easured d isturbances M easurement

OutputsUnmesured
Manipulated

inputsReference inputs Inputs

Measured

input noises

M easured outputs

PlantMPC

Figure 3.1: Nominal MPC systems with internal and external uncertainties.

E x am p le  3.1 Consider a system

x(k  + 1) =  A x(k) + B u(k) (3.1)

y(k) =  Cx{k) + d{k)

where i e E 2 stands for the state, u  € M2 the manipulated input, y G K 2 the output,

and d £ R2 the disturbance. The dynamic matrix A  is composed of two parts: the

nominal value A  and the time-varying perturbation A A(k), that is A  = A  +  A^(fc)
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with

A  =

Other parameters are given by

0.9719 -0.0013 
-0.034 0.8628 , and ||Ayi(fc) | |2  <  1-

B -0.0839 0.0232 
0.0761 0.4144 C = 1 0  

0  1
,  I M W I l o o  <  1-

The control objective is to drive theSet the initial condition equal to x 0 — [1,1]T. 

state to converge to the origin along the state trajectories. We assume that system  

(3.1) is uncertainty-free and design a nominal M PC regulator, by setting A a (k) and 

d(k) equal to zeros. Fig. 3.2 illustrates the influence of horizon length on closed-

The influence of horizon lengh

 N =2p
— .—  N =40.8

0.6
2x

0.4
0.50.2

50
TimeTime

- 0.2

-0 .4
evi

3  - 0.6
CM

X 0.4

- 0.80.2

10 20 30 40 50 0 10 20 30 40 500
Time Time

Figure 3.2: The influence of horizon length

loop dynamics. By increasing the difference between the prediction horizon and 

the control horizon, we can derive faster responses but get more aggressive inputs 

(Np = 4 for the solid lines with dots and N p = 2 for the pure solid lines; fixing 

N u = 1). Fig. 3.3 illustrates the influence of weighting matrices on closed-loop 

dynamics. For solid lines, we set

Q =
1 o 
0  1

and R  ■ 0.2 0
0 0.2

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The influence of w eightings

Q-diag(1,1) 
— ■— Q=diag(0.1,1)0.80.8

0.6
0.4X 3

0.4
0.2

0.2

- 0.2
50

Time Time

0.8
- 0.2

0.6
CM

x 0.4
-0 .4

3
- 0.6

0.2 - 0.8

0 10 20 30 40 50 0 10 20 30 40 50
Time Time

Figure 3.3: The influence of weighting matrices 

and for solid lines with dots, we set

Q
0.1 0

0  1
and R  ■ 0.2 0

0 0.2

R  can be seen that the weighting element on x \ is reduced and the trajectory of x \  

becomes much slower. Therefore, by tuning the weighting matrices, we can affect 

the penalized variables in objective functions.

To demonstrate the influence of system uncertainties, we design another two 

nominal M PC controllers with different settings: l)u se  the M ATLAB  function  

“rand” to simulate the external uncertainty d(k) and set Ayt(fc) =  0, and 2) use 

“rand” to create the internal uncertainty A a {U) and keeps d(k) =  0. The closed- 

loop responses with d(k) ^  0 and A^(fc) =  0 are shown in Fig. 3.4- R  can be seen 

that both the state trajectories and manipulated inputs are corrupted by noise and 

can not approach steady states, although the magnitudes of the state and input vi­

brations are not very large. This fact is consistent with the experience of MPC  

applications: i f  the system is impaired by small external disturbance, nominal MPC  

may still work, but not with large disturbances. Setting A a (k) ^  0 and d(k) = 0, 

Fig. 3.5 shows the trajectories of the states and inputs in the presence of internal
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The influence of external uncertain ties
6
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0
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2
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T im e T im e

X

0.5

20
T im e

-0 .5

CM3

-1 .5

-2

Tim e

Figure 3.4: The influence of external uncertainties

disturbances. In this case, all trajectories become divergent and approach to infinity 

after 50 seconds simulation. So nominal M PC has very poor robustness for internal 

uncertainties.

From Example 3.1, we can draw the following two conclusions.

C o n clu sio n  3.1 B y tuning horizon length and weighting matrices in objective func­

tions, we can adjust the tradeoff between the aggressiveness and conservativeness of 

M PC design. This fact is consistent with the conclusions in Chapter 1.

C o n clu sio n  3.2 Nominal M PC is not for uncertain systems with large internal 

uncertainties or external uncertainties. To improve M PC flexibility, it is necessary 

to incorporate system uncertainties with M PC formulation, i.e., developing a new 

class of M PC schemes, robust M PC (RMPC).

3.2 Linear m atrix  inequality

A linear m atrix inequality (LMI) has the form
n

F (x) = Fq +  ^ 2  XiFi >  0, (3.2)
1= 1
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Figure 3.5: The influence of internal uncertainties

where x  G Rn is the unknown variable and Fj G Sn (i = 1, • • • , n ) , namely, F{ is 

symmetric is the given matrix. Eq. (3.2) is equivalent to vTF (x)v  > 0, for V v G M" 

and « ^ 0 .  Actually, the condition in (3.2) is satisfied if and only if all eigenvalues 

of F (x) are nonnegative, i.e.,

Amin{F(x)) > 0 .

LMIs are widely used in system analysis and control [12]. Given a linear objec­

tive, LMIs define a set of optimization problems, namely semi-definite programming 

(SDP) which is extensively used in this chapter. Both IH-RMPC and FH-RMPC 

are possibly formulated as an SDP problem in the form

min cTx  (3.3)
n

s.t. F0 +  ^ 2  x iFi > o,
i —1

where c is a constant vector with an appropriate dimension.

3 .2 .1  V a r ia n ts  o f  S D P

Several popular convex optimization problems can be converted into SDP [100].
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• Linear programming (LP):

min cTx
X

s.t. A x  -< 0.

• Second-order cone programming (SOCP) [54]:

min cTx
X

s.t. \\A iX + bi\\2 < d f x  + fi, (i =  1 , 2 , • • • ,n).

• Convex quadratic programming (CQP) [13]:

min xt Qox + b^x  +  cq (Qo >  0 )
X

s.t. x TQiX + b fx  +  Cj < 0  (i =  1 , 2 , • • • , n, and Qi > 0 ).

• Minimal generalized eigenvalue programming (GEVP) [12]:

min A (A > 0)
x,  A

s.t. Fi{%) < A i^ r )

where F \(x) and F2 (x) are two LMIs.

• Maximal determinant programming (MAXDET) [101]:

max det(P )
P, t l ,  t 2

s.t. P  < t\P \ (Pi > 0),

P  < 2̂ ^ 2  (P2 > 0 ),

0  < tl  <  1 ,

0  < t2 < 1 .

Both GEVP and MAXDET will be used in Chapter 6  for robust observer design 

and Example 3.2 gives detailed explanation for MAXDET problems.
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E x am p le  3.2 [57] Given two ellipsoidal sets

£\ = {x\xTP ix  < 1 ,  P i >  0},

£■2 =  {x\xT P2 X < 1 , P2 >  0 },

find another ellipsoidal set £  = {x \xTP x  <  1, Pi >  0 } with the smallest possible 

volume that contains the union of £\ and £2 . This is a standard M A X D E T problem.

3 .2 .2  L M I lem m a s

From the following LMI lemmas, the above convex optimization problems can be 

converted into SDP, and then by utilizing the recently developed strategy, interior- 

point programming [69], SDP can be solved numerically and efficiently.

L em m a 3.1 [12](Schur complements) The linear matrix inequality

> 0, (3.4)Q(x) S(x) 
S T (x ) R( x)

where Q{x) = QT (x), R (x) — R T (x), and S (x ) are affine functions of x , is equiva­

lent to

R (x) >  0, Q(x) — S ( x ) R ~ 1 ( x ) S t ( x ) >  0.

P ro o f: Performing congruent transformations, we have

I  - S { x ) R - 1(x)  
0 I

Q( x) S (x)  
S T (x) R (x)

I  0
- R - 1 { x ) S t ( x ) I

Q ( x ) - S ( x ) R - 1 ( x ) S t ( x )  0

0 R ( x )

Since

det I  - S ( x ) R - 1( x )  
0 I =  1 / 0 ,

Eq. (3.4) is satisfied if and only if

Q(x) — S (x )R ~ l (x )S T (x) 0 
0 R(x)

Therefore Lemma 3.1 is proven.

> 0.

L em m a 3.2 [12](S-Procedure) Let Fo, , Fp be quadratic functions of the vari­

able £ £ Rn and

p / o  ~ e m  + 2 u j z + Vi, i =  o, 1 , , p , (3.5)
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where T) G Sn, m and V{ are all constant matrices. The condition on Fq, • ■ • , Fp, 

Fo(£) > 0 for  V£ such that Fj(£) >  0 (i = 1, • ■ • , p), 

is satisfied if  3 t\ > 0 , • • • , tp > 0  such that for

W  -  x > ^ ( 0  > 0 .
i = l

Proof: The proof is straightforward and is omitted here.

Lem m a 3.3 [106] Let X ,  Y  be real constant matrices of compatible dimensions. 

Then

X t Y  +  Y t X  < e X TX  +  - Y t Y  (3.6)
£

holds for any e > 0 .

Proof: The proof follows from the condition

{s/eX T -  - ^ Y T)(y / iX  -  4 = y )  >  0.

Lem m a 3.4 [39](Robust LMIs) Let Ti =  T ( , T i, T3 , and T4 be real matrices of 

appropriate dimensions. Then det (I  — T4 A) ^  0 and

Ti +  T2A (I  -  T4A ) _ 1  T3 +  T3t  (I  -  T4A )_ t  At T2t  > 0 (3.7)

for every A, ||A|| =  cr(A) < 1, i f  and only if  ||T4|| <  1 and there exists a scalar 

t  > 0  such that
\T i - tT 2T.2T T3t - t T 2T4t 1 
_T3 -  tT 4T2t  r  ( /  -  T4T4t )J -  U’

P roof. Let T2 and T3 be non-zero (the proof is straightforward if either of them  is 

zero). Pre- and post-multiplying zT and z to each term  in (3.7), we have

zt T iZ + zt T2 A ( /  -  T4 A ) - 1 T3z + zTT j  (I  -  T4A )~ t  A t T ? z > 0, 

where z  is a non-zero vector with an appropriate dimension. Define

£ := ( / - T 4 A )_ t At T ^-

(3.8)

(3.9)
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Then (3.8) can be rewritten as

T
T l T l 2:

£ T$ 0 I
> 0. (3.10)

Pre-multiplying both sides of (3.9) by (I  — T4A)t , we get

£ =  A t  (T4£ +  T2t z) .

For simplicity, set p — T4£ +  T j z and consequently £ =  ATp. Then from the 

condition || A|| =  a  (A) <  1, we derive

Thus

equivalently,

= pTA A Tp < pTp.

{T it + T2t z f  (T4£ +  T2t z) -  > 0,

> 0.z
T T2T2t t 2t J  ■ z

. i T4T2t T4T4 - 1 a.
Using the S-procedure, (3.11) is satisfied if and only if

Ti T f T 2t [ T2T j  '
T3 0

—  T
T iT ? T4T4 -  /

> 0 ,

(3.11)

(3.12)

where t is a positive scalar. The key idea of this lemma is employing t  to replace 

the norm-bounded uncertain m atrix A. Simplify (3.12) to complete the proof. ■

Based on the above lemmas we can formulate both IH-RMPC and FH-RMPC as an 

SDP problem.

3.3 IH -R M P C  using LM Is

IH-RMPC is motivated by constrained LQR (CLQR) [92]. It is different from CLQR, 

however, on two aspects: IH-RMPC is dynamic feedback control (CLQR is static), 

and IH-RMPC is able to handle system internal uncertainties (CLQR can not).

3 .3 .1  C L Q R  u s in g  L M Is

Infinite horizon MPC (IH-MPC) is an extension of CLQR and infinite horizon robust 

MPC (IH-RMPC) is an extension of IH-MPC. After formulating CLQR as an SDP 

problem, we can understand the essentials of IH-MPC and IH-RMPC using LMIs.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Consider a system

x(k  + 1) =  A x(k) + B u(k), (3.13)

where the state x(k) E R" and the input u(k) € Rp. A  and B  are constant matrices 

with compatible dimensions. Given the initial condition a;(0), design a control law 

u(k) so th a t the state approaches the origin. The objective function in the CLQR 

problem can be formulated as

J = '}T \\x (k )\\2Q + \\u{k)\\2R, (3.14)
fc=0

where Q € §” + and R  £ §++• Contrary to  the conventional approach for LQR 

which derives an analytic solution to u(k) by solving an algebraic Riccati equation 

(ARE), here we will use the lemmas discussed above to convert CLQR into an SDP 

problem. Set the control law in the form of static feedback, i.e., u(k) = F x(k)  and 

F  is a static feedback gain. Assume tha t there exists a matrix P  £ § " + satisfying

x T ( k + i+ l ) P x ( k + i+ l ) - x T (k + i)P x(k+ i) < -(||a:(fc+i)||Q  +  ||u(fc+i)||ji), (3.15) 

Summing (3.15) from i =  1 to i = oo, we have

x T (oo)Px(oo) — x T (0)Px(0) < —J. (3.16)

If the resulting closed-loop system for (3.13) is stable, x(oo) must be zero and result

in

J  <  x T(0)Px(0) < 7 , (3.17)

where 7  is a positive scalar and is regarded as an upper bound of the objective in

(3.14),
OO

k= 0

Replacing u(k) by F x(k), (3.15) is rewritten as

{A +  B F )t P (A  + B F ) - P  + Q + F t R F  > 0. (3.18)

Left- and right-multiplying X  :=  P ~ l on the both sides of each term  in (3.18), and

then applying Schur complements, (3.18) becomes

X  * * *
A X  + B Y  X  * *

Ql/2x  0 I  *
R 1/2X  0 0 1

> 0, (3.19)
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where the symbol stands for symmetric terms in the matrix. Set Y  =  F X .  

Applying Schur complements to (3.17) too, we derive

7  *
x{0) X

> 0. (3.20)

Therefore, the CLQR problem is solved by

min 7  (3.21)
7  , X , Y

s.t. Eqs. (3.19) and (3.20) hold,

and the feedback gain F  — Y X -1 . Note tha t here we omit a discussion on the 

constraints of CLQR which are easily added into Problem (3.21).

C o n clu sio n  3.3 From the above operation, CLQR is converted into an SDP prob­

lem in (3.21). From the condition in (3.15), the resulting CLQR feedback system is 

asymptotically stable if  (3.21) is feasible.

C o n clu sio n  3.4 The constraint in (3.19) is the function of the initial state x(0). I f  

replacing a:(0) by x(k)  and iterating the problem in (3.21), CLQR design is extended 

into IH-MPC.

C o n clu sio n  3.5 Extending Conclusion 3.4 one step forward by incorporating sys­

tem uncertainties into M PC formulation, IH-MPC becomes IH-RMPC. In this case, 

the objective in (3.21) degenerates to a sub-optimization problem, i.e., IH-RM PC  

can be formulated as

min m ax 7  (3.22)
7, x , y  A(fc)

s.t. Eqs. (3.19) and (3.20),

where A (k) is the composition of internal and external uncertainties, and 7  is the 

upper-bound of the objective in the form  of (3.14).

The challenge of IH-RMPC is to develop a structured uncertainty A(fc) in a way 

th a t captures model uncertainties and facilitates the calculation of the upper bound 

7-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 .3 .2  S tru c tu r ed  s y s te m  u n c er ta in tie s

In 1996, Kothare et al. published a successful IH-RMPC algorithm [45], and in 

this paper two kinds of structured uncertainties were considered, namely polytopic 

uncertainties and structured uncertainties in the feedback loop.

1. Polytopic uncertainties.

Consider a system

x ( k  + l)  — A ( k ) x ( k )  + B  ( k ) u ( k ) , (3.23)

y (k) = Cx  (k) ,

where A ( k ) , B  (k) stand for the time-varying dynamic matrix and input ma­

trix, and their time-varying properties are results of modelling uncertainties. 

There exists a convex set fi containing all the possibilities of A  (k ) and B  (k ), 

i.e.,

n  = Go{[A1,B 1], [A2, B 2], ••• , [AL,B L]}, (3.24)

where “Co” denotes to the convex hull, such tha t if [A (k ) , B  (&)] G fl, then

L L

[A (k ) ,  B  (ft)] =  2  Ai {A i , B i\ , ^  Ai =  1 and Aj >  0. (3.25)
i = 1 %=\

fi defines a set of polytopic modelling uncertainties.

2. Structured uncertainties in the feedback loop.

This type of modelling uncertainties can be represented by

x  (k +  1) =  A x  (k ) + B \u  (k ) +  B 20 (k ), 

y{k)  = Ci x{k)  + D l6{k) ,

q{k)  =  C2x (k) + D 2u  (k) ,

6{k)  =  A (k )q ( k ) ,  (3.26)

where 9 (k ) is the unknown input due to modelling uncertainties, and A (k ) 

is the system matrix for structured uncertainties, which is block-diagonalized 

and has all block entries norm-bounded by 1 , i.e.,

\\Ai (k)\ \2 = a ( A i ( k ) ) < X i , * =  1,2,- -- ,r, fc > 0 , (3.27)
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where <r (•) is the maximum singular value and Aj is the corresponding upper 

bound scalar. Fig. 3.6 depicts this framework. Consequently,

k k

Y  e i  O ’ )  6i  U )  <  Y  q i V )  qi  ( j )  •  ( 3 - 2 8 )
j=0 j=0

ujkl A B, B2

c ,
c 2

0 D1 
d 2 0

A
# )

Figure 3.6: Structured uncertainties in the feedback loop.

Proved by Packard and Doyle [70], a number of control systems with modelling un­

certainties can be recast in the framework of (3.26). Moreover, Reference [12] shows 

tha t the structured uncertainties in the feedback loop in (3.26) can be reformulated 

as the polytopic uncertainties in (3.24), according to

ft = {[A + B 2A (k )C 2, B  + B 2A (k )D 2}}.

3 .3 .3  A lg o r ith m s

From Conclusion 3.5, we know tha t the main challenge of IH-RMPC is to derive the 

upper bound 7  in the presence of the uncertainties A (k). Reference [45] proposes two 

theorems to solve IH-RMPC problems with polytopic uncertainties and structured 

uncertainties in the feedback loop. The objective function is defined in the form of

(3.14), i.e.,

OO

„ (fc|fc), + *|fc)||« + + *)M«- (3-29) i=k

Note th a t Np = 0 0 , N u is a fixed value, and when i > N u, u(k + i\k) =  u{k +  N u\k).
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T h e o re m  3.1 [45] (IH -R M P C  fo r  system s with polytopic uncertainties)

Let the uncertainty set be defined by the polytope in (3.24). Then the state feedback 

matrix F  in the control law u (k  + i\k) = Fx(k+i \ k)  (i >  0) that minimizes the upper 

bound V (x  (fc|fc)) of the robust performance objective function at instant k is given 

by

F  = Y X ~l ,

where X  > 0 and Y  are the optimal solutions (if they exist) to an SDP problem,

(3.30)

(3.31)

min
7, X,  Y

S.t. 7  x(k\k)

7 (7 >  0), 

Tx
x(k\ k)  X

X  *
A j X  + B j Y  X

Q l/ 2X
R l!2Y

> 0 ,

* *'
* *
I *
0 I

> 0  (j =  1,2, ■■■L). (3.32)

P ro o f: In the same way to  derive CLQR using LMIs, the sub-optimization of IH- 

RMPC can be converted into an SDP problem. Replacing the pair (A, B)  in (3.19) 

by (A(k),  B(k)) ,  we derive the first constraint for IH-RMPC

X  * * *
A ( k ) X  + B ( k ) Y  X  * *

Q 1/2X  0 1 *
R }/2X  0 0 I

> 0 . (3.33)

Notice tha t the pair {A(k): B(k))  is time-varying and bounded by the convex hull 

in (3.24). X  =  P ~ l and Y  =  F X  are similar to the symbols in (3.19). Obviously, 

any pair (A ( k ), B(k))  in fl can satisfy the condition in (3.33) if and only if (3.32) 

is satisfied. Meanwhile, to guarantee 7  is an upper bound of the objective in (3.29), 

the condition in (3.31) is needed. ■

T h e o re m  3.2 [45] (IH -R M P C  fo r  system s with structured uncertainties  

in  the feedback loop) Let the uncertainty set fl be defined by the structured un­

c e r ta in tie s  in  (3 .2 6 ) . T hen  the s ta te  feedback m a tr ix  F  f o r  IH -R M P C  is  g iven  by

F  = Y X - 1
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where X  >  0 and Y  are the optimal solutions (if they exist) to an SDP problem,

mi n
7, Q, Y, A

S.t. > 0 ,

7 (7 > 0),

7  x (k \k )T 
_x(k\k) X

Q * * * *
E}/2Y  I  0 0 0
Q ll2X  0 / 0  0

c 2x  + d 2y  0  0  a  0

_ A X  + B Y  0 0 0 X  -  B 2A B j

> 0 ,

(3.34)

(3.35)

(3.36)

where

A •^2

\ - l  T 
^ 2  1nr_

> 0 . (3.37)

P ro o f: Inserting the model in 3.26 into 3.15 and replacing x (k + i+ l \k )  by x(k+i\k),  

we have

x(k  + i\k) 
0(k + i\k)

WA + B . F W ^ - P  + Q + WFWl * 
B 2P (A  + B iF )  ||£?2 ||

x(k  + i\k) 
6{k +  i\k)

Moreover, from the block diagonal uncertainties in (3.27) - (3.28), we have

Tx(k  +  i\k) T r

_6(k + i\k)
- \ \ C 2 + D 2F\\) * 

0  /
x(k  +  i\k)
e(k + i\k) < 0 ,

< 0 .

(3.38)

(3.39)

where I  denotes the identity matrix with an appropriate dimension. Performing 

S-procedure, (3.38) is satisfied if and only if 3 Ai, • ■ •, Ar >  0 such tha t

IWA + B ^ - P  + Q + W F W I + W ^ + D ^ W I  * 1

B 2P ( A  +  B \ F )  ||-B2||p  — a j  (3 -40)

where A is defined in (3.37). Performing congruent transformation to (3.40) by the 

factor
AT O' 
0  X

( X ^ p - 1),

and then applying Schur complements to the result, we obtain (3.36). Similar to 

Theorem 3.1, the constraint in (3.35) is imposed for upper bounding 7 . Theorem

3.2 is then proven. ■
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C o n clu sio n  3.6 Because the summation of (3.15) goes from i = 0 to i = oo, state 

prediction in the presence of uncertainties is skillfully avoided. This strategy is the 

key in IH-RMPC formulation. The fixed length of the prediction horizon, however, 

limits the tuning freedom of RMPC.

C o n clu sio n  3.7 Because of the condition in (3.15), it is easy to prove that the re­

sulting IH-RMPC system is closed-loop stable, associated with the Lyapunov function 

x T P x  and P  = X ~ l . Eq. (3.15) defines an ellipsoidal invariant set,

=  {x {k +  i) I x (k + i)TP ^ 1x(k  +  i) <  7 , P  > 0}, (3-41)

and this invariant set also guarantees the feasibility of IH-RMPC.

3 .3 .4  In p u t an d  o u tp u t  co n str a in ts

Imposing 2-norm or oo-norm hard constraints in the problems of Theorems 3.1, 3.2, 

Kothare et al. developed constrained IH-RMPC.

• Input 2-norm constraints (energy constraints):

Consider an input 2-norm constraint in the form of

||u(fc +  i|fc) | | 2 < umaXi2, i =  0, • • • , N u. (3.42)

Also, from (3.41), we know tha t the current state x(k)  determines an ellipsoidal

invariant set,

£q = {x \ x (k  + i)TX x { k  +  i) <  7 }. (3.43)

Therefore,

max ||u(fc +  z|fc) | |2  =  m ax \ \Fx(k  +  i|fc) | |2  
0 < i< N u i

< a 2{ Y X - ^ 2) j 2, (3.44)

From (3.42) and (3.44), the input 2-norm constraint in (3.42) is rewritten as

u: (3.45)

A p p ly in g  Sch u r c o m p le m e n ts , (3 .4 5 )  is  e q u iv a le n t  to

” y 2 / *x  > 0 ,  (3.46)

which is an LMI and easily combined with Problem (3.30) or (3.34).
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•  Input oo-norm constraints (peak constraints):

Consider an input oo-norm constraints in the form of

max.\uj(k + i\k)\ < uJm , i = 0, • • • , N u, j  =  1, • • • , p. (3.47) 
j

Replacing u  by the feedback gain F  = Y X ~ l , we have

max \uj(k  +  i\k)\2 =  m ax \ (Y X ~ 1x(k  +  i\k))j\2
i, 3 i

=  m ax \{Y X ~ l^‘2) j ( X ~ 1̂ 2x{k  +  *|fc) ) | 2 
i

< CYTX - 1Y )j j l 2, (3.48)

where the notation (-)j stands for the j th  row of a matrix, and (-)jj is the 

( j j ) th  element. Prom (3.47) and (3.48), the input oo-norm constraint in (3.47) 

is rewritten as

Z -  7 2Y TX - l Y  > 0, with {Z)jj <  <ax,oo. (3.49)

where Z  S S^. is an unknown matrix. Applying Schur complements, (3.49) is 

equivalent to
Z  *

_7 y  x

which is an LMI constraint.

• O utput 2-norm constraints (energy constraints):

Here, we only consider the case with polytopic uncertainties. It is easy to 

extend the results to cases with structured uncertainties in the feedback loop.

Consider an output 2-norm constraint

\\y(k + i\k)\\2 < 2/max,2, * =  1, , oo. (3.51)

Because of the prediction horizon Np = oo, the condition in (3.51) is satisfied 

if and only if

\\y(k + i\k)\\2 < ymax,2 , (3.52)

and

\\y(k + i + l|fc) | | 2 <  2/max,2 - (3.53)

48
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It is obvious th a t (3.52) is equivalent to

r< a x ,2 / >  0.
7  C X

Prom the model in (3.23), (3.53) can be rewritten as

2/max,27 > 0 .

(3.54)

(3.55)
_7 C (A (k )X  + B {k)Y )  X

Obviously, any pair [A(k), B (k ))] in the convex hull Q, guarantees the condition 

in (3.55) if and only if

2/max, 2^ *
_7 C {A iX  + B tY )  X  

which form a set of LMI constraints.

> 0 ,  i = l ,  2, ••• , L, (3.56)

Output oo-norm constraints (peak constraints):

Similar to output 2-norm constraints, here we only consider cases with poly­

topic uncertainties.

Consider an output oo-norm constraint

maxly^fc-Mlfc)! < y JmaX:00, i = 0 , ••• , oo, j  = 1 ,
h  3

(3.57)

Similar to  the analysis for output 2-norm constraints, (3.57) implies two LMI 

conditions,

Z\  * 
7 C X

> 0 , with (Zi) j j  < y(

Z<t *
7  C ( A i X  + B iY )  X

with {Zi)jj < j/Lx.oo, i =  1 ,

33 —  ym ax,ooi

> o ,

L,

(3.58)

(3.59)

where Z\, Z 2 G S+ are the unknown matrices to be penalized in the objective 

in (3.30).

C o ro lla ry  3.1 For systems with polytopic uncertainties in (3.23), the optimal input 

u(k\k) of constrained IH-RMPC with both the input/output energy constraints and 

input/output peak constraints, can be solved by the SDP problem in (3.30) with the
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additional LM I constraints in (3-46), (3.50), (3.54), (3.56), (3.58), and (3.59). X ,  

Y , 7 , Z, Z \,  and Z 2 are the optimization variables, and

u(k\k) = Y X ~ 1x(k),  

where x ( k ) is the current state measurement.

C o ro lla ry  3.2 For systems with structured uncertainties of the form (3.26), the 

optimal input u(k\k) of constrained IH-RMPC with both input energy constraints and 

input peak constraints, can be solved by the SDP problem in (3.30) with the additional 

LM I constraints in (3-46) and (3.50). X ,  Y ,  7 , A and Z  are the optimization 

variables, and

u(k\k) = Y X ~ l x{k), 

where x(k) is the current state measurement.

3.4  F H -R M P C  using LM Is

To preserve the numerical efficiency of LMIs and improve the tuning freedom of 

IH-RMPC, finite horizon robust model predictive control (FH-RMPC) using LMIs 

is developed. A moving average system matrix [16] is used to capture modelling 

uncertainties and facilitate future state prediction. Two additional terminal cost 

constraints in the form of LMIs are constructed to guarantee the closed-loop stability 

of FH-RMPC. Besides the horizons N p, N u, the terminal weighting Q jvp (another 

tuning parameter) is constructed to adjust the tradeoff between closed-loop stability 

and resulting dynamics. The robust LMI theorem [35, 56], namely Lemma 3.4, is 

utilized in the FH-RMPC formulation. The moving average system matrix, called 

uncertainty block, is weighted and norm-bounded by one, which is consistent with 

the conditions of the robust LMI theorem. Paralleling the system nominal model 

with the uncertainty block, we develop an FH-RMPC framework, which reflects the 

influence of high order uncertain terms on the FH-RMPC formulation and facilitates 

state predictions as well. From the properties of robust LMIs, FH-RMPC using LMIs 

is finally recast into an SDP problem and solved numerically using several existing 

software packages, e.g., MATLAB LMI-Toolbox [32].
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3.4.1 F inite horizon nominal M PC using LMIs

Consider a nominal model,

x (k +  1) =  A x  (k ) +  B u  (k ) ,  y{k) = C x  (k ) , (3.60)

where x  G M" is the state vector, u G Rm is the input vector and y G R q is the 

output vector. A , B,  and C  are constant matrices of compatible dimensions. To 

obtain the nominal MPC for step tracking, the objective function of input u(-\k) 

and state measurement x (k) over a horizon window is defined by 

N p - l  N u - 1

3  =  \\r - y ( k + i \k)\\Q+ \\u (k + i \k)\\2R + \\r - y ( k + N p\k)\\QNP’ (3'61)
i —1 i = 0

where r  is the reference input, and Q, R, Q np are the output, input and terminal 

weightings, respectively. Based on the model in (3.60), the predicted states can be 

expressed by:

A %x  (k ) +  A %~l B u  (k\k) +  ■ • • +  B u  (k + i — l |fc),
if 1 < i < N u,

x ( k  + i\k) =  A ix ( k )  + A i- 1B u (k \k )  + --- + A i~N- +1B u ( k  + N u - 2 \ k )
+  ( A ^ B  + ■ ■ ■ + B) u (k  + N u -  1|k ) ,

if N u < i < Np.
(3.62)

Rewrite the objective function in (3.61) in the form of augmented matrices [59] and 

derive

j =  ( n - y ( k ) ) T Q ( n - y ( k ) ) + u T ( k ) n u { k ) ,  (3.63)

where the augmented vectors are given by

U (k) =  [ uT (k\k) uT (k + l\k) uT (k + Nu — l\k) ]T , (3.64)

y ( k )  = [ y T (k + l\k) yT (k + 2\k) yT (k +  N p\k) }T ,

T  = [ rT rT ■■■ rT ]T ,

and the augmented weightings are given by

Q = diag(Q, Q, ■ ■ ■ ,Q, QNp), K  = diag(R, R, - , R). (3.65)

Inserting the predicted states in (3.62) into (3.60) from i =  1 to * =  N p, and 

utilizing the augmented vectors and weightings in (3.64) and (3.65), we can express
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the predicted output sequence y  (k ) in terms of the current state x  (k) ,

y  (k) = CAx (k) + CBU (k ) , (3.66)

where

A  =

A B 0 0

A Nu , 6  =
A nu-1b A n "~2B  ■ ■ B

l
...*

a

1

£ i to A np~2B  ■ (.A np~NuB  
+ --- + B)

C =
c

0

0

c
(3.67)

Substituting (3.66) into (3.63), and defining an auxiliary positive scalar t, the nom­

inal MPC can be solved by minimizing a linear objective,

J0 =  min t
t, U{k)

S . t .  t >  J,

J  = ( T -  (CAx (k) + CBU (k)))TQ

•(T -  (CAx  (fc) +  CBU (k))) +  UT (fc) TUA (fc), (3.68)

where Ja is the optimal value of the objective J  and the scalar t  is an upper bound of 

J. Applying Schur complements to the constraint in (3.68), we convert the nominal 

MPC into a SDP problem.

C o n clu sio n  3.8 For nominal M PC with step-tracking, the optimal control sequence 

U (k ) over a horizon starting at instant k, i f  exists, can be calculated by solving an 

SDP problem,

J0 =  min t
i, U{k)

S.t. t > 0 ,
t (T  — (CAx (k) + CBU (k)))T UT (k)
* Q - 1 0 >  0, (3.69)

_u( k)  o  n - 1

where x  (k ) is the state measurement at instant k.
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3.4.2 F inite horizon robust M PC using LMIs

As in Section 3.3, the first step in the robust MPC synthesis is to configure a system 

framework to represent the influence of modelling uncertainties on controller design 

while capturing system dynamics. FH-RMPC sets both the prediction horizon N p 

and the control horizons N u by finite integers, so it becomes inevitable to perform 

sta te /ou tpu t predictions. Eq. (3.62) provides an approach to future state calculation 

of nominal MPC systems. In the same fashion, we can perform state predictions 

in the presence of modelling uncertainties. However, if there exist uncertain terms 

in matrix A, the high order factors of uncertainties will appear in the expression 

of predicted states, which are notorious for the MPC formulation. This barrier 

motivates us to construct a new framework to represent the uncertain factors in 

m atrix A: the nominal version of controlled systems paralleling a moving average 

uncertain matrix.

1. A  fram ework for m odelling uncertainties

Fig. 3.7 shows the framework adopted by FH-RMPC. It is composed of the 

nominal model of the controlled system and a moving average uncertain ma­

trix. Here we assume that C  is known precisely and the states are fully mea­

surable, so th a t the system is regarded as a transformation from inputs to 

states and then to outputs. In Fig. 3.7, A/, stands for the modelling uncer-

r(k)
M PC controller

— *■ w —-  Ak —►] P

u(k) A B

I 0

s(k)
»(t)

Figure 3.7: An FH-RMPC feedback system 

tainties over the prediction horizon starting at instant k. It is weighted and
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norm-bounded by one, and W  and P  are weighting matrices, i.e.,

A fc  (k, k) 0  • • ■ 0

A/t (fc +  1 , k ) Afc (k +  1 , k +  1 ) • • • 0

A fc  (A  +  Np, k)  A * ,  (A: +  iV p ,  k +  1 )  • • • A / ,  (fc +  Np, k +  Np)̂
(3.70)

with ||Afc|| =  d(Afc) <  1. To simplify formulation, we assume th a t predicted 

state x (k + i\k ) is independent of the previous modelling uncertainties due 

to the monotonicity of the prediction horizon. Taking advantages of such an 

assumption, the controller design may be significantly simplified .

2. C o n v e rt F H -R M P C  in to  a  Q P  p ro b lem

Based on the uncertainty block defined in (3.70), perform the state predictions. 

The key point here is to exploit the monotonicity of the prediction horizon. 

At every prediction horizon starting at instant k, predictions are independent

of the previous horizon uncertainty block Afc_i. Here the nominal model is

given by

x (k + i + l|fc) =  A x  {k +  i\k) +  B u  (k + i \ k ) , (3-71)

and the uncertain term <5 (k) led by modelling uncertainties can be calculated

by
k+i

6 (k + i\k) =  ^  A (k + i , j ) u  (j \ k ),  (3.72)
j=k

where the uncertainty matrix A is defined, for convenience, as

A =  P A kW.

From (3.71) and (3.70), we have

x (k + i + l\k) = x  (k + i + l|fc) +  5 (k + 1 +  i\k)

= A x  (A +  i\k) + B u  (k +  i\k)
fc+l+i

+  ^ 2  A (k + 1 4- i , j ) u  (j\k) . (3 .7 3 )
j=k
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It is obvious tha t

x ( k  + i\k) =  x  (k + i\k) + 5 (k +  i\k)
k+i

= x ( k  + i\k) +  ^ A ( f c  + i , j ) u ( j \ k ) . (3.74)
i=k

Substituting x  (k + i\k) in (3.74) into (3.73), we derive

fc+ l+ i

x ( k  + l  + i\k) = A x  (k + i\k) +  B u  (fc +  i\k) +  ^  A (fc + 1 +  i, j )  u (j\k)
j=k

k+i
- A ^ 2 A ( k  + i , j ) u ( j \ k ) . (3.75)

j=k

The predicted output satisfies

y (k +  i\k) = C x  (k +  i \ k ) . (3.76)

To illustrate the procedure of the state predictions, we implement the first two 

steps, namely the calculations of x(k  + l\k)  and x(k  +  2 |fc),

fc+i
x(k  + l\k) = Ax(k)  +  Bu(k\k)  +  A (fc +  l , j )u ( j \k )

j=k
-A A (k ,k )u (k \k ) ,  (3.77)

x(k  + 2\k) = A x(k  + l\k) + B u (k  + l\k)
k+2 fe+i

+  ^  A(fc +  2 ,j)u (j \k )  - A ^ A ( k  + 1 , j ) u ( j \k ) . (3.78)
j —k j=k

Substituting (3.77) into (3.78), we have

x(k  + 2\k) = A 2x(k)  +  ABu(k\k)  +  B u (k  +  l|fc) 
k+2

+  A (k +  2 , i)u(j\k) — A 2A(k , k)u(k\k). (3.79)
j —k

W ith o u t  lo ss  o f  g e n e ra lity , w e  c a n  a ss u m e  t h a t  th e  u n c e r ta in ty  b lo c k  A& is  

s t r ic t ly  c a u sa l, h e n c e  t h e  first e le m e n t  o f  u n c e r ta in ty  b lo c k  Afc (fc, fc) =  0, 

consequently, A (fc, fc) =  0  (weightings P  and W  are block diagonal matrices).
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So we can derive the common expression for the predicted state:

' A*x (k ) + A ^ B u  (fc|fc) +  • • • +  B u  (fc + i -  l|fc)
k+i  „

+ J2 A ( k  + i , j ) u ( j \ k ) , if 1 < i < N u — 1,
j = k

x ( k  + i\k) = <
A ix{k )  + A i~l B u{k\k)  + --- 
+ A i~Nu+1B u  (k + N u -  2| k) + ■■■
+ ( A ^ B  -\-----+ B ) u (k + N u -  l|fc)

k + N u - 1 „
+  £  & (k  + i , j ) u ( j \ k )  

j = k  

+  £  & (k  + i , j ) u ( k  + N u - l \ k ) ,  ifJV „<  i < N p. 
j = k + N u

(3.80)

Rewrite the predicted states as an augmented matrix

X  (fc +  l|fc) ' A  ' B

x ( k  + N u\k) = A Nu x ( k )  + A n ^ B  • • •

x ( k  + Np\k) i A ^ - ' t -B  •••

0

A B

0

B

ANp- n u+ iB  a Np- nu  1_ B

A(fc +  l,fc) A(fc +  l,fc +  l)

u  (k \k) 

u (k + N u -  1|k)

+ A { k  + N u,k)  A ( k  + N u,k  + 1) ■■■ 

_ A  (k + Np, k) A  (fc +  Np, k + 1)

0

A (fc +  N u, k +  N u — 1) +  ■ • • +  A (fc +  N u, k +  N u) 

A (fc +  N u, k +  N u — 1 ) +  • • • +  A (fc +  Np, k +  Np)
u  (fc|fc)

: . (3.81)
u(fc + N u -  l|fc)_

Here we define two auxiliary matrices Mi and M r as the left- and right-
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multipliers of the uncertainty block A, namely

h  0 0 0 0
0  I2 ■■■ 0  0

O h  0  ••• 0

0  0  h  • • •  0
, and M r := 0 0 • • • h  0 , (3.82)

0  0  • • • 0  h
M,

0 0 0 h

0  0 0  I 2

where both I \  G Mnxn and I 2 G Rmxm axe identity matrices. In the terms of M; 

and M r, the uncertainty block A k defined in (3.70) represents the uncertain 

terms in (3.81). Using the notation in (3.64) and (3.67), we can stack the 

expressions in (3.76) and (3.80) from * =  1 to i =  N p and derive

In the way of the nominal MPC, we have also formulated FH-RMPC as a QP 

problem.

C o n clu sio n  3.9 A finite horizon robust MPC system can be represented by 

its corresponding nominal model in parallel with a weighed unity-norm uncer­

tainty block. Based on such a framework, robust step tracking control, or, step 

tracking in the presence of modelling uncertainties, can be achieved by solving 

a robust semi-definite optimization problem (if solutions exist) with uncertain 

matrix constraints:

X ( k )  = A x ( k )  + BU{k) + M iP& kW M rU (k)  

y ( k )  = C X ( k ) , (3.83)

where X  (k ) is the augmented, predicted state vector with

X  (k) := [ x T (k + l|fc) x T (k + 2\k) ■■■ x T (k + Np\k) }T .

min t
t, U{k)

(3.84)

subject to

t  >  0
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m a x J  <  t (with || Afc|| =  a (A k) <  1 ),

J  =  (T - y ( k ) ) TQ { T - y ( k ) ) + U T ( k)KU( k)

X ( k )  =  A x { k )  +  BU(k)  +  M i P A kW M rU ( k ) ,

y(k)  =  c x ( k ) , (3.85)

where T  is the augmented reference input with

T  := [rT rT

and t is an upper bound of the objective J.

Note that if inserting (3.83) into (3.85), the objective J  can be represented by

J  =  ( T - ( C A x ( k ) + C B U { k )  +  C M lP A kW M rU( k ) ) ) T Q 

(T  -  (CAx  (k) +  CBU (k)) +  C M xP A kW M rU (k ))

3. A n  F H -R M P C  a lg o rith m  usin g  L M Is

We have formulated FH-RMPC into the robust QP problem in (3.85). Due to 

the presence of modelling uncertainties, (3.86) involves the uncertain terms of 

A k. Therefore, we cannot apply Schur complements and use existing software 

packages to solve Problem (3.85) numerically. In order to overcome such a 

barrier, the robust LMI theorem, namely Lemma 3.4, is utilized. The pivotal 

idea of Lemma 3.4 is using an auxiliary positive scalar r  to convert robust 

LMIs into standard LMI constraints. Consequently, we can recast the robust 

QP problem in (3.84) for FH-RMPC into an SDP problem.

T h e o re m  3.3 The FH-RMPC design for step-tracking control is solvable by 

an SDP problem:

+UT (fc) TU4 (fc). (3.86)

min
t, U(k), r

subject to

t > 0 , r  >  0 ,
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t  ( T  -  CAx  (fc) -  CBU (fc))T UT (fc) (W M rU (fc))T n 
* Q - 1 -  t CMiP  (CMiP )t 0 0

n - 1 0
* tI

> 0, (3.87)

where T  is augmented reference input, U (fc) is predicted input sequence, and 

Q andlZ are weighting matrices, defined in (3.64) and (3.65). The augmented 

matrices A , B, C, Mi, and M r are constructed in (3.67) and (3.82).

P ro o f: Applying Schur complements and rewriting the constraints in (3.85), 

we have

t ( T - C A x { k ) - C B U { k ) f  ~ (C M lP A kW M rU (k))T UT (fc)
* QT1 0

*  *  'RT1

Separating the certain and uncertain terms in (3.88)

'  0 0C M iPAkW M rU ( k ) f  0 ‘ 0 0 0  '
T i - 0 0  0 - CMtP A kW M rU (fc) 0 0

0 0  0 0 0 0

>  0 . 

(3.88)

> 0 ,

(3.89)

and rewriting (3.89), we have

\ W M rU (k))T~
T i - 0 A I 0  (C M i P f  0

0

0

CMtP
0

A fc [WMrU (fc) 0 0] >0,

where

Setting

Ti
t (T  -  CAx  (fc) -  CBU (fc))T UT (fc)

Q - 1
*

0

n - 1

(3.90)

(3.91)

T2

0

-CMtP
0

, T3 =  [WMrU (fc) 0 0] , and T4 =  0,

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and recasting (3.90) into the form of (3.7), we form a robust LMI in the 

structure of Lemma 3.4,

T i -  -  T2A kT3 > 0 Tx - t T 2TT T f  
T 3  t I

> 0. (3.92)

Therefore, FH-RMPC for step tracking control is converted into an SDP prob­

lem. ■

Theorem 3.3 provides an effective approach for solving FH-RMPC problems for 

robust step tracking control. By adjusting the length of the prediction horizon N p 

or/and  the control horizon N u, different requirements of the pre-specified perfor­

mance may be satisfied. From the previous theoretical analysis, if Np and N u are 

large enough (for example Np = N u =  oo), we can always find a Lyapunov func­

tion to guarantee closed-loop stability of RMPC without any terminal constraints. 

However for the FH-RMPC case, if both N p and N u are finite, terminal cost con­

straints have to be imposed to guarantee the robust stability of resulting FH-RMPC 

systems.

3 .4 .3  T erm in a l co s t c o n str a in ts

In 1988, Keerthi and Gilbert first proposed a method which employed the objective 

function of MPC systems as a Lyapunov function to solve the nominal stability 

problem [43]. Later the same approach was used for nonlinear systems [62]. In 

this section, we will employ a similar idea and develop terminal cost constraints to 

guarantee robust stability of FH-RMPC systems.

W ithout loss of generality, here we set N p =  N u, otherwise we can enforce

u { k  + i\k) = u ( k  + i \ k ) , if N u < i < Np.

For ease of notation, we denote e (k +  i\k) := y (k +  i\k) — r (k +  i \ k ) . Consider a 

quadratic function

V (x (k  + i\k)) = e (k  + i\k)T ^ e ( k  + i\k) = \ \Cx(k + i\k) - r | | | ,  $ > 0 ,  (3.93)

of state measurement x  (fc), k > 0. Let 

V  (x (k  + i + l\k)) - V  (x (k  + i\k)) < — (||e (k + i\k) ||q  +  \ \u(k + i\k) ||^ ), (3.94)
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and consequently,

V (x  (k + Np\k) — V ( x ( k  + Np — l|fc)))

<  - ( \ \ e ( k  + N p - l \ k ) \ \ 2Q + \\u(k + N p - l \ k ) \ \ 2R). (3.95)

Summing (3.94) and (3.95) from i — 0 to i =  Np, we get

V  (x (k + Np\k)) - V ( x  (k\k)) < - J -  ||e (k)\\2Q + \\e(k + N p\k)\\2Qnj>.

Employ V  (x (k j) as a Lyapunov function satisfying

V  (x (A;)) >  t + ||e (k) \\2q -  ||e (k + N p\k) | | ^ p + V ( e ( k  + N p\k ) ) , (3.96)

where t  is the upper bound of objective J  defined in (3.84). Then V  (k ) : R” —> R,

the difference of Lyapunov functions of x  (k +  1) and x  (k ) , can be expressed as

V  (k) := V  (x (k  + 1)) — V ( x  (k))

< V  (x (k + I)) -  t — \\e (k) \\q

+  ||e (k  + N p\k)\\2Q,Np -  V  (x (k  +  Np\k )) . (3.97)

In order to derive closed-loop asymptotic stability, we should guarantee tha t the 

right hand side of (3.97) is negative, i.e.,

| |e (k +  1) | | |  -  t -  | |e (k)\\q + \\e(k + N p\k) | | ^ p — | |e (k + N p\k) | | |  < 0. (3.98)

From (3.80), we know th a t if u(A;|A;), the first element of input sequence U (k ) is 

sent to the real process, the state measurement at instant (k + 1 ) can be expressed 

as

x  (k +  1 ) =  A x (k) + B u  (k\k) + A ( k  + l , k ) u  (k\k) , 

and consequently

e (Jfe +  1) =  C A x  (k ) +  C B u  {k\k) + C A { k  + 1, A;) u {k\k) -  r. (3.99)

Introduce two constant matrices Ex and E? such that

A  (A; +  1 , AO =  Ei  A E 2 =  E x M iP A kW M rE 2, (3.100)

with

E\  = [0 I  0 0] , and E 2 = [ /  0 ••• 0]T .
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Inserting (3.99) and (3.100) into (3.98), we get

|| C A x  (k ) +  C B u  ( k \ k ) - r  + C  E iM tP  A kW  M rE 2u (k\k) | | |  -  t

- \ \ C x ( k ) - r \ \ 2Q + eT (k + Np\k )(Q Np-<f>)e(k + Np\ k ) < 0  . (3.101)

So if the inequalities

||Co; (jfe) -  r ||g  + 1 -  ||C A x  (k ) +  C B u  (k\k)

- r  + C E 1M iP A kW M rE 2u{k\k)  | | |  >  0, (3.102)

$  -  Qn p >  0 , (3.103)

hold simultaneously, we can guarantee the condition in (3.101). Applying Schur 

complements and the property of the robust LMI theorem (Lemma 3.4), we can 

recast (3.102) into

||C:e (fc) — r ||g  + t * *
'A x{k) + C B u { k \ k ) - r  X  -  X iCExM iP {C E iM lP )T * > 0 ,  (3.104)

W M rE 2u (k \k ) 0 A il

where X  = 4*- 1  and Ai is a positive scalar. Then left- and right-multiplying X  to 

both sides of each term  in (3.103) and defining a small non-negative scale k , which 

is selected as a tuning scalar of (Qnp + kI ) ,  we have

X - X  (QNp + K l ) X  > 0 (3.105)

It is obvious that if 0, (3.105) is equivalent to (3.103). Apply Schur complements

to Eq. (3.105) and derive

^  tr, X  i > 0 - (3.1.06)X  (Qnp + kI)

Combined with (3.106), (3.104) forms a sufficient condition to (3.98), which is de­

signed for asymptotical stability of the resulting closed-loop FH-RMPC system.

Meanwhile, in order to use V  (* (k)) as a Lyapunov function candidate, we design 

another LMI to guarantee (3.96). To this end, taking advantage of the condition in

(3.103), we derive a sufficient condition to (3.96)

He (&) IIQmp -  * -  lie (*) llg -  He (* +  Np\k) III > 0 . (3.107)
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From (3.80), x ( k  + N p\k) is expressed as

e (k  + Np\k) = C A Npx  (k) + C E 3BU (k ) + C E zM xP X kW M rU (k ) -  r, (3.108)

where £ 3  =  [0--- 0 0 I]. Substituting (3.108) into (3.107), applying Schur

complements and using the property of the robust LMI theorem, we get

\ \ C x ( k ) - r f QNp- \ \ C x ( k ) - r \\2Q - t  * *
C A Npx  (k) + C E 3BU (k ) - r  X -  X2C E 3M xP  (C E 3M XP )T *

W M t U (fc) 0 A2 /
> 0 , 

(3.109)

where A2 is a positive scalar.

T h e o re m  3.4 To achieve step tracking performance for the FH-RMPC system de­

fined in Fig. 3.7, the manipulated input u° (k ) =  E 4U0 (k \k ) ,  k > 0, can be obtained 

by minimizing the following optimization problem,

J0  =  min t,
U(k)

subject to (3.87), (3.104), (3.106), and (3.109), where X ,  X\ and A2 are variables 

of LMIs for terminal cost constraints, and E 4  is a truncation matrix, given by

E i =  [I 0 • • • 0] .

The closed-loop system is guaranteed asymptotically stable if the optimal input se­

quences

U° (k) = [ u° { k \ k f  u ° (k  + l \ k f  ••• u°{k + N u -  l \k )T f ,  k > 0,

exist.

P ro o f. From Theorem 3.3 we know th a t the SDP problem in (3.84) can be solved 

by minimizing the linear objective in (3.87). Meanwhile, combined with constraints

(3.104), (3.106), and (3.109), the quadratic function of e ( k )

V  (x (k )) =  eT (k ) 4>e (k ),

can be regarded as a Lyapunov function, and it is convergent with MPC iteration. 

Therefore, by adding auxiliary constraints (3.104), (3.106), and (3.109) into the op­

timization problem defined in (3.87), we can guarantee the resulting FH-RMPC reg­

ulator to be asymptotically stable, associated with the Lyapunov function V  (x  (k )). 

■
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3.5 A  sim ulation  exam ple

Consider a classical angular positioning system proposed by Kwakernaak and Sivan 

in 1972 [47]. The system model is

x i  ( k +  1 ) 
x 2 (k +  1 )

y (k )

0.1
- 0 .1 a

x ( k )  + 0

0.787 u (k ) , (3.110)

=  [l 0 ] a; (k) ,

where a  € [0 .1 , 1 0 ] reflects the uncertain coefficient of viscous friction in the physical 

structure. From the approaches discussed in [45], an IH-RMPC controller for the 

structured uncertainties in the feedback loop is first designed. Comparing with the 

FH-RMPC controllers proposed in this chapter, it can be seen tha t the FH-RMPC 

controllers have better tracking performance and smaller overshoots (Fig. 3.8). 

Here the tuning parameters are set as: r = 1 , Q = I,  Qjvp =  I ,  R  = 0.00002/, P  = 

I ,  N u = 3, and W  =  0.1. The simulation length equals 50. For the simulation 

results in Fig. 3.8, we set a = 0.7 (nominal value a  = 0.495).

Modelling Uncertainty Block A

.£ -5

-  IH-RMPC
  FH-RMPC (Np-3)

• FH-RMPC (Np-6) r (k )

Real
Process

Nominal
Model L H

MPC u (k) Nominal m
Controller Model

S ( k )

Figure 3.8: IH-RMPC controller
(dash-dotted) and FH-RMPC con­
trollers: jVp =  3 (solid) and N p — 6 
(dotted)

Figure 3.9: Modelling uncertainty re­
configuration

In order to reconfigure the system in (3.110) into the framework of Fig. 3.7, 

we can take advantages of the method described in Fig. 3.9, using the difference 

between the nominal model and real process to  derive uncertainty block A.
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We now increase and decrease the uncertain term  a  to its upper and lower 

bounds, i.e., setting a  = 10 and a  = 0.1, respectively. In the same fashion, we 

design an IH-RMPC controller again. We find tha t it takes a very long time to 

reach the steady-state value and serious ripples occur for IH-RMPC, and therefore 

figures are not presented here. Fig. 3.10 shows the simulation results based on FH- 

RMPC controllers with the different control horizons. It can be seen th a t FH-RMPC 

achieves the prespecified tracking under the worst conditions. From this point, the 

FH-RMPC algorithm proposed in this chapter has better robustness properties tha t 

IH-RMPC. Similar to nominal MPC controllers, FH-RMPC controllers also possess 

the property th a t if increasing the difference between N p and N u, the overshoot of 

performance decreases; meanwhile system responses become slower.

alpha=10 alpha=0.1

  FH-RM PC (Np=3)
-  FH-RM PC (Np=6)

0.8

.§0 .4

0.2

Time, s

alpha»10

—  FH-RM PC (Np=3) 
-  FH-RM PC (Np=6)

Time, s

1.4
  FH-RM PC (Np=3)
-  FH-RM PC (Np=6)

O  0.4

0.2

Time, s

alpha=0.1

—  FH-RM PC (Np=3)
-  FH-RM PC (Np=6)

-4

Time, s

Figure 3.10: FH-RMPC controllers with the extreme uncertainty values: Np = 3 
(solid) and N p = 6 (dash-dotted)

As discussed above, closed-loop stability is a challenge for FH-RMPC design.

B y  im p o s in g  se v e r a l e x tr a  te r m in a l c o s t  c o n s tr a in ts , w e  c a n  g u a r a n te e  th a t  th e

closed-loop stability of resulting FH-RMPC systems. Fig. 3.11 demonstrates the 

influence of the imposed terminal cost constraints on the system performance with
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the different prediction horizons Np. Here we set a  =  0.8 and N u =  3. It can be 

seen tha t the terminal cost constraints attenuate the input and output peaks, but 

give rise to slower responses. Fig. 3.12 demonstrates the influence of the terminal

Np=3 and alpha=0.8 Np=6 and alpha=0.8

—  No cost constraints 
-  Im posed cost constraints

—  No cost constraints
—  Imposed cost constraints

= 0-8 3  0.8

o  0.40 0 .4

0.2 0.2

20 
Time, s

30 40 50
Time, s

Np=3 and  alpha=0.8 Np=6 and alpha=0.8

—  No c o s t constraints 
-  Im posed cost constraints

£ --2

- 4
20 30

Time, s

0.8
—  No cost constraints
—  Im posed cost constraintsCO

8 0.6cQ)
3O"

0.4oui
3
O.
~  0.2 
(0 £
a .O

- 0.2

Time, s

Figure 3.11: Influence of terminal cost constraints: no cost constraints (solid) and 
imposed cost constraints (dash-dotted)

cost constraints on the system performance with different terminal weightings Qn  . 

We reset a  =  0.9 and Np — 3, and keep N v = 3. In the figures, solid lines (no cost 

constraints) are derived from Theorem 3.3 and dash-dotted lines from Theorem 3.4. 

It can be seen th a t for the controlled system, even though we do not impose extra 

terminal cost constraints, the FH-RMPC algorithm can still come to closed-loop 

stability.

All the simulations were performed on a PC with a Pentium 4 processor, 512MB 

RAM, using the software LMI Control Toolbox [32] in the MATLAB window’s 

environment. Table 3.1 shows tha t the on-line computational cost can be reduced by 

FH-RMPC, compared with IH-RMPC. In the table, the numbers within parentheses 

are the average time to compute u° (k ) over every prediction horizon, and the other 

is the to tal time with the simulation length equal to 50 (Np =  N u = 3).
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Qnp=1.2l, alpha=0.9 and Np=3 Qnp=1.5l, alpha=0.9 and  Np=3

= 0.8 = 0.8

0 0 .4 O  0.4

—  No cost constraints
—  Im posed cost constraints

—  No cost constraints
—  Imposed cost constraints

0.2 0.2

50 50
Time, s Time, s

Q np=1.21, alpha=0.9 and  Np=3 Q np=1.51, alpha=0.9 and  Np=3
0.4

0.2

•£  - 0.2

a -0 .4
—  No cost constraints
—  Imposed cost constraints

- 0.6
30

Time, s

*  -1 —  No cost constraints
—  Imposed co s t constraints

-2

Time, s

Figure 3.12: Influence of terminal weightings: no cost constraints (solid) and im­
posed cost constraints (dash-dotted)

Table 3.1: Time cost of the online computation
Uncertainty factor a 0.7 0.8 0.1 0.99

IH-RMPC controller (s) 4.366 (0.087) 5.049 (0.101) - -
FH-RMPC controller 3.956 3.986 3.695 3.736

without terminal cost constraints (s) (0.079) (0.079) (0.074) (0.074)

3.6 C onclusions

In this chapter, we reviewed the background mathematics on system uncertainties 

and LMIs and introduced a successful IH-RMPC algorithm which was superior in 

numerical efficiency and closed-loop stability. After this, FH-RMPC, which is pro­

posed in this thesis, was extensively discussed. Two im portant topics for FH-RMPC 

were covered: how to achieve robust step tracking control by FH-RMPC, and how 

to guarantee the closed-loop stability of resulting FH-RMPC systems. Taking ad­

v a n ta g e  o f  th e  p r o p e r t ie s  o f  a  r o b u s t  L M I th e o r e m  (L e m m a  3 .4 ) ,  t h e  c o n v e n tio n a l  

min-max programming was converted into an SDP problem. Compared with IH- 

RMPC, FH-RMPC has more tuning freedom, better control performance, and faster
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online implementation. All formulations mentioned in this chapter are based on an 

assumption: the controlled system has fully measurable states. How to remove this 

assumption is left to Chapter 6 . The content of this chapter is summarized in our 

publication [19].
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Chapter 4

Explicit m odel predictive 
control

This chapter investigates Bemporad’s work — explicit model predictive control 

(EMPC). EMPC is featured by offline optimization and online implementation. Dif­

ferent from conventional MPC algorithms which provide nonlinear implicit functions 

as control policy, EM PC derives the expressions of manipulated inputs by a set of 

piece-wise affine functions associated with state space partitions.
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4.1 In trod u ction

Prom previous chapters, we know tha t the MPC scenario is a tetralogy composed 

of system initialization, future signal prediction, online optimization, and controller 

implementation. W ith this scenario, MPC has to perform both optimization and 

implementation online and accomplish them at the same time. Considering the 

nature of computational complexity, though some modelling tricks may possibly 

simplify signal prediction, it takes a long time to finish the whole procedure of MPC 

formulation. This limitation hinders the MPC application to fast processes, e.g., 

aircraft control. To solve this problem, currently researchers are used to employ­

ing saturation elements plus anti-windup strategies [8 ] to regulate fast constrained 

systems, especially for industrial plants with integral control units.

4 .1 .1  A n ti-w in d u p  co n tro l

The principle of anti-windup control can be demonstrated by an industrial con­

tinuously stirred tank reactor (CSTR) with a conventional proportional-integral- 

differential (PID) controller and an input saturation unit. In order to  illustrate the 

influence of the undesired side effect known as “windup,” we first consider the CSTR 

system without anti-windup compensators.

E x am p le  4.1 Consider an industrial CSTR system with a first order plus dead 

time (FOPDT) model:
e-°-2s 
s +  1 '

It is controlled by a PID compensator:

C(S) =  3.03(1+  5i j j  +  I ^ ) .

Fig. 4-1 shows the Simulink diagram for this system. In order to satisfy input/output 

physical constraints, an input saturation unit is added into Fig. 4-1.

Experiments are conducted under four different conditions, namely, setting the 

saturation unit equal to [—1.8,1.8], [—1.6,1.6], [—1.4,1.4], and [—1.2,1.2], respec­

tively. Keep the reference input r equal to 1. The closed-loop responses of the CSTR  

without anti-windup compensators are shown in Fig. 4-2, which includes the trajec­

tories of the system output y (upper-left part), the integrator output yint (upper-right
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Figure 4.1: A CSTR system with an input saturation unit
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Figure 4.2: The closed-loop responses without anti-windup compensators

part), the input before the saturation block U f ree (lower-left part), and the input after 

the saturation block u (lower-right part). From the curves ofyint, it can be seen that 

the undesired side effect, namely, windup, occurs, i.e., with the smaller admissible 

input set, the trajectory of the integrator output has a larger peak value as well as a 

larger peak time.

C o n clu sio n  4.1 [8] The effect of windup can be explained by the fact that when the
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control signal saturates the actuator, a further increase in the control signal will not 

lead to a faster response of the system.

Output

Antl-wlndup C om pensator

Figure 4.3: A CSTR system with an anti-windup compensator

To eliminate the windup, an anti-windup compensator is added in Fig. 4.3, and 

Fig. 4.4 shows the trajectories of the CSTR system with the anti-windup compen­

sator. It can be seen tha t the side effect, windup, is effectively alleviated. The 

anti-windup compensator in the form of Fig. 4.3 is called tracking anti-windup. In 

industrial applications, there are other types of anti-windup control, e.g., condi­

tional integration anti-windup, limited integrator anti-windup, and modified track­

ing anti-windup [90]. All these anti-windup controllers, however, suffer from a draw­

back: anti-windup gains have to be determined by trial-and-error. For example, in 

Fig. 4.3, the gain K  is set to 5 by trial-and-error. However, if K  = 1.5, we cannot 

obtain satisfactory performance. This fact inspires researchers to derive an explicit 

MPC algorithm and take advantage of the tuning superiority and the potential to 

handle system physical constraints.

4.1.2 A framework for explicit model predictive control

Fig. 4.5 is the framework for classical online MPC schemes in which the optimiza­

tion block and implementation block are combined together, and the manipulated 

inputs are provided by the implementation block associated with online optimiza­

tion. Here, the system is represented by a state space model; the system state is
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Figure 4.4: The closed-loop responses with anti-windup compensators 

assumed to be fully measurable. Different from online MPC, Fig. 4.6 illustrates the

u(k) x(k + 1)= Ax(k)+ Bu(k) 
y(k) =  Cx(k)+ Du(k)

y(k)

S tate  M easurem ent

O nline MPC Optim ization 
+

O nline Im plem entation

x(k)

I I m p l i c i t  M P C  C o n t r o l l e r  ^

C onstra in ts , W eightings, H orizons, Ref. Inputs,

Figure 4.5: A classical framework of online MPC

framework of offline MPC, in which the optimization and implementation blocks are 

separated and the optimization block is independent of the state measurement x(k) 

and the manipulated input u(k). The optimization block communicates with the 

implementation block via two components: state space partitions and offline control 

functions. In 2002, Bemporad et al. realized the state space partition by a set of
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critical polytopic regions and the offline control policy by a series of piece-wise affine 

functions [6 ].

The offline MPC strategy can be summarized into four steps: 1) converting 

MPC into an optimization problem, 2) solving the optimization problem offline, 

3) partitioning the state space, and 4) evaluating the optimal manipulated inputs 

online. State space partitions and piece-wise affine functions are pre-stored in a 

computer and called by implementation blocks later. The implementation block 

first determines the initial critical region based on the current state measurement 

x(k)  and then sends it to the control function block to evaluate the optimal input 

u(k). After that, the optimal input u(k) is re-sent back to the implementation block 

for online implementation. In this fashion, the MPC implementation is simplified 

as a function evaluation, and consequently implementation efficiency is improved 

dramatically. The framework in Fig. 4.6 proposes two challenges for explicit MPC: 

how to determine the offline functions for explicit MPC and how to perform the 

state partition to cover the whole state space.

y(k)

____ i____
State Measurement

x(k)

Figure 4.6: A framework of offline MPC

4.2  M u ltip le-param etric  quadratic program m ing

Multiple-parametric programming refers to a class of optimal problems th a t seek 

the characteristics of the optimal solutions for a full range of multiple-parameter 

values associated with traditional objective functions. At present, two types of
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param etric programming have been widely studied: multiple-parametric linear pro­

gramming (mp-LP) [11] and multiple-parametric quadratic programming (mp-QP) 

[98]. Based on these two types of multiple-parametric programming, explicit MPC 

laws are possibly obtained by a set of piecewise affine functions associated with state 

space partitions. Using several recently developed multiple-parametric programming 

toolboxes, e.g., the multiple-parametric toolbox (M PT) [46] and the hybrid toolbox 

[3], we can accomplish the analysis and visualization of explicit MPC. In this thesis, 

the mp-QP technique is extensively employed.

D efin itio n  4.1 The optimal problem in the form of

m in \ zt H z + 6t F t z (4.1)
z Z

s.t. Gzz  ^  Gc +  Gg9, 9 £ Ag,

is defined as multiple-parametric quadratic programming (mp-QP), where 9 £ R” is 

the dynamic parametric vector, and z £ Rm is the optimization variable. H  £ S++ 

and all other matrices are constant with appropriate dimensions.

It can be shown th a t a possible solution to the problem in (4.1) is a set of piece-wise 

affine functions associated with a parameter partition, i.e.,

z =  Ki9  +  gi, 9 £ Ag, (4-2)

Ag =  [ j A g  i =  1 , 2 , ••• N c r - (4.3)
i

Eq. (4.2) defines a set of piece-wise affine functions, and (4.3) indicates a partition 

of the param eter admissible region Ag, where i is the index of partition regions and 

N c r  is the number of partition regions. To derive the affine solutions in (4.2), we 

first define a Lagrange multiplier A and convert the constrained mp-QP problem in

(4.1) into an unconstrained one. In other words, a barrier function to (4.1) is given

by

J  = \ zTH z + 9t F t z +  At (Gzz - G c -  Gg9 +  p) (4.4)

where p  € B.Nc is a slack variable and N c is the number of constraints in (4.1). Prom 

the first-order Karush-Kuhn-Tucker (KKT) theorem [13], the optimal conditions to
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the barrier function in (4.4) are given by

H z + F6 + GTZ A =  0, (4.5)

(Gzz - G c -  Ge6 + p)TA =  0 , (4.6)

A h  0, p h  0 . (4.7)

Motivated by the properties of optimization duality, the Lagrange multiplier A can

be divided into two parts, namely Aat =  0  (the nonactive multiplier) and A4  ^  0  

(the active multiplier). Obviously, Ajv =  0  p\ 0  (A a  7= 0  P2 = 0 ), and 

A =  [A^, A^]r  (p = fp i, p IY )-  Prom (4.5), we have

z = - H - \ F e  + GTz Aa ) ,  (4.8)

Gzz - G c -  Ge9 =  0 , (4.9)

where {Gz , Gc, Go} is a linear combination of the active constraints in (4.6), and 

Gz has a full-row rank. Insert (4.8) into (4.9) and derive

Aa =  - { G z H - 'G l r Y G z H - 'F  +  Ge)6 -  ( G z H ^ G ^ G c  (4.10)

Note th a t (4.10) is an affine function. Due to H  G S ?+ and Gz with a full-row rank,

the inverse of (Gz77_ 1G j)  does exist. Replacing Aa from (4.10) and inserting it into

(4.8), we have

z =  ( - H - l F  + H - ^ i G z H - ^ y Y G z H ^ F  + Ge))6 

+ H - 1GTz {GzH - lGTz ) - l Gc 

:=  KiB + gt. (4.11)

Obviously, (4.11) shares the same structure as (4.2). Meanwhile, to guarantee the

KKT conditions, we need

Gzz  ^  Gc -j- GqO, Aa 0. (4.12)

Eq. (4.12) defines a polytopic region, which is called as a critical region in this thesis.

T h e  c r it ic a l r eg io n  A g  is  e x p r e s se d  a s

A y . =  {0 e  Rn\(GzKi  -  Gg)8 < G C-  Gzgi,

{ G z H - 'G ly Y G z H - 'F  + Ge)e ■< — (GJ.JT_ 1G j) _ 1Gc}. (4.13)
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C onclusion  4.2 The explicit solutions to the mp-QP problem in (4-1) can be ex­

pressed by a set o f piece-wise affine functions associated with critical regions, i.e.,

z  =  KiO +  gi, 9 £ Ag,

where A# is the ith element of a partition of the admissible parameter region Ag.

C onclusion  4.3 Eqs. (4-11) and (4-13) propose three challenges for the parameter 

region’s partition: 1)  how to determine a combination {C z , Gc, Gg} based on the 

constraints in (4 -1 ) , 2 ) how to guarantee that the combination {C z , Gc, Gg} have a 

full row-rank, and 3) how to guarantee that the partition elements A g S  be disjointed 

and their union compose the whole admissible parameter region Ag, i.e.,

Ag = \ j A l ,  (* — 1 , 2 , • • • N C r ) (4.14)
i

where N c r  is the number of partition elements.

4.3  T he p artition  o f th e  param eter adm issib le region

This section deals with the challenges mentioned in Conclusion 4.3. Knowledge of 

the geometric algorithms of multi-parametric programming is employed. In 2000, 

Dua and Pistikopoulos proposed an effective approach for the partition of a polytopic 

region which is defined by a set of element-wise affine inequalities. Based on [26], 

we determine a satisfactory partition of the Ag in (4.14).

T heorem  4.1 [6] Let Y  C R n be a polyhedron, and

CRo : = { x £ Y  | A x ^ b }  (4.15)

be a polyhedral subset o f Y  with CRo Y  0. Also let

Ri = {x £ Y  | AiX >- bi, and AjX < bj (Vj <  i)}, (i = 1, • • • ,m ) (4.16)

where m  := dim(fe), and let
m

C R r e s t  ■■= U  R i .  (4.17)
2 = 1

Then (i) CRrest U CRo = Y ; and (ii) CRo fl Ri =  0 and Ri!~\ R j = 0 for  Vj 7  ̂ i,

i.e., {CRo, R i, • • • , R m} is a partition o fY .
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P ro o f: (1) From the definition in (4.17), CRrest can be expressed by

C R r e s t  = {x  G Y  I AiX  >- bi, i = 1, • • • , m},

=  {x  € Y  | A x y  b, i =  1, • • • , m}.

Obviously CRrest U CRo = Y  C R n.

(2) From the definition, Ri violates a t lease one condition of the element-wise in­

equalities in (4.15), and therefore CRoC\Ri = 0. Also, Ri and R j violate the different 

inequalities in (4.15) if j  i, so tha t R4 D R j = 0 for V) i. Because C R rest is the 

union of R4  disjointed with CRo and Y  is the union of CRrest and CRo, we can say 

th a t {Ci?o, R i, ■■ ■ , R m} is a partition of Y . ■

The idea behind Theorem 4.1 can be demonstrated by Example 4.2.

E x am p le  4.2 Consider a slab set Y  defined by two element-wise inequalities as 

shown in Fig. 4-7-Part I, i.e.,

Y  := {x  € R2 | -  0.5 <  x i  <  1, -0 .1  <  2:2 <  1}.

The initial critical region CRo can be defined by four element-wise inequalities, 

namely C \, ■ ■ ■, C4 .

' —2x\  + 2x 2 <  1 (Ci),

CRo := < x G Y —2xi  ~  7.X2 < — 1 

5a;i — 82:2 <  —1
(C2),
(Cs),

0 .5 ^ 1  +  2:2 < 1 (C4),

CRo is superimposed upon Y  as shown in Fig. 4-7-Part II. I f  C\ is violated and 

x  £ Y  is kept (no definitions on C2 , C3 and C4 ), the partition R i is created, as 

shown in Fig. 4-7-Part III. I f  C\ is satisfied but C2 is violated (no definition on C3 

and C4 ), the partition R 2 is created, as shown in Fig. 4-7-Part IV. I f  C\ and C2 are 

satisfied but C3  is violated (no definition on C4 ), the partition R$ is constructed, 

as shown in Fig. 4-7-Part V. I f  C \, C2 , and C3 is satisfied but C4  is violated, the 

p a r t i t io n  R 4  is f in a l ly  produced, as show n in  Fig. 4 -7 -P a r t  VI. N o te  th a t  R iC lR j  = 0, 

CRo r\R i = 0, and the partition {CRo, R \, - - -, R 4} composes the whole polyhedron 

Y .
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Figure 4.7: A partition of the polyhedron region Y
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Fig. 4.7 illustrates the method discussed in Theorem 4.7. The partition elements are 

disjointed, and the union of these elements composes the given region Y . Eq. (4.13) 

defines a critical region corresponding to the optimal solution in (4.11). By setting 

Ag as the initial critical region C'ito, deriving the possible partition {CRo, R \, • • •, 

ftjYCH}, and searching for the optimal solutions in the rest of the regions {R i, • • •, 

R n Ci{}> we can derive the explicit solutions to the mp-QP problem in (4.1).

4.4  Offline m odel pred ictive  control

From the discussion on mp-QP and parameter space partition, we can develop an 

offline model predictive control law. Here we assume tha t the controlled system 

is given by a state space model, and neither internal nor external uncertainties 

are included in formulations, i.e, this section focuses on nominal explicit model 

predictive control.

4.4.1 Problem definition

Consider a discrete-time linear system

x(k  + 1 ) =  Ax{k) + Bu{k),

y (k ) =  C x(k), (4.19)

where x  G Rn, u £ Rm, and y £ W1 are the state, input, and output, respectively. A, 

B  and C  are constant matrices with compatible dimensions. The input and output 

constraints are defined by a set of element-wise inequalities,

A u  ‘=  { u  £ K | Umin if: U ^  Umax, ttminj Umax £ R },

Ay ~  {JJ £ R9| J/min U Vmaxi l/mini 2/max £ (4.20)

where Au  and A y are the admissible input and output sets. umin (umax) and 

2/min (2/max) are constant vectors composed by input and output lower (upper) 

bounds.

D e fin itio n  4.2 The design of an explicit M PC regulator for the system in (4-19)
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is a QP problem,

nun J  (4.21)

N p- 1

s.t. J  =  ||ar(fc + Np)\\2p +  \\x(k +  *)||q +  ||u(k  +  i)\\2R,
i = 0

u(k  +  i) e  A u, y(k + i) e  A y ,

x (k  +  i +  1) =  A x(k  +  i) + B u (k  +  i),

y(k + i) — C x(k  + i),

u (k + i) — F x (k  + i) i f  N u < i < Np — 1,

0 <  N u <  N p -  1, Q € S^+ , R  e  Sy+ .

where P £ § n++ and F  are terminal weighting and terminal feedback gain. The pair 

(A, B )  is stabilizable and (Q1//2, A ) is detectable. Assume an initial condition equal 

to x 0. The control objective is to drive the state trajectory converging to the origin.

Because we are developing an offline MPC law, the problem in (4.21) can be defined 

over any horizon window. For ease of notation, x(k  + i) denotes x(k  + i\k), similarly 

for u(k + i) and y(k + i).

4 .4 .2  C lo sed -lo o p  s ta b ility

To guarantee closed-loop stability, the objective function (4.21) is chosen as a Lya­

punov candidacy function. So the Lyapunov function at instant k can be expressed

by
N p- 1

V (k) = \\x(k + Np)\\2p  + ^  ||x(fc +  *)||q +  \ \u(k + i ) | | | .  (4.22)
i = o

From (4.22), the difference of the Lyapunov functions between V (k  + 1) and V(k) 

is given by

V  := V (k  + 1 ) - V ( k )

— \\x (k +  N p +  l ) | |p  +  \\x(k + AyU g +  ||u(fc +  A/p)|||

-IKfc + Ay Hi -  (11 )̂112 + ||u(fc + A/p) |||).

Therefore if

||a:(fc +  Ftp +  1 ) | | |  +  | |m(A: +  lVp)||Q +  ||u(fc +  lV p)||| — ||x(fc +  Np)\\p = 0, (4.23)
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the resulting closed-loop explicit MPC system is asymptotically stable since the 

initial penalized terms (||o:(/c)| |q +  ||u(fc +  iVp)||jj) are positive. Inserting (4.19) 

into (4.23) and replacing u(k  +  N p) by the terminal feedback gain F, i.e., setting 

u(k  +  N p) =  F x(k  + N p),

(.A  +  B F )t P (A  + B F ) + Q + F t R F  - P  = 0. (4.24)

is derived. Eq. (4.24) is an algebraic Riccati equation (ARE), and if the pair {A, 

B ) is stabilizable and (Q1/2, A) detectable, (4.24) is feasible given any terminal 

weighting P e § % + and terminal feedback gain F. Incorporating the solutions to 

the ARE in (4.24) with the explicit MPC formulation in (4.21), closed-loop stability 

of explicit MPC is obtained.

4 .4 .3  A n  m p -Q P  p ro b lem  for e x p lic it  M P C

The optimization problem in (4.21) can be possibly converted into an mp-QP prob­

lem, and then based on the solutions in (4.11) and (4.13), explicit MPC is obtained 

by a set of piece-wise affine functions associated with state space partitions. The 

objective in (4.21) may be rewritten in the form of stacked matrices, i.e.,

J  =  x T (k)Q x(k) + X t Q X  + UTUU, (4.25)

where

Q := diag (Q, • • • Q ,P ), (4.26)

7Z := diag (R, ■ ■ ■ ,R ,  (N p -  N U)R),

X  := [xT (k +  1), • • • , x T (k + N P)]T

U := [uT (k), • • • ,  u{k + N u)]r .

Performing state and output prediction based on the model in (4.19) gives

X  

Y

82
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where C := diag (C, • • • , C) and

' A  ‘ B 0 0

A :=

..  ̂
.

, B ~ A ^ - ' B a n*~2b  ■ B

1
..a?

i £ i 
"

to A np~2B  ■ . (A n ^ n -B  + --- + B)_

Inserting (4.27) into (4.25), we have

j  =  UT {BT QB + n)U  + 2xT {k)AT QBU + x T {k)(Q + A T Q A )x(k )

-  ^ U TH U  + x T (k)F T U + E, (4.30)

where H  :=  2(BT QB +  7V) G and F  := 2jBt  Q A  H is a square term of x(k)

and independent of the optimization variable U. From the stacked matrices in (4.26) 

and (4.29), explicit MPC can be reformulated as an mp-QP problem.

T h e o re m  4.2 The explicit MPC regulator for system (4-19) constrained by the 

element-wise inequalities in (4-20) is an mp-QP problem.

P ro o f: The proof follows immediately from the objective in (4.30). The optimiza­

tion problem in (4.21) is equivalent to minimizing J ,

j  = ] r jTH U  +  x T(k)F T U, (4.31)

where x(k) is the vector parameter and U is the stacked optimization variable. 

Note th a t S  is independent of the optimization variable U. From the expressions of 

predicted states and outputs in (4.27) and (4.28), the element-wise inequalities in

(4.20) can be rewritten as

U < U < U , T <  CAx(k) +  CBU r< Y , (4.32)

where U_ (U) and Y_ (Y ) are the stacked input’s and output’s lower-bound (upper- 

bound) vectors, namely U := [ufnin, •••,  and U_ € RmJV“ . Augmenting the

constraint conditions in (4 .3 2 ) ,  we have

G u U l G c + Gxx(k), (4.33)
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where
I ' U ' 0

- I - U 0

CB ! GC — Y , and Gx :=
-C A

-C B - Y _CA_
Combining (4.31) with (4.33), the design of explicit MPC is converted into an mp- 

QP problem,

m m ^ U TH U  + x T (k)F TU (4.34)

s.t. G ijU r< Gc +  Gxx(k), x{k) e  A x , (4.35)

where A x is an admissible state set which is normally derived from the physical 

conditions of a system. In the case th a t there is no definition on A x , we can define 

a closed polyhedron acting as A x with

A x :=  {x  G R n | E tx  *  E r}. (4.36)

The problem in (4.34) is an mp-QP problem with the multiple-parameter x(k). ■

Prom Sections 4.2 and 4.3, it can be seen tha t the solution to (4.34) is a set of 

piece-wise affine functions associated with state space partitions.

T h e o re m  4.3 Let a linear combination of the active constraints {G u, Gc, Gx} out 

of {G u, Gc, Gx} (Gu has a full-row rank), and the initial critical region CRo Q A x 

be determined by {G u, Gc, G}. The optimal control law U for the problem in (4-34) 

is defined by a set of functions of x(k) associated with A x ’s partitions.

P ro o f: The proof follows directly from (4.11) and (4.13). The solutions to (4.34) 

can be expressed by

Ui = { - H - 'F  + H - 'G l i G u H - 'G D - ^ G .H ^ F  + G ^ x ik )  

+ H ~ 1G l{G u H - l G l ) - l Gc 

:= K ix (k )+ g i,  (4.37)

and the associated state space partition is

C R 0 :=  {x (k ) € A x | (G uK i -  Gx)x(k) -<GC-  gu

(G uH ~ l & [ i ) - \G v H - lF  + Gx)x{k) < - { G u H - l G l y l Gc}.

(4.38)
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The active constraints {Gu, Gc, Gx} can be determined by solving a linear program­

ming (LP) problem which will be discussed in Section 4.4.4. Implement Theorem

4.1 and derive the ^4x’s partition {CRo, R i, • • • , R n ,.}■ N c is the number of in­

dependent inequalities in (4.35). By searching for the optimal input functions Ui 

within the rest regions {R i, ■ ■ ■ , R n c}, we can finally derive a set of affine functions 

U% and the associated critical regions C R t. ■

Notice th a t Theorem 4.3 assumes tha t a combination of the active constraints {Gu, 

Gc, Gx} exists, and the m atrix Gu  has a full-row rank. The proof of Theorem 4.3 

states tha t the combination {Gu, Gc, Gx} can be determined by solving an LP 

problem. Here, a new problem is proposed: how to define an LP problem and set 

up the initial critical region C R o?

4 .4 .4  A  c o m b in a tio n  o f  th e  a c t iv e  co n str a in ts

To start searching Ui, we need a combination of the active constraints in (4.35), 

{Gu, Gc, Gx}, and the matrix Gu must have a full-row rank. To this end, an initial 

searching param eter xo(k) E A x is constructed. xo{k) is chosen by a point as close 

to the center of the polyhedron A x as possible in the sense of 2 -norms and satisfies 

the constraints in (4.35) as well. To determine xq(k), an LP problem is constructed

where E\ denotes the ith  row of the matrix Ei in (4.36), the same as for E lr . From 

Constraint (4.40), it can be seen th a t S is the distance from the point xo(k) to each 

bound of the polyhedron A x . Therefore, xo(k) is the Chebychev center and 5 is the 

associated Chebychev radius.

After determining the value of xo(k), we send it back to the problem in (4.35) 

and solve this mp-QP problem. Set the solution to (4.35) U°. Then a combination 

{G u, Gc, Gx} can be determined by xq(k) and U°, i.e.,

s.t. E ix  + S\\Ei\\2 ^ E i ,

max <5
xo(k), U, 8

(4.39)

(4.40)

G uU  ^  Gc +  Gxxo(k)

GVU < G c + Gxxo{k). (4.41)
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Because H  is positive and symmetric, the combination {G u , Gc, Gx } is uniquely 

determined.

R e m a rk  4.1 I f  the optimal solution to (4-39) 5° < 0, this LP problem is infeasible. 

To handle these cases, widen the polyhedron A x to a larger region.

R e m a rk  4.2 There is a degenerated case of the condition in (4-41 )■' the optimal 

pair (xo{k), U°) does not activate any constraints in (4-35). In this case, the optimal 

solutions to (4-34) a,re simplified dramatically. No active constraints mean that

the Lagrange multiplier A a  in (4-10) uniquely equals to zeros ( \  y  0), so that the

optimization variable z in (4-8) is simplified as

z  =  - H ~ 1F6.

In the same fashion, (4-37) becomes

Ui = —H ~ 1F x(k)

:= K iX(k), (4.42)

and the associated partition is

C R q := {x{k) e  A x | (G uKi -  Gx)x{k) < G C-  9i}. (4.43)

To store and visualize the optimal solutions to  an mp-QP problems, MATLAB 

Hybrid Toolbox is employed in this thesis.

4.5  A  sim ulation  exam ple

Hybrid Toolbox is a numerical solver for multiple-parametric programming. It was 

developed by Bemporad in 2005. The current version is 1.0.12 - Feb 23, 2006, which 

is available on the website: http://w w w .dii.unisi.it/~bem porad/. This package is 

developed under the MATLAB environment.

C o n sid e r  th e  n o m in a l v e r s io n  o f  E x a m p le  3 .1 ,

x (k  +  1 ) =

y(k) = x(k),

'0.9719 -0.0013' x(k) + -0.0839 0.0232'
-0.034 0.8628 0.0761 0.4144 u(k), (4.44)
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where x  € R2, u  € R2, and y  € R 2 are the state, input, and output respectively. 

The input and output constraints are given by

An ■■= {u € R 2 I -  0.5 • 1  ■< u < 0.5 • 1 }, 

:= {y e  R2 I -  00 • 1 ^  y ^  00 • 1}.

(4.45)

(4.46)

Eq. (4.46) indicates th a t no output constraints are imposed on the system in (4.44). 

The control objective is to develop an explicit MPC controller to drive the state 

from the initial point xq =  [2, 1]T to the origin along the state trajectories. The 

following parameters are used in the explicit MPC design

P  =

Q =

' 3.7897 -0.0581
, K  =

' 2.4543 -0.2984
-0.0581 1.2928 -0.4042 -1.3949

W ith N p =  3 and IV,

I , R  = 0.17, xo =  [2,1]T, uq — 0. 

2, the MPC law is

u =

2.9960
-0.3662

-0.6694
-1.0335

-0.5
-0.5

0.5
0.5

-0 .5
0.5

0.5
-0 .5

if

if

if

if

if

' 5.9920 -1.3389' '1
-0.7324 -2.0669

x ■<
1

-5.9920 1.3389 1

0.7324 2.0669 1

x

( Region #1) 
2.9255 -1.6709 
0.2595 -1.9595

( Region # 2 ) 
-2.9255 1.6709' 
-0.2595 1.9595

( Region #3 ) 
-0.3681 2.7795
33.2688 -19.0014 

( Region #4 ) 
-33.2688 19.0014 

0.3681 -2.7795

x  -< - 1

- 1

- 1

- 1

(...Continued on the next page)
( Region #5 )
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u =

0 0 x  + ' -0 .5  ‘
0.1522 -1.1493 0.0865

0 0 0.5
0.1522 -1.1493

x  +
-0.0865

'2.6890 -1.5358 x + 0.4192
0 0 -0 .5

2.6890 -1.5358 x  +
-0.4192'

0 0 0.5

State Space Partition —  9 Regions

1.C

1

0.5 

' 0 

-0 .5 1r
.•

-1 .5

- 2 -

' 0.3681 -2.7795' 1 '
if -0.2595 1.9595 x  d 1

5.9920 -1.3389 _-l_
( Region # 6 )

' 0.2595 -1.9595' 1 '
if -0.3681 2.7795 x  d 1

-5.9920 1.3389 - 1

( Region #7)
'33.2688 -19.0014' ' 1 "

if -2.9255 1.6709 x  d 1

-0.7324 -2.0669 _-l_
( Region # 8 )

2.9255 -1.6709' ' 1 '
if -33.2688 19.0014 X d 1

0.7324 2.0669 - 1

(4.47)

- 2  -1 .5  -1 -0 .5  0 0.5 1 1.5 2

Region #9)

Figure 4.8: The state space partition Figure 4.9: The transition of active
with N p = 3 and N u = 2 regions along state trajectories Np =

3 and N u = 2

From 4.8, it can be seen tha t the state space A x is divided into 9 regions corre­

sponding to the control laws in (4.47). To execute the space partitions in (4.39) and

(4.40), the polyhedron A x is defined by

(4.48)

Fig. 4.9 indicates the active regions along the state trajectories. It can be seen that 

the states start from Region # 5 , transit Region # 7 , enter into Region # 1 , and 

finally converge to the origin. If both the prediction horizon and the control horizon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



increase to 4, the state space A x is separated into 53 regions, which are shown 

in Fig. 4.10. Fig. 4.11 indicates the active regions along the state trajectories with 

N u =  N p =  4. In this case, the states attain  more active region transitions.

State Space Partition —  53 Regions

20 30
Time (s)

Figure 4.10: The state space partition 
with N p =  4 and N u = 4

Figure 4.11: The transition of active 
regions along state trajectories with 
N„ = 4 and N u = 4.

To compare the control performance of explicit MPC with different horizon 

length, we put the trajectories of states and inputs with the different N p and N u 

in the same windows (see Fig. 4.12). Roughly speaking, the explicit MPC regulator 

with Np = 3 and N u =  2 derives a more aggressive control than one with both N p 

and N u equal to 4. Also, we plot out the phase planes with the different horizon 

settings in Fig. 4.13. To demonstrate the implementation efficiency, we compare the 

time-cost of both  offline (explicit) MPC and online MPC in Table 4.1. It can be 

seen tha t although offline MPC takes more time on optimization, it improves the 

implementation efficiency dramatically. Actually, offline MPC spends most time on 

state space partition and visualization. Online MPC needs less time for optimiza­

tion than  offline MPC, but its implementation takes much more time than offline 

M PC because the optimization and implementation are combined in online MPC. 

In a word, for fast processes, offline MPC is more practical than online MPC.

4.6  C onclusions

This chapter converts the offline MPC design into an mp-QP problem, and con­

sequently the control law can be possibly represented by a set of affine functions
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Figure 4.12: The trajectories of states and inputs with different horizons
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Figure 4.13: The phase plane of states and inputs with different horizons

associated with state space partition. All the results in this chapter can be easily 

extended to 1-norm and oo-norm objective functions [4]. Multiple-parametric linear
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Table 4.1: Time-cost of online MPC and offline MPC
MPC Types Online MPC Offline MPC

Horizons Opt. Imp. Opt. Imp.
Np = 4, N u =  4 0.760000 0.760000 2.105000 0 .1 1 0 0 0 0

N p — 3, N u = 2 0.491000 0.491000 0.681000 0 .1 1 0 0 0 0

programming is constructed and can be solved in the same manner. For the explicit 

MPC algorithms covered in this chapter, two assumptions are critical: the system 

model must be precise and no internal/external disturbances are considered in MPC 

formulations. How to remove this limitation is left for Chapter 5, which deals with 

explicit robust model predictive control, the core of this thesis.
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Chapter 5

Explicit robust m odel predictive 
control

This chapter develops an explicit robust MPC (ERMPC) algorithm for constrained 

MIMO systems with internal and external uncertainties. By proposing a novel 

prediction pattern, namely recursive closed-loop prediction, ERM PC is converted 

into multiple-parametric sub-quadratic programming (mp-SQP) and consequently, 

only one-step state prediction is necessary for ERMPC formulation with arbitrary 

horizons. It is shown tha t the optimal solution to mp-SQP problems is the piece- 

wise affine functions associated with corresponding piece objectives and state critical 

regions. Asymptotic closed-loop stability of resulting ERMPC systems is guaranteed 

by a terminal weighting and a terminal feedback gain; and by introducing two 

tuning variables, the algorithm is capable of adjusting the tradeoff between system 

performance and robustness. The state admissible set, as a nontrivial problem, is 

also constructed by two approaches: piece-wise linear norms and polyhedral Voronoi 

sets.
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5.1 P rob lem  defin ition

A system with structured internal and external uncertainties and bounded output 

disturbances is given by

x ( k  + 1) =  A x (k )  +  B u (k )  +  / (A  (fc), x ( k ) , k),

y ( k ) =  C x ( k )  + Cdd( k ) ,  (5.1)

where x  (k ) S R ” stands for the state, u  (k ) € R m for the input, and y (k ) S R 9 for the

output. A,  B,  C,  and Cd are all constant matrices with appropriate dimensions. The

pair of (A, B)  is stabilizable. d (k) s  I 1 is a combination of input and output 

disturbances, satisfying

dT ( k ) W dd(k)  <  1, Wd £ S l+. (5.2)

/  (■) is a time-varying nonlinear function with uncertain terms in the form of

||/ (A  ( k ) , x ( k ) ,  k ) | | 2 <  y  ||z (fc) | | 2 , (5.3)

which represents system internal uncertainties A (k ) and external disturbances d (k ). 

The structure of (5.3) is widely used in perturbed systems, where y  gauges the bound 

of system uncertainties [109]. A more specified structure of /  (•) is

|/i (A (k ) , x  ( k ) , k )| < a i \ w f x \ ,  i = 1 ,2 , • • • , n, (5.4)

where Wi is a linear weighting vector in R" and a j >  0 is used to  scale the uncertain 

effect on each channels. Through routine algebraic manipulation, one can show that

(5.4) corresponds to (5.3) with

| |/ ( - ) | |2 <  (Trace {TWxW ^V ))l l 2 M 2 ,

where

T =  diag(ai, • • • , a n ) and W x = [ref, • • • , u £ ]T (state weighting).

Moreover, other widely used structured uncertainties can be also converted into

(5.4), such as structured uncertainties in the feedback loop (used in Chapter 3) [45], 

Given the system

2  (k + 1) =  (A +  TWA  (k) C )x  (fc), (5.5)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where Tw is non-singular, and A (k) is the internal time-varying uncertainties in the 

feedback loop with the structure of

A (k) =  diag(Ai ( k ) , ■■■ , An (fc)), and a (A t (k)) < a*.

Setting x  = Twz  and performing the similarity transformation to  (5.5), we obtain

z ( k  + 1 ) =  T ~ xATwz  (k ) +  / (A  ( k ) , z (fc)),

where /  (A (k ) ,  z (k)) :=  A (fc) CTwz  (k ).  Obviously,

\ f i {A{k)  , z(k)) \  < a i| {C T ^ iZ l, i = 1,2,• - • ,n .

In this chapter, we will assume th a t the system uncertainties and disturbances obey 

the constraints of (5.2) and (5.3). Compared with (4.19), the model in (5.1) describes 

both internal and external uncertainties as well as system dynamics.

The robust regulation problem to system (5.1) is first considered, i.e., driving 

the initial state x  (0 ) to converge to the origin in the presence of uncertain terms of 

/ ( • )  and d ( k ) . Tracking problems, sometimes referred to as offset-free control, are 

discussed in Section 5.3.2. Here we introduce system input and output constraints 

based on practical operations of the system.

D efin itio n  5.1 The admissible input set A u and output set A y of system (5.1) are 

polyhedral regions defined by generalized element-wise inequalities,

A u  :=  { u  G R  | Wmin ^  U ^  tlmsxi ^mim ^max G R  })

Ay {y  G R9| ymin — V 5̂ 2/maxj 2/min) Vmax G R^}, (^‘̂ )

where umin (ymin) and umax (ymax) are constant vectors, composed of corresponding 

channel’s upper- and low-bounds. I f  there are no definitions over the j th  input 

channel constraints, set umin, j  — —oo and umaXi j = +oo. Similar rules are also 

imposed on output constraints.

Given (5.6) and associated by the uncertainty definitions in (5.2) and (5.3),

the admissible state set can be derived from two approaches: the piece-wise linear

norm of output disturbances and a Chebychev polyhedron with perturbed bounds. 

Obviously, how to get the admissible state set is a nontrivial problem.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.1.1 A dm issible state sets

From (5.1) and (5.6), we have

2/min -  Cdd (k ) ^  C x  (k ) ^  J/max -  Cdd (k ) . (5.7)

After determining the bounds of |Cdi jd  (k) \ (j = 1, • • • , q), i.e., the piecewise linear 

norm of Cdd (k), we can use a polyhedral region as the admissible state set.

D e fin itio n  5.2 A piecewise linear norm  ||-||pi of a vector z e  M" is defined by

\\z\\pi = m a x i=i i...)9 |a fz |,  (5.8)

where ai £ Kn is a column linear weighting.

Although the value of a piecewise linear norm is not easy to calculate, it can be 

approximated by the quadratic norm as | |z| k  (lI/ £ §"+)• The book [12] provides 

a practical approach to  compute the piecewise linear norm of lower-dimensional 

signals.

L em m a 5.1 [12] For any P  > 0, there exists some constant a  > 1 such that the 

quadratic norm defined by 112:||^r := V zTxVz = ||^fl/2 2:|| satisfies

1 /V a | |z | |*  <  Wz \\pi <  \ / « lk l k  (for Vz). (5.9)

To approximate \ \z\\pi by |k |k ,  the optimal a 0 and if0 can be calculated by eigenvalue 

programming (EVP),

min a

s.t. C f ^ C j < a ,  (j =  1,2, ••• ,L)

V at
TL a\ a

> 0 , (i =  1 , 2 , - - ,q),

where Ci, - ■ ■ >C L arethe vertices of the unit ballBpi o / | |z | |p;, andBpi := {z \ \\z\\pi < 

1 } =  Co{Ci, ■ • ■ , Cl}-

From the point of view of computational complexity, it is obvious th a t the num­

ber of vertices L  can grow exponentially in q and n, so that Lemma 5.1 is not 

practical for signals with high-order dimensions. Generally speaking, if I, the order 

of d(k) ,  is a small scalar, we can easily obtain ||Cdd(k)  \ \pi, namely the bound of 

\Cd, jd  (k) | (j =  1, • • • , q) from (5.9).
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T h e o re m  5.1 The admissible state set A x for the perturbed system of (5.1) with 

structured uncertainties (5.2) and (5.3) is defined by generalized element-wise in­

equalities,

Umm T  1 7  — Cx  (fc) ^  1/max — I ' l l  ( 5 .1 0 )

where 7  := \fo.a (ijr1/2^ -1 /2) and 1 denotes the constant vector whose all com­

ponents equal to one. a  and 'I' are constant parameters of the approximation to

\\Cdd(k)\\pl, derived from Lemma 5.1. ym;n and ymax are output physical limita­

tions.

P ro o f: From Lemma 5.1, we can get the values of T and a  satisfying \C'd, jd  (k ) | < 

T ja W ^^d C k)  || for V j  =  1, • • ■ ,q. From the bound of the weighted 2-norm of the 

disturbances in (5.2), it can be seen

H'J<^2d{k)  | | 2 =  | |« 1/ 2W’- 1/ 2W 1/ 2d(Jfe) | | 2 <

Therefore, the theorem is proven. ■

Considering the limitation of the piece-wise linear norm approximation, Theorem

5.1 cannot solve the admissible state set with high-dimensional disturbances. To 

remove such a limitation, Chebychev polyhedra and Voronoi sets are introduced.

The element-wise inequalities of (5.7) determine a polyhedral set H(d(k)) .  Due 

to the terms of d ( k ) , TL (•) is not just a single polyhedron, instead it stands for a 

family of polyhedra with the perturbed bounds. To guarantee all states satisfying 

the physical requirements in the presence of disturbances, we try  to figure out the 

intersection set of all possible elements of Tl (•), denoted by A x . Concluding from 

convex optimization, we know tha t A x is a Voronoi set, and the corresponding radius 

is Chebychev radius [13].

D e fin itio n  5.3 Let x \,  • • • , Xk € R” . Consider the set of points that are closer (in 

Euclidean norm) to xq than all Xi in the measurement of Euclidean norm, say,

V  := {z e  R” | ||x -  x 0 | | 2 <  ||x -  Xj||2 , i = !,■■■ ,fc}.

V  is called a Voronoi set round x 0 with respect to x  1 , ■ • • , £fc, and x 0 is the Chebychev 

center.
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T h e o re m  5.2 The admissible state set A x for the perturbed system of (5.1) with 

structured uncertainties (5.2) and (5.3), is defined by a Voronoi set

A x := {x ( k )  € M" | ||a: (k) -  x ° \ \ 2  < ||x( k )  -  a;*112},

where x° is the Chebychev center of polyhedron A x , and Xi (i = 1 , 

images of x° with respect to the corresponding bounds, given by

28°

(5.11)

, 2  q ) are mirror

X i - X °  +

Xi x  —

\ \ C i \ \ 2
25°

\ \Cii 112

(Q )  ( i =  l , - - - ,<?), 

( C i f  { i  = q +  , 2 g),

(5.12)

(5.13)

where 5° is the Chebychev radius.

P ro o f: Expand (5.11), we have E ix A E r where

i01J?1

(x f  Xl — x oTx°)

Ei = 2 and E r =

_(x2q -  x°)T XX2qx 2q ~  X o T X ° ) T _

(5.14)

So the condition in (5.11) defines a polyhedral set which is constant with our previous 

discussion — A x is the intersection of all possible Tt(-). The center of the intersection 

x° is solvable by a sub-optimization problem, i.e., minimizing the region of A x with 

respect to disturbance d(k) ,  and then maximizing the Chebychev ball contained 

in Ax- The implicitness of this operation can be illustrated by Fig. 5.1. After 

determining the coordinates of the center x° and corresponding mirror points X{ 

with respect to bounds, we are able to write down the expression of A x - From (5.7) 

and the geometric formulation of the distance between an internal point x  and the 

boundary hyperplanes, the sub-optimization problem can be defined as

max min d
x d

S.t. C j X  V  8  |[C j 112 5  ̂ 2/max, j  j d i k ' ) ,

^ j x  A 8 ^  f/min, j  4“ C d , j d  ( / c ) ,

IM(^)llwd — 1 ’

j  =  1 , • • • , q and <5 > 0 ,

(5.15)

(5.16)

(5.17)

(5.18)

where 8 is the distance from x £ A x to the boundary hyperplanes. To get an ap­

proximation to the solutions of (5.15), we can tighten the right hand sides of (5.16)
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Illu stra tion  to  v o ro n o i s e t s
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Figure 5.1: Illustration of Voronoi sets

and (5.17) from the Cauchy-Schwarz inequality and condition (5.18). Consequently, 

the operation converts problem (5.15) into a linear program. Obviously, optimal so­

lution x° is a Chebychev center, and 8 ° is a Chebychev radius. Given the expression 

of all Xi from radius 8 °, x \, • • • , X2q associated with x° defines a Voronoi set which 

in fact, is the Voronoi set for the intersection of Tt(d(k)).  ■

In the following, we use a simple 2-dimension system to explain the effects of d (k) 

on A x geometrically, meanwhile show the computation of A x based on the piecewise 

linear norm of d(k) and a Voronoi set.

E x am p le  5.1 Set the system output matrix is

_  [0.5 2.5'
“  |_0.6 0.7J ’

and the disturbance output matrix C4  = 0.31. Admissible outputs are bounded by 

a slab set [—1, 1], i.e., —1 ■< C x + C^d r< 1. With the perturbations of d ( k ) ,  

Ti(d(k) )  keeps fluctuating. Performing the above operation, we can create the ad­

missible polyhedral state set by a Voronoi set with the Chebychev center x° and 

radius 8 ° (see Fig. 5.2). I f  using the method given by Theorem 5.1, we can also get 

another A x shown in Fig. 5.3.
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A dm issible p o lyhed ra  s e ts  de fined  by  a  V oronoi s e t A dm issible  s e t  po lyhedral s e t s  defined  by  a  p iecew ise  linear norm
1

0.8

0.6

0.4

0.2

0

•0 .2

•0.4

-0.6

-0.8

-1 L  
-4 -3 -2 0 1 2 3 4

Figure 5.2: Admissible state set de- Figure 5.3: Admissible state polyhe- 
fined by a Voronoi set. dral set derived by the piecewise lin­

ear norm of d(k).

Given the definitions of state space model (5.1) and admissible input and state sets, 

we can define the constrained finite horizon robust MPC as follows:

D efin itio n  5.4 The design of a robust M PC regulator for the perturbed system  

in (5.1) with structured uncertainties (5.2), (5.3), and (5-4) is a constrained sub- 

optimization problem,

min max Jk^k+Np

N „ - 1

llL

(5.19)

(5.20)Jk—>k+Np = \\x (k + Np)\\p + ] T  \\x {k + i ) f Q + \\u(k + i
i = o

s.t. u (k  + i) G A u, x ( k  + i) € A x,

x ( k  + i + 1) =  A x  (k + i) + B u  (k + i) + f  ( x ( k  +  i ) , A (fc +  i) , k  + i ) , 

u ( k  + i) = F x  (k + i ) i f  N u < i  < N p, 

0 < N U < N P - 1 ,

where Q € S" and R  G §+ are weightings, and P  G §" and F  are the terminal 

weighing and the terminal feedback gain, respectively. Pair (A, B ) is stabilizable and 

(Q 1/ 2, A )  detec table .

Parameters P  and F  are constructed to guaranteed closed-loop stability and dis­

cussed in the next subsection.
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R e m a rk  5.1 Compared with Definition 4-2, Definition 5.4 incorporates both inter­

nal and external uncertainties with explicit M PC formulation, and the objective is 

degenerated to a sub-optimization problem from optimization one.

5.1.2 Closed-loop robust stability

To combine the stability issue with the MPC formulation together, we define the 

objective function J k ~ .k + N p as a Lyapunov candidacy function,

N p - 1

V ( k )  =  \\x(k + Np) \ \p+ \\x (k + i)\\2Q + \\u{k + i)\\2R,
i= 0

and then the difference of the Lyapunov functions V (k ) and V (fc+1) can be expressed 

as

V  := \\x((k + N p + l)\\2P - \ \ x ( k  + N p)\\2P

+  ( M k  + N p)\\2q + ||u(k + N p)\\l)  -  (\\x(k)\\2Q + M fc)lltf).

So if

||a;(fc +  N p +  1)|||> — ||x(k  + Np)\fp +  ||m(fc +  N p)\\q + \\u(k +  -/Vp)||^ < 0, (5.21)

the closed-loop robust MPC system is asymptotically stable. Inserting (5.1) into

(5.21) and replacing u(k + Np) by F x  (k + Np), we have

x t { ( A  + B F )t  P (A  + B F ) + Q + F t R F  -  P )x  + 2xr  {A + B F )r  P f  +  f TP f  < 0,

where x  := x  (k + Np) and /  denote terminal uncertainties. So the above inequality 

is necessary to the conditions

(A + B F ) T P ( A  + B F ) + Q  + F TR F  - P  + vQ = 0, (5.22)

2 x T {A + B F )t  P f  + f TP f - x TuQx < 0, (5.23)

where Q 6  §™ is introduced to assist system stability analysis, meanwhile v  >  0 

can be regarded as a scaling parameter. Obviously, (5.22) is an algebraic Riccati 

equation which guarantees the feasibility of terminal weighting P  and terminal feed­

back F,  given the arbitrary tuning parameters Q and v. The feasibility of condition 

(5.23) plays a critical role on system asymptotical stability.

1 0 0
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T h e o re m  5.3 The perturbed, system (5.1) with uncertainties bounded by (5.2) and 

(5.3) is asymptotically stable if

> 0, (5.24)uQ -  I  - ( A  + B F ) t P  
- P  (A + BF )  p~2I  -  P

where P  and F  is the solutions to the algebraic Riccati equation (5.22). u > 0 and

Q € S" are stability tuning parameters.

P ro o f: Prom (5.3) and the S-procedure of LMIs, it can be seen th a t inequality 

(5.23) holds only if

2 x t  (A  + B F )t  P f  +  f TP f  — x t v Q x  +  x T x  — p~2f Tf  <  0,

equivalently,
X

T

/
uQ — I  ~ { A  + B F ) t P  

- P  (A + B F )  p~2I  -  P

which is necessary to (5.24). Theorem 5.3 is proven.

X

/ > 0,

Theorem 5.3 offers a criterion to test whether system (5.1) with uncertainties (5.2) 

and (5.3) is asymptotically stable when the bound of disturbances p  is given. Con­

versely, given the variables P, F, u, and Q which can guarantee closed-loop stability, 

we can derive the upper bound of p  from condition (5.23), namely the bound of 

robustness.

C o ro lla ry  5.1 The upper bound of the robustness parameter p  in system (5.1) with 

structured uncertainties (5.2) and (5.3) can be determined by

s.t.

max p (p > 0 ) , 
n

p Q - I  - ( A  + B F ) t P  
* p~2I  -  P

(5.25)

> 0,

where P  and F  is the solutions to the algebraic Riccati equation in (5.22), and u > 0 

and Q e  are stability tuning parameters.

R e m a rk  5.2 By an auxiliary scalar t  > 0, problem (5.25) can be easily converted 

into a semi-definite optimization problem, i.e., setting r  := p~2 and changing the 

objective to minimize t . Then the upper bound of robustness p° equals to 1/ \ / t .
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Apparently, the program of finding a robustness bound is an SDP problem, and 

the optimal solution p,° is tightly relative to the selection of tuning variables Q and 

v. Therefore selecting the different values of Q and v, we can adjust the conserv- 

ability of the RMPC regulator, and achieve a satisfactory tradeoff between system 

performance and robustness.

5.2 R ob u st M P C  in th e  recursive c losed-loop  pred iction

RMPC in the recursive closed-loop prediction was initially proposed by Lee and 

Yu in 1997 [50]. Its crucial difference from traditional RMPC problems lies in the 

prediction pattern. The algorithm first optimizes manipulated input u (k + i + 1) 

by a sub-optimization problem, and then u (k +  i ) . The same sub-optimization is 

iterated Np times and the length of prediction horizon N p is exactly determined by 

the number of iteration steps, instead of the number of state predictions. There 

is no need to perform multiple-step predictions, and no high-order uncertain terms 

to appear in robust MPC formulation, which is one of the notorious barriers of 

robust MPC design. Because of the nature of the recursive closed-loop prediction, 

the optimal value of piece objective J k + i+ i-> N p will be a part of the expression of 

objective Jk+ i-*N p - This property emphasizes the effect of future predicted feedback 

gains on the current predicted feedback regulation, and thus giving rise to a more 

flexible MPC regulator.

5 .2 .1  M a th e m a tic a l fo rm u la tio n

The total objective J ^ k + N p is divided into N p pieces, and the first piece to be 

optimized is Jk+Np-i->k+Np■ Prom the stability analysis above, we have

Jk + N p- i ^ k + N p =  I W *  +  -lVp)llp +  | |o;(fe +  N p  — 1 ) | |q

+||u(fc +  N p -  l) ||fl, (5.26)

s.t. x(k  + Np) = {A +  B F ) x ( k  + Np -  1) +  /  (•), (5.27)

u(k + N p - l ) = F x ( k  + N p - l ) .  (5.28)

Note th a t the terminal manipulated input u°(k  +  N p — 1) =  Fx ( k  + Np — 1) is

regulated by solving an algebraic Riccati equation, instead of MPC formulation.

1 0 2
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Replacing x{k + N p) by x(k  +  Np — 1) from model (5.27), we have

Jk+Np-i^k+ N p = h i(x (k  + Np - l ) )  and u°(k + N p — 1) =  g ^ k  + Np - 1)), (5.29)

where the subscript “1” of h and g denotes the horizon length. Set Jk+Nfj_1_^k+Np 

as a term  of piece objective Jk+kl-p^ 2~*k+Np > and then optimize manipulated input 

u (k + Np — 2) in the recursive closed-loop prediction pattern,

Jk+Np-2^k+Np =  u(fc“]jP_2) 7 (af  ( M k  +  N P ~  2 )Wq +

||u(k + Np -  2)11jj +  h!(x(k  + N p -  1))), (5.30)

s.t. x(k  + N p — 1) =  A x(k  + Np — 2)

-\-Bu{k +  Np — 2) +  /(•), (5.31)

x{k  -t- Np — 1) £ A xj u{k -f- Np — 2) G Au-

We first assume tha t a pair of analytic (explicit) solutions to (5.30) is available, and 

let

Jk+Np- 2-+k+Np = h2{x{k + N p - 2 ) )  and u°{k + N p - 2 )  = g 2(x(k + N p - 2)). (5.32)

Comparing (5.30) and (5.26), if h\ (•) is a quadratic function of x  (k + N p — 1), they 

share exactly the same structure, except th a t the predicted state is pushed one-step 

backwards. This property will play a pivotal role later on. Iterate the operation 

of (5.30) to each piece objective recursively until we reach the optimization of total 

objective Jk^ k+Np,

Jk-*k+Np = min max ( \ \ x(k) \ \ ^  + \\u (k)\\2R + h N i{x(k + l))),  (5.33)
u(k) /(■)

subject to state space model (5.1) and the admissible state and input sets. Replace 

x ( k  + 1 ) by a; (k), the current manipulated input u° (k ) is finally created by

Jk-*k+NP = hNp(x (k)) and u° (k ) =  gNp(x (k )), (5.34)

After sending u° (k) =  gNp{x (k )) to  the real process, we finish the design of RMPC 

in the recursive closed-loop prediction. Generally speaking, the above closed-loop
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RMPC schemes can be summarized as a recursive optimization problem,

Jk^k+Np =  m in m ^  (||2; ( fc) | | |  +  | |u(A0 llfl +  ••• +li(fc) /(■)

- ^ mirn + N p - 2)\\p + IIu(k + N p -  2)\\2q +u(k+Np-2) /(•)

max||a:(fc +  ^ p ) ||p  +  \\x(k + N p -  l ) ||g  

+ \\F x(k + Np -  1)| |fe)))). (5.35)

R em ark 5.3 Robust MPC in the recursive closed-loop prediction avoids multiple- 

step state/output predictions; this reduces the computational complexity dramati­

cally. But how to get the analytic (explicit) solutions to (5.32) and (5.34) critical. 

Determining the explicit solutions to constrained suboptimal quadratic programming 

is a nontrivial issue.

R em ark 5.4 The optimal solutions {g\{x (k + Np — 1)), , gNp(x(k))}  should

be piece-wise linear or piece-wise affine functions of predicted states, and piece 

objectives

{Jk+Np- i  —>k+Np > ' "  > Jk—>k+Np }

should be quadratic functions of predicted states. Otherwise we can not get the 

uniform structure of piece objectives. Apparently, these are two big challenges for 

explicit robust MPC.

5 .2 .2  E x p lic it  so lu t io n s  to  th e  p ie ce  o b je c t iv e  o f  Jk+i^k+Np 

D efin ition  5.5 The optimal problem in the form  of

min m ax \ z TH zz  4- 0 (k)T H zq z  +  ^ 6 (k)T HgO (k ) ,
^ A (k) 2 2

s.t. Gzz  ^  Gc +  G$9 (fc),

e (k  + l)  = Q(6(k) ,  A (AO),

is defined as multiple-parametric sub-quadratic programming (mp-SQP), where 6 (k ) € 

R” is the dynamic parameter vector, z €  Rm is the optimal variable and A (k ) is the 

predefined structured uncertainty. H z € §++, Hg e  S " , and all other matrices are 

constant with appropriate dimensions. © (•) is a piece-wise linear or affine function.
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Obviously, one-step robust MPC in the recursive prediction is an mp-SQP problem. 

We first assume th a t h,Nv - i - 1 (•) is a quadratic function of x {k + i + 1),

h-Np-i-1 (•) =  | k  (fc +  i +  1) | |pArp_ i _ 1 +  1% (k + i +  1) +  Onp- i- i  , (5.36)

where Pjvp-« -i € Z ^p -i- i  and Ojvp- i - i  are constant matrices. Substitute

x  (k + i + 1) by x ( k  + i), insert the result into (5.36), and then derive

h.Np- i - 1  (0 =  \\Ax +  Bu  + f  (■)\\2pN'ii_._1 + Z N p- i - \ { A x  +  Bu  + f ( - ) ) +  ONp- i- i

< \\Ax + B u\\2p ^ ^  + Z Np^ x { A x  + B u) + 0 Np - i- i ,  (5.37)

where

C > N p-i- 1 :=  +  O j V p - i - l  +  (M2 +  2 / i 20'2 (P /v p- i - l ) ) ® T ^ i

P /V p -j - 1  ; =  2 P jv p- i - i -

fi is the robustness bound defined in (5.3). For ease of notation, x  := x ( k  + i) 

and u := u (k + i ) . Based on the assumption on h ^ p - i- 1 (•) in (5.36), the following 

theorem is given:

T h e o re m  5.4 One-step robust M PC in the recursive prediction for perturbed sys­

tem (5.1) with structured uncertainties (5.2) and (5.3) can be converted into an

mp-QP problem.

P ro o f: From inequality (5.37), it can be seen that

(ll31 (k + i) IIq +  Ik  (k + i ) \\2r  + hNp -i- i(x {k  + i +  1 )))

<  P I I q  +  I k l l f l  +  \\Ax +

+ Z ^ p -i- i(A x  +  B u ) +  OjVp-i-i- (5.38)

Updating Jk+i^k+Np by its upper bound (5.38), we have

Jk+i^k+N„ -  min \ ut H%u +  x T H ^ u  +  Z u  + H%o, (5.39)
p u  Z

s.t. u G A u, x ( k  +  i +  1) e  A x, (5.40)

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

Hrr.fl

Hr,

= (x  (A  PNv~ i- \A  +  Q )x  +  Zivp- i - iA x  +  0/vp- i - i ) ,  

=  (2AT PNp- i - i B ),

= 2(B TPNp- i- l B  + R )£ S ™ +.

B  has a full-column rank and Z  Z np- i- i B  for ease of notation. To satisfy the 

constraint of (5.40), we need x  (k + i + 1) satisfying

E ix (k -\- i -h rf ^  Er •

Ei and E r axe structured matrices of A x . Therefore it is required that

E tA x  +  E iB u  r< E r -  E r f (•).

From the condition in (5.3) and the Chebychev polyhedron TL associated to A x , we 

can easily derive the bound of E rf  (•), denoted by /  and / .  Set

/ b  =  m a x ( | / | ,  | / | ) ,

so th a t E iA x+ E iB u  < E r — ft,. Consequently the optimal problem of piece objective 

Jk+i~,k+Np can be solved by minimizing a quadratic function

Jk+i^k+Np = mjn  \ u T H ffi + xt H u£U + Z u  +  Hid ,

s.t.
u  2

G^u ^  Gg T  Gxx,

where

Gf.

E iB ' Er -  fb
0

, G& :=
E r

I ^max
- I ^min

, and G% :=

- E i  A  
- E i  

0 
0

(5.41)

(5.42)

(5.43)

Apparently, (5.41) is an mp-QP problem.

T h e o re m  5.5 The analytic (explicit) solutions to the mp-QP problem in (5-41) are 

the piece-wise affine functions of x , over the corresponding state critical regions A x , 

where index j  denotes the j th  critical region within the admissible state set A x .

P ro o f: Taking advantages of the Lagrange multiplier A ^  0, we can convert 

the constrained mp-QP problem in (5.41) into an unconstrained mp-QP prob­

lem. Motivated by the properties of optimization duality, we separate A into two
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parts, i.e., Ajv =  0 (nonactive constraints) and >- 0 (active constraints), where 

A =  [A]y, A^]T. Suppose th a t there exists a combination of active constrains Gu, G&, 

and Gj~ out of the constraints in (5.42) and the rows of Gu are linear independent. 

Then from the first-order Karush-Kuhn-Tucker (KKT) theorem [12], the optimal 

active multiplier Xa can be represented by

A.4 =  - ( G u H ^ G l r ' i G u H ^ H l  + G ,)x  -  { G u H ^ G l)~ l {G& +  GUH ^ Z T),

(5.44)

and the corresponding optimal input u  is

fi + H ^ G K G u H ^ G D - ^ G u H ^ H T ,  + G z))x+

H ^ G T ( G u H ^ G l r \ G £ + GUH ^ Z T ) -  H ^ Z T 

: = < _ , *  + ( 5 . 4 5 )

which is a piece-wise affine function of x. To guarantee the conditions of KKT, we 

need

Gu(SNp-iZ  + K Np-i)  + G%x and A^ h  0. (5.46)

Consequently, we give the expression of A i  as

A i  :={x e  R" I G u i S ^ x  + K ^ )  < Gg +  G$x,

( G u H ^ G l ) - 1 (G u H ^ H T . + G x )x  + (GuH ^ G 7 ) - \ G ,  + GaH ^ Z T ) ±  0}.

(5.47)

In the case th a t there are no active constraints out of the conditions in (5.42), i.e.,

Gu, Gg, and G j do not exist, (5.45) and condition (5.47) degenerate to (A =  0),

u = - H ^ H g x  -  H 7 'Z t  := S ^ x  + K ^ _ v  (5.48)

Gfiit -  Gg -  G£x  ■< 0, (5.49)

which results in the second case of the explicit solutions to the mp-QP problem in

(5.41),

u  =  S ^ x  +  K3Np_ t (Vx g  Ai),  (5 .5 0 )

where A i  :=  € R" | GyU — Gg — G$x -< 0}. Both expressions (5.45) and (5.50)

are piece-wise affine functions. ■
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There is a shortcut to determine G%, Gc, and Gx , a combination of active con­

straints out of (5.42). Set x° as the Chebychev center of the admissible state set A x 

and insert x° into the constraints in (5.42). We can uniquely determine an optimal 

solution u°, consequently we can find a set of constraints G^u — Gg +  G±x. Then 

choose a combination of active constraints with the possible maximal full-row rank 

to act as Gg, Gg, and Gx out of G„, Gg and Gx. Based on such a combination, 

we can derive a critical region A x. One may ask: how to explore the rest space 

R ^ i  :=  A x — A i  and generate the new critical region A%? A  practical method has 

been discussed in Section 4.3 (Chapter 4), which can guarantee tha t the union of all 

critical regions A Jxs cover the entire polyhedron A x, i.e., any point in the admissible 

state set corresponds to  a control policy. Refer to Section 4.3 for details.

R em ark 5.5 Theorem 5.5 concludes that the optimal solution of the manipulated

input u is a piece-wise affine function of x, over the corresponding state critical

region A x . The result is consistent to Remark 5Jh

5 .2 .3  E x p lic it  so lu t io n s  to  th e  to ta l  o b je c t iv e  Jk^k+Np

In order to get Jk—>k+Np *n the recursive closed-loop prediction, Jk^k+Np is separated 

into N p  pieces and J k + N p - i - * k + N P is the first piece objective to be optimized. From 

(5.26), (5.3), and (5.22), it shows

Jk+Np-i^k+ N p ^  \ \x (k + Np -  l)]|px, (5.51)

where P i := ((A  +  B F )T P  (A  + B F ) + P  -  uQ + 2p2a 2 (P ) I) . Based on (5.51), 

the piece objective J k + N - 2^ k + N p can be defined as

J k + N p - 2 ^ k + N p = , min n,,, max (\\x(k + Np -  l ) \ \ 2P l  +
u { k + N p —2 \k ) / (•)

|\x(k + Np -  2)\\2q +  \\u(k + N p -  2)\\2r ), (Pi e  S+05-52) 

s.t. x (k  +  N p — 1) € A x , u(k + Np — 2) e  A u■ (5.53)

Set x  (k + Np — 2) £ A x as a parameter vector, so (5.52) is an mp-SQP problem. 

From Theorems 5.4 and 5.5, the mp-SQP problem in (5.52) can be converted into 

mp-QP and the corresponding optimal solution u° (a; (k + Np — 1)) is a piece-wise 

affine function, satisfying

u° (k +  N  -  2) =  P2(®(-)) =  S 32 x  {k + N  -  2) +  K 32, \/x  (•) e  -^ ( .p
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Therefore,

Jk+Np—2—>k+Np =  h2{x(-)) = \\x(k + Np -  l)\\2Pl + \\x(k + Np -  2)\\q + 

\\S ix (k  + N p - 2 )  + K i \ \ l ,

<  \\x(k + N p — 2)||p2 +  Z 2 X (k + N p — 2) +  0 2, (5.54)

where

P2 \\A + B S l\\2 p 1 + Q + \\Sl\\2R + (S a 2(Pi))fi2I,

Z 2 := 2K 32T (B TP1{A + B S 32) + R S 32),

0 2 := \\B K i\\lPl + \\K i\\2R. (5.55)

So the optimization problem of piece objective Jk+Np-3-^k+Np is updated to

Jk+Np- 3 -*k+Np =  ||®(k +  N p — 3)||g  +  \\u(k +  N p -  3 )|||j +  h2(x(-))

=  | jar(fc +  Np — 3)||g  +  \\u(k + Np -  3 )|||j +

\\x(k +  Np — 2)||p2 +  Z2x(k  -\- N p — 2) +  0 2. (5.56)

Notice th a t (5.54) shares the exactly same structure of assumption (5.36), which is 

imposed upon Theorem 5.5.

Theorem 5.6 The optimal solution to the mp-SQP problem for piece objective 

Jk+i ^ k+Np, Jk+i^k+Np = hNp-i- 1 (•)> is a quadratic function satisfying

hNp- i  (•) =  ||x ( k  + i) | | ^ _ .  +  ZNp_iX (k + i) + 0 Np- h

where

Pnp- i ■= \\A + B S 3Np_i \\2PNp_i+1+ Q + \\S :iNp_i \\2R + (3 a 2(PNp- i +i))iJ?I, 

Z Np- i  :=  2K 3l _ i (B TPN^ i+1(A + B S 3Np_i) + R S jNi>_i),

0 Np- i  :=  \\B K 3NpJ \ l PNp_w  + \\K3NpJ \ l .

S JNp_i and K 3Np_i are the optimal solutions to piece objective Jk+i+i~*k+Np, and 
superscript ‘j  ’ is the index to the corresponding critical region.

P ro o f: Apparently, iterating the operation of (5.54) and (5.56) in the recursive

pattern  till instant (k + i), we can derive tha t the sub-optimal solution Jk+i_,k+Np is
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a quadratic function of x  (k + i) over parameters expressions of Pnp-%, Z nv-u  and 

0 Np-i.  m

Based on Theorem 5.6, we remove the assumption imposed on Theorem 5.5. In a 

word, we overcome two challenges of RMPC in the recursive closed-loop prediction 

proposed in Remark 5.4.

5.2.4 Controller implementation

By iterating Theorems 5.4, 5.5, and 5.6, the final optimal inputs u° (k ) can be pre­

sented by a series of piece-wise affine functions of x  (k ) ,  associated with Jk_>k+Np (x  (k)) 

and critical region APX̂  (1 < j  < s ) . Here s denotes the number of state set parti­

tions. Due to non-uniqueness of partitions at different prediction loops, although in

the same loop the partition is disjointed, it is possible th a t one critical region A JX̂  

corresponds to more than one expressions of u° (k ) and Jk-tk+Np (x  M )  > *'e-’

u°(k)  := {u0’ 1 (x (k) ) ,  u°’ 2 (x (k) ) ,  ■ • • },

J k ^ k + N p (•)  : =  { J k ’- ^ k + N p , ( ' )  > J k '- ^ k + N p  ( ' )  ’ "  ' }•

In this case, we just evaluate all Jk’j k+Np (') candidates, and send u°>J (k) which 

leads to the smallest Jk-Jk+Np (') to real process. This procedure can be illus­

trated  by a CSTR system in Section 5.4.2 -  the control for an industrial MIMO 

system.

5.3 A lgorith m s o f robust M P C

We can generate an efficient off-line RMPC, which just performs one-step predic­

tions within one computation loop but can realize the functions of RMPC with 

the arbitrary horizon length. The algorithm has more tuning freedom over offline 

infinite horizon RMPC (IH-RMPC).

A lgorithm  1

1. Given the perturbed system in (5.1) with structured uncertainties (5.3) and 

bounded disturbances (5.2), derive the state admissible set A x from system 

inpu t/ou tpu t physical characteristics.
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2. Execute closed-loop stability analysis. Select the eligible tuning variables Q 

and v  to obtain the satisfactory tradeoff between the closed-loop performance 

and robustness. Solve an algebraic Riccati equation and get the terminal 

weighting P  and the terminal feedback gain F. Derive the optimal expressions 

of gi and hi, and set i — Np — 2 initially.

3. Solve the mp-SQP problem for piece objective Jk+i—,k+Np ■ Store the expres­

sions of the optimal solutions of gNp- i  (•)> ^Np-i (•)> and the corresponding A x 

partition. Set i =  i — 1.

4. Check whether i = 0. If yes, store optimal solution u° (k) = g ^v (x (kj),  

Jk^ k+Np =  hNP (x (k)),  and A x partition • • • , ^ ( fe)}- Purge the mem­

ories for intermediate variables gNp- i (•), hpf - i (-) ,  and other partitions. If 

0 < i < Np- 2 , go to Step 3.

5. Exit the loop. Send the expressions of u° (k ) and J ^ k+Np to the evaluation 

block of a real precess and prepare for controller implementation.

6. Prom the state measure of x  ( k ) , locate the state position. Supposing x  (k ) € 

A 3x k̂y  evaluate all of J%’_jk+Np (x (kj) candidates and send u°’ J (k ) which leads 

to the smallest Jk'_Jk+Np (x (k)) to the real process.

7. If ||a:(fc) || < e, exist. Otherwise update x ( k )  to x ( k +  1) and go to Step 6. 

“e” is a prespecified positive scalar and ||a: (k) || is the proper norm of x  (k ) as 

the measurement rule of system performance.

8. End procedure.

5.3.1 Computational complexity analysis

The maximal order of the uncertain terms of predicted states/outputs equals to 1, so 

the computational complexity is dramatically reduced. Prom the analysis of [6], we 

know tha t n s, the number of partitions of A x, is dependent on the state dimension n, 

th e  n u m b e r  o f  r e g u la te d  v a r ia b le s  n u (n u =  n u x  ( N p — 1 )) , a n d  th e  n u m b e r  o f  th e  

combinations of active constraints n c. Set the dimension of the Lagrange multipliers 

equal to n \  and th a t of the active multipliers be n \ A. The worst case of n c equals
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to

(5.57)

Considering the existence of Case I I  in Theorem 5.5 and the probability of the 

adjacent partitions A°xs associated with the same feedback gains (consequently these 

A x s can be combined), n c is much less than n c.

Now let us think about the iteration times of mp-SQP optimization with the 

horizon Np. Because of the nature of RMPC formulation in the recursive closed- 

loop prediction, we perform Theorems 5.4, 5.5 and 5.6 (Np — 2) times and solve an 

algebraic Riccati equation. W ithin each optimization loop, if the partition number 

of A x is n s, then the total optimization number is equal to

The number of the required intermediate variables gMp- i - \  (■), hjvp- i  (•), and par­

titions equals to riint = 3ns (Np — 2). Here we just discuss the worst case of com­

putational complexity. In fact, the real values of ntoi and rq„t are much less than 

those of the worst case. Prom the complexity analysis, it is obvious tha t this stra t­

egy is time-consuming and memory-consuming. Fortunately, one point should be 

noticed tha t this procedure is performed offline. In the procedure of online imple­

mentation, only a function evaluation block is necessary. The expressions of u° (k ), 

Jk->k+Np (x (k)),  and the associated state space partitions are stored on the field 

spot and all other intermediate variables are rejected. Therefore, sacrificing the of­

fline computational complexity and dramatically improving online implementation 

is a valuable strategy.

5.3.2 Offset-free robust MPC

In Section 5.1, we mentioned tha t by solving linear or quadratic programming, 

problems of robust offset-free control can be converted into a robust regulation 

problem. In this sub-section, we will elaborate on this point.

Because of the presence of uncertainties and disturbances, it is unrealistic to 

force the terminal state or output to follow the prespecified reference r  without any 

static errors. Therefore we just expect to manipulate the terminal states or outputs, 

namely the state x s and output ys in the best way of certain measurement policies.

T̂ tol — (-^p 2) ^ (5.58)
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Since small perturbations are inevitable, here we propose a QP problem to calculate 

x s, static input us and nominal disturbance d:

[xs, us, d] :=  arg min _||es ||g s, (5.59)
%Sy Ws , d

m m  _ 11 | 1 ̂
%Sy W s , d

s.t. dFWdd. < 1, (5.60)

ys = C A xs + C B u s +  Cdd, (5.61)

es := ys -  r, us € A u and ys G Ay, (5.62)

where es is for the static tracking error and Qs G S+ is the objective weighting. (5.59) 

is defined as a constrained QP problem and there exist lots of solvers to such a 

problem. Moreover implementing Schur complements, the problem can be easily 

converted into a generalized eigenvalue problem (EVP) [12], for which LMI solvers 

exist for solutions.

Based on the values of us, x s, ys and d, we can perform the similarity transfor­

mation to system (5.1) and derive a shifted system,

x ( k  + 1) =  A x (k) + B u  (k) + /(•),

y( k)  = Cx ( k )  + Cdd( k ) ,  (5.63)

where x ( k )  := x ( k )  — x s, similar to the definitions of u ( k ) , y ( k ) ,  and d(k ) .  

Therefore, to achieve the offset-free control to the system in (5.1) is equivalent to 

regulate x  ( k ) , the state of (5.63), to the origin.

5.4 S im ulation  exam p les

Here we will use two simulation examples to demonstrate the effectiveness of explicit 

RMPC in the recursive closed-loop prediction: a double integrator system and a 

linearized continuous-stirred-tank-reactor (CSTR) system (a 2-by-2 system). The 

Hybrid Toolbox is used again to visualize the state space partition.

5.4.1 Double integrator system

T h e  d o u b le  in te g r a to r  c a n  b e  r e p r e se n te d  b y  a  s t a t e  sp a c e  m o d e l w ith  tw o  e ig e n v a l­

u e s  located at 1,

x ( k  + l ) =  q * x ( k ) +  !j* u ( k ) +  j  d(k ) ,  (5.64)
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where d (k) is a random variable simulated by Matlab function “rand," and satis­

fies ||d(fc)||2 < 0.1 ||a;(fc) | |2  (internal uncertainties). In the sequel, we first indicate 

the effects of uncertainties on nominal MPC algorithm, and then design a RMPC 

regulator in the recursive closed-loop prediction to suppress d (k). A nominal MPC 

regulator is created by the approach developed by Bemporad [6]. The initial condi­

tions are given by

P  = 2.6235 1.6296 
1.6296 2.6457

, F  = [-0.6136 -1.6099] (5.65)

Q = I,  R  = 0.01, N u = N y = 2, x Q -2 ,1]T , uQ 0,

—1 ^  u( t )  < 1, — inf ^  y (t) ^  inf (no ou tpu t/sta te  constraints).

Fig. 5.4 shows the state space partition, overlapped by the state convergent trajec­

tory. It can be seen tha t the terminal states keep oscillating around the origin and 

the amplitude is quite large. Fig. 5.5 gives more illustrative results: The input keeps 

switching from the upper-bound to the lower-bound, consequently leading to the 

oscillation and big overshoot in states. Therefore, nominal explicit MPC cannot 

suppress external uncertainties.

Polyhedral partition -  7 regions

\

Trajectories of state e lements X, and x.1

0

-1

-2
40 50

Time(s)
‘0 10 20 30

Trajectory o f manipulated input u

Time (s)

Figure 5.4: State space partition,
overlapped by the state trajectory 
(nominal MPC)

Figure 5.5: The trajectories of states 
and input (nominal MPC)

Now design the robust explicit MPC in the recursive closed-loop prediction.
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Based on Theorem 5.3, initial conditions can be determined as, 

P  =

F  = [-0.6056 -1.6044] , v  =  2,

7.7477 4.9537 ' 1 0 .1

4.9537 8.1698 , Q = o . i U2 (5.66)

and keep other parameters the same as in (5.65). Given the values of Q and u, we 

derive the upper bound of system robustness, p = 0.1549 (if v = 1.5, p = 0.1433). 

Prom this point of view, our affine offline RMPC have 54.9% (43.3% if v  =  1.5) 

robustness margin, due to original p  =  0.1. Because N p — 2, we need to perform 

Theorems 5.4, 5.5 and 5.6 in two loops and solve an algebraic Riccati equation to 

derive the optimal piece objective J%+2^k+ 3 - Eq. (5.67) lists the critical intermediate 

parameters. The constant terms Onp- i  are omitted because their value does not 

affect the optimal solutions to piece objectives (refer to (5.55)). By solving piece 

objective Jfc+i_fc+3 , the state space is partitioned into 3 critical regions A 3x k̂+l  ̂

(see Fig. 5.6). Therefore, optimizing Jk-*k+3 in ah Apfc+ip we derive three different 

partitions of Ax(k) which are shown in Figs. 5.7 - 5.9.

P n v -l =

P N p- 2,1

13.8286 9.4977
9.4977 13.8507

'46.9773 46.8064
46.8064 112.9749

p N p- 2,3

, ZNp- i  = [0 0]

, Pnp- 2,2 

> Z np-2 ,\ =  [0 0] ,

46.9961 46.8526
46.8526 113.0884

46.9773 46.8064
46.8064 112.9749

ZNp- 2,2 =  [-18.9954 -46.6968] , ZNp- 2,3 =  [18.9954 46.6968] . (5.67)

Using the policy proposed in Section 5.2.4, implement optimal input u° (fc). The 

performance of the resulting closed-loop system is shown in Figs. 5.10 and 5.11. It is 

obvious th a t RMPC is capable of suppressing internal uncertainty d (k ) completely. 

Using a laptop with Pentium 4 processor and 512MB Ram, the simulation only costs 

(0.37 +  0.33 +  0.31 +  0.27) =  1.28 seconds for offiine-optimization (simulation length 

equals to 50). Therefore, the algorithm is quite efficient.

To illustrate the precision of our algorithm, we use an existing offline IH-RMPC 

algorithm, Bisection RMPC to design the controller for system (5.64) [103], The 

essential idea of Bisection RMPC is creating a serious of ellipsoidal invariant sets, 

which correspond to a serious of structured matrices Qi and feedback gains iq, and
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Parameter set of

-15 xi

Figure 5.6: State space partition for FiSure 5-7: State sPace partition for
piece objective Jk+1^ k+3 (Loop I) Piece objective Jk^ k+3 (Case I, Loop

Parameter set of the optimization K>3 -  3 regions (Casa II)

Figure 5.8: State space partition for 
piece objective J k^ k+ 3 (Case II, Loop
II)

Parameter set of the optimization ^  -  3 regions (Case III)

Figure 5.9: State space partition
for piece objective Jk ^ ,k+ 3 (Case III, 
Loop II)

forcing these ellipsoidal sets to shrink along the state trajectories. This procedure is 

completed offline and both Qi and F-t compose an data table. By searching the table 

in the bisection manner, we can realize online implementation. But one of disadvan­

tages is inherited from its origination — online infinite horizon RMPC (IH-RMPC) 

[45]: The fixed control horizon N u and prediction horizon N y, equal to infinite, 

weaken the tuning freedom of RMPC strategies. Moreover this method constructs 

a looking-up table which, unfortunately, leads to another three disadvantages:
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State convergent trajectories

-0 .4

Trajectories of state e lements ^  and x2 (robust MPC)

10 20 30 40

Trajectory of manipulated inputs (robust MPC)

50 
Time (8)

0.2

0
•0 .2

-0.4

0 10 20 30 40 50
Time (s)

Figure 5.10: State phase planes of Figure 5.11: The trajectories of states 
Nominal MPC and Robust MPC and inputs (Robust MPC)

1. The size of the table is dependent on the selection of initial states. Therefore, 

in order to satisfy general cases, the table should be of a quite large scale.

2. While performing implementation, every iteration loop only sends an approxi­

mation solution to the objective to the real process. Consequently, the method 

can not take full advantage of the potential of RMPC.

3. I t is just capable to  handle convergent disturbances d(k),  i.e.,lim^_+00 d(k) =  0. 

This is a quite conservative assumption.

Fig. 5.12 shows the shrinking invariant sets, superposed by the state phase plane. 

From Figs. 5.13 - 5.15, it can be seen tha t the optimal performance derived from 

affine RMPC (our method) is better than th a t of Bisection RMPC.

5 .4 .2  L in ea r ized  C S T R  s y s te m

Consider a first order CSTR (an industrial MIMO plant), where chemical species 

A react to form species B: A  —> B.  Fig. 5.16 illustrates the physical structure of 

the system, where CA% is the input concentration of a key reactant A, Ca  is the 

output concentration of A,  T  is reaction tem perature, and Tc is the cooling medium 

tem perature [93], The dynamics of this process can be expressed as

dCA
dt
dT
dt

o-nCA + aw T  + b\\Tc +  bi2CAi , 

£*21CA +  0-22T +  b2lTc + b2lCAi , 
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The ellipsoids defined by Q "1 for Example 1

 State trajectory
I Ellipsoids

Phase planes of two offline RMPC algorithms

— • — Affine RMPC 
•• • *>> Bisection RMPC

Figure 5.12: The shrinking invariant Figure 5.13: Comparison of phase
sets, derived by Bisection RMPC) planes derived by two offline RMPC

algorithms.

Comparison of optimal states by two offline RMPC algorithms1

0

-1
Affine RMPC 
Bisection RMPC

-2
14 182 4 6 8 10

Time (s)
12 16 20

1

0.5

0

•0.5 12 14 16 18 202 4 6 8 10
Time (s)

Comparison of optimal inputs of two offline RMPC algorithms

Affine RMPC 
Bisection RMPC

Time (s)

Figure 5.14: Optimal states derived Figure 5.15: Comparison of optimal
by two offline RMPC algorithms inputs derived by two offline RMPC

algorithms.

Set the system state x  =  [Ca, T]t , the input u =  [Tc, CAi]T , and then the discretized 

state space model is given by

a:(/c +  l )  =  

y( k )  =

a n  o  12 
021 022 

1 0 
0 1

x  (k ) +  

x  (k ) +

5ll &12 
&21 2̂2

d(k ) ,

u ( k ) ,

(5.69)

where d G [—0.1,0.1] is an unknown time-varying disturbance. By experiments, we 

find some uncertain terms inherent in parameters a n  and 0 2 2 - The nominal values
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Motor

Pure A with Mixture of A and B with

Cooling medium 
at temperature Tc Stirrer

Figure 5.16: A continuous stirred-tank reactor.

are

a n a i2 0.9719 -0.0013
0-21 0.22 -0.0340 0.8628

611 bn '-0 .0839 0.0232'
621 622. 0.0761 0.4144

bdi bd2]T = [0.4349 —0.0018]T

and real values are a n  =  a n  +  a n ,  022  =  «22  +  022 where a n ,  <122 are both time- 

varying variables bounded in the range [—0.1, 0.1] (simulated by “rand” function 

in programming). Recasting system (5.69) into the form of the structured model 

uncertainties defined in (5.3) and (5.4), so th a t we have

x  (k +  1) =  A x (k) + B u  (k ) +  /  (x  (k ) ,  a n ,  0 2 2 ) ,  (5.70)

where

||/(-)ll < 0 .1  II*(fc)||2 .

The system constraints are given by: nmjn =  —umax = [—1, — 1]T, and ymin =  

—2/max =  [—1, — 1]T. We can base on the piece-wise linear norm of d (k) or Voronoi 

sets to derive the admissible state set as follows:

Ax ■= {x  G M"| M ix  ^  M r} (Using the approach of Voronoi sets),
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where
' 3.6 0 3.24'
-3 .6 0 , M r —

3.24
0 3.6 3.24
0 -3 .6 3.24

Mi =

Fig. 5.17 shows the admissible state polyhedron.

Admissible state set w ith disturbances

with perturbed bounds
31  Admissible

0.5

-0 .5

x ,I1

Parameter set in loop 1, ^  (9 regions)

- 0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6

Figure 5.17: Admissible state set with Figure 5.18: State space partitions in
disturbances Loop I

The initial conditions are prespecified as

P  =

Q  =

Q =

'9.1123 0.0053' T? _ ' 4.4878 -0.3994'
0.0053 4.5746 > -n — -0.7974 -1.7797

21, R  = 0.11, N u 
2 0.1

N y - 2 ,  x 0 = [0.4,0.4] , uq — 0,

01 2.2
v =  1 (tuning parameters). (5.71)

P  and F  are the terminal weighting and terminal feedback gain. W ith the tuning 

parameters Q and v, we can derive the robustness bound jl = 0.1642 (robustness 

margin equals to 64.2%). As in the same fashion of Section 5.4.1, to tal objective 

J k ^k + 3  is optimized in two loops: Loop I is for piece objective Jfc+i^fc+ 3 associated 

with J£+2_*fc+3; and Loop II is for Jfc^fc+ 3  associated with J^+1_>fc+3. The critical 

intermediate parameters are given in Table 5.1 (here subscripts stand for the number 

of loops). In loop I, the admissible state set is partitioned into 9 regions (Fig. 5.18) 

so th a t the partition in Loop II has 9 possibilities (Fig. 5.19).

It can be seen th a t the union of all the partitions covers the whole admissible 

state space A x. T hat is to say th a t we can guarantee the feasibility of our algorithm.
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Table 5.1: Intermediate parameters for the Loop I I  optimization of CSTR offline
MPC

1 1 1 .8 0 7 7  - 0 . 1 5 2 1  r , 
Pl~ - 0 . 1 5 2 1  4 .0 7 7 3  ’ Z l  “  1° °J

2

A m  =
1 9 .3 9 3 2  - 0 . 1 9 7 0  
- 0 . 1 9 7 0  1 3 .1 5 8 4  j 

f t , i  =  [0  o l

f t , 2 =  

f t , 2 :

3 0 .5 2 1 2  - 0 . 4 2 4 2  
- 0 . 4 2 4 2  1 4 .4 5 5 9  

= [ 2 .2 6 5 4  2 .3 4 8 9 1

f t . 3 =  

f t , 3 =

3 0 .5 2 1 2  - 0 . 4 2 4 2  
- 0 . 4 2 4 2  1 4 .4 5 5 9  

[ - 2 . 2 6 5 4  - 2 . 3 4 8 9

f t ,  4 =  

f t  ,4 =

3 0 .5 2 1 2  - 0 . 4 2 4 2  
- 0 . 4 2 4 2  1 4 .4 5 5 9  

[1 .6 7 4 8  - 3 .4 6 9 0 1

f t , 5 =  

f t , 5 =

3 0 .5 2 1 2  - 0 . 4 2 4 2  
- 0 . 4 2 4 2  1 4 .4 5 5 9  

[ - 1 . 6 7 4 8  3 .4 6 9 0

f t , 6 =  

f t , 6 =

3 0 .5 0 7 7  - 0 . 5 5 7 2  
- 0 . 5 5 7 2  1 3 .1 4 5 6  

[ 2 .0 1 0 8  - 0 . 1 5 9 6 [

f t , 7 =  

f t , 7 =

3 0 .5 0 7 7  - 0 . 5 5 7 2  
- 0 . 5 5 7 2  1 3 .1 4 5 6  
[ - 2 . 0 1 0 8  0 .1 5 9 6 1

f t , 8 =  

f t , 8 =

2 1 .6 0 7 4  2 .1 0 9 7  
2 .1 0 9 7  1 3 .7 3 5 6  

- 1 . 3 3 9 6  - 2 . 6 1 2 : 1

f t , 9 =  

f t , 9 =

2 1 .6 0 7 4  2 .1 0 9 7  1 
2 .1 0 9 7  1 3 .7 3 5 6 ]  
[ 1 .3 3 9 6  2 .6 1 2 1 1

More specifically, in Fig. 5.19, Partition 2 is symmetric to Partition 3 with respect to 

the origin, and it is similar to Partitions 4 & 5, Partitions 6 & 7, and Partitions 8 & 9. 

Therefore it is possible tha t one state measurement x  (k ) corresponds to more than 

one optimal solutions u° (k ) and suboptimal solutions J£"Vfc+3. In this case, we just 

select the smallest J£ lffc+3 (where “j ” denotes the index of the smallest variable) and 

the corresponding u0' J (k) as control signals for implementation. From Fig. 5.19, we 

can figure out th a t the total number of partitions equals to

13 +  12 x 2 +  1 x 2 +  11 x 2 +  12 x 2 =  85. (5.72)

But after performing combination, we find th a t the state space partition has only 14 

regions. In order to demonstrate the different control results of RMPC on system 

internal uncertainties and external disturbances, the simulation is separately per­

formed under two conditions: l.on ly  system internal uncertainties a n  and <222 are 

considered; 2. both internal uncertainties a n ,  a 22 and external disturbances d (k ) are 

considered. Figs. 5.20 - 5.21 show the results under Condition I, and Figs. 5.22 - 5.23 

are the results under Condition II. From the figures, we can say th a t RMPC in the 

recursive closed-loop prediction can eliminate the internal uncertainties completely, 

which is consistent to the results of double integrator. But for external uncertainties, 

the controller can confine the output perturbations within a small region, but can 

not suppress 100%. Figs. 5.21 and 5.23 illustrate the state convergent trajectories 

under both Condition I and Condition II, where the vertical axis (z — axis) indexes 

the number of partitions. Apparently, from these two figures, we can see th a t dur­

ing implementation, manipulated inputs keep jumping over {u0’1, u°' 2, • • • }. The 

whole procedure is completed within 8.3 seconds. Thus, RMPC application in the
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Partition 1 in Loop II (13  reg ions) Partition 2  in Loop II (12 reg ions) Partition 3  in Loop II (12  reg ions)

-0.8 -0.6 -0.4 -0.2 0 0.2
Partition 5 in Loop II (1 region)

0 0.2 0.4 0.6 0
Partition 6 in Loop II (11 regions)

0.2 0 0.2 
Partition 4 in Loop II (1 region)

-0.05 0 0.05 0.1 0.15

Partition 8 in Loop II (12 regions
-0.15 -0.1 -0.05 0 0.05

Partition 7 in Loop II (11 regions
0.8 -0.6 -0,4 -0.2 0
Partition 9 in Loop II (12 regions

0 0.2 0.4 0.6 0.8 -0.5

Figure 5.19: State space partitions in Loop II (x-axis is x \ and y-axis is x^)

Trajectories o f x ,, x State convergent trajectory

10 12 14
Time (s)

Trajectories of i^ , u2

10 12 14
Time (s)

- 0 .2  - 0 .2

Figure 5.20: The trajectories of state Figure 5.21: State convergent trajec-
elements x \,X 2 (no output distur- tory (without output disturbances)
bances)

CSTR industrial system is efficient, flexible, and reliable.

In the same fashion, we use the bisection RMPC algorithm to control the CSTR 

system in (5.69). To illustrate the different effects of internal and external uncer-
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Optimal states o f affine RMPC
0.6

0.4

0.2

0
- 0.2 2 4 6 12 14 188 10 16 20

State convergent trajectory

Time (s)
Optimal inputs of affine RMPC

-0 .5

Time (s)

12
10
8
6
4
2
0:

0.6

0.2

- 0 .2  - 0 .2

Figure 5.22: The trajectories of op- Figure 5.23: State convergent trajec-
timal states and inputs (with output tory (with output disturbances)
disturbances)

tainties on system dynamics, we first set d (k) = 0 and perform controller design by 

the approaches. Fig. 5.24 shows the shrinking ellipsoidal sets for the CSTR system.

T h e  ellipsoids defined  by Q7 for th e  C S T R  sy stem

0.8

0.6

0.4

0.2

xw

- 0.2

- 0 .4

- 0.6

S ta te  trajectory 
Ellipsoids

- 0.8

- 0 .5 0 .5
x.‘1

Figure 5.24: The shrinking ellipsoidal sets for the CSTR system

F ro m  th e  c o m p a r iso n  r e su lts  o f  F ig s . 5 .2 5  - 5 .2 6 , w e  c a n  se e  t h a t  a ffin e  R M P C  (ou r  

algorithm) derives better control performance, although it is not extreme improve­

ment. However, if we set d (k) /  0 and repeat the same process, we will get more
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Comparison of optimal states o f two offline RMPC algorithms Comparison of optimal inputs of two offline RMPC algorithms

-A ff in e  RMPC 
1 Bisection RMPC

0.5

0

-0.5 2 4 6 8 10
Time (s)

12 14 16 18 20

0.6

Bisection RMPC0.4

0.2

0
- 0.2

14 16 18 202 4 6 8 10
Time (s)

12

a 1

Time (s)

0.3

Time (s)

Figure 5.25: Optimal states derived Figure 5.26: Optimal inputs derived
by two algorithms disregarding d(k) by two algorithms disregarding d(k).
(CSTR)

illustrative results (Figs. 5.27 - 5.28). The bisection RMPC cannot generate stable 

control any more, but our method still result to acceptable performance.

Optimal states o f bisection RMPC Phase plane of affine RMPC Phase plane o f bisection RMPC

0.5

0
•0.5

•1
14 16 18 206 8 10

Time (s)
122 4

Optimal inputs of bisection RMPC1
0.5

0
-0.5

-1 12 14 16 18 206 8 10
Time (s)

2 4

Figure 5.27: Unstable optimal states 
and inputs derived by bisection robust 
MPC (CSTR)

0.25
0.5

XN 0.15

- 0 .2 0.6
x,X1

Figure 5.28: Comparison of phase
planes derived by two algorithms in 
the presence of d(k).

5.5 C onclusions

In  th is  c h a p te r , w e  d e v e lo p e d  a  r o b u s t  M P C  a lg o r ith m  w ith  a n  a r b itra r y  p r e d ic t io n  

horizon for constrained systems with structured uncertainties and bounded distur­

bances. It is featured by four aspects: 1. the manipulated input is optimized offline
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and implemented online, so tha t the controller is flexible and efficient. 2. The closed- 

loop asymptotic stability can be guaranteed automatically, and by fully partitioning 

the admissible state set, feasibility of the algorithm is also can be guaranteed. 3. 

Two fabricated tuning variables Q and v  are capable of adjusting the tradeoff be­

tween system closed-loop performance and robustness. 4. The unique prediction 

pattern, recursive closed-loop prediction, dramatically reduces the computational 

complexity of robust MPC formulations. Based on the one-step prediction, it is 

able to construct robust MPC with the arbitrary horizon length, but one-step pre­

diction is sufficient.

Using mp-SQP techniques, the explicit (analytic) solution to  robust MPC can 

be established by the piece-wise affine functions of state measurement x  (k) , asso­

ciated with corresponding critical regions The regions are determined by a

series of element-wise inequalities and their union covers the whole admissible state 

region, i.e., each point in the admissible state set corresponds to a control policy. 

Some novel mathematical strategies are introduced into robust MPC areas, includ­

ing construction of the tuning parameters Q and v, reconfiguration of structured 

uncertainties, piece-wise linear norm and Voronoi sets, and the uniform structure of 

piece objectives. The simulation examples illustrate th a t the algorithm is efficient, 

reliable, and flexible. It is capable of eliminating internal uncertainties completely 

and reducing the output disturbances dramatically. The offline affine robust MPC 

can be applied to different kinds of fast or slow industrial MIMO systems. This 

chapter is summarized in our publication [18].
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Chapter 6

Robust state observer

Chapter 3 developed an FH-RMPC algorithm using LMIs and Chapter 5 con­

structed an explicit FH-RMPC approach using recursive closed-loop prediction. 

These method, however, assume tha t the system states are fully measurable, which 

obviously is not always the case. To remove this limitation, Chapter 6 focuses on 

robust observer design in the presence of system internal and external uncertain­

ties. Two approaches are proposed in the sequel: one formulates robust observer 

design as a Maximize Determinant Optimization problem and employs the principle 

of invariant sets to reduce the computational complexity; and the other converts the 

design into an mp-SQP problem and leads to robust moving horizon state observers 

(RMHSOs) with both open-loop and closed-loop prediction. Both approaches can 

guarantee the convergence of estimation errors in the sense of Lyapunov. The former 

ensures the estimation errors converging to an ellipsoidal invariant set along system 

trajectories. The latter constructs two tuning parameters, namely arrival weighting 

and the arrival estimation gain, to adjust the tradeoff between observer’s robustness 

and stability.
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6.1 R ob u st observer using M A X D E T  program m ing

State observer theory has been widely used in many branches of science and en­

gineering and there exists a rich collection of state observer design methods and 

algorithms. The Luenberger observer [58] and the Kalman filter [42], as two most 

successful observer strategies, were developed for deterministic systems and stochas­

tic systems, respectively. The former is limited to  systems with accurate models 

neglecting both internal and external uncertainties; the latter considers external 

uncertainties as white noises, but modelling errors in Kalman filtering systems often 

lead to poor performance [74], To incorporate modelling uncertainties with state ob­

server, robust observer design has received considerable attention in the past decade, 

and different kinds of robust observers were published, e.g., unknown input observer 

(UIO) [108], spectrum assignment observer [110], LMI based observer [51], high-gain 

robust observer [60], and input-output observer [61]. However, few of them incorpo­

rate both internal and external uncertainties with observer design.. In this section, 

we will convert observer design into a Maximize Determinant (MAXDET) optimiza­

tion problem and involve both internal and external uncertainties in observer design. 

Refer to Section 3.2.1 for the definition of MAXDET programming.

6 .1 .1  F o rm u la tio n

Consider a system with structured internal uncertainties and external disturbances

where x  (k ) G K" stands for the state, u  (k ) G Rm for the input, and y (k ) G W  for 

the output. d(k)  G R( is a combination of input, output, and state disturbances 

satisfying

where W d is a positive symmetric matrix. A, B,  Bg, T\,  T2 , C, Bd,  and C'd are all 

constant matrices of appropriate dimensions, and A g (k ) represents the time-varying

x ( k  + 1) =  Ax  (k) + B u ( k )  + Bgd (k) + B dd ( k ) , 

£(fc) = Tl X ( k ) + T 2u ( k ) ,

e(k) = a  fl(fc)e(fc),
y( k)  = Cx ( k )  + Cdd(k ) , (6.1)

dT (k) W dd (k) <  1, (6.2)
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internal uncertainties in the feedback loop, for which the maximal singular value is 

bounded by 1, so

8T ( k ) 6 ( k ) < f ( k ) Z ( k ) .  (6.3)

We first make an assumption:

A l )  Matrix Cd has a full column rank. In other words, the dimension of the dis­

turbance d{k)  is no more than that of the output y{k)  , namely I < q.

Based on A l), it is possible to represent unknown disturbances in the terms of the 

outputs and states in (6.1),

d(k)  = $ 1 ( y ( k ) - C x ( k ) ) ,  (6.4)

where 4>i =  (CjC 'd)_1C j .  The goal of the observer design is to develop a filter which 

can provide the state approximation x  (k) from the current or/and  past output and 

input data  and guarantee the observer error, e(k)  — x  (k)—x  (k ), as small as possible 

in some criterion. The observer design can be described as follows:

Given an ellipsoidal set £e(k-i) with respect to the old estimation x  (k — 1),

£e(k-1) =  {e(fc -  1) | e(fc -  l ) TPk- ie ( k  -  1) < 1 and Pk- 1 >  0}, (6.5)

where Pk- i  £ , there exists another ellipsoidal set £e(k) f°r the current state

estimation x  (k ) and the condition

{x (k ) — x  (k))TPk{x (k ) -  x  (k )) <  1, (6.6)

holds for some Pk E and also the volume of £e{k) , with the condition £e(k) Q 

£e(k-l)i should be as small as possible. Fig. 6.1 gives a graphical interpretation of 

the concept of the robust state observer design in the sense of convergent ellipsoidal 

invariant sets. Let the state space model of the robust observer as

x  (k ) =  A x(k  -  1) +  B u{k -  1) +  L (k -  1 )(y(k -  1) -  Cx(k  -  1)), (6.7)

where x(k  — 1) is the state at instant (k — 1), namely past state estimation, and 

L(k  — 1) is the observer gain at instant (k — 1). Consequently, the estimation error 

a t instant k is

e(fc) =  A x(k  -  1) +  B e8{k -  1) +  B dd{k -  1) -  A x{k -  1)

+ L(k -  l ) {Cx(k  -  1) -  y{k -  1)). (6.8)
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e

Figure 6.1: Ellipsoidal invariant sets for the robust observer errors a t instant (k — 1) 
and k

Define a stacked vector v to facilitate the robust observer design [55] with

v := [xT (k — 1) 9T (k — 1) dT (k — 1) l ] T .

From (6.3), (6.3), and (6.8), express the observer errors e( k  — 1) and e(k) ,  the 

bounded disturbances d(k  — 1) and d(k) ,  the auxiliary variables 0 (k) and £ (/c),

and the output y (k ) in terms of v,

e ( k - l )  = [ I  0 0 - x  (/c -  1) ] u =  r e(fc_!)U, (6.9)

e(k)  = [ A  B e B d - A x  (lb -  1) + L { k -  1) •

(■C x (k -  1) -  y {k -  1))] v = r e(fc)u, (6.10)

6 { k - 1) =  [ 0  I  0 O ]u  =  r 0u, (6.11)

£ ( f c -  1) =  [ Ti 0 0 T 2u  (k -  1) ] v =  r 5v, (6.12)

d ( k -  1) =  [ 0  0 I  0 ] v =  r d(fe_ 1)U, (6.13)

d(k)  = [ - $ i C A  - $ i C B e - $ i C B d

$ iy (k) -  C B u  (k - l ) ] v  = Td{k)v, (6.14)

1 =  [ 0 0 0 1 ] v = Fiu. (6.15)

Note tha t all transformation matrices are known in (6.9) - (6.15), except the matrix 

r e(fc) which is the unknown function of L(k — 1). Given the condition in (6.6), we
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have

{^e(k)v)T PkTe(k)V <  ( r iu )T riW, (6.16)

if given

(r e{ k - \ ) v ) T P h-iF e( k - i ) V  < (riw )Triw  (from (6.5)), (6.17)

( r (i(fc-i)v)TWdr d(fc_ 1)n < 1 (from (6.2)), (6.18)

{rdv)T WdTdv < 1 (from (6.2)), (6.19)

( I » T I >  < (r€w)r r*v (from (6.3)). (6.20)

Implementing the ^-procedure, the condition in (6.16) does hold if

^ - T e(k)P k r e(k)

>  7 1  ( $ 2  -  ^ e ( k - l ) P k - l ^ e ( k - l ) )  +  7 2 ( $ 2  ~  ^ d ( k - l ) W d ^ d ( k - 1 ) )

7 3 ( $ 2  -  r Tdw dvd) + 74(r[rc -  rjr*), (6 .21)

where $ 2  =  r J T i ,  and 7 i, 7 2 , 73 , and 74 are all auxiliary positive scalars. P& and 

Pk- 1 are both positive-definite matrices where Pk- 1 is known with respect to the 

ellipsoid £e(fc-l)- Notice th a t in (6.21) both variables Pk and r e(*.) are unknown. So 

(6.21) is not a linear m atrix inequality. Setting M  = P ^ 2 and N  = P ^ 2L  (fc — 1), 

it denotes

Pfc1/2re(fe) =  [ M A  M B e M B d - M A x  (k — 1) +  N ( C x  (ft -  1) -  y (k -  1)) ].

(6 .22 )

By Schur complements, (6.21) can be converted into

n u  n l i
I I 21 I

> 0, (6.23)

where

n u  ;=  $ 2  -  71  ( $ 2  -  r f (fc_ i)P fc_ i r e(fe_ i)) -  72 ( $ 2  -  )

- 7 3  ( $ 2  -  r$ w dr d) -  7 4  ( r f r € -  r ^ r 0) ,

I I 21 :=  P fc1/2r e(fc) =  [ M A  M B e  M B d

- M A x  ( k - l )  + N  (C x {k -  1) -  y {k -  1))]. (6.24)

As we know th a t increasing the diameter of an ellipsoid £e(k), namely the longest 

axis of the ellipsoid, results in increasing its volume. Meanwhile the diameter is
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proportional to the maximal eigenvalue of Pk \  A(Pfc [12]. Therefore, minimizing

A(Pfc“ 1), namely maximizing the minimal eigenvalue of P \j2 (denoted by A(Pk /£)), 

the structure m atrix Pk defines the smallest ellipsoid containing the estimation errors 

e(k) .  This idea leads to a minimizing eigenvalue problem (EVP) (refer to Section 

3.2.1).

T h e o re m  6.1 In the presence of model uncertainties Ag (k) and bounded unmea­

sured disturbance d(k) ,  the state estimation of system (6.1) can be obtained by solv­

ing an SDP problem,

>i/2\

min (—A) (i = 1, 2, 3, 4),
L { k - 1), A, M , N ,  7 i

(6.25)

s. t. > 0 ,f in  n l i
n2i /  

A -  H P tL l) > o,
M  — XI >  0 ,7 4  > 0, M  > 0,

7 i  > 0 ,  7 2  >  0 ,  7 3  >  0 ,

where the symbols M , N  are defined in (6.22), n u ,  n 2 i  in (6.24), and 7 1 ,  7 2 , 7 3 ,  7 4  

are unknown scalars. A (P ^ i)  stands for the maximal eigenvalue of the square root 

of P k -1 , the structure matrix for the past estimation error ellipsoid £e(k -i)■ The 

the time-varying state observer gain at instant (k — 1), namely L {k  — 1), can be 

calculated by

L  (jfe -  1) =  M ~ l N,  

and the estimated state at instant k satisfies

x  (k ) =  A x (k — 1) +  B u  (k — 1) +  L (k — 1) (y (k -  1) — C x  (k — 1)).

Proof: Following immediately from (6.23), we can compute the feasible solution of 

the structure m atrix Pk by minimizing the volume of ellipsoidal set £e(k), equivalently 

maximize the determinant of Pk. It derives a standard MAXDET optimization 

p r o b le m  o f  P^. T o  r ed u c e  th e  c o m p u ta t io n  c o m p le x ity , d e fin e  th e  m in im a l e ig e n v a lu e

of (Pfc)1̂ 2as A. We know that

A a  d e t_1(P^"1) (equivalently A oc V ol_1(£e(fe))),
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where symbol “oc” and notation Vol(*) stand for “Proportional to" and “Volume" , 

respectively. Therefore, the optimal Pk can be solved by,

min (-A )

s. t. M  -  XI > 0, A > 0, (M  = P fc1/2),

Equation (6.23). (6.26)

_  1 / 2
The constraint A — A(Pfc_ 1) > 0 is designed to guarantee observer’s stability in the 

sense of Lyapunov. Pfc-i is the structure matrix of the ellipsoid £e(k-i) containing 

the past observer errors. As we know, the diameter of £e(k) is proportional to 

A (PjT1), similar to A (Pfc). Therefore if A (Pfc) >  A(Pfc_i), equivalently A > A(P^/2), 

£e(fc) will always be contained in £e(fc_i), and consequently, the observer is stable.
_ ■« jty

Add the constraint A — A(Pfc_ 1) > 0 to (6.26), and Theorem 6.1 is proven. ■

R e m a rk  6.1 Theorem 6.1 derives a dynamic observer gain L (k  — 1), which is a 

time-varying nonlinear function of the past input u (k  — 1), the past output y (k  — 1), 

the past estimation x  (k — 1), and the current output y (k ).

— 1 /Q
R e m a rk  6.2 By setting the constraint A —A(Pfc_ 1) > 0, we can guarantee the stabil­

ity of the robust state observer in the sense of Lyapunov. To control the convergent 

rate, we construct a tuning scalar a  >  0 with

A >  a X iP ^ l )

to replace the constraint A — A (P ^2) > 0 in problem (6.25). The larger a  is chosen, 

the faster convergent trajectory derives.

R e m a rk  6.3 Because the volume of the ellipsoidal set £e(k) is proportional to the 

determinant of Pj f1, minimizing the volume of £e^ )  is equivalent to maximizing 

the determinant of Pk- Thus, robust observer design is possibly converted into an 

M A X D E T optimization problem [107]. Using the existing solver YAPLM I [57], 

M A XD E T can be solved numerically. However, compared with the EVP problem 

in (6.25), YAPLIM  needs more time to get a feasible solutions to the M A XD E T  

programming for robust observer design.
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6.1.2 A numerical exam ple

Consider a system given by

x  (k +  1) = x  (k ) +0.5 0.7
0.1 0.6 +  a  (k)

y ( k ) =  [ 2  1 ] x  (k) +  0.1 d (k ) ,

0.1
0.2 +  (3 (k) u(k )  + 0.1

0 d(k ) ,

(6.27)

' 0.05 0 0 '  0 O ' 0.1
0 0.05 , t 2 = 0.04 , Be = 0 !

, and B d =
0

where a( k )  G [—0.05, 0.05], (3(k) G [-0.04, 0.04], and d(k)  G [—1, 1]. Suppose 

th a t the initial conditions x  (0) =  [1, 0]T and x  (0) =  [0, 0]T. Reforming the model 

in (6.27) into the structure of (6.1), we have

Ti  =

Set W (t = 0.9 for the disturbance invariant set and Pq =  0.11 relative to the ellipsoid 

£e(0) for the initial observe error e (0). Figs. 6.2 and 6.3 show the trajectories of the 

estimated states with u(k) = 1. The estimation and real states match each other 

well. Fig. 6.4 is the trajectories of the observer errors which are bounded within a 

neighborhood around the origin. Here the uncertain terms a(k) ,  (3 (k ), and unknown 

disturbance d (k ) are simulated by MATLAB function “rand.” Fig. 6.5 illustrates the 

development of ellipsoidal invariant sets for observer errors (only several ellipsoids 

are presented for a clearer figure).

The first state x1 and its estimation xH atl The second state x2 and its estimation xHat2

c
.2

E

5
CO

Time (s)

E
T5e

Bw

Time (s)

Figure 6.2: The trajectories of x\  and Figure 6.3: The trajectories of and
Xi. X2.

Comparing with the estimation resulted by YAPLIM in Figs. 6.6 - 6.7, our results 

are much better (Figs. 6.4 - 6.5).
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Figure 6.4: The trajectories of the es- Figure 6.5: Development of the ellip- 
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Figure 6.6: The trajectories of x\  and Figure 6.7: The trajectories of x 2 and 
xi  by the YAPLMI. x 2 by the YAPLMI.

6.2 M oving horizon sta te  observer

Although the above algorithm has the ideal properties of stability and convergence, it 

does not combine the practical issues with theoretical analysis, e.g., system physical 

constraints, computational complexity, and implementation efficiency. To obtain a 

new observation method with a wider scope of applications, moving horizon state 

o b ser v e r  (M H S O ) w a s  p r o p o s e d  b y  r e fo r m u la tin g  th e  d e s ig n  a s  a n  o p t im iz a t io n  

problem [41, 87].

MHSO is motivated by the full information state observer which, however, suffers
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from the curse of increasing dimension [27]. Different from full information state 

observer, MHSO includes only the most recent measurement and defines the problem 

within a fixed prediction horizon, so tha t the dimension of problems is fixed and 

determined by the length of the horizon. This idea originates from FH-MPC [80, 

67, 63] and utilizes a similar scenario. Similar as FH-MPC, an iterative loop of 

MHSO is composed of four steps: determining initial parameters, predicting future 

states, solving an optimal problem, and then updating state observation [64, 78, 

79]. Because of the potential to handle state constraints, MHSO witnessed wide 

applications to different physical systems in the past decade. For example, the 

state observer of biomass concentration in CHO animal cell cultures is successfully 

developed in the fashion of MHSO [36, 77]. Arrival cost, as one of the fundamental 

concepts, is proposed to  summarize the effort of the past data  ahead of current 

prediction horizon [87]. It can be shown th a t if we can compute the explicit solution 

to arrival cost, stability can be easily guaranteed by solving an algebraic Riccati 

equation. For an instance, the Kalman filter, as a special case of MHSO with 

free state constraints and unit prediction horizon, can achieve stability in this way. 

For general cases, however, computing an explicit solution still remains an open 

problem [38]. In 2001, Rao et al. proposed a sufficient condition for the stability of 

MHSO employing the approximation of arrival cost [78]; but one assumption was 

critical: the system must have a precise model. To remove such a limitation, in 

this thesis we propose an extended MHSO, namely robust MHSO (RMHSO) for 

the systems with both internal uncertainties and external disturbances. Also, the 

importance of RMHSO can be seen from another point of view: RMHSO is critical 

for explicit MPC systems whose states are unmeasured or partially unavailable (refer 

to Chapter 5). Because of the nature of offline MPC, it is m andatory to combine 

state physical constraints with robust observer formulation. Otherwise there is no 

way to implement offline controllers with bounded state space partitions [6, 4, 18]. 

To preserve the superiority of offline MPC (for instance, small implementation cost), 

the associated observer should be offline optimized and online implemented as well. 

The aim of this section is to develop an offline MHSO algorithm in the presence of 

internal uncertainties and external disturbances.
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6.3 R ob u st m oving horizon sta te  observer

Consider a system modelled by

x  (k + 1) =  A x (k) + B u (k )  + f  (x (k) ,d (k )  , k ) ,

y{k) = C x (k )  + v(k) .  (6.28)

Here x(k)  G R” stands for the state, u ( k ) G Mm the input, y (k) 6 R9 the 

output, v (k ) G R9 the measurement error, and d (k) G R( a combination of in­

put and state disturbances. To simplify design, we firstly assume v(k ) =  0 and

postpone the discussion on the case of v(k) ^  0 to Section 6.6.3. A  and B  are

constant matrices with appropriate dimensions. We assume th a t the output matrix 

C  has a full row-rank and the pair (C , A) is observable. Suppose th a t the states 

and disturbances obey the conditions

x  (k ) G A x , v(k) G Av,  and d (k ) G Ad, (6.29)

where A X{AV) is the admissible state (noise) set defined by a set of generalized 

element-wise inequalities, and Ad is the admissible disturbance set defined by an 

ellipsoidal invariant set,

A x {% € R | ^min X A £max, Slmim 2Jmax G R }, (6.30)

A v ' =  { u  G R9| Umin A  V A  Vm ax , Um;n , Umax G R9}, (6.31)

A d := {d G Rp | dT (k) W dd (k ) < l , W d £ §'+}. (6.32)

The nonlinear term  f  : A x ~x Ad  R+—> Rn reflects the composition of internal and

external uncertainties satisfying

\ \ f ( x (k )  ,d (k )  ,k)\\2 < k (k > 0). (6.33)

In fact, many structured internal and external uncertainties can be reformulated 

into the form of (6.33).

C ase I  —  external uncertainties: The function /  (k) is explicitly expressed by

/  (x (k )  ,d (k )  ,k)  =  B dd ( k ) ,
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where d{k)  € A d and B d is the a constant matrix. Prom the definition in 

(6.30), one has

II B dd(k)  ||2 =  || B dW ~ 1/2W ^/2d(k)  ||2 <  d (B dW ; 1/2),

which is in the form of (6.33).

C ase  I I  —  in te rn a l u n c e rta in tie s : The widely used structured uncertainties in 

the feedback loop [45] can be also converted into (6.33). Consider the system

x ( k  + l) = (A + W l A  (k ) W R)x ( k ) , (6.34)

where A (k) =  diag(Ai(fc), ••• , A r (k)) and a (A  i(k)) < oii. W l  and W r  

are constant scaling matrices and W l is invertible. Performing the similarity 

transformation to  (6.34) and setting x ( k ) =  W l  z(k), we have

z{k +  1) =  W £ xA W l z (k ) +  A (k) W r W l z (jfe).

Because x (k )  £ A x , there exists a constant term  £ such tha t [|z(fc) | |2  < £. 

Denote f ( x  (k ) , d ( k ) , k) :=  A (k ) WRWLz(k),  and consequently

\ \ f ( x (k )  ,d (k )  ,k)\\2 < (m axai)d(W fiW i)£,I

which is also in the form of (6.33).

To proceed the further discussion, we first assume v(k) =  0 and focus on the system

x ( k  + 1) =  A x  (k) + B u (k )  + f  (x (k) ,d (k )  , k ) ,

y (k ) = C x  (k ) ,  (6.35)

where x  (k ) € A x and ||/ ( - ) l |2 <  k , to design a robust moving horizon state observer.

6 .3 .1  F o rm u la t io n  o f  R M H S O

Based on the state space model in (6.35), the observer is defined as

x  (k +  1) =  A x  (k) +  B u  (k) + f  (k ) ,

y  (k ) =  C x  (k ) ,  (6.36)
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where x  (k ) € R n is the estimated state, y  (k ) G R 9 the estimated output, and 

f ( k )  G R " the estimated disturbance. Given the model in (6.36) and past estimated 

state x  (k — N ),  we predict the intermediate observation x(k  — N  + i),

i—1 i—1

x ( k - N + i )  = A ix ( k - N ) + Y J A i- 1- j B u ( k - N + j ) + J 2 A i~1- j f ( k - N + j ) ,  (6.37)
j =o j =o

where i G [0, JV] is the index of estimated signals. The sequence Xk-N—>k is the 

observation components over the fcth prediction horizon. x(k — N )  is the initial 

condition of the fcth prediction horizon and is optimized by the (fc -  N )th  predic­

tion horizon. Obviously, if we can optimize the estimated sequence the

current estimated state x(k)  can to be solved by

JV -l N - 1

x(k) = A Nx(k  — N )  +  ^  A ^B u(k  —l — j ) +  ^  A-* f ( k  — 1 — j) .  (6.38)
j =o j =o

Retain the value of x(k), reject intermediate observation x k - N ^ k - 1> and repeat the 

above procedure. Finally, we can obtain the state observation at any instant k. 

Eq. (6.38) shows the essential difference between MHSO and MPC regulation. MPC 

predicts future states/ou tputs based on current measurements. After determining 

the optimal input sequence uk-*k+N- i i  it retains the first element u(k) and rejects 

the intermediate solutions, including predicted states and the rest of optimal inputs. 

But MHSO employs a different policy: it is based on the past observation x(k  — N )  

to predict intermediate observation till the current observation x(k).  After deter­

mining the optimal sequence fk -N -*k -h  if calculates x°(k) and then rejects all of 

the intermediary variables x k - N - * k - i ■ Essentially, MPC performs the optimization 

loop in a forward manner, but MHSO does it in the backward way which, fortu­

nately, consistent with the nature of closed-loop prediction [50]. The rule in (6.38) 

makes it straightforward to convert MHSO design into an optimization problem 

with recursive closed-loop prediction.

D efin ition  6.1 The design of robust MHSO for the system with internal and ex-
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ternal uncertainties in (6.35) is a constrained optimization problem,

min Jk-N-*k (6.39)
f k - N ^ k - 1

s.t. J k -N ^ k  = ||Cx (fc) -  y(k)\\Q0 
k— 1

+  £  \ \ C x t i ) - v U ) \ \ Q  +
j=k-N

i —1

x ( k - N  + i) = A ix(k  - N )  + Y ,  A ' - ' - i B u i k  -  N  + j)
j =o

i —1

+ N  + j )  (1 < i  < N),
j=o

/  (fc -  1) =  L (C x  (k -  1) -  y(k -  1)), x(k  -  N  + i) G A x ,

where Q G §+ and R  G D "+ are weightings. Qo G S9 and L are the arrival weighing 

and the arrival observer gain, respectively, which are constructed for robust observer 

stability. Pair (C , A) is observable.

From (6.35) and (6.36), we can write down the model of observation errors,

e (fc +  1) =  Ae(k) + f ( k ) — / ( x  (fc), d (fc), fc), (6.41)

where e(fc) := x (fc) — x (fc). Therefore, the robust stability of state observers is 

converted into a problem on the convergence of e(fc) in the presence of the uncertain 

term  /  (•) in (6.41).

D efin ition  6.2 The observer in (6.36) is stable for the system with internal and 

external uncertainties in (6.35), i f  for any e > 0 there exists a number 5 > 0 

and a positive integer T  such that i f  ||e(0)|| < <5 and x(0) G A x, then ||e(fc)|| < E 

and x(k)  € A x for all k > T. The admissible state set A x and observation error 

dynamics are given in (D l . l )  and (6-41), respectively.

6 .3 .2  R o b u st  o b serv a tio n  s ta b ility

To guarantee the stability of the robust observer in (6.41), we employ the objective 

function (6.40) as a Lyapunov candidacy function, so tha t we have the Lyapunov 

functions V(k)  := Jk-N->k and V (k  + l) := Jk-N+i^k+i-  From (6.40), the difference
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of the Lyapunov functions is given by

V  = V(fc +  1 )-V (fc )

=  || e(k +  1 ) | | J Q +  | | e ( f c ) | | |  +  ||/(fe)||fl

- | |e ( f c ) | | |o -  ||e(fc -  1V)||J -  ||/(fc -  N)\\2r , (6.42)

where Qo =  C t QqC  and Q =  C TQC. In Definition 6.1, we propose the arrival 

observer gain L, satisfying

/(fc) =  L(Cx(k)  -  y(k)) = LCe{k). (6.43)

Inserting (6.41) and (6.43) into the difference of the Lyapunov functions in (6.42), 

we have

V = \ \ e m h totH f ( - ) \ \ l 0- M k ) T (A + L C )TQ0f ( - ) - \ \ e ( k - N ) \ \ l - \ \ f ( k - N ) \ \ l ,  

where

Qtot ~  (A  + L C )t Q0(A + LC) + Q + { L C f R ( L C )  -  Q0.

To guarantee stability, we need V  < 0, i.e.,

I K * 0 l l L t + 1 1 / ( 0  I I J o  - 2 e ( f c ) T ( A  +  L C ) T g 0 / ( - ) -  
| |e ( f c - I V ) | | | - | | / ( f c - A r ) | |2fl,+ H |e ( fc ) |^ -H |e ( fc ) ||2p <  0 , (6.44)

where v  >  0 and P  £ §” + are the tuning parameters and critical to the robustness

of RMHSO. We have a pair of sufficient conditions to (6.44)

(.A + L C )t Q0(A + LC) + Q + {LC)t R ( L C ) - Q o + uP  = 0, (6.45)

| | / ( . ) | | | o -2e(fc)T(A +  LC)TQ o / ( - ) - | | / ( f c - iV ) | |^ - H |e ( f c ) l |2P <  0. (6.46)

Note th a t ||e(fc — AOH'f is the initial observation error which is positive and omitted 
w

here. Apparently, (6.45) is an algebraic Riccati equation with the unknown variables 

of the arrival observer gain L  and the transformed arrival weighting Qo- It is not 

hard to derive Qo based on the solution of (6.45),

Qo =  (CCT r 1C Q 0C T (CCTr 1, Qo 6 S£. (6 .47)

Note th a t we assume tha t C  has full row-rank, so the pseudo-inverses (CCT )~1C  

and C T (CCT) - 1 exist. It can be seen th a t no m atter what tuning parameters u and
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P  are chosen, we always can derive L  and Qo from (6.45) and (6.47). Consequently, 

the feasibility of (6.46) plays a critical role on robust stability analysis.

T h e o re m  6.2 The observer in (6.36) is robust stable for the constrained system 

with internal and external uncertainties in (6.35) i f  the arrival weighting Qo and 

the arrival observer error L are determined by the Riccati equation in (6-45) and the 

estimated disturbance f ( k  — N ) is solved by minimizing the following linear program,

s.t.

and satisfies

mm e,
v P  {A +  L C )Tl

(A + LC) eQ0 > 0,

|row(Rl/2) f  ( k - N ) \ >  - ( 1  +  £)1/2<t(Q0)k;, 
n

where row(RJ/ 2) :=  [R{{2 ■ • • , R m ]  is a row vector composed of the diagonal ele­

ments of R, and k is the uncertainty bound defined in (6.33).

P ro o f: Following the conditions in (6.45) and (6.46) and applying Lemma 3.3, we 

have

<  e f T (-)Q0f(-) + ^e (k )T (A + L C )TQ0(A + LC)e(k) (e > 0 ).

-2e(k) {A +  LC)  Qo/(-)

Therefore (6.46) is necessary to 

e{k)T {A +

+(1 + £ ) / r (-)Q o/(') -  ||/(fc -  iV)||2fi <  0. (6.48)

-s e{k)T {A +  L C )t Qq(A +  LC)e(k) -  u\\e{k)\\2-p

So if the conditions

vP - - £ (A + L C )t Q q(A + LC) > 0, (6.49)

\ \ f ( k - N ) \ \ 2R > ( l  + e ) f T (-)Q0f(-),  (6.50)

are satisfied simultaneously, the condition in (6.48) is obtained. To minimize ||/(fc —

N )\\2r , we minimize the positive scalar e. Consequently, (6.49) can be recast into an

SDP problem. Performing Schur complements, we have

min £, (6.51)

s.t. uP  (A  +  L C f  
(A  + LC)  £Q0
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Eq. (6.50) is equivalent to

n

£ (  -  ^ ) ) 2 ^  0- +  £ ) / r (-)Qo/(-)-
i=1

As we know the condition

Y , { y / R ^ M k  -  N ) )2 > i ( r o w ( R ) f ( k  -  N ) )2,
2 = 1

so tha t a sufficient condition to (6.50) is

|row(R%)f (k  -  N )  | >  i ( l  +  £)5o-(Qo)k. (6.52)

Note i? E 0 ” + and f ( k  — N )  E R". Theorem 6.2 is then proven. ■

R e m a rk  6 .4  The feasibility of the semi-definition optimization problem in (6.51) is 

strongly related to the selection of the tuning parameters u and P. Roughly speaking, 

i f  we choose an appropriate pair of v and P  (large enough), the robust stability can 

be always satisfied.

R e m a rk  6.5 After determining the values of f i  (k — N ) , Qo, and L, we can cal­

culate the upper bound of k to satisfy both conditions (6.49) and (6.50). The upper 

bound of k reflects the robustness of our algorithm, i.e., by adjusting the values of 

v and P, we can adjust the tradeoff between the performance and stability of our 

robust observers. This fact is similar as Corollary 5.1

6.4 R M H SO  using open -loop  pred iction

From the above discussion, we know th a t RMHSO design can be converted into a 

quadratic program, and associated with Theorem 6.2, the robust stability is guar­

anteed. From Chapter 4, we know tha t nominal MPC can be reformulated as an 

mp-QP regulation. The solution to mp-QP is a set of piece-wise affine functions 

associated with state space partitions. In this section, we first employ the idea of 

n o m in a l e x p l ic i t  M P C  t o  d e v e lo p  a n  o p e n - lo o p  R M H S O , a n d  th e n  e x te n d  th e  d e ­

sign to  an RMHSO with the recursive closed-loop prediction in the next section. 

From (6.37), we can predict the N  step coming observations Xk-N+i^k,  so th a t the
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objective J k -N ^k  can be rewritten as an expression of x (k  — N ),

J fc-jv-fc =  \ \ C x ( k - N ) - y ( k - N ) \ \ 2Q + \ \C A x (k -N )+ C B U + C B FF - Y \ \ 2Q+\\F\\2n ,

(6.53)

where the augmented matrices are given by

" A  ' B  ••• O' ' I  • • ■ O'

, B = , Bf  =
i A N~l B  ••• B 1

«

U =  [u(k -  N f ,  ■ • • , u(k -  1 )T]T, F  =  [ / >  -  N f ,  • • • , / > -  1)T]T,

Y  = [Y(k — N  + 1)T, • • • , Y ( k  — 1)T, Y(k)]T ,

C =  diag(C, ■■■ ,C), Q = diag(Q, ■ • • ,Q , Q0), 7Z = diag (R, • • • ,R ).  (6.54)

Proceeding further, (6.53) becomes a standard mp-QP problem,

J k -N ^ k  = \ f t QF + x T { k -  N)  E F  + (CBU -  Y ) TU F  +  W, (6.55)

where

0  =  2((CBF)T Q(CBF) + H ) , E  = (CA)t Q(CBf ), and n  =  QCBF.

W  is the residue term  independent of F  and is determined by the variables in (6.54).

Notice tha t Q is the matrix of the arrival weighting Qo which is fundamental to

closed-loop stability, and 0  £ S++-

T h e o re m  6.3 The optimal estimated disturbance vector F  in (6.54) determined 

by an mp-QP problem with element-wise inequality and equality constraints.

P ro o f: Employing the notation in (6.54), the constraint Xk-N+i->k G A x can be 

explicitly expressed by

dfmin ^  A x (k  -  N )  + BU +  F d  dfmax, (6.56)

where X m[n := [x£in, • ■ ■ ,x ^ in]T and XmSbX := [x^ax, ■ • ■ ,x £ ax]r . For closed-loop

stability, the condition in (6.52) has to  be satisfied,

'FF1 ^  — (n +  n s) 1̂ 2a(Qo)K, (6.57)
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where 'I' := (—l ) “ [row(i?2 ), 0, • • • , 0] (a = 0 or 1). The arrival observer gain L  is 

determined by an algebraic Riccati equation, so

/ ( f c -  1) =  L C x(k  — 1) — y(k  — 1)

=  L C A N~1x  (fc -  TV)  +  L C A N- 2Bu{k  -  1 )  +  • • • +  L C B u  (fc -  2 )  

+ L C A N~2f ( k  - N )  + L C A N- 3f ( k  - N  + 1)

H +  L C f { k  — 2), (6.58)

and equivalently

t f f  = r xx { k -  N )  + ruU.  (6 .5 9 )

Combining (6.57) with (6.56), we have an element-wise inequality constraint,

G XF <  G2x ( k -  N )  + G3, (6.60)

where
' I  ' ' - A ' ' Xm**. -  BU -

G\ = - I , g 2 = A , <?3 = - T min +  BU
0 — (n + ne)x/2a(Qo)K_

Imposed by constraints (6.57) and (6.60), the design of RMHSO in (6.55) is con­

verted into a constrained mp-QP problem,

J°k - N ^ k  = m m (l-F T QF + x T ( k ~ N ) E F  + ( C B U - Y ) TUF + W ) ,F Z
s.t. T p F  — Yxx  (fc — N )  +  Tull, 

G XF  < G 2x { k - N )  + G3. (6.61)

Theorem 6.3 is then proven.

T h e o re m  6.4 The analytic (explicit) solutions to the mp-QP problem in (6.61), 

which is defined for RMHSO using open-loop prediction, are piece-wise affine func­

tions of x (k  — N ) ,  over the corresponding state critical region A x, where j  denotes 

the j t h  partition within the admissible state set A x .

P ro o f: Taking advantages of two Lagrange multipliers \ \  ^  0, A2 >- 0, and a slack 

variable /x, (6.61) can be converted into an unconstrained program. From the first- 

order Karush-Kuhn-Tucker (KKT) theorem, the optimal conditions to (6.61) are
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known as

Q F + ZTx { k - N )  + YlT {CBU - Y )  + Gj Xi  + T^X2 = 0, (6.62)

{GiF -  G2x  {k -  N )  -  G3 +  #i)r Ai -  0, (6.63)

YFF - T xx { k - N ) - Y u U  = 0. (6.64)

Prom the properties of optimization duality, Ai is divided into two parts, namely

Ajv =  0 (nonactive constraints, /i >  0) and A^ >- 0 (active constraints, /x =  0), where 

Ai =  [A )̂, A^]T. Prom (6.62) we have

- q - ^ x  ( k - N ) -  q - 1u t {c b u  -  y )  -  e _1G fxA -  ©- 1r£ A 2 =  f , (6.65)

G iF  -  G2x (k - N ) - G 3 = 0, (6.66)

where G i, G2, and G3 is a combination of the active constraints out of G 1 , G2, and

G3 , with a full-row rank. Inserting (6.65) into (6.34), we have

A2 =  GXX\ A +  G x \ 2x  (k — N )  + G \2, (6.67)

where

GAa := - ( Y f Q ^ Y ^ Y f Q ^ G J ,  (6 .68)

Gxa2 -  - { Y f O~1y I ) - 1(y f q - 1'e.t  +  r* ),

G a 2 : =  - ( Y F e - ^ y ^ Y p Q - ^ i C B U - y ) +  y v u ).

Note tha t A2 >- 0 corresponds to the equality constraints and Yp  has full row-rank 

(refer to (6.59)). Inserting (6.67) and (6.65) into (6 .6 6 ), we finally derive the explicit 

solution to A^

\ A = GxXAx { k - N )  + GXA, (6.69)

where

GxXa := -(GiO^GT + G ie-^G A A )"1^ ! © - ^ 7,

+ G xr*  +  G2 +  G & ^ Y l G ^ ) ,

GXa := - ( G i Q - 'G j  + G1@-1Y$Gxx) - 1(G1e - 1rir (CBU - Y )  

+G\YuU  +  G3 +  G i© 1rJ'GA2)-
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It is obvious tha t (G i© -1 ^  +  G i© _ 1T |.G aa) g S++ (replacing GAA by (6 .6 8 )).

From (6.67) and (6.69), we can conclude th a t the optimal solution F°  is an affine

function of x  (k — N ),  i.e.,

F  = GxFx (k — N)  + Gf , (6.70)

where

GxF :=  - © - 'S 7 -  (© ^ G f  +  0 - 1r ^ G AA)GxÂ  -  ©_1r ^ G xA2,

Gf  := - © _1n t (CBU -  Y)  -  ( 0 _1G f +  Q - ^ G ^ G ^  -  © " ^ G ^ .

To guarantee Ai b  0 and satisfy the constraints imposed on estimated states, we 

need

G iF  - G 2x ( k - N ) - G 3 d  0, (6.71)

GxXAx ( k - N )  + GXA b  0, (6.72)

where F  is derived in (6.70). Eqs. (6.71) and (6.72) define a critical region A 3X inside 

the admissible set ,4X. From the above discussion, we conclude tha t the optimal 

solution to (6.61) is an affine function of x(k  — N ) corresponding to the region A x. 

Theorem 6.4 is proven. ■

Theorem 6.4 succeeds in converting the design of RMHSO into an mp-QP problem 

and makes it possible to utilize existing solvers to obtain the partitions of the critical 

region A x and the optimal solution F°, e.g., the MATLAB-HYBRID Toolbox. Due 

to the existence of equality constraints, the mp-QP problem is quite complicated 

and the optimal solutions of F  and A i  are memory-consuming. This fact impairs 

the implementation efficiency of RMHSO, one of the essentials of offline observation 

schemes. Therefore, we consider: Is it possible to use the closed-loop prediction 

strategies to get simpler solutions (because only one-step prediction is necessary) 

and reduce the number of necessary parameters?

R e m a rk  6.6 Theorem 6-4 solves the mp-QP problem with both element-wise in­

equality and equality constraints. Currently, how to solve this kind of problems 

remains an open problem.
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6.5 R M H SO  using recursive c losed-loop  p red iction

From Chapter 5, we know tha t recursive closed-loop prediction is able to utilize 

one-step prediction to simulate robust explicit MPC with an arbitrary prediction 

horizon. Therefore, we apply the similar prediction pattern  to RMHSO design and 

formulate the problem in (6.39) as iteratively programming, i.e.,

J°k-N^k = min ( \ \ C x { k - N ) - y { k - N ) \ \ l  +  ||/(fc -  JV)||2 +  (6.73)
f (k-N)
( min \\Cx(k -  N  +  1) -  y(k -  N  + 1)||q
/(fc-AT+l)

+ ||/(fc  -  N  + 1 ) ||!  +  • • • +  ( min ( ||Cx{k  -  1) -  y(k  -  1)||q
} { k - 1)

+ \ \ f ( k - l ) \ \ l  + \ \ C x ( k ) - y ( m Q 0m

s.t. x  (k -  i + 1) — A x  (k -  i) + B u  (k — i) +  f  (k -  i ) , i =  1, • • • , N, 

f  (fc -  1) =  L (C x  (fc -  1) -  y(fc -  1)) , ifc-iv+i-.A; S Ax,

(—l ) “ (row(i?1̂ 2) /  (fc — N )) > (n +  ne)1̂ ‘2a(Qo)K (a = 0 or 1).

(6.74)

In other words, the intermediate piece objective Jk-N+i->k can be represented by

J k - i - * k  =  IIC x(k  - i ) -  y(k -  i)\\2Q + ||/(fc -  * ) | | |  +  J £ _ i + 1 ^ k . (6.75)

Similar as explicit robust MPC, the same prediction pattern in (6.73) is iterated N  

times for RMHSO, so that the prediction length of RMHSE is determined by the 

number of iteration loops. This feature enables us to implement RMHSO with an 

arbitrary horizon by implementing one-step prediction.

R e m a rk  6 .7  Eq. (6.73) derives a recursive optimization problem and takes the ad­

vantage of closed-loop prediction. Meanwhile, it however proposes two challenges: 

how to derive the expression of the optimal piece objective in terms of

predicted observation x(k  — i + 1); and how to guarantee the expression of 

to be a quadratic (or linear) function and remain the uniform structure for all piece 

objectives Jk -i^k-
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6.5.1 P iece objective J\k — i —+ k

From the above discussion, we know tha t two equality constraints are imposed on 

the arrival (terminal) observer gain and the initial observer gain. So when we choose 

the different value of i, the piece objective Jfe_jv+i->fc (1 <  * <  77 — 2) is associated 

with the different number of constraints. Two cases are discussed here:

Case I: Optimize the total objective Jk-N->k■ In this case, two constraints are 

imposed on both x  (k — N  + 1) and f ( k  — N ),

^min X  ( k  N  +  1) ^  X m a x , 

( — l)°TOW (f?1/2) /  ^  - ( n  +  n e )1/2cr(Qo)K,

(6.76)

(6.77)

where (6.76) is a physical constraint and (6.77) is constructed for robust sta­

bility. Using x(k  — N ) to replace x(k — N  + 1) in (6.76), we have

/  ^  Zmax -  {Ax +  Bu)  and -  f  < (Ax + Bu)  -  xmin, (6.78)

where x, u, and /  represent the current signals for ease of notation, namely 

x  := x(k  — N )  and similar to others. Stacking (6.77) and (6.78), we derive an 

element-wise inequality constraint for the to tal objective Jk-N-*k,

Gf f  < G & + Gz x , (6.79)

where

I 2 - m a x  B u ' - A '
- I , g £ ~ B u  a;mi„ and G% := A

( - l ) Qrow(J?1/ 2) (n +  ne)1/2d;((3o)«:. 0
o r .=

(—l ) “row(it:±/^)J [_-(n +  ney^a{Q o)K j
(6.80)

Case II: If 2 < i < N  — 2, the initial estimated disturbance f ( k  — N )  does not ap­

pear in the piece objective > s°  tha t the constraint in (6.79) is simplified

as

G'}  f  *  G'& + G'zx, (6.81)

where

< 7  :=
'  I  '

, G'£ := 2 - m a x  B u and G'j. := ' - A
- I t c B u  x mm A (6.82)
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Comparing (6.79) and (6.81) with (6.61), it can be seen tha t the constraints for 

RMHSO using closed-loop prediction are much simpler. For the cases of i ^  N ,  there 

is no need to consider the constraints imposed on f ( k  — N).  As a result, we avoid 

the computational burden derived by the mixture of the augmented inequality and 

equality constraints. Following (6.75), the optimization of piece objective Jk - i^ k  

turns out to be

Jk-i+ i^k  =  .min Jk—i—*ki (2 <  i < N  — 1) (6.83)
f(k—i)

s.t. x  (k -  i + 1) =  A x  (k -  i) + B u  (k — i) +  f  (k — i ) ,

x ( k  — i + 1) e  Ax-

Note th a t the problem in (6.83) excludes the case of to tal objective Jk-N->k• We 

first assume tha t is a quadratic function,

J L i +i-+k =  ll*(fc -  i + 1 )1 1 ^  +  -  * +  1) +  1- (6.84)

Inserting (6.84) into (6.75) and using x(k  — i) to replace x(k  — i +  1), we have

J k - i - k  =  \ f T n f f  + + Z f f  + Hm , (6.85)

where

H f  =  2 Q i - \  +  2R,  H ^  =  2 A r Q i - \ ,  Z f  =  2 u B T Q i - \ +

H w  = \ \ C x - y \ \ 2Q + \\Ax + Bu\\Qi_1 + T ^ 1(Ax + Bu) + ^ 1. (6.86)

Here /  := f ( k  — i ) for the current signal. Notice tha t H f  £ §™ + and is indepen­

dent of / ,  i.e., irrelevant to From the definition of the piece objective J k - i^ k

in (6.85), we can convert (6.83) into an mp-QP problem with the element-wise in­

equality constraints. Setting the different value of index i, the mp-QP problem for 

piece objective Jk-i-^k is iterated N  — 2 times.

R e m a rk  6.8 Given the assumption on the quadratic form of Jk_i+l_^k, the mp-QP 

problem for the piece-objective Jk-i-^k given by

=  min J k - i^k ,  (2 < i  < N )  (6.87)
f(k-i)

s.t. Jk—%—>k = 2  f TH f f  +  %THf%f + Z f f  +

G'f f  <G'z + G'^x.
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where f  is the optimization variable and x  is the multi-parameter vector (the current 

state observation).

T heorem  6.5 The analytic (explicit) solutions to the piece-objective Jk-i~*k defined 

in (6.87) are piece-wise affine functions of x, over the corresponding state critical 

region A i ,  where index j  denotes the j th  critical region within the admissible state 

set A x .

P ro o f: The proof is similar as th a t of Theorem 6.4, and to  save space, here we 

only give the expression of the optimization solutions to (6.87), namely the piece- 

wise affine functions of x  associated with the state critical regions A i-  The optimal 

estimated disturbance is

/  =  ( - H f H f t  + + Gx))x+

H f& j iG jH f & jr ' iG i  + Gf Hf Zj )  -  H j ' z j  

: = l 4 x  + 0 {, (6.88)

where Lj  can be regarded as the current observer gain corresponding to the j th  

critical region A 3X. The critical region A i  is

A i  :={x e  A x \ (L \x  +  0 3) f  < G e + G-Xx,

( G j H j ' G ? ) - 1 ( G j H j ' H j t  +  G*) x  + + G f H j ' z j )  1  0}.

(6.89)

In the case tha t there are no active constraints out of the conditions (6.81), i.e., 

the row-independent combination {Gb, G(, Gf }  do not exist, (6.88) and (6.89) 

degenerate to

/  =  -  H f z )  :=  L \ x  +  O3,

G j f  — Gc — Gxx -< 0,

which result in the second case of the explicit solutions to  the mp-QP problem in 

(6.87),

f  = L{x + Oi ( V x e A i ) ,  (6.90)

where A i  := {x  € A x \ G j f  — G'g — Gxx  -< 0}. Obviously, the analytic (explicit) 

solutions to the mp-QP problem defined in (6.87) are piece-wise affine functions of 

x.  Theorem 6.5 is then proven. ■
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R e m a rk  6.9 Theorem 6.5 offers the explicit solutions to the piece objective Jk-i—,k- 

The solutions are much simpler than those of Theorem 6 . 4  (open-loop MHSO). How­

ever, Theorem 6.5 is built on the assumption that must be quadratic.

R e m a rk  6.10 Replacing all of the parameters {G'p G(, G~} by {Gj ,  Gg, G j}, we 

can derive the optimal solutions to the last step iteration, i.e., the calculation of the 

total objective Jk-N->k-

6.5.2 Offline RMHSO using closed-loop prediction

The purpose of this subsection is to remove the assumption on (Remark

6.9) and construct the affine solutions to Jk-N ^ k -  Note that the arrival observer 

gain L  is determined by solving an algebraic Riccati equation, therefore, the number 

of the optimization variables is N  — 1 instead of the length of the prediction horizon 

N .  The first piece objective to be optimized is Jk- 2 -+k instead of Jk-i~,k-

T h e o re m  6.6 The optimal solution to the piece objective Jk-i+i_»fc is a quadratic 

function of the observation x(k — i +  1).

P ro o f: The proof is same as th a t of Theorem 5.6. To save space, here we only write 

down the explicit expression of the optimal solution to the piece objective Jk-i+

JL i-> k = IIH k  -  i)\\2Ql + r & k  - 1 ) +  * ! ,  (6 .9 1 )

where

Qi := C TQC + L j R L 1 + (CA + C L 1)TQ0(CA + CLi ) ,

Ti :=  - 2 y T ( k - l ) Q C  + 20 '[R Li + 2 ( C B u ( k - l )  + C 0 1 - y ( k ) ) TQo(CA + C L 1), 

:= \ \ y ( k -  1)|&  +  ||O i||2 l +  ||G B « (fc - l)  +  C 0 1 -  y(k)\\2Qo,

L \  :=  LC, and Oi := —Ly{k -  1).

And

Jk-i+i-*k =  l|£(k — * +  1)1 |Qt_! +  T i- ix (k  -  i +  1) +  Vl/j-i, (6.92)
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where

Qi - i  '■= C TQC- \ - Lf _ i RLi —i ( A - \ - L i - \ ) TQ i - 2 ( A L i - { ) ,

Tj—i := —2 (k — i +  1) QC  +  2 0 jL iR L i—\

+(2 (Bu (k — i +  1) +  O i-{)T Qo +  r ,_ 2 )(A +  L i - 1),

^ j - i  :=  \\y(k — i +  1 ) I I q  +  +  \\Bu(k — i +  1)

+^i-ill<2o L'i-2 (Bu(k  — i +  1) +  O i-i)  +  'I 'j-2-

Note tha t T j-i and O j-i are the expressions of y ( k  — i + 1) and u(k  — i +  1). In 

other words, f \ _ i  and O j-i  collect the information of past inputs and outputs. ■

R e m a rk  6.11 IY-i collects past input and output information, and also T j-i is 

a term of Z f  which influences the observer gain Li and the admissible state 

partitions (refer to (6 .8 6 )). So the optimal Li, equivalent to f(k-i)> ®s composition 

of past inputs and outputs.

Combining Theorems 6.5 and 6.6, we can derive the optimal solutions of all piece ob­

jectives J k - i^ k  (1 <  i < N )  and the corresponding observer gain L°. Consequently, 

the current state observation can be obtained by

N - 1 N - 1

x (k ) =  A Nx(k  — N )  +  ^ 2  A^B u(k  — 1 — j )  + ^2, A^ f ( k  -  1 — j ).  (6.93)
j= o  j =o

6.6 A lgorith m s o f R M H SO

From the above discussion, RMHSO is converted into a set of mp-QP problems. A 

series of offline observer polices are developed to reduce offline computational burden 

and facilitate online implementation. To perform state predictions, the initial state 

observation x(k  — N)  is necessary. How to setup the initial conditions of RMHSO 

is covered in this section.
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6.6.1 The initial setup

We will use the full information state observer to determine the sequence x \_jv, i.e., 

the initial setup of RMHSO. Here the problem is given as follows:

i- 1
(6.94)fo—>i := arg min \\Cx (i) -  y(i)\\2Qo + ] T  U) ~  2/0')IIq +  /O ')

fo—>i j — Q

s.t. x  (i) = A %x  (0) +  A l~l Bu{0) H------B u  (i -  1) +  yl!_1/(0 )  H +  f ( i  — 1),

x(k + i) G A x (0 <  i < N).

It can be seen th a t the dimension of (6.94) is increasing while collecting more in­

put and output data, but because the horizon length N  is not too large, the full 

information state observer is still practical and effective. Fig. 6.8 illustrates the in­

tegration of the full information state observer and a RMHSO. In the figure, the

MHSO trajectories
The real state trajectory

:(k), x(k) The optimal MHSO output

A piece of full 
information observer

N N+1 N+2 Time

Moving horizon window is 
shifted one step ahead

Figure 6.8: The theory of MHSO design

trajectory of x (k ) is composed of two segments: one spans from the initial instant 

to instant N ,  and the other starts a t instant N  + 1 and proceeds to future. The 

two shadowed regions represent the moving horizon windows which are shifted one 

step ahead while iteratively implementing RMHSO. The thin solid line shows the 

optimal trajectory derived by full information observer, the dark solid is obtained 

by RMHSO, and the dot-dashed line simulates the optimization of RMHSO whose 

prediction horizon windows are shifted one-step ahead.
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6.6.2 Algorithm s

Based on Theorems 6.3-6.4 and Theorems 6 .5-6.6, we can develop the open-loop and 

closed-loop RMHSO, respectively. The two pairs of theorems are both featured by 

offline optimization and online implementation, so tha t they can be associated with 

explicit RMPC design.

A lgorithm  I (O pen-loop  M H SO )

1. Setup the initial observation x \ ^ n  based on full information state observer 

and store the optimal solutions (refer to the problem in (6.94)).

2 . Execute closed-loop robust stability analysis. Choose eligible tuning parame­

ters v  and P , and solve a Riccati equation and an semi-definition program to 

derive Qo, L \,  and constraints imposed on estimated disturbance /(fc — iV) in 

Theorem 6.2.

3. Define augmented matrices A, B, B f ,  C, Q, 1Z, 0 ,  5, and n  in (6.54). Form 

the mp-QP objective and the constraint parameters G i, G 2 , G3 , r f ,  r x, and 

Tu  (memory-consuming) for open-loop MHSO in (6.60).

4. Stack the inpu t/ou tpu t measurements U, Y  and online partition the admis­

sible state set A x , i.e., deriving {G{, &2, G3 }. is the index of the state 

space partitions.

5. Derive the optimal sequence fk-N-^k  based on auxiliary matrices G \\ ,  Gx\ 2, 

G \2, Gx\ a , G \a , Gxf , and Gp  defined in (6.67) - (6.70) (memory-consuming).

6 . Implement fk-N-^k  from (6.38) and derive the current optimal state obser­

vation x(k).  Purge the memories for intermediate matrices, partitions, and 

optimal sequences fk -N ^k -

7. If k > t, exit. Otherwise update U, Y  and go to Step 4. Here “t” is the 

prespecified observation length.

In Algorithm I, all steps before Step 4 are completed offline -  offline optimization, 

and all steps from Step 4 are done online -  online implementation. This procedure is
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different from tha t of offline MPC whose state space partitions are performed offline.

A lgorithm  II (R M H SO  w ith  th e  recursive closed-loop prediction)

1 Steps 1 and 2 are same to those of Algorithm I.

3 Derive the optimal expressions of L \  and O i, and store the parameters of

J f c _ i . e . ,  Q i, T i, and fEb in (6.91). Set i =  2, the index of recursive 

optimization loops.

4 Define the optimal solutions to the mp-QP problem of the piece objective 

Jk-i->k, he., / / ,  Of, Qf, Fj, and 'i’f in (6.92), and store the corresponding 

state space partitions {A f,  • • • , A ^ v} where N p is the number of partitions.

5 Identify the active partition from the set (A*, • • • , A f p}, based on the mea­

surements u(k  — i), y(k  — i), and y(k  — i + 1). Suppose th a t the j th  partition 

is active. Keep f f ,  Of, Qf, Tf, and Wf, and purge the memories for other 

optimal solutions corresponding to the partitions but A j.  Set i = i + 1.

6 Check whether i  =  TV, if yes store f l _ N^ k and reject all other intermediate

solutions. Otherwise go to Step 4.

7 Implement the optimal observer gain f k_N_^k from (6.93) and derive the cur­

rent optimal state observation x(k).  Purge the memories for intermediate ma­

trices, partitions, and optimal sequences fk-N-*k-

8 If k > t, exit. Otherwise go to Step 3.

R em ark 6.12 Comparing Algorithms I  and II, the former costs more memories for  

intermediate solutions, and also the augmented matrices may lead to some feasibility 

problems. The latter utilizes recursive optimization and reduces the computational 

cost but two level iterative loops may lower the implementation efficiency.

6.6.3 RMHSO to systems with measurement noises

In the above discussion, we assume the measurement noise v(k) = 0, i.e., we use 

model (6.35) instead of (6.28) for the open-loop and closed-loop RMHSO design.
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However, v(k) is ubiquitous in real plants, and how to incorporate v(k)  with RMHSO 

design is a nontrivial problem. Motivated by [6 8 , 72], this problem can be solved 

by introducing a noise model. For a simple case, we can just rewrite the system in 

(6.28) as

z ( k  + 1) =  A x  (fc) +  B u ( k )  +  B f f  (x (k) , d(k)  , k ) , 

y  (fc) =  Cz  (fc), (6.95)

where z ( k )  := [xT (k), vT (k)}T ,

So we can proceed with the above discussion based on model (6.95), and use the 

different value of Q to tune the observer performance. Because of the limitation of 

space, here we choose not to discuss how to derive matrices Ad and Bf d ■ For the 

interested, please refer to [6 8 , 72] for details.

6.7  A  sim ulation  exam p le for R M H SO

The system is given by

x  (fc +  1) =  {A + 5a  {k))x (fc) +  BdW (fc)

y (fc) =  C x  (fc),

where 6 a (fc) and w (fc) represent system’s internal and external uncertainties, re­

spectively. The system parameters are known as

A  =
0.99 0.2 
-0 .1  0.3 > Bd = , C = [  1, 3],

and both internal and external uncertainties are bounded by 0.5, i.e.,

—0.5 <  to (fc) <  0.5, and (t(6 a  (fc)) <  0.5.

To reflect the different influence of internal uncertainties and external disturbances, 

we perform the simulations under two conditions: (1 ) set 5a  (fc) =  0  and call the ran­

dom function in MATLAB to simulate w (fc) in order to demonstrate the influence 

of external disturbances, e.g., “rand”; (2 ) set 5a  (fc) A  0 , and call “rand” to  create
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both w (k ) and 6 a  (k ), i.e., simulate the combined internal uncertainty and external 

disturbance. Reformulate the uncertainties into the form of (6.33), we can derive 

the uncertainty bounds for two cases, k\ = 0.5 and K2 =  1.25. To guarantee stabil­

ity, the arrival weighting Qo, the arrival observer gain L, and the initial estimated 

disturbance /  (k — N )  are determined by solving an algebraic Riccati equation and 

a semi-definite optimization problem. The related parameters are given in Table 

6.1. Set the prediction horizon N  = 3. Two algorithms are employed in the sequel,

Table 6.1: Simulation parameters of offline RMHSO
Two cases SA(k) = 0 6 a(^)  7̂  0

Q, R,  P, v, I,  31, 41, 0.8 I,  41, 41, 0.8
Qo 1.3897 1.4073
e 0.1664 0.1453

L i(LC )
0.6254 0.1514 

-0.0014 0.2526
0.5751 0.1437 
0.0109 0.2395

f  (k -  N ) ( - l ) a l/(fc  - N ) <  1.6473 (-1 )°T f ( k  — N)  < 3.5608

namely, the open-loop RMHSO and closed-loop RMHSO with recursive optimiza­

tion. Fig. 6.9 is the simulation results for the observers under Condition 1. We find 

th a t under Condition 1, both the RMHSO algorithms and the nominal MHSO can 

work well. The left two columns in Table 6.2 list the means and variances of the 

observation errors derived by the three different types of MHSO. It can be seen 

tha t offline RMHO (our algorithms) are better than nominal MHSO, but the im­

provement is not remarkable. So we repeat the stimulation again and set a nonzero

£

C losed -loo p  MHSE 
O pen -lo o p  MHSE

Tim e (s)

Open-loop MHSE 
C losed-loop MHSE

Time (s)

Tim e (s) Time

Figure 6.9: Comparison of observers Figure 6.10: Comparison of observers
with external uncertainties with internal uncertainties
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Table 6.2: Means and Variances for RMHSO errors
Means Variances Means Variances

Nominal MHSO [1.8129,0.1200] [13.3990, 0.3042] - -

Open-loop MHSO 1.0577, -0.1820 6.2067, 0.1341] [0.2850,0.1709] [0.0097,1.0624]
Closed-loop MHSO 0.7126, -0.1864 5.0215, 0.1880] [0.1739, -0.0513] [0.8863, 0.0325]

internal disturbance 6 a  (k ) . Under Condition 2, we find th a t MHSO becomes un­

stable, so tha t in Table 6.2 right columns do not give the means and variances for 

this case. But offline RMHSO still works well. Fig. 6.10 illustrates the dynamics of 

both open-loop and closed-loop RMHSO.

All simulations are performed using a laptop with a Pentium 4 processor and 

a 512MB-RAM. From Figs. 6.9 and 6.10, it is hard to say whether the closed-loop 

RMHSO gives better observation than open-loop RMHSO. But we can compare 

the simulation time-costs and memory-costs. Keeping the simulation length equal 

to 50, the open-loop RMHSO costs 8.4810 seconds and its data file takes 11KB of 

capacity, but for the closed-loop one, time cost increases to 16.6330 seconds (two 

level iterations) and date file decreases to 1KB. The simulation results are consistent 

with the theoretical analysis.

6.8 C onclusions

In this chapter, we developed two types of robust observers for systems with both 

internal uncertainties and external disturbances, namely robust state observer using 

MAXDET programming and robust moving horizon state observer (RMHSO) using 

mp-SQP. Two prediction patterns are employed for the RMHSO: forward open-loop 

prediction and recursive closed-loop prediction.

The open-loop RMHSO converts observer design into an mp-QP problem im­

posed by element-wise inequality and equality constraints. Although the equality 

constraints lead to more computational complexity, the optimal solutions are a set of 

piece-wise affine functions of the initial state observation. The closed-loop RMHSO 

constructs a novel recursive optimization pattern  and realizes multiple-loop obser­

vations with one one-step necessary prediction. Comparing these two algorithms, 

it can be seen tha t the former suffers from high offline computational burden and 

needs more memories for intermediate parameters, it however leads to faster online 

implementation. The latter does not mix up the inequality constraints with equal-
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ity constraints in each optimization loops so tha t it requires a smaller amount of 

memory for intermediate parameters, but closed-loop RMHSO spends a longer time 

on observer implementation. The contents of this chapter are summarized in our 

publication [20].
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Chapter 7

Industrial applications

The aim of this chapter is to verify the effectiveness of the explicit robust model 

predictive control (ERMPC) and moving horizon state observation (MHSO) in in­

dustrial applications. To this end, ERMPC and MHSO are applied to the SYNSIM 

model for the co-generation system regulation.

SYNSIM is a simulation package developed by researchers of the University of 

Alberta and Engineers in the Syncruded Canada Ltd. (SCL). It is working under 

the Matlab-Simulink environment and based on the field plants owned and operated 

by the SCL in Fort Mcmurray, AB, Canada [86]. It is a complicated, nonlinear 

simulation package, but an effective tool to test the controllers for co-generation 

systems.

This chapter is composed of two parts: P art I identifies the model of the loop 

from the firing rate to the 900# header in SYNSIM; and P art II utilizes the identified 

model to design a master controller.1

1In this chapter, the master controller is referred to as the feedback controller for the loop from 
the firing rate to the 900# header pressure.
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7.1 S ystem  identification

The plant to be studied is an industrial co-generation system, owned and operated 

by the Syncrude Canada Ltd. in Fort McMurray, AB, Canada. This plant is an 

integrated energy facility consisting of a boiler subsystem, a header subsystem, a 

letdown subsystem, and an electricity generating subsystem. The boiler subsystem 

produces steam by three utility boilers, three CO boilers, and two one-through 

steam generators (OTSGs). The header subsystem receives steam from boilers and 

stores it in the different headers th a t operate at different pressures, namely the 900# 

header, the 600# header, the 150# header, and the 50#  header. The number here 

indicates the pressure of stored steam. For example, the steam in 900# header has 

the pressure of 900 psi. Through the header subsystem, steam is distributed to the 

electrical subsystem and then transformed to electricity by steam turbines. The 

letdown subsystem is used to convert steam from one pressure to another. Four 

types of valves exist in the letdown subsystem, i.e., 900# to 600# valve, 600# to 

150# valve, 600# to 50# valve, and 150# to 50#  valve. Fig. 7.1 illustrates the 

interconnection of the subsystems and indicates the loop from the firing rate to the 

900# header pressure (in dashed lines) which is called as the master loop in this 

chapter. From experimental facts, it can be seen th a t the 900# header pressure 

is critical to the quality of steam production, and fortunately it can be regulated 

by the firing rate. To maintain the pressure around 6.306 Mpa or 900 Psi (static 

operating point), we have to guarantee th a t the firing rate settles down upon 0.7117. 

In this chapter, we will first identify the model of the master loop, and then design a 

master controller for pressure regulation. The master loop input, namely the firing 

rate, has two physical constraints, i.e., the saturation limit and derivative limit,

where A u  denotes the derivative. In the sequel, the constraints in (7.1) are incor­

porated with the master controller design.

W e a ss u m e  t h a t  th e  m a ste r  lo o p  c a n  b e  r e p r e se n te d  b y  a  s t a t e  sp a c e  m o d e l

0 < u  <  1, -0 .16 /60  <  Au <  0.16/60, (7.1)

x(k  +  1) =  Ax(k)  + Bu(k)  + w(k),  

y(k ) =  Cx(k)  + Du(k) + v(k),

(7.2)
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Figure 7.1: The co-generation system
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where x(k),  y( t ) ,  and u(k)  stand for the state, output, and input respectively. 

The matrices (A , B,  C, D)  are constant with appropriate dimensions. The direct 

feedthrough m atrix D  is usually equal to zero due to time delay from the firing 

rate to the 900# header pressure. w(k ) is the process disturbance, and v(k) is the 

measurement noise. They are independent random sequences with zero mean and 

zero covariance; thus

Cov(w(k))  =  Rw, Cov(v(k)) =  Ry, and Cov(w(k), v(k)) = 0. (7.3)

We assume th a t the pair (C, A)  is observable and the pair (A, B r U 2) is controllable. 

In the sequel, we first choose a step excitation to identify the approximate time 

constant and time-delay factor of the system (7.2), and then use these parameters 

to design a pseudorandom binary sequence (PRBS) for state space identification.

7 .1 .1  S eco n d  o rd er  p lu s  d e a d -t im e  id e n tif ica tio n

For chemical processes, it has been recognized th a t their dynamics may in general 

be simplified to a first order plus dead time (FOPDT) system or a second order 

plus dead time (SOPDT) system. From step tests, we find th a t the trajectory of 

the 900# header pressure has both overshoot and oscillation. Therefore the order 

of the master loop should be a second- or higher-order system. Here we employ 

the SOPDT identification method to derive an approximation to the model in (7.2). 

References [40, 97] proposed an effective SOPDT algorithm to determine the static 

gain K ,  time-delay factor I #  and time-constant r ,  graphically. Suppose tha t an 

SOPDT system has the form of

j
G o  =  t 2s 2 +  2 £ t s  +  1 ’ ( 7 '4 ^

where £ denotes the damping ratio. The step response of System (7.4) can be 

illustrated by Figs. 7.2 and the mathematical expression of the output trajectory is 

given by

y ( t ) =  K u ( t  -  Td)( 1 -  ^  s i n ^ l  -  -  Td))
V 1 -  ?

+  cos(v/l - P u n ( t - T d)))), (7.5)
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Figure 7.2: SOPDT system identifica­
tion

Figure 7.3: The graph of £ vs A

where wn =  1 /r  is the fundamental frequency. From Fig. 7.2, we can define a tuning 

parameter A satisfying

A =  (tm -m i )M < .  (7.6)

Here, tm denotes the time instant when the tangent line crossing the inflection point 

of the output trajectory Fig. 7.2 first intersects with the static output yss. m \  is the 

area of shaded regions in Fig. 7.2 in which the area takes positive value if the trajec­

tory is below yss; otherwise, it takes negative value. M, is the slope of the tangent

line crossing the inflection point. By reading the process transient response, we can 

determine the value of A, which is tightly related to the characteristic parameter £ 

via

s - x0 .  (7.7)
cos 1 £ - £

A =  —, exp(-

Seemingly, by solving (7.7) we can derive the value of £ from A. However, Eq. (7.7) 

provides finite number of roots mapping from A to £ unless 0 < £ < 1. It can be 

shown tha t by decreasing the value of A from |  to e-1 , the value of £ increases from 

0 to  1 monotonically. Fig. 7.3 shows the relationship between A and £ in the region 

of £ € [0, 1]. Therefore, after deriving the value of A from Fig. (7.2), we can read 

out the value o f  £  from  F ig . 7.3. After that, the characteristic parameters u)n and 

Td can be determined by
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Eqs. (7.6), (7.8), and (7.9) provide a simple and effective way to identify an SOPDT 

system.

Table 7.1 lists the static operating point of the co-generation system. In a small 

region around the operating point, we perform SOPDT identification. Skipping the

Table 7.1: The working point of the co-generation system
BFW  Inlet Temperature (°C ) 141.3
FW  Flow (kg/s) 89.8415
Fuel Flow Rate (kg/s) 4.9826
Air Flow Rate (kg/s) 92.2323
Spray Flow Rate (kg/s) 2.6021
Firing Rate (%) 71.17
Drum Temperature (°C) 500
Drum Level (m) 1
Drum Pressure (Mpa) 7.0186
Head 900// Pressure (Mpa) 6.3060
UB Flow Rate (kg/s) 277.3304
CO Boiler Flow Rate (kg/s) 185.3823
OTSG Flow Rate (kg/s) 47.9204
The number of boilers 3UB, 3CO, 30TSG
Total UB Load (kg/s,  kpph) 277.4275 (2200)
Firing Rate (%) 71.17
Ratio of Fuel Flow Rate to Firing rate 7
Ratio of Air Flow Rate to Fuel Flow Rate 18

identification details, the SOPDT model in (7.4) is finally derived as

^  x 1-609
“  12.57s2 +  1.002s+  1 ’ ^

where r  =  ^  =  3.5449min, k = 1.609, and £ =  0.1413. Prom (7.10), we can 

plot out the simulated step-response and the real step-response in the same window 

shown in Fig. 7.4. Although the SOPDT model in (7.10) is not accurate enough 

for the m aster controller design, it provides a criterion to design PRBS excitations 

for state space identification. Prom experiential equations [96], the approximate
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Figure 7.4: The step responses

sampling period Ts of the master loop, i.e., the sampling rate of an appropriate 

PRBS, can be determined by:

T, =
10 20 

7 ~  22 sec .

1 1 
10 ~  20

x 3.5449 x 60

(7.11)

Moreover, the crossing frequency wb of the master loop is

1 1
r  3.5449 x 60 

and the Nyquist frequency w n  of the master loop is

=  0.0047,

7r  7T

W N = % =
0.2618.

Ts 12

From the definition of a PRBS frequency band [53], we can derive the upper bound 

of the PRBS frequency band k2 by

k2 = k ^  = «  (0.02 ~  0.08), as fci =  2 ~  4.
W n  ( J . z O i o

R e m a rk  7.1 Using the M ATLA B  commands

u l  = idinput(60000, ‘rb s \ [0, 0.04], [-0.7117 x 0.04, 0.7117 x 0.04]),

u2 =  idinput(Q0000, ‘rb s’, [0, 0.02], [-0.7117 x 0.025, 0.7117 x 0.025]),

u3 =  id input(60000, ‘rb s ’, [0, 0.1], [-0.7117 x 0.04, 0.7117 x 0.04]),

(7.12)
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we can create a series of P R B S sequences for the state space identification of the 

master loop. Note that the value of "0.7117” is the static operating point of the firing 

rate in Table 7.1.

7 .1 .2  A  s ta te  sp a ce  m o d e l

Based on Remark 7.1, we can create a series of the PRBS excitations for the state 

space identification. From experiments, it can be seen tha t the U2 in (7.12) derives 

the best identification result. Sending U2 to the master loop, it derives a set of input 

and output data. Using MATLAB commands, we can stack the input and output

data  together and derive an “iddata” z, which is shown in Fig. 7.5. From z, the best

identification of the master loop is a state space model with 5 order (see Fig. 7.6). 

This 5th order system is given by

x(k  + 1) =  A x(k)  +  B u(k) + K e(k), (7-13)

y(k ) =  C x(k) + D u(k) + e(k),

where

0.9984 -0.0357 0.0040 -0.0008 0.0012 ' ' 0.0055 '
0.0546 0.9148 0.1155 -0.0493 0.0045 -0.9652

-0.0286 0.20445 0.6499 0.3814 -0.0164 , B  = 2.9157
0.0088 -0.1487 0.3305 0.4402 -0.3272 -3.9774
0.0019 0.0041 -0.0112 0.0160 0.3939 4.2840_

206.8800 -3.6375 0.3470 -0.0655 0.0547 ], D  =  0,

0.0080 -0.1054 0.0226 - 0.0315 - 0.1360 1T.

Note tha t the pair (A ,B ) in (7.13) is controllable, and (C, A) is observable. In pro­

gramming, the “iddata” z  is divided into two groups, namely z := [ze , zv}. ze is used 

for system identification and zv  for model validation. From the data  zv. we perform 

model validation in several ways, namely by output fitness (Fig. 7.7), residue analy­

sis (Fig. 7.8), step responses (Fig. 7.9), and spectrum analysis (Fig. 7.10). Moreover, 

we check the zeros & poles of the model in (7.13) (see Fig. 7.11) and the DFT for 

t h e  in p u t  s ig n a l  U2 (see F ig . 7 .1 2 ) . F rom  F ig s . 7 .7  - 7 .1 2 , w e  c a n  sa y  t h a t  th e  m o d e l

(7.13) is accurate enough for the master controller design.
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7.2 T he m aster controller design

A proportional-integral (PI) master controller exists in SYNSIM to regulate the fir­

ing rate and maintain the 900# header pressure in an acceptable region. Fig. 7.13 

shows the simulink diagram of this controller. The function of the anti-windup

M m M ax

MmMjxl
To

tp W «  el

Q p tM to r i
Hf hm it *1 Owl

U$S«4l

0LO limit

Figure 7.13: The simulink diagram for the PI master controller

block in Fig. 7.13 is to handle the physical constraints of the firing rate in Eq. (7.1). 

Chapter 4 has shown th a t anti-windup strategies have two critical limitations: 1). 

the parameters of anti-windup controllers have to be chosen by trial-and error; 2).
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in the presence of large disturbances, the parameters have to be continuously ad­

justed to attenuate system unstable behaviors. Concerning these disadvantages, in 

this section we choose explicit robust MPC to design an analytic master controller. 

The identified model in (7.13) is used for state prediction and offline optimization. 

Note th a t the states in (7.13) are constructed by MATLAB commands and they 

do not have physical meaning. Therefore, the states are unmeasured in the master 

controller design. We have to use the algorithms developed in Chapter 6 to design 

a moving horizon state observer and incorporate the observer with MPC formula­

tion. In the sequel, the analytic master controller and the state observer are first 

designed, and then integrated with SYNSIM together to evaluate control perfor­

mance. Fig. 7.14 shows the Simulation block for the analytic master controller. In

T®

CE>

♦CD

Figure 7.14: The simulink diagram for the explicit MPC master controller

Fig. 7.14, both the controller and the observer are realized by S-function program­

ming which facilitates the analytic master controller. Setting the initial admissible 

state set as

A x :=  {x  e  R5| -  10 • 1 ^  x  r< 10 • 1} (7.14)

where 1 S K5 denotes the full-one vector. The analytic master controller is stored 

by a MATLAB structure variable “expconl”,
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expconl —
H  : [31 x 5 double]
K  : [31 x 1 double]
F  : [27 x 5 double]
G : [27 x  1 double]
11 : [ 9 x 1  double]
12 : [ 9 x 1  double] 
th m in  : [ 5 x 1  double] 
thm ax  : [5 x 1 double] 
nr  : 9
nu  : 3 
npar : 5.

(7.15)

In (7.15), the fields H  and K  store the parameters of A x 'a partitions; and the fields 

F  and G store the parameters of the feedback affine functions, i l  and i2 are the 

indices of the critical regions; and nr  is the number of critical regions. By accessing 

the elements of H , K , F , G, i l ,  and i2, we can explicitly express the control polices 

for the master controller. Due to the limitation of space, here we just give the 

expression of the control policy in region #  1, i.e.,

'0.555 -0.069 0.069 0.069 0.069' '0.005'
u(k ) = 0.242 -0.191 0.104 0.087 0.139 x(k) + 0.003

0 0 -0.043 0.015 0 0

15.470 -5.701 4.238 2.194 5.847 
11.605 -4.122 3.907 2.072 2.732

(7.16)

x (k ) ■< 17.955
13.237

(Region #1).

From the value of nr, we know th a t there are 9 critical regions in A x ■ Thus, the 

firing rate is finally regulated by 9 affine functions in the structure of (7.16). The 

parameters used to design the analytic master controller are listed as follows:

'74.518 10.731 16.117 10.470 -2.948 ' '-0 .162 '
10.731 39.210 25.861 13.875 -3.275 0.048
16.117 25.861 22.252 12.407 -3.184 , F  = -0 .035
10.470 13.875 12.407 8.481 -1.957 -0.013
-2.948 -3.275 -3.184 -1.957 1.549 . -0 .057

Q =  h ,  R  = 0.1, N u =  3, N y =  5, xq =  [0.4,0.4]2 , uo = 0,

x 0 = [0.040, 0.024, 0.207, -0.017, -0.080]T

Q = /f,, v  =  0.1 (tuning parameters). (7-17)
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where I 5 denotes the 5 x 5  identity matrix and other notation was defined in (5.71). 

We do not provide the figures for Ax’s partitions because it is hard to visualize a sec­

tion in high-dimensional spaces. However, we can still write down all mathematical 

expressions of critical regions in the form of (7.16).

In Fig.7.14, there are two customized blocks “sObserver” and “ERM PC”. The 

former is associated with the S-function “s-Observer.m” for state observation; and 

the latter is associated with the S-function “ERM PC.m” for firing rate regulation. 

Replacing the PI m aster controller (Fig. 7.13) in the SYNSIM by the analytic master 

controller (Fig. 7.14), we can compute the trajectories of the estimated states (see 

Figs. 7.15) and the trajectories of the firing rate and the 900# header pressure (see 

Figs. 7.17 - 7.18). The block “ERM PC” has two external parameters “expconl" and

The outputs of MHSE The transition o f critical regions

0.08

0.02

3
Time(s)

4 5 61 20
x 104

i  5
4

3

T

Figure 7.15: The trajectories of esti- FiSure 7-16: The transition of critical 
m ated states regions

“us,” namely two flags of the corresponding S-function. “expconV  is the structure 

variable for the analytic master controller; and “us” is the static input which is 

extensively discussed in Section 5.3.2. In Figs. 7.17 - 7.18, the solid lines are the 

input and output of the analytic master controller and the dashed line are those 

of the P I controllers. Although the analytic master controller results in a larger 

overshoot, it gives faster responses. Fig. 7.16 illustrates the transition of Ax’s critical 

r eg io n s , w h er e  y -a x is  is  th e  in d e x  o f  th e  c r it ic a l r eg io n s .
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Figure 7.17: The trajectories of the Figure 7.18: The trajectories of the 
firing rate 900# header pressure

7.3 C onclusions

This chapter applies the proposed algorithms of this thesis, explicit robust MPC and 

moving horizon state observation, to the SYNSIM model. The results were simulated 

by “SYNSIM” , a very accurate, high order model of the plants, whose predictions 

very accurately correlate with actual plant measurement. By using the MATLAB 

identification toolbox, in this chapter we first identify a state space model of the 

master loop. Based on the identified model, an analytic master controller and a 

moving horizon state observer which work together to  replace the existing PI master 

controller, were design. To facilitate the debugging of the analytic master controller, 

both the MPC controller and MHSO are realized by S-function programming and 

integrated with SYNSIM systematically. From simulation results, we can see that 

the proposed algorithms of this thesis are practical and effective, and may be applied 

to constrained industrial systems.
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Chapter 8

Conclusions and suggestions for 
future research

In this chapter, the main contributions of this thesis are summarized and some 

suggestions for future research on MPC are outlined. The future research on MPC 

includes Dynamic Output-feedback MPC, Quantized MPC, Hybrid MPC, Time- 

delay MPC, Moving Horizon Fault Detection, Optimal MPC Horizons, Explicit 

GPC, 2-Dimensional MPC, etc.
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8.1 C onclusions

The central ideas behind this thesis is to perform recursive closed-loop prediction 

and multiple-parametric sub-quadratic programming to separate MPC optimization 

from online implementation. In this fashion, we can achieve the FH-RMPC with 

an arbitrary horizon through only one-step forward state prediction. The main 

contributions of this thesis are summarized below:

F H -R M P C  using LM Is

• A moving average system matrix was constructed to capture the modelling un­

certainties and facilitate future state prediction, and FH-RMPC was achieved 

by using linear matrix inequality techniques.

•  The terminal cost constraints were invoked to  guarantee the closed-loop sta­

bility of resulting FH-RMPC systems.

•  The robust LMI theorem was used to remove the existence of norm-bounded 

uncertain matrices of the LMIs constraints, which prevented the online opti­

mization of FH-RMPC objectives. Consequently, the FH-RMPC design was 

converted into a semi-definite optimization problem.

• The details can be founded in Section 3.4.

Adm issible sta te  set

• The nontrivial problem, how to determine the admissible state set given in­

p u t/o u tp u t constraints and the bounds of uncertainties, was solved.

• The admissible state set for the system with norm-bounded uncertainties was 

derived by the piece-wise linear norm of output disturbances. Also, it was 

shown th a t the piece-wise linear norm of low-dimensional signals can be ap­

p r o x im a te d  b y  a  w e ig h te d  q u a d r a tic  n o rm .

• To overcome the dimensional limitation of piece-wise linear norms, the ap­

proach of voronoi sets was developed for the systems with high-dimensional
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disturbances. It was shown that the admissible state set can be also con­

structed by the voronoi set of perturbed state polyhedra associated with a 

Chebychev center and a Chebychev radius.

•  The details can be founded in Section 5.1.1.

Offline robust model predictive control

•  The offline robust model predictive control algorithm was developed to  im­

prove the implementation efficiency and reduce the computational complex­

ity. The control policy of robust MPC was optimized by a set of piece-wise 

affine functions associated with the state space partition. As a result, the 

online implementation of explicit MPC regulator was simplified as function 

evaluation.

• A recursive closed-loop prediction pattern  was introduced. By iteratively op­

timizing the piece objectives in the backward direction, only one-step state 

prediction was sufficient for FH-RMPC. No high-order uncertain terms oc­

curred in the RMPC formulation, and sequentially two challenges of the of­

fline RMPC formulation were solved, i.e., how to derive the explicit solutions 

to the piece objectives, and how to guarantee the uniform structure of the 

piece objectives.

•  The closed-loop stability of the offline robust MPC was guaranteed by solving 

an algebraic Riccati equation and an LMI feasible problem. By constructing 

two tuning parameters, namely the terminal feedback gain and the terminal 

weighting, the proposed algorithm was capable of adjusting the tradeoff be­

tween the robustness and closed-loop stability of the resulting MPC system.

•  Offset-free robust MPC was also discussed. By setting the static state, the 

static input, and the nominal disturbance, the offset-free control was converted 

in to  a  r e g u la t io n  p r o b le m  b a se d  o n  th e  sh if te d  s y s te m  m o d e l.

• The feasibility issue of the proposed algorithm was illustrated by state space 

partitions.
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• The details can be founded in Chapter 5.

Robust m oving horizon sta te  observation

• Existing MHSO algorithms were extended into systems with internal uncer­

tainties and external disturbances. Taking advantage of rewinding closed-loop 

prediction and multiple parametric optimization, two offline robust MHSO 

algorithms were developed.

• The state trajectory of MHSO was composed of two segments: one spanned 

from the initial point to the instant N  (the length of prediction horizon), and 

the other started at instant (N  +  1) and proceeded to future. It was shown 

th a t the first segment can be determined by a full information state observer, 

and the other can be optimized by a set of piece-wise affine functions.

•  Two proposed offline MHSOs were compared with each other in the sense of 

time-cost and memory-cost. It was shown th a t the offline MHSO with open- 

loop forward prediction cost more memory for intermediate optimization vari­

ables, and, however, the offline MHSO with closed-loop rewinding prediction 

spent a longer time on observer implementation.

•  The robust MHSO with measurement noises was extensively discussed

• In addition to the offline robust MHSO, a robust state observer using LMIs 

was also considered. From the principle of invariant sets, the robust state 

observer using LMIs was formulated as an MAXDET optimization problem. 

It was shown th a t the convergence of the observer errors can be guaranteed 

by a set of shrinking ellipsoidal invariant sets.

• The details can be founded in Chapter 6.

Implementation efficiency and physical applications of MPC are two core factors 

c o n s id e r e d  w h ile  c o n d u c t in g  th is  th e s is ,  a n d  t h e y  w ill  a lso  u sh er  in  th e  fu tu r e  M P C  

research.
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8.2 Future research top ics

Some possible future research topices are outlined below:

P ro b le m  8.1 (Explicit observer-based RMPC) Observer-based MPC is an advis­

able choice for constrained MIMO systems with unmeasurable or partially un­

available states. In 2004, Roset and Nijmeijer proposed a nonlinear observer 

for nominal MPC systems [89]. The proposed algorithm stacked the states of 

the controlled system and corresponding nonlinear observer, and then based 

on the augmented system performed online optimization and online implemen­

tation. This scenario is practical and effective for nominal MIMO systems. 

Considering implementation efficiency and system uncertainties, however this 

algorithm may not be applied to fast systems in the presence of internal or ex­

ternal uncertainties. In previous chapters, we successfully constructed explicit 

robust MPC and offline RMHSO. In the same fashion, this approach can be 

used to develop novel explicit observer-based model predictive control.

P ro b le m  8.2 (Dynamic output-feedback MPC) Besides observer-based MPC, dy­

namic output-feedback is an alternative to regulating constrained MIMO sys­

tems in the presence of unmeasured or partially unavailable states. Given a 

system
{ x(k  +  1) =  A x(k)  +  B ww(k) + Bu(k),

z(k) = Czx (k ) -I- D zww(k) +  D zu(k), (8.1)

y(k) = C x(k) + D ww(k),

where u is the manipulated input, w is the exogenous input, y is the measured

output, and z is the system output, the output-feedback controller for the

system P  can be formulated as

f x c(k + 1) =  A cx c(k) + B cy(k), , .
A - \  u(k) = Ccx c(k) +  Dcy(k). {S'Z)

The system matrices r Ac B c 1
L c c Do

are unknown variables to be calculated by MPC formulations. From [91] and

[45], we know tha t the state-feedback IH-MPC can be solved by iterating an 

constrained L Q R  problem. In the same fashion, by setting the prediction hori­

zon equal to infinity, dynamic output-feedback MPC can be easily converted
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into online semi-definite programming. Due to  the limitation of tuning free­

dom, it is much better to extend infinite horizon dynamic output-feedback 

MPC to the case of finite horizons. However, for FH-MPC with unknown 

system matrices, state prediction and online optimization are two major chal­

lenges. Thanks to the rewinding closed-loop prediction pattern, which was 

extensively used in Chapters 5 and 6, we think th a t the output-feedback FH- 

MPC may be solved by offline multiple-parametric quadratic programming.

Problem 8.3 (Quantized MPC) Quantizer is an essential element for industrial dis­

tributed control systems (DCSs) in which MPC is widely utilized. Researchers 

have pointed out tha t the influence of quantizers on closed-loop systems may 

be significant. A stable controlled system may exhibit limit-cycles and chaotic 

behaviors after quantized control [25, 65]. A quantized feedback control system 

can be represented by

x(k  + 1) =  A x(k) + B u(k),
y(k) = C x(k) +  D u(k), ^

. ( u(k) = f(v (k )) , . .
K  ■ i  v(k)  = g(x(k) ) ,  (8A)

where P  is the controlled system and K  is the quantized controller. /(•) rep­

resents the quantized feedback and g(-) stands for the unquantized feedback. 

In MPC applications, MPC regulators are always pre-stored in a computer 

by optimization blocks (online MPC) or affine function blocks (offline MPC). 

Considering byte limitation and the influence of encoders and decoders, it is 

crucial to incorporate quantizer behaviors with MPC formulations. Reference

[30] developed a sector bounded approach to quantized feedback design, i.e.,

{ ■Ui if < V < J^U i, V > 0,
0 if « =  0,

- f { - v )  if v < 0,

where p is the quantization density and

1 + p
Associated with Q, the quantized feedback system can be converted into an 

uncertain system with the bounded uncertain output matrix A, i.e.,

x(k  + l)  = Ax{k) + B { l + A )v(k), A e [-<5, 5]. (8.5)
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Based on model (8.5) and utilizing the proposed algorithms in this thesis, we 

may derive novel quantized MPC.

P ro b le m  8.4 (Hybrid MPC) As we discussed above, MPC is widely used in dis­

tributed control systems (DCSs), and in DCSs MPC is usually designed in the 

discrete-time domain but implemented in the continuous-time domain. More­

over, quantizers, samplers, and holders are essential components of a DCS net­

work, and through quantizers, samplers, and holders, manipulated inputs and 

sampled outputs may be stored as logical variables in a computer. The logical 

manipulated inputs and outputs may reduce the communication cost between 

signals and MPC blocks, and consequently facilitate online optimization and 

online implementation. W ith the expectation of better MPC performance, re­

searchers s tart to incorporate the behaviors of quantizer, sampler, and holder 

with MPC formulations and develop hybrid MPC schemes. In the past two to 

three years, hybrid MPC have attracted extensive attention of researchers.

P ro b le m  8.5 (MPC for time-delay systems) To improve control performance, it 

is a natural idea to choose a more precise model to behave like the real pro­

cess. It can be shown tha t many processes have the aftereffect phenomenon.

Especially, for communication and field network systems, time-delay is very 

common and may lead to  serious effects on system dynamics. Reference [85] 

provided a systematic survey on time-delay systems. A general time-delay 

system can be introduced by

x(k  + 1) =  f ( x ( k  — 0), k, u ( k - 8 ) ) ,  (8.6)

y(k) = g(x(k  — 6), k, u ( k - 6 ) ) ,  

x{6) =  $(6), —t o < 0 < h  — to,

where 9 is the time-varying delay factor bounded by h. x ( k —6) and u (k —8) are 

the functions of the delay factor 6, and stand for the system’s input and out­

put respectively. If designing the manipulated input u(k) (delay-independent) 

from MPC formulations, we proposes a new type of advanced MPC, namely 

MPC for time-delay systems [48].

P ro b le m  8.6 (Moving horizon fault detection) Fault detection is an im portant
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problem in process engineering. Detecting faults effectively and maintaining 

processes in controllable regions can help avoid abnormal events and reduce 

productivity loss. Process faults may occur in the sensor side and/or the 

actuator side. Therefore, a system with faults is formulated as

x(k  +  1) =  A x(k) + B u (k ) (8.7)

y(k) = C x(k) 

u(k) = u(k) + f u(k) 

y(k) = y(k) + f y (k)

where u{k) and y(k) are the fault-free input and output. u(k) and y(k) are 

the real input (the actuator output) and the real output (the sensor output). 

f u(k ) and f y(k) stand for the actuator fault and the sensor fault, respectively. 

The aim of fault detection and isolation (FDI) is to estimate the value of 

f u and f y . In literature, f u and f y are sometimes referred to as primary 

residual vectors (PRVs). Also, from f u and f y we can construct a set of 

structured residual vectors (SRVs) to facilitate fault isolation [17]. Roughly 

speaking, FDI problems can be regarded as the estimation of unknown inputs 

and outputs. Since we successfully developed the robust state estimation by 

utilizing moving horizon schemes in Chapter 6. By using the similar idea, we 

may achieve moving horizon fault detection in the presence of system internal 

and external uncertainties.

P ro b le m  8.7  (RMPC with the optimal prediction horizon) The computational 

complexity of offline MPC is tightly related to the length of prediction hori­

zons. Therefore, it is a crucial (but still open) issue to optimize MPC horizon 

length and obtain a satisfactory tradeoff between computational complexity 

and design aggressiveness. Roughly speaking, a smaller horizon reduces the 

number of optimization loops, but deteriorates the stability of feedback con­

trol systems. The problem of online RMPC with varying horizons may be also 

considered in our future research.

P ro b le m  8.8 (Explicit GPC) GPC is the most popular stochastic MPC strategy 

in industry, and it has been extended to MIMO systems in the presence of
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internal and external uncertainties [10]. If GPC systems have no internal and 

external uncertainties, we can derive the explicit solution to GPC, which has 

been shown in Eq. (2.37). But for constrained GPC, it is still open to derive 

an analytic solution.

P ro b le m  8.9 (2-dimensional MPC) 2-dimensional systems have the practical and 

theoretical importance in process analysis and control. As one of widely used 

2-dimensional systems, Roesser system can be expressed as

Xh{i +  1, j )
x v{i, j  +  1)

y(hj )  = c

Xh(i, j )  
x v(i, j ).

Xh(i, 3) 
x v(i, j )

+ B u(i, j ) ,  

+ Du(i, j ),

(8 .8 )

where Xh(i + 1, j )  and x„(l, j  +  1) stand for the horizon state and verti­

cal state, respectively [88, 33]. Based on the model in (8.8), we may extend 

the conventional MPC algorithms into 2-dimensional systems. Similar to dy­

namic output-feedback MPC, state prediction and online optimization are two 

barriers for 2-dimensional MPC.

Besides the above problems, some other MPC issues related to convex optimization, 

which may reduce computational complexity, may be also considered in our future 

research.
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