University of Alberta

Flexible tool support for Software Product Lines

by

Iliyan G. Kaytazov

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2002

Bl

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisitions et
Bibliographic Seivices services bibliographiques

395 Wellington Street
‘Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
“copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission. ’ :

395, rue Wellington
Ottawa ON K1A ON4

Your o Votre réiéresce

Our il Notre réidrence

L’auteur a accordé une licence non
exclusive permettant 3 la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-81418-1

Canada

University of Alberta

Library Release Form

Name of Author: Iliyan Kaytazov

Title of Thesis: Flexible tool support for Software Product Lines
Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in
any material form whatever without the author's prior written permission.

1y~ . ()

lliyan Kaytazov,

11504 - 78 Ave, Edmonton
Alberta, Canada

T6G ON5

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Flexible tool
support for Software Product Lines submitted by Iliyan Kaytazov in partial
fulfillment of the requirements for the degree of Master of Science.

f

.ﬁ

Supig{';visor: Dr. Petr Musilek

i f—— .

Dr. Marek Reformat

(L =p 0] e’
=
)

. Elehi Stroulia

Abstract

Software Product Lines (SPL) are a promising approach to develop multiple products by
providing a reduction in rework and a systematic way to exploit the synergistic
relationships between products. One of the serious obstacles in implementing an SPL
approach to developing software is its complexity and the large number of activities over
which it spans. Consequently, a tool that alleviates the difficulty of adopting an SPL
approach is required. Such a tool should be designed and implemented with a few
considerations in mind. Given the diversity of SPL activities, the possibility for easy
integration of third-party tools is essential. Furthermore, the tool should be designed in
such a way that it can be easily modified. The proposed design for and implementation of
such a tool covers these requirements by leveraging existing knowledge in the field of

software architecture, design patterns, and emerging object-oriented technologies.

Acknowledgment

First, I would like to thank Dr. Petr Musilek for his help, advice, and encouragement
during the last year of my research. Without his support, and valuable comments this

work would have not been concluded.

Also, I wish to express my gratitude to Dr. Giancarlo Succi under whose supervision this
work originally started. I appreciate his criticism, guidance, and inspiration. Thanks also
go to Jason Yip, for his helpful advice and insights; to Rohit Gupta and JR Lyon for their

contribution to this work.

Finally, I would like to thank my parents, Georgy and Lily, for their warmth, true love,
and continued support for any scholastic endeavor of mine; and my brother, Vladimir, for

his positive influence and for instilling in me avidity for reading since my earliest age.

Table of Contents

1 INTRODUCTION 1
2 RELATED WORK 4
21 RSEB .ottt ettt 4
2.1.1 Obstacles in adopting large-scale reusecoouevvereeerevcesnneeerieenennn. 4
2.1.2 CRANGES 171 THE PTOCESS....oeeeeeeniitieeerieiereeeeee it s ettt reas et senaeessseessas 6
2.1.3 Changes in the OYgaARNIZALIONccouvvevereiveeciieireieneneenreeeeeeeereeesssereas 8
2.14 Object-Oriented System Modellingooveevccviveiocricoenreicieiennreceenanees 11
2.1.5 Application Family DevelOpment..............evevecceeveeveeirieereeererereaseereeesssenans 12
2.2 PULSE .ottt ettt et st e sttt n 14
2.2.1 Shortcomings of domain engineering methodologiescccveeeeuen. 14
2.2.2 OVETVIEW ...ttt e s e 15
2.2.3 Infrastructure CONSITUCTION.........ccoevveveeeriiiiiiieeecne ettt 17
2.24 USQAGE......ooeoeeiiiiiiiiiiiiitteet sttt 20
2.25 EVOIUTION ..ottt et 21
2.2.6 SUPPOFE .ottt s st an e s eem e n et sa b e e ss e saestesenneans 21
2.3 B AT e e 23
2.3.1 Careful Engineering vs. Rapid Productionccccocvueemenercrneecuennn. 24
2.3.2 Principles of Family-based developmentccccooevceiiiviinvnnccncecncrenns 25
2.3.3 OVEIVIEW Of FAST vttt st e 27
2.34 Process MOdel Of FASToooooeeiiiieiiee et ene 30
24 SUMMARY ..cooiitiiiieinreeiereaite et s e e saeeneat e st e e s sassa e e e m e nasas e e e enneene 33

3 SHERLOCK - A METHODOLOGY FOR ADOPTING SPL

DEVELOPMENT.....ccccsennsvnnnsssesaanss 35
3.1 DOMAINDEFINITION ...cooeiieeeeeitereieetea s eesestteeeesanassate s seesssrssesseranranentrenesaeeees 37
3.2 DOMAIN CHARACTERIZATIONccetvtteeeeeeeemtireaesmestissssseeesmmssasmsemsesnensesnssnsesnsesnans 39
3.3 DOMAIN SCOPING ..ottt eeettteee s sstrtrtassenssssssssasarassssssserenssassssssernsonssenas 42
34 DOMAINMODELLING ..c.cotieteetieeeeteeaiaeesseeeasessesesansmeaseneneseesresisseserssnmrteessansnnnses 44

3.5 DOMAIN FRAMEWOREK DEVELOPMENT . c.oitttitteeneiteitaineiteetseeeessraesssersssersssssunesns 46

3.0 SUMMARY .cootiiiiiiiitiitct et cn e st s a e s s s 50

4 NEED AND REQUIREMENTS FOR AN SPL SUPPORT TOOLccceceeeeeee 52
5 HOLMES - A SUPPORT TOOL FOR SPL DEVELOPMENT 57
51 BLACKBOARD SYSTEMScociiiiiiiiiiiiiinesiniie s s sneins e 57
52 TUPLE SPACE ..c.cutiiciiiiiiicieine et ssesne e sissnesss e s s nas s eaesansnsannsee s 63
5.3 PERSISTENT STORAGEcociiiciiimiiiiienne st cens et st e ean s s 65
54 CRITIQUING SYSTEMcomiuirimmincmiemisnisisinisssenessinseeesesenssnsseessssonssersassnesons 66
5.4.1 RALIONALE ... 67
54.2 Holmes’ IMplementationccoueevceaneiinininiccecceeeninecseieeeneeeeen 69
54.3 Problems encountered while using JPL.cccovvvoviinniciiirincnnecenncnnees 75

5.5 SAMPLE SESSIONoceiittiimminmnteieceinreitetesireene e e smaesnsessssssessassrs e saeesrisnssesesnnns 76
56 SUMMARY oottt e st s 85

6 CASE STUDY 87
6.1 DOMAIN DEFINITIONcoociiiiiiiiiiiiiiiitetins et sses s st sn s 87
6.1.1 Information about the dOMAIN............c.covveeeeeceeesiiieiieciieiee et 87
6.1.2 Domain VOCADULATYcc..eeeeioieiiiciceeieniecrie et et 90
6.1.3 Information about the MATKeL.............oooevcceeeveneiiieieiteeee et 90
6.1.4 OVErall STFALEZYuveveinviviiviiiiiiicie et 91
6.1.5 Definition Of dOMIAINS «........eeeieiiiieiirieeiiieececeee e s 91
6.1.6 FeasibDility QRALYSLS.......cooveeeeeeeeeeteeeeeeeneeeeeereeeiee e e e setae e enn e e s nesneneransanas 92

6.2 DOMAIN CHARACTERIZATIONcocoiimmiiiieniinit st st ne st esesese s s 92
6.2.1 SIMULATION SOfIWAF@......ooceeeeeereieriieereeerisirecertessie s eesiersae e e saeseeaseseaeas 92
6.2.2 EMbedded SOftWATEvooveeeeveiiecrierecreceericereesree et s secees s st seesaeneaees 94
6.2.3 Market SegMENLS ANA USETScvvvureeeeiiieeeeeeeeteeceete e s e enaes 94

6.3 DOMAIN SCOPING ...ccooutiiimiiiictnte ettt s b s sr e s 95
6.3.1 Variation points and QUITDULESc...covueeevrervcconieieieeiieceeeeneceeseeeeee 95
6.3.2 Product STFATEZIESveevveueeeereecreieeeecresiecte ettt sttt a e saesses e 97

6.4 DOMAIN MODELLINGcoiitiiiiinnnniiniienir e s sssanesss s s e sseiesasanssessessnssssnees 99
6.4.1 SCERATIOS vttt ettt e sttt st seesae e e snseneene s e 99

6.4.2 ARQALYSIS MOdeLoccoovimiieiriiiniiiniiiicrcree ettt 100

7

8

6.4.3 Design Model

6.5 SUMMARY

..

..

CONCLUSION AND FUTURE WORK

REFERENCES

List of Tables

Table 1: Sherlock Phases.......coocvioiiie et e 36
Table 2: Mapping of existing tools to identified requirementsc....c.ccoevvvervvncnnrennnn. 56
Table 3: Critique Engine Inttialization........c.ccoeeeeeiniiniiiiiiiies e 74
Table 4: Mapping t0 TEQUITEMENLS ..c..ccccvviiiiiiiiiiire et e s e e 85
Table 5: DOMAINS ...oevvieeiiriiiiteiieiiniesccneenre e e s b e eaa e s s e 92

Table 6: Classes and Responsibilitiesooocvvieiviiniiiininii e 101

List of Figures

Figure 1: Organization Structure (Jacobson et al., 1997)cccocoviiiiiiniiiiiicreiee e 8
Figure 2: Incremental Adoption of Reuse (Jacobson et al., 1997)cccoceevviiivinnncnccnnnen. 9
Figure 3: PuLLSE Structure (Bayer et al., 1999)ccociimiiiii e 16
Figure 4: FAST sub-processes (Weiss and Lai, 1999)....ccccccccvviimviniiiieieniecree s 23
Figure 5: Economic Model (Weiss and Lai, 1999)ccccoiimmiiiiiireierreereece e 28
Figure 6: The FAST h1€rarchy c...cccoovveeiiineii ettt 32
Figure 7: Use Case for PL support t00]cc.covmiieriiiiniceie et 53
Figure 8: ATCRITECIUTEoovuveieieiie ettt e e e et 57
Figure 9: Critiquing System Architecturecooveeiiiiinniiccree e 70
Figure 10: Configuring the Critiquing SYSteM.....cccovuieveirinivcniere e e 70
Figure 11: Class HI€rarchy ... 72
Figure 12: Example of a rule definition in JPL vs. Prolog......ccccoonvviiiiiicniininn 73
Figure 13: Compound StruCIUIEcocviiiiiriii s 76
Figure 14: Domain vocabulary.........ccoooiiiiiiiiiieet e 78
Figure 15: Domain desCription.........ccoiiiiiiiciiniiiiiin e 78
Figure 16: Classified informationcccocoocviiinvniiii 79
Figure 17: Feasibility ANalYSISccocoreriiriiicrirriccie et 79
Figure 18: DIiagrams Of VAIUEccoueveveervereeeeueiemerceseesaeiesesisses et ssessmsesss s sesessrsesenaes 80
Figure 19: Compatibility tyPes.....ccocviviiiiiiiiiiiriiiiicc e 81
Figure 20: USer FIOWS ...coiiiieiiieein ettt s 82
Figure 21: Domain SCOPINGcooveiieiriiiiii ittt 83
Figure 22: Domain Modelling......ccoocceiiiiiiniiiiiiiecciicni e 84
Figure 23: Analysis MOAEl.........oooiiiroiiiicccrecrcctcre et 100
Figure 24: Sequence Diagram for Analysis Model..........c.coocooiiiinii 101
Figure 25: Current Design Model (Rashev et al., 2000)cccovevreiiicniiniinnneeinenn 102

Figure 26: Proposed Design Model ..ot 103

1 Introduction

Industries often experience radical changes in seemingly brief periods of time. In most
cases, these changes are imposed on them out of necessity. Today, the software
development industry is facing a similar situation. Competitive demands are pushing
software developers to create products, faster than ever, in a greater variety. In an effort
to suggest appropriate solutions, a fair amount of research has been, and still is being
carried out to identify the key ideas whose adoption can radically alter the way software
developers do their jobs, with expected major gains in increased productivity and

improved quality of products.

The concept of a software product line (SPL) is a promising approach to cope with what
is often referred to as a software crisis. According to the Software Engineering Institute
“A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way.”
(SEIL, 2002). An SPL aims to achieve reuse of the following software development
artefacts: (1) requirements documentation, (2) architectural design, (3) software
components, (4) system modelling and analysis, (5) testing, and (6) planning. Thus, the
creation of a new member of a product line involves little or no redesign and recoding
and significantly reduced testing, making it possible to create high-quality software

applications much more quickly than with a traditional development process.

The adoption of an SPL involves a conversion from a software development process that
is characterized by developing an individual system and then creating variations of it, to a
process that creates product lines and families of systems. One of the main difficulties is
that doing so involves a change both in software development techniques and the
organization of a company. This suggests that the transition to an SPL should be carefully
explored and a tool that provides support throughout the whole process would be highly

beneficial.

Another issue that has to be addressed is how to understand and track progress when we
carry out a transformation to SPL development. A way to describe the artefacts in this
process, the activities that are performed during the process, the operations that we use to
manipulate the artefacts, and the roles played by personnel during the process should be
provided. In this way, we can identify and describe the activities that may proceed
concurrently and the activities that must be performed sequentially. Keeping all the
information up-to-date in the face of frequent changes without automatic support will be

a tedious and error-prone process.

There are a few existing methodologies for adopting an SPL approach. Even thought they
differ in the extent to which some practices should be followed, the structure of the
process remains the same. Roughly speaking, an SPL comprises two phases: domain
engineering and application engineering. The first phase deals with defining the
boundaries of the product line, analysing this domain for commonality and variability,
and developing the core artefacts for this domain that will be reused in the production of
the product family members. The second phase deals with eliciting the requirements for a
specific product member, matching them with existing core assets, and finally producing

the product member by exploiting the existing core assets as much as possible.

The focus of this thesis is to analyse, design, and implement a software product line
support environment for the Sherlock methodology (Chapter 3). Sherlock is a domain-
oriented methodology for an SPL that presents a more lightweight approach to SPL that
can be introduced over an existing software development process. The support
environment is designed to support the full software product line lifecycle as well as
introduce novel features to address aspects missing in existing support tools (Chapter 4).
The consolidation of the Sherlock methodology with a support tool is believed to
alleviate the risks of software process overhaul and at the same time provide automated
support for mining and developing reusable components within the domain of the product

line.

The thesis is organised into 7 chapters. Chapter 2 provides an overview of three other
SPL methodologies, which represent the most significant work in the field at the time of
writing. Chapter 3 briefly describes the different phases of Sherlock. The core
contribution of this thesis is offered in Chapters 4 to 6. Chapter 4 provides an analysis of
the essential requirements for an SPL tool; Chapter 5 describes the design and
implementation of the prototype tool, called Holmes. Chapter 7 presents a case study of
domain analysis using Sherlock and Holmes. Finally, Chapter 8 draws some conclusions

and identifies a few directions for future research.

2 Related Work

There are a few existing methodologies that address the problem of developing multiple
products in a synergistic manner. Even though there are a lot of commonalities among
them, these methodologies differ in how they identify the most critical aspects for the
successful adoption of product line software development. Some approaches stress the
organizational changes that have to be carried out during the transition to product line
development, following Conway’s Law that the design of a system represents the
structure of the organization that has developed it. Other approaches put the emphasis on
the changes in the software process that have to be followed in order to achieve a
successful software product line without explicitly defining the structure of the
organization that is to adopt the recommended process. Still others describe in detail the
necessary augmentations in software development techniques that will effect the efficient

production of product line members from the created product line environment.

2.1 RSEB

A holistic approach to adopting a Reuse-driven Software Engineering Business (RSEB)
methodology is described by Jacobson (Jacobson et al., 1997). It aims at developing
related software systems by exploiting high levels of reuse. In order to do so, a company
should adopt a specific software development process, organizational structure, and
software development techniques that allow for the creation and utilization of reusable
artefacts from all phases in the software development process. RSEB also stresses the
need for strong managerial involvement in the transition to reuse-driven software

development in order to achieve and maintain the necessary changes in the company.

2.1.1 Obstacles in adopting large-scale reuse

The authors identify four major groups of obstacles in achieving large-scale reuse:

engineering, process, organizational, and business-oriented issues.

Engineering — involve mainly technological deficiencies:

e The existing models lack clear identification of artefacts belonging to the
requirements, analysis, design, testing, and implementation phases of the
development cycle. Clear identification promotes reuse of these artefacts or, if
needed, substituting them with reusable ones.

e Lack of reusable components resulting from poor techniques for packaging,
documenting, and identifying components as well as insufficient mechanisms for
searching components libraries.

e Lack of customizability in potentially reusable components. Usually, different
applications have slightly different requirements for a given component.
Consequently, if a component is rigid, it will seldom be chosen for reuse.

e Lack of tools to support the process of software reuse. Given the diversity of
artefacts that have to be maintained and used, new and existing tools have to be

integrated into reuse-oriented support environments.

Process — the traditional software development process does not provide opportunities for
reuse. There is no explicit phase that forces an organization to analyse, design, and
implement reusable components. Furthermore, the roles of the software architect and
component engineer in the design and implementation of the basic technological

infrastructure for reuse have not been identified.

Organizational — very few organizations systematically practice large-scale reuse. Large-
scale reuse requires focusing on a few application systems covering one application area,
1.e. a domain, at a time. In order to identify the components that will be shared among the
applications in the domain, domain engineering has to be undertaken. This activity
consumes additional time and resources. In contrast, many companies prefer to
concentrate on one project in order to ensure development within the allotted time and
budget. As a result of the latter approach, the possibility for reusing artefacts among
projects is substantially reduced. Other factors that limit the adoption of large-scale reuse
are a culture of not trusting others in an organization, the attitude of avoiding

dependency, and the feeling of lost creativity.

Business — adopting and maintaining the practices of reuse necessitate additional
investment. Performing domain engineering and developing a library of reusable
components tie up capital until the projects that exploit the artefacts of these activities are
completed. Additional funding is necessary to provide training and to obtain third-party

tools necessary for the process of reuse.

‘Addressing and surmounting the abovementioned obstacles can only be achieved through
the full support and involvement of senior management. Introducing partial solutions
such as developing or buying a component library are not sufficient to overcome the
inertia of developing software the old way. Jacobson et al. (1997) conclude that software
reuse necessitates a major overhaul in the software process, organization, and

development technique in place.

2.1.2 Changes in the process

Substantial reuse requires that the software process be based on two main groups of
activities. The first group includes identifying reusable assets in terms of a system’s
architecture and the subsequent creation, appropriate packaging, and documentation to
facilitate easy reuse. The second group includes the activities of implementing a software
system as prescribed by the software architecture, using the components created. In order
to do so, an organization needs to refashion its software process into four sub-processes
that can partially be carried out in parallel. A brief description of each sub-process is

provided in the following paragraphs.

Creating reusable artefacts. This process provides assets appropriate to the needs of the
reusers. These assets may be new, reengineered, or purchased, including code, interfaces,
architecture, and tools. This process may include activities such as domain analysis,
architecture definition, technology evolution analysis, reusable assets testing and

packaging.

Reusing the artefacts created in the previous process. The output of the reuse process is

the creation of application systems as a coherent collection of reusable assets that are

structured according to the application architecture. This process includes the activities of

constructing and testing complete applications.

Supporting the process of asset reuse. This process supports the overall set of processes
by maintaining and facilitating the use of the reusable asset collection. The activities
include certifying submitted reusable assets, classifying and organizing them into a
library, providing additional documentation, and collecting feedback and defect reports

from reusers.

Managing the process of software reuse. Includes planning, resource allocating, tracking,
and coordinating the other processes. Activities entail setting priorities and schedules for
new asset construction, and choosing an alternative way to proceed in the face of major

changes.

Domain engineering is a key activity associated with the process of creating reusable
artefacts. It provides a systematic way of identifying potentially reusable assets and an
architecture to enable their reuse. The rationale behind domain engineering is that
applications systems in one, and sometimes more, application domains share common
functionality requirements. Consequently, these common requirements can be
implemented as reusable assets that will be shared among the applications. The main
difference between domain engineering and other system engineering practices such as
Structured Analysis/Structured Design or Object-Oriented Analysis/ Object-Oriented
Design is that domain engineering spans over several systems that belong to a single
domain. There are a few domain engineering methodologies (Arango, 1994) that
highlight different aspects of the process. They differ mainly in how they identify the

scope of the domain and how well they match the target software process and technology.

Application system engineering is concerned with the process of building applications
and consequently has existed since the beginning of software development. Originally,
application systems were built from scratch or by using function libraries. Nowadays, the

objective is to build software systems much more quickly and more cost-effectively than

before by stressing the extensive reuse of a set of reusable assets that have been provided.
Thus, the activities involved in modemn application engineering are customizing and

assembling the provided assets into applications.

2.1.3 Changes in the organization

In a traditional software organization, senior management allocates resources over a
number of projects. Each project manager runs his or her project, and there is no
organized way of creating reusable artefacts. Systematic reuse necessitates the existence
of a separate unit that is concemned only with the development of reusable artefacts. In
many companies with experience in systematic reuse, a third function evolves — that of
support. Thus, a company maintains three independent organizations that have separate

managers (Figure 1).

Figure 1: Organization Structure (Jacobson et al., 1997)

All the necessary changes that have to be implemented in the process and the
organization of a company require much time, investment, and effort. So a company
faces two conflicting pressures: on the one hand, it has to keep its current projects going
in order to meet its financial objectives, and on the other, it has to reorganize itself and
adopt a reuse-driven approach to developing software if it wants to remain competitive.
An adoption strategy that has proven its viability in practice is implementing reuse
strategies in pilot projects. If they prove successful, the reuse practices are gradually
extended to other projects. A pattern often found in the industry is of incrementally

adopting reuse practices (Figure 2).

Improved time to market, costs, quality

=> Rapid custom

Interoperability l;r Od;lct :
Broader i‘igh]reuse evelopmen
cvels
Reduced Coverage ve
Reduced maintenance
development costs
time

Domain-specific

d
5 . reuse-driven
5 Architectured organization
28] Managed reuse
Black-box workproduct
Informal code reuse rense
code reuse
None
»

Investment, experience, time

Figure 2: Incremental Adoption of Reuse (Jacobson et al., 1997)

This diagram depicts the general rule that an increased level of reuse shortens the time to
market, lowers the cost of products, and increases the quality of the products. The
transition of no reuse to informal reuse occurs when developers trust each other and a -
need for a shorter time to market is present. In this case, reuse is mostly based on copying
code in different applications. This type of code reuse is very hard to maintain because
any modification or defect fix has to be done multiple times and in most cases manually.

Consequently, as the level of reuse rises, maintenance becomes more difficult.

The next level is “black-box” code reuse. In this case, the code is reused as a carefully
packaged and documented module or component. Thus, practically all reusers use the
same code and preserving the consistency of the code is not an issue. Since different
applications can have slightly different requirements for a component, variations of the
component should be supported. In this type of reuse, it is not clear who is responsible for

the configuration management — should this be the person(s) who originally created the

component, or the one(s) who required the modification. The difficulties encountered in

configuration management necessitate a transition to the level of managed workproduct

reuse. At this level, a distinct organization is responsible for the creation and maintenance

of reusable assets.

At the level of architected reuse, care is taken in advance to identify components that

have to be used and to ensure that they will fit the architecture. Domain-specific reuse

focuses on identifying the common components among the application systems in the

domain.

In RSEB, the following principles are identified as essential in order to maintain large-

scale reuse:

Maintain top-management leadership and financial backing over the long term.

Plan and adapt the system architecture, the development processes, and the
organization to the necessities of reuse in a systematic but incremental fashion.
Start with small pilot projects, and then scale up.

Plan for reuse beginning with the architecture and incrementally developing the
reusable components.

Move to an explicitly managed reuse organization that separates the creation of
reusable components from their reuse in application systems and provides an
explicit support function.

Create and evolve reusable components in a real working environment.

Manage application systems and reusable components as a product portfolio of
financial value, focusing reuse on common components in high-payoff application
and subsystem domains.

Realize that object or component technology alone is not sufficient.

Directly address organization culture and change using champions and change
agents.

Invest in and continuously improve infrastructure, reuse education, and skills.

Measure reuse progress with metrics and optimize the reuse program.

10

2.1.4 Object-Oriented System Modelling

The RSEB methodology heavily relies on the Unified Modelling Language (UML)
(Booch et al., 1998) through all phases of system development: requirements capture,
robustness analysis, design, implementation, and testing. During each activity, the
understanding of the system is refined and its functions are described in more detail. For

each phase, several models are used.

The phase of requirements capture is based on the use case model, which consists of an
actor and a use case. The actor is any entity that interacts with a system by exchanging
data and events. The use case is a sequence of transactions performed by a system, which
yields an observable result that is of value for a particular actor. The use cases A and B
can be connected with two types of generalization relationships: <<uses>> and
<<extends>>.

e <<uses>> - indicates that B inherits A, and consequently an instance of B can
perform all the behaviours of A.

e <<extends>> - indicates that an instance obeying use case A may at some time
discontinue obeying A and instead start obeying use case B temporarily. After the
instance of A has finished obeying B, it will resume obeying A.

Connecting use cases by relationships helps the software engineer to identify common
functionalities in the customer’s requirements very early in the development process and

thus to identify the potentially reusable components.

During the phase of robustness analysis, an analysis model is created. It includes the
following stereotypes:

e <<boundary>> — defines the interface between a system and an actor

e <<entity>>—is a long lived object in the system

e <<control>> — performs use-case specific behaviour

These types are used in constructing collaboration diagrams, which show how the
analysis objects interact in performing a use case. A collaboration diagram is associated

with one or more use cases, and this connection is made explicit by a <<frace>>

11

relationship. Another type of diagram, a sequence diagram, shows in more detail the type
of messages that will be exchanged among the types while performing a use case. Similar

to collaboration diagrams, sequence diagrams are associated with one or more use cases.

In the next step, a design model of the software system is created. It consists of design
classes, which contain more details related to the target language and execution
environment. The design model is derived from the analysis model by mapping each
analysis type to one or more design classes. In the case of multiple classes, the
relationship among them is defined. Depending on the target language, it can be
inheritance, aggregation, association, delegation, etc. Also, a trace relationship between

the analysis type and the design classes is established.

Lastly, the implementation model is represented by the source code. Each of the classes
or modules in the implementation model closely matches the one in the design model, but

in addition each has method/function bodies.

The test model is represented by test cases. Each test case can be regarded as having an
instantiation with an expected result. Use cases represent excellent instruments for test
planning by providing the basic cases that need to be tested. Thus, the system model
represented by the UML notation provides traceability from the requirements
specification represented by the use case model to the phase of testing represented by the

test model.

2.1.5 Application Family Development

Jacobson (Jacobson et al., 1997) identifies three types of application system families:
e An application system suite — a set of application systems that are intended to work
together to help some actors accomplish their work, e.g. Microsoft Office
e Application system variants — the same application system needs to be configured,
packaged, and installed differently for different users, e.g. telecommunication

switching systems

12

e A set of fairly independent application systems — can be treated as a family when
built from the same set of low-level reusable components, e.g. applications built

using the Microsoft Foundation Classes (MFC) Framework.

In RSEB, there are three main activities that constitute the development process:
application family engineering (AFE), application system engineering (ASE), and
component system engineering (CSE). The process of AFE gathers requirements from a
few customers and transforms these requirements into a suite of application systems. The
workers involved need to understand what current and potential customers will need and
want in the future in order to envision appropriate use cases. The use cases are then
transformed into a suitable architecture through robustness analysis and design. This
architecture should define the candidate components and application systems that will be
needed. Alignment with existing products, such as legacy systems, GUI frameworks, or
middleware object request brokers, is performed to explore the possibilities of reusing

existing software. During AFE, decisions are taken as to when to initialise CSE and ASE.

CSE designs, constructs, and packages components into component systems. It begins
with requirements capture, which is based on information from a wide range of sources
such as business models, domain experts, and application end users. After the
requirements are analysed for consistency, commonality, and variability, the results are
used to incrementally design, develop, and test the components. CSE concludes with
certifying and packaging the components for reuse and easy retrieval. The reusers of
these components should follow a process and use tools provided by component

developers.

During ASE, applications are built by selecting, customizing, and assembling
components from the component’s systems. This process also includes requirements
refinement for a specific application and proceeds with incremental analysis, design,
implementation and testing. It is realistic to expect that even if application engineers try

to reuse as many components as possible, there will be features that necessitate the

13

development of new code. In their work, application engineers use the tools, modelling

languages, and process instructions provided with the components system.

2.2 PulLSE

Product Line Software Engineering (PuLSE) is an approach that builds on existing
methods of domain engineering (SPC, 1993) (Ardis and Weiss, 1997) (Kung et al., 1990)
to define a methodology for software product lines (Bayer et al., 1999). The authors of
this methodology claim that domain engineering approaches have had mixed success
when applied in industry. Consequently, a new methodology that overcomes their

shortcomings and facilitates product line development is needed.

2.2.1 Shortcomings of domain engineering methodologies

The rationale behind domain engineering is that by focusing on a specific domain, where
applications significantly overlap, a large-scale reuse can be achieved. According to the
authors of PuLSE, domain engineering methods have not proved as effective as expected.
The reasons fall into three main groups:

e Misplaced focus on domains as opposed to products

e Deployment complexity

e Lack of customizability

Domain engineering relies on the notion of an application domain to determine the
boundaries of the reusable infrastructure. An application domain includes all possible
applications that can be developed in that domain. Domains have proved difficult to
scope and engineer since they include many extraneous elements that have no value to an
enterprise. Consequently, the domain view provides little economic basis for making the
right scoping decisions. Instead an enterprise should focus on a group of particular

products, including existing, under development or anticipated products.

The deployment complexity derives from the overstated focus on organization issues and
the lack of technological support. Often, domain engineering methods assume that the

technological problems of how to scope, model, and architect the reusable infrastructure

14

have existing solutions. The authors of PuLSE believe that in practice this is rarely the

case, and consequently the focus of a product-line methodology should be shifted.

The authors claim that since different companies have different needs, applying the same
methodology in different industrial settings can be inefficient. The existing
methodologies are either not flexible enough or are too general. Thus, they cannot be

applied successfully in practice without additional modification and expert support.

2.2.2 Overview

PuLSE consists of three groups of elements as shown in Figure 3: deployment phases,

technical components, and support components.

Deployment phases include the stages of product line evolution. They describe the
activities included in the instantiation and usage of a product line. The phases are:
e [Initialisation: gather information about the company to adopt product line
development and customizes PulLSE according to the company’s specifics
¢ Infrastructure Construction: define the boundaries, model, and architect the product
line infrastructure
¢ Infrastructure Usage: use the reusable assets comprising the product line
infrastructure in creating product line members.

» Evolution and Management: evolve and manage the infrastructure over time

Technical components provide the technical support needed to carry out the product line
development. They are used throughout the deployment phases. There is no strict
correspondence between each deployment phase and each technical component.
Nevertheless, some technical components are used only in one deployment phase. The
technical components are grouped into following sections:

e Customizing: used during the Initialisation phase

e Scoping: used in defining the boundaries of the product line infrastructure by

focussing on product definitions

15

e Modelling: used in representing the product characteristics in the product line by a
single notation and denoting the separate product family members

e Architecting: used to develop the reference architecture of the product line and to
maintain traceability with the product line infrastructure model

e Instantiating: used in performing the usage phase

¢ Evolving and managing: used in configuration management, adapting assets that do

not fit the product line, and evolving the existing product line infrastructure

Deployment Phases Technical Components
PuLSE Initialization > Customizing (BC)
v g :
% ; Scoping (Eco)
PL é, g <:>
Infrastructure «» = & Modelling (CDA)
Construction B g
o
as
+ g g Architecting (DSSA)
[¢]
jou]
PL Infrastructure
Usage > Evolv.&Mgmt (EM)
Project Entry Points Maturity Scale Organization Issues
Support Components

Figure 3: PuLSE Structure (Bayer et al., 1999)

The support components are documentation and guidelines compiled and provided to the
user in order to enable a better adoption, evolution, and customization of the product line.
These components are used by the other elements and consist of:

e Project Entry Points: information representing the different project types. For
example, are there already existing assets that need to be integrated in the product
line or are there multiple projects that have been developed independently but
possess significant overlap that makes adopting the product line approach

beneficial?

16

e Maturity Scale: guidelines for adopting and evoiving a product line approach in a
company by using PuLSE.
e Organization Issues: guidelines for creating and maintaining the right

organizational structure for developing and managing product lines.

2.2.3 Infrastructure Construction

The initialisation phase produces a tailored version of PuLSE to suit the specifics of the
company adopting it. This phase itself consists of three sub-phases: baselining,

evaluating, and customizing.

During baselining information necessary for customizing PuLSE is gathered. This
information is gathered according to characterization factors, which define the specifics
of the organization adopting the product line approach, such as the type of projects it is
developing, the amount of resources it has, etc. The relevant customization factors are
chosen by following the guidelines included in the support components. Each
characterization factor possesses a baselining strategy that governs the acquisition of
necessary data. The information gathered for all the characterization factors constitutes
the current profile of the company. This profile is analysed for dependencies among the
characterization factors during the evaluation. In this sub-phase, the effect of these factors
on the components of PuLSE is determined. This results in the raw instantiation profile
for the customizations that need to be carried out. In the next step, the sub-phase of
customization targets at deriving a complete product-line process. At this stage, decisions
about the expected number of iterations as well as the final process definition is passed on

to the technical component for evolving and management (PuLSE-EM).

The scoping component (PuL.SE-Eco) is used to identify the scope of the product line. As
a first step, the possible products to be included in the product line are identified. These
products are used to identify the characteristics and validate them. The information about
the characteristics and the products is organized into product maps. The main idea of
PulLSE-Eco is to use the business objectives of the stakeholders of the product-line to

define which products will be finally included in the product line. Since these objectives

17

are in most cases too abstract to determine within PulLSE, they are augmented into
evaluation functions, which include characterization and Dbenefit functions.
Characterization functions evaluate the characteristics of each product, whereas the
benefit functions, using the characterization functions, determine the most beneficial
characteristics and products that the product line will cover. During the step of
characterizing products, the characterization functions are applied to the
product/characteristic combinations. Finally, this information is added to the product

maps.

The next step of benefit analysis is the core step of Pul.SE-Eco. At this, point the
information gathered is used to identify the scope. The values of the characterization
functions are used to assign values to the benefit functions. In order to produce a single
scope definition, the values of the different benefit functions need to be balanced. Doing
so represents a classical multi-objective decision problem. The PuLSE-Eco doesn’t
provide a specific technique to address the problem but suggests using existing
techniques (Mollaghasemi and Pet-Edwards, 1997). The final workproduct of Pul.SE-
Eco is a product plan, which is fed to the PuLSE-EM component.

The technical component for modelling (PuLL.SE-CDA) is aimed at creating a product line
model. To achieve this an additional refinement of the economic scope of the product line
is performed, if necessary. The specifics of this process are determined during the phase
of initialisation (PuLSE-BC). The core activities in PuLSE-CDA are eliciting,
structuring, and modelling the relationships among the elements of the product line
infrastructure. Two types of workproducts are defined in the phase of modelling:
storyboards and other domain workproducts. Storyboards are used to represent the flow
and type of actions constituting an activity of interest in the domain. Examples are
workflow diagrams and message sequence charts. Other domain workproducts may
include models to capture additional characteristics of the product line, such as data

models to represent common or varying data structures to all product members.

18

The product line model is created by first eliciting and creating storyboards for the
various product family members. Next, the commonality among these storyboards is
extracted in the form of generic storyboards that apply to all product members. The
variability is also explicitly represented in other workproducts. Each product member is
then derived from the generic storyboards by applying a decision model. In this decision
model, variability is represented as a decision that has to be taken among few
possibilities. Thus, the specification of a product member is derived from the generic one

by resolving all decisions (variabilities) in it.

The technical component for architecting (PuLSE-DSSA) focuses on creating a domain-
specific software architecture that can be used to instantiate current and future product
family members. The basic idea behind PuLSE-DSSA is the incremental development of
the reference architecture guided by scenarios. The scenarios are either generic, which
represent functional requirements, or property-related, which represent non-functional
requirements. The generic scenarios are derived from the generic storyboards and other
workproducts created in PuLSE-CDA. Each generic scenario is further augmented by a
number of property-related scenarios that are associated with it and is ranked according to

its architectural importance.

The iterative development of the architecture starts with a subset of the identified
scenarios that have the highest architectural importance. The current iteration is
completed when all scenarios from the current subset are fitted into the architecture. The
inclusion of a generic scenario may result in more than one architectural solution. In such
a case, the property-related scenarios are used to further evaluate each candidate.

Optionally, a prototype of a candidate can be built to evaluate more precisely its viability.

During the creation of the reference architecture, each decision to be taken has to be
further refined during the stage of implementation, and the anticipated possible solutions
have to be recorded. The decisions to be taken and their possible solutions are recorded in

a configuration model for the reference architecture.

19

2.24 Usage

The Usage Phase of PuLSE aims at specifying, instantiating, and validating a product
family member. As a first step, the customer’s requirements for the specific product
member are gathered, analysed, and mapped to the existing characteristics and products
in the product map as created in the PuLSE-Eco. The level of overlap between the
planned product member and the product map, together with existing historical data
concerning product line infrastructure usage, helps to determine what extent of the
functionality of the new product member will be covered by already developed assets.
This information is used in determining the necessary resources and the schedule for the

instantiation of this family member.

In the next step, the product line model or a part of it that corresponds to the application
under development is instantiated by using the decision model created in PulLSE-Eco.
Thus, the product member specification is derived and validated against the customer’s
requirements. The validated specification is added to the configuration history of the

product.

The next step is instantiating and validating the family member’s architecture. Similar to
the previous step, the architecture for the family member is derived from the product-line
~ reference architecture using its configuration model. Then the architecture is validated

against the product’s specification, and it is added to the product’s configuration history.

The actual implementation of the family member may include components that come
from three sources: reusing an existing component from the product-line infrastructure,
developing a new component that will be added to the product-line infrastructure, or
developing a new component that will be not be added to the collection of reusable
assets. The decision between the last two options is taken in the PuLSE-EM component.
Again, the design and code of the family member are validated against the architecture

and are entered into the product’s configuration history.

20

Finally, before deployment, the product is validated against the acceptance tests that are
performed by the customer. Failure at this level triggers a new iteration of the Usage

Phase.

2.2.5 Evolution

The purpose of the evolution phase is to monitor and control the evolution of the product
line infrastructure over time. The evolution phase uses the technical component Pul.SE-
EM, which is customized to the requirements of the specific company. PuLSE-EM is also
used in the phgses of initialisation, construction, and usage. PuLSE-EM is used not only
in maintaining the workproducts from the different phases but also in coordinating the

activities from these phases and consolidating their assets.

Based on the information gathered during the phase of initialisation, the evolution phase
plans and guides the development of the product line infrastructure. In any of the sub-
phases of product line construction and usage, a modification to existing assets that
belong not only to the preceding but also to the following phases may be necessary. The
role of the evolution phase and its supporting technical components is to evaluate the
benefit of this change request, determine its impact on other existing assets, and finally
propagate the necessary changes by instantiating the associated parts of the involved

technical components.

2.2.6 Support

Supporting PuLSE provides the guidelines to customize the methodology and help the
company in adopting a product line approach in both development and organizational
aspects. To do so, the guidelines are organized into three groups: Project Entry Points,

Maturity Scale, and Organization Issues.

The project entry points describe the usual contexts in which Pul.SE is adopted:

21

Pure PuLSE: it is characterized by a situation in which a new product line is set up
in a company. In this context, all components can be established with full
traceability among them

Evolutionary PuL.SE: the different components of the methodology are adopted
incrementally in an ongoing development process

Reengineering-driven PuLLSE: existing software systems that have been developed
individually are grouped into a product line. In this case, existing assets are used to

instantiate the PL infrastructure construction phase

The PulLSE maturity scale is designed to help an enterprise adopt the methodology and

measure its maturity within the product line context. The PuL.SE maturity scale is based

on the maturity scale defined in the Reuse Adoption Guidebook (SPCSC, 1993) and

identifies four maturity levels:

Initial: only single PuLLSE technology components can be applied at a time —
mainly Eco, CDA, DSSA after the necessary customization

Full: All technological components involved in the Construction Phase are used;
nevertheless, their degree of integration can vary

Controlled: PuLSE is applied as a complete development lifecycle. Traceability
among the different phases is established and maintained.

Optimizing: PuL.SE methodology is further refined over a number of iterations after

its initial adaptation

The organizational issue guidelines cover both development and project organization

areas. For the development organization, the recommendations are:

Divide the application development into areas of specialization according to the
separation of concerns

Vertically layer the application development into analysis, architecture,
implementation and deployment

Assign permanent personnel to the areas of specialization within the vertical
layering whenever possible

Supervise and enforce the process rules, architecture soundness and evolution

22

For the project organization, the guidelines are:

e Dynamically assign personnel to projects according to their responsibility area, i.e.
developers belong to an area of expertise, not to a project

e Keep project leadership very small. Project leaders coordinate the project

development within the product line

e Allocate 70% of developer’s time to current project development and 30% of their

time to the evolution of the reusable infrastructure

2.3 FAST

The authors of the Family-Oriented Abstraction, Specification, and Translation (FAST)
process (Weiss and Lai, 1999) propose a systematic approach to analysing potential
families of software systems and developing facilities and processes for generating
members of the product family. The FAST process is built on two main sub-processes
(Figure 4): domain engineering, which creates the facilities and defines the processes
used for fast generation of product members; and application engineering, which

produces the members of the product family by using the facilities created in domain

engineering.

Domain
Engineer

Family

) Creates and Uses
; Definition

) Family
—— o o o o e et e e o e Production
) , Facility

‘(Family
Members

Application Creates

Engineer

‘Domain
Engineering

. Application
Engineering

Figure 4: FAST sub-processes (Weiss and Lai, 1999)

23

2.3.1 Careful Engineering vs. Rapid Production

Software engineers face a continuing dilemma. On one hand, they are asked to develop
software systems that attract customers with their rich functionality, ease of use, and
reliability, while at the same time being easy to maintain and extend, according to future
customers’ requests. Such products can be achieved only after careful engineering. On
the other hand, software engineers are pressed to develop software products in the fastest
possible way, so that the products can be marketed ahead of competition. In most cases
rapid development, as it is practiced nowadays, is contrary to careful engineering, and
what is sacrificed is the activities and artefacts that enhance a product and its constituting

parts in terms of their later lifecycle maintenance and extension.

Today, few companies succeed in striking a balance between schedule pressure and
careful engineering. To achieve this balance, they should adopt a systematic approach to
developing software products. Engineers in other fields have experienced the same
conflicting goals of rapidly producing carefully engineered products. Many of the
solutions that have been adopted are based on the idea of developing a family of products
that can be built by exploiting the same production facility. In this case, a family denotes
“a set of items that have common aspects and predicted variabilities” (Weiss and Lai,

1999).

In order to create a profitable product family that results in decreased development time,
a few issues need to be addressed. FAST was designed to address the following problems
(Weiss and Lai, 1999):

e Ill-defined and changeable requirements either due to customer’s uncertainty or

missing information

¢ Confusion of requirements, design, and code

e The need for rediscovery and reinvention

e Adapting existing legacy systems to new technologies and requirements

e Redundant specifications

24

2.3.2 Principles of Family-based development

FAST is based on three main assumptions concerning the development of software
systems (Weiss and Lai, 1999):

e The redevelopment assumption. Most software development re-implements
existing software systems or, more precisely, builds variations of and/or extensions
to these systems.

e The oracle assumption. It is possible to predict to a significant extent the type of
changes that will be required to a software application in the future. In particular, it
is possible to predict where the variations will occur.

e The organizational assumption. It is possible to organize both the software and the
organization that develops and maintains it so as to limit the necessary changes of
any predicted modification to a small number of software modules and involve a
small number of developers. Thus, the task of producing new versions of a system
can be carried out as relatively independent modifications to the system performed
by different developers, i.e., the various modifications can be performed

concurrently.

From the redevelopment assumption it follows that by avoiding the re-implementation of
common modules, we can decrease our total development time. Identifying the
commonality among the software systems is the key in defining a product family. The
oracle assumption states that the variability in the software systems can be predicted, and
consequently, we have a good understanding of what type of systems will be built. The
organization assumption states that we can structure our systems and organization in a

way that will permit efficient implementation of predicted modifications.

The abovementioned high-level characteristics of family-based development can be
realized through already existing methods and technologies. Examples of these are
abstractions, information hiding (Parnas, 1972), and predicting change based on past
experience. Choosing good abstractions is essential for ensuring extensibility in the
future. Abstractions represent common entities by providing an interface to manipulate

them and hiding the variability among them behind this interface. In FAST, abstractions

25

are used both in the design of the family architecture and in constructing the application
modelling language. These abstractions become the basis for building adaptable
components that are used in generating the family members. The information hiding
principle includes the subset of abstractions that hide the decisions most likely to change.
Thus, the choosing the modules to implement information hiding and predicting future

changes are the main decisions on which the product family architecture is based.

Successful prediction of future change can be based on two sources: past experience in
maintaining a software system and prediction of marketing or technological trends. By
examining the modification history of a software system, a software practitioner can
identify the modules of the system that have undergone the most change. Weiss et al.
(1999) stated that these modules should certainly be domain engineered because they
represent both a bottleneck in the development and provide revenue. Such modules can
be considered bottlenecks since they have utilized a lot of development effort and
possibly have slowed down the implementation of other modules dependent on them.
Additionally, they are vital for the company because in many cases, the modifications are
in response to requests for new features. Therefore, such modules should make heavy use
of abstractions and information hiding in order to limit the dependencies of other parts of

the system on them.

Another source that can be used in predicting future changes is the people involved in
monitoring market trends. They can often provide valuable information about the
possible evolution of user expectations in the future and thus provide direction
concerning new features that may be required for implementation. The information from
early adopters of new technologies can also be used to evaluate the possibility of
adopting a new technology that can streamline the development and make possible the

implementation of new services.
The organizational assumption follows Conway’s law that the structure of a software

system mirrors the structure of the organization that has developed it. Consequently, in

order to limit the dependencies among software modules, the company has to be divided

26

in separate organizations that develop different modules of the system. Each organization
uses services provided by a module developed in a different organization through a
standard interface. The products within a product family often span multiple domains.
Accordingly, each organization within a company may be responsible for developing the
software assets belonging to a single domain. In this case, each family member will be
developed by integrating components coming from different domains. Often, doing so
necessitates the creation of an additional organization that deals only with producing the
family members. The adoption of such an organization may result in additional gains
when a company develops multiple product families and some of the domains are shared

among the different product families.

2.3.3 Overview of FAST

FAST includes three main subprocesses:
e Identifying families worth of investment (Qualify Domain)
e Investing in facilities for rapid production of family members (Domain
Engineering)

e Using those facilities to produce product line members (Application Engineering)

The first step is qualifying the domain, a process which includes an economic analysis
and estimating the number of family members; the objective is to ascertain whether it will
be beneficial to adopt a product line approach for a specific situation. The basic economic
assumption in FAST is that investments in engineering the family will be paid back by
the more efficient production of family members. This results in discriminating between
two cases: one in which little or no attention is paid to domain engineering, and a second
one in which the domain is engineered with the intent of making the production of family
members more efficient. In the former case, the cost associated with the production of a
new family member stays almost the same. In the latter case, a new family member is

produced at almost no cost by utilizing the facilities created during domain engineering.

27

In addition, when product families are developed by performing domain engineering
beforehand, a company faces making an initial, substantial investment to create the
product family environment. During the subprocess of domain engineering no income
can be expected from the activities carried out and the artefacts created. This means that a
company has to perform a careful economic analysis and decide whether it is profitable to
continue with product family development. The risk associated with product families can
be represented by the following economic model. (Figure 5). Assuming that the cost of
producing one family member is M, then producing N members will cost C = MxN. This
cost is relatively evenly distributed in time. Conversely, if domain engineering is
performed, a company has to start with the initial investment — I. Assuming that
producing a family member after domain engineering has been performed costs FM, then
the cost incurred to produce N family members is C = I + FMxN. In order for the product
family to be viable, FM has to be substantially lower than M. The difference depends on

how much automation is achieved by the artefacts produced during the phase

(B) With Domain Engineering

4|

:Payback Point
. 3¢
Cumulative
Cost
2¢, ,)
(A) Without Domain Engineering

T 2 - 3 4
. -Number of Family Members -

Figure 5: Economic Model (Weiss and Lai, 1999)

of domain engineering. It has to be pointed out that there are certain activities that will
never be automated. For example, the application engineer will always interact with a
customer to determine the requirements for a new family member and must be able to

demonstrate to the customer that those requirements have been met.

28

The slope of the line (B) depends on the amount of investment done during the phase of
Domain Engineering and on the specifics of the domain itself. Some domains lend
themselves very well to automation; others include more activities that have to be
manually performed. In order to alleviate the risk of making a substantial initial
investment in Domain Engineering that later cannot be paid back, FAST recommends
incremental adoption of Domain Engineering and iterative creation of the application
production environment. As the company’s experience with Application Engineering
grows and proves beneficial, it can further invest and improve in its application

environment facilities.

FAST does not prescribe a specific Domain Engineering methodology but leaves open
the pbssibility for choosing one depending on what is considered most appropriate in a
specific situation. Still, certain activities and artefacts are essential in FAST and have to
be included in each FAST instantiation. The activities that have to be included are the
following:
e Defining the family (domain)
e Developing a language for specifying family members — application modelling
language (AML)
e Developing an environment for generating family members from . their
specifications

e Defining a process for producing family members using the environment

The artefacts of Domain engineering should include:
® An economic model of the domain
e A definition of the family, including a dictionary of the standard terminology used,
the commonality among the members of the family, and the variability in the family
e A description of the decisions that have to be taken in order to specify a product
member, i.e., choosing a specific decision for each point of variability that the
product member has.

e A specification of AML: composition- or compiler- based

29

e Tools necessary in the process of application engineering, including analysis,
modelling, documentation, and source code generation tools.

e A definition of the process to be used in application engineering

The phase of Application Engineering focuses on grasping the customer’s requirements
and using the application environment to model and generate the desired software
systems. The application environment created in DE should enable the application
engineer to abstract from design and coding decisions and concentrate on translating the
customer’s requirements into an application model. The application model is defined in

AML, which is part of the application environment.

The application engineering phase is an iterative process. After the initial model of the
application system in created, this model is analysed by using the tools included in the
application environment to validate that it satisfies the customer’s requirements. The
source code for the application system is generated from the validated model and the
generated implementation is given to the customer for acceptance testing. The same steps
are repeated until the customer is satisfied. In the same process, the application engineers

give feedback and suggestions for improving the application environment.

2.3.4 Process model of FAST

The FAST process, as with any other engineering process, is a sequence of decision-
making activities. An engineer needs to know what decisions to make, when to make
them, what the results mean, and how to present them. By providing a good description
of a process, we can be confident that all essential steps in a process will be covered.
Additionally, it makes it possible to repeat a process in different environments and
projects. A systematic description also gives us the possibility to record any
modifications that have been introduced to the process in order to improve it or customize

it for a specific environment.

30

In the case of product family software development, characterized by the myriad of
activities it comprises, the need for providing a detailed model of the process is even
more acute. Such a model will also facilitate the creation and adoption of automated
support which can substantially help in sharing and managing the artefacts of the process.
Consequently, the goals of the FAST model, called Process and Artefact State Transition
Abstraction (PASTA), should be accurate in describing the work products and the task of
the engineers; provide a criteria for assessing when a work product is completed; and on
the other hand provide for sufficient customizability. A very strict and detailed process is
hard to adopt in different companies. In order to address this issue, PASTA does not
specify a method for carrying out domain engineering and provides only partial ordering

of the activities that are defined.

The main abstraction used in PASTA is state machines. All decision-making activities
and artefacts are represented as state machines that can sometimes be executed in
parallel. In order to provide an appropriate level of detail and avoid making the model
incomprehensible, the state machines are organized hierarchically. At higher levels, each
activity is represented as a state in the state machine on that level. When necessary, each
activity can be explored in detail by opening the associated state diagram that models the
different stages in that activity. Thus, two different types of states representing processes
(P-states) are defined in PASTA: elementary and composite. The FAST process is
defined in three hierarchical levels: the bottom level consists of elementary states
representing activities that are performed on artefacts; the middle level consists of

composite states; and the root level is the aggregate FAST process (Figure 6).

31

FAST
——3Qualify Domain

" —>Engineer Domain

— Analyze Domain

— Define Decision Model

> Analyze Commonality

— Design Domain

—> Design Application Modelirivg Language

L—» Create Standard Application Enginéering Process

—->Design Application Engineering Environment

L—» implement Domain

—— Implement Application Engineering Environment

> Document Application Engineering Environment
- —>Engineer Application
Model Application

Produce Application

> Provide Delivery and Operation Support ‘

—Manage Project

—3-Change Family

Figure 6: The FAST hierarchy

The artefacts are represented by state machines in which each state represents a milestone
in the development of an artefact. Examples of these states are:
e Referenced — the artefact is referenced somewhere else in the process and
consequently, if non-existent, it has to be created
e Defined and Specified — the artefact has been developed

e Reviewed — the artefact has been reviewed and accepted
Similarly to processes, artefacts can be composite or elementary: the composite artefacts

consist of multiple elementary artefacts. Contrary to the process hierarchy, the artefact

hierarchy does not have a limitation on its depth.

32

2.4 Summary

The three methodologies described in this chapter represent different approaches that can
be undertaken towards adopting software product line development. RSEB defines a very
thorough approach to ensuring high levels of software reuse. Large-scale reuse is
achieved by imposing specific practices and rules for the software process, the company’s
structure and the software development techniques. The software process includes
specific activities for creating, supporting, and using reusable artefacts. In addition, the
activities of domain engineering and application system engineering are defined. The
former ensures that proper reusable artefacts are created, and the latter facilitates their use
during the phase of application construction. The structure of a company mimics these
activities by providing separate organizations for developing, supporting and using the
reusable artefacts. The software development techniques including requirements capture,
business modelling, and software architecture are based on the Unified Modelling
Language (Booch et al., 1998). As a result, a company that wishes to adopt software

product line development following RSEB must carry out an overhaul of their business.

The PuLSE methodology has evolved as a methodology of its own through the usage of
other existing practices for domain engineering. Its main difference from the other
domain engineering methodologies is that it places the focus on the products that a
company wants to develop rather than on a domain. In this sense, the product line scoping
is done via benefit analysis, which assigns each product a benefit value, and based on
such a product map, the products to be included in the product line are defined. Another
characteristic feature of PulSE is its separation into Deployment Phases, Technical
Components and Support Components (which are described in more detail in section
2.2.2). The technical components provide technical support for the different practices
employed in the software product line development. A difference between Pul.SE and
RSEB is that in PuLLSE, there is no strict mapping between the company’s structure and
the software product line practices. For example, as the authors of PuLSE mention, the
creation and maintenance of reusable artefacts can be handled by the same team by
devoting 70% of their time to development and 30% to maintenance, as opposed to the

clear separation of such teams in RSEB. In short, PulLSE is concentrated on the changes

33

needed in the software process rather than on the structure of the organization and its
development techniques. In order to provide a flexible framework for modifying the
software process an explicit phase of customization is performed, a step that is non-

existent in RSEB and FAST.

The FAST methodology is targeted at developing a family of systems consisting of
variations of the same system. In this case, the main effort is expended in searching for
the common aspects among these variations and trying to predict the possible variabilities
that can occur in the future. A pivotal point in FAST is the choice and development of an
Application Modelling Language, which permits fast generation of product family
members by exploiting the artefacts created during the phase of domain engineering. A
characteristic feature of FAST that sets it apart is the simple but explicit economic model
that defines the economic benefit of starting a product line development. The software
process in FAST is divided into two main phases: domain engineering and application
engineering. Similar to PuLSE, no explicit guidelines of how these sub-processes should
be mapped to an organization’s structure is provided. Even though FAST does not
prescribe a specific Domain Engineering (DE) methodology, it specifies the type of
artefacts that should be present after DE is performed. Overall, FAST provides a
systematic definition of the software process and artefacts but gives few details about the
organization’s structure. The main difference between FAST and the other two
methodologies is its emphasis on software rtechniques, which should be based on product

member generation rather than creation.

Even though the three presented methodologies possess unique features, they all can be
described as “heavyweight”, i.e., they necessitate major changes in the way a software
company works, require substantial initial investments, and are more or less applicable
only to medium and large companies. In the next chapter, a more “lightweight”
methodology that facilitates the product line development is presented. It can be adopted
as an augmentation/extension of an existing software process and techniques, thus
substantially alleviating the risk of major process modifications and organization

investments.

34

3 Sherlock — a methodology for adopting SPL
development.

Sherlock is a fully developed object-oriented domain analysis and engineering (DAE)
methodology targeted at developing a set of products within an analysed domain
(Predonzani, et al., 2000). It spans over all activities involved in DAE - from market
analysis to system implementation. A characteristic feature of Sherlock methodology is
its focus on analysing variability and using the artefacts of that analysis throughout the
whole process of SPL development. Sherlock addresses the problem of developing
multiple products by grouping such products into product lines, according to an existing

commonality among them and proposes a way to develop them in a coordinated way.

Sherlock can also be successfully used when developing single products. Sometimes this
is the only feasible way to proceed. Consider a company, which decides to start
developing software systems in a new domain. If the company has and is willing to invest
a large amount of money, it can embark upon developing a series of systems from the
very beginning. Taking into account that usually money is a scarce resource, this is
seldom the case. Moreover, the domain can be undergoing a transition, so a “pilot
project” can be used to acquire more experience and confidence about the specifics in
that domain. Applying Sherlock in such an environment will be useful since it will
necessitate the acquisition and analysis of vital information. Doing so would mitigate the
risk of starting from a wrong point and would ensure that scalable design of the software
system is delivered from the very start. Thus, the initial product, if successful, will be an
advantage not a maintenance burden which repercussions should be dealt with for a long

time.

Sherlock consists of five phases. A brief description of each phase is provided in Table 1.
The phases should not be considered strictly consecutive. In fact, the sequence of
execution can vary from company to company depending on the already existing
software development practices. Therefore, Sherlock can be considered as an

augmentation of a traditional software process with an emphasis on the domain.

35

Domain Definition

Defines the boundaries of the domain, collects and
organizes appropriate information. Performs feasibility
analysis that determines whether it is meaningful to

continue with DAE.

Domain Characterization

Analyses the market conditions including existing
products, user groups, and formats. On that basis it is
determined what products should be developed and what
features these products should implement in order to

provide higher value for users.

Domain Scoping

Analyses commonality and variability among different
products in a domain. Maps products on the variability
space and presents strategies for developing these

products regarding them as sets of variants.

Captures requirements from the analysis of the products in
the domain. Present these requirements in the form of use
cases and in object-oriented analysis modes. Use these
representations to further identify commonality and

variability.

Domain Modelling
Domain Framework
Development

Design and develop a reusable framework for products in
the domain. This framework comprises reusable
components, which are used to facilitate the development

of existing and future products.

Table 1: Sherlock Phases

Domain characterization, domain scooping, and domain modelling are the three core

phases of SPL; this is where most decisions are taken. The three phases are inter-

dependent; each phase uses information from the other phases, processes it, and makes it

available to the other phases for further refinement.

36

Domain characterization, domain scoping, and domain modelling set up a loop
responsible for the market and technical analysis of the domain. More specifically, the
loop identifies, describes and evaluates the interesting products in the domain. Domain
characterization provides the study of complementary and competing products in the
market analysis, so that the products can be positioned properly in the market. Domain
scoping manages the variability between the products. Domain modelling models the

products from requirements perspective.

These three phases rely heavily on the concept of a “variation point”. A variation point is
a source of variability in the domain. It is a common feature implemented in different
ways in different products or in a single product. Domain characterization and domain
modelling find the variation points. Domain characterization seeks them in the market;
domain modelling identifies them thorough a model of the products and of the domain.
Domain scoping organizes the variation points creating a variability space on which

choices and strategies can be visualized and evaluated.

The order in which we introduce these phases identifies start-to-start dependencies among
them that we found in most applications of Sherlock. Domain characterization is a natural
starting point: we look around for what is available. Domain scoping is the “variability
centre” of a process based on the analysis of variability. Domain scoping is thus the
fulcrum of DAE. Domain modelling deepens the initial model of the domain with a
unique formalization. Domain framework development is the final phase in Sherlock in

the sense that its deliverables are not used as input by the other phases.

The following five sections provide more in-depth description of the activities and

artefacts included in each phase.

3.1 Domain Definition

Domain Definition’s goal is to collect the necessary information that will help a software
practitioner decide whether to continue with DAE and adopt a product line approach to

developing a number of products. Common reasons why sometimes it is not beneficial to

37

adopt these practices are: the domain to be analysed is extremely unstable, the company
does not have well defined business goal, or the cost of building reusable components
won’t be well amortized by the envisioned products. In order to make such a decision
Domain Definition (DD) collect information from a variety of sources including market

and domain experts, developers, etc.

Once iterated through DD produces the following artefacts:
¢ Domain terminology vocabulary
o (lassified information on the domain
e Definitions of feasible, strategic, and current domain

e Feasibility analysis

The domain vocabulary is incrementally built during the phase of domain definition. The
main reason for compiling this information is to facilitate the communication among all
the parties involved in DAE while using the precise terms adopted in the domain.
Naturally, modifications to the definitions of some terms can occur during later phases of
DAE, thus, necessitating the propagation of such modifications to all documents that
refer to these terms. This is not always possible because the documents may exist only in
paper format or may belong to external organizations. In order to easily maintain the
consistency between the domain vocabulary and all documents pertaining to DAE, the

use of a specialized CASE tool is often required.

To make the information gathered from different sources truly useful, it needs to be
classified in a way that makes referring to it easy. The classified information about the
domain includes the following categories: user’s perspective; market conditions and
company’s strategy; and information technology. Useful sources to explore include:
history of the company, information from domain experts, information from market

experts, and company’s strategy.

In the process of collecting domain information, better understanding of its scope is

achieved. This makes it possible to further classify the information, and consequently the

38

products that are associated with that information into three domains: current, feasible,
and strategic. The current domain includes the products that are currently under
development, both at the company that performs DAE and its competitors. The strategic
domain includes the products that are in line with company’s mission and targeted market
niches. Consequently, this is the domain in which a company is most interested. The

feasible domain includes all possible products that can be envisioned by the company.

The last step of DD is feasibility analysis; it concludes whether it is beneficial to continue
with the subsequent phases. Even though, it is the last step in DD, feasibility analysis
dominates to a large extent the whole phase and determines the focus of the information-
gathering process. Independent of the outcome of feasibility analysis performing DD is
always beneficial for a company. If the conclusion is that DAE should continue, than DD
represents the first of its phases. In contrast, if feasibility analysis concludes that DAE is
not proper for this domain, than the company has avoided making a substantial

investment that later on will not be paid back.

3.2 Domain Characterization

Domain characterization is the observation of the domain and the planning of a strategy
for the development of products in the domain. This observation regards the analysis of
the products and firms in the domain, the pools of users, and the competitive or
coordinating relations between the users and the products; also an explicit identification
of the compatibility types in the domain is performed. All the products in the domain are
grouped according to the type of compatibility elements they comply with. The planning
regards the definition of a strategy that will produce profitable products. The goal can be
to establish, take over, or maintain a market position in the domain. Any firm can benefit
from domain characterization, although those who develop several products within a

domain have more variables to control and thus, can achieve better results.
In domain characterization the products are characterized by their internal and external

value. The internal value represents what the user perceives from the product alone,

regardless of other existing products and the environment in which the product is used.

39

Conversely, external value is what the user perceives from the considered product in
terms of ability to communicate with other users, share information, and interact with the
environment as a whole. Hence, external value is highly dependent on the type of
compatibility clements adopted by a product. Both internal and external value are
represented by features, which express “what” the product should do and qualities, which
express “how” the product should perform in terms of quality attributes the users are

susceptive to.

The external value can be further decomposed into two aspects that are related to
compatibility:

e Interoperability between users — users need to exchange information and they tend
to attribute higher value to products that allow them to do so easily. In most cases
the interoperability at this level is performed by exchanging information through
files. This can roughly be defined as Input/Output compatibility.

e Interoperability between products — products interoperate with each other
exchanging information through data files, networks, APIs, etc. As can be seen, the
interoperability between users is a subset of the interoperability between products.
The separation between these two is not clear-cut, but a rule of thumb is that in the
former case we have explicit user actions to achieve the interoperability, as in the

latter it can be done implicitly by the software system.

Often by using the interoperability between products more complex “aggregate” systems
are constructed. For example, configuring a given IDE to use a Control Version System
results in an aggregate system of two independent products that are used together by a

particular user.

Two other terms that are used in conjunction with compatibility are installed base and
network externalities. The installed base of a product is the pool of users using the
product. Often the term “installed base” refers to the number of users of a given product.
“Network externalities” is the term that expresses the increased value of a product as a

result of its installed base. Network externalities are the underlying principle of the

40

external value. Due to compatibility, network externalities cross the installed bases of
several products and hold at domain level. Often providing compatibility among the
products in a domain can be expensive, if feasible at all. That is why we need to gather
information about the installed bases of existing products in the domain and decide with
which products it is most profitable to build compatibility with. Such a choice represents
a trade-off between the expected effect of network externalities and the technical cost of

implementing the compatibility.

Sometimes, market leaders can use proprietary formats that are not open to other
companies, thus, intentionally limiting the chances for interoperability with other
products. Such behaviour can be expected in relatively young domains in which there is
no strong competition and a company holds a substantial part of the users in that domain.
Compeatibility is manifold and users can perceive products as compatible in many ways.
Some examples of compatibility are the flowing:

e Compatibility of data formats (*.doc, *.pdf, *.ps, etc.)

e Compatibility of APIs and of protocols. (COM, DCOM, TCP/IP, HTTP, etc.)

e Compatibility of User Interfaces (MS Windows look-and-feel, Common Desktop

Environment, etc.)

~The list of compatibility types can include other domain specific categories that have to
be identified by the software practitioner performing domain characterization. A
compatibility element is an instance of one of the compatibility types, i.e. a compatibility
element is a specific data format, AP, protocol, Ul element, etc. Products usually support

a few compatibility elements from each compatibility type.

Two entities are responsible for specifying compatibility elements: firms and
standardization organizations. Firms usually propose their own compatibility elements
and have, from a technological and market viewpoint, full control over them. Sometimes
firms coordinate with other firms with which they share the control of the compatibility

clements. Standardization organizations are independent institutions, possibly supported

41

by governments or at international level; examples are ANSI, IEEE, etc. Standardization

organizations may also originate as consortia between firms.

In order to provide interoperability among products that do not implement the same type
of compatibility elements, converters can be used. The main function of converters can be
expressed concisely by: providing compatibility between two (or more) incompatible
formats. In order for a converter to be successful, its price should be lower then the
expected cost of implementing the supported compatibility elements within a product.

Sometimes the lack of competitive standards in a given domain can create the, so-called,
“bandwagon” effect. This effect is characterized by the fact that an influential
organization in that domain adopts a standard (can be de-jure or de-facto). Other
companies adopt the same standard, since they want to preserve compatibility with the
leader and benefit from its large installed base. The earlier a company joins the leader, the
higher are the benefits it can expect from its choice, mainly due to the experience and
knowledge is manages to acquire before other companies join the network. But also, the
earlier a company joins the leader, the worse is the damage if the network does not

survive in the market.

3.3 Domain Scoping

Domain Scoping performs commonality and variability analysis of the products in the
domain, which were identified in Domain Characterization. The goal of commonality
analysis is to find common aspects shared by all the products in a domain. In order for a
commonality to span a number of products it has to include a generality that leaves some
aspects unspecified. These generalities in Domain Scoping are called variation points.
Each variation point has a few different implementations that are called variants. A

product can implement one or more variants per variation point.
Variation points come from variable parts in the domain. Products can ‘vary’ in many

ways (Predonzani, et al., 2000):

e Several products share the same feature but implement it in different ways

42

¢ One product implements a feature in several ways and offers the user the choice
between them
¢ One or more products implement a feature in the same way, but it is foreseeable

that, in future products, the feature will be implemented in different ways.

Even though Domain Scoping is focused on variability, it does not search for variation
points and variants. Rather, it relies on Domain Characterization and Domain Modelling
for this search. Domain Characterization identifies the products in the market and
produces a summary of their value. Domain Characterization does not look into product’s
implementation details; it focuses on compatibility and compatibility elements, which in
most cases represent variation points. For example, output format can be a compatibility
element for a number of products that provide user’s interoperability. In addition, output
format is a variation point with variants such as: plain text, “HTML”, “RTF”, etc.
Domain Modelling, which will be described in the next sub-section, analyses a product
from the technical perspective. Thus, the technical variability that arises from the many

different ways in which a product can be implemented is identified.

Domain scoping organizes the variation points creating a variability space of the domain.
Lets define VP to be the vector of all variation points, i.e. VP = {VP;, VP,, ... VP,}, and
V; to be the vector of all variants for the variation point ‘1, i.e. Vi={ Vi1, Viz, ..., Vim}.
If we assume that é domain has n variation points, than the variability space will be
defined by V; * Vo * ... * V,,. Consequently, an element in that space will be represented
by a n-element tuple, and the number of elements in the space will be m". For any
practical problem the values of m and n will result in a variability space that will be very
hard, if possible at all, to visualize and reason about. Therefore, the variability space is
divided into regions that are analysed fairly independently. Each region includes only
variation points that are correlated, i.e. the choice of a variant for one variation point

depends to some extent on the choice of a variant belonging to another variation point.

The variability space can also be looked at as a map of different products. Each point on

the variability space represents a specific choice of variants to be implemented. Since

43

products normally implement a few variants on a number of variation points, the products
are often represented as areas on the variability space. Doing so facilitates their
comparison and analysis. The variability space is also used as a container of strategies. A
strategy is the idea or motivation behind the development of a product. Each strategy for
a product is fully specified by the variants that are to be implemented by a product.
Strategies normally result in different variations of a product such as: basic, advanced,
enterprise, etc. The difference between strategies and products can be described by the
following reasons. First, strategies are conceptual, while products are concrete entities,
thus, a strategy can be applied to a number of different products that can even be
competitors. Second, strategies concentrate on a much smaller subset of all variation
points, as opposed to products, which normally have assigned variants for a large number

of variation points existing in the domain.

To conclude, Domain Scoping bears many similarities to version management, but the
activities and artefacts of Domain Scoping provide much stronger basis for product
planning. Domain Scoping plans future products by devising product strategies based on
the variability points in the domain. It uses the concept of variability space to visualize
past, current, future, and competing products and thus facilitate the comparison among
them. Domain Scoping can be divided into two main parts: first that explicitly defines
and models the variability in the domain, and second that decides how the different
products in the domain will map to this variability space in a way that will bring the
biggest benefit to the company. A few heuristics that can be used to guide the process of
choosing among different product strategies can be found in Predonzani et al. (2000).
Domain Scoping is also the base of product lines: it provides the decision model for

producing new products based on the common core and pool of variants.

3.4 Domain Modelling

Domain Modelling produces a model of the domain and a model for each product in the
domain. The domain model is aimed at representing all the products in the domain and
thus, needs to incorporate all the commonality among the products. Normally, the

creation of the domain model starts with factoring out the commonality among a few

already existing product models. Thus, the domain model often looks like a generic
product. The domain model is based on the same notation as the product model. Domain
Modelling is based on the Unified Modelling Language (UML) (Booch et al., 1998) and
more precisely consists of a use case model and an analysis model. The use case model
defines use scenarios of a system from the perspective of a user; the analysis model
describes the core functional and interfacing objects, and their relationships (Jacobson et
al., 1997).

While the domain model is based on aggregating the common aspects of the products in a
domain, it is not necessary to start its development after all product models are created.
Usually, the domain model evolves as new products are added to the domain and the
tendency is, as the domain model matures, each new product model to be created as a
derivation of the domain model with few additions. In order to be easily customizable,

the domain model expresses variability in terms of variation points and variants.

Domain Modelling comprises four types of models: product use case model(s), product
analysis model(s), domain use case model, and domain analysis model. The commonality
and variability within a product is expressed by connecting use cases by the “uses” and
“extends” relationships. Similarly, the commonality and variability among the different
products is represented in the domain use case model by using the same use case
relationships. Each use case model has a corresponding analysis model, and they are

connected to each other via a traceability relationship (Jacobson et al., 1997).

After a domain use case and analysis model is created, the creation of each new product
starts from domain modelling and targets at mapping the new product as closely as
possible to the existing domain models. Naturally, during that phase revisions to the
domain model may be required, which determines the iterative nature of Domain

Modelling.

45

3.5 Domain Framework Development

Domain Framework consists of a set of software components and an architecture
designed to build the applications in the domain. In this case a software component
denotes a piece of software that provides certain functionality and can be deployed
individually. Software architecture denotes the structure of the applications in the domain
and consequently specifies how the software components should be glued together. The
domain software architecture consists of several “projections” which are views over the
software structure from different perspectives. The domain framework consists of two
layers: a layer specific to the operational environment, and a layer specific to the domain

functionality.

The development of domain products benefits from the existence of the domain
framework in the following manner: each product’s functionality is mapped to existing
software components from the domain framework, and these components are integrated
following the structure of the domain architecture. This way of development ensures that
all applications have consistent design, which has been validated and verified and benefit
from software component reuse. As a result the maintenance of multiple products is
alleviated and the effort of propagating bug fixes is significantly reduced. On the whole,
the development of domain products by exploiting the domain framework artefacts is

significantly faster, more cost effective, and easier. 4

In practice, the domain framework alone doesn’t provide the possibility for developing
complete products. Each product consists of software components reused from the
domain framework and product specific code. Hence, one of the main difficulties in
developing products is to incorporate these two parts into a cohesive software entity.
There are several ways in which a framework and a product specific part can cooperate
(Predonzani et al., 2000):

e The framework works as a box of components. The product specific part picks the

right components and puts them together as is more appropriate for the product

46

e The framework provides the skeleton of a product. The product specific part
provides the components. The resulting product has the shape of the skeleton with
the substance of the product-specific components.

e The framework provides the skeleton and the components of a product. The
product-specific part attaches the components to the skeleton. In this process, the
product-specific part has a certain degree of choice, as some components in the

framework are interchangeable.

The domain framework can provide functionality not only via software components that
are used “as they are”, but also through hooks for attaching behaviour. The same applies
to the product specific part. Depending on the implementation, hooks can be of different
kind including: an interface or an abstract class to be implemented, a concrete class that
has to be subclassed and instantiated, and a pointer to a function that has to be associated
with a real function. When building domain products, a software developer links the
framework and the product-specific part by connecting the hooks these modules provide.
On the other hand, a product specific part may comprise mostly of code that connects

software components or implements hooks belonging to the framework.

In Sherlock two main types of frameworks are identified: passive and reactive. A passive
framework doesn’t impose a specific control flow on the applications that are built using
it. Conversely, a reactive framework is usually based on cai]back functions and loops
thus, significantly imposing its own control flow over the application that uses it. The
choice of which type of framework will be developed depends on the similarities of
domain products. If they can be organized around the same event-driven metaphor then
developing a reactive framework is the best choice since it will insure adherence to this
metaphor. On the other side, if the applications in the domain have significantly different
non-functional requirements and are based on different control flow mechanisms than the
domain framework should impose looser assumptions and thus avoid an architectural

mismatch.

47

A number of studies have shown that a single view/paradigm for building a software
architecture is rarely sufficient for developing well-modularized systems (Kruchten,
1995) (Tarr et al., 1999) (Kiczales et al., 1997). In Sherlock three projections on the
software architecture are required: package projection, class projection, and object
projection. Additionally, an object interaction projection, a functional projection, a
process projection, and component projection can be developed. The three mandatory

projections are presented in one or more UML diagrams of the corresponding type.

The package projection specifies how the design documents and the source code have
been divided to ease the task of developers. This separation has important managerial
implication since it allows the development team to be divided into several groups that
work in parallel on a number of large-grained tasks. Packages can include other packages
or depend on packages at the same or higher hierarchical level ahd such relations among
them should be clearly denoted in the package projection. Reference cycles are allowed,
but hierarchical structure cycles are not. The package projection is described in one or

more UML package diagrams.

The class projection describes all the classes of objects in the system. The classes are
connected to each other using association, aggregation, composition, generalization, etc.
The classes in the class projection are directly related to the classes in the analysis model
created in Domain Modelling, even though the correspondence is not one-to-one. In most
cases a class from the analysis model is decomposed into a number of classes in the class

projection. UML class diagram is the notation used for representing the class projection.

The object dynamic projection is very similar to the class projection but possesses a few
characteristics that make it very important for obtaining a better understanding of the
system. The objects represent the system at run-time as opposed to classes that represent
the static structure of the system. Additionally, the number of classes in a system can be
easily determined by inspecting the source code, but the number of objects at run-time
can be very hard to determine because it may vary substantially during the execution of a

system. Representing all possible configurations of objects at run-time is not practical for

48

most systems and consequently the object projection targets at capturing object
interactions for typical execution scenarios that are of particular importance for the
system. The object dynamics projection represents the sequence of messages exchanged
among interacting objects in a given scenario without taking time into account. The
object interaction diagram includes information about the timing and delays in message
exchanges. Since this information is quite expensive to gather, an object interaction

diagram is constructed only when time is a critical aspect of the system’s functionality.

The functional projection divides the system into parts that perform clearly visible,
distinct functions. The functional projection also describes the connections between the
parts in terms of exchanged and shared data. The process projection describes the
processes that comprise the system at run-time and the functionality that they perform.
The component projection describes the major components in the framework, and can be
used to describe the interactions between the running subsystems, from the point of view

of components.

To successfully use the domain framework, in addition to defining the nature of the
framework, i.e. reactive or passive and the different projections of the framework
architecture, the following artefacts are required: documentation of the components in the
framework, a browse able/searchable catalogue of the components in the framework, and

guidelines for developing applications using the framework.

The documentation of a component consists of:
¢ A full description of the component in the package projection.
e A brief description of the functionality of the component — used by a developer to
decide whether this is the component he/she needs
e A detailed description of the component, including references to the architectural
documents related to the component, and typical examples of how to reuse the

component

49

The choice of whether to implement a browseable or searchable catalogue of the
components in the framework depends on its complexity. In relatively small frameworks,
a browseable catalogue that has alphabetical ordering will suffice. In complex
frameworks a more structured ordering of the catalogue and search capabilities are
needed. According to Prieto-Diaz (1991) there are two widely used techniques for
organizing catalogues: hierarchical and faceted. In the hierarchical approach the set of
components split into categories; each category is further split into subcategories, and so
on until at n-th level of the hierarchy contains components that are closely related.
Consequently, browsing in this structure will have the properties of a tree search. The
faceted approach acknowledges the fact that often it is hard to pick a single category a
component belongs to. Hence, the faceted classification considers the different categories,
called facets, separately. A user has to know or guess the relation of a component to one
or more facets in order to perform a search for this component. The faceted approach is
more expensive than the hierarchical since it requires the development of a search engine

and the initial classification of components according to different facets.

The guidelines of how to use the framework to develop applications can significantly
influence the success of the framework. Predonzani et al. (2000) recommends the
following steps for developing the guidelines:
e Identify the main kinds of potential applications that can be developed using the
framework. The list of products in the current domain is a good starting point.
e Provide examples of how to combine classes and objects to create such products.
This refers to a form of reuse often called “black-box reuse” or “reuse as is”.
e Discuss how to create new product-specific components based on the framework’s
components when simple composition of existing components is not sufficient.

This refers to a form of reuse called “white-box reuse” or “reuse with change”.

3.6 Summary

Sherlock consists of five phases, which incrementally collect information and represent

our knowledge about the domain. Domain Definition (DD) compiles the most essential

50

information about the domain used to ascertain the feasibility and economic value of
continuing with DAE. DD also sets a common base on which the communication among
the different stakeholders can be carried out. Domain Characterization identifies the
compatibility types in the domain. In order to achieve better understanding about the
products in the domain, a product analysis is performed. This analysis decomposes the
products into internal, external value, and quality attributes making it easier to identify
the core set of features for the products in the domain. The installed base and the inherent
network externalities define the products that are the most beneficial to build
compatibility with. Domain Scoping (DS) performs commonality and variability analysis
and thus serves as the basis for defining product families in the domain. DS also
identifies strategies for combining the variations present in the domain in a way that will
be the most economically profitable. Domain Modelling represents the variability from a
more technical perspective and aims at developing domain architecture. Domain
Framework Development builds the reusable components that will be used in products’

construction.

Clearly, Sherlock does not impose any explicit requirements on a company’s
organizational structure. The practices that constitute the different phases can be
introduced as an augmentation of an existing software process and they interfere little
with the low-level development techniques. It is true that in these circumstances the
management has less control over the process of product line development and large-
scale reuse in general. This disadvantage is counterbalanced by the smaller initial
investment and the lowered risk of undertaking a major organizational change that can

severely impede the progress of projects under development.

51

4 Need and requirements for an SPL support tool

The main difficulty in implementing SPL development stems from the large number of
activities, which have to be carried out, and the information associated with them, which
has to be compiled and continuously modified. To address this difficulty, an SPL support
tool should be able to track the different types of information related to the different
activities involved in a particular SPL methodology. Since these activities are
interrelated, the tool also has to track the dependencies between different types of data.
SPL involves many different knowledge contributors (i.e. domain experts, economists,
developers, etc.), hence, a suitable tool should also support multiple users simultaneously.
On the whole, an SPL support tool needs to maintain both the data and change
consistency between many different activities that can be performed in parallel. In order
to alleviate the difficulty of comprehending relationships between multiple, interrelated
activities, a support tool should also provide semantic support. A representation of the
interactions occurring among the different knowledge contributors in an SPL
development process and the beneficial role a support tool can have is depicted on Figure
7. In the remainder of this chapter, the following aspects of an SPL support tool will be

examined: traceability, tool integration, and semantic support.

The problem of data and change consistency is also known as the problem of traceability.
Traceability concerns have already been observed and analysed in the field of
requirements engineering. Gotel (Gotel, 1994) defines traceability in requirements as the
ability to describe and follow the life of a requirement in both a forward and backward
direction through the whole system’s lifecycle. Traceability support has already been
recognized as being valuable for tool support for domain analysis methods. For example,
(Griss et all., 1998) includes “Support for Traceability” as one of the key concepts for
tool support for the FeatuRSEB domain analysis method.

(Domges and Pohl, 1998) describe seven key capabilities of existing requirements

traceability environments. These capabilities are predefined and customizable data types,

predefined and user-defined queries including filtering and sorting, comprehensive

52

Domain Analysis

Domain mxnm;

Zm«xﬂ >:m_<m_w

arket Expert

Software Architecture
Construction

mo?a:m Architect

//

Software Dev. and
Testing

Businsss Management

Manager

PL requirements
umuES

Domain/ PL model
j/

mcm.gmmm Goalg W

PL supporttont

Products*
development strategy

Stores, syncronizes, replicates
data; alerts the user

Figure 7: Use Case for PL support tool

trace analysis, various presentation

configuration management and change tracking,

formats, teamwork support, and interfaces to existing third-party software. These

53

capabilities seem to apply also to an SPL support tool with a few exceptions. SPL data
types are likely to be predefined for a particular methodology and probably do not need to
be customizable. Also having various presentation formats is not as essential as the other

capabilities for SPL support.

The idea behind building an SPL support tool is to offer an integrated environment for
developing, collecting, and retrieving the product line reusable artefacts. For each of the
SPL specific activities, such as modelling or developing a domain vocabulary, there is
often an already existing tool that can support it. It is preferable for the users to use
existing tools rather than having to use a newly developed tool: users are already familiar
with existing tools and specialized tools are more likely to have superior features. In
addition, less time is needed to develop the SPL support tool, since the only effort needed
is the integration of a tool into the overall system. An effective SPL tool should therefore

be able to relatively easily interface to existing third-party applications.

Interfacing with third party software has already been analysed in the area of tool
integration. Gautier (Gautier et al., 1995) identifies two aspects of software tool
integration: tool-to-framework and tool-to-tool integration. Tool-to-framework
integration suggests that the tools do not interface directly but instead use a framework to
exchange data or operation calls. Conversely, when tool-to-tool integration is used a
separate interface/adaptor should be created for every possible couple of cooperating

tools.

Wasserman (Wasserman, 1989) describes four different dimensions of integration: user
interface, data, control and process integration. User interface refers to a common “look-
and-feel”, data refers to the sharing of information, control refers to direct tool-to-tool

communication, and process refers to tool activation based on a particular process model.
For the purpose of maintaining data and change consistency, the most important

integration dimension is data. Data integration can be achieved through a shared

repository or by direct data transfers. The other integration dimensions may be desirable

54

for a SPL tool, but not essential. Even considering data integration on its own, tool
integration is difficult to achieve because “in general, domain information is stored in a
great variety of data sources, using different data models, access mechanisms, and
platforms.” (Braga et. al., 1999) In this light, tool-to-framework integration seems more
appropriate as it removes the problems of requiring combinatorial adapter interfaces

between multiple third-party tools.

The complexity and the variety of activities involved in SPL development suggests that
some form of assistance would be extremely valuable and should focus on the semantic
relationships between data rather than just syntactic checking. The concept of design
critics suggests a suitable approach for semantic assistance. Design critics are intelligent
mechanisms that analyse a design and provide feedback to assist the designer in
improving it (Robbins, 1998). According to Fischer (Fischer et al., 1993), design critics
should be embedded in the environment and actively but non-disruptively alert designer
of potential problems suggesting potential solutions, if possible. (Robbins and Redmiles,
1998) described the critiquing approach as different from traditional software analysis
approaches in that the focus is on a designer’s cognitive needs. Traditional approaches
attempt to prove correciness of a completed or nearly completed system. Critiquing
approaches, on the other hand, pessimistically detect potential problems in partially
specified systems. The P3, domain-specific component generator (Batory et. al., 2000)
uses a tool called a design wizard, which is somewhat similar to design critics except that

it is targeted toward optimizing data structures rather than higher-level design advice.

The presented analysis suggests that a SPL tool should support the following activities:
e Link consistency management: ensures that link traces make sense
¢ Change consistency management between different activities: ensures that all
changes are propagated correctly
e Simultaneous multiple users: allows more than one user on the system at once
e Integration with COTS tools: allows COTS tools to communicate with the
framework

e Semantic assistance: warns user of potential problems.

55

There are already existing tools to support Domain Engineering. These tools can be
successfully used to a large extent in software product line development. Examples of
such tools are Metaprogramming Text Processor (Prosperity Heights Software, 1999),
EDGE (Loral Defense Systems, 1996), Diversity/CDA (Bayer et al.,, 1999A),
Odyssey/DE (Braga et al., 1999), DARE-COTS (Frakes et al., 1998), DADSE (Terry et
al., 1995) and DOMAIN (Tracz and Coglianese, 1995).

A limitation of existing tools is that some focus mainly on the late phases of domain
engineering such as domain modelling and framework development. The practices that
produce the requirements documentation for the product line and analyse the relationship

among the products and the users in the domain are often missing in the existing support

environments.

multiple users, and semantic support, is often inadequate (Table 2).

In addition, their support of queries, change consistency management,

Manage Link Change .
ment of) consistency | Multi-user Tool integration | Semantic
Tool 1 consistency manageme support support
early management g support PP pp
phases nt
DADSE | | Noexplicit links . Simple TclTk scripting | Knowledge-
| configuration for tools not based design
| management needing access | assistants
| with filelocking | to system data
DARE- { Manual; links { Loose
COTS | represented in | integration; all
Domain Book” | L . | toolsare COTS
Diversity/ | Textual and Uses Long-term Supports COTS
CDA | graphical fink InfoBus for | locking for multi- { tools with
{ browsers change user consistency | InfoBus
propagation interface(s)
DOMAIN | Chimera . 1 Interfaces with
{ hyperweb 1 tools supplying a
| browser | Chimera-
- | compliant
| interface.
Not/Poorly Supported Text | - Details

Table 2: Mapping of existing tools to identified requirements

56

5 Holmes - a support tool for SPL development

The prototype of an SPL support tool, developed as a main subject of this thesis, is called
Holmes. Holmes uses a blackboard architecture (Figure 8) built using a tuple space
(Gelernter et al. 1985), as implemented in Sun’s JavaSpaces (Freeman et al., 1999). In the
next subsection a description of the characteristics of the Blackboard approach, as defined
by Corkill (Corkill, 1991), and Holmes’ mapping to them is provided. The section
continues with further discussion of the benefits and issues encountered when using
JavaSpaces as a communication medium, the persistent storage in Holmes, and the

critiquing system.

Advice
L

Figure 8: Architecture

5.1 Blackboard Systems

The blackboard approach has been designed to address the problem of developing
applications that solve complex problems and have ill-defined specification. Blackboard

systems comprise a common data repository and a number of program entities that can

57

manipulate the data in this repository while working towards a common goal. Each
program entity represents specific expertise that is helpful in solving the problem
addressed by the blackboard system. Corkill (Corkill, 1991) identifies eight main
characteristics of Blackboard systems:

e Independence of expertise

e Diversity in problem-solving techniques

e Flexible representation of blackboard information

e Common interaction language

e Positioning metrics

e Event-based activation

e Need for control

e Incremental solution generation

Each program entity in the Blackboard system, often called knowledge source (KS),
represents self-contained expertise that can be used in solving a problem addressed by the
application, i.e., no KS requires other KSs in order to apply its knowledge and to make its
contribution. Once a KS identifies information in the Blackboard that is meaningful to it,
the KS proceeds without any communication with other KSs. In this way, it represents a
human expert that works fairly independently together with a group of other experts
towards solving a common problem. The independence among the different KS makes it
easy to extend and enhance the Blackboard system incrementally: at any time one or
more KS can be modified, removed, or substituted with superior one without affecting the
rest of the system. Because in most cases the KS represent relatively large program
entities compared to, say, a set of closely related rules (as in Expert Systems), the
Blackboard systems differ from other Al problem-solving techniques with their coarse-

grained modularity, which facilitates continuous development of the system.

Analogously in Holmes, each tool can exist and be used independently from the rest.
Holmes comprises five main tools that correspond to each phase of Sherlock. In addition,
some of these tools consist of a number of other tools that correspond to the different

activities performed in the associated phase. For example, the Domain Definition tool

58

provides separate tools for modifying the domain vocabulary, the classified information,
the structure of the domain, and the feasibility analysis. Even the tools that constitute the
Domain Definition tool communicate among each other through the blackboard. Thus,
each tool is completely independent from the other tools and any modifications or
extensions to the system will be transparent as long as the information posted by the

new/modified tools is meaningful.

The Blackboard architecture provides for diversity in the problem-solving techniques
used by the different KS. Since each KS does not depend on any other one, the details of
a KS inference technique are completely hidden from the other KS. This loose coupling
among the KS makes it possible to combine completely different approaches to solving a
given problem: rule-based systems, neural networks, fuzzy-logic modules, linear-

programming algorithms, etc.

With the exception of the critiquing system, Holmes’ tools do not employ such Al
mechanisms, but there is a significant diversity in the implementation of the incorporated
tools — some are third-party, some are internally developed. Also, the type of information
that the tools manipulate and the type of experts that use them differ considerably. All of
the tools except for the critiquing system, which will be described in section 6.5, are
meant to provide automating rather than problem-solving support. As such the tools in
the first two phases, namely Domain Definition and Domain Characterization, deal
mostly with textual information. The experts that are involved in these phases are domain
experts and market experts. Conversely, Domain Scoping and Domain Modelling are
used to manipulate mostly graphical information that represents the artefacts of
variability analysis and the design models in the domain. Hence, the experts involved are
software architects and project leaders. Domain Framework Development is concerned
with building the reusable framework that will be used to produce the products in the
domain and consequently consists of source code. Its user group is software developers.
As the knowledge in the above-mentioned areas matures, and the use of artificial
intelligence techniques becomes more viable, their integration will be seamless and will

not affect the rest of the system.

59

Given the diversity of knowledge contributors in the Blackboard approach, it is necessary
to allow flexible representation of information. There are no prior constraints or rules
about how the information should be put on the blackboard. Some KS might impose
consistency on the information they post; others might put incompatible alternatives in
order to improve the possibility of exploring a larger number of possible solutions.
Although, considerable freedom in the information representation is allowed, all KS
should adhere to some sort of common interaction language. Thus, meaningful interaction
among the KS is guaranteed by correctly interpreting the information posted on the
blackboard. Often, it is hard to strike the balance between an expressive language that is
understood only by few KS and more generalized language that is understood by all KS

participating in the blackboard system.

Hierarchy of command classes governs the information representation in Holmes. When
a tool posts information on the blackboard, it has to be a subclass of the root command
class. Beyond the type constraints imposed by the different commands, the values of
different fields in a command object are not strictly specified. The fact that each
command is an object, with the inherent polymorphic properties, allows for considerable
flexibility in information representation. Thus, if a tool needs to extend or modify the
behaviour of a specific command a new subclass with the desired behaviour can be
created. Following the Liskov substitution principle (Liskov, 1988) the rest of the tools

will treat this new type of commands in the same way as the already existing ones.

The growing amount of data on the blackboard makes it necessary to provide some
mechanism for locating relevant information. A common approach is to divide the
blackboard into regions that contain semantically related information. Thus, a KS can
monitor only the regions of the blackboard that it is interested in. To further facilitate
locating pertinent information, positioning metrics can be used within each region of the
blackboard. The ordering schema can employ different criteria such as: temporal
ordering, relevance, size, or any other measure meaningful to the posted data. As a result,

a KS not only finds information faster but also may infer additional information from the

60

applied ordering. The amount of data stored on the blackboard will grow indefinitely,
unless some mechanism for removing outdated or unnecessary information is provided. A
garbage collector can be also based on the positioning metrics, sometimes introducing

new ordering criteria that will better represent data not valuable to the decision process.

In order to address the problem of locating pertinent information, the blackboard in
Holmes is divided into conceptual queues. Each queue contains semantically related
information. Since in JavaSpaces there is no build-in mechanism for structuring the
information in the tuple space, the queues are defined on the basis of class types. For
example, all commands that represent activities performed on the domain vocabulary
inherit from DomainTermCommand class. Even though there are no explicitly defined
regions on the blackboard, by committing themselves to particular type(s) of commands
the tools don’t need to examine every command posted on the blackboard. To further
improve the ability for locating relevant information within a given queue, Holmes
implements the notion of positioning metrics by assigning an index on each command.
The index number also reveals a temporal relationship among the commands, i.e. if a
command A has an index smaller than command B, then A has been posted on the
blackboard before B. The amount of information on the blackboard is kept from growing
indefinitely by utilizing the JavaSpaces mechanism of time leases. Each command is

specified a period after which it is automatically garbage collected.

The communication among the loosely coupled KS is accomplished through event-based
activation. Each KS is activated in response to a new post that is relevant to this KS. In
addition, a KS can respond to events that have occurred outside the blackboard. In the
former cases the blackboard system should provide a mechanism for a KS to register for
the type of events it wants to be notified for. The events occurring on the blackboard are:
addition of new information, modification of existing information, or removal of
irrelevant information. Some of the KS can communicate with the operating environment
in which the blackboard system executes, for example, storing data persistently in files,
handling network communication, etc. If any of these events are related to the decision

process than the corresponding KS should translate the event into meaningful post to the

61

blackboard. In this way, most of KSs remain decoupled from the operating environment

and consequently simpler and easier to port.

In Holmes, the tools collaborate by posting commands and responding to commands
posted by other tools. Each tool has associated reader(s) that monitor the queue(s) in
which the tool is interested. Since the readers are separate threads, the tool can be idle,
perform computational tasks, or respond to user actions until a new command that
contains relevant information is posted on the blackboard. For each queue that a tool is
interested in, the tool has to create a separate reader and, thus, it explicitly “registers” for
the commands that are posted on that queue. The tools read and write, i.e., add
commands, but they never delete a command that has been already posted. This
mechanism removes the possibility of certain race conditions, and even though results in
more verbose communication, it ensures robust execution. So far, no event from the

operational environment has been identified as meaningful to the operation of the system.

To ensure some order in the way contributions are made by the different KS in a
blackboard system, some type of control is needed. Consequently, a control component
that is separate from all the other KS and is responsible for managing the process of
decision-making should be developed. The main objective of the control component is to
evaluate in advance the benefit of prospective KSs contributions, and according to these
estimations the control component will activate the KS with the most valuable expected
contribution. In order to produce such estimations, each KS should be able to evaluate the
resources needed and the quality of its contribution and then provide the results to the
control component. In that case, the control component does not need to duplicate any of
the expertise of the KSs and remains independent of the number of KSs in the system and

their inner details.
In Holmes, a control component that manages the execution of the other tools does not

exist. The reason for this is mainly due to the strict definition of each phase in Sherlock

and consequently the lack of ambiguity when using the associated tool in Holmes. A

62

problem-solving support is provided to the user via the critiquing system, which analyses

the proposed solutions for possible errors.

The decision-making process within a blackboard system proceeds incrementally.
Different KS contribute to the current state of a solution by refining, contradicting, or
starting a new line of reasoning. The sequence in which the KS make their contributions
is not predefined and can differ from execution to execution. Thus, blackboard systems
are particularly effective when the solution includes many stages and allows a few

potential ways to proceed from a given stage.

Even though the different phases in Sherlock do not follow a strict sequence,
recommended patterns in which the different phases are instantiated were provided in
Section 3. The process of DAE and SPL are both incremental and iterative processes in
which many knowledge contributors participate to a varying degree. All that makes the
Blackboard approach an appropriate choice both from a technical and problem-solving

perspective.

5.2 Tuple space

A tuple space is a form of virtual, shared, associative memory that generatively provides
a repository for tuples. One of its characteristic features is that an entity, which is put in
the tuple space, continues to reside there as long as some other process doesn’t take it
from the space. The existence of an entity in the tuple space is completely decoupled
from the existence of the process that created that entity and put it in the space. That way
a tuple space can be used as a storage that holds data to be exchanged among processes
whose execution should not be constrained to overlap in time. Another advantage of
using an implementation of a tuple space is that it provides for an easy way to
synchronize a number of processes, which try to manipulate a set of objects. In that case a
process is given a random object among those that meat the process’ criteria. After the
object is processed it can be put back in the tuple space or disposed of depending on the

need.

63

In addition to the time decoupling, a tuple space provides also space decoupling. In the
JavaSpaces implementation this is realized by using Jini distributed technology (Sun
Microsystems, Inc, 2001). That way every process which wants to access a JavaSpace
uses the same uniform way of connecting to it independent of the fact whether the

JavaSpace is executed on the same machine or somewhere over a network.

All that considered the use of JavaSpaces gives an opportunity to implement a loose tool-
to-framework integration that proved to be a better choice concerning the diversity and
the number of the tools incorporated. Furthermore, the access method to any entity stored
in JavaSpaces eliminates most of the difficulties usually associated with multiple users
accessing a common resource. Certainly, such a method will not be acceptable for any
time-critical application but real-time response is not an issue for an SPL support

environment.

The different tools incorporated in Holmes communicate using an algorithm similar to
message based communication. In the proposed implementation there are a few
improvements over standard message passing. As mentioned above, the use of
JavaSpaces waives the difficulty of initialising properly the communication channels
between tools, after they are started. JavaSpaces stores messages as long as it is specified
including infinity. Other improvements are that the messages that are exchanged among
the tools are objects not data; a message queue implemented herein is not susceptible to

the number of tools that “subscribe” to the data posted on that queue.

The advantage of using objects, compared to simple data, as messages is that an object
encapsulates certain functionality. Thus, the tools that communicate through objects are
decoupled from the format of the data stored in the object, which actually represents a
message. This flexibility proves to be essential when dealing with diverse third-party
tools, which use different output formats. Implementing messages as objects, in fact,
turns them into functional units that perform the communication protocol. This way,

changes made to the communication protocol leave the tools intact. The opportunity of

64

using object-oriented design patterns, such as Adaptor, Visitor, Strategy (Gamma et al.,
1995), leave space for broad future evolution of the behaviour offered by messages based

on objects.

Even though there are no clearly defined communication channels for exchanging
messages among tools, the objects, which represent these messages, are organized into
conceptual queues. The idea behind these queues is that they group messages belonging
to semantically related data. Considering this organization, a tool subscribes to any queue
that represents a flow of data the tool is interested in. A tool can act as both information
provider and information subscriber. To do so, it has to instantiate an object of type
“writer” and “reader” respectively. All readers of a certain queue monitor the JavaSpace
for specific types of messages. The order in which the readers subscribed to a queue is
unrelated to the order in which they will actually read a message. In fact, that order is
unpredictable and varies from message to message. Nevertheless, the sequence in which
messages are posted to the queue is preserved when they are read. (if a message M1 is
posted to a given queue before message M2, than M1 will be read by a given reader
before M2)

Tools that act as information subscribers are not aware and are not dependent on the type
of tools that act as information providers, as long as they post messages that conform to
the agreed interface. As described so far, the framework, used to integrate all the tools
provides for loose coupling among the different tools in terms of time, type, and space.
One disadvantage of the current framework is the possible performance loss compared to

having a framework that supports individual message channels among the tools.

5.3 Persistent Storage

Holmes stores persistently its data through a number of tools that are called repositories.
Every repository stores semantically related information just like queues group messages
belonging to semantically related information. When the Holmes tool is started all other

tools that are interested in particular type of information post a request for that

65

information. If the repository responsible for that information is started and has activated
its reader than it will notice the request, as all other tools that monitor the queue, and will
reply posting the required data. Similarly, when a tool makes a change to a certain piece
of data, it posts the change on the queue. Doing so gives a chance to all other tools,
including the repository tool, to update their copies as well. When the Holmes application

is terminated only the data contained in the repository tools is saved to persistent storage.

The above-given way of dynamically storing data ensures that the repositories itself could
hardly become a bottleneck in the system. The data or parts of it is distributed and
duplicated among the tools that manipulate it. As shown, the use of JavaSpaces and
objects as messages provides for parallel processing and polymorphic behaviour on
behalf of the tools.

The choice of how Holmes data is statically stored is also related to the tool integration
requirement. Holmes data is stored using the Holmes Markup Language (HML), which
1s essentially XML (W3C, 1998) with a custom Document Type Declaration (DTD). The
advantage of an XML-based format is that the data can be viewed in a human-readable
form using a text or XML viewer. This maintains independence of the data from the
particular tool that manipulates it. The human-readable structure also provides the
capability of building DTD translators to convert from HML to other XML-based
languages. Although it does not completely eliminate the need to build adapters, in this
case DTD translators, the effort is somewhat standardized and reduced. Obviously, the
advantages of this approach rely on the growing popularity of XML as a data format,
especially for Product Data Management systems and UML CASE tools.

5.4 Critiquing System

As pointed out in Chapter 4 some sort of semantic assistance would be highly valuable in
an SPL support tool. The concept of a critiquing system suggests a suitable approach for
such assistance. According to Ficher et al. (Fischer et al., 1991), “critiquing is the

presentation of a reasoned opinion about a product or action”. Thus, critics do not

66

necessarily provide a user with a solution. Their core task is to recognize and
communicate debatable issues concerning an artefact. Critics point out errors and
suboptimal conditions that might otherwise remain undetected by the expert. Critics can
also advise users on how to improve an artefact and explain their reasoning.

Consequently, critics help users avoid problems and learn different views and opinions.

5.4.1 Rationale

Robbins (Robbins, 1998) identifies the following reasons for including critics in a design
tool: designers’ limited domain knowledge, low relative cost of immediate revision,
continuous learning, cost of failures arising from design errors, time-to-market, and risk

management.

It is infeasible to expect a single designer to possess all the necessary knowledge in a
complex domain; instead, large systems are designed by a team of experts working
together. This is especially true in the DAE where multiple knowledge contributors
cooperate in producing the necessary artefacts. Often, some of these domain experts are
temporarily hired on site, and it can be complicated to consult them if a later review
identifies unclear issues. Thus, getting timely revisions of external experts’ work is

essential for utilizing their expertise.

Most of the technologies in software development undergo constant change; hence,
software practitioners have to frequently learn new skills and methodologies. A design
critic can address this issue by providing explanations to identified problems. It is
commonly recognized today that errors at early development lifecycle phases are much
more expensive to fix if identified during implementation or testing as opposed to the
phase in which they originate. A design critic can significantly lower the occurrence of
some typical design faults that, if left unnoticed, can have costly repercussions. In
addition, a design critic can substitute some of the activities normally performed during
design reviews, thus, giving a possibility to shorten the phase of design as a whole,

resulting in a faster time-to-market.

67

The main distinction between the critiquing approach and other more traditional
approaches to design evaluation is that the feedback is provided while the designer is still
working on the problem being critiqued. This results in improved designer’s task
performance, since the designer has in its short-term memory all the details that have
influenced him to make a particular decision. Consequently, he or she is able to evaluate
the provided critique better and faster applying the appropriate modifications, if
necessary. On the other side, the feedback from the critiquing system should be provided
in a non-disruptive way, i.e., the expert should have the choice of when and how often to

consult the critique.

Another advantage of the critiquing approach is that it is based on the “informative
assumption” (Robbins, 1998) that means that a critiquing system doesn’t try to prove the
correctness or presence of errors in a given design. Rather, its goal is to inform the
designer of potential problems, possible corrective actions, and pending decisions. The
smaller scope of the analysis performed by a critiquing system makes it possible to apply
this approach on partial solutions. Doing so is an essential advantage compared to other
design analysis approaches that require a more or less completed solution before they can

be applied.

Critiquing systems are most suitable for problem domains that have the following
properties (Fisher, 1993):

e Knowledge about the domain is incomplete and evolving

¢ The problem requirements can be specified only partially

e Necessary domain knowledge is distributed among many knowledge contributors

These properties map to Software Product Line development very well. The knowledge
about the product line is incomplete at the outset of the development. The phase of
Domain Engineering somewhat alleviates this problem, but many issues are left open,
including the exact number of product line members that will be produced by utilizing the
product line environment. As new product line members are developed, the core assets of

the PL evolve. The second property of partially specified requirements is well represented

68

in SPL development: only a small part of the products that are intended to be produced by
utilizing the core assets of the PL can be well specified at the beginning of the process.
As described in Chapters 2 and 3, SPL development includes the cooperation of different
experts — ranging from domain experts and market specialists to software developers. All
this makes the development of SPL a very suitable domain for providing semantic

support through a critiquing system.

5.4.2 Holmes’ Implementation

The critiquing system is implemented in Holmes similarly to the other tools (Figure 9). It
subscribes for particular type of information by activating a reader to the associated
queue. The critiquing system can be configured to monitor the data flow only on specific
queues, which are of interest, or to monitor the data flow on all queues Figure 10. This
follows the first step of Activation in the ADAIR Critiquing Process (Robbins, 1998),
which stipulates that only a subset of critics relevant to the current task should be active.
In Holmes, there are two options: either the critics for each phase of DAE are active, or
only the subset of critics that correspond to analysed phases are active, i.e. the phases for
which there is an executing tool. The critiquing system bases its responses on the data
objects that it intercepts on a given queue without needing any prior knowledge about the
tool that placed the data objects. The advantage of this approach is that the critiquing
system is completely decoupled from the tools that post data to the JavaSpaces. This

decoupling includes both the type and the number of the tools.

69

Prolog-based
Fuzzy Engine

Prolog
\ Rules

soiuet Aavsis Moildls
iMetrics4Project: Metrics
IMetrics4Project: Project

Figure 10: Configuring the Critiquing System

70

The critiquing system is based on the Prolog programming language. The knowledge
about a specific field is represented in terms of Prolog clauses. Prolog was chosen, since
its clauses are very well suited for description of relationships. Being a high-level
language, Prolog is relatively easy to understand and consequently makes the process of
evolving the domain knowledge plausible even for non-programmers. Critics can be
triggered when a particular content type is posted to the JavaSpace; the semantic meaning
of the data is analysed through the existing Prolog database, which represents the current
knowledge about the domain. If any critique clauses are satisfied then a message, which
describes the possible problem, is posted back to the JavaSpaces on a separate queue.
Another tool which is called “Advice List” monitors that queue and displays the
information contained from a given critique in a user-friendly way (Figure 10). The
generation of critiques is based on user-modifiable rules written in Prolog. Since Prolog
offers a possibility for dynamical assertion or retraction of clauses, the quality of the

advice provided can be incrementally enhanced.

In order to integrate a Prolog engine with the rest of the system, which is developed in
Java, the JPL (Dushin, 2000) bridge was used. JPL is a collection of Java classes and C
functions that provide an interface between Java and Prolog. JPL uses Java Native
Interface to connect to a Prolog engine through the Prolog Foreign Language Interface,
which is gradually being standardized in different implementations of Prolog. JPL
version 1.0.1 can interact only with the SWI-Prolog, version 3.1.0 or later (SWI-Prolog,
1987) and supports only the invocation of Prolog clauses and predicates within a Java
program. The reverse direction of making calls to Java modules from Prolog is not

implemented.

There are two levels on which JPL can be used - low level and high level. The low level
is implemented in C and offers a flexible interface through a number of functions. The
higher level is implemented in Java and even though is less flexible, hides most of the
unnecessary implementation details from the user and is easier to use. In the next couple

of paragraphs an overview of the high-level, Java interface is provided.

71

The class hierarchy of the JPL Java interface is represented by three root classes Figure
11: Term, Query and JPLException. The class Term is abstract and cannot be
instantiated. A Query class contains a Term object that denotes the goal to be proven. The
Compound class inherits from Term and contains an array of Term objects that represent

the structure of the goal. At least one of these should be instantiated.

JPLException class has two children: QuerylnProgressException and PrologException.

Texm Duerv JPL
Excephion
[| l 1
1
Variable Conwound Float Intezer
QueryinProgress Prolog
& Exception Exception

Figure 11: Class Hierarchy

There are several ways to initialise JPL. Automatic initialisation is most frequently used.
It occurs when the first attempt to use the Prolog engine is made, that is, when the first
Query object is instantiated. The default values for the command-line arguments are used
for the Prolog engine. The class JPL provides methods for customized initialisation of the

SWI-Prolog engine.

public String[] getDefaultInitArgs();
public void setDefaultInitArgs(String[] args);

The current version of JPL supports a single instantiation of the Prolog engine and

doesn’t offer a possibility for reinitiating it.

The Term-based classes in the High-Level Interface are best thought of as a structured
concrete syntax for Prolog terms: they do not correspond to any particular terms within
the Prolog engine; rather, they are the means for constructing queries which can be called
within Prolog, and they are also the means for representing the results of such calls.

Variables in Prolog are represented by a special class in JPL. The class Variable doesn’t

72

have a property name, although it has a unique identifier. Reusing variable instances
should be done only when the effects of doing so are well considered. The Compound
class consists of a name and an array of Terms. It is the most often used class from the
JPL hierarchy. All necessary parameters for a Compound object can be passed to its

constructor Figure 12.

Java Prolog
Compound domainTerm=new Compound(domainTerm('CBO', 'Coupling Between
"domainTerm”, Objects metric').

new Term[] {
new Artom("CBO"),
new Atom("Coupling Between

Objects metric "),

/

Figure 12: Example of a rule definition in JPL vs. Prolog

Every compound should be given a name that is denoted by the first parameter passed to
the constructor. The next parameter is an array of Terms, which represent the arguments
of that Prolog clause. Since Compound is inherits from Term, it can contain other

Compounds, thus enabling the creation of recursive structures.

Constructing queries against a Prolog database is done through the use of the class Query.
As mentioned before it requires an instantiated object of type Compound, which

represents the goal to be satisfied.

Term goal = new Compound("domainTerm”,
new Term[] {
new Atom("CBO"),

new Atom("Coupling Between Objects metric "),

);
Query g = new Query(goal);

73

The initialisation and skeleton of each critic execution is provided below.

Java Prolog
Initialize JPL.init()
Prolog
Engine
Consult a file | Query query = new Query("consult”, new ?-consult(test.pl).

Term[] {new Atom(fileName)});
query.hasSolution();

Construct a Compound goal = new Compound("man”,

goal. new Term[] {new Atom("john")});

Construct a Query query = new Query(goal);

query ?-man(john).
Execute a query.hasSolution();

query

Check more | query.allSolutions();

than one

solution

Table 3: Critique Engine Initialization

Initialise the Prolog Engine. This is an optional step that can be skipped. The SWI-Prolog

engine will be initialised automatically when the first call to a Query object is made.

Execute a query and check the solutions. When a query is executed there are three
possibilities to check for solutions. If we are interested only whether a goal can be
satisfied or not the most appropriate method of the Query class is: public Boolean
hasSolution(). It returns “true” or “false” depending on whether the goal was satisfied or
not. If there are a number of possible solutions but we are interested in only one of them
the method public Hashtable oneSolution() returns a Hashtable containing one entry that
represents the binding between the Variable and the Term. Conversely, if we want to
manipulate all the solutions the method public Hashtable allSolutions() should be used.
The Hashtable will be populated with the bindings of the variables present in the goal and

their associated terms that satisfy the goal.

74

5.4.3 Problems encountered while using JPL.

One of the most serious problems encountered during development is adhering to the
required hierarchal structure of Compounds when constructing complex Prolog clauses.

More specifically, clauses have to be transformed from the syntax:

componentl, functor, component2 [functor, component....]
ex.: a+b*c
to
Sfunctor,componentl, component2,[functor, componentl, component2]
ex.: +(a, ¥(b,c))

Figure 13 represents one such case.

Java Prolog
Variable X = new Variable(); development(X) :- design(X),
Compound myRule = new Compound(implementation(X).

", rn
® >

new Term[] {
new Compound(
"development",
new Term[] {X}
)

new Compound(

o
r 2

new Term[] {
new Compound(
"design”,
new Term[] {X}
)
new Compound(
"implementation”,

new Term[] {X}
)

75

DI

Figure 13: Compound Structure

As it is obvious from the example (Figure 13) the corresponding Java program code is
much more complex than the original Prolog code. This disparity proved to be quite
troublesome when asserting or retracting existing Prolog clauses. In this case, the clause
to be asserted should be parsed, so that the different variables and subgoals that constitute
the clause are identified. After the parsing step, every element of the original clause is
wrapped in the associated JPL class. Implementing a Prolog parser from scratch requires

substantial effort, so that other ways to implement the same functionality were sought.

One possible way to overcome this problem is to use the Prolog build-in predicate
consult(). In that case all the Prolog clauses that will be added should be first written to a
file. That solution is applicable only if we have all the rules to be asserted in advance.
On the other hand, if the clauses to be asserted depend on the program flow, then such a
solution would be inappropriate, because a temporary file for every Prolog clause should
be created. SWI-Prolog provides a build-in predicate for transforming an Atom to a
Term. The predicate atom_to_term() receives the following number of parameters:

¢ An atom that represents the clause to be asserted

¢ A term which will hold the transformed clause

e A list that will hold the bindings of the actual variables in the clause.
By using that build-in predicate one can construct a Prolog rule that transforms and

asserts a Prolog clause without expending any effort on the necessary transformation.
dynamicAdd(X) :- atom_to_term(X,Y,_), assert(Y).

5.5 Sample Session

In this section a sample session of using Holmes is presented. The activities constituting

Sherlock (Chapter 3) are now performed with the help of Holmes. The section presents

76

the functionality of Holmes and reveals the benefits of using automated support through

the process of SPL development and more precisely the phase of Domain Engineering.

The five phases in Sherlock have corresponding tools. Each of these tools can be
executed on a different machine, and as long as the support environment (Holmes) on
these machines is configured to connect to a single tuple space, all of these tools will see
the same information and the data consistency will be maintained. When starting a new
project the first tool that is normally invoked in Holmes is domain definition. The
activities supported by this tool are compiling a dictionary of commonly used terms in the
domain, collecting information about the domain from various sources, defining the
current, feasible and strategic domain for the company, and lastly performing a feasibility

analysis.

After a term and its definition are entered (Figure 14), Holmes automatically parses all
the data it stores and checks for occurrences of this term, which it transforms into
hyperlinks. Such a hyperlink points to the definition of the term, which is opened in a
separate window for easy referral (Figure 15). All textual data in Holmes is represented in
HTML, thus, facilitating the browsing of information that is stored in different data
entities. When editing textual data, the user of the system is given the opportunity to use a
tool of his/her preference or the Holmes’ build-in HTML editor. The configuration of a
third-party HTML editor is straightforward and requires only the full path to an
executable. In the provided example, HTML editing is performed with Microsoft Front
Page (Figure 14).

71

— (EGG), the

By placing
s i L ing the intemal Gastric
hy, (EGG), the lingss of M@m&m Electrical Activity (GEA) signals into a weak and very close to
b > a non-inwasive pr for indirect, i sinusoidal sipral, these recordings can potentially be used for
m‘:‘:“;ﬁ’:’f“"“"h st i EGG could b vasable ctinical ool for ecognizing normal and abnormal gastric motisty.
ing gaswic electrical ities. By placing ontheabdominal %

Dighal Subseriber Line (DS N
Disiributed Appication well and iransforming the intermal Gastric Electrical Ackivity (GEA) signals into 3

ER diagram
ER-to-Retational Mapping Al

Application Program interfae)

recogrizing normnal and abnormal gastric motiity.

Fast Fourier Transfom (FFT),

Fast Hatley Transtorm (F

Oastric Electrical Activiy (O

HTML : 7

jintegrated Services Digital NE | i I represents gasiric slectrical activity. The main functions o
internst i the stomach is 10 process and trensport food. For the normel

i transporting consumed food, adequate gstric motilily is
required. Gastric motildy is largely controlled by the
sponlancous dlectrical activity of gastric smooth muscies.

Elsetrogastrography, (EGG), the gutaneous recordings ofgym&mmm&;ﬁ&
represents a non-mvasive procedure for indirect, inexp
electrodes. EGG could become a valable clinical tool for recognizing gastric elecl:m:al

b fities. By placing el des on the abdominal wall and transforming the internal
Gastric Electrical Activity (GEA) signals into a weak and very close to sinuscidal signal, these
recordings tan potentially be used fof recogninng normal and abnormal gastrie motlity.

1Tt represents gastric electrical acnmty The main functmns of
|the stomach is to process and transport food. For the normal |,
{performance of these functions of mixing, grnding and
ransporting consumed food, adequate gastric motility is
{required. Gastric motility is largely controlled by the

| spontaneous electrical activity of gastric smooth muscles.

Figure 15: Domam desnptlon‘

During the activities of collecting domain information (Figure 16) and performing
feasibility analysis (Figure 17) the data entered is monitored for domain term

occurrences. The reference model for domain terms and the fact that each term is unique,

78

non-duplicated entity (in reality an object) makes the propagation of any change to a term

instant in all documents that include it.

[bD2.1: History of the Firm
Do
@ [DD2.3: Information from Market Experts
[} bD2.3.1; Avaitable Products
[} bD2.3.2: Warket History
DD2.3.3: Market Trends
[DD2.4: Firm's Sirategy

1{In the area of telemedicine, the Internet has been used as a major
| information and communication tool between _patients and medical
professionals. The goal of this research is io develop a web-based
ystem for classification, storage and analysis of human |
Electrogastrography (FGG)Y. The ultimate aim is 1o make this new
1100l available on the Internet so that clinicians and researchers in
the area of EGG can train themselves to adeguate methodology and
{interpretation of electrogastrograms. Gastric motility is largely
ontrolled by the spontaneous electrical activity of gastric smooth |
{muscles. EGG represents the non-invasive cutaneous recordings of |
| Gastric Electrical Activity (GE&). EGG represents also a
non-invasive procedure for indirect, inexpensive assessment using
abdominal electrodes. Another technique has been traditionally
Japplied for recording GEA: infernal recordings obtained from the
distal stomach by implanting electrode wires into the serosa of the

| Telemedicine could be a powerful, but not presently utilized resource in this direction. Although electrogastrographic |
signals have been recorded since 1921, the lack of objective methods for their interpretation impeded their clinical '
applicability. Recent computer-based quantitative methods for evaluation of EGG renewed the practical promise of
[this technigque. Unfortunately. its diagnostic value js stifl in guestion because of the lack of sufficiently big database
of classified signals relating’ EGG al ities to specific clinical disorders.
New advances in World Wide Web technology have provided great opportunities for wide range of distributed web
applications for accessing various public health systems using the Internet. In medical and clinical research, web
{technologies have been widely utilized to create a broad range of Internet applications, generally known as
{web-based telemedicine. In such applications, Internet has been extensively used to convey medical data and images
between patients and medical professionals for the purposes of research, scientific investigation and even
[tele-diagnosis regardless of the distance that separates the parties involved.

| Web-based telemedicine involves the integration of Intermet. human-machine interface, and healthcare and medical

2

technology. Since no icular networking technologies are required. such applications can be easily accessed
|2l stakeholders through common weh browsers rather than utilizing specialized tools. Moreover, Internet
i connectivity provides ordable and po ommunication channels d the world. Thus, users can visit

web-based telemedicine system independently of time and place, as long as_Internet connechions are available

Figure 17: Feasibility Analysis

79

During the phase of domain characterization existing products are analysed from the
perspective of features, quality attributes, interoperability and user’s expectations (Figure
18). ‘That information is used to determine how the products under development may
evolve and what is the minimum set of features that should be implemented. Holmes not
only provides a media for storing this information but also handles most of the
bookkeeping. All products that are listed in the tools Diagrams of Value, Installed Base
(from domain characterization) and Classified Information (from domain definition) are
automatically kept consistent, i.e., if a new product is added in any of these tools it is
automatically added in the others as well. For these product’s attributes that are not
visible in the tool of creation, default values are assigned. Doing so substantially
alleviates the task of keeping the information entities that are represented in these tools

consistent.

DC1: Diagrams of Value

e £ LABVIEW @ the proposed nevrostimulation system could present a long-term solution to
e [MATLAB both gastroparesis and chronic constipation by providing artificial,
19 (2 Healthanalysis microprocessor-controlled organ massaging on detnand
; [3 Features
D Quality

D Interoperability Between Users
D interaperability Between Products i
1 I Expectations
16 7 Excell

e 3 Stimulation Software

1 cuality

[Interoperability Between Users |
[interoperability Between Products |
I Expectations -
4o Hentera

1@ [simulation Software
1@ 7] FlowDinamics

{©- A Holmes

Figure 18: Diagrams of value

Holmes provides both a textual and a graphical representation for the compatibility types
(Figure 19) and user flows (Figure 20) in the domain. In order to provide maximum

convenience for experts with different background, Holmes enables all types of

80

modifications to be made either in the textual or graphical representation, while
maintaining immediate change propagation between the two representations. Since the
change propagation is maintained through the data queues (Section 5.2), it is possible for
one expert to make modifications in the graphical representation, while other can

remotely co-operate by working either on the graphical or textual representation.

FlowDinamics
{HealthAnalysts
Haimes

Figure 19: Compatibility types

81

ICutrent Users
Prospective Users.

oftware Companies

Goftware
Companies

Figure 20: User Flows
The tool for Domain Scoping is used in commonality and variability analysis and
provides the means for manipulating the outputs of that analysis: variation points,
variants, and attributes. As described in section 3.3 a variation point is a conceptually
common feature that can be implemented in different ways; the variations represent these
different implementations. The variation points in a domain form a variability space
populated with variants. The products in the domain are positioned on this variability
space according to the variants they realize. Since there can be many variation points in a
domain, which will result in a multidimensional space that is hard to visualize and reason
about, projections of that multidimensional space are used. In the example provided on
Figure 21 the projection of one side of the three-dimensional space is represented as three

two-dimensional spaces.

82

%
® [DS2: Definition of
Test

@ 7 DS3: Identification
[Development P
® diagr

Producl Soaels
Name: Pure OO Strategy

Description: Newer software firms which have adopted the

object-oriented methodology of software development would
want to investigate into the use of OO software metrics to go
with their QO source code. They would want to look into the

@ property
name
® another

property |

popesy

1,3
List

1,9:Smalltalk

SRS AR e e e e L e e s e

Figure 21: Domain Scoping

The tool for Domain Scoping automatically generates the diagrams for each projection
presenting the van'aﬁon points that form this projection, the variants that populate it and
the products and strategies that are positioned on it (Figure 21). Thus, the substantial
effort of manually creating and updating that otherwise helpful visual representation is

waived.

The domain modelling tool deals with the creation and enhancement of domain and
product models including use case models and analysis models. Since there is a number
of existing third party tools, which provide sophisticated support for the process of
business and software systems modelling, integration rather than in-house development
was chosen. Holmes supports data and some limited control integration with Rational
Rose model tool (Rational, 2002). The main reason for the limited success in achieving

control integration was the poor quality of free Java-to-COM (Microsoft, 1995) bridges.

83

Holmes stores all models that are created by Rational Rose, so when a software
practitioner needs to edit or review a given model he/she selects it and presses the “Edit”
button (Figure 22). This will automatically invoke Rational Rose and open within it the
selected model. The Rational Rose model files (*.mdl) are also parsed to extract Object-
Oriented metrics (Chidamber and Kemerer, 1994), so that the models they represent can

be analysed by the critiquing system.

£ Domain Modeling

E xtemalModelE ditor0517 , -
* -® Use Case View \: : . Emﬂy Extractor

proguces

e ISR

: {23 Component View
[@3 Deployment View
28 Model Propesties

5,

K Metric
Project

Structural

Figure 22: Domain Modelling

84

5.6 Summary

Holmes is a tool that supports the Sherlock methodology for domain-based SPL
development. The proposed implementation of Holmes is based on a framework
developed using Sun’s implementation of a tuple space, called JavaSpaces. This
framework provides for loose coupling among the integrated tools, and the framework.
Since JavaSpaces are based on the object-oriented paradigm, any entity that is stored in
the JavaSpaces should be an object. This condition, initially regarded as a constraint,
enforced the development of a flexible, object-oriented mechanism for communication
among the tools, as opposed to standard message passing. The mapping of Holmes to the

recognized tool requirements is presented in Table 4.

Change Link . Tool

i . Multi-user . .

consistency | comsistency integration

support

management support
v v

Data (T >

repositories |

Event queue

Alows
queries

Semantic

Feature support

1

JavaSpaces

Generic tool
adaptors
Holmes
markup
language
Critiquing
system
Hyperbolic
tree view

Prolog
scripting

- Not/Poorly Supported v - Supported

Table 4: Mapping to requirements

Future work will be focused on analysing the possibilities for uniform data storage. This
should result in constructing a meta-language having the necessary descriptive power to

represent relationships utilized by all incorporated tools.

Another component of future work will be focused on the further development of the

Critiquing System, which will identify possible pitfalls in a proposed design and suggest

85

probable improvements. These suggestions will be based on existing reusable object-

oriented design pattern.

The third component of future development will be the improvement of the visualization
of domain information. The use of hyperbolic browser promises to give a better
representation of existing data dependencies and relationships. This is closely related to
the problem of traceability of information among the different phases of SPL

development.

86

6 Case Study

-

In this section a case study of using Holmes to perform domain analysis in the field of
software controlled Gastrointestinal Stimulation is presented. The use of software-
controlled gastrointestinal (GI) stimulators to regulate gastric activity promises to
revolutionize treatment of Gl-related diseases. Because this software area is relatively
young, it is difficult to propose a concrete and detailed realization of a product line in GI.
However, a comprehensive analysis of the domain identified the main requirements and
problems that should be considered when developing software systems in that domain.
The analysis identified the critical areas for further investigation, including the necessary
conditions for the implementability of a software-controlled GI stimulation system. It
also offered an initial plan for product development providing incremental delivery of

value.

6.1 Domain Definition

As described in Section 3, the purpose of the first phase in Sherlock methodology is to
gather information about the domain from several sources including history of the
organization, domain experts, market experts, etc. By compiling and systemizing the
information Domain Definition reduces the risk of performing DAE in the wrong
direction. More precisely, in this case Domain Definition identified the boundaries of the

GI domain and gives a conclusion whether it is feasible to continue with DAE.

6.1.1 Information about the domain

Gastrointestinal electrical stimulation has been proposed as a treatment for a variety of
gastrointestinal motility disorders ranging from abnormal gastric emptying and
gastroparesis, to chronic idiopathic constipation (Everhard, 1994) (McCallum et al,,
1998). In fact, a commercial system already exists that uses implanted electrodes to treat
severe cases of gastroparesis, which has been FDA approved for humanitarian use only
(Medtronic, 2000). However, existing pacing (McCallum et al., 1998) and entraining

(Everhard, 1994) solutions failed to produce convincing evidence for invoked movement

87

of gastrointestinal content associated with the stimulation. In contrast, functional
gastrointestinal stimulation is a treatment, which involves the use of sophisticated
software-controlled microprocessor-based neurostimulator to restore impaired
gastrointestinal motility utilizing sets of circumferentially implanted electrodes supplied
with synchronized trains of bipolar high-frequency (over 50 Hz) voltage trains with
variable amplitude and duration (Mintchev et al., 1998). Complex software modelling of
gastrointestinal organs as electromechanical engineering systems preceded the design of a
prototype of functional neurostimulator. That modelling was pivotal for the derivation of
the optimal stimulation parameters utilized in the software development of the device
itself (Mintchev et al., 1997).

In order to enable a successful transition from the current prototypical software to a
complete software-controlled miniature GI simulation system, an analysis of the software
domain is proposed to investigate the areas of risk, uncertainty, and any other factors that

future development must successfully resolve.

The general domain of functional gastrointestinal stimulation can be split into two main
aspects: simulation software for modelling artificially-invoked movement of
gastrointestinal content, and embedded system software that controls gastrointestinal
neurostimulators implanted in the human body. Consequently, the information gathered

will be divided in the above-mentioned groups.

An embedded system will implement a method for stimulating the smooth muscles of
gastrointestinal organs that was shown to be successful in a number of studies (Mintchev,
et al. 1998). It uses a number of circumferentially placed electrodes to propagate electric
stimulation. There are a few parameters of the electric stimulation that are of vital
importance, in order to produce an optimal contraction of the smooth muscles:

= Length of the stimulating electrodes

= Scope of contractions and separation between the successive electrode sets

* Duration of the stimuli applied to the electrode sets

* Phase lag between the stimuli applied to sequential electrode sets

* Amplitude of the stimulating voltage

88

= Current sinking capabilities of the stimulating device

The specific values for the above-mentioned parameters, voltage and frequency of
electrical current have been described for the stomach (Mintchev, et al. 1998) and for the
colon (Rashev et al., B). It is expected that these values would differ for other
gastrointestinal organs within a certain range. Flexibility in programming these
parameters is highly desirable from the point of view of adjusting the stimulator to be
patient specific as well. Therefore, the software of the embedded system should be

customizable with respect to these parameters.

The simulation software should provide means for visualizing and verifying the effects of
a particular electrical stimulation. In order to do so it should be based on theoretical
model of mechanically active GI organs and more specifically the tissues that compose
them. There are currently two major approaches to modelling gastric electrical activity
(Rashev et al., 2000):
= Passive models, employing networks of coupled relaxation oscillators, which
represent the spontaneous neural stimulation of the excitable smooth muscle tissue of
a particular organ by mapping the expected potential or current distributions
generated by the local nervous system.
= Active models, utilizing the dipole theory to describe vector characteristics of the
electric field produced by the excitable tissues of an organ, or representing the
changes in the magnetic field caused by alternations of the GEA.
The passive and active models provide precise representation of the spontaneous
electrophysiological phenomena but do not cover in a detailed manner the
electromechanical behaviour of the tissue. Thus, they are ill suited for simulating
artificially stimulated contractions of tissues with electrical activity. Because of that the
simulation software should be based on a novel object oriented modelling approach in
electromechanical modelling of GI tissues. This model incorporates knowledge of the
anatomy, electrophysiology, and mechanics of externally stimulated GI tissues and
employs the stimulus-response principle in modelling them (Rashev et al., 2000). To
address these issues the mechanical phenomena of GI organ contractions must be linked

to the electrical phenomena that occur during GI organ contractions.

89

There are four dimensions to this problem domain:

= Electrical

* Mechanical - fluid and solid matter flow dynamics

»* Medical/Physiological — refers to rejection, pain, long-term implantability, and other
surgical issues

* Anatomic — the shape of the GI organ being modelled

Only the electrical and anatomic dimensions are considered for the proposed software

system. The mechanical dimension is not considered because it is believed to be more

efficient to exploit existing flow dynamics software rather than develop custom

mechanical modelling tools from scratch. Medical/physiological dimensions are outside

the scope of the software system, since they are related to prolonged testing on chronic

animal models.

6.1.2 Domain Vocabulary

Since the problem domain is strongly related to medicine most of the terms come from
that field. Consequently, it will not be practical to enumerate them and their explanation
in the current document. Detailed vocabulary can be found in previously published

articles on the subject in major medical journals.

6.1.3 Information about the market

The Medtronic Enterra therapy system (Medtronic Enterra Therapy, 2000) is a
commercial product that targets the same need as the proposed system. However, unlike
the proposed neurostimulator, Enterra does not use simulation and analysis to control
electrode use and placement, and employs subHertz stimulating frequencies, thus
providing entraining of spontaneously existing gastric electrical activity, rather than
neuroelectrical stimulation resulting in circumferential contractions. The existence of
Enterra does suggest that there is a viable market for software-controlled GI stimulation.
Detailed statistics (for the United States) on the two major disorders that can be treated
with the proposed neurostimulation technique, severe gastroparesis and chronic

constipation, is provided by the National Institutes of Health (Everhard, J.E., 1994). It can

90

be estimated that several million people in North America suffer from chronic
constipation, while at least 20% of patients with Type 1 Diabetes develop gastroparesis.

Increasing number of cases with idiopathic gastroparesis has been reported as well.

6.1.4 Overall strategy

The overall strategy of the current development effort is as follows:

= Determine whether the approach of using simulation is of practical value by
providing a framework for off-line simulation and analysis;

= Provide ways for utilizing the developed parametric electromechanical model for
displaying more sophisticated animation and visualization;

= Develop a real-time system that interfaces with the embedded control of sequentially
implanted sets of stimulating electrodes and thus provide data, which can be further
processed;

®* Synchronize the work of the model with the actual neurostimulation, so that patient-
specific configurations of the stimulation parameters can be quickly and efficiently
obtained during the operation for the electrode implantation.

Given these goals, there are two general areas of interest: GI simulation software and GI

embedded system software.

6.1.5 Definition of domains

Sherlock defines several domain boundaries:
e Current domain: Domain of currently existing and under development software
systems.
e Strategic domain: Domain that the firm is most interested in and would like to
expand to in the near future.
e Feasible domain: Domain that encompasses all long-term possibilities for future
expansion.

Table 5 shows the domains for the two general areas of interest:

91

Domain GI Simulation Software | GI Embedded System Software

Current Stomach and colon GI simulation software

Strategic All GI organs Software controlled GI stimulation
software (includes simulation and

embedded) system

Feasible All mechanically active | General software-controlled implantable

human organs neurostimulator

Table 5: Domains

6.1.6 Feasibility analysis

The GI simulation (GIS) software is envisioned as a modular, expandable system. The
development of the current prototype confirms the feasibility of building a software GI
stimulation simulator. The market analysis shows that at present there is no tool to offer
similar functionality. In addition such GIS simulator will be valuable for the future
implantable neurostimulators by providing a way to carry out an adjustment of the GI
stimulators before they are permanently implanted in a human body. Concerning the GI
stimulation embedded system, its feasibility and value have been already supported by
the currently existing commercial treatment, the available digestive disease statistics, and

the extensive research carried out in that field.

6.2 Domain Characterization

Domain Characterization gathered the requirements in the domain. It provided precise
synopsis of what market needs the domain was meant to address. These needs were
expressed by using the terms commonly used in the analysed domain. Domain

Characterization also gave a description of the internal and external value of the products.

6.2.1 Simulation software

The internal value of the simulation software is represented by the possibility to simulate
the results of GI treatment and adjust the positioning of the electrodes and the parameters

of stimulation before the actual surgical placement of an implantable stimulation system

92

is performed. This will decrease the possibility of any adverse events caused by wrong
parameterization of the stimulator and will yield best results from the very beginning of

the treatment.

The key features of the proposed GI simulation software are equivalent to the key
features of a GI electro-mechanical model:
e The ability to modify stimulation parameters and the scope of the artificially-
produced contractions;
e Visualization of the modelled mechanical contractions of the GI organ due to the
applied virtual stimuli;
e Accurate reflection of the scope and duration of contractions with respect to the
scope and duration of the applied virtual stimuli;
e The ability to manipulate the virtual stimuli in order to achieve virtual propagated
contractions.
The acc:lracy and precision of the visualization is particularly important because medical
practitioners will be assessing the correctness of the propagation of contractions based

solely on the visualization.

As mentioned in the Domain Definition section, the proposed system will interface with a
flow dynamics software package to handle more sophisticated mechanical issues. Ideally
the simulation software would incorporate the flow dynamics package so that any
particular simulation (e.g., the gastric emptying of a solid meal with a particular
viscosity) would be visually presented in real time simultaneously with the stimulating
pattern. Thus, the resulting presentation would visualise the real-time response of a
stimulated organ. A critical future decision will be concerned with which particular flow
dynamics package will be used and the corresponding method of interfacing, whether
through files or a programming interface.

The external value will highly depend on the existence of other medical software systems

in related fields.

93

6.2.2 Embedded software

The internal value of the embedded software system is represented by the effects caused
by GI stimulation when applied in cases of severe gastroparesis, chronic constipation, etc.
While the existing Medtronic Enterra Therapy claims significant reduction of the
symptoms of nausea and vomiting in gastroparesis when other pharmacological
treatments are ineffective, the proposed neurostimulation system could present a long-
term solution to both gastroparesis and chronic constipation by providing artificial,

microprocessor-controlled organ massaging on demand.

Another aspect of the internal value of the embedded system is related to the prevention
of possible adverse events when GI stimulation is applied. Special care should be taken in
analysing the components used in the design of the actual stimulating system so that
electrode problems, device infections, device erosion, device migration, etc. are
prevented. Given the potential problems related to electrode movement, it seems
appropriate to consider whether features related to electrode tracking and software
handling of overall system failures should be considered within the overall scope of the

product line.

The external value of the embedded system is considerably limited by the nature of this
device. Further discussion of that aspect at the current level of development will be

ungrounded and superficial.

6.2.3 Market segments and users

The users or the market segment that a product is targeting have major influence on
feature selection decisions. The ultimate and primary market segments for this effort are
obviously patients requiring treatment for a Gl-related motility disorders and the doctors
treating these patients. However, it is also useful to examine secondary and tertiary user
groups, especially those that can support interim software products leading to the
eventual development of the embedded system. Some possible non-primary market

segments for the simulation software include students and researchers. A system for

94

students might have to provide more assistance than a system designed for experts would
require, while a system for researchers may have to provide more features for

experimentation.

In general, taking advantage of interim market segments is a risk-mitigation strategy.
Usability of the simulation aspects of the system can be tested with real users
independent of other considerations that an embedded system would introduce. Even if
the embedded software system can be completed quickly, there are other obstacles of
practical importance that may prevent the overall hardware-software system, from being
put into production or even integrated. One such issue is the availability of power

sources that have suitable size and duration.

6.3 Domain Scoping

Domain Scoping is the phase in which variability analysis for the domain is carried out.
The existence of a number of products in a domain means that they share some
commonalities. These commonalities roughly show what the products actually do. The
specifics of products are denoted by the differences among them. In the case of a single
product Domain Scoping is used to point out the possible features the product can

implement and suggest a number of strategies for its development.

6.3.1 Variation points and attributes

Variation points, also known as hot spots, are aspects in a software product line that will
be addressed differently by different products. In other words, a variation point is a
feature of commonalities that is implemented differently in different products. For
example, Operating System could be a variation point with the variants, or particular
instantiations of a variation point, being Windows, UNIX, and Real Time Operating
System (RTOS). Variants may or may not be mutually exclusive depending on the

variation point.

95

Simulation Software
Variation Point 1: Organs that can be

simulated
= Variant 1,1: Esophagus
®* Variant 1,2: Stomach
= Variant 1,3: Colon
Variation Point 2: Content that can be
simulated
s Variant 2,1: None
® Variant 2,2: Fluids
= Variant 2,3: Solids
Variation Point 3: Output formats
= Variant 3,1: Plain text
®» Variant 3,2: XML
= Variant 3,3: Binary
Variation Point 4: Operating system
= Variant 4,1: DOS
= Variant 4,2: Windows 95/98
= Variant 4,3: Windows NT/2000
= Variant 4,4: UNIX
= Variant 4,5: RTOS

96

Attributes are similar to variation points except that they deal with non-functional aspects
and thus tend to have more widespread implications to design and implementation

decisions

Attribute 1: Performance
e Constraint 1,1: Response time in the order of milliseconds
¢ Constraint 1,2: Response time under 5 ms

e Constraint 1,3: Response time in the order of microseconds

Attribute 2: Reliability
e Constraint 2,1: Mean Time to Failure (MTTF) in the order of hours
e (Constraint 2,2: MTTF in the order of months
e (Constraint 2,3: MTTF in the order of 50 years

Attribute 3: Usability
e Constraint 3,1: An average student can learn the system in at most a few hours
e Constraint 3,2: A domain expert can learn the system in at most a few hours

e Constraint 3,3: A domain expert requires at most 3 months training to learn the

system

Embedded System
Variation Point 1: Organs that can be simulated

e Variant 1,1: Esophagus
e Variant 1,2: Stomach

e Variant 1,3: Colon

6.3.2 Product strategies

A product strategy is essentially a set of choices made on which variants and which
attribute constraints are appropriate for a targeted market segment. Strategies are also not
necessarily mutually exclusive and can in fact be combined and implemented

simultaneously if desired. Several proposed strategies follow:

97

Strategy 1: Training tool

This strategy would target students and instructors. Although it would be advantageous
to be able to simulate more organs and show movement of content, it would likely be
sufficient to simulate a major GI organ like the colon in order to communicate concepts.
Output formats can be of any form. The operating system will depend on the particular
situation but will unlikely be a RTOS. Performance can be soft real-time in the order of
milliseconds or even worse. Reliability can be in the order of hours, which is probably
longer than any lecture or lab. Usability on the other hand, has to be very good so that

students and instructors are not frustrated by the system.

Strategy 2: Clinical research tool

Clinical researchers would likely require a system that could simulate more GI organs
and the movement of content within them. In order to improve the ability to share
information with other researchers, a XML output format would be preferred. Typical
university research computers use either UNIX or Windows NT/2000 although one
should pay attention to exceptions. The performance of the system should be as close to
hard real-time as possible though a response time under 5 ms is probably adequate.
Reliability on the order of months should be sufficient. Usability should be tailored to

domain experts and should be learnable in at most a few hours.

Strategy 3: Embedded system plus support

The support system for an embedded strategy would require the ability to simulate the
organ where the electrodes would be installed. 1t is unlikely that all organs would be
attempted simultaneously. Probably the first organ that would be attempted would be the
colon. Improved content simulation may also be a feature gradually added. This will
depend on the existence of empirical evidence from implant patients showing that it will
improve the system sufficiently in terms of quality-of-life. Sharing of information is
mostly between the simulation and embedded control components suggesting that a
binary format is more suitable for efficiency. The embedded control component would

definitely need to run on a RTOS but the simulation component could run on a less strict

98

operating system. A common consumer OS would be ideal for ease of use, however, the
real-time considerations suggests that UNIX or Windows NT/2000 might be more
realistic. To reduce cost, an open source UNIX like a Linux or BSD distribution would
be ideal.

6.4 Domain Modelling

With the current prototype software, the sequence and duration of activities is as follows:
Scale organ and adjust parameters to be case-specific - ~1 day

Specify electrode placement, simulate static contraction and check amplitude of stimulus,
time constants of contraction and relaxation, and electrode positioning to get required
lumen occlusion - ~2 days

Simulate and examine results, manually adjust parameters to obtain synchronization
patterns needed to move stimulus in a multi-electrode setup- ~5 days.

The total duration of this semi-automatic process is a little over a week.

6.4.1 Scenarios

There are several scenarios that proposed systems would address, including some
extracted from the current activity sequence.

® Scale organ: The user adjusts the geometric parameters of a generic organ to match
the current specific case.

o Simulate static contractions: The user specifies the placement of electrodes on the
model. The system shows the amplitude and time characteristics of the stimulus,
the electrode positioning and the resulting lumen occlusion in the model.

e Sirmulate dynamic contractions: The user adjusts parameters to get timing
synchronization of the stimuli produced by multiple electrode sets needed to
propagate the lumen-occluding contractions.

e Simulate contents: The user specifies the type of content and its viscosity. The
system calculates the effect on volume displacement and shows the resulting

movement of fluids or solids within the organ model.

99

e System level simulation: Individual organ simulations are combined into a unified

system-level simulation.

6.4.2 Analysis Model

The analysis model (Figure 23) acts as a structured concept map that abstracts out the less
important details to describe the overall system in simpler manner.
diagram in Figure 24 describes the dynamic behaviour of the system. An ElectrodePair
will stimulate an OrganTissue. OrganTissues are connected through OrganJunctions,
which are themselves a type of OrganTissue. Content is moved through the overall GI

system from the responses of the OrganTissue to ElectrodePair stimulation. Meanwhile,

the WorldView is observing all this behaviour and displaying it to the user.

The sequence

Content
obsenes
Iy \ WarldView

moves

OrganTissue obsenves
1.7 A

sitaches stimuiates

- Organdunction ElectrodePair

Figure 23: Analysis Model

100

electrode - organ : view content :
ElectrodePair OrganTissue WorldView Content
stimulate moves
—

cemmmmeenn]

DeformationEvent

: >
MovementEvent
U'{

T

Figure 24: Sequence Diagram for Analysis Model

Table 6 lists the classes, example instances, and their corresponding responsibilities.

Class Example Instances Responsibilities
OrganTissue Stomach, Knows shape
ColonicSmoothTissue Calculates def_onnatlon of its shape in
response to a stimulus
OrganJunction | EsophagealJunction, Knows shape
. Calculates deformation of its shape in
extends TiealJunction .
response to a stimulus
OrganTissue » Attaches two OrganTissues
ElectrodePair | ElectrodePair Stimulates an OrganTissue
Knows its location on OrganTissue
Calculates 2D mapping of current density
distribution
Content FluidContent, Knows shape and viscosity
SolidContent Calculatgs dlsplacer'ne?nt in response to
deformation of containing OrganTissue
WorldView WorldView Tracks OrganTissue and Content objects

and their changes
Displays OrganTissue and Content objects
according to their shape

Table 6: Classes and Responsibilities

6.4.3 Design Model

The current design model is shown in Figure 25.

There are several indicators of possible problems with the current design (Riel, 1999):

101

e Inheritance relationships that do not provide substitutability (Liskov, 1988)

e Dependencies between TissueExcitation and Tissue, ElectricallyStimulated and

MechanicallyStimulated

e Is StructuralGITissueModel a “god” class?

Tissue doesn’t “use” a Sheath; it “has” a Sheath. TissueExcitation doesn’t “ase” a

Tissue; a Tissue is sent an Excitation (from either an electrode or content moving through

it) and responds by deforming. Deformation might not have a logical dependency on the

source of the Excitation that causes it.

The class who is responsible for calculating the

Deformation, which may not be the Deformation class itself, would need to know the

source of the Excitation. The previously proposed analysis model assumed the Tissue

would calculate the Deformation but design details may require to move this

responsibility elsewhere.

StructuralGITissueModel
For visualizaii;Bl
Tissue TissuebExcitation TissueMedia
Sheath Zﬁ Deformation
ShortDuration
LongDuration HectricallyStimulated MechanicallyStimulated
Branch

Figure 25: Current Design Model (Rashev et al., 2000)

102

StructuralGliTissueModel T

Deformation ElectrodePair \ Content

OrganTissue
Excitation
& duration | FluidContent | | SolidContent
Organdunction TissueSheath Conoid
TissueMedia Branch

Figure 26: Proposed Design Model

A Tissue may react differently based on the duration of an Excitation but duration should
simply be an attribute of an Excitation, not a sub-class. A Conoid is not a Sheath but is a
specialization of the graphical object used to model a TissueSheath. The TissueSheath
domain object should be kept separate from its graphical object representation. Figure 26

shows a proposed improved design model.

6.5 Summary

This case study presented the first domain analysis of gastrointestinal stimulation using
Holmes support tool, developed as a part of this thesis. The goal was to identify the
essential requirements, potential risks, and possible problems that can be encountered
when developing software systems in the field of GI stimulation. One of the essential
conclusions that were drawn was that the initial domain should be further split into
software systems for GI stimulation simulation and software systems for actual GI
stimulation. This division is intrinsic, since the former can be developed assuming

relative abundance of computational resources and CASE tools, which can be exploited.

103

Conversely, the latter should be built within the resource-constrained environment of an
embedded system. Furthermore, there are additional considerations that narrow the
choice of hardware devices that can be used in a stimulation system. These considerations
include, but are not limited to power consumption, size, implantability, medical

suitability, etc.

An analysis and design model of a simulation system was proposed. By no means, the
current design should be considered final. Further changes and improvements will be

necessary as the software systems evolve.
The completed analysis aimed at facilitating the future development of software systems

in that field and serving as a risk-mitigating factor. Particular attention was devoted on

the boundaries of the domain and the products division within it.

104

7 Conclusion and Future Work

The strong competition in the software industry today necessitates substantial changes in
the way software systems are developed. Each company faces the pressure for major
improvement in software quality, on one side and reduced time-to-market, and lower
development costs, on the other. The concept of Software Product Lines (SPL)
development seems to be a viable solution in satisfying these counteracting requirements
by embodying strategic, planned reuse, based on carefully analysed relation among the

members of the product line.

The existing methodologies for SPL vary in the aspect of software development they
identify as the most crucial for the successful adoption of SPL. While some approaches
emphasise on modifying a company’s structure and process so that separate
organizational units deal with a different SPL practice, others put the stress mainly on
changing the software process to one that will promote large-scale reuse, without
explicitly defining the company’s structure. Nevertheless, all existing methodologies
demand building a software process and often an organizational structure anew (Chapter
2). Without doubt, if successful, such overhaul may provide major gains in the software
development efficiency. However, a company’s organization comprising a few units that
must not have overlapping responsibilities and must not exchange personnel can be
hardly viable in a small- and sometimes medium- sized company. Likewise, imposing a
new and unfamiliar software process can initially lead to considerable frustration and
delays in the achievement of current business goals. In brief, such major changes can be
carried out successfully only in a fairly mature software development organization that is

ready to make a significant upfront investment,

Another, more “lightweight”, approach to adopting SPL development, systemized in a
methodology called Sherlock (Chapter 3), is by defining the practices that have to be
followed, leaving the company's structure loosely defined and augmenting with these
practices the software process in place. In order to make the process of SPL development

easier and more efficient, a design and implementation of a software environment that

105

supports Sherlock is proposed in the thesis (Chapter 5). This environment is designed to
address issues that are poorly supported by existing tools, such as little support for the
early phases of domain engineering, inadequate change propagation, multi-user and
semantic support, etc. (Chapter 4) To verify the viability of Holmes, the support tool was
applied to a case study in the domain of Gastro-intestinal stimulation. The study
evidenced the advantages of using automated support as opposed to paper-and-pencil

approach and revealed further improvements to the tool that will be beneficial.

In brief, the contribution of this thesis can be summarized in the following points:

e Identification of the essential requirements for an SPL support tool that are
independent of the methodology that it will support

e Analysis of possibilities and choice of an architectural style that sufficiently
matches the specifics of the problem addressed by an SPL support tool, i.e., SPL
development

e Leverage of novel Object-Oriented technologies, such as Jini (Sun Microsystems
Inc., 2001) and JavaSpaces (Freeman, et al., 1999) in order to address issues poorly
supported by other existing tools

¢ Introduction of a mechanism for an easy adoption of SPL through the usage of a
lightweight methodology and a support tool, which will shorten the required
training of personnel and decrease the amount of initial investment

e Application of the developed tool to domain analysis in the field of Gastro-
intestinal stimulation. This analysis identifies the essential requirements, potential
risks, and possible problems that can be encountered when developing software

systems in the field of GI stimulation.

Even though Holmes is a fully functional prototype, there are some areas in which it can
be extended. In order to extend the link consistency management, a meta-language
representing the dependencies among the data items pertaining to different phases of
domain engineering should be developed. The critiquing system can be further enhanced
by qualitative analysis in addition to the existing analysis based on quantitative measures

Second, the possibility for implementing semi-automatic and automatic corrective actions

106

for some of the phases of domain engineering should be explored. Lastly, the browsing
and navigating of domain information can be improved by introducing a hyberbolic tree

viewer.

107

8 References

Arango G. (1994). Domain analysis methods. In Software Reusability, Ellis Horwood

Ardis, M. and Weiss, D. (1997). Defining Families: The Commonality Analysis.
Proceedings of the Nineteenth International Conference on Software Engineering,
IEEE Computer Society Press, May

Batory, D., G. Chen, E. Robertson, and T. Wang (2000) “Design Wizards and Visual
Programming Environments for GenVoca Generators”, to appear in IEEE
Transactions on Software Engineering, URL:
ftp://ftp.cs.utexas.edu/pub/predator/ieee-tse-99.ps

Bayer J., Flege O., Knauber P., Laqua R., Muthig D., Schmid K., Widen T., De Baud J.
(1999). PuLSE: A Methodology to develop Software Product Lines, Symposium on
Software Reusability

Bayer, J., D. Muthig and T. Widen (1999A) "Support for Domain and Variant
Engineering: DIVERSITY/CDA" submitted to Automated Software Engineering *99

Braga, R., C. Wemer, and M. Mattoso (1999) "Odyssey: A Reuse Environment based on
Domain Models", Proceedings of the 1999 IEEE Symposium on Application-Specific
Systems and Software Engineering & Technology

Booch G., Jacobson 1., and Rumbaugh J. (1998). The Unified Modeling Language User
Guide, Addison-Wesley

Chidamber, S.R. and C.F. Kemerer (1994). “A Metrics Suite for Object Oriented
Design,” IEEE Transactions on Software Engineering, 20(6).

Corkill, D. (1991). Blackboard systems. Al Expert 6(9):40-47, Septembér

Dushin, F. (2000), JPL, http://sourceforge.net/projects/jpl/

Everhard, JE. (1994). “Digestive Diseases in the United States: Epidemiology and
Impact. NIH Publication No. 94-1447, US Department of Health and Human
Services, National Institutes of Health, National Institute of Diabetes and Digestive
and Kidney Diseases, Washington, DC.

Frakes, W., R. Prieto-Diaz and C. Fox (1998) "DARE: Domain analysis and reuse

environment", Annals of Software Engineering, 5(1998)

108

Fisher G., Lemke A., Mastgalio T., and Morch A. (1991). The Role of Critiquing in
Cooperative Problem Solving. ACM Transactions on Information Systems, Vol. 9,
No. 3, April

Fisher G., Girgensohn A., Nakakoji K., and Remiles D. (1992). Supporting Software
Designers with Integrated Domian Oriented Design Environments. IEEE Transactions
on Software Engineering, vol. 18, no. 6, June

Fisher G., Nakalkoji K., Ostwald J., Stahl G., and Sumner T. (1993). Embedding Critics
in Design Environments. The Knowledge Engineering Review Journal, Special Issue
on Expert Critiquing vol. §, no. 4

Freeman E., Hupfer S., and Amold K. (1999). “JavaSpaces Principles, Patterns, and
Practice” Addison-Wesley

Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns — Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995

Gelemter, D., “Generative communication in Linda”, ACM Transactions on
Programming Languages and Systems, 7(1), 1985

Gotel, O., and A. Finkelstein. (1994) “An analysis of the requirements traceability
problem”, Proceedings of the 1994 International Conference on Requirements
Engineering

Griss, M., J. Favaro, and M. d’ Alessandro (1998) “Integrating Feature Modeling with the
RSEB”, Proceedings of the Fifth International Conference on Software Reuse

Jacobson 1., Griss M., Jonsson P. (1997). Software Reuse — Architecture, Process and
Organization for Business Success, Addison-Wesley

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and Irwin
J., (1997). Aspect-Oriented Programming. Proceedings of the European Conference
on Object-Oriented Programming

Kruchten, P., (1995). Architectural Blueprints — The “4+1” View Model on Software
Architecture. IEEE Software 12 (6), November.

Kang, K., et al. (1990) Feature-Oriented Domain Analysis (FODA) Feasibility Study
(CMUY/SEI-90-TR-21, ADA 235785). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University

Liskov, B., (1988). Data Abstraction and Hierarchy, SIGPLAN Notices, 23(5).

109

Loral Defense Systems (1996) "User Manual: ELPA Domain Generation Environment
(EDGE) Version 2.0", Technical Report STARS-PA 19-S001/002/00

McCallum, R., J. Chen, Z. Lin, B. Schirmer, R. Williams, and R. Ross, (1998) “Gastric
pacing improves emptying and symptoms in patients with gastroparesis”,
Gastroenterology, 114: 456-461.

Medtronic Enterra Therapy, (2000). URL: http://www.medtronic.com/neuro/enterra/;
October 17

Microsoft (1995). The COM Specification. http://www.microsoft.com/com/resources/
comdocs.asp

Mintchev, M. P., and K.L. Bowes, (1997) “Computer model of gastric electrical
stimulation”, Ann. Biomed. Eng., vol. 25, pp. 726-730.

Mintchev, M.P., C. P. Sanmiguel, S. J. Otto and K. L. Bowes, (1998). “Microprocessor
controlled movement of liquid gastric content using sequential neural electrical
stimulation”, Gut, 43:607-611.

Mollaghasemi M. and Pet-Edwards J., (1997). Making Multiple-Objective Decisions.
IEEE Computer Society

Paras D.L., (1972). On the Criteria To Be Used in Decomposing Systems into Modules,
Communications of the ACM, December

Prieto-Diaz, R., (1991) "Implementing Faceted Classification for Software Reuse,"
Communications of the ACM, Vol. 35, No. 5.

Predonzani, P., G. Succi, and T. Vernazza (2000) A Domain Oriented Approach to
Software Production, Artech House Publisher Inc.

Prosperity ~ Heights Software (2000) "Metaprogramming . Text Processor”,
http://www.domain-specific.com/MTP/index.html

Rashev, P., M. P. Mintchev, and K.L.. Bowes, (2000). “Application of Object-Oriented
Programming Paradigm in Three-Dimensional Computer Modeling of Mechanically
Active Gastrointestinal Tissues”, IEEE Transactions on Information Technology in
Biomedicine, vol. 4, no. 3, pp. 247-258.

Rational (2002). http://www.rational.com/products/rose/index.jsp

Riel, A., (1994). “Object-Oriented Design Heuristics”, Addison-Wesley.

110

Robbins, J. (1998) “Design Critiquing Systems”, Technical Report UCI-98-41,
University of California, Irvine

Robbins, J. and Redmiles D., (1998) “Software Architecture Critics in the Argo Design
Environment”, Knowledge-Based Systems, 11(1)

SEI (2002). “A Framework for Software Product Line Practice - Version 3.0”,
http://www.sei.cmu.edu/plp/framework.html

SPC (1993). Reuse-Driven Software Processes Guidebook, Version 02.00.03. Technical
Report SPC-92019-CMC, Software Productivity Consortium, November

SPCSC (1993). Software Productivity Consortium Service Corporation. Reuse Adoption
Guidebook, Version 02.00.03, November

Sun Microsystems, Inc (2001). Jini™ Technology Core Platform Specification,

http://wwws.sun.comysoftware/jini/specs/iini 1.2html/core-title.html, December

SWI-Prolog (1987), http://www.swi-prolog.org/

Tarr, P., Ossher, H., Harrison, W., and Sutton, S., (1999). N Degrees of Separation:
Multi-Dimensional Separation of Concerns. Proceedings of the International
Conference on Software Engineering (ICSE’99), May

Terry, A., T. Dabija, T. Barmes, and A. Teklemariam (1995) "DADSE 2.3 User Manual”,
Teknowledge Federal Systems

Tracz, W. and L. Coglianese (1995) "DOMAIN (DOmain Model All Integrated): A
DSSA Domain Analysis Tool", Technical Report ADAGE-LOR-94-13

Weiss D., Lai R. (1999). “Software Product Line Engineering: A Family Based Software
Development Process”, Addison-Wesley

W3C, “Extensible Markup Language (XML) 1.0”, W3C Recommendation, REC-xml-
19980210, URL: http://www.w3.0org/TR/REC-xml, 1998

111

