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Abstract

In this investigation on East African meteorological droughts, drought properties and 

patterns have been identified, three drought indices tested and modified, and two 

statistical teleconnection models developed for predicting its seasonal rainfall totals.

Using harmonic analysis, East Africa was delineated into 6 homogeneous rainfall zones, 

and the important rainfall seasons (in terms of % rainfall contribution to the annual 

rainfall) identified for each zone. Three drought indices (Palmer Drought Severity Index 

or PDSI, Bhalme Mooley Index or BMI, and Standardized Precipitation Index or SPI) 

were analyzed, modified where necessary, and compared in terms of their consistency in 

detecting the initiation, evolution, severity and termination of meteorological droughts in 

East Africa. It seems that SPI is more versatile and consistent than PDSI and BMI in 

tracking East African droughts. From 6-month and 12-month SPI data, East Africa was 

delineated into 7 drought homogeneous zones whose spatial boundaries bear a 

resemblance to the 6 homogeneous zones identified from harmonic analysis. From 

composites developed out of 22 El Niflo and 13 La Nifla events and 6-month SPI data, 

El Niflo-Southem Oscillation (ENSO) has been found to exert an influence on the 

moisture regime of East Africa. The degree and temporal patterns of ENSO response vary 

between the above-identified droughts zones o f East Africa. It seems northeastern 

Tanzania has the strongest response to ENSO. El Niflo seems to exert a stronger 

influence on East Africa than La Nifla. Two statistical models, combined Canonical 

Correlation Analysis-Simplex (CCA-Simplex) and projection pursuit regression (PPR)
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models were developed to predict East African seasonal rainfall. CCA-Simplex is a linear 

model while PPR can model nonlinear associations. PPR performed better than the stand­

alone CCA. By adjusting the prediction fields with 24 weights optimally determined by 

the Simplex algorithm, we found CCA-Simplex to consistently produce better forecasts 

than using un-weighted predictor fields. PPR-Simplex did not yield better results than the 

stand-alone PPR
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Chapter 1 Introduction

1.1 Overview

Since time untold, drought has affected mankind’s livelihood worldwide, sometimes at 

catastrophic scale. Even though drought is a hydrologic extreme, it is closely related to 

our climate and its recurrence is beyond human control. There is probably no one single 

region in this world where drought has not affected man’s livelihood at one time or the 

other.

An example of a disastrous drought in recent decades is the Sahelian drought, which had 

wide scale impact on Western Africa. This prolonged drought attracted the attention of 

many scientists. As a result, there is plenty of documentation on this drought and the 

general rainfall variability of the Sahel region (e.g., Nicholson, 1979, 1980, 1983; 

Sivakumar, 1991 andHAPEX, 1997).

Severe droughts have also occurred in some areas of East Africa. Table 2.1 lists some 

major drought events that have occurred in East Africa in the Twentieth century. Despite 

the recurrence o f drought in East Africa, only a limited number o f studies have been 

devoted to the understanding of the nature and origins of drought in this region 

(e.g. Trewartha, 1981 and Beltrando, 1990). The economy of East Africa largely depends 

on rain-fed agriculture and as such it is susceptible to variations in the amounts, 

distribution and timing of rainfall. Adverse effects brought about by prolonged periods of 

low or no rainfall could be mitigated if the rainfall deficits are monitored and advice to 

relevant authorities given on a timely basis.

Since time immemorial, human settlements have predominantly been in river valleys and 

as a result, attention has been more directed to flooding than to drought problems. Floods 

tend to capture more attention than droughts because the former is more dramatic, more 

sudden, and often bring about massive damage in a short period. Even then, in
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quantitative terms, the cumulative effects of drought to some regions (e.g. West Africa 

and Northeast Africa) could be more catastrophic than flood impacts.

1.1 Statement of the Problem and Research Objectives

Given that only a limited number of studies have been conducted on droughts of East 

Africa, even though it is a recurrent problem, the theme of this research is about the 

statistical properties and physical mechanisms of meteorological droughts in East Africa 

and the development of two statistical-teleconnection models to predict seasonal droughts 

in the region.

Essentially, this investigation has five major objectives:

(1) Identify the major zones of homogeneous rainfall regimes for East Africa by 

harmonic analysis and investigate the seasonal rainfall of these rainfall zones.

(2) Determine the most suitable drought index to detect the initiation, evolution, 

termination and severity of meteorological drought in Eastern Africa. Then, based on 

the spatial and temporal characteristics of the selected drought index, classify East 

Africa into homogeneous drought zones.

(3) Investigate the possible influence of El Nifio Southern Oscillation (ENSO) on East 

African moisture anomalies.

(4) Develop linear and nonlinear statistical predictive models for predicting East African 

seasonal rainfall.

(5) Investigate the underlying mechanisms behind the drought teleconnection patterns.

1.2 Significance of the study

Zoning East Africa into homogenous rainfall sub-regions is an important step in 

understanding the characteristics of East African meteorological drought. Each zone is 

assumed to have a unique ensemble of rainfall causative mechanisms and a unique
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teleconnection structure with some large-scale climatic signals. It is therefore necessary 

to divide East Africa into homogeneous zones before investigating how the precipitation 

of these zones teleconnect with global climate signals.

Research on drought indices should lead to practical applications. Local, regional and 

national agencies dealing with the planning and management of drought control and the 

formulation of both short- and long-range drought mitigation policies may use the 

selected drought index to specify the severity of the drought and to estimate the expected 

social and economic damages over time. The drought index can also be used to indicate 

the onset, progression and end of droughts, and appropriate drought mitigation 

procedures.

There is yet to be a set of drought indices adequately tested in East Africa. Indexing of 

droughts in East Africa has been and is still sketchy, without a well thought out approach. 

There is yet a roster of drought indices systematically used to rank the severity of drought 

events in East Africa. Descriptions of drought events in the region are still ad-hoc. It 

would be beneficial to implement drought mitigation strategies with respect to drought 

indices of quantitative nature rather than subjective decisions of some individuals. 

Conversely, drought indices enable us to objectively implement various drought control 

strategies and measures.

If more accurate zoning of East Africa into regions of homogeneous drought 

characteristics can be achieved via an appropriate drought index, policy makers would be 

able to use the information for managing an ongoing droughts and for planning strategies 

against potential droughts. Further, accurate zoning is important because at a particular 

time, certain zones of the region may be experiencing droughts while other zones are not. 

With this knowledge, plans to transfer resources from the well-endowed zones to the 

drought prone areas could be charted out well in advance.

Results from a teleconnection investigation between East African drought and El Niiio 

and Southern Oscillation (ENSO) could be used in the real time diagnostic monitoring of
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East African droughts, especially during major ENSO events. This teleconnection could 

provide useful preliminary seasonal rainfall outlooks whenever warm or cold ENSO 

phases are forecasted or established.

The ultimate purpose in drought forecasting is to provide the society with sufficient 

warning of its occurrence for appropriate mitigative action to be taken. A timely 

preparation for drought could avert a significant proportion of the perilous impacts of 

drought when it occurs. A seasonal drought prediction model based on the concept of 

statistical teleconnection for East Africa has the potential to provide such timely warnings 

to those who live in this region.

1J Definition of Drought

Strictly speaking, there is no universally acceptable definition of drought. This is because 

(a) the concept of drought is not absolute but relative to uses and expectations, (b) 

drought (unlike floods) is not a distinct event - it neither has a well-defined start nor an 

end, and (c) drought is often the result of many complex factors acting and interacting 

within the environment.

Drought could occur in dry as well as in rainy areas. It is relative to the long-term or 

average water balance between rainfall and evapotranspiration in a particular area. The 

long-term condition is often perceived as “normal”. Average rainfall alone does not 

provide an adequate measure of rainfall characteristic in a given region, especially in 

drier areas (Wilhite and Glantz, 1987). This is because the average value can be 

drastically affected by a few outliers. Drought is a “creeping phenomenon” (Glantz,

1987), making an accurate prediction of either its onset or end a difficult task. To most 

observers, it seems to start with a delay in the timing or a failure o f the rains.
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Although drought is difficult to define precisely, it can be regarded as the condition 

where there is a lack o f sufficient water to meet demand requirements; which depend 

upon the distribution of plant, animal and human populations (Gibbs, 1975).

Drought is frequently defined according to a disciplinary perspective. Subrahamanyam 

(1967) identified six types of droughts; meteorological, hydrologic, climatological, 

atmospheric, agricultural and water management droughts; while Gibbs (1975) also 

included social-economic drought. Wilhite and Glantz (1987) suggested even though it 

may be useful to compartmentalize the various views of drought, the boundary separating 

these views is often vague. They grouped the above definitions into four types; namely 

meteorological, agricultural, hydrologic and social-economic droughts.

Meteorological drought is a period of substantially diminished precipitation duration 

and/or intensity. The commonly used definition of meteorological drought is an interval 

of time, generally of the order of months or years, during which the actual moisture 

supply at a given place consistently falls below the climatically appropriate moisture 

supply. Agricultural drought occurs when there is inadequate soil moisture to meet the 

needs of a particular crop at a particular time. Agricultural drought usually occurs after 

meteorological drought but before hydrological drought and can also affect livestock and 

other agricultural operations. Hydrological drought refers to deficiencies in surface and 

subsurface water supplies. It is measured in terms of streamflow, snowpack, and as lake, 

reservoir and groundwater levels. There is usually a time lag between a lack of rain or 

snow and measurable water in streams, lakes and reservoirs, making hydrological 

measurements later indicators of drought. Socio-economic drought occurs when physical 

water shortages start to affect the health, well being, and the quality o f life of the people, 

or when the drought starts to affect the supply and demand o f an economic product.

In terms of the above disciplinary drought definitions, meteorological drought usually 

precedes all other kinds of drought
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1.4 Scope of the Study

In this investigation, the term East Africa refers to three African countries; Uganda, 

Kenya and Tanzania even though the political boundaries o f East Africa may not be 

consonant with the climatological zoning of the region. The lack of data in some parts of 

Africa prevents us from expanding the study area beyond these three countries.

This investigation is limited to meteorological drought, which precedes all other kinds of 

drought. Only dry spells more than a month in duration are considered in this 

investigation. It would have been desirable to track droughts using even shorter time units 

such as a daily unit because an affected drought region can return to normal condition 

with only a day’s rainfall. However this is not practical given that most of the available 

raw climatological data is available in monthly time steps. Drought prediction (also 

known as drought warnings or outlooks) is generally limited to 3 to 6 months of lead- 

time, which is equivalent to one or two seasons in advance. Gridded precipitation data is 

used in developing the seasonal drought prediction models instead of station data. We 

realize that the resolution of the gridded rainfall data we used (2.5° latitude by 3.75° 

longitude) may at times be too coarse to capture mesoscale drought features. However 

most serious drought episodes in East Africa generally cover more extensive areas than 

this grid resolution.

This investigation is organized as follows: Chapter 2 discusses East African drought 

history, Climatology, and rainfall. Homogenous rainfall zones are delineated and their 

spatial and temporal characteristics studied. In Chapter 3, several drought indices are 

analyzed and experimented on East African data. The most appropriate drought index for 

East Africa is then selected and used to delineate this region into homogeneous drought 

zones. In Chapter 4, the influence of ENSO on East African rainfall based on harmonic 

analysis and other techniques is discussed. In Chapter 5, two statistical prediction models, 

Canonical correlation analysis (linear) and Projection pursuit regression (non-linear) are 

developed using sea surface temperature (SST) and sea level pressure (SLP) as 

predictors. The overall conclusion and summary are presented in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 East African Precipitation Climatology and Drought History.

A general understanding of the rainfall climatology of East Africa is essential in 

analyzing its seasonal meteorological drought. In this chapter, we present a review of 

East African rainfall climatology and the history of droughts in the region. Further, zones 

of homogeneous rainfall regimes are identified. Each zone is assumed to have a unique 

ensemble of rainfall causative mechanisms and a corresponding unique teleconnection 

structure with some major climatic signals. Therefore, further drought analysis and 

predictions in Chapter 5 are presented in terms of these zones.

Past studies o f East African rainfall using rotated principal components produced a highly 

segmented region with more than 26 rainfall climatological zones (Ogallo, 1989; 

Basalirwa, 199S; Basalirwa et al, 1999) which are not suitable for our investigation of 

East African droughts. The data and methodology used to arrive at our climatological 

zoning are briefly discussed in Section 2.4 and discussions of the results are presented in 

Section 2.5.

In East Africa, some seasons experience more rainfall than others and usually it is the 

failure of the critical rainfall seasons that cause the onset of drought. In section 2.5 we 

identify the important rain seasons for the various identified zones. These critical rainfall 

seasons are modeled in the statistical prediction models described in Chapter 5.

2.1 Rainfall Climatology.

East African rainfall exhibits great spatial and temporal variability (Ogallo, 1989; Nyenzi

1988), which cannot be shown in a simple map such as the mean annual rainfall of Figure 

2.1a. This precipitation variability is partly due to the complex topography (Figure 2.1b), 

the existence of large inland lakes, the Indian Ocean in the east and the seasonal 

migration of the Inter-tropical Convergence Zone (ITCZ). These complexities produce 

diverse climates ranging from humid tropical to arid in East Africa.
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Figure 2.1 (a) Mean annual rainfall of East Africa (Trewartha, 1981) and (b) Topography of East Africa (Ogallo, 1980)
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Humid conditions prevail in the highlands and near large water bodies, while dry areas 

include most o f the northern and northeastern Kenya, central Tanzania and northern 

Uganda (Griffiths, 1972; Kenworthy, 1964)

In general, considering its equatorial position, East Africa does not receive much rainfall 

(Griffith, 1972). Trewartha (1981) attributed this rainfall deficiency to four factors, 

namely (1) the divergent character the Monsoon winds over extensive areas, (2) the 

modest thickness of the southwest monsoons over the highlands, (3) strong meridional 

winds occurring in all but the transitional seasons, a feature that limits the advection of 

sea moisture and reduces the orographic effect, and (4) a stable stratification of air aloft 

including a marked decline in moisture content.

It has been suggested that the East African seasonal rain-belts migrate northward and 

southward with the ITCZ, modified in some areas by local factors such as water bodies 

and highlands. Findlater (1971) and Ramage and Raman (1972) gave detailed accounts of 

the month to month variation of the low-level wind flow over the region. Using various 

rainfall anomaly scenarios, Okoola (1999) provided a detailed diagnostic investigation of 

the Eastern Africa Monsoon circulation during the Northern Hemisphere spring season.

During northern hemisphere (N.H.) spring and early summer, the ITCZ shifts northward 

and the southeast (SE) monsoon brings moisture into the region from the Indian Ocean, 

depositing part of their moisture over the highland areas and some of it in areas where 

thermal heating and wind convergence trigger rainfall (Findlater, 1971; Nyenzi, 1988). 

As the ITCZ moves further north, the south-easterlies turn to south-westerlies, 

maintaining a fairly strong diffluent low level jet over the coastal areas of East Africa. 

This period (July- September) is usually dry in most parts of Tanzania and Eastern 

Kenya, except in highland areas.

During the N.H. autumn, the northeast Trade winds flow into East Africa generally 

through two tracks (Findlater, 1971). One is a dry continental track from Arabia over 

Northern Africa and the other is a humid track over the Indian Ocean and Arabian sea.
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During this time convective precipitation is common in most parts o f the region. By 

December the northeastern monsoon is well developed, confining the low-level 

convergence to Southern Tanzania (Nyenzi, 1988).

2.1.1 Other Climatological Features

Temperature and evapotranspiration are also climatological features connected to 

droughts. The variation of the mean monthly air temperature throughout the year is very 

small, usually about 1° -  2°C in southwest Uganda and the southwestern parts of lake 

Victoria, with a maximum of 5°-6°C in southern Tanzania (Griffiths 1972). Nearly all 

stations report July or sometimes, August as the coldest month. The warmest month 

varies from February in Uganda to November and December in central and southern 

Tanzania. The absolute maxima do not usually exceed 40°C, and at an altitude of 2600 m 

is no higher than 2S°C.

As expected, the mean temperatures in the region are very closely correlated to station 

elevation. Griffiths (1972) assumed approximately a fixed lapse rate and suggested the 

following linear relationships between temperature, T, in °C and the elevation h in 

meters;

T = 34-0.0056/i (mean annual maximum temperature °C)

T = 24.5 -  0.0063/i (mean annual minimum temperature °C).

On the average, the above relationships hold for most of the interior but they do not hold 

for most of the coastal areas as these regions are subject to distinct cooling by the land- 

sea breeze cycle.

The variation of the monthly mean dew point temperature is small in East Africa. A study 

of relative humidity (RH) values showed that the 06h00 readings (sunrise) in most 

stations of the region have an annual mean RH of 85-95%, except in northern Kenya with 

RH o f 65-73%. At 12h00, RH readings are generally around 50%, except at the coast or
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lakeside stations (65-70%) and in the very arid regions such as northeastern Kenya 

(35%).

The potential evapotranspiration (PET) exceeds annual rainfall in all of East Africa. 

Evaporation measured from 10 or 15-inch Evaporation pans ranges from an annual total 

of 1100 mm (117% of annual precipitation) in southwestern Uganda to 4500 mm (650% 

of annual precipitation) in northeastern Kenya. Altitude seems to be an important factor 

governing the rate o f potential ET in this region (Griffiths, 1972).

2.2 Droughts in East Africa.

East Africa, like many other regions, has suffered from serious droughts in the past. 

Pre-colonial history o f East Africa recounted in oral traditions demonstrates the impact 

historical droughts had on agricultural and pastoral societies in the region (Webster, 

1979). Data relevant to determining the extent and severity of historical droughts in the 

region are scarce because of the lack of long-term instrumental climate records. There are 

also no high resolution proxy records such as tree rings and ice cores found in other 

climatic regions. Despite this, researchers have recently managed to reconstruct a 1,100 

year rainfall drought climatology of the region based on lake-level and salinity 

fluctuations of Lake Naivasha (Kenya) inferred from palaeolimnological proxies 

(Verschuren et al., 2000). Their findings indicate that East Africa has alternated between 

contrasting climatic conditions, with significantly drier climate than today during the 

“Medieval Warm Period" (~ AD 1000 -  1270) and a relatively wet climate during the 

“Little Ice Age” (~ AD 1270 -  1850) interrupted by three prolonged dry episodes. 

Verschuren et al. (2000) also found strong chronological links between the reconstructed 

rainfall/drought climatology and the pre-colonial drought recounted in oral traditions.

- ■ ** - r c e
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Table 2.1 Major Drought Episodes in East Africa in the Twentieth century.

PERIOD EXTENT ZONE 
(see Fig. 2.5)

GENERAL COMMENTS SOURCE

1899 Most parts of E. 
Africa, especially 
Northern Kenya

Lake Stephanie dried up. Grove, 1974.

1900 Central Tanzania 6 More than 60,000 died Kjekshus, H. 1996.
1949 Most of E. Africa, 

especially Sukuma 
Districts, Central 
Tanzania

2,3,4,5,6 1,500,000 cattle died or were 
hastily slaughtered out of a 
population o f2,500,000.

Baker, 1974

1965 Dry belt of Kenya 3 260,000 people affected. USAID Disaster
1967 Karamoja, Uganda 3 25,000 people affected. database.
1971 Wide spread in 

Kenya
3 1,500,000

1977 Wide spread in 
Kenya

3 May: 100 killed, 20000 people 
affected.

1979 Turkana District, 
Kenya.

3 40,000 people affected.

1979 North and
Northeastern Uganda 
especially Karamoja.

1 600,000 people affected.

1984 Most of Kenya and 
Tanzania

3 Complete failure of Long rains. 
Worst drought in Kenya in 40 
years.

Climate Monitor, 
1984.

1984 Arid districts of 
Kenya

3 600,000 people affected. USAID Disaster 
database.

1987 Karamoja, Uganda 3 331,000 people affected. 
Inadequate spring rains.

1988 Northwestern
Uganda

1 600,000 people affected. Poor 
seasonal rains.

1990 North and north 
eastern Arid Districts 
of Kenya

3 1,200,000 people affected. 
Worst maize crop in 10 years.

1991 North and north 
eastern Arid Districts 
of Kenya

3 2,700,000 people affected. 
Worst drought in 50 years. The 
NE region of Kenya was most 
severally affected.

1992 North and north 
eastern Arid Districts 
of Kenya

3 Continuing drought

1996/97 Central Tanzania. 6 Late 96 - early 97:50-year 
worst drought in Tanzania: 
Cities face major water 
shortages.

Climate Monitor, 
1997.
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Instrumental climate records show that East Africa has experienced several drought 

episodes in the past 100 years (Table 2.1), particularly in Kenya and Uganda identified as 

Zone 3 in Figure 2.5.

Perhaps the worst dry spell in the last 100 years occurred in 1898/99 in northern Kenya 

and southern Ethiopia. Lake Stephanie, which is just above the northern Kenya boarder, 

was several meters deep in 1895 -  but later dried up completely in 1899, following two 

very dry years. By 1974 it still had not regained its former levels (Grove, 1974). During 

this dry spell, Lake Turkana in Northeastern Kenya also experienced a very dramatic 

decrease in areal extent, from which it has yet to fully recover. 1949 was also a 

particularly dry year in much of East Africa especially Tanzania. It is reported that only 

40% of the 2.5 million cattle population in central Tanzania survived the 1949 drought 

(Baker, 1977). Droughts have occurred in East Africa in more recent years. The 1984 

droughts in Kenya were among the worst in over 40 years (Climate Monitor, 1984). 

Tanzania too was adversely affected by the complete failure of the 1984 “long" rains, and 

again affected by a very severe drought in late 1996 to early 1997 (Climate Monitor, 

1997). During this period, there was record low February rainfall in many parts of East 

Africa.

The most common livelihood practice in East Africa is subsistence agriculture and 

pastoralism, which are predominantly rain-dependent. Hence this region can easily be 

affected by modest meteorological droughts of short durations. The recent (Nov. 96 - 

May 97) drought wave in East Africa had a serious impact on its economy. The East 

African newspaper of Jan. 27th 1997 reported that it was one of the worst droughts to hit 

Tanzania in 40 years and it threatened to destroy its economy. Failure of the rains had 

resulted in severe limitations in crop cultivation and water shortages. Consequently, Dar 

es Salaam, the largest city in Tanzania with a population of about three million, faced an 

immense water shortage that forced many industries to shut down. The Uganda 

government newspaper, The New Vision, o f 26th May 1997 reported that the 96/97 

drought led to a doubling of the inflation rate with significant increase in the prices of 

staple foods in Uganda.
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There are only a limited number of studies devoted to the understanding of the nature, 

distribution and origin of drought in Eastern Africa, despite its persistent recurrence in 

the region (e.g. Trewartha, 1981 and Beltrando 1990). The overall motivation of this 

investigation is the need for a better understanding of East African drought and how it 

teleconnects to large scale climatic signals.

2 3  Temporal Definition of East African Rainfall Seasons

This investigation focuses on meteorological drought analysis and prediction at seasonal 

time scales. Not all seasons are important in terms of annual rainfall contribution. Some 

areas regularly experience dry seasons. It usually takes the failure of one or more 

important rain seasons to bring about the onset of drought. Therefore for drought 

predictions to make sense, it is necessary to identify the season for each zone (Figure 2.S) 

critical in terms of annual rainfall contribution.

Previous studies such as that of Griffiths (1972) have pointed out the ambiguity as well as 

the complexity of rain seasons in this region. There is probably no single month during 

the year when all parts of East Africa are dry. The East African Meteorological 

Department (1963) generalized the rainfall distribution patterns in East Africa into four 

broad seasons.

Season 1 (December -  February. DJF)

This period is usually dry for Uganda and Kenya, but generally wet for most of Tanzania. 

During this time, the ITCZ is far to the south outside the East African region. Any rainfall 

during this season in Uganda and Kenya are associated with regional features, such as the 

land-lake breeze in the shore areas of Lake Victoria.
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Season 2 (March to Mav. MAM1

This main rainy season throughout Uganda and most of Kenya is referred to locally as the 

“long rains”. It coincides with the presence of the moist southeast monsoons from the 

Indian Ocean in the region which convergence into the ITCZ.

Season 3 (June to Aueust JJA)

This season is relatively dry except in some parts of Northern Uganda. The rains in 

northern Uganda during this season are associated with the influx of the moist westerly 

Congo air mass controlled by the St Helena highs off south-west Africa (Basalirwa, 

1995).

Season 4. (September to November. SON!

This rainfall of this season, locally known as the “short rains”, are associated with the 

convergence into the ITCZ of the northeast monsoons controlled by the subtropical 

anticyclones over the Azores and the Arabian Peninsula.

It should be noted that Seasons 1, 2, 3, and 4 roughly correspond to the northern 

Hemisphere winter, spring, summer and autumn respectively. These seasons were also 

used by Basalirwa (1995) in analyzing his climatological zones. However, other 

investigators such as Nyenzi (1988) and Ogallo (1983 and 1989) shifted the above 

seasons by one month in their analyses.

Figures 2.2 a-d show the seasonal % contributions towards the mean annual precipitation 

based on the seasons defined by the East African Meteorology Department (i963). 

Figure 2.2 (c) shows that northern Uganda and a few parts of western Kenya get a 

substantial portion of their rainfall from June to August (northern Hemisphere summer), 

which is probably due to the moist Congo mass. Most o f Tanzania is dry during this 

season. Figure 2.2 (d) shows that the fourth season is quite important for Kenya and 

Uganda which receive approximately 30% or more of their annual rainfall during this 

period (September to November).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) Season 1: DJF (“Winter”) 

Tanzania’s wet season

(c) Season 3: JJA (“Summer”) 

Normal Dry Season

mmm

(b) Season 2: MAM (“Spring”) 

(Long rains)

4.00 -

O0.00  ■

MOO 40.0032.00

(d) Season 4: SON (“Autumn”) 

(Short rains)

Figure 2.2 (a) -  (d) Percentage Seasonal Contributions to the Annual Rainfall for 
East Africa
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The failure of two consecutive critical seasons in areas with bimodal rainfall, or the 

single critical rain season in zones with unimodal rainfall will result in water stress and 

eventually drought. Accurate prediction of the important rain seasons would therefore be 

a useful tool in mitigating the potential impacts o f droughts in East Africa

2.4 Regionalization of East African Rainfall

When modeling a complex spatial phenomenon such as drought, it is advisable to first 

identify zones with homogenous characteristics. The identification of such homogeneous 

rainfall zones with unique patterns would be essential in developing a parsimonious 

seasonal prediction model for the region. Further, by studying the characteristics of the 

identified homogenous zones, we can also gain some understanding of the underlying 

mechanisms behind droughts that occurred in the region.

Several investigators have studied the spatial characteristics of seasonal rainfall in East 

Africa. Ogallo (1989) used rotated principal component analysis (RPCA) to analyze the 

spatial and temporal characteristics of seasonal rainfall in East Africa. He delineated 26 

different homogeneous zones. Basalirwa (1995) and Basalirwa et al (1999) also used 

RPCA to do a more detailed analysis of Uganda and Tanzania respectively and came up 

with even more subdivisions.

While it is possible that the spatial distribution of East African rainfall may be so 

complex that it warrants many subdivisions, we chose a more modest approach, the 

harmonic analysis, that divided East Africa into only six homogenous precipitation zones. 

This was done partly to avoid excessive complexity. Ogallo (1983) studied the temporal 

fluctuations of seasonal rainfall patterns in East Africa using harmonic analysis but 

without delineating East Africa into homogenous rainfall zones. Potts (1971) also used 

harmonic analysis and the 1931*1960 data to group East Africa into climatological 

subdivisions. Many rainfall climatological extremes have occurred since 1960. Further, 

some of the climatological divisions he identified are not realistic, probably because of
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the limited data he used. Now with almost a century o f precipitation data available, we 

are probably in a better position to subdivide East Africa into more realistic precipitation 

zones than of Potts (1971).

2.4.1 Rainfall Data.

Mean monthly rainfall statistics were obtained for 135 stations scattered throughout East 

Africa (Figure 2.3) and many of these stations had about 97 years o f data (1900 -1996). 

These 12 monthly mean values for the 135 stations were used in the harmonic analysis 

(section 2.3.2). In addition, a historical monthly precipitation dataset covering East 

Africa, for the period 1900 -  1996, gridded at 2.5° latitude and 3.75° longitude was used 

in the analysis. This gridded data was extracted from the global monthly precipitation 

dataset for land areas “gu23wld0098.dat” (Version 1.0) constructed and supplied by Dr 

Mike Hulme at the Climatic Research Unit, University o f East Anglia, Norwich, UK. The 

grid points are shown in Figure 2.3

30 35 40
Longitude

Figure 2.3 A map of East Africa showing the location o f rainfall stations and the gridded 
dataset used in the analysis.

Hulme (1994) used Thiessen polygon weights to average Global Historical Climatology 

Network (GHCN) station data within 2.5° latitude by 3.75° longitude grid boxes. Where a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 19-

monthly station value was missing, he obtained an estimate by calculating the mean 

anomaly for that location derived from surrounding stations. This anomaly interpolation 

method required the station values to be converted into percentage anomalies from some 

reference period. The standard anomalies were then interpolated onto the missing station 

location using an inverse distance (with spherical adjustment), angular weighted method. 

For this interpolation, Hulme (1994) imposed a maximum percent anomaly value of 500. 

The interpolated percent anomaly was then converted back into a station mm estimate 

using that station's mean monthly precipitation total for the reference period. More details 

about the quality control of the global monthly precipitation dataset “gu23wld0098.dat” 

and the algorithm used to obtain the dataset can be obtained in Hulme (1994); Hulme and 

New (1997) and Hulme et al. (1998).

2.4.2 Harmonic Analysis

Harmonic analysis was used to delineate precipitation climatological divisions because 

this method has been proven to be effective for such analysis (e.g., Sabbagh and Bryson, 

1962; Potts, 1971; Scott and Shulman, 1979; Kadioglu et al. 1999). For example, Scott 

and Shulman (1979) used harmonic analysis to investigate the areal and temporal 

characteristics of precipitation in the Northern United States. Such studies have 

demonstrated the efficiency of harmonic analysis in tracking spatial and temporal 

variations in rainfall occurrences for small and large areas (e.g., Kadioglu et al., 1999).

Theoretically, any function can be represented by an infinite series of sine and cosine 

waves, commonly referred to as the Fourier series. For discrete observed data, a finite 

number of series will generally be sufficient. For example, the sample mean, five sine 

and six cosine terms will be sufficient to completely describe the variation of a dataset 

containing 12 average monthly values. The determination of the finite sum of sine and 

cosine terms is called the “Harmonic analysis” (Panofsky and Brier, 1965).
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The first or the “fundamental” harmonic has a period equal to the total length of the time 

series being analyzed. The second harmonic has a period equal to half the fundamental 

period; the third harmonic has a period of one third o f the fundamental and so forth.

It can be shown that for n data points, Xj; j = 1, 2, . . . n can be fully represented by a 

summation of n/2 harmonics,

Xj = X + E c k C O S ^ p ( t - tk)j ...............................................(0

where x is the sample mean, ck = (ak + bj\Y* where aic and bk are Fourier coefficients

given by:

*k = - L xj C0Sf ^ ^ - >) ................................................................ (2a)
n  j= i  V n  J

the last ak term is
n-l

aB= - £ xjC0S(27li)................................................... <2b)n js i

. 2«U.1 . ( 2njk^
bk = - Z xj sin .................................................................. (3>n j=l n

The last bk term is always zero. The ak terms are symmetric while the bk terms are 

asymmetric about k=0 and k = k^.„ respectively. The phase shift o f the km harmonic in 

terms of months is denoted by tk. as

= arctanf— 1
2vk \ b k J

and

tk =  arcsin
k 2nk

i t
^ck.

(4)

(5)
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Solving Equation (S) will lead to two solutions but one of which will be equal to one of 

the two solutions of Equation (4). The common solution between Equations (4) and (5) is 

the correct solution.

Coherence is defined as

c°hk = —

m

•(6)
m Z K k l

i - l

Where v is a vector representing the magnitude and phase of the k"1 harmonic vector. 

Thus coherence is the vectorial mean of the k* harmonic vectors divided by the scalar, 

arithmetic mean of the harmonics for m events for a given grid location. Coherence can 

also be expressed as

cohk = •(7)
l h , k |
i=l

The coherence ranges from 1 (when all the vectors have the same direction but not 

necessarily the same magnitude) to 0 when they have the same average magnitude in all 

directions. Coherence of the vectors can indicate the consistency of the composite data 

patterns.

A further measure of the reliability of the results is the amount of variance (ye) extracted 

by various harmonics,

100c’
n /2  ..............................................................................................................................................

Zcf
(8)

i - l

Further details of harmonic analysis can be obtained from Rayner (1971).

The magnitude, phase and variance for each of the harmonics obtained from the average 

monthly data for the 135 stations are presented in terms of contour maps (Figure 2.4).
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Other than analyzing monthly averages, harmonic analysis is applied to multi-year data to 

get the temporal characteristics and year-to-year variation of the dominant harmonics as 

shown in Figure 2.7.

2.5 Discussion of Results

In many parts of our study site, the first two harmonics extracted most of the variance in 

the monthly mean data (Figure 2.4a&b). The 4th, 5th and 6th harmonics generally account 

for very little of the variance in the data (in many cases less than 3%) and hence are 

discarded for further analysis.

2.5.1 Spatial Characteristics of the Data Harmonics

Figure 2.4a shows the regional pattern of the variance explained by the first harmonic as 

well as its phase in months. A phase of 2 means that the harmonic peaks during mid- 

February.

The 1M harmonic represents the annual cycle of the data. There are two zones that are 

well represented by this harmonic (Figure 2.4a). The first zone includes most of the 

south, south west and west of Tanzania. In southwest Tanzania, the first harmonic 

extracts more than 90% of the variance and attains its peak in mid-February. This 

coincides with the passage of ITCZ. The second zone dominated by the first harmonic is 

in a form of a wedge like incursion starting from northern Uganda, dipping into western 

Kenya (Figure 2.4a). In this zone, the first harmonic reaches its peak between July and 

August which corresponds to the northern Hemisphere summer. The unimodal nature of 

the rainfall in zone 1 and 6 is demonstrated in Figure 2.6.
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c ) Third harmonic and 2 harmonics.

Figure 2.4 A Map of East Africa showing the % of variance explained by the (a) first, 
(b) second and (c) third harmonic and contours o f their phase in month and (d) shows the 
total variance explained by the first two harmonics.

The 2nd harmonic is dominant in central and western Uganda, northeastern Kenya and to 

a lesser extent, north Eastern Tanzania (Figure 2.4b). This harmonic represents the 

bimodal component of rainfall in a given zone, and so all the aforementioned areas tend 

to have bimodal rainfall (Figure 2.6). Those areas that have rainfall peaks that are 

approximately equal and are six months apart are best represented by this harmonic. 

Often the peaks are separated by less than six months. In addition one of the seasonal 

peaks may at times be smaller than the other (e.g., long rain seasons o f March-May and 

shorter rain season o f September-October). Both the 1st and 2nd harmonics extract
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significant variance. The 1st harmonic attenuates one of the two peaks of the 2nd 

harmonic. Stations in northeast Tanzania tend to be well represented by totals of the 1st 

and 2nd harmonics (see Zone 6, Figure 2.6)

rHThe 3 harmonic extracts significant variance in some drier areas of Kenya (Figure 2.4c). 

The variance of rainfall in drier climates is generally higher than that in the more moist 

climates. That may explain why 3 harmonics are needed to describe the annual rainfall 

curves in the drier parts of Kenya. Theoretically, the 3rd harmonic represents the tri- 

modal component in the rainfall. There are indeed some East African rift valley stations 

that have loosely defined tri-modal rainfall. However, southeastern Kenya, which is well 

represented by the third harmonic, does not have tri-modal rainfall. In this zone, the 3rd 

harmonic is probably mathematically necessary to better define the maxima location and 

the relative peak magnitudes.

The regions which were observed to have the same amount of variance extracted by the 

respective lsl, 2nd or 3rd harmonics and in addition share the same harmonic phase (see 

Figure 2.4) were grouped into respective homogenous divisions. Thus using the results 

from harmonic analysis, East Africa was delineated into six homogenous rainfall 

divisions as shown in Figure 2.5. It should be stressed that these regimes are based on the 

periodic components of the average monthly rainfall. The absolute magnitude of the 

rainfall is not a factor used in delineating the zones. The unshaded central region in 

Figure 2.5 does not seem to have unique rainfall characteritics discemable by the 

harmonic analyis probably because it shares the characteristics adjacent zones in varying 

degrees. Therefore, this central region is not considered a distinct precipitation zone 

because of the lack of clarity of its defining features. Examples of monthly rainfall 

histograms with fitted harmonics of representative stations located in the six delineated 

zones are given in Figure 2.6.
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Figure 2.5 Six homogeneous precipitation zones for East Africa delineated by Harmonic 
Analysis.

2.5.2 Temporal Characteristics of the Zoned Rainfall

The previous harmonic analysis has been based on the mean monthly rainfall data. It 

could be argued that using mean monthly values can at times mask out important features 

in the signal. To address this concern, harmonic analysis was also applied to the gridded 

historical monthly precipitation data set of 1990-1996 (Hulme, 1994). We end up with 97 

sets of harmonics for grid points from which the summary statistics are computed (Table 

2 .2).

For Zone 1, the ratio of the magnitude of the first harmonic to the second harmonic 

(hl/h2) was greater than 2 most o f the time. The peak rainfall (phase) fluctuated from 

mid-June to mid-August and the variance explained by the second harmonic has always 

been less than that explained by the first harmonic except for 1949 (see Figure 2.7(a)) 

when the monthly rainfall distribution was bimodal instead of the usual unimodal feature 

found in Zone 1.

The monthly rainfall distribution in Zone 2 is mostly bimodal. Also, the 2nd harmonic 

explains most o f the variance except for the 1942-48 period, during which the monthly 

rainfall distribution switched to the unimodal mode (see Figure 2.7b).
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Table 2.2 Summary of the Harmonic Analysis of the aggregated six homogenous 
precipitation zones using gridded rainfall (Hulme, 1994) dataset.

Zone
Average Variance 

Explained by 
Harmonics (%)

Ave. Ratio o f the 1“ 
harmonic magnitude 
to the 2nd harmonic.

M /M

Mean of Harmonic 
Phase (months). Rainfall mode

varl var2 phi ph2

1 56 21 2.1 7.2 7.5 Almost unimodal April to 
August rainfall but with slightly 
reduced June rainfall.

2 14 56 0.51 5.4 8.1 Mainly Bimodal with exception 
of the 1948-1949 period.

3 15 48 0.59 4.4 9.1 Bimodal with very clear dry 
June to August season

4 36 32 1.2 5.6 9.8 Almost unimodal (with a sharp 
peak in May).

5 54 18 2.6 2.7 8.4 Bimodal but with often weak 
September to November rain 
season

6 84.1 6.4 4.6 1.8 4.1 Unimodal rainfall, mainly 
peaking early February.

It has been previously noted that the 3rd harmonic extracts significant (~30%) variance 

from the average mean rainfall of Zone 3 (Figure 2.4a). Temporal analysis actually shows 

that on many occasions, it is the second harmonic that extracts most of the variance; thus 

the rainfall of this region is actually bimodal. Overall there is considerable fluctuation in 

the hl/h2 ratio and the phase of the rainfall maxima in Zone 3. This is consistent with the 

general observation that rainfall fluctuations are more substantial in dry than in wet zones 

and Zone 3 is a relatively dry region.

According to Table 2.2, the l sl and 2nd harmonics in Zone 4 are generally of comparable 

magnitude each extracting about 35% of the total variance. Figure 2.7 shows that there is 

a substantial year-to-year fluctuation of variance extracted by the first two harmonics in 

this zone. The rainfall histogram of zone 4 (see Figure 2.6) shows a unimodal type of 

rainfall which normally peaks in May. It is probable that this zone experiences significant 

rainfall variations because of the land-sea breeze influence o f the Indian Ocean. Figure 

2.7 shows that there have been times when the variance explained by the 2nd harmonic is 

greater than the 1st harmonic such as 1981 to 1984, signifying a possible change of 

rainfall regime.
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According to Table 2.2, ZoneS should have unimodal rainfall since over 50% of the 

variance is extracted by the first harmonic. However, the rainfall distribution in Zone 5 is 

more or less bimodal with the main rainfall peak occurring around late April (see 

Figure 2.6 and 2.7) and a second subdued peak occurring in November. Unlike Zonel 

where the phase of both the first and second harmonic are almost the same, the phase of 

the second harmonic in Zone5 peaks when its first harmonic is getting close to its 

minimum. As a result, the combined effect of the two harmonics is a subdued, second 

seasonal peak in November. Like Zone 4, Zone 5 also exhibits considerable year-to-year 

variation in terms of variance explained by the first two harmonics (Figure 2.7e), which is 

probably due to local sea breeze effect from the Indian Ocean.

Among the six zones, Zone 6 exhibits the most stable rainfall pattern, with the % of 

variance extracted by the 1st harmonic rarely dropping below 80%. The rainfall peak 

occurs around late January or early February. The significant variation of the hl/h2 ratio 

for Zone 6 (Figure 2.7f) should be ignored since the 2nd harmonic, (h2) explains 

negligible variance compared to the 1st harmonic (h2).
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Figure 2.6 Histogram plots of mean monthly precipitation with fitted harmonics of 
selected stations of the 6 zones identified by harmonic analysis. Stations in Zone 1 and 6 
are each fitted with only the first harmonic while those in zone 2 are fitted with only the 
2nd harmonic. Zone 3 and 5 stations are fitted with the total o f the 1st and 2nd harmonics 
while those in Zone 4 are fitted with the total of the 1st, 2nd and 3rd harmonics.
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Figure 2.7 Plots of the Is* and 2nd Harmonics for the zonal averaged precipitation data of 
East Africa. The first row shows the ratio of 1“ harmonic to the 2nd harmonic (hl/h2); the 
second row shows the phase o f the 1st and 2nd harmonic and the third row shows the % of 
variance extracted individually by the 1st and 2nd harmonics as well as the sum o f the first 
two harmonics. Each column corresponds to a specific zone.
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Figure 2.7 (Continued)

2.5 J  Important Rain seasons in the Various Homogeneous Rain Zones.

The identification of the important rain seasons in each of the delineated rainfall 

homogeneous zones in East Africa can lead to a better understanding of the drought 

incidents in the region. The rainy seasons provide water recharge critical to assisting the 

biosphere’s survival through the normal dry period. In a region that heavily depends on 

rain-fed agriculture, any failure o f the major rainy seasons will often be accompanied by 

massive crop failure which in turn can quickly impact the fragile economy of the region.

Table 2.3 shows the importance o f certain rain seasons to some parts of East Africa. The 

importance o f the various seasons in the delineated zones is deduced by analyzing the % 

contributions to annual rainfall (Figure 2.2) alongside the delineated rainfall
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homogeneous zones (Figure 2.5) and the histogram plots o f mean monthly precipitation 

(Figure 2.6).

Table 2.3 % of Rainfall Contributions of the major Rainfall seasons of East 
Africa subdivided into 6 zones (Figure 2.5) by harmonic analysis

Zone

Season Total % 

ContributionDJF MAM JJA SON

1 ✓ ✓ ✓ 90%

2 ✓ ✓ 70%

3 ✓ ✓ 85%

4 ✓ ✓ 80%

5 ✓ ✓ 80%

6 ✓ ✓ 90%

For example Zone 6 receives 90% of its annual rainfall in winter and early spring while 

the rest of the year is normally dry. The region has adjusted itself naturally to experience 

one long dry period every year starting from June up to November. The failure of the 

main seasons (DJF and MAM) will certainly lead to increased water stress during the 

normal dry period (JJA and SON), and even droughts under severe water deficit.

2.6 Summary and Conclusions

The spatial and temporal characteristics of East African rainfall have been identified in 

terms of 6 homogeneous zones via harmonic analysis applied to rainfall data grouped 

under four seasons by the East African Meteorological Department.

Based on the temporal structure of the first few harmonics o f the 6 sets of zonally 

averaged rainfall data, we showed that the six zones possess rainfall properties that are 

generally unique and different from other zones. Among these zones, Zone 6 (most of 

central and southern Tanzania) probably has the most stable rainfall structure because the
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phase of its first harmonic hasn’t changed by more than a month in the last 90 years. This 

means that the peak rainfall always occurs between January and February for central and 

southern Tanzania.

The major rainy seasons of each zone, which contribute most to the total annual rainfall, 

were identified. It is clear that the failure of two consecutive critical seasons in areas with 

bimodal rainfall, or the single critical rain season in zones with unimodal rainfall will 

result in water stress and eventually drought. Accurate prediction of the important rain 

seasons would therefore be a useful tool in mitigating the potential impacts of droughts in 

East Africa

The statistical analysis and prediction of the seasonal rainfall for some of the critical rain 

seasons is the main focus of Chapter 5.
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Chapter3 Drought Indices and their Application to East African 
Conditions

3.1 Overview.

A variety of descriptors and definitions for drought have been used in the past. 

Gibbs (1975) and Wilhite and Glantz (1987) discussed drought definitions and their role 

in understanding the phenomenon. Drought indices, derived from massive amount of 

hydroclimatic data like rainfall, snowpack and stream flow are meant to provide a concise 

overall (and possibly comprehensive) picture of drought and they are often used for 

making decisions on water resources management and water allocations for mitigating 

the impact of drought.

The primary aim of this investigation was to analyze the properties of several popular 

drought indices and modify them where necessary and/or feasible in order to increase 

their effectiveness and dependability in detecting the initiation, evolution and termination 

of meteorological droughts in East Africa. Ideally, drought control and management 

strategies should be tied to a set of quantitative drought indices in order to reduce the 

subjective preferences of decision makers to a minimum. Therefore, an investigation on 

drought indexing should contribute to the decision making o f drought control under an 

objective and impartial framework.

Table 3.1 shows some drought indices that are currently in use, or have been used in the 

past in various parts of the world. For an index to be effective, it should be derived 

locally, adapted to the climate of the territory and reflect a broad conceptual framework 

which comprehensively describes droughts in the region (Yevjevich et al., 1977). Along 

this line, we analyzed Palmer’s Drought Severity Index (PDSI), Bhalme-Mooley Index 

and the Standardized Precipitation Index (SPI) and modified them where feasible in order 

to make them better indices for monitoring droughts in East Africa.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 3.1 Characteristics of current and past drought indices

Name of Index and its Developer Input Data Time
Scale

Brief Description

1. Palmer Drought Seventy Index (PDSI). 
Palmer (1965).

P.T.ET.L,
RO

monthly The PDSI is a soil moisture algorithm calibrated for relatively 
homogeneous regions. It is based on moisture inflow, outflow 
and storage. Many U.S. government agencies and states still 
rely on the PDSI to trigger drought relief programs.

2. Crop Moisture Index 
Palmer (1968).

P.T.ET.L,
RO

weekly A PDSI derivative, which reflects moisture supply in the short 
term across major crop producing regions.

3. Standardized Precipitation Index (SPI) 
McKee etal. (1993).

P 3 month -  
48 month

An index based on the probability of precipitation for any time 
scale.

4. Surface Water Supply Index (SWSI) 
Shafer and Dezman (1982).

P, sn 
RO

monthly The SWSI shares many characteristics with the PDSI but also 
takes into consideration the snow pack and the resulting runoff.

3. Reclamation Drought Index (RDI) 
Bureau of Reclamation (USA).

P monthly RDI is calculated on the river basin scale. Since index is unique 
to each river basin, interbasin comparison is not possible.

6. Bhalme Mooley Index (BMI) 
Bhalme and Mooley (1979).

P monthly The BMI models the percent departure of P from the long term 
averages using an algorithm similar to that of the PDSI.

7. Deciles
First promoted by the Australian drought 
authorities who currently use it.

P monthly The Decile method groups monthly precipitation occurrences 
into deciles. By definition “much lower than” normal 
precipitation can’t occur more often than 20 percent of the 
time.

8. Precipitation Anomaly Classification (PAC) 
Janowiak et al (1986).

P monthly 
or yearly

The PAC is an improvement of the “Decile” Australian method 
of drought classification.

9. National Rainfall Index (NRI) 
Gommes and Petrassi (1994)

P monthly The NRI patterns abnormalities of precipitation on continental 
scale.

10. Percent of Normal (PN) P monthly PN is obtained by dividing P with the normal value. It is a 
simple calculation well suited to the .ieeds of TV weather 
people and general audiences.

Abbreviations: P -  Precipitation, T -  Temperature, ET -  Evapotranspiration, L -  Soil moisture, RO -  Runoff, sn -  snowpack.
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Traditionally, the SPI algorithm involved the transformation o f smoothed precipitation 

time series into standardized normal distribution variables. We demonstrated why this 

might not be appropriate especially since precipitation time series at 3-months scales or 

less are known to be typically skewed. We replaced the normal distribution in SPI 

algorithm with Pearson type III distribution (P3) in order to take care of the skewness 

characteristics of precipitation. Furthermore we introduced a regional “flood-index” 

method of obtaining the regional P3 curves in order to facilitate drought comparison 

across the regions.

Based on the information derived from the SPI drought index we regionalized East Africa 

into homogeneous drought zones.

3.2 Theoretical Basis of Selected Drought Indices

Among the drought indices listed in Table 3.1, we selected the PDSI, BMI and SPI for 

review in this investigation partly because these three are non-basin-specifrc indices that 

can be used for comparison of droughts in regions of varying climates. The theoretical 

background of these indices is first examined.

3.2.1 Palmer’s Drought Severity Index (PDSI)

The empirical PDSI designed by Palmer (1965) is probably one of the most theoretically 

advanced, operational drought indices in use today (Titlow, 1987). It is also one of the 

few standardized indices that allows a direct comparison of index values between 

different climatological regions. It is also probably the most widely used drought index in 

the United States where it is computed weekly for 344 climatic divisions of the country 

and published in The Weekly Weather and Crop Bulletin (ISSN 0043-1974), a publication 

jointly prepared by the U.S. Department of Commerce, National Oceanic and 

Atmospheric Administration (NOAA) and the U.S. Department o f Agriculture (USDA).
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3.2.1.1 PDSI Algorithm

PDSI begins with the analysis of weekly or monthly soil moisture water budget. It 

assumes that evapotranspiration occurs close to the potential rate until a certain 

proportion of the available water is depleted, after which the actual evapotranspiration 

rate is less than the potential rate. Palmer (1965) used the following Equations to 

compute the moisture transfer from the first and subsequent underlying soil layers;-

L. = m in{S „(P E -P )} ,...............................................................(1)

_ {(PE-P)-Ls}Su 
U AWC ’ u u ....................................................

where P = Precipitation

s, = Available soil moisture stored in surface layer at the start of month

Su = Available soil moisture stored in underlying layer(s) at the start of month

PE = Potential Evaporation for the month.

AWC = Combined available field capacity o f both surface and underlying layers.

L, = Moisture loss from the upper (surface) layer

L„ = Moisture loss from the underlying layeifs)

Palmer assumed that no runoff occurs until both layers reach field capacity. He estimated 

the monthly potential evaporation (PE) by the Thomthwaite (1948) method. He noted 

that the PE estimated by Thomthwaite method could be in error by as much as 100% or 

over on some individual days when compared to measured data. He found the average 

daily absolute error to be approximately 35%. Howeve, as the time period considered 

increases to about two weeks or longer, the average absolute error decreases to 

approximately 10 to 15%. Because of this, he suggested that the expected error of PE 

estimated from Thomthwaite’s method was acceptable for the climatological analysis of 

monthly moisture requirements.
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In addition, as part of water balance, Palmer also computed several other potential values 

such as the potential recharge (PR), potential loss (PL) and potential runoff (PRO), 

defined as follows:-

PR is the amount of moisture required to bring the soil to field capacity

PR = AW C-[S,+SU] .................................................................... (3)

PL is the amount of moisture that could be lost from the soil to evapotranspiration or 

exfiltration during the period of zero precipitation,

PL = PL, + PLU...........................................................................(4)

where PL, = min(PE, S ,) .......................................................................(5)

PL„ = (PE - P L , ) - ^ ,  PL„ < S........................................... (6)

The potential runoff, PRO, is the potential precipitation minus potential recharge. Palmer 

assigned potential precipitation as being equal to AWC.

PRO = AWC - PR = S, + Su .................................................. (7)

Using the four potential quantities, PE, PR, PL and PRO, Palmer obtained four

coefficients that were dependent on the climate of the area being analyzed.

........................................................................................................(8 )

........................................................................................................(9 )

.....................................................................................................( , 0 )
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.................................................................................. (ID
J PRO] 

j = 1.2....12

where E T j,L j,R j, andROj are monthly mean evapotranspiration, moisture loss, water 

recharge and runoff respectively.

The overhead bars signify that the coefficients are averages values of month j. From the 

above coefficients, Palmer computed the ‘Climatologically Appropriate for Existing 

Conditions’ (CAFEC) precipitation by the Equation

P w .j-a .tjPEw,j- X.2jPLWJ + X3jPRWj + ^4,jPROwj )  (12)

He then established the departure, d, between the precipitation of each month and the 

CAFEC value.

d = P  -P  ...............................................................................(13)W ,J  W .J  *  W ,j   .......................................................................................................................... ............................................ ... ^  * - * /

where the subscripts w and j refer to year and month respectively.

In order to make temporal and spatial comparison of the depatures dwj possible, Palmer 

(196S) introduced the concept of a moisture anomaly index Z:-

ZWJ= K jd wj.................................................................................(14)

where Kj is

r l .  + 2.8^
+ 0.50..................................................(15)iCj =1.5 Logl0

where

j_____
r \ .I  D,

Dj is the monthly average of the departures dwj given in Equation 13.

(PE= +R : +RO:)
T=  (16)

J P + L
j  j
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Tj is a measure of the ratio of “moisture demand” to “moisture supply” for the month and 

region. Weighing the departures dwj with the parameter Kj in Equation (14) facilitated the 

moisture deficit comparison among different areas and for different months. Equations 

(IS) and (16) were derived using data from nine areas in the United States. The 

complexity and unusual form of the Equations 15 and 16 resulted from the difficulty 

Palmer (1965) had in deriving them (Alley, 1984). The monthly moisture index, from a 

moisture standpoint signifies the departure of the monthly weather from the “climatically 

normal” conditions for the month.

Palmer (1965) plotted cumulative Z versus the duration of the worst episodes of drought 

in his area of study. He obtained a linear relationship from which he deduced a drought 

severity Equation given as

X j =0.897Xj_1+0.333Zj .............................................................(17)

To use the above Equation, one needs to identify the starting month of a wet or a dry 

spell. He solved this by keeping track of three pseudo-indices XI, X2 and X3 given by

XI j=  0.897X1j.,+0.333Zi
- X2j = 0.897X2H +0.333Zj •.................................................... (18)

X S ^ O ^ X S j . ,  +0.333Z;

which respectively represent conditions of ‘wet spell becoming established’, ‘dry spell 

becoming established’ and ‘wet or dry spell that has become established’. XI is restricted 

to nonnegative values, while X2 is the reverse. The values of XI and X2 are set to zero 

when computations of Equation (18) violate these restrictions. He considered a drought to 

be established when X2 <-1.0, and a wet spell is considered established when XI >1.0. 

An established drought is considered to have certainly ended when the index reaches the 

“near normal” category which lies between -0.5 and +0.5. At this point X3 returns to 

zero.
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The decision as to which of the three pseudo-indices becomes X depends on whether the 

dry/wet spells are incipient, established or ended. Often only one of the three pseudo­

indices is non-zero, in which case X is set to the non-zero index. However, conflicting 

cases can arise and the appropriate index to use for X is not always obvious. In order to 

select a final value of X from X I, X2 and X3, Palmer(l965) devised a set o f complicated 

operating rules which relied on computing XI, X2 and X3 over several months and then 

back tracking till a month of a known X was reached. Alley (1984) summarized these 

rules as follows:

(i) From a point of known established drought, assign X = XI until X1=0.

(ii) Then assign X = X2 until X2 = 0

(iii) Repeat steps (i) and (ii) until a month is reached which already has an X value 

assigned to it.

(iv) If the pseudo-indices are such that the above rules cannot be conclusively used to 

select the X, then select the PDSI as XI or X2 whichever has the largest absolute 

value, whenever X3 equals zero.

The practical calculation of X, which is the final PDSI, illustrates the complexity of the 

index. Because of this complexity, it is not uncommon for a time series of PDSI to 

exhibit large sudden changes.

3.2.I.2 Summary of the limitations of PDSI.

Several investigators such as Wilhite (1982), Alley (1984), Titlow (1987), Heddinghause 

and Sabol (1991) and Guttman (1998) have noted the shortcomings o f PDSI:-

(a) Representative values of soil storage capacities are difficult to estimate accurately. 

The values used in the PDSI may be open to criticism. Doing a water balance in 

terms of two soil layers may not be representative enough for a location.

(b) The lumping of certain variables at monthly time periods may introduce 

significant errors. Precipitation and potential evaporation are often distributed 

throughout the month in such a way that both deficits and surplus periods could 

occur within a month.
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(c) The assumption that runoff cannot occur unless soil moisture is at field capacity is 

not necessarily true. Horton overland flow could occur if rainfall intensity exceeds 

the rate of soil infiltration or return flow could occur in a concave slope. Also, no 

lag is incorporated in the Palmer model to account for the delay between the 

generation of excess water and the appearance of runoff.

(d) There is no justification to equate the potential precipitation with AWC.

(e) Potential evapotranspiration is estimated using the Thomthwaite method which is 

an approximate approach based on the temperature index and latitude only. 

According to this method, two locations o f similar latitude and monthly 

temperatures would have the same PET even though they could be located on 

different continents, with different altitudes, land use, terrain features, etc.

(f) The PDSI is regional index developed out o f the United States (Janowiak et al. 

1986). It may not be justified to apply the weighing function and drought severity 

equations derived in the United States to other parts of the world.

(g) The abrupt switching among the pseudo indices XI, X2 and X3 as the value of 

PDSI has so far prevented incorporating some stochastic elements into the index.

3.2.1 J  Application of the PDSI outside the United States

Several investigators have applied the PDSI to different climates around the world. 

Bhalme and Mooley (1979) showed that PDSI in its original format failed to describe 

realistically the drought conditions in the Tropical India. However, Canceliere et al. 

(1996) found PDSI to be an appropriate indicator o f droughts in the Mediterranean 

region. Briffa et al. (1994) analyzed the surface moisture variability across Europe based 

on PDSI. Using PDSI, Jones et al. (1996) reviewed the moisture availability of Europe 

simulated by the Hadley Center General Circulation Model. More recently, Scian and 

Donnari (1997) examined the PDSI in the semi-arid pampas region o f Argentina.

Over the last three decades, little has been changed in the PDSI algorithm. Scian and 

Donnari (1997) used pan evaporation data instead o f Thomthwaite data. Bhalme and
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Mooley (1979) attempted to modify the PDSI coefficients to suit the Indian tropical 

conditions. Heddinghause and Sabol (1991) adjusted the operating rules for appropriating 

a value to X, when neither a wet nor a dry spell was known to be established. This made 

it possible to use the PDSI as an operational index.

Some modifications to PDSI are hereby suggested as an attempt to make it a more 

versatile drought-tracking index applicable to regions outside the US.

3.2.1.4 Suggested changes in the PDSI algorithm

3.2.1.4.1 Potential precipitation and Runoff

As mentioned, Palmer (1965) suggested that the potential precipitation could be taken as 

being equivalent to AWC. However, he felt uncomfortable with that assumption as stated 

that “ ...// is not particularly an elegant way o f  handling the problem.” He suggested that 

if he were to redo the analysis the computed potential runoff would be generally closer to 

reality if a constant value were assigned to the potential precipitation.

The value of potential rainfall is required only for the purpose of obtaining a potential 

runoff (PRO). The complication of determining this variable (potential rainfall) could be 

avoided by using an alternative method of obtaining PRO that does not require potential 

rainfall as an input, such as outlined below.

From Equations 4 to 6, potential loss (PL) is the amount of moisture that could be lost 

from the soil to evapotranspiration during periods of zero precipitation. Following the 

same logic, we can safely assume that potential runoff (PRO) in a given month cannot 

exceed the precipitation of that month. The limiting case would be when the soil is 

saturated and the evapotranspiration losses are negligible in comparison to the 

precipitation. In this case the PRO in a given month would be equivalent to the month’s 

rainfall, and Equation 7 revised as
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PROwj = Pwj................................................................................. (19)

The long-term coefficient Juj, o f the actual runoff in relation to the PRO is still given in 

Equation 11.

Hence the CAFEC precipitation (Equation 12) could be modified as:

Pwj-(X,jPEwj- ^ .jPLWJ A.jjPRWj + «̂4jPWfj ) ............. (20)

3.2.1.4.2 The Z index

Palmer (1965) introduced Equations 14 - 16 in order to make the departures from 

different locations and months comparable. We suggest that instead of using purely 

empirical transformations to force a functional relationship, a normalization of departures 

similar to that of Bhalme and Mooley (1980) would be sufficient to facilitate temporal 

and spatial comparison. We propose that the Z index in the PDSI be given as:-

Zw j =100^ w'j --̂ ...................................................................(21)

j =  1 ,2 , ..... 12

where and oj are monthly departure means and standard deviations respectively.

3.2.1.4.3 The Drought Severity Equation

The drought severity recursive formula (Equation 17) is a critical part o f the PDSI 

algorithm. However, the constants in Equation 17 do vary with location because the 

progression of droughts varies from place to place. Though several investigators (such as 

Scian and Donnari, 1997; Cancelliere et al, 1996), have used the original drought severity 

equation in areas other than the US with some success, we feel that they could have done 

better if they had changed the coefficients of the severity equation to better reflect the 

local conditions. To demonstrate the need to change the coefficients, we hereby formally
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derive Equation 17. The plot of the cumulative Z for the worst drought periods of various 

durations often gives a straight line as Palmer (1965) indicated (see Figure 3.1).

-10

n  -2 0  
•5 -30
|  -40
W -50
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24 36 480 12
period k (months)

Figure 3.1 Plot of cumulative Z vs. time t for worst drought episodes using a set of Iowa 
and Western Kansas data obtained by Palmer(1965). X is the drought severity.

In the example shown in Figure 3.1, the driest 42-month period had a cumulative Z of 

-61. The solid line represents extreme drought. Along this line the drought severity X is 

arbitrarily fixed at -4. The vertical distance (ordinate) between this extreme drought line 

and the t-axis at Z=0 is divided into four equal lengths by drawing three dashed lines 

representing severe, moderate and mild droughts. It can be shown that the Equation of the 

extreme drought line is given by 
k
Z z ,

x ‘ = ( T h £ ) ...............................................................................................(22)

where Xk is the drought intensity of the k11* month
k

£  Zt is the accumulated moisture index over duration k
■-i

a = -c/4 and b = -m/4 where c and m are the intercept and slope of the extreme drought 

line.

Equation (22) provides only a partial drought severity expression because it is based on 

the cumulative sum of Z. As Palmer (1965) and Bhalme and Mooley (1980) pointed out, 

the cumulative procedure of accounting for duration of the dry period can be misleading.
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Apparently according to Equation (22) the drought intensity Xk in part depends on the 

order of the month, k, whose index is being computed. For example, the same moisture 

index Z, could have a different contribution to the drought index depending on whether it 

is the 2nd or 6th month in the computation sequence. To solve this problem, it is necessary 

to revise Equation (22) such that the incremental drought intensity contribution for each 

successive month is evaluated independent o f the order k, in which it occurred.

For the initial month, let Xo = 0. The contribution of the next successive month can be 

obtained by setting k=l in Equation 22 to obtain

X , = ^ T ) ....................................................................................................<23)

Then the change in X is given by

X , - X 0 =AX = j ^ - , .............................................................. (24)
(a + b)

In successive months a negative value of Z will be required to maintain the existing dry 

spell. The magnitude of this Z that is required depends on the magnitude of the previous 

drought index X.

Hence

AX, =r ?s^+ex,.l..................................................(25)
(a + b)

where

AXk = X k - X w .........................   (26)

It should be noted that in Equation 25, the Z index of each successive month contributes 

to the previous drought index on an incremental basis and is independent of k. To 

determine the constant 6 we use Equation 22 for t = k-1 and k, with the drought index Xk 

and Xk.i kept at some constant value «(>. On solving for Zk we obtain the Equation

Zk = i z t - I Z t =b4>...............................................................(27)
t=i t=i
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Using Equation 25 and 27 we can then solve for the constant 6. 

- b0 = (28)
(a + b)

When we substitute for 0 and AX* in Equation 25, we obtain (after re-arranging),

X , - M r W ,  + 7 ^ - ........................................................ (29)
Va + b' (a + b)

and since a = -c/4 and b = -m/4 with c and m as the intercept and slope of Figure 3.1 then

Y  v  ~ 4 Z *Xk — i I x k_, + .
^c + m / ( c+m

(30)
«n).............................

Equations 29 or 30 are the drought severity relationships that are used recursively to track 

drought conditions in the PDSI. In Palmer’s (1965) analysis a and b were 2.691 and 0.309 

respectively. There is little basis to use the above values for regions different from those 

Palmer (1965) investigated. Analysis of East African data has shown that different zones 

could have diverse drought progression characteristics and hence different regression 

coefficients in a plot of cumulative Z vs. extreme drought length period t. Figure 3.2 

illustrates the difference between the extreme drought line as proposed by Palmer (1965) 

and the extreme drought lines for selected East African stations.
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Figure 3.2 Plot of most negative cumulative moisture index Z vs. duration for periods 
ranging from two to thirty months in selected East African stations.
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Equations 17,29 and 30 can all be represented in the form

X k = <pXk_l +eZk......................................................................... (31)

where 0  is c/(c+m), € is -4/(c+m) and Z is the moisture index. The coefficients “c” and 

“m” are the intercept and slope of the extreme drought line as illustrated in Figures 3.1 

and 3.2. Equation (31) can be readily identified as a first order autoregressive model 

(AR1). However, PDSI is not a pure AR(1) process because the final value X at times 

abruptly shifts between pseudo indices XI, X2 and X3 according to some predefined 

rules. The coefficients of regression determine the magnitude of the coefficients of the 

drought severity index (Equation 30). If the intercept c is much less than the sum of the 

intercept and the slope (c+m), then the coefficient of the first term in Equation (31) would 

be small. This would mean that for the particular region, the previous conditions (or the 

previous month drought index) carries less weight when computing the present index. It 

is reasonable to assume that the magnitude of these coefficients and hence progression of 

a dry or wet spell will vary from place to place. The variation of these coefficients for 

several East African stations is shown in Table 3.2 alongside the values established by 

Palmer (1965).

In most cases, the plot of Z vs. duration is almost linear as shown by the consistently high 

correlation values in Table 3.2. It is noted that even though 0  does not change much, all 

the computed values are less than the value established by Palmer (1965). The computed 

€ parameter varies significantly from what Palmer (1965) established for North America. 

In most of the cases € is four or five times the original Palmer parameter of 0.333. 

Application of Equation (31) with varying 0  and £ parameters to the same moisture index 

time series (Zk, k = I, 2, ..., n) will produce different PDSI time series. However, even 

though 0  and £ are obtained locally from the individual station extreme-drought-line (see 

Figures 3.1 and 3.2), the resulting PDSI time series should theoretically be comparable 

across stations because all are calibrated relative to the driest conditions existing at each 

individual location.
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Table 3.2 Examples of coefficients of regression (c and m) and resulting drought severity 
terms for several stations compared with the original PDSI terms.

Station Name Latitude Longitude Intercept

c

Slope

m

Correlation

P

Eqn. (31) parameters

€

Lodwar 3.12 36 -1.899 -0.412 -0.992 0.822 1.731

Mandera 3.93 42 -1.867 -0.565 -0.998 0.768 1.645

Wajir 1.75 40 -1.491 -0.443 -0.996 0.771 2.068

Kisumu -0.10 35 -3.508 -0.576 -0.989 0.859 0.979

Garissa -0.47 40 -1.797 -0.435 -0.993 0.805 1.792

Lamu -2.27 41 -3.782 -0.861 -0.983 0.815 0.861

Mombasa -4.03 40 -2.728 -0.417 -0.989 0.868 1.272

Kigoma -4.88 30 -3.95 -0.812 -0.991 0.830 0.84

Dodoma -6.17 36 -2.384 -0.551 -0.995 0.812 1.363

Mtwara -10.27 40 -4.739 -0.642 -0.971 0.881 0.743

Original PDSI -10.764 -1.236 - 0.897 0.333

Thus, in the modified PDSI algorithm, we propose that the <j> and € parameters in 

Equation 31 be obtained locally for each station. There is little basis for using the same <f> 

and € values for all stations unless all the stations exhibit the same extreme drought 

characteristics, which is clearly not the case in East Africa.

3.2.2 Bhalme Mooley Index

Bhalme and Mooley (1980) developed a numerical drought index for assessing the 

drought intensity using precipitation only. The computational details of this index and 

PDSI are generally similar with a few differences. Bhalme Mooley substituted the 

moisture index Z (which is obtained from surface moisture balance computations) in 

Palmer’s algorithm with a simpler monthly rain index M which is computed from the 

rainfall data only. Furthermore, the Bhalme Mooley index does not involve the
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simultaneous tracking of pseudo indices o f dry, wet or un established spells. This makes 

it a much easier index to compute and than Palmer’s PDSI.

To obtain the Bhalme and Mooley index, first compute the long term monthly rainfall 

mean (p), standard deviation (a) and coefficient of variation (CV) and then the rainfall 

anomaly which is the normalized departure from the long term mean. The moisture index 

(M) is normalized rainfall anomaly divided by the CV.

Hence,

P  CT

= 1 0 0 ^ .............................................................................. (32)
a

Bhalme and Mooley (1980) noted that comparison of the moisture index (M) for different 

locations and months was acceptable ‘within reasonable limits’.

The drought severity equation is obtained using the same arguments as Palmer (1965) did 

from the plot of accumulated monthly index M vs. period (months); i.e. Equations 22-30 

hold with M being used instead of Z.

3.2 J  Standardized Precipitation Index (SPI).

The understanding that a deficit of precipitation has different impacts on the 

groundwater, reservoir storage, soil moisture, snowpack and stream flow led McKee et al. 

(1993) to develop the SPI. The purpose of the SPI is to assign a single numeric value to 

precipitation which can be compared across regions with markedly different climates. 

McKee et al. (1993) defined SPI as the number of standard deviations that the observed 

cumulative rainfall at a given scale would deviate from the long-term mean. Since the 

cumulative precipitation may not be normally distributed, a transformation is first applied 

to the data so that the transformed precipitation approximately follows a normal 

distribution.
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The SPI index was designed to explicitly express the fact that it is possible to 

simultaneously experience wet conditions on one or more time scales, and dry conditions 

at other time scales. For example, soil moisture conditions which typically respond to 

precipitation on a relatively short scale may get quickly depleted in a brief drought spell 

while stream flow, ground water and reservoir storage which is affected by longer term 

precipitation anomalies may still be relatively normal.

The Colorado Climate Center, the Western Regional Climate Center and the National 

Drought Mitigation Center use SPI to monitor the current state of drought in the United 

States (Edwards and McKee, 1997).

The SPI calculation is based on the long-term precipitation record for a desired period. 

To compute SPI, a monthly precipitation time series is “smoothened” with a moving 

window of width equal to the time scale desired. For example, a 3-month SPI would use a 

moving window of a 3-month width. In their study, Edwards and McKee (1997) selected 

a 3-month SPI for a short-term or seasonal drought index, a 12-month SPI for an 

intermediate- drought index and a 48-month SPI for a long-term drought index. The 

window is non-centered in the sense that its first coefficient is the lag 0 coefficient so that 

the filtered series depends only on past and present values of the original series. For 

example, if a 3-month window is used, the new smoothed series xj , t  = l,2,---,nare given 

by.

*;  (33)
3  i«0

The smoothed data is broken into 12 time series each containing data for a given month 

for all the available years. A probability distribution is fitted to each of these 12 sets of 

time series. For this purpose McKee et al (1993) used the gamma distribution which is 

useful for describing skewed hydrologic variables (such as precipitation) without the 

need for log-transformation (Chow et al. 1988). Its probability density function is defined 

as,

g (x )= ——̂— x ^ 'e '^  for x > 0 ...............................................(34)
paT(a)
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where T(a)= Jy°_le 'ydy (the gamma function), and a  and P are the shape and scale
0

parameters respectively.

However, it should be noted that distributions other than the gamma can also be used, as 

long as they fit the data adequately.

The maximum likelihood estimators for the parameters a  and P are (McKee and 

Edwards, 1997)

From the parameters a  and p, the cumulative probability G(x) corresponding to an 

observed precipitation is estimated as

The incomplete gamma function of Equation 37 was solved using a statistical package 

called SPLUS.

(35)

P x
(36)

a

where: A = ln(x) -
n

n = number of observations.

(37)

*

substituting t = x /p ,

(38)
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The gamma function is undefined for x = 0 yet it is possible to get months with no 

precipitation. To take care of this, Edwards and McKee (1997) suggested that the actual 

probability of non-exceedance H(x) should be given by

H(x) = q + (1 -  q )G (x)................................................................. (39)

where q is the probability of x = 0. If m is the number of zeros in a particular precipitation 

time series, q can be estimated by m/n where n is the sample size (Edwards and McKee, 

1997). The inverse normal (Gaussian) function is applied to the non-exceedance 

probability H(x) to obtain the SPI.

From our experience, the smoothing of the precipitation time series will often eliminate 

or greatly decrease the number of months with zero precipitation. For example, when 

analyzing six-month SPI, having a zero in the smoothed time series is only possible if 

there are six consecutive months with zero precipitation. This is generally a rare 

possibility for our study area. Hence the problem of zero values seldom arises in our 

analysis, and the value of q in Equation 36 is set to zero.

The transformation from the non-exceedance probability H(x) to the SPI is an 

equiprobabilitv transformation whereby a variate is transformed from one distribution 

(i.e. Gamma) to another variate with a distribution of a prescribed form (Gaussian 

normal) such that both the new and old variable have the same probability of non- 

exceedance in their respective distributions.

In the example illustrated in Figure 3.3, a 3-month precipitation amount (March, April 

and May) is converted to an SPI value with mean of zero and variance of one. The dotted 

line on the left side of Figure 3.3 denotes the empirical cumulative probability of the 

actual three-month precipitation totals, while the continuous smooth curve denotes the 

fitted gamma distribution. The curve on the right hand side of Figure 3.3 is a cumulative 

curve distribution of the standard normal distribution. In this example MAM precipitation 

of 300 mm corresponds to an SPI value o f 0.39. It should be noted that both values, 300 

mm and 0.39, have the same non-exceedance probability of 0.65.
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Figure 3.3 The SPI of Singida March - May precipitation based on 1900-1996 data.

Figure 3.4 shows 6, 12 and 48-month SPI of Singida, a location in Central Tanzania. It is 

evident from this figure that the frequency, duration and intensity of drought at a given 

location is dependent on the time scale. The 48-month SPI curve is relatively smoother 

than the 12-month SPI curve, while the 6-month SPI is relatively rugged.

(a) 6-month SPI, Singida
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Time (Years)

(b) 12-month SPI. Singida

X

a(0

22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86
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(c) 48-month SPI. Singida
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Figure 3.4 Time Series of 6,12 and 48-month SPI of Singida, Central Tanzania.
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The SPI values for a given location can vary significantly as much as 3 SPI units when 

computed at different time scales. For example, in July and August 1969, the 6-month 

SPI values for Singida were -2.7 and -3.0 respectively indicating a severe drought while 

the 12-month SPI values for the same location were 0.7 and 0.7 in both months, 

indicating near normal conditions. The 48-month SPI for the two months were 1.95, 

indicating a very wet period.

McKee et al. (1993) used the classification system shown in Table 3.3 to assign drought 

categories with respect to SPI. McKee et al. (1993) also defined the criteria for a drought 

event for various time scales. A drought event is considered to have occurred any time 

the SPI is continuously negative and reaches an intensity where the SPI is -1.0 or less. 

The event ends when the SPI becomes positive. Therefore, each drought event has a well 

defined duration.

Table 3.3 Classification of SPI values (McKee et al, 1993)
SPI Values Drought Category

2.0 and above Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
-0.99 to 0.99 Near normal
-1.0 to -1.49 Moderately dry
-1.5 to -1.99 Severely dry
-2.0 and less Extremely dry

3.2J.1 Suggested Improvements in the SPI algorithm.

The SPI algorithm has not been revised ever since it was introduced by McKee (1993). 

There are several properties of the index that merit some revision in order to make it a 

better index. These briefly are discussed below.

There is still disagreement regarding the type of probability distribution that should be 

fitted to the precipitation data. A probability distribution is needed to fit to the 

precipitation data because the SPI algorithm requires the exceedance probability o f each
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data point in the smoothed precipitation time-series. The most commonly used 

distribution has been the gamma distribution. It should be noted that, index values 

corresponding to a given precipitation amount may vary depending on the chosen 

distribution chosen to fit to the data.

We propose using a suitable plotting position formula to estimate the empirical 

exceedance probabilities. This is more preferable if the data set is reasonably long, say 

more than 90 years of data so that we can estimate exceedance probabilities ranging from 

0.01 to 0.99. A plotting position is said to be suitable for a given distribution if the 

estimates of both the quantiles and non-exceedance probabilities obtained using the 

plotting formula are unbiased (Hydrology Handbook, 1993). There are several popular 

plotting position formulae in hydrology, which attempt to achieve an almost quantile- 

unbiased fit for different distributions (Hydrology Handbook, 1993). In general, most 

plotting position formulae can be written as

q * “ - r r V ............................................................................................. (40)n + 1 -  2a

where i is the rank order and n is the total length of the series. Cunnane (1978) discussed 

the application and characteristics of these formulae and recommended a=0.40 which 

proved to be suitable for estimating unbiased quantiles for a wide range of distributions. 

The most popular plotting position is the Weibull plotting formula (a =0 in Equation 40) 

which has been shown to be suitable for estimating unbiased exceedance probabilities for 

all distributions (Hydrology Handbook, 1993). Cunnane’s formula is suitable for skewed 

distributions while Weibull’s formula is suitable for Uniform distributions.

The estimation of non-exceedance probability using plotting positions formula is a non- 

parametric procedure since only data ranks are used. Therefore, by using a plotting 

position formula to estimate the non-exceedance probabilities of the 12 smoothed sub­

precipitation series, we transform the SPI algorithm into a non-parametric SPI index. 

(Each of the 12 sub-series corresponds to a unique combination of lunar months e.g. for
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6-month SPI you could have January to June, or February to July. There are always 

twelve such sub-series regardless o f the length o f the smoothing window.) Figure 3.5 

shows a comparison of SPI obtained by parametric and non-parametric methods for 

Singida station. The latter is obtained by using Cunnane’s formula to estimate the 

probabilities o f non-exceedance. Non-parametric methods have attractive properties -  the 

most obvious being their ability to handle disproportionate outliers.

Figure 3.5 shows that there is hardly any difference between the indices obtained by the 

two respective methods except for very extreme events. There are noticeable differences 

at extreme events because the Weibull formula cannot estimate exceedance probabilities 

less than l/(n+l) or greater than n/(n+l) whereas one can estimate exceedance 

probabilities outside the above limits using a parametric distribution. In any case the 

actual exceedance probability associated with the least and largest observations are 

random variable with mean l/(n+l) and n/(n+l) respectively and a standard deviation 

l/(n+l) (Hydrology Handbook, 1993). However, once the SPI has exceeded the extreme 

threshold of -2.0 (corresponding to extreme severe drought), it is no longer relevant to 

know how far it dips further since all are extremely severe droughts anyway.

(a) 12-Month SPI and SPInp, Singida
CM

o .  T

22 27 32 37 42 47 52 57 62 67 72 77 82 87
Time (Years)

(b) 48-Month SPI and SPInp, Singida
CM

X

O

22 27 32 37 42 47 52 57 62 67 72 77 82 87
Time (Years)

Figure 3.5 Time series o f the (a) 12-month and (b) 48-month SPI and nonparametric SPI 
(SPInp) of Singida. The red dotted line is the non-parametric SPI.
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Another point of disagreement in the SPI methodology is the length o f die base period 

used in calibrating the distribution functions. Edwards and McKee (1997) used a fixed 

base of 30 years to fit the necessary gamma parameters. This ensured that the historical 

SPI values did not change with time.

We propose using a flexible time base to fix the probability distributions. Although the 

SPI values may change with time, the change is not so dramatic so as to jump from 

drought to wetness.

o

1949 i960 19641962 1966 1969 I96011
T m  (Ym t «)

Figure 3.6 Thirty six (36) virtually indistinguishable time series of 12-month SPI for 
Singida (1945 -  1960) obtained using a calibration period varying from 1900-1961 to 
1900-1996.

Figure 3.6 shows the minor variations in SPI, which occur as the length o f the calibrating 

period grows from 62 to 97 years. Apparently, at least for East African data, changing the 

calibration period does not lead to significant change in the level of drought severity.

Drought is a relative phenomenon. A drought index ought to be normalized with respect 

to time if it is to provide a meaningful estimate o f drought. The dynamic nature of an SPI 

index based on a flexible calibration period may be better suited to capture the subtle 

changes of the drought properties such as the relative drought intensity. The intensity of a
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past drought event may increase (decrease) relative to the average conditions if the 

general climatic trend is shifting towards wetness (dryness).

At the core of the SPI algorithm is the transformation of the non-exceedance probability 

of occurrence of smoothed precipitation totals to the normal distribution domain. The 

original SPI represents a Z-score, or the number o f standard deviations above or below 

that an event is from the mean. This assumption of normality is not true for SPI of short 

time scales of analysis. Rainfall aggregate series composed of 6-month totals or less are 

usually positively skewed. The degree of skewness generally increases as the climate 

becomes drier (Glantz and Katz 1977). Transforming such positively skewed variables to 

the normal distribution domain will cause undesirable distortion, especially in the right 

tail of the distributions. We propose to work around this problem by transforming the 

variables using an appropriate regional growth curve instead of the simple normal 

distribution.

The regional growth curves are developed using the regional index-flood procedure 

(Hosking and Wallis, 1996). The term “index flood" arose because early applications of 

the procedure were to flood data in hydrology, but the method is also applicable to 

drought analysis. A brief description of the procedure is provided below. More detailed 

descriptions of the method can be found in the National Environment Research Council 

(1975) or Handbook of Hydrology (1993).

Suppose that the data are available at N sites, where the i01 site has a sample size nj, and 

observed data Pjj, j -  1,..., nj. Let Pj(F), 0<F<1, be the quantile function o f the frequency 

distribution at site i. We may then re-write

Pi(F) = p iq(F), i=l,...,N ............................................................ (41)

where is the index flood which is the mean o f the at-site frequency distribution, and 

q(F) is the regional growth curve, a dimensionless quantile function which is common at
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every site. Conversely, q(F) is the quantile function of the regional frequency distribution 

of the dimensionless, rescaled data, Py/Pj, j = l,--*,niti = 1, - - ,N.

The index-flood procedure is premised on a number of assumptions. The method assumes 

that observations at any given site are identically distributed, and are serially 

independent. Furthermore, observations at different sites should be independent. The 

frequency distributions at different sites should be identical apart from a scale factor. All 

these assumptions, especially the last one, are only approximately attained by hydrologic 

data such as rainfall.

Since it is desirable that the modified SPI be comparable across the entire East African 

region, we applied the regional analysis to the whole of East Africa as one region. After 

smoothing the monthly data series with a window representing the scale o f interest, the 

individual grid data was divided by the respective grid means to obtain the dimensionless 

grid-based, variables. A distribution was then fitted to the rescaled data using L- 

moments. We used L-moments instead of the traditional method of moments because the 

latter have been shown to have some undesirable properties (Wallis et al., 1974; Dalen, 

1987; Hosking and Wallis, 1997). It has been shown that the ordinary moment estimators 

of the skewness and kurtosis have algebraic bounds that depend on the sample size. For a 

sample o f size n the bounds of skewness are (Hosking and Wallis, 1997)

........................................................................................... (42)

For example, the skewness of a two parameter lognormal distribution is given by
I 3

y = 3[e°’ -  i f  + [eoJ - l ] 5 ........................................................... (43)

where ay is the variance. Thus, when c y= l, the skewness o f the two parameter lognormal 

distribution is 6.18. However using ordinary moment estimators to estimate the skewness 

of a sample o f size n=20 drawn from this distribution will have an upper bound of 4.47 or 

65% of the population value. L-moments do not suffer from such limitations (Hosking 

and Wallis, 1997).
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It was necessary to establish whether it was reasonable to apply regional analysis to the 

whole of East Africa as one homogenous zone. This was done by assessing whether the 

at-site (grid) variation of the sample L-moments was consistent with what would be 

expected of a homogenous region. This homogeneity test is described in Hosking and 

Wallis, (1997) and Hosking (2000). Using the software provided by Hosking (2000), we 

found that considering East Africa as one region did approximately satisfy the 

homogeneity condition that the grids’ frequency distribution for the smoothed, 

aggregated monthly rainfalls were identical apart from a grid-specific scale factor.

Five three-parameter distributions (generalized logistic, generalized extreme value, 

generalized Pareto, Pearson type III and Wakeby) were fitted to the smoothed aggregated 

East African monthly rainfall data using the FORTRAN software provided by Hosking 

(2000). We found the Pearson type III (P3) to be acceptable to 30 out of the 31 grid 

points. There is considerable acceptance and application of the P3 distribution or its 

variant, the Log Pearson type III (LP3) distribution in water resources investigations 

(Vogel and McMartin, 1991). P3 can assume a wide range of distribution shapes 

including the Gamma and Normal distribution that can be viewed as special cases of P3,

where 0, X and m are the scale, shape and location parameters respectively. When £>0, x 

is positively skewed with m as the lower bound, i.e. m £ x £ +oo. Similarly, m is the 

upper bound of a negatively skewed P3 random variable. Most precipitation time series 

are positively skewed.

The parameters j3, X and m are related to the first three moments of the random variable x 

as follows:

given as:-

(44)

(45)
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When j3 >0 and m = 0, the P3 distribution reduces to the gamma distribution. According 

to Equation (47), as the shape parameter X goes to infinity, the skewness coefficient y  

goes to zero, in the process converging to a normal distribution. For X = 1, and y=  2, P3 

becomes the two parameter exponential distribution. The parameters o f the P3 regional 

distribution curves, estimated using L -moments, are shown in Table 3.4. A sample of the 

regional curves are shown in Figure 3.7

Table 3.4 The Regional P3 distribution parameters obtained from the precipitation grid 
totals of different durations.

Scale o f Analysis 
(months)

Standard deviation 
a

Skewness
7

Shape parameter, 
X

2 0.56 1.22 2.686
3 0.46 1.02 3.820
6 0.30 0.71 8.007
9 0.24 0.57 12.495
12 0.20 0.51 15.561
16 0.18 0.49 16.817
24 0.15 0.47 17.773
36 0.12 0.44 20.624

As expected, the standard deviation of the regional curves decrease as the scale of 

analysis is increased. The scaling factor n  used in Equation 45 is equivalent to the at-site 

mean. For a long duration, say 36 months, the mean value of 36 consecutive months of 

rainfall totals is relatively big. When the smoothed series are divided by this big number, 

the resulting series are bound to be small, and the spread about the mean is also small.

Table 3.4 shows the gradual increase of the shape parameter X as the scale o f analysis is 

increased. A normal distribution has a X = ac. It would seem that monthly rainfall series 

which are smoothed by a large enough window (> 24) approximate well to the normal 

distribution. This is in consonance with the Central Limit Theorem, which states that the 

sample mean o f identically distributed variables is approximately normal (Larsen and
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Marx, 1981). What a large smoothing window does is to create a new series composed of 

consecutive sample means, the sample size being equivalent to the size of the smoothing 

window. The larger the window size, the more approximately normal the sample means 

will be.

2-month
6-month
12-month
36-month

O '

0 1 2-1
x

Figure 3.7 Regional P3 probability density functions used to develop the modified SPI.

From Figure 3.7, we observed that the regional probability distribution function for short 

time scales of analysis, say 6-months or less are clearly positively skewed. The use of 

normal distribution ought to be discouraged for such skewed variables because it would 

introduce unnecessary distortion at the tail ends.

For the P3 distributions, a quantile-unbiased plotting position to be used to estimate 

quantiles depends on the shape parameter 0 and hence skewness in addition to the rank i 

and sample size n. Therefore, Equation 40 cannot be used to obtain P3 plotting positions. 

Nguyen et al. (1989) developed an approximate plotting position for the P3 distribution 

given as follows:

q = ---- !~°-42.......  (48)
n + 0.3y + 0.05

where y  is the skewness. This formula is suitable for skewness in the range - 3 < y < 3 

and samples size in the range o f5 <n < 1 00 .  These ranges are appropriate for our 

analysis and hence Equation 48 was used to obtain the P3 plotting positions that were 

then transformed into the standardized P3 variates.
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The use of Equation 48 requires the estimation of the skewness coefficient y. The method 

of moment estimator of the skew coefficient is usually defined as

- x ?

where s =

.(49-a)

(49-b)
.  i-l

Several investigators (e.g. Bobee and Robitaille, 1975; Tasker and Stendinger, 1986) 

have shown that Equation 49 is often an unsuitable skewness estimator because of 

problems associated with small-sample bias. Bobee and Robitaille (1975) proposed an 

unbiased skewness estimator given as

rr, 6.51 20.2'j ( 1.48 6.77^—2
= Y 1+ + , + + 2 Y1ce V n n 2 J .

where y is the mean of the sample distribution of the sample skewness for a sample of 

size n from a P3 distribution (usually replaced by y since only one sample is typically 

available).

Figure 3.8 shows an example of the original 6-month SPI compared with the modified 

6-month SPI for the stations of Tabora and Singida in Central Tanzania. As expected, 

differences between the original and modified SPI mainly shows in the extreme values 

since the distribution resulted from approximating a P3 with a normal distribution 

increases towards the tails. Typically, the P3 based SPI will have smaller negative 

extremes than the normal-distribution-based SPI. This is especially so for short scale SPI 

series say 6-month SPI as shown above. For example, the original (normal distribution 

based) 6-month SPI for Tabora was -2.87 in May 1949. During that same dry month, the 

6-month modified (P3 based) SPI is computed to be -1.86 standard deviations from the 

mean. It is likely that the modified SPI gives a more realistic picture since the 6-month 

precipitation totals are positively skewed.
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Figure 3.8 Illustration of the modified and original SPI for (a) Tabora and (b) Singida, 
both located in Tanzania, East Africa.

McKee et al. (1993) arbitrarily chose “clean” SPI threshold values ranging from 2.0 to -2  

in steps of 0.5 to assign the severity o f drought categories drought categories (Table 3.3). 

For example, he associated an SPI value between -1 and 1 with normal or near normal 

conditions. This would mean that precipitation totals with the probability o f exceedance 

ranging form 0.16 to 0.84 are associated with normal conditions. Such a drought 

classification scheme cannot work with the modified P3 based SPI index because 

standardized P3 variates corresponding to a given probability vary in magnitude 

according to the shape factor of the regional distribution curve. In the modified index, 

each scale o f analysis should have its own classification thresholds depending on the 

shape of regional distribution governing the precipitation totals.

We propose a new drought classification table based on probabilities o f non-exceedance 

shown in Table 3.5. This table assumes that the extreme wet and dry events are those 

with the non-exceedance probabilities of 0.98 and 0.02 respectively.

Q.
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u

I
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i
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There is a noticeable difference in the threshold of the extreme moisture conditions. The 

number of standard deviations less than the mean required to signal an extreme drought 

condition (with a non exceedance probability o f 0.02) progressively increase from 1.37 

for the 2-month SPI to 1.81 for 36-month SPI. On the other hand the number of standard 

deviations (from the mean) required to reach extremely wet conditions decrease from 

2.63 to 2.28 for the same respective SPI indices. It would seem that if  we increase the 

scale of analysis n in n-month SPI index, say n -  60, we would eventually approach the 

normal-distribution threshold values shown in Table 3.S. However, it probably doesn’t 

make sense to use a 60-month SPI in a drought analysis.

Table 3.5 SPI-Drought classification based on probabilities of exceedance.

Drought

Classification

Probability of 

non-exceedance

Pearson Type 3 based SPI Normal dist 

based SPI2-month 6-month 12-month 36-month

Extremely wet >0.98 >2.63 2.41 2.31 2.28 2.05

Very wet 0.95 -  0.9799 1.91-2.63 1.82-2.41 1.78-2.31 1.76-2.28 1.64-2.05

Moderately wet 0.80 -  0.9499 0.73-1.91 0.79-1.82 0.81-1.78 0.81-1.76 0.84-1.64

Near normal 0.20 -  0.7999 -0.84-0.73 -0.86-0.79 -0.86-0.81 -0.86-0.81 -0.84-0.84

Moderately dry 0.05 -  0.1999 -1.24- -0.84 -1.42- -0.86 -1.49--0.86 -1.51--0.86 -1.64- -0.84

Very dry 0.02 -  0.0499 -1.37--1.24 -1.66-1.42 -1.77--1.49 -1.81--1.51 -2.05--1.64

Extremely dry <0.02 <-1.37 <-1.66 <-1.77 <-1.81 <-2.05

The differences highlighted in Table 3.5 arise from the skewed nature of the precipitation 

totals, which gradually decreases as the size of the smoothing window is increased. 

However, these subtle differences between the original and the new P3-based SPI index 

might be quite important especially where the SPI index variables are to be processed 

further.

3 J  Inter-Comparison of the Drought Indices

Although there is no one drought index that is inherently superior than others in all 

circumstances, some indices are better suited than others for certain regional applications.
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It is the purpose of this section to explore which index might have an edge over the rest 

for monitoring East African drought.

3.3.1 Original and Modified PDSI

A sample output from the original and modified PDSI algorithms for three locations is 

shown in Figure 3.7. In general it was observed that the original Palmer algorithm did not 

produce a realistic index for the drier northern East African locations such as Lodwar 

(Figure 3.7). For Lodwar, the unmodified method produced an index, which portrayed an 

erroneous scenario that this place suffered from continuous drought starting from 1960 

right up to 1985. The modified method corrected this problem.

Analysis of the detailed output of the original PDSI algorithm showed that R (recharge), 

and RO (runoff) were typically zero in dry areas such as Lodwar. Unlike in the wetter 

areas, the potential loss (PL) in semiarid areas was usually zero or a very small amount 

that did not significantly decrease the climatologically appropriate precipitation (CAFEC) 

value, Pw j (see Equation 12). Consequently, the CAFEC precipitation was always much

bigger than the available small amounts of precipitation. This seemed to be the primary 

cause of the unrealistic perpetual drought episode in dry areas such as Lodwar. Revisions 

in the computation of the CAFEC precipitation outlined in Equation 19 and 20 seemed to 

solve this problem in the modified PDSI algorithm.

It is also noted that the departure weighing coefficient (Kj) obtained by the empirical 

relation given in Equation 15 always returned values that are less than 0.6 for dry places 

such as Lodwar while the same equation returned values that are in the range of 1.0 to 2.0 

for moderately wet areas.

The differences between the original and modified PDSI for the wetter regions are less 

pronounced. This is probably because shifting between the pseudo-indices XI, X2, X3 

re-initializes the system such that differences between the original and modified PDSI do
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not propagate along the entire time series. The extreme drought values resulting from the 

modified PDSI algorithm seem to be less than those obtained from the original PDSI 

algorithm (See Figure 3.9-c), probably due to using the revised at-site drought recursive 

formula (Equations 29-31).

(a) Lodwar

IMS 1S60 1S65 1M0 1M3 1*70 1S7S 1M0 1*

Time (Years)

(b) Mwanza

Qa.

e

o

1946 1960 1966 I960 1996 1970 1976 1990 19

Time (Years)

(c) Tabora

o

1946 1969 19701960 1990 1996 1990II II

Original 

- Modified

Time (Years)

Figure 3.9 Typical time series of the original and modified PDSI for three locations.

In both the original and modified cases the magnitude of the extreme positive PDSI 

values was observed to be way beyond +4, which is the threshold for extreme wet events. 

The original PDSI recursive formula was developed with respect to extremely dry events 

that were given a threshold of -A  and assuming symmetrical distribution, extremely wet
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events would have a threshold of +4. However, this assumption o f symmetric distribution 

is not necessarily true.

It is observed that in most cases the modified algorithm tends to smooth out some 

fluctuations seen in the original algorithm. The modified PDSI, just like the original, is 

not very sensitive to the actual evaporation values because rainfall dominates the 

moisture balance accounting used to compute the index. In this regard, we tested the 

modified PDSI first using the Thomthwaite procedure to compute the monthly 

evaporation, and second, the average monthly pan-measurements. We did not find much 

difference between the PDSI obtained from the two types of data. It would seem 

therefore that the evapotranspiration input in the modified PDSI algorithm serves as a 

kind of datum on which the rainfall variability can be transposed. So far there has been 

no report of large variations in monthly evapotranspiration time series comparable to that 

found in monthly rainfall time series. It is worth noting that Karl (1986) also did not find 

any significant change in the United States PDSI series when he forced the potential 

evapotranspiration to a constant equal to the long term monthly potential 

evapotranspiration.

Even though the main PDSI recursive formula appears as first order autoregressive (AR1) 

model (see Equation 31) it is not a purely AR1 because the index at times abruptly shifts 

between pseudo indices XI, X2 and X3. Nevertheless, due to Equation 31, PDSI 

generally exhibits some AR1 characteristics such as an exponential autocorrelation 

function. The recursive relationship of Equation 31 suggests that the PDSI for a month is 

linearly related to the previous month. Spectral analysis however reveals the existence of 

five to nine-year long-term memory in the PDSI data. This is similar to the spectral 

results obtained by Guttman (1998) when he analyzed United States PDSI data. The long­

term memory could be a result of the nature of the water balance accounting approach 

upon which the index is based. It is difficult to justify the existence of long-term memory 

of S or more years in drought mechanisms. This leads us to conclude that extra caution 

has to be taken when interpreting both the modified and the original PDSI index.
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The PDSI indices obtained by using the modified algorithm compared well with the 

historic climatic records. The worst recorded drought year in East Africa in the 20th 

century was 1949. Most places in East Africa received annual rainfall in the 20th or less 

percentile in that drought year. During that year, the monthly PDSI was less than -3.0 for 

most of Tanzania and Eastern Kenya indicating that 1949 was a severe drought year. 

Comparison with plots of the original PDSI show that the modified algorithm was 

generally better at capturing the well known documented droughts like that of 1949 

(Figure 3.10).

(a) (b)

48 48 48 49 50
Tim# (Y«art) Tims (Yarn)

Figure 3.10 shows (a) original and (b) modified PDSI of selected stations during the 
period of Jan 1948 to Dec 19S0.

Although both the original and modified PDSI indices have the same trends at some of 

the stations, at other stations there are some important differences. For example, the 

modified PDSI series show that Dar es Salaam experienced severe dry conditions just 

like the rest of the other areas during May-Oct of 1949. On the other hand, according to 

the original PDSI series, Dar es Salaam had near-normal moisture conditions during the 

May-July 1949 period which is not correct since we know that Dar es Salaam (average 

rainfall 1100mm) was very dry in 1949 because that year it received the lowest annual 

rainfall (438mm) in the 1900-1997 record.
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3J.2 Comparison of the Modified PDSI with the Bhalme -  Mooley Index.

There seems to be a high correlation between the modified PDSI and the Bhalme -  

Mooley Index (Figure 3.11). The high correlation (greater than 0.8 in many places) tends 

to suggest that most of the variability in the PDSI is due to precipitation alone.

Some parts o f East Africa, namely southern Tanzania and a part of western Kenya 

highlands show a lower correlation between the two indices probably because in these 

locations, the evaporation regime significantly modifies the drought characteristics. As 

the distance from the equator increases, seasonal variations in temperature and 

evaporation tend to increase. From this perspective, the Bhalme-Mooley index which 

does not consider the evapotranspiration variable, may fail to capture drought evolution 

in locations further than ±6° in latitude away from the Equator. On the other hand, it is 

worth to note that the areas where there is least correlation are mainly highlands areas 

(western Kenya highlands and southwestern Tanzania highlands) where evaporation 

computed by the Thomthwaite temperature index method is likely to be inaccurate.

Lake Vic

0.9000
00000
07000
0.1000
05000
0.4000
0J0O0
0.2000

Figure 3.11 . The Spatial correlation between PDSI and the Bhalme-Mooley Index for 
East Africa.

Although the Bhalme-Mooley index avoids many of the shortcomings of the PDSI 

algorithm, it still shares with it one disadvantage in that it simplifies the occurrence of 

droughts to a recursive, AR1 process. Unlike the PDSI which may at times abruptly shift
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among three pseudo indices, the Bhalme-Mooley index is a purely AR1 process. A 

sudden shock in the series may take a very long to die down depending on the coefficient 

in the first order process (Figure 3.12). In this regard, PDSI is more realistic than the 

Bhalme-Mooley index, because it does not have as much memory. It should be 

recognized that a drought lasting many months or years may end abruptly with one or 

two month’s intense rainfall.

(a) Autocorrelation, Bhalma (c) Autocorrelation. PDSI

• I ' 1

S 10 IS 30 25Lag (In monOM)

(b) Partial Autocorralation. Bhalma

0 S 10 15 20
Las (in manna)

(d) Partial Autocorralation, PDSI

Lag (In month*)

Figure 3.12 Autocorrelation and Partial autocorrelation of the Bhalme-Mooley index (a 
and b) and that of the modified PDSI (c and d) for Kampala, Uganda. The dotted 
horizontal lines represent the interval within which the correlations are significant at 95% 
confidence level.

The lack of any significant partial autocorrelation in both the Bhalme-Mooley and the 

PDSI is a further demonstration of typical AR1 properties. However, since the PDSI is 

not a pure AR1 process, its autocorrelation drops much faster than it does for the Bhalme 

Mooley index.

333  Advantages of the SPI Index over the other indices.

It is desirable that we obtain the most suitable index to detect the initiation, evolution and 

termination of droughts in East Africa. However, we should be realistic and recognize
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that there is no one index that can perfectly track everything about the four dimensional 

(three spatial, one temporal) variation of the main climate variables. Furthermore, indices 

are at best site and application-dependent.

Several investigators such as Yevjevich et al. (1977) and Redmond (1991) discussed 

criteria that can be used to gauge the suitability of a drought index. Based on these 

quantitative and qualitative criteria among others, we are persuaded to adopt the SPI as 

the most suitable index for monitoring droughts in East Africa. In the following sections, 

we explain the advantages of the SPI in greater detail.

3.3.3.1 Adaptation to the Local Climate

Yevjevich et al. (1977) suggested that in order for a drought index to be effective, it 

should be derived locally and adapted to the local climate. The modified SPI, which 

incorporates a form o f regional analysis, satisfies this qualitative criterion. Although the 

modified PDSI and Bhalme-Mooley indices may also be calibrated locally, the algorithm 

o f these latter two indices still retains some relationships that were obtained empirically 

for a different region. For example, although Palmer (196S) assumed that a plot of the 

worst negative cumulative moisture index Z vs. duration is approximately a straight line 

because o f the empirical observations he made for the North American study area, there 

is little basis to believe that it will always be a straight line elsewhere (see Figure 3.1 and 

3.2)

3 3 3 .2  Flexible Temporal Normalization.

A good drought index, in addition to being standardized spatially, should have the ability 

to attain unprecedented values if extraordinary climate behavior occurs in the future. The 

index’s temporal normalization with respect to background climatology should be a 

continuous process. Of the available drought indices, the SPI best approaches this 

behavior of being “open-ended”. Future values of the SPI are not bounded. On the other
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hand, by virtue of their algorithms, the PDSI and Bhalme-Mooley indices are 

theoretically bounded by a lower value of -4 . For example the original PDSI parameters 

were obtained basing on the extreme droughts in American Great Plains that occurred in 

the 1930s. The fixed calibration period o f the PDSI makes it unsuitable for monitoring 

the occurrence of exceptional climatic variations.

3.3.3.3 Spatial Invariability

A particularly desirable attribute of a drought index is the property of spatial invariability. 

The index should be able to present the same information regardless of the spatial 

location of the site being investigated. This is fundamental if inter-zonal comparison of 

drought conditions is to be meaningful. One way we can investigate this consistency is by 

examining the spectra properties of the signals (Guttman 1998).

An inter-site comparison of the power spectra both PDSI and SPI show important 

differences in the uniformity of the spectra patterns. The power spectra o f SPI show more 

consistent characteristics than that of PDSI (Figure 3.12). This observation is in 

agreement with the results obtained by Guttman (1998) who compared PDSI and SPI for 

continental United States. PDSI’s relatively tedious procedure involving multiple 

algorithm variables could lead to inconsistent conclusions as reflected in the diverse 

nature of power spectra plots shown in Figure 3.13 (b). In contrast, the relatively 

straightforward nature of SPI involving only precipitation produce relatively consistent 

results across East Africa. This consistency of SPI enables us to compare results between 

stations located in the same region easily. However, comparing drought conditions 

between different stations using PDSI has to be done in a more cautious manner.

3 J J .4  Flexibility of multiple time scale analysis.

Unlike the rest of drought indices, SPI can be tailored to varying time periods according 

to a user’s interests. Hydrological variables such as soil moisture, stream flow and
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reservoir storage respond to precipitation shortage at different time scales. The 12-month 

SPI is suitable for tracking intermediate term droughts while 24 or 36-month SPI is 

suitable for tracking long-term droughts.
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Figure 3.13 Spectral density estimates for (a) 12-month SPI (b) Modified PDSI of 
selected East African stations.
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Our results show that the modified PDSI is strongly correlated to 12-month SPI for most 

stations and 11-month SPI for a few stations. Figure 3.14 shows an example of the 

correlation between the modified PDSI and 2-month to 36-month SPI (both original and 

modified). This shows that the PDSI is probably not suitable for tracking droughts at 

times scales shorter than a calendar year since it is highly correlated with the 12-month 

SPI.

O

;<e.

in
©

10 20 30
n-months

Figure 3.14 Correlation between PDSI for Tabora station and the n-month SPI where n 
ranges from 2 months to 36 months. The dashed curve refers to the modified P3-based 
SPI while the dashed vertical line marks the 12-month time scale (n=12).

Most current drought indices use a monthly or longer time scale as a unit. Byun and 

Wilhite (1999) suggest that a daily unit should be used because the water amount of an 

affected drought region can return to normal with only a day’s rainfall. For example, if 

there were heavy rains only on 1“ December and 31st January, sixty days of no 

precipitation from 2nd December to 30” January may not be detected by a monthly index 

in spite of serious damage arising from 60 continuous days o f no rainfall.

We submit that minimal alterations in the SPI algorithm may permit the computation of 

the SPI using daily units. There has been no known previous attempt to calculate the SPI 

in that manner. Our investigations reveal that it might even be preferable to use daily data 

where it is available as the computed index tends to be more responsive and always 

slightly leads the one computed from monthly data (See Figure 3.13). The only difference 

between the two variants of the indices is that one uses a window o f a specified number
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of months to smoothen the data while the other uses a window having an equivalent 

number of days to smoothen the daily data.

 Daily data

 Monthly data

47 *» 49 90 51 S2 S3 M

Tima (Years)

Figure 3.15 Comparison of 6-month SPI for Mbarara, Uganda, obtained by (i) using 
monthly data and a moving six-month average filter and (ii) daily data and a moving 
filter of 180 days.

33 .3.5 Data Requirements and Availability

For any drought index to be generated and used in an operational mode, the input data 

needed must be readily available. The PDSI requires long time series of precipitation, and 

evapotranspiration as well as the spatial distribution o f the soil moisture properties which 

are hard to come by. Long record time series of evaporation data are not readily available 

in East Africa, especially in more remote areas, hence limiting the application o f PDSI.

On the other hand the SPI is based on precipitation data only. Although it is a 

precipitation-only index, at 12-month analysis scales it correlates well with the PDSI, 

which involves extensive moisture balance operations. Since East African precipitation 

data is reasonably available, it is advisable to adopt the SPI rather than the PDSI for it
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would not be possible to compute the PDSI in many parts o f East Africa due to a lack of 

evapotranspiration and soil moisture data of reasonable length.

333.6 Interpretability

A good drought index should be easy to interpret if it is to become an effective tool in 

monitoring droughts. Of the three indices analyzed in this investigation, SPI is the easiest 

to interpret because an n-month SPI value for a given location is the number of P3 

standard deviations from the mean for that location at that particular period, looked at n- 

month time scale perspective. For example, if the 12-month SPI of a location in 

November is 1, it means that the amount of rainfall totals for the preceding 12 months 

until November equal to the mean plus one standard deviation. No such straightforward 

interpretation can be derived for PDSI nor Bhalme Mooley index.

As the intended audience gets wider, and probably less knowledgeable about the index 

details, proper interpretation of the index values become less critically dependent on the 

detailed understanding of the index algorithm, caveats, limitations and assumptions 

involved. It is our view that although the SPI may not be straight forward to understand 

and compute, it is much easier than the rest of the drought indices considered in this 

investigation to interpret

3 3 3 .7  Probabilistic nature.

Another advantage of SPI over the other two indices is its probabilistic properties, which 

can be used quantitatively, to determine the probability that a drought event will come to 

an end in a given period. This can be useful in risk and decision analysis. Based on the 

previous SPI drought index of a given month, we can compute the quantity of the 

precipitation that would be required in the ensuing month to bring the SPI value to the 

“near-normal” range. The probability of having this quantity of precipitation could then 

be calculated based on the historical datasets thereby providing information which would
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be useful to decision makers. Alternatively, the computed amount o f precipitation 

required to end a drought in the ensuing month could be compared to forecast products 

from an empirical or dynamic seasonal forecast model to give a reasonable outlook 

assessment whether an ongoing drought is likely to end in the ensuing month.

3 J .4  Application of the Modified SPI index.

The application of the modified SPI index in East Africa is illustrated for the 1991/92 

period when north and northeastern Kenya experienced a severe drought that affected 

more than 2 million people. Figure 3.16 shows how the modified SPI index could have 

been used to track such a drought. A perusal of Figure 3.16 reveals a start o f a drought 

cell in northeastern Kenya by May 1991. In 1991 there was general failure of the long 

(March -  May) rains in both northeastern Uganda and northwestern Kenya (Climate 

Monitor, 1994). In May 1991, the lowest 6-month SPI index was approximately -1.0 in 

this region indicating moderately dry conditions. By March 1992, conditions in north and 

northwestern Kenya had worsened into the extremely-dry threshold o f-2.0. By this time, 

maize-crop and livestock had suffered serious damage from the prolonged dryness 

(Climate Monitor, 1995).

It was not until later in September 1992 that the moisture conditions returned to normal. 

The spatial maps of the 6-month SPI index are generally in agreement with what was 

recorded in the weather archives (Climate Monitor, 1995 & 1996). The use o f SPI would 

have facilitated decision planners in the region to better demarcate the spatial distribution 

and severity of the drought episode and in the process assist in the formulation of a better 

drought mitigation strategy for the region.
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Figure 3.16 The drought of 1991/92 in Kenya as tracked by the (modified P3 based) 6-month SPI.
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3.4 Regionalization of East Africa into drought zones using the Drought Indices

Drought management and mitigation plans for future droughts rely significantly on the 

knowledge about the boundaries of drought zones and their characteristics, because for a 

region such as East Africa, some areas may be experiencing severe water stress while 

others may be undergoing wet spells. The delineation of such spatial drought patterns 

also facilitate a more timely transfer of resources from the endowed zones to the drought 

prone zones. This knowledge can also enable policy planners formulate better settlement 

and land use policies for various zones with due consideration to the drought risk 

component.

Methods such as eigen-techniques and harmonic analysis have been used to delineate 

homogenous zones according to some variables of interest. Each method has its 

advantages and shortcomings. Harmonic analysis is suitable for signals that are 

predominantly periodic while eigen-techniques such as the Empirical Orthogonal 

Functions (EOF) have been used in cases where periodicity is not a feature of the data or 

when it is desirable to reduce the data dimensionality.

Here we use the rotated Principle Component Analysis (PCA) on the SPI covariance 

matrix to delineate East Africa into homogenous drought zones. PCA consists of 

transforming a large number of variables into (usually) a smaller number of orthogonal 

variables that represent common causes of manifested changes. The method sorts 

correlated data into a hierarchy of statistically independent modes of variation that 

progressively explain less and less of the total variance. Richman (1986) demonstrated 

the inherent disadvantages of un-rotated principal components (PCs) when PCA is used 

to depict individual modes of variation of data matrices in exploratory analyses. The 

major disadvantage is that the topography of the un-rotated PCs is primarily determined 

by the shape of the domain and not the co-variation of the data (Richman, 1986). In this 

investigation we use the popular orthogonal varimax rotation of the PCs to circumvent 

this problem. A brief mathematical derivation of the PCA is given in Chapter S.
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The data used in this analysis is the 6-month and 12-month SPI drought index computed 

from East African rainfall gridded data for the periods 1900-1996. We conjecture that the 

6-month SPI index is appropriate to track seasonal drought of spells lasting 3 months to 8 

month. McKee et al. (1993) suggest that 12-month SPI is suitable for tracking 

intermediate range drought. We used a composite data set which includes only months 

when severe drought conditions occurred in at least one grid location in the East African 

region (i.e. 6-month SPI < -1.42).

We only retain the first few principal components explaining a substantial amount of the 

total variance. The cut off is based on the Kaiser Criterion and the Scree test. The Kaiser 

criterion (Kaiser 1960), is probably the most widely used guideline in deciding the 

number of PCs to be retained. This criterion suggests that the PCs to be selected should 

be those with eigenvalues greater than one. The second procedure, the Scree test, is a 

graphical method by Cattell (1966) where the eigenvalues are plotted against their rank. 

The point on the curve where the smooth decrease of eigen values appears to level off 

signify the number of significant PCs to be retained (see Figure 3.17).

3.4.1 Application of Rotated PCA on SPI

The results of the unrotated PCA analysis are shown in Table 3.6. Only the first 10 

principal components, which account for more than 75% of the total variance, are shown.

Table 3.6 Results o f PCA analysis on composite drought SPI data.

Eigen rank
6-month SPI 12-month SPI

Eigen Value % Variance Explained Eigen Value % Variance Explained
Of total Cumulative OfTotal Cumulative

1 6.71 21.43 21.43 6.21 20.76 20.76
2 S.I4 16.43 37.86 5.16 17.28 38.04
3 2.92 9.34 47.21 2.85 9.54 47.58
4 1.79 5.72 52.92 1.85 6.18 53.76
5 1.61 5.15 58.08 1.75 5.84 59.61
6 1.35 4.30 62.37 1.34 4.49 64.09
7 1.15 3.66 66.04 1.29 4.31 68.40
8 1.10 3.51 69.55 1.06 3.56 71.96
9 0.95 3.03 72.58 0.99 3.30 1526
10 0.89 2.83 75.41 0.78 2.63 77.88
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It is noted that using the Kaiser guideline would mean retaining too many PCs for some 

of which contribute less than 5% of the total variance. On the other hand using the scree 

test would only allow four PCs to be retained which account for only 53% of the total 

variance. We settle for a compromise by retaining the first seven PCs that explain 66% 

and 68% of the 6-Month SPI and 12-month SPI respectively.

(a) 6-Month SPI (b) 12-Month SPI

'5  CM -

o
0 5 15 20 2510 30

in -

"3 n  -

'Turn annu a  ao  -

0 5 10
Rank of Eigenvalue

15 20 25 30
Rank of Eigenvalue

Figure 3.17 Scree test plots of the eigenvalues obtained from applying PC A to (a) 6 
month SPI composite drought data, (b) 12-month SPI composite drought data. The 
horizontal line shows the cutoff according to Kaiser criterion.

The SPI is derived from rainfall, which in turn is influenced by synoptic and regional 

factors. Thus, some degree of similarities between the SPI patterns o f neighboring 

locations should be expected. Such similarities are not accounted for in the PCA solutions 

making some of the derived PCA solutions unrealistic. Rotating the retained PCs 

minimizes the ambiguities associated with the initial PCA solutions. The retained PCs 

were rotated according to the varimax method. The rotated solutions are shown in Figure 

3.18 (a) and(b)

A perusal of the PCA loadings in Figures 3.18 (a) and (b) show that generally similar 

loading patterns are obtained for both the 6-month and the 12-month SPI analysis. For 

example, most of Uganda seems to be loaded under the first component as shown in 

Figure 3.18(a). The same area is observed to be loaded with the third component in 

Figure 3.18(b). It would seem that in this case, PCA extracts the same patterns in both 

cases but under different components.
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Figure 3.18 (a) Loading of the seven rotated components obtained from PCA analysis of 6-month SPI drought data.
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Figure 3.18 (b) Loading of the seven rotated components obtained from PCA analysis of 12-month SPI drought data.
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3.4.2 The PCA Delineated Drought zones.

Figure 3.19 shows the PCA delineated homogeneous drought zones (labeled A to G). The 

spatial boundaries of these zones are inferred from the PCA loading patterns obtained in 

Figure 3.18 (a) and (b). There is high correlation of the drought indices within the grids 

o f a given homogeneous zone, indicating possible common drought causing factors. 

These factors are possibly closely related to the nature of the rainfall generating 

mechanisms in the specific zones which range from synoptic to regionally induced meso- 

scale systems. The factors that control rainfall over East Africa include the position, 

orientation, and intensity of the ITCZ, subtropical anticyclones, Indian Ocean cyclones, 

monsoon winds, Sea Surface temperatures, the jet streams, and several local factors like 

topography and the influence of large water bodies.

Figure 3.19 PCA Delineated Drought zones for East Africa based on 6 and 12-month SPI.
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The drought zones shown in Figure 3.19 bear some resemblance to the homogenous 

precipitation zones delineated by harmonic analysis (Figure 2.5). This is to be expected 

since it is likely that during a drought episode, rainfall is likely to be uniformly low in a 

given homogeneous precipitation zone giving rise to similar drought conditions 

throughout the zone. For example zone 1 and 2 (Uganda) in Figure 2.5 seem to make up 

region A in Figure 3.19, while the semi arid north and northeastern Kenya are zone 3 and 

region C in Figure 2.5 and 3.19 respectively. The similar precipitation based zones 

obtained by using widely different techniques demonstrate the overall validity of the 

results obtained.

Most of Zone C (eastern and northeastern Kenya) is a basically semi-arid region 

receiving less than 400 mm of annual rainfall. The effect of droughts on such dry regions 

can be disastrous. The average moisture conditions in such dry lands are such that the 

biosphere is already living on or quite close to the minimum amount of water required to 

survival, and so any further reduction in water supply often creates an extremely stressful 

environment for survival. It is therefore not surprising to find that most of the severe 

historical droughts documented in East Africa have occurred in zones C. The difference 

between zone B and H is probably brought about by the proximity and influence of the 

Indian Ocean.

Zone A covers most of Uganda and parts of western Kenya. Apart from the northeastern 

tip, most of Uganda receives substantial and reliable amount of rainfall throughout the 

year in excess of 1000 mm. The frequency of documented droughts with severe impacts 

in this zone is less when compared to other zones. The Congo airmass seems to play an 

important role in enhancing the long rains in this region (Okoola, 1999 and Trewartha, 

1981). Years that had weak westerly incursions and subsequent strong flows of the 

Southeasterlies reaching deep into East Africa (as far as zone A) have been observed to 

be particularly dry years in zone A (Trewartha, 1981).

Zone D covers most of central and northern Tanzania as well as southwestern Kenya 

while zone G covers the southern Highlands o f Tanzania. Most parts o f zone F receive
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relief rainfall unlike the surrounding zones which rely on convectional rainfall. Zone D 

has one dry and wet season which follows the passage of the ITCZ. The main moisture 

source for this zone are the moist southeasterly monsoons. Any atmospheric disturbance 

that weakens the southeasterly flow into this zone during the wet season will bring about 

diminished rainfall throughout the zone.

3.4.2.1 Interrelation of the drought zones

We carried out a simple correlation analysis between the index values o f a selected 

drought zone with that of other zones, conditioned on the drought state o f the selected 

zone (Table 3.7)

Table 3.7 Inter -  zone correlation matrix of 12-month SPI between the delineated 
homogenous drought zones.

Zone experiencing 
drought conditions A B C D E F G

A -0.35 0.04 0.29 0.08 -0.18 -0.26
B -0.29 0.04 0.04 0.07 0.25 0.34
C 0.25 -0.05 0.41 0.53 -0.01 0.21
D 0.56 -0.07 0.13 0.31 -0.21 -0.06
E 0.18 0.04 0.22 0.43 0.04 0.19
F 0.19 0.12 0.07 0.18 -0.03 0.02
G 0.06 0.29 0.17 0.37 0.29 0.23

Correlations (p) within the range - 0 . 1 8 > 0 . 1 8  are statistically significantly at 95% 

significant level (n * 120 months). These have been shaded gray in the table. In addition, 

the significant negative correlations are shown in bold figures.

The first column of Table 3.7 contains the zones whose 12-month SPI drought states are 

the reference for computing the correlations. For example, all the months for zone C 

(which is Eastern Kenya) whose drought index values indicated a moderate drought
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conditions or worse (i.e. 12-month SPI equal or less than-1) were selected. The 

aggregate values for the other zones corresponding to these selected months were 

obtained and correlated with the zone C values. The correlation results indicated that 

whenever zone C is experiencing drought, zone A (most o f Uganda) is likely to be in 

drought too (p=0.25), even though C and A are not spatially adjoining zones. 

Interestingly the analysis results showed that such relationship did not necessarily hold 

the other way round (Table 3.7).

From Table 3.7, it would seem that zone B (southwest East Africa) is least correlated 

with the drought state of the other regions. The observation that zone A (Uganda) is 

negatively correlated to the southern parts of East Africa (zone B, F and G) could be put 

to use in drawing up drought mitigation plans. Since Uganda and the later zones are 

seldom in drought at the same time, one could act as a source of surplus resources 

whenever the other is experiencing drought stress. Other relationships of interest would 

include that between zones D and A or D and F. The drought conditions in Zone D 

(central and northern Tanzania as well as southwestern Kenya) are positively correlated 

to those in Zone A (Uganda) and E (eastern Tanzania) but are negatively correlated with 

those in Zone F (southeastern Tanzania).

Such relationships between the various drought zones could be useful in designing 

improved drought monitoring and mitigation programs. Observations from historical 

rainfall records indicate that the whole of East Africa has never been in drought at the 

same time. Even during major historical droughts when large percentages o f East Africa 

suffered from severe dry spells, some regions were unaffected with good or even above 

average rainfall.

For example 1949 and 1984 were among the driest years in East Africa in the last 

century. The 1949 drought was particularly severe with wide spread loss o f animal life. 

Figure 3.20 (a) and (b) show the annual rainfall percentiles during those respective years. 

It is readily observed that some East African regions still experienced well above average 

rainfall during those drought years. Comparing the spatial extent of the 1984 drought and
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the 1949 drought (Figure 3.17), it is obvious that the areal extent o f the two drought 

events are quite exclusive o f each other. The 1984 drought was particularly harsh in zone 

A (Uganda) and some areas of zone C (Kenya). The impacts of the 1984 drought in zone 

A were widespread but were not as severe as those felt by the dry lands in zone C. 

Ironically, the rest of the other zones received normal to above normal rainfall that year.

(a)

SO 00

3000

10 00

m

(b)

2000

36 . 38.  40 . 42 .

Figure 3.20 Annual Rainfall in terms of percentiles during the extreme drought years of 
(a) 1949 and (b) 1984.

3.5 Summary and Conclusions

In this investigation we analyzed the properties of several drought indices with the 

objective of identifying the most suitable index to detect and monitor meteorological 

droughts in East Africa. The indices that we analyzed included the Palmers Drought 

Severity Index (PDSI), Bhalme-Mooley Index, and the Standardized Precipitation Index 

(SPI)- These indices were selected mainly because theoretically they can be applied to 

regions of varying climates.

Our analysis shows that the original PDSI algorithm, designed for the US, did not give 

reasonable results for some parts of East Africa -  especially the drier parts. The PDSI 

algorithm was partly modified to make it more applicable to the climate o f East Africa. In 

particular, a new method was suggested to compute the potential runoff, the Z index and 

the recursive formula that is perhaps the core o f PDSI. The modified PDSI algorithm
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produced more realistic results than the unmodified PDSI for all the varying climates 

found in East Africa.

The Bhalme-Mooley index whose input is rainfall only, was found to be highly correlated 

to that of the modified PDSI. This suggested that for East African drought, most of the 

variability in both indices is due to precipitation alone. Thus the Bhalme-Mooley index, 

which does not involve complex water balance computations, could be as informative as 

the complex PDSI.

Our analysis showed that the SPI is a relatively more suitable index for monitoring 

droughts in East Africa because of its flexibility to track droughts at different time scales 

according to a user’s interests, its spatial invariability, its suitable statistical properties, 

the ease of computation and its ability to extract more or less the same information 

contained by the temporally fixed PDSI. If required, the SPI can even be computed at 

daily intervals provided that suitable daily records are available.

We introduced two modifications to improve SPI. First, instead of fitting a gamma 

distribution to the “smoothed” precipitation data, we used an unbiased, P3 plotting 

position formula (Nguyen, et al. 1989) to reduce the effects of outliers on the results. 

Second, we proposed getting the final SPI by transforming the non-exeedence 

probabilities into standard P3 variates using regional parameters derived from the flood 

index method, instead of using a Gaussian normal distribution that typically introduces 

distortion in the tails for skewed data (such as most precipitation data). The modified SPI 

produced results that are more representative of East Africa’s drought conditions than the 

original SPI of Mckee, et al. (1993).

Using the rotated principal component analysis (RPCA) on 6-month and 12-month SPI, 

we delineated East Africa into 7 drought homogenous zones. The spatial distribution of 

these zones bore some resemblance to the precipitation zones delineated using harmonic 

analysis (Chapter 2).From the inter-zone correlation between the homogenous drought 

zones, it seems that some zones in East Africa are likely to experience drought

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-91 -

simultaneously, while others are likely to undergo opposite experience, e.g. droughts in 

some zones but wet spells in others.

In conclusion,

1. The original Palmer Drought Severity Index, though popular and widely used in 

North America, is not suitable for use in East Africa.

2. The SPI is likely more suitable drought index for tracking and monitoring 

droughts in East Africa. The SPI has been modified to take into consideration the 

skewed nature of precipitation data.

3. East Africa can be divided into several drought zones that are closely related to 

the homogeneous precipitation zones. There is no one single drought episode that 

affects the whole of East Africa and spreads to all the zones concurrently.
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Chapter 4 East African Rainfall Anomalies and Drought Index Patterns 
in Association with El Niflo/Southern Oscillation.

4.1 Background

Part of this investigation investigates the extent of El Nifio -  Southern Oscillation’s 

(ENSO) influence on the moisture regime of Eastern Africa. ENSO is probably the most 

notable climate variation existing at interannual scales (Rasmusson and Wallace, 1983). 

Precipitation anomalies in relation to ENSO events have been extensively analyzed and 

documented for different parts of the world, e.g. Rasmusson and Carpenter (1983) and 

Ropelewski and Halpert (1986, 1987).

El Nifio arises from a persistent low-pressure zone in the western Pacific and an equally 

persistent high-pressure zone over the Eastern Pacific. These coupled pressure systems at 

times seesaw back and forth producing phenomenal climatic perturbations that affect 

many regions of the world (Rasmusson and Carpenter, 1983). Normally, trade winds are 

driven from the eastern to the western Pacific by differences in atmospheric pressure, 

which move water westward along the Equator, maintaining a buildup of warm water and 

creating a higher sea level elevation in the western Pacific Ocean. During the onset of El 

Nifio (SOI drops to a negative value), the atmospheric pressure in the eastern Pacific 

decreases, trade winds weaken, the warm pool extends eastwards and piles off the coast 

of Peru and Southern Ecuador. This is the warm phase of ENSO. When conditions 

opposite to the above occur, it is called the La Nifia event or the cold phase, which is an 

amplification of “normal” conditions (Rasmusson and Carpenter, 1983).

Previous studies have indicated some relationships between East African rainfall and the 

Southern Oscillation (Ropelewski and Halpert, 1996; Ogallo, 1988; Nicholson and 

Kim, 1997) such that warm events of ENSO tend to be associated with above average 

rainfall events and vice-versa. Ogallo (1988) used lag correlation and factor analysis to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 9 3 -

show that there is significant negative correlation between Southern Oscillation and 

seasonal rainfall over parts of East Africa during October -  December. Nicholson and 

Kim (1997) studied the rainfall response over the entire Africa to ENSO episodes in the 

Pacific. They identified southeastern Africa as one of the IS sectors where ENSO appears 

to modulate rainfall.

However, much remains to be studied about the effects of global, regional and local 

circulations on rainfall generating mechanisms in East Africa and how they are connected 

to ENSO.

This part of the investigation has 3 primary objectives:

(1) By applying harmonic analysis and bootstrap re-sampling technique to ENSO 

and non-ENSO composites of rainfall anomalies and 6-month SPI drought 

index, identify homogeneous response regions o f East Africa to ENSO;

(2) Using the 6-month index time series formulated for the homogeneous regions 

identified in (1), perform a detailed analysis of the ENSO effects on the East 

African Rainfall at seasonal time scales;

(3) Further analyze the regional and seasonal dependency of ENSO effects on East 

African Rainfall from boxplots of the 6-month SPI between ENSO and non- 

ENSO affected seasons.

4.2 Data and Methodology

The rainfall data for this analysis was derived from the Hulme (1994) archive 

(‘gu23wld0096.dat’, Version 1.0, constructed and supplied by Dr Mike Hulme at the 

Climatic Research Unit, University of East Anglia, Norwich, UK). This is a historical 

monthly precipitation dataset for global land areas from 1900 to 1996, gridded using 2.5° 

latitude by 3.75° longitude resolution. Using this gridded dataset of 31 grids (Figure. 4.1), 

the standardized precipitation Index (SPI) is computed from a modified procedure of 

Edwards and McKee (1997). Details o f this modified non-parametric SPI index are given
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in Chapter 3. In this investigation, East Africa refers to Uganda, Kenya and Tanzania 

(Figure 4.1).

6.2!

3.7!
Uganda \

1.2! Kenya

A—-6.2: r :Tanzani%
IS, #,°

-8.7! r

-13.7 5 r

28.125 31.875 35.625 39.375 43.125
Longitude

Figure 4.1 Study area showing the rainfall grid used in the study

A composite dataset comprising of data recorded during ENSO events which are 

identified by climatic indices such as NIN03 or SOI (Southern Oscillation Index) 

exceeding certain threshold values (Rasmusson and Carpenter, 1983; Ropelewski and 

Jones, 1987; Piechota and Dracup, 1996) is formed. Data falling in-between ENSO 

episodes are not included in the composite dataset. Table 4.1 shows the years when 22 

El Nifio and 13 La Nifia events occurred within the 1900-1996 period.

Table 4.1 A list of the major ENSO events that occurred within the 1900-1996 period.

El Nifio La Nifia

1902, 1905, 1911, 1914,1918, 

1923, 1925, 1930, 1932,1939, 

1941, 1951, 1953,1957,1963, 

1965, 1969, 1972, 1976,1982, 

1986, 1991.

1904, 1909, 1916, 1924, 1928, 

1938, 1950, 1955, 1964, 1970, 

1973, 1975,1988.
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Harmonic analysis, which assumes that any function can be represented as the sum of a 

series of different sine curves, is applied to the ENSO composites to identify coherent 

regions. Harmonic analysis had been used by Dracup and Kahya (1994) to study 

streamflow variability in the United States, and by Halpert and Ropelewski (1992) to 

investigate the global and regional scale precipitation and temperature patterns associated 

with ENSO.

4.2.1 Application of Harmonic Analysis

Theoretically, any function can be represented by an infinite series o f sine and cosine 

waves, commonly referred to as the Fourier series. For discrete observed data, a finite 

number of series will generally be sufficient. For example, the sample mean, five sine 

and six cosine terms will be sufficient to completely describe the variation of a dataset 

containing 12 average monthly values. The determination of the finite sum of sine and 

cosine terms is called the “Harmonic analysis” (Panofsky and Brier, 1965).

The first or the “fundamental” harmonic has a period equal to the total length of the time 

series being analyzed. The second harmonic has a period equal to half the fundamental 

period; the third harmonic has a period of one third of the fundamental and so forth. The 

theoretical details of this analysis are discussed at length by many authors, e.g. Panofsky 

and Brier (1958) and Rayner (1971). Some of these details are presented in Chapter 2.

By applying harmonic analysis to the ENSO composites, we assume that (a) the 

composite events can be represented by a summation of cosine and sine curves, (b) the 

first few harmonics extract most of the variance, and (c) the characteristics of the ENSO 

response does not drastically change with time for a given location.

Based on the events identified by Rasmusson and Carpenter (1983), ENSO composites 

were formed for the two-year period starting on July preceding the episode, designated as
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July (-) in this investigation. By this convention die evolution of a typical El Nifio 

episode would depend on getting positive SST anomalies off the coast of Peru in 

December (-) with the maximum anomalies occurring between January (0) and December 

(0). The ENSO composites were prepared from standardized precipitation anomalies and 

six-month Standardized Precipitation Index (SPI<>) for both El Nifio and La Nifia events, 

giving rise to four major composite datasets, which were subjected to harmonic analysis. 

The phase and amplitude o f the first harmonic were presented on harmonic dials (Figure 

4.2).

The harmonic analysis was applied to each ENSO event individually and an average of 

the harmonic series for all the ENSO events at grid locations was computed. Although 

the average harmonic could be obtained by applying the analysis on the average of the 

ENSO events, the former was preferred because by comparing the individual harmonics 

obtained from the ENSO events, it could show the coherency of the analysis results.

J F M A M J J A S O N O

ST

J A S O N O J F M A M J  J A S O N D J  F MAM J<-> (0) (♦)
J F M A M J  J A S O N D

J
J A S O N O J  F M A M J  J A S O N D J  F M A M J(-) (0) (♦)

Figure 4.2 The 1941 ENSO composite data for (a) Northeastern Kenya and 
(b) Northeastern Tanzania, fitted with the first harmonics. The harmonic dials on the right 
show die magnitude and phase of the first harmonics. -1,0 and +1 refer to months in the 
years prior to, during and following an ENSO event
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4.2.2 Identificatioii of the ENSO Response Periods

For climate predictions, it is beneficial to delineate the months that show an increased 

modulation o f the drought index (or precipitation) by the ENSO phenomena. An average 

36-month ENSO aggregate composite is obtained for each region identified in Figure 4.3. 

The response periods of maximum ENSO modulation are intervals in which the 

composite variable is consistently greater than the threshold level set at 90% significant 

level of a randomly re-sampled composite for at least three months. Typically, there will 

be a positive and a negative ENSO response corresponding to the minimum and 

maximum harmonics arising out o f the harmonic analysis technique. However, by 

carefully inspecting the composite, it is often possible to select either the negative or the 

positive responses as the dominant ENSO response.

If the variable is assumed to be normally distributed, the significant levels can be 

obtained from standard normal tables. Alternatively, threshold values can be established 

using bootstrap re-sampling which does not require the normality assumption, which was 

what we chose in our analysis.

4.2.2.1 The Bootstrap re-sampling procedure

Traditionally, researchers have relied on the central limit theorem and a Gaussian normal 

approximation to obtain confidence intervals. This approximation is only valid if the 

variable being analyzed, or some known transformation of it, is asymptotically normal. 

Since 6-month SPI rainfall anomalies are mostly not normally distributed, it is better to 

use a bootstrap re-sampling procedure that can accommodate both normal and non­

normal distributions. In the bootstrap technique, n new samples, each of the same size as 

the observed data are drawn with replacement from the observed data. The statistics are 

calculated for each new set o f data, yielding a bootstrap distribution of the data. The 

fundamental assumption of bootstrapping is that the observed data are representative of 

the underlying population. By re-sampling data from the observed sample, the process o f
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sampling observations from the population is mimicked. Further details of bootstrapping 

can be obtained from Efron (1982), Efron and Tibishrani (1993) and SPLUS 4 (1997).

The database of El Nifio (La Nifia) composite is established from 22(13) 36 □ month 

events, and each of which consist of 12 months prior to the El Nifio (La Nifia) event, 12 

months of the actual warm (cold) ENSO phase and 12 months after which the ENSO 

signal completely dissipated. The bootstrap composites are obtained from randomly 

selecting 22 events (each event represents 3 consecutive years) of data with replacement 

from the available 96 years of data. Thus the yearly structure of the data is maintained. 

This is repeated 500 times for each of the regions. The empirical statistics of the 

bootstrap composites are computed to obtain the 90% confidence interval within which 

we expect the mean of a randomly re-sampled aggregate composite to lie (Piechota and 

Dracup, 1996). This interval is then used to identify the ENSO period of maximum 

response. The results from this analysis are shown in Figures 4.4 to 4.6.

4.23 Boxplots of Seasonal 6-month SPI Conditioned on ENSO Phase

The shift in the probability distribution of the 6-month SPI index in relation to ENSO is 

examined by separately computing the lower quartile, median and upper quartile of the 

seasonal index during El Nifio, La Nifia and non ENSO years and compare them using 

boxplots (Figure 4.8). The 6-month SPI data were first prepared on a regional basis, and 

then the data grouped under ENSO influenced and non-ENSO seasons.

43  Discussion of Results

43.1 Harmonic Vector Maps

The results of harmonic analysis on El Nifio composites composed of standardized 

rainfall anomalies and six-month Standardized Precipitation Index (SPI6) data are shown 

in Figure 4.3, (a-c) while (d-f) show the corresponding results for La Nifia composites.
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Figure 4.3 Plots showing (a) vector coherence of rainfall anomaly, (b) vector coherence of 6-month SPI, (c) variance (ve) extracted 
by the first Harmonic of El Nifio composites; and the corresponding plots, (d) to (f) of La NiAa composites. The graded shading 
represents either the vector coherence ((a), (b), (d) & (e)) or variance ve ((c) & (0) while the size and direction of arrows represents 
the magnitude and phase of the first harmonic respectively. The five zones identified in each plot signify areas with homogenous 
ENSO response identified from harmonic analysis.
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Based on Figure 4.3, we delineated five candidate regions that have distinct response 

patterns to ENSO signals (Table 4.2) assessed in terms of the magnitude, direction and 

general consistency of the harmonic vectors. The zones of El Nifio influence delineated 

from rainfall anomaly composites are generally similar to those obtained from six-month 

SPI composite data (see Figure 4.3 (a) - (b), (d) - (e)). From these figures, it seems the 

influence o f La Nifia in East Africa is relatively modest compared to El Nifio. Nicholson 

and Selato (2000) also did not find strong and coherent La Nifia influence in East Africa.

Table 4.2 East African regions that have unique El Nifio response patterns.

Region Description

1 Northern Uganda including the Uganda -  Sudan border area

2 Southern Uganda and much of Lake Victoria basin

3 Northeastern Kenya

4 Northeastern quadrant of Tanzania bordering the Indian Ocean

5 Southern Tanzania

Region 4 has the highest vector coherence (>60%) as well as the highest % of variance 

extracted by the 1st harmonic (>90%) which implies this zone has the most homogeneous 

relationship with the El Nifio phenomena partly due to its proximity to the Indian Ocean. 

A somewhat similar zoning or pattern of influence seem to apply to La Nifia composites 

albeit at a lower degree of clarity partly because the influence of La Nifia is much more 

modest compared to El Nifio.

Some areas o f East Africa, e.g. central Kenya and southwestern Tanzania, do not seem to 

respond to the ENSO phenomena, probably because these areas are subjected to stronger 

local orographic influence than the global ENSO signals, e.g. central Kenya and 

southwestern Tanzania that are highland areas. In terms of ENSO response, vector maps 

in Figure 4.3 (b) & (c) show northwestern Tanzania to be almost totally independent of 

the rest of East Africa.
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Region 1 has been different from other East African regions (e.g., Ogallo, 1988) partly 

because it is believed to receive its moisture from the tropical South Atlantic and moist 

Congo air mass while most of East Africa gets its moisture from the Indian Ocean via the 

northeasterly and northwesterly monsoons. Region 2, which includes the Lake Victoria 

Basin, seems to be reasonably influenced by El Nifio even though it is generally wet all 

year round because of the influence o f Lake Victoria. The statistically significant ENSO 

response periods are determined by the procedure outlined in Section 2.2.1 above. The 

response periods for the five regions are shown in Figure 4.4.

With respect to 90% bootstrap confidence limits, it seems that all five regions have 

identifiable periods of significant ENSO response with Region 5 having the most distinct 

(in terms of SPI magnitude) ENSO season (Figure 4.4). There is a general lag between 

the maximum ENSO phase and a region’s climatic response indicated by the 6-month 

SPI. The degree of this phase lag depends on the region and the type of ENSO phase. 

Region l ’s response in the El Nifio year is almost opposite to that of the La Nifia signal. 

The maximum response for Region 2 seems to occur in the winter at the end of a warm 

event year, while the response for Regions 3 and 4 reaches the peak in the last four 

months of an El Nifio year. The maximum response for region 5 occurs between the first 

six months after an El Nifio year.

There is a strong positive response for region S that occurs in the first six months after a 

La Nifia event On the other hand there is hardly any La Nifia response in region 2. For 

regions 3 and 4 there is virtually no lag in responding to La Nifia events. Region 3 and 4 

are generally similar with respect to timing and phase of the ENSO response (Figure 4.4). 

The subtle difference between these two regions lies in the strength of the response. Both 

these regions receive their moisture from the Monsoon winds, which deposit moisture 

inland as they change direction due to a combination of Coriolis force and orographic 

channeling effects.
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Region ElNiflo
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Figure 4.4 ENSO aggregate composites (3-year period) for S East African regions based 
on the six-month SPI. The two horizontal lines enclose 90% o f  the randomly re-sampled 
composites obtained by bootstrap methods. The 2 vertical lines represent die 12-month 
period of maximum ENSO activities. The histogram represents the 6-month SPI index 
averaged either from 22 episodes of El Nifio, or 13 episodes o f La Nifia
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Figure 4.5. Samples of ENSO aggregate composites (3-year period) based on standardized rainfall anomalies for selected grids. The 
two horizontal lines enclose the 90% of the randomly re-sampled composite obtained by the bootstrap methods, while the 2 vertical 
lines represent the 12-month period of maximum ENSO activities.
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Figure 4.6. Samples of ENSO aggregate composites (3-year period) based on six-month SPI for selected grids. The two horizontal 
lines enclose the 90% confidence interval for the mean of a randomly re-sampled composite obtained by bootstrap methods, while the 
2 vertical lines represent the 12-month period of maximum ENSO activities.
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Regions 2 and 5 generally respond late to both cold and warm ENSO events (Figure 

4.4). It is interesting to note that Lake Victoria basin (in Region 2) does show some 

positive feedback for November, December and January. The normal rainy seasons of 

this region are the northern hemisphere spring and autumn. It would seem that El 

Nifio links the autumn rains, enhance the winter precipitation and the next spring 

“long rains" into one prolonged wet spell for Region 2. Region 5 seems to have more 

in common with the general South African circulation than the East Africa 

climatology, as observed by Nicholson and Kim (1997), and others.

The La Nifia episodes are fewer than El Nifio events. Even then, it is clear from 

Figure 4.4 that generally wet conditions prevail at the end of La Nifia events for 

Region S. It is also interesting to note that the El Nifio 36-month aggregate composite 

for region S is almost a mirror reflection of its La Nifia counterpart (see Figure 4.4) 

where the maximum response always occurs in the first half of the year after the 

ENSO year.

The exact mechanisms that control the co-variability of East African rainfall and 

ENSO are not well understood but our conventional knowledge of the general 

circulation suggests two primary factors. The first factor is associated with the 

eastward shift of the Walker circulation away from Central Africa towards East 

Africa during warm ENSO episodes. This tends to enhance rainfall for the short rains. 

ENSO is associated with the buildup of warm SST anomalies over the Indian and 

Atlantic Ocean basins, which would bring rainfall to some parts of East Africa 

(CLIVAR, 1999). The anomalously warm SST in the western Indian Ocean generates 

east-west SLP gradients that drive the observed near surface winds. This scenario of 

SST anomalies, which usually builds up in ENSO years, may account for much of the 

ENSO-East Africa teleconnection. On the other hand, a second mechanism that tends 

to counter the effect of the eastward shift in the walker circulation is the reduced 

surface pressure due to the presence of higher SST over the Indian Ocean adjacent to 

East Africa during warm ENSO events (CLIVAR, 1999). The reverse departures in 

surface pressure gradient probably result in offshore wind anomalies that defer the
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transport o f moisture towards some parts of East Africa, which probably contributes 

to reduced rainfall in Region 5 during warm ENSO episodes.

Figures 4.5 and 4.6 show a sample of ENSO composite aggregates for individual 

grids based on standardized rainfall anomalies and 6-month SPI respectively. The 

confidence intervals for the rainfall anomalies are not straight lines because they were 

established by bootstrap re-sampling methods on a month-by-month basis. Using 

precipitation anomaly data is less desirable than the six-month SPI because the former 

contain more data noise (Figures 4.5 and 4.6). However, it is still possible to observe 

some ENSO influence using the precipitation anomalies, although the response 

patterns are somewhat less defined when compared to those found in Figure 4.6 for 

the 6-month SPI, which with less data noise is able to show a more definite response 

to ENSO effects.

4.3.2 Index Time Series

Index time series (ITS) for the five regions (Figure 4.7) were formed to gauge the 

efficiency of the ENSO based seasonal zoning with respect to the seasons identified. 

In Region 3, the months of July to January within an El Nifio year tend to have higher 

than normal 6-month SPI values that are statistically significant at 90% level. 

Therefore the ITS of say, Region 3, consists of 97 values of 6-month SPI averaged 

from July to the following January for the 1900 to 1996 period and these values are 

meant to show whether the delineated ENSO season actually exhibits behavior 

expected in ENSO years. The number of months and the months selected to form the 

ITS differ from region to region, and may differ between El Nifio and La Nifia ITS, 

depending on the months that respond positively (or negatively) to ENSO at 90% 

significance level (see Table 4.3).
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Figure 4.7. Index Time Series (ITS) based on 6-month SPI indices from 1900 to 1996 
for Regions 1 to 5. The months that make up the identified ENSO response period 
change from region to region and between El Nifio and La Nifia. For example, the 
ITS o f say, Region 3, consists of 97 values o f 6-month SPI averaged from July to the 
following January for the 1900 to 1996 period (Figure 4.4). The dark columns 
represent either El Nifio or La Nifia years.
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The ITS in Figure 4.7 confirm most of the previous findings. Most El Nifio years in 

Region 2, 3 and 4 show a positive ITS value while Regions 1 and 5 had negative ITS 

values. The three worst droughts in Region S occurred during El Nifio events as 

shown previously. As expected, the ITS values based on La Nifia are less informative 

compared to El Nifio whose influence is relatively strong except in Region 3, where 

the ITS shows that three worst droughts were all associated with La Nifia events.

Table 4.3 Months used in the formation of the ITS series. (0) denotes ENSO year 
while (+) denotes post-ENSO year.

Zone El Nino La Nina
1 May ( 0 ) - July (0) June (0) -  October (0)
2 October (0) -  April (+) January (+) -  April (+)
3 July (0) -  January (+) July (0) -  December (0)
4 August (0) -  January (+) June (0) -  September (0)
5 January (+) -  June (+) January (+) -  June (+)

4 3 J  Shift in the Distribution of 6-month SPI under ENSO Influence

Boxplots in Figure 4.8 clearly show the shifts caused by ENSO in the percentile 

distributions of 6□ month SPI in East Africa. These shifts are quite significant for 

some regions in certain seasons. The boxplots for Region 1 show that for the summer, 

dry conditions are more likely to occur during El Nifio than non-ENSO years. In 

contrast, summers of La Nifia years are likely to be wet in this region. The median 

drought indices of summer La Nifia is as high as the 75th percentile drought indices 

of the summer El Nifio. The opposite occurs during the winter seasons when Region 1 

is likely to be wetter during El Nifio years. Essentially, La Nifia winters in Region 1 

seem to be much drier than El Nifio winters. These results agree with those obtained 

from ENSO aggregate composites, which show that for Region 1 La Nifia (El Nifio) 

events exert a negative (positive) influence on the winter precipitation after the ENSO 

year.
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Conversely Region 2 (Lake Victoria Basin and surrounding areas) is likely to have 

wetter conditions during the spring long rains after an El Niflo year compared to non- 

ENSO years. The 50th percentile of spring long rains in an El Niflo year are as high 

as the 75th percentile of a non-ENSO year. Relatively wet winters after an El Nifio 

year shown here agree in conformity with aggregate composites in Figure 4.4.
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Figure 4.8. Boxplots of 6-month SPI for El Nifio, La Nifia and non-ENSO periods for 
Regions 1 to 5. The middle line in the box represents the median; the top and bottom 
of the box represents 75th and 25th percentile, while the top and bottom brackets 
represent the maximum and minimum values, respectively.

There is little or no influence of ENSO on the autumn short rains in region 1, 2 and 5. 

This is in contrast to the findings by Nicholson and Kim (1997) who suggested that
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short rains are enhanced in equatorial East Africa during ENSO years, but the spring 

long rains are reduced. The difference could be attributed to several factors. First, we 

used the bootstrap methods to identify statistically significant anomalies during 

ENSO response periods, whereas Nicholson and Kim only relied on the location of 

peaks and troughs in the first harmonic to identify the periods of maximum and 

minimum ENSO responses. Second, their definition of equatorial Africa covers 

almost the entire East Africa, while we subdivided East Africa into 5 regions. Third, 

their definition of rain seasons differ from that of East African Meteorological 

Department (1963) by a month, e.g., their autumn or “short rains” season is OND 

instead of SON; in other words, their results show that rainfall in OND and JFM are 

enhanced but slightly reduced in AMJ. A better representation of the rain seasons in 

East Africa should be that we adopted in this analysis; e.g., in many parts of East 

Africa the long rains are in March to May (MAM). Based on the above factors, we 

believe our results are more representative than that of Nicholson and Kim (1997).

The El Niiio summer, autumn and winter seasons of regions 3 and 4 are clearly wetter 

than those of non-ENSO years. Conversely, La Nifia summers and autumns are more 

likely to be dry compared to non-ENSO years. This response is more critical to region 

3, which receives about 43% of its annual precipitation during the second half of the 

year than region 4, which gets only 15% of precipitation in the same period. The 

ENSO response of region 5 seems to be mostly opposite of other regions. Winter and 

spring after an El Nifio event seem to be particularly dry while those after La Nifia 

events are likely to be wet. ENSO seems to exert little influence on autumn short 

rains in Region 5.

It is clear from these boxplots that the ENSO response is both season and region 

dependent and some seasons are more strongly affected than others during an ENSO 

event. These observed influence of ENSO might be used in diagnostic monitoring of 

East African droughts, in anticipating rainfall anomalies whenever warm or cold 

ENSO phases are established.
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4.4 Summary and Conclusions

This investigation examined the influence of ENSO on East African moisture regime 

represented by the 6-month Standardized Precipitation Index (SPI) using harmonic 

analysis, composites o f 22 El Nifio and 13 La Nifia events respectively, and 90% 

confidence limits established from bootstrap re-sampling. It was found that ENSO 

responses in East African rainfall are region dependent, and the influence of El Nifio 

is stronger and opposite that of La Nifia. Five regions of unique ENSO responses 

have been identified, such that Region 4 has the highest ENSO vector coherence 

(>60%) and also the highest percentage of variance extracted by the first harmonic 

(>90%). High vector coherence probably means that the ENSO response has 

remained fairly constant and un-modulated by any low frequency variability. 

However, areas such as the central highlands of Kenya and southeast highlands of 

Tanzania have no discemable ENSO response probably because their rainfall 

generating mechanisms are more localized than synoptic.

ENSO responses are also season dependent. The length and temporal locations of 

these identified “ENSO seasons” vary from region to region, but they could be useful 

for preparing East Africa against potential droughts, particularly for Regions 4 and 5, 

which seem to have the most consistent and distinct ENSO responses. Region 5 

(southern Tanzania) experiences positive (negative) response under La Nifia (El 

Nifio) influence during January and June of the post ENSO year. Southern Uganda 

and much of Lake Victoria basin show some significant positive ENSO response for 

November, December and January. La Nifia usually precedes drought in most of East 

Africa except for Northern Uganda and Southern Tanzania, where El Nifio is a 

precursor of droughts.

From the index time series (ITS) formed out of 6-month SPI, we found that Regions 

2, 3, and 4 have positive ITS values during El Nifio years while regions 1 and 5 have 

negative ITS values during warm ENSO years. Boxplots show a shift in the 

distribution of 6-month SPI between ENSO and non-ENSO affected seasons. For
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Region 1 (northern Uganda), summers in El Niiio years are dry but the ensuing 

winters are often wet compared to non-El Nifio years. All winter responses are 

positive to El Nifio except for Region 5, which has a negative (positive) winter El 

Nifio (La Nifia) response. The boreal spring ENSO response is mixed except for 

regions 2 and S, which have positive and negative El Nifio response respectively.

Our results did not concur with that o f Nicholson and Kim (1997), who suggested that 

rainfall in equatorial Africa is enhanced in the short rains (autumn) season of the 

ENSO year, but reduced during the ensuing spring rains. Our findings show more 

details about the East Africa □ ENSO teleconnection dipole structure established by 

Ropeleweski and Halpert (1987) in their pioneer work. Further, the difference could 

be partly attributed to Nicholson and Kim’s (1997) definition of the equatorial Africa 

that covered almost the entire East Africa in one region, whereas we divided East 

Africa into 5 regions; their definition of rain season that differed from ours by a 

month (e.g., OND instead of SON), and the different approach used in obtaining the 

maximum (minimum) ENSO response periods. For reasons given in Section 3.2, our 

results are probably more representative than that of Nicholson and Kim (1997).
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Chapter5 Analysis and Prediction of East African Seasonal 
Droughts Using Canonical Correlation and Projection 
Pursuit Regression

Meteorological droughts are extended periods of anomalously low rainfall. The 

emphasis of this investigation is on the analysis and prediction of seasonal droughts 

in East Africa using (i) a Canonical Correlation Analysis model (CCA) with climatic 

inputs systematically and optimally weighted by Simplex (Nelder and Mead, 1965), 

and (ii) a nonlinear projection pursuit regression model.

There have been several studies that teleconnected climatic signals such as Southern 

Oscillation and Sea Surface Temperatures with East African raisfa'l (Cgallo, 1988; 

Ropeleweski and Halpert, 1996; Nicholson and Kim, 1997). However, as far as we 

know, there is no study that translates this knowledge into an operational rainfall 

prediction model in East Africa. Further, past application of CCA are predominantly 

based on one type of climatic signals as input, or occasionally based on two types of 

signals combined in an ad hoc manner.

Even though the dynamics of climatic phenomena are predominantly nonlinear, linear 

statistical models such as CCA are usually preferred over non-linear models because 

their simplistic nature makes them relatively easy for users to understand and apply. 

Rather than driving the CCA with only one climatic signal as has been done in the 

past, we optimize the weights applied to two input climatic signals (SST and SLP) to 

CCA by an automatic, direct search algorithm called Simplex (Nelder and Mead, 

1965). The aim is to improve the forecast skill of CCA based on optimally weighted 

SST and SLP since both input variables play a part in the rainfall climatology of East 

Africa.
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Beyond a linear statistical model such as CCA, this study also investigates the 

Projection Pursuit Regression (PPR) model, which is capable of modeling both linear 

and nonlinear relationships as a predictive tool for East African drought.

5.1 Overview of Canonical Correlation Analysis (CCA).

Canonical correlation analysis (CCA) has been used to forecast the surface climate in 

various places of the world such as the continental USA (Bamston, 1994), winter 

rainfall in Hawaii (Chu and He, 1994), May-June (Mei-Yu) rainfall for Taiwan (Chu, 

1998) and seasonal precipitation in tropical Pacific Islands (He and Bamston, 1996; 

Yu et al., 1997). Each of the above investigators implemented a slightly different 

flavor of CCA to fit the location being studied e.g. the manner in which the input 

variables were preprocessed and put together.

Although CCA was developed in the 1930s by Hotelling (1936), its potential for 

geophysical applications was noted only in the 1960s by Glahn (1968). However, 

CCA did not gain popularity until the late 1980’s. For example, Nicholls (1987) used 

CCA to analyze Darwin pressure, Tahiti pressure, southeastern Australian rainfall and 

Willis Island air temperature.

Many studies have shown that SST is one of the most important boundary forcings on 

the atmospheric circulation. By using the dominant eigenmodes of the Pacific SST as 

a predictor, Chu (1998) was able to forecast by 4 to 6 months lead-time Mei-Yu 

rainfall for Taiwan with moderate skill. He used dominant eigenmodes o f the SST in 

order to reduce the large dimensionality of the Pacific SST data set.

Canonical correlation can be used to analyze complete as well as composite data sets. 

In the latter, certain years of data are selected according to some criterion, e.g., when 

a base index such as a rainfall index or Southern Oscillation Index (SOI) exceeds a 

certain threshold. The mean values of various fields corresponding to those selected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 115 -

years are calculated (e.g. Piechota et. al. 1997; Pan and Oort, 1983). This approach 

may be appropriate if the events being teleconnected can be considered as a sequence 

of discrete “episodes” separated by periods within which the variations are of less 

interest. In this investigation, we use CCA to analyze a composite data set consisting 

of the driest (bottom 10%) SON rain seasons of the available 1900-1997 data.

S.l.I The Canonical Correlation Analysis (CCA) Model

CCA is the most general form of correlation analysis among a family of correlation 

techniques. A multiple regression is a specifically one dependent variable correlated 

with multiple independent variables, while a product moment correlation is even 

more restrictive, where one dependent variable is correlated only with one 

independent variable. However, CCA can be used to investigate the inter-correlation 

between two multivariate datasets. The derivation of CCA (mainly after Glahn, 1968) 

is briefly summarized below.

Suppose there are n observations of p variables Xj (i= 1, 2, .... p) and q variables 

Yi (i= 1 ,2 ,.... q) in a (p + q) dimensional space that can be arranged in a matrix form 

as nXp and „Yq. The variables X| and Y§ have means Xi and Yi respectively and 

deviations from the mean are given by Xj = X, -Xi and yi =Y* - Yi.

New variables „XpAj and nyqBj (i =1,2, ..., r) where r is less than or equal to the

smaller of p and q, can be formed such that their means are zero. The directional

matrices pAr and qBr are the canonical vectors of x and y respectively.

The variance - covariance matrices are given as

p^llp =~ p xnxp................................................................................... 0 )
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P̂ I2q P̂ 2lq jjP^nYq

<î 22q jjqYnYq

•(2)

(3)

The relationship between the new variables nXpAj and nyBj can be shown to be:- 

,A;SUpAr = Ir ..................................................................................... (4)

rBqSjjqB, = I............................................................................................ (5)

rApS,2qBr = A ,.........................................................................................(6)

where Ir is a unit matrix, A' and B' is a transpose of A and B respectively.

'4,

Ar =

0 0 
0 0 
0 0

5rJ

•(7)

where £i > ^  ^  4r.

Equations (4) and (S) state that the variance of each of the new variables is unity and 

each is uncorrelated with all others in its respective set. Equation (6) and (7) state that 

each element of nXpAj is uncorrelated with that of ny,Bi except for i = j when the 

correlation is £ .  The are known as the latent roots which indicate the size of 

patterns that are common to both data sets. The occurrence of a single non-zero latent 

root indicates that by appropriate weighting of the predictand „XP and predictors „Yq, 

one set of the variables can be projected into the space o f the other along a straight 

line. The existence of two non-zero roots indicates that each set projects linearly into 

a two-dimensional plane of the other set and so on. The square roots of the latent 

values are known as the canonical correlations.

To obtain the canonical correlations and the associated weights, Equation 6 is 

maximized within the limiting conditions imposed by Equations 4 and S. The steps 

involved are as follows:-
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A Lagrangian multiple of Equation 6 is formed, thus

L = rA'pS12qBr - 0 ( rA'pSllpAr - I r) .......................(8)

Taking partial derivatives with respect to A and B and equating to zero we obtain 

Equation (9) and (10).

pSI2,Br = 20 ,S 1IpAr ...........................................................................(9)

(qSi2p)'Ar = 2t|qS22qBr ......................................................................(10)

where dand rj are Lagrange multipliers.

Equation (9) and (10) are pre-multiplied with rA 'pand rB 'q respectively, yielding: 

r ApS12qBr = 26Lr = 2tjI....................................................................... (11)

Solving Equations 9 and 10 yields the following relationships:

p S i l p S .^ S ^ p A ^ ^ p A , .............................................................. ( 12)

,S 22qS2,pSUpS,2qBr = 46 qBr ............................................................... (13)

It can be seen from the format of Equations 12 and 13 that pAr and qBr are 

eigenvectors. Hence, pArand qBr can be found from

(pS;,lps I2qs i s 21p -^ p ip )A r = o ....................................................... (14)

( ,S i,S 2IpS;ipSI2q- ^ qIq)Br = 0 ....................................................... (15)

The £  satisfy the determinantal equations

|,s ; ,,l>s 1I, s i , s 1, „ - ^ , i p|= o ............................................................. (i6)

.............................................................. (i7)

Equations 16 and 17 are the fundamental canonical equations.
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The eigenvectors pAr and qBr can be scaled up or down by any arbitrary constants and 

still satisfy Equations 14 and 15. On the other hand it should be noted that only a 

unique set of pAr and qBr can satisfy Equations (4), (5) and (6). Most computational 

packages return normalized eigenvector solutions, which may not be necessarily the 

correct solutions for Equations (4) to (6). Appropriate scaling factors for the eigen 

vectors can be obtained by substituting the preliminary eigen solutions into Equation

(4) and (5). For example if the preliminary eigenvector is r A*, then

The correct eigenvector solution is obtained by multiplying rA* with the diagonal

The predictand variables „yq can be predicted in a least-square sense by the predictor 

variables „Xq using the following equation (Glahn, 1968),

It is possible that not all the canonical correlations (i = 1, 2 ,. . 0  are significantly 

different from zero. Typically, £  of small magnitude (< 0.3) are of little value, as they 

usually account for very little variability in the data. The significance of these 

correlations can be examined using the Bartlett’s Chi-Square test. If only <p numbers 

of the canonical correlations (or latent roots) are significant, we can replace rAr by

"A , where the latter contains only the first <p latent roots. Equation (19) is then

modified to:

<rA ;y s llrA ; « v (18)

matrix

(19)

(20)
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The prediction Equation (19) may be expressed in terms of „XP and „Yq if desired, 

such that

nXq =  n ^ p ^ r ^ r ® q ^ 2 2 q ~ n ^ p ^ r ^ r ® q S 2 2 q + n Y q ......................................(2 1 )

If the original variables nXp and „Yq were standardized, Equation (21) will reduce to 

(19) since „Xpand nYq are null matrices.

5.1.2 Principal Component Analysis (PCA) and CCA.

It is highly advisable to “reduce” the input data by the EOF or PCA before inputting 

them to the CCA (Yu et al., 1997; Shabbar and Bamston, 1996) and it is advisable to 

retain only a limited number of dominant principal components as input to CCA. This 

pre-processing reduces the large (p+q) dimensional space of the model input data into 

that of retained EOF modes. Moreover, by retaining the dominant modes of 

variability within each data set, relatively minor data noise is being filtered out. 

However it is possible that by pre-processing the data using PCA may destroy some 

correlation between the input variables.

An important advantage of using PCA prior to CCA (which has not been explicitly 

mentioned by others) is that pre-orthogonalizing the data greatly simplifies the 

process of solving the canonical determinant Equations (16) and (17). PCA 

transforms the data into orthogonal variables that are not correlated to each other. The 

covariances (Su and S22) of the orthogonal variables are all identity matrices whose 

inverse are also identity matrices. This means that when PCA is applied to the data 

fields, it is no longer necessary to find the inverse of Su and S22 in Equations (16) and 

(17), thereby avoiding that extra computational work which may at times be error 

prone if the data matrices are ill-conditioned.
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A brief description o f PCA is as follows:- Let x be the (n x p) demeaned observed 

data matrix where n is the number of cases and p the number o f variables. Then the j**1 

principal component Tj o f the sample o f p  variate observations is the linear compound

Tj = CijJC| + ... + epjxp ..........................................................................(22)

whose coefficients ey are the elements of the characteristic vectors of the sample 

covariance matrix S (or correlation matrix R if one opts for the correlation input) 

corresponding to the j*  eigen value Xj. In other words, the matrix x is transformed 

into the (n x p ) matrix T scores and (p x p) matrix E according to

J P=»XpEp ..........................................................................................(23)

subjected to two conditions: (1) the transformed variables are uncorrelated, and (2) 

each transformed variable accounts for the maximum total variance in the original 

data set in the given direction of the eigen vector. The transformational matrix E is 

orthogonal (i.e. pEpEp( = Ip) and is the normalized eigenvector of the covariance 

matrix, S, of the original variables.

In some literature, T is referred to as empirical orthogonal functions (EOF) which are 

mutually uncorrelated, and the matrix E is referred to as empirical orthogonal weights 

-EOW (Burke, 1996). The covariance of EOF is a diagonal matrix containing the 

eigen values of S in descending order i.e.

— — = X0=dE‘S„Eb ............................................................. (24)
 j j P " P P P P P P P  v /

where pXp is the diagonal eigen-value matrix. The matrices T and E obtained from the 

above EOF analysis may be sometimes re-scaled as follows

J,=JX'.................................................................................................. C25)

pLp=pEp* t ......................................................................................... <26>
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The new variable „ tp is referred to as principal components or PCs and has zero

mean and unit variance. The variable L is referred to as component loadings. The 

loadings represent the association between the PC components and the original 

variables. Each element in matrix L shows the amount of variance explained by a 

given PC in a given variable.

Un-rotated PCA solutions have been shown to suffer from four deficiencies, namely, 

domain shape dependence, sub-domain instability, sampling problems and inaccurate 

portrayal of the physical relationships embedded within the input matrix (Richman, 

1986). On the other hand, un-rotated solutions have several advantages -  namely; the 

ability to extract maximal variance from the dataset, their spatial and temporal 

orthogonality and their pattern insensitivity to the number of PC’s retained. These 

characteristics make un-rotated principal component solutions more appropriate for 

situations where pure data reduction is being sought (Richman, 1986). Hence in the 

CCA -  PCA model, only un-rotated PCA components are used.

The setup of our model necessitated the calculation of principle components of a 

large predictor data set several thousand times. Obtaining PCs of a large dataset is a 

computer intensive process because of the iterative procedure involved in obtaining 

the eigen solution of the large covariance matrix associated with the data. However if 

the data matrix is “fat and short” (i.e. n « p ) , matrix manipulations may be done 

which can cut down the computer time to less than a hundredth of the time it would 

otherwise take. In such a situation, the first n PCs can be obtained by finding the 

eigen solution of the pseudo-covariance matrix S'

s=„xpx ; i ................................................................... (27)

The mean of X must be subtracted from the matrix before transposing it, giving rise 

to S' which is a different covariance matrix from Su in Equation 1. The eigenvalues 

have to be scaled by a factor equal to the number o f variables divided by the number
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of cases (p/ri). In addition, the correct eigenvector is obtained by pre-multiplying the 

eigen solution of S' in Equation 27 with x, and then normalizing the product. The 

final solution will contain the correct first n eigenvectors.

In terms of the principal components, the input data sets can be written as;

where (Ex)' and (Ey)' are the transpose of the PCA eigen vectors of the predictors

and predictand respectively, \  and \  their respective eigen values, and 

n(x ,)p and „(y,)q their respective time coefficients or PCA component. The square

bracketed quantities in Equations 28 and 29 represent the spatial component modes of 

the predictors and predictand respectively.

When using PCA pre-filtered data in the CCA model, n(xt),, (i<p) and

n(yt)j’ 0 -  9 )are used in Equations 1 to 3 instead of nxp and nyq. The fundamental

canonical Equations 16 and 17 are then used to obtain the canonical vectors. An extra 

step is now required to convert the predicted time components „ ( y t ) j  to the original

units o f the input predictand data nyq. This is achieved by using the orthogonal 

characteristics of EOF modes. Hence,

Several terms in Equation 30 are star-superscripted to differentiate them from the 

quantities of a similar Equation 19. The covariance matrix need not be included in 

Equation 30 because it is an identity matrix (due to the orthogonal properties of the 

EOF modes). The input matrix a(xt)jhas to be estimated using the predictor EOF

loading pattern. If the new predictor information is mXp then the least squares 

estimate for the new predictand variables mYq is given as

„xp=n(xt)p[(Xx)^ (E x) ']

nyq=n(y,)q[ ( M ^ ( E y);]

(28)

(29)

(30)
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»Yq =[»X P- mXp][p( E J p(A .,) if]xcofArArB'ytof[ a y) t r ( E y);]+ mYq (31)

where xeof and yeo f are the number of PCA modes retained for the input into the 

CCA analysis.

It is desirable to show the relationship between the canonical variates and the original 

variables. The correlation between the original predictor data and the predictor 

canonical variates is given by:-

18 r =

1 \
, ( E J p(X ,U r (Ox)

-i
xeof •

while that between the original predictand data is given by

Ph ,=
! \

i(Ey)q(A.y)ŷ Jf (Oy)-I
yeof E ,

•(32)

•(33)

where ax and oy are diagonal vectors containing the standard deviations of the 

respective predictor and predictand variables.

The canonical maps g and h are not unit vectors nor are they mutually orthogonal. For 

ease of interpretation they may be normalized such that the sum of g' or h' 

components for a given canonical mode is equal to unity. Using the normalized 

canonical maps we may gauge the relative importance of the predictor data. However, 

if the predictor data set has too many variables, normalizing the g map might obscure 

the relationships since the normalized vectors are likely to have very small values.

5.1.3 Application of the CCA model to the East African Seasonal rainfall data.

5.13.1 The Data Fields.

The principle seasonal rainfall dataset for this analysis was extracted from the 

'gu23wld0098.dat' (Version 1.0) archive constructed and supplied by Dr Mike Hulme
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at the Climatic Research Unit, University of East Anglia, Norwich, UK (Hulme 

1994). This is a historical monthly precipitation dataset for global land areas from 

1900 to 1998, gridded using 2.5° latitude by 3.75° longitude resolution. The location 

of this rainfall grid is shown in Figure 5.1.

m

o

o

30 35 40

Figure 5.1 Map of East Africa showing the rainfall grids.

The focus of this investigation is drought analysis and prediction at one or more 

seasonal lead times. Hence, it is necessary to clearly delineate the rainfall seasons in 

the region. Previous studies such as that of Griffiths (1972) have pointed out the 

ambiguity as well as the complexity of rain seasons in the region, e.g., there is no 

single month during the year when all parts o f East Africa are dry. A description of 

the various rain seasons is given in Chapter 2.

Various homogenous rainfall zones are probably modulated by different sets of 

climatic factors and so it is important to delineate the extent of those areas that seem 

to share common seasonal rainfall patterns.

In this investigation we chose harmonic analysis (Chapter 2) as the method to 

regionalize East African rainfall. Basalirwa (1995) and Ogallo (1989) used PCA to
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carry out the above analysis. Griffiths (1972) had earlier on arrived at some 

descriptive homogeneous zones by compositing 12 East African maps each depicting 

the location of the 50mm isohyet for a given month (Jan to Dec). The results of the 

studies by the above three authors produced too many fragmented regions (in excess 

of 20 distinct zones) that were unsuitable for our analysis. On the other hand, the 

application of harmonic analysis to East African monthly rainfall yielded only six 

major zones (see Figure 2.5). Details of this analysis are given in Chapter 2. 

Assessing the skill o f the statistical prediction models are in terms of these six zones. 

It is probable that droughts may be more predictable in some zones than others.

Some seasons in some parts of East Africa do not contribute much rainfall. The 

normally dry periods may not constitute droughts since they are not anomalous. 

Rather, it is the failure of the critical wet rain seasons that trigger off drought 

conditions (see Chapter 2). Based on Table 2.1’s the important rain seasons in East 

Africa, it was decided that our focus should be on modeling the March -  May (MAM) 

and September -  November (SON) rain periods. In East Africa, these seasons are 

known as the “long” and the “short” rains respectively. These two seasons contribute 

more than 70% of the annual rainfall in many parts o f East Africa.

The predictor fields in this investigation were the Sea Surface Temperature (SST) and 

Sea level Pressure (SLP). The global SST 5° x 5° grid data for the period 1856-2000 

was obtained from the Climatic research Unit of the University of Anglia, UK. This 

data is expressed as anomalies with respect to 1961-1990 as the base period. The SLP 

data was obtained from the Global Mean Sea Level Pressure dataset (GMSLP2.1) 

provided by the UK Meteorology office. GMSLP2.1 is a global, observed monthly 

historical mean sea level dataset. The dataset begins in 1871 and is composed of 5° x 

5° gridded values. The quality control of this dataset is discussed by Basnett and 

Parker (1997). We transformed the GMSLP2.1 data into sea level pressure anomalies 

using the 1961-1990 climatology as the base period. Thus both predictor fields were 

anomalies with respect to the 1961-1990 period. In this investigation, we focused on
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the teleconnection between the predictor fields of the Indian and Atlantic oceans and 

East African rainfall. The selected predictor zones are shown in Figure 5.2.

© .

© -

5

0*0 o

Indian OceanAtlantic Ocean

o so 100
Longitude

Figure 5.2 shows the Ocean zones used in the teleconnection model. The dots show 
the actual location of the continuous (1900-1997) anomaly SST grid data used in the 
model. The large boxes outline the subzones whose data is further weighed using 
coefficients obtained by the Simplex algorithm of Nelder and Mead (1965).

Considerable effort was spent ensuring that only predictor grids with complete data 

were entered in the model (Figure 5.2). Where necessary, an interpolation scheme 

was used to estimate the missing SST or SLP grid data based on surrounding 

observed values. Grid points that had more than 20% of their data missing were 

excluded from the model. In particular, the 1942-45 years had many missing SLP and 

SST values especially in the central-southern Indian Ocean and southern Atlantic 

Ocean.

5.13.2 The Specific CCA Model Setup

An inherent lead-time is built within the model. This lead time or the amount of time 

between the end of the latest predictor season and the end o f the three month
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predictand season can be varied from three to twelve month periods at 3-months 

increments. However, our investigation was confined to one season lead-time 

prediction of March-May (MAM) and September-November (SON) rainfall only.

The predictor and predictand fields were arranged in such a way so as to incorporate 

both space and time evolution of the climate system that gives rise to the predictive 

skill. For example, using two previous seasons, March to May and June-August, to 

predict September-November rainfall probably accounts for some temporal evolution 

of the teleconnection mechanisms that may take six months or less. Thus the total 

dimension of the predictor matrix was 554 or (144 SST grid points +133 SLP grid 

points) x 2 seasons. Other investigators such as Bamett and Preisendorfer (1987) used 

four previous seasons to predict any given seasons. We used only two previous 

seasons to predict any given season primarily to decrease the matrix dimensions of 

the problem.

Moving windows of 60 and 44-year width were used to predict the long and short 

East African rains beginning in 1960 to 1989. For example, at the calibration stage 

the 60-year moving window, 1921-1980 March -  May and June to August predictor 

data was used to predict 1980 SON rainfall. The prediction skill between the 

predicted and the observed data was computed. Weights were applied to the predictor 

field and the whole process repeated until the prediction skill was maximized. The 

Simplex algorithm by Nelder and Mead (1965) (here after referred to as NMS) was 

used to optimize the predictor’s pre-weighting scheme. Finally, at the validation 

stage, the rainfall seasons for 1990 -  1997 period were predicted using the optimally 

weighted predictor fields. Several widths of the moving window were tested. In 

particular, a 44-year moving window generally returned better results than the 60- 

year moving window.

The NMS algorithm searches for optimal values (weights) in the parameter space of 

size m (without using any partial derivatives) so as to minimize a scalar objective 

function of least-square form,
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/ -  H

,)’ ............................................................................(33)
i - l

For NMS, the search in the m-dimensional parameter space is executed iteratively 

through 3 operations; expansions, contractions and reflection, until the objective 

function is minimized. More details of the NMS algorithm can be found in Nelder 

and Mead (1965) or more recently in Lagarius et al. (1998).

The predictor field used in our model was a combination of SST and SLP anomalies. 

These variables have a different units and a different range of magnitudes. This could 

impact the nature of the extracted principal components that are used in the CCA 

model along side the predictand PCA components. Furthermore, several ocean zones 

are poorly sampled relative to others. This is particularly true for the southern portion 

of both the Atlantic and Indian oceans (Figure 5.2). The zones that are better sampled 

probably contribute more to the major extracted PCA components than the poorly 

sampled ocean zones. Shabbar and Bamston (1996) sought to overcome this by 

applying relative weights to the various predictor fields. They apportioned arbitrarily 

heavier weights to those predictor fields that they conjectured to be most important to 

the model in an adhoc manner.

The application of NMS should be more superior and objective than that of Shabbar 

and Bamston (1996).. As far as we know, this is the first attempt to systematically 

search for optimal predictor weights in CCA applications.

The zones assigned with larger weights by the Simplex probably contribute more to 

the variability of the first several principal components used in the CCA model. The 

entire predictor field was divided into 13 zones (Figure 5.2). The SLP and SST 

anomalies in each of these zones were weighed with separate coefficients. In our 

case, the parameter space is of size 24 (m = 24) i.e., 13 for SST and 11 SCP. Two of 

the zones in the southern portion o f the oceans had insufficient SLP data; so they 

were excluded. The 24 coefficients were iteratively optimized by minimizing the least
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square difference between the observed and predicted rainfall fields of East Africa. 

By minimizing the least square difference, we were indirectly maximizing the 

forecast skill of the model at calibration stage. The validity of these weights was then 

tested at the validation stage using data independent o f the calibration experience.

5.2 Projection Pursuit Regression (PPR) Model

The statistical approach to modeling a response function can be broadly classified 

into parametric (e.g. linear and canonical regression) and nonparameteric (e.g. k- 

nearest neighbor method) methods, as broadly represented by Equation 34,

E (Y |X  = x) = m (xj,...,xp) + e .................................................. (34)

where Y and X are predictand and predictor, and e is a random term error. PPR is a 

nonparametric regression method that models the regression surface as a sum of 

general smoothing functions of linear combinations of the predictor variables in an 

iterative manner.

The first projection pursuit algorithm was proposed by Friedman and Tukey in 1974 

for exploratory data analysis. Later, Friedman and Stuetzle (1981) applied projection 

pursuit to regression problems, thus giving birth to the PPR technique. Friedman 

(1985) improved several algorithmic features and extended the approach to multiple 

response regression is addition to single response regression. It is the multiple 

response version of PPR that shall be of interest to us.

Although PPR has been around for some time, its application to real world data is still 

in its early stages. Klinke and Grassman (1998) suggest that the lack of established 

standard guidelines about the choice of parameters could somehow be discouraging 

potential users from applying the method. Also interpreting the fit of the model is 

very difficult
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Klinke and Grassman (1998) discussed the application of PPR in scientific literature 

ranging from such diverse fields as chemistry to military science. Recently, Chan and 

Shi (1999) used PPR to develop a prediction scheme for forecasting the summer 

monsoon rainfall over South China. PPR can be expected to perform better than linear 

regression in situations where there are substantial nonlinearities in the responses on 

the predictor variables, especially if the nonlinearities can be approximated 

reasonable well by a few ridge functions (Friedman, 1985).

5.2.1 Outline of the PPR Model

A brief description of PPR is as follows: suppose there are n observations of p 

variables Xj (j= 1 ,2 ,.... p), and q variables Yj(j= 1 ,2 ,.... q) in a (p + q) dimensional 

space that can be arranged in a matrix form as „XP and „Y4. The variables have means 

Xj and Y j, respectively and deviations from the mean are given by Xjj = Xjj -  Xj and

where o  is a matrix consisting of regression coefficients and e is the random term 

error with zero mean. Equation (35) is similar to the canonical prediction Equation 

(19). In general, this linear function is estimated by the conditional expectation of y 

given particular values of x. The expected value of Y is estimated by the sample 

mean. Equation (35) may be approximated by

y j j = Y j j - Y j , ( i =  1,2........n).

The multiple response linear regression model may be written as:-

n Xq n (35)

(36)
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where a  consists o f normalized ©, P is a scaling factor arising from the norming of © 

and y are “fitted values".

The relation between yand the projection (nxpa J )  is linear. If q = 1, the relationship

would be a straight line. PPR allows this relationship to vary by allowing the 

predictand variables to be modeled as a linear combination of a sum of univariate 

ridge functions <j»m, (m =1,2, . .Mo) of predictor projections (nx pa J ) .  The <t>m

functions are smooth, unrestricted parametrically and are constrained to have zero 

mean and unit variance. Thus, the PPR model with M0 terms is given by

y = Y +q J  n q n

4 k«l
•(37)

where $ k are the smooth nonparametric ridge functions.

It can be shown that the PPR model (Equation 37) can model interactions between the 

predictor variables. For example suppose that

E[y | x , ,x 2]=  x ,x 2 .......................................................................(38)

This is described for Equation 37 with Y =0, M0=2, 0\=(h~U, a [  =(1,1), 

a j= ( l ,- l) ,  4>,(t) = t 2 and «|>2(t) = - t 2.

Then <|>,(a*x) = (x, + x 2)2 s x j  + 2x,x2 + x 2.....

<Ma 2 x) = - ( x ,  - x 2)2 a - x f  + 2 x ,x 2 - x 2.

• (39a) 

(39b)

so that 2 X < M a J x ) l  = x ,x2 ..............................................................(39c)-k-l J

The ability to model such interactions makes PPR a versatile modeling tool. It should 

be noted however that the parametrically unrestricted functions <t>m(m =1,2, . .Mo), 

are univariate. Therefore, PPR can be expected to perform well only in those
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situations where the nonlinear relationships can be approximated reasonably well by a 

few ridge functions that vary in only one direction (Friedman, 1985).

Equation (40) above cannot be minimized simultaneously for all parameters. 

However if certain parameters are fixed, the optimal values of others are easily solved 

for, an optimization strategy that Friedman(1985) suggested.

S-plus 4(1997) determines the model parameters by minimizing the sum o f squares 

residues (SSR) as shown below. This method is similar to Freidman’s (1985) 

technique.

A difficulty sometimes arises in trying to choose the number of terms (Mo) to retain. 

Standard model selection criteria like the generalized cross validation (GCV) have 

been used (Klinke and Grassman, 1998). Friedman (1985) remarked that adding more 

terms than necessary and using a backward stepwise model selection helps to avoid 

getting stuck in a local maxima. PPR approximations are dense in the sense that any 

function of p variables can be closely approximated by ridge function expansion of 

Equation (37) for large enough Mo (Friedman, 1985).
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The parameters a , P and functions <j> can be estimated by minimizing the distance 

L2-  [y -  y]2. Minimizing this distance is equivalent to minimizing the sum of 

squared residuals (SSR).

Hence a more formal PPR formulation is

given a / a j  = 1

e M = °
Var[+j] = l. j  = l

(40)

(41)
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Increasing the number of terms Mo decreases the bias (model specification error) at 

the expense of increasing the variance of the model and parameter estimates. Since 

the expected squared error, ESE, is a sum of these two effects, there is an optimal 

value o f Mo. The relative importance of a term is given by

The most important terms are the ones with the largest I, and the corresponding

model selection can be made through the examining the multivariate response 

fraction of the unexplained variation,

for various numbers of minimum terms (k) retained.

Further computation details of the algorithm can be obtained from Friedman and 

Suetzle (1981), Friedman (1985), Chan and Shi, (1999), Morton (1989) and 

S-Plus 4(1997).

5.2.2 Application of the PPR model.

The input data to PPR was prepared much the same way as that for CCA. Again in 

order to decrease the computation work and to filter out unnecessary data noise, we 

reduced the dimensions of the predictor fields using PCA. This preprocessing step, 

though necessary, could introduce some undesirable linear constraints in the PPR 

model. However, all the PPR case studies listed by Klinke and Grassman, (1998) 

which involved more than 40 variables employed some form of dimension reduction.

(42)

m A
values of a , P and are used as initial conditions in minimizing SSRq(k). A good

(43)
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SJ Results and Discussions

5 .3.1 Results from the CCA model.

The standard PCA truncation rules were used to decide on the number of PCs retained 

and subsequently entered into the CCA model. For the case where a moving window 

of 60 years was used, a total of 7 predictand and 11 predictor PCs were retained 

(Figure 5.3). The combined SLP -  SST predictor field had more than 30 eigenvalues 

greater than unity. However, the scree plot (Figure 5.3c) shows that the inflexion 

point occurs at around the sixth eigenvalue. As a compromise, only the first 11 PCs 

were chosen to represent the combined predictor field.

(a) MAM rainfall (c) Associated SLP and SST predictors

IS5 10 20
R anko iB ganV akaa

(b) MAM rainfall

jS.-H
mm

1960 1970 1900 1990
Lart yaar of ttw OO-yaar moving window

Ui

o
0 105 15

R ankotEiganV aiu*
20 25 30

(d) Associated SLP and SST predictors

15 PC*

1960 1970 1960 1990
t ymmr ol 60-yaar mowing window

Figure 5.3 (a) shows the eigenvalues arranged in descending order (scree plot) for the 
MAM rainfall, (b) the temporal change of % variance extracted by 5 and 7 PCs, 
(c) shows the eigenvalues for the combined predictor field comprised of the previous 
Sept-Nov (SON). Feb-Dec(DJF), SST and SLP fields, and (d) temporal change of % 
variance extracted by 11 and 15 PCs for predictor field.
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While the variance extracted by the PCs from the predictand field remains relatively 

steady as the 60-year moving window progressed from 1900-1959 to 1938-1997, that 

extracted by the predictor PCs monotonically increased during the 80’ and apparently 

leveled off in the 90’s. In general, the predictand PCs used in the CCA model 

explained about 87% of the variance in the original variables while the predictor PCs 

explained about 63% of the variance in the original, weighted and combined SLP and 

SST anomaly fields.

For the MAM rainfall, the % of variance explained by the selected PCs remain about 

constant as the last year of the 60-year window moves from 1960 to 1990, but the % 

of variance explained by the selected PCs for SLP and SST increases with the moving 

window. The weights of the SLP - SST anomaly field, obtained by the Nelder -  Mead 

Simplex algorithm were generally close to unity with some exceptions (Figure 5.4).

(a) SON prediction experiment (b) MAM prediction experiment

8 -

1.11

1.1
0.99
0.991.09 VO*

1.07 0.93 0.97
0.6S1.07

50 100

Figure 5.4 (a) and ( ^ sItow the optimized weights obtained by the algorithm to 
the 1900 -  1986 calibration data that comprise of previous 6 months of SST and SLP 
fields data for SON and MAM prediction experiments respectively. The first number 
in each sector is the optimized SST weight while the second number is the SLP 
weight.

The optimized SST weights for the September -  November (SON) prediction 

experiments in the east and northeastern sectors o f Indian Ocean (close to Indonesia) 

were bigger (approx 1.2) when compared to the rest (0.98 -  1.01). It should be noted 

that ideally, if the predictor dataset is composed o f variables o f the same units, and is
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of a relatively uniform sampling density, then no weights applied to the predictor 

field can improve the skill of the model. Attempts to find optimized weights for such 

a case would return weights equal to unity.

For the MAM prediction experiments, the weights that were noticeably different from 

others were for the SLP around the southeastern Indian Ocean sector, which borders 

Australia. To this sector, NMS found a relatively small weight (0.65) to reduce its 

contribution to the overall extracted principal components. On the other hand, a 

slightly bigger weight (1.11) is observed in the Atlantic ocean sector suggesting that 

MAM East African rainfall is teleconnected to eastern Atlantic Ocean (Gulf of 

Guinea) as previously suggested by several researchers such as Trewartha (1981) and 

Okoola (1999).

The canonical roots (correlation between the predictor and predictand time series) 

obtained from the model were generally modest and seemed to vary with the width of 

the moving window used in the prediction experiments. Using the 60-year and 44- 

year moving windows, the first canonical root averaged 0.7 and 0.9 for the SON 

prediction experiments respectively (Figure 5.5).

(a)

1«t Canonic^ mod* 
2nd Cm oncsl n o d i

0*0*0 
■ *  ■

I I
1960 1970 1960 1990

IK yw roftho 60 y—f moving window

(b)

o

M
■i ■

1«t Canonical

<n

19S0I 1960 
Last yaar o< trio 44-y«ar moving window

1970 I960 1990

Figure 5.5 Variations o f the first and second canonical roots for the SON prediction 
experiments using a (a) 60-year moving window, and (b) 44-year moving window.

The change in magnitudes of the canonical roots as the width of the moving window 

is varied shows that the relationship between the predictor and predictand changes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 137-

with time. Inteipreting the canonical roots should be done cautiously because it is 

possible to have raw datasets that have nothing in common yet their canonical 

projections have some form of relationships.

53.1.1 CCA Model Prediction Skill.

The prediction skill of the CCA model was tested by assessing the closeness of the 

predicted values to the observed records at the validation stage where the test data 

used were independent of the calibration experience. The statistics used were 

correlation (p), root mean square error (RMSE) and the Hanssen-Kuipers skill score 

(Hanssen and Kuipers, 1965), which is also called the true skill static that is based on 

categorical forecasts. The correlation (p) is given as

where obsk and predk are the observed and predicted values, obsand pred their 

respective means and n the sample size.

The root mean square error (RMSE) is estimated by

The Hanssen-Kuipers (HK) skill score, which does require that the data is normally 

distributed, is a popular skill measure for categorical forecasts. To compute this score, 

the predicted and observed rainfall values are grouped into categories say “Dry”, 

“Near Normal” and “Wet”. Tercile percentages of below 33%, 33% -  66% and above 

66% may be used to define the categories which are used to relate the observed and 

the predicted seasonal rainfall in a square contingency table (Table 5.1).

P (44)

RMSE (45)
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Then the HK score is defined as

HK = H- Ec ...................................................................................... (46)
T - H m

where H is the total number of correct forecasts, T is the total number of forecasts 

obtainable with a perfect forecast model, Ec is the number of correct hits expected by 

chance and Em is marginal number of correct [observation] hits expected by chance.

Table S.l An example o f a sc uare contingency table prepared for grid 15 SON

Predicted Categories
Dry Near­

normal
Wet Total

O
bs

er
ve

d
ca

te
go

rie
s Dry 8 4 2 14

Near-normal 2 7 5 14
Wet 4 3 8 15
Total 14 14 15 43

For an I x 1 contingency table, the HK score may be expressed in terms of 

probabilities as follows:-

m . Z '-,l*obs,,prei)-H '.,p (o b s ,)« p (p re l)

For example, in Table 5.1 the probability of the correct forecasts p(obSj,prej) is the 

sum of the diagonal elements of the three way contingency table over the total 

number of forecasts (23/43). The probability of getting the correct forecasts by 

chance is the product of the marginal probabilities p(obsj)p(prej) since random 

forecasting implies statistical independence between forecasts and observed events.

The HK score values range from -1 to +1 with the latter corresponding to perfect 

scores. The skill expression as given in Equation 47 possesses a number of appealing 

characteristics. Both random forecasts and constant forecasts receive the same zero 

score. Furthermore, the contribution made to the HK score by a correct category 

forecast increases as the event becomes more or less likely to occur. Table 5.2 shows
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a summary of the skill measures obtained from the model runs while Figure S.6 

shows the spatial correlation of the predicted vs. the observed seasonal SON and 

MAM rainfall at the validation stage. Results of 21 o f the 31 grids shown in Figure

5.2 are retained for discussion, while the rest that fall of outside the three East African 

countries (Uganda, Kenya and Tanzania) are discarded.

Table 5.2 A summary of the skill measures obtained from the model runs using a 
44-year moving window. The “un-weighted” results refer to runs where no weight 
obtained from the NMS algorithm was applied to the predictor rieids. lit a" cases a 
combined SST-SLP predictor field was used.

Weights Optimized by Simplex Un-Optimized Weights
Zone Grid Calibration Validation

No. (1944-1986) (1987-1997) (1944-1986) (1987-1997)

RMSE P- HK RMSE P- HK RMSE P- HK RMSE P- HK

1 25 1.12 0.07 -0.08 1.27 0.13 -0.24 1.2 -0.10 •0.08 1.37 •0.31 -0.10

26 1.08 0.03 -0.05 1.20 0.16 0.31 1.2 -0.26 -0.19 1.17 0.17 0.18

2 18 1.30 0.22 0.13 0.82 0.25 0.04 1.4 0.09 0.13 0.84 -0.11 0.31

21 1.07 0.12 0.09 1.22 0.21 •0.10 1.1 0.00 0.02 1.31 -0.16 •0.24

22 1.26 0.20 •0.05 0.95 0.20 •0.38 1.3 0.14 0.06 0.99 -0.09 0.31

3 23 1.21 0.20 0.06 1.23 0.34 0.31 1.2 0.12 0.02 1.61 -0.23 -0.10

24 1.35 0.20 0.16 0.84 0.44 0.31 1.4 0.06 0.09 1.32 -0.23 0.04

27 1.13 0.21 0.16 1.16 0.24 0.18 1.1 0.23 0.09 1.44 •0.25 -0.38

28 1.16 0.18 •0.08 0.93 0.42 0.18 1.1 0.23 0.13 1.02 0.21 0.18

4 16 1.17 0.36 0.13 1.29 0.13 0.04 1.3 0.17 0.13 1.31 0.09 0.04

20 1.28 0.26 0.20 1.14 0.09 0.04 1.4 0.01 0.13 1.24 •0.09 -0.10

5 11 1.26 0.31 0.30 0.89 0.33 0.31 1.3 0.14 0.37 0.97 0.00 ■0.10

12 1.17 0.17 0.30 0.87 0.03 0.45 1.2 0.23 0.16 0.72 0.28 -0.10

15 1.17 0.33 0.09 1.08 0.28 0.31 1.2 0.17 0.16 1.22 0.03 -0.10

19 1.22 0.37 0.13 0.91 0.47 0.31 1.3 0.27 0.13 1.09 -0.07 0.04

6 6 1.02 0.47 0.30 0.63 0.45 •0.10 \2 0.13 0.06 0.8 -0.10 -0.10

7 1.09 0.39 0.13 0.88 0.07 -0.04 1.2 0.12 0.20 0.71 0.40 0.07

8 1.06 0.42 0.20 1.28 •0.04 0.18 1.1 0.19 0.20 0.97 0.49 0.04

9 1.25 0.12 0.06 0.74 0.22 0.18 1.2 0.15 0.16 0.65 -0.11 0.04

10 1.22 0.21 •0.10 0.73 •0.01 0.04 1.3 0.07 •0.04 0.65 •0.08 •0.24

14 1.27 0.05 0.02 0.83 0.44 0.04 \2 0.14 0.16 0.59 0.25 -0.10
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In this case, the calibration stage represents the 1944-1986 period where the 24 

weights applied to the predictor (SST and SLP) fields were optimized by the NMS 

algorithm. To test the validity of these weights derived by NMS, the same weights 

were applied to CCA using the 1987-97 period of data not used in the calibration 

stage and the results are tabulated under validation in Table 5.2.

A moving window was used so that if necessary, the calibration period could include 

data that exhibit significant inter-annual and inter-decadal variabilities or data that 

possess other desired characteristics. Because of this feature, it was not possible to 

use the common cross validation methods to test the skill of the model. To ensure 

credibility of the calibrated CCA, its prediction skill is tested with a dataset 

independent of the calibration experience.

Table 5.2 shows that for the selected number of PCs applied in the CCA model, the 

use of optimal weights determined by NMS at the calibration stage improve the 

prediction results even at the validation stage (compare results under validation and 

un-weighted in Table 5.2). In particular, Zone 5 which comprises of grid 11, 12, 15 

and 19 (figure 5.1) shows higher Hanssen-Kuipers (HK) skill scores, correlation, and 

lower RMSE. This area corresponds to northeastern Tanzania and south-central 

Kenya. For a model to have useful predictive value, it should have positive HK 

scores. The root means square error (RMSE) is generally of the magnitude of 1 

standard deviation. Zone 3, and 4 also perform generally well with positive HK 

scores. Zone 6 generally does not perform well at the validation stage, as the 

correlation values for grids 7,8 and 10 are less than or equal to zero. The statistics in 

Table 5.2 indicated that a CCA model which does not use predictor fields weighted 

with optimized coefficients would have no or little prognostic value.

Figure 5.6 shows the correlation maps for the validation stage of both SON and 

MAM experiments while Figure 5.7 shows predicted vs. observed standardized SON 

season rainfall anomalies for selected grids.
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(a) (b)

Figure S.6 Correlation between the 1987-97 (validation) predicted and observed 
(a) SON and (b) MAM standardized precipitation values using the CCA model.
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Figure 5.7 An example of the one season-lead SON prediction for selected grids 
(see Figure 5.1 for the grid location).
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The MAM season seems to be better predicted than the SON seasons in the western 

parts of East Africa and to a lesser extent in eastern Kenya. Elsewhere it is poorly 

predicted. On the other hand correlation for September-November prediction 

experiments is more than 0.25 for most parts of East Africa with the exception of 

Uganda and southern Tanzania. It would seem that the model could neither predict 

MAM rainfall nor SON for southeastern Tanzania. From Figure 5.7, the 1996 SON 

seasonal rainfall seems to have been well predicted by the CCA model. However the 

1987 SON seasonal rainfall (not shown) was poorly predicted in all the above 

selected grids.

The practical application of the combined CCA -  NMS (Nelder & Mead Simplex) 

system is demonstrated in Figure 5.8 which compares the observed (Figure 5.8a) 

versus the corresponding predicted (Figure 5.8b) SON rainfall maps for the year 

1988. In addition, this is a validation result that further demonstrates the predictive 

skill attainable from this CCA-NMS system calibrated by using 1900 -  1960 data.

(a) (b)

Figure 5.8 Maps showing the (a) observed and (b) predicted SON standardized 
seasonal rainfall for the year 1988.
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Although there are some differences in the respective standardized seasonal values, it 

is obvious that the general spatial distribution for the two maps is similar. Based on 

the observed field of the 1988 SON season, Uganda and a portion of western Kenya 

extending into the central Kenya highlands experienced wetter than normal conditions 

while most of Tanzania and northern and northwestern Kenya experienced dry 

conditions. These patterns are also found in the predicted fields.

5.3.1.2 CCA Model Diagnostics

Canonical Correlation maps (Equations 32 and 33) between the canonical time series 

(precipitation) and the original variables (SST & SLP) are useful CCA diagnostic 

model outputs that may be used to explain the basic relationship between the 

predictor and predictand datasets. By studying the magnitude and sign of the loadings 

in these maps, one may leam how the linear components of the predictor and 

predictand fields co-vary with each other.

We subjected the ten driest September-November (SON) rain seasons (which is the 

bottom 10% of the available 1900-1997 dataset), together with the corresponding SST 

and SLP fields of the previous season (JJA) to a CCA analysis to illustrate their 

(linear) relationships during dry conditions. Using the above composite dataset was 

premised on the assumption that low SON rainfall and the associated SLP/SST fields 

could be considered as a sequence of discrete “episodes” separated by periods within 

which the variations were o f less interest

It should be pointed out that a dry SON season may not necessarily be part of a 

drought for several reasons. First it could be following a MAM or JJA wet spell such 

that there is still plenty of moisture to make up for the shortfall. Secondly, the rains 

may sometimes be merely delayed by other synoptic factors to, say, late November or
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early December. Nevertheless, modeling dry conditions is a good starting point in 

understanding drought phenomena.

The canonical correlations for the first three modes were all greater than 0.8, which 

means all three modes were probably important. However, Figure 5.9 only shows the 

third-mode canonical correlation maps (commonly referred to as gmap for the 

predictor and hmap for the predictand) that were obtained from the CCA analysis of 

the ten driest SON (Figure 5.8) and MAM (Figure. 5.9) seasons respectively. The 

predictor gmaps for each field and time lag had to be carefully deconstructed from the 

combined predictor fields.

The third canonical mode hmap shows negative correlation coefficients for most of 

the western parts o f East Africa. This is of interest since we are mostly interested in 

the anomalously low rainfall patterns. During this season, the northeasterly trade 

winds flow into East Africa generally through two tracks (Findlatter, 1971). One is a 

dry continental track from Arabia and the other is a humid track over the Indian 

Ocean and Arabian Sea. Inspection of the third mode, June-August (JJA) SST gmap 

reveals that there is a narrow coastal band starting from Madagascar reaching the 

northeastern coast of Africa and extending all the way to west coast of India that is 

also negatively correlated to the canonical (precipitation) time series. A buildup of 

cold SSTs during the June -  August period in this ocean sector probably reduces the 

amount of moisture advected by the north easterlies giving rise to anomalously low 

SON rain seasons.

From the JJA SLP gmap (Figure 5.9 c) we can observe that a build up of the SLPs in 

the south-southwest Indian Ocean sector probably reduces the possibility of low SON 

totals of parts o f eastern Tanzania and southeastern Kenya.
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(a) SON hmap (b) JJA SST gmap
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Figure S.9 Canonical maps of the third mode obtained from analyzing the ten driest September-November (SON) seasons in the 1900- 
1997 period as predictands with the corresponding JJA SST and SLP fields as the predictors. The SON hmap represents the 
correlation between the CCA and observed rainfall time series component while the SST (SLP) gmap represents the correlation 
between the CCA’s SST (SLP) component and observed SST (SLP) data.
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Figure S.10 Canonical maps of the third mode obtained from analyzing the 10 driest March-May (MAM) Seasons in the 1900-1997 
period as predictands with the corresponding DJF SST and SLP fields as the predictors.
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Similarly, a comparison of the low-MAM hmap and gmaps (Figure 5.10) shows an 

association between low MAM seasonal rainfall over many parts of East Africa and a 

general build up of low SSTs in the adjacent Indian Ocean and the Gulf of Guinea 

(Atlantic Ocean) during the previous December-February period.

During this season, the ITCZ passes over equatorial East Africa, on its northward swing 

following the solar cycle. The southeasterly monsoons deposit part o f the moisture 

carried over from the Indian Ocean into the interior lands. It has been suggested that a 

strong Congo airmass flow into the region increases instabilities o f the convergence zone 

thus increasing the likelihood of precipitation (Okoola, 1999). Low SSTs in the Gulf of 

Guinea could probably affect the strength and moisture content o f the Congo airmass that 

converges into East Africa. The Congo airmass seems to play an important role in 

enhancing the long rains in Kenya and Uganda (Okoola, 1999 and Trewartha, 1981). For 

those years that had weak westerly incursions and subsequent strong flows of the 

southeasterly flows into the interior of East Africa have been known to be particularly dry 

(Trewartha, 1981).

Inspection of the gmap (Figure 5.10c) indicates an opposite association between a 

positive SLP pressure zone in southern Indian Ocean and low East African MAM 

rainfall. A high pressure zone in this ocean sector is an indication of strong southeasterly 

monsoons which have been shown to be associated with weaker MAM rainfall. This 

observation is in agreement with findings by Trewartha (1981) and Okoola (1999) who 

demonstrated the relationship between strong easterly monsoons and dry conditions over 

East Africa.

We arc aware that prediction of precipitation at seasonal time scales is subject to errors 

because our climatic system is very complex and subjected to the influence and 

interaction of variables other than SST and SLP considered in our investigation. High 

frequency instabilities, local conditions and a combination o f interacting factors not 

accounted for in the CCA -  NMS system will all impact the accuracy of the statistical 

model. However, based on our results, the statistical model could on the average predict
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30 to 40% of the variability of the seasonal precipitation at 3-months lead time in East 

Africa.

5.3.2 Results from the PPR model.

A summary o f the PPR prediction experiments results is given in Table 5.3. We used a 5 

term model (Mo = 5, Equation 37) for we found that increasing Mo further did not 

improve the results.

In general, the results of the PPR runs without the NMS weights were relatively modest 

(highest p=0.33) but better than those of CCA runs without the application of NMS 

weights (Table 5.3). PPR performed poorly in zone 6 (southern Tanzania) and modest in 

zone 1 (Uganda) The calibration results shown in Table 5.3 appear to be close to the 

results obtained by running PPR with un-weighted predictor fields. On the other hand, 

validation results are poorer when compared to the calibration results and the case of un­

weighted predictors. From this observation alone, it would seem that there is no 

advantage gained in iteratively optimizing the predictor weights inputs for the PPR 

model. This could be due to a number of factors. First, by applying PCA to the predictor 

field, we inevitably introduced some linear constraints to PPR in the model which in turn 

could have affected the overall accuracy of the PPR algorithm.

Secondly, the smooth nonparametric functions 4>m(m =1,2,. .Mo) vary according to the 

input variables into the PPR model. Thus, whenever different weights are applied to the 

predictor fields in the PPR model, different ridge univariate functions <j>m(m =1,2,. .Mo) 

are computed by the model. Thus although the NMS scheme optimizes the root mean 

square error (RMSE), combining it with PPR could produce unpredictable results because 

each time the predicted values are being computed with changing ridge functions 

(Equation 37). On the other hand, for the CCA model there is a fixed relationship 

between the predictand and the predictor variables (Equation 31) which could allow the 

NMS algorithm to better systematically search for optimized predictor weights.
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Table S.3 A summary of the skill measures obtained from the PPR model runs using a 
44-year moving window. The “un-weighted” results refer to runs where no weight 
obtained from the NMS algorithm was applied to the predictor fields. In all cases a 
combined SST-SLP predictor field was used.

Weights Optimized by Simplex Un-Optimized Weights

Zone Grid Calibration Validation

No. (1944-1987) (1988-1997) (1944-1987) (1988-1997)

RMSE P- HK RMSE P- HK RMSE P- HK RMSE P- HK

1 25 12 0.11 -0.03 1.6 0.01 -0.21 1.1 0.08 •0.02 1.6 •0.48 -0.52

26 1.1 0.24 -0.01 1.4 0.15 -0.36 1.1 0.22 -0.06 1.4 •0.28 -0.21

2 18 12 0.32 0.15 1.8 -0.09 0.00 1.3 0.24 •0.02 0.7 0.36 0.00

21 1.2 -0.01 •0.03 1.5 0.06 ■0.21 1.2 -0.01 0.05 1.4 -0.12 -0.06

22 1.1 0.43 0.05 1.7 0.14 0.09 1.3 0.22 -0.06 1.1 -0.10 -0.21

3 23 1.1 0.30 0.11 1.9 0.06 •0.06 1.1 0.27 •0.02 1.6 -0.07 •0.06

24 1.4 0.20 0.08 1.7 0.06 0.09 1.4 0.03 -0.19 1.1 -0.30 -0.21

27 1.1 0.35 0.05 1.6 0.14 0.24 1.0 0.49 0.18 1.5 •0.49 •0.06

28 1.2 0.12 -0.06 1.4 0.14 0.09 1.3 0.03 0.05 1.5 -0.30 -0.21

4 16 1.3 0.27 0.15 2.1 •0.20 -0.21 1.3 0.20 0.05 1.5 •0.31 0.24

20 1.3 0.28 0.01 2.0 -0.19 -0.06 1.3 0.20 0.08 1.2 -0.32 0.24

5 11 1.4 0.18 •0.02 2.1 -0.26 0.07 1.4 0.13 •0.02 0.9 -0.13 -0.05

12 1.4 0.04 0.01 1.7 -0.07 0.24 1.3 0.04 •0.04 1.0 -0.24 •0.36

15 1.2 0.28 0.09 2.0 -0.15 0.09 1.3 0.12 -0.05 1.4 -0.30 -0.06

19 1.2 0.43 0.15 2.0 0.04 0.09 1.3 0.26 0.01 1.0 0.09 -0.21

6 6 1.5 -0.13 0.08 1.4 -0.20 •0.06 1.3 •0.05 -0.06 1.1 -0.45 •0.06

7 1.6 -0.02 0.11 1.5 0.02 0.09 1.4 •0.06 ■0.04 1.1 -0.29 •0.36

8 1.5 -0.13 0.08 1.7 0.01 0.09 1.3 -0.11 -0.09 1.3 •0.30 •0.21

9 1.3 0.16 0.11 1.3 0.43 0.24 1.3 0.08 -0.13 0.9 0.21 0.09

10 1.6 0.09 0.01 1.1 0.09 -0.21 1.4 -0.01 0.03 1.1 0.01 •0.21

14 1.1 0.40 •0.02 1.6 0.12 0.09 1.1 0.44 •0.01 0.7 0.50 0.39

Another possible explanation why PPR-NMS did not perform so well is that PPR is 

suitable for modeling nonlinearities that can be approximated reasonably well by a few 

ridge functions or functions that vary in only one direction (Friedman, 1983). It could be
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that climate nonlinearities are too complex to be approximated by a couple o f such ridge 

functions.

It is worth noting that Chan and Shi (1999)*s attempt to use PPR did not yield satisfactory 

real -  time prediction results of the summer Monsoon rainfall in south China even though 

they did not reduce their data by principal component analysis (they used only 10 

predictor variables).

S33 Origin of Skill in the Statistical Prediction models

Climate variability can generally be attributed to internal and external forcings. External 

forcings such as sunspots, solar flares, varying solar output, volcanic eruptions and 

industrial sources have not been shown to play any significant role in short-term climate 

predictions. This is partly because such external forcings are unpredictable and so the 

variability generated by them are unpredictable. As a result, the mechanisms that 

facilitate short-term climate prediction mostly originate from internal forcings (NRC, 

1998).

Internally forced atmospheric variability could be classified into three distinct categories: 

first are those arising from high frequency forcings of the slow components, second are 

the interactions o f the internal variations within the same components that individually 

would not exert such an effect, and third is the coupling and feedback between fast and 

slow frequency components of the climate system. The third mode is perhaps the most 

common mechanism that can be used to explain and predict climatic anomalies such as 

droughts. When a fast component, e.g. wind transfer of moisture, is coupled to a slow 

component, e.g. ocean surface temperatures, and the latter exerts a significant control 

over the regional climate pattern, the longer time scales of the slow component can be 

capitalized for seasonal or more distant forecast of the fast component which would 

otherwise be impossible.
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Hasselmann (1976) introduced a theory explaining the relevance of different climatic 

time scales to climate prediction. His theory asserts that through various instabilities, the 

atmosphere produces high frequency variability that presents itself as weather. When a 

slower reacting reservoir, such as the ocean, is forced by such a high frequency 

variability, it basically damps out the high frequency variability over time scales such as 

seasons. From this perspective, the “Hasselmann mechanism” probably accounts for a 

great deal o f the observed climatic variability as well as modeled variability o f long-term 

climate simulations (NRC, 1998).

Since our combined CCA-NMS system predicts reasonable droughts at 1 season lead- 

time, it seems that Hasselmann’s theory can at least partly account for the cause of East 

African droughts much as it accounts for the observed global climatic variability 

elsewhere.

SJJ.1 Predictability of the Seasonal rainfall.

The predictability o f a nonlinear, dissipative system can be estimated from the Lyapunov 

exponent o f the system. For climate variables, they generally range from four days to at 

most two weeks (Zeng et al., 1992). Moreover, our experience also tells that realistic 

weather predictions are in the order of several days to at best 2 weeks. It seems natural to 

question why is it possible to predict droughts several months ahead?

We are aware that such kind of predictions at seasonal time scales are subjected to errors 

because our climatic system is very complex and subjected to the influence and 

interactions o f many more variables than SST and SLP. On the other hand, if the 

boundary conditions o f the atmosphere, such as SST, can be reasonably predicted at a 

certain time scale, we will have some information about the statistics of the atmosphere at 

that time scale (NRC, 1998). The precise state o f the atmosphere at any instant cannot be 

predicted because it is subject to high frequency variability and could vary in equilibrium 

with the predicted boundary conditions. However, under a given set o f boundary
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conditions, the “average” condition of the atmosphere can generally be predicted. 

Therefore, it is possible to predict the seasonal precipitation over a region, even if we 

cannot say on what specific day the precipitation will fall. Thus, while it is not possible to 

predict the storms tracks which will develop 90 days in the future, due to predictability 

limits, it is possible to predict the “average” quantity of the precipitation that will fall in 

the next three months if a certain set of boundary conditions such SSTs and SLPs are 

given or reasonably predicted.

The CCA-NMS and PPR models functions on the basis of the above paradigm. The 

difference is that instead of predicting a boundary condition (e.g. SST or SLP) at a given 

season and deducing the state of atmosphere (seasonal precipitation) at that season, we 

develop empirical relationships between current the boundary condition (SST & SLP) 

and the precipitation field at the next season. If the statistical model can capture the 

essential co-variability between the boundary condition and an atmospheric state variable 

(precipitation) at seasonal time scale, reasonable predictions of the “average” conditions 

of this state variable relative to the boundary conditions can be made.

Sufficient information should be available from past climate records to establish the 

necessary statistical relationships between the predictor and predictand fields. This 

statistical relationship could vary depending on the period of calibration data used. A 

moving window would provide the flexibility of using a data size of the period desired, 

especially if we wish to use the data that exhibit some low frequency (inter-annual to 

inter-decadal) variability. As shown in the wavelet analysis plot (Figure 5.11), a 7-year 

frequency that was statistically significant occurred in Zone 4 East African rainfall 

between 1965 and 1983.

It will be interesting to explore the possible effect of using calibration data that possess 

low frequency variability on the model prediction skill of say, CCA or PPR in future 
work.
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Figure S.11 An example o f a Wavelet power plot, (Compo and Terrance, 1998) for East 
African Rainfall (Zone 4) showing some inter-annual variability between 1963-1985.

5.4 Summary and Conclusions.

Two statistical models, CCA-Simplex and PPR, were used to predict the standardized 

seasonal rainfall totals of East Africa at 3-months lead-time using a combination o f Sea 

Level Pressure (SLP) and Sea Surface Temperature (SST) anomaly fields of the Indian 

and Atlantic Oceans. For the former, the predictor fields were weighted with 24 

coefficients and then “reduced” by principle components analysis. The weighting 

coefficients applied to the input data of CCA were automatically optimized using the 

Nelder and Mead (1965) Simplex algorithm with respect to minimizing the least - square 

difference between the observed and simulated rainfall totals (objective function). A 

moving window was used to flexibly choose the data size and period desired for the 

calibration experience.
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Most of the weighting coefficients were close to unity except for a relatively large weight 

for SSTs in the east and northeastern sector o f the Indian Ocean (SON prediction 

experiments) and relatively low weights for the southeastern Indian Ocean (MAM 

prediction experiments).

Our analysis showed that applying the optimized weights to the predictor fields produced 

better MAM and SON seasonal rain forecasts than a direct application of the same 

predictor fields to CCA. Similar experiments with CCA using only un-weighted predictor 

fields faired poorly, as indicated by high RMSE, negative correlations and Hanssen- 

Kuipers skill scores that were negative or close to zero. As far as we know, this is the first 

attempt where such weights are assigned to the predictor fields in a systematic manner. 

Previously, such weights were assigned in an adhoc manner (e.g. He and Bamston 1996; 

Shabbar and Bamston, 1996).

Among the 6 rainfall zones delineated in East Africa, predictor and predictand 

relationships obtained through canonical roots varied temporally and spatially, and also 

with the calibration data size and period. Among the 6 zones, northeastern Tanzania and 

south-central Kenya (Zone 5) had the best SON prediction experiment results with both 

validation correlation coefficients and Hanssen-Kuipers skill scores exceeding +0.3. The 

MAM season was better predicted in the western parts of East Africa and to a lesser 

extent in eastern Kenya. Elsewhere the MAM season was predicted poorly.

By applying CCA to a composite set of the ten driest SON and MAM seasons in the 

1900-1997 period respectively, we demonstrated the possible association between dry 

conditions in East Africa and SST/SLP fields of the Indian and Atlantic Oceans. The 

CCA correlation maps showed that low SON rainfall in East Africa is associated with 

cold SSTs off the Somali Coast and the Benguela coast which are upwelling regions. A 

buildup of the low July -  August (JJA) SSTs in this part of the Indian Ocean probably 

reduces the amount of moisture advected by the northeasterlies, resulting in anomalously 

low SON rain totals.
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Similar analysis showed that low MAM rainfall is associated with a buildup of low SSTs 

in areas o f the Indian Ocean adjacent to East Africa as well as the Gulf o f Guinea off the 

coast o f West Africa. Strong southeasterly monsoons have been previously associated 

with weak MAM rainfall in East Africa (Trewartha, 1981). Further, low MAM rainfall 

could also be attributed to a high SLP zone in southern Indian Ocean where a build up of 

high pressure anomaly means that the south easterlies are likely to be stronger than 

normal, thereby penetrating deep into East Africa and in the process preventing the 

humid Congo westerly from depositing its moisture in East Africa.

We conjecture that most of the skill of the CCA model might be explained by the theory 

advocated by Hasselman (1976). The relatively high frequency atmospheric instabilities 

(including seasonal rainfall anomalies) are damped by the relatively lower frequencies of 

the slower reacting reservoir (Oceans). The statistical models probably capitalize on the 

mechanistic control the slow components have over the fast components, to make distant 

forecasts o f the latter.

Even though the PPR can model nonlinear associations, it performed poorer than the 

linear CCA-NMS model. First reducing the predictor dimensions by the linear principle 

component analysis could have partly attributed to the poor performance of the PPR. 

Alternatively, it could be that the climate non-linearities are too complex to be well 

approximated by a few ridge functions that vary only in one direction in PPR.

In the CCA-Simplex system, we assumed a linear relationship between the predictor and 

predictand fields. We confined the predictor fields to SST and SLP of Indian and 

southwest Atlantic Oceans. However fields from the Pacific have been shown to 

teleconnect with East African rainfall especially during ENSO years. Further, the SSTs of 

Tropical Pacific correlate strongly with the SSTs of Indian Ocean with a 3-month lead 

(Nyenzi, 1988). It may be worthwhile including data of the Pacific Ocean as part of 

predictor fields in future work.
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Chapter 6 Summary and Conclusions

The theme of this investigation was about the statistical properties of East African 

meteorological droughts, drought indices, and two statistical teleconnection models 

developed to predict seasonal drought in the region.

In Chapter 2, we reviewed East African rainfall climatology, its historical droughts, and 

used harmonic analysis to delineate East Africa into 6 homogeneous rainfall zones, even 

though more zones were delineated in the past (e.g. Ogallo, 1989; Basalirwa, 1995). 

Among these zones, it seems that central and southern Tanzania have the most stable 

rainfall structure. We also identified the important rain seasons (in terms of % 

contribution to the annual rainfall) that vary from zone to zone. It seems water stress or 

drought would occur under the failure of two consecutive important rain seasons in areas 

with bimodal rainfall characteristics, or even one critical rain season in areas with 

unimodal rainfall characteristics, since East Africa generally depends on rain-fed 

agriculture heavily.

In Chapter 3, we analyzed, modified (when necessary), and compared the performance of 

3 drought indices (Palmer Drought Severity Index or PDSI, Bhalme-Mooley Index or 

BMI, and Standardized Precipitation Index or SPI) in detecting the initiation, evolution, 

termination and severity of meteorological drought events in East Africa.

After finding the original PDSI (designed for the US) performed poorly in some parts of 

East Africa, we modified PDSI’s approach to compute the potential runoff, the Z index 

and its recursive formula, and obtained more realistic results for most of East Africa.

The Bhalme-Mooley index, whose input is only rainfall data, was found to produce 

results that are highly correlated to those of the modified PDSI. This suggests that 

precipitation data alone accounts for a large part of the variability of East African
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droughts. Therefore, for East Africa, a simpler drought index like BMI could be as 

informative as the relatively complex PDSI. However, the third drought index SPI is even 

more versatile and suitable for East Africa than the above two for several reasons.

SPI is easy to compute, yet flexible enough to track droughts at time scales according to a 

user’s interest, and could extract more or less the same information as the relatively 

complex PDSI that doesn’t possess such a flexibility in time scale. We also introduced 

two modifications to improve SPI. First, instead o f fitting a gamma distribution to the 

“smoothed” precipitation data, we used an unbiased, semi-parametric, plotting position 

formula to reduce the effect of outliers on the results. Second, we proposed transforming 

the final SPI values using a regional Pearson Type III (P3) distribution instead of using a 

gaussian normal distribution that for skewed data (such as most precipitation data) may 

introduce considerable distortion in the tails. The regional flood-index method was used 

to obtain the regional parameters o f P3. The results we obtained are different from the 

original SPI.

Using a rotated principal component analysis (RPCA) on 6-month and 12-month SPI, we 

delineated East Africa into 7 drought homogenous zones. The spatial distribution of these 

zones somewhat resemble the precipitation zones delineated by harmonic analysis in 

Chapter 2. From the inter-correlation between the homogenous drought zones, it seems 

that some zones are likely to experience a given drought spell simultaneously, while 

others could experience a wet spell. For example, most o f Uganda seemed to experience a 

wet (dry) spell whenever southwestern Tanzania underwent dry (wet) conditions. Such 

information on inter-zone correlation could be used to transfer resources between the 

zones as part o f the drought mitigation strategies.

In Chapter 4, using composites of 22 El Niflo and 13 La Nifla events based on rainfall 

anomalies and 6-month SPI, we used harmonic analysis to investigate the possible 

relationship between ENSO and East African moisture regime. Out of S identified 

regions that show unique responses to ENSO, northeastern Tanzania has the highest 

ENSO response coherence (>60%) and also the highest % o f variance extracted by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 158-

first harmonic (>90%). Conversely, the central highlands of Kenya and the southeastern 

highlands of Tanzania have no disceraable response to ENSO probably because their 
rainfall mechanisms are highly localized.

Furthermore, ENSO’s influence is also season dependent. For example, southern 

Tanzania has the maximum (minimum) response to La Niila (El Nifio) between January 

and June of the year after the ENSO event. Southern Uganda and Lake Victoria basin 

shows significantly positive ENSO response for November to January. Analysis of 

6-month SPI, based Index Time Series produced results that were similar to those based 

on ENSO composites thus confirming the finding that various parts of East Africa have 

different temporal patterns of ENSO response.

The regional and seasonal dependency of ENSO response are further demonstrated via 

boxplots comparing the probability distribution o f 6-month SPI for non-ENSO and 

ENSO “seasons”. The influence of ENSO resulted in obvious shifts to the probability 

distributions o f ENSO seasons as against that of non-ENSO seasons. Among the ENSO 

seasons, El Nifio exerts a stronger influence than La Nifia on East African rainfall, winter 

response was generally positive for El Nifio (except for southern Tanzania) and negative 

for La Nifia. The spring response to ENSO is generally less clear cut, except for southern 

Tanzania and Lake Victoria basin with negative (positive) response to La Nifia (El Nifio).

Our results on the ENSO response in East Africa did not concur with that of Nicholson 

and Kim (1997) who suggested that rainfall in equatorial Africa is enhanced in the short 

rains season (northern hemisphere autumn rains) during ENSO years, but reduced in the 

following spring rains. We believe the difference in results are at least partly attributed to 

Nicholson and Kim defining East Africa as only one region, while we subdivided East 

Africa into 6 homogeneous rainfall regions. Given that our zoning of East Africa is of 

higher resolution and likely more representative o f the spatial variability o f its rainfall 

mechanism, our results should be more representative than that of Nicholson and Kim 

(1997). Also, at sub-regional resolution, we believe our results provide more details than
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the simple dipole structure of Ropeleweski and Halpert (1987) on East Africa ENSO 

teleconnection.

In Chapter 5, we developed a combined canonical correlation analysis (CCA) -  Simplex 

modeling system to predict the standardized, seasonal rainfall totals at 3-month lead time 

using a combination of sea level pressure (SLP) and sea surface temperature (SST) 

anomalies as predictor fields. The predictor fields were adjusted with weights optimally 

determined by the direct search algorithm, Simplex o f Nelder and Mead (1965) via the 

calibration of CCA based on a least square objective function of the predictand field. 

Before applying CCA, the dimension space o f weighted predictor and predictand fields 

was reduced by unrotated principal component analysis (PCA). The weights were 

generally close to unity with some exceptions. However, our results show that applying 

these optimized weights to the predictor fields produced consistently better MAM and 

SON seasonal rain forecasts than un-weighted predictor fields. For the later, the 

Hansen-Kuipers skill scores (HK) were either negative or close to zero.

To compare with CCA, a linear statistical model we also applied the same predictor fields 

(but not adjusted with weights from Simplex) to a nonlinear statistical model called 

projection pursuit regression (PPR). The prediction skill of PPR assessed by correlation 

coefficients and HK scores turned out to be poorer than the combined CCA-Simplex 

system. This partly demonstrates the importance o f adjusting the predictor fields with 

such optimal weights.

As far as we know, this is the first attempt where such weights assigned to the predictor 

fields are optimized in a systematic manner. Previously, application of the field weights 

had been done in an adhoc manner (e.g. He and Bamston 1996; Shabbar and Bamston, 

1996). We have demonstrated that using the Simplex optimized weights improves the 

traditional CCA model.

Based the CCA- Simplex model output, northeastern Tanzania and south central Kenya 

had the best SON prediction results of both correlation coefficients and HK > +0.3. The
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MAM prediction was better in the western parts of East Africa and to a lesser extent in 

eastern Kenya.

By applying CCA to a composite set of the driest 10 percentile SON and MAM seasons 

for 1900-1997 respectively, we were able to diagnose possible mechanisms between dry 

conditions in East Africa and SST/SLP fields in the Indian/Atlantic Oceans. The CCA 

correlation maps showed that low SON rainfall in East Africa is associated with a build 

up of cold SSTs during July -  August (JJA) in the Indian Ocean off the Somali Coast and 

the Benguela coast which probably reduces the amount of moisture advected by the 

northeasterlies to East Africa.

Similar analysis showed that low MAM rainfall is associated with a buildup of low SSTs 

in areas of the Indian Ocean adjacent to East Africa as well as the Gulf of Guinea off the 

coast of West Africa. Strong southeasterly monsoons have been previously associated 

with weak MAM rainfall in East Africa (Trewartha, 1981). Our analysis showed that low 

MAM rainfall is probably also associated with high SLP in southern Indian Ocean which 

means that the south easterlies are likely to be stronger than normal, thereby penetrating 

deep into East Africa and in the process preventing the humid Congo westerly from 

depositing its moisture in East Africa.

We believe that most of the predictive skill of CCA and PPR can be explained by the 

theory advocated by Hasselman (1976). According to this theory, the relatively high 

frequency atmospheric instabilities (including seasonal rainfall anomalies) are damped by 

the relatively low frequencies of the slow reacting reservoir (Oceans). By capitalizing on 

the mechanistic control of the slow frequency components over the fast frequency 

components, it is possible for statistical models such as CCA to make forecast of the 

latter up to several months of lead time.

Further, the combined CCA-Simplex model was premised on the assumption that there 

exists some linear relationships even though most of the atmospheric processes are non­
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linear. Such simplification can at times achieve reasonable prediction skill of 0.3 to 0.5 

correlation with the observed.

Wavelet analysis of a sample of East African monthly rainfall series showed that the 

structure of rainfall series in terms of the underlying frequencies generally varies with 

time thus suggesting the existence of inter-annual to inter-decadal variability. Therefore, 

we selected a moving window of arbitrary width in the prediction experiments to provide 

the flexibility to choose the data size and period as desired.

Lastly, our contributions to East African drought research include identifying the 

causative factors to triggering the droughts, spatial and temporal patterns of droughts, the 

development of drought indices, and statistical teleconnection models to predict droughts. 

These contributions should have practical and economical values to East Africa.

6.1 Suggested Future Work

There is still much more to be studied and understood on the complex, multi-disciplinary 

Drought phenomenon. Below are some recommendations for further research related to 

this work:

1. Among the three indices analyzed, we found SPI to be better suited for tracking 

the initiation, evolution and cessation of meteorological droughts in East Africa. 

There is need to explore further SPI time scales suitable for tracking East African 

droughts, which could vary from one rainfall zone to the next. SPI should also be 

modified to make it suitable for tracking hydrological, agricultural and social 

economical droughts. In this case, beyond precipitation, we anticipate requiring a 

few more hydrologic variables such as evaporation, streamflow, ground water 

table etc to track these few types of droughts. It might be possible to also include 

water use/demand variables to enhance the overall objectivity of drought 

control/mitigation decisions based on drought indices.
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2. It is unclear whether anthropogenic causes such as greenhouse gas emissions 

could exacerbate the frequency and severity of droughts in say East Africa. 

Landuse changes and settlement patterns are some such anthropogenic factors that 

should be investigated in relation to droughts in East Africa.

3. Since ENSO response is both season and region dependent, there is a need to 

further investigate in detail other climatic and possibly topographic factors that 

together contribute to the spatial and temporal variability of ENSO response in 

East Africa. In particular, we need to find out why long rains (MAM) ENSO 

response is not as clear cut as the short rains (SON) in East Africa.

4. For the combined CCA-Simplex and PPR models, we need to explore the 

potential contributions of predictors such as SST/SLP data of the Pacific Ocean, 

besides those of Indian and Atlantic Ocean already used in this investigation.
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