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§ . ABSTRACT

The exact solution for a buried source is presented &

for’ a 1ayer over a half space.i The source is a stress

4

discoutinuity on or in the first layer of an elastic

° LY

medium.‘ The COmputer algorithm evaluates a solution based

on the Cagniard Pekeris formulation and the complete‘

' . .
analytic results are given in terms of. generalized rays.

RN
M S

The near field solution is particularly interesting and the

v

T

results.are applicable to~exploration problems involving

s

' shalldw layersi For- a vertical or horizontal stress discon-

&

-tinuity the results show effects not predicted by intuition.A

~In additdion to the expected shear wave ‘arrivals one has a

prominent‘group_of:eompressional wavés whose radial

‘component is substantial ‘at larger distinces. The formation.
. { . ¢ e . . . . . . :

‘of a surface headfwave‘ié also of interest. The'results_

$ .. PO 3y

"for a layer over a half space are decomposed into individual

N Lo .

generalized rays'which are examined and\modified to incorf
porate the effects of attenuation through a v1scoelast1c

medium and the interface effects. The generalized rays are

grouped naturally into families, each family is completely
defined by an integer F (F=1, 2,...) which indicates the
number of interactions of the ray with the two boundariesa
Examples are shown for a weathered layer over a half |

Y ,
space and for the reflected and head waves from a M1551ssip—

pian type half space in a 31mplif1ed "Alberta"_foothills ?“

model.
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CHAPTER 1

)* Introduction . .

The 9r3§u§ntion of elastic w‘v.n in a Lnynrcd.ialid;
dud to boint sources, has been studied extensaively both.
:hoor;tically snd nu-oricn11§. The solution, either in
exact or in approximate form, hse beert given £;t different
-1mplo.gnd complex podn;o. ﬂy‘approach to the problem
1nyolvca gnnerali:gﬁ ray theory and a Cagniard-Pekeris
1nv¢r§ion because the mctmgd yields the complete and exact
lolption; |

The problem ‘of an SH-torqué si;uacéd inside a layer
ovetiying a hglf space was solved by Pekeris et al. (1963).
The axis of the torque was vertical and the displacement
du; to the source hadia triangglar shape at large distances.
This type of source excijes only horizontally polarized
(SH) waves ’Ed‘these ret;in their shear character upon
reflec;ion at the two bou;daries. Abramovici (1970) pre-
gented-the solution of a compressional pulse in a laxered
half épace. The vertical and horizontal compcnénts of the
displacement were given analytically in: terms of individual
genéraljzed rays. In his paper, he extended the work of
Pekeris et ai. (1965)»by considering the general case for
POiSSOn]S ratio ¢ and.not the pagticu}ar case 0 = 0.25 for
the layer. He computed synthétic selsmograms gof varioué
depths of the source and.fpr different loc;tions of the

"receiver,



:,Ahramovici end Gal-Ezer (l97d) SIUdiedrthe~motion
.jofhe sodid made up of onejlayer'over'e'half space due to
'the'presence‘Qf.a*vertical’point force actlng beneath or
at the free surface'using the generalized ray expan51on
Each term in the expansion represented a group of rays
‘reflected the ~same number of times as P or S. | The time
“dependence of thefapplied fogce at the‘50urce hed,a trl—
angular shapel They modelled fhe vertical force as ‘a
‘stress dlscontinulty along the vertlcal z ax15aand they ":r

. ¥

calculated the vertical and horizontal dlsplacements for

1

'a receiver located at the free surface.

| In this the31s synthetlc selsmograms for the general
case. of an horlzontel arbltrary force in the x-y plane are
computed using the'generallzed ray theory. The theoreti—'

cal development of the problem was solved together with

[

Professgﬂ'F Abramov1c1 during his visit on a " sabbatical
‘leave in 1979—80.' The algorithms for the numerical

evaluation were carried out jointly at the University of

~

Alberta and at. Tel-Aviv University. - The x-~component of
the force gives rise to vertical and radial displacement

while the y—combdnent'gives rise . to transverse motion.
The complete mathematical'solutiOn for the case of an
N : ¥ - :

“ horizontal arbitrary point force situated inside‘a layer

overlying a half space is .given in Appendix A which is an

.

expanded version of the paper by Abramov1c1, Kanasew1ch

and Kelamls (1982)

For the sake of completeness and to explore the
I o ) .



)

solution for particuiar boundary-value;prohlems the solu- "
tions‘for all three.sources (SH—point torque;.VertiCal
point force and horizontal point force) were examlned in

kdetail. The ”htﬁematical solutlon is exact and is obtained
i - .
in a closed analytical form ‘as ‘a superpositlon of indiv1—v

dualigenezalized rays. All the possible rays with surféce

°

and head waves are included in the seismogram up to a .-

particular time of interest.

¢
v

Another innovation of this thesis is the dintroduc-

~tion of attenuation and dispersionkin the synthetic seis-

mograms ohtainéd using‘the generalized f;y theory. »Thfs

is done by decomposiﬁg the seismogram into individwval

o ) A . -

generalized rays and incorporating the effects of anelas-

ticity in the frequency domain into each ray separately,. .

..The'linear theory of viscoelasticity along with Futtermahfen

:
Ay

model is used to model The anelasticity and reflection
A v , :

coefficients for ahelastic ﬁedia are calculated to take

into account the effect of the viscoelastic interface.

In this'chapter a‘review of the literature about the
attenuation of seismic waves is made. ?articular‘emphasis
is given to the frequency dependence of attenuation and'to
the vatiods.models of‘absorption and dispersion; In.the
second chaptet §ynthetic seismograms for a)thih "weathered'™
?layer.and tor a crustal layer model are presented=ahd dis-

cussed. The third chapter includes synthetic‘seismograms‘

with the effects of attenuation and.diepersion. Flnally,

in the fourth chapter synthetlcs are computed for an
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i/"Alberta" foothills model as an aid to 'theé interpreta-

/ . tion of wide angle seismic reflections.and head waves.

,1Qé Differeqt,&efieifions.Of‘Q;
It is coﬁqon eiperienee tﬁat as a weve-propagates
through real material, wave emplirgdes e@&enuate_as a
result'of a varigtypdf processes, ﬁhich ceﬁ be summérizedb
.'micreecbﬁicaily as inrerhallfriction or'anelaéticity. _ The
~ magnitude of internal friction is expressed in terms of

. the dlmensionless parameter Q which is- given by

-

(1.1)

-

£ ‘4‘\' N ‘ " ’ d ‘ .
where AE is the amount of energy dissipated per cycle for

4 T - ! ' ) . LT

a harmonic wave and E is the peak strain energy in a cycle

of the harmonic wave. Physically, Q is a measure of /the

,-imperfeEtiops in'thebelasticity of the’materials.

- ‘Thevapplicability of the above_defiﬂitiqn is rather
iimited;-mpre.cbﬁﬁenly one obserree‘ either (1) rhe temporel
deeey"of amplitude. in a stenQiﬁg'wave_at é’fixed ﬁave-'r' >
number or (ii) rhe spatiel‘decay in a propagating'wave‘at

a fixed freqtencyw Assumihg'that Q >> 1 and for media with
. g"‘

linear stress-strain relation we get that the wave amplltude
, i ‘ L .

A is proportional to E*. Thus, equation (1.1) cen»be

B

written as,

== | _ S

.oha'



s

v
-~

‘to determine,A = A(t), given

'In case (i) one wants

that A = Ao'at t = 0. Clearly, A decreases a fraction
7/Q at successive times %f, %%, :..; 22“'... thus we geé

4

T, n
=) .

Q

ARy - G-

(1.3)
‘w is the angular frequéncy; 4The quantity 7/Q is also
referred to.as the logarithmiec decrement 6. Equation (1.3)

L

can also be written as

- LE : [

c 0 A(t) = Ao(i-+—— -+ Aoek (for large n). ) T(1.4)

€
t
=
]
O

The Q defined using.Eq. (1.4).13 called teﬁporal Q.

. In case (ii) onéyfolléws a particular‘wévé'péak along
‘a distance dx apa observes-thé_gradualfépatiélldécpy of ~
;mplifude; Assuming thafvthe diréétion of prgpagationvis

v "also the direction of attenuation'we get '

AA = S22, - T ' (1.5)
where A is the wave{éngth.‘ Using thejrélation between‘fhe
wavelength A, the angular frequency w and the phase

velocity ¢ . e ' , ] AR

equation (1.2) becomes



n1a
R
; .

et o

- . >

A<x)'=3Aoé | 2 I - (1.8)

where A is‘the amplitcde‘at x'=_0; 'Equetion (1.8).defines'

‘the value of the spatial Q .

- I

The Absorption coefficient o is defined as .

2
E .

oA

thus, equation (1.8) can be«wfitten as

e
>
o

/7

A (1.10)

e o _ ~

‘ ‘Equetion (1410) describes the attenuation noﬁel\tiii
will be used in this the51s, i;e., an exponential decay -of g\

L ‘ : .
amplitude with dlstance. The above‘definition'nf the

absorption coefficient implies that o is a linear function
of frequency,‘a mofe detailed discu551on of thls top1c will
occur in later sections of this chapter. k
. For tﬁo'diffetentvposiﬁions,;xlvand xz'v(x2

| : > il) witn‘
respective amplitudes A(xl) and A(xz)_nsing equation (1.10).
one get’s . . e

A(x, ) -d?%l—xz)’

;o . | A(x)—e : . , '(l-ll)‘



or t“ o }nA‘ﬁifll; ;u(x;;*')/ | (1.12)

kS
i

j‘from'which’the value of a can be ohtainEd

14

‘ . 1 . A(xl) - .
a4 = M ln"zﬁgrjp (1.13)
271 ‘ 2 L
- v ’a’ K . ) . N . .
in nepers per unit length or L CRE
Ty " A(x.) .
1 - 1)
o« = —— 0.20 Iog | ——~ (1.14)
. XpTXy T | Ay o
-in dB per unit length o o : o '_ ' o e

‘The definition of Q given in equation (1 1) is, '
'equiValent to the Q'of an oscillatory electrical‘circuitfi

This provides an alternative definition for Q which refers

.. to the forced vibration of a specimen with resonance

o

'frequency f. 1f~the frequency of’the v1bration is varied and

<

its amplitude held constant,'thenithe amplitude, of vihration
Tof the specimen traces éut a_resonance curve.‘ By measuriné
_the width A f of the reéonance curve when the amplitude of
vibration” equals l//" of the. amplitude at the peak frequency

Q is expressed as

= Af

1 ' o
= = 1.15

| Q | ( h):
“ B ' "ﬁ o

All these different definitions for Q may be applied when

' Q >> 1 and‘they.imply that'the direction'of propagation is



rthe_eame as the direction of attenuation {(Zener, 1948). For

erroegly.éttenuatiné‘media;’these‘definit ons will disagree
. . . B b ‘ . ‘ - .

~and thus we have to define Q differently.-

O0'Connell and
Budianeky (1978)‘pro§osed~the folibwing’defreiﬂieﬁ‘for Q,
which is probably the best of several differ nt definitions‘

that scientists have used for Q.

A -
—

ol

Tdmpy 0 e b
where, M = A‘+A2u‘. for P waves
M= - for S waves N S

A, 4 are the complex Lemé'parameters.
'The .above definition for Q will be'used‘for}caICulating
‘reflection and traﬁémissionfcoefficients fdrjéhelastic.media;

< In summary, the common measures of attenuation are

a

defined and related te one another as follows: .

AE  AA & _ 20c _ Im[M] ‘
mTA T w ' JRe[M] S (1.17)

1.3 Experiﬁental measurements of atteeuation-

The measurement of atrenuatioﬁvforﬁearthumarerialsl .
ie weil'covered in rﬁe geophygical,literatureu The valuee:
of Q cen be deterﬁined in‘the'laboratdry, in the field or
by‘anelyzing earthquake and normal mode date. 1In Mhis section

a brief review ‘of the experimental measurements of attenuatlon

”will be made considerlng only 1aboratory data and field

s,



'.experiments. Attenuation measurements from earthquake
i

records and normal mode data will ﬁot be -discussed although

. / ‘
the.literature‘is quite extensive in this area. Particular
attention will be given to the frequency dependence of Q
and the linearity of the absorption coefficient in terms of
frequency. Before going into the main discussion one has to
realiee that the accurate meastrement of attenuation is a
faifficult.task with'experimental and interpretational probf,
'lems. The choice of ajparticular techniquesis based largely‘
on the frequendy range of interest, the actual values of
'atteﬁuation,'and thehphysical conditions underbwhichuthe
sample‘will be studied. The methodsigenerally useg for
measuring attenuation in'the laboratorytcan be classified
into the following categories (Zener, 1948; Kolsky, 1953;

Schreiber et al. 1973):

1. Free'vibration:. ln.this technique a rod of rock

is suspended vertically s0 that a mass with a large moment
) \

of inertia ‘can be attached to its lower end. If the mass is
vgiven a kick the system vibrates freely. The rate of decay
of the amplitude of these free oscillations is attributable,
to energy loss in the,rock. Define the logarithm decrement
'%é

Qn(Al/Az) ‘

= (1.18)
(ty-t)f

where Al and Aé are the amplitudes at times tl'and t2 and f

is the natural free-vibration frequency of the'system, the

TNt



~value of Q is calculatehyusing 1/Q = &§/n.

2. Forced v1brationa The method has been mentioned - -
already where Q may be found from the width of. the resonance

~curve. Equation (1.15) is used in the calculation of Q.

. : 3. Wave propagation methqd: The transmission of a

- pulse:through the rock and its detection is the basis of

this technique. The method assumes én exponeﬁ{ial,decay of
amplitude of the seismic'pulse with distance or time and that
ohe can correct for los;es due to sﬁreading, refléctiohs,
diffractions, etc.

»

4. Observation of stress-strain curves: For cyclical-

iy stressed materials.the energy loss per cycle, AE, is the
area of the mechanical hystéresis loop, in whicﬁ‘ghe ;Hasé
of the strain lags behind thét of the stress.vV;hqé, Q éan
be calculated using eqUation (1.1). | |

s | The use of stress-strain curves will provide . informa—
t 'n at frequencies below l Hz, while resonance vibrations
arelused to measure the‘attenuation in the rgnge\of 100 Hz

to 100 kHz. Wavé—propagétion experiments ére commonly
restricted to the ultrasonic range of 100 kHz‘or.higher. Let
us noﬁldiécués’some key papers deéling with laﬁpratory
measurements of attenuétion.

Birch“and B;ncroft (1938)vmeasured fﬁe Q of ;=core

_of Quincy granite.using the resonance technique. They-
‘concluded that Q of Quincy granite was ;pproxlmately inde;en—
dent of frequency in the range of 140 to 1600 Hz. |

.

Born (1941) used the same technique to measure the

o

10



'logarithmic decrement of several rock cores taken from wells,
He found that the logarithmic eecrement for the dry rock
samples was independent of frequency. His studies and
measurements with water saturated samples showed -that the
total decrement nas the sum of two terms, the first term ﬁes
ftequencycindependent and the second one which was |
proportional to frequency; !

‘Bruckshaw and Mananta (1954) measured the quality
factor Q on six different rock cores (granite, dolerite,
diorite, sandstone, 'shelly limestone and oolitic limestone)
’in-the frequency range 40 to 120 Hz. They concluded that Q
was practically independent of freqnency for these six rocks.

2eselnick and Zietz (1959) used a pulse-echo techniqne
to meesufe the absorption coefficient in three différent
limestone samplest Using a piezoelectrlc crystal attached
to one end of the specimen a short pulse of compressional or 8,
shear waves is generated. The first wrrivals and multiply
reflected signals are detected at the ether end of the
specimen byva secondlcrystal. "These arrivals are displayed
on an oscilloscope and the:decey.in)amplitune-is'measured,

. “

thus the absorption'coefficient-can'be calculated. They

™
N

found that the absorption coefficient was proportional to

the frequency in the range of 3 Hz to 10 MHz for compreSSional
and’shear waves. The absorption coefficient calculated thfs

way includes the effects of apparent losses due to geometri— \\\\
cal spreadlng and the reflections and transmissions at the v.' . \\\

possible specimen boundaries. However, they found that these



losses were negligible in respect t0«the'abaorption.

Wylie et al (1962) studied the absorption of seismic
wavea‘inﬂfluid saturated porous rocks. They proposed that \
the logarithmic decrement was the sum of two terms. The
first term was practically independent of frequency while

the second term Was frequency dependent. They ‘studied the‘
absorption in terms of fluid saturation and they did noti;

SN .

give any evidence showing the frequency dependence of the

total logarithmic decrement.

Knopoff (1964) sumﬁariged-the 1aboratory measurenente ) N

v

M

. . .
of Q in metals, non-metals and rngks In his article with

the shortest title in the geophysical literature e,
Knopoff indicates that for_Small strains the absorption
coefficient is a linear function of»frequency and hedce-Q‘ﬁs
constant. A - : . | ~“Av\
Bradley andjfort (1966), Atwell and Ramana (1966)
‘reviewed the literature and they concluded that Q is inde-
pendent of frequency over a range of about 106 Hz. They
tabulated laboratory and field measurements and measurements

from earthquake records. Atwell and Ramana applied a . least-

squares analysis and comcluded that the.absorption coe ficient

was a linear function of frequency in the range 10 . -3 Hz

t
100 MHz.

' Toksoz et al (1979) studied the attenuation of seismic
waves 1n dry and‘saturated rocks., Their laboratory measure—

ments were made at ultrasonic,frequencies (0.1 to 1.0 MHz)

and they showed that attenuation coefficients increase
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linearly Qith frequency (constant Q)'for both P and S waves.
'in botﬁ dry aﬁd fluid na;urated'rockq. They found that the
attenuation in water saturated rocks is greater than in dry
rocké, while the attenuation in frozen'ro;ks is very.mucﬁ
lower than, in saturated rocks. They also studied the effect
of presbu;e on the ;ttenuation of seiémic waveé and they
concluded th;t.aﬁtenuaﬁion decrease; (Q increases) W1Fh
increasing pressure for‘both'P and S waves in‘/all caéesyof
éacurétion. -fhe rate‘of‘increase of Q is high at low
pressures and ievgls off at higher préssures.

| ; Therefo:e, iﬁ looking at,&h@,laboratory data';hich
has.juét been discqssed, Qé find ‘that fof dry rocks and métalsh
the absbrption coefficienf dépengé onléhé‘first pover, of .
- frequency aha ;Hus Q is frequencj independent. Laboratary '
jmeasugeﬁenté with flhid‘satu£ated rocks do not léad‘ﬁo the
saﬁe conclusion. In .‘U.quids‘Q_1 is;proportibnal to frequency
(Pinkerton, 1947) so ﬁhat in s;mé hié%ly porous_and permeable
rocks the total Q—; mayﬂtontain.a frequency depéndent'
coﬁPonént (Born, 19415 Wylie et a1,11962). There 1is als6 
‘evidénce thag Q—l 15 indééeﬁdent éfbfiequéncy.for safurated
rd¢ks #s poihtéd ouilby McLé:oy and DeLoach (1967),and Tbksoz
et al fl97§),‘;Most_authors sﬁggegt some form of f;;queh¢y
.dépéndehce for Q for fluid saturated rocks. ‘This‘form ranées
from Q-.1 varying ditect1y as ffequencyvto Q_'1 varying
inversely as the squa;e root 6f freqUency:' it~is,éyident
that the“rock te#tufe, porosity;’p:essure, tempergture and

[

~ type of ®aturated fluid play an important role in the )



relationship between attenuation and frequency for fluid
saturated rpcks; ‘ : ¢

ot

)‘Lat us now discuss bticfly the field axperimcnts

(in situ) fdr measuring Q; If the objective is to under~
stand the attenuation oﬁjneismic waves in the earth, then
the impbrtance‘cf measuring Q ird situ is‘apparent. Tﬁe most
common method of measuring the attenuation in situ is using
ds¢a from vertical seismic profiles (VSP). Seismic pulses
genereted by a surface seismic squrcc age redorded by a
single downifole seismodeter posltioned athaﬂion depth§ in
a well: _fhe lateral separation between bﬁe source and the
well‘is generally small compared to the selismometer depth.
The spectral tatio method is then applied and Q estlmates
are obtained The spectral Tratio method involves a Fourier
ianalysis of the data from which we can compute the valye of
:Q and the phase velocity. To explain the method consider

1

and~another_pulse which‘ttavelled a distance r, from the

a pulse which has travelled a distance r, from the source

source. Then, we get:

) 1k(r2-r1
Fz(m) = Fl(w)e . \ S (1.19)

. o /
e L.

T,

“where F_ (w), F (w) are the complex spectra of the two pulses
l

V’and k is the wavenumber. Make the wavenumber complex

w - : -
-: C(U.)) + ia 'v‘ (1-20)

=
1
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where c(w) is the phase velocity and o is the abasorption
cosfficient. Substitute in (1.19) and take the tn of both

sides we obtain

.

-

Az(u)
in Al(“) - -u(rz-tl) (1.21)
and
wl{r,~-r,)
2 "1
C(u)) - ¢2(w)_¢l(w) (lo22)

where Al,A2
phase spectta of the two pulses. Equations (1.21) and (1.22)

are the amplitude spectra and ¢l.¢2 are th€

define the gpectral ;atiéhmethod.' Equation (1.21) indicates
that a plot of the naturéi‘logarithm of the ratio of the
amplitude spectra against frequency can‘be used to determine
the nature of the frequency depehdence of the absorptién
coefficient. Equation (1.22) definesfthe dispersion curve,
i.e. the phase velocity as a funcbdon of frequency. q

The first such'experiments were carried out in the
Pierre Shale area near Limon, Colorado. This particular
location was chosen because it provided a thick section
(approximately iOOO m) of uniform shale very close fo the
@arth's surface. ) | .

Ricke; (1953) performed»a:series of field experimeﬁts
in the Pierre Shale area in‘érder to test the vaiidity of

his wavelet theory. According to Ricker a modified wave

equétioh which includes a term with 'a first derivative with



of hisftheory.‘ However, in the discdssionvof his‘paper many

cauthors pointed out serious problems in the comparison of

]

vrespect to time, is used to explain the seismic phenomena.

Ricker s model eads to an. absorption coefficient which
varies as the square of the frequency and it predicts that
l

the wavelet breadth willﬁincrease as the square root’of.the

travel time. He presented’graphs which show‘thevvalidity

observed and theoretical wavelets. o - :

® McDonald et:al 61958) made attennation measurements

in the Pierre Shale area,-in the same area where Ricker did
" his work. Shots at depths of 76.2 to 91.4 m were fired into

“five geophones at depths from 107 to 229 m, ‘_They used

velocity log“ddts to apply corrections for geometric spread-
iné‘and they,measured the absorption by Fourier enalysis of
the correCted'waveforms., They concluded;that'for vertically
travelling P waves the absorption coefficient was a 1inear

function of frequency in the'range‘of lOQito 600 Hz. - They

obtained similar results for horizontally travelling S waves.

They also studied'the decay of wavelet~amplitude with travel

time and they found .that the wavelet broadeniqg with travel

‘time was less than Ricker had measured

Wuenschel (1965) studied body wave attenuation and
dispersion. The experimental data used in his study was
the pulse—propagetion,experiment done by Mobil in the Pierre
Shale (McDonald et al, 1558)‘and a madel seismic analog of

the Mobil experiment 3sing nltresonic pulses in a plexiglass

sheet. He shoved that the dispersion phenomenon was present

16



along with tﬁe ébserved absorption and he concluded that:
the field experiment conducted Ey#McDonaid et al (1958) in
vthé Pierre Shale confirms Futterman's theory (1962);
Futterman's tHeory:providés thé»éttenuation mbae; used in

[

this thesis, and a more detailed discussion will be found
in the next sections of this chapier.

bole (1965) studied reflections from theANéwfoundlapd‘
'abyssal-plgne and the Gulf of Alaéka. Hé appfoximated thg
Jrefiéction précésé by a three-layer fiuid model, WithJ
atgehuatioﬁ_in Fhe second and third layers. He‘theh calcul-
ated“theoretical refiection-coefficieAts considering Lhe
sediment attenuation as propor;ional‘to the one-half, fi;st
‘ éﬁp second. powers of>the frequency for éompariSOQ wifh
umeasﬁrgd coefficients. For the frequency range 100-1000 Hz
he found that the first power frequency attepua;ion law in
the sediﬁent'is'cohsistent with tge bbserved dependénce of.
£he'0cean—bottom rgflectiyity.

Tullos aﬁd Reid (1969) measured the attenuation of
éeismic ;nergy in th?fsediments iﬁvthe~Gulf of Mexico. They
used blasting.caps as sources aﬁd'g;ophones cemeﬁted to the f
‘earth ﬁt various depths in é borghble as feceivers. They

applied corrections to the data due to geometrical spreading

and they removed the effects of constructive and destructive

interference due to reflections by averaging the spectré'oﬁﬂ

many traces over a small interval in depth. The ratio of

o

spectra at different depths was then calculated and from

this spectral ratio they determined -the nature of the

17



frequency dependence of the absorption. They found that the
‘abkorption coefficient is a linear function of frequency 1n
the'range Grom-SO to 400 Hz. |
Hamilton (1972) studied the compressional veloc1ty
"and absorption in the sea floor off San Dlego in the frequency
range 3.5 KHz 'to 100 KHz. He‘concluded that attenuation is
approxlmately_dependent on the first power of frequency and
'thatfvelocityrdispersion is almost absent in water eaturated
sedimente. ‘He also indicated that intergrain friction
Aappears_to be, by far, the dominant cause of waye energy
‘damping in marine sedinents.‘
Ganley and Kanasewich (1980)'measured thevabsorption

‘and dispersion‘from seismic checkéshot data ueing the spectrai
. ratio method. The data was taken from a sedlmentary bas1n
in the.Beaufort Sea . They showed. that frequency dependent
losses due .to reflections and transm1551ons play an 1mportant
vrole and they applied correctlons due to these losses u51ng
”synthetic seismograms Thelrkanalysls showed that the value
of Q is almost frequency independent and that the dlsper81on
measured in the data ds consistent with'Futternanjs model.
~Measured- Q valueS'were 43;2 for a depth interval from 549

to 1193m and 67i6_for a‘depth interval from 945 to lBllmhr

--Hauge (1981) used data from vertical seismic profilesb

to measure attenuation via the spectral ratio method.: The
data were taken from five detailed velocity surveys, one was

3

carried out in-West'Texas and the other four in the Gulf

- Y
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Coast area. Actual measured values of aﬁtenuation varied

by a factor of 10, ranging from less than C.l to 0.9 dB per
Qavelength, depending on the lithblogy.: He found tha% pordus
~sénds have ﬁuch lgfgg:'attenﬁation thah'neighbouring shales.
.sfudying the éhape of the_seismic_pulée, he cbncluded tﬁat-
atténua;ion changes the pulse shape noficéébly, Ghﬁéh is

another indication that dispersion is an essential consequence

of abéorptioﬁ.

Spencer et al (1982) stuaied the“basic pfdblems
encountéréd in extractiné estimates of seismic attenuation
.fromﬁdéta recorded on'vertical‘séismicﬁ}rofiles. They paid

particulér attehtion té interfefence effects, épatial
resolﬁﬁi ! énd frequeﬁcy depéﬂdencé of atfenuation. Tﬂey'
fdund'that for‘small receiver separations, the’attenuat;on

compﬁtéd ffom the spectral ratio}meghdﬂ‘is much~moré strongly
'iﬁfluenced-by thé local stratigraphy in the immediate vicinitj
of the Seismomgter than by>the‘attenuation in the depth
intervai between‘seismométepé. They also‘showed that the
‘épétial‘resolutionAis str;ngly influenced by the local
Stra;igraphy and in most cases attenuafion eséimates would not
be possible to identgf;ulithologiesAor conditioqs which are
the;gdurce of aﬁémaious dissipafioh. lPioftiné ‘the aﬁplithde
‘ratios égbinst ffequency,ffpey found that'the graph e#hibits

a lineér:frend which ' is in gopa agreement with prévious

experimenta}l results.

-

Summarizing the field measurements of attenuation it

is evident that the absorption coefficient is a linear function



of frequency'and.hence Q is constant.' This steremenﬁ is
true for freqoencies in the range of 10 to 500 Hz and for

in sitd rocks. Vertical seismic profiles (VSP) provide/%he‘
most successful method of obtaining in situ attenuation

estimates.

1.4 Attenuation mechanisms
In order to evaluate andinterpretlaboratory and

field mea3urements of attenuation, possible attenuation

mechanisms involved are needed Numerous mechanisms have

been proposed.and ‘each may be considered to have a greater
I ' ‘ . . ‘ ) : ‘
degree of importance to the -overall attenuation under

certain physical conditions., in»this section arbriefbreview
-of possible attenuatidn'mechenisms‘will be made,.considering
only rhese‘meChanisms responSible for seismic attenueﬁion
in upper crustal rocks, Studying attenuation mechanisms one.
r,has:to keep in mind that'eacnbmechanism depends‘onbrock type;
saturatiOn state, pressure, frequency range,_anplirudevof-
the acoustic wavedand orher variods rock properties.

Walsh (1966) proposed that the main source of attenu-
'ation in dry rocks is based on the frictional dlssipation as
crack surfaces in contact slide relative to one another
during oassage of a Selsmic wave. He considered that all
’other sources of attenuation are lumped together in the’

. ‘

intrinsic ettenuation, which might include losses due to

thermoelastic effects, viscosity, etc. In his analysis,

Walsh formulated the problemlby'approximating the cracks as

20
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ellipsoids.and then he calculated Q values:for P and'S waves.
The resulting expressions are rather complicated ‘neverthe-
iless, the Q values obtained are frequency independent.
Johnston et\al (19;95 utilized Walsh's formulation to model-
‘pressure dependence for the attenuation of - ultrasonic wavest.
They showed that increasing pressure decreases the number of

cracks contributing to attenuation by friction, thus the

attenuation is decreased. Other authors (Mavko, 1979;

Winkler et al, 1979) proposed that friction is not a dominant

mechanism particularly at low strain amplitudes and low
frequencies. HOWever, under certain laboratory conditions,
namely high amplitude ultrasonic experlments, it may be,

dominant.,

Savage (1966) applied Zener's theory of thermoelastic'

-'attenuation to explain the attenuation of’ elastic waves in
solids. He showed that thermOelastic losses are assoc1ated
with - 1ong flat cav1ties which can‘represent cracks in the
medium, This model predicts a decrease in attenuation With
increasing pressure and an increase in Q for low frequenc1es
Recently, Armstrong (1980) has proposed another thermo- :
elastic model for which attenuation is essentially frequency
independent. | |

In a series of papers,'Biot (1956 1962) developed 4
mathematical theory for the dynamic response of a linear °
‘-porousk;olid'containing compressible‘fluid. According to
Biot's theory attenuation is a result‘of the motion of the

pore fluid relative to the rock frame and it Eepends od bulk

1
|
i
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rock properties. This type of mechanism is generally con-

cluded to Broduce negligible attenuation at low frequencies’
‘*in‘consolidated rocks‘(White, 1965). However, it may be

impéitane at uitrasonic frequfdciesb(Johnston et al, 1979) .

or_in permeable, unconsolidated sediments at inteimediate
frequencies. | ,

'Biot—eype mechenismS'ohnSidef only bulk gﬁuia fiow in
porous rock and they ignore inter— and intra crack flow
(local flow), both of which may dissipate seismic energy.
Intercrack fluid- flow, sometimes known as squirt" flow, was
first proposed as ‘an attenoation mechanism by Mavko and Nur
(1975).

Andther type of mechanism is e stress 1oduced
diffusioo model based on’ the thermally activated motions of

atoms or defects on the lattice of a orystal unQer the

influence’of‘ektErnal stresses (Tittménn et al, 1980). This
type of mechanism is. similar to that due to viscous grain
boundary damping, where thére is a relaxation of stress at

~grain boundaries. Both mechanisms are relaxation mechanisms

and they are generally described by

“wt!

2

o

l+m2t'

where D 1s the ratio of the greatest non-elastic stress  to
the elastic strain, t' is a relaxation time- which varies

with temperature T according to an equation of the form

s

=D ——=——-r . . (41,.2.3) |

S e i nss
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(1.24)

where G 1is an activaticn energy and k is holtiman's constant.

\V,Summarizing the attenuation mechanisms it seems that
the mcst important absorption nechanism for sedimentary rocks
at seismic frequencies would be sliding at cracks or grain T
boundaries. This mechanism implies a phase angle between
stress and strain which leads to a hysteresis loop Relaxa-
tion mechanisms such as grain boundary damping, thermal ‘
currents or stressvinduced dikfusion play a'seccndary role
'in the attenuation of seismic waves. Finally, the presence
'og'a rluid_isva third’possihle source offabsorptibn. Biot-
type mechanisms and "squirt" flow canvbe considered as the
most dominant mechanism in porous rocks.
1.5.,Attenuatien models

The necessity for incorporating the effect of atteh-

uation on wave‘propagatisn in‘realistic media islobviods to
every geophysicist. Several models and mathematical theories
have been developed which take into ‘account the effects of
anelasticity. In this section some key papers“dealing w1th
attenuation‘models will be dlscussed. l o ”
| The.simplest nodel yhichris the basis ior further
generaliZation is based upon linear elasticity_and Stokes'
viscosity A material of this kind is called viscoelastlc
Ricker (1953) in his classical paper tried to model the
absorption by adding a single term to wave equation folloqing

4
\



theiwork of Stokes (1845). He concluded that the absorption
coefficient varies as the square of the frequency and thus

Q is'frequency dependent. It is now clear that Ricker's
model 1is not adequate‘to describe the anelasticity in earth
materials since the frequency dependence‘of Q contradicts
practically all experimental observations.

Kolsky (1956) studied the propagation of short
mechanical pulses along rods of three polymers, polythene,
polysterene and polymethylmethacrylate. He first calculated
theoretical curves showing the phase velocity and attenua—
tion for three models, the Maxwell model, the Voigt model
Aand the standard linear solid. The Manellvmodel consists
of a perfectly elastic‘spring in series,with a dashpot which
has Newtonian viscosity, invthe Voigt model the spring”is |
'joined across theadashpot and theﬂStandard linear solid is
_represented by a second.spring in series with a Voigt model.
He concluded tnat the standard linear solid model gives
better approximdtion to the behaviour of a real visco-',
"elastic solid but still can only be fitted over a limited
-frequency range.

Futterman (1962) shoved that dispersion is a necessary
consequence of‘tne medium’absorption and is determined
unambiguously by it. He assumed that‘the‘absorption
coéfficient, a(w){is strictly linear in the frequenoy; over
.thelrange of measurement and that the principle_of super—- -
position 1is valid. Consider a one—dimensional plane wave

~in the frequency domain as follows:

-
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u(x,w) = ulo,w)e X% o (1.25)

|
P

where K, the propagation constant, can be expresséd‘in

'

terms of the phase coefficient k(w) and the absorption

coefficient a(w) as followsﬁ

K(w) = k(w) + io(w). (1.26)
‘ : ,
Thus, R
u(x,w) = u(o,w)e_a(w)x eik(w)x (1.27)
ez Yoy |
or u(x,w)'= u(o,w)e alu)x w ; (1.28)
where ¢ = c(w) is the phase velocity.

‘Therefore, using the assumption of lineér‘superposition

1

the wave at (x,t) is

+

u(x,t) = f% f u(o,w)e

- 00

i[—-ﬂ—x—wt] '
malw)x T re(w) dw.  (1.29)

Equation (1.29) shows that if the absorption coefficient

~

.and phase‘velocity are known as functions of frequency then i

’the effects.Qf absorption and dispersion'cah'be easily

introduced in the frequeﬁcy domain.
.Futterman assumed a low CUtfoff frequency wo,
characteristic of the material, below which no dispersion -

~exists, and he expressed the complex wave number K(w) in



“

terms of the index of refraction n defined as

. N

n(w) = %g%gy = Re[n(w)] # 1Im[n(w)] (1.30)
o : -

where Ko(w) defines the nondihgérsivg behaviour of K at the
same frequency. He then used the prinb;ple of causality

to derive relations of‘thé Kraﬁer-KfﬁQig type relating the
dispersive péft of the index of refréétiﬁg\of the médium

¢

to the, absorptive part'by means of an integfig over the

entire frequency range. These K-K relations afé;a

O

consequence of the principle of causaiity_and folld§<yithout

recourse to a specific wave equation. He considered tﬁree
different forms of absorption which satisfy the assumﬁtion
of linearity with respect to frequency. In this thesi

=Y .

the (A3) Futterman's absorption form is considered, naﬁely:

Im[n(x)] =

-X., ‘ . :
/ | 20 (Cl-e ) _(1.31)

where Qé is the dimensionless factor of attenuation at

mo and x = ji. Then, for Q>>27 the phase velocity is

o
given by
é(x) = c¢ (1~ 1 inyx)_l (1.32)
o : WQO ‘ : ‘
and Qx) = Q  (1- —— gnyx) (1.33)
‘ o mQ s
, 4 . ‘ o
where'c0 is the Phase velocity at W



\ /
and &ny = 0.5772157... is the Euler's constant.:
,Equa:iona (1.31), (1.\32) .and (1.,33) ‘gi”eacr\ible t‘.hé';
attenuation model used in this thesis. Thg‘low,cu&SEf
frequency W, dogs not correspond to any ;pgcific~pﬂysicélb‘
mechanism and i; can be chosen sufficiently lbv, The values
of Q, Qs obfaiﬁed by equation (1.33), sh;; ;hath\iq |
practicall& constant and frequency 1ndepeﬁde%t. Fpttgr¥
man;symodel 1s in excellent agreement with‘expégimental
’data'(Wuenschel,‘*965) and it has a major advgﬁtagegin
that we need not appeal to the bhysiéal details that are
éharacteristic of a particular theory. They Are‘by;as%ed
to yield the,disﬁersioﬁ df%egliy from the absafption ‘<% SN
coefficient, in this case takén from experimeﬁt. Q .
Lqmnitz (1957) tried to expiain the relationship
betweeﬁbtransienp creep and interval fr;Et;onvin solid
maférialé. He used Boltzmann's superpositioﬂ\principle to
relate stress and‘strain'és follows:

4

e(t) =

=R

— - 0O

. -
\

whgie\g(t) is the stress, e(t) is the strain, mfis an

.y

elastic EEEET\ t and f(t) is the creep function. The

Stresé is related to strain as follows: - ~
| t . ' .
Cp(tYy = m [;(t) + J‘e(t)§(t—r) TJ © (1.35)
i

[P(t) + f p(‘t)f(t—T)dT] Co (13s)
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' where y(t) is the. relaxation function. Equations (1.34),

‘

(1.35) are convolution integrnlu, thus by Fourier transform

.we.obtaih

E(w) = 280 (ery) v O 1.36)
P(w) = mE(w) (4Y(w)).. (1.37)

Lomnitz asS5umed a complex elastic .modulus M to -

relate stress and strain as follows:

P(w) = ME(w) (1.38)

tée qﬁglity factor Q is' defined such thét“
M = <1+1 %) | E ‘ (1.39)
‘He then showed that ascreeﬁ fpnction of the form

‘ : | -‘ vy

f(t) =v1+wH

(t>0) =~ (1.40)

could be used to derive the f0110w1ng expression for Q

assuming that Q >> 1 and f% << 1
. H

-’ qr v | C(1.41)
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where q is i”con-tlnt and Wy is a high frequency cutoff.
Equation (1.41) 1is very similar to the frequency
dependence of Q given by Futterman in equation (§.33).
Indeed, the two theories by Futterman and Lomnitz do not
differ signifiéanCIy (Savage and O'Neill.’1975). Futterman
assumes a c;mplex'propagation constant while Lomnitz
considers a complex elastic modulus. Neither theory provides
any information about the physical mechanisms of absoébrption.
Carpenter (l9§é) calculated the impulse response of
a sygtem satisfying the constant Q hypothesis. “He gbmpared
the models of Koléky and Futterman and he conclﬁded that
. they are very simiiar. He also concluded th;t in many
cases it 1s more convenient to work in the frequency domain
ra:hér than in the time domain. |

Azimi et al (1968) considered a model for which the

absorption coefficient a(w) is of the form

a e ao(m_lsec)
a(w) = —— : (l.éb
l+alw al(sec) i
in which ao, al are constants. This model has a linear

dependence on frequency for a.,w << 1, They used Kramers-

1

Kr6nig relations to derive the following exptessﬁon for

the phase velocity

»

: 2a
o ET%TY = = + —° 4n ( 1,> (1.43)
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where cm’is the phase -velocity és‘the frequency becomes
infinite. A T

; Strick—(1967; 1970),uséd the followhpg relation for
] Str : _ . .
tbe'absofption coefficient: ‘ .

a(w) = bms

where b is a‘cénstént and'd < s < 1. He‘thenréerived a
dispersion relation for the above model and he ndticéd
‘reasonable agreement with expgrimenial data. He also
dévelopéd.an_asymptotic expansionlforrthe time dogain shape
' ~of:a‘travelling wangat large disfancés;' ﬁe used a solid
of Q = 50 and he égmpared hié results Jifh Eut;erman's
theory. He found tﬂag fhe shapes of the éulses are similaf
but thé time is- very differentf‘ The¥difference in times
is due té varioué éppfoximaxions thaﬁ Strick made, thgé his
theory is validﬂoply for frequencies ﬁugh grea§e£ ;ﬂan thé%v
low frequency cu;off: |

| "Kjartanssoﬁ'(1979)Jpresénted a linear model for
’attenuation with Q»exactly independent of freqﬁe;cy.
According to his mo@elcthe wave propagation is completély
specified by fwo pgfameters,‘é.g. Q»and q;{‘a phase velo«
city a; an arbiprgry fefe;ence frequen;y W He started
using.Boltzmann's SUpérposition principle with the following

creep function

(1.44)
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1 e
_f(t) —‘—*———-—Mor(l_rzy')(z—o-) t>0 |

]
o

£(t)
where T is a function with a value close to unity, to‘is
an arbitrary reference time and MO is a constant.  The

value of y is constant and is related to Q. as follows

A
e
S

' ‘ 1 11\ 1
\ Y o= n q 7Q , ( §)
He then, dérived a simple exact expression for the phase'
velocit Qgé a function of frequency:

P Y ' g .
c(w) = ¢ (-£L> . ' (1.47)
‘ o\ w .

(0]

Kjartansson's ﬁodel.ié causal since both the creep and
relaxation'functions‘vanish fo}.negatise time, nolStrain.
can precede applied stress, nor can any streés preééde
app}ied strain. |
Finally, the standard linear solid model will fe

examined, This.model is well described by Zener (1948).

The stress-strain relation is of the following form
p + epﬁ = m(e+beé) (1.48)

where ep is the relaxation time for stress corresponding .to

[
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a step change in strain, pé is the relaxation time of

‘strain under an applieﬂ step in stress and m is a constant.

.The Q is obtained as a function of w and the relaxation

< .
<

times

: ] ‘ "w(p -e ) : ‘ '
%z ____LS . ' (1.49)
l1+uw"p e
e p

B . /7 -— .
The above equatfon shows - that Q 1 is not constant but it

. 1 .
behaves as a resonance curve as a function of w. The

_attenuation, Q 7, is concentrated near the frequency ..

-y , - : .
*, with Q 1 behaving like w fop frequencies below

‘kpeep)
this central peak and like w_} for ffeqﬁencies-above it.
The cor}esponding'exbreésion fof Ehe phase yelocity shows
a monotonical'incgéésé with.frequency.

In order.to reproduce the effectivély cﬁnstant Q—b1
vaerg observed at seismic freduenéies,,Liu et al (1976)
assﬁmed that attenuation iS‘dué to a superpositioﬁ of
'differént,relaxatidm phenomena,-egch of which éorresponds
to a’relaxation,peak and is\represented by the Stréss~‘
strain reiation of eqﬁﬁtioﬁ (1.48).~~Thus, b&vsuggrposition
of fw;lve relaxation peaks offthis’type fhey,obtainedva
model with consténf Q—l-ovef theirange 0.0001 téyiO Hz.
.They also showed that the disiersion r%%,tioanor such a

model is very similar to that arising from Futterman's

theory. -
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CHAPTER 2.

_2{1' Introduction

Generalized ray theory'was'introduced by Van der Pol
and Bremmer (1937) in a classical paper on electromagnetic
‘radiation from a point source. The integral terms 1in the
infinite_expansion were described clearly as’unique
reflected or multiply refleotedvraysrrrom the'boundaries in
the layered medium.,_ﬁeginning with Cagniard (1939) and
fekerie (1940) varions'forms,of this teehnique have been
applied to the stndy of elastiC‘ﬁave‘pﬂopagation. 'A.-
definitive exposition was giVen bybPeker?s et al (1965) for
the case of a soiid 1ayer over a nalf space. They deecrine

the elastlc wave solution as a double. power serles over
L4 . .

1l

0,...,®) in which each term in ‘the

T

indices w and vo(w,v
expansion represents a ray that has been reflected U times
‘as a compressional (P) wave and V' times as,a‘shear .' wave,
The term‘ "generalized reflectiog and.vtransmission cgi-

"seneralized

cients" was introduced by Spencer (1960) gﬁé
raps" by Cisterné;-et al (1973) | N

In this thesis we follow the development of genérallzed
ray theory for the case of a point stress pulse in an
elastic layer over a‘halt space. Exact sfnthetie'seismofd
grams are obtained by compnter modelling for a number of
cases of interest in exploration and'earthquake geopnysics.
These include‘the weathered layer proolem where recordings

close to the source may be difficult to interpret since they

are not analogous to intuitive experience obtained from far-

33
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field observations or plane weVe modelling. 'Anqtherecése
examines the'simple model of ‘a ﬁcrdstal" layer over a
"mantle" half space for a horizontal point force. Finally
+in the fogrth chapter we examine the regiod where head waves -
‘separate fromdthe reflectedderrivals in a'typical sedimen-
tary section consistingkdf a low #eloeity layer over a thick

high velocity one,

J/ -
Comsider the propagation of waves from a buried stress

discontinuity to a surface receiver in a solid elastic
ieyer over a helf-space. The exact analytic sqlutioﬁ in

the Laplace transform domain,has‘the foilowing form:

k“(y

Foyn o= | |
2 z G (p9ryi9j) “i,j=l)2’3 (2-1)

Gi(P?r)
- -1 U-oa v=0

4Ty

-

The transformed displacements (Gl = a; 62 %‘V; u3‘= w) are

in cylindrical coordinates’(r,¢,zf‘in which circular

symmetry is assumed about the z axis and the ‘source is
. . . . : ¢
placed at a depth d below the origin. The source function

g~

f will be a spfess'pulse of fype j Qith a triangular shapedv
time dependence when vi;wed in the far-field. The algorltdds
will be computed for a horizontally polarized torque (j=1);
elvertically’(j=2) ‘and a horizontally (j=3) concentrated |
force. The Laplace,transfofm variable is p(=iw)bwﬁere )

~ 1is the angqiar‘f}equency, M equals infinityeunless coﬁpreé—
sional waves are abeent'iﬁ which case it is_zero; The shear
modulii,'shear and compfeSsional'velocities'in‘the'layer

and half space are‘ﬁfu2’81’82’a1 and a2.,The response of

Y

e
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each.generalized-ray is given by 5, an integral involving
integers u and v, where p is the . number of times the energy

1s reflected as a P wave and V the number of times as an S

wave. The response of each generalized ray has the follow-
ing form: .
- ) EXZ " prx S . PIX \, s N
G = J R, E, +RF + J +r L
uv J By n(j)( By >< ij 1 13, n(J)< By / \r i3 ifh dx
o"A. T
(2.2)
: o : , S / 1‘E A
where x 'is a scaled integration variable,\ P - in which ¢

is a spatial wave- number measured in the direction of wave
propagatlon, Jh is the Bessel functien of order n=0 or 1
and J' bis'its derivati?e. Ri and if are generalized
reflectlon coeff1c1ents for the ith displacement for the
totality of rays Starting.as,P and arriving ‘at the receiver
after being reflected u times‘es P and v times.as_S Wayes.
Functions Ri end rs play a 31nilar role for rays startlng
as S.' As w111 be 1llustrated ‘each H,V nalr represents
~several distinct ray paths and the generalized reflection
coefflcients are the sum of .all their reflection coeff1c1ents.
f; e, F and f are spatial coefficients‘which;determine the ..
phase delay and amplitude change._ They are produets_of &
rational functions of x and_exponentiel terms inrolving,
velocities and ratio of,depthlof source to thickness; The-
explicit relations or their references.for the three types

)

of sources are as follows:



j = 1, SH Torque i= 2; n(l) = .1
' ‘ (2.3)
Fl= Bwplf(t)ﬂ(t)

w3
’where_f(t) 1s the shape of the source in ‘time, a quadrature

pulsé/being used, and HB(t) is the Heaviside function.

v

pi

Fa1 T %1 T fp = 0 (2.4)
5 (v+3) Bp /' x2+1 /¢
- o=~(vth) (Hp VxT+1 .. ‘
F,. o= —H¥ U ol o (2.5)
21 p - . , -
Y 1+x
R> = gILOV¥D/2] ! R | (2.6)
is the Kroﬁécker delta, 1 is the integer paf;

where ¢
and. R is the Laplace transformed representation of the
‘generalized reflection coefficient for SH waves as given

9

by Pekeris et a{/}&963).

i = 2; Vertical Force
‘ 7 (2.7)
i = 1and 3; n(2) = 0; F2'= Zof(t)H(t)
where Z0 is the excess normal load.
) o . (2.8)
Byg = F1p = ey, = f5, =0 :
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-AMH~-BVH -AUE-BNH

‘e = £ . f = £
12 p T 12 p
— 2&‘ (2.9)
/ x"+e : o, -
E _ 1 e—AHh-BvH_ F o= x é-nMH—th
32 ’ XP ;, 32 ) s 2
. ‘ 2
. . . p/X +rp1

i
¢

The operational forms of the reflection coefficient are

given by Abramovici (1970); Abramovici and Gal—Ezer'(1978)
' " s ‘
1° o \

: P S P
as Rl and R2 fo; R3 and R3 and Sl gnq 52 for T an§ T

The other constants are

e = . - e . ‘= P S22, - p /.2 2.10)
€ Bl/al’ nl Bl/Ez,v A 81» x 1 B Blv x 41 ( 10)
v+1-d/H ~ (u+1-d/8 - F  even _ |
N = ;M =< | s - (2.11)
V+d/H L H+d/H . F  odd '

where F . is the Family ray number(=p+v+l),<ﬁ7is the

laygr Fhickﬁess.aﬁd d is the depth{of the source . . °

j = 3; ngizontal For§;

i = ;,2,3; n(3) = 1; Fy = Yf(t)H(t) . C(2.12)
wvhere X = Yxi + Yyi is th? strength of the source.in the
horizontal piane (Yx =Y = l); i,j are uﬁit vectors.

}v

,:"‘.‘?7

e



E13 = €353 = €43 = 55 =0 (2.13)°

P o= 20,ydfy o TBNE _ 2% _-AMH-BuE |
~713 3 2 —— 13 2 (2.14)
rp x / +n: P
, 1
Y 2
-3 /x2+n2 ~A_VH-BNH iB -AMH-BVH '
1 1 : _— 1 e 2.1
- f = — e ; E = — (2.15)
13 . 2 . 23 3 —
xP pr v x“+e
‘ o 1
iB. Vx2+n2 —126' e_'BI\H
F - — 1 1 erAuH-BNH. £ - uv (2.16)
23 3.2 . a3 —— '
p X : xx/x +nl
/
; ' _ . /.2 2 /'2+ 2 v
g oo L -aME-mon o TET X TRy Y X TN _aun-pNw
33 2 © 733 A -t
where the reflection coefficients are
S s _I[(v+1)/2) _.P _ P _ : -
r2 = Rl__ R ; R2 = rl = 53 o (2.18)
s ' P _ . oS . : _
Ry =71 7 545 Ry = Rgp Ry = Koo v (2.19)
!
. / . ‘.
where R RA’ S3 and S4 ére'dérived in the ‘Appendix A..

3!

The.displacements in the tiﬁe domain are obtained by
‘ah invérse Laplace transform following_thé méthods‘of Cagniard
(1939), Pekeris (1940), and de Hoop (1960)., The details Qf
the transformation follow thé method of Longman (1961) as

generalized by Abramovici (1978).

The complete mathematical solution for the case of a

horizontal stress discontinuity is given in the Appéndix A.



2.2 The Weathered Layer Model
The sei;mic weathefed laver o;‘zdne is a éurficial
deposit that has a prbfound influence on. all studies of the
elastic propagation of waves.‘ The properties of the |
‘weachefed layer are:
(a) a low ctompressional wave velocity (300 poSZOOO n/s)
and an anomalously low shear velocity (;00 to 1000 ﬁ/s);
(b) high energy absorptionbor/low Q (5-100);
(¢) a heterogeneous coﬁposition wiﬁh the thickneé§ Varying
from 3 to 100 meters. However the lateral vgriation i
"usually has a long wave length exgept‘at geoiogicélly"
" significant iﬁterfaces;
(d)" a 1argé chaﬁge in acoustic impedance across the iqﬂerf
face separating the weathered layer from ;nderlying » } 7\
consol;dated medium.
fhe propert&gs arise because the,rdcks near the Sugface are
relati?ely unconsolidatéd, mechanically -and chemicélly
al;ered and highly aerated. In some areas the:base of fhe
weétheted layer is relafed to'tﬂe averagé levél bf the water
ffable but even in areas Qhere the water table is at the‘
su;face,tﬁere is a well defined seisﬁic weaﬁheréd 1a;er
presumably caused bf fepeafed hydratiqn—dehydration;
précipitétion of saJﬁs,Afracturing and decomposition. of
minerals.
The effect of the wéathered‘layer én‘a‘surfacevrecord—'
ing or 6n seismic waves impinging on it from greater‘depths

is out of all proportion to its relative thickness or



transit time through 1it. The weathered laver produces

t

anomalous scattering of energy, magnification of ampli;udes,'

and large energy diséipation, particularly in the desired
high frequency part of the sbect;ﬁm. it ac;s as a wave
guide which converts a large amo;nt of the energy into
surface waves and_generally introduces‘undésirable rever-
bg;ation pafterns into the?seismogramsf

-

An accurate determination of the weathered layer is of
value in making static corrections for reflecpibn sei¥mic
studies and 'it has potential in the derivation of deconvolu-
tion ;operators. The subject is of interest by itself in the
study of the water table, buried channel deposits and the
exploration of coal and other surficial deppsits which ray
be subject to strip mining., Because of the heterogeneous
ﬁapure df the weathered layer its properties may only be

- s \
determined by seismic. studies employing short source to
receiver distances. Elastic wave recordings in Ehe near
and intermediate distance range are,difficult to interpret
because seismologists. have been trained in and‘dse far-field
nodels for most of th;ir.studies. In general, more care
must be taken in thé type of instrumentation used for near
surface studies because of the difficulties in identifying
severai kfﬁds of phases... We shall seevthat\three.pomponent
recordings ére‘essentiél since’the radial direction often
contains the Strongest comprés%ional ocr P wave arrivals.
'in fact, P velocity arrivals may be found on synthetic

seismograms in the transverse direction in the near field.

Ay
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. As a guide to the study of seismic récor@ings for the
structure of shallow lavers, a series oi exact svnthetic

seismograms have been computed using generalized ray theorvy.

The model to be used is idealized in that it consists of
a ;ource withih or on an eiastic laver oyer.a half-space.
The.incorporation of attenuation will be considered_in the
next chapter. - Good abpréximations to a low velocity
layer over a half*Space»are found quite frequgntly in.
seaiméntary basins." Mdre complex lavered structufe could
be modelled‘but usually with objectisnable approximation;
in the aléorithﬁ or with prohibitively expensiv¥¥ computer
operations. Before attemptiné these more elaborate models
the considerable complexify in the results from these

%
simpler examples should be explored.

"In the following synthetic.seismograms the complete
solution is given up to a selected time after'the first
arrival. Aﬁ impo;iant agﬁantage.of fhe generalized fay
metgod is that one may examine individual generalized rays
or groups of them. This allows one to‘detefmiﬁé if the
"numerical integratign procedures are stable ana accurate for -

—
~each generalized ray. It is also possible to determ%pe
whether a significgnt peak 1is due to a single ray or, as
often happens, because of a cluster of arrivals.
Figurevl gives the model for-thelweathered laver and
. \ .
also the shape of the . source pulse'in the far field. Tge

triangular width cof the pulse is0.0021 s and it is placed

s



’ Figure 1.

/

Model of a layer over a half space with the

source at a shallow depth. ' The model simulates
wave propagation in a weathered layer. The
source is a stress impulse with a triangular

shape in time.
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Figure 2.

Synthétic seismograms for a horizontally

polafizéd torque as‘the source in the médel pf
figure 1. The surface transverse dispiacement
is shown ip a three dimensional plo; using an
algorithm called ASPEX. The figure viewed for

an azimith of 340°,‘an altitude of 18° from the

horizonfgl at the center of the graph to the

_obsefver and a distance of 25m from the graph

to the observer,

Cod



i ¥

45.

sSwo9

ot

FVwo9

adUBSIP

- INOYOL- HS



either at 5 m or éﬁ the Surface. The first seismograms
'(Fig, 2) are)pf thé\fransversé component at distances of
10 to 60 m fér a torque Qi:h‘the axis in the vertical
direction. For an experimentalisf an SH torque is not’a

- very interesting model sincénit is difficult or impossible
to produce iﬁ the field. Fdr_:heltheoretiéian and prpgram?
mer i{‘is the first géép“ih producing é'well tested
algqrithm since_only horizontaily polarized waves are
broduced. - The results are of sbﬁe interest, sinpe'apart
from velocity scaling, anlexplosive‘source in a liquid
medium produées a.similér seismogram on a .pressure trans-
ducér. Note the well developed head wave (IAbEiled SS*=
slszsl) séparatipg from the first reflecﬁed wave (SS).

The next source is of far greater interest to the
expefimenpalist, being a éoncentrated yertical force
produced by a jump inwnormal stress at a particular depth
on‘khe z axis. A vertical force is used‘instead of a
buried compressional pulse éinée a bauomer impéct, a

2

vibratory device or a cylindrically shaped tube of 3

explosive chemical in a lightly tamped borehole produces

a dominantly vertical force. fae difference in the displace-

“‘ment components for a Surface‘source,and one at a depth of-

5 m is shown in fiéure 3 The displacement for the surface’

source is similar to %M% c1as§ica1”Lamb (1904) solution up

‘F v
A¥ J-

to the tiQe of the reilected (PP) ray. Dramatic changes
& .
yccur when the Q?urce is buried. The amplitude of the

o

Raylelgh wave is over one magnitude greater for a surface

@
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figure 3. Synthetic seismogfamé for a\surface and a
buried (5m) ‘source fﬁria point vertical fﬁfqe.
The model par;me;ers.are/given in figure 1. |

.~ The decay of the surfaceihead wave sP* is shown

Ugo the right of the seisﬁqgramé.
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imﬁulse.

. More importantly, there is a new diffracted pulse
labellgd sP* which travels to the surface as an S wave and
along the surface #s a P wave. This "surface head wave"‘
was predicted tﬁeoretically by Petfashin (1959) who called’
it. a shear‘head wave. Numericél seismégrams for this phase
wﬁich thej.called a diffracted §*‘wgré firét shown by
Abramovici and Gal—Ezér (1978), The particle mofion is
»linearlaﬁd»180° out of phase with the dire;t P of é waves.
The surface head wave does not occur if the source’is purély
cémpressional since no”S waves afe generated. from‘theoreé
fiéal'éénéiderations the surface head.wave should decay‘as
r‘3/2.clqse ﬁo critical distance and as rfz-at distances,
where the path in ;he lowervinterfécé is large; This is
confirmed by the madelling studieé (Figure 3).

-For the buried sourée the emergeht RayleighAwave .
clearly precedes.and\overlap§ the di;ect sheér'waﬁe; This
behaviour can Be.interpreted physically as due to ghe |
arrival of the direct ééh;rical P»waye froﬁcvat the surface
near the source and”geﬁerégipg‘a-displaceﬁent wh{ch.forms
the early part of the Rayleigh waveJ  The interference
‘pattern formed‘by the strong direét’sheaf wave and the

Rayleigh waves will cerﬁainly create difficulties in inter--

preting, field recordings if only a single component is
availablé. The interpretation of the displacement of
generalized rays is facilitated ifvthey aré grouped into

«

families defined by a parameter F

J
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Figure 4.

]

Classification of 30 physical rays into
generalized rays, having a unique value of u

émd v into the first three families.‘ The

L

partial seismograms, using the yertical

A

. component at a distance of 40m and a vertical

force buried at 5m, are used to illustrate each

family of rays.
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F=opu+v+1 F=1,2,.. (2.20)

p,v = 0,1,2...

F 1is eﬂual to the number of encounters that the curve makes
with all available interfaces. In figure 4 all the rafs in
the first 3 families are illustrated together witﬁ their
disﬁlacement"for_a buried source and a surface receiver at
a distance of twice the layer thickness (40 m). The complete
sgisﬁogrgm is fhe sum of all the families of iays up to any
pérticular timé. This may be viewed in figure 5 which shows
the suite of seismograms from 10 to 60 m. As will be shown
in the: next section of the chapter, each individual general-
ized ray has its component impulsive ray arrivals superimposed
upon an "exponentially" growing Eail which isvnot evident
-on the complete seismogram. The tail in each géneralized
ray ﬁay be thought. of as due to Rayleigh waves generated as
the spherital P and S wave fronts interact with the surface.
When all the gener;lized rays.within'eééh family are combined
the tails cancel completely after the arrival of the 1a$t
ray. A rélict of the tails is physically obsefvable by the
non-zero offset of tﬁe displacement between indi§idual ra&s.
The paftial seismograms in figure 4'reproduce faithfully the
ground displacement including -the non-zero plate;us betweenl
the impulsive arrivals.

Note that the odd numbered families originate as up-

going waves -at the source and even numbered familites initiate

'las:downgoing waves. ' The amplitude of phases in family 3 are



Figure 5.

Synthetic‘seismograms'for a point vertical
source buried at 5m for the model shown in
figure 1. The three dimensional plot has the

same parameters as figure 2 except that the

.reduction velocity 1is 1000 m/s.
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only slightly lesg than, those of family 2. This is to be
expected since the extra encounter is as a perfect reflection
at the surface. Iq field recordings this will seldom occur
and the rays froq family 3 wouldvéiminish by an amount
determined by»thé roughness.of the surface and domiﬁant
&avelength of wave and_surface irregularities.‘:Rays'from,
higher order families have amplitudes much diminished. This
is evident iﬁ;figure 5 which alsd‘includes.rays from families
4 and 5. These!arrivals_are the ones not labelled with a
code.

In the synthetic for a butigd vertical force (figure 5)
oné should note the prominence of the first two cqmpreésional
waves on th"radical component.’ These areifhe direct ¥ . 4
the surface head wave, sP*. At intermediate distances, 10
to‘40 nm from tﬁe séurée, the shear (s) érrival is more
prominent on' the vertical receiver. There are a great
multiblicity of reflected and related head waves in the

seismograms. These exact seismograms include 20 pairs of

generalized waves originating as P or S waves from the source.

The total computation time for all figure 5 seismograms on

L4 1

an Amdahl ‘470 V/6 was 25 minutes at a nominal cost of $500.

Unfor;unately the integration_noise increases greatly and

‘the CPU time mounts rapidly if longer éeismogram intervals,

‘after the first arrivals, are required.

When the buried source is a force in an arbitrary

horizontal direction all three components of motion are

8

i T ot



Figure 6,

Synthetic seismograms for a point horizontal
source buried at 5m for the model shown in
figure 1. The ray paths for a few principal

rays are shown on the right.
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excited.,’ln fhe examples shown_in figwfe 6 a unit impulse
of‘equal stréﬁgth in the ¥.(=xl) and y'(sxz) di}ectién Qas
used. tThe source acts like a ;ﬁear disloc&tion withravstress
discontinui:y aléng aﬁ open sﬁrface. Although the'syStem oﬁ'

équations is eXpéndid conveniently ih;o,an SH set with_

transverse motion and a P-SV set with radial and verticzl

~

motion, both sets have arrivals with P and S wave velocities.

Thus fhe trgﬁsvérse (SH) cdmponent‘shows aﬁ'initial wave
arriving wi;hravP wave velocity at near and intermediape
distancés (10—20 m) . We have‘observed thié with hammér
‘seismpgrgph.sources in field'ekpefimenCS»during studies of
the:weathéied layer and the théoretical confirmation is
vgra%ifying. .7\> EE . :

Tﬁe direct P wave is‘thevsfronge;t arrival on tHe
radiéi,compqnent ;hile the éhéa; (S) arrival ié%ghe strongest
6n the ve;tical‘componenp. Excitapion of this type of
séurce’is’particulériy deéirable,sincé phe Rayléigh waves‘
are minor and ghe sei;mogram.is dominated by avcléaf set of .
reflected impulses.? A\cqmﬁﬁ;ison of figurg 5 with a‘Verti—
cél'force énd figure 6 with a horizontal forée makes.the
point ¢learly. 'Tﬂegsurfacevheaa vave, sP*; is the on}y head
wave'with a well defined signqture and it appé;rs strongly |

‘on the radial component only.
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2.3 The cfustal layer model

Synthetic seismograms are computed for a horizontal

point force in the x 2 plane for the model

1

7. The model velocities and densities are
40 km thick crustal layer over a mantle half'space.
Synthetics are computed for two different depths (figures
8 and 9) and for distances of 20 to 60 km. In all cases
the receivers were placed on the ecrface on the xleaxie.
The xl—component of the force gives rise to radial, q, and
&ertica13.w7 components of motion. The compeﬁeats of the
force alcng)the xz—axis gives bqiy an angular displacement
called the transverse cdmﬁonent, V. As in refraction'
§eismqlogy the seismograqe are plotted against reduced
time,(t;r/dl) where t isﬁthe actual timeAin seconds, r is
‘the‘distance from thewsogrce to receiver alongpthe xlfaxisv
@y is the velocity of chpressional waves in thejlayer.

Some of the rays are marked by the convention empioyed
in earthquake seismology. An initial wave prqpagating
‘toward the surface hasﬁthe‘ray segment designated'by a
‘lower case letter (p J} s). A star is used as a superscript
to indicate a head wave of thatwtype.' The solution is
complete and includes all the generalized rays arriving
withic 23 seconds after the first compressional wave‘front.
”At most distances this inclpded about 15 generalized rays
starting at a compressional wave velocity and;}ZIStartingvat
a shear'wave velocity. The integé%”u is %gain»a generalized

A &



Figure 7. The'crustéi‘modgl‘ofvan elastic layér oYér'a \
'half»space.';The source is at a depth_of eithér
1/2 (figuret8)‘or_1/5'(fignre 9) of/fﬂe layer -
thickness. Velocities (o -and B) are.in km/s

while density (p) is in’gm/ml.
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‘¥Figurev8.y Synthetic seismograms for a sohrce‘buried in:‘
 the middle of the layer of figure 7. The ray
paths for ? few of the principal generalized
rays ;rejgg%wn on the right. The figure is a
three dimensipnal plot“for an azimuth of 340°,
an altitude of 18° from the horizontal at the
center of the g?aph to the obéervef and -a

distance of 25 km froﬂ.;hé graph to thé

observer.

& B
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¢

ray index which may be interpreted as one less than the
number of interactions with ‘the available boundaries as an

indicent P wave. Similarly v is a generalized ray index

rm‘
which specifies th#kgﬁmber of boundary interactions minus

one as an incident S wave. As in the previous section, -

-can define the integer F

Foepu+v+1l - «F = 1,2,... (2.21)

" ~ H,v = 0,1,2,...

In the illustrations for figures 8§ and 9 the’generalized

‘ray parameters which needed to be included for the desired

¥

'span of'time were U < 6; v s 2, F <7,
Althoygh the;source'is_due only to a horizontal force

there is a prominent p or compressional wave generated by

the first generalized ray (MQO} v=0, F=1) at close distances-

The verticaI and transverse components become negligible

within a distance equal to the thickness of the first layer.

but the radial component is substantial at all i!stances. /

o

This result is of significance when interpreting seismograms

ftom horizontal sources in exploration;seismology; .The , !

, direct-s'ottshear,wave shows some interesting variations
in'amplitUde on theﬁradial component when the source is ' \

shallow (figure 9).$ It 1s also posSible to see the'head

) wave*generated by shear qaveé‘iﬁ%&dent on:the %onndaries,

sP*, on the radial component.'“em

s

N



Figure 9.

Synthetic seismograms similar to those shown in
figure 8 but with the horizontal point source
at a depth of 1/5 of the layer thickness. The

three dimensional plot uses the same parameters

. as in figure 8.



. P .
VERTICAL BOKm-—v——

v DEPTH=8Km

- \\—’M—A:\—_ ' KEY TO PHASES

"
L ]

PS oPs 50 pSS

RADIAL  60Km ““ : PP

0008

[ 4
zo .
*
A .
\ SP
\
s ) . \
. Ay
\TRANSVERSE ~ 80Km J— $s ELEI
— A | : -~ ‘f\ i
- PN . SSS/'
. ) N\ Ve “ ’,
40 - . N .
\'4 Yot
\W N\ a
- ,
TN v .
. SS //
20 . ) VT \'4 ' )
o 10 ‘ 203ec °

REDUCED TIME =(t—R/815)

66



Figure 10.‘

Phase relationship in the near field for a

,buried horizontal source in a layer over a

half space. The transverse (V) radial (Q) and
vertiéal (W) componént are shown for a receiver
at. a distance of 20 km. The source is buried: - .

at a depth of 8 km. The model is shown in

- figure 7.

i
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"For hérizontél force sources the vertical and radial
components are close to 0° or 180° in phase for most
geheralized rays at %edium recording distances. However
surface recordings close to the sourceishow lafge phase
differences at times close to the direct s wave arrival.
fhis‘is shown more clearly(in figure 10 wh{ch is an
enlafgement of the seismogram atv20‘km in figure 9, The
radial and vertical components following the s phase shéi
that & small "Rayleigh" wave has been generated from

_contributio&s of integrals with indiceg, u = 0, v = 0 (F = 1).

Since the final seismograms were computed from a j
linear superposition of generalized réys,‘it is possible
to disassemble the contributions. .ﬁxamination of the
individual generélized rays allows one to make a better
physfcal interbretatiQn and to check on the numerical
stability wheh evaluating complex integrals on a digital
compUter. In addition it may be poésiblé to'cpmpute an ad
hoc synthetic'éeismogr;m including a;tenuatioﬁ by trgating
each geheraiized ray individually and incorporating atten-
uatiog in a process invelving a discrete Fourier Lransforﬁ

(chapter 3).. RS

The,gengralized rays may be grouped using Eq. (Z;Zif

acéording tqvfamilies bésed on the-value of F. Thus, F = 1
defines the first family which include the direct p and s

arrivals and their associated Rayleigh wave due to the

inferaction with the free éurface. Figure 11 shﬁws the
) - . e



Figure 11.

e B~ A N T L
R g,

Synthetic selsmograms decomposed into families
of generalized‘rays for a distance‘of 40 km

and a point horizontal force in the middle of
the crustal layer. P and S indicate that phe
ray starts as a compressional or shear wave

from the source. All the partial seismograms~
start at a real time of 6.8s. ' Note that when
all the generéiized ray coﬁtributipﬁs in each

family are summed (L), the exponentially

growing tails cancel.
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Ly c

‘windividual generalized rays for each component of motion
.
and their summation into a family of rays. Each individual

P

geﬁeralized ray shows the principal arrival as a P or an
S wave but - it also shows a tail which does not vanish with.

3timea The tails are related to the generation of an inter-
face (Rayleigh) wave .as the curved wave front expands to

v d
cover a iontinuous range of rayfparameters. As shdwn in

ﬁfigure llthe tails disappear then all the generalihed ‘rays

from each family (F =p+ v+ 1w constant) have arrived

“

~and are incorporabed into the aeismogram. It is aeen that
'»-A . I
from a phyaical point of view F is a measure, of the'number

of encounters each ray has had with the available boundaries.

‘The classification of generalized rays into families

A

appears to be useful and should allow one to form an alter-

nate method of truncating a seisﬁogram/when it iSVtOO‘
expensive to incorporate computationally all the rays to a

_particular time.

\

The synthetic seismograms should be of use in inter—
preting field ;esults close to small earthquakes where the,

-source can be modelled by a horizantal gtress . d18continuity
. o A

at .some depth within the crust. The‘importance of the

{

direct compressional wave and many converted phaaesfhas been

- illustrated; 'TheAresults should be of interest in explora-
. \ .

tion studies where & shear source is1generated by a hammer

~

‘nechanism or by 8 vibrator. Since the solution is analytim

~[andrthe numerical results are complete up to any desired
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tiﬁg’the results are useful in checking other methods
which may be adapted more easily to a complex elastic

jlayered”medium. g
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CHAPTER 3

-t o . |

3.1 Introduction L ‘ E
It is becoming increasingly important to include the

effamks of anelasticity in the computation of synthetic

seismograms and 1n other seismic modelling techniques.° A

,:n
s ’

_ method of introducdng the effects of attenuetion and E,A;
dispersion into'tﬁe synthetics will be‘shown. The general-
;ized‘ray theory is used to”calculate exact‘synthetic/
seismograms for a 1syered homogeneous’isotropic me éum and

vthe effects of anelasticity such as atteﬁuation adz dispersion
of seismic waves are: modelIed using the linear theory of |

4 @

‘-viscoelasticity combined with Futterman's model (1962).

i . o

. According to the'generalized.tay theory. the response /
of a layered medium to a disturbance is expressed ag a G,
superposition of individual generalized rays. By decomposing

~the seismogram into rays, one can study each ray. individually
and ﬁ%ﬁ effects of absorption and dispersion can be incor-—

porated in the frequency domain using Futterman 8 theory.
/

In addition, the effects of viscoelastic intqffaces are

taken into account by calculating reflection coefficients ' (

| BN
for anelastic media.f“¥9krefore, by summing all the rays a

synthetic seismpgram which includes the effects of anelas-
. % - .

~

f?icfty can be computed.

Tt

Futtermanfs”theory provides an excellent model of

attenuation and &ispersion that is in good agreement wi}h

-experimental data (Wuenschel 1965) It dis baeed on thev'

/h\. . ;, | i ! - ) S ‘ \>“
. ) g ’ . . e . :



principlo of ‘superposition and on tne 1inearityfof
absorption;coefficient‘oo a funotion of frequency.:*Réflec—
,,tion-and transmission coefficients for anelastic‘média are
'chlcuiated using the correspondence principle. Lockett
}1962)odesoribed tho.methodvfor setting up\thélequations
which must be-solvediéor the reflection and transmission
‘toefficiento in the anelastic problem. The boundary
conditions‘are thé‘same as for the elaetic'cnseiano-the
onlf ohange.is'that oiastic mooulus,vphaoe velocity and
wave nnmber‘are complex funotiOnswof frequency. Buchen
(1971) ~and Borcherdt (1973) set up the general theoretical

o

framework for plane\waves 1

% A
r L&
" |

wave impinging“' a pla e'interfaoe'betWeén an elastic Wand

‘a linearly viscdoelastic mediym, Boschefﬁt (1977) gives a
oomplete'théototical descriﬁtion'of SH—Qaves in”anelastic

media ang deeres reflection and transmission coefficients

for the SH—waves.. Krebes and: Hron (19808 b), following
N q .
Borcherdt s fotmulation, calculate rgflection and_trans-

mission coeTficients for the SH-anelastic oéée and compare

them with the coefficients for the perfectly elastic case.
;q:” . X o 4 - . B .
"They use theee'coefficients for computing synthetic seismo- -

grams .for SHwnnves in a layered anelastic medium using the
'asymptotic ray theory. In this chapter we consider
1 ) ‘ o

N . . . .
attenuationffor both thg%ﬁﬁiand P-SV cases by a modification

o

B
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ofﬂan exact and cdmplete solution obtatned from generalized

ray theory.

3.2 Attenuation and dispersion along .the path

A complete description of Futterman s model of atten-

uation was given in the first chapter. Equations (1.31),

(1.32) and (1.33) describe the_attenuation model used in

this thesis. They provide the absorption coefficient, the

 phase velocity and. the dimensionless factor‘%ﬁas functions

of frequency Then, the effects of attenuatTon and

p

dispersi‘i’ longQ the ray path can be easily incorporated

reQuency domain g% multiplying the amplitude v

o

into<theh

spectrum of each ray by an equqential decay and by adding
’ﬂ . B
a phase shift in the phase spectrum The raﬁgis obtained

L .
,in the time domain using an fnverse Fouriﬁﬁ transform

%
) o
(Eq. 1. 29) ' &

3.3 The effect of the viscoelaSticfinterface

The stress -strain relation for a hompgeneoup isotropic

linear viscoelastic medium is given by

h | Hdekk(r)' " dei (1) ,
- = ) —=2 L Jr4 - —31 " . .
‘?ij . Gij I A(t,ﬁ{\ dt dt ZJ u(t r) T dt {3 1)
o -0 % -0
/ - N\
. i ) ’ ’ a4 o .
whfre oij‘is the stress tensor, A gnd p are the complex

‘Lﬁmé parameters and e ia»the‘stress'tensor (Borcherdt,

/ 13
1973, 1977). ° Substitutiéon of (3 1) into the equation

of dWotion gives R o o .

i
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[A(0)+u(0) T*a (7 (TR + u(e) *a(v?0) = o3 (3.2

e

)

after some calculation where the symbol * denotes the «

StieIties'convolut*?n, Taking the Fourier transform of

-

{3.2) and writing the transform of the displacément vector

in@terms of the Helmholtz poten&ials; we obtain the well
known Helmholtz equation

%
a

v2F + k2T = 0

o

where K is-<now cogpleg, ,‘

- N\ R Loeon

offers a corresponding solution for a linear viscoelastic
body, if the . elastic modulii that océur:iigﬁgf elastic _
solution are replaced by the correspondidgggomplex moduiii

(Correspondence—Principle} BenQMenahem, Singh 1981). Thus,
sreflection/transmissicn/coefficients for a viscoelastic

i
{

R
pinterface may be obtained from\the analogue in the/elastic
re

"i”u

case. In pppendix ‘B we show,how complex modulii a

éalculated using the phase velocity and the attenuation’

factor as functions of frequency.
)

Figure 12 shows the amplitude and phase for the PP

O
and PS reflection coe¥ficients. The solid lines . represent

%
“the elastic case while the dashed lines correspond to the

- .

O

17



Figure 12..

3

=%

5]

ﬁ"l
"

- :k &~'
) Wt T
The amplitude -and phase for PP and PS plane

Wi v

wvave reflection Coeffiéients”éretwloéted against
)
the angle of incidence 6. The soiid lines

M

correspond to the elastic case‘while the

_ : B
dashed Iin¥% correspond to the anelastic caJ%ég

9

' fﬁe‘velocities;udensities and Q values are

‘shown in figure 15..
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viscoelastic case. In order to examine the frequency
dependence of the reflection and transmiesion coefficients
for e viscoeiastic interface, we have studied several simple
models. We found that tnese coefficients are not sensitive
‘functions of frequency unless the values of Q,ere very low.
Therefore,:the‘effect of a viscoelastic interface can be
modeiled_by caloulﬁting_frequency independent reflection

and transmission coeffiﬁients'for anelastic media. AsA

: 3
Figure 12 indicates, in order to take into account a visco- .
y i1y P(”Jt‘
‘eiastic interface, we have to apply a correction to the

f . ,‘/)‘b R 7
‘&mplitude spectrum of the pulse and to add another term in
ﬂﬁ.« »( }

the phase sgectrumk

. » ' ‘?ﬁ ' I
3.4 &he'attenuation algorithm

| dFign}e 13 is a flow chart which‘iliustrates the
algorith; used in order to introduce the effects of atten-
uation‘and dispersion ih the seismograd%tn The synthetic
is,fg;et decomposed into individual generalized rays, and

‘ M ' .
each ray 1i's transformed into the frequency domain using a

_ fast Fourier transform (FFT) . The absorption Qnd disper—
\ ! .
- sion along the ray path is then introduced using .

1

Futterman's model. . The effect of the viscoelastic interface

is also taken into account by calchlating reflection
coefficients for anelastic media.
The procedure for one generalized ray, is illustrated

in Figure 14 for the case of a horizontally polarized head

"wave and reflection near the critical diatanﬂﬁ. A Fourier



Figure 13. Flow chart showing the algorithm used in Qrdef
to introduce the effects of anelasticity into

each generalized ray.

T,



ATTENUATION — DISPERSION

1. ALONG THE PATH

2. INTERFACE

GENER:

RAY

FFT

.

REFLECTION

COEF.

FUTTERMAN] |

Y

. MODEL

R

CcO

INVERSE
. FFT

Z RAY
i

. SEISMQG.

By,

82



Figure 14. Steps involved for thebincluaion of attenuation
inﬁo one generalized ray. The horizontal
distance between source and receiver is 30m.

The source is an SH-torque for the model of «

‘figure 15. (a) Partial seismogram for one o
generalized ray (v=1) in the case of a layered
elastic medium, >(b)‘T§e amplitude spectrum for
(a) as obtained from a fé3t Fourief tr#nsform \

algorithm. (c5 The ﬁgasé spectrum for (a). \‘ .
(d) The unwrapped haée for (ﬁ).‘ (e) Partial \
seismogram with the effects of anelasticity.

_ o (f) The 9m§11;ude spectrum for the attenuated

pulse.. (g) The velocity dispersion curve for:
the fitst anelastic layer in figure 15.

“

(h) The unwrapped phase for the attenuated

pulse.




84

-
+

M) |

+

4+

vl

::.

6

9s¢C

>

-

¥

ZHEZYI

§)

ﬂw.o-

DA

+S0

L J

®)

HA

+50




" ST
i . , ! , .
. . e _‘“'
2 4 ) .
};’*’: : -
., :
*
% !
- v'
3
‘ »
' A
Figure 15. The anelastic weathered layer model. The
source 1is a streas impulse w*th a_tfiangular
¥ - . | ’
shape in time. . The attenuatfion is indicated
"by the quality factor Q. l
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.transforﬁ~iq”taken'oflthe original seismogram for one

v

oy

‘generalized ray. Its phage is unwrapped and then a phase
term is added using the phase velocity c(w) in equation

(l 32) - The modulus or amplitud% function is multipliedﬁ
by an exponential decay involving the absorption‘coeffi—
cienb‘ The effective change due to the yiscoelastic‘
reflect;on coefficient is introduced similarry and the

»

final pulse is~obtained”by “an inyerse fast Fourier transform.

~. * -
\\\\\ 3 . . " . - \ ? .

L} . A

.

3.5 The wgathered layer model

A model whichvsimulates_the'veathefed layer 1s shown -~
in Figure 15. It consists;of a single homogeneous-isotrobic
layer overlying"a homogenegusvisotropib half space. fThe ¥

compressionai (a) and shear (B) velocities along with the

dené%ties (p) and the Q va&ues are also indicated.

\

Synthetic seismograms for the elasticjand_anelastic case

are calculated for two different sources, an SH-torque and *

a vertical stressvdiscontinUitv.

' Figure 16 shows the synthetic seismograms!with‘andlv
without anelasticitv for the,weathered layer mddel‘usingfa

point SH torque as-a source. Th#ﬁdisplacements-are presented -

in a three-dimensional graph with one of ‘the - dimension

[

Being reduced time The seismograms are at intervals of

v
\

5m ‘for a surface receiver at distances of 10 to 6Q m. ﬁhe P
direct~wave 5, the reflection SS with the corresponding o 3

head wave SS* ( =S

/

1“25l)‘ and the multiple,'lsSS are &hqwn.



L
~ -
Figure 16.
an
.

.Synthetiﬁ seismograms for an 'SH~torque source

for the elastic and anelastic case for the

‘mode’l of figure 15. The algorithm ASPEX is

-~ L 4

‘used"towproduce a three aimensional ploc for an

* e ——

/’A"_\
azimuth of 340°, an altitude of 18° from “the -

o

horizontal at\the center of- the graph to the

”observer aud a dis@ance of 25m from the graph

to tshe observér.

LI
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’Notice the decrease in amplitude and - the widening of the
pulses in’ the anelsstic version. The decrease in ampli-
tude is ‘due to the exponential decay while the increased
'pulse breadth ia due to the loss of high frequencies and
the effects of dispersion.’

The P-SV case is illustrated in Figures 17, 18 and
19 in which a buried point. vertical force is used as a
‘_ source.q Figure‘17 shows the vertical and radial components
of indiuidual rays resulting from the decomposition of a
seismogram from a vertical stress diécontinuity..-The
ﬁhorizontal distance between source and receiver is 20m.
The rays ot the first two families (F=1, F=2) are shown.
Each family is completely defined by an integer F which
indicates the number of interactions of the ray with-the
two boundaries. A:Fourier transform of ahtapered form'of
‘r(each generalized ray 1is obtained and the attenuated pulse

is obtained following the procedures outlined in Figures

13 and 14. The complete synthetics forthe vertical and

radial component are shown in Figures 18 and 19. respectively.

A

seismograms for the elastic and anelastic cases are

pl tted from 10 to 30m at an interval of 4/3m.d For short
istances'betweenhthe source and:receiver'the path of the
head waves was taken to be the same as for the reflected
waves., Similarly, the gengralized ray whicﬁ\includes

.direct'wave and the Rayleigh wave ‘was treated identically

-for the purpose of attenuation. Note the dominance of the o

s
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Figure 17. The vertical and radial éomponénts fér the
'ggnerglizﬁdjrayé mﬁking_ﬁp the first two
fémilieé (F=1, F=2). (P) and (S) indicate rays .
beginning . izgmLthg s;urcé.as_compressionai and
! ghear waves'reéPECCiygly. The Qums of the
genefaiized rdys making up éaéh family are
labelled by a . Note the cancell;tibn‘of the

tails in the partial seismograms for each

family.'

e
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Figure 18.

The vertical component for a vertical point
force for the elastic and anelastic case for
the weathered layer model of figure 15. ASPEX

uges the same parameters as figure 16.
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Figure 19. The radial component for‘a vertical point force
for the elastic and anelastid case for the
weathéred layer model of figure 15. ASPEX uses

the same parameters gs figure 16,
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‘i /
Rayleigh vave as the high !rdqu.ncy components in the head
wave are strongly attenuvated, The head waves and
réfldctions are strongly attenuated and show pulse widen-

ing due to the filtering of th; high frequencies and the

effects of dispersion,



CHAPTER 4

b ‘ The "Alblqru" Model
/ Many eedimentary basins may be modelled, {n a firet
spproximation, as s thick, relatively uniform, low velocity

layer overlying & thick high velocity section. A good
examplé is the Alberta basin which extends into the Rocky

Mountains on ‘the west. In the foothills it consists of a
e

3 km section of alternating shales and sands of Mesozoic

A

age with a mcanr§oloc1ty of 4200 m/s (13800 ft/a) ovntlying‘

L

Pal€ozoic and Precambrian beds with a mean vélocity of
6400 m/s (21000 ft/s). The high velocity in the Paleozoic
roan is due to a large proportion of limestone and dolomite
while the Preggmbrian section, of similar velocity, consigts
of 2 billion year old gneisses, metasediments and igneous
1ntrusiveé (Qg;ter et al., 1982). |

The mean velocity-contrast between the two sections
is 8o large that special techniques may be used in mapping
the contrast as discussed by Blundun (1959) and Richards
(1960). Nevertheless, the identification of the ph?aes used
in mapping has been difficultlbeqause of the interference
ofnmany types of wide angle reflections and head waves. The
Acomputation‘of exact synthetic seismograms is also very
difficult and has only been accomplished recently with large
digital compufers. Our own approach to this problem

involves generalized ray theory and a Cagniard-Pekeris

inversion because the method yields the complete and exact

98

.



Figure 20. Model of a layer dver a half space with a

vertical point foree as source situated at a

depth of 100m. The model simulates an

"Alberta" sedimentary section. The source

(ffunctighiin time and the first.part of the

_travel time curve are shown on the right.
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“?éolution, and alsp allowy one to decompose the results into

¢

. o .
individual generalized rays for detailed analysis.

A concentrated vertical force at a particular depth

is dsed.instééd of a buried gqmprebsidnal pulse since a é

- vibratory device or a cyliggrically ahape% tuber of explo-

4.2 Synthetic seismograms

sive chemical in-a lightly tamped borehole éroduces é
domin#ntl; vefticalrforcé; Mathemdtically it is gimulateh
by ;’jump.in normal stress acfoéd f bpundary at the source
i;ve} piacéd on.the z axis. 'fﬁé‘ﬁédel of a buried source
in a layér over a ha1f space 1s a gross simplification of

the actual crustal section in the "Alberta basin. A more

" complex layefed‘structure could be modelled but with ’

- objectionable approximations in. the aigqrithms or with

prohibitiveiy expeﬁsive computér,operationﬁv Before
attempting these more elaborate modelé'the complexity of

the résults from these simpler examples will be explored.

The basic model‘used ip given in Figure 20. FOther
velécitiés will be iilﬁétiated after the results for this
case are éhowﬁ' To qbtain»akperspectite on the relative.
amplitudes exéct seiéﬁograms were combuted for distances
of 4 to 8 km(frém‘thé source (Figufe 21). The Rayieigh’

waves dominate the recording and the earlier portion of the

‘seismogram with the head and réfiected waves is not seen -

cleafly. Since we are interested in this earlier section



'

'

Figuré 2f:.’synthetic’seismograms for the model shown in
figure 20. The vertical -and radial éomponents
are 9uperimp§sed to showfthéuphasé"relation for

-distances 6f 4 to 8 km from the source.






Figu;e

Syhthgtic,seismograms for the model of figufe

'

20. The head wave from the half space 1s a

%

first arrival beyond a distance of 13 km. ‘The
algorithm ASPEX is used for the  three dimen-

sionallplot’with an azimﬁth of 340°, an.

~altitude of '18° from the horizontal at the
« center of the graph to< the sterQer and a
‘distance o0f~25 km>from the graph to the

. observer,
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but at critical distanoes, we will restrict the-display to
the time before the surface naves arrive. Figure 22 shows
" the vertical and radial displacement for a vertical point
force at distances of 8 to 20 km (5 to 12.4 miles).A These .
may be compared to the fieldarecordings of Richards (1960)
vin the foothills belt of Stolberg over a distance: range of
5. 3 to 18 8 km, _;‘

Jhe major event on the seismograms.in Figure 22 is
the PP reflection ‘from the half space. It is followed
immediately by two generalized pPP and 8PP, which also-have
strong amplitudes;‘ These two-rays'reflect‘off the surface
closeﬂto the source. Their;ray paths may be'seen in
Figure 4 . Their visible effect’ depends upon the depth of
the source: and the roughness of the- reflecting surface
which could be modelled as a parameter. The theoretical
relative strength of the interfering phases may be seen
in Figure 23. !

| The'synthetic]seismograms in;Figure 22 also show

strong arriuals for the S? and PS phases'(see theksecond
family, F=2 in Figure 4 ) The SP ray occurs‘only‘at close
distances because a critical angle is- reached when the‘.
COmpressidnal wave»is travelling‘horizontally. At distances
of 18 km the PS reflected ray may be interpreted; Note
that the pSS* head vave fn Figure 22 may\he_well enough
defined to be of value'in structural modelling. uThese headv
waves belong to the second and third families with rayfpaths

_labelled pSl 2 1 and SlP2§1 in Figure 4.



Figure 23. Thé main reflectedsand head waves for.the
model in figure 20. Three generalized rays
~are shown (u=1, v=0 (P): u=2, v=0 (P) : u=2,

v=0 (8)). o
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Figﬁre 24, SyggﬁeticAseismograﬁb fof,a veftiéalvpoint forcé
and.yariat%ons on the moael\sﬁowniin figufe
20. The énly paramepefg.;hét afe'qhangéd aré
the P and S velociﬁieé in thé half épace. fhe

P‘velocities-varyffrom 5600 to 6800 m/s and

the Poisson's ratio is 0.3. S

~
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The effect of changes in the velocity of the Paleo-
zoic half space 1.'-hown in Figure 24. The interfarence
of the direct P wave, the PIBZP1 head wave, and tﬂo PP
reflection makes it imperative that an exploration program
be c;refully designed based on the thickness and velocities
encountered. Note that the radial component has well

defined impulsive phases and 1t would be ldvahtageo:s to

record on hbrizontai motion seismometers when carrying out

L °
|

seismic surveys for wide angle reﬂlectiona. " The results
from Figures 23 and 24 show that one should keep the source
at as uniform and shallow a depth as possibie to avoid the
interference creat;d ﬁy 8PP and pPP rays with the primary
feflection, PP, A pattern of multiple sources would also
help in reducing the interference of converted and direct

shear waves.



CHAPTER 5

Conclulionl

It is possible to obtsin exact synthetic seismograms
for various kinds of impulsive forces using generalized ’
ray theory and an algorithm that performs an inverse
Laplace transform. Decomposition into generalized rays
allows one to anaiyse component phases and interpret Che
results physically. In addition, the numerical stabilicy
of the integration for each generalized ray may be monitored
independently. Synthesis of the generalized rays into
families is also of value in the study of groups of rays
and the influ;nce of each additional interaction with an
interface.

The individual generalized rays are examined and
modified and the effects of'attenuation and dispersion can
be incorporated in the ¥requency domain. Futterman's '
theory is used to model the anelasticity along the ray path.
The effect of the viscoelastic interface is also taken into
account by calculating reflection coefficients for anelasticb
media. Novel to this thesis is the incorporation of
attenuation along the path and at the viscoelastic interface
fog the P-SV case. In addition, use of a Laplace transforﬁ
iﬁﬁthe formulation of the problem insures that the final
synthetic seismograms have a causal source pulse. .

In the near-field and at intermediate distances the

field seismograms may be difficult to interpret without the

112
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.
use'of model results. "The weatnered layer case is illus-
trated vith a‘buried'source in s layer over a half space.
A new surf&ce head wave (sP*) which is not,generated when
the source is compressive is a prominent second arrival,
particularly on the radial component. A wave travelling with
a compressional wave velocity is also visible on the trans-
verse (SH) component for an impulsive horizontal force 1in
an arbitrary direction. At near and intermediate distances
‘the direct compressional wave is much stronger on the radial
component while the direct shear wave 1is best seen on the
vertical seismomet:r;“
The same algorithm may be used to study .a thick

lower velocity layer over a nigh velocity section (Alberta
model), av;olution seen in some:sedimentary basins. - The
complexity of head waves and reflected arrivals near'the
critical distance makes it imperative that model studies
sccompany the interpretation of data recorded at wide angles
~of incidence. | |

-ﬁMost of the svnthetic seismograms are.plotted.in a
three-dimensional way using an algorithm called ASPEX,
Seismogrems for different'distances are plotted against
reduced time and the main arrivals can be easily'identified.
We found that this particular_presentation of seismie data
is very helpful snd it.ma? be of use in seismic studies.
We also found that the algorithm ASPEX gives a better

‘ LY
graphical representation than the well known algorithm

N~

SURFACE 1I1.
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The models that‘we have studied‘are ratﬁer simpie:

in that they consist of a single layer over a half space.
'The obtained exact“seismograms show the complexity of the
results. More complex layered structures could be modellei
but usuall§ with objectionable‘aporoximetions-in the
.algorithm or with prohibitivel} expensive tomputer opera-
,tions: Before attempting these more elaborate madels this

thesis examined -and studied in detail the considerable

complexity in the results from simple models.
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APPENDIX A

Al. Introduction

| The displacement components for a concentrated
bhorizontal‘force in an elastic homogeneous layer on top of.
an elastic.half.space areigiven analytically in terms of
generalized rays. Before.going into the’mathematical
details let us give an overall picture of how. the solution
is obtained by reviewing briefly the various stages

involved. “

The starting poibt ts the representation’oi the‘
bsolution‘for a stress discontinuity along a given finite
surface L in a homogenous elastic solid in a convenient way.’
The solution in the frequency domain was given by. Maruyama
(1963) for a discontinuity in both stress and displacement
in terms of solutions of the wave- eouation that are spheri— :
cally symmetric with reSpect to points on I. Thus,‘the
displacement components are written‘as finite combinations
of integrals Of such functions over I. When the medium has
horisontal boundaries, the spherical symmetry is replaced
by cylindrical symmetry with respect to the vertical through
points of 5 and the b0undary conditions are satisfied
accordingly ‘after rewriting the solution. This task;was;
accomplished by Ben-Menahem and Singh (1968) and Singh
Ben-Menahem and-Vered (1973)_using\the so-called Hansen

solution (Stratton, 19&1): We followed closely the treat-

ment,uSed by Ben-Menahem and Singh in their 1969 paper and
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split the corresponding non-homogeneousnsystem of equatioﬁ;
. of motion into one involving P-SV waves and anothe; one-"
representing SH-waves only. The§e>sdluxions were ex;andéd~
in aéries of’generalized rays, each ray.béiﬁg inverted 1q
the time domain by a generalizationkof‘the\Caghiafa—Pekeris

method (Abramovici, 1978).

A2. The formalisoiution '

Cénsidgr.aﬁ eias;ic'splid consisfing/of a hoﬁogeheous
layer of depth H over a homogengoﬁs half—spaée (Fig. 1) and
assume that,iﬁside the layer there is a time-dependent

stress discontinuity of coﬁponenfs

i

»ATKk = £ (1) L , \ (A.1)

along a finite open surface I._

Our problem is to find the displacement vector

u = u(t), i.e. the solution of the momentum equations

2

I

N

wvlu + (AT (Teu) =p (a.2)

[+
rt

where A,y are the Lamé parameters and p is the density
satisfying

1. zero initial conditions,

3

¢

ot

u=0and 5= =0 for t =0 (A.3)

123



124

2. vanishing of stress on the upper aﬁrface,

~

I =0 for z =,0 (A.4)

3. continuity of displacement and stress at

-

~ interface,of layers 1 and 2
and T, = 1, for z = H (A.5)
N E 3

4. the radiatioﬁ condition

~ 5

u -+ 0 for z » = | (A.6)
5. ‘the source cbﬁdition?\\when appfoaching thhe‘
displacement u tends to §§-the displacement : -
co;xeéﬁbnding to the given stress discontinuity
in a homogeneous medium with the saﬁ&\density

and Lamé parameters as the layer.

The Laplace transform of the_displacemEnt

4
co

= u(p) = J u(t)e Ptar _ (A.7)

is found as a superposition between the transform of the

[~

.~ -

solution copresponding to the source_E(p) and the transform

(P) of the. solution of (A.2) chosen so that

(R ]



(A.

e
|
=
+
L ¥}

satisfies the transform of conditions (A.4)-(A.6). The
initial conditions are taken care of when finding U as a

solution of
2 2, - ‘ -
AuVT-ppT)U+(A+U)IV(V-U) = 0 - (A,

and the source condition is met due to the superposition

(A.8).

AZa. The source solution in cartesian coordinates

According to Maruyama (1963), the transform of the

displacement components for a_séress'discontinuity along
in a homogeneous medium are
s, = - fkl 8 v : ‘(A
h) 4 ik 2 v ’

where fkl are the transforms of the'jumps in the stress
A . , ,
V.components, vg are the components of the unit normal to I

at the ruﬁning point (£, €, £.) and the definition of s
, 1,2,°3 _ | ik

9

R

8)

9)

10)

is‘

S -8 R R
S h/(;wrzu)[_—'-;t-1£ ho(z)(-ihR) +( —%5 + 50 By ]

: | & . R.R
+ /) [-36, 0{® aemy + (5 - Ay ) gy
' ' R

R)]

V(A.ll)
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(2) . (2)
o * M2

second kind, 6mk is the Kronecksr symbol, and

Here h are spherical Hankel functions of the

k = p/8, h = p/a; R, = ¢ =~ x

. by
’ R = .
3 | J (RJR ) (A.12)

]

a,B being the P and S velocities respectively, xj being
the coordinates of the receiver and the summation being
used whenever two indices in the same term coincide.

Maruyama gave the Fourier transform of the displacement

components so that in order to obtain the Laplace transform

we change 1w into p.

A2b. Frée solutions of the momentum equations.

In order to be able to satisfy the boundary conditions,
one must look for vector solutions of (A.9) that are
separated in cylindrical coordinates. Guided by Hansen'é
solutions for the Maxwell equations (Stratton 1941), Ben
Menahem and Singh (1968) considered the following indepen-

dent solution of (A.9):

+
= (1/h) gradom

83 |+

L

1+

= (1/t) curl(vle ) (A.13)

0
]

[3--1
B 1+

= (1/zk) curlccurl(w:gz))

where
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12

b

im¢zTz im¢+Az
H

¢ = Jm(cr)e

= Jm(cr)é )

+
m

B +

, , | (A.14)
Rt SN W CL %3

gr, g¢, gz being unit vectors, 7 - a separation constant

and Jm the Bessel fﬁnction of order m.

These vector_ solutions represent upgoing and downgoing

+ +
cylindrical waves, g; corresponding to P-waves @; to SH-

+ - : : . :
waves and g; to SV-waves: The general solution of (A.9)
in terms of such waves is therefore

B © .

=7 J'lim(c)cdc (A.15)
m .o
, | | |

[

where

- . + - ' - o+ -
8 () = h(a Lr+a L)+ I b TN ) 4 (e Tt e M) . (AL 16)
m m~m m m™m m~m m m mm N

A

-

‘Tbe factoré h;k aﬁd'c"wererintroduced.here for cbnvenience,_
é;, etc. béing arbitrary functions of gf. |

It seems that all we have to do now is to writevthe
source term in the same form, to4add it to ﬁ and impose the
béundary conditions. It may be, however, not so convenient
to proceed in this manner, even %f the source term will
turn out to.contaiﬁ only a few upgoing and downgoing waves
"and therefore only a finite ﬁumber of terms will appear in

~the sum (A.15). The boundary conditions will résglt in



L

~half-space. These coefficients depend only updn { and it

X . . .
trouble seemingly being the fact that although ;;; etc.

128

J ‘*.

vector relqtions between L, etc. at z = 0 and z = H

8 +

involving six coefficients in‘the layer and three in the

may not be so easy to eliminate r and ¢, the source of the

are independen; solutions of (A.9), at each point they are
not linearly independent, théir‘number being'mofe than
thfee. ~\\

Ben—Menahem énd'Singﬁ showed an elegant way out by

expressing the solution in terms of the following system

of independent vectors:

. im¢
13m € Jm(Cr)gz
3J_(gr) gy |
. Jim¢ ) 1 m m :
gm e {C T e, + im T g¢.) (A.17)
. 3J_(tr) : 3J_(zr)
im¢ {im L e - I w7 e .
C = e Lr ~r z ar ~¢
“m N _
N

The upgoing and downgoing waves are expressed in terms

of this system as follows:

Tz

(Xl
g 1+

1 |
=
h ¢ ﬁirgm Cgmx

(A.18)

34
-

B =+
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Using (A.18), Ben-Menaheﬁ and\Siﬂgh (1969)\wr;te gm(c) in

the fo:m'

<

- . - N ' - . ' . )
u (2) = (Tf  +f2 )gm‘+ (£, +LE P

+ kf_C
e I , 1 2 ™ o

3

where: I . - C : P

’

beihg the derivative of fm with respect to z.
i ‘ ‘ ‘ oy

stress on a horizontal plane is expressed in a éimilér

£ The
m .

manner as a sum over m with: - .-

C_+ 2u(Qf +rf' )P
. m m ~m

1= 2u(gfl
" " 3 1 ™2

+0f )B. + ukf' C
1 m,\ " m m

where

A2c. The source term in cylindrical coordinates.

.\Followlng‘clpsely Ben-Menahemland Singh, th@

1

(A.

(A.

{A.19)

21)

22)

1
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/ . N .
components 8k given by (A.11) are first expressed in

_ terms of the spherical wave functions
( #

?'héz) (-1pr/c) Pi(cose) cosj¢;>‘ (A.23)

pn

e @

N
[e2]

R
0

¢ = v (Lipr/e) pd(cose) sings
where ¢,0 are spherica}_éoofdinatgs céntered at thelrunning‘
‘  poiﬁt (Ei,éz,é3) on- I and Pi gée.thg associatéq Legéndré
functions. Using éhe-Erdély identi;y eXprgébing fhe‘product”.
hﬁPi as an intééral of séalar)cyliﬂdrital wave fgﬁctions; |
- fhe ;Qmpongntékgfk are"qbtained as fﬁlloés;‘

. Y
JE o : «©

U1l I a(c)Jb(tridt + cos2¢ va(C)JZ(Cr)dc.‘
v 1 N 0 . , 0 . : . ! .

- ot

12 = sin2¢ f b(2)J,(cr)dz : ﬁglﬁf°\' 5
F;E cos¢ [ C(C)Jl(tr)dc
v o N » . 0
J a(C)JO(Cr)dC - cos2¢ J_b(c)Jz(Cr)dc
0 ‘ .0 ‘ '

\
-]

(.}
n

fE—

[ 0]
]

23‘ s‘sin¢\1 cl(c)Ji(cr)ég
0 ol

®l -
fl

,J cz(C)JO(Cr)§E
0

(N
L]

33
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acn) = -xeZizn + a2/

b(z) = (x/1-¥/8)z%/2 I

.cl(c) = (fo)t‘;‘ cy (L) = rx-z2y/a E : ~ (A.25)
C(A+2u)h " : nk '

>d

. =‘ 1 for z . o
-1 for z<d - .

'd being the depth of the source.

The expression for the displacement vector ‘corres-

t ' ‘ N - ‘ ) _
-ponding to-the source in terms of the harmonic vectors -

1

"B, €, ?m is oBEained;using also the relations giving. the

connection between cartesian and"cylihdricallcpordinates as
‘well as some relations between Besspgl functions. °The

result is;

- ff'f, Re[5(¢) Jzdzdo L (A.26)
o I 0 ' -
. F 2 2 BN
s S T - (5 X ~Y)P.
\s(Q) * % { A ‘1?91 ( 2 AY) §l+e§(X’Y)gé}
:3 k2 e, + (533-AY) 1B, - eg(X-Y)1p {A.27)
4n | 2 001 r T At) 1By et Ay
Zé {—EC(X Y)B + (Ix. -~£——) 2, .} ',;,~ -

with s



Fj - ;12V£.f - ‘ ) . (A.28)'

v o - N -

 Thus, the displacement dué to the source is expressed

as an integral over I of a sum of.the3form (A~15)'1ﬁc1udin§.

s

only two teims:, m =0 and m = l - If the aurface Z is

reduced to a point, i.e. the source is a space concentrated

_ I

/force,‘bhe integration with respect to E will,result in -

» 3-;eptesenting the strength of such a concentréted\~

e N

1,

A force in the difections‘of'the coordinate axes and the .

~surface integral in (A.26) Vill,dieapoear.v

. S R ’ + ; .
The expression of s8(f) in terms of L;,letc. was ‘given -

by Singh, Ben-Menachem and Vere‘d' (1973), oo

,

In order to add the source solution (A 26) to the

*

free solution represented by (A 19) it is convenient to

write (A.27) in ;he.same form:

5() = (CZ_ 42" )B_ +.(2' + £z )P+ kZ_ C  (A.29)
where \
g - ime—er(zid)emf} :. ’ ;/ \
™1 . S
z =g efeA(z—d)Em~ | ~ (A.30)
, ‘m, m 3 . v

)

7 = Kmefeéﬁz_d)em+l.

For a ho;izontal forée in x2-direction_with m

taking the ;alues 0 and 1 we obtain
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1 =30 " %
tF) F, 1F ‘ _
i, » - — =, j, = —, K. . = . (A.31)
, 1 4ﬁruk2. ‘1 Aﬂukz‘ 1 v4ﬁAuk
For a horizontal force in the x,-direction
_ o3 =% =0 . -
- v ‘ ' S ' (A:.32)
- ii A B ‘ - ) N - . —-— N "
PRl T L F2
. ’ " .
»1f 4nruk2 1 4ﬂpk2 1 4?AUk
Fof"aaverticelvforce
. . B
io = - "F32’ j = CF% \, KO = 0
Gouk™T . 0 4muk”A .
\ . o (A.33)
'il = jl =Ky o= 0. ‘ '

’

The total disolacement for a poiot force; obtalned

superposing the source. and the free solution is therefore of

~

the following form (Ben Menahem and Singh 1968)

in the layer: u, (p) = Re J u, (¥)zde -
5, (0) = [g(e +z_)+(f_ +z_)'Js -

1°" o omy @1‘ m, m, m |

: : (A.34)

1 o [CE 4z )+ o(E +z_)]p. +k(f Yo )9
| . "y "1 - ) B2 P2 "3 -3



.

[

in the half-space: Gz(p) = Re f Gz(c)cdc

-£ ) ’
N 0 (A.35)
S,(g) = (gF_ +F' )B_ + (F' +IF_ )P+ kF_ C_
-2 oy m,'m Smy o om,Tm m,m
. / | | | | -
where .
~T. .z -A,z o =b,z
Fm' = dme 2 , F = e 2\, F = g e 2
1 m.2 m 4 m
: 7: 2 2 ;i \ .z 2 ;i = ‘ '
Ty = (@7+h,) 7, A, = (§7+k3) %, h, = p/a,, k, p/s2

—GZ‘BZ being respectively the P and § velocities in the

half gpace.‘ The,coefficients\am,.,,,gm are,oBtained from
thevboundsry conditions‘at z =0 and z = H, taking-into
account that the vectors ﬁm, gh;AQm are linearly’indepen—

dent:, The linear system obtained splits into a- thlrd\order

+ -
\system for the COefficients co cn and.gm, representing

ithe~Swaave, and a sixth-order system for the other

.coefficients, representing the P-SV—wawesa
A3. Ray expansion

a. ‘Pure Shear WaVes

;o Combining ‘the source with the. free solution, solving"

the linear system determined by the boundary conditions,

~

“expanding the solution in a'geometric’series, and grouping

o ~

conveniently the terms of this expansion, we get the m th

term of the displacement at the surface in the form:
tel f R : =t ‘ 7 v )

v
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SO gy - [2ke ] bk 27 NP (A.36)
: v=0

where
1 1f v = odd

(-l)m+¥ if v = even

<
+
[

- "g‘if Vo= odd -

<
+

4
H  4if v = even

bB -8, ST , L Y+l 1f u = odd
K= gp g bty B ()T d
71 T2 ‘ 2 . Sl uty 1f uw o= even

H .
(A.37)

[...] meaning "the integral part of ..." and kl = p/Bi,

where 8 is the\S-velocity in the layer,

1

For a horizontal force in the X —direction there is

\

_ 2
no displacement'correspondingvto m,=‘O The displacement

COrresbondiﬁg tom =1 is:

= R +1
' F, J(cx) 33 () [" ‘
-(SH 2 1 -=NBH . )
B(, )(C) ;'2"“13 Icosv i e sin¢——zzﬂy— e ] z K ° e (A.38)

1

and if the receiver i% on the x

l—axis, ¢ = n/2 and the~

displacement ‘is o ' ' - N S o

Restoring the“integretion’with'respect to ¢ aqd

performing the change of variable

~

\ - \ t = k.X "“t  (A.40)

we write the displacement of the S,wavelin the form



E(SH) - ‘-,(SH)g

o’ where
- o v+ | ‘ 2
— (SH) Fao 3 « L 21:| - Nk,H '/"'2”‘1
v - - 2 k —2 K J'(k.rx)e dx .
| 28 yuo ! /2 2 1°71
0 X +nl

(A.41)

1

For a horizontal‘forcé in the x -difection and a

receiver on the x,-axis, we get aftelr similar steps:

1

Z(S) = 1) .

-(8) ?l w - ® 1 [V_;_]; , - Nk].H v/x2+ni A
' 0 v& +n1
with
Ny = By/B,- - e

b. Compressional-Shear Waves

. . ; : + ; -
The system for the coefficients am,am,b ,b. ,d ,e can

be brought to the following form

. ) 2 2 -

, ——  -A (H- -d) ‘ x40 ~B(H-d) N :

A u = -1 x2+52 e (P) +j 1 e B(Sv) ‘ (A.44)
“m “m m 1 X . . “m ; _

] | : v

whére ém"i.s a }(6‘><6) matrix,

taking the first six columns of the matrix (23) in

Abramoﬁici-(1970),l

- El_ = Bllal’

1

identical with that obtained

i

A=k /xP+el o (A.45)

RS B

a 'beiﬁg‘the P-velocity in the layer, and - |
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| 2 vkl A(H-2d) 2. ¢ T
, + -
2@ L (T AL AG2D gy T L, Q)
SR W AET
1 . 1. TETR
(SV) mHl 2x>  B(H-2d) . .mHl 2x241 B‘(H-Zd) |
I}m = (-1) '/—"— e ’ ('1) ——E e : ’ (A-l‘6)
/x2+n2 x +n1 ‘ y ' .
1 . . ' 7
1 x2  2bx? b(2x2+1) > T‘
—_— y ’ K | ‘
/x2+n§ »/xz+ni ./xz+ni % ,

1
T meaning(tranSposed, 'Thus, the displacement is split in a

natural way into P and SV motions

u = E(P) + e(sv)- \ (A.47)
m m m-
with g(P? and E(SV) satisfying:
T tm m »
.AU(P) '=-i/ /x2+€2 e‘_A(H—.d) B(P) s (A.48)
“Tm m 1 ooTm _
. <242 -
(sV) _ "1 _-B(H-d) _(SV) .
Ag " =] Y e B \
“m ..oTmox - ~m

Solving these éystems of equations, expanding into
B} - N
! & : - 4 -

'geheralized rays and taking into account the expression

(A.17) for the harmonic vectors we get the vertical, radial®
and éqgulér»disﬁlacement components wm,qm and Vm’
respectively for  the P and SV motions as integrals with

respect to x, haﬁing,aswintegraqu:\

1
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.

;(P)
m

YR img, -AMH-B VH
5k1‘/i +e] J (k xr)Re(1 &™) uX\.,R3(u.v)

—

aép) - -klx J'(k xr)Re(i eim¢) 1s (u,v)e ~AMH-BVH
‘ U,V

P) _ _m | im¢ ' | ~AMH-BVH
Vo T Pp(kx0Re(d e 1) uZvS3(u,v)e
/’—_"‘ / ) (A.49)
; X +€ X +n
OV Ly Re(y 1% L1 txr) IR (u,v)eAuH -BNH
m 1 m x Y ]

t

=k, v& +n2 Re (3 eim¢)J (k rx) ) 8 4(Havde A“H'BNH
M,V

qm .

S(sV) _ 7 im¢i.!L .\ =AuH-BNH
v /x“+n Re(y e )y Jm(klxr)uivsa(u.v)e

| ’ !
where )

Ryuw) = - 1)(m+l)(u+v+l) m(u+v+l) X

R (u,v), R (u,v) = (-1) i ——
%x2+si /k2+ni4 
(A.50) .

'RZ(U,V)

m(u+v+l)

S, (n ,v)

5,G0,) = (D@D s G = D)

Rluhv),slhuv)'beihg defined‘in Abramovici (1970) and

Rz(u,w,'s Ohv)AhnAbramovici and Gal-Ezer (1978) ' >

For a horizontal force in the xz—direction, we have

! to take only m = 1 " When the receiver is located on the

X

1‘8;18, the displacement is: ;o

{

[N
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(B | =(sV) E(P) - a(SV) -0

_ F " xJ. (k,xr) -
10 —‘25' ) __;__;___ 541, vy eAMH-BVH (A.51)
4T WY 5y vk +ei

= D 22
_(sV) F, /4 +n) Jl(klxr) —AuH-BNH
\ -t S, (usV)e dx.

4ﬂk2r H,yV Mx

1 "7 o0

For a horizontal force in the xl-direction we have

again only the term m = 1. When the receiver is on the

xl-axis, the displacement 1is:
ﬁ(P) - v(SV) -0
" F ® xJ (k. xr) v
=(P) _ _1_ S D bl -AMH-BVH
w ik v R3(u,v)e dx
1wy, .
0
: F /4 +s v& +n _b
—(SV)= 1 l -AuH-BNH (A.52)
v e e L . Jl(k x©)R, (u,v)e ax
1u,V . \
0
- 5 x Jl(klxr) _ AMH-BVH
= ——= — == S, (u,v)e dx
4nkl N /57 3
LA MY +e]
. —— \
3 © f2, 2
-¢sv) % o YTy 3G ~AuH-BNH
q == ] - S, (u,v)e dx
4mk : ) M 4
: 1 u,v 0 N 5

A4, The solution in the.time domain
Using the generalized Cagniard-Pekeris method

’
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(Abramovici, 1978), each term in (A.36) and (A.49) can be
inverted directly into the time domain if the time varia-
tion of the stress-discontinuity is a power of time t

multiplying a st?p function or any line;r combination of

such functions. 1In particular, if we have a concentrated

force acting in the horizgntal plane (xi,xz) of components

Fl(t) = £,U(t)e
(A.53)

F2(t) - fZU(t)t | {2

where fl,f2 are scale factors and U(étlis the unit step

function; we have *&Mﬁ’
’ \ W
. &7 «

I £ '
F,o =~ F,=— | (A.54)

-
o

o

and the displacement components, according fb (A.41)-(A.42)

-axis, are:

and (A.51)-(A.52), for a receiver on the Xy

o

B AMH- ,
we—1_ I k sz (k.xr)R_ (u,v)e BVH dx
2 1 11 3
4TuIPT U,V 0 ‘
(A.55)
£ = oy —AuH—
-1 X k /42+s2 /kz+n2 J.(k_xr)R (u,v)eAuH BNH dx
2 1 1 111 4
4muiPT WV 0
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£ 3 AMH-Bv H

a=— I K = 31 (k xr) 5,(u,v)& dx
4vu1p ¥,V 0 %x2 2
‘1
£ =
I ok | x/dnd 33 (kpxe) s, (u,v) et BN (A.56)
Mu P May 11
1 . 0
£ ® © v+]
+ 4———1—5 vzo bﬁk —f%::: J, (k,x0)K 27 gTBNH 4
2ﬂu1rp i 2k2+ni
-5 T2 | —AMH-BVH
Ve —Es ) J —— J,(k;xr) S (u,v)e dx
4mu P W,V ,42._,_% : o
£, " 2' ~AUH-BNH (A.57)
+—*5— ] x+ n] Jl(klxr) S, (u,v)e dx :
,‘fﬂulp T H,Y
I T | [v? -BNH _ -
-—— ] k —X — 3r(k,tx) K e dx
onupir veo 1) g3 101 |
HiP 0 vx“4ns :
o1 4

.The.inVersibn into the time domain is expressed in

n,s

terms of some special quantities F (Abramoviti, 1978)

that depend on two functions and onAfhe time variable:
n,s

n,8 ryLo.
F F_ [§,g::] o (AsB)

Theffunction ¢ is the "amplitude'" of the integrands in(A(SS)(SGL

(57)) whereas g’is the argument of the exponentials _For

‘simplicity, we shall drop here the lower index. : ‘§§

S
&

The time dependent displacement components for a

52



142
j
horizontal force are:

f

: | £, 0,0 T 7
wit) = — zl. [ R (u v); M/x +el + v/x +nl, t]
‘ 27 ulslp u.vS

(A.59)

—FO’OEJ£2+ei /;2+ni R (u v),u X +e2 + N/; +n1' t]1

. 2‘
f . x S (u,\’.) ‘
qQ(t) =——21 Z\),Fo’l[—*~é———“—;M/;2+€2 +/xin?; ¢] ‘
2 2 z 77 1 ! 1 ‘
4 ulelp U,V 2,2

/k +el

F0 1[/2+n S,(1v); u/x2+e + NVx? +n ; t]}

(A. MD

f J——
3 Z F—l 0 [ 1 [(v+1)(2]; N¢%2+ni; t]_
2% He 8 v=0 /42+n2
. £ _ x S th) /o Y 3
V(t)=- ——Efg———i Z <{F 1,0 [—————?——— M/&2+ei + v/k2+ni; t]
4wbu1813?vu5v - | 42+Ei -
v';F-l’O [Vx“+ 2n? i 4(u v); u/x2+ei + N/32+ﬁi; t]}
’ L','i‘_:;,‘i . . ] . (A.6l) ‘.
£ @ [==] -
e Rne D Nl et ]
: 217 B.p" v=0 L2 2 ~
lvl X +n-1" .
wheie, 1f p < pi
n.s 0 for 1 < TO L
A o (A.62)
. Y? T > T o
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V] - for T < 1% -
a8 L) x™B for g }f T o< T, (A.63)
%Y‘ for 1 i TO
U
p being the non-dimensional epicentral. distance )
p = r/H . : (A.64)

and Py the critical epicentral disfance for a héad wave to

‘occur. Besides, 1 is a non-dimensional time parameter,

TO the7arriva1 time of the'geometriCal ray reflected p

. ‘ .
times as P and v times 'as S, 1* the arrival time of the

.corresponding head wave. The expressions for xn,s, "o

are given by Abramqviciﬁ(l978) together with those for vl_ ,

and'x1 appearing there, as well\as~the'eipressions for’

T* and. 1

N

pl’ 0.‘ | | -
) For the particular cases needed in (A.59), (A.60),”

(A.61) the expressions of x"® and Y™’% are

1

vy v o
» ~ 0,0 [ Imleav)] - AT
- R J Ty Gliv, odv . (A.65)
‘ A -
| © 0,0 L e N o -
o Y = Im [ . «t__ G(x,T)dT o ‘ (A.66)
. . . I J _A_i A R .
) S



0;1\);[153[1‘}21_[[1_" -

. X - g(iv)]G(iv T) - ,- ’
X “ S
o+ pzv 2n [_g(iv)-i-c(%v;g]} v o - N
S ! o
0,1 _ ; QL_L _ g(x)+G§x,tz
R S J {[T g(x)]G(x 'c) —o2x zn[ ipx : ]} (A 68)
] -)-‘ | :

- Y1 mle(iv)] : T
_X»lgro—ll J ) {[T-g(iv)JG(iY.* é‘nk viﬁ" [T'B(iV)+G(iV,T2]} dV

v Py ..

| X ‘ (AL 69)

’ ' ‘» xl X ) = N AR
Y‘l’°‘=_im J Eéfl-{}r-g(x)]é(x,r)+p x ln[——gif%igiﬁ*lli} dx - (A 70)

. 3 . ) o ‘ \ :

where l ’ .

ii = min(e ,ez,nl,nz) S ,J \  : . (A,j;)N

G(x,T) =<{[T-g(x)]2+p2x?f} ' o . (A.72)

-
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APPENDIX B’

7

]

In général the  steady- state plane wave solution to

~(3 3) is a constant times ‘f \‘L I e \
io—*— » - o+ y '-’.-’" i “ ' . ) ‘ .
e;( f wt) - e X I ei(?..r wt) \ ‘ . , (B.1)
where , N v . : - ‘
»ﬂx . , . . ; ‘ [
0 K =P + 1k, ‘ , (B.2) .
. i ’ ‘ ' R

P is the Jpropagation vector and & 1s the attenuation -

t

vector. .
From (B.2) we have .
S p2 - p? = Ré[KZJ\ ol 7 (BLI)
and T ' " \ !
 2PAcosy = Im[K?] R (B4
- R . S »' ~ . ‘. ‘\/ . /

where P and A are thelampiitudes of ? and K'andl¥ is
the ahgle/betweén theﬁ. We now define the loss fadtor
- for P and S waves as follows: '

G .= A+2yu for P waves

@ = Re[G] \\\\\ - (B :5)
' G = u - for S waves. . . ,

- Thus* \ ! =,m(1+-i%)A . 7 (B.6)
' / N . .
and . 3K2‘= mz % o o A (B.7)

where p is the density and m is a ébnStht to be detetmined.

145 -
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N

Solving (B. 3), (B. 4) for P and A and taking into account

(B. 6)’ (B. 7) wve get: . ; \ , :7‘ , R

-

o p ='ww//g VE+F (.8
A = w'//g' VE-F . (B.9) _.'-\
where F = —-23~—~ : S : - (B.10)
. - - 2(Q7+1) - ,
'_Bnd, . o E = F/&-+ Q-?seczy‘ . »1 o (B.11) -

~

But the phase veiocity c(w) is ‘equal to‘ﬂ, then

’
'

m f‘CZ(m)p(E+F>. : ) , - (B.lZX

3

. | . “ . Lo N | B ~ -
Therefore using (B.6) the complex modulus G is obtained -

as\follows{ _ S ‘ o o T .-

i

- . 6= cz(q)o(EfF)‘(l’+‘i:%)ﬂ: ' -:» (B;13)h

\

I

.Futterman s model provides tha phase velocity and Q. as

A

'a function of frequency.‘

.

Equation (B. 2) implies that in the most general case

'? and K are not parallel When Y-O the wave is. called'

homogeneous while when Y#O the wave is - ‘called inhomogeneous.

z

In our examples we assume that the source transmits

‘»homogeneous waves,'i.e, y=0.\ Care must be-taken working .

A\
* L
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out'tne angles_of emergence‘for thevrefleéting uaves.
’Consider a plane P wave striking an interface and producing
reflected and_ transmitted P and S waves as shown in . Figure »
25. For simplicity the transmitted P and S waves and the
reflected S waves are not ‘shéwn in,Figure»ZS. If ve know
fthe anglelof inci‘dencelel and. the attenuation angle Yl

fthen the angle of emergence 62 and the Y, can be calculated

using Snell's Law, which states_that,the‘horizontal wave

N
N

number K_ 18 constant (Lockett 1962, Borcherdt 1977):

f . . ~

i.e. . Re[Kx] ='constant
, "‘ v o (B.llf)
or B ?lsinel.f stine2
'lm[Kx] ?‘constant ; )
oor o ‘Alsin(ﬂl—yl) f_Azsinfez-Yz). g (3.15)

EquatiOns (B.l4),,(B.15) are used tdacalculate,e2 and Y2

.Similarly, one can calculate angles of transmission and Sy

emergence for the transmitted and reflected P and S waves.\

,\ \ . . . N
B N \ ~



CONOUMBWAN =

0O0AN0NA000N0NN0N0000000000000

O

APPENDIX C

’

List of'Cpmputer Programs

THIS PROGRAM TAKES A GENERALIZED RAY AND

INTRODUCES THE EFFECTS OF ANELASTICITY
ACCORDING TO FUTTERMAN'S MODEL '
Vi=P-VELOCITY IN THE LAYER

V2=$-VELOCITY 'IN THE LAYER BN
V3=P~-VELOCLTY IN THE HALF SPACE ' !

. VA=S~VELOCITY IN THE HALF SPACE

101

R1=DENSITY IN THE LAYER:
R2=DENSITY IN THE HALF SPACE
Q+Z%Q VALUE IN THE LAYER
Q2Z=Q VALUE IN THE HALF SPACE
DEPTH=DEPTH OF THE SOURCE- '
DIST=HORIZONTAL DISTANCE SOURCE-RECEIVER
DEL*SAMPLING RATE !
FL=LOW FREQUENCY R )

FH=HIGH FREQUENCY -
GAM=ATTENUATION ANGLE
‘X=GENERALIZED RAY

- .

\XR'GENERALIZED RAY WITH THE EFFECTS OF ANELASTICITY

SUBROUTINE PEL CALCULATES REFLECTION COEFFICIENTS
FOR A P INCIDENT: ‘PLANE WAVE -
SUBROUTINE SEL CALCULATES REFLECTION COEFFICIENTS

* FOR.AN S INCIDENT PLANE WAVE

-

SUBROUTINE PVEL 15 THE ANELASTIC VERSION OF PEL.
SUBROUTINE SVEL IS ‘THE ANELASTIC VERSION' OF SEL
SUBROUTINE FASTF PERFORMS A FAST FOURIER TRANSF ORM
SUBROUTINE PHAMP PUTS .THE PHASE BETWEEN O AND TWOPI
SUBROUTINE LEQT1C SOLVES A SYSTEM OF FOUR EQUATIONS
WITH FOUR UNKNOWNS. - ’
REAL X(1024),XR(1024),XI1(1024), AAM(1024) PPH(1024r
REAL AM( 1024),PH(1024)

REAL VP1(1024),VP2(1024), vS1(1024), v52(1024) OP(1024) 05(1024) '

REAL F(1024),2(1024), T(1024) FG(1024)

COMMON /AREN1/V1 v2, V3HV1 R1,R2

COMMON /AREA2/VP1,VP2,VSH, V52 QP.QS, RS1 RS2, GAM
READ" THE DATA,VELOCITIES, ELASTIC PARAMETERS ETC.
READ(S, 100)HLAY ’ -
FORMAT(6X,F9.4) . . ) .
READ(5.100)DEPTH :

.READ(5, 100)DIST

READ(5, 100)DEL DN :
READ(5.100)FL

READ(5,'1D0)FH .
READ(5, 100) V1 | : /
READ(S, 100)V2 ‘

READ(S,100)V3

READ(S, 100)V4a

READ(5.100)Q12 ) ' )
READ(5,100)Q22 - o
READ(5,100)R1 ~ ‘ ‘

READ(5, 100)R2
READ(S5,.100)GAM - o \
READ(5, 101) INDEXP -~ ‘ .
FORMAT(8X,12) . ' '
READ(5, 101) INDEXS

READ(5, 101)KK ) - " -
READ(S, 101)KL ' . R :
READ(S, 101)KM ) '
READ(S, 101)KN :

RS1-R1' e
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120

foo0oo0ono0ononnoao

59

299

' 58

o

251
252

" FUTTERMAN"S THEORY

RS2=R2

READ THE GENERALIZED RAY

N=512 . -
N2=N/2 .

PI=3. 141593 )

NX = {

CONTINUE

READ(1,299, END=58)X(NX)
FORNAT(4OX D20.8) . :

NX=NX+ { ) \ . S
GO- TO 59 L . o

CONTINUE :

NX=NX - {

TAPERING AND ADDING zenos

ND2=(N/2)+1 . B

NTA=476 N

NEND=N-NTA )

NX t=NX+1 ) ) . i
MTOT=N-NX-NTA a

RMTOT=FLOAT(MTOT) '

1C=D ‘ :

DO 2 I=NX1,NEND

IC=1C+1 -

X(I)=X(NX)*((1. 0+COS(PI*FLOAT(IC)/RMTOT))‘0 5)
NENDS=®NEND+ 1 .

DO 3 I=NENDS.N . - .
X(1)=0.0

FOURIER TRANSFORM .OF THE RAY

DO 7 I={,N o : ‘ .

XR(I)-X(I)

“XI1(1)=0’0

CONTINUE

CALL FASTF(XR,XI,N)"

DO 10 I=1,ND2

AAM(I)= ((xn(1)*xn(1))+(x1(1)‘x1(1)))'*o 5°
PPH(1)=ATAN2(XI(I), XR(I))

KK=+1 DIRECT P DR § - S -
KK=-1 PP,PS,SP,SS : '
KL=+1 DIRECT P
KL=-1 DIRECT S
KM=O SP DR SS
KM=+1 PP ‘ ,
KM==-1 PS ' . ) -
KN=+ 1 §§ - ’ B
KN=-1 Sp. L . . :
INDEXP=+1 PP : ' ' !

INDEXP=+2 PS . :

INDEXS=+1 SP o ; -

INDEXS=+2 SS :

COMPUTE TME PATHVTRAVELLED AND THE ANGLE OF INCIDENCE
IF(KK.GT.0) GO TD 251

CRO=((((2.0%HLAY) - DEPTH)“2)*(DIST'*2))“O 5
VC=DIST/((2. O‘HLAY) DEPTH)

AN=ATAN{VC) .

Roz-HLAv/cosjAN) . .
RO1=R0-RO2 : ’

GD TO 252 .
Ro-((DIST'*2)+(DEPTH"2))“O 5

CONT INUE
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121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

‘138

- 139

140

141
142
143
144
145
146
147

‘- 148

! 166

180

c

.C

EC=0.5772
XH=ALOG(FH/FL)
VPIL=V1I*(1.0-(1.0/(P1*Q1Z))* (Ec+xn)),
VSIL=v2*(1.0-(1.0/(P1*Q22))*(EC+XH))
VP2L=V3*(1.0-(1.0/(PI*Q12))*(EC+XH))
VS2L=V4*(1.0- (1 0/(P1+Q22))* (EC+XH))
CVP1(1)=VPiL
VS1(1)=VSiIL
VP2(1)=VP2L . )
vs2(1)=vs2L - ( S/
QP(1)=Q12
QS(1)=Q22
DO 510 I=2,ND2
F(1)=2. O'PI‘FLOAT(I)/(FLOAT(N)‘DEL)
Z(1)=ALOG(F(I)/FL)
VPA(I)=VPIL*(1.0-(1.0/(P1*Q12))*(EC+2(1)))
VS1(1)=VSIL*(1.0-(14,0/(P1*Q22))*(EC+2(1)))
VP2(I)=VP2L*(1.0-(1.0/(PI*Q12Z))*(EC+Z2(1)))
VS2(I)=VS2L*(1.0~(1.0/(P1*Q22Z))*(EC+2(1)))
QP(I)=Q12-((1.0/PI1)*(EC+Z2(1))) ,
QS(I1)=Q22-((1.0/PI)*(EC+2(I)))- . .
510 CONTINUE
INTRODUCE ATTENUATION AND DISPERSION ALDNG THE PATH
THE EFFECT OF INTERFACE 1S ALSO CONSIDERED
IF(KK.LT.0) GO TO 331
IF(XKL.LT.0) GO TO 332
AM(1)=AAM(1)
PH(1)=PPH( 1) )
DO 511 I=2,ND2
D1-F(I)‘R0'((1 o/v1)- (1 o/vp1(1)))
PH(I)=PPH(I)+D1
AL=F(1)/(2:0*QP(1)*VvPi(1))
EK=-AL*RO
511 AM(I)-AAM(I)'EXP(EK)
‘GO TO 800 . - - :
332 AM(1)=AAM(1) ’ - S :
PH(1)=PPH(1) . T
DO 512 'I=2,ND2-
"D1=F(I)*RO*( (1. o/vz) (1 o/vsi(1)))
PH(I)=PPH(I)+D1
AL=F(1)/(2. O‘OS(I)'VS1(I))
" EK=-AL*RO p
512 AM(I)= AAM(I)‘EXP(EK)
GO TO 800
331 IF(KM.EQ.0) GD TO 333
IF(KM.LT.0) GO TO 334 -
CALL PEL (AN, INDEXP,AME, PHE)
AM(1)=AAM( 1)
PH( 1) =PPH( 1)
DO 513 1=2,ND2 - )
D1-F(I)'R0'((1 .0/V1)- (1 o/vp1(x)))
S IM=]
CALL PVEL(IM, AN, INDEXP,AMV, PHV)
PH(I)-PPH(I)+D1+PHV
AL=F(1)/(2. O‘QP(I)‘VP1(I)) T
EK=-AL *RO

513 AM(!)-AAM(I)‘EXP(EK)‘AMV/AME

GO TO 900 - ' N
334 AM(1)=AAM( 1)~ ) }
PH(1)=PPH(1) - ) ) o
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181

514

333

515

’ 335

516.

900

681

682

|

‘ rd
CALL' PEL (AN, INDEXP , AME ,PHE)
DO 514 I=2,ND2
D1=F(I)*RO1*((1.0/V1)-(1.0/VPI(1)))
D2=F(1)*RO2+((1.0/Vv2)-(1.0/VS1(1)))
IM=1
CALL PVEL(IM,AN,INDEXP,AMV,PHV)
PH(!)-PPH(1)+D1+02+PHV
AL1=F(1)/(2.0*QP(1)*VPI(1))
EK{=-AL 1*RO{"
AL2=F(1)/(2. 0*0QS(1)*VS1(1))
EK2=-AL2*RD2
EK=EKI+EK2
AM(1)=AAM(I)*EXP(EK)*AMV/AME
GO TO 800 :
IF(XN.LT.0) GO TO 335
AM(1)=AAMT1) .
PH( 1) *PPH({ 1) N
CALL SEL (AN, INDEXS,AME, PHE)
DO 515 1=2 ,ND2
Di= F(I)‘RO‘((1 o/v2)-(1. o/vs1(1)))
IM=]
CALL SVEL{IM,AN,INDEXS,AMV, PHV)
PH(I)=PPH(1)+D1+PHV
AL=F(1)/(2.0*QS(I)*VSi(I))
EK=-AL*RO
AM(I)-AAM(I)‘EXP(EK)‘AMV/AME
GO TO 800 -
AM(1)=AAM(1)
PH(1)=PPH( 1)
CALL SEL (AN, INDEXS,AME,PHE)
DO S16 I=2,ND2 .
D1-F(1)*Ro1~((1 0/v2)-(1.0/vSi(1)
DZ-F(I)*RO2‘((1 o/v1)-(1.0/VP1(1)
IM=1
CALL. SVEL(IM, AN, INDEXS,AMV, PHV)
PH(I)=PPH(I)+D1+4D2+PHV -
AL1=F(1)/(2.0*QS(1)*Vvs1(1))
EK1=-AL'1*RO1
AL2=F(1)/(2.0*QP(1)*VP1(1))
EK2=-AL2*RO2 -
EK=EK1+EK? _
AM(I)=AAM(I)*EXP(EK)*AMV/AME
CONTINUE .
INVERSE FOURIER TRANSFORM ¢
DO 68t I=1 ,ND2
XR(1)=AM(I)*COS(PH(1))
XI(1)=AM(I)*SIN(PH(I))
CONTINUE . -
DO 682 I=2,N2 '
XR(ND2+1- 1) =XR(ND2-1+1) -
XI{ND2+I- 1)-«x1(~o: 1+1)
CONTINUE

))
))

. DO 683 'I={ N

683

XI(I)-—XI(I)

CONT.INUE . . ,
XR(ND2)=0.0 .
XI(ND2)=0.0

- CALL FASTF(XR,XI,N)

DO 684 I=1,120
XR(I)!XR(I)/(F;OAT(N))_
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O0O0OO00O00

OO0

o000

aO00n

684

298

CONT INUE
WRITE(19,298) (XR(I).I=1,100)
FORMAT (40X,D20.9)

STOP

END

SUBROUTINE FASTF(FR,FI,N)

N .IS THE NUMBER OF DATA POINTS = 2¢*M
FR IS THE REAL DATA SET

FI1 IS THE IMAGINARY PART OF THE DATA SET (=-0.0 IF ONLY REAL)

FIRST COMPUTE M

KO=N : '
KD=KD/2 '

M=p+ |

1F(KD .GE. 2) GO TO 1

ND2 = N/2

NMt=N-1

L=1

SHUFFLE INPUT DATA IN BINARY DIGIT REVERSE ORDER

DO 4 K=1,NM1
IF(K .GE. L) GO TD 2
GR=FR(L) .
GI=FI(L) . ‘
FR{L)=FR(K) ,
FI(L)=FI(K) ' :
FR(K) =GR

FI(K)=GI

NND2=ND2

IF(NND2 .GE. L) GO TO 4
L=L-NND2 ‘

NND2=NND2/2

GO TO 3

L=L+NND2

PI=3.14159265

;

FIRST ARRANGE ACCOUNTING OF M STAGE

D0 6 JU=1,M
Nu=2%»y

NJD22NJU/2

EU=1.0 .

£2=0.0 .
ER=COS(-PI/NUD2)

EI=SIN(-PI/NJD2)

COMPUTE FOURIER TRANSFORM IN EACH M STAGE

DO & IT=1,NJD2

DO 5 IW=IT,N,NJ -
IWU=IW+NJD2
GR=FR(IWU)*EU-FI(IWJ)*EZ
GI=FI(IWJ)*EU+FR(IWU)*EZ
FR(IWJ)=FR(IW)-GR
FI(IWD)=FI(IW)-GI .
FR(IW)=FR(IW)4GR :

.

REAL FR(N), FI(N). GR. GI. ERJrEI EU, EZ
_M=0 -

oA

Freahy

s
P
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3

FI(IW)=FI(1W)+GI

SEU=EU

EU=SEU*ER-EZ*EI
EZ=EZ*ER+SEU*E]

RETURN

END

SUBROUTINE PEL(D,INDEXP, L AM,PH)
REAL WA(4)

COMPLEX HS.A(4.4),B(4,1),CABS,CSQRT

COMMON /AREA1/V1,V2,V3, V4 ,R1 R2
HS=SIN(D)/V1

A(1,1)==-V1*HS
A(1,2)=-CSQRT(1.0-((HS*V2)**2))
A(1,3)=varHs
A(1,4)=CSQRT(1.0-((HS*V4)*»2))
A(2,1)=CSORT(1.0-((HS*V1)*+2))
A(2,2)=-V2*HS
A(2,3)%CSORT(1.0-((HS*VI)*+2))
A(2,4)=-V4a*HS

A(3,1)=2 O*RI*V2*V2*HS*A(2,1)
A{3,2)=R1*V2%(1.0-2.0*V2*V2*HS*HS)
A(3,3)=2.0*R2*V4*V4*HS*A(2,3)
A(3,4)=R2%VA4*(1.0-2.0*VA*VA*HS*HS)

*A(4,1)==R1*V1I*(1.0-2.0%V2*V2*HS*NS)

A(4,2)=2 0*RI*V2*V2*HS*(-A(1,2))
A(4,3)=R2+V3*(1.0-2.0%V4*V4*HS*HS)

- A(4,4)=-2 . 0*R2*V4*VAa*HS*A(1,4)

31
30

27

28

32
29

B(1,1)=-A(1,1)

B(2,1)=A(2,1)

B(3.1)=A(3,1)

B(4,1)=-A(4,1)

CALL LEQT1C(A.4,4,B,1,4,0,WA, IER)
AM=CABS(B(INDEXP, 1)) )

CALL PHAMP(B(INDEXP, 1), AM,PH)
RETURN .

N

END

SUBROUTINE PHAMP (POM, AMP , PHASE)
COMPLEX POM,CABS R
AMP=CABS (POM)

REZ=REAL (POM)

AMZ=-AIMAG(POM)

IF (AMP.EQ.0) GO TO 27
1F (REZ.EQ.O0) GO TO 28
IF (AMZ.EQ.0) GO TO 29
AR=ATAN2(AMZ ,REZ)

IF (AR.LT.Q0) GO YO 30
PHASE=AR

RETURN 3
PHASE=AR+2*3. 141593

GO TO 31

PHASE=O

GO TO 31

IF (AMZ.GT.0) GO TO 32
PHASE=3.141593*1.5

GO 7O 31
PHASE=3.141593%0.5

IF (REZ.GT.0) GO TO 27
PHASE=3. 141593

GO 7O 3¢

END

»

s
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SUBROUTINE PVEL(NW,D. INDEXP, AM,PH)
REAL WA(4) ,VP1(1024),VP2(1024).VS1(1024),V52(1024)

" REAL 09(1024) Q5(1024)

REAL M1R,MI1I,M2R,M2] M3R,M31 M4R, M4]

COMPLEX HS,A(4.4).B(4,1).CABS,CSQRT,CMPLX ) ' ‘

COMPLEX M1,M2,M3,M4,VV1I, VV2,VV3, VV4 ) o
COMMON\ﬂAREAZ/VP1 VP2 VS$1,vV52,0P,Q5,RSH, RSZ GAM
PI=3.141883

. GA=P1*GAM/180.0" T . ' —

S122.0%(1.0+( 1. O/(OP(NV)"2)))
$2=1.0+(1.0+(1.0/(QP(NW)**2)))**0.5

MiR=(YP1(NW)**2)*RS1252/S1

M1I1=MIR/QP(NW) :

M1sCMPLX(MIR,M11) . , -

VVi=CSQRT(M1/RS 1) ” _ )
T1=2.0%(1.0+{1.0/(QS(Nw)*2))) :
T2m1.0+(1.0+(1.0/(QS(NW)**2)))**0.5

M2R'(VS1(NW)“2)‘RS1‘T2/T1 _ :

M2I=M2R/QS (NW) s
M2=CMPL X (M2R, M21)

VV2=CSQRT(M2/RS1)

TT182.0%(1.0+( 4. O/(oP(Nw)'*z)))

TT221.0+(1.0+( 1. O/(QP(NV)"2)))“0 5

: MSR-(VP2(NV)"2)‘RS2‘TT2/TT1

M3I=M3R/QP(NW)

M3=CMPLX(M3R,M31)

VV3=CSQRT(M3/RS2)
5S1%2.0°(1.0+(1.0/(QS(NW)**2)))
552=1.0+(1.0+(1.0/(0S(NW)**2)))**0.5
MAR-(VS2(NV)"2)'RS2‘SS2/SS1

MAI=MAR/QS(NW) - - ?

Md=CMPLX(M4AR ,M41)

VV4=CSQRT (M4/RS2) - . o
X1=1.0+(1. o/(optnw)'cos(cn)))'*z : L)

X11=SQRT(X1)

X2=1.0+(1. o/(op(Nw)))"z
X22=SQRT(X2) -
XN=1 0+X11

XD=1,0+X22

. XZ=XN/XD

XV=SORT(XZ)".

- PPiaXV/VP1(NW)

XNN=X11-1.0 - .
XZZ=XNN/XD

XVVeSORT(X22)

AA1=XVV/VP1(NW)

DD1=D-GA

HSR=SIN(D)*PP1{
HSI=-SIN(DD1)*AA1
HS=CMPLX(HSR,HSI) : .
A{1,1)=-VV1*HS \
A(1,2)=~CSQRT( 1.0~ ((HS'VV!)"2))
A(1,3)=VV3*HS .
A(1.4)=CSQRT(1.0-((HS*VV4)**2))
A(2,1)=CSQRT(1.0-((HS*VV1i)}**2)) ’ o
A(2,2)=-VV2*HS .
£(2,3)%CSQRT( 1.0~ ((HS'VVS)“i)) - : : -
A(2,4)=-VV4*HS . ) :
A(3.1)=2. o'ns1—vv2~vv2'Hs-A(2 1)

Al 2)eRS10VV2*(1.0-2. 0‘VV2‘VV2‘HS‘HS)



]
s

A(3.3)=2. 0‘RS2'VV4'VV4*HS'A(2 3)
A(3,4)=RS2*VVa*(1.0-2. O‘VV4‘VV4'HS‘HS)
A4, 1)=-RSI1*VVI%(1.0-2.0*VV2*VV2*HS*HS)
A(4,2)=2.0*R51*VV2sVV2*HS*(-A(1,2))
A(4,3)=RS2*VV3*(1.0-2. O‘VV4'VV4'HS‘HS)
A(4,4)»-2 . 0%RS2*VV4*VVA*HS*A(1, 4)
B(1,1)=-A(1,1)’ J
B(2.1)=A(2, 1) ’
B(3,1)=A(3,1)

‘B(a,1)=-a(4,1)

CALL LEQT1C(A,4,4,B,1,4,0,WA, JLER)
AM-CABS(B(INDEXP 1))

CALL PHAMP(B(INDEXP,1),AM, PH) ,
RETURN

END

SUBROUTINE SEL(D INDEXS , AM, PH)

REAL WA(4)

COMPLEX HS,A(4.4) .B(4,1),CABS,CSQRT
COMMON /AREA1/V1,V2,V3,V4a,R1,R2
HS=SIN(D)/V1

A(1,1)==V1*HS

.A(1,2)=-CSQRT.(1.0- ((HS'V2)"2))
A(1,3)=V3*HS

A(1,4)=CSQRT(1:0- ((HS'V4)"2))
A(2,1)=CSQRT(1.0- ((HS'V1)“2))
A(2,2)=-V2*HS

A(2,3)=CSQRT(1. o- ((HS‘VS)‘*2))

" A(2,4)=-Va*HS
A(3,/4)=2.0*RA*V2*V2*HS*A(2,1)

©A(3]2)=R1*V2*(1.0-2. 0'V2'V2‘HS‘HS)

A(3/3) %2 ,0*R2*V4*V4*HS*A(2,3)
A(3,4)=R2*V4*(1.0-2.0*V4*VA*HS*HS)
A(4 1)=-RA*VI*(1.0-2.0*V2*V2*HS*HS)
A(4~2) 2.0*R1*V2*V2*HS*(-A(1:2))
A(A 3)=R2*V3*(1.0-2.0*V4A*VA*HS*HS)
A4, 4)- 2.0%R2*VAa*V4*HS*A(1,4)
B(1,1)=-A(1,2) .
B(2.1)=A(2,2) ’ .
a(a 1)=A(3,2)
3(4 1)=-A(4,2)
ALL LEQTIC(A,4,4,B,1,4,0,WA, IER)
MtCABS(B(INDEX§ 1))
[CALL PHAMP(B{INDEXS,1),AM,PH)
IRETURN -~ ! .

/ENO :

/| SUBROUTINE SVEL (NW,D,INDEXS,AM, PH)
| REAL WA(4),vP1(1024), VP2(1024) vs1(1024), v52(1024)
- REAL' QP(1024),05(1024)

/ REAL M1R,M11,M2R,M21,M3R M3I,M4R M4l

!

COMPLEX HS,A(4, 4) 8(4 1) .CABS,CSQRT,CMPLX
COMPLEX M1,M2,M3,M4,VV1, VV2,VV3, V4

COMMON /AREA2/V?1 VP2,VS1,V52,QP, QS RS1 RS2 GAM

PI=3.141593 .

GA=PI*GAM/180.0

S1%2.0%(1.0+(1. O/(OP(NH)“Z)))
$2=1.0+(1.0+(1.0/(QP(NW)*#%2)))**0.5
M1R=(VP1{NW)**2)*RS1*52/51 -
M1I=M{R/QP(NW) =

M{=CMPLX(MIR M11) . e
VV1=CSQRT(M1/RS1)
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481 Tie2. o*(1 0+(1.0/(0S(NW)*+2)))
- 482 © T T2=1,04(1.04(1.0/(QS(NW)**2)))**0. 5 -
483 ' M2R=(VS1(NW)**2)*RS1*T2/T1 .
484 M2I1*M2R/QS(NW)
. 485 o M2=CMPLX(M2R, M2T)
486 VV24CSQRT (M2/RS1)
487 _ COTT1=2 0%(1.0+( 1. O/(OP(NH)“Q)))
488 : TT2=1.0+(1.0+(1.0/(QP(NW)**2)))**0. &
483 M3R=(VP2(NW)**2)*RS2*TT2/TT 1 Y
490 : M3I=M3R/QP{NW)
491 M3=CMPL X (M3R,M31)
492 ,YV3=CSQRT(M3/RS2)
433 - " USS1=2.0%(1.0+(1.0/(QS(NW)**2)))
494 T SS2=1.0+(1.0+(1.0/(QS(NW)**2}))*»0.5
495 ' M4R=(V52(Nw)"2)*RS2‘SSZ/SS1
496 - . MAT=MAR/QS (NW)
497 - . M4=CMPLX(M4R M41)
498 ‘ VV4=CSQRT(M4/RS2)
499 X1=1,.0+(1. O/(OP(NN)'COS(GA)))“2
500~ . X11=SQRT(X1)
501 C X2=1.0+(1. 0/(OP(NV)))*‘2 )
502 T X22=SQRT(X2)
503 ‘ XN=1,0+X11
504 - ‘- XD=1.0+X22 : : o
505 XZ=XN/XD - . , ‘
506 - T . XV=SQRT{(XZ) ’ .
507 PP1=XV/VP1(NW) ,
508 i XNN=X11-1.0
509 . - XZZ=XNN/XD
510 ~XVV=SQRT(X2Z) " ,
511 AA1-XVV/VP1(NW) . -
512" . DD 1=D-GA
"513 , HSR=SIN(D)*PP 1
514 HSI=-SIN(DD1)*AA1
515’ . HS=CMPLX(HSR,H81) -
516 - A(1,1)=-vVi1*HS
517 - A(1,2)==CSQRT{ 1.0~ ((HS*MV2)*'2))
‘518 . AL1u3)=VVaRHS
519 ‘ A(1,4)=CSQRT(1.0-((HS*VV4)**2)) i
520 - A(2,1)=CSORT(1.0-((HS*VV1)*=*2)) - ~
521 © A(2,2)=-VV2*HS R
522 - .A(2,3)=CSQRT (1.0~ ((HS'VVS)*'Q))
523 ‘ A(2,4)=-vVvarHS
524 .. A(3,1)=2, O*RS1*VV2EVV2eHS*A(2,1)
525 CA(3,2)=RS1*VV2+(1.0-2". O'VV2‘VV2‘HS‘HS)
"526 - A(3,3)=2.0*RS2*VVA*VVA*HS*A(2,3)
527 - . A(3,4)=RS2*vva~{1.0-2. 0*VV4'VV4‘HS‘HS)
. 528 . o A(4,1)==RS1*VV1*(1.0-2.0*VV2*VV2*HS*HS)
529 ¢ . -A(4,2)=2 O*RS1*VV2*VV2*HS*(~A(1,2))
530" o A(4,3)V=RS2*VV3*(1.0-2. O*VV4*VV4*HS*HS)
531 A(4,4)=-2. 0'R52'VV4‘VV4‘HS‘A(1 q)
532 - B(1,1)=-A(1,2)
533 : -B(2,1)=A(2.2)
534 B(3,1)=A(3,2)
535 B(4,1)=-A(4,2) ¥
" 536 .. . CALL LEQTIC(A,4,4,B.1,4,0.WA, IER)
537 - AM=CABS(B(INDEXS,1)) '
538 . CcA PHAMP(B(INDEXS 1) . am, PH)
539 - RETURN

540 END
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00000 OO0

[eXeNeNoNoNe No Ko Ny

000000

. . B

PHASE UNVRAPP]NG PROGRAN
THIS PROGRAM IS A MODIFIED VERSION OF

" -TRIBOLET’S ORIGINAL PROGRAM

REFERENCE:. TRIBOLET, J.M.(1877).
A NEW PHASE UNWRAPPING ALGORITHM,

" IEEE VOL. ASPP-25, ND-2 P. 170-177

19

20

X=THE INPUT SIGNAL
INITIALIZATION.

L=2%%12
M=g - 1
Nx2%*Mq . ) i
N2=N/2- - : '
-ND2=N2+1
PI=3.1495696
TWOP1=P1*2.0
PARAMETERS FOR UNWRAPPED PHASE

HkTHOPI/1024 SR T
Hi=H/L - N .
THLD1=1.8*P1 )

THLD2=1.0*P1

CISNX=+1{

!

TRANSFORM X(N) .
LOAD CXE AND CXO ARRAYS.'

DO 7 I=1,N -
CXE(I)=X(I)
DO 8 I=1,N S
CX0(1)=0.0 .
CALL FASTF(CXE,CX0.N),

TRANSfORMLN‘X(Nj AR .
'LDAD YR AND YI ARRAYS . ,
DO 19 I=1,N

YR{I)=1*X(1)- - _ L B
DO 20 I1=1,N - '

YI{I)=0.0 - - - o,

CALL FASTF(YR Y1, N)
Al
CHECK IF SIGN REVERSAL IS REQUIRED
/ i

IF(CXE(1).LT.0) ISNX==~1

COMPUTE LOGMAGNITUDE:STORE -IN CXE

COMPUTE PHASE DERIVATIVE:STORE IN YR

“COMPUTE PHASE PRINCIPAL VALUE;STORE ‘IN v1
FOR w-(TwOPI/N)-I I-o 1 .N2

DVTMN=0.

DO 21 I=1,ND2
A=CXE(I) .
B=CX0(1) - R

C=YR(I) : o .

D =YI(I) ‘ . st

t
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‘E=A*A+B*B

YR(I)=-((A*C+B*D)/E)

DVTMN-DVTMN+YR(I)

CXE(I)-DLOG(E)/2 o
IF(ISNX .EQ. +1)Y1(X)-DATAN2(B A)
TF(ISNX. EQ’—i)YI(I)=DATAN2( -B, —A)

21 CONTINUE

DVTMN=(2*DVTMN-YR( 1)~ YR(ND2))/N
ELPINC=2*DVTMN*H

PHASE UNWRAPPING ‘BY ADAPTIVE INTEGRATION

PH=Q.

DO 22 I=2, ND2

£

5

‘v

STORE UNWRAPPED PHASE IN CXO

CXO(X 1)=PH

7

)

159

FORﬂ‘RHASE ESTIMATE AT V'(TVOPI/N)'(I 1) BY |
TRAREZ@IDAL INTEGRATION WITH STEP_SIZE TVOPI/N

2

PHAINCRH‘(YR(I)*YR(I 1))

S

IF,(ABS(PHAINC-ELPINC) . GT. THLD1) GO_.TO 23

H=CXO(I 1) +PHAINC

" CHECK CDNSISTENCY oFf ESTIMATE

AO‘(PH-YI(I))/THOPI o
A1=IFIX(AO)*TWOPI+YI(I)

" A2=A1+SIGN(TWOPI,LAO)

" A3=ABS(A1-PH) _

A4=ABS (A2-PH)

s

IF(AS GT . THLD2.AND. A4 GT. THLD2) GO TO 23°

- ' PHASE ESTIMATE WAS CUNSISTENT

PH=A1

IF(A3.GT.A4)PH=A2
IF(ABS(PH-CXO(I-1)).GT. PI) GO TO 23

*GOD TO 22

PHASE ESTIMATE
* ADAPT ST

\

23 SP=1,
ISK(1)=N+1.
SK1(1)=YI(I)

\

SK2(1)=YR(1).

IB=1,
/513cx0(}—1)“

i

INITIATE RE

i

. 4

~

\

AS NOT CONSISTENT:

P SIZE

STERS

INITIATE SOFTWARE STACK

N



’

[oNeNe]

o600

0000 o000

KeXeXe!

C
C
C

(s NeNeNe!

26 C2=C2+C0*(y-1)

EeNeNel

\ . N . . - ‘ N (
az-vn(x 1) .

IF SOFTHARE STACK DIHENSION DDES NOT
ALLDN FURTHER' STEP REDUCTION, STOP

24 IF((ISK(SP) -18) .GT. 1) GO TO 2% ~ s

STOP 999

" DEFINE INTERMEDIATE FREQUENCIES (I F)
- . . V-(TVOPI/N)‘(! ~2+(K-1)/N)

A . |

25 K-(ISK(SP)+IB)/2 : N

COMPUTE DFTS OF X(N) AND N‘X(N) AT 1.F.

ci=(0.,0.)
-€2=(0.,0.) S ,
DO 26 uU=1,N .- . ) ’ ,
" ARG=AO*(U-1)"~ =,
co= CMPLX(COS(ARG)u-SIN(ARG))‘X(d) .
C1=C1+CD . )

' 4

© AO=TWOPI*(1-2.+4(K- 1)/FLOAT(L&/FLOAT(N)

COMPUTE PHASE DERIVATIVE AND THE = =

PRINCIPAL VALUE OF THE PHASE AT I.F.
SP=SP+1 L .
ISK(SP) =K . 4
-A=REAL(CY) ‘ . -
‘B=AIMAG(CH)
C=REAL(C2) . : _
D=AIMAG(C2) :
IF(ISNX.EQ.+1) SK!(SP)-DATANz(B A)
IF(ISNX.EQ.-1) SK1(SP)=DATAN2(-B,-A)
SK2(SP)=-(A*C+B*D)/(A*A+B*B)

EVALUATE ESTIMATE AT 1.F. r

27 DELTA=H*(ISK(SP)-1B) ° ,
PHAINCtDELTA‘(B2+SK2(SP))
IF (ABS (PHAINC-DELTA*2%DVTMN) . 6r. THLD 1) GO TO 24
PH=B1+PHAINC 5

CHECK CDNSISTENCV OF ESTIMATE AT I F.

AO‘(PH SK1(SP))/TwWOP1 , .
A1=IFIX(AQ)*TWOPI+SK1(SP) ) ‘
A2=A1+SIGN(TWOPI, A0) ,
A3=ABS(A1-PH) @ ‘o
A4=ABS{A2-PH) . T
IF(A3.LT.THLD2.0R. A4 . LT JHLDQ) GO TO 28

ESTIMATE WAS NOT CONSISTENT:REDUCE STEP SIZE
GO0 TQ 24 ' \

ESTIMATE WAS CONSISTENT: UPDATE REGISTERS

’

" 28 PH=A{
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181

182

183
- 184
185

186

187 -

188
189
190

199
-

193
194
185
-196
197
198
199

201
202
. 203
204
208

(s XeNeNeXe)

(e NeNel

22

191

183

192

- SPsSP-1 !YM\

TF(SP.NE. o) GO TD 27

P v " ' -

IF(A3.GT.A4)PH=A2
1F(ABS(PH-B1) .GT:PI) GO TO 24
IB=1SK(SP) -
Bi=PH , L . .
82=5SK2(SP) o .
‘c ¥
'WHEN. s ARE STACK xs EMPTY ,THE UNWRAPPED

PHASE AT W=TWOPI*(I- 1)/N IS HELD IN THE P
B nscxsrsn o

N

PHeB1 - o ' ' -
END OF STEP SIZE ADAPTATION .

CONTINUE , '
IF(ISNX.EQ. -1)00 To 181 "o ’ ’ -
GO T0.-192 - Lo
CONTINUE »

DO 193 I=1 N2 . o :
CX0(1)=cx0(1)-P1 .

"CONTINUE

sTOP

END

161 ‘



