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ABSTRACT

Surface modelling can provide clinicians with a three-dimensional graphical
representation of surface features of the trunk for the assessment of spinal deformities. For
fast acquisition of 3-D representations of trunk surfaces, a computer aided analytical tool

has been developed for a better understanding of trunk deformity due to scoliosis.

A regular grid of dots is projected upon a child's back. This grid is distorted where
the surface shape changes. 3-D coordinates are obtained for each dot location. The
coordinates of dots are used to model trunk surfaces. Surface modelling from these
discrete data points depends on many factors: the distribution of data points, the order of
points and the topological appearance of the object. Any of these features can significantly
affect the performance of the modelling algorithms. A good surface modelling algorithm

must overcome these problems and rapidly produce an accurate model from the data.

Different approaches for surface modelling were reviewed and compared. An
efficient method using triangulation has been implemented to construct a 3-D trunk model.
The algorithm has been modified to reduce boundary problems and to handle more
complex structures. The software is implemented with a user interface for boundary
processing and surface model assessment. Combined with internal spinal alignment
information obtained from radiographs, the 3-D trunk surfaces can be used to improve the

understanding of the effects of treatment, to document the natural history of scoliosis, and

to demonstrate the 3-D deformity for educational purposes.
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1. INTRODUCTION

1.1 Scoliosis—A General Description

Scoliosis is an abnormal lateral curvature of the spine coupled with axial rotation
of the vertebra. This abnormal curvature and rotation cause deformity of the rib cage,
which is visible as asymmetry of the trunk. In spite of numerous investigations into
possible causes, eighty percent of children with scoliosis have it for unknown reasons 1],
it is more common in females and has the highest risk of progression during times of rapid
growth. Children with mild scoliosis should be monitored to detect if the scoliosis is
progressing in order to intervene with treatment at the appropriate time. Researchers have
not been able to discover the factors that cause this progression, although these factors are

now thought to be different from those which initially cause the deformity [2].

The biomechanics of the human spine are complex due to both its static and
kinematic functions [3]. In biomechanical terms, the spine is: a) a structural element
connecting the upper limbs, head, and lower limbs, whose function is to transfer all the
static and dynamic actions to the pelvis; b) a structure which enables the trunk to
kinematically perform 3-D movements, particularly rotation and bending, and c) a
structure protecting the delicate spinal cord. In the frontal plane, the normal spine is
perfectly aligned and balanced, with symmetry between the right and left sides. The same
is true for the coronal plane, with no rotation between segments. The junctional zones

between the sagittal segments are smooth. This results in a smooth sagittal surface profile.



With scoliosis, the bony structure of the spine is asymmetrical. This asymmetry is
usually accompanied by axial rotation of individual vertebrae, which causes complex
deformities of the trunk that present themselves as asymmetrical elevations of the
shoulders and hips, prominence of one of the shoulder blades, a skin fold on two concave
sides and a subtle twisting of the trunk (Figure 1.1). These features of trunk deformity are
difficult to quantify in a growing child although they are likely to become more noticeable

during the adolescent growth spurt.

Braces, casts and surgery are used in the treatment of scoliosis. Monitoring and
measuring this deformity is necessary to determine when to intervene with treatment, to
understand the etiology and assess the effect of the treatment. It is now well agreed that
the internal spinal deformity is a three-dimensional deformity [4 5], but the relationship
between the internal spinal deformity and the external trunk deformity is poorly
understood [6]. Some patients with severe spinal deformity may have very little trunk
deformity, while some patients with minor spinal deformity may have a significant trunk
deformity. To better understand of the relationship between spinal deformity and trunk
deformity, as well as the three-dimensional nature of these deformities, monitoring and

measurement of these deformities must be made in three dimensions.



Figure 1.1. A scoliotic trunk.



The study of spinal deformity is image-oriented. The internal spinal configuration
can be determined using radiographs. While this traditional measurement produces an
image of the spinal curvature, it portrays the three-dimensional anatomy as a two-
dimensional film image. The advantage of radiographs is to allow people to see the actual
deformed structure of the spine. There are several disadvantages to radiographs. Firstly, it
is an invasive technique and risks associated with radiation do not permit frequent
monitoring of the patient. Secondly, a two-dimensional representation of a structure which
is deformed in three-dimensional space is not an accurate description [3: 3. 71. Thirdly,

radiographs do not produce an image of the trunk surface.

The study of spinal deformity requires not only an analysis of the internal spinal
configuration, but also the cosmetic defect which is visible as the trunk deformity.
Cosmesis is a critical factor for the patient with adolescent idiopathic scoliosis, because
body appearance can be responsible for psychological distress, and the degree of trunk
deformity correlates well with the severity of the psychological disturbance [8]. Children
with scoliosis and their families are generally most concerned about the cosmetic effect
during treatment. In this aspect, control of back shape may be more important in terms of
patient satisfaction than correction of spinal deformity [3. %). As a result, many scoliosis
clinics measure surface deformity using instruments such as the Scoliometer [1, and the
Formulator Body Contour Tracer {10] to measure features of the deformed trunk. These
methods attempt to condense the features of a complex trunk surface to a single index.
Shortcomings of these methods include the intensive labor involved in the measurement,
and long operation time to acquire the surface shape data. These shortcomings limit their

applications in the clinical setting.



Surface topography is popular in clinical setting because it is non-invasive and
produces a representation of the three-dimensional deformity of a trunk surface. The 3-D
surface can be used to assess the asymmetry of the trunk. Clinical studies show a
correlation of surface asymmetry with the distribution of vertebral rotation changes along
the spine [5]. Drerup has classified the measurement and the evaluation of trunk deformity
with surface topography into three steps: acquisition, image reconstruction, and shape
analysis. Due to the three-dimensional nature of the deformity, the three steps must also be

performed in 3-D space [7].

Moiré techniques have been used for surface topographic analysis. They were
introduced into clinical assessment of scoliosis around 1970 [111. Moiré fringe patterns can
be generated by projecting structured light onto the surface of the back. This fringe
pattern represents three-dimensional topographic information in two dimensions. Using an
appropriate imaging system, the information is recorded and digitized to describe the
three-dimensional geometry of the surface of the back. The technique is simple and
inexpensive. However, the image may be misleading because of its sensitivity to patient
positioning; very different topograms could be obtained from the same patient due to
motion (12, 131, This ambiguity and the difficulty in automation (i.e. computerized
processing) have limited the clinical application of this method in surface measurement of

trunk deformity.

Hierholzer, Drerup and Frobin [12-14] first introduced video-based techniques for
the measurement of trunk surface. They used cameras for capturing the image of the trunk
surface for the clinical assessment of trunk deformity. Geometric transformations and
spatial triangulation are necessary to obtain the coordinates of these points. Two cameras
were used for the determination of three-dimensional coordinate of a point. The third

camera was used to detect areas not visible on one of the two cameras. Because of its



accuracy and efficiency, this technique is more and more popular and is replacing Moiré
techniques. Later improvement to this technique has reduced the number of cameras to
only one while maintaining the measuring accuracy to 2 mm. At the Glenrose
Rehabilitation Hospital, the images are acquired with a computer (Mac II) using a frame
grabber (Scion image capture II) and the software furnished with the frame grabber.
Through appropriate digitization, the image is processed into 3-D coordinates of surface

points. Figure 1.2 shows a block diagram of the imaging system for trunk measurement.

In the imaging system shown in Figure 1.2, a light pattern is projected onto the
body surface. The light pattern is a grid of targets of constant and known spacing (Figure
1.3). Depending upon the surface appearance of the trunk, the targets have irregular
spacing when they are projected onto the trunk (Figure 1.4). These taigets on the body
surface can be determined using spatial triangulation geometry, which produces a set of

data points, each with the three dimensional coordinates x, y and z.



Chariot

Back Surface

Data Used to
Model

Projector | [}
Camera 2
Camecra 3
Y
Image Frame
Processing Grabber

Camera |

Figure 1.2. Block diagram of a video-based imaging system for trunk measurement



Figure 1.3 A light pattern with constant and known spacing
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1.2 Surface Modelling of Human Body

Regardless of how data are obtained, there is a problem as how to accurately
represent the surface. Never the less, surface models of anatomic structures have a great
potential for educational and research applications in surgery, because surgery is
essentially a three-dimensional, image-oriented specialty [15].

The history of representing 3-D anatomic surfaces on a computer has been
dominated by contouring methods. For a decade, computers have been used to process
radiographic data to produce cross-sectional displays, first of head, then of the whole
body. Computer Tomography (CT) and magnetic resonance imaging (MRI) have grown
into important diagnostic modalities. Contours, which are simple polygons representing
the intersections of the surface of an object and the plane of a section, are automatically
acquired from CT or MRI data by detecting discontinuities at adjacent densities of the
object. These contours are processed further for modelling the object. The pioneering
effort of modelling the surface of the human body with a computer was done by Keppel
[16]  who approximated the complex surface of a skull by triangulating the contour lines
measured from a patient. Since then, there have been numerous algorithms to construct
surfaces from contour lines [17-20], With improved computational efficiency and the
capability of handling complex structures, these algorithms have been used to model skulls
[16], Jegs [21], and other anatomic structures (15, 22, 231 Limitations of this kind of surface
modelling method include the difficulties in differentiating adjacency of cross-sections and
in dealing with branching structures where contours end, and the inefficiency of generating
the contours, especially when sharp changes over the surface occur, causing very high

density of points and contours.

In the research of scoliotic deformities, little has been done concerning surface

modelling of deformed trunks. Hierholzer and Drerup [14. 24] first generated a three-
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dimensional "surface" of the trunk. The "surface" was represented by a set of curves in the
horizontal direction, a set of curves in the longitudinal direction, and the intersections of
the two sets of curves. Pearson [9) used image processing algorithms and a spatial
triangulation method to produce the three-dimensional data points. Similar systems can be
found in literature {23, 25-27] With these methods, no actual surface is available because
the model is represented by either 3-D curves or dot patterns. As a result, there is lack of
good visualization of the three-dimensional deformity and the model can be difficult to
interpret. However, surface modelling of deformed trunks from discrete data points has
not been well studied. With the popular video-based techniques used for 3-D measurement
of trunk deformity, surface points with coordinates can easily be generated for clinical
purposes. Therefore a method to construct a surface from these points is necessary to

complete the techniques in the clinical setting.

1.3 Objective

The data acquisition system for the trunk measurement in the Glenrose
Rehabilitation Hospital uses a regular light pattern of dots and produces the 3-D points on

the body surface. These 3-D points form the basis of surface modelling of the trunk.

The purpose of this thesis is to develop a method for modelling the trunk surface
from discrete data points taken from a patient using the existing data acquisition system
and to quickly provide clinicians with an accurate and meaningful representation of the

trunk surface for the assessment of trunk deformity.
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1.4 Structure of the Thesis

In this work, different surface modelling approaches were compared. McLain's
triangulation algorithm was selected to approximate a 3-D surface. This algorithm was
modified to reduce the boundary effect allowing it to handle more complex structures. A
surface modelling package was developed to generate a trunk model for clinical
assessment of trunk deformity. In this package, an interface provides a user-friendly tool
to portray and analyze the three-dimensional trunk deformity. The package has been

designed to minimize human intervention.

Chapter 1 covers a general description of scoliosis and the objective of the thesis.
In Chapter 2, diﬁ'ereﬁt possible methods for modelling general objects are reviewed. A
triangulation algorithm, which produces optimal triangulation, is selected for surface
modelling. Chapter 3 describes software design issues in which important implementation
considerations are presented. This chapter introduces the boundary effect of surface
modelling as results from the original algorithm. The second part of the chapter
concentrates on boundary processing, which includes literature review on the problem and
the proposed solution to the problem when modelling the trunk. This chapter also deals
wiih software design of the user interface for boundary modification prograin. An
assessment of the proposed modelling method is covered in Chapter 4. Chapter 5 presents
a conclusion of the thesis and discusses the limitations of the modelling method. As a
result, the recommendations for further work are at the end of the chapter. Bibliography
follows Chapter 5. Pseudo codes for the triangulation algorithm, and the modified
algorithm with the boundary constraint are listed in Appendices A.1 and A.2. Appendix
A.3 presents the flowchart of the whole modelling package, which links four programs
used in modelling the trunk into one program. Source code for all the programs is
available from Dr. Nelson G. Durdle in the Department of Electrical Engineering at the

University of Alberta.



2. SURFACE MODELLIRG

Object modelling is the technique of constructing the surfacc of an object based on
partial information about the object. Reconstruction problems of this sort occur in diverse
scientific and engineering domains, either to aid in the comprehension of the object's
structure or to facilitate its automatic manipulation and analysis. These domains include
geographical surveying [28] | computer simulation [29), industrial design processing

(CAD/CAM) [29-30], and medical and biological research (311,

It is easier and more flexible to derive the geometric properties or attributes that
the object might possess by analyzing the model rather than directly analyzing the actual
object. Shape information of an object is an important attribute which describes the
appearance of the object. In many applications, people are more interested in the shape
information--especially shapes that do not have unique features, and whose characteristics
are not well defined. It is also true in the understanding of trunk deformity, and in the

understanding of the relationship between spinal deformity and trunk deformity.

2.1 Modelling of General Objects

There have been three basic methods to represent a three-dimensional object:

wireframe, surface and volumetric representations.

1. Wireframe Models

A wireframe model represents the boundary edges of an object and consists
entirely of points, lines, and curves. There is no concept of surface: each facet is
considered as a closed polygon without an interior area. Wireframe models are easy to

construct and are computationally efficient. This method can be used when the object is
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simple. However, using this method to model a general three-dimensional object has

limitations 130, 32];

-- It produces an ambiguous model because there is no concept of surface.
Uniqueness of a model refers to the representation of an object where there is no question
as to what is being modelled or represented, and that a given representation should
correspond to one and only one object. Uniqueness of models is necessary for testing the
equality or inequality of two objects [33]. Different objects can have the same wireframe
model. For example, a rectangular solid in 3-D space is represented as a rectangle with
wireframe model, while a rectangle consisting of four line segments in the 3-D space is
also represented as the rectangle. Without other information, it is impossible to distinguish

the solid from the four-line-rectangle with the wireframe models.

-- It lacks graphic or visual coherence. It is impossible to define a surface normal

with only lines and curves. So hidden lines and surfaces can not be determined and further

illustrated. As a result, depth information is lost.

These disadvantages make the technique inappropriate for representing clinical

objects where unique, accurate three-dimensional models of the objects are necessary.

2. Surface Models -

In this method, solid surface patches are used to represent the surface of an object.
These solid surface patches produce a clear, unique model of the object. With hidden

surface removal in computer graphics, a good visual image can be obtained.

Surfaces may be approximated by planar patches, parametric surface patches, or

quadric surface patches. Because of the solid nature of the surface, this method is less-
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efficient than wireframe modelling in computation time and memory requirements. Many
investigations have contributed to improving the efficiency of this method. Various

algorithms for surface modelling are presented and further discussed in Section 2.3.

3. Volumetric Models

Another method for modelling an object is volume-based modelling. With this
method the object is considered a three-dimensional region consisting of a closed surface
and the interior volume. Only volumetric models contain information about interiors, and
thus they are used when the interior is of interest. Because of intensive computation
involved for each pixel of the interior volume, the volume-based method is the most
expensive in both computation and storage efficiency among the three modelling methods.
For example, to manipulate a cube with a computer, the frame buffer required to store the
cube has n3 pixels where n is the length of one side in pixels. Each pixel of the frame
buffer must be calculated during the manipulation. If represented as a surface model, only

6xn? pixels are necessary for the cube.

For clinical assessment of trunk deformity associated with scoliosis, it is more
desirable that the modelling system produce the accurate and unique surface model in a
relatively short time. So the surface modelling approach is the most appropriate among the

three approaches and so is selected to model deformed trunks.

2.2 Surface Representations

Three of the most common surface representations are polygon mesh surfaces,

parametric surfaces, and quadric surfaces.
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A polygon mesh surface is a set of connected polygonally bounded planar surfaces.
Open boxes, cabinets, and building exteriors van be easily and naturally represented by
polygon meshes. Polygon meshes can be used, although less easily, to represent objects
with curved surfaces; however, the representation is only approximate. Surfaces of objects
are defined by arrays or meshes of polygonal facets. The more data points used, the more
accurate the model is. Displaying meshes as filled polygons generates the visual effect of
the surface being modelled. This effect is desirable in surface modelling. Manipulations of
the resultant surface, such as rotation, scaling and translation, are the most efficient among
the three representations because each polygona! patch has one and only one normal,
which makes it much easier to define the direction of the patch, and to determine a 3-D
point inside or outside a patch. Many graphics workstations now possess specialized

hardware for the fast rendering of these surfaces [34].

Another class of surface representations is that of parametric surfaces. There are
several important ones which have received attention in computer graphics in the last

decade. These are B-spline surfaces, Bezier surfaces and Hermite spline surfaces.

The common denominator of the parametric surface representations is that they
utilize a grid of control points, typically rectangular. Each set of control points describes a
surface patch. Adjacent patches share control points on their edges. The differences
between the representations in this class occur in how the surface defined by the control
points relates to these control points. The two major classifications are those with surfaces

which pass through the control points, and those that do not.

B-spline surfaces are described by a control polyhedron. The surface typically does

not pass through its control points. This can make this representation difficult to use when
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trying to fit the representation to data. B-spline surface representation was discussed

intensively in [35-37),

The Bezier surface is also described by a characteristic polyhedron. The corner
points of this polyhedron lie upon the surface. All other points, those along the edges and

interior, define the 3-D curvature of the surface. More detail is available in the references

30, 33].

The Hermite spline surface [38] will pass through alternate control points. The
surface passes through the first and third control points along each direction of the
rectangular grid. The intermediate points serve to define control vectors which are tangent

to the surface at the point where the surface passes through the control grid.

Parametric surface representations can define a large range of surface topologies
more concisely than polygonal representations. Another important property of this class of
surface representations is that transformations of a patch can be easily performed by
transformations of the control points. Objects with a very large degree of surface
irregularity may, however, require many small patches making this surface representation
less efficient than polygonal representations. Though it is possible to determine on which
side of a patch a point lies, it is difficult to classify points as inside or outside of a surface
defined by multiple parametric patches if the surface is allowed to be concave [33, 341, This
makes calculation of volume, mass and center of gravity or other physical parameters of
solid objects modelled via parametric surfaces more difficult. Moreover, if the modelled
surface must be solid, not just surface outlines, the computation required to manipulate the
resultant surface is much more extensive because the normal of each patch is not a
constant to the patch, which makes it particularly difficult to render the surface. The above

disadvantages of parametric surfaces make them difficult to use for certain tasks in
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biomedical computing, which include surface modelling of trunk deformity discussed in

this thesis.

The last type of surface representation is the quadric surface as described by
Powell [39-49] and Barr [41]. They are an analytic representation of a surface. The quadric
equation that describes the representations is typically utilized for the definition of solid
volumes, though it can also be used to define surfaces of revolution as discussed by Uptill
[38] Primitive surface types such as spheres, cones, disks, cylinders and others can be
represented with these surfaces. It is necessary to ensure closure of the volumes defined
when using combinations of these surfaces to define solids. It is possible to easily classify
3-D points as inside, on or outside the volumes defined by these surfaces. However, the
regular nature of the shapes which these representations can describe makes it poorly
suited to many modelling and visualization tasks in biomedical applications, in which more

irregular topologies need to be simulated.

In this thesis, data points used for modelling trunk surfaces are mostly irregularly
(randomly) distributed. This property of data points make it difficult to use parametric or
quadric representations because there is no regular control grid available. To analyze trunk
deformity may involve many manipulations of the surface model. Therefore, being efficient
in manipulation of resultant surface models, polygonal representations of trunk surfaces

seem to be the most appropriate among the three possible surface representations.

2.3 Triangulation for Surface Modelling

When using polygonal surface representations, triangulation is the best technique
because triangies are simple geometric objects that can be manipulated and rendered easily

and efficiently. Use of only three points per patch ensures that the coplanar restriction of a
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facet is met. This restriction is necessary to eliminate ambiguities in the location of the

surface and to allow for ease of rendering (34, 38],

2.3.1 Triangulation and the Property of "Optimal" Triangulation
Two types of triangulation have been investigated in the literature: triangulation of
data points and triangulation of polygons. In some cases, these two types of triangulation

are combined to triangulate more general structures.

Let S be a finite set of points in the Euclidean plane. A triangulation of S is a
maximal straight line plane graph whose vertices are the points of § [42. 43l By
maximality, each face is a triangle except for the exterior face which is the complement of
the convex hull of S. Occasionally, a triangulation is called a general one to distinguish it
from a constrained one for which a triangulation of a finite point set has some edges
prescribed. A special case of a constrained triangulation is polygon triangulation where S
is the set of vertices of a simple closed polygon where the edges of the polygon are

prescribed.

A triangulation of a simple polygon P with » edges is a partition of its interior into
exactly n-2 triangles. There have been various algorithms to triangulate simple polygons
[44-47] The fastest algorithm found in the literature for triangulating simple polygons is in
the order of nlogn. Given a set of data with a pre-defined boundary represented as a
simple closed polygon, one general technique to triangulate the data is to triangulate the
polygon first, then insert the rest of the data points into the triangulated polygon [43, 48,
49). In this case, the process of triangulating polygons plays an important role in

triangulation of the given data.
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A simple closed polygon is not multiply connected. With a simple closed polygon,
there is no hole; when traversing the boundary of this polygon, every vertex is visited
exactly once, no vertices are missed and the endpoint is the same as the start point. Figure
2.1 shows a simple polygon and some examples of polygons that are not simple closed
polygons. In geographical survey, a lake in an area to be modelled may be considered as a
hole in the area. This area is not a simple polygon and thus a more general technique of

surface modelling must be used.

Some multiply connected polygons, which are not simple polygons, can be
processed by sub-dividing the polygons into simple polygons. To triangulate a polygon, it
is necessary to identify whether the polygon is simple, or multiply connected. In case of a

simple polygon, most polygon triangulating algorithms can be directly used.
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(a) a polygon with a hole. (b) an un-closed polygon.
D C
F
C E
H G
B A B

(c) multiply connected polygons EABCDAE and EDABCDEFGHE.

(d) simple closed polygon ABCDEFA.,

Figure 2.1 Examples of different polygons. (a)-(c) are not simple closed polygons.
(d) shows an a simple closed polygon.



22

There are many different ways to group data points into triangles. It is often
considered an "optimal" triangulation when used for surface modelling if a Delaunay circle
restriction can be met [50-51]. A Delaunay circle is the circumcircle of a triangle where
there are no other data points closer to the three vertices of the triangle. This property is
also described as that the circumcircle of a triangle contains no points in its interior [42].

An illustration of this property is shown in Figure 2.2

(a) ®

Figure 2.2 Circumcircles. (a) Delaunay circle ABC. (b) ABC is not a Delaunay

circle because point D is inside the circle.

2.3.2 Assessment of Triangulation Techniques

Many algorithms can be used to approximate three dimensional surfaces. Different
algorithms may be chosen based on particular requirements for the surface model. To

select an algorithm, or algorithms, the following must be considered:
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1. Quality: For the best approximation of a surface, triangulation algorithms must
produce 'optimal' triangles for a given data set. Equilateral (or equiangular) triangles are
optimal for the best interpolation over and between triangles. Therefore, triangles that are

close to equilateral (equiangular) triangles are better than long thin ones [42],

2. Speed: The algorithms should be efficient, but more importantly, the
computation time required should increase as slowly as possible as the number of data
points (1) increases. Many algorithms are at an order of n2. There are some algorithms at

an order of nlogn.

3. Generality: The algorithms should be capable of dealing efficiently with complex
structures. In medical and biological research, complex surfaces, for which no pre-defined
mathematical functions exist, need to be modelled. Surface modelling of the trunk

deformity discussed requires a general algorithm which can handle complex structures.

2.3.3 Criteria for Triangulation

A set of points may be grouped into triangles in many different ways, producing
triangles of various shapes and sizes, which affect the quality of the resultant surface. The
simplest case can be shown with a quadrilateral. A convex quadrilateral ABCD (Figure
2.3) may be divided into triangles in two ways, (44BC and 44CD), and (448D and 4
BCD). 1t is the purpose of the criteria to choose one of the two ways so that the resultant

triangulation is optimal for the given data set.
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(a) ()

Figure 2.3 Different partitioning methods result in different triangles for the same
quadrilateral. (a) produces a long thin triangle ACD which is considered

not good for modelli g a surface while (b) produces better triangles.

Three of the most common criteria for triangulation are: minimize diagonals,

maximize minimum angles and minimize maximum angles.

1. Minimum overall length approximation and shortest diagonal partitioning: Rhind
[52] stated an approach to minimize the total length of the triangle sides. Similarly, Gold
[53] optimized the approximation by choosing the partition of the quadrilateral with
shortest diagonals. These however are unsatisfactory as very thin triangles could be
produced [54]. Sibson [55] combined these ptimization methods into his "locally
equiangular triangulation" approach in which a unique equiangular triangulation of the
quadrilateral can be produced. Unfortunately there are few algorithms of this category

available.
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2. Maximize minimum angle: This 1s typically used in the Delaunay triangulation
schemes. The criterion is applied to all triangulations of the same point set. This result can
be extended to a similar statement about the sorted angle vector of the Delaunay
triangulation [42] and to the constrained case [51]. With numerous algorithms available, the
Delaunay scheme remains the most popular in triangulation of point sets. Preparata et. al.
[56] showed that the Delaunay triangulation of » points in the plane can be constructed in

the order of (nlogn).

3. Minimize maximum angle: Edelsbrunner [42] studied the problem of
constructing a triangulation that minimizes the maximum angle, over all triangulations of a
finite point set, with or without prescribed edges. Although avoiding large angles is related
to preventing the generation of small angles, this criterion does not maximize the minimum
angle as the Delaunay triangulations do. Again, four points are sufficient to give an
example to this effect (Figure 2.3). Edelsbrunner's algorithm runs in the order of (n?logn),
which is the fastest one among those using this criterion. Triangulations that minimize the
maximum angle have applications in the areas of finite element analysis and numerical

methods [42, 57-58]

2.4 A Comparison of Algorithms for Surface Modelling

2.4.1 Introduction

There are many triangulation algorithms for surface modelling. Some have been
used to model surfaces from contours, while others are available for approximating
surfaces from discrete data points. In this thesis, emphasis is placed on the algorithms that

construct surfaces from discrete data points because for surface modelling of trunk
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deformity, the original data contains no additional information other than the three-

dimensional coordinates of points. These data points are normally irregularly distributed.

2.4.2. Recursive Insertion Approaches

In this approach, each data point is sequentially inserted into an appropriate
existing triangle such that the existing triangle is subdivided into three new triangles. The
triangle list must be exhaustively searched for each insertion because more than one
triangle may be affected by the insertion of the point. In Figure 2.4, when inserting point
P, triangles AABC, AACG, AGCF, AFCE and AECD are affected by the insertion. Thus
the triangle list for triangulation is must be updated to A4BP, 44PG, AGPF, AFPE, A

EPC and AECD. The last triangle (AECD) is not affected by the insertion.

The general steps for triangulating a point set using a recursive insertion approach
are: (1) find the triangle that contains the point to be inserted; (2) search for other

triangles affected by the insertion; (3) construct new triangles after the insertion; (4)

update the triangle list.



27

Figure 2.4 The insertion of point P affects existing triangle. The triangle
list must be updated afler the insertion of point P.

Some criteria are necessary to define triangles affected by the insertion of points.
These criteria are derived from the criteria for "optimal” triangulation of a data set, which
has been explained in the previous sections. Different algorithms use different ways of
searching for the triangle containing the point, and different ways of updating the triangle

list.

Sibson's [55] optimization method is based on a circumcircle to determine the
partitioning of the quadrilateral when a new point X is inserted (Figure 2.5). The criterion
selects BC as the diagonal of the quadrilateral ABXC if and only if X lies strictly outside
the circumcircle of ABC; it selects AX as the diagonal if and only if X lies strictly inside the

circumcircle; and it allows either AX or BC to be selected if and only if X lies on the

circumcircle.
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Figure 2.5 Partition of a convex quadrilateral by Sibson's method

Sibson used the Max-min angle criterion to decide if the point was inside, outside,
or <n the circumcircle of an existing triangle. A proof of uniqueness of the triangulaticn
method was presented. However, Sibson could not present a practical algorithm which
applies this method to triangulate a data set, because searching for the triangles affected by

the point to be inserted contributes the majority of the computational requirements of the

triangulation process.

2.4.3 Hierarchical Triangulation
Hierarchical triangulation has been being investigated for surface representation

[49. 59-62]. With this approach, the triangulation is described by a segmentation tree. The
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root corresponds to the initial enclosing triangle, whereas other nodes represent triangles
resulting from subdivision of their parents. The hierarchical models of the surface
representation are based on the recursive subdivision of the surface into nested triangles.
Hierarchical triangulation provides representations of a surface at different levels of
resolution, which allows a reduction in the number of points needed to describe the shape
of the surface. Hierarchical triangulation is particularly appropriate for modelling a surface
with variable-resolution, or for monitoring the rendering efficiency when displaying the

surface.

The most common forms of hierarchical triangulations are the fernary and the
quaternary hierarchical triangulations. In a ternary triangulation, a subdivision of a
triangle T consists of joining an internal point P to the three vertices of 7, and thus
forming three sub-triangles incident at point P (Figure 2.6). While in a quaternary
triangulation each triangle is subdivided into four sub-triangles formed by joining three
points, each lying on a different triangle side. The major problem with a ternary
triangulation is the elongated shape of its triangles, which leads to inaccuracies in
numerical interpolation [63]. A triangle in a quaternary triangulation may have more than
one neighbor along each edge. The resulting surface is generally not continuous, except
when all of the triangles are uniformly split [62]. These shortcomings of hierarchical

triangulations prevent them from accurately modelling a smooth surface.
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PN

Figure 2.6 A ternary triangulation and its tree description

Palacios-Velez [64] combined recursive insertion and hierarchical subdivision for
computing the Delaunay triangulation of data sets. An improvement in searching for the
triangle containing the query point is made by applying the Oriented Walk Search. With

this search, the sign of the area of a triangle is used to decide which of the neighboring
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triangles contains the query point. The triangles affected by the insertion are searched
using the criterion that a Delaunay triangle does not contain any points inside its
circumcircle. All triangles whose circumcircles contain a new point will be affected by the
insertion. However, rounding errors in computing the areas may cause inconsistent sign
determination and lead to cycling in the search process [65-66]. Some additional process

must be applied to solve this problem.

2.4.4 Polygon Decomposition Approaches

In these approaches, the region supporting the data points may be considered to be
a polygon. Some techniques triangulate the data set by decomposing the polygon and then
inserting each point into the triangulated polygon. Another technique, Lewis' algorithm,

splits the polygon into sub-polygons until all sub-polygons become triangles.

1. Polygon Triangulation and Point Insertion

With this approach, the polygon is first triangulated using a polygon triangulation
technique. Points are sequentially inserted into appropriate triangles. Then triangles are
updated. The fastest algorithm to triangulate a simple polygon is in O(nlognlogn) 1431,
However, this approach produces long thin triangles which are not suitable for smooth
interpolation. To modify all possible triangles in the polygon when insertion occurs,

however, is computationally intensive and may be in the order of (n?logn) [42],

2. Lewis' Algorithm
Lewis [67] triangulates the data set by: (1) splitting the region into sub-regions by
creating a new boundary across the region, and (2) solving the triangulation problems for

each sub-region separately.
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There are numerous ways to split a region. Lewis' algorithm attempts to make the
split which divides the region into two equally sized halves while keeping the halves as
circular as possible. This is achieved by applying a product 17 whose factors are the signed
distances of the boundary points from the proposed split line. The /7 is calculated by the
two parts with each for one half of the region. For example, in Figure 2. 7,10 =LjLy 1T
2 = 875583 and so I7 = IT}IT,. By calculating I7, it is also determined in which half of the
original region points belong to. Points with the same sign as I7; are all in the first half,
and points with same sign as /7, belong to the other. When calculating the partial product,
say I7; , some splits are rejected if one of the elements for 77; is opposite in sign to that
of its predecessor. This rejection avoids a split as shown in Figure 2.8 where S/ and §2

are on different sides of the split line. Therefore the partition of the region is most likely to

be equally sized.

All possible splits of the region are considered. The chosen split maximizes the
expression
7+ Eb
where E is the minimum of
(a) half of the average distance between the boundary points, and

(b) the distance from the split line to the nearest interior points contained within any

triangle having the split line as a side.

Using the above expression tends to force the split into equally sized halves,

achieves the greatest problem reduction, and makes further split of regions easier.
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Figure 2.7 Calculation of /7and determining to which half the internal points
belong to achieve "equally sized partition™ of the polygon.
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Proposed split line

Figure 2.8 Rejection of split: S; and S on different sides
of the proposed split line, the split is rejected.

Other algorithms for splitting regions are given in references [44, 68-70 In these
algorithms, a polygon is first divided into convex sub-polygons. Then each convex sub-
polygons is triangulated separately. Finally all triangulated convex sub-polygons are
merged together with the sub-polygons which are concave parts of the original polygon
deleted. A problem with these algorithms is that with a complex polygon, it is not possible

tc d=tect which part is convex and which is concave.

Lewis' algorithm is faster and more general than other polygon decomposing
approaches. Depending on the data points, however, the resultant triangulation may not be
"optimal" because no Delaunay circles are used when grouping triangles (711, Another
shortcoming of the algorithm is that data structures used in the implementation are very
complex, because the boundaries of regions being split and to be split must be stored and

are heavily used, while the directions of the boundaries must be kept consistent. The
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initial boundary of the discrete data points must be decided accurately even before the

triangulation can start.

2.4.5 McLain's Algorithm

Unlike the preceding approaches, McLain [72] triangulates the data set from a
small area and grows outwards, increasing the triangulated area when new triangles are
added. At each step, the algorithm uses a Delaunay circle of an existing triangle to search
for the nearest point to be connected into a new triangle with one of the edges of the
existing triangle. The three vertices of the new triangle are the two endpoints of one of the
edges of the existing triangle being evaluated and the nearest neighboring point of the
existing triangle in the data set. Figure 2.9 shows an example of this process for a two

dimensional case. Note that tke line BC is an edge of exactly one existing triangle.
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X F
Figurc 2.9 McLain's triangulation algorithm. Searching for the next point fromD, E

and F for edge BC of the existing triangle ABC. D is selected due to the

minimal distance from the circumcenter of BCD to the edge BC.

When evaluating a point with a line, the signed distance from the circumcenter to
the line is considered. The point which has the minimum distance is selected as the nearest
point for the line and connected to the next triangle. The distance is measured in a way
that the distance from the facing vertex of the existing triangle to the line under evaluation
is negative, e.g., for line BC, distance from 4 to BC is negative. All points and
circumcenters on the other side of line BC opposite to 4 have a positive distance. All
points on the same side of line BC as 4, which have a negative distance, are not

considered for line BC. Each triangle is ensured to be a Delaunay triangle.
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The algorithm starts from either a line on the boundary of the region or with a line
joining any point to its nearest neighbor. It terminates when no point can be found on the

appropriate side of any of available lines.

In three dimensional space, the algorithm triangulates a point set by grouping the
points into fours and partitioning the region into tetrahedrons. Instead of a circle, a sphere
through four points and its center are used to determine the nearest point for the next
tetrahedron (Figure 2.10). In this case, the distance from the sphere center to the plane
must be calculated. While the number of the tetrahedrons increases, the triangulated 3-D
region approximates the region of the object, whereas facets of tetrahedrons approximate

the 3-D surface of the object.

sphefe center

Figure 2.10 McLain's algorithm in 3-D space. A sphere through A, B, C and P is found.
Distance from the sphere center to the plane ABC is used to determine the
nearest point for the next tetrahedron.
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McLain's algorithm produces smooth surfaces because of Delaunay triangulation.
The data structures are relatively simple compared to previously described algorithms.
Because signed distances from points to lines are used to evaluate valid points for
appropriate triangles, the algorithm can not terminate until the triangular representation of
points becomes a convex. Therefore even if the region of points is concave, the algorithm
will produce a convex representation of the region. Consequently, the algorithm itself is

not capable of handling complex structures in which regions of concavity are often

inevitable.

2.5 Conclusion

McLain's algorithm is attractive because it produces smooth surfaces due to its
optimal triangulation. It uses a least square fit of the weighted average of the three
functions of a triangle to ensure a smooth transition between triangles. The data structures

are simple compared to the other algorithms described. With the modifications described

in Chapter 3, the algorithm can also handle relatively complex cases.

McLain's algorithm was chosen as the most appropriate method to model the

trunk. The following sections describe the algorithm and discuss implementation issues.
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3. 3-D SURFACE CONSTRUCTION

3.1 Modelling in 2-D Instead of 3-D

McLain's algorithm triangulates three dimensional data points by tetrahedralizing
the points. The basic operation is calculation of the sphere center, which is a third-order
polynomial calculation compared to a second order calculation in two dimensions. The
number of combination for four points in the data set to decide a sphere in 3-D cases is
much larger than the number of combination for three points in forming a circle in 2-D.
Thus, the algorithm is more computationally intensive in 3-D cases than in two

dimensions.

Children with moderate or severe scoliosis may have a folded waist region. This
folding over is referred to as manifold. Since the manifold area can not be detected using
the current video-based imaging technique, surface modelling of trunk deformity does not
need to handle this complex case. By not handling manifolds, the trunk surface can be
modelled more simply with 2-D triangulation by applying Boissonnat's proof of the
equivalence [48], which states that the triangulation in 3-D can be achieved by triangulating

the points in 2-D if the points are not folded over (Figure 3.1).

Surface points can be analyzed in a 2-D projection plane by ignoring one of the
three coordinates. By triangulating points in the 2-D plane, the three dimensional trunk
surface will be approximated. The computation required for triangulation is reduced

considerably by: a) calculating the second order polynomials (circles) instead of the third-
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order polynomials (spheres), and b) the decreased number of possible triangles compared

to the number of possible tetrahedrons.

/

Figure 3.1 Triangulation of 3-D points achieved by triangulation in 2-D.

There is an exact mapping between the 3-D triangles on a sphere and

the 2-D triangles on its projection plane (P).

3.2 Possible Problem Areas

Some potential problems may occur depending upon the distribution of data. If
these problems are not solved properly, they can either cause major computer system
problems such as System Down, or produce incorrect triangular representation of given

data.
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3.2.1 Modification of Line Directions

As described in McLain's algorithm, signed distances are considered when
determining the point to be used to form the next triangle. Each time a triangle is
connected, the direction of each of the two new lines for this triangle must be updated

(Figure 3.2).

Suppose triangle ABPC is the next triangle for line BC. Lines BP and PC must be
updated according to their facing vertex of the triangle for further triangulation. The
equation of a line (say BP) "ax + by + ¢ = 0" is determined by its two endpoints (B and P
in the example). With this equation, the distance from the facing vertex (O) to the line BP
can be positive. If this is the case, line equation parameters (a and 5) must be modified so
that the distance from the facing vertex (C) to the line (BP) is negative. A similar process

is applied to line PC with a facing vertex B.

Figure 3.2 Modification of line directions
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The distance from a point to the line is used to decide if the point is valid for a line,
i.e., if the distance is negative, which means that this point is on the same side as the line's
facing vertex, then the point the rejected and no circumcircle is calculated for this point;
All points having a positive distance to the line are considered valid and cirumcircles are

calculated for these points to determine which point is appropriate for the next triangle.

3.2.2 Points Sharing the Same Circumcenter

There is ambiguity if more than one point is equidistant and closest to the line
under examination. This ambiguity may cause the triangulation process to cycle by adding
more and more new lines, producing intersecting triangles. An example of the cases is
shawn in Figure 3.3 where, when evaluating a line 4B for a nearest point, more than one
point (D, E and F) are on the same circumcircle. In this case, the distance from each of the

circumcenters to the line AB is the same. A decision must be made as which point will be

the new vertex.
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Figure 3.3 Points sharing the same circumcircle

A maximum angle criterion is used in this case. The procedures are : a) calculate
the angles £DAB, £EAB, and £FAB, b) sort the angles into decreasing order; c) connect
triangles according to the sorted angles, i.e., triangles AADB, ADEB and AEFB. This
criterion ensures the triangulation to be performed properly. An angle between two lines

can be calculated using the dot product of their position vectors.

3.3 Implementation Issues

3.3.1 Input/Output and Data Structures
1. Input/Output

The input data are a set of data points each with three coordinates x, y, and z. The

output of the modelling program is a set of triangle connections. For better efficiency and
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simpler processing, instead of writing all three coordinates of each vertex of a triangle,

only the index of each vertex of the triangle is written into the output file (Figure 3.4).

1 2
: 1
.3
. @
5
. 5 3)
4
4
point index coordinates triangle index indices of vertices
1 X y z 1 1 2 3
2 X y z 2 1 3 5
3 X Y z 3 3 4 5
4 X y z
5 X y z
(a) ®)

Figure 3.4 Input and output data. (a) input data. (b) output data.

2. User defined types

A user defined type "Point_Type" is used to declare a point with three coordinates
x, y, and z. All data read from the input file are stored as an array of points. During the

triangulation, circumcenters are of type Point_Type which have x, y, and z coordinates.
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A line is defined by its two endpoints with its direction adjusted against the facing
vertex of the triangle. A user defined type "Line_Type" is used to hold line information,

having fields for indices of the two endpoints and the index of the facing vertex of a line.

The valid lines of existing triangles are stored into a line list of type "List". Once a
new triangle is connected, two new lines are constructed. The basic operations with the
line list include: a) checking through list elements against new lines to determine whether
the new lines are to be appended; b) removing the top element off the list when no points
are found for a line. In the later case, the line just evaluated becomes the boundary line of
the triangulated region, while the line just removed from the list is the new line to be
evaluated for the next iteration of triangulation. The triangulation terminates when the list
is empty. Figure 3.5 shows the main data structures (in C programming language)

described above.

3.3.2 Format of Data Points

Data is acted upon via indices. Each point must have a distinct index, otherwise
intersecting triangles may be generated. Ensuring the points to be distinct can be done by
calculating the distances between each pair of points. If the distance is zero, the point set
is not distinct. In this case an additional process for re-organizing the indices of points is

necessary before the triangulation process begins.
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typedef struct {
float x,y,2

} Point_Type;

typedef struct {
int endpointl, endpoint2,

facing_vertex;

} Line_Type;

typedef struct {
Line_Type line;
Line_Type *next_clement;

} List,

Figure 3.5 Data structures for triangulation

3.3.3 List Operations

As briefly mentioned in section 3.3.1, basic operations with a line list are

Create_List, List_Append, List_Delete, List_Pop, List_Empty, and List_Destroy.
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Create_List creates an empty list with a list name and a pointer to the head of the

list. This operation is performed before the triangulation begins.

List_Empty checks whether the list is empty. The value returned is Boolean, either
TRUE or FALSE. Triangulation is terminated if the list is empty (TRUE). Otherwise
(FALSE), the top of the list can be popped for the next triangulation by operation
List_Pop.

List_Pop retrieves the top element of the list. The line returned from the list is
generally used for the next iteration of the triangulation process. This operation also
updates the list by deleting the top element and moves the Top of the list to the next

element.

List_Destroy removes a line list by freeing the memory occupied by the list. It also

frees the memory for the list pointer.

List_Delete and List_Append are used to update the list during triangulation
depending on the status of the point found for this triangulation. At the beginning of the
triangulation process, each point has the default status of Unconnected. Once a point is
connected into a triangle, its status is changed to Connected. When forming a new
triangle, the status of the latest point for the triangle is used to determine the
corresponding list operations. The following situations must be considered in adding

triangualted patches:
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If the point is Unconnected, one of the two lines is appended into the list while the
other is used for the next iteration of triangulation (Figure 3.6). Which of the two lines is
chosen to be appended is not a problem as long as the order of the append is kept

consistent.

Figure 3.6 List operation when point (P) is Unconnected. New lines are CP and PD.

Line CP is appended into the list while PD is used for next triangulation.

If the point is Connected, the two lines that have the connected point as an
endpoint must be checked against the list. If only one line is found, that list element is
deleted (List_Delete) and the other line is used for the next triangulation (Figure 3.7-a). If
both lines are found, then both elements are deleted (List_Delete) from the list and the two
new lines are disregarded. However, the connection of this triangle is valid. Thus the
triangle connection is written into the result file, which prevents generating a hole on the

resultant surface (Figure 3.7-b). If none of the lines are found in the list, one of the lines is



49

appended onto the list (List_Append), and the other is used for the next iteration of

triangulation (Figure 3.7-c).

When checking for a line through the list, the two endpoints of the line are
compared with that of each of the list elements, until they are found for a list element, or
failing that, the Tail of the list is detected. The order of the endpoints for a line and the
direction of the line do not need to be considered when comparing the line with a list

element.

3.3.4 Direction of Triangulation

A triangle is a surface patch. The normal of the patch is used to determine the
direction--either front or back facing of the patch. If the normals of patches are not
consistent during triangulation, some patches will be flipped over producing an incorrect

surface.

The problem of maintaining the correct patch direction is solved by keeping the
order of triangulation consistent. Suppose there is an existing triangle A4BC with line BC
at the top of the list. Once the line is popped, line BC is taken out of the list for the next
triangulation. The line must be changed to CB during this iteration of triangulation while
its facing vertex remains unchanged, so the direction of the next triangle is ABPC instead

of ABCP (Figure 3.8).
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Figure 3.7 List operation when Point (P) is Connected. (a) PC is deleted from the list while
BP is used for next triangulation. (b) Both lines BP and PC are deleted from the
list but ABPC is valid. (c) No line in list, line (BP) appended onto list, the other

line (PC) is used for next triangulation.

50
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Figure 3.8 Change of direction of triangle. Line direction is B to C for AABC. When
evaluating for the next triangle, the direction is changed to C to B for ABPC.

The normals of triangles are kept consistent.

3.4 Unconstrained Triangulations

Appendix 1 lists the pseudo code for the main triangulation program and the
pseudo code for the routine which is used in the main program to search for a point to
triangulate. In the main program, the name of the file containing the input data points is
given while assuming that the data in the file are already formatted and identical as

described in Section 3.3.1.
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The triangulation program triangulates a given set of discrete data points with an
output file containing the triangle connection list. In three dimensional space, when

rendered as a surface mesh, the planar triangles approximate the 3-D surface of the object.

If the rcgion ol . ints on the 2-D projection plane is convex, the
modelling program can pi- cr,urate and smooth representation of the 3-D surface
of the object. However, ' . region is -oncave, the triangulation program, which

continues until no points can Lz found for every valid line, produces some long thin
triangles across the concave regions. These long thin triangles become surface artifacts

when the triangular connections are rendered as surface patches in the 3-D space (Figure

3.9).

The situation in which triangulation algorithms always construct convex triangular
representation of a data set is known as the "boundary effect” [73]. This is because
triangylation algorithms continue until no points can be found for any valid lines, i.e., until

the triangulated region is convex.

The trunk surface is normally a region of concavity. With the algorithm above, the
surface model generated from a data set contains some long, thin triangles, which are
typically across the boundary of the data and stretch between the shoulder and near the

hip. Figure 3.10 shows the boundary effect when a trunk surface model is displayed in the
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3-D space, from which the artifacts obviously affect the visualization of the trunk model,
and thus affect the clinical assessment of trunk deformity.

Therefore, the algorithm previously described can not be directly used to model a
trunk surface. It is necessary to develop some constraints applied to the triangulation

process to produce an accurate surface model without visual artifacts.

/ ‘ll,‘\'l!l (!

Figure 3.9 Triangulation of a concave region becomes a convex.
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Figure 3.10 Artifacts in a trunk model
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3.5 Boundary Processing

3.5.1 Introduction and Review of Literature

The boundary effect causes the resultant model mis-represent the actual surface an
object. With triangulation, this typically generates a convex hull representation of data set
in a two-dimensional case. In three-dimensional space, however, the 3-D data set will be

represented as convex polyhedrons with facets of the polyhedrons being convex polygons.

The solutions seem to be based on the principle of ignoring all information outside
an arbitrary limit or window [73]. In this case, all data outside the window are disregarded
when triangulation proceeds. Consequently, the 2-D triangulated region of the data must
be totally contained in the window. When using this solution to model the trunk surface,
some data points, especially those on the shoulders or near the hip, must be ignored to
generate a trunk surface without the boundary effect (Figure 3.11). In Figure 3.11, the 3-
D surface model is not complete for clinical assessment because 3-D trunk deformities are
often indicated by a tilted pelvis, unbalanced shoulders, and twisted trunk. The concave
side areas of a trunk are important for clinicians to analyze the degree of the deformity, the
possible progression of the whole trunk, and to decide the treatment for the particular
patient. Therefore, it is more desirable that most of the data be used during modelling for a

more complete view of the 3-D deformity of the trunk.
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Hoppe et. al. [74] reduced the boundary effect by using a "Marching Cube"
contouring approach. During contour tracing, a function at vertices of a cubical lattice is
sampled. Then the contour intersections with tetrahedral decomposition of the cubical
cells are determined. To accurately estimate boundaries, the cube size must be set so that
edges are of length less than o + &, where p is density of points and & is the sampling
noise. In practice this vi.iue is often set a few times unil the accurate boundaries are
obtained. This . zthod directly estimates the 3-D boundaries of a 3-D data set. However,
the algonthm "¢an not guarantee the result to be correct”. For surface modelling of trunk
deformity t be used in clinical assessment, the above algorithm is not an appropriate

methnd to reduce the boundary effect.

Some researchers [69-70] tried to decompose the polygon of the data set. In the
two-dimensional case, the polygon is decomposed into convex and concave sub-polygons,
with each of these sub-polygons being convex. In Figure 3.12, the original polygon P
(ABCDEFA) is concave (Figure 3.12-a). This polygon is divided into two parts P,
(ACDEFA) and P; (ACBA). Each of these two sub-polygons itself is a convex polygon
while P, is the concave part of P (Figure 3.2-b). Then P = P - P, which is shown in
Figure 3.12-c. With this approach, the reconstruction of the surface for the original data
set in the concave polygon P is achieved by the reconstruction for the convex polygons P,

and P, with the concave part of P. which is P, in -he figure, deleted.

This approach works well in some simple cases like tnat shown in Figure 3.12.
Concave parts of polygons can be determined by traversing the boundary points and
recording the changes of the traversing direction [6%]. However, for complex structures,
this does not work well because determining the concavity of a polygon usually involves

human judginent.
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) {b)

m

Figure 3.12 convex hull decomposition of a concave polygon. (a) original polygon P

(b) possible decomposition. (c) P = P - P, while P and P, are convex.

Another approach is using a pre-defined distance as a threshold for the length of

each edge of triaagles [48]. The assumption is that long edges produce undesirable
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triangles. These long thin triangles are most likely to occur over gaps (see Figure 3.13).
This pre-defined threshold is compared to the triangle edge lengths. If the length of an
edge is greater than the threshold, the proposed triangle is rejected. This threshold is
defined such that long thin triangles are not generated. In the polygon shown in Figure
3.3, the proposed triangle AAMH is examined for each of the edges against the threshold.
And so is triangle AP;P,H. The threshold is defined so that these triangles are rejected.

Figure 3.13 A pre-defined threshold is used to reject the long, thin triangles

AAHP,, AP,HP, and AP,HM.

This approach can be used to 1educe the boundary effect when the concavity of the

region is not sharp because most possible long thin triangles are across the concave
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boundary. However, there are several problems with this approach. The first is that if the
region of the data set contains a sharp concave area, triangles generated across the
boundary may not be rejected because the edge lengths of these triangles may be smaller
than the pre-defined distance (Figure 3.14). The second is that the pre-defined threshold
that works for one data set may not work for another, which causes the difficulty in
defining the threshold for a set of data points. Finally the threshold is defined as global to
the data set, which may cause a problem thx: :he threshold works well in some regions of

the data while it fails for other regions.

Figure 3.14 A problem using pre-defined threshold to reject triangles. Case 1: triangle
AP,P.P, ran not be rejected because the threshold is not large enough to reject
internal trizngies such as AP, P,P,; Case 2: across-boundary triangle AP\PsPg is

rejectedwith threshold which will also reject internal triangles such as AP;PP,
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3.5.2 Proposed Solution

In this thesis, a method of reducing the boundary effect is developed. Unlike
Boissonnat's approach, which may produce triangles across the boundary even if the
boundary is pre-defined accurately, the proposed approach only generates triangles inside
the boundary of the data set, as long as the boundary of the region is completely defined.

Thus the generality of the whole surface modelling process is improved.

The proposed process applies the boundary constraint to the triangulation
algorithm. By calculating the cross products of boundary position vectors, while keeping
the direction of the boundary consistent, triangles outside the boundary of the region can

be determined.

Suppose the boundary of a data set is given such that (1) the region suppoiting the
data set can be defined by a closed polygon, and (2) the direction of the boundary is
consistent. For every boundary triangle, the cross product of the two boundary position
vectors is calculated and compared with the normal of the bounded region defined by the
boundary list. If the direction of the cross product is different from that of the normal of
the region, the triangle is rejected. Otherwise the boundary triangle is valid for the given

data set with the boundary list.

This process is shown in Figure 3.15 where (a) shows a possible example of data
set taken from a trunk surface, with (b) and (c) indicating some possible boundary

triangles with the data set. Assuming the boundary list is defined in a counter clock-wise
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direction, i.e., as the direction as ABCDEFGH, each boundary triangle is examined
according to this boundary list. For triangle ABCD, the cross product of the boundary
position vectors is V1 = BC x CD, which has a direction pointing to the planar area from
the viewer. This direction is different from that of the boundary list and thus the triangle 4
BCD is rejected. On the other hand, for triangle AFGH, the cross product of the boundary
position vectors is V2 = FG x GH, which has a direction pointing out to the viewer, the
same as the direction of the boundary list. Therefore triangle AFGH is valid for the data

set with the boundary list and thus is generated as a triangular patch of the surface.



data points
this side

(a)

(b) ©

Figure 3.15 Detection of invalid triangles. (a) an example of data describing a trunk;
(b) a valid boundary triangle; (c) invalid boundary triangle is rejected.
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For surface modelling of trunk deformity, data taken from patients' backs contain
no information other than the three coordinates of each point. Thus the boundary of a data
set is not available for the triangulation of the data to reduce the boundary effect.
Consequently, a boundary must be generated from a given data set, with which the above

boundary process can be applied to the triangulation of the data set.

3.5.3 Boundary Generation

3.5.3.1 Boundary Generation Problem

Unless the region of the data set can be considered as convex, constructing a
boundary list from a set of discrete data points is an ill-defined problem. If the region is
convex, there are some algorithms available for defining the convex hull of the region [56].
However, if the region is not convex, determining the concavity of the region always
involves human intervention [69). For a given set of discrete data points, different peopie
may decide different boundary lists, depending on the distribution of the points, their
interpretation of what the object looks like, and the acceptable accuracy requirement of

the boundary for the data set. Figure 3.16 shows an exainple of different boundaries for a

same data set.

To generate a boundary list from a set of discrete data points by a computer, the
challenge is to reduce human intervention to a minimum, while ensuring the ideal

boundary. This also strongly depends on the distribution of the given data points.



65

Consequently, a priori knowledge about the distribution of a data set is useful in

generating the boundary list for the data set.
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Figure 3.16 Different boundaries for the same data set. (a) and (b) both

are considered a boundary for the same data set.

3.5.3.2 Preliminary Boundary List

When using the video-based technique as described in Chapter 1, the projected dot

pattern is a grid ¢ .argets of constant and known spacing (Figure 1.3). The number of
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targets upon the trunk is dependent primarily on the size of the trunk. The angle of the
camera, the finite projection distance and the trunk curvature cause the distortion of the
targets on the trunk surface. Therefore targets on the trunk have irregular spacing (Figure
1.4). Often the generated data points, after digitization, will remain rectangular in shape on
the 2-D projection plane. This information provides valuable priori knowledge for the
boundary generation. Suppose the region of the data points is defined in the projection
plane x - y with depth of each point defined by its z value. The method used in this thesis

to generate the boundary for a data set is:

(1) a rectangle is defined such that all points are contained inside this rectangle,
i.e., with the rectangle being (maximum x - minimum x) long and (maximum y iy um

y) wide;

(2) Using a selectable resolution, the rectangle is divided into grids. Each point lies
in only one grid although there may be more than one point in one grid. The resolution of
the grid may be entered by the user according to the number, and the rough resolution of
the data points. The resolution is selected so that on average each grid has at least one
point inside. If the resolution is too small, however, intersecting boundary lines may be
generated (Figure 3.17). In the current data acquisition system, the resolution of 35 x 40
for a 2000 point set is reasonable and produces an acceptable boundary for the data. A

two-dimensional array G(m, n) is appropriate to store the points within each grid.
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Column
4
2%& Rowi
N
............................... > Direction of searching for grids containing points.

____9 Possible boundary connections.

Figure 3.17 Too small resolution produces intersecting boundaries.

(3) For each of the outermost blocks, points having the extreme values are
obtained. To get the extreme value, in the x direction, points are compared and the
point(s) having the a maximum y (for top row) or a minimum y (for the bottom row)
among points in the same block are stored, while in the y direction, points with a

maximum x (for the right column) or a minimum x (for the left column) are recorded. This
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process is performed in one direction, say counter clock-wise, starting from the bottom-

left grid G(1,1) and ending with the same grid point.

A special case occurs when there is no point in an outermost grid. The present
method handles this situation by traversing towards the center of the region from the
outermost block in either the x or y direction. Suppose there is no point in a right Grid
G(i, n) where i is a variable Then the one next to G(i, n) in the y direction towards the
center, i.e., Grid G(i, n-1) is examined. This process continues until one point is found,
which might be in Grid G(i, n-k) where k is normally a small number. If there is no point in
a bottom Grid G(1, j) where j is a variable, Grid G(2, j) is examined. If no point is found
in G(2, j), Grid G(3, j) is examined, ... until one point in this direction is found. Similar

processes apply to the situations for a left grid or a top grid if no point is found inside the

grid.

(4) The points obtained from the above steps which have extreme values are then
stored in a list. The neighboring points in the list are connected into boundary line

segments in the same direction as the direction of traversing the outermost blocks. The

above procedures are shown in Figure 3.18.
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Fignre 3.18 Boundary generation by griding data points. Data are divided int¢ m x n grids.

(5) It is possible that some points which are not with ext:=:me values fall outside,
or on the boundary line segments. Figure 3.19 shows one of these examples. To prevent

this situation, every line segment is examined against the possible points between the two
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endpoints of the line segment. In Figure 3.19, there is a line segment, CE, such that one
point, D, between points C and E falls outside the line. Thus the line segment is modified
to enclose the point D in the boundary line segment, i.e., line CE is modified into CD and

DE. So is line MP which is modified into MN and NP.

Figure 3.19 Modification of the boundary line segments.

If there is more than one point falling outside, or on a line segment, thase points
must be sorted according to the direction of the line segment. The point with a maximum

value in the direction is then inserted into ine line segment such that the line is modified to
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form two line segments. Tiien both these two lines are examined scparately in the same
way against other p-ints between the endpoints of each line segment, until all these points
are inside the lii  iermeuts. This process is implemented as a recursive procedure in the
boundary gen... ... wrogram, which does not finish until all boundary line segments are
examined and all points are enclosed inside the modified boundary or on the modified

bOUhddr_" T

In Figure 3.20-a, points C, D and E are outside the boundary line segment 4B in a
right column. Therefore they are sorted into x decreasing order as I, & ar. ! . Line AB is
split intc line segments AD and LB. Then line 4D is examined against point C which is
between A and D, while line DB is examinecd against point £ which is between DD and B.
Both points C and E are inside the line segments respectively and so lires AD and DB are

the modified boundary line segments for line AB.

Figure 3.22-b shows a complicated casc. line AB is first snlit into AC and CB.
Then both lines AC and CB are examined. D is found outside line (.8, so line CB is further
split into CD and DB. After line 4B is modified into lines AC, °D ar.d DB, all points are

inside these boundary line segments. Therefore the recursive procr s is terminated.

The boundary line segments are considered a p.-liniinary boundary list, which
normally encloses all points inside this boundary (exceptiunai cases: see section 3.5.4).
Applying this boundary list to the region of the data, the boundary of the region often

contains jagged edges.
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(a) ®

Figure 3.20 More than one point outside the boundary line segments.

(a) A simple case. (b) A comnlicate.: {recursive) case.

3.5.3.3 Improvement of Boundary List Using Angle Constraints

The boundary with jagged edges in 2-D will cause jagged edges in the surface
model in 3-D. Even though this does not affect the correctness and accuracy of the surface

model, it is more natural that the trunk surface have a smooth edge.
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To sol* e this problem, an angle constraint is applied to the preliminary boundary
list. In this work, the angle of 90° is applied as z t}i: *shold such that neighboring lires with
an intersecting angle less than this threshold a: v a0t considered as boundary line segments;
they wil ve straightened into one line. All the neighboring lines are checked through for
the intersecting angles. If an angle less than 90° is found, the two neighboring line
segments are not boundary lines. They are replaced by one line joining the two endpoints
on opposite sides. In Figure 3.23, where the intersecting angle between lines BC and CD
is less than 90°, so BC and CD are replaced by one line BD. However lines MN and NP

are not changed because the angle AAMNP is greater than 90°.

Figure 3.21 Angle constraint for boundary list

Applied to the preliminary boundary list, this process produces a secondary
boundary list, The secondary boundary is smoother than the original one because the

jagged areas are eliminated.
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3.5.4 User Interface for Boundary Modification

3.5.4.1 Why the User Interface?

The above boundary generation scheme considers basically only the four sides of
the regic~ of the data set. If the data given for suriace modelling is virtually rectangular
and each of the blocks in the four comers contains exactly one point, the boundary
generation scheme can generate an exact boundary list for the given data set. In some
cases in which any of the corner blocks contains no points, this scheme has a great
potential to generate a boundary with some boundary line segments intersecting. This is
tecause if there are no points in a corner block, say G(m, n), when traversing towards the

center of the region, the schei. ¢ does 1. i xnow which way to traverse.

Figure 3.22 shows an example of this case. There are no points in the corner block
G(m, n). The extreme point found in the x direction in G(m-1, n) is marked "1". For G(m,
n), because there is no point found, the next block in the x direction is examined, until
point "2" is found. The block G (m, n), however, is also an outermost block in the y
direction, so it is examined in this direction, in which point "3" is found. Then for G(m, n-
1), the scheme goes down to G(m-I, n-1) and finds point marked "4". Therefore the
boundary line segments in the corner is then "1-2-3-4". These lines are intersecting, which

makes it difficult to determine which point in the data is inside, outside or on the

bonidary.
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Figure 3.22 An example that causes boundary intersecting.

For som.c data sets, this difficulty can be overcome by decreasing the resolution of
the grids of the data points so that the corners are ensured to contain points. This process,
however, may cause some inaccurate boundary line segments which generates artifacts in
the surface model. In the example shown in Figure 3.23, the resolution for griding the
data et is decreased, so the corner block G¢. ») contains some points. While griding of
points with this resolution prevents the problem of generating intersecting boundary line
segments as above, it generates some boundary lines that are not accurate for the data set.

In the figure, the possible bouadary line segments are "1-6-7-8" which are obviously not as
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accurate as "1-2-3-4-5-6-7-8" when resolution of griding is small. Using the boundary of
"1.6-7-8", possible triangles connected in this boundary area are shown in the figure as 4
132, Al43, A154, and A165. These triangles may go across the region from one side to

another, like 4154, and 4165, which become artifacts in resultant surface model when

displayed in a 3-D space.

The problems vary case by case: the boundary generation depends on the

distribution of data. An easy way to ensure the boundary to be correct is to permit user

servention.

In this thesis, the bourdary is generated with the method described above. At the
comners, the points that are farthest from the center of the region are considered boundary
points and connected into boundary line segments. Then a user interface permits the user

to modify this boundary list, until the boundary is satisfactory.



77

G (m, n)

i
!
I

et
7N

i

2

Figure 3.23 Reducing the resal:tion of griding may cause triangles across a concave boundary

3.5.4.2 User Interface Overview

In the user interface, the data points and the secondary boundary list are displayed
in an Object Window. For better software modularity and hierarchy, the modification of
the boundary, and modification of the data points in some cases, are handled by applying
some even:s to the object. The events are grouped into a menu in a Menu Window. A
Rotation Window is designed for rotating the object in x, y, or z directions, which enable
the user to view the effect of rotation easily. In the Menu Window, there is an event for
"zooming" of the object. Rotation and Zooming enable the user to have a better look at
the data set and the boundary lines. A Help Window is also designed to make the user
interface more user-friendly, which instructs the user how to select the right menu, and

how to perform appropriate operations in a2 menu. The Help Window also prints messages
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if the user makes wrong selections. Figure 3.24 shows the layout of the user interface for
boundary modification. The user interface in this thesis is written in C using IBM's

graphics package graPHIGS (73],

The dimension of the Object Window is determined by the data. There are certain
transformations which must be applied to the data points when displaying them at .ae

center of the window. These transformations normally include scaling and translation.

The set of data points is considered a graphical structure in graPHIGS, and so are
the secondary boundary line segments. Each of the points is regarded as an element of the
point structure, while each of the boundary line segments is regarded as an element of the
line structure. In the program, a List is used to store the boundary line segments. The
modification of the boundary caused by the user's selection in the event menu will cause
the modification to this list. When Exit Event is executed, the boundary list containing the

final boundary line segments will be used in the triangulation program.

Normally the original data set is not supposed to be modified. But in some cases,
due to the digitization of the data, a small number of points of the data set may be far
away from the major part of the set. In this case, users may ignore these points because
their main concern is the surface, while these distant points may cause more distortion to
the surface than regular points. Therefore the user interface permits modification of points
such that the user can delete points from the data set, or re-insert the points that have been

deleted.
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Figure 3.24 Window Layout
3.5.4.3 Event Handling

The basic eveuts are Delete-Point, Delete-Line, Insert-Point, Insert-Line,
Zooming, Rotation, Exit, and Return. The event hierarchy and the menu of the interface

are designed in the way shown in Figures 3.25, 3.26, and 3.27.
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Figure 3.25 Event hierarchy

From each sub-menu, control can be returned to the upper-level menu. "Rotation

Sub-menu" is a separate menu because once Rotation is selected, all graphical structures

in the Object Window, including points and boundary lines, are rotated at the same angle

selected by the user. The angle selection is implemented as a scroll bar driver and will be

described in the following sub-section.
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Figure 3.26 Zooming sub-menu

Rotation
Sub-menu

GetRot_X GetRot_Y GetRot_Z Reset Angle Done

Figure 3.27 Rotation sub-menu
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1. Point/Line Modification

For a better illustration of the modification, the deleted boundary line segments are
erased in the Object Window, while lines inserted are displayed in a different color. A
similar method is used to handle points. Points are first displayed in one color. If points are
deleted by a Delete-Point Event, the color for these points is changed to another. Once the
dcleted points are re-inserted into the point set, the color of the points re-inserted is

changed back to the original color.

(a) Modification of Boundary Lines

The modification to a boundary is achieved by first deleting the lines segments

betv. .n the two endpoints that have been selected by the user, then inserting the desired

lines segments in between.

The two selected endpoints of boundary line segments are checked through the
boundary list. If the two endpoints are found, the line segments in the boundary list
between these two points are deleted, in which: case the direction of the boundary must be
considered (e.g. clock-wise}. Otherwise, a corresponding message is dispiayed in the Help

Window indicating that the points selected are not in the boundary list.

Once the line segments are deleted, the user can select the Insert-Line Event to
insert a line, or lines, into the boundary list. The insertion is also executed in the same
direction as that of the boundary. If more than one line segment is to be inserted into the

boundary list, the user can select the points to be in the houndary list consecutively. The
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boundary list modification is implemented in such a way that the second endpoint of a
preceding line segment is the first endpoint of the next line segment, and the line segments
inserted into the boundary list start with the first endpoint selected when deleting the lines,

and end with the second endpoint of deletion.

(b) Modification of Points

There is a %+t :sed to store the indices of the points that have been deleted. The
user can delete poii«(- with Delete_Point Eveat by just clicking the mouse at the point
desired to be delct:d. The point which is nearest to the cursor is deleted, with the index
added to the deleted point list. The deleted points can be re-inserted into the point set by
using Insert_Point Event. Once one of these points is selected, it is checked through the
deleted point list. If the point to be re-inserted is net in this list, a corresponding message
displays in the Help Window. Otherwise the point is re-inserted into the point set with its

original color. The point index in the celete point list is removed.

2. Zooming

A zooming function is implemented so that the user can examine smaller areas of
interest more clearly. The user must first select Zooming Event in the Main Menu. In the
Zooming Sub-Menu, the uscr can go back to the Main by selecting the Return Event, reset

the transformation of the object by selecting Reset Event, or zoom the object in the Object

Window.
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To zoom the object in the Object Window, the cursor must be positioned inside
the Object Window. The first click on the mouse defines the position of the cursor as the
center of zooming. The following clicks of the mouse will each time double the image
appearance of the object in the Object Window with the center of zooming being the
center of the Object Window. The transformations involved in the program are basically

translations and scaling.

The modification of points and lines may be difficult if the image of the object is
too small, or the number of points is big so that the connection of lines is difficult to see.
For this reason, the event handling of the program is implemented in a way that the
Zooming function can be handled at the same time as Deletion or Insertion. For example,
it is possible to select Deletion/Insertion Events while the control is in Zooming, on the
other hand, it is also possible to select Zooming while the control of the program is in

Deletion/Insertion.

3. Rotation

The object in the Object Window can be rotated to any orientation. The user can
select the desired angles in any of the x, y, or z direction by moving the three scroll bars
for each direction. Once the angle is selected, the object in the Object Window is rotated
to the corresponding orientation. The rotation is performed about the original center of

the object in Object Window.
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The Reset Event in the Rotation Window resets the orientation of the object to its
original state. The Done Event, while optional, is for examining the object at a
combination angle. For example, if the user wants to see the object at 45° (x), 90° (¥) and
135° (z), he can just move the x scroll bar to 45°, y to 90°, and = to 135°. Then selecting

the Done Event will take the object to the desired orientation.

4. Exit

This Event is executed only when the control of the program is in Main Menu.
Once this Event is selected, the boundary list at this point will be regarded as the final
boundary list, and the points in the deleted point list will not be considered in the
triangulation program; the user interface is terminated immediately. The final boundary list
is written into a Boundary file while the deleted point list is sent to a file Del_Point file.
These two files must be read at the beginning of the triangulation program to validate

points and boundary lines for generating triangles.

3.5.5 Result of Triangulation with Boundary Constraint

The boundary processing described above generates an accurate boundary list for a
given set of data points. By checking the cross products of boundary position vectors,
this boundary list can be applied to the triangulation process to ensure triangles to be

valid. The checking process has been described in Section 3.5.2.
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Basic changes to the original triangulation program (Appendix A.1) in which the
boundary is not taken into account, include checking point status for the boundary poiit
(status "Bound"), and checking of proposed triangles for validity if the point is a boundary

point. The modified pseudo code for boundary consideration is listed in Appendix A.2.

A surface display program is necessary to display the triangle connections
generated from the triangulation program. This display program dynamically sets up the
dimensions of the window for display when reading in the connection list and original data
points. A position light source, a background light source and a diffusion light source are
used in the display program for the necessary shading effect to illustrate the depth
information. A user interface similar to the one in boundary modification program is used
in the display program for users to perform necessary operations when analyzing the

surface model.

The whole process for modelling trunk surfaces includes a boundary generation
program (Boundary Generation), a boundary modification program (Boundary
Modification), a triangulation program (Surface Generation), and a surface display
program (Surface Display). These four programs are linked into a surface modelling
package using the shell script program. The flowchart of the shell script program is in
Appendix A.3. The shell script is designed in a user-friendly way in which the user is asked
only to enter the name of the file containing data to be modelled. For the case of
management of original da:1 and corresponding triangle connections, users can force the
package to display a surface by skipping boundary processing programs and the
triangulation program if the triangle connections for this data set have already been

generated. The user can also ask the package to generate a surface for the samz data set
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which has already had the corresponding surface generated, with the new surface being
another version for comparison. The final result of the package is a surface model
representing the trunk described by the data set. This surface model is displayed on a
computer screen which can be analyzed by the user (Figure 3.28).

Comparing the trunk surface in Figure 3.28 with the surface generated from the
original program (Figure 3.10), it is obvious that the boundary effect is reduced in the
trunk surface generated from the modified program. With few visual artifacts, the

modified surface model more accurately represents the 3-D trunk surface of the patient.
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Figure 3.28-a The result of triangulation gencrated from the modified algorithm



Figure 3.28-b A trunk surface gencrated from the modificd program.
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4. ASSESSMENT OF THE SURFACE MODELLING METHOD

McLain's triangulation algorithm has been modified to handle more complex
structures using a previously described boundary processing method. Instead of directly
modelling a surface in 3-D space, the triangulation program constructs a surface model by
triangulating data points in 2-D. The performance of the proposed surface modelling

method can be assessed in three aspects: quality, speed and generality of the modelling

method.

4.1. Quality of Modelling

It has been mentioned that the triangulation method of McLain's algorithm is
optimal in terms of the quality of triangles [47. 50-51, 61, 64, 76]. The algorithm uses the
Delaunay Circle to search for a point to form a triangle, which ensures that the vertices of
each triangle are nearest neighbors. This property of the triangulation method results in the
smoothest surface when the generated triangular patches are displayed. Using an average
of the weighted functions of the three vertices in a triangle can achieve the smoothest
interpolation between triangles [72]. Other algorithms, such as Lewis' algorithm, do not
satisfy Delaunay triangulation requirement [711. Therefore they can not produce the best

approximation of a surface when interpolated in the 3-D space.

Optimality of the proposed triangulation method can be assessed by examining the
shape of resultant triangles. For the best interpolation, the best triangle must be an

equilateral triangle {55 721, Given a set of randomly distributed data peints, it is impossible
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to generate a triangle connection in which all triangles are equilateral. However, one way
to assess the performance of the triangulation process is to examine how close the
resultant triangles are to equilateral triangles. If triangles produced by one scheme are
more equilateral on average than triangles resulting from another, then the first algorithm
is better than the second. An alternative yet more efficient method to examine the quality
of a triangle is to calculate the ratio of the smallest angle to the largest angle in the
triangle. The ratio for an equilateral triangle is 1 because an equilateral triangle is also
equiangular. If the ratio for triangle A is higher than the ratio of triangle B, then A is better
than B because 4 is closer to be an equilateral triangie. Therefore an average ratio can be

calculated for all triangles generated by an algorithm to assess its performance.

The proposed surface modelling method has been tested with some data taken
from patients at the Glenrose Rehabilitation Hospital. For each triangle list, an average
ratio of the minimum angle to the maximum angle in all triangles was obtained. Figure 4.1
shows the average ratios for 18 sets of data points which were randomly selected from the
data base available in the Glenrose Rehabilitation Hospital. For a set of rectangular spaced
data points, the ratio for each resultant triangle must be 0.5, and so is the average ratio.
From Figure 4.1, all of the average ratios are close to 0.5, which reflects the regular
spaced pattern used in the video-based technique to record trunk surfaces. The
discrepancies come from: (1) the distortion of the projection, which results in irregular
spaced data points from the rectangularly spaced dot-pattern for surface modelling; and
(2) the boundary constraint used in the triangulation process, which produces some

relatively long thin triangles along boundary.
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Figure 4.1 Average ratios for different data sets



4.2 Speed of Triangulation

The proposed surface modelling method starts from the center of the region
supporting the data. With each triangulation iteration, a triangle is constructed and two
new lines are connected. The basic operation of the modelling process is the calculation of
circumcenters and the distances from the circumcenters to the line under evaluation.
Suppose data points are randomly distributed inside a rectangular area as shown in Figure
4.2. Point A is the point nearest to the center of the region and is sclected to start the
triangulation process. Point B is the nearest neighbor of Point A. Points 4 and B form the
first line to evaluate. The algorithm selects Point C to form the first triangle AABC.
Following triangulation process continues from the three lines 4B, BC and C’4. If the top
line in the line list is BC, the number of points to be evaluated is reduced to roughly a half
because all points on the same side of BC as Point A are not evaluated. This iteration
forms triangle ABDC and generates two new lines BD and DC. i, for each of the new
lines, the number of points to be examined is again reduced to roughly a half of that for
line BC, then at each triangulation iteration, the number of points to be examined for each
line in the list is reduced to a half, while the number of lines in the list increases at most by
one. This results in a triangulation process running in the order of nlogn. However, to
accurately define the complexity of the algorithm is difficult because the performance of

the algorithm depends on the distribution of the data points.

McLain's algorithm runs at nlogn which is as fast as Lewis'. However, Lewis' was
not selected for modelling trunk surfaces because it is not optimal for triangulation, which
has been discussed in Chapter 2 and Section 4.1. Figure 4.3 shows time requirements of

the surface modelling program for 18 data sets.



Figure 4.2 Number of points to be evaluated is reduced by a half at each

triangulation iteration due to the consideration of signed distances.
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4.3. Generality of the Modelling Method

The algorithm is modified such that it can handle some complex structures while
the boundary effect is reduced. Without this modification, the triangulation method always
generates some triangles across the concave boundary which become the artifacts of the
surface when displayed in the 3-D space. The reduction of the boundary effect relies on an
exact boundary generated from the given data points. The modification for the boundary

effect improves the generality of the surface modelling process.

As discussed in Section 3.5, many trunk surfaces have a concave appearance.
Using the original algorithm will generate models with visual artifacts which limit the
models to be used in clinical applications. The improvement of generality of the algorithm

makes the algorithm produce more accurate surface models for assessment of 3-D trunk

deformity.

This improvement is based on an assumption that the density of data points is
larger than the minimum density of boundary points. This assumption makes the algorithm
able to detect triangles beyond a jagged boundary and then reject them. However, for
more complex structures such as multiply connected data which may be used in finite
element methods {56, 67)_ the proposed method may not work well because the assumption
is not satisfied. In this case, Lewis' algorithm, which recursively splits the data based or.
boundaries until all sub-regions become triangles, is the best because points grouping is
the result of boundaries reconstruction. In the example shown in Figure 4.4, the region
supporting the data contains a hole. Given the boundary of the region as ABCDMNPVA-
GIJEFG (Figure 4.4-a), the region is not a simply closed polygon which can not be
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handled by McLain's algorithm. However, Lewis' algorithm can handle this structure by
only connecting the boundary as ABCDMEFGIJEMNPYVA as shown in Figure 4.4-b. With

this boundary list, the data can be split into sub-regions until tiangulation finishes.

For surface modelling to be used in the clinical assessment of trunk deformity, data
ottained using video-based techniques are normally not multiply connected even though
they are concave with jagged edges. McLain's algorithm, with the modification to reduce
the boundary effect, is adequate to handle all data encountered in the Glenrose Scoliosis

Program.
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(a)

(®)

Figure 4.4 Lewis' algorithm handles more complex structures. (a) A multiply connected
region to be triangulated. (b) Boundaries are combined into one which can be

processed by Lewis' algorithm.
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5. CONCLUSION AND RECOMMENDATIONS

FOR FUTURE WORK

5.1 Conclusion

The purpose of this research was to construct a surface model from discrete data
points using an appropriate modelling approach. Trunk surfaces, which are described by
the datx points measured from people with scoliosis, can be represented by the surface
models. The boundary generation program generates a boundary list for any given data
set. This boundary list can be modified using a user interface to improve the boundary
accuracy. McLain's triangulation algorithm has been modified to handle more complex
structures and to produce a surface model with little boundary effect. Instead of directly
modelling in 3-D space, the surface is constructed by triangulating data points on its 2-D
projection plane, which reduces the computation time significantly. When displayed on a
computer screen by a surface display program, the 3-D model can be used to represent the
actual trunk surface. The comparison of images generated using the original method and
the modified algorithm shows that the modified algorithm generates more accurate trunk

models than the original one.

A user interface makes it convenient for the user to modify the boundary for a data
set, as well as to portray the trunk surface for analysis of trunk deformity. The event
handling of the user interface is designed with a hierarchical structure, which makes the

implementation efficient and flexible.
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Four programs, Boundary Generation, Boundary Modification, Surface
Generation, and Surface Display, are linked into a surface modelling package using a shell
script program. The package is designed to allow the user to enter only the name of the
file containing the data to be modelled. While necessary during the generation of a
boundary from discrete data points, human intervention is reduced to a minimum by using

default values for the griding process.

A 3-D surface model improves the understanding of the 3-D nature of trunk
deformity. With these models, the clinician can investigate the effects of treatment by
conveniently comparing 3-D surface models for data measured from a patient at different
times. Combined with the internal spinal alignment information, the trunk surface model
provides a tool for clinicians to study the possible relationships between spinal deformity
and trunk deformity. Being reproducible and easy to operate, these surface models are

useful in documenting patients' records and for educational purposes.

5.2 Limitations

The surface modelling program generates a 3-D surface by triangulating a given
data set on its 2-D projection plane. In cases of manifold data points, directly applying the
program will, depending on the distribution of the data, cither generate a jagged surface at
the manifold area(s), or be unable to terminate. In the first case, the incorrect surface
cannot be used to represent the 3-D surface of a trunk. The second case may cause a
major software problem by generating many intersecting triangles and many more new

lines, until the computer or computer system runs out of memory.
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The above situation can be explained with Figure 5.1. Suppose data points are
manifold and no points are lying at exactly the same location on the projection plane. The
surface construction method constructs the surface by grouping the nearest neighbors on
the 2-D projection plane while ignoring the coordinates in the direction of the projection.
Instead of generating a folded surface, the method will generate a jagged surface which is
illustrated in Figure 5.1. If there are some points lying at exactly the same position on the
projection plane, data points become indistinct. This situation will cause the program to
generate lines and triangles forever, which has been discussed in Chapter 3. Thus data
points must be distinct before the surface generation program can begin. Although this
condition is not always met in all children with trunk deformity--approximately 10-15% of
children seen through the Glenrose Scoloisis Program have a waist crease or regions of
sharp changes which cause manifolds, techniques used to obtain the 3-D data set are not

able to measure the folds in the trunk.

Portability is another problem of the surface modelling package due to the use of
IBM's graPHIGS programming language in user interface design and in surface display.
Testing of the modelling package has been done on IBM's RISC-6000 computers running
in an UNIX environment with the AIX operating system. If the modelling package is to be
used on other machines, the user interface and the surface display program may have to be
re-written according to the operating system and graphical packages running on the
particular machine. The Surface Generation program, which generates the 3-D surface
(the triangle connection list in the output file), is portable and will run on most UNIX

machines
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Figure 5.1 Jagged areas generated when modelling manifolded data.
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The surface generation program reduces the boundary effect by rejecting the
triangles beyond the boundary. The process of rejecting triangles, which involves
calculating cross products of position vectors, contains a potential bug in determining the
validity of triangles. In certain cases, some lines in which none of the endpoints is a
boundary point can be connected into triangles with a non-boundary point on the other
side of the boundary (Figure 5.2). In triangle AMNP, none of the three vertices is a
boundary point, so the triangle is not rejected by the program. This triangle is considered
as valid for line MN. Thus two new lines MP and PN may be appended into the line list.
Therefore, the triangulation program may generate more and more triangles and lines and

cannot terminate. In this case the boundary processirg of surface generation fails.

Whether the problem of boundary process failing occurs depends on the
distribution of data points and how closely boundary points are selected and constructed
as boundary line segments. If the density of data points is high while the boundary points
are not close enough, this problem is most likely to occur. If the data points have a low
density while the boundary is accurately defined with neighboring points being close, the
proposed triangulation program can terminate properly. In the above example, the
problem can be solved by modifying the boundary to that shown by the bold lines instead
of using the original line segments (Figure 5.2). The new boundary ensures potential
across-boundary-triangles to have boundary points as the vertices so that the boundary

process works properly for these boundary line segments.
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Boundary line segments

........................ Triangles going beyond boundary

C—— Alternative of boundary lines

Figure 5.2 Problem with rejecting triangles beyond boundary

The triangulation program generates a triangle connection list which is displayed as
triangular patches representing 3-D surfaces. The method is appropriate only for
modelling 3-D surfaces from discrete data points. In clinical applications, however,
Computer Tomography (CT) and Magnetic Resonance Image (MRI) are the most popular
techniques used to record the shapes of anatomic objects. These two methods normally
generate contours of objects directly. Therefore directly applying the proposed method to
the data obtained from CT and MRI introduces unnecessary computation because the

method never uses the valuable information of the contour lines.
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5.3 Recommendations for Future Work

Short-term development can emphasize improvement of the efficiency of the
surface generation program, which is the most computationally intensive of the four
programs used in the surface modelling package. There are two possible ways to improve

the efficiency of the approach.

1. Many articles in the literature [77-78] have suggested that pre-sorting data may
improve the performance of algorithms. In the surface modelling package, data is sorted
into a two-dimensional array by griding the points. However, this information is used for
boundary generation only. In the triangulation process, if points are sorted properly, it may
be possible that not all valid points, but only points "close" to the grids containing the
endpoints of the line under evaluation, need to be examined for the line for the next
triangle. Further investigation concerning how to utilize the sorting information is useful

for improvement of the efficiency of the triangulation program.

2. In the current triangulation program, each valid point is calculated for the
possible circumcenter of the point and the two endpoints of a line under evaluation. Then
each of the corresponding distances from each circumcenter to the line is calculated. These
distances are sorted to get the minimum. The calculations are computationaily intensive
However, they may be repeated for some points with some lines. If the results of the

calculation can be stored in appropriate data structures, they can be re-used for other
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points or lines in the triangulation process, which would likely reduce required
computation. However, further study of how to design appropriate data structures to
process related calculations is required, along with how to make use of the already
existing results for further triangulation iterations. It should be noticed that the possible
improvement in efficiency is a result of the trade-off between computation time and
memory requirements because storing the results of calculations needs a considerable

amount of memory due to the huge number of combinations between points and lines in

the data set.

It has been discussed in Section 5.2 that the triangulation program may not be able
1o terminate in some cases, which may cause some computer system problems because of
the heavy use of memory. However, this kind of problem is hard to detect and solve
because its occurrence depends on the distribution of data. Similar problems also occur in
other computational geometric modelling applications which are discussed in [56, 80], For
better performance of the surface modelling package, further investigation is required to
ensure that the triangulation process terminates properly. Checking the status of triangles
may be a good alternative to checking the status of each point and line in the current
program. For example, a proposed triangle can be checked through the triangle list. If the
triangle is not found in the list, the triangulation is accepted and the triangle is appended
into the list. Otherwise the triangulation is rejected and the triangulation program
terminates. However, checking the status of triangles is more time-consuming than
checking that of points and lines. To ensure the equality of two triangles, many vertex

matches of two triangles must be checked because one triangle is defined by three vertices.
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Long-term development should emphasize improvement of the boundary process.
In the current surface modelling package, human intervention is necessary to ensure an
accurate boundary. The boundary is then used in the triangulation program to reduce the
boundary effect. The performance of the triangle rejection scheme relates to the
distribution of data points. In some cases the scheme does not work well, which has been
described in Section 5.2. Some interesting methods to reduce the boundary effect have
been proposed in the literature {74 791 Even though the method can not guarantee the
resultant surface to be correct, it does produce some 3-D surfaces without boundary effect
and human intervention. Therefore long-term research and development in investigation of
Hoppe's [71] surface modelling method and other possible alternatives would be valuable

and useful in clinical applications of surface modelling.
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APPENDIX A.1. PSEUDO CODE FOR

UNCONSTRAINED TRIANGULATION

This section provides the pseudo code of the main program, and the routine of
searching for a point to form a triangle. For the main program, the file name containing the
input data is given while data are assumed to be already formatted and points to be
distinct, as described in section 3.3.1. The output of this program is a file containing a
triangle list for the data set. Each triangle consists of the indices of the three vertices.
Status of a point can be either "Unconnected" (NOT_CONN) or "Connected" (CONN).

Only those points which do not have any triangles connected with them are considered

“"Unconnected".

1. Main Program for Triangulation

{ 'mput: name of the input file containing the data to be modelled.
omjput: connection list of triangles in an output file.

precondition: data are already formatted, and identical. }

BEGIN
open input file and read data into a point array
initialize status for each point to NOT_CONN

initialize a temp_line as a temporary line
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create a line list
set Finish flag as "FALSE"
open an output file for writing triangle connections
find the point (P1) which is nearest to the center of the region
find the nearest neighbor (P2) of point P1
construct line P1-P2 and update status for P1, P2 to CONN
find point(s) for line P1-P2 for the first triangle
{here circles through P1, P2, and valid point P are examined and each circumcenter
is computed; the distance from each of this circumcenter to line P1-P2 is calculated.
The point(s) with the least distance are then found as P3 for 'optimal' triangulation}
If one point (P3) Then
update point status for P3 to CONN
write P1-P2-P3 into outfile as the first triangle
append lines P2-P3 and P3-P1 into the list
set temp_line as line P1-P2 with facing vertex P3
Else If more points Then
put these points into a dynamic array More_Point[n]
For each point More_Point[i] withi =1 to n Do
set point More_Pointfi] status to CONN
calculate angle between P2-P1 and P2-More_Point[i]
sort More_Point such that their angles in decreasing order
write triangle P1-P2-More_Point[1] into output file
append line P2-More_Point{1] into line list
For each point More_Point[i] withi =2 tonDo

write triangle P1-More[i-1]-More_Point[i] into output file



append line More_Point[i-1]-More_Point[i] into line list
append line More_Point[n]-P1 into line list
set temp_line as line P1-P2 with facing vertex More_Point[1]
free array More_Point
Else
{no more points to conect--}EXIT
While not Finish Do
find point(s) for line temp_line
{similar way to find point(s) P as that for the first triangle}
If point not found Then
If list empty Then
set Finish flag TRUE
Else
pop a line element from the list to temp_line
endif {empty}
Else If one point (P) found Then
write new triangle (endpoint2-P-endpoint1) into output file
If P is NOT_CONN Then
update status for P to CONN
append line endpoint2-P into line list
set temp_line as P-endpoint1
Else If P is CONN Then
constrcut linel as endpoint2-P and line2 as P-endpoint]
check linel and line2 through the line list

if linel found
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delete linel in the list
If line2 found Then
delete line2 in the list
If list not empty Then
pop a line element from the list to temp_line
Else
set Finish flag as TRUE
endif {not empty}
Else If line2 not found Then
set temp_line as line2
endif {line2 found/not found}
Else If linel not found
If line2 found Then
delete line2 in the list
set temp_line as linel
Else If line2 not found Then
append linel into line list
set temp_line as linel
endif {line2 found/not found}
endif {linel found/not found}
endif {CONN/NOT _ONN}
Else If more points Then
put these points into a dynamic array More_Point
For each point More_Point[i] withi=1tonDo

calculate the angles between lines P2-P1 and P2-More_Point[i]
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sort More_Point such that their angles in decreasing order
write triangle endpoint2-More_Point[1]-endpoint1 into output file
If More_Point[1] NOT_CONN Then
update status for More_Point[1] to CONN
append line endpoint2-More_Point[1] into the line list
Else If More_Point{1] CONN Then
If line endpoint2-More_Point[1] found in line list Then
delete the line element from the list
Else
append the line into the list
endif {line found/not found}
endif {CONN/NOT_CONN}
For each More_Point[i] withi =2 to n Do
write triangle More_Point[i-1]-More_Point[i]-endpoint1 to outfile
If More_Point[i] NOT_CONN Then
update status for More_Point[i] to CONN
append line More_Point[i-1]-More_Point[i] into line list
Else If More_Point[i] CONN Then
If line More_Point[i-1]-More_Point[i] found in the list Then
delete the line element from the list
Esle
append the line into the list
endif {line found/not found}
endif {CONN/NOT_CONN}

endfor



If line More_Point{n]-endpoint1 found in the line list Then
delete the line element from the list

Else
append the line into the list
endif {line found/not found}
If list empty Then
set Finish flag TRUE
Else
pop a line element from list to temp_line
endif {list empty}

free dynamic array More_Point

endif {one point/more point/no point}

endwhile

close input/output files

free memory for line list and point status

free memory for the point array

END {main}

2. Routine to Find Point(s) For A Line

{input:

output:

a line with two endpoints: P1 and P2, and its facing vertex V,
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the index of the point that is optimal to points P1, P2 for triangulation, or

the indices of 'm' points (more_point[m] that are optimal to points P1, P2

for triangulation, or return No_Point if no points found for the line;

precondition: an array of 'n’' points have been defined. }
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BEGIN
construct the line equation P1-P2 with its direction adjusted by V
initialize num_of point to '0’
initialize temp_dist to MAX
For each point (P) of the point array Do
If the point is neither P1 nor P2 Then
calculate the distance from point (P) to line P1-P2
If the distance positive Then
calculate circumcenter of P1, P2 and P
calculate distance from the circumcenter to line P1-P2
If distance less than temp_dist Then
update the temp_dist to this distance
set num_of_point to '0’
set more_point[num_of_point] to the index of the point
num_of_point incremented by 'l'
Else If the distance equal to temp_dist Then
set more_point[num_of_point] to the index of the point
num_of_point incremented by 'l'
endif {distance comparing with temp_dist}
endif {distance positive}
endif {point valid}
end {For}
If num_of_point greater than 'l' Then

set More_Point TRUE



Else If num_of point equal to'1' Then
set One_Point True

Else
set No_Point True

Return

END {routine}
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APPENDIX A.2. PSEUDO CODE FOR

TRIANGULATION WITH THE BOUNDARY CONSTRAINT

This program is modified from the original one in Appendix A.l1. In this program
the boundary constraint is considered. Points are classified into "Unconnected"
(NOT_CONN), "Connected" (CONN) and "Boundary-point" (BOUND). Input files
include the file containing the data, the file containing the boundary list, and the file
containing the deleted points. Once a triangle containing a boundary point as its vertex is

proposed, a routine which examines the boundary constraint is called.

1. Main Program for Triangulation The Boundary Constraint
{ input: names of the data file, the boundary file and the delete_points file.
output: connection list of triangles in an output file.

precondition: data are already formatted, and points are distinct.}

BEGIN

open the data file to read data into a point array
initialize status for each point to NOT_CONN
open the boundary file to read in boundary points
update status for boundary points to BOUND

open delete_points file to read deleted points into an array



initialize a temp_line as a temporary line

create a line list

set Finish flag as "FALSE"

open an output file for writing triangle connections

find the point (P1) which is nearest to the center of the region
find the nearest neighbor (P2) of point P1

construct line P1-P2 and update status for P1, P2 to CONN

find point(s) for line P1-P2 for the first triangle

{here circles through P1, P2, and valid point F are examined and each circumcenter
is computed; the distance from each of this circumcenter to line P1-P2 is calculated.

The point(s) with the least distance are then found as P3 for ‘optimal triangulation}

If one point (P3) Then
If P3 is BOUND Then
Boundary_Condition_Checking (P1, P2, P3)
Else
update point status for P3 to CONN
write P1-P2-P3 into outfile as the first triangle

append lines P2-P3 and P3-P1 into the list

set temp_line as line P1-P2 with facing vertex P3

Else If more points Then {suppose n points}
put these points into a dynamic array More_Point{n]

For each point More_Point[i} withi=1tc » Do

calculate angle between P2-P1 and P2-More_Point[i]
sort More_Point such that their angles in decreasing order

If More_Point[1] is BOUND Then

127



128

Boundary_Condition_Checking (P1, P2, More_Point[1])
Else
write triangle P1-P2-More_Point[1] into output file
update status for More_Point[1] to CONN
append line P2-More_Point[1] into line list
For each point More_Point[i] withi= 2 to n Do
If More_Point[i] is BOUND Then

Boundary_Condition_Checking(P1,More_Point[i-1],
More_Point[i])

Else

write triangle P1-More_Point[i-1]-More_Point[i]
into output file

Updata status for More_Point[i] to CONN
append line More_Point[i-1]-More_Point][i] into line list
append line More_Point[»]-P1 into line list
set temp_line as line P1-P2 with facing vertex More_Point[1]
free array More_Point
Else
no more point to conect--EXIT
While not Finish Do
find point(s) for line temp_line
{similar way to find point(s) P as that for the first triangle}
If point not found Then
If list empty Then
set Finish flag TRUE

Else
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pop a line element from the list to temp_line
endif { empty}
Else If one point (P) found Then
If P is BOUND Then
Boundary_Condition_Checking (endpoint1, endpoint2, P)
Else If P is NOT_CONN Then
write new triangle (endpoint2-P-endpoint1) into output file
update status for P to CONN
append line endpoint2-P into line list
set temp_line as P-endpoint1
Else If P is CONN Then
constrcut linel as endpoint2-P and line2 as P-endpoint1
check linel and line2 through the line list
if line1 found
delete linel in the list
If line2 found Then
delete line2 in the list
If list not empty Then
pop a line element from the list to temp_line
Else
set Finish flag as TRUE
endif {not empty}
Else If line2 not found Then
set temp_line as line2

endif {line2 found/not found}
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Else If linel not found
If line2 found Then
delete line2 in the list
set temp_line as linel
Else If line2 not found Then
append linel into line list
set temp_line as linel
endif {line2 found/not found}
endif {line] found/not found}
endif {BOUND/CONN/NOT_CONN}
Else If more points
put these points into a dynamic array More_Point
For each point More_Point[i] with i=1to n Do
calculate the angles between lines P2-P1 and P2-More_Point[i]
sort More_Point such that their angles in decreasing order
If More_Point[1] is BOUND Then

Boundary_Condition_Checking (endpoint2,
More_Point[1], endpointl)

Else If More_Point[1] NOT_CONN Then
write triangle endpoint2-More_Point[1]-endpoint1 into output file
update status for More_Point[1] to CONN
append line endpoint2-More_Point[1] into the line list
Else If More_Point[1] CONN Then
If line endpoint2-More_Point[1] found in line list Then

delete the line element from the list
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Else
append the line into the list
endif {line found/not found}
endif {BOUND/CONN/NOT_CONN}
For each More_Point{i] withi= 2 to n Do
If More_Point[i] is BOUND Then

Boundary_Condition_Checking(More_Point[i-1],
More_Point[i], endpoint1)

Else If More_Point[i] NOT_CONN Then
write triangle (More_Point[i-1]-More_Point[i]-endpoint1)
update status for More_Point[i] to CONN
append line More_Point[i-1]-More_Point[i] into line list
Else If More_Point[i] CONN Then
write triangle (More_Point[i-1]-More_Point[i]-endpoint1)
If line More_Point[i-1}-More_Point[i] found in the list Then
delete the line element from the list
Esle
append the line into the list
endif {line found/not found}
endif {CONN/NOT_CONN}
endfor

If line More_Point[n]-endpoint! found in the line list Then
delete the line element from the list

Else
append the line into the list

endif {line found/not found}



If list empty Then
set Finish flag TRUE
Else
pop a line element from list to temp_line
endif {list empty}
free dynamic array More_Point
endif {one point/more point/no point}
endwhile
close input/output files
free memory for line list and point status
free memory for the point array

END {main}

2. Boundary_Condition_Checking

{input: three point indices for a proposed triangle, i.e., P1, P2, P3;
output: the triangle connection with lines processed if the triangle is valid;
otherwise returns nothing.

precondition: none}

BEGIN
IfP1, P2, P3 are BOUND Then
check through boundary list for the boundary line segments

If line segments found Then
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calculate the cross product (CP1) of position vectors of the line segments
calculate the cross product (CP2) of position vectors of the trangle
If CP1 and CP2 are in opposite directions Then
{triangle is invlaid, return}
If line list empty Then
set finish flag as TRUE
Else
pop a line into temp_line
endif {empty}
endif {directions}
endif {lines found}
endif {BOUND}
calculate length for each edge of the triangle
If any of the lengthes greater than Threshold Then
{triangle invalid, return}
If line list empty Then
set finish flag as TRUE
Else
pop a line into temp_line
endif {empty}
Else
write triangle into output file
construct lines P1-P2 and P2-P3
check line P1-P2 and P2-P3 in line list

If P1-P2 found Then



If P2-P3 found Then
If line list empty Then
set finish flag as TRUE
Else
pop a line into temp_line
endif {empty}
Else
set temp_line as P2-P3
endif {P2-P3 found}
Else
If P2-P3 found Then
set temp_line as P1-P2
Else
append line P2-P3 into list
set temp_line as P1-P2
endif {P2-P3 found}
endif {P1-P2 found}

endif {length greater than Threshoid}
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APPENDIX A.3. DISPLAY AND SHELL SCRIPT PROGRAM

1. Surface Display Program

The constrained triangulation program described in Appendix A.2 generates a
triangle connection list which is stored in a file. With this connection list, and the original

data points, the triangles can be displayed in a 3-D space.

The basic structure for the display program is a polygon (triangle). The Surface
Display Program was implemented in the way similar to the user interface used in
boundary modification. However, since a surface model can not be changed once
constructed, the display program does not need the modification menu. Rotation of the
model is the main process required in the Display Program. Due to the solid surface
display, rotation of the object is not as fast as rotation of the data points and boundary.

Therefore rotation was implemented using keyboard to drive the rotation instead of the

mouse.

The Display Program first opens the data file to read in the original 3-D data points
into an array. With this reading process, the dimensions of the Object Window (the view

volume) is also defined by the maximum and minimum values of x, y and z.

Then the program opens the triangle connection file to read in the connection list.

During this process, each connection of the vertices by their indices are converted into the
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actual point connection with three coordinates for each point. The actual triangle is added
into the triangle structure. Once all connections are read and converted, the graphical

structure is displayed in the Object Window.

Controls to the Display include "Exit" from the program, "Rotation" of the surface

model, and "Erase/Add" edges of triangles, and "Reset" to the original orientation.

Exit mode terminates the display program. It is activated by pressing "E" or "e".
Once this happens, all memory and graphical resources used in the display program are

released.

Once the coordinate system is defined, rotation of the object can be performed
about each of the three axises while the center of the object is kept unchanged. Keys "—
"and "« rotate the model about y axis. Keys "{"and “I are used to rotate the model
about x axis. "Shift «" (or "Alt «") and "Shift —»" (or "Alt —") are for the rotations
about z axis. The direction of rotation is in accordance with the definition of the
coordinate system (right-handed system). The number of degrees for rotation can be
incremented by pressing "+" or decremented by pressing "-". There are different number of
degree intervals to be selected for the amount of increment or decrement. "R" or "r" is

used to reset the surface to its original orientation.

When the surface is displayed, the edges of the triangles can be either displayed or
eliminated. The default is set so that the original surface model is displayed with these
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edges. If the user is not interested in the connections, the edges can be erased from the

model by pressing "." on the keyboard. Pressing the same key again will add the edges into

the existing model.

2. Shell Script Drive Program

Four steps are necessary to produce a surface model from a given data set: (1)
generation of the boundary from the data set; (2) modification to the boundary; (3)
triangulation of data; and (4) display of the triangulated surface. Each of these steps is an
independent program with input file(s) and output file(s)--except for the display program

which generates a graphical object on the screen instead of an output file.

In most cases, users prefer to only enter name of the file containing the data to be
modelled, and then expect the final surface model on a computer screen. Therefore these
four programs are linked together as a package. The input and output of each program are

shown in Figure A.1.

For better management of data and the programs, the files generated for each

given data set are named according to the following conventions:

Suppose the file containing the data for modelling is "A". The input to Boundary

Generation program is the name of this file "A". The file opened by this program to store
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the boundary for the data set is named "A.boundary”. And the output of the boundary
modification program are two files: "A final bound" for final boundary and
"A.delete_point" for the points deleted by the user. In the triangulation program, the
output is the triangle connection list which is named "A.surface" indicating that this
surface is derived from the original data set "A". These file nameing conventions make it
easy for users to recognize the file relationships, easy to add additional versions of surface

model using different boundary lists.

If the surface of a given data set is already available, the user can either directly
display the surface image without triangulating the data again, or chose to triangulate the
data again for a comparison of the triangulation effect using different boundaries. The
flow-chart in Figure 4.2 shows the linkage of the four programs. Miscellaneous
information module lists names of the data files available for modelling. The system asks
the user to respond for the proper action. In the Boundary Generation program, the user is
asked to enter the resolution of griding of the original data set, i.e., numbers of rows and
columns. At each query step, the system waits until the user enters a proper command or

number.



Data File Boudna Boundary File
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: Final Boundary File
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Data File Surfacs (No Files) >
Triangle File Display (Surface displayed on screen)
Light Definition File

Figure A.1 Programs and their input/output.
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