of Canada dy Canada

l*l National Library Bibliothdque nationale

Canadian Theses Service  Service des theses canadiennes

Otffawa, Canada
KIA ON4

NOTICE

The quality of this microform is heavily dependeft upon the
guality of the original thesis submitted for MiCrofilMing.

very effort has been made to ensure the highest quality of
reproduction Possible.

If pages are Missing, contact the university which granted
the degree.

Some pages May have indistinct print GSp_eCially if the
original pages were typed with a poor typewriter ripbon or
it the universily sent ys an inferior photocopy.

Reproduction.in full or in part of this Microform i governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (. 88/04) ¢

AVIS

La qualité de Cette microforme dépend grandement de la
qualité de la thése soumise au Microfilmage. Nous avons
:out fait pour assurer une qualité supérieure de reproduc-
ion.

Sil_manque des pages. veuillez communiquer avec
l'université qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont 616 dactylogra-
phiées 2 l'aide d'un ruban usé ou si funiversité nous a fait
parvenir une PhotocCopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a 1a Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canada



UNIVERSITY OF ALBERTA

INVESTIGATIONS OF THE PROPERTIES OF SILICON DOPING SUPERLATTICES

BY

KOON HCO TEO <:§§:>

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF ELECTRICAL ENGINEERING

EDMONTON, ALBERTA

FALL 1990



l * National Library Bibliothéque nationale

of Canada du Canada

Canadian Theses Service  32rvice des théses canadiennes
Ottawa, Canada

K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in hisfher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant & la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-6478€-8

Canadd



UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: KOON HOO TEO

TITLE OF THESIS: INVESTIGATION OF THE PROPERTIES OF SILICON DOPING
SUPERLATTICES

DEGREE: DCCTOR OF PHILOSOPHY

YEAR THIS DEGREE GRANTED: FALL 1990

Permission is hereby granted to THE UNIVERSITY OF ALEERTA LIBRARY
to reproduce single copies of this thesis and to lend or sell such
copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or otherwise

reproduced without the author’s written permission.

#710, 8515 112 Street, Edmonton,
Alberta, Canada T6G 1K7

Date: June 12, 1990



THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies and Research for acceptance, a thesis
entitled INVESTIGATION OF THE PROPERTIES OF SILICON DOPING
SUPERLATTICES submitted by KOON HOC TEO in partial fulfilment of the
requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL

ENGINEERING.

TR

Dr. M.J. Brett

Date: %«w,b/‘l//990 .



DEDICATION

To My Late Father

iv



Abstract

Sjlicon (Si) doping superlattices or nipis have been successfully
grown by molecular beam epitaxy (MBE) and selective ohmic contacts
fabricated using the shadow mask technique. Experimentally, it was
determined that the dominant recombination mechanism of the carriers is
through the shunting effect due to junction defects or the substrate.
The carrier lifetimes can therefore be estimated by taking the product
of the junction capacitance and the effective small signal resistance
of the nipi structure. Small signal AC measurements at different
frequencies were carried out under reverse bias. A simple llnear
electrical circuit model was developed to interpret the AC
characteristics and parameters such as capacitance, doping profile and
estimated AC conductance.

Tunabilities of the effective bandgap and carrier concentration in
structure with narrow n+-doped layers and wide p-doped layers were
calculated and found to increase as doping of the n-layers increased or
as temperature decreased. The exchange-correlation energy was included
in the self-consistent calculation of the subband energies. It was
determined that the exchange-correlatlion term is more important in Si
than in GaAs nipis. We developed a new method which uses a system of
piecewise linear function and “finite box" to calculate
self-consistently the density~of-states mass of holes in
two-dimensional Si and Ge doping superlattices. It was determined that
the doping level of the p-type layers is the leading parameter that

affects the hole mass characteristics.
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Chapter 1

Introduction

The development of semiconductor devices has made remarkable
progress during the past three decades. The first semiconductor
materials extensively used for commercial application were germanium
{(Ge) and silicon (Si). While Ge was initially the most commonly used
material, the better temperature performance of Si coupled with its
ability to dope small regions selectively provided advantages which led
to becoming the material of choice for semiconductors. These
advantages also allowed Si integrated circuits to progress from those
in 1962, which contained a few transistors, to the circuits we have
today, which may contain more than a million transistors.

Almost as significant as the invention and technological
development of the transistor, was the invention of the semiconductor
laser two decades ago. Semiconductor lasers provide light for today's
information transmission. These lasers are not made from Si but from
III-V compound semiconductors. In contrast to 5i and Ge, many of the
I1I-V compounds such as GaAs have a "direct bandgap", which leads to
efficient electron-hole generation and radiative recombination. The
high carrier mobility in GaAs ﬁas promoted the development of many high
speed devices based on this material [1]. In addition, it is possible
to achieve nearly perfect single crystal growth of layered structures
with III-V compounds, particularly when their lattice constants are
about the same.

For the last one and a half decades or so, there have been a

number of surprising advances in the design of crystalline



semiconductor heterostructures with a specified bandgap. Due to the
spectacular progress made, generally in fabrication technology,
(particularly that of the Molecular Beam Epitaxy (MBE) technique), the
thickness of deposited crystalline layers has been reduced to the order
of 10A for the composite superlattices [2] and "sheet charges" as hi_»
as 1013cm—2 have been achieved in the delta-doped superlattice
structures [3]. Due to the mature III-V compound MBE technique,
extensive studies on III-V superlattices have been made possible. Many
new effects and properties such as negative resistance (as predicted by
L. Esaki and Tsu in 1970 {4]), quantum size effect, tunable bandgaps,
and increased carrier mobility were reported and experimentally
verified by a number of research scientists [5,6) and by G.H. Dohler on
the doping superlattice in particular [7]. These findings have
motivated the development of a number of new devices such as the HEMT
(high electron mobility transistor) (1], the quantum well laser (8],
the resonant tunneling diode [9], the SEED (self electro-optic effect
device) [10], and the stair-case avalanche photodetector [11].

The rapid progress in the MBE technique during the last decade led
to the fabrication of strained layer superlattices in which the
constituent semiconductor lattices, for example Si and Ge, do not match
[2]. Work on strained layer heterostructures (composite superlattices),
which initially began with the GaAs-GaAsP system, has recently been
expanded to include Si-Ge systems, although these had already been
suggested by Esaki and Tsu as early as 1970. Since the bandgap of Ge
is smaller than the bandgap of Si, such structures provide the
possibility of "bandgap engineering" towards the development of novel

long wavelength photodetectors in silicon-based technology [12].



The doping superlattices, sometimes known as the nipis (a
periodic sequence of layers of n-type, intrinsic, p-type, Iintrinsic
material), were first studied by Dohler in 1972 [13]. Unlike the
compositional semiconductor superlattices, the nipi has only one host
material. The problems of strained layers can hence be disregarded.
Research on this system first began with GaAs [14]. However, the
possibility of combining novel electrical and optical properties of
doping superlattices in a large-scale integrated circuit on Si
substrates makes investigation into Si doping superlattices highly
attractive. With the recent progress made in Si MBE, whereby slow
growth rate and precise doping control are now possible [15],
theoretical and experimental work on Si doping superlattices has begun
[6,16,17]. Unlike GaAs, bulk Si has non-isotropic effective mass
electrons and an indirect bandgap in k-space. As a result, the
analysis of a Si doping superlattice is generally more complicated than
its GaAs counterpart.

This work in the investigation of the properties of Si doping
superlattices involved the collaboration of the University of Alberta
and the Division of Microstructural Science at the National Research
Council (NRC) 1in Ottawa. We first reported our self-consistent
calculations of the subband energies in 1986 [16] and 1987 [18].
During the same period, studies of similar nature had been carried out
independently by Wang et al. [17] and Priester et al. [19].
Subsequently, we have also included the exchange-correlation energy in
the self-consistent calculations of the electron subband energies [20].
We developed a new method to calculate two-dimensional hole subband

energies [21] and to determine the density-of-states masses of holes



[22]. The first experimental work in Si doping superlattices was
reported by Nakagawa and Shiraki on enhanced carrier mobility [6].
Since then, the results of a number of studies have been published,
such as our work on fabrications [23], absorption coefficients [24,2S],
selective contacts, DC characteristics [25,26], and carrier lifetimes
[27,28] of Si doping superlattices. Experimental work by other groups
on carrier lifetimes [29] and photoluminescence spectra has also been
reported [30].

The history of this project is as follows. The project began with
the objective of investigating the carrier lifetimes in a Si doping
superlattice. According to Dshler's theory, recombination of carriers
at low temperature depends on the extent of the overlapping of the
electron and hole envelope wavefunctions. Therefore we were required
first to investigate theoretically the two-dimensional properties of
electrons and holes of a Si doping superlattice (which we began while
the MBE system was being set up at NRC). After the first successful
growth of a Si doping superlattice by the NRC, we proceeded with the
design and creation of the selective ohmic contacts, which in fact
turned out to be more complicated and time-consuming than initially
anticipated. A novel method of making good selective contacts, known
as the shadow mask technique, was first introduced by Dohler [31] on a
GaAs doping superlattice. In collaboration with the NRC, we employed
this method to made good selective contacts on Si doping superlattices.
With good selective ohmic contacts, measurements of optical absorptions
and carrier lifetimes were made by the photoconductivity method, as
well as measurements on the DC characteristics of the doping

superlattice were carried out. Our experimental work with



photoconductivity showed no noticeable difference in absorption
characteristics from the bulk. This result caused us to change our
initial plan to work on photoluminescence, for which we had already
been building a photon counter to detect optical energy of wavelengths
of up to 1.5 um. Our experimental results on the carrier lifetimes
indicated that the dominant recombination mechanism of the carriers
were not through the overlapping of electron and hole wavefunctions.
Consequently, the study of the two-dimensional properties of holes tnok
a new direction, concentrating instead on an investigation of the
masses of holes as a function of the physical parameters of the doping
superlattice. Since traps may influence the carrier lifetimes in a
doping superlattice, attempts were made to measure the traps with the
Deep Level Transient Spectroscepy (DLTS). As DLTS is basically a
capacitance transient measvrement technique, the experiment calls for a
better understanding of the nature of the capacitances in the Si doping
superlattice. As a result we were led to the study of the AC
characteristics of the doping superlattice [32]. Our DLTS measurements
have so far led to no conclusive results.

This thesis is basically a continuation of G.H. McKinnon’s M.Sc.
thesis ([25], where some of the properties of Si doping superlattices
have already been reported. In general, this thesis is organised as
follows: Chapter 2 begins with a review of the basic principles about
doping superlattices and their development in general. Particular
attention is given to the GaAs doping superlattice, as it was the first
to be studied and hence there are far more experimental and theoretical
results associated with it. Also outlined is the time-consuming ground

work of growing, designing and testing of the Si doping superlattices



with their selective ohmic contacts. Experimental and theoretical work
that has been carried out on Si doping superlattices by our group is
briefly mentioned in order to compare it with that which has already
been done for the GaAs doping superlattice.

Chapter 3 deals with the measurement of the carrier lifetime in a
Si doping superlattice by the photoconductivity method. The lifetimes,
as a function of external bias and temperature, were measured and the
results compared with the calculated values, estimated by using a
simple diode equivalent circuit model.

Chapter 4 discusses the AC characteristics of doping superlattices
with selective ohmic contacts and how they can be better understood
with the help of a lumped circuit model. A simple linear electrical
circuit model is developed. Small signal AC measurements at different
frequencies were made under reverse bias. Parameters such as
capacitance, doping profile and AC conductance of a doping superlattice
are estimated.

Chapter 5 examines the tunability of the effective bandgap and
carrier concentration in a Si doping superlattice with narrow n+-doped
and wide p-doped layers. Quantitative tunability parameters are
defined and their variation with dopant concentration and temperature
are calculated self-consistently in the effective mass and Hartree
approximations. The effect of the exchange-correlatlon energy on the
subband energies are also studied at =zero temperature. The
self-consistent calculations of the energy subbands in three types
(pn+p. pnpn, nipi) of Si and GaAs doping superlattices are described.

Finally, Chapter 6 discusses the two-dimensional properties of

holes in Si and Ge doping superlattices. We have developed a new



method for the self-consistent calculation of the density-of-states
mass of holes for two-dimensional Si structures. The final part of the
chapter investigates the masses of holes as a function of the physical
parameters of both the Si and Ge doping superlattices. Superlattices

with narrow p+-doped layers and wide n-doped layers are assumed in this

analysis.



Chapter 2

Doping Superlattices: A Brief Review

Research on synthesized semiconductor superlattices was first
started by Esaki and Tsu [4] in 1969-1970. It was theoretically shown
that such a man-made system possesses unusual electronic and optical
properties not seen in the host bulk semiconductors. These arise
basically from the two-dimensional properties of the carriers, as well
as from the quantum effect introduced by the very narrow potential well
along the z direction. These periodic narrow potential wells of the
superlattice may modify or perturb the band structure of the host
materials. The extent of this modification will very much depend on
the amplitude and periodicity of the potential. Similar to the lattice
potential that creates the well-known Brillouin Zones in the bulk
semiconductor, the superlattice periodic potential is responscible for
the formation of subbands. The advantage of a superlattice is that its
configuration, such as the period and the choice of materials,
determines the structure of the subbands, which in turn dictates the
electrical and optical properties.

Although Esaki and Tsu started out by classifying semiconductor
superlattices into two main categories, doping and compositional, as
shown in Figure 2.1, preference was given to the latter. This 1is
because of the disadvantages attributed to the dopants as free carrier
scattering centers and the practical problem of fabricating doping
superlattices without serious diffusion of impurities. The latter
disadvantage, however, has been overcome with advancements in

molecular beam epitaxy technology. In 1972, Dohler [13] carried out
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Fig. 2.1 Cross sectional view of (a) a composite superlattice and (b) a
doping superlattice. mland m2 denote material of two

different kind while n and p represent layer which are n- and
p-doped, respectively. The thickness t ranges from 10A to

2000A.



detailed theoretical analysis of a doping superlattice and concluded
that not only can two-dimensional subbands be obtained from such a
structure but that it can also show very novel electronic and optical
properties. As in the composite superlattices, a doping superlattice
has the feature that electrical and optical properties can be
"tailored". In addition, doping superlattices are unique in that some
of these properties can be tuned. Dshler has identified "primary" and
"secondary" tunability [33]. The tunability of the carrier
concentrations, the carrier lifetimes, and the effective bandgap are
considered primary. These lead to secondary tunability in quantitles
such as conductivity, luminescence spectra, absorption, and refractive
index. The term "tunability" means that the electrical or optical
behaviour of a given sample of doping superlattice can be varied over a
wide range by external means. The term "tailoring" implies the setting
of material parameters of superlattices by proper choice of the values
of parameters such as doping level and layer thickness. Besides these
parameters, there is the flexibility of using almost any semiconductor
as the host material, which unlike the composite superlattice, is not

limited by the lattice matching problem.

2.1 Basic Principles

The doping superlattice or nipi is a crystal semiconductor which
consists of many alternate ultrathin layers of an n-doped, intrinsic
and p-doped semiconductor. In most cases considered in this thesis,
the undoped (or intrinsic) layers have zero thickness, so strictly
speaking the superlattice should not be called a nipi. However, the

principle behind the analysis of the two structures in question is

10



similar, with the only difference being in the formulation of the space

charge potential.

2.1.1 Two Dimensional Properties

Assume a semiconductor with a static dielectric constant £ and a
bandgap E:. which is modulated by periodic n- and p-doping in the z
direction. Assume also that the doping in each layer is constant and
that there are equal doping concentrations, NA = ND, within the p- and
n-doped regions of thickness clp = dn = d/2. If all impurities are
ionized in the ground state due to the recombination of the electrons
from donors with the holes from the acceptors, a periodic parabolic

space charge potential Vo(z) is created whose amplitude is given by

e ND d 2
vV = —_— (2.1)
0 € 4

The motion of the charge carriers in the z direction is spatially

(see Figure 2.2) [34],

restricted by this superlattice potential Vo(z). In fact, if these
wells are sufficient isolated, this motion becomes "quantized" giving
discrete values of momentum in the z direction.

In the bulk semiconductor, the bandgap E: is determined by the
material. Here, however, because of the potential wells given by

(2.1), the effective bandgap 0! g given by the difference between

g
the bottom of the lowest conduction subband at the energy 'E.c . above

1

the conduction band minimum and the top of the uppermost valence

subband at Ev below the valence maximum; this results in (see
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Fig. 2.2 The band diagram of a doping superlattice in real space [33].



Figure 2.2.
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(2.2)

If the parabolic well shown in Figure 2.2 can be approximated by a

harmonic oscillator, where in general,

V(z) = C2°/2
and
Ej = (J - 1/2)hwo
with §j =1,2,3 ..., and
w = (c/m)Y?

(4]

then using (2.1), (2.3) to (2.5), we obtain

2,, 172
e N
w = D
° *»
£m
e

and

2,,\172
e ND
E = h [ .] (j-172)

]
e

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)



2, \172
e NA
Ev,p.v =h [ - ] (v-1/2) (2.8)
e£m
[T
where j = 1,2,3...,and v = 1,2,3..., and ]EIc’J and Ev'p‘v are the energy

eigenvalues of the electrons and holes, respectively, in a parabolic

* »
well. m is the conduction band electron mass and m“ h is the light or

heavy hole (i.e., p = 1 or h) valence band mass.

eff,1

. represents an indirect

From Figure 2.2, it can be seen that E
gap in real space since the electron states are shifted by one-half a
superlattice period with respect to the hole states. This property
implies the possible physical isolation of electrons from the holes and
generally at low temperature, recombination will only take place via
tunneling of the carriers through the potential barriers.

As the subbands are populated by charge carriers, the electric
field of the carriers strongly modifies the "bare" space charge
potential Vb(z) of the impurities. The result is a strong change of
the amplitude Ve*® of the space charge potential (see Figure 2.3), due
to a compensation of, for example, the positive donor space charges by
the negatively charged electrons in the n-layers. The same also
applies to holes in the p-layers. This results in a change of the
effective bandgap energy E:fﬁl. In other words, by variation of the
number of free electrons and holes per layer, one can modulate or
"tune" the effective bandgap E:”’1 of the nipi crystal. A computation
of the effect on the space charge by the mobile charge carriers can be
done using wave mechanics.

Using the effective mass approximation, Schridinger’s equation is

given by:

14
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Fig. 2.3 A doping superlattice which is being excited by external
optical or electrical energy. ¢n and ¢p are the quasi-Fermi

energies of the electrons and holes, respectively [33].
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- == e Vv \V =
Zm‘ - + e o(z) + e H(z) wj(z) ijj(z) {(2.9)

Here, Vo(z) represents the space charge potential, and m. is

effective mass of the charge carrier. VH(z) is given by:

8%V (z2) en(z)
H
> = - (2.
dz €
subject to the boundary condition
6VH(z)
=0 (2
dz z=
and
VH(O) =0 (2.
and
(2) 2
n(z) = E:n ¥ (2) (2
J 3
SSERASS

where n;Z) is the two dimensional charge carrier concentration in
jth subband. At T = 0°K, n;2) may be determined by the fact that

populated subbands have the same Fermi energy:

E +2m®| 2| =£ +2m?® L (2.
] . 2m 2m

the

10)

.11)

12)

.13)

the

all

14)

-
where the effective mass, m of the charge carriers, is assumed

isotropic, and motion in the x and y directions unrestricted.
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Equations (2.9) and (2.10) have to be solved self-consistently as
changes in n(z) affect VH(z). which then influences the solutions for
EJ which in turn affects the electron distribution among the subbands,
and thus the cycle repeats itself. In other words,.the amount of
carrier conceniration n(z) determines EJ and VH(z), which in turn
determine the effective bandgap of the nipi crystal; the bandgap is
“tunable"”.

The above discussions are applicable to a material such as GaAs
where the effective mass of the electrons is isotropic. As for the
two-dimensional properties of a Si doping superlattice, the problem is
compl’ ited by the multi-valley band structure and the non-isotropic
effec :2 mass of the electrons. The ralculation of the hole subband
energies is even more complicated by the complex hole band structure.
The results of our calculations of the electron and hole subband

energies are presented in Chapters 5 and 6.

2.1.2 Carriers Lifetimes

If the subbands are populated with charge carriers, then the
electron wavefunctions have only an exponentially small overlap with
the hole wavefunctions. Hence, 1in principle, the electron-hole
recombination time can be very long. Its duration will depend on the
width and the height of the potential barriers created by the space
charge pntential. In short, carrier lifetime becomes dependent on the
"design parameters" of the doping superlattice.

In general, the lifetimes of the carriers are not infinite in
duration; rather, these carriers can recombine either by tunneling

through or, at higher temperatures, by thermal excitation over the
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potential barrier, as shown in Figure 2.2.

A detailed numerical model of electron-hole recombination
lifetimes in nipi superlattices has been developed by Clark et al. [35]
but DShler gave an approximate expression for the lifelime due to

tunneling recombination as [34]

T:izi 4eve*©
2 exp |—mm8m— (2.15)
Loulk h(w +0 )
¢ vh
where W= w is given by (2.6) and
eaNA 1/2
W, = - (2.16)
M, h

where m_ and m“,h are the isotropic effective masses of electrons and
holes respectively, and V®*® is the effective potential in the excited
state as shown in Figure 2.3. Whether light or heavy holes should be
used will depend on the host material used and the temperature (34].

Dshler also gave an approximate expression for the recombination

lifetime by thermally excited carriers for a given temperature,

T::xpl oVo*e

Equations (2.15) and (2.17) imply that the lifetimes are exponentially

dependent on v®*¢, which can be tuned by external bias. Tunneling
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recombination dominates when kaT is less than h(wc+wvh)/4. This also
implies that this condition is in part dependent on the doping levels

exc

of the layers and independent of V™.

Lifetimes of the carriers as large as 103 sec (T = 4.2°K) and 400
ns (T = 120°K) for GaAs [36] and PbTe [37] nipis respectively, have
been reported. They are in fairly good agreement with theory.

Carrier lifetimes measurements were carried out independently by
us at the University of Alberta [28) and by Leith at the University of
Toronto [29]. Lifetimes of about 1 sec. were reported by both groups.
The carrier lifetime measurement, carried out by our group, is reported

in greater detail in Chapter 3.

2.2 Fabrication
2.2.1 Crystal Growth with Molecular Beam Epitaxy Technique

The first GaAs doping superlattice was grown by the MBE technique
using Si and Be as dopants [38]. The technique of MBE has a number of
special and rather unique features. It is by far one of the most
established and reliable methods in satisfying the stringent
requirements of a superlattice. The relatively low growth temperature
minimizes the effect of diffusion and the slow growth rate greatly
contributes to the much-needed precise thickness control. MBE also
offers convenience in introducing various beams for compositional
modulation. Basically, thermal or ion beams of atoms or molecules are
directed at and react on a heated substrate in an ultra-high vacuum
environment. MBE is a controlled and reproducible process by which
epitaxial layers with thicknesses and doping profiles on the scale of

atomic dimensions can be grown. Detailed information on this technique
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is eloquently described by Cho [39], L.L. Chang {40], Ploog et al.
(38],and Houghton et al. [41].

Zwicknagl et al. also reported the growth of GaAs nipis by liquid
phase epitaxy (LPE) [42], with Ge and Sn as dopants, where layers as
thin as 200A were fabricated. Hot wall epitaxy (HWE) was also employed
for the fabrication of PbTe nipl by Kinoshita et al. [43] and by
Clemens et al. [44]. As Bwell, nipis of different host materials,
grown with different techniques, have been reported; for example, InP
by vapor-phase epitaxy (VPE) [45], InGaAs and GaAs by organometallic
vapor-phase epitaxy (OMVPE) (a6] and Si by MBE [41]. To date no
comparative study has been made on the quality of the samples
fabricated by these different growth techniques.

In the case of our Si nipis, the epilayers were grown in a V.G.
Semicon V80 Si MBE system at the National Research Council in Ottawa
[23]. 8203 coevaporated from a standard V.G. silicon nitride crucible
was used to make boron doped p-layers and a V.G. semicon IBD-100 lion
beam unit was used to produce S00 eV As+ ions for n-doping. The
substrates used, n-type (100) Si wafers, were given a S0 minute
ultra-violet ozone treatment to remove carbon contamination before
placement in the ultra-high vacuum system. The oxide was removed by
heating the substrate to 900°C at pressures typically < 10—9 torr. The
substrate was then cooled to growth temperature and deposition
proceeded at a typical rate of 0.3 nmw/s. It was experimentally
determined that the growth temperature of 650°C could be used to
maintain an abrupt boron doping profile and to achieve low defect
levels. Shutters on the doping sources were activated to create the

doped layers. Secondary Ion Mass Spectrometer (SIMS! measurements



indicated that the rise and fall of doping concentration is smaller
than 20 nm/decade.

Si nipis were also grown independently by another group at the
University of California. They used the solid phase epitaxy technique
for the growth of the crystal and Ga and Sb as dopants. They were
shown to have good crystal quality but had no selective contacts.
Photoluminescence measurements were also done by the same group but the

results showed no tuning of the effective bandgap (30].

2.2.2 Selective Ohmic Contacts

Conceptually, the making of selective contacts seems simple.
However, it turned out that selective ohmic contacts with good ohmic
and- blocking properties, were difficult to achieve, particularly for
samples with very high doping levels, where leakage due to tunneling
current is high. The problem of achieving high quality ohmic contacts
represents the greatest obstacle in the investigation of the physical
phenomena of the doping superlattice.

The making of selective contacts on a GaAs doping superlattice,
was first made possible by the alloying of small Sn and SnZn balls,
which were diffused from the top layer through all the layers [47].
This method, however, suffers from high leakage current for samples
with high doping levels. A major breakthrough in the selective contact
technology was achieved by the introduction of the shadow mask
technique [31]. The basic idea behind this technique is to use a Si
mask with windows that are oriented such that the beam of the host
material 1is normal to the substrate, whereas the dopant beams are

incident under a certain angle of approximately 30° such that mesa-like
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structures are grown. These angled beams of th> dopants and the Si
mask help to create a nipi structure in the centre and nini and pipil
type structures towards the edges (see Figure 2.4). The metalllc
contacts to the nini and pipi regions can be done by standard methods.
These nini and pipi regions ( between 80 um to 150pm in width) at the
edge of the mesa will serve to improve the quality of the selective
contacts. Since the "intrinsic part" ( < 1015cm_3) of the layer serves
to reduce the leakage current in the contacts, the other major leakage
currents are now contributed by the generation or recombination
processes of the interlayer p-n junctions and between the bottom layer
and the substrate.

During growth, the wafer was separated from the substrate with
0.01 mm tantalum shims to prevent fusion of the two pieces of Si during
oxide removal. The mesas fabricated were 1.4 mm long and varied in
width from 400 to 1000 pm. Layer thicknesses were determined by using
a stylus profilometer to measure the mesa heights, assuming a constant
deposition rate. Since they were not rotated during growth, there is a
variation of dopant concentration and epilayer thickness across the
wafers [27]. Immediately after growth, each wafer was covered with S00
nm of sputtered SiOZ, and then windows were opened up at the zdges for
the contacts.

We have achieved good selective ohmic contacts for Si doping
superlattices [26]. A S00A layer of Pt was sputtered on and annealed
at 500°C for 30 minutes to form PtSi contacts to the p-type layers
along the pipi edge of the mesa. Since the PtSi has a high barrier
height on n~type Si, it should provide a blocking contact to the

substrate. To achieve this it was necessary to mask the mesas and etch
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Fig. 2.4 Cross sectional view of a doping superlattice with selective
contacts. Four layers are shown but usually 20 to 40 layers
were grown. Apart from those between the p-n junctions, the
shaded parts in the layers represent the undepleted regions of
the layers.
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back the surrounding substrate to remove adjacent doped regions which
resulted from the previous dopant depositions.

For ohmic contacts at the n-type layers, we experimented with
several different metals. The first was magnesium. A thermal
evaporation technique was used to deposit about a 3000A layer of
magnesium on the nini edge of the mesa. A second layer of Al was added
to prevent oxidation of the Mg and the whole contact waé annealed at
300°C for 10 minutes. The problem with Mg281 contacts was that thesy
were not physically even and, in some cases, were not ohmlc. The
second contact alloy used was AuSb (1% antimony) [23]. An 800A layer
was deposited and annealed at 400°C for 30 seconds. Using AuSb has the
disadvantage that it can be easily peeled off Si and that the contacts
are very sensitive to conditions such as timing and temperature of the
annealing. The third contact alloy tried was Pt/Si/Er, in a
three-layered structure ([48]. Evaporation of Er, Si and Pt, of
thicknesses of 300A, 450A and 750A respectively, were done without
breaking the vacuum, and annealed at 380°C for 10 minutes. This
Pt/Si/Er contact has been shown to give good ohmic contact without the
peeling problem.

As for those mesas with split contacts (see Figure 2.5), an area
between the split sontacts was etched away in a plasma etcher to remove
the centre part of the nini and the pipi regions so that conduction

between the contacts was through the fully doped part of the layers.

2.3 Electrical Properties
2.3.1 DC Characteristics

DC measurements of the quality of metal ohmic contacts and the
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Fig. 2.5 Top view of a doping superlattice with split selective contacts.



I-V curve for the GaAs nipis were made [31]. The nipis exhibit
diode-like characteristics which indicate that the selectivity of the
contacts is good. For measuring the quality of the ohmic contacts, the
contacts along nini and pipi edges were split at the centre so that the
conductance of the n- and p-type layers could be measured separately,
while adjusting the bias between the oppositely doped layers (see
Figure 2.5). Our results for the measurement of DC resistance for Si
nipis’ show good linear [-V curves for both the n and p contacts [26].
Until now, no work has been reported on the analysis of AC
characteristics of a doping superlattice. Chapter 4 will show an
attempt to investigate the AC characteristics of doping superlattlices

using Si doping superlattices as case studies.

2.3.2 Tunable Conductivity
If the layer thickness is large (> 1000A), then the two
dimensional electron and hole concentrations, n(Z) and p(z% can be

determined by the depletion approximation, where it can be shown that

if ND >> NA then [49],

(2 Voo ~ %V e
n = NDd 1- — (2.18)
n V - eU
b1
where,
th e2 Nn 2
el = vbl - -s—e- -——-NA (ND+NA)dn (2. 19)

and similarly if NA >> ND then,
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(2 Vpy ~ &V 2
o} =Nd |1-]———— (2.20)
A'p v - eUth
bl
where,
th e2 NA 2
el = Vbl - -S-E -N—D (NA+ND)dp (2.21)

is the potential which, as usual the electron or hole concentration is
reduced to zero and
Vbl = Eg - (Ec - ¢)n - (¢ - Ev)p (2.22)
is the bullt-in potential which as per usual, is defined as the bulk
energy gap Eq reduced by the quasi Fermi energy from the respective
band edges in the n and p layers. eU is the external potential in eV.
Using n(a) as an example, and assuming NA = ND, the

differentiation of (2.18) with respect to the external potential can be

shown to be

172
(2) N ¢
dn " _ D
au - [TM—-'EJ‘] (2.23)

for U < Vbr Equation (2.23) indicates that dn‘® /du depends on the

square root of ND and this also holds true for the p layers.

2)

The conductivity of the superlattice that is due to n' is

o =eun®sd (2.24)
e e

27



where B, is the mobility of electrons and d is the period of the

@ depends on eU, the conductivity of

superlattice. Therefore, since n
the superlattice due to electrons can be tuned by an external bilas.

The conductivity tunabilities of GaAs doping superlattices as a
function of external bias and temperature in the range of 10°K to 300°K
were experimentally determined [50]. The measured conductance in the n
and p-doped layers are in agreement with the semi-classical theory
outlined above. The carrier concentrations and mobilities as functions
of external bias were also determined by Hall effect measurements. For
the sample with dn = dp = 70 nm and NA = ND = 7x1017cm_3, the measured
electron concentrations at T = 77°K for the voltage range of -0.5 to
0.5 V agreed well with the theoretical prediction. Below the voltage
of -0.5V, the measured carrier concentration 1is higher than the
theoretical prediction. This can be explained by an increased leakage
current. The mobility data showed that the effective electron mobility
decreases from the bulk value with the effective thickness of the
layers. As the external voltage increases in reversed blas, the space
charge region in the p-n junctions increases in thickness, effectlively
reducing the conducting thickness (effective thickness) of the p and n
layers. This dependence of the effective carrier mobility on the
effective thickness may be explained by the enhanced scattering in the
space charge regions due to the reduced screening of the impurity
potential in the space charge. On the other hand, for p-i-p~i or

r-i-n-i structures, enhanced effective mobilities of carriers were also

observed. This is again due to the reduced scattering of the intrinsic

layers [6].
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2.4 Optical Properties
2.4.1 Tunable Absorption Coefficients

In general, photon absorption at energies larger than the
effective bandgap of the nipi is possible. Since this bandgap is
tunable, it therefore follows that the absorption coefficient in a nipi
is also tunable. Together with the possible long lifetimes of the
carriers, this tunable absorption coefficient may also result in
noticeable variation in the refractive index and strong optical
nonlinearities [51].

The earlier analysis of tunable absorption coefficients in a nipi
utilised the semiclassical theory. This treatment is valid for nipis
with very large periods where subband effects may be ignored.
Absorptions beyond the fundamental edge, due to Franz-Keldysh effect
were calculated for GaAs by Dghler et al. [52] and for Si doping
superlattices by our group [24] and these results were compared with
the experiments. There was good agreement between the theory and the
experimental results for the tunablility of the absorption coefficient
in the GaAs nipi, but as yet we have observed no absorption shift in
the Si nipi.

If the doping levels of the nipi are very high and the periods are
short, subband effects on the absorption process can no longer be
ignored. Calculations have shown that the absorption coefficients
exhiblt strong step-like characteristics as a function of energy [53].

In bulk semiconductors, a shift of the absorption edge is usually
attributed to the band-filling effect, which in the case of a nipi can
be controlled by tuning the quasi~Fermi energies of electrons and holes

via external bias.
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There have been reports on the design and feasibility of GaAs nipl
photodetectors. Depending on the physical design, high
photoconductivity gain, detectivity and large linearity range can be
achieved when the nipi is reverse biased via a chosen value of serial
external resistor ffx& A gain-bandwidth product of 5 GHz has been
reported for such a detector. A new design of the detector is
presently being worked on to improve this gain-bandwidth product. The
basic guidelines are that to improve gain, short transit times or short
contact distances are required. Larger cross-sectional areas for
absorption will improve detectivity but also increase capacitance (s41.

Due to its ability to vary absorption coefficients via an external
bias, a nipi can be used as a light modulator with electrical signal
control. The only problem with the tuning of absorption coefficients
via the selective ohmic contacts is the speed. Due to the relatively
large capacitance of the p-n Junctions of a nipi, the speed with which
it can be modulated is limited by the RC time constant. To improve the
speed, the nipi can be externally modulated by sandwich contacts as
shown in Figure 2.6. The resistance of the sandwich contacts may be
reduced to a small value if the multiple quantum wells are sandwiched
by highly doped top and bottom layers. The capacitance is very much
smaller compared to the selective contacts arrangement, due to the fact
that the nipi structure behaves as a capacitance with a dielectric
thickness given by the total thickness of the multiple quantum wells.
The effective bandgaps, E;ff’ and E;ff', (see Figure 2.7) and hence the
absorption coefficient are determined by the slope of the modulated
potential, eFd [S5], which in turn depends on the external bias {55].

A more complicated structure is the hetero-nipi, where a smaller
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Fig. 2.6 A doping superlattice with sandwiched contacts [55].
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Fig. 2.7 A real-space band diagram of a doping superlattice under bias
with sandwiched contacts [55].
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bandgap material is sandwiched by a doped larger bandgap material. The
energy band diagram is shown in Figure 2.8. Here the structure has the
combined advantage of an undoped quantum well and the capability of
tuning. Compared with the composite superlattice, the dark currents in
the z-direction are small due to the larger barrier heights created by
the doping regions [56].

One well-known application of the non-linear absorption properties
of the multiple quantum well is the self electro-optic effect device
(SEED) [57]. The basic structure of a SEED is similar to the one shown
in Figure 2.6. It combines the properties of the quantum well
modulators with photodetectors and some simple external circuit.
Because of the non-linear absorption property of the quantum well, the
photocurrent in the SEED can be in the high or low bistable states.
The multiple quantum well may be either formed by the doping or the
composite superlattice. So far, most of the experimental
investigations on non-linear absorptions are carried out on composite
superlattice [57,10]. Experimental work on non-linear absorptions in
GaAs doping superlattices has recently been carried out by Ando et al.
[51]. They have shown that a change of the absorption coefficient of
greater than 4000/cm can be achieved with a weak excitation of 1
mW/cmz. The absorptive non-linearity is observed to be approximately
one order of magnitude higher than the composite superlattice. This
property will make nipi a potential candidate for applications in the

SEED.

2.4.2 Tunable Luminescence

For optical emission to be tunable in wavelength, recombination
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Fig. 2.8 A real-space band diagram of a hetero doping superlattice [34].



via the tunneling process must be dominant compared to thermally
activated vertical recombinations. If thermal recombination strongly
dominates, particularly at room temperature, then the wavelengths of
the emited photons will correspond to the bulk bandgap. For GaAs
nipis, tunneling recombinations will dominate at room temperature

provided the doping concentrations are higher than 3 x 10180m~3

[58,59].

Experiments have shown that the luminescence peak shifts as the
excitation intensity is altered [59]. This shift, as a function of
intensity agrees well with theoretical predictions both at room
temperature and at low temperature. It also confirms that
recombinations take place through the indirect bandgap in real space.
The theory uses (2.15) to estimate the tunneling probability, where, at
high and 1low temperatures, good agreement can be realised when
light-hole mass and heavy-hole mass are used respectively in the
calculations. At a higher temperature, the thermally-energized light
holes dominate due to their larger overlap of wavefunctions with those
of electrons.

The two-dimensional subband formation in GaAs doping superlattices
was also verified by Raman measurements [60]. It was experimentally
determined that the Raman peaks showed good agreement with the
theoretical calculation of intersubband excitation.

The nipl can also be designed as an ultrafast modulator of
photoluminescence using the circuit configuration as in Figure 2.6
[S5]. Lasers based on GaAs nipi structures were also reported with
emitted energy at SO meV below the bulk bandgap [61,62]. They were

operated at room temperature using pulse excitation and a minimum
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threshold current density of 2.2 kA cm <.

2
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Chapter 3

Recombination Mechanisms and Carrier Lifetimes

Carrier lifetime 1is one of the most important parameters that
influences the primary and secondary properties of a doping
superlattice [33]. The lifetimes of the carrlers will affect the rate
of change of the primary parameters such as the effective bandgap and
carrier concentrations when the superlattice is under optical
excitation.

The estimation of carrier lifetime in a dopihg superlattice has
been diccussed in Chapter 2. The recombination mechanisms are mainly
attributed to tunneling and thermionic emission [33]. Temperature and
the physical design of the doping superlattice will determine which
mechanism dominates.

This chapter discusses the mechanisms of carrier recombinatior in
a Si doping superlattice. It will be shown experimentally that
recombination by tunneling and thermionic emission are not the dominant
mechanisms. It is determined that carrier recombination via substrate
shuntings and junction leakage due to defects are the dominant factors
that limit the carrier lifetimes. A simple electrical model is used to
estimate the carrier lifetimes for different temperatures and external
bias. The theoretical estimates agree well with experiments. (A

version of this chapter has been puklished. See Reference 28)

3.1 Calculation of the Carrier Lifetimes

In Section 2.1.2, it was mentioned that Doéhler estimated the

recombination lifetime in GaAs superlattices by thermionic emission of
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carriers over the barriers between the n and p layers and by tunneling
of the carriers through the barriers. These are the dominant
recombination mechanisms in GaAs superlattices under no bias condition.
With external bias through a very high impedance external circuit, the
low generation-recombination currents in the depletion reglons of the
p-n junctions of the'sﬁperlattice may be important in influencing the
recombination processes in the superlattice. This 1is even more
significant for a Si doping superlattice which has a smaller bulk
bandgap compared to GaAs. Using the standard analysis of p-n junctlons
in the depletion approximation, the recombinatiori current under forward

bias is [63,64]

gAn W

. | el

Ir 2 — exp[ 5% T ] (3.1)
o B

where W is the depletion width, A is the cross sectional area of the
p-n junction, and T is the bulk recombination lifetime. If r = dU/dIr
and ¢ is given by the standard depletion capacitance, then it can be
easily shown that the recombination lifetime attributed to the

recombination current in the depletion region is given by

NTkT T
A oB -eU
T= 0= — exp [—-———] (3.2)
qnl(vbl el) 2kBT
IFN, =N = 2x1018em ™3, = 107 sec, T = 300K, n = 101% em™> and U

= 0.5V, then T is about 38 ms. If one uses the thermionic emission
expression of Déhler to calculate the lifetime, then T is about 2x106

s. Experimentally it was determined that the lifetime is about 1 ms at

38



a bias of 0.5 V. This result differs from the recombination current
estimation by more than an order Iin magnitude and the thermonic
emission by nine orders in magnitude.

Another possible mechanism of recombination, which may account for
this difference, is the shunting of current through the defects in the
p-n junctions (which will effectively reduce T of equation (3.2)),
and/or in the substrate. A simple model to estimate the lifetime based
on this assumption is presented in Figure 3.1.

At high doping (>1018cm-3), each p-n interface in a Si doping
superlattice with thick (>800A) layers will behave as an ordinary p-n
Junction. Hence for the capacitance per unit area of a superlattice

with N periods, we may use the expression for the depletion capacitance

of a linearly graded p-n junction [65]:

1/3
dn(Z) eac
C/area = egz— = (2N-1) |5 V- (3.3)
where n(Z) is the total carrier concentration per unit area in the
n-layers.

Figure 3.1 includes the equivalent circuit for a Si doping
superlattice structure with an external bias Uext connected through an
external resistance Rext’ The capacitance between the n- and p-layers
consists mainly of the junction capacitance CJ(V) given above. RL(V)
is the small signal resistance, dv/dil, seen by current flowing across
the junction and may be determined from the I-V characteristics of the
nipl. Ra is the contact resistance in series with the resistance

between contacts parallel to the Si doping superlattice layers. RLS is
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the resistance associated with the leakage current through defects
and/or the substrate. Our method of measuring the recombination
lifetime involves generating a small charge AQ with an optical pulse

and observing the decay of the nipi voltage V back to the steady-state

voltage vss’

- . A -
V-V _ = E;TVT exp( t/RTOTCJ(v)) (3.4)

where

). [RL(v)]_l -1 (3.5)

TOT * {Rs* (RLSRext/(RLS+Rex }

t
An alternative method is to monitor the resistance of the n or p layers
through split contacts. In either case, if the current from the
generated charge is small enough, the potential across each junction
will not deviate far from its steady-state value and the junction
resistance may be found from 1/R(v)= dil/dv evaluated at V = Vgs. In
practice, R(v) cannot be measured directly; but provided Rs is small
and RLS is large, RL(V) may be estimated from the I-V measurements
carried out at points CD in Figure 3.1. With external biasing, bet

should be normally large.

3.2 Experimental Results

The nipi (sample 405A) was designed to have 10 n layers and 10 p
layers separated by thin intrinsic layers. However, the intrinsic
layers were washed out during the boron doping. As will be shown in
the next chapter, for the range of bias that is being used in the

experiment, the doping profile of the sample is approximately linearly

41



graded. Accounting for the variation of deposition rates and dopant
concentration over the wafer,as deduced from SIMS measurements in
control wafers, it 1s estimated that sample 405A has a doping gradient
between 8)(1023cm-4 and 4x1024cm_4,such that the corresponding Vbl may
be between 0.88V and 0.91V. The maximum doping levels of both the n
and p layers range from 2x1018 cm-3 to 8x1018 cm_3 and the thickness

per layer is about 120nm, sufficient enough to prevent full depletion

in the layers for the bias that is considered in the experiment.

3.2.1 Capacitance Measurement

The measurements of dn(Z)

/dU were carried out at 80°K using the
arrangement shown in Figure 3.2, At this temperature, the
recombination lifetime of the carriers 1s sufficiently long and
shunting current sufficiently negligible to allow injected charge into
the nipi to be measured with accuracy. The net injected charge can be
obtained by observing the difference in voltage that developed across
the 1 MQ resistor. The voltage developed across the nipi is then
measured by the oscilloscope with a 10 MQ input. Hence, the change of
n(Z) with respect to *the change in the potential can be determined.
Using a 0.5 ms pulse that is produced from a pulse generator, and the
nipi at 0 V bias, AQ/AU is measured to be approximately 4.6x10-8C/volt
or 46 nF. If the effective area of the nipi is assumed to be 1 mm2
then dn}Z)/dU is approximately 2.88x1017/m2/volt. Measurements at
other values of bias become less accurate due to higher leakage.
However, the capacitance at other values of biases may be determined

-1/3

theoretically by the proportionality of (Vba-U) where Vbl is

assumed 0.9V. Due to the cube root function, the accuracy of the value
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of Vbl is not very critical.

3.2.2 Carrier Lifetimes Measurement by Photoconductivity Method

The carrier lifetimes were measured with the photoconductivity
method shown in Figure 3.3. The measuring system is modified from a
system which was originally wused for photo-induced transient
spectroscopy (PITS) [66]. As the photoconductive signal from the
sample was less than one mV, a multiple stage DC amplifier with gain
was used to amplify the signal to a level which is acceptable to the 12
bit A/D converter (DAS 1128). The A/D converter can accept voltages in
the range of + 5 V. The amplified photoconductive signal 1s digitised
by the A/D converter and stored in the computer for further processing.

The vacuum system used for low temperature measurements utilised
mercury diffusion pumps in addition to a mechanical pump. The
temperature of the system was controlled by the combination of a local
heater and the manual control of the rate of flow of liquid nitrogen.
For the measurement of carrier lifetimes as a function of temperature,
the rate of temperature increase was less than or equal to 1°/min.

The carrier lifetimes were measured as a function both of external
bias and temperature using the arrangement shown in Figure 3.3. The
former were measured at 80°K. The carrier density was inferred from
the conductance across the p layers after the mesa was illuminated with
0.5 uW, 10 msec pulses from a HeNe laser operating at 633 nm. The
voltage across the p-type layers and n-type layers was kept to a small
fraction of a volt in order to avoid serious voltage differentlal
developing across the nipi structure. The rise and fall times of the

pulses of 0.1 msec were produced by chopping. The DC bias across the
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nipi was provided by varying the voltage Uexf The small signal
resistance across the nipi structure was also estimated from the I-V
characteristics for various values of DC bias and the capacitance of
the nipi was determined from the above. Finally the lifetime RTU#G(V)
was computed. The results are shown in Figure 3. 4.

Next, the lifetime as a function of temperature, was measured with
Luxt and Vnn disconnected and the two n -~ontacts shorted. Since the
resistance of the p layers changed with temperature, Rp was varied to
achieve efficient power transfer. The lifetime was first measured
using th: HeNe laser at 633 nm and then repeated with 560 nm light from
a LED, but with longer 40ms pulses to compensate for the lower light
intensity. The results are shown in Figure 3.5. The small signal
resistance across the nipi as a function of temperature was also
estimated from current measurements carried out at bias of -15 mV and
15mV. Since the capacitance of the nipi does not change greatly with
temperature, the value of 46 nF was used throughout to calculate the
values of RﬂnCJ(v) for various temperatures.

To determine whether traps have any influence on the carrier
lifetime, more measurements were made with all n layers and p layers
shorted out. This was achieved by separately shorting the upper and
lower opposite n and p contacts pairs of the mesa. Any free carriers
generated by the illumination will recombine through the external short
circuit path, leaving the traps to dictate the characteristics of the
conductance. The lifetime observed was about 2 msec at 80°K and 0.5ms

at room temperature indicating that traps could not strongly influence

the measured lifetimes.
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3.3 Discussion

In general the model presented here is consistent with the
experimental results showing that thermionic emission and tunneling are
not the dominant recombination mechanisms. The carrier lifetime in the
Si nipi, with wide layers can be estimated from the product of its
capacitance and its effective small signal resistance. The disparity
at low temperatures may be due to the reduction of the temperature
dependent substrate resistance when exposed to optical excitation. The
HeNe laser has a 1/e absorption depth at T = 80°K of approximately S
pum, while the corresponding absorption depth of the LED is 2 um [67].
Hence, the reduction of substrate resistance during optical excitation
will be less for the LEDR, which may account for the four-fold increase
in the carrier lifetime of the nipi. Another possible source of error
is that the effective small signal resistances of the nipi wers
obtained from points CD rather than points AB of the equivalent circuit
in Figure 3.1 and it may not be possible to neglect the contact
resistance in all cases. Traps do not seem to influence significantly
the recombination lifetime of the free carriers in the nipi. For
narrow barrier Si doping superlattices where tunneling is important the
calculation of Dohler [33] for the direct bandgap materials would have
to be modified to take into account the fact that the transitions are

indirect both in real space and momentum space.
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Chapter 4

Steady State Small Signal AC Analysis

In Chapter 3, it was determined that traps in the Si dopling
superlattice do not seem to affect significantly the recombination
lifetime of the free carriers. This may be due to the relatively low
density of deep level traps. To determine the energy level and the
density of deep level traps, one of the most common and reliable
methods is deep level transient spectroscopy (DLTS) [68].

The DLTS method basically uses the principle of a capacitance
transient. The measurement of the capacitance of the Si doping
superlattice at 1 MHz operating frequency indicated that the value was
two orders of magnitude smaller than expected. This prompted the
investigation of this problem, which resulted in the development of a
circuit model for the doping superlattices.

Electrical cheracterisation by the use of simple circuit analysis
is a useful f-o! for understanding the complex physical mechanisms
inside semiconductor structures and devices [69-71,31]. Doping
superlattices with selective contacts fabricated by the shadow mask MBE
technique are known to have complicated internal structures (72]. In a
previous paper [261, the DC characteristics of a doping superlattice
were described. However such an analysis is wunable to provide
frequency dependent parameters such as the junction capacitance and the
AC conductance of the superlattice. These paramelers are required for
the proper interpretation of other measurements such as DLTS. In this
chapter, a small signal AC circuit lumped model is introduced to

analyse a Si doping superlattice under reverse DT blas. Egqiivalent
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circuits are written in terms of 11near parameters such as AC
resistance and capacitance. Experiments using a small signal AC bridge
were carried out on two Si doping superlattice samples under a range of
reverse bias and the measurements were compared with the theoretical
results given by the model. In this way, parameters such as
capacitance, AC conductance and doping profile of the doping
superlattices were inferred. (A version of this chapter has been

accepted for publicaiions. See Reference 32.)

4.1 Linear Electrical Lumped Circuit Model

The structure of a doping superlattice with selective contacts is
shown schematically in Figure 2.4. If the lajyers are highly doped and
of s "ficient thickness to prevent full depletion of the layers from
occurring under limited reverse blas, then the superlattice can be
assumed to be made up of multiple p-n junctions in parallel. Normally
a p-n Jjunction under reverse bias is assumed to have the equivalent
circuit shown in Figure 4.1, where RSI is the total serial resistance,
RL. as in Chapter 3, is made up of the junction leakage resistance and
the voltage dependent junction resistance, and CJ is the voltage
dependent dspletion capacitance. However, the Si doping superlattices
under consideration have wide ( 300 pum < W < 1000 um ), thin (= 0.1 um)
layers in which the resistance along the layers is non-negligible.
Under these circumstances, a more realistic model is that shown in
Figure 4.2, where again the values of the discrete circuit elements
depend on the applied bias. The number of lumps, N, can be increased
as the width of the layers increases. Furthermore, because the serial

AC resistances, rp and ry along the layers are very small compared to

51



T
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Ty the DC voltage across each recJ element will be approximately
constant. With the exception of the top and the bottom layers, it can
be assumed that the p-n junctions between all layers will have similar
characteristics. If the number of layers is large, in our case 20,
then one can in practice ignore the slight diiferences 1in
characteristics introduced by the top and the bottom layers and sum up
the parallel effect of all the p-n junctions. The resulting equivalent
circuit is shown in Figure 4.3. Now we have included Rc. the contact
resistance of the metal-semiconductor interface and RCS , the
resistance of the non-depletion portion of the n- and p-type layers
(indicated by shaded regions in Figure 2.4). For very high doping

18 -3

levels ( >3x10 em ), Rc is never more than a few ohms [48].

There are also other p-n junctions formed such as the one betwe+
the bottom layer and the substrate, and those of the "intrinsic" and
the doped layers formed for the selectivity of the contacts (see Figure
5.4). It is to be noted that the "intrinsic" regions are in general
lightly doped due to non-abrupt doping profiles. The stray
capacitances introduced by these junctions are generally negligible
compared to the capacitance of the p-n Junctions in the superlattice
because of their larger depletion regions. In addition, the leakage of
the substrate can be ignored since the PtSi p-type contact serves as a
good rectifying barrier to the n-type substract [26].

In order to determine the values of the discrete circuit elements
of our model, we may compare the measured impedances of the
superlattice at different frequencies with those predicted by standard

linear circuit analysis of Figure 4.3 (these being valid as long as the

AC signal is small enough that the voltage dependent elements are
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constant). For the measurements, a bridge was used which gives the
impedance in terms of a capacitance and a AC resistance elther in
parallel or in series. Measurements at high and low frequencies were
used to find a first approximation to the unknown circuit elements.
For example, at high frequency the measured impedance across the

superlattice will be approximately given by

R =R +R +NR/2 (4.1)
s c cs n

if we assume that Rn = Rp. If Rn # Rp, then Rn/Z is replaced by
R = RpRn/(Rp+ Rn). Similarly, in the frequency range

pn

1/R8Cj <w< 1/[(N-1)Rncj] (4.2)

a series impedance measurement gives an approximate value for NC1

Likewise, RI/N and NCJ can be approximately obtained from the low
frequency parallel impedance measurements. The final valiues of these
parameters were fine tuned by curve fitting to the experimental
results. The curve fitting was carried out by trial and error and
visual inspection. As mentioned earlier, the number of required lumps,
N, will depend on the width wd (see Figure 2.4) of the superlattice.
It is expected that the calculated impedance will approach a limit as

the value of N increases.

4.2 AC Characteristics under Reversed Bias
In order to obtain some general properties of the circuit of

Figure 4.3, some typical values for the circuit elements were used (see
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Table 4.1) and the equivalent serial and parallel impedance
(capacitance and AC resistance) as a function of frequency were
calculated using N = 24. Seven cases with different values of the
circuit elements were considered in the calculations and the results
are shown in Figures 4.4 and 4.5. The capacitances are normalized to

NCJ and the serial and parallel AC resistances are normalized to Rs

(see (4.1)) and RZ/N' respectively.

4.2.1 Capacitance

Consider first the parallel capacitance characteristics of Figure
4.4. At low frequency, the capacitance characteristics for zll cases
approximate NCJ. At high frequency, the frequency at which the

normalised values of the parallel capacitance are reduced to 0.5 (the 3

dB freaquency) may be approximated by

1 (4.3)

£ = [2niR NC ] B
where Rs is given by (4.1) for Rn = Rp . This is demonstrated by the
common high frequency characteristics of cases B, F and G (as these
cases have the same Rbcj). For case A, where Rn # Rp, Rn of (4.1) may
be replaced by Rp if Rp > Rn. As the circuit of Figure 4.3 is not a
single-pole circuit, the 3 dB frequency 6f (4.3), which can be derived
from a single-lump model of Figure 4.1 (see Appendix A), is at best an
approximatisn.

As for the serial capacitance characteristics shown in Figure 4.4
by the dotted curves, the frequencies where the normalised values begin

to deviate from wunity for the lower and upper limits may be
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Table 4.1. The values of the discrete circuilt elements for cases A to
G.

T
Case R R R R+R C
n p e c cs )

(ohms) | (ohms) | (x10%chms) (ohms) | (x107°F)
A 25 2.7778 1 30 0.5
B S 5 1 30 0.5
C 1 1 1 30 0.5
D 25 25 1 30 0.5
E S 5 1 30 0.1
F S S 0.1 30 0.5
G ) S 10 30 0.5
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approximated by expression (4.2). Just as in the parallel capacitance
arrangement, cases B, F and G share similar characteristics at high
frequency, due to the fact that they have the same product Rncj. Cases
C and E, though having different values of Rn and C;’ have the same
value of RnCJ, hence they share similar high frequency characteristics.
Again, if Rp > Rn, then Hn of expression (2) may be replaced by Rp. At
low frequency, the deviation of the normalized serial capacitance is
dependent on the product Rﬁa (see Appendix) and they are explicitly
illustrated in Figure 4.4 for cases E and F. It is to be noted that,
unlike the parallel capacitance characteristics, the serial capacitance

characteristics are independent of the value of Rc + Rc$ + Rl.

4.2.2 AC Resistance

As far as the AC resistance characteristics are concerned, the
high and low frequency measurements give the net serial AC conductance
(see (4.1)) and the parallel AC resistance, RI/N' respectively, of the
doping superlattice. Similar to the capacitance characteristics, the 3
dB frequency of the serial and parallel AC resistance characteristics

1’z(zmcj)]",

may be approximated by (21:R.£CJ)-1 and [(RsRE/N)
respectively, if RZ >> Rs. These approximaticns can be easily obtained
from the single lump model of Figure 4.1 (see Appendix). For example,
in cases F and G a factor of 100 change in the value of Re glves a
factor of 10 change in the 3 dB frequencies of the parallel AC
resistance characteristics. Similar properties are observed for the
serial AC resistance characteristics. For case A, where Rn = 9Rp and

an has the same value as case B, observe that the serial and parallel

characteristics are different from all other cases where Rn = Rp.
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These differences in characteristics will help to identify a doping
superlattice layer resistance if the value of Rn is very different from
Rp.

As mentioned earlier, the serial resistance of the doping
superlattice can be determined from the AC resistance characteristics
at high frequencies. However, this value also includes Rc. Rcs and Rl
{see (4.1)]. To determine Rbn’ the serial capacltance characteristics
may be used since it is independent of Rc, Rcs and Rx' In gencral,
although the 3 dB frequency for the parallel capacitance and the
central frequency range for the serial capacitance are only approximate
values, they nevertheless provide useful information when one also
wishes to determine the value of the capacitance, NCJ. The knowledge

of this frequency range is also vital for DLTS measurements on a doping

superlattice [73].

4.3 Experimental Results and Discussions

For the experimental results, we measured two samples of different
width W with an HP 4275A bridge. Samples 405B and 405C have widths of
about 350pum and 550um respectively and lengths of about 1.4mm.  The

doping sources were set to give a doping level of 4x10180m-3

( n- and
p-type layers) for a rotating wafer during growth. Since a shadow mask
technique was used [26], the wafer was not rotated during growth. As a
result, both the thicknesses of the layers and the doping levels for
the n and p-type layers will vary at different points of the wafer.
As these two samples were taken from different parts of the wafer,

their doping levels and layer thicknesses will be different (23]. The

samples consisted of 20 p and n-doped layers, that is 10 perlods. The
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thickness of each layer for sample 405B was about 700A to 900A while
for sample 405C it was about 1000A to 1200A. The doping levels for
both the n and p-doped layers are difficult to determine but from past
experiments on grown wafers using resistivity measurements, they can be
8 -3
cm .

estimated to be in the range from 1x to 8x101 Although the

doping sources were set during crystal growth to give the same doping
level for the n and p-type layers, because of the non-rotated wafer,
their dopirg levels could still differ by as muck as a factor of S.
From resistance mapping of single n and p-type layers grown on wafers,
it was estimated that the variation of the doping levels (n and p-type
layers) across samples 405B and 405C were 14% and 17% respectively.
&: <& the calculated results in Figures 4.4 and 4.5 indicate that the
capacitance and AC resistance characteristics are not very sensitive to
the difference between Rn and Rp, and in order to reduce the number of
unknowns, we have assumed Rn = Rp. This assumption is proven to be a
falr approximation, as will be shown below, by the good fit between
theory and experiment. The range of frequency used in the impedance

4 6

measurement is 10~ to 10  Hz, while the reverse bias to the samples

varies from O to 2V.

Figure 4.6 and Figures 4.7 to 4.10 show the measured and
calculated results of AC resistance and capacitance for samples 405B
and 405C respectively, using parallel and serial bridge equivalent
circuits. As discussed earlier, at low frequency the measured parallel
capacitance in Figure 4.6 approximates the net depletion capacitance of
the layers of the superlattice. Similarly, at high frequency, the
measured serial AC resistance shown in Figure 4.6 reflects the net

conductance of the layers of the superlattice. Rcs i1s relatively large
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in value due to the fact that Wl (see Figure 2.4) has a dimension which
ranges from 90um to 140um. The theoretical results shown in Figure 4.6
were calculated using the model of Figure 4.3 with the number of lumps
N = 12, The values of their discrete elements are shown in Table 4.2.
Using (4.3), the 3 dB frequency is calculated to be approximately
3.1x10s Hz, which agrees well with experirental results.

The experimental and calculated results in Figures 4.7 to 4.10 are
for sample 405C at different frequencies and with an external bias
applied to the supérlattice. The theoretical results for N = 24 (shown
by fia)i ines) agree well with the meazured equivalent parallel
capacltance and AC resistance values shown in Figures 4.7 and 4.8,
respectively. The different values of the parameters used in the
calculation for different bias are given in Table 4.2. It is to be
noted that the values of N equal to 12 and 24 were chosen for sample
405B and 405C, respectively, because the calculated results have been
shown to approach a limit. Also, curve fitting was simply carried out
by trial and error and visual inspection. The increase in values of CJ
and RZ’ as the bPias 1is reduced, 1is consistent with diode
characteristics. The agreement between the calculated values given by
the theoretical model of Figure 4.3 and experimental results is poorer,
particularly at higher frequencies for the equivalent serial
capacitance and AC resistance (as illustrated in Figures 4.9 and 4.10).

These discrepancies mey be caused by the stray capacitances and
inductances introduced by the complex structure of the doping
superlattice shown in Figure 2.4.

The dotted curve in Figure 4.9 is the calculated capacitance as a

function of reverse bias voltage assuming capacitance is proportional
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Table 4.2. Values of the discrete circuit elements for samples 405B and
405C. These valuzs for samples 405B and 405C were used in
the calculations with N = 12 and N = 24, respectively.

Sample 405B 405C

T
Bias (Volts) =2 E -2 -1 0
Rsc + Rc {ohms) 35.30 68.13 f3.13 68.13
Rp or Rn (ohms) 3.44 8.26 8.10 7.90
RE (1x106 ohms) 0.32 0.82 3.00 7.00
Cj (nF) 0.7634 0.413 0.4613 0.6089




to (Vb+VblY4/3. where Vbl is 0.8V [64]. This proportionality starts
to deviate from the experimental data at about 2V reverse bias. This
implies that for the range of reverse bias used, the doping profile is
approximately linearly graded. In general, this fact does not
contradict ‘he secondary ion mass spectrometry (SIMS) measurements [23]
as shown in Figure 4.11. If the effective area of the p-n junction for
sample 405C is 0.35mm x 1.2mm, with 19 p-n junctions (20 layers), the
impurity gradient is estimated to be 3.4 x 1023 cm-4y with a depletion
‘Ing a thickness of about 570 A for each n-n junction. Figure
ws thace the net serial AT resistance of the superlattice (shown
vy . 2:sistance values at high frequency), varies by only about 5% when
the bias changes from 9V to -2V. This small change in the layer
resistance is confirmed by the transceriductance measurement. The
change in the layer resistance is largzly due to the decrease in the
conducting thickness in the layers as the depletion regions increase in
thickness when the reverse bias is increased. It is also assumed here
that RC+Rcs remains a constant as the reverse bias changes.

DLTS measurements on sample 405B were carried out by us at Dr.
Webb’s Laboratory at NRC and by Dr. Zukotynski at the University of
Toronto [74]. The measurements were carried out with capacitance
meters operating at 1 MHz (Webb) and at 10 KHz (Zukotynski). At 1MHz
no meaningful signal was observed. Figure 4.12 shows the DLTS results
at 10 kHz for sample 405B. From the curves shown in this figure and
using standard analysis [68], an estimated trap energy level of 0.03 eV
was obtained. It appears that the trap is a shallow one. However, it
is doubtful that DLTS run at 10 kHz would be able to measure such a

trap. Three possible reasons for these inconclusive results a.e: a)
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the capacitance transient is non-exponential which makes the standard
DLTS analysis invalid; b) the assumption that the capture cross
sections of the traps are independent of temperature is generally not
valid which may lead to a shift in the measured energy level relative
to the true level and c) the doping profile is spatially dependent
which may require a more sophisticated analysis than the one given by

Lang [68,75].
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Chapter S

Two-Dimensional Properties of Electrons

Considerable work on the two-dimensional properties of electrons
and holes in structures such as MOS inversion layers [76,77] and
heterostructures [78,79] has been carried out during the past 20 years.

It has been shown that the two-dimensional structures may demonstrate
ne+ effects which do not exist in the bulk of the material. Phenomena,
such as the quantum Hall effect and enhanced carrier motility, have
been shown experimentally to exist [80,5].

In this chapter and the next, the two-dimenz!opal properties of
electrons and holes in a Si doping superlattice are exgionrad. For ihe
two-dimensional study of electrens, Si doping superlattices with
narrow, highly-doped n layers and broad, lightly-doped p layers are
used. Similarly, for the holes, doping superlattices with =arrow,
highly-doped p layers and broad, lightly-doped n layers are used. Such
systems will result in the formation of subbands. As in the MOS
inversion layer [76], the carriar concentrations as well as the subband
energies can be controlled by an external bias. The main advantage of
using a doping superlattice instead of a MOS inversion layer in the
study of two-dimensiocnal properties of carriers is the absence cf the
Si/51 dioxide interface which is kiiown to introduce complications to
both theory and experiment. These complications arise, for example,
from carriers trapped in the surface states, from stress and strain due
to lattice mismatch, and from the difference in dielectric constants on

both sides of the interface [81].

This chapter is concerned with the study of two-dimensional
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properties of electrons. Section 5.1 studies the tunability of the
effective bandgap and carrier concentration in a Si doping
superlattice. Section 5.2 examines the effect of exchange-correlation
in the electron subbands. The effects of the physical parameters of
the doping superlattice, such as doping concentrations and layer
thicknesses, on the two-dimensional properties are also studied. (A

version of Section 5.1 and 5.2 has been published. See References 18

and 20)

5.1 Tuning the Effective Bandgap

In this section, we calculate the primary tunzbility of two of the
quantities (see Chapter 2), the electron concentration and the
effective bandgap, in a Si doping superiattice with narrow,
highly-doped n-layers and broad, lightly-doped p-layers subjected to an
external bias through selective contacts. Such a structure would be
expected to show quantization of the motion of the elecirons, but not
of the holes, in the narrow potential wells which are formed in the
ultrathin n-layers. The bandgap tunability is expressed in terms of a
dimensionless parameter, TB, defined as the ratio of the change in the
effective bandgap energy to the change in the difference between the
electron and hole quasi-Fermi energy levels. In the case of an external
bias, the latter is just the applied potential. The approach used is
to solve iteratively the one-dimensional Schrédinger equation for the
envelope of the electron wave function 1in the effective mass
approximation. We assume a self-consistent Hartree potential which
consists of the "bare" space charge potential modified by a thermal

distribution of the electrors in the bound states of the quantum well.
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In each run the electron concentration is held constant and the
corresponding external bias is determined during the course of the
calculation. In this way, the variation of the effective bandgap and
the electron concentration with the external bias can be determined
from a series of runs. As in a Si MOS structure [76], the multi-valley
bandstructure, the narrow potenti~l wells, and the anisotropic
effective mass of the electrons give rise to more than one subband
system. This makes the calculation of the subband energies more
invelved than in the case of GaAs doping superlattices, such as
reporied by Ddhler [81], particularly for non-zero temperatures when
more than the lowest subbands are filled.

The se¢-tion is organized as follows. The superlattice structure
being stud:-. and the basic assumptions about it are described in
Section 5.1.1. Details of the calculations are described in Section
S5.1.2 and the results are presented and discussed in Section 5.1.3.
The results presented will show the tunability at different ambient
‘rmperatures for various design parameters such as the doping

- centration, the thickness of the layers and the external bias. The

var.ation of the carrier cofcentration with the external bias is also

discussed.

5.1.1 Potential Wells in a Doping Superlattice

Flgure 5.1 shows a doping superlattice made of ultrathin layers of
n-doped Si alternating with relatively thick layers cf p-doped Si. The
doping proflles are assumed to be abrupt and the doping concentrations
ND and NA are constant in the respective doping layers. Assuming that

the n-doped layers (0 = |z] = dn/Z, |z¥d] = dn/2, ...) are totally
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Fig. 5.1 A doping superlattice structure with selective contacts for

external biasing.
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depleted of free electrons and using the depletion approximation for
the space-charge regions in the p-doped layers (81], the electric
potential Vb(z) is obtained from Poisson’'s equation. For the range
ofelectron concentrations in the n-doped wells (0 = n‘m/Nan s 0.4),
and the values of ND and NA used here, the depletion approximation can
be used in the computation of Vb(z). For the single well about z = 0,
Vb(z) is given by
© 2

'2—-8— NDZ for 0 s |Z| = dn/2

v (2) = e (5.1)
2
5 [ND(dn/Z) + (z-d /2) (Nd - N, (z dn/2))]

ford /2 s |zl sd/72 + z,
n n A

where the length z, of the space charge region in the p-doped material
is such that electrical neutrality is satisfied,

n'® =Nd -2Nz. (5.2)
Dn A A

In the above, n(Z) is the density of the electrons per unit area in the
n-doped layers, e is the electron charge and £ 1is the dielectric
permittivity. Various values of h(z) can be obtained by applying an
external bias betweeri the n-doped and the p-doped layers using

selective contacts (see Figure 5.1) and/or by optical excitation. The

. () _
maximum value of z is obtained for n 0; (ZA)max = (Nndn)/ZNA' In

all cases considered in this chapter, dp = (ZA)max'

The ultrathin and heavily doped n-layers form potential wells for

the electrons which are so narrow that the electron motion in the well
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along the 2z direction becomes quantized. This results in a
two-dimensional "subband" structure for the unrestricted motion in the
x and y directions, i.e., paralle]l to the Iinterfuces. We use the

envelope-function approximation which has been called "a simple,
accurate and very flexible method for the calculation of this subband
structure" [82]. In the given case, the electric potential of the
electrons generated in a well by biasing the superlattice structure
(see Figure 5.1) is added to the electric potential of the donors in
the computation of the self-consistent Hartree potential.

In contrast, due to the greater thickness of the p-doped layers
(5,000 A < dp =< 10,000 A) which is assumed in this chapter, all
physical properties of the holes in the p-doped layers will remain
approximately the same as in bulk p-type Si. In addition, the n-doped
potential wells for electrons shown in Figure 5.2 are sufficiently
isolated from one another so that the analysis can be confined to one
single potential well. The effects from coupled bulk bands at the

degenerate valence band edge in ultrathin p-type layers [21,22] will be

considered in Chapter 6.

5.1.2 Calculation of the Self-Consistent Potential and the Tunability
The effective bandgap Esz is defined [33] as the energy
difference between the lowest conduction subband and the edge of the
valence band
eff

EE'' =% -ev + E
g g o c,

(5.3)

11

where EZ is the bandgap of bulk Si, V° is the depth of the potential
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well measured from the edge of the conduction band, and Ec’11 is the
energy of the lowest conduction subband measured from the bottom of the
potential well. It is clear from Figure 5.2 that the effective
bandgap, aside from being indirect in k-space (due to the bulk

properties) is also an #ndirect bandgap in real space.

The electric potential V(z) in the doping superlattice structure

is obtained by the Hartree method [76]:
V(z) =V (2) + V (2), (5.4)

where VH(z) is the contribution to the potential by the free electrons

in the n-doped layer given by

aZVH(z) e 2
—_— ==Y n |y (2)] (5.5)
azz € ' 1) 1)

Here, nlJ is the two-dimensional electron concentration for the jth

subband of the ith subband set and

n'® = I n (5.6)

is the total two-dimensional electron concentration in a well.
The electron envelope wavefunctions wij (see (5.5)), and energy
eigenvalues Ec ) are obtained by solving Schrédinger’s equation in the

2 direction
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h2 a2
2

2m 8z
Z4

(5.7)

+ eV(z) wlj(z) = Ec.:j w‘J(z); i

L%
uwn
-

Equation (5.7) describes the wave envelope functions wl’ for the one-
dimensional motion of an electron in a well along the z direction. The
subscript j labels the number of the subband, i.e., the number of the
electron envelope wave eigenfunction for the quantized motion in the =z
direction. If the doping layers have (100) surface orientation in Si
with z denoting the direction perpendicular to the layer surfaces, then
i =1,2 label the two different effective masses (longitudinal and
transverse) of electrons moving in the z direction [76].

The nU are determined from Fermi-Dirac statistics,

nlj = D:J(E) PU (5.8)
where
Ec 1y - Er
P,, = kT In |exp|- — ] L (5.9)
. KT
B
and where
_ 1 _
DU(E) = 'n? 81 mxlmyl H(E Ec, U) (5.10)

is the two-dimensional density of states for the jth subband of the ith
subband set; g, is the valley degeneracy, m, and myi are the effective
masses in the x and y directions, respectively [76]. H(x) =1 if

x = 0, H(x) = 0 otherwise (see Figure 5.3). From (5.6), (5.8),(5.9)
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and (5.10) the Fermi energy EFn (measured from EC(O). see Figure S5.1)
of the electrons is determined.

The self-consistent calcula:ion starts with an initial computation
letting V(z) = Vb(z). Using (5.7) we determine the eigenvalues Ec,n
and envelope wavefunctions wlj. With these calculated values, and for
a given n(z). the electron concentrations nlj for each subband are
determined through (5.6), (5.8)-(5.10). These values are then used to
determine the Hartree potential VH(z) by (5.5), which in turn gives
rise to a new value for V(z) in (S.4). This process is repeated until
a self-consistent solution is reached. From this the final value of
the depth of the potential well, Vo. is found. The quasi-Fermi level
zp in p-doped bulk Si is found from Reference 83. The quasi-Fermi
levels e and zp , the depth of the potential well Vo. the bulk energy

gap EZ, and the external bias U are related by (see Figure 5.2)

eU=E +E -E - oV (5.11)
g Fn Tp o
where
el =2 -2 (5.12)
n P
EFn = an- EC(O) (5.13)
E =e@-E (d/2) (5.14)
Fp P v
eV° = Ec(d/z) - EC(O) . (5.15)

In order to provide a quantitative measure of the effectiveness of

the bandgap tuning, we introduce a quantity which we call the
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tunability, T}. We deflne "tunability" of the effective bandgap. TB, as
a measure of the change in the effective bandgap per unit change in the

quasi-Fermi level difference (see (5.11)),

AEeff
4

(5.16)

—j
in

AeU)

where the quasi-Fermi energy level difference corresponds to the
external potential, eU (in electron volts). Since for a given
temperature EZ remains approximately constant, it follows from (5.3),

(5.11) and (S5.16) that

-AleV ) + AEC '
TB = hd 1 . (5.17)
-A(eV ) + AE_ -~ AE

[} Fn

Fp

Since EFp can be assumed to be approximately constant for all cases

considered in this chapter, and at higher temperatures IAEC 11' <<

IAEVIv

AleV )
T = 2 (5.18)

Alev ) + |AE_ |
o Fn

The tunability of the electron concentration may be defined as the
ratio of the change in the electron charge in one period of the
superlattice to a change in the external bias potential. A
dimensionles§ parameter, TE, is obtained by dividing by the capacitance

of the same p-n-p layer in the depletion approximation, Cdpl;
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sen'®’ / teu
T = : (5.19)

Cap1

This tunability is related to the bandgap tunability by

aen'®’ / Alev )
T =T - ° (5.20)

Cdpl

In our calculations, TE never varies from 'I’B by more than 1% at
30°K and 3% at 300°K. This is an indication of the extent to which the
computed self-consistent potential varies from that obtained from the
depletion approximation. All numerical results and discussion of the
bandgap tunability given in the next section apply to the electron

concentration tunability as well.

5.1.3 Results and Discussion

The results of these self-consistent calculations show that the
value of the effective bandgap is essentially determined by the
electronic charge in the n-doped layers (see Figure 5.4). The small
differences between cases (b) and (c) shown in Figure 5.4 are explained
by the fact that in (b) the potential well is narrower and ND is
larger, which results in slightly higher subband energles. The results
in Figure 5.4 show further that the effective bandgap is not a very
sensitive function of temperature. However, we observe that both E:ff
and AE:ff/h(n(Z)/Nan) for a given value of n(z’/NDdn are somewhat

larger at lower temperatures. This is readily explained by noting that

with higher temperature the bulk energy bandgap EZ decreases, and in
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the n-doped potential well more electrons occupy energy levels that
belong to broader envelope wave functions. As a result, this makes for
smaller Hartree contributions to the potential well.

Figure 5.5 shows an almost linear relation between the external
bias and some of the subband energy edges. For example E11 and El3
belong to the first and third subband of electrons with the heavier
effective mass in z direction. E21 and Eazbelong to the first and
second subband of electron with the smaller effective mass in 2z
direction.

Figures 5.6 to 5.8 were calculated for small values of
concentrations of electrons in the n-doped wells, 0.1 = nm/NDdn =
0.2. Figure 5.6 demonstrates that for a constant planar donor charge
density Nan, the tunability of the effective bandgap is largely
independent of the thickness of the n-doped layers. Figure 5.7 shows
that the tunability increases with increasing planar charge density
Nan. This is due to the fact that IAEFnl becomes a smaller percentage
of A(eVo) as the charge density, Nndn' in the n-doped layers lncreases.
Figure 5.8 shows thet the tunability decreases as temperature
increases. The results in these figures are consistent with (S.18):
for lower temperatures, IAEFnl can be neglected against A(eVo) and
consequently TB approaches unity; for higher temperatures, lAErnI
cannot be neglected against A(eVOL

The calculated temperature dependence of the tunabilities can be
understood in terms of the energy dependence of the electron
wavefunctions obtained. The value of A(eVo) in (5.18) is determined
mainly by Nan and is relatively insensitive to temperature. At low

temperatures, the electrons occupy only the lowest subbands and 'AErn'
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(2)

varies little with n~'; hence A(eVo) dominates over IAEFnl and the

tunability is close to unity. At higher temperatures, some of the
electrons will be found in more energetic subbands (see (5.9))
resulting in larger values of IAEFnI and reduced tunability. The
.carrier tunability, Ts' directly measures the dynamic capacitance of a
superlattice layer. A decrease in the tunability means that fewer
electrons are injected into the superlattice at higher temperatures for
a given external bias. In the case of optical excitation, it means
that the measured change in the external potential due to an increase

of carriers should be greater at higher temperatures.

5.2 Exchange-Correlation Energy in the Subbands

In Section 5.1, self-consistent calculations of the electron
energy levels in a doping superlattice were based on the Hartree
approximation [81,18], which does not include the exchange interaction
of the electrons. This approximation is acceptable when the average
kinetic energy of the electrons is much greater than the average
interaction energy [84]. When this is not the case, the Hamiltonian
which determines the single-particle wave functions should include the
exchange Iinteraction in some approximation. Ruden and Ddhler [(85]
included the exchange energy, in the form of a Kohn-Sham potential
[86,87]), 1in calculations for GaAs doping superlattices. For low
concentrations, thelr results indicated a change on the order of 10% in
the splitting between occupied and nearest-neighbor subband energies
when the exchange interaction was included in this way. As shown in
the next paragraph, it is expected that the effect should be at least

as prominent in Si doping superlattices. Moreover, it has been shown
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that the exchange interaction is important in Si MOS structures
{88, 89]. The influence of the exchange interaction on the electron
energy levels in Si and GaAs doping superlattices is the toplc of this
section.

The wave functions and energies obtained by Ruden and Ddhler (84]
were calculated self-consistently as in the Hartree approximation.
Since these calculations are carried at T = 0°K, the problem of
freezing out of the donors is first considered in Sectien 5.2.1. The
criteria that determine the values of the doping level of the n-type
layers used in a doping superlattice are also discussed. In Section
5.2.2, self-consistent calculations of the electronic band-structure in
both Si and GaAs as a function of the charge-carrier concentration are
presented. In addition, an improved form of the exchange potential as
described by Ando [88] is used. A discussion of the results is given

in Section 5.2.3.

5.2.1 Freezing out of the Donors

As the calculation is carried out at T = 0°Kk, the problem of
freezing out of the carriers cannot be ignored. As suggested by
Priester et al. [19), the existence of free carriers will decide
whether the space charge model or the self-consistent calculations
should be used. The former method of calculation assumes that all free
carriers are frozen out and there exists a distinct impurity band. The
latter method assumes the existence of a free carrier gas, a phenomenon
which will occur when the impurity bands merge into the continuum. To
date, there has been no work done on the conditions for the existence

of an impurity band in a quantum confined system at T = 0°K. Therefore
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as in Priester et al. [19], we will use the conditions given by the
bulk system as a guide to set the lower limits to the doping levels for
the existence of free carriers. This assumption is supported by the
fact that the theoretical values of the carrier concentrations in GaAs
nipis have been shown to be in good agreement with experimental results
and that there is no indication that they are affected by its quantum
cenfined system [49]. Hence the criteria for whether the space charge

model or the self-consistent calculations should be used are [19]:

(a) for the formation of the impurity band;

»*
P;’3a <0.13 (5.21)

(b) for the merging of the impurity band into the continuum;

»
P;’aa > 0.43 (5.22)

»*
Here, PI is the doping concentration and a is the Bohr radius given by
a = aem/m (5.23)
r o

where m./mo is the effective mass of the electron (in units of the
ordinary electron mass) in the energy subband under consideration, eris
the relative dielectric constant and a, is the Bohr radius.

In the case for GaAs and Si doping superlattices, minimum doping
levels required in which donor impurity bands merge into the conduction

band continuum are 8>c10160m-3 and 2x10190m-3, respectively. In the
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calculations to follow, the doping levels chosen will assume the

merging of the bands.

5.2.2 Self-Consistent Calculations

Due to the many-valley bandstructure of Si, the basic equations
used for the computation of the subband energies must be expanded as
follows. The one-particle Schrddinger equation including the exchange
and correlation potential is given by:

-n® 42
[ = az° * eVb(z) + eVerf(z)]wij(z) =E ¢ (2) (5.24)

mzl dz c, 1) 1)
where j = 1,2,3.. is the jth subband of the 1*" subband set, and for Si
(100), i = 1,2 correspond to the two different effective masses of
electrons moving in the z direction. Vb(z) is the bare potential given
by (5.1) (based on the depletion approximation) whose values will

depend on the parameters of the superlattice such as layer widths and

doping concentrations [18,85]. Verf is the "effective potential”,

verr(Z) = VH(z) + Vex(z) (5. 25)
where
2 1/3
vV (z) = =< [3" “(2)] 8 (5.26)
ox dn"e 81

Here, VH(z) is given by (5.5) and n(z) 1is the local electron

concentration given by
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_ 2
n(z) = }: nljlwlj(z)l (5.27)
1)

where n, is the two-dimensioral electron concentration for the jth
subband of the ith subband set, and where g, is the valley degeneracy
of the ith subband set. Everywhere, we are using the effective-mass
approximation and the envelope method [18,84] to separate variables in

the wave functions. In (5.26), B is the correlation enhancement factor

given by

0 (<)
dw 1 (2+q)2+w2

B=1+|dq ——(1 ]ln (5.28)
J J 4y e(q, iwq) [(2—q)2+w2]

0 0

where q is the wave vector and the dielectric function e(q, iwq) is
given by Ando [88], but here excludes the interaction with images of
other electrons in a neighbouring layer of a different dielectric
constant. We assume that the effect of the anisotropy of the
effective mass is small [18] for Si. At T = 0, only the lowest energy
band will be occupled (the first subband in the first set of subbands)

for the cases considered here.

5.2.3 Results and Discussion

From (5.24) to (5.28) above, numerical results have been obtained
for wave functions and subband energies of Si and GaAs doping
superlattices for three different cases: pn’p. pnpn, and nipi. 1In all
of these cases, we have only presented the energy levels for the lowest

three subbands. For the large spatial separations of the wells
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considered here the wells are essentially "single" wells, that is there
is minimal overlap of the wave functions between neighbouring wells.
For comparison, we also present results obtained by setting B to unity
in (5.26) in which case the exchange potential is identical to that
used by Ruden and Ddhler [85] in their calculatlions for GaAs.

Figures 5.9 and 5.10 show results for the subband splitting in Si
and GaAs pn*p doping superlattices. We have assumed the same doping
concentrations and layer thicknesses in both cases. Figures 5.11 and
5.12 illustrate the subband energies and the self-consistent potential
wells. As well, the wavefuction of the lowest subband is shown. Other
results for different electron concentrations in this type of
superlattice are presented in Table S.1. Table 5.2 summarizes some
results for pnpn and nipi superlattices.

Qur numerical results show that the exchange-correlation effect
plays a more important role in Si than in GaAs doping superlattices.
This can be explained by the fact that the S1 has a much higher
effective mass than that of GaAs which results in more a localized wave
function as can be seen by comparing Figures 5.11 and 5.12. In turn,
this gives rise to a higher electron concentration at the center of the
potential well. Consequently, the exchange-correlation potential is
larger at the center of the well in Si doping superlattices than in the
GaAs type. Our results seem to imply that while the higher valley
degeneracy in Si tends to reduce the Kohn-Sham potential, it is more
than offset by the stronger localized wave function.

Figures 5.9 to 5.12 and Tables 5.1 and 5.2 indicate that the
correlation enhancement factor has a more significant effect in Si than

in GaAs doping superlattices. When it 1is included 1In Si, the
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correction to the subband splitting energlies due to
exchange-correlation is increased by approximately 20% whereas in
GaAs it has virtually no effect. Again, this is due to both the higher
values of the effective mass and the valley degeneracy of Si which
results in a higher value of B. Higher temperature effects have not
been considered here. However, as in the MOS structure, it is to be

expected that the exchange-correlation effect will be reduced at a

higher temperature [90].
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Table 5.1 The correction to the subband energies for different values

of electron concentration in a pn*p doping superlattice when
the exchange energy and the correlation enhancement factor is
included. AExs is thce difference between the subband energy

calculated in the Hartree Approximation and that calculated
using the Kohn-Sham potential. 1.\EZCEF is the difference when

the correlation enhancement factor is included. ND =
2%10"%cn 3, N, = 2x107em 2, d =20 Aandd = 2000 A

Host AE_ (meV) AE (meV)
2) kS ECF
Material|n /Nan 0.02 0.1 0.4 0.02 0.1 0.4

11 5.76 9.76 14.63 9.16 14.06 19.71
Si .21 4,82 8.13 12.08 7.85 12.00 16.64
Ec 12 4.07 6.83 10.00 6. 88 10.43 14,24
1 5.06 8.56 12.79 5.83 9.46 13.80
GaAs Ea 3.42 5.76 8.40 4,08 6.55 9. 29
E3 2.39 3.98 5.61 2.95 4,66 6.35
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Table §.2 Same as Table 5.1 except for pnpn and nipi doping
superlattices.
Si GaAs
AExs(meV)AEscr AEKS(meV)AEECF
pnpn
NA=ND=2x10190m_3 E_,,| 18.28 23.82 17.88 19.01
d =d = 250 A E 16. 15 21.32 13.58 14. 60
n p c,21 2
n‘®= 3x10'2cn™? E_,,| 13.97 18. 86 10. 90 11.85
nipi
N,= ND=2x1019cm‘3 E | 18.50 24.05 17.13 18.24
d=d=404 E 15. 89 21.00 11.88 12.88
n p c,21 2
d = 400 A . ga| 13-93 18.80 8.17 9.02
n'?)=3.2x10'%cm™2
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Chapter 6

Two-Dimensional Properties of Holes

Much of the earlier work concerning two-dimensional hole gas has
been done on metal-semiconductor-oxide (MOS) structures. With the
progress made in molecular beam epitaxy, a number of different kinds of
two-dimensional structures, using one or more materials, have been made
and studied [84]. Structures such as MODFETs (modulated doped field
effect transistors), heterostructures, and doping superlattices are but
some examples.

In general, the calculation of the subband energies for holes in a
quasi 2-D structure is much more complex than for electrons due to the
fact that the hole bands couple with each other. The 2-D subband
structure in a p-channel inversion layer in a Si MOS transistor was
first calculated by E. Bangert et al. [77,91] and by Ohkawa and Uemura
[92]. In this chapter, a different method (developed by Dr. W.
Allegretto, U. of A.) for such calculations in quasi 2-D Si structures
is presented. The results of calculations of the subband energies and
the density-of-states mass of holes of a p-channel Si inversion layer
at T = 0°%K are described as an illustration of the method. This method
is also applied to the doping superlattice structure. The main
advantage of investigating a doping superlattice rather than an
inversion layer in a MOS structure is outlined in Chapter S.

Two-dimensional properties of electrons in GaAs [81] and Si [18]
doping superlattices have been investigated theoretically but so far no
work has been done on the two-dimensional properties of holes. It is

the objective of this work to attempt to fill this gap. As illustrated
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both theoretically and experimentally, the confinement of holes in the
inversion layers has the »hility to alter and to reduce the hole masses
as compared to their bulk values, an effect which may be important when
one considers the transport properties of the holes [77]. Results for
the inversion layers indicated that hole masses can be reduced with
lower hole carrier planar density, here referred to as the hole
concentration. However, the problem with the inversion layer is that
the depth of the electric potential and the degree of confinement of
the holes increases with hole concentration. This makes it difficult
to work experimentally at low hole concentrations. Doping
superlattices, however, have the opposite effect; that is, the depth of
the electric potential increases with decreasing hole concentrations.
Since the two-dimensional holes concentrations can be easily controlled
by external bias via selective contacts [26], hole masses at low levels
of hole concentrations can be studied, a region which may be
interesting due to the possibility of reduced hole mass.

In this chapter the results of the calculations of the subband
energies and the density-of-states mass of holes in a Si and Ge doping
superlattices at T = 0°k are described. Due to the fact that our
calculations were carried out at low temperature, we first address the
problem of the freezing out of the acceptors. The criteria that
determine the values of the doping level of the p-type layers used in a
doping superlattice are also discussed. The effect of the three
physical parameters of the doping superlattice, namely, the doping
levels of the p and n-type layers and the thickness of p-type layers on
the density-of-states masses of holes are investigated. Finally, we

will compare the properties of the 2-D hole gas in a doping
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superlattice to that of the MOS structures. (A version of this chapter

has been accepted for publication. See References 21 and 22)

6.1 Freezing Out of the Acceptors

The self-consistent calculation of the subband energies in a quasl
2-D doping superlattice structures will depend on the existence ot free
carriers. Due to the highly complex nature of the problem, our
" ecalculation is confined to the case where T = 0°K. At non-zero
temperature, the problem involves having to handle not only a large
number of subbands but also subbands whose density-of -states cannot be
determined by explicit analytical formulae.

Since our calculation is carried out at T = 0°k, the problem of
freezing out of the carriers has to be taken into consideration. As
mentioned in Section 5.2.1, the existence of free carriers will decide
whether the space charge model or the self-consistent calculations
should be used. Expression (5.21) has been used to calculate the
maximum doping concentration for which a distinct impurity band will
exist. Below this concentration, the carriers are frozen out and
space-charge model should be used. Likewise, expression (5.22) has
been used to calculate the minimum doping concentration for which the
acceptor impurity band will be merged with the valence band continuum.
Above this concentration, there will be free carriers and
self-consistent calculations should be used. Between these two
concentrations, it is not clear which model should be used. The values
of these concentrations for GaAs, Si and Ge are given in Table 6.1.

In the next section, the new method of computation will be

described. It will be shown that the results calculated by the method
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Table 6.1 Doping levels for the formation and merging of the impurity

bands as described in the text.

Host £, m./m° Maximum doping Minimum doping
Material concentration concentration
for space-charge for self-
model consistent
calculations
(cm-3) (cm-s)
GaAs | 12.5 | 0.5 9x10*7 3x10*?
st 11.7 | 0.49 1x1018 ax101?
Ge 15.8 0.28 8x1016 3x1018
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for the MOS inversion layer compares favourably with experimental data,
as well as with those calculated by other authors. Most of the
calculation for the subband energies of Si and Ge doping superlattices

are for the ranges of doping concentrations where band merging takes

place.

6.2 Method of Computation

We begin by using the Kohn-Luttinger 6x6 matrix Hamiltonian [77]
and the effective mass approximation. Using the Hartree approximation,
the subband energies can be obtained by solving the Schroedinger and

Poisson equations self-consistently. Specifically, the equations are

18 _
[H[kx,ky, m] . eV(z)]lﬁv,k L) = E K, (@) (6.1)
X Yy X Yy
where H is the 6x6 Kohn-Luttinger Hamiltonian [94] (see Appendix B).
The suffix v denotes the index of the subband.

V(z) in equation (6.1) is given by

viz) = Vb(z) + Vﬂ(z) (6.2)
where
8%V (z) e
H - } (2) 2
2 € «,P |wv.k ,k(Z)I (6.3)
dz Xy
oCC.,
states

where a is the occupancy factor. At T = 0°K the occupied states are

those with E(kx,ky) = EFp the Fermi energy. This defines contours in

kx—ky space where the number of states available within the total area,
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A, enclosed by the contours is related to the total hole concentration,

(2)
p . by

2 1
P 2 (6.4)

For the MOS inversion layer [77], Vb(z) is given by

62Vb(z) e
——=— (N - N) (6.5)

2 A

4z

For the doping superlattice using the space charge model, that is,
when P}’aa. < 0.13 (see (5.23), V(z) can be found by solving the
Poisson equation if we assume abrupt and constant depletion regions in
the doping superlattice [18]. From (6.1), the subband energies as a
function of hole concentration are obtained.

In the case of the self-consistent calculation for the doping
superlattices, that is, when P;laa' > 0.43 (see (5.24), the
determination of V(z) and the subband energies becomes much more

complicated. The "bare" potential Vb(z) in (6.1) in the doping

superlattice structure is

(e | d
Zea? 0s|z| ‘%
e( 1%, d d . d d
Yy (2)=155{N, _;J +[z__2_p] [NAdp-ND [z-—ZJ]} —zp""IZIS‘%*Zn
e ’dp’ 2 dp dp
e N, = +zn[NAdp-NDzo]+[NAdp-2ann][Z-zo-—i]} |z|>—-2-+zD

(6.6)
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where the depletion length z, in the n-type layers is chosen to satisfy
electrical neutrality,

2 _ _
p® = Nd - 2Nz (6.7)

@ can be controlled by external

As described in Reference 81, p
bias via the selective ohmic contacts on the p+ doped layers and the n
- type bulk. The external bias is given by (18],

= o - -
eU=E +E ~-E_-¢eV (6.8)

where U is the external bias in volts and E: is the bulk energy bandgap
whose value is dependent on the doping level of the p-type layers and
the n-type bulk [95]. EFn and EFp are the gquasi Fermi energy levels of
the p-type layers and the n-type bulk respectively. Vo is the depth of
the electric potential given by (6.2). In general, increasing the
forward or reverse bias of the structure tends to increase or decrease

)

the value of p(2 respectively. The limit to the reverse bias will

) 5 0 and that the voltage

depend on two factors, namely that p(2
applied across the p-n junction must not exceed the breakdown voltage
whose value is also dependent on the doping level of the n-type bulk
[96]. It is to be noted that the doping superlattice structure
considered in this chapter has narrow p-type and wide n-type layers so

that each quantum well is isolated and the problem can be treated as a

single-well problem {81].
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The method of computation can be described as followed. Equations
(6.1) and (6.2) constitute a nonlinear system which is to be solved
iteratively subject to suitable boundary conditions. Assuming an

initial V(z), (6.1) is solved for wv K Kk (z) according to the scheme

x'y
described below. Equation (6.2) is then solved by a second-order
integration routine and a new V(z) is generated. The process is

continued until consistent values of V(z) are obtained. It is assumed
at this point that the holes populate only the highest (ground) subband
which, because of spin, splits into two subbands, v = 1 and 2.

Standard procedures for solving (6.1) involve the expansion of wv
into a truncated series of Airy functions [77], or more complicated
expansions [92]. We have chosen to discretize (6.1) by means of a
"Finite Box" method, briefly described as follows. The 1-D interval

{a,b} is subdivided into I subintervals and we set

U=ci ¥ (X)+ ey x)+e w (x) (6.9)

in the ith subinterval where {wi} is a system of piecewise linear
5T

functions as represented in Figure 6.1, while 31= (cz,.. N are

vectors to be determined. We construct about every interior node x1

the cell B1 = [x1_1/2.x1+1/2] and replace How = EIy by the matrix
equation:
-~ 1_x 7| B @ex = o P_:x ;| Fax (6. 10)
1+1/2""1-1/2 ° 1+1/2771-1/2
B1 Bi

The division of (6.10) by the factor (X4 41,2 = ¥Xj.1/p) 1S to made the
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Fig. 6.1 Piecewise linear function of .
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matrices symmetrical. Substituting (6.9) into the leit hand side of
{6.10) gives the matrix expression for i = 1,...,I-1,

AE(i)c, , + AC(i)e, + AW(i)c

1 i+’

where AE(i), AC(i), AW(i) denote 6x6 matrices whose components come
from integrating the components of Ho(ﬁ) over each cell Bi' The same
procedure applied to the right hand side of (6.10) merely gives EEi.
For computational convenience, the calculations are actually carried
out by integrating over each subinterval rather than over each cell, so
that the matrices AE, AC, AW are constructed in two steps; that is by
first integrating over [xi-l/z’xi] and later over [xi'xi+1/2]' As
these matrices are constructed, they are immediately assembled into a
global matrix A by means of modulo 6 arithmetic calculations.
Specifically, we define the new vector x by x(6i+j) = cf for i =
0,...,1and j =0,...,5, where cg denotes the jth component of Ei' The
entries of AE(i), AW(1), AC(i) are mapped accordingly so that (6.10) is
discretized into a Hermitian complex matrix eigenvalue problem:

AX = AX (6.11)

We note that the global matrix A is sparse and only the nonzero entries
are stored. It is an elementary procedure to improve the accuracy of
the approximation by increasing the number of grid points (and thus the
order of A). The bottom of the spectrum of (6.11) is computed by means
of IMSL routines and the special form of (6.11) is of great importarce

in reducing computational effort.



The process of calculation begins by guessing an initial Vo(z) and
iteratively solving (6.1) and (6.2) with kx = ky = 0. Then the new
V(z) is used to start an iterative solution of (6.1) and (6.2) for
several values of kx with ky = 0 to estimate the effect of different
shapes of wv (v = 1,2) at different k’s on the solution of (6.2). The
contour in kx-ky space is assumed to be square and (6.4) is used to
find kxmax at which Ev(kxmax’O) = EFp' An improved V(z) 1is thus
obtained.

Next, more detailed calculations involving kx and ky are done.
Radial coordinates are used in the kx—ky plane with Akz and A8
constant. At each 6 the value of k2 is determined which gives E1 = EFp
in the solution of (6.1) by using a bisection method where the ends of
the bracketing interval are always on grid points. When the interval
is one grid unit, linear interpolation 1is used. In this way,
calculations are restricted only to the regions of interest and values
are saved for future use. When the EFp contours for E1 and E2 have
been determined, the hole concentration from (6.4) is compared with the
desired value and used to predict the next guess of the Fermi energy
and the corresponding kx value. This whole procedure is repeated until
the Fermi energy converges. It is to be noted that due to the symmetry
of the Fermi contours, computations are only needed for 0 = 8 s n/2.

To hasten the convergence process, the next guess is obtained by
an approximate secant method. The change of area with kx, AA/Akx, is
estimated by calculating the area inside the boundaries of the two
rectangles closest to the previous Fermi contours. The change in kx

can then be found knowing the desired change in A. The next EFp is the

value of E1 from (6.1) at a new kx, and ky = 0.
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The Fermi energy is then compared with the energy of the second
subband (E3 and EQ) at kx= ky= 0 to determine whether this subband will
be occupied. If so, the whole process is repeated but now there are two
pairs of contours to find. Now the sum of the enclosed areas must
agree with (6.4).

The method described above reduces considerably the computational
intensity of the problem - indeed it may make the difference as to

whether a given simulation is actually feasible.

6.3 Density-of-States Masses

Once the calculations have converged, the density-of-states masses
of holes can be obtained. The density-of-states masses of holes for
each subband (experimentally shown to be approximately equal to the

classical cyclotron masses [77]) can be defined as [78]

m = — — (6.12)

where, Av denotes the area inside the ‘! Fermi Contour. In doping
superlattices with symmetric electric potentials and no magnetic field,
the doubly degenerated subbands do not split at higher values of kx,

» *
ky. Then in the first subband, A1 = A2 and m = m,. Similarly, A3

1
- *
A4 and m, =m belong to the second subband of the system. Whether

this second subband is the first of the light hole subbands or the
second of the heavy hole subbands can be resolved by identifying the
shape of the envelope functions wa and w4. This 1dentification

procedure can be also applied to the next few populated higher
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subbands.

6.4 Results and Discussions

Figures 6.2 and 6.3 compare our computed results with the
experimentally determined cyclotron masses for a Si p-channel Inversion
layer with different surface carrier concentrations at the (110) and
{100) surfaces, respectively. Due to band splitting, there are two
different masses for the heavy and the light holes as shown in Figure
6.2. Observe that for the (110) surface, our results are in good
agreement with the experimental results obtained in Reference 77 if one
only considers the smaller values of the heavy holes. A similar result
was obtained in Reference 92. In the (100) surface, Figure 6.3, the
mean value of the heavy hole masses is in reasonable agreement with the
experimental data. Our calculations show that for the (110) and (100)
surfaces, the population of the second subband occurs at hole

2 and 2.1x10120m_2,

concentrations of approximately 2.9x1012cm-
respectively. Figure 6.4 shows the calculated self-consistent
potential. Also shown are the rms envelope functions and energy levels
of the three highest subbands calculated at kx= ky= 0.0 for the hole

2

concentration of 8.6x1012cm- . Figure 6.5 shows the Fermi contours at

zcm"2 for (100) surface. These results

the hole concentration of 5x101
are consistent with those calculated results given in References 77, 91
and 92.

The above computations and those to follow were carried out using
twenty-one grid points in the z-dimension for both the space-charge

model and the self-consistent calculations. The accuracy of our

calculations was determined not only by comparison with experiments for
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the M0OS, as 1illustrated above, but also by considering further grid
ref inement. For example, for the ranges of hole concentrations
considered here, the density-of-states masses, subband energies, and
electric potential calculated by twenty-one grid points yielded no more
than 3%, 1% and 0.05% difference in results, respectively, when
compared with the results calculated by thirty-one grid points.

The subband energies, Fermi contours and the dernsity-of-states
masses of a doping superlattice were calculated for surface orientation
of (100) and (1106}, and using Si and Ge as the host material. The
calculations also involved the use of different values of the physical
parameters of the doping superlattice, such as the thickness of the
p-type layers and doping levels of the p and the n-type layers.

Figure 6.6 shows the electric potentials and the respective
envelope functions at k = ky = 0.0 and at different hole

X
concentrations for a Si doping superlattice with NA = 8x1019 cm_3, ND m

1x1019 cm-3 and d;= 4nm. This high level of doping of the n-type
layers will result in the merging of the impurity band with the valence
band and at T = 0°%, no freezing out of the acceptors may occur. We
observe that compared to the MOS inversion layer, the electric
potential flattens and the envelope functions broaden with increased
hole concentrations. Figures 6.7 and 6.8 show the changes in the
subband energies with hole concentrations for a Si doping superlattice
using the same parameters as above. As in a MOS inversion layer, a
different surface orientation greatly affects the characteristics of
the subband energies. For example, the third subband energy for the

(110) surface (see Figure 6.7) can be determined from its envelope

function to be the second subband of the heavy holes. In the case of
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the (100) surface, the third subband is the highest subband of the
split-off holes. The population of the second subband energy of the
holes for the (110) surface occurred at a hole concentration of 4.8x

1012 cn2 and at 3.2x10%2

cn 2 for the (100) surface. The values of the
hole concentration at which the second subband energy is populated is

usually higher for the (110) surface than for the (100) surface, a
property which is similar to the MOS inversion layer. Unlike the MOS
inversion layer, these values of the hole concentration vary with
different values of the parameters of the doping superlattice. The
subband energies tend to converge with increased hole concentrations;
whereas they tend to diverge in the case of the inversion layer. Note
that in the figures, E11 and E12 represent the energies of the first
and second subbands of the heavy holes and sz and E31 represent the
energies of the first subband of the light and split-off holes,
respectively. Figures 6.9 and 6.10 show the subband energies varying
as a function of k values for surface orientations of (110) and (100)

at a hole concentration of 3x10120m-2.

In contrast to the MOS
inversion layer, and as mentioned in the preceding section, the doubly
degenerated subbands do not split with increased values of kx or ky.
Similar to the MOS inversion layer, *he subband energies for the (110)
surface are highly non-parabolic. The extent to which these subbands
are separated at kx = ky = 0.0 will depend on the values of the hole
concentration (see Figures 6.7 and 6.8) as well as the values of the
physical parameters of the doping superlattice.

Figure 6.11 illustrates the density-of-states masses of holes for

the two surface orientations. For the range of hole concentrations

considered, only the first of the heavy and light hole subbands are
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populated. Hence, the masses shown in Figure 6.11 ana other figures
are basically masses of the first subband of the heavy and/or light
hole subbands. Observe that the masses of the holes for the (100)
surface are more sensitive functions of the hole concentration than for
the (110) surface. However, as shown in Figures 6.12 and 6.13, the
hole masses for the (100) surface are less sensitive to changes in the
thickness and doping level of the p-type layers. For any given hole
concentration (in the range given in Figure 6.11), the hole mass is
smaller for the (110) surface than that for the (100) surface. Notice
from Figure 6.12 that beyond certain values of the thickness of the
p-type layers, and depending on the value of NA, the hole masses become
fairly constant. These values will depend on the doping level of the
p-type layers. Figure 6.12 and 6.13 also show that the sensitivity of
the hole masses to the values of the thickness and doping level is
greater for higher hole concentrations. It is to be noted that only
the heavy holes are usually considered as they are normally the
dominant carriers as experimentally observed in the MOS inversion
layers [77].

The calculations were repeated for Ge doping superlattices. Flgure
6.14 shows the subband energies as functions of hole concentration
calculated both by the self-consistent approach and the space charge
model for a superlattice with NA = 8x1018 cm_a, ND = 1x1017 cm"3 and dp
= 6 nm. Because of the smaller value of the hole masses in bulk Ge,
the required doping level to avold freezing out of the acceptors s
lower than in Si. The space-charge model is used here, not because the
acceptors are frozen out, but rather to compare the results with the

self-consistent method. At very low hole concentration levels, the
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space charge model may give a good approximation to the self-consistent
calculations. This is not surprising given the fact that the
self-consistent potential 1is corrected by the Hartree potential whose
magnitude will depend on the value of the hole concentration. Hence,
the smaller the value of the hole concentration, the smaller the
Hartree correction to the electric potential. As a result, the
electric potential given by the self-consistent calculation and by the
space-charge model becomes less significantly different. As for the
density-of-states masses, they are again calculated by the
self-consistent method. Unlike the Si doping superlattice, the Ge hole
masses of the first subband for the (100) and (110) surfaces converge
to almost a common value as the hole concentration decreases (see
Figure 6.15). Aside from this, the properties of Ge doping
superlattice holes are similar to those of Si doping superlattices.
Figures 6.16 and 6.17 show that the hole masses of the first
subband are more sensitive functions of the layer thickness and doping
level for both the (100) and (110) surfaces than in Si. (see Figure
6.12 and 6.13). This can be attributed to the fact that smaller doping
levels of the p-type layers are used for the Ge doping superlattice.
For both the Si and Ge doping superlattices considered in Figures 6.11
and 6.15, the doping levels of the n-type bulk do not seem to have any
noticeable effect on the hole masses. However, as the thickness of the
p-type layers narrows, this effect becomes more prominent. This is
illustrated in Table 6.2. Notice that for dP = 6 nm, the hole masses
hardly change even with a three orders of change in magnitude in the
n-type bulk doping level. As NA increases at constant dp and hole

concentration (as a percentage of NAdpL it was determined that the
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Table 6.2 Density-of-States Masses of the first subband in a (110) Ge

doping superlattice with different doping level of the n-type
bulk and for two different thicknesses of the p-type layers.

18

N = 4x10°° cm
A

L]
Density-of -States Hole Masses (m /mo)

Hole d=3nm d =6 nm
P P
Concentration -3 -3
11 -2 N (em ™) N (cm ™)
{(x10°" ecm 7)
1x10%  1x1017 1x10'8| 1x10'® 1x10'7 1x10'®
1.0 0.099 0.099 0.131 0.091 0.091 0.092
3.0 0.188 0.193 0. 302 0.139 0.139 0.145
5.0 0. 305 0.311 0. 358 0.219 0.220 0.231
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change of hole mass with n-type doping level is less sensitive. For
example, in the case of Si with NA = 8x1019 cm-a and dp = 2nm, there
are hardly any noticeable changes in the hole masses when ND varies

from 1x1019 cm-3 to 1x1017 cm-3 and for hole concentrations of 1x, 3x

and 5x10'% cm”2.

It is to be noted that the hole concentrations indicated for some
of the parameters values used in Figures 6.12, 6.13, 6.16 and 6.17 and
Table 6.2 may not be physically realisable due to the limit imposed by
the breakdown voltage. Nevertheless, these results are useful in
illustrating the general characteristics of the masses of holes as
functions of the physical parameters of the superlattice. From these
results, it can be generally concluded that the product of the doping
level and the thickness of the p-type layers, NAdp, here referred to as
the acceptor charge density, plays the dominant role in dztermining the
characteristics of the hole masses. Hole masses generally increase
with hole concentrations. When the hole concentration is a small
percentage of the acceptor charge density, the hole masses remain
independent of the thickness of the p-type layers dp. This can be
explained by the fact that as the computations are carried out at T =
0°K, the self-consistent calculation is sensitive to only a small part
of the electric potential, that is to the peak portion of the potential
(see Flgure 6.6). For a given hole concentration, the shape of this
potential 1s going to remain approximately the same if NA and dp are
large. Since the hole masses depend on the electric potential and the
Fermi energy (which is dependent on the hole concentration) this
explalns the constant value of hole masses for a given hole

concentration at large values of dp. The values of dp at which the
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hole masses becomes constant for a given hole concentration will
greatly depend on the value of NA as illustrated in Figures 6.12 and
6.16. The smaller NA is, the larger dp will be before the hole mass
become independent of dp. As the value of NA changes, so the shape at
the peak of the electric potential changes for a given hole
concentration. Hence the hole masses are affected until a point where
the hole concentration becomes either such a small or such a large
percentage of NAdp that the values of the hole masses begin to saturate
(see Figure 6.15 for very small value of hole concentration).

The same reasons can be used to explain the effect of the doping
level of the n-type bulk on the hole masses. As long as changes 1in
this doping level do not affect the shape of the peak portion of the
electric potential, the hole masses will not be affected. Hence, for
alarge value of NAdp and small hole concentration, changes in the
doping level of n-type bulk should not affect the hole masses. In
general, for a given hole concentration, the hole masses increase as
the product NAdp decreases, or in other words, as the hole
concentration expressed as a percentage of NAdp increases.

The above calculations do not Include the effect of
exchange-correlation energy. This effect, however, is shown to be not
significant for the 2-D electron gas in the Si doping superlattice
[20]. Moreover, it has been shown that exclusion of the
exchange-correlation energy may affect the subband energies but has a
smaller influence on the density-of-states masses of the holes,

particularly at high hole concentrations [97].
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Chapter 7

Conclusions
This prois-i *»zz attained a number of achievements where credits
are dine to %" ffort of the many people at the University of
Alberta and *t. Jon of Microstructural Science of the National
Research vounc : .n Ottawa. The successful fabrication of the Si

doping superlatticces and the many experimental studies and theoretical
computations would not have been possible without this collective
effort. I feel priveleged to have been one of the participants in this
collaboration.

This project began with the self-consistent calculation of
electron subband energies in a Si doping superlattice using the
effective mass and Hartree approximations. We studied the tunability
of the effective bandgap and carrier concentration in pn+p structures.
The tunability of the effective bandgap relates the change in the
effective bandgap of a doping superlattice to the change in the
external bias. The tunability of the electron concentration relates
the capacitance of a p-n layer of the doping superlattice to the
capacitance of an equivalent p-n Jjunction in the depletion
approximation. For the cases considered here, these tunabilitles are
almost equal. By self-consistent calculation of the energy levels in
the conduction subbands of a Si doping superlattice with narrow (50A)
heavily n-doped and wide (S000A) lightly p-doped layers, we have shown
that the tunability increases with higher values of the planar donor
charge density, Nan, and dacreases with temperature. One problem with

this nipi structure is that there will be hardly any overlapping of the
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electron and and hole wavefunctions and therefore experimental
measurements of the tunability of the effective bandgap would not be
possible. For the case of a doping superlattice with narrow p and n
layers, it is expected that the variation of the tunablility with
temperature and the planar charge density in both the n and p-doped
layers will be even greater. Unfortunately for our nipi samples the
layer thickness is approximately 1000 A, too large for the formation of
any subbands and hence no meaningful test of these predictions could be
carried out.

The exchange-correlation energy in the subbands of Si and GaAs
doping superlattices was included in the self-consistent calculations
at T = 0°K. The results show that the exchange-correlation term is
more important in Si than in GaAs in all three cases (pn+p, pnpn, nipt)
of doping superlattices considered. For the same doping levels, layer
thicknesses and electron concentrations, the shift in the lowest
subband energy from the value given by the Hartree Approximation is
20-50% greater in Si than in GaAs.

Next, recombination mechanisms of «carrier lifetimes were
investigated. It was determined that the dominant recombinatlon
mechanism is not the tunneling of the carriers through the barriers nor
is it the thermionic emission of carriers over the barriers as
described by Dshler for GaAs doping superlattices. It is the
recombination of carriers by the shunting effect through or around the
junctions in defects or in the substrate that is the factor that limits
carrier lifetimes in Si doping superlattices. Hence, the carrier
lifetime can be estimated by simply taking the product of the junction

capacitance and the effective small signal resistance of the nipi
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structure. Carrier lifetimes as long as 1.2 s have been observed at T
= 80%K. Traps do not seem to influence significantly the carrier
lifetime in our Si doping superlattice sample.

We have developed a method using a system of linear functions and
Finite Box (Finite Cell) calculations to solve a system of nonlinear
second-order differential equations that descrived a two-dimensional
hole system. As our method uses a system of piecewise linear function
it is therefore more adaptable to different shapes of electric
potential, hence, different two-dimensional structures. We employed a
bisection method and linear interpolation to construct the Fermi energy
contours and an approximate secant method to hasten the convergence
process. Our method allows the Fermi coi.tours to be obtained with
enough precision that the hole concentiration, as determined from the
areas inside the contours, deviates by no more than 0.1% from the
prescribed value, The density-of-states mass obtained from the
calculated Fermi areas compares favourably with previously published
experimental and theoretical results in the MOS inversion layer
structure.

The above method of self-consistent calculations was used to
determine the density-of-states masses of holes for Si and Ge doping
superlattices. Generally, it was determined that the value of the
planar acceptor density NAdp of the doping superlattice affects the
characteristics of the hole masses as a function of hole concentration.

19 3

However, for large values of NA (> 5x10 cm-s for Si and > 5x1018cm_

for Ge) and for moderate or large values of dp (> 5 nm) the hole mass
characteristics are more affected by the value of NA. Generally, the

hole masses decrease with an increase in NA for a given hole
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concentration. It can also be said that the hole masses increase with
hole concentration expressed as a percentage of the acceptor planar
density, that |is, p(Z)/NAdp. For both the Si and Ge doping
superlattice, the hole mass is a more sensitive function of hole
concentration for the (100) surface than for the (110) surface
orientation. Due to the fact that the calculations were carried out at
T = 0%, very high doping levels of the p-type layers were used to
avoid having the acceptors frozen out. As a result, any possible
improvement in the mobility of holes at small hole concentrations may
be offset by the high scattering effect of the high density of impurity
jons. This problem can be somewhat reduced by using a host materlal
with smaller hole mass, such as germanium.

We have developed a simple small signal electrical circuit ﬁmodel
to study the AC characteristics. Small signal AC measurements at
different frequencies were carried out on reverse biased Si doping
supuriattices with selective ohmic contacts. The calculated results
given by the model were shown to agree well with experiments.
Parameters such as capacitance, doping profile and AC conductance of
doping superlattices are obtained. It is determined that the cholces
of the operating frequency and the capacitance meter (serial or
parallel) are important when one wishes to determine the values of
these parameters. In general, w¢ may conclude that informatlion
obtained from the AC measuremei..s of a doping superlattice, 1in
conjunction with a relatively simple lumped parameter model, will help
to determine the physical properties and quaiity of a doping
superlattice and its selective contacts.

DLTS measurements were carried out on Si toping superlattice
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samples but no conclusive results were drawn. Thiz may be due to the

non-exponential capacitance transients, the temperature dependert

capture cross sections of the traps and the spatially varying dopirg

profile of the layers which made the analysis of the traps more
difficult; it is beyond the scope of this thesis to deal with this
problem. Nevertheless, DLTS measurements still remain one of the most
reliable methods by which to measure deep traps is and the quality of
doping superlattice crystals.

Although this thesis deals mainly with Si doping superlattices,
much of the results will be applicable to dop’ng superlattices of other
semiconductor materials. Conclusions drawn, for exampl., on the
dependency of tunablility and the masses of holes on the planar charge
density should be, in general, applicable to other kinds of doping
superlattices. The small signal circuit model for the analysis of AC
characteristics should also be well-suited to other doping
superlattices as long as they share similar physical designs.

To summarise, through the team effort of our group, we have
managed to study a number of properties of Si doping superlattices. We
have successfully fabricated Si doping superlattices with selective
contacts using the shadow mass technique. He have studied the
tunabilities of the effective bandgap and cairier concentrations, the
enhanced optical absorption due to Franz-Keldysh effect for thick
laysred Si doping superlattice, the effect of the exchange-correlation
energy on the subband energies of electrons and we have calculated
self-consistently the density-of-states masses of holes using the
Kohn-Luttinger Hamiltonian. In addition, we have developed simple

electrical circult models to estimate carrier lifetimes and to study
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both the DC and AC characteristics. Although all these may be notable
accomplishments in our research work in Si doping superlattices, much
remains to be done. Experimental work on the two-dimensional
properties of elertrons and holas would b: an interesting area to
explore. ‘.atero nipl crystals using Si and Ge may be interesting
strusilures to examine. New optical and electrical properties may also
be observed in Si doping superlattices with thinner layers and more
abrupt doping profiles. Experimental work on Si nipi with sandwiched
contacts may help in the studies of these

properties.
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APPENDIX A

A simplified understanding of the small signal AC electrical
characteristics of Figure 4.3 can be achieved by analysing the
properties of Figure 4.1. In fact if the width W of the superlattice
is very small, circuit of Figure 4.1 may be used as a reasonably good
approximation for Figure 4.3. The expression for the AC resistances
and capacitances of an equivalent serial and parallel circuit of Figure

4.1 can be expressed as follow:

2.2
_(R,+R) ¢ wR_R%C

SI L J
R = (A1)
si 1+ szzcz
L J
1+ szf_cf
C, = ———— (A2)
si aFRZC
L J
(R_+ R )? + oRZ R C?
SI L SI L J
Rpa = > 2 (A3)
(R_+R) + wR_RC
SsI L ST L J
Rch
C_= (A4)
pa 2 2.2.2
(R + R)® + szSIRLCJ
where R , C » R , C are the serial AC resistance and
si si pa pa

capacitance, and parallel AC resistance and capacitance, respectively.
The 3 dB frequencies for each may be obtained from (A1) to (A4)

respectively.
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Appendix B

The Hamiltonian of {6.1) for the (100) surface orientation is given by

Ho O
Hk,k k) = | o . + H, (B1)
kp
where
H, R S
Hkp =|R Hz , (B2)
s T
- 3
[ 1 j 0 0 0 -1]
-j 1 00 0 j
__ A | 001 1-j0
He="3 | 001 1-j0 (B3)
00 j j10
| -1-j 0 0 0 1|
and
H = LK% + M(k2 + k%) R = Nk k
1 X y z Xy
H = Lk> + M(k%+ k%) S = Nk k
2 y z x X z
H = Mk + M(k% + k%) T = Nk k
3 z x y y z

The values for L, M and N for Si are -6.5, -2.7, ~-7.3 (771,

respectively, and A is taken to be 44 mev.
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