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Abstract

This thesis addresses the research of shovel cable lifespan. This is motivated by the unexpectedly
shortened lifespan of shovel cables in Syncrude, where an average of lifespan is only 1, 000 hours
against the expected 2, 000 hours. Pdwer—related features are used to analyze the operation patterns
which may be harmful to the cables and reduce their lifespan greatly. Correlation analysis is applied
to time series of the power-related features and some value segments of the feature distributions are
identified as negatively correlated to the cable lifespan. We found some material and some teams
of operators have more negative influence on the cable lifespan than other ones. The conclusions
may help optimize the working schedule of shovels and the training of operators. In the field of data
mining, the procedures used in our work can scan time series for non-sequential patterns which are

correlated to an external event.
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Chapter 1

Introduction

1.1 Problem Definition

The truck and shovel mining method is used for both overburden and ore removal at two mines of
Syncrude. Some of the largest available mining shovels such as P&H 4100 series electric cable
shovels are used. A shovel cable is an important component in the operation of a shovel, and its
lifespan is rated for 2, 000 hours.. However most cables used in Syncrude mines are not meeting
this expectation now. Different factors, such as operators, geology, and weather, may have negative
effects on the cables singly or simultaneously; therefore the effectiveness of cable usage with these
factors must be optimized. To attain this optimization, the relationship between these factors and the
cable lifespan should be understood.

The cable lifespan now in Syncrude ranges from 400 to 1, 600 hours with few cables approaching
the 2, 000 hours mark, and the average lifespan is only about 1,000 hours. A cable replacement costs
about $25,000; therefore, extending the average cable lifespan would lead to economic benefit:
50% longer lifespan means about 1/3 fewer cables being used. Moreover, fewer cables used would
improve the shovel’s working efficiency through fewer unplanned shutdowns due to early cable
failure.

The telemetry data from hoist, crowd and swing motors are collected for eight different shovels.
The operations of three motors are monitored by voltage and:current sensors. The data set we
used includes two years of telemetry data for the eight shovels. Given that data comprising nine
parameters are collected at one-second time intervals, ‘the quantity of data handled is huge. The
corresponding dispatch data are also collected for the eight shovels. The dispatch data are useful to
identify the information related to shovel operations, including working status, teams of operators,
and quantities of materials dug in a certain working period.

Using telemetry data, we can obtain the time series of values for powers issued by crowd, hoist,
and swing motors, which apply energy directly to the cables. Previous research pointed out that the
three types of power or energy are key performance indicators, which can be used to analyze the

influences of operators, geology, and weather [27]. We will use the power time series to find how



these different types of power or energy affect the cable lifespan, and then attempt to distinguish
the different effects on the cable lifespan between operators or materials. Therefore, what we are
concerned most about in our work is what patterns of energy application to the cables are most

harmful to the cable.

1.2 Initial Research on Prediction Model

No literature on previous research on shovel cable lifespans is found; however, heterogeneous sys-
tem failure has been widely studied in material science. Unfortunately, no reasonable explanation
has been provided to describe the underlying physical mechanism of heterogeneous system failure
so far. Therefore some researchers believe that heterogeneous system failure is a random process
which can not be predicted accurately using only a few simple features. Our early studies were fo-
cused on a prediction model with several input parameters related to energy, material, and operator
practices. We applied some of the recognized machine learning algorithms using these features. The
testing results, however, show that almost no cable failure can be predicted. From these results and
the research in material science, we believe that a simple prediction model may not be feasible for
our problem.

The probability distribution of an event is a possible descriptive method to predict on the condi-
tion that such an event occurs randomly. J. Anderson and D. Sornette proposed models of conditional
probability. prediction of earthquakes and fibre bundle breaking[1]. In our work, lifespan history
data include only 77 occurrences of cable failure, therefore, may not be lafge enough to construct
the probability distribution, let alone the probability distribution conditioning on certain temporal or
space features. However, the analysis of whether or how the cable lifespan’is conditioned on cable
early working status is feasible and useful to our problem. |

To simplify the problem, we built two models with some features of energy or materials. The
first model was constructed with- the following procedure. First, the 77 cables were separated into
two groups: long group and short group. The long group included the cables whose lifespans are
longer than 800 hours, while the short group includes the others. The ratio of sizes of the long group
to the short group is 38 : 39, thus, the probability that a cable belongs to the long group or the short
group is around 0.5. Second, we considered the cables’ first 100 hours of working time as the initial
conditions since no cable’s lifespan is.shorter than 100 hours. For the first 100 hours, some features
were extracted to represent the initial conditions. The features included the energy of crowd, hoist
and swing applied to the cables, the sum of the product of crowd and hoist power, the sum of the
product of crowd and swing power, the sum of the product of hoist and swing power, the sum of
the product of crowd and hoist and swing power, and the dug quantity of two different materials:
overburden and oil sand.

In the first model, we tested if the features for the first 100 hours of working time can decide

whether cables would last longer (> 800 hours) or not (< 800 hours). The testing results show



that the cables’ lifespans depend heavily on their initial working status. In a model built with SVM,
almost 73% (cross verification) of 77 cables are correctly classified into the long or short group
with all features for their first 100 hours of working times. Further study shows that using only the
sum of the product of hoist power and crowd power in the first 100 hours can classify over 57%
(cross verification) cables correctly, the highest compared to the results using other single features.
Therefore, in this model, this feature-are very important to classify cables.

The second simplified model resulted from an observation that the cable lifespan distributions
are different for each shovel, and that some shovels have an average cable lifespan of about 1000
hours, longer than the other shovels with an average of only about 600 hours. In this model, the
cables were separated into two groups: long group and short group. The long group includes cables
which belong to the shovels whose cable lifespans are tonger (with an average of 1000 hours), while
the short group includes the other.cables which belong to the shovels whose cable life spans are
shorter (with an average of 600 hours).

In the second model, we tested if the features for the first 100 hours of working time can decide
whether cables would be long with an average lifespan of about 1000 hours or be short with an
average lifespan of about 600 hours. The testing results show that the amount of different materials
dug in the first 100 hours of working time may affect the cable lifespan. If using the rule: the
cables with over 180, 000 tonnes of overburden dug in the first 100 hours would be long, 91% (cross
verification) of cables are classified correctly. If using the rule: the cables with over 6, 000 tonnes
oilsand dug in the first 100 hours would be short, 93% (cross verification) of cables are classified
correctly.

For the present, there is no supporﬁng theory to explain the testing results of the above two
simplified models. Due to the small set of sampling cables, testing of more cables may be needed

later.

1.3 Mining of PDF Patterns

Our initial research mentioned above has shown that the prediction of cable failures accurately using
some features is a difficult task for the present. However, we have noticed the fact that time series
for each of three types of power values, or for any product of two or three of these power values,
can be formed from the raw telemetry data, and that it is possible to search in these time series for
patterns which may be associated with reduced cable lifespan. The key is how to find such patterns
using a proper method.

Due to the huge samples of raw telemetry data, using statistical methods, the PDFs (Probability
Density Function) of hoist power, crowd power, swing power, product of hoist and crowd power,
product of crowd and swing power, product of hoist and swing power, and product of hoist and
crowd and swing power can be estimated. for a certain working time period, for example, for a

shovel’s working time, for a cable’s working time, or for a team’s working time. For each shovel,



there are four teams that take turns to operate the shovel in 12-hour shifts. All four teams work
alternatively during a cable lifespan if the cable works long enough, although their working times
are different. The statistical testings show that for each of the above seven features, its distribution
for each shovel differs among the different materials (oilsand and overburden), and among four
teams who jointly operate the same shovel.

To resolve the problem in our work, a systematic method should be designed to locate in each ’
of the above PDFs the related segments which are the most harmful to the cable if any. Based on
these related segments, we would attempt to answer the question: whether the different materials or
different teams have different harmful effects on the cable?

The method can be done with the following steps:

1. For each feature, estimate its PDFs for all 77 cables in the same range of the feature value.
Separate the range into a number of, say 100, segments and get the estimated probabilities for

these segments.

2. For each feature, test some correlation coefficient between each segment’s estimated probabil-
ities of all cables and the cable lifespans. Get a distribution curve of the correlation coefficient

for each segment. Find the segments with the largest negative correlation coefficients.

3. For each segment obtained in the previous step, divide the values in it according to materials
or teams. Identify the material or the teams which contribute most harmful effects on the

cables.

According to the results from the described method, we can propose some recommendations to
the operators: which range of these feature values are harmful to the cables and should be avoided
in operation as much as possible, or provide some suggestions to the management of the optimal
working schedule of a shovel. '

With respect to the method, this thesis will focus on the following challenges:
o How to estimate efficiently PDFs for all ranges or each segment?
e How to test the correlation coefficients or how to find the related segments if any?

o How to identify the material or teams which are most harmful to the cables?

1.4 Thesis Contribution and Outline

The contribution of this dissertation is a framework to search in time series data for patterns which
are correlated with an external event, by testing with segmental distribution of the time series. The
use of PDF of time series data allows the correlation mining phase to overcome many preprocessing

problems such as cleaning noises, fixing missing data in a sample of raw data, if the sample is



good enough to form a proper PDF. The use of PDF also allows to ignore the actual sequence of
data. Thus, the thesis underlying this dissertation is that some specific patterns in time series can
be mined by testing correlation of time series with an external event using a proper segmentation of
PDF of the time series.

The implementation of the framework was tested for the research on shovel cable lifespan. The
results from the experiments provided us with some applicable conclusions about our problem raised

in the first section of this chapter. These conclusions include:

e Some segments of the power-related feature values are really harmful to the cables, making

the cable lifespan shortened greatly.

¢ Different materials have different influences on the cables. Oilsand may more be harmful than

overburden on average.

o Different operators have different influences on the cables. Some teams of operators have

more harmful operation than other teams on average.

Chapter 1 has introduced the problem of the unexpected shortened lifespan of oil shovel cables,
along with our early research, challenges, and a high-level description of the contribution of this

thesis.
e Chapter 2 will survey previous related research in material science and data mining.

~ @ Chapter 3 will present the correlation mining framework, highlight the purpose of each step

in the process, describe in detail the implementation of this framework in our work.
o Chapter 4 will presents experimental results with respect to our problem of cable lifespan.

o Chapter 5 will present a summary of this work, and discuss potential future directions of

research.



Chapter 2

Related Work

Unfortunately, there is no published literature addressing the problem of oil-shovel cable lifespan.
However, the researches in material science and data mining provide many practical models and
methods to predict heterogeneous system failures and to find patterns in time series data. Although
this section will not cover in detail all of the approaches proposed, it will provide a survey of many
of the proposed approaches for probabilistic prediction and special pattern mining.

The remainder of this chapter will be divided into three sections. The first one we examine is
the recent methods in material science on probabilistic prediction models that incorporate spatio-
temporal information of the damage. The next two are pattern mining studies on time series data:

correlation mining and anomaly detection.

2.1 Research on System Failure in Material Science
2.1.1 Difficulty in Prediction of Failure

Heterogeneous system failures are widely studied in material science due to their economic and
human cost. -A wide range of phenomena may be considered heterogeneous system failure, like,
cracking of glass, breaking of fibre bundles, collapse of concrete structure, earthquake, etc. Many
models or strategies have been proposed to predict the remaining lifetime of a complex structure or
the precise time of failure; however, the physical mechanisms remain unclear [32][8][15].

J. Anderson and D. Sornette argue in their papers [1][34] that due to no comprehensive under-
standing of the underlying mechanism, all the current prediction models have limitations and are
restricted to relatively simple situations, and these models are not reliable in most situations. The
reasons leading to the situation may lie in the complex interaction between various elements of the
system under consideration and modes of damage.

To bypass the difficulty, Anderson and Sornette formulate in their papers a new general proba-
bilistic prediction scheme. The hidden assumption in the procedure is: failure of a system is highly
history and sample-dependent. This assumption means that the system failure is a random and grad-

ual process, conditional on its damage history. By incorporating new on-going damage information



into probabilistic models, different levels of probability distributions conditional on the current dam-
age modes and spatial-temporal information can be constructed. Thus, the prediction problem can be
converted into a problem of calculating probability distribution using posterior probability models
in statistics.

Section 2.1.1 and Section 2.1.2 will discuss several models proposed by Anderson and Sornette
to solve different kinds of systemkfailures: predictions of percolation threshold and a hierarchical

fibre rupture model with time dependence.

2.1.2 Predictions of Percolation Threshold

Roux et al. [28] have proved that, in heterogeneous systems, rupture processes are equivalent to
the correlated site percolation problems. Percolation theory originates from filtering fluids through
porous material from one side to the opposite one. In mathematics, it is typical to model the per-
colation problems as a three-dimensional network of D x D x D peints (or vertices), in which the
connection (edge) between two neighbors is open with é probability of p. When D — oo, there is
a critical p (p.) below which the probability that an open path exists from the top to the bottom is
always 0 and above which the probability is always 1 [9]. A site percolation is a.percolation that
occurs on a lattice of L x L sites where each site would be filled or not. If p denotes the fraction of
filled sites, any percolation realization C, will be related to some percolation threshold p.(C, ). For
any given L, p.(Ct.) has a random distribution decided by a probability density function P(p.). To
study prediction methods for earthquakes, Anderson and Sornette used a two-dimension site perco-
lation model as the base on-which a rupture or an earthquake can be predicted [1]. In their model, p
is also the running time of a lattice which is damaged by one site per unit time. Therefore, p.(CL)
is the time when a rupture happens, and P(p,.) decides the distribution of the critical time. The
purpose of the model is to find the P(p,) in a lattice with a given L. ' |

Anderson’s model is a hierarchical one composed of levels of prediction based on the increasing
available information and implements the first three levels. The whole hierarchical structure is

described as follows:

¢ Level 1: The first prediction level is the probability distribution function (PDF) P (p.) of the
percolation thresholds. For a given L, the distribution can be attained by statistics. This level

is actually the unconditioned probability distribution of the percolation threshold.

e Level 2: From this level up, each prediction level Pz.(p..) is conditional on the spatiotemporal
knowledge of damaged sites. The second level is the PDF based on the fact the lattice has a
fraction p of damaged sites and is still not percolating. Using this information improves the

first level.

o Level 3: The third prediction level incorporates additional information about the spatial local-

ization of damaged sites. Anderson and Sornette implement it using two similar measurements



of the localization. One is p¢(p), the fraction of sites belonging to the largest cluster, and the
other is £(p) the largest of the linear size projected on the x and y axes of the largest cluster.

The calculated conditional PDFs match the human intuitive prediction on percolation.

¢ Other Levels: Other information on the damaged clusters’ shape, position, etc can be used
as additional conditions of the PDF. The last level should include all the available knowledge
of the damaged sites, and the PDF calculated at this level should have the best prediction

accuracy.
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Figure 2.1: An example of different PDFs of percolation threshold.
PDF Py (p.|p,€) is a function of percolation threshold p. (in percent) conditioned on both p and ¢,
where £ is the largest of the linear size projected on the x and y axes of the largest cluster within the
system, for the fixed p = 40% and different values of £&: £/L = 0.04 (cross), £/L = 0.06 (dots),
&/L = 0.08 (squares), and £/L = 0.1 (triangles). The open circles represent the unconditional PDF
Pr,(p.) for reference [1].

Figure 2.1 shows an example of different probability distribution functions P, of percolation
threshold p.. In the ﬁguré, there are four different probability distribution functions. One is an
unconditional PDF Py, (p.) (open circles). The other three are PDFs Py (p|p, ) conditioned on
both the fraction of filled sites and the largest of the linear size projected on the x and y axes of the
largest cluster, for-a fixed p = 40% and different £: 0.04L (cross), 0.06L (dots), 0.08 L (squares),
and 0.1 (triangles). For a fixed p, the conditional PDFs shift and widen gradually to smaller values
of p. for increasing . This means that if one observes in two different systems for different mass
of the largest cluster with the same p, the system with the larger mass of the largest cluster is more

likely to percolate at a earlier time.



The described structure above is simple and feasible; however, we should know how much the
additional information upgrades the quality of prediction and how well the model predicts. Anderson
and Sornette use the information gain to measure the improvement of forecasts from the first level to
the third level. From the distribution of the information gain of p for various pe and £, they find that
the distribution is not uniform for p, and can be divided into three regions according to the values of
p. Some information gaih is obtained when increasing p; and £ in the region of the small p, while
is limited for the intermediate values of p. For the larger values of p, the information gain increases
drastically even with the small values of pe and €. In other words, the.information gain is most

useful for large values of p and helps a little for small p, but is almost no use for intermediate p.

2.1.3 Hierarchical Fibre Rupture Model

Using the general principles of the above model, Anderson and Sornette propose another hierarchical
model to predict fibre ruptures [1][34]. They give a definition of a hierarchical model (studied
by earlier researchers [20][21][29]) made of interactive elements with multi-levels, in which each
element is loaded with a stable stress o. All single elements form the first level. These elements
are associated to each other into pairs of elements that form the second level. Then, the pairs of
pairs form the third level and so on. In such a topology, the dynamics of fibre rupture proceed in the
following way. The whole rupture process always begins from the first level; one element will fail
at a random time. When an element fails, its load o is transferred to the remaining élement in the
pair so that its load is doubled. When the whole pair fails, the surviving pair associéted to it will be
double loaded. When the whole pair at this level fails, its load is transferred to the pair at the next
hierarchical level. The time of a single element failure is still a probability decided by a cumulative

distribution function:

P(t) = /Otpo(t') dt' =1 — exp {—n /Ot'[a(t')]P dt’} . (2.1

Here, (') is the given stress history, and p > 0 is the stress amplification exponent.
In a system of four elements, if ¢; is the time when the fibre 7 is broken (¢ = 1, 2, 3, 4), the pairs

are (1,2) and (3,4), and ¢; < t9,then
taz =t +altz —t1) <tz, a=27° 2.2)

Thus the hierarchy model can be described as follows:

e Level 1: Actual prediction in the absence of revealed damage of any of the four elements.
Since all we know is PDFs of ¢;, the PDF of (1 5 3 4) (denoted by P(1 9,3 4y,+(t(1,2,3,4)) ) can

be obtained from the equation (2.1):

1 12,34 _ .
- / dt(l:z) P(1':2)7t(t(1»2))P(3»4)1t(1,2) ([t(1v273’4) - (1 - Od)t(].‘z)] /a)+((17 2) e (3’ 4)) ?
4

o
(2.3)



where P(m,n),t(t(mm)) = 1:2"‘;::;’2;3);2 is the PDF of the pair (1,2) or (3,4), conditional on
that it has not yet been broken at £. In formula (2.3), the first contribution is corresponding
to t(1,2) < t(3,4), While the second one ((1,2) « (3,4)) is corresponding to ¢(1 2y > #(3.4)-
In the first contribution, P(l,z),t(t(m))13(3’4)7,3(1,2) ([t,2,3,4) — (1 = @)t(1,2)] /@) is the in-
tegrant. ((1,2) < (3,4)) denotes an integral formula similar to one in the first contribution,

in which the positions of (1, 2) and (3,4) are interchanged.

e Level 2: This level of prediction is conditional on the revealed damage information of the
elements. The PDF of the system will vary with the number of the broken fibres. The whole
failure process can be described as this procedure: one element fails, then two elements in the
same or each pair are broken, and finally three elements are broken. For each scenario of two
broken elements, there are different formulas of PDF conditional on three broken elements.

The formula corresponding to the two broken elements in the same pair first is:

- ot
1,2,3,4 1— 1—
Py o it <(—arl — S - Tat*)

= f;o dx Pz,t*,t* (a% — la_z_at'f _ l;—at*)

P2g et (Eis) , fort>tf, (24

where t1 = t*,t3.4) = tT and t* < t' < to The formula corresponding to the two broken

elements in each pair is:

P(3,4)»tT ([tmm,zx) —(1- a)tq /04>

P e @ ) = , fort>th.  (2.5)
(1,2,3,4),t*,t V(1,2,3,4) ﬂ?{o dz P(3,4)’tt([£l: _ (1 . a)tT]/a)

where t; =t*,t5 = thand t* < ¢f < t(3,4)

Up to the second level, the PDF of system failure time can be given by a formula; and the formula
can be adapted to any system with 2™ fibres. When the model is applied in systems with millions of
elements, an element is often a bundle of fibres or coarse-grained [34]. There are some optimized‘

algorithms to calculate PDFs with thousands of elements.

o Level 3: Anderson and Sornette tested the third level prediction conditional on the space-
time of the largest crack in a system with 28 = 256. In this testing, all available damage
information is only about the failure time of the largest crack with size of 2" and the broken
fibres within this crack. The testing results show an improvement of the prediction for the

global failure, conditional on the partial knowledge [1].

Figure 2.2 shows an example of performance improvement with information of the largest crack
for a given realization. The thick curve is the unconditional cumulative number of broken fibers,
while the thin curve shows, as a function of time t, the cumulative number of broken fibers, which
broke either within the largest crack or within its complement in their pair within the hierarchy. One

can observe that with the conditioning on the largest crack and its complement, a linear increase is
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Cumulafive number of broken fibers

Timet

Figure 2.2: One measure of the cumulative number of broken fibers as a function of time ¢ for a
given realization.

The thick curve shows the unconditional cumulative number of broken fibers. The thin curve shows
the (conditional) cumulative number of broken fibers, which broke either within the largest crack
identified up to time ¢ or within its complement in their pair within the hierarchy [1].

accelerated very early while the absence of the condition makes a linear increase occur only at the
very end.

Anderson and Sornette opened a new way to predict the heterogeneous system failure based on -
the updated knowledge of damage history. Their models show the gains of the prediction from the
information of the space and time organization of damage. Applying their idea can solve many other
rupture problems. However for some rupture problems, in which only limited samples can be tested
or there is less or no access to information of damage history, the conditional probabilistic model is

difficult to build, and even the unconditional PDFs cannot be obtained in some scenarios.

2.2 Correlation Mining

Performing statistical data correlation analysis is not a new topic in data mining. Some association
patterns can be found by search for correlated items or attribute values [2][22][16]; the correlation
analysis can also be used to classify and cluster; the data can be aggregated by evaluating the corre-
lation between their attributes; and the dimensions can be reduced in the case of high dimensional
data using correlation analysis [10]. In time series data, the correlation relationship may exist be-
tween elements in a single time series or between two time series [37]. Most of the current methods

are used to mine the correlation inside a data set, of different attributes, items, elements, or time
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series; however, in our work, our concern is how to find the correlation between the data set and the
external events, i.e. the cable lifespan.
Many different coefficients are used to measure correlations. Lift (originally interest, introduced

by [3]) is usually used to estimate the correlation of two itemsets. For two itemsets I; and I3,

, Pl UL)

lift(ly, I2) = PP

where P(I7) is the probability of occurrence of I 1, P(I2) is the probability of occurrence of I, and
P(I, U I,) is the probability of occurrence of both [; and I5. This definition originates from the
dependence of two events. If P(Iy U I3) = P(I;)P(ls), I and I are independent to each other;
otherwise, they are dependent or correlated to each other. If the value of lift is less than 1, then the
occurrence of one itemset is negatively correlated with the occurrence of another one. If the value is
greater than 1, then the two itemsets are positively correlated. If the value is equal to 1, then the two
itemsets are independent and there is no correlation between them.

Another correlation measure is referred to as x?(chi-square) measure, which measures the cor-
relation relationship between categorial data sets. In statistics, one use of the x? test is to evaluate if
the paired observations on two variables are independent of each other or not. For the two categorial
data sets C'; .and C, with respectively ¢ and r elements, a table named contingency table may be
constructed in this way: the values in C; denote the different columns, while the values in C; denote
the different rows. Each and every possible joint event of the occurrence of one value in C; and one
value in C'; has its own cell (or slot) in the table. The x? is calculated as the following formula:

= zc: ZT: (035 ;fij){
i=1j=1 ©
where 0;; s the observed frequency (i.e., actual count) of the joiﬁt event of the occurrence of the ith
value in Cy and the jth value in Cs, and e;; is the expected frequency of this event, which can be

calculated as . , ,
_count(the ith value in C1) x count(the jth value in C5)

€ij = N )

where N is the total number of joint events with respect to C; and Cs, count(the ith value in C}) is

the number of occurrence of the joint events having the ith value in C1, and couni(the jth value in C5)
is the number of occurrence of the joint everits having the jth value in Cs. For a ’given significant
level and degree of freedom, the hypothesis that C; and C are independent will be rejected or not
according to the statistic value and a corresponding table of the x? distribution.

All-confidence [23] for an itemset [ is defined as

supp()

1. 1) =
all_conf(I) maz_item_supp(I)’

where max_stem_supp(I) is the maximum item support for all items in I. The all-confidence is
the minimal confidence for all the rules: i, — 42 where 41,12 € I. Therefore, if a rule is called

all-confident, it satisfies the minimal all confidence threshold.
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Cosine [30]is a variant of lift, and its definition has two formulae. For two itemsets Iy and I,
their cosine is

P(Il U ls) _ supp(h U I)
VP(I) x P(I)  /supp(Iy) x supp(la)

cosine(l, ) =

To evaluate the correlation of two continuous data sets, Pearson product-moment correlation
coefficient (or shortly, Pearson correlation coefficient) named for its developer Karl Pearson, is used

most widely. This is, given two data sets M and N,

SN (mi — M)(n; — N) _ SN (mn;) ~ NMN

=1

TMN = )

Nopyon Noyon
where NV is the total number of pairs (m;, n;), m; and n, are the ith values of M and N respectively,
M and N are the means of M and N respectively, oas and o are the standard deviations of M
and N respectively, and vazl(mmz) is the sum of the M'N cross-product. The value of ryn
ranges from —1to +1. rarny = 0 means.that M and N are independent and there is no correlation
between them. If a7y > 0, then' M and N are positively correlated, meaning that the values of M
increase as the values of IV increase. The higher the value of rp; v, the stronger the correlation. If
raun < 0,then M and N are negatively correlated, where the values of M increase as the values of
N decrease. Although Pearson correlation coefficient has the underlying assumption of normality
of both M and N, it can be used for some unspecified distributions and may get satisfying results.
There are other correlation measures for continuous data in statistics, such as, correlation ratio
[14], mutual information/total correlation [7], Point biserial correlation [4], Spearman’s p [17]
and Kendall’s T [13]. Some of them (correlation ratio, mutual information/total correlation) can be
used to measure more general dependencies (including nonlinear); while some are non-parametric

methods to measure for unknown distributions.

2.3 Anomaly Detection in Multiple Time Series

The aim of anomaly detection is to learn what the normal behavior is and determine when an event
occurs that differs significantly from the normal behavior. A time series is always an underlying
process in a system.- The anomaly detection of a time series needs to learn the normal behavior using
some “normal” series data input in advance; however, when used to detect anomalies, only segments
of series data mixed with “normal” and “abnormal” behavior are available. Moreover, in the case of
multiple time series, the anomaly detection will include analyzing the hidden multi-process which
may contribute to “abnormal’ events.

The applications of anomaly detection in time series are widespread nowadays. A majority
of these applications is in the medical field. Using multiple stream data obtained by sensors or
monitors, doctors should find “abnormal” conditions of humans so that some diseases may be found

as soon as possible. Another major application is on network monitoring. Network administration
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needs anomaly detection to block “malicious” attacks. Anomaly detection is also used in the study
of climate and geography conditions. The biggest advantage of application of anomaly detection in
these fields is: it can not only detect the known anomaly, but also predict the possible and unknown
anomaly.

Anomaly detection is the opposite of signature detection. Signature detection is explicitly given
information on what is “bad”, and simply attempts to detect it when it happens. Because anomaly
detection in single time series is relatively simple, this section focuses on only literature on anomaly
detection in multiple time series. First it provides an overview and comparison of the current mod-
els and their methods in anomaly detection in time series, and then a summary of its applications
in medicine, network administration, climate and geology. At last, some limitations and possible

directions of future research are pointed out.

2.3.1 Models

There are several definitions of “anomaly” [19]. Although these definitions reflected the diverse
interests of the people; “anomaly” is: generally believed as events or observations deviated from
normal or usual things. Very few models have been developed specially to detect anomalies in
multiple time series up to now. Some models for single time series may be extended to be used for
multiple time series. '
A. Box Modeling

Chan et al. have tried to address the problem of online detection of anomalous modes in a
series of their papers [31]{18][6]. Two efficient techniques are proposed: path modeling and box
modeling, both of which allow online scoring. The predecessor is their earlier work named Gecko
and RIPPER [31]. Gecko and RIPPER are applied to a single time series, and may be extended to
handle multiple time series by aligning and averaging multiple series as single one; similarly, when
handling multiple time series, path modeling needs extending by finding the nearest path of testing
point or specifying whether the testing pointing lies “between” the training paths.

Box modeling is developed specially to generate a model directly from multiple time series.
In this method, a model characterizing the behavior of multiple “normal” time series is produced;
given a test time series and a model, anomaly scores ére generated in a real-time manner; depending
on whether the model is order-dependent, a stateful or stateless test is performed. In state testing,
the anomaly score is zero if the current data point fits the current or next state/box. Otherwise, the
anomaly score is the squared distance to the surface of the current or next box, whichever is closer.
In stateless testing all boxes/states are compared. The anomaly score is zero if the data point is
within a box. Otherwise, the closest’ box is located and the squared distance to the box surface is the
anomaly score.

Chan et al. proposed three box-based algorithms to construct comprehensible models from

multiple training time series. A “box” is a constraint with minimum and maximum values in a
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feature space. The model consists of such “boxes” along the axis in the feature space. Before a
model for multiple series is produced, a model for each single series is constructed. Greedy-Split
algorithm is used to generate a model for a single series data. That is, a sequence of n points is
approximated by (n — 1) boxes, each including a pair of adjacent points. Then these points are
merged by replacing a pair of adjacent points with a box that minimizes the increase in volume.
This process will be ended when the specified k boxes are obtained, where & is user-specified.

Three algorithms to deal with multiple series data are: order-dependent, order-independent, and
order-independent without all-series constraint.

The order-dependent algorithm is the basis of the other two. For each series, Greedy-Split is
used to find k£ boxes, and then expand the boxes to include the closest points in other series. Because
each series will be processed, the model produced by this algorithm is affected by the order of the
set of time series.

The order-independent algorithm first approximate each series by boxes and merge the closest
boxes. During merging, each merged box will include at least one box from each time series.

The order-independent algorithm without the all-series constraint is the same as the order-
dependent algorithm except that the merging does not need to include boxes from all series.

The above three algorithms give us three possible models from multiple time series. The best
one may be chosen according to the testing.

B. Process Models

Unlike the methods to produce a general model from multiple time series, the other way to detect
anomaly in multiple time series is to try to find various reasons for anomalies, i.e., underlying or
hidden multiple processes or variables [12]{24][36]. ;

Mixture Model [12]. In this model, it is assumed: that any data set is generated by a mixture
of finite underlying probability distributions. When applied to time series, a data sample at time ¢
is generated from a mixture of K autogressive (AR) models. After the parameters of AR models
are calculated using maximum likelihood methods, an augmented probability vector of data can be
obtained. The vector is the combination of the probability of belonging to each AR model and not
belonging to any AR model. If a sample does not belong to any model, it is assumed to be an
anomaly. One advantage of mixture model is the augmented probability vector can be visualized
in 3-D after using dimension reduction. In such a graph, normal samples that belong to the same
model are clustered together, while an anomaly will be far away from these normal samples.

SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series)[24]. It is a comprehensive ap-
proach to discover correlations that effectively and efficiently summarize large collections of stream.
In SPIRIT proposed by Sun et al., PCA(Principal Components Analysis) is used to capture corre-
lations and find hidden variables corresponding to trends in the collection of stréams, which are as-
sumed to be co-evolving. The approach used in SPIRIT can dynamically detect changes (both grad-

ual and sudden) in the input streams, and automatically determines the number of hidden variables.
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When applied to detect anomaly, a change in the number of hidden variables indicates a sudden
change of system behavior (anomaly). Although domain-knowledge is needed to give some expla-
nation to the sudden changes, this way can capture anomalies beyond traditional threshold-based
scheme. That means, it will issue an alarm when it can not explain the present stream reasonably
using the past.

TensorStream [36][35]. In this model, Sun ez al. extended PCA analysis to a multi-dimensional
matrix, in which the values of each stream include domain-dependent environmental information,
for example, a sample value of network flow at time t may have “source-IP“, “destination-IP*, and
“port“. In TensorStream, such a stream is called tensor stream. The aim of streaming tensor analysis
is to ‘adjust projection matrix smoothly as the new tensor comes in. In anomaly detection, abnormal
tensors are first picked up from a sequence of tensors, then in the suspicious tensors, abnormal
modes are located, and last the abnormal dimensions in the given modes are found. In each level,
the abrupt large reconstruction error is used to decide whether an anomaly has occurred.

The process-based models are not only special for anomaly detection, but also for mining hidden
main trends and other patterns in multiple time series. These trends and patterns may be used to
capture “roots of anomaly. Also, these models can help to understand the correlations among the

streams and thus be expected to capture anomaly with better precision and recall.

2.3.2  Applications

Most researchers are interested in addressing a particular application problem that involves detecting
anomalies, rather than in attempting to address a large or general class of different anomaly detection
tasks. Researchers generally use the methods they believe best for the specific problem according to
their past.experience.

ClaSsical methods used for disease outbreaks rely on statistical models. However, in many cases
of syndromic data, outbreak patterns are unknown. Although signatures are always indicators for
disease outbreaks, anomaly detection may be a better method for biosurveillance in such a case.
Galit Shmueli et al. proposed a wavelet-based monitoring for biosurveillance [33]). The main idea is
to'decompose a series into a time-frequency domain and then monitor the different scale and level
for abnormalities. - So far, wavelet is used to analyze a single series in Shmueli’s method. They
believe wavelet-based generalization for multiple series data is a potential powerful tool.

Anomaly: detection in network monitoring is another important application. In a network, it is
impossible to know all possible attacks, especially new ones. Jake D. Brutlag proposed WebTV to
detect aberrant behavior in network time series [5]. In this model, the mechanism to detect anomaly
is: if the number of observations that fall outside the confidence band is over the threshold, an alarm
is triggered. . The problem in the model is: each series is processed independently on others. The
knowledge of the relationship between these series may be helpful to catch more network attacks.

InteMon, a prototype monitoring and mining system for large scale clusters and data centers, use
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SPIRIT to analyze many stream data [11]. One application of InteMon is to monitor computer room
air-condition systems. Detection of anomalous fluctuation of sensor data is useful for administrators

of data center to tackle troubles before the data center is damaged.

Generally speaking, there are two kinds of ways to detect anomaly in multiple time series: one
is to produce a general model from multiple series; another is to find hidden processes or variables
in multiple series. More research is on the latter till now since it can give the underlying reasons for
anomaly besides the internal properties of the systems; while the former is special to detect anomaly.

Process models are concise and are easily read and modified by humans, but their generation
requires parameters to be set by a human-who must have knowledge of the underlying processes
that produce the time series. The general model, however, does not need to know much about the
generation of time series. All models or algorithms are transparent; this property is appealing since
humans may tune the parameters to fit the models or algorithms to a specified domain.

Compared with signature detection, the false positive rate of anomaly detection may be higher.
However, anomaly detection may catch unknown anomalies which signature detection may not
catch. The trade-off between false positive and true positive is often a needed standard of anomaly

detection models.

. The previous sections have introduced the popular approaches related to our -work in material
science and data mining, and discussed several efforts to employ these methodologies in prediction
of the heterogeneous system faiiures, correlation analysis, and mining patterns in time series data.

‘These includes predicting rupture as a PDF conditional on the knowledge of spatio-temporal dis-
tribution of the damage, finding correlation between attributes in data sets, detecting anomaly as
outliers or utilizing the normal information to account for abnermal behavior. In our opinion, the
researches in material science provide us the theory basis on which our work were conducted, the
correlation analysis methods show us the idea on using statistical theory to search in time series
for patterns correlated to external events, and anomaly detection tell us the possibility of predicting
unknown unwanted observations by generalizing the time series. In this thesis, we make use of these
ideas by presenting a system that integrates the use of PDF information of telemetry data, the use of
simple and convenient statistical techniques, and finally the use of a large amount of dispatch data

from oilsand-shovel on-site records to analyze at different levels.
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Chapter 3

Framework

The previous chapter discussed a variety of approaches proposed in the literature for tasks of pre-
diction of rupture in a heterogeneous system and special pattern mining in time series. This chapter
will first motivate our approach for correlation pattern mining, and then present different steps of the
framework. We will begin by briefly reviewing the important conclusions about a system we should
have, based on the previous work. This will be followed by a presentation of the features of our
problem. This leads naturally into the motivation for developing our approach, which incorporates
many of the ideas presented in the previous works, but further explores the utility of PDF (Probabil-
ity Density Function) in order to take advantage of the huge set of time series data used by human
to monitor the shovel operatioh. The sections following this motivation will present the individual
components in the framework. '

Based on the existing literature, several conclusions can be drawn with respect to elements of a

framework that can be used to mining a pattern in time series.

e A classic classifier is not feasible to predict shovel cable failures. Preliminary results that we

obtained using such an approach were not promising (see Chapter 1).

o The probabilistic models proposed in material science may not be used in our work. Due to
a'small sample of used cables and no access to the spatio-temporal distribution of damage to

the cables, the approaches in material science are hard to implement in our work.

e The approaches available to search patterns in time series in data mining field are not ap-
propriate to our work. The time series patterns we are interested in are not trends, periodic
oscillations, or abnormal behaviors. For us, the cable failure is a random process conditioned
on some physical features, such as energy, properties of material, etc: We need within the time

series of power values to search for some ranges of values correlated to an external event.

Before building the framework, we will first briefly review some features about our problem and

the huge data set. These can be summarized as follows:
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1. Energy generated by the motors in shovels is applied directly to the shovel cables. Three
motors (hoist, crowd, and swing) in-a shovel control the moving of the dipper through the
cable. Therefore, despite the fact that most of the produced energy is converted into the
dipper’s motions, some of the energy is used to make the cable drag the dipper. The energy is
the most immediate factor which does harm to the cable. Other factors, such as materials and

operators, exert influence on the cables through the applied energy.

2. Colossal set of telemetry-data are accumulated as signals of the shovel operations. Syncrude
provides over 30 Gb of data recorded from the sensors mounted in the motors of the shovels.
These data are sampled at the rate of one second. For each cable with an average lifespan
of 1000 hours, we have 3.6 x 10% samples of the electrical current or voltage values. These
samples should be enough to estimate a probability density function for a certain long time

period, such as a cable lifespan.

3. The dispatch data are synchronized with the telemetry data. The dispatch data are sets of
information about shovel operation recorded on-site. The information includes the shovel
working status, the dug materials, and the working shifts. This information is recorded at an
unfixed interval with a timestamp. Using the dispatch data, we can know whether a shovel is
working or under maintenance, which team is operating it, and which material it is digging,

at a time.

Obviously, the purpose of our framework is to utilize the telemetry data and the dispatch datato
analyze the relationships between the three kinds of energy , different teams of operators, different
materials (oilsand and overburden) and the cable lifespan. ,

Although a probability distribution of cable failures like in the probabilistic models in material
science is difficult to build in our work, estimation of the probability density function of three types
of power (hoist, crowd, and swing) values is.easier to implement. Thus, it is feasible to design a new
method to find whether the probability distribution of each segment of the whole range of a power
value is correlated with the cable lifespan. Our goal is to find the segments with maximum negative
correlation with the cable lifespan for the 77 cables.

The remaining sections of this chapter will outline and present our correlation mining frame-

work, while the next chapter will analyze the testing results using our framework.

3.1 Overview
The steps in the framework are as follows (and are illustrated in Figure 3.1):

o Data Preprocessing: The removal of errors and imputation of missing values in the raw teleme-

try data.
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o Feature Extraction: The construction of the time series of the power-related features from the

raw electrical current and voltage data for each shovel.

e Merging: The incorporation of the information from the dispatch data sets, including material,

teams, loading elevation, etc.

o Time series Separation: The division of the constructed time series into time series for differ-

ent teams, different materials, and different cables.

e PDF Generation: The estimation of the probability density function in a proper scale for each

time series of the features separated in the previous step.

e Correlation Mining: The process of searching the features’ PDFs of all cables for certain

ranges of the feature values that have maximum negative correlation with the cable lifespan.

The first 4 steps actually belong to the Sample File Creation and the last one is the core compo-

nent in our framework.

3.2 Data Preproéessing

The first stage in the processing pipeline is data preprocessing. This stage aims to delete records
that are not relevant for our analysis and impute missing values in the raw telemetry data. This
step is not vital, since the raw telemetry data has already included enough information to produce
the probability density functions of features we can use in the following steps. Skipping this step
won’t change our testing results greatly. As the noisy effects we should eliminate in this step will
typically not be severe, an important property of the methods used for this step is that they do not
introduce additional noise to change the results of the tests we will do later, and only seek to make
minor corrections. Figure 3.2 is an example of the raw telemetry data. In the figure, each line is
a record including both readings of currents or voltages values from the three motors at a time and
the motors statuses. The readings from all armatures are what we need because they represent the
energy directly applied to the cables, and have been already scaled to have the ampere as the unit of
all currents and the volt as the unit of all voltages. All records are sampled per second despite the
fact that several seconds’ records are missing. Some records are incomplete due to no readings for
some currents and voltages. We will discuss how to process the missing data in the raw data in this

section.

3.2.1 Cleaning

The term Cleaning refers to a process of deleting from telemetry data some records corresponding to
the timestamps when a shovel is not working, or under maintenance. Through checking the telemetry

data and their corresponding dispatch data, when a shovel is not working, the motor armatures will
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Figure 3.1: Overview of presented framework.
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Figure 3.2: An Example of the Raw Telemetry Data.
Each line is a record of readings.and status of the three motors for a second. The unit for all current

is ampere and that for all voltages is volr.
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always generate currents with very low values, and sometimes no data were recorded in the telemetry
data. There are many empirical methods to decide if a shovel is working or not. An easy one among
them is choosing a threshold as the upper limit of the low armature currents and a period of time
as the duration of the low currents. However, we should not just ignore records with missing data
since they are not only due to a period when a shovel is not working. Although most of the missing
data with timestamps match the periods when a shovel is not working, some of them are actually
generated by errors of the sensors or the GPS system. There is no way to distinguish these two
types of the missing data 100% correctly, although the dispatch data may provide useful additional
information. Since the timestamps in the dispatch data do not match perfectly with the timestamps in
the telemetry data, we used a simple method to decide whether to skip the missing data or not: if the
duration of the missing data is not shorter than 5 minutes, the missing data will be skipped assuming
no working signals were generated by the motors. The complete rule that we choose in our work is
the following: a period of time longer than 5 minutes with both the crowd motor armature current
and the hoist motor armature current lower than 18 amp. will be regarded as a period when a shovel
is not working. The next section will discuss how we deal with missing data when the duration is

shorter than S minutes.

3.2.2 Missing Value Imputation

Missing value imputation is a process of interpolating the missing values in the telemetry data. Due
to electrical, mechanical, or telecommunicating failures, the currents or voltage values of the motors
in a shovel at some timestamps are not stored in the teiemetry data. We introduced the method to
tackle continuous missing data for a period not shorter than 5 minutes in the previous section. For
missing data for a period shorter than 5 minutes, we also use a simple method of interpolation to
replace these missing data with one value, which is the value just before the missing data occur.
For example, if there are missing values of crowd armature voltage from 15:00:02, September,
2006 to 15:01:02, September, 2006, the missing values will be replaced with the value at 15:00:01,
September, 2006. |
Although there are many advanced methods to deal with missing data in time series, the simple
interpolation may be strong enough in our framework. We used the same interpolation method as in
a previous shovel performance study [27]. Moreover, the implementation of the simple methods is
easy in any programming language. One weakness in our Java implementation of this step may lie
in a great deal of time consumed for the huge data. How to improve the efficiency of the algorithms

may be a further direction of this project.

3.3 Feature Extraction

After data preprocessing, the next stage in the framework is the construction of time series of the

power-related features that will be used in correlation mining. At this point, the telemetry data
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have been preprocessed to include the data we need. However, the raw current and voltage values
cannot be used directly in our framework, since the main component of our framework is to analyze
the energy profiles for the cable lifespans. This section will highlight the features that have been
implemented in our framework. The testing with the time series of these different features will be
explored in the next chapter.

The main consideration when selecting features is that the features used should reflect the
amount of energy which were applied directly to the cables. Furthermore, we need to take the
combined effects of these features into account, since in the current framework there would be no
method to obtain the combined effects in the following steps. The only source for the generation of

useful features is the telemetry data, therefore, the features should be extracted directly from it.

3.3.1 Power Features

Power features can be used to represent the energy applied to the cables during one second. Using
the power feature, we can also calculate the energy applied to the cables during longer periods, e.g.,
a shift (12 hours), a whole cable lifespan, etc., but in our framework what we need is a time series
of each type of power (crowd, hoist, and swing). The power applied to the cables can be calculated
by the following formula:

P=VxI

where, V' is the voltage of the motor armature, while I'is the current of the motor armature. We can
obtain the three power values from the three pairs of armature current and voltage values. Therefore,

the power features discussed in this section should be as follows [27]:

o Hoist power: hoist energy per second applied to the cable, produced by a hoist motor, which
is responsible for pulling the dipper up or down through the face, or up and down motion of
the dipper. The power values are obtained from the product of the current and voltage values

of the armature in the hoist motor.

e Crowd power: crowd energy per second applied to the cable, produced by a crowd motor,
which provides a thrust on the dipper to force it into the face or pulls it back, or ahead and
backward motion of the dipper. The power values are obtained from the product of the current

and voltage values of the armature in the crowd motor.

e Swing power: swing energy per second applied to the cable, produced by a swing motor,

which controls the dipper to sway towards the truck, dump and sway back to the face, or left
and right motion of the dipper. The power values are obtained from the production of the

current and voltage values of the armature in the swing motor.

Using the time series of the armature currents and voltages, we can obtain a time series of each

power feature for each shovel; we have three time series for each shovel now.
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3.3.2 Product of Power Features

After calculating the different power features, an additional Feature Extraction stage can be used to
construct a feature set that is more helpful to represent the combined effects of different types of
energy applied to the cables.

When adding extra features, we noticed an observation that a dipper always conducts simultane-
ously hoist and crowd motion. Actually, the records in the raw telemetry data show that any two or
three of the armatures applied simultaneously energy to the cables when the shovel is working. Like
the individual power features, the features of the combined effects are easy to form time series.

We use the products of powers to represent the combined effects of the power features on the
cables. The reason is that the high values of the three types of power should not occur frequently
under “normal’’ operation. For fhe hoist, crowd, and swing power features, therefore, we used the

following Product of Power Features:

o Product of Hoist and Crowd Power: This product measures the combined effects of hoist and
crowd power simultaneously applied to the cables. We will use product of hoist and crowd to

denote this feature.

e Product of Hoist and Swing Power: This product measures the combined effects of hoist and
swing power simultaneously applied to the cables. We will use product of hoist and swing to

denote this feature.

e Product of Crowd and Swing Power: This product measures the combined effects of crowd
and swing power simultaneously applied to the cables. We will use product of crowd and

swing to denote this feature.

e Product of Hoist, Crowd and Swing Power: This product measures the combined effects of
hoist, crowd and swing power simultaneously applied to the cables. We will use product of

hoist and crowd and swing to denote this feature.

The last three features are the combined effects of the energy for digging and the energy for
swinging for dumping. We will use the four Products of Power features in our framework to analyze
the relationship of their corresponding combined effects to the cable lifespan.

The computation of ‘al} features follows this order: for each record in the telemétry data, for
example, for a record at 23:04:56, April 15, 2006, we calculate the three power features using the
three pairs of the armature current and voltage values, then calculate the four products of power
features using the three power values at the same time. Thus, we can extract all seven features at the
same time and store seven time series of the features in one single file. In this file, each record (line)
has seven values of hoist power, crowd power, swing power, product of hoist and crowd, product of

hoist and swing, product of crowd and swing, and product of hoist and crowd and swing, with one
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timestamp, and all records are ordered as time goes on. At this point, we have constructed seven
time series of features for each shovel.

Although two different types.of features were explored in this work, it should be emphasized
that there remains a considerable amount of exploration that can be made with respect to feature
extraction, for example, any of the six armature currents and voltages, and any combination among
these six are the indicators of how the power are applied to the cables. Since using these features may
involve the knowledge of electro-magnetic mechanism in motors, for the present we leave these in
the future work. The computation of eaéh of the features discusséd in this section was implemented

in Java.

3.4 Merging Dispatch Information

After the time series of power-related features have been constructed, the dispatch information will
then be linked to the time series of seven features and merged into the time series file created in
the previous step. The merging stage-has two components, scanning and linking. Scanning means
that for each group of seven feature values with a timestamp, we find its corresponding dispatch
information in the dispatch data set. Scanning should be done only once, since the dispatch data set
is very large and very time-consuming to scan. Linking refers to the process of adding the lines of
feature values with the corresponding dispatch information found in the scanning phase.

The dispatch data is a data set about shovel operations. It contains on-site records of working
status, working shifts, materials, and loads with the corresponding timestamps. Figure 3.3 shows an
example of the dispatch data set. A dispatch data set normally includes two small data sets. One
contains the information about working status and shifts, the other contains the information about
materials and loads. We must use the information provided by both two small data sets. The dispatch
information is important to-study the factors, such as materials and oper‘ators, which are related to
' tﬁe cable lifespan. We will use the dispatch information to do examinations at different levels. The

dispatch information discussed in this section is summarized as follows:

e Working status: what a shovel is doing. A shovel spend most of its time digging and dumping,
but sometimes it needs temporary maintenance, including mechanical repair, cable changing,
etc. The information is shown in column TMT TIME IDENT (see the upper table in Fig-
ure 3.3). In the column, the codes with ‘N’ as the first letter denotes the working times of a
shovel, while the codes with ‘O’ or ‘M’ as the first letters denotes the maintenance time of a

shovel.

o Shifts: who is operating the shovel. A shovel in Syncrude works in two 12-hour shifts per
day, daytime shift and night shift. There are always four teams that operate one shovel, and
one team works for one shift at a time. The information is shown in column TMT SHIFT

IDENT and TMT TEAM IDENT (see the upper table in Figure 3.3). ‘1’ and 2° in TMT
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SHIFT IDENT denote daytime shift and night shift respectively, while ‘A’, ‘B’, ‘C’ and ‘D’
in TMT TEAM IDENT denote different four teams.

o Materials: what a shovel is digging. A shovel is not always digging oilsand. It is sometimes
digging overburden, which refers to the waste on top of oilsand, or a mixture of oilsand and
overburden. The dispatch data tells us which and how much material a shovel is digging
in each load. -In the dispatch data, ‘TS’, ‘OB’ and ‘OTS’ denotes oilsand, overburden and
mixture respectively. The column MATERIAL IDENT in the lower table of Figure 3.3 is the
codes for different material, while the column of QUANTITY is the quantity of material dug

in each load.

e Loads: how a shovel is digging in each load. A load is a cycle of digging and dumping.
Dispatch data of loads include their elevations; latitudes, longitudes, and completion times

(see the corresponding columns in the lower table in Figure 3.3).

Although working status is included in the dispatch data, we did not include the information in
the feature time series file because the generated time series should match the shovel working time
if we preprocess the raw telemetry data in the first step. The working status information would be
used only to separate the feature time series into parts for different cables later in our framework.
We will discuss in detail the working Status in the next section.

Shifts will not be changed dliring the working time of a load record. In Syncrude, a working
shift for shovels is 12 hours long. A daytime shift is from around 7:30 am to around 7:30 pm, while
a night shift is from around 7:30 pm to around 7:30 am in the next day. During one shift, only one
team of operators will work on the shovel. The four teams work alternatively during a 12-day cycle.
However, we cannot know which team is operating for each shift because the raw dispatch data has
* only shift information (daytime or night) and not the corresponding team information. According
to the schedule provided by Syncrude, we identify the different teams for each shovel using this
procedure: from 7:30 am of a given day a few years ago, in each cycle, team A works in daytime
shifts and team B works in night shifts for three days, then team C works in daytime shifts and
team A works in night shifts for the following three days; in the next six days, team D works in
daytime and team C' works at night for the first three days and then team B works in daytime and
team ) works at night for the remaining three days. In such a cycle, each of the four teams will
work continuously for six shifts, three daytime shifts first and then three night shifts. After finding
the corresponding team information, each line of the feature values is assigned a shift number and a
team number. We use 1-and 2 to denote the daytime shift and night shift respectively, and A, B, C,
and D to denote the four teams. Naturally, in the time series file all lines of feature values belonging
to the same shift will be assigned the same shift number and team number.

The information of materials and loads are closely related because the material information is

always assigned to-each load in the dispatch data set. In the dispatch data (see Figure 3.3), for each
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Figure 3.3: An Example of the Dispatch Data.

A raw dispatch dataset normally includes two small data sets. The upper one provides us with
working status and shift information. Each line is a record with the timestamp at TMT DT (the
first column). The other columns in the upper part we used in our work are: TMT TIME IDENT
(working status codes), TMT DURATION (durations for the corresponding records, with minute
as the unit), TMT SHIFT IDENT (shift No.), and TMT TEAM IDENT (team No.) The lower one
includes the records on loads with completion timestamps at LOAD AT (the third column). The
other columns in the lower part we included in the resulting time series files are: MATERIAL
COUNTER, MATERIAL IDENT, QUANTITY (with tonne as the unit), LOADING ELEVATION
(with centimeter as the unit). The MATERIAL ID in the upper part should be identical to the
MATERIAL IDENT in the lower part for their respective timestamps are matched.
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load, there is one line of record, including the types and amounts of material dug during one load,
and the conditions of the load. Since a shovel needs several minutes to complete a load, there are
hundreds of the lines of feature values for each load. The lines belonging to the same load would be
assigned the same information about this load.

The procedure described up to now is used to form a time series file for one shovel. Syncrude
provides the telemetry and dispatch data for eight shovels; therefore, we would have eight time series
files altogether.

In our implementation of this step in Java, since both the records in the dispatch data set and the
lines of feature values in the time series file are ordered as time goes on, we can do scanning and
linking at the same time. After the dispatch information of some lines of ’feature values are found,
this information will be merged with these lines of feature values; then the process will be repeated
until all the needed dispatch information is merged into the time series file.

Figure 3.4 is an example of a resulting time series file with dispatch information merged.

It should be noted that not all dispatch information we mentioned in this section would be used
in our work. Testing with some of the dispatch information were not included in the experiments we

will discussed in Chapter 4, and the unused information will be left for the future research.

3.5 PDFs Generation

The resulting time series files generated in the merging step can be used to estimate the probability
density function of each feature. There are many different methods to estimate a PDF in the litera-
ture. These methods can be classified as parametric or non-parametric. Parametric methods are used
to estimate the parameters of the PDF based on the assumption that the PDF is of a standard form
(generally, Gaussian, Raleigh or uniform) or a combination of known form; while non-parametric
methods apply to the PDF of a unknown form. The parameters of an assumed PDF can be estimated
either using ML, (Maximum Likelihood) estimation or Expectation Maximization (EM) algorithm.
The non parametric methods include histogram based, kernel based methods and K nearest neighbor
methods. Since the PDFs of the power-related features are unknown, the non-parametric methods
are most appropriate for our work. We chose a histogram with a suitable number of bins (for ex-
ample, 100) to estimate the PDFs. To make the histograms for different distributions comparable,
we use the same fixed number of bins for all histograms. The advantage of using a histogram is
that we can obtain the probability for .each bin with ease for a given number of bins. We need the
probabilities of all bins to test their correlations with the cable lifespan. We used Matlab to obtain

and plot the PDFs. We chose 100 bins for all PDFs shown in thesis and tested in our work.

3.5.1 Feature PDFs for Different Shovels

We can obtain the histograms to plot PDF curves of seven features for each shovel. Figures 4.2 to

4.8 (page 38 — 41) show the PDF curves of the features for eight shovels.
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Figure 3.4: An Example of A Final Feature Value Time Series File.
The units of all power features are watt, therefore, the units of product of power features are
wattXwatt or wattxwattxwatt. The units of other columns of dispatch data are the same as in

the original dispatch data sets.
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Although the PDF curves will change with different number of bins, the trends of these curves
should be similar for a wide range of bin sizes since our data are very large. We noticed that all
PDFs are similar in shape, although the ranges of the seven features are different. All curves have
the highest values at the leftmost ends, then drop drastically and close to zero in the following
segments.- However, there are still some differences among the PDFs. For example, the PDFs of
product of power features drop more rapidly, and their following segments are flatter than those of
power features. Some conclusions with respect to the shovel operation can be drawn from these

PDF curves as follows:

¢ The operation patterns of all shovels is very similar with respect to the PDFs of the power-

related features.

o For most of the working time of shovels, the hoist, crowd, and swing power are applied with

low values to the cables.

s For most of the working time of shovels, the values of the product of power features are small;

therefore, the combined effects of the three types of power applied to the cables are small.

One hypothesis in our work is that the different teams would have different influences on the
cables due to their different operation patterns. Since the PDFs of the power-related features can
be used as indicators of team operation, we can verify the assumption with these PDFs of different
teams. Before testing, we should know if there is any significant difference between these PDFs of
different teams. The estimation of the PDFs between the teams is feasible due to the merged team
numbers in the time series files. The examples of some resulting PDFs of the power-related features
for different teams of a shovel is in Figures 3.15 to 3.19 (page 41 — 43). The shapes of the four
teams’ PDF curves are overall similar fo each other. There are also local differences between some
of them although they are difficult to see in the scale the figures are plotted.

To find whether there is any significant difference between the PDFs of the power-related for
different teams, a proper statistical test can be used for the PDFs. There are some Hypothesis Tests
in statistics to test whether several samples belong to the same distribution or not. Two-sample ¢-
test is used to determine if two populations are from normal distributions with equal means or with
unequal means. Two-sample F'-test tests whether the two populations are from normal distributions
with equal variances or with unequal variances. Ansari-Bradley test is used to test the null hypothesis
that the two population distribution functions corresponding to the two samples are identical against
the alternative that they come from distributions that have the same median and shape but different
dispersions (e.g. variances). Two-sample Kolmogorov-Smirnov test performs a test that whether
two samples come from the same unspecified distribution. Two-sample Kolmogorov-Smirnov test
is most suitable in our framework because it does not need the samples to have the same size and

need does not assume a specific the distribution.
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Two-sample Kolmogorov-Smirnov (K —5) test is based on the one sample Kolmogorov-Smirnov
test, which tests whether an underlying probability distribution differs from a hypothesized distri-
bution. The one-sample KS test compares the empirical distribution function with the cumulative
distribution function specified by the specified distribution, whichis often a normal distribution. The
two-sample K-S test compares the the cumulative distribution functions of the two sample distribu-
tions. Let S1(z) and S2(w) be the cumulative distribution functions from the sample distributions
X1 and X2, the test statistics are

maz|S1(z) — S2(z)|.

We implemented the two-sample K — S tests on the feature time series for different teams of
each shovel. The results show that different teams of one shovel have different distributions of each
of the power-related features at the significance level of 0.05. Based on this results, we can analyze
the influences of different team operations on the cable lifespan.

Another hypothesis in our work is that different materials which a shovel is digging would cause v
the different operation patterns and these different patterns have different influences on the cable
lifespan. Using the material id, the PDFs of the power-related features for different materials can
be estimated with ease. Figures 3.20 to 3.21 (page 44) are examples of the feature distributions
of two materials, T'S (oilsand) and O B (overburden), for one shovel. To simplify the analysis, we
included the mixture (OTS) in overburden (OB). The two-sample K — S test was also performed to
test whether any significant difference exists between the distributions of each feature for different
materials. The results of the test show that there is a significant difference between these distributions
for each shovel. Therefore, we can test whether oilsand or overburden would do more harm to the
cables.

We did an additional test to find whether there is any significant difference betweén the operation
patterns of different teams for the same material. Figures 3.22to 3.23 (page 45) are some examples
of the feature distributions of different teams for the same materials. The two-sample K — S tests
show that such differences exist.

We can summarize this section as follows:

e The different teams of one shovel have different operation patterns, and each team has differ-

ent operation patterns for one material.
o A shovel has different overall operation patterns for different materials.

These conclusions justify our research of the different influences of different teams or different
materials on the cable lifespan. We designed some related experiments and will discuss them in

detail in Chapter 4.
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3.5.2 Feature PDFs for Different Cables

At this point, we completed all the steps before the one for estimating the PDFs of the features for
different cables. The following paragraphs will discuss the process in which we obtained the PDF
curves for 77 cables. The process has two phases: in the first, the time series of the features for
all cables are extracted from the time series files; in the second, the PDFs of these time series are
estimated.

To segment the time series file for each shovel into the parts corresponding to the different cables,
we need to find the time when an old cable is replaced by a new one before the old one fails. The
information about the replacement of cables can be found in the dispatch data set. In the dispatch
data set, there are some special codes denoting the maintenance time of the shovels. These codes
include ones signifying a cable replacement. According to the time of the cable replacement codes
in the dispatch data set, we can find the corresponding periods of time in the time series files.

We used the same histogram-based methods as in the previous section to estimate the PDFs of
the features for the cables. Figures 3.24 to3.31 (page 46 — 49) are some examples of the feature
distributions for different cables. Naturally, the distributions are similar to those we obtained in the

previous section. We will use these distributions for correlation mining in the next section.

3.6 Correlation Mining

The last step in our frameéwork is Correlation Mining, which. attempts to search in the feature distri-
butions for the segments whose frequencies are correlated to the cable lifespan.

In this part of our framework, we use Pearson correlaﬁon coefficient as the criterion of corre-
lation judgement due to its simplicity. What we are looking for is some ranges of a feature value
whose probabilitiés in the whole cable lifespan have high negative Pearson correlation coefficients,
ideally, less than —0.5, with the length of the lifespan.

When using Pearson correlation coefficient, we need two samples of values. The lengths of
different cable lifespan naturally form one sample. The other sample should be the different prob-
abiylities of the same range of feature values for all cables. Using the histograms for PDFs of the
cables, we can obtain the probabilities for each-bin. Thus, we will get a sample of probabilities of
all cables for each bin. Taking each sample of probabilities and the sample of cable lifespans, the
different Pearson correlation coefficients for each bin can be calculated. By comparison of different
Pearson correlation coefficients, the bins with highest negative Pearson correlation coefficients wiil
be regarded as most “harmful” to the cables, or relevant as we will denote later in the thesis.

A histogram of a PDF is composed of the bars with the same ‘widths and the different heights,
distributing along the axis of a feature. The width of a bar is a small range of a feature value, while
the height of the bar is the count of the feature value falling in this range. When estimating PDFs

from the histogram of samples, the probability for each bar may be calculated by dividing its counts
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PDF and CCDF of Hoist Power for Cable 45-11-78-Lifespan-2005-09-10
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Figure 3.5: PDF and CCDF of crowd power for a cable of Shovel78 as functions of bin number.

by the sum of counts of all counts of all bars. To compare the different probabilities of the same
range of a feature value for all cables, we must produce the histograms of a feature for all cables
with one large range which contains all values of the feature for all cables. Some trivial coding in
Matlab can produce the PDFs for all cables with one group of probabilities of each bar to calculate
the Pearson correlation coefficients.

Another kind of testing with Pearson cbrrelation coefficients is using the complementary cu-
mulative distribution function (CCDF) of the feature values. CCDF is used to study how often the
random variable is above a particular level. In our work, we utilize CCDFs of distributions of fea-
tures to test the correlation between the cable lifespans and the probabilities when a feature value
is greater than or equal to the left edge of a particular bin for all cables. Using such tests, we can
answer the question: for which value, the tail of a feature’s PDF starting at that value has the highest
negative correlation with cable lifespan? Figure 3.5 is an example of PDF and CCDF of hoist power
for a cable as functions of bin number.

Both PDFs and CCDFs tests are important to mine the correlation for us. PDFs are appropriate
to find certain small relevant ranges; while CCDFs are convenient to ascertain a continuous range
from a value on to the high value end. The latter may be more useful in practice because a feature
value can be identified as dangerous only using a threshold. We used both two tests in our work and
draw conclusions from the results.

Figure 3.6 illustrates the process of calculating the Pearson Correlation Coefficient for a feature
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Step 1: Estimate the PDFs of the feature values {e g, hoist power) for cables {Cable 2, Cable 2,
~~v Cablen, .} using histogram with a suitable mamber {e.g., 100} of bins.

Step 2: Totest whether the: pmhahllmes for the corresponding bins {segments, value ranges),
p.g., forbin 2, arecorrelated nthe cable lifespans, caleulate the Pearson Correlation
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asinthe previous shep. ' - '

Figure 3.6: The process of calculation the Pearson Correlation Coefficients for PDFs of a feature
value for all cables.
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Figure 3.7: Pearson correlation coefficient of hoist power as functions of bin number.

value’s PDFs for all cables. After obtaining the estimated PDFs, to test whether the probabilities
of the corresponding bins (segment, value range), e.g., bin 2, are correlated to the cable lifespans,
the Pearson Correlation Coefficient are calculated from two groups of data. One group includes the

. probabilities of bin 2 for all cables (0.26,0.18,,0.34,); the other group inclﬁdes the lifespans of
all cables (1,000, 860, ,1,500,). Using this way, we obtained the Pearson Correlation Coefficients
for all bins (1 to 100) of PDFs for each power-related feature. The same procedure was applied to
obtain the Pearson Correlation Coefficients for all bins of CCDFs for each power-related feature.
Figure 3.7 is the Pearson Correlation Coefficients for PDFs and CCDFs of hoist power as functions
as bin number. In this figure, Pearson Correlation Coefficient has different values for different hoist
power value segments (bins); some are positive and some negative. This means that different hoist
power values have different impacts on the cable lifespan. From Pearson Correlation Coefficient
for CCDYF, its values for a segment from different bins to the highest end are also different. Using
these two curves for each feature, we can find the segments whose distribution probabilities are most
negative correlated with the cable lifespan.

We examined only Pearson correlation coefficient, which is used to mine only linear relationship.
Other methods, especially the non-parametric.ones, are still worth testing in our framework to ﬁnd
the relevant ranges which may not be found using Pearson correlation coefficient. With respect to
the separation of the feature value space, we ultimately selected to use 100 bins rather than more

due to the small time required for both the division of the feature values and the calculation of
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the probabilities. More number of bins, for example, 200, 500, or 1000, may be tested in future.

However, too high number of bins may lead to unsmooth PDF curves and should be avoided.
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Figure 3.9: PDFs of hoist power for the eight shovels.
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Figure 3.18: PDFs of product of hoist and crowd powers for the four teams of Shovel84.
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Figure 3.25: PDF of hoist power for a cable of Shovel79.
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Figure 3.27: PDF of product of hoist and crowd power for a cable of Shovel81.
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Chapter 4

Results

Assessing the effects of different factors such as power-related features, materials and operators, on
the cable lifespan using the correlation method is not trivial. This is partially due to the lack of a
standard data set, and the lack of previous works in the literature. In addition to these challenges,
there are also the tasks of explaining the correlation values obtained in our framework, defining an
evaluation measure, and choosing the sample data. Before presenting the experimental results, we
will discuss the decision made with respect to these issues.

A major issue that must be addressed in scanning the ranges of the feature values with prob-
abilities negatively correlated to the cable lifespan is the means through which the correlation is
quantitatively assessed. The normal method in statistics has used the values of Pearson correlation
coefficient that have been naturally defined as a-measurement of the maximum negative correla-
tion to the maximum positive correlation with its range of —1 to +1, and the values greater than
0.5 or less than —0.5 are considered acceptable indicators of high correlations. However, it repre-
sents a simplified ideal mathematical case.” In practical cases, the mechanisms that cause positive
or negative values are difficult to explain. In our work, the ranges with positive Pearson correlation
coefficients may not be explained as ‘beneficial‘ to the cable, because the power or energy applied
to the cables would always be harmful to the cables even though the influences of power with low
values may ignored. Another problem of the correlation coefficients is that in our experiments they
are rarely beyond the scope of —0.5 to 4-0.5 although there are obvious differences among them.
These problems cause explicit decisions hard to make. It was thus decided to ignore the ranges with
positive coefficients and choose the ranges with the prominently highest negative coefficients less
than —0.4.

In order to obtain an appropriate sample of cables, the specific cables should be chosen with
prudence, especially for the cables with a great deal of time when the telemetry data were missing.
It was noted that some periods with no data recorded in telemetry data were skipped as the shovels
are not working. Although most of such periods are verified with the corresponding dispatch data,
there are still a few of them for which it has been otherwise confirmed that the shovels were actu-

ally working; the durations of these intervals range from several minutes to several days. As the

50



distributions of features in the skipped periods may have important information relevant to the cable
lifespan, using the cables with too many of such periods may affect the test results. We chose the
samples of cables using the following rule: if a cable has available telemetry data with total time not
shorter than its lifespan by 15%, the cable will be considered as an acceptable sample.

In order to quantitatively assess whether there exist different effects on the cable lifespan be-
tween different teams or materials, we chose to use a simple descriptive statistic: sum of the counts
of feature values for different teams and different materials for a certain range of feature values.
First, we calculated the percentages of total counts for different teams or materials in the relevant
segments; second, we compared these percentages to those for the whole range of the correspond-
ing feature values. The first step may show differences between the contributions of the teams or
materials to the relevant ranges; however, based on these differences, we cannot draw a conclusion
that specific team or material with bigger contributions is the principal cause for the existence of the
relevant ranges: and thus more harmful to the cable lifespan, because the materials or teams could
make the same contributions to the whole range as to the relevant segments. ‘A material or team’s
higher contribution to the whole range may lead to its higher contribution to the relevant segments,
since the most time of a cable lifespan was spent digging a material or operated by a team. Only
though the comparison in the second step can we specify some team or material which are more
harmful to the cables.

The resulting sample of the cables used in our work consisted of 77 cables with different life-
spans. As we have noted, each shovel has four different teams, but one shovel’s four,t_eams are not
the same as those of other shovels despite the same set of identifiers (TA, TB, TC, and TD) used
for all shovels. Therefore, we conducted the team-specific experiments for each shovel not for all
shovels; while we conducted the material-specific. experiments both for individual shovels and for
all shovels. To simplify the experiments and give the explanations on a uniform level, we used 100
bins to estimate all PDFs and CCDFs in the experiments.

This chapter is organized as a series of sections about related experiments, designed to learn more
about our problem in their respective scenarios. Each section will describe one kind of experiment,
which is motivated by a question, and then describe the experimental outline, the predicted results,

the experimental results, and a discussion of the results.

4.1 Feature-Specific Correlation Experiments

Question: A first natural question to ask is, For each feature, is there any segment (range of
power-related feature values) which is really very harmful to the cables?

Experimental Outline: To answer this question, the time series of all seven power-related fea-
tures during the whole lifespans of 77 cables were extracted from the telemetry raw data and then
their PDFs or CCDFs were estimated to be used for correlation mining described in the previous

chapter. We obtained the values of the Pearson correlation coefficient for each feature for the whole
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cable lifespan using the built-in functions in Matlab.

Predicted Results: For each feature, the correlation coefficient is different for all segments of
the feature distribution. Some segments of the feature have high negative correlation coefficients
(< —0.5); while some have not. In other words, we can discern clearly the segments with high
negative values from the correlation coefficient value curves.

Experimental Results: The Pearson correlation coefficients for PDF and CCDF of the seven
features are shown in Figures 4.2 to 4.8 (page 58 — 61) as-a function of the bin number.

Discussion: The correlation coefficient is really different for all segments of each feature; how-
ever, only some features have segments (bins) with the correlation coefficients around —0.5.

For product of hoist and crowd (Figures 4.5), the negative correlation coefficients are around
—0.5 from 20tk to 34th bins with the highest negative of —0.5461 at 21¢h bin. From 20th to 100th
bins, the value of correlation coefficient is increasing gradually from around —0.5 to 0.0; and all
bins except the very leftmost ones before 20th bin have still the negative correlation coefficients.
Therefore, the product of hoist.and crowd should have the knegétive effects on the cable lifespan when
bigger than some low value. This threshold should be around the 15tk bin with the highest negative
correlation coefficient of —0.4938, according to the value curve of the correlation coefficient for the
CCDF. Therefore, we regard the value after the 15¢A bin, as a relevant segment of product of hoist
and crowd.

The feature product of crowd and swing (Figures 4.6) has similar correlation coefficient value
curves for both PDF and CCDF compared to the product of hoist and crowd. However, the fluctua-
tion at the rightmost end of the curve for the PDF cause the curve for the CCDF in Figure 4.6-to be
higher than —0.4 for each bin. For this reason, we could not find a relevant segment for product of
crowd and swing in this experiment.

For the feature hoist power (Figures 4.3), the PDF’s correlation coefficient values form an odd
curve: most bins before the 50th bin have positive values with a global maximum at the 48th bin,
while most bins thereafter have negative values with a distinct global minimum around the 75th bin
(—0.4216, approaching —0.5). In this case, the positive coefficients should be ignored due to the
reason we have given. For the negative coefficients, unlike the other features, hoist power has the
highest negative correlation coefficients for only a narrow range around the 75tA bin. Therefore, the
bin 75 should be regarded as a relevant segment.

For the feature crowd power (Figures 4.2), the PDF’s correlation coefficient values form a curve
different from that of hoist power: most bins before the 50th bin have the negative values, while
most bins thereafter have the positive values. However, there is no distinct global maximum or
minimum on the curve. As we did for hoist power, only bins with negative coefficient values are
scanned for the relevant ones. Finally, we chose the values from the 17th to 39tk bins as a relevant
segment since these bins have the highest negative coefﬁcient values (all around —0.4).

For each of the other features, since no Pearson correlation coefficient for PDF and CCDF is

52



lower than —0.4, we could not identify any segment of the feature value as relevant in this experi-

ment.
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Figure 4.1: The relation of probability for 75th bin of hoist power distribution to the cable lifespan.

In this experiment, there are only few ranges of some feature values that have correlation coeffi-
cients lower than —0.5. For some features, there are a few segments whose correlation coefficients
are the distinctly lowest even though they are only around —0.4. These segments could be mean-
ingful and could be studied further. To include these segments into the relevant ones, we relax the
threshold for negative correlation up to —0.4. Thus, the resulting relevant rahges of the power-

related features are:

o CP: crowd power values from 1.9277 x 10%watt to 4.6988 x 10%watt (from the 17th to 39th
bins).

o HP: hoist Power values from 1.3311 x 105watt to 1.3491 x 10%watt (the 75th bin).

o HCP: product of hoist and crowd values from 1.9841 x 10 M watt x watt to 1.4172x 101 2watt x
watt ( from the 15tA to 100th bins).

Relevant means if the corresponding feature values fall in a relevant segment more often during
the cable lifespan, then length of the cable liféspan would be shorter. Figure 4.1 shows the relation
of the probability for a relevant segment (HP) with the cable lifespan. For this segment (HP), almost

half points of the cables are around the regression line. Each material or team of operators may have
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different contributions to each relevant segment. By investigating these contributions and comparing
them with the corresponding contributions to the whole cable lifespan, it is expected to find a specific
material or team of operators which may be more harmful to the cables than the others. We used the
above relevant segments in the following experiments to find the results with respect to the materials

and the operators.

4.2 Material-Specific Experiments
4.2.1 Material-Specific Experiment 1

Question: Is there a specific material (overburden, oilsand or the mixture of them) which have
more negative effects on the cable lifespan than the other?

Experimental Outline: In this experiment, we analyzed the contributions of different materials
both to the relevant segments and to the whole cable lifespan using percentages of the total counts of
the feature values in a range (a relevént segment or the whole lifespan) for different materials. The
material with the percentage for a segment or a range of values (p;) higher than the percentages of
other materials was regarded as contributing more to the segment. Compared with its percentage of
total counts for the whole cable (p.,), a material could produce the feature values more frequently
falling in the relevant segment than falling in an average segment if its p, greater than its p,,. For
each material, we checked if any of its p, was greater than its p,,. We chose the material with
the distinctly largest positive difference between its p, and its py, (for ps > py) for all relevant
segments as the principal cause for the relevant segments overall, and therefore more harmful to the
cables than other materials. Thus, the procedure used in this experiment is: for each of the relevant
segments obtained in the previous experiment, first, the percentage of total counts of each material
(ps) were calculated ; then, (ps) was compared to the material’s percentage for the whole lifespan

(pw) to check if p; > p,, or not. The materials whose contributions were compared are:
. Oilsand: the material containing oil (TS).
¢ Overburden: the waste above the topsoil (OB).

e Mixture: the mixture of topsoil and overburden (OTS).

The ranges of different feature values for which different material’s contributions were analyzed

are:

CP: the relevant segment of crowd power presented in the previous eXperiment.
o HP: the relevant segment of hoist power presented in the previous experiment.
o HCP: the relevant segment of product of hoist and crowd presented in the previous experiment.

e WHL: the range of the whole cable lifespan.

54



Predicted Results: It is expected that some material could make more contributions to the
relevant segments than its contribution to the whole lifespan with obvious differences.

Experimental Results: The percentages of total counts of different materials for each relevant
segment and the whole lifespan are shown in Figure4.9 (page 62).

Discussion: Oilsand (TS) has the highest percentages for all relevant segments (CP, HP, and
HCP) and the whole lifespan (WHL), and its percentage for each relevant ségments is higher than its
percentage for the whole cable lifespan with the largest difference occurring at the relevant segment
of hoist power (HP). The percentages of mixture (OTS) are almost the same in all relevant segments
and the whole lifespan. The percentage of overburden (OB) for each relevant segment is lower than
its percehtage for the whole cable lifespan. These results indicate that oilsand is more harmful to the
cables than the overburden and mixture, although this difference was not always significant for all
relevant segments. Specifically, oilsand’s contribution to the relevant segment of hoist power (HP)
was significantly more than that to the whole lifespan, while its contribution to other two relevant

segments (CP and HCP) was not significantly more.

4.2.2 Material-Specific Experiment 2

Question: For each shovel, is there a specific material (overburden, oilsand or the mixture of
them) which have more negative effects on the cable lifespan than the other? Specifically, what we
would like to explore in this experiment is whether the conclusion drawn in the previous experiment
is applicable to each shovel separately.

Experimental Qutline: The same procedure as in the previous one was used in this experiment.
The experiment was done for each of the eight shovels.

Predicted Results: It is expected that the same result in the previous experiment could be ob-
tained for each shovel.

Experimental Results: The percentages of total counts of different materials for each relevant
segment and the whole cable lifespan are shown in Figures 4.10 to 4.17 (page 62 — 66) for eight
different shovels.

Discussion: With the exception of Shovel82 and Shovel84, oilsand (TS) is more harmful to the
cables than other materials, especially for the relevant segment of hoist power (HP).

For Shovel78 (Figure 4.10), TS has the highest percentages for all relevant segments (CP, HP, and
HCP) and the whole lifespan (WHL), and its percentages for all relevant segments are higher than its
percentage for the whole cable lifespan with the largest difference occurring at the relevant segment
of hoist power (HP). For other materials, only OTS’s percentage for CP is slightly higher than its
percentage for WHL.. These results are very similar to those in the previous experiment. Therefore,
oilsand (TS) is more harmful to the cables than other materials, especially for the relevant segment
of hoist power (HP).

For Shovel79 (Figure 4.11), TS has its percentages for HP and HCP higher than its percentage
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for WHL, while OB has the higher percentage for CP. TS has the largest difference occurring at HP.
Therefore, oilsand (TS) is more harmful to the cables than other materials, especially for the relevant
segment of hoist power (HP).

For Shovel80 (Figure 4.12), OTS has its percentages for CP and HCP slightly higher than its
percentage for WHL, while TS has its percentages for CP, HP, and HCP higher than its percentage
for WHL with the largest difference occurring at HP. Therefore, oilsand (TS) is more harmful to the
cables than other materials, especially for the relevant segment of hoist power (HP).

For Shovel81 (Figure 4.13), T'S has the largest difference obviously observed at HP, while other
differences are more obscure. Therefore, oilsand (TS) is more harmful to the cables than other
materials, especially for the relevant segment of hoist power (HP).

For Shovel82 (Figure 4.14), no distinct differences can be observed at CP, HP, and HCP for each
material.

For Shovel83 (Figure 4.15), Only TS has its percentages for CP, HP, and HCP higher than its
percentage for WHL. Therefore, oilsand (TS) is more harmful to the cables than other materials.

For Shovel84 (Figure 4.16), no distinct differences can be observed at CP, HP, and HCP for each
material.

For Shovel85 (Figure 4.17), Only TS has its percentages for CP, HP, and HCP higher than its
percentage for WHL. Therefore, oilsand (TS) is more harmful to the cables than other materials.

Although each shovel spent a different ratio of its working time in digging oilsand (lowest ratio
for Shovel81 and highest ratio for Shovel83), oilsand’s negative effects on the cable lifespan were
always more than other materials according to the results. Notably, for all shovels except Shovel82
and Shovel84, oilsand’s cohtributibns to the relevant segment of hoist power (HP) were always the
highest relative to its contributions to other relevant segments and the whole cable lifespan. ‘The

range of HP should be investigated in more detail.

4.3 Operator-Specific Experiments

Question: Are there any specific teams for each shovel whose operation practices are more
harmful to the cables ihan others?

Experimental Qutline: In this experiment, we used a procedure similar to the ones in the
previous experiment. The experiment was done for each individual shovel to compare each team’s
contribution to a relevant segment with its contribution to the whole cable lifespan.

Predicted Results: Each shovel has some specific team which has more contributions to the
relevant segments than its contribution to the whole cable lifespan. ‘

Experimental Results: The percentages of total counts of different teams for each relevant
segment and the whole lifespans are shown in Figures4.18 to 4.25 (page 66 — 70) for the eight

different shovels.
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Discussions: The contributions of different teams to the relevant segments varied for each
shovel. While for some shovels all teams perform at the same level overall, for other shovels one or
two teams contribute more to the relevant segments than they contribute to the whole cable lifespan.

For Shovel78 (Figure 4.18), team TB has its percentage for CP slightly higher than its percentage
for WHL, team T'C has its percentages for CP and HCP slightly higher than its percentage for WHL,
and team TD has its percentages for HP and HCP higher than its percentage for WHL. TD has the
largest differehcc occurring at HP. Overall, TD contributes the most to the relevant segments, and
therefore its operation practices are more harmful than other teams.

For Shovel79 (Figure 4.19), team TA has its percentages for CP and HCP slightly higher than
its percentage for WHL, team TC haé its percentage for CP slightly higher than its percentage for
WHL, and team TD has-its percentages for HP and HCP higher than its percentage for WHL. TD
has the largest difference occurring at HP. Overall, TD contributes the most to the relevant segments,
and therefore its operation practices are more harmful than other teams.

For Shovel80 (Figure 4.20), team TB has its percentages for CP and HP slightly higher than
its percentage for WHL, team TC has its percentage for CP slightly higher than its percentage for
WHL, and team TD has its percentages for HP and HCP higher than its percentage for WHL. TD
has the largest two differences occurring at HP and HCP. Overall, TD contributes the most to the
relevant segments, and therefore its operation practices are more harmful than other teams.

For shovel81 (Figure 4.21), team TA has its percentages for CP and HCP higher than its per-
centage for WHL, team TB has its percentage for HP higher than its percentage for WHL, team
TC has its percentages for CP and HP higher than its percentage for WHL, and team TD has its
percentage for HCP higher than its percentage for WHL. Overall, we could not find a specific team
which contributes the most to the relevant segmenits.

For shovel82 (Figure 4.22), team TA has its percentage for CP slightly higher than its percentage
for WHL, team TB has its percentage for HP slightly higher than its percentage for WHL, team
TC has its percentage for HCP slightly higher than its percentage for WHL, and team TD has its
percentages for HP and HCP slightly higher than its percentage for WHL.. Overall, we would not
find a specific team which contributes the most to the relevant segments.

For Shovel83 (Figure 4.23), team TA has its percentage for CP slightly higher than its percentage
for WHL, team TB has its percentages for CP, HP and HCP higher than its percentage for WHL, and
team TC has its percentage for CP slightly higher than its percentage for WHL. TB has the largest
two differences occurring at HP and HCP. Overall, TB contributes the most to the relevant segments,
and therefore its operation practices are more harmful than other teams. |

For Shovel84 (Figure 4.24), team TA has its percentages for CP, HP and HCP higher than its
percentage for WHL, and team TB has its percentage for HCP slightly higher than its percentage for
WHL. TA has the largest difference occurring at HP. Overall, TA contributes the most to the relevant

segments, and therefore its operation practices are more harmful than other teams.
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For Shovel85 (Figure 4.25), team TA has its percentages for CP, HP and HCP slightly higher
than its percentage for WHL, and team TD has its percentages for CP, HP and HCP higher than
its percentage for WHL. TD has the largest difference occurring at HP. Overall, TD contributes the
most to the relevant segments, and therefore its operation practices are more harmful than other

teams.T"D contributed mostly to the relevant segments, especially on HP.

Some researches on oil shovels operation determined the indicators of shovel performance and
then, using the indicators, analyzed the influence of some factors, such as, dipper types-and op-
erators, on the performance [27][25][26]. [27] and [25] pointed out that hoist power is the best
indicator of shovel performance due to its better representation of diggability of materials than other
indicators. In our experiment, the relevant segment of hoist power (HP) is the best to distinguish
the different influence on the cable lifespan between different teams or between different materials.
Actually, our conclusions specific to the teams or the materials would not be changed if using only
HP. The difference between our work and the others is that only a segment of hoist power value was
chosen in our work as relevant; while the average hoist power consumed in dig cycles was calculated
to analyze the shovel performance in [27]{25][26].

The operator practices are anticipated to influence the shovel performance.. [26] analyzed the
operator influence on shovel performance using the average hoist power in dig cycles because the
average hoist power is more significantly different for the four teams than other indicators. The tests
in [26] show some teams would consume higher hoist power than other teams for the same uniform
material, therefore the different practice between teams would influence the shovel performance. It
could be anticipated that a team consumed higher hoist power would have more harmful influence
on the cables. However, whether each team’s influence on the shovel performance is coincident with

its influence on the cable lifespan needs further studying.
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Figure 4.24: Percentages of total counts for different teams for Shovel84

70




Shovel85

035

03
0.25

o032
o1s

01
005

o - . . . i .
TA 18 TC ™

wee 0.261439884 0.240783514 0.239306919 0.258469383
" Hp 0259793013 02361184 0166482845 0.337595738
#HCP 0.256366997 0.244154101 0.224101743 0275377159
mWHL] D 255448853 0.251333952 0.242714571 0.250499002

Figure 4.25: Percentages of total counts for different teams for Shovel85

71



Chapter 5

‘Conclusion

The previous chapters have introduced the problem of mining the ranges of power-related feature
values relevant to the shovel cable lifespan. The study of this problem is practically motivated, but
has propefties that make it an interesting and challenging time series data mining task. Chapter 3
introduced a ffamework that combined ideas from the related work into a general method to perform
this task, notably expanding on the ideas of correlation-mining in probability distributions. Chapter4
evaluated this framework with feature-specific, material-specific, and operator-specific experiments.
This chapter will begin by a summary of the contributiohs made in this thesis.. This will be followed

by a discussion of potential future directions of research that directly follow from this work.

5.1 Contribution

This thesis has presented a framework and an implementation of this framework for the research
on oil-shovel cable lifespan. The main components of this framework include Télemetry Data Pre-
processing, Energy-Speciﬁc Feature Extraétion, Dispatch Data Merging, Feature PDF Generation,
and finally Correlation Mining. For each of these components, a method as simple as possible was
incorporated into the system to perform the task. In addition, a new method was introduced for pat-
tern mining in time series data, which allows robust estimation of non—sequeﬁtial patterns correlated
with events external to the raw time series.

This work showed that some ranges of feature values have higher negative effects on the cable
lifespan if such values occur more frequently in the whole cable lifespan. We carried out related
experiments using these relevant segments, including a wide range in the lower half of crowd power
values, a wide range from the lower half to the higher end of product of hoist and crowd values, and
a narrow range in the higher half of hoist power values. The frequency of hoist power value in this
last relevant segment (HP) showed the largest difference to the overall frequency across all materials
and teams and therefore needs to be explored further.

In our material-specific experiments where tests were performed on the shares of different ma-

terials in the relevant segments and in the whole cable lifespan, we presented that oilsand was more
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harmful to the cable than overburden. In addition, the material-specific experiments indicate that the
conclusion applies to most of eight shovels. Our operator-specific experiments, where tests wére per-
formed on the shares of different teams for each shovel, indicate that some teams have more harmful
influences on the cable lifespan than others. These conclusions could potentially lead to immediate

practical use in the working schedules of the shovels and the training of the shovel operators.

5.2 Future Directions

For the framework described in Chapter 3, potential improvements for each step of the system were
suggested in Chapter 3. They include: testing armature voltages and currents in the telemetry data
as features, testing with the unused information (e.g., loading information) in the dispatch data set,
testing non-parametric correlation measures, and testing different number of bins.

With respect to the correlation pattern mining in this work, there are several obvious future di-
rections to explore. Based on the experimental results, it is likely that significantly relevant segment
of hoist power values would be expected if further separation was made to the HP segment (the
relevant segment of hoist power). This segment always produced in our experiments the clearest
discrimination between materials or teams overall, even though the case was not true for few shov-
els. The experimental results also suggest that mining the relevant segments specific for each shovel
might result in more robust material-specific or operator-specific conclusions for each shovel, since
the relevant segments we found may not fit for some shovels according to the experiment results. It
is also likely that a more effective separation method which leads to the more narrow segments could
improve results. This is based on visual-analysis of the experiment results, where it is clear that the
narrower segment (HP) increased the discrimination between materials and teams with respect to
the contributions to the relevant segments. Incorporating other factors, such as climate and geology,
also represent promising future directions.

In addition to correlation mining, it is worthwhile investigating the underlying mechanism that
causes the cable lifespan to be negatively correlated to the relevant segments. In Figure 4.1, only
half numbers of cables are around the regression line. These cables need be explored to find what
make them different than others. ’

Our study found the hoist power is more important than other features in our correlation, material-
specific, and operator-specific experiments. This coincides with the conclusion in the research on
shovel performance. The further study may be done on the relationship between the shovel perfor-
mance and the cable lifespan.- A possible direction is to test whether the berter shovel performance
would cause the longer cable lifespan. It is also possible to test whether the operators with better
influence on the performance would have less harmful influence on the cables.

Related to the use of our framework, is the potential to apply this system to different tasks. In
Chapter 4, we performed 3 different types of experiments. It is clear that the system could be used

in related tasks such as correlation mining for long lifespan cables, short lifespan cables, shovels
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working at different sites, or shovels with other different features. It is possible that the framework
could also be applied for tasks that are not directly related to cable lifespan. For example, it could
also be used in systems in which the correlation should be mined between the telemetry data and the
lifespan of a component. As a final note, our framework could be adapted for all tasks in which the

correlation should be expected between time series data distribution and a group of numerical data.
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