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Abstract—Interval forecast is an efficient method to quantify the
uncertainties in renewable energy production. In this paper, the
idea of prediction intervals (PIs) is employed to capture the uncer-
tainty of wind power generation in power systems. The recurrent
neural network (RNN) model is proposed to construct PIs with the
lower upper bound estimation method, which is a powerful non-
parametric forecast approach. In addition, a novel comprehensive
cost function with a new PI evaluation index is designed with the
purpose of enhancing the model training. To tune the parameters
of RNN prediction model, the dragonfly algorithm with a linearly
random weight update method is introduced as the optimization
tool. The performance of the proposed prediction model is vali-
dated by a case study using a real world wind power dataset, and
the comparative results show the superiority of the model.

Index Terms—Lower upper bound estimation (LUBE),
optimization, recurrent neural network (RNN), wind power
prediction.

I. INTRODUCTION

W ITH the development of advanced generation technolo-
gies, there has been an enormous increase in the amount

of renewable energy generation in recent years. As a clean and
widely available resource, wind energy has become one of the
most popular renewable sources [1]. The installed capacity in
Canada grew by an annual rate of 18% in the past five years and
it exceeded 10,000 MW in 2015 [2]. However, wind power is
also intermittent and uncertain resulting from the volatile wind
speed. Consequently, increasing penetration of wind power gen-
eration in the future smart grid will pose new challenges to
system operation and dispatch. In order to deal with variable
wind power, different methods have been proposed to fore-
cast it aimed at reducing its uncertain impact on power system
operation.
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Wind power forecast consists of direct wind power forecast
and indirect wind speed forecast. Based on the forecast time
scale, wind power prediction can be classified into short-term,
medium-term and long-term prediction [3]. While according to
the forecast models, it can be divided into two main categories:
physical and statistical [4]. Physical methods are developed
by modeling the relationship between physical variables and
the specifications of wind turbines with some physical-based
equations. For the statistical methods, time series models (e.g.,
autoregressive integrated moving average ARIMA) [5], data
mining approaches [6], artificial neural networks (ANNs) [7],
[8], and support vector machines (SVM) [9] are widely stud-
ied in the literature. Compared with physical models, statistical
models, as a data-driven technique, are usually simpler and more
adaptive. In addition, hybrid methods which combine different
models have also been researched [10] to improve the forecast
performance. This kind of approach aims to retain the advan-
tages of the individual model and it seems to be better than other
methods.

Conventional point forecast methods as mentioned above suf-
fer from the problem that they cannot eliminate the forecast er-
ror and the forecast accuracy may be highly variable. They only
generate a deterministic forecast value for a certain time step
without any indication of the associated uncertainty [11]. From
the decision making point of view, the use of point forecast will
have significant impact on the stable and reliable operation of
power system. Therefore, recent research of wind power pre-
diction have focused more on probabilistic methods which can
include the forecast uncertainty [12].

Compared with the widely used point prediction methods,
probabilistic forecasts could provide additional quantitative in-
formation about wind power generation uncertainty [13]. As a
result, the probabilistic forecast of wind energy has attracted
much attention recently [14], [15]. In probabilistic forecast, the
uncertainty can be expressed by probabilistic measures such as
probability density functions (PDFs), quantiles and intervals,
moments of distribution (mean and variance) and so on [13].
As the most visualized representation, interval forecast of wind
energy gained more popularity [16], [17].

Among different kinds of interval forecast approaches, the re-
cently proposed lower upper bound estimation (LUBE) method
is a nonparametric procedure that can construct appropriate pre-
diction intervals (PIs) directly in an unsupervised learning mode
based on a feedforward neural network (NN) [18]. It makes no
assumption about the forecast error distribution and its compu-
tational burden is almost negligible in comparison with other
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traditional NN-based PI construction methods [19]. To obtain
high quality PIs with narrow width and large coverage proba-
bility, both single-objective procedure [20] and multi-objective
framework [21] using LUBE method are proposed in the liter-
ature. In [22], a constrained single-objective framework is de-
signed to minimize the PI width while constraining the coverage
probability. Similarly, a hybrid model based on back propaga-
tion NN is proposed for wind speed interval forecast [23]. In
this study, the wavelet de-noising technique is employed to pre-
process the data, and cuckoo search optimization algorithm is
used to train the NN model. In the multi-objective framework,
Pareto optimal solutions [21] and fuzzy inference method [24]
are investigated to construct the optimal PIs. In these studies, the
prediction models are all based on the feedforward NN model.
In addition, rough neural networks which combine rough and
conventional neurons to deal with uncertainties of the data are
also studied for wind power or speed prediction [25]. In [26],
the rough neurons are integrated in a deep neural architecture to
improve the accuracy of short-term wind speed forecast. In [27],
the most informative input parameters of an NN are determined
through attribute reduction of rough set theory and the training
time is also reduced. Although good results are reported in these
works, they concentrate on wind speed point forecast instead of
interval forecast. The combination of deterministic and prob-
abilistic forecast for wind power is also studied [28]. It is an
indirect probabilistic forecast method which firstly implements
point forecast with support vector regression (SVR) models and
then the confidence intervals for forecast values are obtained
with quantile regression (QR) method.

Although NN-based LUBE method has been widely studied
as aforementioned, the existing research, to our best knowledge,
focus on the feedforward NN prediction model, especially the
multilayer perceptron (MLP) NN model. Generally, NN models
have two basic structures: feedforward and feedback. Compared
with the feedforward NN, recurrent neural network (RNN) with
a feedback structure has been shown to excel at time series fore-
cast [29]. In a feedback structure, the network behaves like a
dynamic system which can better capture the characteristics of
variable wind speed [30]. In the last decades, the RNN model
has been extensively studied for wind power and speed forecast.
For instance, the local RNNs are studied for the long-term wind
speed and power prediction in [31]. These models were trained
by two on-line learning methods based on recursive forecast
error algorithm. Similarly, the long-term wind speed predic-
tion was studied using a composite method of statistical and
NN approaches in [3]. Based on the general trend and pattern
extracted from the historical data, the nonlinear autoregressive
with exogenous inputs (NARX) network was trained and used to
forecast the next year hourly data. Moreover, the Elman neural
network was also explored for wind speed forecast [32]. De-
spite considerable research on RNN, these works focus on point
prediction based on forecast error. However, interval prediction
with RNN model is rarely reported in the literature.

In this study, the short-term wind power interval prediction
based on RNN model and LUBE method is investigated for
the first time. We employ the single-objective framework and a
novel aggregated cost function is designed as the objective of

model training. Considering the high complexity and nonlin-
earity of the cost function, the dragonfly algorithm (DA)-a new
intelligent and powerful optimization algorithm-is introduced
to solve the problem effectively. In addition, a new modifica-
tion is proposed for DA to reinforce its search ability. To cope
with the chaotic historical wind power data, delay embedding
theorem instead of the general correlation analysis is applied
in this study. The proposed RNN interval prediction model has
been evaluated by the case study with a real world wind power
dataset.

In summary, the main contributions of this work are as fol-
lows:

1) The RNN model exhibiting the dynamic system behaviors
is investigated for wind power interval forecast; this is the
first time to apply RNN model to do interval forecast for
wind power;

2) A new evaluation index for the PI width is proposed to en-
hance the RNN model training, this new index, unlike the
previous measures, further considers and uses the known
information in the training process;

3) DA is introduced for the first time to solve the PI problem
and a new weight update method which combines linear
decrease and random walk is designed to improve the
algorithm search ability;

4) Delay embedding approach rather than the typical corre-
lation analysis is employed to reconstruct the time series
data and determine the input of the prediction model. It is
suitable to process wind power data with chaotic charac-
teristics.

The remainder of this paper is organized as follows. The
background of PI is introduced in Section II. In Section III, the
proposed RNN interval prediction model and the DA algorithm
are explained. The wind energy prediction case study is imple-
mented in Section IV. Finally, Section V concludes this paper
with some remarks for future study.

II. BACKGROUND OF PI

The construction of a PI is to estimate the upper and lower
bound of an interval with a confidence level which shows the ac-
curacy and the quality of PIs need to be evaluated by some mea-
sures. In this section, the PI evaluation indices are introduced
first. Then, the NN-based LUBE interval prediction method is
explained.

A. PI Evaluation Indices

A high quality PI is expected to have larger reliability and
narrower width. To assess these two aspects of PIs, two indices,
PI coverage probability (PICP) and PI normalized average width
(PINAW) [19], are mostly employed to quantitatively measure
the forecast intervals. PICP which is also called PI confidence
level is used to show the probability that target values will be
covered by the forecasted intervals. Obviously, a larger PICP
value indicates that more targets will lie in the constructed PIs.
This index is usually considered as the critical indicator of PIs
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and it can be mathematically defined as follows:

PICP =
1
N

N∑

i=1

δi (1)

where N is the number of test samples and δi is a binary value
which is described as follows:

δi =

{
1, yi ∈ [Li, Ui ]
0, yi /∈ [Li, Ui ]

(2)

where yi is the target, Li and Ui are lower and upper bound of
the PI, respectively. Generally, the PICP value should be greater
than the preassigned confidence level in the training process,
otherwise the PIs are invalid and should be discarded.

Although PICP index is the key feature of PIs, we can not
just focus on this objective and ignore the interval width. With
sufficiently wide intervals, the PICP objective can be easily
achieved. However, very wide intervals hardly yield any valu-
able information and may be useless in practice. Therefore, a
quantitative measure of interval width, PINAW, is defined to
limit the interval width, as follows:

PINAW =
1

N · Rg

N∑

i=1

(Ui − Li) (3)

where Rg means the range of the targets (difference between
the maximum and the minimum).

PICP and PINAW can only evaluate one of the aspects of
PIs, respectively. In order to assess the overall quality of PIs, the
index coverage width-based criterion (CWC) which is a compre-
hensive cost function is designed [20]. Furthermore, a modified
CWC cost function is proposed to overcome the multiplication
drawback [33] as follows:

CWC = PINAW + γ(PICP)e−η (PICP−μ) (4)

where γ(PICP) is a boolean function given by

γ =

{
1, if PICP < μ

0, if PICP ≥ μ
(5)

where η and μ are two controlling parameters. The former is
usually a large constant to penalize the invalid PIs, while the
latter can be determined according to the nominal confidence
level.

With the CWC function, the primary multi-objective prob-
lem can be transformed into a single-objective minimization
problem. Although the CWC cost function is used as a compre-
hensive evaluation index, we can find that it is only determined
by the estimated upper and lower bounds and the known infor-
mation is not fully used in the training process. Similar to the
frequently used MSE index in point forecast, a new PI width
evaluation criterion, PIMSE, is designed to make better use of
the known target values in this study:

PIMSE =
1
N

N∑

i=1

[(Ui − yi)2 + (Li − yi)2)]. (6)

By introducing this index, a new CWC (NCWC) function can
be developed for the training:

NCWC = PINAW + γ(PICP)e−η (PICP−μ) + PIMSE. (7)

With this new cost function, we can combine the unsupervised
learning and supervised learning by using the known informa-
tion in the training process. Besides, it is expected that a more
symmetric interval, which is closer to the true confidence inter-
val, will be obtained by minimizing the PIMSE index. Therefore,
the NCWC is used to enhance the model training in this work.

In the model training process with the NCWC objective, the
reliability index PICP will be the influential factor at the begin-
ning stage due to the high penalty cost. If PICP is less than the
predefined confidence level, the NCWC will be large regardless
of the interval width. As the training continues, the PICP will
become greater than the nominal confidence level and the sum
of PINAW and PIMSE should be the dominant factor. Note that
it is necessary to consider both criteria PINAW and PIMSE here
as PINAW mainly focuses on narrower intervals and PIMSE
will make full use of the known information and make the in-
tervals more close to the actual symmetric confidence intervals.
If only PIMSE index is considered, we may get symmetric but
wide intervals which will lead to a large PINAW value.

B. LUBE Method

The LUBE method is a nonparametric method that can di-
rectly construct PIs [18]. It is simple and fast to generate PIs
without any assumption about the forecast errors. In previous
work, LUBE method is implemented with a feedforward NN.
The NN model has two output nodes including the upper and
lower bounds of PIs. Actually, this method belongs to unsuper-
vised learning since the upper and lower bounds are not known
during the training process. In practice, it is better to have nar-
rower PIs with a larger coverage probability. Therefore, the
primary problem based on LUBE method is a multi-objective
problem with two conflicting objectives. This multi-objective
problem can be transformed into a single-objective problem
by introducing the nonlinear and nondifferentiable CWC cost
function and some basic constraints [18], [22]. To optimize the
cost function in the NN training process, different gradient-free
optimization methods such as simulated annealing (SA), parti-
cle swarm optimization (PSO) algorithm have been applied in
previous study.

In each iteration of the training process, two outputs rep-
resenting the lower and upper bounds of a PI are generated
based on the model inputs. Then the two measures PICP and
PINAW as well as the corresponding CWC cost function can
be calculated for all training samples. As the training proce-
dure continues with a certain optimization algorithm, the NN
parameters are tuned gradually so that the PICP meets the prede-
fined confidence level and the interval width PINAW decreases.
When the maximum number of iterations is reached or there is
no further improvement on the objective for a certain number
of consecutive iterations, the model training terminates and the
resulting optimal model can be used for construction of new
PIs [34]. The key features of LUBE method includes simplicity,
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Fig. 1. Schematic diagram of Elman network.

low computation cost and distribution-free assumption com-
pared with traditional interval forecast methods. More details
about the LUBE method can be found in [18].

III. RNN-BASED INTERVAL PREDICTION MODEL

As mentioned above, the LUBE method is a simple and ef-
ficient method to construct high quality PIs. Due to the easy
implementation and low computational cost, LUBE method has
become popular in quantifying forecast uncertainty in a very
short time. It has attracted much attention and abundant re-
search works are carried out based on feedforward NN model
to do interval prediction. Compared with the feedforward NN
which can only learn a static input-output mapping relationship,
an RNN with feedback structure behaves like a dynamic system
which is more suitable to model temporal sequences. Therefore,
we will develop the RNN-based interval prediction model for
wind power generation in this study. Two typical RNN models,
Elman network and NARX model, are investigated.

A. Elman Network

As a first-order RNN, the Elman network is a simple recurrent
network [35] which employs a context layer to feedback the
outputs of the hidden layer. The context layer is a copy of the
hidden layer outputs at the previous time step. Although simple
in structure, it has the ability to perform complex tasks. Based
on the Elman network, the interval prediction model can be
developed and the schematic diagram of the model is shown in
Fig. 1.

In this three layer Elman network model, there are two output
nodes representing the upper and lower bounds of a PI. The only
feedback is from the hidden layer to the context layer and the
connection weights are constants, while the other feedforward
weights are adjustable which could be optimized by intelligent
optimization method. According to the Elman structure, the
dynamic change of this model can be mathematically expressed
as follows:

x(k) = φ[W1I(k − 1) + W2xc(k) + b1 ] (8)

xc(k) = x(k − 1) (9)

z(k) = f(W3x(k) + b2) (10)

where x and z represent the output of the hidden layer and output
layer, respectively, xc is the output of the context layer, φ(·) is the
transfer function which is usually nonlinear hyperbolic-tangent-
sigmoid function, and f(·) is pure linear activation function.

B. NARX Network

NARX is another class of RNN that is suitable to model
time series data. Unlike Elman network, the feedback in this
input-output recurrent model is from the output to the input.
The dynamic behaviour of NARX model can be mathematically
described by [36]:

o(k + 1) = g[o(k), ..., o(k − do);u(k), ..., u(k − du )] (11)

where o is the output, u is the input, do and du are the output
and input delay, respectively, g(·) is also a nonlinear mapping
function which can be approximated by a standard MLP model.
Without loss of generality, the typical three layer structure is
used in this study. Thus, the NARX-based interval forecast
model is similar to the previously described Elman forecast
model and the schematic diagram is omitted.

C. Dragonfly Algorithm

Inspired by the behaviours of dragonflies, DA is a population-
based optimization algorithm that was proposed in 2016 [37].
In DA, each dragonfly represents a promising solution for the
optimization problem. In this study, the dragonfly or solution is
a vector that consists of the NN connection weight values. These
weights are adjusted to find the optimal values by minimizing
the cost function. To solve the problems with DA, each dragonfly
should have two vectors: position (P ) and step (V ). The step
vector here is similar with the velocity vector in PSO, while
the position updating of individuals is determined by five main
behaviours including separation, alignment, cohesion, attraction
towards food and distraction from an enemy. These behaviours
can be described as follows [37]:

Sei = −
N um∑

j=1

Pj − Pi (12)

Ali =

⎛

⎝
N um∑

j=1

Vj

⎞

⎠ /Num (13)

Coi =

⎛

⎝
N um∑

j=1

Pj

⎞

⎠ /Num − Pi (14)

Foi = P+ − Pi, Eni = P− + Pi (15)

where Pi is the position of current individual, Pj and Vj repre-
sent the j-th neighbour individual’s position and corresponding
velocity, respectively, Num is the number of neighbour individ-
uals, P + and P − denotes the position of dragonflies’ food and
enemy, respectively.
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Based on the above behaviours of the dragonflies, the position
vector of each individual can be updated as follows:

P iter+1 = P iter + V iter+1 (16)

V iter+1 = (sSei + aAli + cCoi + fFoi + eEni) + wV iter

(17)

where iter is the iteration number, s, a, c, f, e, and w are corre-
sponding weight coefficients which control the exploration and
exploitation search during the optimization process. The above
updating rules are applicable for individuals with neighbours.
When the individuals have no neighbours, the Levy flight which
is a random walk [38] is used to improve their exploration and
stochastic behaviours, and the position update is as follows:

P iter+1 = P iter + Levy(dim) × P iter (18)

Levy(dim) = 0.01 × c1 × ρ

|c2 |
1
λ

(19)

where dim is the dimension of the vector P , c1 and c2 are two
random numbers in [0, 1], respectively, λ is a constant value and
ρ can be calculated by the following equation:

ρ =

(
Γ(1 + λ) × sin( πλ

2 )

Γ( 1+λ
2 ) × λ × 2

λ−1
2 )

)1/λ

(20)

where Γ(n) = (n − 1)!.
The DA has been demonstrated to perform better than other

well-known optimization algorithm such as PSO and genetic
algorithm (GA) on the test functions [37]. Therefore, it is intro-
duced to tune the RNN parameters by optimizing the compre-
hensive cost function in this study. In DA, the inertia weight w
is adjusted adaptively by the typical linearly decreasing manner.
In order to enhance the total search ability of this algorithm,
inspired by the random inertia weight update method [39], we
can further improve the weight update by using Levy flight as
follows:

witer = wmax − (iter/Maxt) × (wmax − wmin) (21)

witer+1 = witer + Levy(dim) (22)

where wmax and wmin are the maximum and minimum weights,
respectively, Maxt is the maximum iteration number, the Levy
function is the same as that defined in (20).

D. Model Implementation

Based on the Elman and NARX network model, the LUBE
method was implemented to construct PIs with DA optimization
algorithm. The single-objective problem is formulated with the
NCWC cost function. The model implementation flowchart is
shown in Fig. 2 and details of the main steps are discussed
below.

1) Dataset partition and preprocess. For the forecast model,
the main input is the historical wind power data. The original
dataset should be split into training data, validation data and
test data. The training and validation data are combined to train
the model, while the test data are used to verify the model’s
generalization ability. In order to accelerate the model training

Fig. 2. Model flowchart for PI construction.

process, the original data are usually normalized to [−1, 1] after
partition.

To construct PIs with the RNN model, the original time series
data should be transformed into a suitable form for training the
model. A dynamic system in discrete time can be depicted as:

X(t + 1) = F(X(t)) (23)

where X(t) is the system state at time step t and F is nonlinear
vector valued function. Since the wind power and speed data are
volatile and chaotic [40] from a dynamic system, the state space
reconstruction technique with the delay embedding theorem
[41] was employed to process the original data. By this theorem,
the one-dimensional chaotic data is supposed to compress the
information of higher dimension. Hence, the time series data
X(t) can be reconstructed as follows:

X0(t) = [X(t),X(t − τ), . . . , X(t − (m − 1)τ)] (24)

where τ is time delay and m is the embedding dimension. There-
fore, creating the delay embedding comes down to finding the
optimal values of parameters τ and m. For a given dataset, these
two parameters can be determined by the mutual information
function and false nearest neighbour method [42].

Once the delay embedding was completed, the reconstructed
time series was generated and it was used to train the RNN model
for one-step ahead prediction task. In this case, the number of
model input was also determined which equals the embedding
dimension.

2) Parameter initialization. There are two sets of parameters
corresponding to the DA algorithm and RNN model. In DA
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algorithm, the step and position vectors are initialized with small
random numbers. The connection weights of RNN model are
represented by the position vectors of dragonflies, thus their
initialization is finished. To find the optimal number of hidden
nodes in RNN model, five-fold cross-validation method can be
applied with the training dataset.

3) Update step and position vectors. The position and step
of each dragonfly are updated according to (16) and (17). The
individual with better fitness (smaller cost function value in this
study) will be retained.

4) Model evaluation. Each individual corresponds to one pre-
diction model. With the connection weights, PIs can be con-
structed and the corresponding measures PICP, PINAW and
PIMSE can be calculated. The index NCWC is considered as
the fitness in RNN training process. The individual with the best
fitness is recorded as dragonflies’ food source and its position
vector represents the best model weights.

5) Termination criterion. The training is terminated when the
maximum iteration is reached in this work. If the termination
condition is not met, then it will return to update the step and
position vectors.

6) PI construction for test dataset. When the training is com-
pleted, we can get the optimal connection weights for RNN
model. With this optimal prediction model, PI construction can
be easily accomplished for the test data. The relevant indices
are also calculated to evaluate the PI quality.

IV. REALISTIC WIND ENERGY PREDICTION CASE STUDY

To validate the forecast performance of the proposed RNN-
based LUBE method, a realistic case study of wind energy
interval prediction is carried out in this section. First of all, the
data source and relevant parameter settings are explained. Then,
the numerical results and discussion are presented.

A. Data Set

The historical wind power data is taken from the Adelaide
wind farm located in Ontario, Canada and it can be obtained
from the IESO website [43]. Ontario takes the lead in the clean
wind power utilization with 4781 MW of installed capacity,
which supplies about 5% of the total electricity demand in the
province [44].

The chosen dataset consists of hourly wind power data in
MW from 1 January 2016 to 7 April 2017. During this time
period, the wind farm performance is assumed to be normal and
there is no missing or false data. The whole dataset is further
partitioned into three subsets for training, validation and test.
The training set and validation set account for about 80% of
the whole dataset in this study, i.e., the whole year data in
2016. The remaining data are used to test the model’s prediction
performance.

B. Parameter Settings

As mentioned above, two sets of parameters about RNN
model and DA algorithm should be determined in the proposed
prediction model. For the RNN model, we should design the

TABLE I
CROSS-VALIDATION RESULTS OF ELMAN MODEL

Nodes PICP(%) PINAW(%) PIMSE NCWC CWC(%)

3 94.88 74.29 1.8427 2.5856 74.29
5 94.94 65.66 1.5107 2.1672 65.66
8 93.90 69.04 1.6974 2.3878 69.04
10 94.13 73.69 2.0186 2.7555 73.69

best structure by finding the optimal number of input nodes and
hidden nodes. The number of input nodes is related to the dimen-
sion of delay vectors which can be determined by state space
reconstruction technique. According to the delay embedding
approach, a time series is a series of observations of a dynamic
system and the forecast is about forecasting the system’s state.
To forecast the system, we should construct a state space that is
equivalent to the original one by using a small set of the most re-
cent previous observations [41]. By delay embedding theorem,
we need to find two parameters: the embedding dimension m
which represents the size of the set of most recent observations
and the time delay τ which means the optimal autocorrelation
level in each delay vector. In this study, τ is determined to be
16 by the mutual information method where the first local min-
imum occurs and m is 7 by false nearest neighbour method,
which can be accomplished by the utility functions mutual and
false nearest in TISEAN toolbox [45]. In this case, the di-
mension of reconstructed delay vectors is 7 and the number of
input nodes for the RNN model is also 7. After determining the
value of τ and m, delay vectors can also be obtained for the
prediction model.

As for the number of hidden layer nodes, five-fold cross-
validation method is employed to explore it with the training
dataset in this work. This method is frequently used in the
literature [18] which can help establish a stable model. The
cross-validation results of some typical hidden nodes numbers
for Elman network are shown in Table I. From this table, we can
see that the model has the best performance according to the
NCWC index when the number of hidden nodes is 5. Therefore,
the optimal structure of Elman network is 7-5-2 and the number
of nodes in the context layer is also 5. The optimal structure of
NARX model can be determined similarly and the number of
hidden nodes is also 5 in this study. In addition, for the typical
three layer structure, we use the common hyperbolic tangent
and pure linear activation functions in the hidden and output
layer, respectively.

Another parameter set is about the optimization algorithm. It
is suggested that the weight coefficients in (17) can update in
an adaptively tuning method to balance the exploration and
exploitation during the optimization [37]. Generally, the in-
ertia weight w varies from 0.9 to 0.4 [46]. In this study, its
range is set to be [0.7, 1] by trial and error method. In the
NCWC or CWC cost function, the controlling parameter μ is
set to be the nominal confidence level 0.9 and η equals 50
[11]. In addition, the population size is 30 and the maximum
number of iteration is set to be 1000 during the optimization
process.
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Fig. 3. NCWC of the best individual in the training process.

C. Test Results

The proposed Elman network and NARX interval prediction
model have been applied to construct wind power PIs. After
the training process, the dragonflies’ food position vector ob-
tained by DA corresponds to the optimal prediction model. With
the best model, PIs can be constructed for the wind power test
dataset. The performance measures are also calculated to eval-
uate the obtained PIs’ quality including PICP, PINAW, PIMSE,
NCWC and the CWC cost function which is frequently used in
the literature.

In the training process, the variation of the best individual’s
objective function is shown in Fig. 3. As shown in this figure,
the NCWC function of both Elman and NARX model decreases
dramatically in the first few generations to get the satisfied PICP.
When PICP satisfies the nominal coverage probability, more at-
tentions are paid to the interval width, i.e., to minimize the sum
of PINAW and PIMSE. As the optimization proceeds, the
NCWC objective continues to decrease and it converges to the
optimal value eventually for both models. The convergence val-
idates the strong search ability of DA algorithm with random
linear weight update method. It can also be seen that the optimal
objective value of Elman network is a little better than that of
NARX model.

For Elman network model, the PI construction results for test
data are shown in Fig. 4. For better visualization, the PIs for
the last week of test data are also given in Fig. 5. From the
results, we can see that most of the target values (the green dash
line with star) lie in the constructed upper and lower bounds.
As shown in Fig. 5, both the predicted upper and lower bounds
have a similar trend with the real data, which implies that the
prediction model can capture the dynamic feature of wind power
data well. Note that the lower bound that is below zero is set to
be zero in this study. In addition to the similar trend of those
three lines, we can also find that most of the constructed in-
tervals are approximately symmetric about the targets result-
ing from the involvement of PIMSE in the training process.
A symmetric interval is more closer to the true confidence in-
terval which can be obtained based on the known distribution
information.

Fig. 4. Optimal PIs of Elman model for test data.

Fig. 5. Optimal PIs of Elman model for the last week of test data.

TABLE II
PI CONSTRUCTION RESULTS OF ELMAN MODEL

No. PICP(%) PINAW(%) PIMSE NCWC CWC(%)

1 93.86 61.95 1.2362 1.8558 61.95
2 93.90 65.20 1.3421 1.9940 65.20
3 93.81 63.71 1.4188 2.0559 63.71
4 93.94 66.43 1.3564 2.0207 66.43
5 94.24 62.90 1.3364 1.9654 62.90

In order to verify the repeatability of the prediction model
and get convincing forecast results, the case study with Elman
network is repeated for five times. Results of each run including
PICP, PINAW, PIMSE, NCWC and CWC are shown in Table II.
As can be seen from this table, the PICP values of all five runs
satisfy the nominal coverage probability (90%), which indicates
that the prediction model is reliable since the PICP index is
usually considered as the key feature of the PIs. The results are
also consistent as the variances of these measures are quite small,
e.g., the standard deviation of CWC for five runs in Table II is
1.7912. Note that the PIMSE value here is calculated from the
normalized data. As the CWC cost function is a comprehensive
index which is frequently used in the literature, we will take
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Fig. 6. Optimal PIs of NARX and MLP model.

TABLE III
PI CONSTRUCTION RESULTS OF NARX MODEL

No. PICP(%) PINAW(%) PIMSE NCWC CWC(%)

1 94.03 65.23 1.5537 2.2060 65.23
2 94.12 68.78 1.6633 2.3511 68.78
3 94.20 69.72 1.5718 2.2690 69.72
4 93.47 63.23 1.3599 1.9922 63.23
5 93.04 68.63 1.6428 2.3290 68.63

this index for convenient comparison later. The median CWC
value (63.71) instead of the best one is used to represent the
average performance of Elman prediction model. Moreover, the
median value is less influenced by outliers compared with the
mean value.

As for NARX model, the PI construction is similar with that
of Elman model. Hence, the results of only the last week are
given in Fig. 6 for simplicity, from which we can obtain similar
conclusions. The NARX model is also run for five times and the
results are shown in Table III. As can be seen, the NARX model
is also reliable and its average performance is represented by
the median CWC value as well. The standard deviation of CWC
for NARX model in Table III is 2.7613.

To further validate the effectiveness of the proposed method,
we expand the dataset according to different seasons and test
them with the proposed method, respectively. The average test
results of four seasons with Elman model and NARX model
are given in Table IV. From this table, we can see that both
Elman model and NARX model can get good prediction results
for different seasons. Moreover, the forecast results of spring
and summer are better than those of autumn and winter by a
comparison of CWC and NCWC values. This may be due to
abrupt change of wind speed in autumn and winter seasons.

D. Comparison With Benchmark Models

For comparison purpose, some benchmark models are em-
ployed to construct PIs with the same dataset including naive
method, ARIMA model, Gaussian process regression (GPR),
QR and feedforward MLP model [22]. As a fundamental model,
a typical three layer MLP was designed and the implementation

procedure for PI construction is similar with that of RNN model.
DA is also utilized to optimize the model with the same parame-
ter settings. The optimal number of hidden nodes is determined
to be 5 by five-fold cross-validation method. In addition, the acti-
vation functions are hyperbolic tangent and pure linear function
for the hidden layer and output layer [22], respectively. The PI
results of MLP model for the last week are shown in Fig. 6,
where we can intuitively see that its interval width is larger than
that of NARX model. To get quantitative results, MLP model
is also repeated for five times and the median result is used to
illustrate its average performance as shown in Table V. From
Table V, it can be observed that the performance of MLP model
seems not to be very stable due to the large standard deviation
of CWC which is 3.9238.

ARIMA is a classical model used in time series forecast.
Generally, ARIMA model performs better for one-step ahead
forecast. In this study, the seasonal ARIMA model [47] is con-
sidered for direct one-step prediction [22]. The naive model is
another well-known benchmark and it is similar to the persis-
tence model in point forecast. According to this method, the
forecast for the next step is generated based on the previous
values. For example, the maximum and minimum values of the
previous 20 samples are considered as the upper bound and
lower bound for next step, respectively [33]. GPR model is an
effective nonlinear prediction method which can be applied in
many areas including regression and classification [48]. It adopts
the Gaussian white noise assumption in the model and it is suit-
able to handle small sample problem. In addition, QR is another
common statistical method that can be used for probabilistic
forecast [49].

The comparison of PI construction results is summarized in
Table VI. From Table VI, it can be observed that our proposed
RNN prediction model outperforms the other benchmark mod-
els except for the GPR model. Note that in the GPR forecast
model, the noise of the data is assumed to follow Gaussian
distribution and the joint distribution of any finite number of
variables is also Gaussian. However, the Gaussian distribution
assumption is usually not applicable in practice. On the con-
trary, our method makes no assumptions on the data noise. In
addition, the calculation time of GPR model for large dataset is
very long and it is 3152.69 s in our case which is longer than
the prediction time scale of one hour. Therefore, the application
of GPR forecast model may not be feasible in practice.

In addition to the GPR model, Elman model achieves the
lowest CWC value as well as the NCWC value, followed by the
NARX model. All of the PICP values can satisfy the preassigned
nominal coverage probability 90% except for the QR and naive
model. Although the PINAW values are quite low for QR and
naive model, their CWC values are very large due to the penalty
on the unsatisfied PICP or low reliability. When PICP is satisfied,
the PI quality depends on the interval width, which can be
revealed by the comprehensive index CWC. By comparing the
CWC values in Table VI, we can see that the PI quality has
been significantly improved with the proposed RNN interval
forecast model. The percentage improvements of Elman model
are 14.02%, 21.74%, 62.71% and 84.90% in comparison with
MLP, ARIMA, QR and naive model, respectively. They are
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TABLE IV
PI CONSTRUCTION RESULTS FOR DIFFERENT SEASONS

Season Elman model NARX model

PICP(%) PINAW(%) PIMSE NCWC CWC(%) PICP(%) PINAW(%) PIMSE NCWC CWC(%)

Spring 92.31 61.95 1.3643 1.9838 61.95 95.10 60.99 1.2494 1.8593 60.99
Summer 96.01 57.93 1.2364 1.8157 57.93 95.30 55.80 1.1230 1.6810 55.80
Autumn 91.73 66.30 1.4424 2.1054 66.30 91.25 65.68 1.8004 2.4572 65.68
Winter 94.93 64.50 1.3238 1.9687 64.50 95.17 67.02 1.3988 2.0690 67.02

TABLE V
PI CONSTRUCTION RESULTS OF MLP MODEL

No. PICP(%) PINAW(%) PIMSE NCWC CWC(%)

1 95.92 70.65 2.2352 2.9416 70.65
2 96.13 74.10 1.6891 2.4302 74.10
3 96.99 76.97 1.7817 2.5514 76.97
4 96.56 72.36 1.6312 2.3547 72.36
5 95.53 80.57 2.4104 3.2161 80.57

TABLE VI
COMPARISON OF PROPOSED MODEL WITH BENCHMARK MODELS

Method PICP(%) PINAW(%) PIMSE NCWC CWC(%)

Elman 93.81 63.71 1.4188 2.0559 63.71
NARX 93.04 68.63 1.6428 2.3290 68.63
MLP 96.13 74.10 1.6891 2.4302 74.10
ARIMA 92.01 81.41 2.0675 2.8816 81.41
GPR 90.51 43.12 0.6897 1.1209 43.12
QR 89.86 63.75 1.3373 3.0459 170.87
Naive 87.46 65.28 1.6303 5.8493 421.90

7.38%, 15.70%, 59.83% and 83.73%, respectively, for NARX
model.

To verify the performance of DA optimization algorithm, we
compare it with other population based approaches including
GA and PSO. For the GA algorithm, the real-coded technique
is employed and the probability of crossover and mutation are
set to be 0.9 and 0.1, respectively [50]. The parameters of PSO
algorithm are taken from [22]. With the same implementation
procedure, we can obtain the average prediction results of Elman
model and NARX model with GA and PSO algorithm which
are summarized in Table VII. The training terminates when the
maximum number of iterations is reached for all three algo-
rithms, and the corresponding training times are also given in
Table VII. As can be seen, the prediction results with the DA
algorithm are the best according to the CWC and NCWC val-
ues. GA and PSO are easy to be trapped in local optima when
the training terminates. In addition, the training time of DA and
GA are almost the same, while the time of PSO is longer. The
training time of the proposed method is about 10 minutes which
is much less than the forecast time scale of one hour. In other
words, the proposed method can be used for real-time forecast.
Note that the execution time is related to the optimal structure of
our model. If the number of hidden nodes in the recurrent model
increases, then the average running time will also be longer.

E. Discussion

As the forecast time range prolongs, the forecast accuracy
significantly decreases as a result of more uncertainties. There-
fore, we only consider one-step ahead prediction in this work
which is more accurate in practice. However, multi-step forecast
may also be possible for our model with a proper data prepro-
cess method. For wind power point forecast, we know that some
other inputs such as NWP data and nearby wind speed are also
considered except for the historical data to reduce the forecast
error. These data may also be useful for interval prediction which
is worth studying in the future. The delay embedding approach
can be considered as a feature selection operation in our method.
Also, other feature selection techniques can be used to process
the input data which may help determine the most informative
features and achieve higher quality PIs. Although it is possible
to improve the forecast method as mentioned above, we can
still find the superiority of our model from the comparison with
other benchmark models.

Generally, the quality of PIs is evaluated by the coverage
probability and interval width which are two conflicting ob-
jectives during PI construction process. To shorten the interval
width may deteriorate the coverage probability and vice versa.
Actually, the quality of PIs may be influenced by different fac-
tors such as data characteristics and forecast model. For dif-
ferent datasets, the PI results generated by the same forecast
model are different as can be seen from Table IV. For fore-
cast model, we may further study some modified RNN models
or design a better comprehensive cost function in the existing
single-objective framework to improve the PIs’ quality in the
future. In addition, considering the multiobjective characteristic
of PI construction, a multiobjective problem formulation for in-
terval prediction may also be a good choice for future research.
In a single-objective framework for PI construction, the mini-
mization of the comprehensive cost function NCWC or CWC
is essentially to find a optimal compromise between these two
aspects but it may not always balance them well. However, with
a multiobjective framework, a set of Pareto optimal solutions
can be generated and we can select a satisfactory one from them
according to posterior preference information.

Due to the intrinsic randomness of DA algorithm in the train-
ing process, we may get different prediction results for each run.
Therefore, to avoid a suboptimal solution, it is better to repeat
the training several times and take the average as the optimal
solution in a practical application. In addition, the PI results
can be utilized in different ways in practice. For example, they
can either be directly used in robust optimization problem of
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TABLE VII
PI CONSTRUCTION RESULTS WITH DIFFERENT ALGORITHMS

Algorithm Elman model NARX model

PICP(%) PINAW(%) PIMSE NCWC CWC(%) time(s) PICP(%) PINAW(%) PIMSE NCWC CWC(%) time(s)

DA 93.81 63.71 1.4188 2.0559 63.71 785.75 93.04 68.63 1.6428 2.3290 68.63 770.81
GA 94.85 74.78 1.8622 2.6100 74.78 771.49 94.07 71.48 1.7260 2.4408 71.48 770.80
PSO 93.21 86.30 2.5299 3.3930 86.30 1051.09 95.88 76.40 1.9980 2.7620 76.40 1022.86

power systems which only needs the lower and upper bound,
or be transformed into deterministic point forecast values with
convex combination of the lower and upper bound [51].

PI construction time is a critical factor in practice. Although
the training time of the proposed RNN model is a little longer
than MLP model, the test time, which is more useful for online
applications, is almost the same with that of MLP model. The
average PI construction time of Elman and NARX model in
this study are 0.0770 s and 0.0737 s, respectively, which are
very fast. All the experiments in this study are implemented
with MATLAB software on a PC with hardware configuration
of Intel Core TM i7-6700 CPU 3.40 GHz and 8 GB of RAM.

V. CONCLUSION

Renewable energy forecast is of great significance for system
operation and scheduling in smart grid. Compared with point
forecast, interval prediction is an efficient method to quantify
the uncertainties in forecast. In this work, the RNN-based LUBE
method is proposed to directly construct optimal PIs for wind
power forecast. The RNN model has dynamic features and is
suitable for time series forecast. Based on the single-objective
problem formulation, a novel comprehensive cost function with
a new PI evaluation index is designed to enhance the model
training. To optimize the RNN prediction model, the DA algo-
rithm with a new weight update method is introduced to solve the
problem. In addition, the delay embedding theorem is applied
to reconstruct the chaotic wind power data for better prediction.
The numerical results with a real world wind power dataset
show that the proposed RNN prediction model can construct
better PIs compared with the benchmark models.
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