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ABSTRACT 

 

The current Canadian standard for masonry structures design (CSA S304-14) is based on a Limit-

State Design (LSD) philosophy, incorporating masonry-specific material strength reduction 

factors initially calibrated in the 1980s.  These factors were last updated in 2014, prompted by 

changes in the Canadian standard for reinforced concrete structures (CSA A23.3-14). However, a 

rigorous, masonry-specific reliability analysis was not performed to support the strength reduction 

factors used in S304-14.  Therefore, there are safety and economic uncertainties in the performance 

of masonry elements designed in accordance with the strength reduction factors in the 2014 

(reaffirmed in 2019) version of the Canadian masonry standard.   

In this thesis, a reliability analysis for reinforced, concrete masonry walls (RMWs) under axial 

compression and out-of-plane uniform load is presented, along with the development of a limit 

state function that incorporates second-order effects.  The analysis is performed using currently 

available probability information on loads and strength of reinforced concrete masonry walls, 

realistic loading conditions, and the Monte Carlo method to calculate reliability indices. 

The aim of this analysis is to evaluate the structural safety and performance of RMWs under the 

specified loading conditions.   

An innovative part of the analysis is that it takes into account realistic loads and second-order 

effects, both aspects that seem to be scant in the limit state function formulations found in the 

literature.   

A range of different slender walls are analysed in this study, varying their slenderness ratio, cross-

section properties and load relationships.  The results show that the reliability indices () increase 

as the slenderness factor increases, while for walls with low slenderness, the reliability indices 

remain similar and constant over different eccentricities.  
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1. INTRODUCTION 

 

The allowable stress design (ASD) was the initial design philosophy for masonry structures in 

Canada, starting with the 1965 version of the National Building Code of Canada (NBCC 1965), in 

the form of elementary rules for the design of plain and reinforced masonry.  In ASD, the loads 

represent the maximum probable load to occur during a period of time, which is the life expectancy 

of the structure.  The computed stresses in the members resulting from the application of these 

loads are limited to a certain allowable value, chosen based on engineering judgement and 

experience.  The ratio of the allowable stress to the computed member stress represents the overall 

factor of safety. The main advantage of the ASD method is its simplicity of use in design. A 

disadvantage is that a fixed set of allowable stresses does not guarantee a consistent level of safety 

for all structural elements and types of loads.   

The limit-state design (LSD) philosophy was introduced in the Canadian masonry standard in 1994 

(S304.1-94). In the LSD criteria, the design of a structural member is satisfactory if the factored 

design resistance (nominal resistance reduced by the material resistant reduction factors) is greater 

than or equal to the factored load effects (nominal loads amplified by the load factors).  In contrast 

to the ASD method, the LSD method provides greater consistency in the design due to its 

recommendations on factors depending on the material used for the structure and the type of load. 

Specifically, the material resistance reduction factors for the design of reinforced masonry walls 

include 𝜙𝑚, which is a reduction factor for the compressive strength of masonry (𝑓𝑚
′ ), and 𝜙𝑠, 

which is a reduction factor for the yield strength (𝑓𝑦) of the reinforcing steel.  The material strength 

reduction factors account for the variability of material properties and dimensions of structural 

elements.   

The load factors depend on the type of load, including 𝛾𝐷 as the factor for dead load, 𝛾𝐿 as the 

factor for live load, 𝛾𝑆 as the factor for snow load, 𝛾𝑊 as the factor for wind load and 𝛾𝐸 as the 

factor for earthquake load.  These factors account for the variability of loading and the probability 

of having loads from different sources simultaneously when the load combination is considered.  

The LSD criteria implemented in the masonry design standard S304.1-94 were based on reliability 

studies performed by Turkstra et al. (1978; 1980; 1982; 1983; 1984; 1989) where experimental 
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data, statistical information, and design equations known at the time were used for the calibration 

and estimation of the design factors and safety levels of the standard.  The masonry-specific 

changes to the strength reduction factors in the masonry standard CSA S304-14 were proposed by 

Laird et al. (2005), who was inspired on reliability studies conducted for the reinforced concrete 

design standard CSA A23.3-04.  The material resistance factor for masonry (𝜙𝑚) was increased 

from 0.55 to 0.60, mirroring an increment of the material factor for concrete (𝜙𝑐) which went from 

0.60 to 0.65 in CSA A23.3-04.  Another change proposed by Laird et al. (2005) was made to the 

resistance factor for the effective stiffness of reinforced masonry walls and columns (𝜙𝑒𝑟), which 

was increased from 0.65 to 0.75, the same as the stiffness reduction factor (𝜙𝑘) in slender 

reinforced concrete columns.  This factor accounts for the variability in unintended geometric 

imperfections in slender elements. It is noted, however, that the main limitation in these changes 

was that no detailed masonry-specific reliability analysis was conducted to support the increase of 

factors 𝜙𝑚 and 𝜙𝑘 .  

The design equations for reinforced masonry have been significantly influenced by reinforced 

concrete.  However, despite employing similar principles, the uncertainties in design and 

construction for these two materials differ. 

Previous reliability studies on masonry walls under out-of-plane loads are scarce.  Most of the 

existing work has been performed in reinforced-concrete (RC) columns subjected to simplified 

loads, with just a few studies including second-order effects.  Second-order effects on slender 

elements refers to the additional deformations and stresses that occur due to the combined effects 

of axial load and bending.  In design, second-order effects are important to consider in slender 

elements to ensure their structural safety and integrity. 

In this study, a reliability analysis of masonry walls with varying slenderness ratios under axial 

compression, and out-of-plane uniform loads will be conducted in the context of the Canadian 

masonry code (CSA S304-14). The objectives of the study are: i) to conduct a literature review to 

provide a comprehensive history and rationale behind the current (CSA S304-14) guidelines for 

out-of-plane (OOP) masonry walls, ii) to develop a limit states function which considers 

slenderness and lateral loads effects in masonry walls, and iii) to assess the reliability levels in the 

current Canadian masonry code (CSA S304-14) for slender walls. 
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A more accurate limit state function accounting for lateral loads and second-order effects is 

proposed to assess the safety levels of the code.  Available statistical information for the random 

variables of the loads (dead, live, wind and snow loads) and properties of the walls (thickness, 

location of reinforcement bars, compressive strength and the yield stress of the reinforcement) is 

used.  For load combinations which consider more than one time-varying source of load, the 

Turkstra’s rule is used to combine them.  The Monte Carlo method is used to simulate the loads, 

resistance of the walls, and to calculate the probability of failure.  

The results of the study are expected to find a direct relationship between the structural reliability 

levels and the slenderness ratio of the walls. The reliability indices for slender elements are 

expected to be greater to the target reliability indices recommended by safety standards, CSA S408 

(2011) and the Joint Committee on Structural Safety (JCSS 2001a). 

 

1.1. Problem Statement, Objectives and Scope 

1.1.1. Problem Statement  

The values of the strength reduction factors in the Canadian masonry code from 1994 

(CSA S304-94) were first calibrated with reliability studies performed by Turkstra et al. in the 

1980s.  Design equations and statistical information for the loads and resistance of that time were 

used. Twenty years later, the material reduction factors included in the current code, 

CSA S304-14 (2014), were chosen based on studies performed on reinforced concrete, without 

any dedicated detail reliability analyses conducted for masonry.  Therefore, there is uncertainty 

about the safety and economy that the current code provides. 

Most reliability studies investigating elements subjected to axial loads and out-of-plane bending 

have focused on reinforced-concrete elements, such as columns, and those that have addressed 

masonry walls are very scarce.  In these investigations, the preferred approach has been to define 

limit states functions that are based on very simple loading conditions – typically, an eccentric 

axial load applied to the member.  For such a system, the bending moments are assumed to increase 

proportionally with the axial load (the so-called “fixed eccentricity” approach).  While these limit 

states may be appropriate for interior columns in a building, which are not usually subjected to 

lateral loads between the supports, the need to account for the presence of a uniform lateral load is 
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warranted in the case of a loadbearing exterior wall designed to resist out-of-plane actions (“OOP 

walls”). OOP walls typically bear an axial load from the roof and/or the upper floors, which is 

often applied eccentrically due to the connections at the upper edge of the wall, as well as being 

subjected to lateral load due to wind pressure or inertial forces due to seismic actions.  In such a 

case, the out-of-plane bending moment at the midspan of the wall, assuming pinned-pinned 

boundary conditions, will be the sum of the moment generated by the initial eccentricity of the 

axial load, the moment generated by the lateral load, and the second-order effects.  Therefore, the 

bending moment is not directly proportional to the axial load, and therefore, the “fixed 

eccentricity” approach is not suitable for the study of an exterior wall.  The nonlinear relationship 

of axial load and bending moment in exterior walls is compounded due to the increase in second-

order effects as the slenderness ratio of the wall increases; the preferred approach for considering 

second-order effects has been to use a moment-magnifier approach to either reduce the cross-

section strength of the wall or to amplify the moment that is applied to the member. 

Another limitation is that in the few studies (Turkstra et al. 1983, Mosavi et al. 2017), that 

explicitly included lateral loads, such as wind, the considered load combinations included only one 

time-varying load such as dead (DL) plus live load (LL) or dead (DL) plus wind load (W), and not 

all combinations as required by the latest NBCC (2020) have been explored.  This is a serious 

limitation in the assessment of the safety of structural elements. 

When assessing the reliability of a structural member (e.g., a column or a beam), the analysis 

requires the statistical consideration of the resistance and load variables over certain predetermined 

ranges chosen by the analyst. Sometimes, this results in combinations of strength parameters that 

are unrealistic or unfeasible to build.  For instance, in the case of a masonry wall, the range of 

possible reinforcement ratios is restricted by the number of bars that can be placed on the cells of 

the block, which depends on the size of the bars and maximum/minimum reinforcement limits 

allowed by the code and the fixed geometry of a typical concrete masonry unit (CMU).  

Consequently, values of reliability obtained for arbitrary reinforcement ratios, for instance, are not 

indicative of the true reliability of the system, and only realistic reinforcement schemes should be 

analyzed. 

The system that is investigated for reliability analysis in this research is an exterior wall under 

realistic loading conditions based on the current NBCC (2020) standard.  The wall has been loaded 
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under axial load (𝑃) with an initial eccentricity at the top (𝑒𝑖) and is also subjected to a lateral 

uniform load (𝑤) due to wind (Fig. 1-1).  This is a common loading condition for masonry walls 

in warehouses, school gymnasiums, and retail facilities in North America.  The axial load includes 

a time-varying load (a live load) in addition to the permanent load (dead load), and a lateral 

pressure (wind), which is assumed uniform. And this combination is not frequently used for 

reliability analysis, even when is specified by the standard (NBCC 2020).  

 

Fig. 1-1  Wall Under Lateral and Axial Loads 

 

The limit states developed for this study for masonry slender tall walls aims to incorporate a more 

realistic loading condition to what was assumed in previous analyses regarding masonry walls 

(Ellingwood et al. 1985 and Moosavi et al. 2017).  This will be achieved by allowing statistical 

variation in both the axial loads and moments, using a discrete approach to select load 

combinations that are typically observed in masonry walls.  The walls investigated will have a 

practical range of slenderness ratios that will correspond to both multi-storey construction and tall 

walls such as those found in warehouses and industrial facilities.  

To summarize, a rational study to assess the reliability of concrete block masonry walls is required 

to evaluate the safety and economy of the current Canadian masonry design standard (CSA S304). 
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Such a study includes updated statistical information for loads, material, strength, workmanship 

factor, and realistic loading conditions. 

 

1.1.2. Objectives 

The main goal of this research is to assess the reliability levels of the Canadian masonry standard 

for the design of masonry walls under realistic load conditions.  This assessment will specifically 

focus on walls with various slenderness ratios, subjected to axial compression, and out-of-plane 

uniform loads. The evaluation will be conducted within the framework of the Canadian masonry 

standard (CSA S304). 

The following research tasks are set to achieve the main goal of this work. 

1. Literature review to provide a comprehensive history and rationale behind the current CSA 

S304 guidelines for OOP masonry walls. 

Specific aim 1.1: Conduct a literature review on structural reliability studies conducted on 

concrete and masonry elements under axial loads and bending moments, with an emphasis 

on those related to the development of the Canadian masonry guidelines. 

Specific aim 1.2: Identify the most significant random variables used in previous reliability 

analyses. 

Specific aim 1.3: Review and assess the limit states functions used in the literature for 

slender and non-slender, reinforced concrete and masonry columns and walls. 

 

2. Development of a limit state function for non-slender and slender masonry walls. 

Specific aim 2.1: Develop a limit state function for masonry walls that allows the statistical 

variation of both loads and moments to be considered.  

Specific aim 2.2: Develop a detailed procedure to work with the proposed limit state 

functions and calculate the reliability indices of masonry walls with different slenderness 

ratios under OOP loads.  

Specific aim 2.3: Identify relevant loads for investigation, including both permanent and 

time-varying loads, such as combinations of dead load plus live load plus wind load, where 

live and wind load are time-varying. 
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Specific aim 2.4: Define practical ranges of variables related to the strength of a masonry 

wall, including concrete block thicknesses and location of the steel reinforcement bars. 

 

3. Assessment of the reliability levels in the current Canadian masonry code (CSA S304-14) for 

slender walls.  

Specific aim 3.1: Calculate the reliability indices for masonry walls of different slenderness 

ratios, reinforcement ratios, and compressive strength. 

Specific aim 3.2: Compare the target reliability indices (𝛽𝑇) from the safety standards CSA 

S408 (2011) and JCSS (2001a) with the reliability indices calculated in this research. 

 

1.1.3. Scope  

This research is focused on evaluating the safety levels of OOP masonry walls designed as per 

CSA S304-14.  The reliability or accuracy of the code clauses themselves is not being investigated.   

The methods used in this study allow for the study of material failure in the walls due to flexure 

and instability failure due to the combination of axial loads and bending moments.  This 

investigation does not account for out-of-plane shear failure mechanisms, such as diagonal tension 

or sliding shear.  Although uncommon in masonry walls of practical heights (> 2.5m high), which 

are flexure-dominated due to the large spans, the possibility of out-of-plane shear failures should 

always be investigated, especially for shorter walls with small axial loads (e.g., parapets) subjected 

to significant lateral loads.   

The only type of lateral load considered in this study is the wind load.  However, the methods 

developed in this research are applicable to other lateral loads that can be modeled as a static 

uniform pressure over the height of the wall.   

The boundary conditions of the walls are assumed to be pinned-pinned both at the base and at the 

top.  This corresponds to the assumption that the rotational stiffness provided by the foundation of 

the wall is small compared to the flexural stiffness of the wall itself, caused by degradation of the 

wall-foundation interface under cyclic loads, and it is also representative of typical wall-roof 

connections in industrial buildings.  With no restraints, connections, or loads applied between the 

base and the top, the walls are assumed to bend in single curvature.  
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Only reinforced concrete block, fully grouted, masonry walls will be studied in this research; 

however, the same method can be expanded to partially grouted walls. 

 

1.2. Organization of the Thesis 

This thesis is organized into five chapters.  In Chapter 1, the introduction, problem statement, 

objectives, and scope are presented.  In Chapter 2, the literature review is presented in two parts.  

The first part is related to reliability studies proposed for non-slender concrete columns and how 

they were used as a base for non-slender masonry walls.  The second part is focused on studies on 

slender concrete columns, their limitations, and how the limit state functions proposed could be 

used as a base for slender masonry walls.  In Chapter 3, the methodology of this work is explained 

in detail.  First, a review on how the design capacity of a masonry wall following the Canadian 

design standard CSA S304-14 is presented. The different categories of slender walls are also 

discussed in this chapter.  Finally, the reliability method used in this study to calculate the 

reliability indices is explained.  All the statistical properties required to perform a reliability 

analysis are shown in this chapter.  In Chapter 4, the results for the proposed walls are shown.  The 

levels of safety that resulted from the analysis are discussed.  In Chapter 5, a summary of this 

work, the conclusions, and the future work are presented. 
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2. LITERATURE REVIEW 

 

The literature survey that follows is divided into two parts. The first part focuses on the reliability 

studies that were used in the development of the Canadian masonry code (S304-14). The second 

part includes a review of studies related to the development of reliability limit states for elements 

subjected to flexure and axial loads.  

  

2.1. Development of the Reliability Provision for Walls in CSA S304 

A limit state can be defined as a condition of a structure failing to fulfill its intended design 

purpose. For example, a structure’s ultimate strength limit state can be mathematically described 

by a limit state function, i.e., the difference between the load effect (S) and the resistance (R) for a 

structural element or system.  The derivation of the load and resistance factors for the design of 

masonry in the S304.1-94, which was the first standard for masonry design with the LSD method, 

was performed based on a series of reliability studies conducted by Turkstra et al. (1978; 1980; 

1982; 1983; 1984; 1989). Turkstra and his collaborators developed different limit states for 

masonry members.   

Turkstra and Daly (1978) reviewed the reliability methods available at the time, which typically 

were simplified methods that used linear equations and methods, aiming to apply them to elements 

subjected to combined flexure and axial load.  They evaluated the methods through numerical 

examples, studying walls made with different material such as concrete, steel, and masonry.  For 

masonry, they studied a non-slender masonry wall under axial load applied concentrically and 

eccentrically.  The calculation of the reliability index in their study considered two limit states: 

one for the axial load capacity, and another for the moment capacity.  Turkstra and Daly concluded 

that for situations where the load side of the limit state function can be reduced to a single variable 

(for example, when a total load effect is defined as  the sum of the different sources of load, such 

as dead load, live load, wind load, etc.), the problem can be represented only by the load random 

variable (𝑆) at the time of the reliability calculation.  A similar situation could be observed with 

the resistance. For example, the resistance moment, which includes different random variables 

(such as the sections properties or material properties), could be represented only by the random 
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variable (𝑅).  Working with these two variables, Cornell (1969) and Rosenblueth-Esteva (1972) 

developed robust methodologies that were based on the mean and variance of random variables.  

Turkstra and Ojinaga (1980) discussed the code development challenges in developing a masonry 

code using a consistent limit states design (LSD) philosophy.  Recommendations were given for 

factors pertaining to the strength of the masonry materials and the treatment of the uncertainties in 

the workmanship, inspection, and structural analysis processes.  A preliminary safety index 

analysis for plain (unreinforced) masonry walls was presented to assess construction practices at 

the time.  Plain, non-slender masonry walls were analyzed under combinations of ratios of nominal 

dead to live loads from 0.0 to 2.0 and under an eccentric axial load, with reliability indices varying 

from 3.5 to 3.8 for walls deflecting in single curvature and 5.1 to 5.3 for walls deflecting in double 

curvature.   

As a reference, the calculated indices 𝛽 are typically compared to target reliability indices (𝛽𝑇) 

proposed by regional and national code committees.  Allowable values of 𝛽𝑇 depend on different 

variables and situations, such as the type of failure, the expected cost of failure, the cost of 

increasing the safety level, and the existing safety level.  Table 2.1 shows recommended target 

reliabilities in the guidelines for the development of limit states design in Canada (CSA S408-11), 

and Table 2.2 shows the recommended values by the Joint Committee on Structural Safety (JCSS 

2001a).  This comparison shows that, at the time of Turkstra and Ojinaga’s study, the safety levels 

for masonry were relatively high. 

 

 

Table 2-1  Target Reliabilities Indices (𝛽𝑇) from CSA S408 (2011) for 30-year (50-year) 

Safety Class Type of Failure 

Gradual  Sudden 

Not Serious 2.5 (2.3) 3.0 (2.8) 

Serious (normal buildings) 3.5 (3.4) 4.0 (3.9) 

Very Serious* 4.0 (3.9) 4.5 (4.4) 

*It is assumed that for very serious consequences there is better quality control 
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Table 2-2  Target Reliabilities Indices (𝛽𝑇) from JCSS (2001a) for 1-year (50-year) reference 

period and ultimate limit states 

Relative cost for enhancing the 

structural reliability 

Failure Consequences 

Minora  Averageb Majorc 

Large 3.1 (1.7) 3.3 (2.0) 3.7 (2.6) 

Medium 3.7 (2.6) 4.2 (3.2) d 4.4 (3.5) 

Small 4.2 (3.2) 4.4 (3.5) 4.7 (3.8) 

                   ae.g. agricultural buildings 

                   be.g. office buildings, residential buildings or industrial buildings 

                   ce.g. bridges, stadiums or high-rise buildings 

                   dRecommendation for regular cases 

For illustrative purposes, the probability of failure (𝑃𝑓) for various values of the reliability index 

(𝛽) is provided as follows: 𝛽 = 3 corresponds to 𝑃𝑓 = 1.3 × 10
−4, 𝛽 = 3.5 corresponds to 𝑃𝑓 =

2.3 × 10−4, and 𝛽 = 4 corresponds to 𝑃𝑓 = 3.2 × 10
−5. As it can be observed, this increment is 

not linear.  

Turkstra and Ojinaga (1981) studied the ultimate limit state for reinforced masonry compression 

members subjected to concentric and eccentric axial loads.  Stress-strain constitutive relationships 

were defined for masonry and steel, and the resistance of the members was calculated through an 

axial load-moment interaction curve (P-M diagram).  This study showed the reduction in strength 

due to slenderness in a masonry element subjected to flexure and axial load.  

Turstra et al. (1983) summarized the evolution of the limit states design procedures for masonry 

based on rational mechanics and a comprehensive safety index analysis.  This study was focused 

on the behaviour of plain and reinforced masonry walls subjected to minor axis bending.  The 

analysis was for walls subjected to axial load, eccentricities at both ends, and transversal load due 

to wind or earthquake.  The workmanship factor was highlighted because available test data 

indicated that the compressive masonry strength was highly dependent on construction practices, 

mason qualifications, and inspection during construction.  Three levels of workmanship factors 

were proposed: rigorous work inspection, moderate work inspection, and uninspected 

construction.  A set of strength reduction factors 𝜙𝑚(0.60, 0.80) for masonry compressive strength 

and 𝜙𝑠(0.50, 0.80) for steel tensile strength were proposed based on the level of workmanship 

(lower values of  correspond to lower levels of inspection). 
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Tursktra (1989) analyzed some aspects of the limit state design for plain and reinforced masonry, 

and proposed values for the material strength reduction factors for masonry compressive strength 

𝜙𝑚(0.5, 0.8) and for steel yield strength 𝜙𝑠(0.5, 0.8).  A wall with a slenderness ratio of 15 and a 

nominal dead to live load ratio of 1.0 was used in the analysis.  For a regularly inspected, reinforced 

concrete block masonry wall, reliability indices varying from 3.0 to 5.0 were calculated. 

Laird et al. (2005) presented changes of the CSA S304-2004, where the resistance factor for 

masonry compressive strength (𝜙𝑚) changed from 0.55 to 0.60, and the resistance factor for 

member stiffness (𝜙𝑒𝑟) changed from 0.65 to 0.75.  These changes were motivated by the changes 

established in the CSA A23.3-97 standard for reinforced concrete while recognizing a need for 

comprehensive reliability analysis for masonry walls.  However, no masonry-specific reliability 

analysis was conducted to justify these values. 

Mosavi et al. (2014) evaluated the reliability levels of concrete masonry under axial compression 

under the Canadian Standard CSA S304 in its 1994 and 2004 versions.  The First Order Reliability 

Method (FORM) was used to calculate the reliability indices under live-to-dead and snow-to-dead 

load ratio relationships. They concluded that neither the masonry resistant factor of 0.6 adopted in 

the current Canadian masonry design standard (S304-04) nor the previous value of 0.55 in the 

(S304-94) achieved an acceptable reliability level for masonry construction. 

 

2.2. Reliability Limit States for Non-Slender and Slender Elements  

2.2.1. Non-Slender Structural Elements 

The definition of reliability limit states for elements subjected to combinations of axial load and 

out of plane flexural loading has traditionally been different depending on the significance of the 

second-order effects.  For non-slender (short) elements, in which the additional moments due to 

the deflections are not significant, the limit states are usually defined based on the cross-section 

failure, with the help of P-M interaction diagrams, in which the loads corresponding to the factored 

moment and axial load (given by a point in the diagram) are related to the strength (the P-M curve) 

through relationships based on the behaviour in the member.  Note that in a wall under eccentric 

factored axial load 𝑃𝑓, and equal moments at the top and bottom equal to 𝑀𝑓 = 𝑃𝑓𝑒𝑖, where 𝑒𝑖 is 

the initial eccentricity all the probable combinations of axial load and moment will fall into a 
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straight line with slope equal to 𝑒𝑖 = 𝑀𝑓 𝑃𝑓⁄  and equal to the resistance as 𝑒𝑖 = 𝑀𝑟 𝑃𝑟⁄  in the P-M 

interaction diagram. 

 

Fig. 2-1  Mathematical Model of a Column Under Axial Load and Equal Eccentricities and 

associated P-M interaction diagram 

 

For slender members, the problem is more complex, as the second-order effects can be seen as an 

amplification to the factored moment 𝑀𝑓, or a reduction to the strength of the cross-section, with 

increasing influence as the loads increase.  In the very simple example explained in Fig. 2.2-1, the 

line that represents the behaviour of the initial eccentricity 𝑒𝑖 = 𝑀𝑓 𝑃𝑓⁄  is not a straight line, and 

the assumption of the uniform increment between 𝑃 and 𝑀 is not valid (𝑒𝑖 = 𝑀𝑓 𝑃𝑓⁄ ≠ 𝑀𝑟 𝑃𝑟⁄ ). 

Since the limit states developed for masonry elements have traditionally been based on those used 

for reinforced concrete (RC), milestone RC studies are discussed in this section as well.  

In 1962, Tychy and Vorlicek evaluated the safety levels of RC eccentrically loaded columns.  The 

concept of ultimate strength and factor of safety was new at that time.  They pointed out that the 

safety levels depended on how the limit state function was defined.   

Tychy and Vorlicek defined three possible limit state functions to calculate the reliability levels in 

a non-slender column under three loading scenarios (e.g., fixed axial load, fixed moment, or fixed 

eccentricity).  Point L represents the load effects, and the “distance” from point L to the interaction 
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curve can be seen as the reserve of strength possessed by the column due to different design and 

construction uncertainties. Point L is calculated using the statistical properties of the loads and the 

interaction curve is calculated using the statistical properties of the cross-section.   

The limit-state represented by line LA is known as “fixed moment.”  For this function, the axial 

load is assumed to be the only load parameter that is permitted to vary according to a suitable 

probability distribution while the moment remains constant.  Line LB, representing a “fixed 

eccentricity,” illustrates the case in which both variables, the axial load and the bending moment, 

are assumed to increase in the same proportion.  This is the case for a short column subjected to 

an eccentric axial load, in which the eccentricity is kept constant, but the axial load is allowed to 

vary.  Finally, Line LC, called the “fixed axial load” function, represents a situation in which the 

moment is allowed to vary but the axial load stays constant.      

 

Fig. 2-2  Limit-State Functions defined by Tychy et al. (1962) 

 

As a result of this analysis, Tychy et al. (1962) recommended a fixed eccentricity limit state, which 

assumes that the axial load and bending moment change in the same proportion, for the analysis 

of eccentrically loaded columns, introducing the approach of a limit state function instead of a 

single, empirical safety factor for design. 

Ellingwood (1977) agreed that the resistance of a RC beam-column and its margin of safety may 

be defined in several ways as it was pointed out by Tychy et al. (1962), finding that the fixed 

eccentricity approach was the most widely used in columns under axial load and bending moment.  
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Ellingwood, however, suggested that for cases where the moment increases rapidly, the fixed axial 

load approach is more appropriate.   

Grant et al. (1978) studied the distribution properties of reinforced concrete rectangular tied short 

columns using Monte Carlo simulations.  The fixed eccentricity limit state was used.  They found 

that the variability of the concrete strength was the major contributing factor for the cross-section 

strength in the compression failure region, and the variability of the steel strength was the major 

contributing factor to the strength in the tension failure region.  

Israel et al. (1987) proposed strength resistance factors for concrete (𝜙𝑚 = 0.60) and steel (𝜙𝑠 =

0.90) to account for the uncertainty in the resistance variables in the design of RC elements 

designed with the American code (ACI 318 – 83).  The First-order Second-Moment (FOSM) 

reliability analysis method, combined with the fixed eccentricity limit state were used to calculate 

the reliability indices. FOSM is a method that makes use of only first and second statistical 

moments (i.e. mean and standard deviation) of the random variables, requiring a linearized form 

of the limit state function at the mean values of the random variables.  

Ruiz (1993) studied the reliability of short columns under the effect of dead load plus live load.  In 

this work, the reliability of the ACI 318-89 was compared to the Mexican code (NTC-87).  The 

reliability index (𝛽) was calculated via the Monte Carlo simulation technique and the fixed 

eccentricity limit state was used.  The results showed that the NTC-87 had greater reliability 

indices than those at ACI 318.  An explanation of the findings was that the Mexican code provided 

higher protection against uncertainties associated with concrete properties, loads and quality 

control. 

Diniz and Frangopol (1998) presented the reliability analysis of high-strength concrete (HSC) 

columns designed according to the ACI 318-1995.  The reliabilities of both short and slender 

columns were assessed using a hybrid probabilistic approach.  In this method, column strength 

statistics were obtained via Monte Carlo simulation and the reliability indices were computed 

through the first-order reliability method (FORM).  The fixed eccentricity limit state was used to 

perform the reliability analysis on short columns.  The analyzed model consisted of a column bent 

in single curvature by equal moments acting at both ends under the effect of dead plus live load.  

The calculated reliability indices were in a range from approximately 3.0 to 4.5.  The results 
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demonstrated that the reliability of short HSC columns is lower than the corresponding normal-

strength concrete columns.  

Szerszen et al. (2005) studied RC columns eccentrically loaded, incorporating the most recently 

available statistical data for the constituent materials.  The fixed eccentricity limit state was used 

to perform the structural reliability analysis.  The equations for the limit state were developed 

based on equilibrium, strain compatibility, and stress-strain relationships for the constituent 

materials.  The statistical parameters of the resistance were calculated using Monte Carlo 

simulations.  The columns were loaded under the effect of dead and live load, combined according 

to the ACI 318-2005.  The Cornell reliability index (Cornell, 1969) for normal distributions of the 

random variables was used to calculate the reliability indices.  RC strength reduction factors were 

proposed depending on the tensile strain in steel and the reinforcement ratio.  

For masonry walls, Ellingwood et al. (1985) showed how a probability-based criteria could be 

developed for the limit states of brick and concrete masonry walls under the combination of axial 

compression and out-of-plane flexure.  Dead plus live axial loads were used in the analysis.  With 

the objective of evaluating the safety of current design practices in walls built with brick and 

concrete masonry, with varying amounts of reinforcement, the reliability index (𝛽) was calculated 

using the FOSM method. The fixed eccentricity limit state was used.  The walls were assumed 

supervised, and the workmanship factor was not considered in the analysis.  The reliability values 

were calculated following the design recommendations for two codes, the American Concrete 

Institute (ACI 531-1979) and the Brick Institute of America (BIA-1969).  The values of the 

reliability indices (𝛽) varied over the range of the initial eccentricity from pure compression to 

pure flexure.  The reliability indices as per the ACI were from 3.8 to 9.5 depending on the amount 

of steel and the load eccentricity.  As per the BIA-1969, the values ranged from 2.9 to 8.20. 

Significant reliability inconsistency was observed for these design codes. 

Stewart et al. (2002) developed a method to calculate the structural reliability of typical 

unreinforced masonry walls subjected to out-of-plane bending.  The limit state considered first-

cracking, the possible redistribution of stresses, possible additional cracking and continuing until 

collapse occurs.  Due to the complexity of the limit state, the Monte Carlo simulation was used to 

evaluate the reliability indices.  It was found that the reliability indices vary from 3.1 to 6.5, 
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showing the large effect that workmanship and material have on structural reliability.  The 

Australian Masonry Standard (AS3700-1998) was used in this analysis. 

Moosavi et al. (2017) conducted a reliability study on non-slender masonry walls following the 

Canadian code recommendations (CSA S304-14) for the design and the load combinations 

according to the NBCC-15.  Combinations of dead plus live load, dead plus snow and dead plus 

wind load were considered in the study and recent statistical information for the loads was 

considered (Bartlett et al. 2003).  The fixed eccentricity limit state was used in the analysis.  To 

estimate the reliability levels, a proposed value for the workmanship factor with a mean of 0.85, 

and a coefficient of variation of 0.15 was considered based on Turkstra’s previous work.  The First 

Order Reliability Method (FORM) was used to calculate the reliability indices.  

Moosavi et al. (2017) found that reliability levels for the design of masonry members are smaller 

than those for concrete members when the load is caused by the combination dead plus snow load, 

where the lowest reliability index was 2.82.  

Chi et al. (2019) developed a reliability model and method to evaluate the structural reliability of 

reinforced masonry walls subjected to seismic force.  The model incorporates the effect of model 

error, axial force and compressive strength for grouted concrete block masonry walls.  The 

reliability evaluation was in accordance with the Chinese standard GB 50003 (2011). The shear 

load effect and shear resistance of the wall were used to define a limit state function, in which the 

load effect was calculated according to GB 50011 (2010) and the resistance to GB 50003 (2011).   

A design equation for the structural resistance from the standard was taken as a limit state function, 

and the first-order second-moment (FOSM) method was used to calculate the reliability indices.  

Three different wall models were studied under five levels of axial load and five types of 

probability distributions for the model error.  The reliability indices (𝛽) varied from 1.9 to 6.7.  It 

was found that the axial load has a positive influence on the reliability index (i.e., it increases it) 

of walls under horizontal seismic load.   

 

2.2.2. Slender Structural Elements 

From the above discussion, it is evident that these simple limit states (such as those based on the 

fixed eccentricity approach), although convenient for straightforward computations, are not able 

to capture common loading conditions for exterior walls, in which the load, moment, and location 
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of the load have variations.  In addition, any wall will be subjected to second-order effects that 

influence the amount of moment they experience.   

Mirza and MacGregor (1989) studied the variability of the ultimate strength of rectangular 

reinforced concrete slender columns bending in single curvature.  The Monte Carlo method was 

used to simulate the variability of the ultimate strength.  The columns studied were pinned-pinned, 

with equal load eccentricities acting at both ends.  Various combinations of the cross-sectional 

size, the specified concrete strength, the longitudinal steel ratio, the slenderness ratio, and the 

eccentricity ratio were used to study the effects of these variables on the probability distribution 

properties of the slender column strength.  The results indicated that the ratio of the longitudinal 

steel, the slenderness, and the end eccentricity have a significant influence on the probability 

distribution properties of the slender column strength.  The variability of the concrete strength was 

a major contributor to the slender column strength variability in the region of low eccentricity 

ratios, whereas the variability in the steel strength made a major contribution to the slender column 

strength variability when the end eccentricity ratios are high.  

Ruiz and Aguilar (1994) evaluated reliability indices associated with short and slender columns.  

The design was in accordance with the ACI 318-89 and the Mexico City code (RCDF-87).  The 

columns were under axial load and equal eccentricities at both ends, deflecting in single curvature.   

The axial compression was due to dead plus live load.  The moment magnifier method was used 

to calculate the design resistance for the slender columns.  This method consists of amplifying the 

applied moments using a parameter that is derived from an elastic analysis of the deformed shape 

of the wall under axial load, capturing the first- and second-order effects (MacGregor et al. 1970).  

Detailed information about the moment-magnifier in S304 is presented in Chapter 3.  The Monte 

Carlo simulation technique was used to simulate the random variables, and the reliability index 

was calculated through the Rosenblueth-Esteva method (1971), which considers lognormal 

distributions for the resultant random variables.  The results revealed that the load and slenderness 

ratios, longitudinal steel, and end eccentricity ratio are significant parameters in the reliability 

evaluation.  The reliability indices for slender columns are greater than the ones calculated for 

short columns at least 12%.  The reliability levels of the Mexican code were greater than those 

found in the U.S. code.  
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Diniz and Frangapol (1998) calculated the reliability of slender high-strength concrete (HSC) 

columns.  The analyzed column bent in single curvature, and it was under dead plus live 

eccentrically axial loads, with three slenderness ratios of 0, 22 and 50.  In this study, the 

slenderness effects were accounted for by comparing the initial loads acting in the column (not the 

magnified moment) and the slender column strength (smaller than the cross-section strength).  The 

initial loads were taken as those that match the column design strength after moment 

magnification; this method was proposed by the same authors in a paper published in 1997.  

Similar to the case of short columns, a hybrid probabilistic approach was used, where column 

strength statistics were obtained via Monte Carlo simulation and the reliability indices are 

computed through the first-order reliability method (FORM).  The calculated reliability indices 

ranged from 2.3 to 4.5. 

In masonry, Ellingwood et al. (1985) calculated reliability indices for slender walls deflected in 

single curvature under dead and live axial load.  The studied slenderness ratios (effective height to 

thickness of the block (ℎ 𝑡⁄ )) were from 5 to 35.  The walls were designed according to the Brick 

Institute of America Standard (BIA-1969) and the ACI 531-79.  The moment magnifier method 

was used to account for the second order effects by amplifying the loads. The reliability index (β) 

was calculated by the first-order, second-moment (FOSM) method, and the fixed eccentricity was 

used for the limit state.  It was shown that the walls increased their reliability index as the 

slenderness ratio increased.  The reported reliability indices ranged from 8 to 12, depending on the 

load eccentricity and amount of steel reinforcement.    

Stewart and Masia (2019) studied the reliability of unreinforced masonry walls under out-of-plane 

bending.  A spatial variability was observed due to variations in the quality of the workmanship, 

weather during construction, and materials from location to location.  A stochastic computational 

model which combines the Finite Element Method and Monte Carlo simulation was developed to 

study the variability of material properties.  The structural reliability analysis considered the 

random variability of model error, flexural bond strength, brick thickness, brick self-weight, and 

wind load.  Two predictive models were used, the design model based on the Australian design 

code (AS3700) and a finite element model.  The results’ reliability indices were compared to the 

target reliabilities recommended by AS5104-2017 (adapted from JCSS 2001) and shown in 

Table 2.3.  The models were considered Class 3 with a target reliability of 4.2.  The results 
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supported increasing the capacity reduction factor for flexure from 0.60 to 0.65, which represents 

an 8% increase in design capacity.  

 

Table 2-3  Annual target Reliabilities (𝛽𝑇) for economic optimization (AS5104-2017) 

Relative Cost of Safety 

Measures 

Consequences of Failure 

Class 2 

(Minor) 

Class 3 

(Moderate) 

Class 4 

(Large) 

Large 3.1 3.3 3.7 

Medium 3.7 4.2 4.4 

Small 4.2 4.4 4.7 

 

The load statistical information used in this research is taken from Bartlett et al. (2003).  The 

current load factors in the design combinations recommended by the National Building Code of 

Canada (NBCC-2015) were calibrated based on the work presented in this paper.  This work 

summarized and presented statistical parameters of the different types of loads, such as dead, live, 

snow, and wind load.  

The literature review is summarized in Fig. 2.2-3.  
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Fig. 2-3  Summary of the Literature Review (continued in next page) 
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Fig. 2-3 Summary of the Literature Review 
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3. METHODOLOGY 

 

The organization of this section is as follows: 

First, a background on the design of masonry walls, including slenderness effects according to 

CSA S304-14, is presented.  This is done through the development of a P-M interaction diagram. 

The slenderness provisions in the Canadian masonry standard are presented, and the additional 

limitations when the slenderness is over 30 are discussed.  Then, the limit state function used to 

estimate the reliability levels on non-slender elements is described, and its limitations are 

reviewed.  The limit state functions for slender elements are also discussed, and the function 

proposed in this research to calculate reliability levels on slender walls is presented. 

After the development of the limit state function, the methodology for the probabilistic approach 

to compute the reliability indices of slender walls is explained.  Finally, the statistical information 

of the random variables considered in this study to perform a reliability analysis for the strength 

and loads are shown. 

   

3.1. Flexural Capacity of a Reinforced-Concrete Masonry Section 

To provide background for the development of the limit state function, relevant design provisions 

in S304-14 will be summarized in this section.  The strength of a wall cross-section against a 

combination of bending moment and axial force can be derived based on equilibrium, strain 

compatibility and stress-strain relationships for its constituent materials (Fig. 3-1).  The standard 

ultimate compressive strain in masonry is 𝜀𝑚𝑢 (Fig. 3-1a), where the masonry is assumed to crush 

in compression beyond that limit.  The stress distribution at ultimate for masonry is curvilinear 

(Fig. 3-1b) and can be represented with an equivalent rectangular stress with 𝛽1 = 0.80 (Fig. 3-

1c).  The stress-strain relationship for the reinforcing steel is assumed to be elastic (𝑓𝑠 = 𝐸𝑠𝜀𝑠) for 

|𝜀𝑠| ≤ 𝜀𝑦, and perfectly plastic (𝑓𝑠 = 𝑓𝑦) for |𝜀𝑠| > 𝜀𝑦, where 𝑓𝑦 is the yield strength of the steel, 

𝜀𝑦 is the yield strain, and 𝐸𝑠 is the steel modulus of elasticity.  In Fig. 3-1, for a cross-section of 

the wall, 𝐶 is the masonry compression force, 𝑇𝑠 is the steel tension force, and 𝑃𝑓 is the factored 

compressive axial load assumed to be applied in the center of the wall cross-section. 
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Fig. 3-1  Stress, Strain, and Resultant Forces at Ultimate Moment Capacity 

 

Equilibrium of axial forces and moments (Fig. 3-1c) is given by the following equations: 

𝑃𝑓 = 𝐶 − 𝑇𝑠 (3-1) 

𝐶 = 𝜙𝑚0.85𝑓𝑚
′ 𝑏𝛽1𝑐 (3-2) 

𝑇𝑠 = 𝜙𝑠𝐴𝑠𝑓𝑦 (3-3) 

𝑀𝑟 = 𝐶 (𝑑 −
𝑎

2
) (3-4) 

where 𝑀𝑟 is the maximum (factored) design resistance moment, calculated with material reduction 

factors of 𝜙𝑚 = 0.6 and 𝜙𝑠 = 0.85 according to CSA S304-14.  The nominal resistance moment 

(𝑀𝑛) is obtained with strength reduction factors taken as 1.0 and a nominal axial load (P) acting 

in the section.    

 

Stress-Strain Relationship of Masonry 

In this study, a modified version of the model proposed by Priestley and Elder (1983) was used.  

The model assumes the maximum stress of the masonry to occur at a strain of 0.002 (Drysdale 

b
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and Hamid, 2005).  The behaviour consists of three portions: a parabolic rising curve, a linear 

falling branch, and a final horizontal plateau, and it is represented by the Eq. 3-5.  Compression 

stress increases with strain and arrives at a maximum right after initiation of a failure mode.  The 

stress-strain curve takes a zero slope around maximum stress and falls rapidly as the failure mode 

dominates and the curve flattens afterwards.  

𝜎 =

{
 

 𝑓𝑚
′ [

2𝜀

0.002
− (

𝜀

0.002
)
2

] ,                     𝜀 < 0.002

𝑓𝑚
′ [1 − 𝑍(𝜀 − 0.002)],          0.002 < 𝜀 < 𝜀0.2𝑢
0.2𝑓𝑚

′                               ,                        𝜀0.2𝑢 < 𝜀 

 (3-5) 

where 

𝑍 =
0.5

(
3 + 0.29𝑓𝑚′

145𝑓𝑚′ − 1000
) − 0.002

 
(3-6) 

Z is a parameter that controls the slope of the linear falling branch (0.002 < 𝜀 < 𝜀0.2𝑢), and 𝜀0.2𝑢 

is the strain where the constant stress initiates.  The stress-strain behaviour of masonry is shown 

in Fig. 3-2. 

 

Fig. 3-2  Stress-Strain Relationship for Masonry 
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′
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Stress-Strain Relationship of Steel 

In this study, the stress-strain relationship for steel reinforcement is assumed to be elastic-perfectly 

plastic and it is a model commonly used in the literature.  This behaviour is represented by the Eq. 

3-7 and Fig. 3-3. 

𝜎𝑠 = {
𝐸𝑠𝜀𝑠,            𝜀𝑠 < 𝜀𝑦
𝑓𝑦,                𝜀𝑠 ≥ 𝜀𝑦

 (3-7) 

 

Fig. 3-3  Stress-Strain Relationship for Reinforcement Steel 

 

Interaction between Axial Load and Bending Moments  

The resistance of a wall cross-section under combinations of axial load and bending moment can 

be illustrated via a P-M interaction diagram (Fig. 3-4).  The continuous line in Fig. 3-4 represents 

the ultimate cross-section resistance of the wall, while the dashed line represents its factored or 

design resistance.  Factored load points that are inside the resistance boundary represent “safe” 

and points outside the resistance boundary are “unsafe”.  In a wall, an optimal design, considered 

in this study, is to choose the wall properties and materials in such a way that the factored axial 

load (𝑃𝑓) and moment (𝑀𝑓), resulting from the worst-case load combination, fall exactly at the 

designed resistance boundary in Fig. 3-4. 

strain

stress
𝑓𝑦

𝜀𝑦
−𝜀𝑦
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Fig. 3-4  P-M Interaction Diagram 

 

Slenderness Effects 

As the height of a vertical structural element increases beyond a certain limit, its axial-moment 

capacity tends to decrease due to slenderness effects.  A slender masonry wall may fail due to 

instability or the combination of instability and material failure (Fig. 3-5).   

 

Fig. 3-5  Instability-Related Failure Modes 
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Slender masonry walls must resist a factored axial load (𝑃𝑓) plus the amplified factored total 

moment (𝑀𝑓𝑡), defined as the sum of the primary moment (𝑀𝑓1) plus a secondary moment arising 

from the combined effect of the axial load and the out-of-plane deflections, i.e., the second-order 

moment.  In Fig. 3-4, the horizontal gap between the primary factored moment (𝑀𝑓1) and the total 

factored moment (𝑀𝑓𝑡) represents the magnification due to second order effects for a given initial 

eccentricity and axial load.  From a design perspective, Fig. 3-6 shows that the magnified total 

factored moment (𝑀𝑓𝑡) should be equal to or less than the factored section capacity. 

 

Fig. 3-6  Total Factored Moment (𝑀𝑓𝑡) 

 

The moment-magnifier method, codified in CSA S304-14 and in many other material standards, 

is popular among designers since it offers a non-iterative procedure to calculate second-order 

moments.  The moment magnifier factor (MMF) in S304-14 is given by   

𝑀𝑀𝐹 = (
𝐶𝑚

1 −
𝑃𝑓
𝑃𝑐𝑟

) (3-8) 

where 𝐶𝑚 is the factor that relates the actual moment diagram to an equivalent moment diagram, 

using the end moments at the wall 𝑀1 and 𝑀2, being 𝑀1 the lesser and 𝑀2 the greater of the two 

𝑃𝑓)
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moments.  𝑀2 is positive, while 𝑀1 is positive if the member is bent in single curvature or negative 

if bent in a double curvature. 

𝐶𝑚 = 0.6 + 0.4
𝑀1
𝑀2

≥ 0.4 (3-9) 

Another recommendation is given by the masonry standard (S304-14) when there are lateral loads 

in the member, the ratio of 𝑀1 𝑀2⁄  is also taken as 1.   

The critical buckling load (𝑃𝑐𝑟) in Eq. 3-5 is calculated as 

𝑃𝑐𝑟 =
𝜋2𝜙𝑒𝑟(𝐸𝐼)𝑒𝑓𝑓

(1 + 0.5𝛽𝑑)(𝑘ℎ)2
 (3-10) 

where the factor 𝛽𝑑 accounts for the effect of creep, a long term deformation under sustained stress. 

𝛽𝑑 is calculated in S304-14 as the ratio of the factored dead load moment to factored total moment.  

The height of the wall is denoted by ℎ, and 𝑘 is the effective height factor which depends on the 

end conditions of the wall.  The factor 𝜙𝑒𝑟 accounts for the effects of variability of materials on 

buckling and deflection (𝜙𝑒𝑟 = 0.75) as discussed earlier. 

The effective stiffness (𝐸𝐼)𝑒𝑓𝑓 is given by 

(𝐸𝐼)𝑒𝑓𝑓 = 𝐸𝑚 [0.25𝐼𝑜 − (0.25𝐼𝑜 − 𝐼𝑐𝑟) (
(𝑒 − 𝑒𝑘)

2𝑒𝑘
)] (3-11) 

(𝐸𝐼)𝑒𝑓𝑓 should be greater than 𝐸𝑚𝐼𝑐𝑟 and less than 0.25𝐸𝑚𝐼𝑜.  𝐸𝑚 is the modulus of elasticity of 

masonry, 𝐼𝑜 is the moment of inertia of the effective cross-section, 𝐼𝑐𝑟 is the transformed moment 

of inertia of the cracked section, 𝑒 = 𝑀𝑓1 𝑃𝑓⁄  is the virtual eccentricity, 𝑒𝑘 = 𝑆𝑒 𝐴𝑒⁄  is the kern 

eccentricity for the effective cross-sectional area 𝐴𝑒, and 𝑆𝑒 is the section modulus of the effective 

cross-section.   

The total factored moment (𝑀𝑓𝑡) is thus expressed as 
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𝑀𝑓𝑡 = 𝑀𝑓1 ×𝑀𝑀𝐹 = 𝑀𝑓1(
𝐶𝑚

1 −
𝑃𝑓
𝑃𝑐𝑟

) (3-12) 

Figure 3b shows that the combination of factored axial load, 𝑃𝑓, and the amplified total moment 

𝑀𝑓𝑡, must fall inside of the P-M interaction curve according to the design criteria.   

 

Wall Categories in the Canadian Code for Masonry Structures 

Slenderness in S304-14 is expressed in terms of height-to-thickness ratio (𝑘ℎ 𝑡⁄ ) with the end 

conditions considered.  The end conditions in the walls of this study are assumed to be pinned-

pinned (𝑘 = 1), which is a typical assumption in the design of loadbearing, flexural masonry walls.   

There are three categories of walls in S304-14:  

1. The effects of slenderness can be neglected when the ratio of effective height to thickness is 

ℎ 𝑡⁄ < 10 − 3.5(𝑒1/𝑒2) (3-13) 

with 𝑒1 and 𝑒2 representing the smaller and larger virtual eccentricities occurring at the top or 

bottom of the wall.  Virtual eccentricity is the eccentricity of the axial load at a section calculated 

by dividing the total moment at the section by the axial load at the section.  

2. For walls with a slenderness ratio of ℎ 𝑡⁄ ≤ 30, the second order effects are to be accounted for 

through the moment magnifier method using Eq. 3-12. 

3. For walls with slenderness ratio of ℎ 𝑡⁄ > 30, the second-order effects are considered through 

an equation to calculate the total factored moment at mid-height of the wall (Eq. 3-14).  For these 

walls, flexural behaviour with significant deformation is anticipated, and ductility needs to be 

ensured.  The equation terms are illustrated in Fig. 3-5, using wind as a lateral load for illustration 

purposes. 

𝑀𝑓𝑡 =
𝑤𝑓ℎ

2

8
+ 𝑃𝑓(𝑒𝑖 2⁄ ) + (𝑃𝑓𝑤 + 𝑃𝑓)Δ𝑓 (3-14) 
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Fig. 3-7  Illustration of the total moment calculation for walls with 𝑘ℎ 𝑡⁄ > 30 

 

In Eq. 3-14, 𝑤𝑓 is the factored uniform lateral wind load on the wall, ℎ is the height of the wall, 𝑃𝑓 

is the factored axial load from tributary roof or floor area, 𝑒𝑖 is the initial eccentricity of 𝑃𝑓, 𝑃𝑓𝑤 is 

the factored weight of wall tributary to and above the design section, Δ𝑓 is the lateral deflection of 

wall at mid-height under factored lateral and axial loads, Δ0 is the first-order deflection, and Δ1 is 

the deflection due to second-order effects. 

Expressing Eq. 3-14 in terms of the moment magnifier, we can write an expression for the total 

factored moment for walls with slenderness over 30:  

𝑀𝑓𝑡𝑜𝑡 =
𝑤𝑓ℎ

2

8
+ 𝑃𝑓(𝑒𝑖 2⁄ ) + (𝑃𝑓𝑤 + 𝑃𝑓)Δ0(

1

1 +
𝑃𝑓 + 𝑃𝑓𝑤
𝑃𝑐𝑟

) (3-15) 

with 

Δ0 =
5𝑤𝑓ℎ

4

384(𝐸𝐼)𝑒𝑓𝑓
+

𝑃𝑓𝑒ℎ
2

16(𝐸𝐼)𝑒𝑓𝑓
 (3-16) 

Additionally, for walls with ℎ 𝑡⁄ > 30, additional requirements must be considered. Masonry units 

with t ≥ 140 mm must the be used, with no raked joints; eccentric pin end conditions at each end 

𝑃𝑓, 𝑒𝑖
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of the member, inducing symmetrical single curvature, are to be assumed; the factored axial load 

(𝑃𝑓), shall not exceed 0.1𝜙𝑚𝑓𝑚
′ 𝐴𝑒, where 𝐴𝑒 the effective cross-sectional area of the wall; and 

finally, a ductile behaviour must be ensured, by making 

𝑐

𝑑
≤

600

600 + 𝑓𝑦 
 (3-17) 

in this equation 𝑓𝑦 is in 𝑀𝑃𝑎. 

 

3.2. Reliability Analysis Problem 

Limit-state Function 

A limit state function represents a boundary between desired and undesired performance of a 

structure. The safety levels against structural failure or collapse are associated with the Ultimate 

Limit State (ULS).  The general expression for a limit state function 𝐺(𝑿) to perform a reliability 

analysis can be formulated in the safety margin format as shown in Eq. 3-18, 

𝐺(𝑿) = 𝑅(𝑿) − 𝑆(𝑿) (3-18) 

where R and S are the random variables that represent the resistance and the load effect, 

respectively, and X represents the vector containing all basic random variables.  The basic random 

variables considered in this paper are: 

• Geometry-related: the thickness of the cross-section (𝒕) and the location of the steel 

reinforcement in the block cell (𝒅). 

• Material-related: masonry compressive strength (𝒇𝒎), reinforcement yield stress (𝒇𝒚), and 

workmanship factor (𝜌𝑤). 

• Load-related: dead load (D), live load (L), wind load (W), snow load (S), and the rate of 

loading (𝜌𝑟). 

A structure is considered safe when 𝐺(𝑿) > 0 in Eq. 3-15, while 𝐺(𝑿) ≤ 0 denotes failure.  The 

reliability of a structural element can be expressed as the complementary probability of the 

probability of failure (𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒), which is indicated by Eq. 3-19 
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𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = P(𝑅(𝑿) − 𝑆(𝑿) < 0) = 𝑃(𝐺(𝑿) < 0) (3-19) 

or in terms of the reliability index (𝛽) by Eq. 3-20 

β = −Φ−1(𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒) (3-20) 

where Φ−1 is the inverse standard normal cumulative distribution function and 𝛽 is the reliability 

index.  If 𝛽 increases, the probability of failure decreases.  Therefore, 𝛽 can be considered a 

measure of the reliability of a structural member.  

There are different methods to calculate the reliability index (𝛽).  The Monte Carlo method is 

popular due to its simplicity and accuracy.  Using this method, Eq. 3-15 could be solved as follows: 

a. Using the statistical properties of the basic random variables 𝑿, randomly generate or 

simulate “N” values for each of the random variables according to the probability models 

for basic random variables. 

b. Evaluate the limit state function (𝐺(𝑿) = 𝑅(𝑿) − 𝑆(𝑿)) at all N samples.  

c. Estimate the probability of failure as  

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝐺(𝑿) < 0

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
 

(3-21) 

d. Calculate the reliability index (𝛽 = −Φ−1(𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒)) 

 

The Monte Carlo method can be illustrated by Fig. 3-8. 
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Fig. 3-8  Monte Carlo Method 

 

In the Crude Monte Carlo method, the accuracy increases as the number of estimations increases.  

One way to evaluate the accuracy of the number of simulations is to calculate the coefficient of 

variation (𝐶𝑂𝑉) of the probability of failure (𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒), a smaller value of this coefficient is 

desirable (Ayyub and Haldar, 1984).  

𝐶𝑂𝑉(𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 𝛿𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ≈

√(1 − 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒)𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝑁

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒
 

(3-22) 

when 𝛿𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒  approaches to zero as 𝑁 approaches to infinity.  

Shooman (1968) presented an alternate methodology to study the error related to the number of 

simulations.  This approach is focused on the examination of the 95% interval of the estimated 

probability of failure, Eq. 3-23 

𝑃 [−2√
(1 − 𝑝𝑓

𝑇)𝑝𝑓
𝑇

𝑁
<
𝑁𝑓

𝑁
− 𝑝𝑓

𝑇 < 2√
(1 − 𝑝𝑓

𝑇)𝑝𝑓
𝑇

𝑁
] = 0.95 (3-23) 

Apr-23
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where 𝑁𝑓 is the number of occurrences in which 𝐺(𝑿) < 0, and 𝑝𝑓
𝑇 is the true probability of failure.  

The percentage error can be defined as  

𝜀% =

𝑁𝑓
𝑁 − 𝑝𝑓

𝑇

𝑝𝑓
𝑇 × 100% (3-24) 

Combining Eq. 3-23 and 3-24 

𝜀% = √
(1 − 𝑝𝑓

𝑇)

𝑁 × 𝑝𝑓
𝑇 × 200% (3-25) 

In this research, the Eq. 3-25 was used iteratively to estimate the number of simulations, in all the 

cases the target error was 𝜀% < 5%. 

 

In this reliability analysis, the calculated reliability indices (𝛽) are compared to target reliability 

indices (𝛽𝑇) proposed by regional and national code committees, CSA S408 (2011) and the Joint 

Committee on Structural Safety (JCSS 2001a). 

As pointed out in the literature review, Tychy and Vorlicek (1962) found that the safety levels 

depended on the definition of the limit state function. Fig. 3-9 (repeated from Fig. 2.2-2) shows 

three possible limit states: lines LA, LB, and LC are known as “fixed moment”, “fixed eccentricity,” 

and “fixed axial load” functions, respectively.      

 

Fig. 3-9  Proposed Limit-State Functions (Tychy et al.,1962) 
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Limit-state function for non-slender elements 

For the analysis of non-slender structural elements under eccentric axial load, different limit state 

functions have been proposed.  Usually, simple load conditions are assumed such that the “fixed 

eccentricity” approach is applicable.  The structural element experiences a constant moment along 

its height that is proportional to the axial load (𝑃) by a quantity equal to the eccentricity (𝑒𝑖).  

Although seldom found in practice, this loading type offers a straightforward way to illustrate the 

development of the limit state function for structural elements subjected to axial loads and out-of-

plane moment.  This is the case of the analyses conducted in non-slender reinforced concrete 

columns (Tychy and Vorlicek 1962, Ellingwood 1977, Ruiz and Aguilar 1994, Diniz and 

Frangopol 1998, Szerszen et al. 2005) and non-slender masonry walls (Ellingwood and Tallin 

1985, Moosavi et al. 2017).   

When used within the framework of a P-M interaction diagram, the fixed eccentricity limit state 

can be directly related to the “distance” between the load effect (𝑆) and the resistance (𝑅), these 

points are shown in Fig. 3-10a.  The calculation of the distance between the points is aided by the 

fact that in the fixed-eccentricity approach, the loads and resistance can only move along a straight 

line, given by the initial eccentricity 𝑒𝑖.  Thus, the value of the reliability index can be readily 

calculated using a reliability method, as the distance between the coordinates (𝑆(𝑿)) and the 

predicted intersection between the eccentricity line and the P-M interaction diagram (𝑅(𝑿)), as 

seen in Fig. 3-10b.    

In Fig. 3-10a, 𝑅 represents the nominal resistance (or ultimate strength) boundary calculated using 

the properties of the cross-section without reduction factors (𝜙𝑚 = 𝜙𝑠 = 1), and 𝑅𝑑 is a point in 

the factored resistance boundary of the cross-section calculated with reduction factors (𝜙𝑚 =

0.60, 𝜙𝑠 = 0.85).  𝑆𝑑 represents the factored load effect, and the nominal load 𝑆𝑛 can be obtained 

from 𝑆𝑑 and the load factors of the applicable building code.  In this study, an optimal design 

consists of designing a structural member to exactly resist the applied loads; namely, the design 

resistance (𝑅𝑑) is considered equal to the applied load (𝑆𝑑).   

In Eq. 3-15 the probabilistic load 𝑆(𝑿) and probabilistic resistance 𝑅(𝑿) are measured as the 

Euclidian distance in terms of axial load and out-of-plane bending moment for non-slender 
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masonry walls. 𝑆(𝑿) is calculated using the nominal load 𝑆𝑛 and the statistical properties of the 

sources of loads (dead, live, wind and snow load given in Table 3-2).  In the same way, 𝑅(𝑿) is 

calculated using 𝑅 and the statistical properties of the materials and geometry of the cross-section.  

Fig. 3-7b shows the points used in the limit state function corresponding to the fixed eccentricity 

approach that could be applicable in non-slender elements. 

 

Fig. 3-10  Limit-State for Non-Slender Walls with the Fixed Eccentricity Approach 

 

Limit-state function for slender elements  

This section provides a brief overview of the development of the limit state function for slender 

RC concrete columns and proposes a limit state for slender masonry walls.  The limit state in Fig. 

3-7b would not be applicable for elements with lateral load and slender elements under 

compression because the load point (𝑀𝑓𝑡, 𝑃𝑓) would not move along the straight line given by the 

initial eccentricity 𝑒𝑖, due to second-order effects.  The second order effects would be further 

exacerbated when the element is subjected to lateral loads, such as in the case of an exterior wall. 

For slender elements under axial load and out-of-plane bending in addition to the variabilities 

inherent in the material properties, member geometry, and sources of loads, the second order 

effects should be taken into account.  MacGregor and Mirza (1989) proposed one approach to 

calculate the variability of the ultimate strength, in terms of axial load and bending moment, of 

rectangular cast-in-place reinforced concrete slender columns bent in single curvature.  This 
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method was based on the estimation of the column’s lateral deflection and second-order moment, 

which was added to the primary moment to calculate the total amplified moment (Fig. 3-11). 

 

Fig. 3-11  Slender Column under Axial Load with Equal Eccentricities 

 

The maximum moment in a slender element with equal eccentricities is assumed to occur at mid-

height. The deflection ∆𝑚 can be calculated iteratively, and the moment is calculated with Eq. 3-

26  

𝑀 = 𝑃(𝑒𝑖 + Δ𝑚) (3-26) 

where 𝑃 is the axial load, and 𝑒𝑖 is the initial eccentricity.  

Ruiz and Aguilar (1994) used the moment magnifier method to calculate the total moment due to 

second order effects in RC slender columns.  In this approach, the design resistance (𝑅𝑑) is made 

equal to the design load (𝑆𝑑) which is the amplified moment for a given axial load and initial 

eccentricity.  Ruiz and Aguilar showed that the use of the moment-magnifier was a simple, yet 

robust approach to account for second-order effects.  

The results from McGregor and Mirza (1989) and Ruiz and Aguilar (1994) showed that including 

second-order effects in a reliability analysis is achievable.  In the current study, this is done by 

using the fixed axial load approach (line LC in Fig. 3-9) as a basis, with one modification.  In the 

previous approach (line LC), the axial load was considered as constant and deterministic.  In this 
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study, the statistical properties of the sources of load (i.e., dead, live, snow, and wind) are taken 

into consideration to estimate the probabilistic axial load.   

In the approach proposed in the current study, the design should comply with the code 

requirements as follows. The primary or initial factored moment (𝑀𝑓1) is amplified using the 

moment magnifier method to calculate the magnified or total factored moment (𝑀𝑓𝑡) due to the 

slenderness effect.  Given a combination of factored axial load, uniform distributed lateral load 

(𝑤𝑓), and initial eccentricity (𝑒𝑖) at the top, the maximum factored primary moment at the midspan 

of the wall is given by 

𝑀𝑓1 =
𝑤𝑓ℎ

2

8
+
𝑃𝑓𝑒𝑖

2
 

(3-27) 

The total factored moment (𝑀𝑓𝑡) is calculated using the primary moment from Eq. 3-20 and the 

moment magnifier method (Eqs. 3-12 or 3-15, depending on the slenderness ratio).    

To resist 𝑀𝑓𝑡 and 𝑃𝑓, a masonry wall cross-section compliant to a masonry standard (i.e., S304-

14) is proposed.  For an optimal design, the combination of total factored moment and axial load 

(𝑀𝑓𝑡, Pf), as denoted by point 𝑆𝑑, is made equal to the design resistance of the section (𝑀𝑟 , Pr), as 

denoted by point 𝑅𝑑, which is shown in Fig. 3-12a. 

 

Fig. 3-12  Representation of the Limit-State for Slender Walls 
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Once a design is obtained with its corresponding nominal properties, reliability analysis is 

performed, and Eq. 3-18 is evaluated when Monte Carlo simulation is used for reliability analysis. 

The nominal loads and nominal strength of the cross-section need to be transformed into random 

variables using their specific statistical properties (this information is provided in the Random 

Variables section).   

For each sample generated during Monte Carlo simulation, the resulting probable load 𝑆(𝑿) in 

terms of probable axial load (P*) and probable total moment (M*
t) is shown in Fig. 3-12b. The 

probable primary moment (M*
1) is also illustrated as a reference.  Similarly, 𝑅(𝑿) represents the 

probable moment resistance 𝑀𝑛
∗  of the cross-section, at the level of the probable axial load (P*).   

Similar to a non-slender element, Fig. 3-12b shows that the reliability of a slender element can be 

calculated using a reliability method, as the “distance” between the probabilistic load effect 𝑆(𝑿) 

and probabilistic resistance 𝑅(𝑿) in terms of the axial load and bending moment.  Figure 3-12b 

also shows that the proposed limit state function is similar to the “fixed axial load” approach 

described earlier, with the limit state function depending on the comparison of the probable total 

moment including second-order effects (𝑀𝑡
∗) and the probable resistant moment (𝑀𝑛

∗) for a given 

level of probable axial load (𝑃∗).    

To summarize, the limit state function for slender elements will assess the difference between 𝑀𝑛
∗  

and 𝑀𝑡
∗ for a given level of the probable axial P*, Eq. 3-28 can be written in terms of the probable 

total moment (𝑀𝑡
∗), and the axial load, as follows. 

𝐺(𝑿) = 𝑀𝑛
∗(𝑿, 𝑃𝑛

∗) − 𝑀𝑡
∗(𝑿, 𝑃∗) (3-28) 

Reliability Analysis for Slender Walls – Summary 

The procedure to calculate reliability indices on slender masonry walls is summarized in the next 

steps.  Steps 1-6 relate to the loads, step 7 relates to the resistance, and step 8 consists of the 

evaluation of the limit state function.  

1. Define a wall cross-section.  

2. Define a wall height and an initial eccentricity for the axial load. 
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3. Following the design considerations of the applicable standard (i.e., CSA S304.1-14), the 

design strength of the cross section (Rd) is calculated, which automatically determines the 

maximum factored load (Sd) that the section can resist (𝑅𝑑 = 𝑆𝑑). 

4. Using the Monte Carlo method, and the statistical properties of the random variables for 

the loads, 𝑁 simulations are generated, including the random axial loads: 𝑃1
∗, 𝑃2

∗, … , 𝑃𝑁
∗ . 

5.  After the simulation of the random variables for the loads (dead, live and wind), the 

primary moment (𝑀1_1
∗ , 𝑀1_2

∗ , … ,𝑀1_𝑁
∗ ) is calculated (Fig. 3-13a).  

6.  Once the primary moment is known for each level of axial load, the moment magnifier 

method is used in each simulated case to calculate the total moment (𝑀𝑡
∗), Fig. 3-13b.   

7.  The moment resistance (𝑀𝑛
∗) of the cross-section is calculated using N samples for the 

material and geometry of the cross-section, Fig. 3-13c.   

8.  Finally, the Eq. 3-28 is used to calculate the reliability index (𝛽). 
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Fig. 3-13  Limit State Simulations for Slender Elements 

 

3.3.  Random Variables for Masonry Materials and Loads 

The random variables considered to take into account the uncertainties in the material and 

geometry are the masonry compressive strength (𝒇𝒎), reinforcement yield strength (𝒇𝒚), 

reinforcement location (𝒅), and thickness of the wall (𝒕).  The statistical properties of these 

variables are shown in Table 3-1.  The n subscript indicates nominal values. 

 

Compressive Strength (𝒇𝒎) 

The statistical properties for the compressive strength of masonry were obtained from the study 

conducted by Moosavi and Korany (2014).  They recommended using a Gumbel distribution for 

grouted masonry, as shown in Table 3-1.  In the table, 𝑓𝑚𝑛 represents the nominal compressive 

strength.  

 

Reinforcement Yield Strength (𝒇𝒚) 

The statistical information for the reinforcement yield strength was taken from a study conducted 

by Bournonville et al. (2004).  The study used the mechanical properties and weight of the steel 

bars produced in the United States and Canada and a normal distribution was recommended.  The 
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statistical values are shown in Table 3-1, and 𝑓𝑦𝑛 represents the nominal reinforcement yield 

strength. 

 

Reinforcement Location (𝒅) 

The statistical properties for the reinforcement location of the wall, shown in Fig. 3-1, were taken 

from the study presented by Ellingwood and Tallin (1985). A normal distribution was 

recommended, and Table 3-1 shows the statistical properties, with 𝑑𝑛 representing the nominal 

distance from the extreme compression surface to the centroid of the tension steel.   

 

Wall Thickness (𝒕) 

The statistical properties for the wall thickness were derived from an analysis conducted by 

Moosavi et al. (2014), where information from various concrete block producers across Canada 

was examined.  A normal distribution was recommended, and Table 3-1 presents the statistical 

properties, with 𝑡𝑛 representing the nominal width of the wall. 

 

 

Table 3-1  Statistical Information for Material and Geometry 

Random Variable Mean C.O.V. Distribution Reference 

Masonry compressive 

strength (𝒇𝒎) 

1.60𝑓𝑚𝑛 0.236 Gumbel Moosavi and 

Korany (2014) 

Reinforcement yield 

strength (𝒇𝒚) 

1.14𝑓𝑦𝑛 0.070 Normal Bournoville et al. 

(2004) 

Reinforcement location 

(𝒅) 

(𝑑𝑛 in mm) 

1.00𝑑𝑛 4 𝑑𝑛⁄  Normal Ellingwood and 

Tallin (1985) 

Wall thickness (𝒕) 1.00𝑡𝑛 0.010 Normal Moosavi and 

Korany (2014) 
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Workmanship factor 

The strength of masonry is highly dependent on construction practices, mason qualifications, and 

inspection. Some of the problems that are included in the workmanship factor are the thickness 

and furrowing of mortar joints, grouting procedures, wall verticality, geometrical compliance with 

the design values, and the quality control of construction materials.  Turkstra et al. (1989) based 

on experimental data proposed three sets of values, which are shown in Table 3-2.  This factor has 

been found by different researchers that has an important influence in the strength of the masonry 

(Stewart 1995, Fyfe et al. 2000).  

 

Table 3-2  Workmanship Factor (Turkstra et al. 1989) 

Variables Mean COV Distribution 

Rigorous work inspection 1.00 0.10 Normal 

Moderate work inspection 0.80 0.15 Normal 

Uninspected 0.70 0.20 Normal 

 

The three levels of work inspection presented in Table 3-2 correspond to: rigorous work inspection 

is considered when the work is in compliance with the design and construction standards (CSA 

S304 and CSA 371), moderate work inspection which includes regular sites visits and records, and 

uninspected work.  

 

In this study, it is assumed that the design and construction are accordance with the standards (CSA 

S304 and CSA 371), then rigorous work inspection is considered as workmanship factor in the 

reliability analysis, therefore the compressive strength of the masonry is affected by these 

statistical properties. 

 

Loads 

The statistical parameters for the loads used in this research were reported by Bartlett et al. (2003), 

these parameters were used to calibrate the NBCC-2005 and are summarized in Table 3-3.  The 
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table shows the statistical values for the maximum load based on 50-year return period, the load 

effect modelling factors, and the point-in-time statistical values. 

 

 

Table 3-3  Statistical Information for loads 

Load Bias C.O.V. Distribution 

Dead load 1.050 0.100 Normal 

Live load       

  50 year maximum load 0.900 0.170 Gumbel 

  Point-in time load 0.273 0.674 Weibull 

  Transformation to load effect 1.000 0.206 Normal 

Snow load       

  50 year maximum depth 1.100  0.200  Gumbel 

  Point-in time depth 0.196 0.882 Weibull 

  Density 1.000 0.170 Normal 

  Transformation to load effect 0.600 0.420 Log-Normal 

Wind load       

  50 year maximum velocity 

  Regina 

  Riviere du Loup 

  Halifax 

 

1.039 

1.054 

1.049 

 

0.081 

0.112 

0.103 

 

Gumbel 

Gumbel 

Gumbel 

  Point-in time velocity 

  Regina 

  Riviere du Loup 

  Halifax  

 

0.156 

0.064 

0.084 

 

0.716 

1.149 

1.001 

 

Weibull 

Weibull 

Weibull 

  Transformation to load effect 0.680 0.220 Log-Normal 

 

In previous studies on masonry walls that included lateral loads such as wind (Turkstra et al. 1983, 

Moosavi et al. 2017), the load combinations that were analyzed were relatively simple (i.e., dead 

plus live load, or dead plus wind load only).  More complex combinations, such as the 

simultaneous combination of dead, live, and wind load (typically required by building codes), were 

not addressed.  Live load and wind load are both “time-varying loads” – this means that two types 

of statistical properties need to be considered. One is applicable when the load is acting at its 

average or normal condition as the accompanying time-varying load, and the other applies when 

the load is acting in its extreme condition as the primary time-varying load.  To address 

combinations that contain several time-varying loads, the Turkstra’s rule (Turkstra and Madsen, 
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1980) can be used.  The Turkstra’s rule is based on the observation that when one load component 

reaches an extreme value (𝑚𝑎𝑥(𝑋i)), accompanying load components is often acting at its average 

value (𝑋i 1
𝑎𝑝𝑡).  Here, 𝑎𝑝𝑡 is the arbitrary point-in-time probability of occurrence, and 𝑚𝑎𝑥 is a 

maximum probability of occurrence during a suitable period of time (e.g., 50 years). It is assumed 

that the possibility of two or more load components acting at their extreme values simultaneously 

is unlikely.  Equation 3-29 shows the generalized Turkstra’s rule for a maximum value the load: 

𝑆𝑚𝑎𝑥 = 𝑚𝑎𝑥

{
 
 

 
 𝑚𝑎𝑥(𝑋1) + 𝑋2

𝑎𝑝𝑡 +⋯+ 𝑋𝑁
𝑎𝑝𝑡

𝑋1
𝑎𝑝𝑡 +𝑚𝑎𝑥(𝑋2) + ⋯+ 𝑋𝑁

𝑎𝑝𝑡

⋮

𝑋1
𝑎𝑝𝑡 + 𝑋2

𝑎𝑝𝑡 +⋯+𝑚𝑎𝑥(𝑋𝑁)

 (3-29) 

where 𝑁 is the number of components in the combination.  

 

In this research, the load combinations using the proposed types of loads and the information given 

in Table 3-3 are: 

𝑆𝑚𝑎𝑥 = 𝑚𝑎𝑥 {
𝑫 +𝑚𝑎𝑥(𝑳) +𝑾𝑎𝑝𝑡

𝑫 + 𝑳𝑎𝑝𝑡 +𝑚𝑎𝑥(𝑾)
 (3-30) 

 

Rate of loading factor (𝜌𝑟) 

Previous studies on the statistical descriptions of the strength of concrete based on data from testing 

(Mirza et al. 1979, Jones and Richart 1936), showed that the strength is affected by the rate of 

application of the load.  Jones and Richart (1936) reported a study on concrete cylinders loaded at 

different rates and proposed a relationship between the compressive strength of concrete and the 

rate of loading.  The variation of the concrete strength due to the rate of loading was observed to 

have a relatively small dispersion, thus it was ignored in the overall coefficient of variation.  

Studies on the compression strength of masonry conducted by Korany and Moosavi (2011, 2017) 

were based on the equation proposed by Jones and Richart (1936) to estimate the rate of loading 

factors (𝜌𝑟) values for the effect of dead load plus live load (0.88), dead load plus snow load (0.79), 

and dead load plus wind load (0.94).  In this study, the effect of loading is considered by 
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multiplying the compressive strength of masonry (𝑓𝑚) by the rate of loading factor (𝜌𝑟).  In slender 

walls the axial load normally is low, due to code requirements, and therefore, 𝜌𝑟 = 0.94 will be 

used for the combination of dead, live and wind on slender walls.  
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4. NUMERICAL ANALYSIS AND RESULTS 

 

The proposed limit state function is used in this section to calculate the reliability levels of 

reinforced concrete block masonry walls designed according to Canadian standards CSA S304, 

accounting for the uncertainties associated with material properties, design parameters and loads.  

Reliability indices for walls with different nominal values, such as masonry compressive strength, 

and steel reinforcement schemes, were calculated to illustrate the process outlined in the proposed 

limit state function.  The reinforcement bar sizes, spacings, compressive strength, and block 

dimensions used in the analysis are typical of Canadian construction.   

The cross-sections under study (Fig. 4-2) are proposed to investigate the reliability index for 

masonry walls designed with different values for the masonry compressive strength and 

reinforcement ratio.  

The thickness of the concrete block used in this research is 190 mm since it is one of the most 

typically employed sizes in the industry.  The walls have fully grouted cross-sections, but a similar 

approach is applicable for partially grouted masonry walls. 

A “classic” reliability analysis is performed, in which the cross-section factored strength (𝑅𝑑) is 

set equal to the amplified factored loads (𝑆𝑑). 

 

4.1. Compressive Strength, Workmanship, and Rate of Loading  

Table 4 from CSA S304-14 provides information on the compressive strength of masonry when 

concrete blocks are used.  This table classifies compressive strength into different categories based 

on factors such as the compressive strength of the units, type of mortar, ungrouted hollow units, 

and grouted or solid hollow units.  The table is a resource for designers who lack experimental 

data or need to check that their design complies with safety regulations.   

This research proposes walls with three levels of compressive strength, 𝑓𝑚
′ , using type S mortar, 

Table 4-1(adapted from Table 4 in CSA S304-14).  The first one is the minimum requirement of 

5.0 MPa, the second is a value of 10.0 MPa, which is one of the most typically used in the industry, 

and the third is the upper limit of 13.5 MPa allowed by CSA S304-14 when the compressive 
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strength of the block is 30 MPa or greater in grouted masonry walls.  These values are taken as 

nominal for the reliability analysis.   

The compressive strength is also affected by the workmanship factor.  It is assumed in this study 

that the design and construction are in accordance with CSA S304, and therefore, a rigorous work 

inspection (Table 3-2) factor can be used.  Another factor that affects the compressive strength is 

the rate of loading factor (𝜌𝑟), taken as 0.94 for the load combination analyzed in this study. 

 

Table 4-1  Compressive Strength Adapted from Table 4 (CSA S304-14) 

Specified compressive strength of 

unit (average net area), MPa 

Type S mortar 

Solid units or grouted 

hollow units, MPa 

30 or more 13.5 

20 10 

15 7.5 

10 5 

 

4.2. Steel Reinforcement  

The spacing of the steel reinforcement was assumed to be constant for the walls under analysis, 

and it is equal to 600 mm which is a value typically used in the industry.  Two levels of 

reinforcement ratios are analyzed.  The first level corresponds to the minimum amount of steel 

required by CSA S304-14 (𝐴𝑠,𝑚𝑖𝑛 = 0.00125𝐴𝑔, where 𝐴𝑔 is the gross cross-sectional area of the 

wall), for the proposed spacing and cross-section, with a reinforcement ratio of 𝜌 = 0.0018.  This 

ratio represents the least amount of steel that can be placed in this section and in accordance with 

the masonry standard.  The second level of reinforcement is close to that corresponding to the 

balanced reinforcement ratio (𝜌𝑏), which is the maximum allowed by CSA S304-14 for walls with 

slenderness ratios ℎ/𝑡 greater than 30 (Eq. 3-14).  Note that reinforcement ratios greater than the 

balanced ratio, 𝜌𝑏, are allowed for walls with h/t < 30.  However, reinforcement ratios greater than 

those corresponding to the balanced condition were not considered in this study, warranting 

investigation in future studies.   
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For the reliability analysis, the reinforcement ratios are considered deterministic.  The reinforcing 

yield strength is considered a random variable and assumed that its nominal value is equal to 400 

MPa for the analysis.  

 

4.3. Slenderness  

According to the standard, the slenderness ratio is classified into three levels, and the proposed 

slenderness ratios aim to cover these categories.  The first category includes walls with slenderness 

(ℎ 𝑡⁄ ) ratio of 10.5 (2.0 m), which are close to the boundary of being classified as non-slender walls 

according to CSA S304 (Eq. 3-10), then the slenderness effects can be neglected.  In the second 

category, walls with a slenderness ratio less than 30 (ℎ 𝑡⁄ ≤ 30) are analyzed, with slenderness 

ratios of 15.8 (3.0 m), 21.1 (4.0 m), and 26.3 (5.0 m), the slenderness effects are considered and 

calculated with the moment magnifier method.  The third category corresponds to slenderness 

ratios of 31.6 (6.0 m) and 36.8 (7.0 m), where ℎ 𝑡⁄ ≥ 30, as in the second category the slenderness 

effects are considered and calculated with the moment magnifier method, and the special 

requirements to calculate the total moment are also taken into account. 

 

4.4. Eccentricity  

The eccentricity of a wall refers to the distance between the centre of the wall and the point of 

application of the vertical load.  This distance has a significant impact on the structural behaviour 

of a loadbearing wall.  Some examples of typical eccentricities in buildings are shown in Fig. 4-1, 

where a loadbearing masonry wall is interacting with a steel deck roof, a concrete slab, and with a 

steel joist, which are typical connections found in buildings such as schools, gymnasiums and 

warehouses.  In this research an eccentricity at the top of the wall is considered, which is the system 

most commonly found in real-world contexts, ranging from the minimum of 0.1t specified in CSA 

S304-14 up to 3t. 
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Fig. 4-1  Examples of Typical Eccentricities in Buildings 

  

4.5. Loads  

The loads considered in this study are the combination of dead load (𝐷) plus live load (𝐿) plus a 

lateral uniformly distributed load due to wind (𝑊).  The relationship between the nominal axial 

live load and dead load (𝐿/𝐷) is considered as 1.0 and 1.5.  The lateral nominal wind load used in 

these analyses was proposed based on a calculation of the maximum design wind velocities in 

Western Canada, then considering that the walls correspond to a gymnasium, warehouse, or a 

school, and calculating the design pressure according to the Canadian code NBCC-2015.  The 

lateral pressures were taken as 1.2 and 1.5 kPa.  The three types of nominal loads (D, L, and W) 

were combined using the Tursktra’s Rule as it was explained earlier, and the design corresponds 

to a factored design load combination of 1.25D plus 0.50L plus 1.4W. 

Three groups of loads are presented in this study, Group A is assumed to have 𝐿/𝐷 = 1.0 and a 

wind load of 𝑊 = 1.2𝑘𝑃𝑎, for Group B, 𝐿/𝐷 = 1.5 and wind load of 𝑊 = 1.0𝑘𝑃𝑎, and finally 

Group C, 𝐿/𝐷 = 1.5 and wind load of 𝑊 = 1.5𝑘𝑃𝑎. 

The properties of the cross-sections and loads proposed for the reliability analysis in this research 

are summarized in Fig. 4-2.  The 𝑛 in the variables (𝑡𝑛, 𝑑𝑛, 𝑓𝑦𝑛, 𝑓𝑚𝑛) denotes nominal values for 

the reliability analysis.  The loads shown in the Fig. 4-2 (𝐷, 𝐿, 𝑊) are also considered nominals.  
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 Section 𝒇𝒎𝒏 Reinforcement 𝝆𝒔 Section 
G

ro
u

p
 A

 

 5.0 1-15M@600 0.0018 W01 

 10.0 1-15M@600 0.0018 W02 

 13.5 1-15M@600 0.0018 W03 

𝑏 = 1000𝑚𝑚, 𝑡𝑛 = 190𝑚𝑚, 𝑑𝑛 = 𝑡𝑛 2⁄  5.0 1-20M@600 0.0026 W04 

𝑓𝑦𝑛 = 400𝑀𝑃𝑎 10.0 1-20M@600 0.0026 W05 

𝐿/𝐷=1.0, Wind=1.2 kPa  13.5 1-20M@600 0.0026 W06 

G
ro

u
p

 B
 

 5.0 1-15M@600 0.0018 W07 

 10.0 1-15M@600 0.0018 W08 

 13.5 1-15M@600 0.0018 W09 

𝑏 = 1000𝑚𝑚, 𝑡𝑛 = 190𝑚𝑚, 𝑑𝑛 = 𝑡𝑛 2⁄  5.0 1-20M@600 0.0026 W10 

𝑓𝑦𝑛 = 400𝑀𝑃𝑎 10.0 1-20M@600 0.0026 W11 

L/D=1.5, Wind=1.0 kPa  13.5 1-20M@600 0.0026 W12 

G
ro

u
p

 C
 

 5.0 1-15M@600 0.0018 W13 

 10.0 1-15M@600 0.0018 W14 

 13.5 1-15M@600 0.0018 W15 

𝑏 = 1000𝑚𝑚, 𝑡𝑛 = 190𝑚𝑚, 𝑑𝑛 = 𝑡𝑛 2⁄  5.0 1-20M@600 0.0026 W16 

𝑓𝑦𝑛 = 400𝑀𝑃𝑎 10.0 1-20M@600 0.0026 W17 

L/D=1.5, Wind=1.5 kPa  13.5 1-20M@600 0.0026 W18 

Fig. 4-2  Cross-Section Properties 

 

4.6. Results and Discussion  

Figure 4-3 shows the reliability indices for walls with slenderness ratio equal to ℎ 𝑡⁄ = 10.5, the 

relationship of live to dead load is 𝐿/𝐷 = 1.0, and a wind load of 𝑊 = 1.2 𝑘𝑃𝑎 which are part of 

the group A.  The objective of these plots is to show the differences in the reliability indices when 

the slenderness ratio is low and the influence of the second-order effects is negligible.  Figure 4-

3a shows the reliability indices for walls with the minimum reinforcement ratio given by S304-14, 
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and different levels of compressive strength.  Figure 4-3b shows the results for walls with high 

reinforcement ratio (close to the balanced ratio) and different levels of compressive strength. 

 

Fig. 4-3  Reliability Indices for a Wall with ℎ 𝑡⁄ = 10.5 (𝐿/𝐷 = 1.0,𝑊 = 1.2 𝑘𝑃𝑎) 

 

As it can be seen in Figs. 4-3a and 4-3b, for walls with low slenderness the reliability indices are 

nearly constant regardless of the eccentricity of the axial load. For the two reinforcement ratios 

explored,  appears not to vary significantly.  However, the compressive strength of the masonry 

appears to have a noticeable effect on : the reliability indices are higher when the compressive 

strength is low, and the reliability index is low for high compressive strengths. This is attributed 
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to the statistical variability compressive strength of masonry (𝑏𝑖𝑎𝑠 = 1.14 and 𝐶𝑂𝑉 = 0.07), 

which is proportional to the nominal value of the compressive strength.  Similar reliability indices 

and trends were found by Moosavi (2017) on a study of non-slender masonry walls in which 

second-order effects were neglected. 

Walls W02 and W06 were selected to study the sensitivity of the reliability index to the slenderness 

ratio.  Wall W06 was chosen as the “strong” wall, because it meets all the maximum requirements 

as per the standard, such as the highest masonry compression strength (13.5 MPa) and 

reinforcement ratio (𝜌=0.0026).  Wall W02 was selected to show the case of a relatively low 

reinforcement ratio and a practical value of masonry compressive strength (10 MPa).   

The heights of the walls chosen for analysis resulted in h/t ratios of 10.5, 21.1, 31.6, and 36.8.   The 

results for a ratio of 36.8 in W02 are not shown, since at this height of 7.0 m, a wall could not 

design using S304 with the compressive strength, reinforcement ratios, and geometry under study.  
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Fig. 4-4  Reliability Indices for different slenderness ratios (𝐿/𝐷 = 1.0,𝑊 = 1.2 𝑘𝑃𝑎) 

 

The results in Fig. 4-4 show that the reliability indices tend to increase as the slenderness ratio 

increases.  Similar results were found by Ruiz and Aguilar (1994), and Ellingwood and Tallin 

(1985) in their investigation of slender elements under eccentrically axial load.  To illustrate this 

effect, the Monte Carlo simulations for W02 are shown in Fig. 4-5.  
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Fig. 4-5  Monte Carlo Simulations for 𝑊02 

 

Figure 4-5 illustrates the behaviour of the simulations for loads and resistance in walls with three 

different slenderness ratios.  It can be observed that the loads experienced by each height type 

decrease as the slenderness ratio increases.  This is because each of the slenderness brackets in 

S304-14 leads to a progressive amplification of the moment when the height increases.  If a wall 

has already been designed with a specific reinforcement (such as wall W02), any moment 

increment will require a reduction of the axial loads if the equality Sd = Rd is to be maintained, as 

it is in the case of a “classic” reliability analysis.  Based on the Monte Carlo simulations presented 

in Fig. 4-5, it can be observed that an increase in the slenderness ratio results in smaller variation 

of the axial load and greater dependency on the simulated moments for loads and resistances to 

calculate the reliability indices. 

The increase in reliability indices with the slenderness ratio can be attributed to the reduction in 

axial loads and moments capacities resulting from the restrictions in the design of slenderness 

walls.  When the loads are low, the response is controlled by the flexural steel in the cross-section; 

when the loads are high, the response is controlled by the masonry material.  Since the flexural 

steel has less statistical variability (𝑏𝑖𝑎𝑠 = 1.14 and 𝐶𝑂𝑉 = 0.07) than masonry (𝑏𝑖𝑎𝑠 = 1.60 and 

𝐶𝑂𝑉 = 0.236), reliability levels associated to steel-controlled behaviour will be high.  Conversely, 

when the behaviour is masonry-controlled, the large statistical variation in the masonry materials 

leads to low reliability. 

Resistance
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c)  ℎ 𝑡⁄ = 31.6

(kN-m)



 

   

57 

 

To provide context for the reliability indices obtained in the analysis presented above, for example, 

the target reliability index for the structural elements in a normal building (50-year design life) is 

defined as 𝛽𝑇 = 3.4 for gradual failures and 𝛽𝑇 = 3.9 for sudden failures (CSA S408, Table 2-1).  

In a medium-cost industrial building, a residential building or an office building the target 

reliability index is 𝛽𝑇 = 3.2 according to Joint Committee on Structural Safety (JCSS), Table 2-

2.  For the analyzed walls, the levels of safety for walls with low slenderness (ℎ 𝑡⁄ = 10.5) have 

reliabilities around 3.3-3.7, while for walls with high slenderness (ℎ 𝑡⁄ = 31.6) the reliability 

indices are around 3.4-4.4.   

 

From the reliability point of view, an ideal structural design could be seen as the one with 

consistent reliability index, regardless of the type of load or properties of the cross-section.  This 

feature shows that the element maintains a constant level of economy and safety.    

 

Figure 4-6 shows the reliability indices for walls with slenderness ratio equal to ℎ 𝑡⁄ = 10.5, but 

now the relationship of live to dead load is 𝐿/𝐷 = 1.5, and 𝑊 = 1.0 𝑘𝑃𝑎.  The objective of these 

plots is to show the differences in the reliability indices when the relationship of the live load (𝐿) 

and the dead load (𝐷) increase and the lateral wind load (𝑊) decrease compared to the previous 

case (Group A).  
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 Fig. 4-6  Reliability Indices for a Wall with ℎ 𝑡⁄ = 10.5 (𝐿/𝐷 = 1.5,𝑊 = 1 𝑘𝑃𝑎) 

 

As it can be seen in Figs. 4-6a and 4-6b, Group B is showing the similar pattern of variation as 

Group A, for walls with low slenderness the reliability indices are nearly constant regardless of 

the eccentricity of the axial load for the two reinforcement ratios explored.  The compressive 

strength of the masonry appears to have a noticeable effect on : the reliability indices are higher 

when the compressive strength is low, and the reliability index is low for high compressive 

strengths.  Regarding the variation due to the eccentricity, the reliability indices are closer for small 

eccentricities, but there is more variation as the eccentricities increase.  

1.0

2.0

3.0

4.0

5.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0



e/t

fmn=5.0MPa

(𝑡𝑛=190 mm, 𝜌=0.0018)

a)  𝛽 vs Initial Eccentricity

fmn=10.0MPa

fmn=13.5MPa

1.0

2.0

3.0

4.0

5.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0



e/t

fmn=5.0MPa

(𝑡𝑛=190 mm, 𝜌=0.0026)

b)  𝛽 vs Initial Eccentricity

fmn=10.0MPa

fmn=13.5MPa



 

   

59 

 

The reliability indices for various slenderness ratios are shown in Figure 4-7.  The analyzed walls 

have the same compressive strength and reinforcement ratio.   

 

 

 Fig. 4-7  Reliability Indices for different slenderness ratios (𝐿/𝐷 = 1.5,𝑊 = 1 𝑘𝑃𝑎)  

 

Based on the results shown in Fig. 4-7, the behaviour of the reliability indices for Group B is 

similar to that of Group A: as the slenderness ratio increases, the corresponding reliability indices 

also increase. Figure 4-7 shows that there is more variation in the reliability indices as the 

eccentricity increase; this is due to the effect of the bending moment.  Since the relationship on the 

load is higher, the walls are not able to take additional moments, resulting in similar reliability 
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indices to low eccentricities because the compression effect is predominant.  This tendency was 

even more pronounced compared to the results shown for the wall with low slenderness, Fig. 4-6. 

 

Figure 4-8 shows the reliability indices for Group C: walls with the same slenderness ratio equal 

to ℎ 𝑡⁄ = 10.5, with a live to dead load ratio of 𝐿/𝐷 = 1.5, and 𝑊 = 1.5 𝑘𝑃𝑎.  This group has the 

highest wind load and live to dead relationship. The objective of these plots is to show the 

differences in the reliability indices when the relationship of the 𝐿 and 𝐷 increased and lateral load 

(𝑊) increased from the previous cases.  

 

 

Fig. 4-8  Reliability Indices for a Wall with ℎ 𝑡⁄ = 10.5 (𝐿/𝐷 = 1.5,𝑊 = 1.5 𝑘𝑃𝑎) 
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Figure 4-8 shows the reliability indices for Group C, presenting more closer patterns to Groups B 

than to Group A.  The reliability of walls with low compressive strength is the highest, follows by 

the walls with compressive strength of 10 MPa and the lowest indices were presented by walls 

with compression strength of 13.3 MPa, reliability indices are higher when the compressive 

strength is low, and the reliability indices are low for high compressive strengths.  In both figures, 

the reliability shows a higher difference as the initial eccentricity increases.  

 

 

 Fig. 4-9  Reliability Indices for different slenderness ratios (𝐿/𝐷 = 1.5,𝑊 = 1.5 𝑘𝑃𝑎) 
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The results of walls with different slenderness in Fig. 4-9 show the same behaviour of the reliability 

indices of group A and B. As the slenderness ratio increases, the corresponding reliability indices 

also increase.  These results align more closely with Group B, where the pattern shows an increase 

in reliability indices with the increasing slenderness ratio of the walls. However, it is noteworthy 

that there are more variations in the reliability indices when the eccentricities are large. 

 

4.6.1. Effect of the slenderness on the reliability ratio (𝜷)  

For the analyzed walls, in Group A, the levels of safety for walls with low slenderness (ℎ 𝑡⁄ =

10.5) have reliability indices around 3.3-3.8, while for walls with high slenderness (ℎ 𝑡⁄ = 31.6) 

the reliability indices are around of 3.4-4.4.  It was also observed that the reliability indices 

remained almost constants with varying the initial eccentricity.  

Same pattern was observed with Group B and C.  Where the highest slenderness ratio the highest 

reliability index.  One noted difference was that as the initial eccentricity increases, the difference 

between the reliability indices is higher.  

This increment in the reliability indices is also attributed to the uncertainties in the behaviour of 

slender walls.  

 

4.6.1. Effect of the loads on the reliability ratio (𝜷)  

The load increment in the lateral force due to wind and the combined relationship of live to dead 

loads (L⁄D) have been shown to be crucial in the calculation of the reliability indices. Even though 

the reliability indices maintain the same pattern, the safety levels increase with higher slenderness 

ratios.  Depending on the loads, the reliability indices could either remain constant through 

different eccentricities or change, with the most significant differences occurring for eccentricities 

around 3t and the smallest differences when the eccentricity is 0.1-0.5t. 

Another observation is that, as the loads with more variation increase, for example the results of 

Group C where the value of the live load is 𝐿 = 1.5𝐷, and 𝑊𝑖𝑛𝑑 = 1.5 𝑘𝑃𝑎, the reliability indices 

decrease, this is due to the increment in the uncertainties of the loads.  
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These results suggests that a calibration of the material reduction factors in the S304-14 masonry 

standard may be warranted when the slenderness is high, as the associated values of 𝛽 for this case 

exceed those recommended in S408.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter provides a summary, conclusion, and recommendations for the analysis of the 

reliability levels in masonry walls based on loads, slenderness ratio, and cross-section properties. 

 

5.1. Summary 

The objective was to calculate the reliability levels of slender concrete block masonry walls.  These 

levels were achieved by the following: 

▪ A limit state function for non-slender and slender masonry walls was proposed and used in 

this research.  It captures the behaviour of walls with more realistic loading conditions, 

such as exterior slender walls in gymnasiums or warehouses.  

▪ For the cross-section properties, two levels of reinforcement ratios were proposed, the 

minimum recommended by the masonry standard CSA S304-14 for reinforced walls, but 

also considering the properties of the section. The second level is close to the balance 

reinforcement ratio and it is the maximum for walls with slenderness ratios ℎ/𝑡 greater 

than 30. 

▪ The studied eccentricities ranged from the minimum of 0.1t specified in the standard up to 

3t, this based on typical eccentricities of building in the masonry industry. 

▪ Three groups of masonry walls varying in cross-section properties and load relationships 

were analyzed.  

Group A: L/D = 1.0, and Wind =1.20kPa 

Group B: L/D = 1.5, and Wind =1.00kPa 

Group C: L/D=1.50, and Wind =1.50kPa 

 

The load combination studied in this research was dead plus live plus wind load, because 

this combination was not explored before, but the same limit state function can be used to 

expand the analysis. 
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5.2. Conclusions 

Conclusions in this section are based on the analysis of walls described previously. 

▪ For walls with low slenderness ratios in Group A, the reliability indices appear to be nearly 

constant over a wide range of load eccentricities at the top of the wall.  In these types of 

walls, the slenderness effects are not significant, and the calculated reliability indices are 

similar to those found in studies of non-slender walls. 

▪ The reliability indices are sensitive to the slenderness ratio.  The reliability index increases 

as the slenderness ratio increases, which means that safety levels for slender walls designed 

as per S304-14 are higher than those corresponding to short walls.  This is because slender 

walls are designed with lower axial loads and moments than their more robust counterparts.  

This is also attributed to the uncertainties in the behaviour of slender walls. 

▪ Designs using the minimum amount of reinforcing steel, and low compressive strength of 

masonry have slightly larger reliability levels than those walls using higher compressive 

strength and reinforcement ratio in slender walls. A higher reliability level is associated 

with less uncertainty in the material properties. The behaviour of the masonry walls 

analyzed in this study was largely controlled by the compressive strength of the masonry, 

since there is more variation in the statistical data in the compressive strength of masonry 

than in the statistical information of the reinforcement steel. Consequently, higher masonry 

compressive strength is accompanied by more uncertainty and therefore less reliability. 

▪ As the loads with more variation increase, the reliability indices decrease, this is due to the 

increment in the uncertainties of the loads. 

▪ The design reduction factors should be evaluated in detail for a more consistent design 

between slender and non-slender walls.  This evaluation could also work to propose levels 

of reliability closer to the target reliability indices recommended by the standards.  

▪ The presented limit state function was used with the combination of dead plus live plus 

wind load, but it is not limited to that combination, it can be used for all type of 

combinations, since the limit state function is able to capture the second-order effects due 

to slenderness.  
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5.3. Recommendations and Future Research 

This research was focus on the calculation of the safety levels of the slender masonry walls, and 

the recommendations of the masonry design standard CSA S304-14 were assumed as correct.  

Future research should consider different base boundary conditions and explore the levels of safety 

of slender masonry walls.  The same limit state can be used, but the calculation of the capacity 

could include different boundary conditions.  

With the advancement in the testing field of this type of walls, the statistical properties could be 

updated, and the same procedure could be used, but with more recent information.  

This study could also be extended even to interior walls, since the standards nowadays have been 

recommended the design of this type of walls under lateral loads.  

A reliability study on walls with slenderness ratio > 30, even when they do not comply with the 

standard requirements, to observe the safety levels and overdesign conditions.  

Due to the variation in the reliability indices, a calibration on the reduction factor for the 

compressive strength of the masonry (𝜙𝑚) and the reduction factor for the yield strength (𝜙𝑠)  is 

recommended.  Some variable factors depending on the mode of failure could be proposed, similar 

to the factor for the compressive strength in concrete (ACI 3018).  
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Appendix A 

The calculation of a P-M interaction diagram according to the CSA S304-14 is presented.   

  

Initial data:

fy = 400 MPa 

t = 190 mm

d = 95 mm

b = 1000 mm

Ae = 190000 mm2

As  = 500 mm2

f'm = 13.5

Es = 200000 MPa 

m = 0.6

s  = 0.85

1 = 0.8

a) Axial load alone (Mr=0) (No tied)

Pr = 1046520

b) Balance case 

c = 57 mm

= 45.6 mm

Cm = 313956 N

Tr = 170000 N  

Then

Prb = 143956 N   = 143.956 kN

Mrb = 22667623 N mm    = 22.668 kN m

and the eccentricity for the balanced case is 

= 157.5 mm

𝑃𝑟 = 0.8 𝜙𝑚 0.85𝑓𝑚
′ 𝐴𝑒

𝑐 =
300𝑡

𝑓𝑦 + 600

𝑎 = 𝛽1𝑐

𝐶𝑚 = 0.85𝜙𝑚𝑓𝑚
′ 𝑏𝑎

𝑇𝑟 = 𝜙𝑠𝐴𝑠𝑓𝑦

𝑃𝑟𝑏 = 𝐶𝑚 −𝑇𝑟

𝑀𝑟𝑏 = 𝐶𝑚
𝑡

2
−
𝑎

2

𝑒𝑏 =
𝑀𝑟𝑏
𝑃𝑟𝑏

c) Bending alone   (Pr = 0)

= 0.00972

0.002

= 0.005263 ok!

= 6885 a   N

Tr = 170000 N  

from     Cm = Tr

a = 24.7 mm

c = 30.9 mm

Mr = 14051235 N mm   = 14.051 kN m

d) More points

c = 140 mm

= 112 mm

Cm = 771120 N

Tr = 170000 N  

Then

Prb = 601120 N   = 601.120 kN

Mrb = 30073680 N mm    = 30.074 kN m

𝜌𝑚𝑎𝑥 = 0.2448 𝑓𝑚
′ 340⁄

𝜌𝑚𝑖𝑛 =

𝜌 = 𝐴𝑠 𝑏𝑑⁄

𝐶𝑚 = 0.85𝜙𝑚𝑓𝑚
′ 𝑏𝑎

𝑇𝑟 = 𝜙𝑠𝐴𝑠𝑓𝑦

𝑀𝑟 = 𝑇𝑟 𝑑 −
𝑎

2

𝑎 = 𝛽1𝑐

𝐶𝑚 = 0.85𝜙𝑚𝑓𝑚
′ 𝑏𝑎

𝑇𝑟 = 𝜙𝑠𝐴𝑠𝑓𝑦

𝑃𝑟𝑏 = 𝐶𝑚 −𝑇𝑟

𝑀𝑟𝑏 = 𝐶𝑚
𝑡

2
−
𝑎

2
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Fig.  A-1.  P-M Interaction Diagram 
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Appendix B 

 

In this appendix the calculation of the reliability index of a non-slender and slender wall is 

presented. In the first example, the reliability index 𝛽 for a non-slender wall using the two limit 

state functions is presented.  In the example two, the reliability index for a slender wall is shown. 

Example 1.  Non-Slender Wall - Detailed Calculation 

Fixed Eccentricity Limit State  

The selected wall was proposed by Moosavi et al. (2017), it is a fully grouted masonry wall with 

290 mm of thickness, compressive strength 𝑓𝑚𝑛 = 17 𝑀𝑃𝑎, under dead plus live load with a ratio 

of  𝐿𝐿𝑛 𝐷𝐿𝑛⁄ = 1, and an initial eccentricity of 𝑒𝑖 = 0.5𝑡.  The location of the reinforcement bars 

is considered at the centre of the section (𝑑𝑛 = 𝑡𝑛 2⁄ ) with a ratio of reinforcement of 𝜌 = 0.0025, 

and the yield strength of the reinforcement is 𝑓𝑦𝑛 = 400 𝑀𝑃𝑎.   

The case under study is when the initial eccentricity is equal to 50% of the thickness of the wall 

(𝑒𝑖 = 0.5𝑡).  The fixed eccentricity limit state function is shown in Fig. B-1 where (𝑅) is the 

resistance of the cross-section, 𝑆𝑑 are the maximum design loads which are equaled to the design 

resistance of the section 𝑅𝑑 and from that point, using the Eq. B-1 the nominal loads are deduced.  

By knowing the nominal and using the statistical properties of the loads, the probabilistic value for 

the load is calculated (𝑆).  

𝑆𝑑 = 1.25𝐷𝐿𝑛 + 1.50𝐿𝐿𝑛 (B-1) 
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Fig. B-1  Fixed Eccentricity Limit State Function  

The reliability index is calculated using the First Order Reliability Method (FORM) and the limit 

state function shown in Eq. B-2 

𝐺(𝑿) = 𝑅(𝑿) − 𝑆(𝑿) = √𝑀𝑟
2 + 𝑃𝑟

2 −√(𝑀𝐷𝐿 +𝑀𝐿𝐿)
2 + (𝑃𝐷𝐿 + 𝑃𝐿𝐿)

2 (B-2) 

Using the statistical properties shown in Table 1 and 3 for the random variables, a workmanship 

as was recommended by Moosavi et al. (2017) with 0.85 mean and 0.15 COV, and a rate of loading 

equal to 0.88, then 

𝛽𝑓𝑒 = 3.36  
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Fixed Axial Load Limit State Function  

The first step in the currently proposed method is the load simulations.  In this example, the dead 

load (D) has a normal distribution, and the live load (L) is considered with its maximum probability 

of occurrence with a Gumbel distribution.  Based on their probability distributions and the Monte 

Carlo method, a N number of simulations are generated and shown in the histogram of Fig. B-2 

and B-3. 

 

Fig. B-2  Dead Load (Normal Distribution) 

 

 

Fig. B-3  Live Load (Gumbel Distribution) 
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From the axial loads, the moments due to dead and live load are calculated for the initial 

eccentricity of this example (𝑒𝑖 = 0.5𝑡) as 𝑀 = 𝑃𝑒𝑖 for each of the simulated axial loads.  In Fig. 

B-3, the loads (𝑀,𝑃) represent the sum of dead plus live load for the moment and axial load 

respectively.  The simulated loads are also affected by the rate of loading (𝜌𝑟). 

 

Fig. B-4  Simulated Loads (𝑴,𝑷) 

For each simulated axial load (𝑃) the resistance axial load and moment are calculated by the stress-

strain compatibility as shown in Fig. 3-1 and by the Eq. B-3 to B-7 

𝑃_𝑥 = 𝐶𝑚_𝑥 − 𝑇𝑠_𝑥 (B-3) 

𝐶𝑚_𝑥 = 𝜙𝑚0.85𝑓𝑚_𝑥𝑏𝛽1𝑐_𝑥 (B-4) 

𝑇𝑠_𝑥 = 𝜙𝑠𝐴𝑠𝑓𝑦_𝑥 (B-5) 

𝑎_𝑥 = 𝛽1𝑐_𝑥 (B-6) 

𝑀𝑛_𝑥 = 𝐶𝑚_𝑥 (
𝑡_𝑥
2
−
𝑎_𝑥
2
) (B-7) 

where the 𝑥 represents one simulated value of a random variable.  In the calculation of the 

probability of the resistance moment (𝑀𝑛) the material factors are taken as one (𝜙𝑚 = 𝜙𝑠 = 1), 

because the uncertainty is taken by the statistical properties of the random variables. 
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Additionally, to the axial load (𝑃), the thickness of the block (𝑡), the location of the steel (𝑑), the 

compressive strength (𝑓𝑚), and the yield strength of the steel (𝑓𝑦) are also simulated by the Monte 

Carlo method and show them from Fig. B-5 to B-8. 

 

Fig. B-5  Compressive Strength (Gumbel Distribution) 

 

Fig. B-6  Yield Strength (Normal Distribution) 
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Fig. B-7  Block Thickness (Normal Distribution) 

 

Fig. B-8  Location of the Steel (Normal Distribution) 

Using Eqs. B-3 to B-7 and the simulated values, the resistance moment is calculated (𝑀𝑛) and is 

shown in Fig. B-9.  As it was mentioned in the methodology section, the compressive strength is 

also affected by the workmanship factor (𝜌𝑤).  

 

Fig. B-9  Section Resistance (𝑴𝒓, 𝑷𝒓) 

Fig. B-10 shows the loads and resistance of the wall under analysis 
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Fig. B-10  Simulated Load and Resistance 

Using the proposed limit state (Eq. B-6), and the Crude Monte Carlo method  

𝐺(𝑋) = 𝑀𝑛(𝑿, 𝑃) − 𝑀𝑡(𝑿, 𝑃) (B-8) 

The probability of failure can be estimated as  

𝑝𝑓 =
number of failures (𝐺(𝑋) < 0)

total number of simulations (𝑁)
= 0.0004 

(B-9) 

and the reliability index 

𝛽 = −Φ−1(𝑝𝑓) = 3.35  
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Example 2.  Slender Wall - Detailed Calculation 

The first step for the reliability analysis is the simulation of the loads using the Monte Carlo method 

and the statistical properties of the Table 3-3.  A normal probability distribution is used for the 

dead load.  

 

Fig. B-10  Dead Load (Normal Distribution) 

In this problem, the Turkstra’s rule is used, and the studied combination considers the live load as 

point-in-time load with a Weibull probability distribution. 

 

Fig. B-11  Live Load (Weilbull Distribution) 
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Fig. B-12  Wind Load (Gumbel Distribution) 

The primary moment due to dead, live, and wind loads are calculated for each of the simulated 

values at the centre of the section with Eq. C-9,  

𝑀1_𝑥 =
𝑃𝐷𝐿_𝑥𝑒𝑖
2

+
𝑃𝐿𝐿_𝑥𝑒𝑖
2

+
𝑊_𝑥ℎ

2

8
 

(C-9) 

the primary moment (M1) is shown in Fig. B-13. 

 

Fig. B-13  Simulated Primary Moment 
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The total or secondary moment (𝑀𝑡) is calculated using the moment magnifier method for each 

simulation.  In this example the wall has a slenderness ratio over 30 (ℎ 𝑡⁄ > 30), then the total 

moment is calculated as  

𝑀𝑡 =
𝑊_𝑥ℎ

2

8
+ 𝑃_𝑥(𝑒𝑖 2⁄ ) + (𝑃𝑠𝑤 + 𝑃_𝑥)Δ𝑓_𝑥 (B-10) 

In Eq. B-10, 𝑊 is the uniform lateral wind on the wall, ℎ is the height of the wall, P is the axial 

load, 𝑒𝑖 is the initial eccentricity of 𝑃, 𝑃𝑠𝑤 is the tributary weight of the wall above of the design 

section, and Δ𝑓 is the lateral deflection of the wall at mid-height. 

 

Fig. B-14  Total Moment 

The resistance of the section is calculated for each of the simulated axial load by the use of stress-

strain compatibility and taking the material factors as one (𝜙𝑚 = 𝜙𝑠 = 1). 

The thickness of the block (𝑡), the location of the steel (𝑑), the compressive strength (𝑓𝑚), and the 

yield strength of the steel (𝑓𝑦) are also simulated by the Monte Carlo method. 
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Fig. B-15  Compressive Strength (Gumbel Distribution) 

 

Fig. B-16  Yield Strength (Normal Distribution) 

 

Fig. B-17  Block Thickness (Normal Distribution) 
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Fig. B-18  Location of the Steel (Normal Distribution) 

Using Eqs. B-1 to B-5 and the simulated values, the resistance moment is calculated and is shown 

in Fig. B-19.  To calculate the resistance of the section, the compressive strength is also affected 

by the workmanship factor and the rate of loading.  

 

Fig. B-19  Section Resistance (𝑴𝒏, 𝑷𝒏) 

Fig. B-20 shows a summary of the loads and resistance of the wall under analysis. 

0

50

100

150

200

250

300

350

400

450

85 90 95 100 105 110 115

F
re

q
u
e
n
c
y

Location of the Steel (d)

0

500

1000

1500

2000

0 10 20 30 40 50

A
x
ia

l 
L

o
ad

  
 (

k
N

)

Moment   (kN-m)

𝑅 𝑀𝑛, 𝑃𝑛
(Resistance)



 

   

85 

 

 

Fig. B-20  Loads and Resistance of the Wall 

Using the proposed limit state (Eq. B-11), and the Crude Monte Carlo method  

𝐺(𝑋) = 𝑀𝑛(𝑿, 𝑃) − 𝑀𝑡(𝑿, 𝑃) (B-11) 

The probability of failure can be estimated as  

𝑝𝑓 =
number of failures (𝐺(𝑋) < 0)

total number of simulations (𝑁)
= 0.000022 

(B-12) 

and the reliability index 

𝜷 = −𝚽−𝟏(𝒑𝒇) = 𝟒. 𝟎𝟗 (B-13) 

 

This Crude Monte Carlo reliability method and the limit state function presented in this example 

were chosen to perform the analyses in this research.  
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During the development of this research an alternate method was also proposed and explored. This 

method is a combination of Monte Carlos simulations and the method of Cornell (1969).  The same 

example 2 is used to present this method as a reference.  

 

After the simulations in Fig. B-20, the distribution of the resultant moment of the loads and 

resistance moment can be observed in a histogram type plot in Fig. B-21 

 

Fig. B-21  Distribution of Loads and Resistance of the Wall 

 

The limit state of the Eq. B-11 for the calculation of the reliability index, can be simplified by 

using only two random variables: the total moment (𝑀𝑡) that is the result of the loads on the wall 

considering the second order effects, and the resistance moment (𝑀𝑛).   

The two simplified variables are used in the method of Cornell to calculate the reliability index 

(𝛽) as shown in Eq. B-14 

𝛽 =
𝜆𝑅 − 𝜆𝑆

√𝜁𝑅
2 − 2𝜌ln 𝑅,𝑆𝜁𝑅𝜁𝑆 + 𝜎𝜁𝑆

2

 
(B-14) 

 

The Eq. B-14 uses two variables with Lognormal distributions and takes into account the 

correlation between the resultant two random variables. 
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To verify the distribution of the loads and resistance the Kolmogorov-Smirnov (K-S) goodness-

of-fit test is used.  In this test the simulated cumulative frequency is compared to the cumulative 

density function (CDF) of the assumed theoretical distribution.  

 

Fig. B-22  Distribution of the Total Moment 

 

Fig. B-23  Distribution of the Resistance Moment 

 

This test was proven for a significance level of 1%, and it was found that the distributions matched 

a theoretical lognormal distribution.  

The correlation coefficient (𝜌) between the resistance and the load for lognormal probabilities 

distributions is given by the Eq. B-15 
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𝜌ln 𝑅,𝑆 =
𝐶𝑜𝑣[𝑅, 𝑆]

𝜁𝑅𝜁𝑆
 (B-15) 

 

Finally, the reliability index (𝛽) is calculated using the method of Cornell for lognormal 

distributions and by considering the correlation between the resistance and the loads (Eq. B-16) 

𝜷 =
𝝀𝑹 − 𝝀𝑺

√𝜻𝑹
𝟐 − 𝟐𝝆𝐥𝐧𝑹,𝑺𝜻𝑹𝜻𝑺 + 𝜻𝑺

𝟐

= 𝟒. 𝟎𝟗 
(B-16) 
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Appendix C 

 

MATLAB Code 

% Moment Magnifier Method  
clear, clc 
tic 
Input - Materials, Geometry & Loads 
% Wall Properties (mm) 
    H=2000;  
    t=190.0; 
    d=t/2; 
    tf=38; 
% Masonry 
    fm= 13.50  ; 
    Em=850*fm ; 
    Epsm=0.003; 
% Steel 
    fy=400.0; 
    Es=200000; 
    Epss=0.002; 
% Steel Reinforcement & Width  
    Space = 600.0 ;        % Reinforcement space 
    as = 200.0 ;           % Total Area of the bars 
% Loads 
    PDL = 74.60 ;  % Dead Load (kN) 
    PLL = 1.50*PDL   ;  % Live Load (kN) 
    WL =  1.0 ;  % Wind Load (kN/m2=kPa) 
    PSL = 0.00 ;  % Snow Load (kN) 
     
    e = 1.0*t ;   % mm            % Initial Eccentricity    
Loads & Eccentricity  
% Effective width     
beff1 = min(4*t,Space); 
beff=beff1*(1000/Space)       
 
% Effective Are of Steel 
    Aseff=(1000/Space)*as 
% Psfender ratio     
    Psfender_ratio = H/t 
 
Ae=beff*t;         % Fully grouted 
Io=beff*t^3/12; 
Se= Io/d; 
ek=Se/Ae; 
 
 % Self-weigth 
     Db=2100; % Density block 
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     Solid=0.56; % 56% 
     Block=Solid*(t/1000)*(beff/1000)*Db*9.81/1000; % kN/m2 
     Dg=2350; % Desnity grout 
     Grout=(1-Solid)*(t/1000)*(beff/1000)*Dg*9.81/1000; % kN/m2 
 SW=1; 
 if SW == 1 
    Psw= (Block+Grout)*(H/2/1000);  
 else 
     Psw=0; 
 end 
 Psw  
 
% LOOP          
    cont = 0; 
for COMB = 5 % 1: 1 :9 ; % Combinations 
    cont = cont + 1; 
% Nominal 
% FD = 1; FL=1; FW=1; 
% Combinations 
% COMB=5; 
% FD = 1.40; FL=0.0; FW=0.0;    % Combination 1 
% FD = 1.25; FL=1.5; FW=0.0;    % Combination 2 
% FD = 1.25; FL=0.0; FW=1.4;    % Combination 3 
% FD = 1.25; FL=1.5; FW=0.4;    % Combination 4 
% FD = 1.25; FL=0.5; FW=1.4;    % Combination 5 
% FD = 0.90; FL=1.5; FW=0.0;    % Combination 6 
% FD = 0.90; FL=0.0; FW=1.4;    % Combination 7 
% FD = 0.90; FL=1.5; FW=0.4;    % Combination 8 
% FD = 0.90; FL=0.5; FW=1.4;    % Combination 9 
FD = [1.4; 1.25; 1.25; 1.25; 1.25; 0.9; 0.9; 0.9; 0.9; 1.0]; 
FL = [0.0; 1.50; 0.00; 1.50; 0.50; 1.5; 0.0; 1.5; 0.5; 1.0]; 
FW = [0.0; 0.00; 1.40; 0.40; 1.40; 0.0; 1.4; 0.4; 1.4; 1.0]; 
FD=FD(COMB); 
FL=FL(COMB); 
FW=FW(COMB); 
 
 Pdf = PDL * FD ;                % Dead Load (kN) 
    Pswf = Psw*FD; 
 Plf = PLL * FL ;                % Live Load (kN) 
 Wlf = WL * FW ;                 % Wind Load (kN/m2=kPa) 
 Psf = PSL ;                     % Snow Load (kN) 
 
% Combinations 
if Wlf ~= 0 
    Mdl = Pdf*e/1000/2; 
    Mll= Plf*e/1000/2; 
else 
    Mdl = Pdf*e/1000; 
    Mll = Plf*e/1000; 
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end 
Mdl 
Mll 
MWlf=Wlf*(H/1000)^2/8 
 
Pu=Pdf+Pswf+Plf+Psf ;   % kN/m        Total axial load 
 
M1=Mdl+Mll+MWlf  ;       % kN-m/m      Just with axial load  
 
 Bd=Mdl/M1      ;       % MDL/M1 ==> *** Review this for more combinations   
%Bd=Mdl/20.72899 
 
Cm=1;                   % Single curvature 
k=1; 
n=Es/Em; 
  
Slenderness limits (EI)eff 
ec=(M1/Pu)*1000            % e_current 
 
% kd^2*(b/2)=n*Aseff*(d-kd); 
kd=max(roots([beff/2 (n*Aseff) (-n*Aseff*d)])); 
Icr=n*Aseff*(d-kd)^2+((beff*kd^3)/3); 
EIcr=Em*Icr; 
Im=(0.25*Io-(0.25*Io-Icr)*((ec-ek)/(2*ek))); 
EI=Em*Im; 
EIom=0.25*Em*Io; 
 
% if EI <= Em*Icr 
%     EIeff=Em*Icr; 
% elseif EI <= 0.25*Em*Io 
%         EIeff=EI; 
%     else 
%         EIeff=0.25*Em*Io; 
% end 
% EIeff 
 
    if EIcr <= EI ; 
     EIeff1 = EI ;   
    else 
     EIeff1 = EIcr  ; 
    end 
     EIeff1 ; 
    
    if EIeff1 <= EIom 
     EIeff = EIeff1 ;   
    else 
     EIeff = EIom ; 
    end    
     EIeff ; 
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Phier=0.75; 
Pcr=(pi()^2*Phier*EIeff)/((1+0.5*Bd)*(k*H)^2)*(1/1000); 
 
Pu  
M1  
Bd  
Pcr 
Mtl30=M1*(Cm/(1-(Pu/Pcr))) 
 
% For walls with h/t > 30 
Disp0 = (5*Wlf*H^4)/(384*EIeff)+(Pu*1000*e*H^2)/(16*EIeff); 
 
Mth30=M1+(Pu*(Disp0/1000)*1/(1-(Pu/Pcr))) 
 
if H/t < 30 
    Mt=M1*(Cm/(1-(Pu/Pcr))); 
else  
    Mt=M1+(Pu*(Disp0/1000)*1/(1-(Pu/Pcr))); 
end 
Mt 
 
%% Design of the wall 
As=Aseff; 
Phim=0.6 ;        % 0.6 
Xi=1; 
Phis=0.85 ;        % 0.85 
B1=0.8; 
 
% Maximum axial load 
Pmax= 0.8*(Phim*(0.85*fm)*(beff*t))/1000; 
Prmax= (0.85*fm)*(beff*t)/1000; 
 
%------------------------ 
c= 0; 
Pr=0; 
 while Pr<=Pu              
     c=c+0.001   ; 
     a=B1*c;  
         
        % Resistant moment, if Pf=Pr 
        % B1c=((Pu*1000)+(Phis*As*fy))/(Phim*Xi*0.85*fm*beff) 
        
        Cm=Phim*Xi*0.85*fm*beff*a ; 
         
        Epssr=((d-(a/B1))/(a/B1))*Epsm ; 
        fs=Es*Epssr; 
          
            if fs < 0 
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                fs=0; 
            end 
             
            if fy > fs 
                fy = fs; 
            elseif fy <= fs  
                fy = fy; 
            end 
            fy; 
         
        Ts=Phis*As*fy;  
        Pr=(Cm-Ts)/1000; 
 
 end     
c ; 
Pr 
Mr=Cm*(t/2-(a)/2)*(1/1000000) 
 
error = (1-Pr/Pu)*100 
%----------------------- 
  
% Ratio Mt/Mr 
Ratio = Mt/Mr 
if Ratio <= 1 
    Design = 'Good' 
else 
    Design = 'Fail' 
end 
 
Summary (cont,:) = [COMB Pu M1 Bd Pcr Mt fm Aseff Mr c Ratio] ; 
 
end 
 
Summary 
 
toc 
=============================================================================
============================================================================= 
close all; clear all; clc; format long 
disp(datetime) 
disp(mfilename) 
tic 
%%        Input 
N = 100000 ; % Number of Monte Carlo Simulations 
% Materials (MPa,mm) 
fmn= 13.5 ; 
fyn= 400.0; 
% Geometry 
tn= 190.0; 
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dn=tn/2 ; 
 
tf=38; 
H=4000; 
% Steel Reinforcement  
    Space=600.0 ;          % Reinforcement space 
    as=300.0 ;             % Total Area of the bars 
 
% Loads (N,mm) 
 ei=0.30*tn ; 
  
PDn= 147.690 ; % Dead (kN) 
%MDn=PDn*ec ; 
% MDn=PDn*ec/2 ;  % Slender 
PLn= 1.50*PDn ;  % Live 
%MLn=PLn*ec ; 
% MLn=PLn*ec/2 ; % Slender 
 
% Rate-of-Loading factor 
% DL+LL = 0.88, DL+SL=0.94, DL+WL=0.94 
r_rate=0.94 ; 
 
MWn= 1.5 ; % kPa Slender 
 
% Considering the Second Order Effects (Yes=1, No=2) 
    SOEf = 1 ; 
 
% Considering Selfweigth (Yes=1, No=2) 
    SW = 1 ;    
    
% Mean & Standard deviation 
mufm=1.60*fmn;     % Gumbel 
sigfm=0.236*mufm; 
mufy=1.14*fyn ;    % Normal 
sigfy=0.07*mufy; 
mut=tn ;           % Normal 
sigt=0.01*mut; 
mud=dn ;           % Normal 
sigd=4 ; 
ws= 1.0 ; % Normal ==> Workmanship factor (Hadi 0.85,0.15)  #####**** 
sigws=0.10*ws ; 
%    Bias*nominal 
muPD=1.05*PDn ;  % Normal 
sigPD=0.1*muPD ; 
% muMD=1.05*MDn ;  % Normal 
% sigMD=0.1*muMD ; 
 
%Turstra's Rule (Live(max)+W(pit) = 1, Live(pit)+W(max) = 2) 
TR = 2 ; 
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fprintf '\n' 
disp(['Number of realizations (N) = ' num2str(N)]) 
fprintf '\n' 
disp(['Turkstra''s Rule(Live(max)+W(pit) = 1, Live(pit)+W(max) = 2)= ' 
num2str(TR)]) 
if TR==1; 
    % Live (Max) 
     muPL=0.9*PLn ;     % Gumbel 
     sigPL=0.17*muPL ; 
    % muML=0.9*MLn ;   % Gumbel 
    % sigML=0.17*muML ; 
      
     % Wind (Point-in-time) 
     muWL=0.156*MWn ;   % Weibull 
     sigWL=0.716*muWL ;      
else TR==2; 
    % Live (Point-in-time) 
    muPL=0.273*PLn ;   % Weibull 
    sigPL=0.674*muPL ; 
     
    % Wind (Max) 
    muWL=1.039*MWn ;   % Gumbel 
    sigWL=0.081*muWL ; 
end  
 
% Transformation to load effect 
leL=1.00 ; sigleL=0.206*leL ; % Normal 
leW=0.68 ; sigleW=0.220*leW ; % Log-normal 
 
%    z1=fm  z2=fy  z3=t  z4=d  z5=PD  z6=MD  z7=PL  z8=ML z9=WL  z10=ws  
%mu= [ mufm,  mufy,  mut,  mud,  muPD,  muMD,  muPL,  muML,  muWL,    ws, 
leL, leW]; % Means 
%sig=[sigfm, sigfy, sigt, sigd, sigPD, sigMD, sigPL, sigML, sigWL, sigws, 
sigleL, sigleW]; % Standard deviations   
% %    z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 
% Case=[1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 2]; 
 
%    z1=fm  z2=fy  z3=t  z4=d  z5=PD    z6=PL   z7=WL  z8=ws    z9   z10 
mu= [ mufm,  mufy,  mut,  mud,  muPD,   muPL,   muWL,   ws,     leL, leW]; % 
Means 
sig=[sigfm, sigfy, sigt, sigd, sigPD,  sigPL,  sigWL, sigws, sigleL, sigleW]; 
% Standard deviations   
%       z1=fm z2=fy z3=t z4=d z5=PD z6=PL z7=WL z8=ws z9  z10 
if TR ==1; 
    Case=[ 3,   1,    1,   1,   1,   3,    6,     1,   1,  2]; % 
Live(max)+W(pit) 
else TR==2; 



 

   

96 

 

    Case=[ 3,   1,    1,   1,   1,   6,    3,     1,   1,  2]; % 
Live(pil)+W(max) 
end 
 
  
 % 1 Normal 
 % 2 Log-normal 
 % 3 Gumbel 
 % 4 Exponetial 
 % 5 Uniform 
 % 6 Weilbull 
 
%% precomputations 
m=length(mu); 
u=randn(m,N);  
 
%% 
 
[z]=u_2_x(u,Case,mu,sig); 
 
fm=z(1,:); 
fy=z(2,:); 
t=z(3,:); 
d=z(4,:); 
ws=z(8,:); 
leL=z(9,:); 
leW=z(10,:); 
 
PD=z(5,:); 
%MD=z(6,:); 
PL=z(6,:); 
%ML=z(8,:); 
WL=z(7,:); 
 
%% Design with random variables  
 
PD ; 
PL=leL.*PL; 
WL=leW.*WL; 
 
 
% Wall Properties (mm) 
    H; % (Non Random variable)  
    t; 
    d; 
    tf; 
% Masonry 
    fm ; 
    Em=850*fm; 
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    Epsm=0.003; 
% Steel 
    fy; 
    Es=200000; 
    Epss=0.002; 
% Steel Reinforcement & Width  
    Space ;              % Reinforcement space 
    as ;                 % Total Area of the bars 
% Loads 
    PD  ;  % Dead Load (kN) 
    PL  ;  % Live Load (kN) 
    WL  ;  % Wind Load (kN/m2=kPa) 
    PSL = 0.00  ;  % Snow Load (kN) 
     
   e = ei ;    % mm            % Initial Eccentricity  
    
% Effective width     
beff1 = min(4*t,Space) ; 
beff=beff1*(1000/Space) ;     
 
% Effective Are of Steel 
    Aseff=(1000/Space)*as ; 
% Psfender ratio     
    Psfender_ratio = H./t ; 
 
Ae=beff.*t;         % Fully grouted 
Io=beff.*t.^3/12; 
Se= Io./(t/2); 
ek=Se./Ae; 
 
 % Self-weigth 
     Db=2100; % Density block 
     Solid=0.56; % 56% 
     Block=Solid.*(t/1000).*(beff/1000).*Db*9.81./1000; % kN/m2 
     Dg=2350; % Desnity grout 
     Grout=(1-Solid).*(t/1000).*(beff/1000).*Dg.*9.81./1000; % kN/m2 
  
 if SW == 1 
    Psw= (Block+Grout)*(H/2/1000);  
 else 
     Psw=0; 
 end 
 Psw ; 
 
  
 Pdf = PD ;                % Dead Load (kN) 
    Pswf = Psw ; 
 Plf = PL ;                % Live Load (kN) 
 Wlf = WL  ;                 % Wind Load (kN/m2=kPa) 



 

   

98 

 

 Psf = PSL ;                     % Snow Load (kN) 
 
% Combinations 
if Wlf ~= 0 
    Mdl = Pdf.*e/1000/2; 
    Mll= Plf.*e/1000/2; 
else 
    Mdl = Pdf.*e/1000; 
    Mll = Plf.*e/1000; 
end 
Mdl ; 
Mll ; 
MWlf=Wlf.*(H/1000).^2/8 ; 
 
Pu=Pdf+Pswf+Plf+Psf  ;  % kN/m        Total axial load 
 
M1=Mdl+Mll+MWlf  ;       % kN-m/m      Just with axial load  
 
 Bd=Mdl./M1      ;       % MDL/M1 ==> *** Review this for more combinations   
 
Cm=1;                   % Single curvature 
k=1; 
n=Es./Em ; 
  
 
 % Ok up to here 
  
    ec=(M1./Pu)*1000     ;       % e_current 
 
% kd^2*(b/2)=n*Aseff*(d-kd); 
%kd=max(roots([beff/2 (n.*Aseff) (-n.*Aseff.*d)])) 
    a=beff/2 ; 
    b=n.*Aseff ; 
    c=-n.*Aseff.*d ; 
    kd = (-b+sqrt(b.^2-4*a.*c))./(2*a) ; % x1 
    %x2 = (-b-sqrt(b.^2-4*a.*c))./(2*a) 
 
Icr = n.*Aseff.*(d-kd).^2+((beff.*kd.^3)./3); 
EIcr = Em.*Icr; 
Im=(0.25*Io-(0.25.*Io-Icr).*((ec-ek)./(2*ek))); 
EI = Em.*Im; 
EIom = 0.25*Em.*Io; 
 
for i=1:N ; 
    if EIcr(i) <= EI(i) ; 
     EIeff1(i) = EI(i) ;   
    else 
     EIeff1(i) = EIcr(i)  ; 
    end 
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     EIeff1 ; 
    
    if EIeff1(i) <= EIom(i) 
     EIeff(i) = EIeff1(i) ;   
    else 
     EIeff(i) = EIom(i) ; 
    end    
     EIeff ; 
end  
EIeff ; 
 
Phier=0.75; 
%Phier=1.0; 
Pcr=(pi()^2*Phier*EIeff)./((1+0.5*Bd).*(k.*H).^2).*(1/1000) ; 
 
 
Pu  ; 
M1  ; 
Bd  ; 
Pcr ; 
%Mt=M1.*(Cm./(1-(Pu./Pcr))) 
MMM=(Cm./(1-(Pu./Pcr))); 
 
for k=1:N; 
FA=(MMM(k)); 
    if FA > 0 
        FMMM(k)=FA; 
    else  
        FMMM(k)=1; 
    end 
end 
FMMM ; 
 
 
if SOEf==1 ; 
  Mt=M1.*FMMM  ;   
else SOEf==2 ; 
    Mt=M1  ; 
end 
 
 
% Mt=M1.*FMMM  ; 
 
  
Pn = Pu*1000 ; 
Mn = Mt*1e6 ;     
 
%% Calculation of Mr 
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As=Aseff; 
 
for k=1:N ; 
 
    fm(k)=ws(k)*fm(k)*r_rate; 
    Pu(k); 
     
    Phim= 1.0 ; % 0.6   % (*) 
    Phis= 1.0 ; % 0.85   % (*) 
     
    % Masonry Properties 
    euo = 0.014; 
    em = 0.003; 
 
    Epsm=em; 
     
    % Steel Properties 
    Xi = 1.0 ; 
    B1=0.8; 
     
    c= 0; 
    Pr=0; 
 while Pr<=Pu (k)              
        c=c+0.001   ; 
        a(k)=B1*c;      
        Cm(k)= Phim*Xi*0.85*fm(k).*beff(k).*a(k) ; 
        Epssr(k)=((d(k)-(a(k)/B1))/(a(k)/B1)).*Epsm ; 
        fs(k)=Es*Epssr(k); 
          
    if fs(k) < 0 
        fs(k)=0; 
    end 
     
    if fy(k) > fs(k) 
        fy(k) = fs(k); 
    elseif fy(k) <= fs (k)  
        fy(k) = fy(k); 
    end 
    fy(k); 
    Ts(k)=Phis*As*fy(k);  
    Pr (k)=(Cm(k)-Ts(k))/1000; 
 end     
% c  ; 
% a  ; 
% fy ; 
% Cm ; 
% Ts ; 
 
Pnr (k) = Pr (k) ; 
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Mr(k)=Cm(k).*(t(k)/2-a(k)/2) ; % *(1/1000000) 
 
error(k) = (1-Pr(k)./Pu(k))*100 ; % (%) 
 
end 
 
Pnr ; 
Mr ; 
 
%% Limit-State 
% Pn=(PD); 
% Mn=(MD+leW.*W); 
 
% if TR ==1; 
%     Mr = 31370.0*ws.*fm.*(0.5*t - 19.43); % Live(max)+W(pit) 
% else TR==2; 
%     Mr = 30120.0*ws.*fm.*(0.5*t - 18.65); % Live(pil)+W(max) 
% end 
 
% Rx=(Pnr.^2 + Mr.^2).^0.5; 
% Sx=(Pn.^2 + Mn.^2).^0.5; 
 
   Rx= Mr ; 
   Sx= Mn ; 
 
Gx= Rx - Sx ; 
 
%% Probability of Failure 
indicator = Gx <= 0; 
cov_mcs=sqrt(var(indicator)./N)./mean(indicator); 
pf_MCS = mean(indicator) ; 
B_MCS=(-norminv(mean(indicator))) ; 
fprintf '\n' 
disp(['Beta_MCS = ',num2str(B_MCS), '   pf_MCS = ',num2str(pf_MCS)]) 
% disp(['cov_MCS = ',num2str(cov_mcs)]) 
fprintf '\n' 
 
% Error estimation 
    pf=mean(indicator); 
    Error=sqrt((1-pf)/(N*pf))*200; 
    disp(['Error = ', num2str(Error) ]) 
    fprintf '\n' 
     
%% Cornell Index 
    Cornell_i=(mean(Rx)-mean(Sx))/(sqrt(std(Rx)^2+std(Sx)^2)); 
    disp(['Beta_Cornell = ', num2str(Cornell_i)]) 
    fprintf '\n' 
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%% Plot (Yes=1,No=2) 
PM = 1 ; 
if PM == 1 ; 
      
     load('PM_Diagram_Slender01.mat') 
    % plot(Mn/1e6,Pn/1000,'r.',Mr/1e6,Pr/1000,'b.',PMDUF(:,1),PMDUF(:,2),'b--
',PMDF(:,1),PMDF(:,2),'b') 
       
      %Pfixed=mean(Pn)*(ones(1,N)); 
      subplot(2,1,2) 
      histogram(Mr/1e6); 
      hold on 
      histogram(Mn/1e6); 
        xlabel('Moment   (kN/m)')  
        ylabel('Simulations (n)') 
      subplot(2,1,1) 
      %figure 
      
%plot(Mn/1e6,Pfixed/1000,'r.',Mr/1e6,Pfixed/1000,'b.',PMDUF(:,1),PMDUF(:,2),'
b--',PMDF(:,1),PMDF(:,2),'b') 
      plot(Mn/1e6,Pn/1000,'r.',Mr/1e6,Pnr,'b.',PMDUF(:,1),PMDUF(:,2),'b--
',PMDF(:,1),PMDF(:,2),'b') 
       
      % grid 
     xlabel('Moment   (kN/m)')  
     ylabel('Axial Load   (kN)')  
  
else PM == 2 ; 
     fprintf '   EXIT!!! \n' 
end; 
 
% X1=Mn/1e6;Y1=Pn/1000;  
% X2=Mr/1e6; Y2=Pr/1000;  
% X3=PMDUF(:,1); Y3=PMDUF(:,2);  
% X4=PMDF(:,1); Y4=PMDF(:,2); 
% createfigure(X1, Y1, X2, Y2, X3, Y3, X4, Y4) 
 
Summ=[Pnr; M1; t; ws; fm; fy; Mr]'; 
 
save('Betas010.txt','B_MCS','Cornell_i','-ascii') 
 
toc 

 


