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ABSTRACT
The downturn of the world economy and the increasingly severe competition among mining giants
puts forward higher requirements for open-pit mining, which is the dominant method for humans to
obtain minerals from the earth. Among these so-called higher requirements, reducing mining costs
as much as possible is the most important one. Only by reducing mining costs can the profit margin
of the enterprise be improved, so that the enterprise can survive the fierce market competition.
Fundamentally speaking, there are two main ways to reduce mining costs. The first is to increase the
utilization rate of existing equipment under existing conditions, that is, to achieve the expected
benefits by formulating efficient long-term, medium- and short-term plans. The other is to improve
the current mining methods. This needs to improve the deficiencies of the existing conventional
mining methods from the system level to further improve production efficiency. Near face stockpile
mining method is an innovative open-pit mining method based on this condition. Compared with
traditional mining methods, this method creatively uses the approach of the in-pit-near-crusher
stockpile to isolate or decouple the mining process from the crushing and processing process, so as
to minimize the problem of low equipment utilization caused by mutual influence between the two

procedures.

Several models and algorithms have been put forward to reduce the operational cost by using the
first approach but not all major concerns are satisfied, and the results are not optimally guaranteed.
Meanwhile, there is no model has been published for the second approach. Therefore, the problem

to be addressed in this research is:

Can a simulation-optimization framework be developed for near face stockpile mining method
that (1) generates an optimal or near-optimal schedule, and (2) captures mining and processing
operations’ uncertainties, to measure its performance quantitively and compare it with regular

out-of-pit mining method?
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The following tasks are going to be considered in this research: (i) to establish, implement and verify
a theoretical optimization model for near face stockpile method mining schedule generating while
considering multiple practical constraints, (ii) to establish, implement and verify a simulation model
that could accurately capture the characteristics of the near face stockpile method, (iii) integrate the
optimization model and simulation model and validate the integrated framework and use it to
quantitively evaluate the performance of near face stockpile method. To satisfy those tasks listed, the
following procedures would be applied: (i) establish a mathematical model for mining schedule
optimization, (ii) translate the math model into MATLAB by coding, (iii) verify the mathematical
model by case study, (iv) develop simulation model by discrete event simulation software, (v) test
and verify the simulation model, (vi) integrate the mathematical model and simulation model into a
comprehensive framework, (vii) test and verify the integrated framework, (viii) validate the
integrated framework by case study, and (ix) compare the simulated results of near face stockpile

method against traditional simulation results and evaluate its performance.

The main scientific contribution of this study would be: (i) establish a mathematical optimization
model that can generate optimal or near-optimal mining schedule for near face stockpile method
with limited human intervention, (ii) propose a simulation model that can capture mining and
processing operations’ uncertainties of near face stockpile mining method, (iii) develop a
comprehensive simulation-optimization framework that can be used to quantitatively measure the

performance of different mining methods from multiple aspects.
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1.1. Background

Mining, the process of obtaining desired substances from the ground by various means, has an
extremely long history - even as long as human beings. New research findings indicate that the
earliest mining activity dates back to 43,000 years (contributors, 2022). So far, the mining industry
still provides an endless stream of material for the development of human civilization and is also an

essential cornerstone for the continuation of human society.

During the last three decades, much mining research has been carried out on large open-pit mines,
and the production of open-pit mines increased considerably. An example is the Escondida mine in
Chile. At the beginning of the 1990s, about 90% of minerals were extracted by underground methods,
whereas by 2000, more than 85% of minerals were extracted by the open-pit method. Although the
operations in open-pit mines nowadays still look the same as decades ago, the scale of the mines and
the equipment size is much bigger than they used to be. For example, in 1970, the average truck size
employed by open-pit mines was only 90 t, while by 2008, the number went up to over 180t (Darling,
2011). Moreover, Caterpillar and Bucyrus have released oversized trucks with a capacity of over

360t that are being used worldwide (contributors, 2022).

Open-pit mining is capital intensive in order of billions of dollars to support daily operation and
maintenance. Moreover, like most other companies in the world, almost all mining companies aim
to maximize their profits, in terms of the net present value (NPV) and expand their market share.
However, the mining industry is very cyclical. Therefore, when the price of mineral products cannot
be effectively raised and even sold at a lower price, the primary method to ensure the company's
profitability is to reduce operational costs like mining and management costs (Askari-Nasab et al.,
2007). Furthermore, a well-organized mine plan is required to optimally reduce unnecessary
equipment movement and increase equipment utilization. Therefore, detailed geological surveys and
reasonable mine mining plans in different time resolutions have crucial economic significance for

mining companies.
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Mine planning is a crucial aspect of mining operations and is typically conducted in three phases
based on different time resolutions. The first phase is the long-term plan, which covers a plan for
decades or the entire life of the mine. This plan is based on geological models and economic
predictions, which reflect the feasibility of the mine. The outputs of this phase guide the latter phases
of planning. The second phase is the medium-term plan, which is more detailed compared to the
long-term plan. It covers a range of about five years or less and provides information such as benches,
pit shells, or equipment requirements. The medium-term plan provides more specific details to help
ensure efficient and effective mining operations. The last phase is the short-term plan, which covers
a plan from one month to quarters or up to a year. During this phase, the mining operation is
subdivided into faces or blocks, and constant feed to the crusher and processing plant is considered.

(Osanloo et al., 2008).

Strategic phase ——  Tactical phase =~ ® Operational phase
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Figure 1.1 Phases of the mine planning

As seen in Figure 1.1, the short-term plan can also be divided into two sub-levels: the higher and the
lower levels. The higher level is about production optimization based on short-term plan targets and
the capacity of excavation, transportation, and processing equipment and the capacity of each path
between shovel to the processing plant, shovel to stockpile, and shovel to dump. The lower level is
about real-time truck and shovel allocation under the higher-level optimization, and stockpile
blending to feed the plant constantly. The feedback from the lower operational level could also affect

the higher level and lead to re-optimization to match the limitations in actual operations. There is

no doubt that the targets of the medium and long term can only be met when the goals of the short-

term planning are met. However, due to geological uncertainty, price fluctuation in the market, and
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operational uncertainties, short-term plans need to be adjusted based on reality. Therefore, the actual

output and cash flows of the mine might be very different from the forecast.

Despite all this, on-site mine staff will do their best to accomplish or even exceed the key
performance indicators (KPI) targets set in the long-term mining schedule. To achieve the KPIs,
minimizing unscheduled downtime is the top goal for managers. The failure of shovels and trucks
caused by mechanical problems, weather, or road conditions will lead to an extra unplanned idle time
of the crusher and processing plant, which will seriously affect the mine output. As a sequence,
stockpile, which is initially used in many mines for low-grade ore inventory but can also act as a
“buffer” for production, has received widespread attention from researchers. Nowadays, stockpiles
are widely used for different reasons and are placed in various locations in various mines. For
example, when the price of the final product in the market is relatively low, the cut-off grade will be
higher than average. As a result, some mines will stockpile the material under cut-off grade and wait

to re-handle it when it has positive economic value.

Among different types of stockpiles, near face stockpile (NFS) or near crusher stockpile is the focus
of this research. According to Jupp et al. (2013), the near-crusher stockpile usually plays four roles
simultaneously, storing, buffering, blending, and grade separation. Nevertheless, the near face
stockpile with an in-pit crusher could shorten the transportation time significantly and reduce the
operating costs in two aspects. First, it requires a smaller number of trucks in the fleet. Second,
shortening the haulage distance will dramatically reduce the operation cost, considering that the truck
and shovel operating costs make up to 50 percent or even more in operation costs in open-pit mines
(Alarie and Gamache, 2002).

1.2. Statement of the problem

1.2.1 Introduction

The pursuit of maximum profit is the nature and mission of every enterprise. However, given the
current downturn of the international economy and the high competition among mining enterprises,

product prices are highly uncertain and cannot be accurately predicted. Therefore, mining companies
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have put forward higher requirements for open-pit mining to reduce costs as much as possible.
Reducing mining costs could improve the companies' profit margin and help the enterprise survive

in the fierce market competition.

There are two common cost-reduction methods. The first is to increase the utilization rate of existing
equipment without changing the mining method to obtain a higher production rate. More specifically,
by doing some optimization in the operation level to generate more profit by minimizing equipment
idle time. However, with years of effort on optimization done by researchers and the standardization
of company management getting higher and higher, the room left for increasing the utilization is very
limited. The other way to reduce mining costs is to optimize the current mining methods, which
means improving the deficiencies of the widely used conventional mining methods to further
improve production efficiency. The near face stockpile mining method is a proposed open-pit

concept to fulfill this goal.

Unlike typical open-pit mines where the crusher and stockpile are always permanently located
outside the pit limit, the near face stockpile with an in-pit crusher requires those facilities to be
movable and situated at the bottom of the pit. Meanwhile, the in-pit crusher and the stockpile could
be relocated once needed, which means that the equipment could be replaced and reassembled in
different benches with the development of the pit while the mine expands yearly. Finally, it is worth
mentioning that the conveyor belts play an essential role in transporting material from the pit to the

processing plant.

Figure 1.2 and Figure 1.3 show the typical layout of the near face stockpile mining method. As can
be seen from the figures, the various activities involved in the NFS approach are as follows:

1. Shovels are allocated to working polygons and request trucks

2. Empty trucks haul to shovels

3. Shovels start digging the assigned polygons and loading the trucks
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4. Loaded trucks with ore material travel in-pit to the stockpile located in pit bottom and

unload material to the stockpile

5. Loaded trucks with waste material travel to the waste dump located out of pit and unload

carried material
6. Emptied trucks dispatched to shovels for next round
7. Reclaim shovel reclaim material from the in-pit stockpile and feed the crusher
8. Crusher crushes ore material received to an acceptable particle size

9. Crushed ore material transferred to the processing plant through conveyor

Shovel 2
Truck 1

Shovel 1

Pit exit

Dump

Figure 1.2 A typical overview of the near face stockpile mining method
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Figure 1.3 A typical pit bottom layout of the near face stockpile mining method

The size of the stockpile in the NFS method is not the usual infinite size. This is because the area of
the pit bottom is usually relatively small for cost considerations. The larger the stockpile, the larger
the area it occupies. Therefore, the capacity of the stockpile in the NFS method is limited to satisfy
the continuous operation of the crusher for 24 hours. That is to say, if the stockpile is fulfilled, even
if no new dumping is received, the reclaim process can support the crusher to work for a whole day.
Similarly, if the stockpile is empty, it can continue to receive more material until it becomes full, and
there is no need to worry about trucks queuing up before the dumping spot before it is full. The
stockpile is usually divided into three zones to avoid hidden dangers caused by dumping and
reclaiming occurring in the same place. In this way, each zone can independently support the crusher
working for eight hours. Taking oil sands mine as an example, its bulk density is about 2.1 metric
tons per cubic meter, and its natural repose angle is around 33°. Assuming that the capacity of the
crusher is 6000 tons per hour and the height of the stockpile is 15 meters, about 21827 metric tons
of ore material can be stored for every 60 meters, and the total length of the required stockpile is 396

meters, that is, the footprint of the stockpile is 9143 square meters, as shown in Figure 1.4.
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Figure 1.4 An example of stockpile footprint on oil sands mine

The stockpile at the pit bottom decouples the mining and milling process. The decoupling makes it
possible that when the mining or hauling system stops for scheduled or unscheduled reasons, the
crusher could still work for desired periods to avoid shutdowns of the whole system. It can also be
seen that the essential difference between the NFS mining method and traditional out-of-pit crusher
mining methods is that the ore materials are hauled only within the pit (from working face to pit
bottom stockpile), which shortens the hauling distance and reduces the operational cost.

Unfortunately, there is limited research in this area in literature.

It is widely acknowledged in the mining industry that a mining method, regardless of its suitability,
may not achieve its intended objectives without a well-conceived mining plan. Thus, the assessment
of mining methods should rely on the prudent execution of a near-optimal mining plan. As previously
mentioned, the primary objective of a mine plan is to identify the optimal sequence of individual
blocks or selective mining units (SMUs) for extraction while taking into account the physical and
operational limitations, with the aim of maximizing the net present value. Inherently, this approach
prioritizes the acceleration of higher net cash flows over time.

1.2.2 Research question

Despite the various advantages of NFS listed above, since NFS is still in the conception stage and
has not been practically applied, the reliability of its benefits is still questionable. Therefore, the main

problem to be addressed in this study is to understand the performance of the near-face-stockpile
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mining method compared to the traditional out-pit crusher scenario. The research question can be

stated as follows:

Can a simulation-optimization framework be developed for near face stockpile mining method that
(1) generates an optimal or near-optimal schedule, and (2) captures mining and processing
operations’ uncertainties, to measure its performance quantitively and compare it with regular

out-of-pit mining method?

The above statement is a generalization of this study but does not contain all the details. It is easy to
build an optimization or a simulation model but building a logical and practical model is a challenge.
Therefore, this research problem can be broken down into the following three sub-problems with

additional conditions.

The first question: Is it possible to establish a mining sequence optimization model for the NFS
mining method that satisfies the following requirements?
e Not case specific.
e Generates the highest NPV.
e Generates optimal or at least near optimal and practical mining sequence.
e Minimizes the unnecessary operation costs caused by human intervention.
e Satisfies milling and mining capacity.
e The feed can stably match the capability of the crusher.
e Not over-utilizing or under-utilizing the stockpile.
e Ore material blended within the stockpile has a stable grade range.
e Can be solved within a reasonable time.

The second question: Is it possible to build a simulation model for the NFS mining method that

satisfies the following conditions?
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e Captures as many details as possible of the near face stockpile mining method and traditional

out-of-pit mining methods.
e Captures the associated cost of each mining operation.
e Captures the uncertainties like equipment failures and working time distributions.

e Captures the production loss caused by shovel movement.

The third question: Is it possible to develop a comprehensive simulation-optimization framework
that can quantitatively measure the performance of different mining methods and evaluate it from

multiple aspects?

e Integrates the proposed optimization model and simulation model.
e Measures the performance of the target mining method from multiple aspects.
e Has the capability for evaluating different mining methods.

e Can be verified and validated by case study.

1.3. Summary of literature review

As mentioned above, mining enterprises face tremendous pressure to survive and compete due to the
deterioration of the economic situation. Therefore, the cooperation between mining enterprises and
the scientific research community has become more extensive and profound. Accordingly, in the past
few decades, the research on the optimization of the mine operation process has been significantly
developed. However, it is worth noting that mining is a complex set of activities, and the shape and
grade of the deposit may be very different from the predicted results. It is unrealistic at this stage to
incorporate all uncertainties into research optimization and simulation. Therefore, many elements
were ignored in the original research over the past few decades. With the study going more profound
over time, more and more details are incorporated into various models, providing reliable guidance

for the development of actual mining activity plans.

For example, according to the literature reviewed in Chapter 2, although stockpiles are widely used

in fundamental operations, most of the optimization models proposed in the past did not consider
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using stockpiles. In recent years, some studies have begun incorporating stockpiles into their models
due to the improvement of computational abilities and optimization software. Despite this fact, most
of these models only take regular out-of-pit stockpiles into account, and very few consider pre-
crusher stockpiles. For those few models, the stockpile size is relatively small. The primary purpose
is to decrease the grade variability of materials sent to the crusher, not for decoupling the mining and
milling process (Everett et al., 2015). As for the near-face pre-crusher mining method, no relevant

optimization model has been found since it has not been concretely implemented.

Simulation, a technology used to mimic real-world activities over time, has become one of the
essential tools in modern research. It is widely used in all walks of life, such as engineering,
economics, education, military, training, and even games. To meet the requirements of many
different fields, people have developed various simulation models, such as physical simulation,
continuous simulation, discrete-event simulation, stochastic simulation, deterministic simulation,
and many others (Morgan, 1984). Among these simulation models, discrete-event simulation (DES),
and to be more specific, the computer-based discrete-event simulation, is best suited for simulating
the mining industry and understanding the behaviors of each process, which is the focus of this

research.

However, due to the inherent uncertainty of the mining system, any optimization or simulation
modeling of the mining system has some limitations. The following will introduce the general
weaknesses of the reviewed models for mining sequence optimization and simulation.

1.3.1 Mining schedule optimization

1. Dispatch and production optimization

Usually, an optimized mine operation plan consists of two main parts. The first part is the pit limit
optimization, which defines the final shape of the open pit, is the basis for the following optimization,
and affects the value of a mine the most. Although different mathematical models have been
published over the past years, the Lerch-Grossman (LG) algorithm is still the dominant method most

researchers adopt (Lerchs and Grossmann, 1965; Askari-Nasab et al., 2007; Dimitrakopoulos et al.,
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2007). The other part is mining sequence optimization. One of the most critical objectives of

optimizing a mining complex is to design a mining sequence to maximize the NPV concerning

various mining requirements like grade blending, plant capacity, and other constraints (Askari-Nasab

et al., 2008; Askari-Nasab and Awuah-Offei, 2009; Askari-Nasab et al., 2011; Ben-Awuah et al.,

2015; Lamghari, 2017). Different mathematical models based on various approaches such as Linear

Programming, Mix Integer Linear Programming, Goal Programming, Nonlinear Programming,

Genetic Algorithm, Stochastic Algorithm, and Queueing Theory were proposed. Meanwhile, various

dynamic truck dispatch logics were adopted by different models. However, some common

drawbacks are shared in the literature reviewed in Chapter 2:

The rock type and particle size of the minerals significantly affect equipment efficiency but

are not considered by most of the models.

Shovel relocation will lead to loss of production, but most of the models proposed assume

that shovels could ‘teleport’ to the newly assigned digging place.

Stockpiles and blending requirements, which are essential in the NFS mining method, are

not considered in most linear programming models.

The optimized short-term or long-term plans under different nonlinear mathematical
algorithms based on heuristics or meta-heuristic methods are not guaranteed to be near-
optimal and, in some cases, are even unrealistic. Meanwhile, most nonlinear models are not
verified or only verified on tiny instances. Therefore, no nonlinear model can give creditable

near-optimal results in a short period.

All the proposed models, except one or two, cannot deal with heterogeneous shovels and

trucks, which are common in real mines.

Most optimization models use only one criterion, while real mines have several different

objectives to balance.

2. Optimization with stockpile
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Stockpile is one of the critical components of the mining system. It can be helpful to achieve
economic goals like reducing the deviation of feed to crusher compared to target as well as
minimizing the quality deviation of materials feed to plant concerning the desired grade. However,
most optimization models proposed in the past did not incorporate stockpiles for various reasons

such as reducing the problem size, solution time, and computational power limitations.

The stockpile plays an inevitable and essential role in open pit mine production scheduling. As Jupp
et al. (2013) described, the pre-crusher stockpile plays four roles simultaneously: storing, buffering,
blending, and grade separation. Linear models (Caccetta and Hill, 2003; Ramazan and
Dimitrakopoulos, 2013; Smith and Wicks, 2014) and nonlinear models (Tabesh et al., 2015) that
consider stockpile were proposed, but most of them are either based on unrealistic assumptions or

no guarantee of a global optimum:

e Stockpiles in most models are located out-of-pit, capacity stays unclear, and what to do with

the material remaining in the stockpile is not stated.

e In most models, stockpiles are far from the crusher, which introduces extra hauling costs into

the system that is neglected.

e The reclaiming process will either require an extra cost on equipment like shovels or affect

routine mining operation efficiency, which are not considered by the models reviewed.

e Stockpiles in the reviewed models are based on the first-in-last-out principle, and the

materials are not blended as assumed.

e Lack oftracking of material in the stockpile, often with large surpluses at the end of the mine.
1.3.2 Mining operation simulation
It is widely believed that simulation applications in mining areas can date back to the 1940s. However,
the first use of the Monte-Carlo method in mining dates back to Rist (1961), in which the number of
trains needed in an underground mine is determined. After that, different software based on various

languages appeared in the market and are widely used, such as General-Purpose Simulation System



Chapter 1 Introduction 14

(GPSS) and ARENA (automation, 2019). With the further improvement of technology, the
application of mixed reality (MR), virtual reality (VR), and Augmented Reality (AR) to the mining
industry has begun to attract widespread attention. However, at this stage, the computer simulation
technology still cannot fully simulate reality, and there are still some deficiencies in the application

examples of mines:

e Different mines have different features, which led to the phenomenon that most of the
simulation models successfully implemented in one mine are unsuitable for another,

meaning the models are case-specific.

e Due to the multidimensional complexity of the real case, no simulation model can
incorporate all the uncertainty conditions. For example, almost all the stockpile models

assume that reclaimed material from the stockpile is heterogeneous.

e Simulation offers minimal flexibility to users, and once the input parameters are set up, they

cannot be changed before the simulation stops.

e It is unsuitable for long-term prediction since the topography, paths, and many other mine

components will be changed while the operation continues.

e The building of a simulation model needs a large number of inputs, while the mine does not
track many inputs among them. Moreover, the simulation model has high requirements for
the authenticity of the input data. Therefore, if the input data is very different from the actual
situation, the simulation results will likely deviate significantly from the actual situation and
have no credibility.

e Sometimes, running simulation models with many details is time-consuming, and real-time
decisions cannot be made — this is fatal for truck dispatching.

e Most importantly, in all simulation models proposed earlier, the crushing process either does
not exist or is connected with the mining system through the traditional truck-crusher

relationship, which is not suitable for the NFS method.
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1.3.3 Summary

Former sections of this paper summarized the common shortcomings of current research in related
fields. Despite the authors' best efforts, this study still does not address some issues adequately. The

followings are the shortcomings to be addressed in this research:

e Adding near face stockpile into the linear optimization model.

e Adding reclaim cost and blending requirements into the optimization model.
e Materials sent to stockpile are trackable in the simulation model.

e Average material grade reclaimed from a stockpile can be generated daily.

e Materials in the stockpile will be fully reclaimed in the end.
1.4. Objective of the study
The primary objective of this study is to quantitatively measure and evaluate the performance of the
near face stockpile mining method under a near-optimal mining schedule while capturing operational
uncertainties. Meanwhile, the blending results, hauling system, and other KPIs of the near face
stockpile method will be compared against a typical out-of-pit crusher mining method to verify its

advantages and disadvantages.

Three tasks are set to fully address the research problem defined in section 1.2 and achieve the overall

objective stated above:

1. Build a mixed-integer linear programming optimization model for the near face stockpile

mining method which can generate optimal or near-optimal mining schedule.

2. Build discrete-event simulation models for the near face stockpile method and traditional
mining method with an out-of-pit crusher, in which both mining and milling processes are
simulated.

3. Integrate the optimization model and simulation model into a comprehensive simulation-
optimization framework and use it to quantitively measure and evaluate the performance of

the near face stockpile mining method.
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A reasonable and near-optimal mining sequence is the basis for evaluating any mining method. At
the same time, a proper mining sequence arrangement can maximize the profits of mining companies.
Therefore, the objective of the mathematical optimization model is to generate a near-optimal mining

schedule with respect to sequence and capability constraints.

Besides, mining is a complex, highly uncertain and interdependent combination of multiple tasks.
Therefore, building a simulation model is the best choice to better understand and evaluate the
performance of NFS mining methods under the condition of controllable cost. The objective of the
discrete-event simulation models is to capture mining and milling associated operational

uncertainties and quantitatively measure their performance correspondingly.

Finally, the objective of integrating optimization model and simulation model is to establish a
framework that can be used to measure and evaluate different mining methods from multiple aspects.
The conclusions drawn through this framework are more standardized and more credible.

1.5. Scope, limitations and assumptions

It should be pointed out that although NFS has many theoretical advantages, it is by no means a
perfect mining method. As mentioned above, NFS as a new mining concept that combination of
IPCC and stockpile, not only inherits the advantages of IPCC and stockpile but inevitably also
inherits the disadvantages of IPCC and stockpile. First of all, it is well known that IPCC Compared
with the traditional truck-shovel system requires a large amount of capital in the early stage. On this
basis, NFS requires a larger investment than the IPCC method to meet the purchase of extra
equipment. In addition, this method requires a larger strip ratio due to the larger bottom operation
space needed. Due to the need to arrange equipment such as crushers and conveyor belts at the bottom,
IPCC already requires a large space at the bottom. The space requirement is even several times that
of the IPCC method. At the same time, due to the limitation of the maximum angle of the operation
of the conveyor belt, this method is only suitable for the ore deposit with a small inclination and
shallower burial depth of the ore body and is not suggested for other situations. In addition, compared

to the situation where one or two truck damages have little impact on the entire system in the



Chapter 1 Introduction 17

traditional method, damage to the conveyor belt or reclaim shovel will cause great harm to the system
and will greatly affect the stability of the system, becoming an additional bottleneck. Moreover, this
method requires relatively high skills for operators and field engineers. These shortcuts limit the
application and promotion of this method, but these are beyond the scope of this research. The
precondition of this study is that all conditions such as ore body, personnel, and funds meet the

requirements of applying for NFS.

In order to achieve the main research goal of quantitatively measuring the performance of the near

face stockpile mining method, this research mainly makes efforts in the following three aspects:

e [Establish a general MILP mathematical optimization model for the near face stockpile

mining method to generate a practical near-optimal mining sequence.

e Build simulation models for the NFS mining method and the general out-of-pit crusher
mining method to capture the uncertainties associated with different mining operations and
gain a deeper understanding of the interrelationships between the various activities in the

NFS mining method.

e Validate the simulation-optimization framework by case study and compare the simulation
results of the near face stockpile method with the benchmark, thus evaluating its performance
and drawing conclusions.

1.5.1 Optimization model

The MILP mathematical optimization model's objective is to obtain an optimal or near-optimal
mining schedule concerning precedence and capability constraints within a reasonable time range.
Despite the author's best efforts to do this research to develop a reliable and convincible model, some

factors that may affect the results are not included in the discussion:

e The objective function in the MILP model proposed is to maximize the net present value

among various criteria, as the NFS method can effectively improve blending results and feed
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the crusher more stable than the traditional out-of-pit mining method. Therefore, this model

is not suitable for optimization aimed at other interests.

e Before optimization, homogeneous blocks with values and attributes are used as basic pre-
determined parameters. However, obtaining detailed geological data and converting it into

qualified homogeneous block models is beyond the scope of this paper.

e The final pit limit is taken as a deterministic value before running the optimization model.
That is to say, all blocks within the limit, no matter whether ore or waste block, will be
entirely removed in the time range, but the technology to decide the final pit limit is not part

of this paper.

e Blocks are aggregated into the mining cut and panel levels to shorten the optimization time
required and avoid frequent shovel movement. The aggregation algorithm adopted in this
paper was developed by Tabesh and Askari-Nasab (2019). However, discussion of the

aggregation principles and their advantages and disadvantages is beyond this article's scope.

e The shovels' travel time and corresponding production losses, truck hauling distance, and

cost were not factored into the optimization process.

e The material stack in the stockpile is assumed to be homogeneous. Therefore, instead of
track grade as a variable or fixed number, in this research, the uniform reclamation grade
from the stockpile is recalculated after each dump based on perfect blending.

1.5.2 Simulation model

After the optimization model generates the mining sequence at a higher level, a simulation model is
adopted to simulate the actual mining operation while capturing as many details of the near-face
stockpile method as possible. Almost all device data that can be collected, such as loading cycle time,
dumping time, equipment uptime and downtime, and the road network, will be used as model input
to mimic the natural operation process and generate reliable results. By analyzing the results of the
simulation models of these two control groups, one can quantitatively conclude whether the near-

face-stockpile method has application and promotion value compared to the traditional method.
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Although drilling and blasting are essential parts of surface mining, they are not within the
scope of this research. In the simulation model, all blocks are assumed to be in a state that

can be mined at any time, and the system will allocate shovels in the optimized order.

Different dispatch logic has a significant impact on truck utilization efficiency. However,
the truck dispatch logic adopted in the proposed simulation model only prioritizes the

minimum queue length before the shovel and may not be the most suitable logic.

Simulation models are highly relying on the accuracy of input parameters. Therefore, there
is no doubt that the more comprehensive and reliable the input data, the more credible the

simulation results will be.

Instead of tracking material grade in the stockpile as a variable or fixed value, this research

considered a homogeneous near face stockpile. Its grade is recalculated after each dump.

Some assumptions are made to simplify the simulation model, such as steady-state oil
consumption of equipment, ideal road condition, independence of mining and milling

operations from weather conditions, and no human-related accidents.

The application of the NFS mining method heavily relies on the stability of the open-pit
slope since the failure of the slope will cause a considerable loss of equipment than expected,
and it has a higher requirement for minimum working width. However, these are not

discussed in this research.

Since the NFS method has not yet been implemented, its up-front arrangement and related
costs are unknown. Therefore, the calculation and comparison of the NPV of the two

methods are limited to the operation level without considering equipment purchasing cost.

1.5.3 Assumptions

It is worth pointing out that the optimization and simulation models are proposed under the following

assumptions:
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e Block is the minimum operational unit and is treated as a homogeneous unit. To be more
specific, any block is either a pure ore or pure waste block, and any material dug from that

block has the same attributes as grades for elements, density, and rock type.

e Blocks in the optimization model are clustered to bigger-size mining cuts and panels based
on rock type, grade difference, and distance concerning pushback limitations. The adoption
of the aggregation process is to decrease the optimization run time and avoid frequent

movements of shovels.

e The coordinates of blocks, mining cuts, and panels are their center locations. The calculation
of their center point coordinates is the arithmetic mean of all block's center points within that

mining cut and panel. Meanwhile, shovel movement within blocks is neglected.

e Vertical sequence mining constraints calculated in the optimization model are assumed to be
45 degrees. Specifically, if one block in the lower bench needs to be mined, at least nine

nearest blocks in the upper bench must be fully excavated earlier.

e The distance between blocks on the same bench is the straight-line distance between their
center point coordinates. The distance between blocks in different benches is the sum of the
distance between the block point and the corresponding ramp connecting point in each bench

plus the hauling distance in the ramp.

e During whole mining periods, one block can only be assigned to one shovel, and the shovel

cannot move before that block is wholly mined.

e The mining period, attributes of blocks, moving cost of trucks and shovels, mining and
crushing capabilities, final product price, and interest rate are deterministic and
predetermined. It means that the optimization model can only generate a mining sequence

based on those data but cannot optimize them.

e The optimized mining sequence will be used as an input to the simulation model, and its

sequence will be strictly adhered to throughout the simulation.
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1.6. Research methodology

This study is mainly composed of three parts:

Developing a mining schedule optimization model to decide the mining sequence and
effectively allocate the shovels. The optimization model is a mixed-integer linear
programming model and is solved by a widely accepted and applied linear optimization

solver, CPLEX.

Developing two simulation models. One contains an in-pit near the crusher stockpile that
decouples the mining and milling process. The other has a traditional out-pit fixed crusher,
meaning the mining and grinding processes are directly connected. The two simulation

models are developed in the commercial discrete event simulation software, ARENA.

Integrating the optimization model and the simulation model and analyzing the results.
Firstly, run the optimization model to generate an optimal or near-optimal mining sequence
based on predetermined constraints. Secondly, the sequence will be loaded into the
simulation model as input to start the simulation process. Thirdly, a case study is
implemented to verify the integrated model and quantitatively measure the performance of

the near face stockpile mining method by comparing the simulation results of the two models.

For all the stages listed above, some general steps will be taken:

Establish relevant theoretical models.
Coding and debugging the established theoretical models.

Verifying the model through case study.

Figure 1.5 describes the interactions between the optimization and simulation models, and the

interactions inside each model. For example, the proposed optimization model in this study focuses

on optimizing the allocation sequence of shovels to available faces to maximize the overall NPV.

Meanwhile, the in-pit stockpile in the proposed simulation model, aiming at decoupling the mining

and milling processes, has a vital role in the actual mine and directly affects the overall performance.
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Figure 1.5 Integrated simulation-optimization framework

In order to obtain a meaningful interpretation of the performance of the near face stockpile method,
some key performance indicators will be defined to quantitatively measure its performance under
near-optimal mining schedule while capturing uncertainties by simulation. Furthermore, the
performance of the near face stockpile mining method could be verified through comparing the
blending results and hauling system and equipment utilization against a typical out-of-pit crusher
mining method.

1.7. Scientific contribution and industrial significance

Over the past decades, with the explosion of computing power, many researchers in the mining area
focused on the optimization and simulation of open-pit mines. These studies have brought
considerable profits to enterprises and laid a solid foundation for developing large-scale equipment.
However, the stockpile as a vital part of open-pit mining has not received much attention, and the
research is still at an early stage. Given that optimization and simulation instances are becoming
more complex, and the computing power has become a bottleneck again, research on the practical
application of stockpiles has strong practicability. It is likely to help companies reduce costs and

further improve their revenue.

This research is proposed under this situation. In the past, the mine was regarded as a holistic system.
However, if the mining work becomes discontinuous due to weather affection, equipment
maintenance, or failure, the corresponding beneficiation work will have to be interrupted due to a

lack of materials. Therefore, it is time that the stockpile could eliminate the stereotype that it can
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only function as a low-grade material repository and can only be located outside of the pit. Instead,

it can be located near the crusher to store and blend materials to be processed.

Further, the stockpile can also split the system that was regarded as one into two weakly related sub-
systems: the mining and milling systems. In this case, the cessation of mining or grinding operations
will not affect another activity directly since the stockpile’s capacity can act as a buffer to keep the
other process running. In this way, the overall operation of the holistic system can be maintained to
the greatest extent, thereby increasing the mine’s output, improving crushing efficiency and other

equipment utilization, and boosting the stability and profitability of the entire mine.

Given that any suitable mining method will most likely fall short of its desired goals without a
reasonable and practical mine plan, all evaluations of mining methods should be based on a well-
managed near-optimal mining plan. That is why an optimization model that can help to determine a
realistic mining schedule is needed in this research. Moreover, the integration of the optimization
and simulation models could ultimately minimize the affection for human intervention and increase

the reliability of the study.

Despite the various advantages of the NFS mining method listed above, since it is still in the
conception stage and has not been practically implemented, the reliability of its advantages is still
questionable with no credible verification. Therefore, the unique scientific contributions of this

research are the following:

e Establishing a general mixed-integer linear programming mathematical model for near face
stockpile mining method that can generate practical near-optimal mining sequence

concerning required constraints.

e Establishing a general simulation model for near face stockpile mining method, which can
be helpful to deeper and more intuitively understand the interactions of each process in the

NFS method while capturing as many uncertainties as possible.
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e Integrating the proposed optimization model and simulation model into a comprehensive
simulation-optimization framework. This framework provides a multi-faceted evaluation of

mining methods in terms of performance.

e Verifying the superiority of the NFS mining method by comparing the simulation result
against typical out-of-pit crusher methods, in terms of blending results, hauling efficiency,

and equipment utilization.

The verification of the effectiveness of the near face stockpile method has great industrial
significance and could guide the large-scale implementation of this method in the future. To the best
of the author’s knowledge, the current research on the NFS method is still at the initial level, and
there is still a certain distance until it has industrial practicality since many details are not considered.
However, what is certain is that this study will provide excellent references and significance for
future studies, enhance the body of knowledge, and lay a foundation for future research.

1.8. Organization of thesis

The first half of Chapter 1 of this paper mainly introduces the background of this research, gives a
detailed explanation of the research problem to be addressed, and expounds on the primary purpose
of this research and the methods and steps taken to achieve the purpose. The second half of Chapter
1 mainly sorts out and summarizes some of the deficiencies of past research published in related
fields, as well as the basic assumptions and scope of this research. Finally, the scientific significance

and application prospects of this research are summarized.

The second chapter mainly reviews the papers published by other scholars in related research fields
over the past few decades. This part is divided into three subsections: the first subsection expounds
on and summarizes the development process and achievements of the optimization model at the
production level and truck dispatch level; the second subsection focuses on the optimization models
that incorporate stockpiles in past research; and the last subsection reviews the applications of
simulation models in the mining industry. Finally, Chapter 2 summarizes limitations of the reviewed

publications.
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The first half of third chapter of this paper establishes the mining sequence mathematical
optimization model for the NFS method. It contains the formulation process of the objective function
and constraints, as well as a detailed explanation of each mathematical formulation. The results from
the implementation of the proposed optimization model on an iron ore mine case study show that the
average crusher feeding grade deviation is reduced by 20%. The second half of the third chapter
describes the establishment process of the two simulation models and the setting of various
parameters in detail. The in-pit and out-pit road networks integrated in two models are the same, and
the only difference is the location of the crusher. Other than that, all devices' operating parameters,

capacities and downtimes are the same.

At the beginning of the fourth chapter, the proposed simulation-optimization framework is verified
and validated through comparing the simulation results of traditional mining method against real
historical records and the simulation results is then taken as the benchmark. After that, the framework
is implemented to the NFS method. A multi-factored detailed comparison between the NFS
simulation results and benchmark is conducted quantitatively and the performance of NFS method

is evaluated based on the comparison.

The fifth chapter of this paper summarizes this research and the conclusions based on the previous
analysis and proves that the objective of this research has been achieved. Meanwhile, the specific
contribution of this research is also summarized. In the end, limitations of this research and

recommendations for future research are listed.
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2.1. Introduction

Since the economic crisis, the mining industry has been very depressed. This is because the prices of
most common mineral products such as iron, coal and oil sands are relatively low compared to the
prices before the crisis, which significantly affects the profits of mining enterprises. As a result, to
survive in the harsh market environment and fierce market competition, the mining industry is
studying ways to reduce costs while increasing production to avoid layoffs and bankruptcy. Hence,
open-pit mining, that requires high investment and energy consumption and dominates the
production of metallic and nonmetallic minerals, has attracted most intentions from scholars

(Hartman and Mutmansky, 2002).

Approximately 50% to 60% of the operating costs in open pit mining are related to trucks and shovels
moving (Kennedy, 1990; Alarie and Gamache, 2002; Upadhyay and Askari-Nasab, 2016; Moradi
Afrapoli and Askari-Nasab, 2017), which means even a small increase in equipment utilization will

yield significant benefits for mining enterprises.

Undoubtedly, optimizing the mine plans is among the important and effective ways to improve
equipment utilization. One of the most critical objectives of optimizing a mining complex is to design
a mining sequence to maximize the NPV while meeting mining requirements such as blending
constraints, plant capacity and other constraints (Lamghari, 2017). Due to the inherent complexity
of mining activities and computational limitations, from the past to the present, researchers have to
divide the entire mining process into three different phases of short-term, medium-term and long-
term. Then, the three phases are optimized separately to obtain relatively optimized results in a

limited and reasonable time (Hustrulid et al., 1995).

As the optimization of the long-term plan has a more intuitive impact on the overall cash flow and
NPV and affects the feasibility of the mine the most, the results are of great significance. Therefore,
most of the previous scholars' research focused on the long-term plan, while the development of
short- and medium-term plans is not as mature as long-term plans. However, due to the

unpredictability of the geological deposit shape and future economic conditions, it isn't easy to make
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a breakthrough in long-term plan optimization under the state of computational power. On the
contrary, the optimization of mine's short-term plan has significant advantages in improving the
utilization of existing equipment and reducing unnecessary costs and its economic benefits have
become increasingly precious in the fierce market competition. Several different methods that

scholars have used in mining plan optimization will be reviewed in this chapter.

Besides, because the mine requires a large amount of investment, the cost of trial and error is too
high, leading to the mine managers not wanting to take responsibility and become conservative. They
will not trust any new methods that are not verified in real mines. Luckily, with the continuous
progress of computers, simulation technology has also experienced development from scratch to
maturity. Especially after the maturity of discrete event simulation (DES), simulation became more
and more critical in the mining industry. Now, almost all new mining methods or any optimization
to existing mines are simulated for hundreds to thousands of replications for different scenarios to
predict all possible outcomes to the greatest extent possible. Some applications of simulation,
especially the discrete event simulation, which have been used in mining optimization in past decades,
are also reviewed in this chapter.

2.2. Mining optimization

As stated in the former section, the optimization of the mining plan consists of two levels. The higher
level is production optimization under different constraints, while the lower level is truck-shovel
allocation or dispatch.

2.2.1 Dispatch optimization (lower level)

The dispatching problem is a problem not exclusive to mining - many other industries will encounter
this problem as well, such as the express delivery industry, taxi industry, food delivery industry and

sales industry. However, this literature review only concentrated on the papers related to mining.

Before the 1970s, dispatching in mines was all manual and the results highly depended on the
dispatcher's experience and intuition. In the late 1970s, automated computer-based dispatching

systems were developed to overcome the limitations of human intervention and make more effective
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decisions (Munirathinam and Yingling, 1994). In general, there are two different dispatching

methods: fixed and dynamic.

Fixed truck assignment, which locks several trucks to a shovel until failure, was adopted by many
mines in its early years. However, it is widely believed to be the least productive method nowadays
and is considered a baseline for measuring the effectiveness of other dispatch optimization methods

(Munirathinam and Yingling, 1994; Moradi Afrapoli and Askari-Nasab, 2017).

As for dynamic dispatch, trucks are independent and can be assigned to different shovels, even
different pits. Commonly, the dynamic dispatch strategy has two patterns based on several stages
needed - single-stage dispatch and multistage dispatch. Compared to the fixed assignment strategy,
the dynamic dispatch system can significantly reduce the operational cost by reducing trucks' and

shovels' idle time and the number of needed trucks (Koryagin and Voronov, 2017).

2.2.1.1 Single stage dispatch

A single-stage dispatch strategy is an approach that dispatches the trucks only based on one
requirement while failing to consider the production and operation constraints. A typical dispatch
method under this category is the 1-truck-for-n-shovel strategy. As shown in its name, this strategy
has n available shovels and dispatch one truck at a single time while considering one chosen criterion
like minimum cost or maximum production (Munirathinam and Yingling, 1994). Therefore, the
standard chosen is quite crucial, otherwise may lead to the opposite results than expected. However,
this strategy is considered short-sighted since the interaction between adjacent trucks is ignored.
Meanwhile, the criterion chosen is difficult because they dominate each other (Alarie and Gamache,

2002).

Some efforts have been made to make this strategy more practical. Integrated dispatching systems
were developed using a simulator to compare the possible results under different criteria. The result
will offer guidance for the criterion chosen, which will be repeated by every shift to make the

decisions suitable for the current status (Bonates and Lizotte, 1988; Alarie and Gamache, 2002).
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It is worth pointing out that all the criteria are not guaranteed to be met in all situations and sometimes

even don’t help to improve production (Munirathinam and Yingling, 1994).

2.2.1.2 Multistage dispatch method

The limitations and instabilities of single-phase dispatches have led scholars to study more effective
ways of dispatching. The revolution in information technology, including computers and GPS, has
made it possible to deliver more efficient, accurate and practical multi-phase dispatches in recent
decades. More specifically, the development of GPS, GIS, GPRS, 3G and 4G technologies made it
easy for mines to collect historical mining data (Alarie and Gamache, 2002; Gu et al., 2008). The
data gathered can be used to analyze the implementation of past strategies and as input data to predict
the future performance of the mines. Besides, the explosive rise of the computational power of
computers made lots of calculations and comparisons in a short time become a reality, helping people

find the optimal or near-optimal solutions.

The so-called multistage dispatching method splits the dispatch problem into two (in some cases
three, but not widely adopted) related sub-problems (Soumis et al., 1989). In the first phase, the
production rate is optimized based on factors such as shovel allocation, shovel digging rate, plant
capability and truck capability. While in the later stage, the trucks are assigned to the shovels in real-
time to minimize the deviation of shovel rate, grade requirement and production from targets
recommended from the first phase (Upadhyay, 2017). Multistage dispatch combines the optimization
of higher and lower levels to achieve a higher NPV, and comprehensive approaches have been
employed to tackle this problem. The details of optimizations will be reviewed in later literature
reviews.

2.2.2 Production optimization (higher level)

Over the decades, open pit mining optimization has received widespread attention, and it is one of
the essential tasks for the engineers of mining ventures. In current practice, before optimization, the

deposit of interest and its surrounding rocks and overburden will be divided into continuous
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geological blocks. Then, those blocks, which contain different geological and economic values, will

be the basis for all mining optimizations.

Typically, optimization consists of two central parts. The first part is pit limit optimization, which
defines the final shape of the open pit, is the basis for the following optimization and affects the value
of a mine the most. Although different mathematical methods and models have been published in
the past years, Lerchs-Grossman (LG) algorithm is still the dominant method most researchers adopt
(Lerchs and Grossmann, 1965; Dimitrakopoulos et al., 2007). The other part is production
optimization. To be more specific, the production optimization is to decide the sequence of blocks
to be mined annually and address two main problems — when the blocks should be excavated and
where the materials from blocks should be sent to, stockpile, waste dump or crusher? Although the
research on production optimization started in the last century, many of the proposed optimization
algorithms are still not implementable due to the complexity of mining operation which contains too
many binary variables and exceeds current computational power (Dagdelen, 2001; Caccetta, 2007).

Therefore, the following part focuses on the second part, the production optimization.

2.2.2.1 Linear programming (LP)

LP is one of the exceptional cases of mathematical optimization, and its constraints are formulated
as linear relationships. LP and its extension, the mixed integer linear programming (MILP) have been
widely used in mining production optimization. The use of LP in the mining industry to optimize
mining schedules can be traced back to 1969 after (Johnson, 1968) introduced the ‘block concept.’.
After that, White and Olson (1986) introduced LP into multi-stage truck-shovel dispatching based
on MILP. The authors formed an effective commercial package called DISPATCH. Their approach
divided the dispatch problem into two weakly-related LP parts. The solution of the first LP segment
helps optimize the production rate while considering constraints such as shovels, stockpiles, plant
and blending requirements. For the second LP segment, minimizing the number of trucks needed

while covering the production rate on each shovel-dump combination is the only objective. The link
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between the two LP segments is to make sure the sum of assigned truck capacity on paths that serve
one shovel will not be under the production rate of the shovel set by the first LP segment. The main
drawback of their model is that it fails to consider the interaction between adjacent dispatched trucks

(Munirathinam and Yingling, 1994).

Li (1990) proposed an LP model to minimize the haulage cost by determining the best truck flows
of each route in the transportation network. The primary goal of this model is to reduce transportation
work, which is defined as the product of material moved and the relevant moving distance. In the
first phase, the optimum number of trucks needed is decided based on the number of working shovels
and crushing capacity. The dispatching rule in the second phrase is called the maximum inter-truck
time deviation. Their results are only related to the time at which the last truck on each route was
dispatched. However, this method did not consider the travel time on the path and feasible traffic
jams. Besides, as in other models, economic objectives such as blending requirements and practical

constraints like heterogeneous fleets are not considered.

Similarly, the closed queuing network theory was adopted by Ercelebi and Bascetin (2009) for the
first phase to optimize the number of shovels needed. An LP model was proposed in the second phase
under ideal conditions (no truck queues) to minimize the number of trucks required and guarantee
maximum shovel utilization. The best number of trucks needed by each valid route was also
determined. The author claimed that the results of the LP model matched the queuing network
solution from the first stage and led to the minimum loading and hauling cost. The main drawback
of this model is that the ideal situation is not practical in actual operation. Nevertheless, truck and

shovel breakdowns and maintenance are not considered.

Commercial package SmartMine® is another software for solving optimization problems in real
mines. Unlike DISPATCH, the first stage of SmartMine® is to determine the number of trucks
needed to cover the optimal production by solving a series of LP models. The second stage use

simulation and multi-criterion optimization as heuristic dynamic dispatching to make dispatch



Chapter 2. Literature review 33

decisions (Subtil et al., 2011; Moradi Afrapoli and Askari-Nasab, 2017). However, one of the main
drawbacks is that the shovel allocation is regarded as input (i.e., not calculated by the package),
meaning that the planner should do it before using the software. Furthermore, characteristics that
mines are concerned about, such as blending requirements, are not considered. Although the author
claimed a 12% increase in total haulage after using this package in simulation, under certain

circumstances, SmartMine® dismisses the best solution and leads to a rerun of the whole model.

An LP model that contains trucks and shovels’ reliability, availability, and maintainability (R.A.M)
was introduced by Mena et al. (2013) to make optimization strategy more realistic. By comparing
the equipment’s operating performance, the trucks with the best performance could be assigned to
the most productive routes to minimize the deviation from the target. Compared to the ideal condition
(maximum availability), this model has less productivity and requires more trucks. However, as the
author claimed, due to the less flexibility, the system fails to find a dispatching solution when some

trucks stop working simultaneously.

Instead of mainly focusing on reducing equipment idle time, an integer linear programming (ILP)
model was formulated to meet the production rate (Zhang and Xia, 2015). At the same time,
operational cost is reduced by determining the number of trips needed for each load-dump
combination in a shift. The experience results showed a 15.65% cost saving. However, one of the
disadvantages of this model is that it only considers truck moving while the lost tons caused by
shovels relocation is not considered. In addition, blending requirements and constant feed to the plant

are also neglected.

Based on the m-trucks-for-n-shovels strategy, a MILP model was developed for optimizing the routes
choices and reducing both trucks and shovels’ fuel consumption, thus decreasing the operational
costs under the under-truck situation. Furthermore, the technical specifications of all equipment are
considered, making the model capable of being used in both homogeneous and heterogeneous fleets

(Bajany et al., 2017). However, this model is only tested in the case with only three shovels and two
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dumps. Therefore, the capability of being implemented in large mines and over-trucked situations
stays unknown. Other than that, the typical shortcomings of the MILP model remained in this model:

neglecting the blending requirements and constant feeding to the plant.

In Askari-Nasab et al. (2011), the author stated the main shortcomings of MILP used in mining
scheduling, inability to solve real-size instances of mining operations. The author proposed a new
method that aims to reduce the number of mineable blocks to reduce binary variables. By introducing
the concept of ‘mining cuts,” adjacent small blocks were grouped into larger units, leading to a
significant reduction of variables. A small mining instance was tested in the paper, and the results
showed that the method lowered the time needed to solve optimization problems. However, it must
be pointed out that this method is not tested and verified for real-size instances. The clustering

method is also unclear, and stockpile and blending requirements are not considered.

As discussed above, almost all the LP models mentioned ignored the economic objectives, such as
constant feed, blending requirement and stripping ratio. Other than that, heterogenous fleets
problems that widely exist in real mines are not addressed. Finally, the inherent nature of LP or MILP
constrains the results of models to be found at the edges of the feasible area, which is not necessarily

to be the optimal solution in real situations since many relations are not linear at all.

2.2.2.2 Nonlinear programming (NLP)

As the name shows, in NLP, one or some of the constraints or the objective function are not linear.
Compared to the widely used LP, the NLP did not gain much attention from mining researchers in
the past decades. In their three stages model, Soumis (1989) implemented an NLP model in the
second stage based on the results of an LP model used in the first stage, which determined the number
of trucks and shovels’ locations. Two factors were considered in this step, deviation of shovel
production, truck available hours, which include waiting hours and penalties for blending grade
deviation. The author believed that the relationship between the number of trucks sent to a shovel

and the corresponding truck waiting time is not linear. Although heterogeneous fleet problems
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remain unsolved, according to Munirathinam and Yingling (1994), NLP can help overcome some of

the inherent shortcomings of LP and search for all feasible solutions.

Besides, Pendharkar and Rodger (2000) claimed that the relationship between unit operation cost
and production cost is not linear. Therefore, an NLP model was created for coal production
optimization concerning economic values like blending. A genetic algorithm was also used to
improve an acceptable solution to an optimal solution. For this model, except for the time-consuming
problem, only a hypothetical case was tested before the author claimed it could solve complicated
problems. The NLP model aggravates the search space, and no algorithm could guarantee finding an

optimal solution if there exists one.

2.2.2.3 Queueing theory (QT)

QT was developed for customers and servicers and initially extended to the truck-shovel mining
system in the middle of twenty century (Koenigsberg, 1958). It was emphasized and developed
mainly in the early years, and most of the work that had been done was focused on a steady-state

solution, which does not contain variability for any shift.

Typically, most of the distributions used in QT that represent truck back cycle times and shovel
service times were exponential (M), constant (D) and erlang (Eh). Other distributions are not
suggested due to the intractability. The commonly adopted notation of the finite source models is (-
/-/-)/-, in which the first two slots represent truck back cycle times and shovel service times and the

last two slots represent shovel numbers and fleet size.

Griffis (1968) used the exponential model to optimize the truck fleet under one shovel situation.
Cabrera and Maher (1973) used a general probability distribution model and optimized the fleet
number under four conditions: constant service time and hauling time, random service time and
hauling time, random service time and constant hauling time and constant service time and random

hauling time.
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Kappas and Yegulalp (1991) assumed that the truck/shovel system contains several activities that
happen in different service centers, but all located in a closed network. The transportation lanes were
also deemed as servers and trucks repair and maintenance were considered. However, their model is
only built for trucks with the same capacity and is based on some properties of the Markovian

network, which is not a valid assumption.

Muduli and Yegulalp (1996) used queueing theory in truck allocation optimization by finding the
nonlinear relationship between shovel productivity and the number of trucks employed and
integrating it into a linear allocation model. Different truck sizes had been considered, but it will lead
to the nonlinearity of productivity; therefore, in this model, shovels were only assigned to trucks of

the same size.

Although QT was believed to give engineers an inner sight of mining operations and is an effective
supplement to computer simulation, it is put aside by most mining researchers. That might be because
it is mainly used in straightforward cases, while with the models becoming more complicated and
practical, researchers turned to other approaches like simulation (Bonates and Lizotte, 1988;

Upadhyay and Askari-Nasab, 2018).

2.2.2.4 Goal Programming (GP)

A.Charnes and W.W.Cooper first proposed GP in 1955, developed based on LP (Charnes et al., 1955).
It is mainly used to solve practical problems such as the economy and military where LP cannot be
used. Its basic principle and mathematical model structure are the same as LP. The difference is that
it solves the problem by trying to minimize the deviation of the target from the specified value.
Besides, variables are defined to represent the deviation from the target under the corresponding
constraints, and all variables will be given a weight to achieve the final goal. In the mining industry
decision-making, there are a variety of sub-goals that are mutually constrained or even opposite.

These goals may be performed by setting a good GP and giving different weights to different targets.
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Temeng et al. (1998) presented a GP model that contains two essential and conflicting goals: quality
control and production maximization. Besides, trucks with different capacities were considered in
the model, although the average payload of trucks was considered. Based on this model, a mixed
integer goal programming (MILGP) model was proposed by (Upadhyay and Askari-Nasab, 2016).
This model is based on four goals: minimizing the operation cost including shovel and truck
movement cost, minimizing the deviation feed to the plant, minimizing the deviation of grade and
maximizing the production. In addition, shovel allocation and a mixed fleet system were considered.
A case study in an iron mine shows that the plant utilization is over 99 percent, and both shovels' and

trucks' utilization is above 90 percent.

Although GP overcame some of the shortcomings of LP and is widely used in decision-making,
young researchers paid less attention to GP. This is mainly because the prior determined goals and
preemptive weighting might be too arbitrary (Zeleny, 1981). Besides, the inherent shortcomings still

exist in GP, like finding extreme solutions.

2.2.2.5 Stochastic Algorithm (SA)

It is a typical method that gained attention from some scholars. However, all approaches mentioned
above did not consider the stochastic nature of mining. The grade of the orebody is not homogenous

even in one block, and trucks and shovels break down randomly.

Two uncertainty parameters were considered in the model built by Ta et al. (2005), the truck cycle
time and the truck loading tonnage. One of the two mainstream methods of SA is the chance-
constrained optimization. This model's objective function was to minimize the number of trucks
needed while covering the production target. In addition, a real-time reallocation updater was
proposed to deal with the shutdown of shovel or crusher and help to allocate trucks at the beginning
of each shift. However, the objective function was based on the mean value of random parameters,

and the actual mining operation included more stochastic parameters than the two.
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Matamoros and Dimitrakopoulos (2016) proposed a stochastic mixed integer programming (SMIP)
model to optimize the short-term mining sequences and the fleet. A single formulation, which
contains eight components such as mining constraints, ore grade uncertainty, number of trucks and
capacities, availability, and penalties for deviation, were used. Each element was expressed and
evaluated by a corresponding cost to meet the target. In addition, five components of the formulation
contain decision variables which could change the fleet parameter or the quality accordingly. The
application of this model in simulation showed a 15 million CAD dollars increase in mining operation
than models without uncertainty. However, as the author claimed, the robustness of the single
formulation relies highly on the detailed original schedule because many parameters used in the

formulation need to be predefined, which is not practical for most of the mines.

2.2.2.6 Genetic Algorithm (GA)

GA, proposed by Holland in 1975, is a method of searching for optimal solutions by simulating
natural evolutionary processes (Holland, 1992). The goal of the model described by He et al. (2010)
was also to minimize truck numbers required to cover the production target to eliminate possible
queueing time under a fixed transporting path. The difference is that the author used the GA method,
and quality requirements were also considered. In this model, the network is fixed, and trucks are
assigned to the routes to minimize the truck operation and maintenance cost. Different weights were
given to each component of the expression, and in the later stage, higher weights are given to
maintenance to reflect the reality. The length of each string (chromosome) is defined as the number
of shovels times the number of dumping points times the number of trucks assigned to the specific
route. The population is generated randomly with the size of 50. The fitness function was defined as
the negative value regarding costs and weights. However, the GA method is time-consuming if the
population is too large. Meanwhile, trucks' speed on different routes is assumed to be the same,
regardless of the status of trucks. Too much human intervention might be the problem that almost no

researcher is using GA to solve natural mining optimization.
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2.2.2.7 Other approaches

The look-ahead procedure was proposed by Faiz Fadin (2017). As one can infer from the name, the
principle behind this procedure is using historical mining data to 'look ahead' what will happen in
early stage and allocate the truck existing in the back of the queue based on the look-ahead results.
This method aims to find optimal routes for trucks in real-time. However, the methodology is only
tested in small mines with very limited trucks and routes. With five trucks and three routes, the
number of scenarios is 243, and real-time dispatching is still possible. But when it comes to real-size
mines with dozens of load-dump routes and trucks, using the Look-Ahead algorithm will lead to a
considerable number of calculations which will take hours or even days to make only one decision.

As a consequence, real-time decision-making is no longer practical.

Implementing machine learning is another attempt by scholars to improve the efficiency of
optimization. In this procedure, historical mining data are collected and used to predict the
distributions of mining activity duration, thus improving the dispatch confidence (Ristovski et al.,
2017). However, road conditions, equipment status, and regulations keep changing over time, so the
past pattern learnt by machines is not convincing, and the results are not verified.

2.2.3 Optimization with stockpile

Stockpile is one of the crucial components of the mining system. It can be helpful to achieve
economic goals like minimizing the deviation of feed to crusher compared to target as well as
reducing the quality deviation of materials feed to plant concerning the desired grade. However, most
optimization models proposed in the past did not incorporate stockpiles for various reasons such as

reducing model size, model running time and computational limitations.

In this study, stockpile, which decouples the mining and mill process, is the essential difference
between the method of interest and other methods. Therefore, the stockpile is listed as a separate
section, and relevant papers are reviewed from early years to the latest rather than integrated with

the former optimization section.



Chapter 2. Literature review 40

To maximize the NPV, Lane (1988) suggested a series of economic cutoff grades higher than the
breakeven grade. Many mines adopted this method; however, due to the uncertainty of mineral
market price and other constraints, the material between the two grades may bring substantial profits.
Therefore, the two-stage mining process became popular in the early years. The mine operates based
on Lane's theory but uses a stockpile to stack minerals between economic grade and breakeven grade
and, in the second stage, reclaim the stacked minerals after depletion (Zhang and Kleit, 2016). With
the further research and optimization of the stockpile, it has taken on more roles in the mining process

and gained extensive attention in mining design to achieve a higher return.

The quality of stockpiles is managed manually in the early stage while the on-site operational staff
routinely records relevant data of essential stockpiles. After that, to have a more reliable product
control and reduce costs related to stockpiling, like sampling, quality management and stockpile
tracking optimization routine (QMASTOR) system was proposed by Keleher et al. (1998). The
system has three components, a remote positioning system (GPS), a central computer and an
optimization model for reclaimation. The model aims to offer the best reclamation schedule to meet
predefined quality specifications based on up-to-date economic indexes and materials available in
the stockpile. Compared to the conventional method, the QMASTOR system reduced the variance
in grade and made it possible for mines to have overall quality control of the stockpile. However, the
system's stochastic nature of mining, blending requirement, and possible chemical reaction are not

considered.

A queueing model was proposed for iron and coal mining stockpile design in Binkowski and
McCarragher (1999). In this model, the number and size of the stockpile were determined to
maximize the system's output based on an Er /Ek/1/N queue. However, to simplify the model, only
the blending requirement was considered, and the truck arrival time, truck size and current grade of
the stockpile were neglected. Meanwhile, all cases in that article fail to find a global maximum and

only a local optimum was adopted.
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Stockpiling with two or more minerals is also a practical situation many mines face. Asad (2005)
proposed an optimized cutoff grade determination method for two minerals based on Lane's theory,
and a hypothetical copper-gold deposit was used to verify the algorithm. The main drawback of this
algorithm is that it is based on an ideal condition where the price and cost are constant. Besides, real
operational problems like degrading and oxidizing significantly influence the stockpile, which was

not considered in the reference.

A simulator called SPSim, which is used to analyze stockpile quality distribution and realize real-
time simulation, was developed by Lu and Xu (2010). The main component of the simulator is a
simulation engine composed of cellular automata (CA) model, and the second part is the visualization
component. The CA model is also composed of two parts, one for the heap of stockpiles and one for
the material falling to the stack. Unfortunately, no case study was presented in the literature. Another
drawback is that it relies heavily on data input and requires lots of parameters like particle size and

environmental parameters, which are not practical to track or determine in the early stage.

The stockpile is inevitable and vital in open pit mine production scheduling. As Jupp et al. (2013)
described, the near crusher stockpile plays four roles simultaneously: storing, buffering, blending
and grade separation. Linear models (Caccetta and Hill, 2003; Ramazan and Dimitrakopoulos, 2013;
Smith and Wicks, 2014) and nonlinear models (Tabesh et al., 2015) that consider stockpile were
proposed, but most of them are either based on unrealistic assumptions or lack of mathematical

formulation or no guarantee of a global optimum.

A MILP model for long-term optimization production planning (LTOPP) that considers grade
uncertainty, and a stockpile was proposed by Koushavand et al. (2014). Their objective function
maximizes the maximize profit while including the cost of uncertainty by considering both under-
production and over-production scenarios. Smith and Wicks (2014) propose a MIP strategy for a
copper mine that incorporates stockpiling. Their proposed approach involves categorizing ore into

different groups based on grade and primary element recovery. They establish a stockpile specifically
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for handling low-grade ore when necessary. However, to simplify the process, the authors do not
account for variations in element grades when materials are deposited into or reclaimed from the
stockpile, thus avoiding nonlinear complexities. Similarly, Mousavi et al. (2016) also address the
issue of stockpiling with a predetermined grade, using a non-exact method to tackle the problem.
They compare their findings with results obtained through an exact method and demonstrate the
proximity of their solutions to the optimal solution. However, the authors do not investigate the errors
that may arise from assuming a fixed reclamation grade for the stockpile. Furthermore, their most
extensive case study only involves a relatively small number of 2,500 blocks. Kumar and Chatterjee
(2017) propose a mathematical formulation for production scheduling in a coal mine, incorporating
stockpiling. Their approach aligns with the aforementioned strategies, assuming a fixed and
predetermined reclamation grade for the stockpile. Their findings indicate that the observed head
grades of the elements remain within the required limits. Instead of using classical linear
programming, in which only one objective can be satisfied, a goal programming model that aims at
reducing stockpile fluctuation was proposed by Souza et al. (2018). In the model, minimizing the
operating cost and grade deviation were set up as two goals to be achieved. However, although the
author claims the model could provide support for short-term and medium-term scheduling, it was
only tested by a database from the author and no simulation was conducted. Gholamnejad and
Kasmaee (2012) proposed a linear goal programming model with a stockpile. However, it is mainly
focused on stockpile reclaim, to be more specific, material blending between two stockpiles with
low-grade and high-grade phosphorus. Mining schedule optimization, which heavily affects the
materials being sent to the stockpile, is not included. Although the stockpile is incorporated for those
models listed above, an automatic perfect blending assumption is adopted. The main drawback of
perfect blending is that it would introduce errors into the result and make it not credible. The
introduction of error is because stockpiles in traditional open-pit mining will not be fully reclaimed,

so there will be a difference between real reclaimed material grade and hypothesized reclaimed grade.
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There are also nonlinear models proposed for LTOPP optimization which incorporate stockpiles.
Bley et al. (2012) added a non-convex quadratic constraint for stockpiles in each period and used the
primal heuristic method to find feasible solutions for a specific problem. Paithankar et al. (2020)
proposed a mathematical model based on a genetic algorithm to optimize production sequence and
dynamic cutoff grades simultaneously. The final goal is set to generate the highest NPV. The model
assumes that the stockpile has infinite capacity and no fluctuation in yearly mining capacity, which
is not realistic in actual operation. However, although most of the proposed nonlinear models claimed
a higher NPV under the case study, more variables are needed than linear models, especially for
stockpiles which caused inefficiency issues. Besides, overall optimal or near-optimal results are not
guaranteed, and the time consumption is much higher than the linear models. Waqar Ali Asad and
Dimitrakopoulos (2012) explored the incorporation of stockpiling in determining the cutoff grade,
specifically considering the presence of uncertainty. Instead of using planning units, they employed
grade-tonnage curves and developed a model that accounted for grade ranges and tonnages of
material within each field of the stockpile. Ramazan and Dimitrakopoulos (2013) proposed a
production scheduling model that accounted for uncertain supply and included stockpiling. Their
model utilized a predetermined constant grade for reclaiming material from the stockpile.
Additionally, it allowed blocks to be sent to the stockpile based on the probability of the block grade
falling within an acceptable range for the stockpile. However, the authors did not compare the actual

grade of material in the stockpile with the predefined rate.

In order to keep the plant constantly working, avoiding the mining and beneficiation processes
constraining each other, reducing grade variation and improving the prediction of output, a near face
pre-crusher stockpile model that decouples the integrated system into two weak-related subsystems
is proposed in this study.
2.3. Mining simulation
A simulation model mimics the real operations of a system or process. Still, the explosive growth of

the application of this method happened only after the invention of the digital computer. Up to now,
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simulation has become one of the most essential and effective tools for researchers in almost all
fields. It is adopted to evaluate the corresponding system performance after changing parameters,

thus helping to optimize the system operation.

Typically, the system to be simulated has two distinct types, discrete and continuous. If the system's
state changes on discrete points over time, the system is defined as a discrete system. Oppositely,
when the system state changes continuously, it will be described as a continuous system (Banks et

al., 2005). Undoubtedly, the nature of the mining industry matches the discrete system perfectly.

Over the past years, the Monte Carlo method has been adopted by most the discrete event simulation,
which generates random numbers from expected distributions, and the sampled numbers will be used

to process the system state change (Sturgul, 1999).

It is widely believed that simulation applications in mining areas date back to the 1940s. However,
the credit for the first use of the Monte-Carlo method in mining simulation is credited to Rist (1961).
In that model. The number of trains needed in an underground mine is determined. A superannuated
language known as Symbolic Program System (SPS) was used in the literature. Based on Rist's work,
Harvey (1964) introduced General Purpose Simulation System (GPSS) into mining simulation. After
that, Fortran was employed by Cross and Williamson (1969) when simulating the mining process.
The simulator was written by GASP V, a forerunner language of SLAM. In 1985, SIMAN
(simulation analysis), a discrete-continuous simulation language, started getting the attention of
mining researchers (Pegden, 1985; Mutmansky and Mwasinga, 1988; Banks et al., 1994). Since then,
ARENA (SIMAN) (The Rockwell automation, 2019) and GPSS have been the two main languages

adopted among mining researchers due to their high capability to data from other software.

The development of simulation in mining in Australia, Asia, Europe, the United States and South
Africa are reviewed by Basu and Baafi (1999), Panagiotou (1999), Konyukh et al. (1999), Sturgul
(1999) and Turner (1999), respectively. Different models with different purposes used for simulation

in various mines in the second half of the 20th century are comprehensively introduced. According
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to the literature, the simulation in mining most focused on production optimization, bottleneck

analysis, truck shovel dispatch and equipment selection.

As stated earlier, since Cross and Williamson (1969), many dispatch strategies have been simulated,
and the results show that most of them positively impact the increase of production compared to the
fixed method (Bonates and Lizotte, 1988; Soumis et al., 1989; Forsman et al., 1993; He et al., 2010;
Newman et al., 2010; Subtil et al., 2011; Lin et al., 2012; Zhang and Xia, 2015; Faiz Fadin, 2017).
Therefore, there is no doubt that the trucks' and shovels' utilization is improved by using those

dispatch strategies.

It is worth pointing out that all the results of the literature reviewed in Chapter 2.2 (published within
twenty years), in the field of production optimization, are obtained by running corresponding
simulation models. Other than that, more and more components and constraints like stockpile,
product quality, and equipment availabilities have been added to simulation models to make them
more and more in line with reality, and the results are more credible (Hodkiewicz et al., 2010;

Camargo et al., 2018).

Recently, the application of mixed reality (MR), virtual reality (VR) and Augmented Reality (AR)
in the mining field has attracted some attention from mining scholars. Those new technologies could
be beneficial in offering real-time information, equipment maintenance and repair, remote assistance
and make it easier for personnel to have an overall understanding of how the mine works (Jacobs et
al., 2016; Zhang, 2017; Bellanca et al., 2019; Stothard et al., 2019). However, those techniques are
still in the early stages of development, and there are no uniform equipment and protocols standards.
Moreover, implementing those techniques requires detailed information input, which is beyond the
capability of mines to collect, especially for those large-scale mines.

2.4. Literature Summary

Different truck-shovel dispatch strategies and mining production optimization models proposed over
the past decades were reviewed in this section. Besides, models that analyzed the positive effect of

stockpiles on short-term mining production optimization were also studied. It can be seen that most
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of the models are tested using discrete event simulation — the best and cheapest way to validate those

models before implementation in a real mine.

However, due to the flexibility of mining procedures, no model in the current stage could perfectly

cover all elements in mining. Moreover, even if there is one, no meaningful results could be obtained

since it cannot be simulated due to the limitations of computational power. Therefore, those models

inevitably have different shortcomings. To the best knowledge of the author, the shortcomings are

summarized in three categories as follows:

2.4.1 Optimization shortcomings

The rock type and particle size of the minerals significantly affect equipment efficiency but

are not considered by most models.

Shovel relocation, which will lead to loss of production, is not addressed in most of the

proposed models, assuming that shovels could ‘teleport’ to the new assigned digging place.
Stockpiles and blending requirements are not considered in most linear programming models.

Optimized short-term or long-term plans under different nonlinear mathematical algorithms
based on heuristics or meta-heuristics methods are not guaranteed to be near-optimal and, in
some cases, even unrealistic. Meanwhile, most nonlinear models are not verified or only
verified on small datasets. Therefore, no nonlinear model can give creditable near-optimal

results in a short period.

All the models proposed, except one or two, cannot deal with heterogeneous shovels and

trucks, which are common in real mines.

Most optimization models use only one criterion while real mines have several different

objectives to be balanced.

Stockpiles in most models are located out-of-pit, the capacity stays unclear, and what to do

with the material remaining in the stockpile is not stated.
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Stockpiles in most models are far away from the crusher, which introduces extra hauling

costs into the system that is neglected.

Reclamation processes will either require an extra cost on equipment like shovels or affect

routine mining operation efficiency, which are not considered by models reviewed.

Stockpiles in reviewed models are based on the first-in-last-out rule, and the materials are

not blended as assumed.

2.4.2 Simulation shortcomings

Different mines have different features, which led to the phenomenon that most of the
simulation models successfully implemented in one mine are unsuitable for another, which

means models are case specific.

Due to the multidimensional complexity of reality, no simulation model can incorporate all
the uncertainty conditions. For example, almost all the stockpile models assume that the

reclaimed material from the stockpile is heterogeneous.

Simulation offers minimal flexibility to users, and once the input parameters are set up, they

cannot be changed before the simulation stops.

It is unsuitable for long-term prediction since the topography, paths, and many other mine

components will be changed while the operation continues.

The simulation model building needs plenty inputs, while most of the mines do not track that
many inputs among them. Moreover, the simulation model has high requirements for the
authenticity of the input data. Therefore, if the input data is very different from the actual
situation, the simulation results are likely to deviate significantly from the real situation and

have no credibility.

Sometimes, running simulation models with many details is time-consuming, and real-time

decisions cannot be made — this is fatal for truck dispatch.
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2.4.3 Shortcomings addressed

This section summarized the common shortcomings of current research in related fields. Despite the
authors' best efforts, this study still does not address some issues adequately. The followings are
shortcomings addressed in this research:

e Add near-face-stockpile into the linear optimization model.

e Add stockpile-associated cost and blending requirements into the optimization model.

e Materials sent to stockpile are trackable in the simulation model.

e Average material grade reclaimed from a stockpile can be generated daily.
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3.1. Introduction

One of the objectives of this research is to establish a complete optimization-simulation framework
that can quantitatively measure and evaluate the performance of a mining method. This framework

is shown in Figure 3.1.

Mining schedule Mining operation Quantitatively
. . . measured
optimization simulation erformance
P Method
evaluation / verification
Benchmark

Figure 3.1 The optimization-simulation framework for mining method evaluation

Therefore, theoretical work mainly includes two aspects, mining schedule optimization and mining
operation simulation. The following work is involved in this chapter: First, based on mixed integer
linear programming, establish a mathematical optimization model that can generate an optimal or
near-optimal mining schedule for the NFS method. Second, based on the discrete simulation software
ARENA, develop a simulation model suitable for the NFS method, in which the mining system and

the milling system are relatively independent.

As reviewed in Chapter 2, the existing literature has presented various mathematical optimization
models, both with and without stockpiles. In this chapter, the near face stockpile is modeled utilizing
the piecewise linearization technique (Markowitz and Manne, 1957) to circumvent nonlinear
constraints. The introduction of three stockpiles, each with distinct acceptable grades, enables the
assignment of fixed reclamation grades to individual stockpiles. The determination of input grade

ranges and reclamation grades is based on preexisting records.

Furthermore, the reduction of problem size is achieved through the utilization of two sets of
aggregates to inform mining and processing decisions: polygons and clusters. Mining operations are
conducted at the polygon level, while destination decisions are made at the cluster level. The
polygons and clusters are generated using a clustering algorithm proposed by Tabesh and Askari-
Nasab (2013). This algorithm is employed to establish processing units within the boundaries of the

benches. Consequently, all benches are subdivided into smaller units characterized by similar rock
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types and grades, forming the foundation for processing and stockpiling determinations. The
mathematical formulation and notations employed in this study represent improved and customized

versions of the model initially presented in Tabesh et al. (2015).

In addition to the optimization models, the simulation model must meet the following conditions:
Captures as many details as possible of the near face stockpile mining method and traditional out-of-
pit mining methods; Captures the associated cost of each mining operation; Captures the
uncertainties like equipment failures and working time distributions; Captures the production loss

caused by shovel movement.

3.2. Optimization model — traditional

3.2.1 Notations

e Sets
, A set of polygons that must be extracted before mining polygon p to
B adhere to slope and precedence constraints.
U? Represents all the clusters that are encompassed within polygon p
e Indices
de {1,..., D} Destinations (waste dump, crusher, or stockpile) index

peil.., P} Polygons index
k LK } Clusters index

eell,....E } Elements index
te {1,...,T} Periods index

S {1, S } Stockpile zones index

e Parameters

MCt The upper bounds of the mining capacity in different time periods f

M_Ct The lower bounds of the mining capacity in different time periods f

P_Ct The upper bounds of the processing capacity in different time periods
&jt The lower bounds of the processing capacity in different time periods

—te Maximum grades allowed of element € sent to processing plant in different

G time periods ¢
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e Decision Variables

Minimum grades allowed of element € sent to processing plant in different
time periods f

Total number in S”

Ore tonnage in polygon p

Waste tonnage in polygon p

Ore tonnage in cluster &

Waste tonnage in cluster &

The total reserve tonnage of ore material

The total tonnage of waste material that needs to be moved

The discounted costs of mining one unit of material from polygon p in

period ! and sent to its destination (both ore and waste)

Discounted revenue generated from processing one unit of element e from
cluster k in period / minus the crushing, processing, and selling costs

Discounted revenue generated from processing one unit of element e from
stockpile in period ¢ minus the rehandling, crushing, processing, and
selling costs

Discounted revenue generated from processing one unit of element e from
stockpile zone § in period f minus the rehandling, crushing, processing,
and selling costs

Average raw ore grade of element € in cluster k&
Tonnage flexibility

Average grade of element € in stockpile zone § in period f

Model 1 — Nonlinear model

v, €[0.1]

The portion of polygon p extracted in period ¢ (both ore and waste).
Continuous variable

The portion of cluster & extracted in period ! (both ore and waste).
Continuous variable

If all the predecessors of polygon p are extracted by or within period .
Binary variable

Reclaimed tonnage from the stockpile in period .

Continuous variable

Grade of element e reclaimed from stockpile in period ¢
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3.2.2 Model 1 — traditional nonlinear

Initially, we introduce the initial optimization model that incorporates a mathematical formulation
for stockpiling, featuring a non-linear calculation for stockpile grade. This model employs two
distinct sets of units to facilitate decision-making pertaining to mining and processing activities. The
first and third sets of decision variables are specifically designed for polygons. As the number of
polygons is typically lower than that of blocks and clusters, employing polygons for controlling
precedence results in a reduced number of binary variables and a lower resource consumption when
solving the model. Additionally, the use of polygons as mining units is a widely adopted practice in
the mining industry. However, for more accurate material destination decisions, a more precise unit

is necessary, which is achieved by employing smaller-sized units known as clusters.

e Objective Function

- (Zz(’”kt’e X0y XXE)—Z(CZ X(Op +Wp)><y;)+2(ft x gr' xrt,e)J (1)
e=l1

t=1 \_e=1 k=1 p=1

e Constraints
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Equation (1) is the objective function, which calculates the discounted revenue derived from sending

material from the clusters to the processing plant and the discounted revenue generated from

reclaiming ore material from the stockpile. The summed revenue is then subtracted by the total cost

of mining and hauling. It is worth noting that the objective function is a non-linear equation.

Equations (2) and (4) control the portion of polygons and clusters to be extracted in each period

with respect to mining and processing capacities. The constraint of Equation (3) restricts the tonnage

sent from the clusters to the processing plant and stockpile during a period to be less than the total

tonnage mined from polygons during the period. Equation (5) controls the overall average head

grade of material processed in each period by averaging the material grade from clusters and

stockpile. To maintain linearity, the equations are rearranged before being transformed into matrix

format. Equation (8) constrains that all polygons within the pit limit need to be fully mined.

Equations (9) to (11) constrains the mining sequence of polygons.
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Equation (6) is used to calculate the average grade of element e in stockpile in different periods
¢t in the stockpile. Equation (7) ensures that the cumulative tonnage reclaimed does not overpass
the cumulative tonnage sent to the stockpile. Note that equation (6) and (7) assumes that material
sent to the stockpile will not be reclaimed in same period.

3.2.3 Model 2 — traditional linear (base model)

In order to establish a linear optimization model incorporating stockpiling, we make the assumption
that multiple stockpiles exist, each with narrow ranges specified for acceptable element grades. This
enables us to assign an average reclamation grade and determined revenue to each stockpile. It is
important to note that as the number of stockpiles defined increases, the model incurs a smaller error.
However, it is essential to consider that incorporating more stockpiles may compromise the
assumption of complete blending, which is typically expected in most stockpiling scenarios.
Therefore, it is crucial to make reasonable assumptions regarding the number of stockpiles required
to define the acceptable element grade ranges, as this decision greatly influences the meaningfulness

and accuracy of the obtained results. The optimization model can be linearized by using convincible

averaged grade. Therefore, gl’t’e is no longer a decision variable and can be replaced by determined

grst’e .And f ' is still a decision variable but replaced by f; .Meanwhile, 7"¢ is replaced by lff’e

which represent discounted revenue generated from processing one unit of element e from

stockpile zone s in period ¢ minus the rehandling, crushing, processing, and selling costs.

In this way, the objective function of Model 1 can be replaced with equation (12). Equations (4) to
(7) will be replaced by equations (13) to (16) respectively. In addition, we incorporate a constraint
to control the element content of the material sent to the stockpile and the material reclaimed from
it. Equation (17) is introduced to halt the reclamation process from the stockpile when the element
of interest reclaimed tonnage reach the overall element tonnage sent to the stockpile. For example,

if the total mass sent to the stockpile was 50 tons with an average grade of 7%. Then if the reclaimed
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material has an average grade of 14%, at most 25 tons of materials can be reclaimed from the

stockpile.

- ] (ii(”kt’e X Oy Xx/tc)—i(c; x(o, +Wp)><y;)+iiff x g xrst,eJ (12)
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3.2.4 Case Study - traditional

To assess the efficacy of the proposed model and quantify the approximation error resulting from
linearizing the stockpile grade calculation, we conducted an implementation on an iron-ore mine.
The dataset comprised 430 million tons of material within the final pit, discretized into 19,561 blocks.
Our objective was to derive a 20-year production plan. The blocks were aggregated into 40 polygons
and 1,870 clusters using a hierarchical clustering algorithm proposed by Tabesh and Askari-Nasab

(2013).

The processing plant capacity was set at 7.5 million tons per year, commencing from the fourth year.

Meanwhile, the mining capacity started at 32 million tons and gradually decreased to eight million
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tons towards the end of the mine's lifespan. The block model considered three distinct elements,
namely iron content, sulfur, and phosphorus. The iron content was measured as a mass percentage
relative to the magnetic weight (MWT), while sulfur and phosphorus were tracked in mass
percentage units. The specifications of the processing plant dictated that the ore should possess
certain quality criteria. Specifically, the minimum required MWT was set at 78%, and the maximum
allowable sulfur and phosphorus contents were 0.14% and 1.7% respectively. These specifications

ensured that the processed ore met the desired quality standards.

To formulate the models, we utilized MATLAB and employed the CPLEX optimization engine to
solve them optimally. This approach allowed us to effectively evaluate and analyze the proposed
model's performance, taking into account the specific constraints and requirements of the iron-ore

mining scenario.

3.2.4.1 Original Schedule - benchmark

In the initial phase, we executed the mixed-integer linear programming (MILP) without imposing
any constraints on the head grade. This allowed us to adjust the mining capacity to obtain an
acceptable schedule. The same settings were subsequently employed for the subsequent scenarios to
demonstrate the benefits of incorporating stockpiling into the mine planning process. The generated
schedule yields a net present value (NPV) of 2,615 million dollars. It is worth noting that the sulfur
head grade constraint at the processing plant did not pose any restrictions in any of the scenarios and

has been omitted in the following analysis.

Subsequently, we introduced head grade constraints for the three elements and re-executed the MILP.
However, results show that in most years, the utilization rate of the processing plant is not ideal.
Additionally, due to strict restrictions on the grade, the ore material grade of the shallow layer mined
in the fourth year is low and does not meet the requirements of the processing plant, so the output in
the fourth year is zero. Consequently, the generated net present value (NPV) declined to 2,109

million dollars, representing a 23% decrease compared to the previous scenario.
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3.2.4.2 Adding stockpile

In order to address the head grade challenges, we incorporated three stockpiles into the operation.
These stockpiles were defined with different acceptable grade ranges and corresponding reclamation
grades, as outlined in Table 3.1. The revenue generated from reclaiming material from the stockpile
was calculated using the MWT reclamation grade and an average rehandling cost of $0.5 per ton. It
is important to note that the cost of the mining fleet on reclamation is not considered. As depicted in
Figure 3.2, the plant utilization remained below maximum capacity for several years, indicating a
scarcity of high-quality ore to sustain plant operations. However, thanks to the stockpile, ore was
stored and subsequently reclaimed in later years. This reclaimed material, mixed with higher-quality
ore, was then fed to the plant. The resulting net present value (NPV) amounted to 2,155 million
dollars, representing a 9% improvement compared to the scenario without stockpiling. Figure 3.3
visually presents the variation between the actual grade of material in the stockpile and the
predetermined reclamation grade. It can be observed that the average absolute error in grade
amounted to 3%. Moreover, over the mine's lifespan, a total of 6 million tons of material were

reclaimed from the stockpiles.

These results demonstrate the benefits of incorporating stockpiles in managing head grade constraints.
By strategically storing and reclaiming material, the operation can enhance plant utilization,
overcome grade limitations, and ultimately improve the project's economic performance. However,
it is essential to acknowledge the slight grade discrepancies between the actual material in the

stockpile and the predetermined reclamation grade.

Table 3.1. Summary of the stockpiles’ parameters

Stockpile Element Qie (%) 526 %) @ (%)
P 0.10 0.11 0.10
1 S 1.00 2.00 1.59
MWT 70.00 74.00 71.83
2 P 0.11 0.13 0.12
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S 1.00 2.00 1.59
MWT 74.00 78.00 76.47
P 0.13 0.15 0.14
3 S 1.00 2.00 1.59
MWT 78.00 82.00 80.34
Triple Stockpile Schedule
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Figure 3.2 Mining schedule with three linearized stockpiles
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Figure 3.3 Grade error of iron and phosphorus between real grade and predefined grade
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3.2.4.3 Summary of the results

We conducted a case study on an iron ore mine to evaluate the performance of our proposed
optimization model. Table 3.2 presents the results of the scenarios tested, including the "no stockpile"
scenario, which resulted in a lower net present value (NPV) and inadequate feed to the plant. To
address this issue, we introduced three stockpiles with predetermined grade range and reclamation
grade. The inclusion of stockpiles in the scenario led to higher NPV and increased total tonnage of
material sent to the crusher, as illustrated in the table. However, it is important to note that the grade
error also increased due to the material reclaimed from the stockpiles exhibiting a higher degree of
grade deviation. As we discussed in earlier sections, the precise control of multiple element grades
for the stockpile inputs plays a crucial role in defining the stockpiles and estimating reclamation

errors accurately.

The case study provided confirmation of the effectiveness of our proposed optimization model. The
addition of stockpiles resulted in an overall NPV increase of 2.23% with minimal grade deviation
increased. This demonstrates the potential of stockpiling as a valuable strategy to enhance the
economic performance of mining operations, while also highlighting the importance of carefully
defining stockpile parameters and managing grade variations. In conclusion, our case study validated
the efficacy of the proposed optimization model by showcasing the positive impact of stockpiling on

NPV improvement, despite the limited increase in grade deviation.

Table 3.2.Summary of the results

Scenario NPV ($M) Diff (%) Reclaimed Average Grade
Tonnage (MT) Error (%)
Original - benchmark 2108 - - -
Optimized 2155 2.23% 5.7 3.0

3.3. Optimization model — NFS
3.3.1 Model 3 — NFS

As mentioned earlier, model 2 is built to optimize a typical mining layout where stockpiles are

located out of the pit, and only materials that cannot feed the crusher directly are sent to the stockpile.
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For the NFS mining method, all material within acceptable range will be sent to stockpiles in the pit
bottom, and then a reclaim shovel starts feeding the crusher from the stockpile. NFS mining method
results in an even better blending since more materials are mixed, and the grade limitations for the
stockpile can also be relaxed. To quantitatively study the blending performance, in this part, we will

extend model 2 to the NFS mining method scenario.

The objective function for model 3 keeps the same as equation (12). Equation (13) and (14)are

replaced by equation (18) and (19). Equation (20) to (22) are added on the foundation of model

2.
S N
PC' <> f1<PC vie{l,..,T) (18)
s=1
S
D(fxen)
Ge<xl < G" viell,...,T},Veell,...E} (19)
ft
s=1 ’
T P
DD o, xy <o, Vpell,..,P}, te{l..T} (20)
t=1 p=1
T P
DD w,xyh <w, vpeil...P}y, tefl,..,T} (1)
t=1 p=1
K S K
Doxx,—e<Y <> o, xx; +¢ vie{l,..,T} (22)
k=1 s=1 k=1

Equation (20) and Equation (21) enforce that the total ore and waste tonnage mined should be
less than the total reserve available. Equation (22) puts a limitation on tonnage reclaimed from
different zones in each period. The reclaimed tonnage in each period should be located within the

range of ore material mined in that period plus/minus flexibility tonnage.
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3.3.2 Case study — NFS

The same dataset and software are used in this section to verify the blending performance of the NFS
mining method. Since the former analysis already proved that three stockpiles could achieve better

blending results, the near-face stockpile will be divided into three zones in this case study.
3.3.2.1 Schedule

We can see from Table 3.9 that the pre-stripping takes about four years, and after that, ore material
starts being excavated, sent to the stockpile and crushed. Note that all material sent to stockpile will
be crushed, and in year four, unlike the former model, there is no material sent to stockpile — grade

constraints rejected material mined in early years, and they are sent to waste dump. Coorespondingly,

The final net present value generated is 2355 million dollars, which is higher than the all scenarios
presented in model 2. Meanwhile, the amount of materials processed each year is almost stable at a
high level close to the capacity, and the annual difference level is relatively low, as seen in Table 3.3.
As a consequence, the yearly strip ratio shows a decreasing trend. Although only one near-face
stockpile is considered during the life of mine, it consists of three zones representing low-grade,

medium-grade and high-grade.

Table 3.3 Tonnage of ore delivered to the processing plant on the yearly basis

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Case
Benchmark (Mt) 7 751757517573 |75(69 (75|67 |75|75|65|75|75]| 4.8

Error (%) gl - - -1 -3 -1=8]- 11| -1]-1]-13]-1]-1-36

NFS (Mt) 7516475757575 |75|72|70|70|70|70]| 7575|7572

Error (%) ool-15] - [ -] -[-1-]alalalala]-1-1]-143
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Figure 3.4 Generated mining schedule for NFS method

3.3.2.2 Grade error

Due to the particularity of the NFS mining method, all target minerals excavated from cuts will be
sent to the stockpile located at the bottom of the pit and then reclaimed by another shovel. This
process does not require an additional truck fleet and is completed by belt transportation. The cost of
reclamation is set at $0.5/ton. In order to use each area of the stockpile more evenly, two values were
selected as the threshold by calculating the material tonnage and grade in each block. Those two
values will distinguish the stockpile into three zones, which are under76.65%, between 76.65% and
80.23% and over 80.23%, as seen in table 2. The lowest MWT grade, 41.22% and the highest MWT
grade, 84.52%, are the actual lowest and highest grades retrieved from the dataset, as shown in Table
3.4. The threshold value is selected based on MWT grade since the grade of Sulphur and Phosphor
are not the main interest of mining companies and meet the processing requirement in most of the

period.

Figure 3.5 and Figure 3.6 show the average grade of Phosphor and Sulphur of processed material by

year and by zone, and Figure 3.7 shows the yearly average MWT grade of each zone in the stockpile
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and the overall MWT grade processed each year. Figure 3.8 depicts the yearly grade error of MWT

and Phosphor sent to processing plant.

Table 3.4 Stockpile zoning parameters for the NFS case and benchmark case

Lower Upper Avg
Lower | Upper | Avg | Lower | Upper | Avg

Case Number MWT MWT MWT
P() | P(%) | P(%) | S(%) | S(%) | S (%)

(%) (%) (%)

Zonel 41.22 76.65 71.83 0.10 0.18 0.12 1 2 1.43
Benchmark | Zone2 76.65 80.23 76.47 0.14 0.18 0.15 1 2 1.66
Zone3 80.23 84.52 80.34 0.14 0.18 0.15 1 2 1.59
Zonel 41.22 76.65 70.02 0.1 0.18 0.14 1 2 1.31
NFS Zone?2 76.65 80.23 78.68 0.1 0.18 0.13 1 2 1.69
Zone3 80.23 84.52 81.26 0.1 0.18 0.14 1 2 1.60

Table 3.5 Yearly grade error of processed material

Year 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 20

S 16 | 14 | 17| 17|16 |16 | 17|15 |18 | 17|17 |17 | 17|18 | 15|15
grade
Error
%) - - - - - - - - 3.5 - 1.2 - - 5.9 - -
P A4 ) 12 | 17 | 13 16 | .16 | 13 | .11 A2 ) 12 | 16 | 14 | 14 | 13 13 .14
grade
S I R T AN 7 E'C U AN NN AN AN S U AN U IR R
(%)
MWT 66 | 71 74 | 74 | 76 | 80 | 80 | 79 80 | 75 76 | 75 80 | 80 | 8I 81
grade

E(E;‘;r 15 | -96|-56| 4624|2327 | 18]30]|-36|-21]-42]211]30]39] 41
0

grade L | 15|17 1716 | 16|16 |15 | 15|18 |16 | 17| 16| 16 | 15| 15

Error
(%)

A4 ) 18 | 14 | A5 | 14 | 14 | 14 | 14 14 ) A3 | A3 | A3 | A3 | A3 | 13 | 13
grade

Error
(%)
MWT
grade

65 70 75 76 77 78 80 76 77 76 77 78 80 81 80. | 81

E(f,;c;r A7 | <10 | 35 23]-09]04 |19 | 21]-13]-21|-18|05]30]32]24]33
0
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Figure 3.5 Phosphor grade delivered to each zone of the stockpile and the phosphor grade of final blend

reclaimed from the stockpile by year of the mine life
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Figure 3.6 Sulfur grade delivered to each zone of the stockpile and the sulfur grade of final blend reclaimed

from the stockpile by year of the mine life.
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Figure 3.7 MWT grade delivered to each zone of the stockpile and the MWT grade of final blend reclaimed

30%

25%

20%

15%

10%

5%

Difference

0%

0%

-10%

-15%

from the stockpile by year of the mine life.

Grade error

Cdp
ERSEEEE Mw T

5 6 7 8 9

m 11 12 13 14

Year

15 16 17 18 19 20

Figure 3.8 Grade error of MWT and Phosphor sent to processing plant on a yearly basis



Chapter 3. Theoretical framework 67
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Figure 3.9 Grade distribution of stockpiled and processed material

Figure 3.9, Table 3.4 and Table 3.5 clearly show that inside the near face stockpile, zone 1 has the
most comprehensive grade range for both MWT and phosphor and is the dominant zone to be
reclaimed and processed in the first two years, leading to a higher grade error in early years. However,
with the development of the pit limit, the average excavated material grade keeps rising, and the
grade error for both MWT and phosphor is narrowed down, which means, zone 3 has the narrowest

grade range for MWT and phosphor and is the dominant zone in later years.

3.3.3 Comparison
The results of the MILP model proposed in this article for the NFS mining method and the MILP

model for the usual open-pit mining method accomplished (model 2) are compared in Table 3.6.

Table 3.6 Optimization results comparison between NFS method and traditional method

Category Average grade error (%) NPV
Traditional method 3.0 2155
NFS method 2.0 2355

Difference (%) -33.3% +9.28%
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To evaluate the performance of the NFS open pit mining method, we compared results of our
proposed optimization model with the results of the benchmark case in two important KPIs (the NPV
and the absolute grade deviation). In the benchmark model, the case study generates $2155 million
dollars of NPV with an average absolute MWT grade deviation of 4.36%. The number of the NFS
case is $2355 million dollar and the hypothetical material grade deviation is 3.48%. This means that
by switching from conventional open pit mining to the NFS open pit mining method the NPV
generated by the case study will increase by 9.3% and the hypothetical grade variation of material
sent to the crusher is reduced by 33.3%. For MWT, the hypothetical grade deviation reduction is
20%. This is mainly due to the higher turnover rate of near face stockpile since material in different
zones are fully reclaimed in a predetermined time range while in traditional mining method, stockpile
is only reclaimed when material mined in that period is not enough and rarely does stockpile realize
a fully turnover in life of mine. To be more specific, high stockpile turnover rate has a strong positive
effect on the blending results since with higher turnover rate, the tolerance for ore grade fluctuations
will increase, and some relatively extreme high-grade and low-grade ore material will become
acceptable. This is particularly beneficial to those mining companies whose material of interest
comes with associated impurities — just as the iron mine used in the case study. Moreover, with more
materials becoming acceptable for processing, higher production is expected (for this case, 1.8%
higher production) which will eventually bring higher revenues and profits to the company.

3.4. Simulation model

Typical mining simulation models consist of only the mining system, while milling and processing
are dispensable. However, for the NFS method, the stockpile is the essential difference from
traditional mining method and is the critical component to be simulated. Therefore, after the
production optimization model has been established above, this chapter will take an oil sands mine
using the traditional crusher-out-of-pit mining method as an example to establish a simulation model
to simulate the production status of the mine in 2016. Satellite view and Gems rebuild topography is

shown in Figure 3.10 and Figure 3.11. On this basis, a second simulation model is established. Based
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on consistent ore body conditions and equipment capabilities, the layout of this mine was changed
to the NFS mining method, and the corresponding road network and equipment location were also

changed to adapt to the new mining method.

&3

5

a7apngix

47E008 D

Figure 3.11 Gems rebuild topography of targeted oil sand mine
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The first simulation model was built to compare with the actual mining situation to verify the validity
of the simulation model. The simulation results combined with the corresponding optimization model
will also be used as a benchmark to represent the best results that traditional mining methods can
achieve. Furthermore, the results of running the second simulation model represent the main research
objective of this paper, the performance of the NFS mining method. The next chapter will evaluate
the NFS method and draw some conclusions by quantitatively comparing the simulation results of
the NFS model and the benchmark model. Based on the discontinuity of mining activities,
compatibility with VBA programming, and the ability to read and store data externally, a mature

discrete simulation software called Arena is adopted to build the simulation models in this research.

A general disadvantage of simulation models is that most are case-specific and 'hard coded,' and it is
almost impossible to transfer them to other cases. Many factors cause this situation. First, the burial
conditions and physical properties of minerals of different varieties in different regions are vastly
different. Meanwhile, different equipment choices can also significantly impact the final extraction
boundary. In addition, differences in environmental policies, mining methods, capital costs, workers'
capabilities, engineers' experience, and many other reasons will also affect mining activities. So, its
corresponding simulation model is challenging to generate automatically by defining a few key

parameters.

Stations
(Working area)

Resources
(Shovels,
rusher,dumps

Sets
Resources,stations,

Road Network
(Connect stations and
fill in distance)

Expressions
ariables,distributions
attributes)

Conveying modules
Belt,tanks,regulators

Figure 3.12 Components of simulation models created by VBA macro
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Although complete automation is not realistic at this stage, using semi-automation can also

significantly improve the simulation efficiency and the case-specific status of the simulation model.

Considering that the NFS mining method has a relatively common bottom structure, this paper will

establish a semi-automatic model to simulate the NFS mining method. Therefore, the author takes

the compatibility of the simulation software for VBA programming as one of the selection criteria.
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Figure 3.12 shows the parts of the simulation model that need to be built with VBA macros to achieve

semi-automation.

Besides, as mentioned above, the simulation model proposed in this chapter is based on the optimized
mining sequence proposed above to achieve the best simulation results. Therefore, choosing the
simulation software Arena with the ability to read external data can assist in establishing semi-
automatic simulation models and greatly simplify the workload required to modify the model. Figure
3.13 shows how data is transferred between different programs. Figure 3.14 demonstrates procedures
needed to complete the proposed optimization and simulation model.

3.4.1 framework

Generally, the working area of a conventional surface mining system mainly consists of the following
elements: polygons (also known as blocks or faces to be moved), several electric shovels, a fleet of
trucks, a growing road network, crusher(s), processing plant(s) and stockpile(s) (being placed in
different locations based on different needs). Meanwhile, mining is not a specific activity but the
sum of all the activities of the elements mentioned above. The activities of these elements are mainly
connected in series by trucks and affect each other. Take the oil sand mine as an example. These

activities can be mainly summarized as follows:
10. Follow a predetermined mining schedule and decide on working polygons
11. Shovels are allocated to working polygons and request trucks
12. Trucks haul to shovels
13. Shovels start digging the assigned polygons and loading the trucks

14. Full trucks travel to determined destinations (crusher, waste dump, or stockpile) based on

materials grade
15. Trucks unload material carried at the designated location

16. Trucks assigned to a shovel for the empty return trip and being loaded at shovel locations

again
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17.

18.

19.

20.

21.

Crusher crushes ore material received to an acceptable particle size

Crushed ore material being sent to the slurry plant

Slurry plant grinds minerals into smaller sizes and prepares a slurry

The slurry is transferred to the processing plant to produce the final product

73

Crude oil comes from the processing plant and is sold in the market or sent to a refinery
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Although the basic logic of the traditional and near-face-stockpile mining methods is the same, in

step 6, the designated locations for loaded trucks to dump in the two methods are quite different. For
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the waste materials, dumping trucks in both methods are hauling to the exact predefined waste dumps.
However, things are different for ore materials. Trucks dump directly to the crusher in the traditional
method, while in the near-face-stockpile method, dumping trucks dump to the stockpile in front of
the crusher. In this way, trucks are no longer the direct feeder to the crusher, and an extra shovel is
required to feed the crusher as needed. The NFS simulation model proposed in this chapter contains
only one stockpile but is divided into three zones. Four dumping spots are available for each zone.
The reclaim shovel keeps reclaiming materials from stockpile zones in a specific order. Afterward,
materials will go through the crusher, belt, and slurry plant and be pumped out of the pit. In the
software ARENA, Conveyor is an incorporated ready-to-use module. The modeling of conveyors
within the software does not necessarily necessitate the utilization of specialized simulation
constructs. Instead, conveyors can be effectively modeled using either a PROCESS module or a
DELAY module, incorporating a deterministic delay. This delay parameter is employed to accurately

represent the time required for an entity to transition from one location to another during sliding.

Figure 3.15 and Figure 3.16 illustrate the basic frame of simulating the traditional mining method
and the near-face-stockpile mining method. From these two figures, we can see again that the near-
face-stockpile divides the integrated (strongly connected) mining and the processing processes into
two relatively independent (weakly connected) processes. In other words, the near-face stockpile acts
as a buffer that allows the reclaiming and milling system to keep working for hours when no trucks
dump materials into the stockpile for any reason. Besides, when the milling system shuts down
unexpectedly, the mining system could also keep digging and dumping ore material to stockpile as
usual for hours. This "buffer" brings extra stability to the system and can effectively improve
equipment utilization, resulting in a better production rate. From the perspective of the independence
of each subsystem, Figure 3.17, Figure 3.18, Figure 3.19can better reflect the difference between

NFS and traditional mining methods at the operation level.

Figure 3.17 shows that, compared with the process of the traditional mining method, due to the

increase in the number of dumping zones and dumping spots, it is necessary to add a selection
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strategy to determine the dump location of the truck. This selection strategy is shown in Figure 3.18.
The fundamental purpose is not affecting other subsystems' operating and improve the security of
whole system. From the perspective of risk management, if a certain zone is in the state of dumping
and reclaiming simultaneously, it will threaten the safety of personnel and equipment, and lead to
significant economic losses. Therefore, on the operation level, a fundamental principle is that zones
under the reclaiming state cannot receive material from trucks simultaneously, and vice versa. Figure
3.19 shows the flow of the reclaim process and the inner logic of reclaiming zone determination in
detail, as well as the crushing and processing subsystem. Therefore, the traditional shovel-truck-
crusher connection has become two roughly independent connections: shovel-truck-stockpile

connection and shovel(reclaim)-crusher connection, which bears more uncertainties.
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Figure 3.17 Diagram of mining sub-system of the NFS method
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It is important to note that the traditional truck shovel mining system represents a typical
amalgamation of discrete events, wherein the alteration of system state is discontinuous, rendering it
suitable for discrete event simulation. Conversely, in the near face stockpile mining system, the
stockpile is emulated through the employment of a tank module, and the transportation of crushed
ore material to its destination is facilitated by a conveyor belt, making it more appropriate for
continuous event model simulation. This observation further substantiates that the simulation of the
NFS method encompasses a hybrid simulation, encompassing both the discrete simulation of the
truck-shovel subsystem activities and the continuous event simulation of the crushing and conveying
subsystem. These two subsystems are interconnected via a sensor, whereby the sensor, upon
detecting that the material within the stockpile has attained the predetermined threshold, proceeds to
close the corresponding zone within the stockpile and open the adjacent zone to enable the continued
reception of truck dumping.

3.4.2 Inputs

Human movement is inseparable from the support of bones. Similarly, the framework proposed

above supports the operation of the simulation system like bones. On its basis, this system also needs

various details to fill in the parts between the bones, like flesh and blood, to make the system more

vivid and realistic and simulate the actual situation better.

Under ideal conditions, when all the details of reality can be captured and fed into the simulation
system, the simulation results will be infinitely close to the actual operating results. This is one of
the most important meanings of simulation, that is, to make predictions about the performance of a
system. In addition, it can also be used to identify the impact of some changes on the system behavior
and, in turn, guide the actual operation to obtain better system performance. However, the reality is
not always ideal. The actual operation faces many unpredictable uncertainties, such as the
distribution of minerals, the shape of the deposit being different from the expected, the possible

damage to the transportation road, the landslide caused by slope instability, and the extreme weather
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and other uncontrollable factors. To be more specific, simulation and reality will not be exactly the

same.

However, that's not to say that simulations aren't useful. It is undeniable that many of the above-
mentioned factors are only small-probability events that can be reduced or even eliminated through
better management and averaging the results of multiple replications. Honestly, when we incorporate
the main uncertainties of mining activities into the simulation system, run multiple replications, and
average the results, the simulation results already have a high degree of confidence and are close to
what would happen in reality. In other words, the simulation results do not represent an exact value
that actual operations will generate but provide a narrow range with high confidence that actual

operating results will most probably be located.

On this basis, after completing the setup of the basic framework, various operating details and
uncertainties of two mining methods. Typically, two different kinds of inputs are needed by the
simulation model. The first category is the schedule information, which include but are not limited
to: blocks and faces, coordinates and nodes, number of equipment, ore and waste tonnage, ore grade,
transport network, precedence of blocks, stripping ratios, shift times, ore recover rate, and distances
between nodes. These data can be derived from the optimization model proposed in the previous

chapter.

The second category of information needed by the simulation model is technical inputs, which
include but are not limited to: shovels’ operating information (such as ID, bucket capacity, movement
speed, swing speed, availability, acceptable utilization, and operating cost), trucks’ operating
information (such as ID, capacity, empty and loaded movement speed, dumping time, availability,
acceptable utilization, operating cost) and crusher’s, belt’s, processing plant’s operating information
(such as capacity, acceptable utilization, operating cost). These technique inputs should be defined
before any comparisons are made, bringing the simulation models closer to reality and giving the

results more confidence. More specifically, the shovels' (mining shovel(s) and reclaiming shovel(s))
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loading costs are measured by dollar/ton, and their moving costs are measured by dollar/m. Trucks'
moving costs are measured by dollar/km; the spotting and queueing cost is assumed to be zero.
Crushing and processing costs are also measured by dollar/ton. Assuming the belt works at a constant

cost per hour, i.e., dollar/hour.

In addition to these costs, a simulation model's most important objective is capturing as much
uncertainty as possible in real-world operations. In actual operation, the working time of mechanical
equipment, such as electric shovels and trucks, is not a fixed value for each cycle but roughly satisfies
a certain distribution. These characteristics bring great uncertainty to the system. In addition to the
uncertainty in the working cycle, another feature of that mechanical equipment is that even under
proper maintenance, they will still fail from time to time, causing the termination of mining activities
and bringing more uncertainty to the system. In addition to the operating time, the equipment's

operating load per cycle is also not fixed, which brings similar uncertainties into the system.

Therefore, quantifying these uncertainties into quantifiable distribution equations with suitable
parameters, and using these equations and parameters as input data, is one of the critical factors in

building a high-confidence simulation model.

Normally, the performance of different devices is always very different, even if the same
manufacturer produces them. Therefore, to obtain an accurate performance of these devices, the
author retrieved the production record from the database of the oil sands mine of the year 2016 and

extracted data on equipment cycle time and other performance related records.

These records can be roughly divided into two categories, independent variables, and dependent
variables. The independent variables and dependent variables mainly used in this paper are listed in

Table 3.7.

Table 3.7 List of independent variables and dependent variables to be compared

Type Variables

Independent variables Dumping time (s)
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Loading time (s)

Measured tonnage per truck(t)

Truck hauling distance (km)

Velocity — empty haul (km/h)

Velocity — full haul (km/h)

Queue time before shovel (s)

Empty haul time (min)

Dependent variables Full haul time (min)

Cycle ready time (min)

Ton per gross operating hour (ton/h)

It is worth pointing out that, in actual operations, it is expected that some operators cannot record
relevant operations in time, forget to record, or make wrong input records. Even computerized
records are not working 100% reliably since GPS and sensors lose connections occasionally. As a
result, the data in the database have "null" values and many nonsenses extreme values. For example,
only one second is consumed for shovels loading a truck with a 400-ton capacity. Besides, in many
cases, trucks haul to waste dump with 0.1 "measured" tonnage. Therefore, before analyzing the
uncertainty of these data, the author set up several lower and upper bounds to filter the data. Those
"null" and extreme values will be eliminated to better characterize the mechanical equipment
operation. The lower and upper bounds are listed in Table 3.8. The truck type used in the oil sands

mine is Caterpillar 797B, with a nominal capacity of 345 tons (380 short tons).

Table 3.8 Filters for equipment operation records

Operation variables Lower bound Upper bound
Truck payload (t) 10 480
Truck dumping time (s) 20 160
Truck queue time (s) 0 1800
Truck travel distance (km) 2 20
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Truck velocity — empty haul (km/h) 5 70
Truck velocity — full haul (km/h) 5 70
Truck empty haul time (min) 2 60
Truck full haul time (min) 2 60
Cycle ready time (min) 5 60
Shovel loading time (s) 60 360

In addition, mechanical equipment will inevitably fail after continuous operation, even if appropriate
proactive maintenance has been taken. According to experience, equipment downtime generally
satisfies certain distributions. Therefore, by analyzing these devices' historical work and failure times,
we can roughly predict these devices' working time and downtime in the next period. It is worth
noting that the downtime defined for trucks and shovels in this paper includes regular maintenance
time and repair time due to unpredictable mechanical failure. Table 3.9 shows the filters of equipment

uptime and downtime.

Table 3.9 Filters for equipment productive and non-productive records

Operation variables Lower bound Upper bound
Shovel uptime (h) 0 800
Shovel downtime (h) 12 200

After extracting and filtering the relevant data, the author uses MATLAB software to draw the
corresponding frequency distribution histograms and then fit distributions that can represent the
histogram characteristics individually and determines the relevant parameters. Figure 3.20 to Figure
3.28 show the histogram of each operation. Figure 3.29 to Figure 3.30 show the resulting ton per
gross operating hour (TPGOH) histogram. Figure 3.31 to Figure 3.32 show the fitted density function
for shovel’s uptime and downtime records. The independent variables’ fitted distribution functions
are summarized in Table 3.10 and will be used as inputs to the simulation model to control the
uncertainty of the entire mining system. It should be pointed out that the failure data in this section

are retrieved from the database of 2014-2015 since no failure record is available for year 2016.
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Ore TPGOH (2016)
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Shovel down time (record)
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Figure 3.32 Shovel uptime histogram and fitted distribution
Table 3.10 Fitted distribution

Category Fitted distribution Arena input
Truck payload (t) Normal (335.3,80) NORM(335.3,80)
Truck dumping time (s) Normal (73.9, 22) NORM (73.9, 22)
Truck velocity — empty haul (km/h) Normal(28.61, 9.02) NORM(28.61, 9.02)
Truck velocity — full haul (km/h) 9+LOGN(17.1,7.1) 9+ LOGN(17.1,7.1)
Shovel loading time (s) Gamma(25.6, 5.23)+30 GAMM(25.6, 5.23)+30
Shovel uptime (h) Weibull(131, 0.775)+13 WEIB(131, 0.775)+13
Shovel downtime (h) Lognormal(3.25, 0.63) LOGN(23, 49.8)+12

3.4.3 KPIs (Key Performance Indicators)

Just building a model is not the end of the simulation. The author's purpose is to establish a model

that reflects the activities of the mine as realistically as possible and to quantitatively predict the

impact of changes in mining methods on various processes in the mining process. This result may be

good or bad, and the author will make an objective and fair evaluation of the new mining method

based on the simulation model results. However, these evaluations are based on a premise: the model

is valid and reliable. The data is the best evidence that the simulation model is trustworthy and
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reliable. Therefore, the author sets out several KPIs that need to be tracked for the simulation model
and compares them with the actual operating conditions of the enterprise to verify and confirm the

model's validity. Those selected KPIs are listed in Table 3.11.

Table 3.11 Selected KPIs to evaluate the performance of different mining method

No. Arena of concern KPI to evaluate
1 Transporter Utilization
2 Transporter Queue number at sources
3 Transporter Queue time at sources
4 Transporter Average cycle time
5 Transporter Average payload
6 Transporter Average dumping time
7 Transporter Average full/empty speed
8 Stockpile Tonnage in and out
9 Stockpile Truck interarrival time
10 Crusher Utilization
11 Crusher Production rate of different time frames
12 Crusher Feeding rate of different time frames
13 Crusher Truck interarrival time
14 Shovel Utilization
15 Shovel Average cycle time

3.4.4 Macro developed

As mentioned earlier, a common disadvantage of simulation models is their lack of generalizability.
The flexibility of equipment parameters and numbers is limited or fixed at the beginning of the
establishment of the simulation model, making the model case specific. In order to solve this problem
and make the model more applicable, AERNA-related VBA macro programming is used to create as
many modules as possible. The macro can read the equipment parameter, quantity, and road

information of the mine from the prepared excel spreadsheet to ensure that the established model can
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be easily reconstructed for other mining cases that use the same mining method. The following are

the main functions of the macro:

10.

Read polygon data (include tonnage, grade, rock type, sequence, coordinates), and build

polygon set.

Read related data, build "tanks" for dumping zones, crusher and slurry plant, and corresponding

regulators based on capacity and other

Create variable sets for each dumping point to track status.

Create a mining shovel resource set for the mining process.

Create the sub-model for dumping decision making

Create the sub-model for reclaiming process and corresponding level change (NFS model only)

Create a sub-model for crusher's and dumping zones' status check and level change.

Build the conveyor system and processing system

Create stations for each mining, dumping, and processing location. Create station sets for each

branch system and classify these stations into different sets.

Create a road network system and read and type the distance between stations

3.4.5 Assumptions

The polygons are simplified to a point with weight, which is also the polygon's center point in
the physical sense. Specifically, the shovel movement within a polygon mining process is not

considered, and the trucks are also loaded at the same point.

All polygons are not allowed to be partially mined. That is to say after a polygon is assigned a
shovel, the shovel will only move to the next polygon once the polygon is thoroughly mined.
Polygons are allowed not to be mined out during one period, but at the beginning of the next
period, the shovel will continue to work on this polygon until the task is completed. One reason

for this assumption is that frequently moving shovels can significantly affect equipment
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utilization and lead to reduced productivity. In addition, adopting a consistent logic can better

reduce the interference of human factors.

e Inside each polygon, the ore part is assumed to be uniform. That is, the physical parameters such
as grade and density are constant. The grades of different polygons can be different, determined
by the exploration results. This assumption is based on the previous optimization. Before the
blocks are grouped into clusters and polygons, the grade differences between different blocks
are considered. Therefore, the grade of the polygon can smooth out the grade differences of each
internal block on an overall level, which has a positive significance for improving optimization

and simulation efficiency.

o It is assumed that ore and waste are different in physical properties and will not affect the
equipment. Although a whole truck of ore material and a whole truck of waste are similar in
size, their weight may differ, resulting in differences in loading and unloading time. This is
because the distribution function used by the simulation system does not distinguish between
the loading time, loading weight, and unloading time of ore and waste when fitting the previous

historical data.

e The logic of shovel-requesting trucks is set to the minimum distance priority. This is to reduce
the average waiting time of trucks and avoid system stagnation caused by trucks not arriving on

time.

o The dispatch logic after the truck is unloaded at the destination point is that the minimum
number of queues before the shovel is given priority. Similar to the former assumption, this also

reduces the average waiting time of trucks and improves equipment utilization efficiency.

e  Assume that the road network in the simulation system is fixed. This assumption is based on
two points: a. Each polygon has been simplified into one point in the simulation system, and the
relative distance between these points is fixed; b. The simulation system simulates a short period

(12 months), so the main road changes will not be insignificant. Therefore, although the road
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will continue to develop and change with mining activities in actual operation, this assumption

is still reasonable.

3.4.6 Scope and limitations

This simulation model does not have optimization capabilities, cannot optimize the mining
sequence of polygons and shovel allocation, and entirely depends on the results of the previous
optimization model. If the input mining sequence is not optimized, the simulation results can be

far from the optimal plan.

The road network of this simulation model adopts the free path method, ignoring the truck
interaction. This will lead to a scenario: two trucks travel on the same route, but the truck that
starts late but runs faster will arrive at the destination before the truck that starts early but runs

slow.

As mechanical equipment, trucks are often faced with maintenance and failure in operation.
However, this simulation model uses 'tranporters' instead of trucks. It will not fail and does not

require maintenance, so its utilization rate can reach 100% under ideal conditions.

In actual operation, trucks of different sizes and brands are often used at the same time. However,
as mentioned above, this model uses a 'tranporter' to simulate the truck's operation, and its
parameters default to the same value. If a heterogeneous fleet situation needs to be handled,
different parameters according to the unit number require manual assignment, which cannot be

automatically generated.

Although this model has the flexibility to build simulation models for different mines, it has
strict data requirements without any flexibility. Although different equipment and locations can
be set up according to different needs, detailed data input is required for each equipment's
working parameters and capability range. If the parameters are missing, the simulation model

will not work correctly.
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3.5. Summary

At the beginning of this section, we introduced the original nonlinear optimization model and
demonstrated the advantages of utilizing piecewise linearization techniques to create a linear
optimization model. This approach allowed us to simplify the problem and facilitate more efficient
optimization. Subsequently, we presented a case study to illustrate the impact of incorporating
stockpiles into production plans. Furthermore, we examined the consequences of defining stockpile
grade ranges when working with linearized grade estimations in the context of MILP. To
scientifically understand the performance of the near face stockpile mining method (especially the
blending results) under the optimized mining schedule, the author extends the proposed optimization
model to the NFS mining method by making minor modifications. The modified model generated a
near-optimal operation schedule for the NFS method while being applied to the same mining instance.
The result shows that the near face stockpile mining method achieved a 33 percent drop in overall

grade error compared to the traditional open-pit mining method with an out-of-pit crusher.

In the second half of this chapter, the author continues the research on quantitatively measuring the
performance of the near face stockpile mining method. Specifically, the author explained the logic
and steps needed to build the simulation model that can mimic real operations and capture more
uncertainties. The similarities and differences between the NFS simulation model and the traditional
simulation model are also presented. Some key indicators needed for evaluating the performance of
the mining method are also defined in the second half. Besides, the following aspects are also
introduced in detail: the selection of model parameters, macros developed to complete the simulation

model, assumptions being made for building the models, and the scope and limitations of the model.

By integrating the proposed optimization model and simulation model, a comprehensive simulation-
optimization framework is thus completed. The next step is to verify and validate the proposed

framework and apply it to the NFS method.
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4.1. Introduction

In the preceding chapters, the author established a comprehensive simulation-optimization
framework to evaluate the performance of different mining methods. However, prior to using this
framework to assess the NFS method and address the research objective, its effectiveness must be

verified. Thus, in this chapter we will conduct verification and validation of the proposed framework.

To validate the framework, we will implement an oil sands mine case study using the traditional
method and take the resulting outcomes as a benchmark for further evaluation. The validation process
will entail running the optimization model according to the block model and obtaining a near-optimal
and practical mining schedule. Subsequently, we will use this optimized schedule as the input to the
simulation model and run it for ten replications to reduce errors and enhance result reliability. The
selection of 10 replications is based on comprehensive consideration of reducing randomness while
taking into account efficiency. Finally, we will compare the simulation results with actual operating
records across multiple dimensions to verify the effectiveness of the framework. Once the framework
validation is complete, we will apply the NFS method to the same oil sands mine. A comprehensive
quantitative comparison of the simulation results of the two mining methods across multiple time
resolutions and dimensions are conducted. From the comparison, we will draw conclusions about the
performance of the NFS method.

4.2. Simulation verification

As stated, an oil sands mine case study with two working shovels and sixteen trucks is implemented
to verify the proposed simulation and optimization model. The author obtained a one-year dispatch
record from the enterprise. The record contains the timestamp when the trucks started or stopped an
action and the truck payload of each cycle. The records show that in 2016, a total of 93.1 million
tons of material (60.7Mt ore) from 1,773 blocks were mined, with an average TV: BIP (total volume:
bitumen in-place) ratio of 8.7. The cut-off TV: BIP ratio by law is 12. The size of each block is 50m
(length) by 50m (width) by 10m (height). The mining capacity and processing capacity of the mine

are 9.7Mt per month and 6Mt per month, respectively.
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The simulation model built for traditional method which is to be verified in this section is developed
based on the flow chart shown in Figure 3.15. The results obtained in this section are only taken from
the first two blocks from the database. The two blocks are assumed to contain only ore material with
unlimited weight, while the transport distance is consistent with the real situation. The reason for this
assumption is that if waste and ore material is included at the same time, the results of the dumping

queue time and length will be disturbed, which will affect the verification.

Shovel operation time (summation)
2500

2000

1500

Time (hour)
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| Loading time [ ldling time [ ] Down time |

Figure 4.1 Summation of shovel operation times with increasing number of trucks




98

Chapter 4. Verification, validation, implementation, and discussion of results

Average truck queue lengih

Average truck gueue length

Avg truck queue length and queue time before shovel

10 11 12 13 14 15 16 17 18 19 20
Truck number

[ Truck queue length - left axis Truck queue time - right axis |

Figure 4.2 Average truck queue length and queue time before shovel

- Avg truck queue length and queue time before crusher

2.5

tn

0.5

10 11 12 13 14 15 16 17 18 19 20
Truck number

|- Truck queue length - left axis

Truck queue time - right axis |

Figure 4.3 Average truck queue length and queue time before crusher

Average truck queue lime (min)

Average truck gueue time (min)



Chapter 4. Verification, validation, implementation, and discussion of results

10+

Total tonnage loaded (Million ton)

10 11 12 13 14 15 16 17 18 19 20
Truck number

Figure 4.4 Total tonnage excavated with increasing number of trucks

Shovel utilization and truck utilization

85 : : 86
80
S
E 75
=
N
3
T 70
=
i
65
——— Shovel - left axis Truck - right axis |
ﬁﬂ 1 1 1 1 1 1 1 1 1 ?’2
10 11 12 13 14 15 16 17 18 19 20
Truck number

Figure 4.5 Shovel utilization and truck utilization with increasing number of trucks

Truck utilization (%)

99



Chapter 4. Verification, validation, implementation, and discussion of results 100

The inputs of simulation model are listed in Table 3.10. The simulation time is set as 1000 hours.
Considering that there are two shovels working at the same time, the actual total working hours is
2000 hours, which can also be seen in Figure 4.1. Meanwhile, it can be seen from the figure that as
the number of trucks increases, the working hours of the shovels increase accordingly. It is worth
pointing out that the relationship between the two is not a simple linear relationship, which is also in
line with the phenomenon observed in the actual operations. The failure time of the shovel is only
related to its own mean time between failure (MTBF) and mean time to repair (MTTR), which is an
independent distribution and is not related to the increase in the number of trucks. The loading time
in Figure 4.1 is pure working time, excluding spot time. Shovels' and trucks' utilization with an
increasing number of trucks are shown in Figure 4.5. The two figures show an obvious negative
correlation that is in line with engineering cognition. In addition, Figure 4.2 shows the average truck
queue length and the average time in the queue before the shovel as the number of trucks increases.
There is a clear and nearly linear positive correlation between the two. However, as shown in Figure
4.3, although there is still a positive correlation between the length of the truck queue before the
crusher and the average time in the queue, it does not increase linearly. This situation is because the
crusher is operating at full capacity. After the number of trucks reaches a certain value, the utilization
rate of the crusher will no longer increase linearly and the queue length of the trucks in front of it
will increase sharply, which will eventually lead to a sharp increase in queue time. This situation can
also be observed in Figure 4.4. When the number of trucks is less than 16, the total material being
excavated increases linearly, but when the number of trucks exceeds this threshold, the total mass

excavated hardly increases anymore.

The above indicators show that the simulation results are highly consistent with the actual operating
results, experts’ inference and engineering common sense that is in line with expectations. Therefore,
the established simulation model can well simulate the actual activities in a mine, thus verifying the

correctness of the model.
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4.3. Simulation validation

Once the simulation model is verified, it is necessary to further validate that the model can simulate
the real operation of the oil sands mine well, so as to endorse the simulation results of the model

using the NFS method.

As shown in Figure 3.14, prior to running the simulation model and analyzing the simulation results,
it is necessary to complete the mining schedule optimization procedures. Although 1,773 blocks are
insignificant, when put into the optimization model, 42,588 decision variables will be generated, that
dramatically slows down the optimization speed. Therefore, the blocks are aggregated into clusters
with larger sizes. The aggregation methodology is the same as elaborated in Chapter 3, section 3.
After aggregation, thirty-eight new ‘blocks’ were obtained. The optimization model is formulated in

MATLAB (The MathWorks Inc., 2018) and solved by CPLEX (CPLEX, 2014) through API.

Figure 4.6 shows the production schedule before and after optimization. Since the objective function
is to obtain the maximum discounted cash flow, the new mining strategy is to mine and process ore
material as early as possible under the condition of satisfying the physical sequence and other
constraints. Figure 4.7 shows the change in the stripping ratio every month before and after
optimization. For other inputs of the simulation model such as truck empty and loaded speed,
equipment operating time distribution, etc., the distributions obtained from the database are used, as

shown in Table 3.10.

Different from the verification stage, the simulation model in the validation will be run for 366 days
(2016 is a leap year), 24 hours a day, with two shifts working alternately. Shift breaks and
corresponding losses are considered in the simulation. The original road network is also added to the
simulation, as shown in Figure 4.8. In addition, in order to reduce the error that may be caused by a
single run, this model will run for 10 replications under the same parameter settings. The average
value of the KPIs and the corresponding box plots will be calculated and plotted to compare the
performance of the simulation results against the historical records. The Arena will automatically

use different random factors in each replication and randomly sample values from distributions.
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4.3.1 Consistency check

In order to validate whether the results of the simulation model can truly represent the actual
operation, it is necessary to check how the distributions of activities match the input distributions.
The simulated histogram of different activities’ results and corresponding QQ plot against record are
shown in Figure 4.9 to Figure 4.18. Corresponding values are summarized in Table 4.1. 'Rec' in the
table represents the record and 'SimTra' represents the simulated result of the traditional TS mining
method. Taking the average payload of trucks per cycle as an example, the difference between the
simulated and the recorded data is 0%, and the difference between the annual mining tonnage is
0.31%. Although the average difference of other independent variables is slightly higher, the
difference range only fluctuates in a narrow range, showing the relative consistency of these variables.
It is worth mentioning that all the simulation results provided with range in this paper have 95%

confidence intervals.
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Figure 4.12 QQ plot of loading time of the traditional simulation model and real operational records
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Figure 4.14 QQ plot of dumping time of the traditional simulation model and real operational records
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Figure 4.16 QQ plot of truck empty speed of the traditional simulation model and real operational records
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Figure 4.18 QQ plot of truck full speed of the traditional simulation model and real operational records

Figure 4.10 depicts the QQ plot of the truck payload in the simulation results and the record. The

plot indicates that, except for minor deviations observed when the payload is below 150 tons, the
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simulation results are in good agreement with the record across the remaining range. Similarly, the
QQ plots of Figure 4.12, Figure 4.16, and Figure 4.18, which represent shovel loading distribution,
empty truck speed distribution, and loaded truck speed distribution respectively, showed the same
trend. However, Figure 4.14 shows a relatively higher fluctuation. The fluctuation mainly comes
from a smaller dumping time range and there is no obvious difference in the overall mean and
summation of dumping time. It can be concluded that, despite some fluctuations, the simulation
results align closely with, or even replicate, the distribution of the record within the main value range.
Thus, we can infer that the distribution of independent variables in the simulation results exhibits a
strong positive correlation with the distribution of real-world data and provides a more accurate

representation of the actual outcomes.

Table 4.1 Comparison of simulated and recorded values for the independent variables

Category Range Mean Summation
Average tonnage/truck(ton) - Rec 470 3353 93,090,766
Average tonnage/truck(ton) - SimTra 470+0 335+0.32 93,374,636+189,085
Difference 0.00% 0.00% 0.30%
Loading time(min) - Rec 5 2.76 768,739
Loading time(min) - SimTra 50 2.89+0 805,227+1,968
Difference 0.00% 4.71% 4.75%
Dumping time(min) - Rec 2.67 0.95 263,116
Dumping time(min) - SimTra 1.64+0.2 0.95+0 265,428+398
Difference -38.58% 0.00% 0.88%
Empty speed(km/h) - Rec 65 28.06 7,745,079
Empty speed(km/h) - SimTra 64.3+2.73 28.62+0.02 7,973,113+17,205
Difference -1.08% 2.00% 2.94%
Full speed(km/h) - Rec 65 26.49 7,293,809
Full speed(km/h) - SimTra 58.44+0.38 26.1+£0.04 7,271,881+£12,091
Difference -10.09% -1.47% -0.30%




Chapter 4. Verification, validation, implementation, and discussion of results 110

4.3.2 Monthly production

Once the model is validated for independent variables, the next step is to check the validity of the
model for dependent variables. The validity of the overall production is the first measure to

investigate.

The left graph in Figure 4.19 shows the monthly optimized theoretical production, simulated
production, and the recorded production. It can be seen from the graph that the simulated production
is smaller than the optimized production in the early months, but greater than the optimized
production in the later months and is more stable than it over the cycle. This is due to the travel
distance differences and the fixed number of trucks. In the early stages of mining, waste material is
the main production, and its transportation distance is much greater than that of the ore. Therefore,
in the early months, the total tonnage moved per unit of time is less than expected. In the later stages,
after the upper waste stripping is completed, the ore material is the main interest, and the
transportation distance becomes shorter, so the production per unit time increases and becomes
greater than expected. It can be found that the optimization formulas in the previous chapter did not
take the transportation distance as a constraint, and all optimization results obtained are based on the

average transportation distance, which leads to this difference.

In order to achieve optimized results, the number of trucks needs to be increased, which will lead to
a serious waste of equipment in the later stage and is not in line with the economic principle. The
simulation results again illustrate the rationality and correctness of the simulation model. The graph
on the right in Figure 4.19 shows the difference in the cumulative tonnage corresponding to the three
cases. As can be seen from the figure, optimized production is slightly higher than the other two.
This is because equipment maintenance and failures are not considered in the optimization model.
However, this is unavoidable in practice. The graph shows that the lines corresponding to the
simulated results and recorded data are relatively close, which is a measure of model validation,
showing that it can well reflect the actual operations in practice, and the results have high credibility.

Corresponding values are listed in Table 4.2, showing that the total difference in production is 0.31%.
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Figure 4.19 Optimized schedule, simulated schedule, and original schedule of the traditional mining method

Table 4.2 Mean of the traditional simulation and the recorded data of the tonnage moved in each month

Month Recorded Simulated Error
1 9,296,384 6,102,097 -34.36%
2 8,562,481 6,708,678 -21.65%
3 6,264,342 6,870,891 9.68%
4 5,530,158 6,641,612 20.10%
5 5,308,889 6,391,948 20.40%
6 8,079,350 8,392,611 3.88%
7 9,406,137 8,432,095 -10.36%
8 9,286,549 8,742,980 -5.85%
9 7,887,197 8,783,730 11.37%
10 7,102,192 8,957,280 26.12%
11 8,417,418 8,770,832 4.20%
12 7,946,804 8,584,725 8.03%

Total 93,087,903 93,379,480 0.31%
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4.3.3 Ton-kilometer (TKM)
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Figure 4.20 Ton-by-kilometer comparison of the traditional model and real operational record
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Figure 4.20 shows the TKM difference for each month. This is due to the different mining sequences

shown in the previous schedule figure. Although there are some fluctuations (also caused by ore and

waste transport distance differences), as can be seen from the right graph, the total value is very close

over a year, with a difference of 0.27%. Corresponding values are listed in Table 4.3. In addition to

the monthly comparison, matching the average travel distance of the trucks in each cycle is also one

of the verification items. The relevant comparison can be seen in Table 4.4. It is not difficult to see

that the simulation model maintains a very high positive correlation with the recorded data in terms

of truck operation data.

Table 4.3 Traditional simulation result and recorded data of ton-by-kilometer in each month

Month Record Simulated result (mean) Error
1 35,585,400 36,134,422 1.54%
2 36,733,754 29,610,326 -19.39%
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3 35,684,595 30,290,172 -15.12%
4 31,694,432 37,916,430 19.63%
5 21,344,821 39,206,429 83.68%
6 26,132,869 28,734,408 9.96%
7 27,925,146 27,516,904 -1.46%
8 28,023,676 26,937,118 -3.88%
9 27,287,164 24,810,607 -9.08%
10 28,390,619 26,936,105 -5.12%
11 28,199,447 26,619,372 -5.60%
12 33,598,857 26,862,698 -20.05%
Total 360,600,780 361,574,995 0.27%

Table 4.4 Comparison of hauling distance between recorded and simulated results

Operational data Range Mean Summation
Haul distance(km) - Rec 8 3.91 1,078,648
Haul distance(km) - SimTra 7.99+0 3.88+0.01 1,079,935+2,252
Difference -0.12% -0.77% 0.12%

4.3.4 TPGOH

The primary focus of mining companies has always been on TPGOH, especially for ore material.

The calculation of TPGOH is shown in Equation (23). From the equation it can be found that two

variables affect the TPGOH, truck payload and truck cycle time. Truck payload distribution is

checked in the first section of 4.3.1, and truck cycle time be compared in this section.

TPGOH =

Truck Payload
Cycle ready

(23)
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Figure 4.21 shows the histogram of simulated truck cycle time and Figure 4.22 is the corresponding
QQ plot versus the record. In the main interval of 5 to 60 minutes, the distributions of the two are
the same, but in the range of more than 60 minutes, there are some unconventional records in the
historical data, which is not happening in the simulation model. The histograms of the simulated total
TPGOH (ore and waste together) and ore TPGOH are shown in Figure 4.23 and Figure 4.25,
respectively. By comparing Figure 4.23 and Figure 3.29, it can be seen that the simulation results of
total TPGOH have a strong positive correlation with the recorded historical data. From Figure 4.24,
which is their QQ plot, we can see that although there are some differences between the simulated
and the recorded data on TPGOH when the value becomes greater than 1800 tons. The difference is
noticeable but not significant. Given that more than 90% of TPGOH data are less than 1800, this

fluctuation is acceptable.

The histogram of more concerned ore material is shown in Figure 4.25. The corresponding QQ plot,
as shown in Figure 4.26 shows that the TPGOH of ore material is also highly positively correlated.
The primary distribution area does not exhibit any significant differences except for TPGOH values
lower than 200 and higher than 2800. The summaries are presented in Table 4.5, which serves as
compelling validation for the simulation model. As a dependent variable, the average difference is

about 6.39%, which falls within an acceptable range.

Table 4.5 Comparison of KPIs between record and simulated results

Operational data Range Mean Summation
Total cycle time(min) - Rec 75 26.48 7,308,292
Total cycle time(min) - SimTra 100+52 24.6+0.03 6,851,909+13,464
Difference 25.28% -7.62% -6.66%
TPGOH- Rec 2,828.5 917.1 253,155,367
TPGOH- SimTra 2,957+662 979.8+1.8 272,966,328+651,926
Difference -1.93% 6.39% 7.26%
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This section validates the proposed simulation model based on four aspects: Input variables’
consistency, tonnage excavated in each month, the trucks monthly travel distance, and average
TPGOH. These comparisons verify that the proposed simulation model is feasible, credible, and
reliable, and provides a solid foundation for the comparison between the traditional mining method
and the NFS mining method in the following section.

4.4. Implementation of the NFS method

The establishment process of the simulation model and the verification of the simulation model for
the traditional mining method are described in the first three sections of this chapter. In this section,

we discuss the application of the NFS method simulation model and its results.

The detailed differences in process and logic between the NFS method and the traditional mining
method are shown in Figure 3.16 and Figure 3.17 to Figure 3.19. The input data of the NFS
simulation model needs to be adjusted due to these differences. The first modification is the
relocation of the crusher from the outside of the pit to the bottom of the pit. The red box in Figure
4.27 indicates the position of the original crusher, and the red dot represents the new position. It
should be noted that, like IPCC, NFS can choose fixed, semi-mobile, or fully mobile crushing
equipment when needed, but equipment selection is not the research interest of this paper and
therefore, is not discussed. We assume that the originally fixed crusher is used, and the parameters

remain the same, except for the position.
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Figure 4.27 Demonstration of crusher location of the NFS model and traditional model

The second modification is the adaptation of the original road network according to the location of
the new crusher. The main framework of the original road network remains unchanged since the
waste material still needs to be transported to the specified location through the previous route.
However, for ore material, trucks only haul inside the pit from the loading location to the in-pit
stockpile. Therefore, the travel distance needs to be recalculated and used as input to the simulation
model. As mentioned above, the aggregation of the original blocks is only related to its own physical
properties, such as mineral grade, rock type, and height, and is not related to the position of the
crusher. Therefore, the input blocks used for the NFS model are the same to maintain consistency.

Two examples, bench 280 (elevation) and bench 310, with corresponding mining schedules, are

shown in Figure 4.28 to Figure 4.29, respectively.
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Although the physical properties of the aggregated blocks have not changed, the values assigned to
them have changed. One reason is that some extra tonnage is assigned to avoid possible idling caused
by a lack of material. In addition, the average travel distance from each block to the crusher has
changed, as shown in Table 4.6. The empty cells in the table indicate that the block is a pure waste
block with no ore material sent to the crusher. It should be pointed out that only the average
transportation distance of ore material has changed. Since the main framework of the road network
and the aggregation of blocks have not changed, the transportation distance of waste remains

unchanged from that of the traditional mining method simulation model.

Table 4.6 Ore hauling distances of blocks before and after the movement of crusher

Block No. Distance original (km) Distance NFS (km) Difference
1 - - -
2 2.218 1.542 -30.48%
3 2.371 1.204 -49.20%
4 2.635 1.603 -39.14%
5 2.515 1.646 -34.54%
6 2.152 1.485 -30.98%
7 2.591 1.631 -37.07%
8 2.797 1.636 -41.51%
9 2.794 2.163 -22.59%
10 2.445 1.270 -48.07%
11 3.006 1.951 -35.08%
12 2.895 1.855 -35.93%
13 2.695 3.174 17.78%
14 3.043 2.198 -27.78%
15 2.901 2.601 -10.33%
16 3.004 3.092 2.94%
17 2.850 3.102 8.85%
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18 3.147 2.895 -7.99%
19 2.727 2.648 -2.88%
20 2.724 2.678 -1.68%
21 2.693 2.851 5.86%
22 2.529 2.812 11.21%
23 3.155 1.680 -46.77%
24 3.341 1.970 -41.04%
25 3.964 3.596 -9.30%
26 3.205 2.934 -8.47%
27 3.295 2.711 -17.73%
28 3.295 3.124 -5.17%
29 3.301 3.806 15.30%
30 - - -

31 - - -

32 3.555 4.542 27.77%
33 2.679 4.444 65.87%
34 - - -

35 - - -

36 - - -

37 - - -

38 - - -

Table 4.7 Ore tonnage within each hauling range of the two models

Distance .O.re tonnage in Ore tonnage in NFS Difference
range(km) traditional method (ton) method (ton)

1.1t01.3 1,775,306 0 -
13t01.5 2,312,704 0 -
1.5t0 1.7 13,008,543 0 -
1.7t0 1.9 2,491,094 0 -
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1.91t02.1 2,158,453 0 -
2.1t02.3 6,653,357 4,192,862 36.98%
23t02.5 0 2,077,245 -
2.5t02.7 6,303,785 8,867,597 -40.67%
2.71t02.9 6,945,984 11,130,609 -60.25%
29t03.1 10,238,007 17,159,104 -67.60%
3.1t03.3 7,895,129 12,819,721 -62.38%
33t03.5 0 3,129,751 -
3.5t03.7 967,779 20,158 97.92%
3.7t03.9 2,355,512 0 -
39t04.1 0 936,893 -
4.1t04.3 0 0 -
431t04.5 211,186 0 -
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Figure 4.30 Ore tonnage within each hauling range of the NFS model and traditional model

It can be observed from Table 4.6 that among the 38 blocks, the mineral transportation distance of 8

blocks (accounting for 21%) becomes longer. However, when compared with Figure 4.30, only 3.53

million tons of ore material, accounting for 5.57%, experienced increased hauling distance. Besides,

when combining Table 4.7 with Figure 4.30, it can be seen that the minimum distance for ore
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transportation by truck was found to be between 2.1 and 2.3 kilometers before the application of the
NFS method, and the number decreased to the range of 1.1 to 1.3 kilometers after implementation of
the NFS method. In addition, after applying the NFS method, the transportation distance of more
than 21 million tons of ore material becomes less than 2.1 km, which accounts for more than one-
third of the total ore material. Hence, we can confidently conclude that 94.43% of the ore mineral is

expected to have a shorter transportation distance after the application of the NFS method.

Changing the transporting distance of ore minerals will bring about other changes as well. For
example, after running the optimization program shown in Figure 3.14, the resulting mining schedule
is somewhat different from the traditional mining method. The detailed mining schedule of the two

methods is shown in Table 4.8 and Table 4.9.

Table 4.8 Mining schedule of traditional simulation model

Desired exaction period (month)

Block 1 2 3 4 5 6 7 8

10

11

12

13
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Table 4.9 Mining schedule of NFS simulation model

Desired exaction period (month)




Chapter 4. Verification, validation, implementation, and discussion of results 126

Block

3 4 5 6 7 8 9 10 11 12

20

21

22

23

24

25

26

@5:




Chapter 4. Verification, validation, implementation, and discussion of results

127

4]

M

-

38
w108 Optimized NFS
10 [ ore
I Waste
9
B
7
E 6
by
&
£ 5
E
[l

S - B - = T I
Month

Tonnage (lon)

Optimized TRA

T ore
I Waste

= 108

10

4]

M

-

S T - T = T I
Month

Figure 4.31 Mining schedule of the NFS model and traditional model by month




Chapter 4. Verification, validation, implementation, and discussion of results 128

16
MFS
1.4 —*%—TRA
' — — — Average
127
' i
'é 0.8} -. [ *
= i
06 [ i
% _ _ _\_ _ A N © 5 - S Sy e
0.4}
0.2} % / N/

1 2 3 o~ 4] 6 i a8 9 10 1 12
Month
Figure 4.32 Monthly stripping ratio of the NFS model and traditional model

Figure 4.31 shows the optimized monthly ore mineral mining tonnage and waste mining tonnage of
the two models under respective schedules. The monthly stripping ratio of the two methods is shown
in Figure 4.32, which indicates that with extra materials, the NFS method could maintain a lower
strip ratio in early periods to maximize its discounted net present value.

4.5. Simulation results analysis

The various results obtained after applying the optimization procedures will be used as the input to
the NFS simulation model. Other independent variables, such as shovel loading time, empty speed,
full load speed, dumping time, etc., are consistent with the input data that is used in the traditional
simulation model. Meanwhile, the running time of the NFS simulation model for one replication is
also set to be 366 days and will be run for 10 replications as the traditional simulation model.

4.5.1 Independent variables

To enhance the credibility of the comparative study between the NFS mining method and the
traditional mining method, it is crucial to minimize the differences in all aspects except for the layout

of the two methods. This can be achieved by employing the control variable method, which is one
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of the primary means for comparative studies. In particular, the use of the same mechanical
equipment and the consistency of their operating performance are critical prerequisites for an

effective comparison.

Although the data presented in Table 3.10 were utilized in both simulation models as the inputs, the
simulation software will introduce certain uncertainties. Therefore, to ensure that the operating
conditions of all equipment are within a reasonable range and to enhance the credibility of the results
of the dependent variables, it is necessary to compare and analyze the distribution of independent
variables in the running results of the two models. By doing so, any potential biases introduced by

the simulation software can be minimized, leading to more reliable and trustworthy findings.
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The histograms of five independent variables, namely average truck payload, shovel loading time
per truck, truck dumping time, truck empty speed, and truck loaded speed, are presented in Figure
4.33 to Figure 4.37. These histograms illustrate a comparison between the results obtained using the

NFS method and the traditional method.

For a more detailed comparison, eight categories are selected to evaluate each variable. The
definition of the eight categories is listed in Table 4.10. After the definition, the captured variables’
distributions are listed in Table 4.11. Similar to the comparison in the model validation section,

‘SimNFS’ in the table is short for NFS model simulation results.

Table 4.10 Definition of the categories selected to evaluate the performance of variables

Category name Definition
Count The average times that the given variable is recorded in one replication
Range Tejn’replication average of Yarigble’s maximum value in one replication minus the
minimum value in that replication
Mean Ten replication average of the variable’s mean value in each replication
Median Ten replication average of the variable’s median value in each replication
STD Ten replication average of the variable’s standard deviation in each replication
25-prc Ten replication average of 25 percent value of the variable’s dataset
75-prc Ten replication average of 75 percent value of the variable’s dataset
Summation The average summation of the variable in one replication

Table 4.11 Independent variables results comparison between NFS model and traditional model

Category Count Range Mean | Median STD 25-prc | 75-prc | Summation
Average truck | 57¢ 609 335¢ | 337= | 79.18+ | 283+ | 391+ | 93,374,636
payload (ton) - 470+0

. +537 0.32 0.35 0.44 0.26 0.31 +189,085
SimTra
Average truck 292,553 335+ 337+ | 78.95+ | 283+ 391+ 98,096,248
payload (ton) - 47040
SimNFS +696 0.65 0.57 0.6 0.61 0.59 +270,705

Difference 5.00% 0.00% | 0.05% | 0.02% | -0.29% | 0.01% | 0.02% 5.06%

Loading
278,609 2.89+ 3.45+ 805,227
time(min) - ; 540 2.89+0 0.83+0 | 2.32+0 ’
SimTra +537 0.01 0.01 +1968
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Loading
.39+ 45+
ime(miny- | 2223 | si0 | 28050 | 2% | 08320 | 23000 | 34 845,445
+696 0.01 0.01 +1976
SimNFS . .

Difference 5.00% 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% 4.99%

Dumping | 578 609 | 1.64+ 072+ | L12+ | 265428
time(min) - ’ ' 0.95+0 | 0.92+0 | 0.25+0 ' : ’
SimTra +537 0.2 0.01 0.01 +398
Dumping 292,553 1.7+ 0.72+ | 1.12+ 278,813
time(min) - ’ ' 0.95+0 | 0.92+£0 | 0.25+0 X X ’
SimNFS +696 0.16 0.01 0.01 +809

Difference 5.00% 3.66% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% 5.04%

spegir?lfrgh) 278,609 | 643+ | 28.62+ | 28.6+ | 8.99+ | 2252+ | 34.69+ | 7,973,113
SimTra +537 2.73 0.02 0.04 0.02 0.04 0.03 +17,205
Edmlf ty/h 202,553 | 6379+ | 28.62+ | 28.6+ | 8.99+0. | 22.52+ | 3469+ | 8.372.830

sPesiIﬁNnﬁs) ) 696 3.32 0.03 0.02 03 0.05 0.05 423,546

Difference 5.00% -0.79% | 0.00% | 0.03% | 0.00% | 0.00% | 0.00% 5.01%

speedF(llilrL/h) 278,609 | 58.44+ | 26.1= | 248+ | 7.09+ | 21.07+ | 29.67+ | 7,271,881
SimTra +537 0.38 0.04 0.05 0.04 0.03 0.04 +12,091
dFi” " 292,553 | 5839+ | 26.1% | 24.79+ | 7.08t | 21.07+ | 29.67+ | 7634242
spesiléNI;s) | =696 0.37 0.04 0.04 0.03 0.05 0.04 +21,300

Difference 5.00% -0.09% | 0.00% | -0.04% | -0.14% | 0.00% | 0.00% 4.98%

The first independent variable to be compared is the average truck payload. As can be seen from the
table, there is no noticeable difference between two simulated results in category ‘range’, ‘mean
value’, ‘median value’ and ‘standard deviation’. However, when it comes to the category ‘count’ and
‘summation’, the difference increased from 5 per ten thousand level to 5 percent level. The increment
means that compared to traditional simulation model, trucks experienced more full-empty cycles in
the NFS simulation model. With the average truck payload remaining the same, the increment led to
a higher total production in the given period. The reason for the increase will be analyzed in detail

in the following sections.

Other independent variables exhibit nearly identical performance to the average truck payload.
Figure 4.33 to Figure 4.37 and Table 4.11 demonstrate that the distribution of these variables in both

methods is consistent with the set values and the comparison of the corresponding boxplot clearly
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show a high degree of consistency. The consistency indicates that those independent variables have
a negligible impact on the performance evaluation of two methods.

4.5.2 Truck hauling distance and hauling time

It should be pointed out again that the establishment of the two simulation models in this paper does
not take into account the mutual influence of trucks during hauling, that is, there will be no traffic
jams or fast trucks being limited by slow trucks. Under this premise, truck hauling time is determined
by two parts, one is the speed of the truck, and the other is the travel distance. It can be seen from
the above that the speed distribution of the truck in the two models is almost the same whether it is

empty or fully loaded, so the factor that determines the hauling time is the transportation distance.

Given that the speed of the truck is different when it is empty and fully loaded, the hauling distance
and hauling time in the two states need to be compared separately. In addition, while considering the
overall situation, this section also divides the data into two additional conditions in more detail: the

case of transporting ore material and the case of transporting waste material.

1. Total empty and loaded truck hauling distance and hauling time

This section mainly discusses and analyzes the similarities and differences between the truck's

hauling distance and hauling time regardless of ore and waste.

e Empty condition

Figure 4.38 displays the histogram and boxplot of the empty truck hauling distance for two
simulation models: the NFS simulation model and the traditional simulation model. The top and
middle figures represent the simulation results of the NFS and traditional simulation models,

respectively, while the bottom figure shows the boxplot of the two results.

The boxplot in the bottom figure displays the statistical distribution of the data. The red line in the
center of the box represents the median value of the results, while the 25th and 75th percentiles of

the data are shown at the left and right ends of the box. The valid range of the data is indicated by
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the black line, with the minimum value of the valid data on the left and the maximum value of the

valid data on the right.

Additionally, the interquartile range (IQR) is defined as the distance between the third and first

quartiles. The whiskers in the boxplot are based on 1.5 times the IQR and any data point outside the

whiskers is defined as an outlier, as indicated by the red plus sign in the figure.

Other figures in this section maintain the same structure and internal picture order as Figure 4.38,

and the introduction will not be repeated.
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Figure 4.38 Simulated empty truck hauling distance of NFS method and traditional method
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Figure 4.40 Simulated empty truck hauling time of NFS method and traditional method
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Figure 4.41 QQ plot of empty truck hauling time of NFS method and traditional method

Table 4.12 Simulated total empty truck hauling time and hauling distance comparison of the NFS model and
traditional model

Category Count Range | Mean | Median STD 25-prc 75-prc | Summation
Totalempty | 57 609 | 10.87 | 3.98 2.03+ 399 | 1,109,237
distance(km) - ’ ' ) 3.04+0 . 2.8+0 : o
SimTra +537 +0 +0 0.01 +0.01 +2,053
Total empty
292,553 10.38 3.61 1,054,643
i - | 2930 | 2.1740 | 2.16+0 4+0 o2
distance(km) - | o6 | 1029 | 2001 2,547
SimNFS
Difference 5.00% -4.51% | -9.3% | -3.62% | 6.9% -22.86% | 0.25% -4.92%
Total empty
haul 278,609 123.8 9.6 7.12 7.41+ 5.35 11.39 2,674,328
time(min)- +537 +8.3 +0.02 | +0.02 0.09 +0.01 +0.05 +4,709
SimTra
Total empty
haul 292,553 121.7 8.69 6.37 7.4+ 441 10.44 2,542,078
time(min)- +696 +0 +0.02 | +0.01 0.12 +0.01 +0.03 +6,524
SimNFS

Difference 5.00% -1.70% | -9.5% | -10.5% | -0.13% | -17.57% | -8.34% -4.95%

In both models, the dispatch logic of the trucks gives the highest priority to the shortest queue number

before the shovel. As shown in Figure 4.38, the NFS model reduces the distance between the crusher
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and blocks, resulting in a significant improvement in the part of the empty truck hauling distance of
less than 3km in the NFS model results. According to Table 3.7, the 25-percentile data of the NFS
model is 22.86% lower than that of the traditional model. However, there is no significant difference
in the part where the empty truck hauling distance is greater than 4km, which mainly corresponds to
waste material, resulting in a negligible difference between the two results. Since waste material
accounts for nearly one third of the total mining volume, the 75-percentiles of the simulation results
of the two models are almost the same. The mean value of the empty truck hauling distance of the
NFS model is 3.61km, which is 9.3% lower than that of the traditional model. However, the median
value is only -3.62% lower. The corresponding QQ plot, as shown in Figure 4.39, also shows that
the NFS has a higher proportion of material at a lower hauling distance. As the rest proportions, the

corresponding value in the NFS method is always lower than that of the traditional method.

The difference in transportation distance leads to a difference in truck transportation time, as shown
in Figure 4.40. The mean value of the hauling time of the empty truck in the NFS model is 8.69
minutes, which is 9.48% less than the 9.6 minutes of the traditional model. The empty hauling time
data of the 25-percentile and 75-percentile decreased by -17.57% and -8.34%, respectively. Although
Figure 4.41 shows that the difference is not apparent, this is due to a wide range selected for
comparison. Higher hauling times correspond to longer transport distances, and the two models do
not differ much over long distances, leading to this result. When the time range is reduced to 2-7

minutes, as shown in Figure 4.22, the difference becomes obvious.
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Figure 4.42 QQ plot of empty truck hauling time of NFS method and traditional method (small range)
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Figure 4.43 Simulated loaded truck hauling distance of NFS method and traditional method
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Figure 4.44 QQ plot of loaded truck hauling distance of NFS method and traditional method
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Figure 4.46 QQ plot of loaded truck hauling time of NFS method and traditional method

Table 4.13 Simulated total loaded truck hauling time and hauling distance comparison of the NFS model and
traditional model

Category Count Range | Mean | Median STD 25-prc | 75-prc | Summation
Total full
3.88 1,079,935
distance(km) - 278,609 7.99+0 3.04+0 | 1.87+0 | 2.8+0 | 3.79+0 o
Si 537 +0.01 +2,252
imTra
Total full
1,024,348
distance(km) - | 20223 | 80440 | 3520 | 2.8520 | 2.06£0 | 2.16£0 | 38120 | o7
. 696 +2,315
SimNFS ’
Difference 5.00% | 11.89% | -9.8% | -6.25% | 10.16% | -22.9% | 0.53% -5.15%
Totalloaded 1 70 09, | 4514 | 95 7.8 5.27 6.17 | 1055 | 2,647,558

haul time (min)

- SimTra 537 +3.76 | £0.01 | +0.02 +0.02 +0.01 +0.02 +6,881

Totalloaded 1 y9) 553, | 4597 | 859 | 686 | s61 | 478 | 1011 | 2,511,233

haul time (min)
- SimNFS 696 +3.77 | £0.01 | +0.02 +0.02 +0.02 +0.02 +6,519

Difference 5.00% 1.84% | -9.6% | -12.1% | 6.45% | -22.5% | -4.17% -5.15%

The distinction between loaded truck hauling distance and empty truck hauling distance warrants a
separate discussion. Empty truck hauling occurs after the truck has unloaded its contents and is

dispatched in real-time to various shovels based on dispatch logic. The randomness in empty truck
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hauling is determined solely by the number of trucks queued before the shovels. Loaded truck hauling,
on the other hand, starts from each block and hauls to different destinations based on the material
type. The weight ratio of ore material in the block determines the probability of the loaded truck haul

to the crusher, which compared to the waste is considered as a shorter hauling distance.

Figure 4.43 presents a different frequency of each bar in the hauling distance of less than 3 km
compared to Figure 4.38. This difference is due to the disparity between the deterministic weight
distribution and the uncertain dispatch logic. As shown in Table 4.13, the empty hauling range of the
NFS model is 10.87 km, and the loaded hauling range is 7.99 km, whereas in the traditional model,
the two numbers are 10.38 km and 8.94 km, respectively. Consequently, the mean value and median
value of the loaded truck hauling distance in the NFS model are reduced by 9.79% and 6.25%,
respectively, compared to the traditional model. Notably, the standard deviation of the loaded truck
hauling distance in the NFS model increases by 10.16% due to the shorter distance between the
crusher and the blocks and the unchanged distance between the waste dumps and the blocks. The
QQ plots of the two models in this term are shown in Figure 4.44, which is very similar to the Figure

4.39.

The difference in hauling time is more noticeable than that in hauling distance. A comparison of
Figure 4.40 and Figure 4.45 shows a considerable reduction in the outlier of the loaded truck hauling
time. This is still because the destination of the loaded truck is more deterministic. Furthermore, the
mean value and median of the loaded truck hauling time in the NFS model are 8.59 minutes and 6.86
minutes, respectively, representing a reduction of 9.58% and 12.1%, respectively, compared to the
traditional model. Conversely, the standard deviation of the loaded truck hauling time increased by
6.45%. Loaded truck hauling time QQ plots of the two methods are shown in Figure 4.46, which is
similar to Figure 4.41. However, comparing the two QQ plots, it can be seen that the part of the
loaded truck in the small hauling time is higher than that of the empty truck. Therefore, in Figure

4.46, the slope of the line connecting the points is less than 45 degrees.
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2. Empty and loaded ore truck hauling distance and hauling time

The previous section discussed and analyzed the differences between the NFS model and the
traditional model in terms of hauling distance and hauling time as a whole. This section will focus
on the analysis and discussion of the performance of the most affected ore material in terms of
hauling distance and hauling time under the two model conditions. Similarly, the two states of the

truck: empty and loaded, will still be analyzed separately.

¢ Empty condition
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Figure 4.47 Simulated empty ore truck hauling distance of NFS method and traditional method
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Figure 4.48 QQ plot of empty ore truck hauling time of NFS method and traditional method
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Figure 4.50 QQ plot of empty ore truck hauling distance of NFS method and traditional method

Table 4.14 Simulated ore empty truck hauling time and hauling distance comparison of the NFS model and
traditional model

Category Count Range Mean | Median STD 25-prc | 75-prc | Summation
Ore empty
. 523,506
distance 11:’223 3.96+£0 | 2.89+0 | 2.9+0 | 0.43£0 | 2.7£0 | 3.21x0 1 ’218
(km) - SimTra ’
Ore empty
. 189,736+ 243 0.72 460,412
distance ’ 4.54+ 2.6+ 1.65+ .09+ ’
512 40 +0.01 6+0 +0.01 65£0 | 3.090 +1,046

(km)-SimNFS

Difference 4.82% 14.65% | -15.9% | -10.3% | 67.44% | -38.9% | -3.74% -12.05%

Ore empty 181,003 | 47.57 6.97 6.1 3.77 4.93 7.84 1,261,828

haulél.me(mm) +433 +0 +0.02 | 001 | 006 | +0.02 | +0.02 +4.970
- SimTra

Ore empty 189,736 | 53.68 5.85 5.11 3.59 3.73 6.89 1,109,939

haul time(min)
_ SimNFS +512 +1.28 +0.02 +0.01 +0.07 +0.02 +0.02 +4,867

Difference 4.82% 12.84% | -16.1% | -16.2% | -4.77% | -24.3% | -12.1% -12.04%

In this section, the author examines the hauling distances and hauling times of empty ore trucks in
two different mining models. The so-called empty ore truck is the truck that transports the ore

material to the crusher/stockpile and completes the queuing and dumping process. In the traditional
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model, the starting point for the empty ore truck is at the crusher, while in the NFS model, the starting
point is at the stockpile in front of the crusher. The distribution of frequency in Figure 4.47 is very
close to the distribution of ore tonnage in each hauling range in Figure 4.30 because the distribution

curve of the mass carried by trucks in each cycle is the same in the two models.

The most obvious change is the change in the number of truck cycles. When ore and waste are
considered together, the total number of cycles of the NFS model is 292552, and the number of cycles
of the traditional model is 278608. But when the ore material is considered separately, these two
numbers become 189736 and 181003, respectively. This verifies again that the mass of ore material

accounts for about 65% of the total mass.

The analysis shows that the hauling distance range of the empty ore truck in the NFS model is much
lower than that of the total material. Specifically, the range of ore truck empty hauling distance is
only 4.54 km in the NFS model and 3.96 km in the traditional model, which represents a reduction
of 52.7% and 61.8%, respectively, compared to the range of total empty hauling distance in the two
models (10.38 km and 10.87 km separately). Correspondingly, the mean value of the two models

dropped by 32.7% and 27.4% and the median value decreased by 11.3% and 4.6%.

In addition to the comparison between total material and ore material, the comparison between the
two models on ore truck empty hauling distance is also worth describing. As mentioned above, the
transportation distance of about 3 million tons of ore materials has become longer, while the
transportation distance of other ore materials has become shorter. Therefore, the hauling range of the
empty ore truck in the NFS model has increased from 3.96 km to 4.54 km compared with the
traditional, which is 14.65% longer. However, other data show that the NFS model has a huge
improvement in hauling distance compared to the traditional model. One proof is a 38.9% decrease
in the 25-percentile distance and a 3.74% decrease in the 75-percentile distance. Besides, the mean
value decreased from 2.89 km to 2.43 km, which is 15.9% lower. This result is consistent with the

above-mentioned conclusion that most of the ore material expected a shorter hauling distance to the
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crusher. The slope of the extrapolation of the quartile line in Figure 4.48 is greater than 1, which also

supports this conclusion.

Furthermore, we found in Figure 4.49 and Figure 4.50 that the hauling time of the empty ore truck
in the NFS model decreased significantly compared to the traditional model. Specifically, the average
hauling time of the empty ore truck in the NFS model decreased from 6.97 minutes to 5.85 minutes,
representing a decrease of 16.1%. The 25-percentile and 75-percentile of empty ore truck hauling

time data also showed a significant decrease, corresponding to -24.3% and -12.1%, respectively.

Overall, the comparison highlights the significant differences in the hauling characteristics of empty
ore trucks between the traditional model and the NFS model. The NFS model shows a significant
improvement in reducing the hauling distance and time of the empty ore truck, which could

potentially lead to a more efficient and cost-effective mining operation.
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Figure 4.51 Simulated loaded ore truck hauling distance of NFS method and traditional method
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Figure 4.54 QQ plot of loaded ore truck hauling time of NFS method and traditional method

Table 4.15 Simulated loaded ore truck hauling time and hauling distance comparison of the NFS model and
traditional model

Category Count | Range | Mean | Median | STD 25-prc | 75-prc | Summation
Ore loaded
181 . 2. 26.51
distance(km) - Si 4’;)23 1.81£0 | 2.91£0 | 2.9+0 0503 i07077 3.21%0 1 16’25090
SimTra . )
Ore loaded
distance(km) - 1i95’17236 3.34+0 | 2390 | 2.6£0 oj.:)9 1.64+0 | 3.09+0 42’216
SimNFS

Difference 4.82% | 84.5% | -17.9% | -10.3% | 109% | -40.8% | -3.74% -13.89%

Ore loaded haul | 1g; 003 | 1582 | 7.13 | 699 | 193 | 574 | 838+ | 1,290,390

time (min) -
SimTra +433 | £2.03 | +0.01 | +0.01 | £0.01 | +0.01 | 0.1 +4,438
Oiienlloa(defi ;13“1 189736 | 1782 | 586 | 553 | 225 | 412 | 732¢ | 1111681
°lmin) - +512 | £126 | +0.02 | £0.02 | +0.01 | +0.02 | 0.02 +3,031
SimNFS

Difference 4.82% | 12.6% | -17.8% | -20.9% | 16.6% | -282% | -12.7% -13.85%

In this section, the author presents the results of comparing the loaded ore truck hauling distance and
hauling time under two simulation models. Figure 4.51, which shows the loaded ore truck hauling

distance is very similar to, but not identical to Figure 4.47, which shows the empty ore truck hauling
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distance. It should be noted that the former is a deterministic distribution, while the latter contains
randomness caused by dispatch logic. Similarly, QQ plots, Figure 4.52 and Figure 4.48 show them

same trend.

To further compare the two models, the author lists the simulated data in Table 4.15. The average
loaded ore truck hauling distance of the NFS model is found to be 2.39 km, which is lower than that
of the traditional model, which is 2.91 km. However, the average empty ore truck hauling distance
in the two models is 2.43 km and 3.04 km, respectively. The randomness of dispatch logic has been

found to introduce differences of 1.17% and 4.38% in the two models, respectively.

When considering only the loaded ore truck hauling distance, the mean and median values of the
NFS model are found to be respectively reduced by 17.87% and 10.34% compared to the traditional
model. It is worth noting that, compared to the range of 1.81 km in the loaded ore truck hauling
distance in the traditional model, the range in the NFS model is 3.34 km, with an increase of 84.53%.
The increase in this value is mainly because the transportation distance of some ore materials has

been shortened and the transportation distance of the others has been increased.

Furthermore, although the difference in the average transportation distance between loaded ore
trucks and empty ore trucks is small, the distribution of hauling time under the two conditions is
more visible, as shown in Figure 4.53. The most obvious difference is the significant reduction of
outliers with larger values. This is evident from the fact that the range of loaded ore truck hauling
time is reduced to 17.82 minutes and 15.82 minutes in the NFS and traditional models, respectively,
a drop of 66.8% and 66.7% compared to the range of empty ore truck hauling time. When comparing
only the loaded condition, the mean loaded ore truck hauling time of the NFS model is 17.81% lower
than that of the traditional model. The QQ plot of this item shows this more clearly. As shown in
Figure 4.54, in more than 90% of overall results (hauling time less than 12.3 minutes), the hauling

time of the loaded ore truck in the NFS model is shorter than that of the traditional model.
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In conclusion, compared to the traditional model, the NFS model shows significant improvements in

ore material transportation distance and transportation time under both empty conditions and loaded

conditions, which increases the utilization of the truck per cycle.

3. Empty and loaded waste truck hauling distance and hauling time

This

section mainly discusses and analyzes the performance of waste truck under the empty and

loaded conditions in the two models.
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Figure 4.55 Simulated empty waste truck hauling distance of NFS method and traditional method
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Figure 4.58 QQ plot of empty waste truck hauling time of NFS method and traditional method

Table 4.16 Simulated waste empty truck hauling time and hauling distance comparison of the NFS model and
traditional model

Category Count Range Mean | Median STD 25-prc | 75-prc | Summation
Waste empty 97605 228+ 585,731
distance (km) i;54 8.71+0 | 6+0.01 | 6.61+0 6 op | 3790 | 8.19%0 ) ’282

- SimTra ] i
Wasteempty | 105816 | 822+ | 578 | 5.33 594,231

. > . . : —+i 4 =+ ’
distance (km) £379 0.29 1001 £0.06 2.27+0 | 3.79+0 | 7.81+0 12278

- SimNFS
Difference 5.34% -5.63% | -3.67% | -19.4% | -0.44% | 0.00% | -4.64% 1.45%

Wasteempty | o7 605 | 1212 | 1447 12.7 9.7+ 816 | 17.74 | 1.412,500

haul time(min)
- SimTra +354 +8.34 +0.06 +0.04 0.16 +0.07 +0.07 +5,756

Waste empty | g7 g16 | 1192 | 13.93 | 1195 | 9.46 774 | 1715 | 1,432,139

haul time(min)
- SimNFS +379 +0.25 +0.06 +0.05 +0.2 +0.04 +0.07 +4,373

Difference 5.34% -1.66% | -3.73% | -5.91% | -2.47% | -5.15% | -3.33% 1.39%

Similar to empty ore truck, the empty waste truck is defined as a truck that transports waste material
to the designated waste dump and completes the unloading procedure, with its hauling starting point

at the waste dump. In contrast to the ore material, the waste material in each block is transported to
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the waste dump without a change in distance. As a result, the difference in simulation results between
the two models with regard to transportation distance aspect is minor, primarily influenced by the
uncertainty of dispatch logic. According to Figure 4.55 and Table 4.16 as the QQ plot Figure 4.56,
the average empty waste truck hauling distance for the NFS model and the traditional model is 5.78
km and 6.0 km, respectively, with a gap of 3.67%. The discrepancies in the relevant data at the 25th
and 75th percentiles are 0.00% and -4.64%, respectively. However, on the median value, the gap
between the NFS model and the traditional model is 19.36%, indicating that the NFS model has a

higher concentration in the middle distance.

A minor difference in the hauling distance leads to a correspondingly minor difference in the hauling
time distribution, as shown in Figure 4.57 and Figure 4.58. The average difference in the empty waste
truck hauling time range is only 1.66%. Therefore, although the NFS model shows slightly better
performance than the traditional model in the hauling distance and hauling time of the empty waste

truck, the difference is not statistically significant.

e [.oaded condition
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Table 4.17 Simulated waste loaded truck hauling time and hauling distance comparison of the NFS model
and traditional model

Catego Count Range Mean | Median STD 25-prc | 75-prc | Summation
gory g
Waste loaded
97,605 2.2+ 553,425
distance (km) 1354 7.9840 | 5.67+0 | 5.67+0 0.01 370 | 7.58+0 1227 05
- SimTra ) ’
Waste loaded
102,81 . 570,972
distance (km) 0 ’896 7.98+0 505051 53240 | 2.1840 | 3.7+0 | 7.58+0 " ’0 i
_ SimNFS +37 : ;

Difference 5.34% 0.00% | -2.12% | -6.17% | -0.91% | 0.00% | 0.00% 3.17%

h‘;’alsttfnig?ﬁ) 97.605 | 447 13.9 13.1 65+ | 83+ | 185+ | 1357.168
u
i 1354 138 | 2003 | 005 | 003 | 004 | 006 15447

Waste loaded | 15 g1 | 447 13.6 125 | 64+ | 83+ | 180+ | 1,399,552

haul time(min)
- SimNFS +379 +3.7 +0.03 +0.03 0.03 0.03 0.06 +5,844

Difference 5.34% 0.13% | -2.16% | -4.73% | -1.38% | -0.72% | -2.28% 3.12%

In this section, the author investigated the hauling distance and time of loaded waste trucks and
compared the performance of the traditional model with that of the NFS model. Our results indicate
that the hauling distance under loaded conditions is more certain than under empty conditions, as
represented by the total distribution of waste material in each hauling distance range (Figure 4.59).
Furthermore, due to the further improvement in certainty, a reduction in the difference between the
two models compared to the empty condition is expected and observed by comparing Figure 4.55
and Figure 4.59. More specifically, Table 4.17 shows that the 25-percentile and 75-percentile results
of the NFS model are identical to those of the traditional model, indicating a high degree of similarity
in their performance. The comparison between Figure 4.60 and Figure 4.56 also shows that the

distribution of hauling distance of loaded waste trucks is closer than that of the empty waste truck.

In terms of hauling time, we observed a similar trend of decreased difference between the two models
under loaded conditions, as shown in Figure 4.61 and Figure 4.62. Specifically, the difference in
hauling distance range between the two models drops from 1.66% to 0.13%, while the difference in
average hauling time drops from 3.73% to 2.16%. These results suggest that the performance of the
NFS model is superior to that of the traditional model even on waste trucks, despite only small

differences in hauling distance and time being observed between the two models.
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4.5.3 Truck queueing time

Queue time is also an important indicator to objectively evaluate a mining method. The queue time
here is mainly for trucks because the amount of other equipment is much smaller than the number of
trucks. A longer queue time will reduce truck utilization and driver efficiency, indirectly increase

unnecessary operating costs, and result in lower profits.

In this mining activity, the queue will mainly occur in two places: the dumping area and the loading
area. These two parts will be discussed separately in this section. Since the destinations of ore
material and waste material are different and the dumping environment is different, the queue time

of ore and waste will be discussed separately.

1. Dumping queue time

This section mainly discusses and analyzes the performance of ore and waste truck on the dumping

queue under the two models.
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Figure 4.63 Simulated ore truck dumping queue time of NFS method and traditional method
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Figure 4.66 QQ plot of waste dumping time of NFS method and traditional method
Table 4.18 Ore and waste dumping queue comparison between NFS method and traditional method

Category Count Range Mean | Median | STD | 25-prc | 75-prc | Summation
Ore dumping
181,003 553 1.26+ 19.5 227,631
queue time(min) ’ 0+0 0+0 0+0 ;
- SimTra +433 +55 0.06 +0.73 +9,818
Ore dumping
. - 189,736 292+ 0.54=+ 4.6 102,180
+ + +
queue time(min) |5, 232 | 007 | M0 | s | %0 0 +12,652
- SimNFS
Difference 4.82% -47.3% | -57.1% - -77% - - -55.11%
Waste dumping
97,605 3.05+ 0.06+ 0.2 5,458
queue time(min) ’ 0+0 0+0 0+0 ’
- SimTra +354 0.88 0.01 +0 +139
Waste dumping
3.12+ 0.2 6,273
queue time(min) | 02816% 0.06:0 | 0+0 00 040 ’
379 0.58 +0 +203
- SimNFS :
Difference 5.34% 2.30% 0.00% - 4.8% - - 14.94%

It can be seen from Figure 4.63 and Figure 4.64 that in most cases, the ore trucks in the two models
do not need to wait in the queue and can directly dump the carried ore material into the
crusher/stockpile. The data in Table 4.18 shows that the length of the ore truck dumping queue over

75-percentile is zero. However, the probability of trucks waiting in the dumping queue for a long
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time (greater than 20 min) in the traditional model is much greater than that in the NFS model. There
are mainly two reasons for the long waiting in the dump queue. One is that the crusher is working at
full capacity at that time, and the trucks needed to wait in the queue until there is enough room for
dumping. Another reason, which is also the main reason, is that the crusher is in a state of failure or
maintenance and stops working, so the trucks have to wait until the crusher resumed its working state

before unloading the ore material they carried.

Although these two reasons will interfere with the work efficiency of trucks, it can be seen that the
impact that the NFS method suffers from is much smaller than that of the traditional model. This is
also one of the important theoretical advantages of the NFS method, that is, the mutual impact of the
mill process and the mining process is reduced, thereby improving the utilization rate of the truck.
As mentioned above, this can be contributed to the existence of the stockpile. When the crusher is
not working during scheduled hours or unscheduled hours, trucks can continue to unload minerals
into the stockpile instead of waiting in a queue. The data shows that the average waiting time for
trucks in the NFS model is 0.54 minutes or 32 seconds. The only situation where the dumping queue
is generated in the NFS model is when the three zones of the stockpile are all fulfilled, and trucks
need to wait for the reclaim shovel to complete the reclaiming work of at least one zone. The average
wait in dumping time for trucks in the traditional model is 1.26 minutes or 76 seconds. The NFS

method reduces the dumping queue time by 57.1%, greatly improving the utilization of the trucks.

As for the waste dumping queue, the results of the two models are almost zero and there is no
significant difference, as can be seen in Figure 4.65. This is because the waste dump is considered to
be in the state of accepting material all the time in the simulation period and will not fail. In addition,

since the movement distance of waste material is not changed, this result is in line with expectations.

Overall, the simulation results verify the theoretical advantages of the NFS method and quantitatively
conclude that it can reduce waiting time by 57% and improve the utilization rate of the truck and

personnel efficiency compared with the traditional crusher out-of-pit mining method. This study



Chapter 4. Verification, validation, implementation, and discussion of results 162

provides important insights into the optimization of the mining process and can serve as a reference

for future studies.

2. Loading queue time and queue length

This section mainly discusses and analyzes the performance of trucks on the loading queue under

two simulation models. In addition to queue time, queue length before each shovel is also compared.

The length comparison can be used to assist in judging the effective utilization of the truck. In

addition, it can also be used to judge whether the dispatch logic reasonably allocates trucks to each

shovel.
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Figure 4.67 Simulated loading queue time of NFS method and traditional method
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Figure 4.68 QQ plot of shovel loading time of NFS method and traditional method
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Figure 4.70 Queue length comparison of NFS method and traditional method before shovel two

Table 4.19 Queue time and queue length before shovels comparison between NFS method and traditional
method

Category Count Range | Mean | Median | STD 25-prc | 75-prc | Summation

Queue time 278,609 | 200+ | 5.06+ | 2.63+ | 11.11 | 1.02+ 7.43 1,409,761

before shovel
(nfi;’)r?;igvﬁa +537 | 5403 | 007 | 002 | £031 | 001 | +0.07 | +16,196

Queue time 292,553 | 200+ | 624+ | 2.8+ | 1818 | 1.15 | 997 | 1,825,528

before shovel
(mfn;’{esfirgg‘;s +696 | 12.18 | 006 | 002 | +407 | 001 | =0.1 +13,539

Difference 500% | 0.00% | 23.17% | 6.46% | 63.6% | 12.75% | 332% | 29.49%
Queue length- | 20 (09 | g.00+ | 1.75+ 1.94+ 487,565
shovel 1 — 1+0 0+0 3+0
SimTra +537 1.69 0.07 0.05 +18,250
Queue length- | 997 553 | g0+ | 2.16+ 223+ 631,914
shovel 1 - ’ 240 0+0 440 ’
SNES +696 0.55 0.07 0.04 420,914
Difference 500% | 0.00% | 23.43% | 100% | 14.95% | 0.00% | 33.33% | 29.61%
Queue length- | 70 609 | gx 1.76+ 1+ 1.93+ 490,351
shovel 2 — 0+0 3+0
SimTra +537 1.59 0.06 0.02 0.03 +16,539
Queue length- | 195 553 | g1 | 216+ 2244 633,381
hovel 2 - ’ : 240 X 0+0 440 ’
shove +696 0.57 0.08 0.07 422,929

SimNFS
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Difference 5.00% 0.00% | 23.43% | 100% | 14.41% | 0.00% | 33.33% 29.17%

Figure 4.67 shows the histogram of the queuing time of each truck cycle before shovel. All categories
compared in the former sections have a common sense that the number generated by the NFS model
is consistently lower than that of the traditional model. However, the comparison in this section is an
exception. Both queuing time and queuing length of trucks before shovels in the NFS model no
longer follow that pattern. Table 4.19 further demonstrates that the average truck queuing time in the
NFS model is 6.24 minutes, an increase of 23.17% compared with 5.06 minutes in the traditional
model. Additionally, the total queuing time before the shovels increased by 29.49% within one year
of simulation. Its QQ plot, as shown in Figure 4.68, also shows that the loading queue time in NFS

model is slightly higher than that of traditional model.

Figure 4.69 and Figure 4.70 demonstrate that both models exhibit a balanced use of shovel one and
shovel two, with no overreliance on either. However, the queue length before the shovel in the NFS
model is higher than that of the traditional model, as indicated by the mean value increased by

approximately 23% and the median queue length is always one truck higher.

While longer queue times and lengths are typically indicative of poor performance, this is not the
case here. The NFS model improves the transportation efficiency of the trucks by reducing the
transportation distance of the ore material, which ultimately results in a decrease in the demand for
trucks. To maintain consistency and minimize the impact of other variables on performance, the NFS
model employs the same number of 16 trucks as the traditional model. As such, the increase in queue
time and length in the NFS model can be attributed to the excess number of trucks. This growth,
however, serves to further support the superior performance of the NFS model over the traditional
model.

4.5.4 Truck requesting time

The section focuses on the evaluation of the truck requesting time as a parameter that reflects the

efficiency of shovels in a mining operation.



Chapter 4. Verification, validation, implementation, and discussion of results 166

&
25210
21 Legamnd
o Counl: 2802718
= 15 Mean: 0.5
g ' Median: 0.0
I= 25pre: 0.0
= Toprc: 0.0
0.5~ Bin Size: 0.238
o i i 1 1 | i i i |
0 1 2 3 4 5 8 7 B )
Histogram of simulated truck requesting time(min) - NFS
-]
2— Legamnd
. B Counl: 2753334
5‘1 sl Mean: 0.6
a Median: 0.0
2 e
o 25pre: 0.0
= 75pre: 0.0
0.5~ Bin Size: 0.238
C' } 1 1 1 | 1 1 1 |
0 i 2 3 4 5 8 7 B )
Histogram of simulated truck requesting time(min) - TRA
T
MF
1 1 1 1 | 1 1 1 |
0 i 2 3 4 5 5 7 8 3

Truck requesting time(min)
Figure 4.71 Simulated truck request time of NFS method and traditional method

QQ plot of Truck requesting time(min)

NS model

Traditional model
Figure 4.72 QQ plot of truck requesting time of NFS method and traditional method
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Table 4.20 Truck requesting time comparison between NFS method and traditional method

Category Count Range Mean | Median STD 25-prc | 75-prc | Summation
Truck request " "
time (min) - 218’3609 e 066;3 00 16607 O 1728’33 029
SimTra 537 ) : . ,35
Truck request
46+ A1+
time (min) - 2926’9523 11007 1 8; 0.46 0+0 1.41 0+0 0+0 134,574
SimNFS + . 0.02 0.29 +2,512
Difference 5.00% -15.7% | -28.1% - -15.6% - - -24.5%

This parameter refers to the duration between the readiness of the shovel to begin loading and the
readiness of the truck to receive loading. If a truck is not present in front of the shovel or has not
vacated the loading spot, the shovel will idle until the truck is ready. Furthermore, the truck
requesting time and the queue time, which was discussed in the previous section, are inversely related
indicators to some extent. In the case where there is a truck queueing in front of the shovel, the
corresponding requesting time is zero. Conversely, if the requesting time is not zero, it indicates that
the trucks are in the hauling phase, and the queue time and queue length before the shovel are both

ZCro.

Through the analysis of Table 4.20 , Figure 4.71, and Figure 4.72, it can be observed that more than
75th percentile of the truck requesting time data in both models, is zero. This finding suggests that
the shovels are efficiently utilized, and truck shortages are infrequent. Despite being efficiently
utilized, the NFS model performs better than the traditional model. Specifically, the average truck
requesting time for the NFS model is 0.46 minutes, which is 28% less than the traditional model's
average of 0.64 minutes. The overall simulation result indicates that the NFS model reduces the idle
time of shovels by 24.5% compared to the traditional model. Truck requesting time can be used as
an important parameter to evaluate the efficiency of shovels. The comparison and analysis in this
section show that the NFS model significantly exceeds the traditional model in terms of shovel
utilization.

4.5.5 Truck cycle time

This section mainly discusses and analyzes the performance of the truck cycle time of the two models.
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The truck cycle time is a critical indicator that determines the efficiency and utilization rate of trucks
in mining operations. It encompasses various activities related to the truck, including shovel loading
time, loaded truck hauling time, queuing time before the dump, dumping time, and empty truck
hauling time. However, the queuing time before shovel loading is not included in the complete truck
cycle time, and its starting point is from receiving shovel loading. The shorter the cycle time, the
higher the utilization rate of the truck. Similar to the previous sections, the truck cycle time is divided
into three situations for discussion and analysis, the cycle time of ore material, the cycle time of

waste material, and the overall cycle time.

The first part to analyze is the cycle time of the ore material since ore is always the main interest of
companies that brings profit. As can be seen from Figure 4.73 and Table 4.21, the average ore cycle
time of the NFS model is 16.58 minutes, which is 16.3% less than the 19.81 minutes of the traditional
model. Furthermore, compared with the traditional model, the NFS model’s 25th percentile and 75th
percentile of ore truck cycle data are reduced by 19.5% and 10.7%, respectively. In addition, the NFS
model's total ore material cycle time decreased by 12.27% despite an increase of 4.82% in the number
of cycles. This finding suggests that the change in the layout of the NFS model significantly improves
the truck utilization efficiency, which reduces hauling costs for the enterprise. Figure 4.74, the QQ
plot of the ore truck cycle time of two methods, also indicates that in most conditions (cycle time
less than 33 minutes) the ore truck in the NFS model outperforms the traditional model, with some

fluctuations in tailings data.
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Comparing Figure 4.73 and Figure 4.75, it can be seen that the truck cycle time of waste material is

significantly higher than that of ore material. The waste truck cycle time in the NFS model and the

traditional model both exceed 30 minutes, which are 32.33 minutes and 33.46 minutes respectively.

This is due to a higher hauling distance of waste material compared to ore material. In addition,

although the truck cycle time of ore material in the NFS model has been significantly reduced

compared with the traditional model, it has relatively no significant change in the improvement of

the transportation distance and transportation efficiency of waste material. Relevant data shows that

the difference between the truck cycle time of the waste material of the two models is only about 3%.

Figure 4.76 also shows that the two distributions are very close.
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Table 4.21 Truck cycle time comparison between NFS method and traditional method
Category Count Range Mean | Median STD 25-prc | 75-prc | Summation
Ore cycle 181,003 19.81 | 18.11 | 20.16 | 15.82 | 2097 | 3,585,891
time(min)- 568+52
Si +433 +0.06 | +0.04 | +0.71 | +0.04 | +0.06 +16,839
imTra
t.Ore(c-YCl; 189,736 | 332 16.58 | 1549 | 6.97 1274 | 1873 | 3,145,992
fmeiming - +512 +327 | +0.08 | +0.04 | +1.81 | +0.04 | +0.03 +16,078
SimNFS
Difference 4.82% | -41.6% | -16.3% | -14.5% | -65.4% | -19.5% | -10.7% | -12.27%
Waste cycle | g7 605 3346 | 3214 | 1457 | 2176 | 419 | 3266018
time(min) - 165+23
Si +354 +0.08 | 0.1 +0.16 | +0.12 | +0.11 +11,407
imTra
?I;alitfnfl}lll():le 102,816 | 169.15 | 3233 | 30.16 | 1423 | 21.04 | 4082 | 3,324,474
SimNFS +379 +51 +0.09 £0.1 0.2 £0.07 | +0.08 +8,519
Difference 534% | 2.71% | -3.38% | -6.16% | -2.33% | -3.31% | -2.58% 1.79%
Total cycle | 575 609 24.6 19.82 | 1951 | 16.63 | 2731 6,851,909
time(min) - 568+52
. +537 +0.07 | +0.04 | +0.45 | +0.03 | +0.09 +13,464
SimTra
g;tg(llilylf)'e 292553 | 346 | 2212+ | 1793 | 12.63 | 141 | 255 | 6470467
Qi NFS +696 +334 0.08 | +0.03 | +0.68 | +0.04 | +0.05 +14,332
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Difference 5.00% -39.1% | -10.1% | -9.54% | -353% | -15.2% | -6.63% -5.57%

Since ore material accounts for a larger proportion of the total mining volume, around 65%, when
evaluating the performance of the truck cycle time of the two models from an overall perspective,
the NFS model still has a significant improvement compared to the traditional model. According to
Figure 4.77, the average truck cycle time of the NFS model is 22.12 minutes, which is 10.1% shorter
than the traditional model's 24.6 minutes. The 25th percentile and 75th percentile of all simulated
data are also reduced by 15.2% and 6.63%, respectively. Similarly, although the overall truck cycle
number of the NFS model has increased by 5% compared with the traditional model, its total cycle
time has been shortened by 5.57%. The total truck cycle time QQ plot of the two methods is shown
in Figure 4.78. It can be seen from the figure that almost all the data are located at or below the green
line, indicating that the performance of the truck in NFS is not weaker than that in the traditional
method throughout the whole simulation time. In the main hauling time range of 5-30 minutes, the

NFS method is obviously better than the traditional method.

The comparisons in this section fully demonstrate that the NFS model improves truck utilization
efficiency compared to the traditional model. It not only completes more cycles in the same
simulation period, which results in higher production, but also reduces the invalid travel time of the
trucks. All of these make it possible to reduce the number of trucks and create the premise for further
reducing truck transportation costs.

4.5.6 Ton-kilometer (TKM)

Ton-kilometer (TKM) is a widely used unit of measure for material transport, specifically referring
to the transport of one ton of ore or waste by truck over a distance of one kilometer. This metric is
included as a comparison item because it serves as a useful indicator of truck operational costs. A
lower TKM implies lower fuel consumption, reduced maintenance costs, lower carbon emissions,
and higher profits. As such, it is an important metric for evaluating the efficiency and profitability of
truck operations in the mining industry. Similarly, the analysis on TKM will still compare and

analyze ore material TKM, waste material TKM and total TKM respectively.
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Figure 4.79 Average monthly ore material TKM comparison between NFS method and traditional method

Table 4.22 Average monthly ore material TKM comparison between NFS method and traditional method

Month Traditi?nall ore TKM NFS ore.> TKM Difference
(10 replications mean) (10 replications mean)

1 8,722,008 9,491,645 8.82%
2 17,147,927 15,572,285 -9.19%
3 17,322,607 10,008,352 -42.22%
4 6,580,100 7,936,708 20.62%
5 6,990,037 18,832,114 169.41%
6 18,133,442 15,282,055 -15.72%
7 17,480,249 9,475,146 -45.80%
8 19,613,288 14,770,451 -24.69%
9 15,933,799 13,732,759 -13.81%
10 15,133,729 12,564,172 -16.98%
11 15,723,125 13,175,149 -16.21%
12 18,140,688 11,547,088 -36.35%
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Total 176,921,000 152,387,925 -13.87%

The examination of Figure 4.79 and Table 4.22 reveals that, except for three months, the average
monthly ore material TKM of the NFS model is consistently lower than that of the traditional model
in the remaining three-quarters of the year, with a maximum reduction of 45.8%. Consequently, the
annual average ore material TKM is 13.87% lower in the NFS model than in the traditional model.
Notably, this reduction is achieved with a 4.86% increase in ore material output in the NFS model.
If the output increase is not considered, the ore material's TKM of the NFS method is 20.71% lower

than that of the traditional method at the same production level.

It can be concluded that the performance of the NFS method on the ore TKM is significantly better
than that of the traditional method, which not only improves the output, but also achieves a lower
TKM. This also represents the improvement of NFS method in terms of energy consumption
efficiency, which is more suitable for the development concept of modern mines.

2. Waste material TKM
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Figure 4.80 Average monthly waste material TKM comparison between NFS method and traditional method
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Table 4.23 Average monthly waste material TKM comparison between NFS method and traditional method

Month Traditior.lal Waste TKM NFS .was.te TKM Difference
(10 replications mean) (10 replications mean)

1 27,409,883 25,167,390 -8.18%
2 12,599,708 14,223,711 12.89%
3 12,980,087 26,036,967 100.59%
4 31,278,200 28,777,551 -7.99%
5 32,233,020 3,614,659 -88.79%
6 10,509,778 19,063,317 81.39%
7 10,016,118 21,001,921 109.68%
8 7,364,536 10,940,095 48.55%
9 8,847,930 9,444,581 6.74%
10 11,812,760 9,372,947 -20.65%
11 10,953,037 11,259,266 2.80%
12 8,466,056 11,593,473 36.94%

Total 184,471,114 190,495,880 3.27%

In contrast to the analysis of ore material TKM in the preceding section, the performance of the NFS
model with respect to waste material TKM does not exhibit a clear superiority over the traditional
model after analyzing Figure 4.80 and Table 4.23. For instance, while the monthly waste material
TKM of the NFS model dropped by 88.79% in May compared to the traditional model, it increased
by 109.68% in July. As the transportation distance of waste material remained constant, the variation
in TKM between the two models across different months is primarily attributable to differences in
scheduling. The comparison of the annual waste material TKM reveals a 3.27% increase in the NFS
model relative to the traditional model. However, considering that the NFS model yielded
approximately 5% increasement in waste material output, the difference in the annual average waste

material TKM between the two models reduces to roughly 1%, consistent with expectations.

3. Total TKM
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Figure 4.81 Average monthly total TKM comparison between NFS method and traditional method
Table 4.24 Average monthly total TKM comparison between NFS method and traditional method

Month Traditiolnal .total TKM NFS.tote.d TKM Difference
(10 replications mean) (10 replications mean)

1 36,131,892 34,659,035 -4.08%
2 29,747,635 29,795,996 0.16%

3 30,302,694 36,045,319 18.95%
4 37,858,300 36,714,259 -3.02%
5 39,223,057 22,446,774 -42.77%
6 28,643,220 34,345,372 19.91%
7 27,496,367 30,477,067 10.84%
8 26,977,824 25,710,546 -4.70%
9 24,781,729 23,177,341 -6.47%
10 26,946,489 21,937,119 -18.59%
11 26,676,162 24,434,415 -8.40%
12 26,606,744 23,140,561 -13.03%
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Total 361,392,114 342,883,805 -5.12%

In this section, the monthly average total TKM of all materials for the NFS and traditional methods
were compared using Figure 4.81 and Table 4.24, which are obtained from ten simulation
replications. Results showed that the NFS method outperformed the traditional method, with the
monthly total TKM of the NFS method being lower than that of the traditional method in 8 out of 12
months. The maximum monthly TKM reduction achieved by the NFS method was 42.77%, while
the maximum increase was less than 20% in the remaining 4 months. Therefore, on an annual basis,
the NFS method had a 5.12% decrease in total TKM compared to the traditional method. This
decrease was achieved on the basis of a 5.06% increase in the overall output of the mining system.
When the effect of production increment was removed, the total TKM of the NFS method was

reduced by 10.93% relative to the traditional method.

Based on the comparison of the three categories in this section, it is evident that the NFS method has
significantly improved the total TKM compared to the traditional method. This improvement offers
several advantages, including reduced demand for the number of trucks, cost savings in terms of
truck operating costs, and reduced expenses associated with purchasing trucks.

4.5.7 TPGOH

The truck cycle time mainly evaluates the performance of the truck from the effective time, and TKM
focuses on general transportation productivity. The ton per gross operating hour (TPGOH) combines
the carrying capacity of each cycle truck, thus obtaining the average material transport volume per
hour during the simulation time. TPGOH is one of the most important indicators for evaluating the
performance of a mining method. Under the premise that the equipment capacity remains unchanged,
a higher TPGOH means a higher comprehensive equipment utilization rate and better performance.
Similarly, this section still compares the TPGOH of the NFS model and the traditional model from
three aspects, that is, the TPGOH of the ore material, the TPGOH of the waste material, and the

comprehensive TPGOH.

1. Ore material TPGOH
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Figure 4.84 Ore TPGOH comparison in each hauling range under NFS mining method and traditional mining

method
Table 4.25 Ore material TPGOH comparison between NFS method and traditional method
Category Count Range Mean | Median STD 25-prc | 75-prc | Summation
Ore TPGOH - | 181,003 2,726 1,122 1,095 369.5 866+ 1349 | 203,170,229
SimTra +433 +662 +3.11 +3.49 +1.55 1.98 +4.14 +455,307
Ore TPGOH - | 189,736 3,590 1,341 1,284 508.4 985 1639 | 254,435,976
SimNFS +512 +1,740 | 343 +4.27 +2.84 +2.21 +5.19 | +1,047,751
Difference 4.82% | 22.51% | 19.51% | 17.26% | 37.58% | 13.77% | 21.55% 25.23%

The section investigates the comparative performance of the NFS model and traditional model in

terms of ore truck productivity or ore TPGOH. Figure 4.82 depicts the histogram of TPGOH under

the two models, and Table 4.25 provides a detailed data analysis. The findings suggest that the NFS

model surpasses the traditional model in all aspects, with an average ore TPGOH of 1341 tons/hour,

which is 19.51% higher than the traditional model's 1095 tons/hour. Furthermore, the 25th percentile

and 75th percentile of all ore data are 13.77% and 21.55% higher, respectively, and the range of ore

TPGOH of the NFS model is 31.68% higher than that of the traditional model. These results indicate

that the NFS model significantly enhances the comprehensive utilization of the truck.
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To present a more intuitive comparison of the NFS model and traditional model, a QQ plot is also
generated, as illustrated in Figure 4.83. The plot highlights that the results of all ore TPGOH
generated by the NFS model are consistently upper than those of the traditional model, indicating

the superior performance of the NFS model.

Moreover, the study explores the relationship between TPGOH and the load weight and cycle time
of the truck. The cycle time of the truck is calculated as the truck hauling distance divided by the
truck speed. Figure 4.36 and Figure 4.37 reveal that the distributions of the two models on truck
speed are almost identical. Meanwhile, Figure 4.33 depicts the truck loading tonnage distribution is
also identical. Therefore, TPGOH is highly negatively correlated with truck hauling distance, as
shown in Figure 4.84. The figure suggests that the reduction in hauling distance leads to an increase
in ore material TPGOH, whereas the TPGOH generated by the NFS model and traditional model is
not significantly different when the truck hauling distance is in the same range. Therefore, the
efficiency improvement of the NFS model is entirely attributed to the reduction of hauling distance

and not the truck itself.

In conclusion, the study provides comprehensive evidence supporting the superiority of the NFS
model over the traditional model in terms of ore truck productivity. The findings highlight the
importance of reducing the truck hauling distance for enhancing the efficiency of ore material

transportation.

2. Waste material TPGOH
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Table 4.26 Waste material TPGOH comparison between NFS method and traditional method

Category Count Range Mean | Median STD 25-prc | 75-prc Summation
TI\’KC]}aCS)ﬁ 97,605 2,957 715 627 363 453 914 69,796,099
SimTra +354 +365 +1.59 +2.28 +2.8 +1.73 +3.65 +215,856
le\éia(s)tli 102,816 | 2,853 737 657 362 468 951 75,797,750
SimNFS +379 +245 £2.53 | £2.46 | +2.44 | £2.67 | £3.25 220,647

Difference 5.34% -3.51% | 3.09% | 4.75% | -0.04% | 3.35% | 4.08% 8.60%

Since the hauling distance of the waste material has not changed, theoretically there should be no
significant difference between the distributions of the two models on the waste material TPGOH. As
shown in Figure 4.85 and Figure 4.86 and Table 4.26, the gap between the two is only about 3%,

which is in line with expectations.

3. Total TPGOH
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Table 4.27 Total TPGOH comparison between NFS method and traditional method
Category Count Range Mean | Median STD 25-prc | 75-prc | Summation
T"t(at‘l)g};?OH 278,609 | 2,957 | 979 | 961 | 415 | 664 | 1254 | 272,966,328
SimTra +537 +662 +1.81 +2.14 +1.67 +1.31 +3.06 +651,926
T"t(at‘l T{I)GOH 292553 | 3590 | 1,123 | 1,077 | 546 713 | 1462 | 328.537.019
on/h) -
. +696 +1,735 +2.82 +2.35 +2.34 +2.06 +3.55 +1,233,888
SimNFS
Difference 5.00% | 21.41% | 14.68% | 12.03% | 31.34% | 7.41% | 16.66% 20.37%

This section further investigates the overall truck productivity by evaluating the total truck TPGOH,
which considers all materials without distinguishing ore or waste. Figure 4.87 and Table 4.27
illustrate that although the TPGOH of waste material is not improved, the performance of total
TPGOH under the NFS model is still significantly better than that of the traditional model. The mean
value, 25th percentile value, and 75th percentile value of total TPGOH under the NFS mining method
increased by 14.68%, 7.41%, and 16.66%, respectively. Meanwhile, Figure 4.88 is quite similar to
Figure 4.83, which also indicates that the NFS method performs better than the traditional method in

overall situations.
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Overall, the findings indicate that the NFS model outperforms the traditional model in enhancing
truck productivity and improving the utilization rate of the truck. Consequently, the NFS model
provides the possibility for higher production with the cooperation of other equipment.

4.5.8 Shovels’ production

The previous sections compared and analyzed the performance of the NFS model and the traditional
model in terms of the efficiency of the truck in each process. The main reason why companies care
about truck efficiency is that high efficiency can help mines achieve higher output of the mining
system within the same time frame, thus bringing higher profits to the company. Therefore, this
section will compare and analyze the performance of near-face stockpile and traditional mining
methods from the aspect of shovels’ productivity, which directly reflects the utilization of shovels in

a mining method.
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Figure 4.89 Average monthly shovels’ productivity and cumulative monthly shovels’ productivity of NFS
method and traditional method

Table 4.28 Average monthly crusher feeding rate comparison between NFS method and traditional method

Traditional model shovels’ NFS model shovels’
Month productivity (ton) productivity (ton) Difference
(10 replications mean) (10 replications mean)
1 6,107,052 6,380,692 4.48%




Chapter 4. Verification, validation, implementation, and discussion of results

186

2 6,720,483 7,013,867 4.37%
3 6,878,293 6,971,834 1.36%
4 6,626,170 7,094,499 7.07%
5 6,395,779 8,651,223 35.26%
6 8,387,028 7,363,994 -12.20%
7 8,424,225 7,947,315 -5.66%
8 8,753,869 9,036,105 3.22%
9 8,778,200 9,463,109 7.80%
10 8,956,518 9,494,295 6.00%
11 8,770,716 9,634,756 9.85%
12 8,576,304 9,044,559 5.46%
Total 93,374,636 98,096,248 5.06%
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Figure 4.90 Average weekly shovels’ production comparison of NFS method and traditional method
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Figure 4.91 Average daily shovels’ productivity comparison of NFS method and traditional method

Figure 4.89 displays the 10 replications’ average monthly shovels’ productivity (left graph) and
cumulative monthly shovels’ productivity (right graph) of both methods. Corresponding numbers are
listed in Table 4.28. The comparison indicates that in most of the months, except June and July, the
NFS method yields a higher shovels’ productivity. Meanwhile, the total tonnage excavated in the
NFS method is 98.10 million tons, which is 5.06% higher than traditional method’s 93.37 million

tons.

To provide a more detailed analysis of the performance of the two mining methods, Figure 4.90 and
Figure 4.91 compare the weekly and daily shovels’ productivity of the two methods, respectively.
As observed from the trend of the monthly shovels’ productivity comparison chart, the NFS method
yields higher output from mining system than the traditional mining method in most weeks and days.
Furthermore, the output graphs of the three different time resolutions demonstrate a common feature,
which is the lower output in the early stage and higher in the later stage. This trend is attributed to

the need to complete the work of stripping the waste, which involves long hauling distances and
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extended truck cycle times, thus resulting in relatively low productivity of shovels. Conversely, the
later stage primarily involves mining of the ore material with short distances and high efficiency,
resulting in a high productivity. It should be pointed out that in Figure 4.90, the sudden drop in the
shovels’ productivity of the two methods in the last week is not due to insufficient material or

equipment failure, but because the last week only includes two days in the simulation time.

In addition, Figure 4.91 also shows that in the first 50 days of simulations, the shovels’ productivity
of the NFS method and the traditional model show the same trend, and there is no obvious difference.
This is also because the main materials being excavated and transported in the early stage were waste,

and the advantages of the NFS method are only reflected in the ore material.
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Figure 4.92 Annual shovels’ productivity comparison of NFS method and traditional method by replication

After completing the monthly, weekly, and daily productivity comparisons, Figure 4.92 shows the
yearly production comparison by replication of the two methods. Undoubtedly, in all replications,

the annual shovels’ productivity of the NFS method is about 5% higher than that of the traditional
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method, and its ten-year average productivity of shovels have increased by 5.06% as mentioned

above.

4.5.9 Crusher’s production

In this section, the author focuses on evaluating the performance of the crusher under the NFS and
traditional mining methods in terms of production, which is defined as the output from the crusher.
The author notes that while the shovels’ productivity is highly correlated with the crusher output,
they are not identical to each other. Therefore, the author separates production as a distinct section

to analyze the performance of the crusher.
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Figure 4.93 Average weekly crusher output comparison between NFS method and traditional method
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Figure 4.95 Yearly crusher output comparison between NFS method and traditional method

In Figure 4.93 to Figure 4.95, a comparison is presented between the performance of the crusher
output under the NFS method and the traditional method across three time resolutions of weekly,

monthly, and yearly. Despite the existence of noticeable fluctuations in the short-term (weekly and
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monthly), the production of the NFS method generally outperforms that of the traditional method.
Furthermore, when the timeframe is extended to a yearly basis, the NFS method consistently
outperforms the traditional method in terms of crusher output, with an average annual increase of

4.87% across 10 replications.

Considering the difference in layout between the NFS method and the traditional method, it is
somewhat arbitrary to completely attribute the increase in crusher output to the increase in the
utilization of trucks and other devices. Investigating the existence of the stockpile has made its own
contribution to smoothing the fluctuation of the crusher output deserves further discussion and

analysis.
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Figure 4.96 Average daily difference between crusher feeding rate and crusher output of NFS method and
traditional method

Figure 4.96 presents the average difference between the daily crusher/stockpile feeding rate and
crusher productivity for the NFS method and the traditional method. A difference greater than 0

implies that the crusher/stockpile feeding tonnage is higher than the crusher productivity, whereas a
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negative difference indicates that the productivity of the crusher is higher than the feeding rate. In
the traditional method, without a stockpile, the productivity of the crusher per unit of time is expected
to be less than or equal to the crusher feeding rate. Consequently, its productivity will fluctuate
according to the feeding rate, unless a stable feeding rate is guaranteed. The simulation results of the
traditional method, represented by the orange dotted line, confirm this conclusion. The difference
between the feeding rate and productivity is small and fluctuates around zero, within one or two

loads.

This is a major disadvantage of the traditional mining method and a problem that the NFS method
aims to solve. The NFS method features a pre-crusher stockpile that acts as a buffer between the
mining and crushing systems. The results, as shown by the blue line in the figure, exhibit noticeable
volatility. This indicates that the pre-crusher stockpile functions as expected, with the stockpile
carrying redundant ore material when the difference is greater than zero and consuming its own
hoarded materials to ensure the crusher operates normally when the feeding rate reduces. This storage
and consumption process creates a buffer space for the entire system to cope with uncertain events,

significantly enhancing the crusher's ability to maintain stable productivity.

This stability is also the reason why the NFS method yields higher production rates than the
traditional method, given the same crusher capacity. The NFS method exhibits remarkable stability,
while the traditional method lacks anti-interference ability against uncertain events due to the close

connection between the mining and crushing systems.

However, it is worth noting that the stabilizing effect of the pre-crusher stockpile on the crusher
productivity gradually weakens as the time resolution is extended to weekly or monthly, as shown in
Figure 4.97 and Figure 4.98. This is due to the fact that the size of the stockpile is set to daily turnover.
However, this limitation does not diminish the practicality of the NFS method. On the contrary, with
a finer daily schedule, the crusher can maintain a stable output within a larger time range, thus

maximizing its utilization rate and final productivity.
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Figure 4.97 Average weekly difference between crusher feeding rate and crusher output of NFS method and
traditional method
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Figure 4.98 Average monthly difference between crusher feeding rate and crusher output of NFS method and
traditional method
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4.5.10 Equipment utilization

The analyses presented in the previous eight sections have conclusively shown that the NFS mining
method is superior to the traditional mining method in terms of truck efficiency, shovel productivity
and crusher productivity. The improvement of the efficiency and productivity of these devices can

also be demonstrated from the perspective of the utilization rate of each piece of equipment.
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Figure 4.99 Average equipment utilization comparison between NFS method and traditional method

Figure 4.99 provides evidence that the utilization rates of shovels and the crusher under the NFS
method are increased by 4.96% and 4.85%, respectively, compared to the traditional method.
However, due to the constant number of trucks used for transportation in NFS model, the wait time
for trucks has increased despite the reduction in distance covered, leading to a decrease of 6.84% in
the overall utilization rate of the trucks, even though the overall production has increased by 5.06%.
This demonstrates that the NFS method inherits the advantages of IPCC mining method and reduces

the demand for trucks.

The increase in the effective utilization of the crusher, shovels, and trucks can be attributed primarily

to the introduction of the near-face stockpile in the layout. In the traditional method, a fully loaded
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crusher would result in a waiting queue of trucks to dump their loads. Moreover, if shovels are under
maintenance or engaged in mining waste blocks at a specific time, the crusher would remain idle.
The near-face stockpile mining method was proposed to address these challenges. Although the size
of the stockpile may be limited by terrain, cost, or management, the stockpile with a daily mining
capacity is sufficient to cover most of the unscheduled shutdowns and minimize the frequency of the

problem, thus enhancing the utilization rate of the equipment.

Overall, the NFS mining method outperforms the traditional mining method in terms of equipment
utilization, annual production, and TKM moved by truck. It offers the potential for enterprises to
reduce carbon emissions, increase production rate, and use equipment more efficiently. Therefore, it

is worth going further in research and promotion applications.

4.6. Summary

This chapter first verifies the established simulation model by studying the behavior of scenarios
under changing truck numbers. Afterward, the proposed simulation-optimization framework is

validated by comparing the simulation results of the traditional model with real data.

After the validation, the simulation-optimization framework is implemented into the NFS method,
and the difference between the NFS and traditional models in terms of material transportation

distance and mining schedule is compared in detail.

Other than that, a detailed comparison between the simulation results of the NFS and traditional
methods in terms of the performance of independent and dependent variables are conducted, and

finally draw the following conclusions: Compared with the traditional method,

e  The NFS method greatly shortens the truck hauling distance and hauling time of ore material

e  The NFS method reduces the total ton-kilometer

o  The NFS method greatly reduces the truck's queuing time before the crusher

e  The NFS method greatly improves the efficiency of the truck and its TPGOH
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The NFS method reduces the number of trucks required

The NFS method improves the productivity and utilization of shovels

The NFS method improves the productivity and utilization of the crusher

The NFS method can effectively suppress the fluctuation of the crusher’s output

The NFS method increases the final output of the mine
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S. CONCLUSION AND FUTURE
WORK
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5.1. Summary of the research

The extraction of natural resources through mining, particularly open-pit mining, has remained a
crucial approach despite the continuous improvement in the ability to explore and utilize these
resources. Although the truck-shovel system was the most prevalent open-pit mining method in the
past, it has become increasingly inefficient as mining depths continue to increase, resulting in longer
hauling distances and lower economic returns. To address these challenges, in-pit crushing and
conveying (IPCC) has gained significant attention due to its ability to reduce truck movement and
carbon emissions and increase returns on investment in the life-of-mine cycle. However, a major
drawback of the traditional mining method is its susceptibility to risks, which has prompted the
development of the near face stockpile (NFS) mining method, a novel concept that combines I[IPCC

with a pre-crusher stockpile.

While the NFS approach has theoretical advantages, there is a need to quantify and evaluate its
benefits. Simulation technology has proven to be a reliable and cost-effective approach to evaluate
and improve mining methods. However, the existing simulation models have limitations, including
a lack of universality, inability to include stockpile, limited flexibility for parameter changes, and

unsuitability for simulating the NFS method.

In addition to simulation models, an optimal or near-optimal mining schedule is also indispensable
for an objective evaluation of a mining method. This is because no matter how good the mining
method is, if there is no optimized mining schedule that matches it, the results may be disastrous.
Prior mathematical optimization models have limitations that make them inapplicable to the NFS
method, including a lack of consideration for the high turnover of the stockpile. Blindingly applying

them will have a significant adverse effect on the objective evaluation of the NFS mining method.

This study has three main objectives. First, establish a mining schedule optimization model that
incorporates pre-crusher and is suitable for NFS methods. Secondly, establish a simulation model
that can reflect the characteristics of the NFS method, in which the mining subsystem and milling

subsystem are relatively independent, to simulate various operations involved in the NFS method.
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Finally, integrate the proposed optimization model and simulation model into a complete simulation-
optimization framework to evaluate the performance of the NFS method objectively and

quantitatively.

The first objective of this research is covered in the first half of Chapter 3. Initially, a mining schedule
optimization model was established for traditional mining, incorporating an out-of-pit crusher,
utilizing mixed integer linear programming. The objective of the optimization model is to maximize
the overall net present value while accounting for constraints of mining capacity, processing capacity,
mining-processing inter-relationship, grade control, and procedure control. Aggregations of blocks
are implemented to make the optimization model practical for large mines. The algorithm proposed
by other scholars is adopted for the implementation of aggregations. Since the optimization process
involves extensive data processing, the optimization model is coded in MATLAB and solved by
CPLEX through API. An iron mine with 430 million tons of material and 19,561 blocks is introduced
as a case study to verify the proposed optimization model for the traditional method, which results
in a 2% increase in NPV. On this basis, the author made changes to the optimization model to make
it suitable for the NFS mining method. The optimization model for the NFS method is also verified
by applying the new optimization model to the same iron ore. Results show that the hypothetical
grade variation of material sent to the crusher is reduced by 33.3%. On the basis of only considering
the equipment operating cost and not considering the equipment expenditure cost, the overall NPV

is increased by 9.3%.

After completing the establishment of the optimization model, in the second part of the third chapter,
the author completed the construction of the simulation model of the traditional method and NFS
method. The model of the traditional method is based on the truck-shovel system, and the content of
the simulation includes shovel moving, loading, truck-loaded haul, truck dumping, truck dispatch,
truck empty haul, truck queuing, and other activities in the mining system, as well as crushing and
processing in the milling system activity. In addition to the optimized mining schedule, the input

items of the simulation model include some independent variables that can significantly affect the



Chapter 5. Conclusion and future work 200

simulation results, such as shovel loading time, truck hauling speed, and truck payload. These
variables are all taken from the result records of the actual operation, and respectively fitted to the
corresponding distribution. In addition, the author also defines some indicators that need to be
tracked in the simulation to evaluate its performance. Macros based on Visual Basic language are
created to enhance the simulation model's universality by reading equipment parameters and road
networks to generate some modules automatically. An oil sands mine with historical activity database
is used as a case study to verify and validate the simulation model. The simulation results of the
traditional model not only fully follow the distribution of independent variables in actual operation,
but also fully match the record of real operation in aspects like crusher feeding rate, ton-kilometer,
and TPGOH, indicating a high degree of reliability. Afterward, the author modified the traditional
simulation model to fit the NFS method while keeping all equipment parameters unchanged,

fulfilling the research's second objective.

The establishment of the simulation models with the completion of the simulation-optimization
framework has enabled the objective and quantitative evaluation of the NFS mining method’s
performance, which is the main focus of this research. A detailed comparison between the NFS model
and the traditional model is conducted in Chapter 4, using the validated simulation results of the
traditional model as the benchmark. The comparison items include consistency of independent
variables’ distribution, truck hauling distance and time, truck queuing time and length, truck cycle
time, TPGOH, ton-kilometer, shovel productivity, crusher productivity, and equipment utilization.
The results of the comparison demonstrate that the NFS mining method outperforms the traditional
mining method across multiple metrics. These findings suggest that the NFS method has significant
application value and is worthy of further research. Meanwhile, this research provides important
insights into the potential of the NFS method for improving the system’s stability, mining efficiency,
and productivity, and highlights the importance of simulation modeling in evaluating and optimizing

mining methods.
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5.2. Conclusions

Surface mining efficiency and benefits have been significantly improved by the application of large-
scale equipment. However, the further improvement of traditional surface mining methods is
hindered by bottlenecks. To address this issue, various improvements have been proposed and
applied, among which the IPCC method has been successful. Nevertheless, the [PCC lacks the anti-
interference ability to deal with uncertain events in mining, milling, and processing, despite

effectively reducing the cost of the truck-shovel (TS) system.

To overcome this challenge, the NFS method has been proposed, and its performance evaluation has
become an urgent problem to be solved. This paper presents a simulation-optimization based
framework to evaluate different mining methods, including the NFS method, in a quantitative and
objective manner. Afterward, in Chapter 2, the author reviewed the optimization models for mining
schedules and simulation models for different mining methods proposed by various scholars in recent
years and identified their respective limitations. Most of the reviewed optimization models do not
include the stockpile or only treat it as a marginal auxiliary tool, which is completely inapplicable to
the NFS method. In contrast, the NFS method considers the stockpile as a pivot point that connects
and separates the mining subsystem and the milling subsystem. Therefore, this research pioneers the
efforts to use mathematical programming models in the form of mixed integer linear programming

to provide a mining schedule optimization model suitable for NFS methods.

Furthermore, in the simulation models proposed in the past, either the crushing process was not
considered, or only the interaction between the truck and the crusher was considered—which does
not conform to the characteristics of the NFS method. To address this limitation, this research
pioneers the efforts to develop a simulation model suitable for NFS based on discrete event
simulation, where the mining subsystem and milling subsystem are relatively independent. The
proposed simulation model takes the results of the optimization model as input items to construct a

complete simulation-optimization framework for evaluating the performance of mining methods.
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To evaluate the performance of different mining methods, an oil sand open pit mine with a traditional
mining method is selected as a case study to implement the proposed simulation-optimization
framework. First, the framework is applied to the traditional crusher out-of-pit mining method, and
its simulation results are compared with real historical data to verify the effectiveness of the
framework and serve as a benchmark. Afterward, the framework is applied to the NFS mining
method, and the simulation results are compared with the benchmark. By summarizing and analyzing

the optimization and simulation results, the following conclusions can be drawn:

1. The optimization model established for the NFS method can generate an optimal or near-optimal

mining schedule, which is also a prerequisite for objectively evaluating a mining method.

2. The proposed integrated simulation-optimization framework can well simulate various activities
involved in open pit mining, including loading, hauling, dumping, reclaiming, crushing, and

processing.

3. The proposed integrated simulation-optimization framework can measure the performance of a
mining method from multiple aspects, including but not limited to operating costs, equipment

utilization, TPGOH, productivity, queuing time, grade deviation sent to the crusher, etc.

4. The NFS method greatly shortens the truck hauling distance and hauling time of ore material by
an average of 17.9%. At the same time, it also reduces the total ton-kilometer transported by
trucks by 10.9%, thereby reducing fuel consumption and carbon emissions, and ultimately

saving the operating cost of the truck.

5. The NFS method greatly reduces the truck's queuing time before the crusher by 57%, and the
truck's cycle time is reduced by an average of 16.3%. These improvements have greatly
increased the transportation efficiency of the truck, and the TPGOH of its ore material has
increased by 19.5%. In addition, the improvement of truck efficiency also reduces the number

of trucks required by the system.
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10.

Besides trucks, the NFS method also improves the productivity and utilization of shovels by
4.96%. This improvement comes from the reduction of shovels' idle time after the truck

efficiency is improved.

The existence of the pre-crusher stockpile in The NFS method can effectively suppress the
fluctuation of the crusher's feeding rate. The ore material stored in the stockpile can continuously
provide materials for the crusher when the ore mining capacity is limited. At the same time,
when the ore mining capacity exceeds the crushing capacity, store excess ore material to avoid

truck queuing up.

Since the NFS method provides a stable crusher feeding rate, the crusher can maintain a stable
working state as much as possible, and its output and utilization rate is increased by 4.87% and
4.85% respectively. The increase in the output of the crusher represents an increase in the final

production capacity, which can bring higher revenue to the enterprise.

The existence of the stockpile not only stabilizes the quantity of ore material fed to the crusher
but also stabilizes the quality. This is because the material sent to the crusher has been upgraded
from the previous load by load blending to batch blending, which greatly reduces the fluctuation

of grade. Simulation results show that the NFS method reduces grade deviation by 20%.

Without considering the equipment expenditure, NFS not only greatly reduces the truck
operating cost, but also increases the revenue, which can significantly improve the NPV and

profit of the enterprise.

To sum up, the performance of the NFS method surpasses the traditional crusher out-of-pit mining

method in many aspects. Not only has the utilization rate of trucks, shovels, and crushers been

improved, but also the operating cost and carbon emission have been effectively reduced, and the

NPV has been increased. It needs to be explained again that the above conclusions are based on the

premise that the NFS method is applicable. The NFS method is not suitable for minerals requiring a

low stripping ratio and small bottom space. In addition, the above conclusions are based on short-
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term (one-year) simulation results. Whether the long-term application of NFS maintains the same
advantages as the short-term is not clear. In addition, the above conclusions are based on the premise
of the perfect work of the conveyor belt. If the belt is damaged or shut down frequently, the results
will be far from the simulated results. These premises limit the popularization and application of
NFS. However, given its proven advantages, further research on NFS is meaningful.

5.3. Contribution of the research

The present study aims to provide a quantitative evaluation of the performance of the novel NFS
mining method that has yet to be applied in practice. To achieve this research objective, the author
has undertaken pioneering work during the research period, including a comprehensive analysis of
the NFS method and its internal activity interactions. The outcomes of this study lay the foundation
for further research and future practical applications of the NFS mining method. The key

contributions of this research are summarized as follows:

1. This research presents a novel mathematical optimization model based on mixed integer linear
programming, which is capable of generating an optimal or near-optimal mining schedule for
the NFS method. To the best of our knowledge, this research is the first to propose such a model

for the NFS method.

2. Taking into account the characteristics of the NFS method, this study employs discrete
simulation software to create a simulation model. The mining subsystem and the milling
subsystem are treated as independent modules, rather than being closely connected through

truck-crusher interactions, as is typically done.

3. The proposed optimization model and simulation model are integrated to establish a
comprehensive simulation-optimization framework. This framework provides a multi-faceted

evaluation of mining methods in terms of performance.

4. This study validates the proposed simulation-optimization framework by comparing the

traditional mining method case study with real historical records.
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5. By applying the validated simulation-optimization framework to the NFS method, this study
quantitatively obtained the performance of the NFS method in terms of transportation efficiency,
equipment utilization, productivity, and product quality. Additionally, we provide new insights

into how stockpiling can suppress fluctuations in crusher feeder rates.

6. A comparison of the NFS simulation results with benchmark results reveals the significantly
better performance of the NFS method compared to the traditional crusher out-of-pit method. It
not only enhances transportation efficiency and equipment utilization but also boosts production

and reduces operational costs for enterprises, ultimately leading to higher profits.

7. This study confirms the theoretical advantages of the NFS method over traditional mining
methods, indicating the potential for further research and practical application. Our work
provides a foundation for future studies aimed at promoting the use of the NFS method in the
mining industry.

5.4. Limitations and recommendations for future work

In this research, we have innovatively established an optimization model and simulation model that

are particularly suitable for the NFS mining method. Using these models, we have constructed a

simulation-optimization framework for assessing the mining method's performance. We have then

quantitatively evaluated the NFS mining method using this framework and drawn some conclusions.

However, these conclusions are based on certain assumptions and have limitations. Therefore, to

enhance the body of knowledge and to facilitate a more comprehensive understanding and

application of the NFS methods, we present several recommendations:

1. In order to be applicable to tackle the real size mine problem and obtain optimal results, the
proposed optimization model aggregates blocks into polygons and assumes a uniform grade of
ore material within each polygon. However, with the future increase in computing power, the
polygon size can be reduced to improve tracking of the ore material grade, enabling more refined

blending results and mining schedules.
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2. The optimization model in the proposed simulation-optimization framework is only optimized
once at the beginning and then applied to the simulation model as a deterministic result, lacking
flexibility. Future work can consider running the optimization model once each polygon is

mined to obtain a dynamic and more adaptive mining sequence.

3. The proposed simulation model assumes that trucks haul without any interaction with other
trucks. However, in practice, truck interactions with different speeds on the same route are
common. To simulate a more realistic truck hauling performance in the NFS method, the road

network can be optimized in the future and subdivided into smaller zones.

4. The truck dispatch logic in the proposed simulation model prioritizes the minimum queue length
before the shovel. However, different dispatch logic has a significant impact on truck utilization
efficiency. Future research can explore the impact of different dispatch logic on NFS

transportation efficiency and find the most suitable dispatch logic for the NFS method.

5. The pre-crusher stockpile is a crucial component of the NFS method, and its capacity determines
its ability to stabilize crusher feeding rate fluctuations and reduce grade deviations. In this study,
it is assumed that its capacity can meet the daily turnover rate of the mine. Future work can
establish a methodology to determine the appropriate capacity size that can adapt to different
mines and needs, considering construction and maintenance costs and blending requirements,

thereby improving the NFS method's practicality.

6. This study's conclusion that the economic efficiency of the NFS method is superior to the
traditional method only considers the reduction of truck operating costs and the increase in
selling revenue, without factoring in the cost of purchasing different equipment. Although many
studies have proven that IPCC can bring investors better returns under life-of-mine conditions,
future research can conduct a detailed cost and revenue comparison between the NFS method

and the traditional method to verify its superiority.
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7.  This study only compared the two methods under a short-term simulation of one year. Whether
the performance of NFS is still better than the traditional truck shovel method in the whole life
cycle is still unknown. Simulating the performance of the NFS method under the full life cycle
can greatly improve the understanding of the NFS method and has positive significance for its

promotion.
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