
Nonlinear Control of Aerial Manipulators

by

Zifei Jiang

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Control Systems

Department of Electrical and Computer Engineering
University of Alberta

© Zifei Jiang, 2024



Abstract

With advancements in the autonomy and capabilities of Unmanned Aerial Ve-

hicles (UAVs), their potential for complex operations such as infrastructure inspec-

tion, maintenance, and transportation has significantly increased. This thesis delves

into innovative methods to enhance UAV autonomy, focusing on the motion control

and force control of specialized UAV configurations. The study primarily revolves

around the dynamics and control of slung load systems, the implementation of quasi-

static feedback linearizing control, immersion and invariance adaptive control for

fully-actuated aerial manipulation, and the application of reinforcement learning

for improved UAV performance.

One key area of this research is the intricate dynamics associated with slung

load systems in UAVs, which are integral for complex transportation and deploy-

ment operations. These systems demand precise control for managing the dynamics

of their cargo. The thesis introduces a quasi-static feedback linearizing algorithm,

universally applicable to differential flat systems. Based on this algorithm, quasi-

static feedback controllers for a slung load system are developed, making the slung

load system precisely linearized. The quasi-static feedback controller is adept at

managing both the outer-loop and the full system dynamics of the slung load sys-

tem. The controller’s effectiveness, robustness, and accuracy in trajectory tracking

are validated through extensive experiments in simulated and real-world scenarios,

significantly enhancing UAVs’ ability to handle heavy loads, a key aspect in diverse

operational settings. Additionally, the research contributes to the development of a

Maple-Matlab Software-In-The-Loop pipeline, streamlining the creation of nonlinear

UAV controllers.
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Another pivotal aspect of this thesis is the formulation and application of immer-

sion and invariance adaptive control in fully-actuated aerial manipulators. Fully-

actuated aerial manipulators, equipped with rigidly connected sticks, are becoming

vital in tasks that necessitate direct environmental interaction, such as mainte-

nance or disaster recovery. Integrating immersion and invariance adaptive control

with these aerial manipulators addresses the complexities of interacting with un-

predictable environments. The newly developed immersion and invariance adaptive

hybrid force-motion controller demonstrates global asymptotically stable results,

surpassing classical adaptive control theories by not requiring persistent excitation

conditions or linear parameterization assumptions. This innovative control strategy

ensures stable, robust, and efficient manipulation, unlocking new possibilities for

sophisticated and autonomous aerial manipulators.

Furthermore, the thesis explores the application of reinforcement learning to

enhance UAV autonomy. This segment focuses on developing learning algorithms

that enable UAVs to adapt to diverse environments and tasks autonomously. The

use of reinforcement learning allows UAVs to learn from their flight data, leading

to continuous improvement in performance and adaptability. The effectiveness of

these learning strategies is demonstrated through various simulations, showcasing

their potential in advancing UAV capabilities.

In summary, this thesis presents a comprehensive study on advancing UAV tech-

nology through the control of slung load systems, the application of quasi-static

feedback linearizing and immersion and invariance adaptive control for aerial ma-

nipulation, and the innovative use of reinforcement learning. These contributions

mark a significant step forward in the field of UAV technology, expanding their

applications in complex and dynamic environments.
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Chapter 1

Introduction

1.1 Background

The integration of robotics and artificial intelligence into our daily lives repre-

sents a significant paradigm shift in our interaction with technology. From the early

stages of digital technology, robotic systems have evolved to extend and enhance

human capabilities across a spectrum of tasks, whether complex, challenging, or

routine. These mobile robots, operating on land, underwater, or in the air, have

become indispensable tools, acting as our extended sensors and amplifiers of effi-

ciency. Their deployment has expanded our reach to remote locations on Earth and

beyond, as we imbue these systems with greater autonomy, enabling them to pro-

cess sensory information and execute tasks without direct human oversight. Robots

are increasingly working alongside or replacing humans in performing tasks such as

the inspection of critical infrastructure, characterized by increased efficiency, pre-

cision, repeatability, lower cost, and reduced environmental impact. As humans

and robots focus on tasks for which they are best suited, with humans excelling in

tasks requiring higher cognitive abilities and complex decision-making, the quality

of life improves. The current technology restricts so-called industrial robots, i.e.,

heavy, rigid, fixed-base manipulator arms, to structured environments, such as the

automotive sector, where they are used for high-volume assembly line tasks. These

arms follow preprogrammed trajectories in static, known environments and are not

designed to deviate from their tasks or adapt to environment change. However,

increasing pressures to improve sustainable economic growth require new capabil-

ities in mobile and arm robotics. Over the next decades, robotics will undergo a

transformation where machines leave the structured factory floor and operate co-

operatively and safely in day-to-day unstructured environments alongside humans.

This emerging class of service robots will work intelligently alongside humans, em-

ploying their sensors to carry out highly complex tasks in unanticipated situations.
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Experts agree that dominant growth in robotics will be in service robots, as ev-

idenced by the significant increase in the sale of professional service robots used

in non-domestic natural environments to assist humans, such as in inspection and

maintainance (I&M), package delivery and medical applications. The functioning

of society depends on the integrity of infrastructure, which must remain operational

24/7 and can be geographically widespread over rugged terrain, aging, or deteriorat-

ing due to a severe climate. Regular I&M are often mandated but can be inefficient,

costly, require downtime, and be dangerous when performed by manned crews.

In particular, rotary-wing unmanned aerial vehicle (UAV) have found diverse

applications in commercial and recreational activities. Equipped with cameras and

specialized sensors, UAVs are adept at surveilling areas for security monitoring and

structural inspection. In the realm of aerial transport and delivery, they represent

a burgeoning field, offering solutions to circumvent ground-level traffic congestion.

Moreover, they have captured the imagination of the public, with amateur pilots

navigating drones using first-person view (FPV) goggles along soaring mountain

ridges, extending their vision and experiencing exhilaration without physical risk.

As commercial UAVs’ advance, the focus of aerial robotics research is shifting from

tools for observation and navigation to more interactive roles involving aerial manip-

ulation. This transition towards extending autonomous mobile manipulation into

unrestricted workspaces has necessitated the development of fully actuated aerial

robots equipped with novel control methods, crucial for refining strategies for aerial

interaction and precise dynamic tracking of end effectors from a flying base.

The subsequent sections of the literature review delve into slung load system

(SLS), fully actuated aerial manipulatior (FA AM), and the application of reinforce-

ment learning (RL) to UAV motion control. The SLS, with its broad applications in

load transportation, construction, and search and rescue, exemplifies the practical

utility of these developments. The advancement of fully actuated and omnidirec-

tional UAVs aims to enhance the capabilities of conventional underactuated flying

systems, crucial for effective aerial manipulation. Aerial interaction with fully actu-

ated UAVs emerges as a recent research focus, presenting numerous opportunities

for advancing the control of aerial robots. Additionally, the application of RL to

the control of UAVs has gained traction in recent years, with the potential to over-

come the limitations of traditional control methods. UAVs have broader societal

implications of robotic integration, where robots are increasingly performing tasks

that are dull, dirty, or dangerous, thus improving efficiency, precision, and reducing

environmental impacts. This is not limited to structured environments like facto-

ries but extends to unstructured settings where service robots operate cooperatively

and safely alongside humans. The International Federation of Robotics notes a sig-

nificant rise in the sale of professional service robots, particularly for I&M tasks ,
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highlighting the growing reliance on robotics in maintainingt essential infrastructure.

1.2 Literature Review

1.2.1 Slung Load System

Recently, interest has increased in using drones for load transport. Developments

are summarized in [1]. A popular method of transport is a multirotor drone SLS, in

which a cable attached to the underside of the drone suspends the load. The ability

to maneuver the system and maintain a safe distance between the payload and the

vehicle are some of the obvious advantages of SLSs and has led to their use for

obstacle avoidance applications [2]. Also, SLSs are lightweight and do not require

powered computer control as with gripper-based solutions. Despite SLSs being a

desirable option for load transportation, creating a high-performance and rigorous

motion control system is difficult due to the underactuated nonlinear dynamics

involved. Much of the research on SLS motion focuses on developing new feedback

laws to ensure some form of tracking error stability is achieved. It should be also

noted that motion planning or open-loop control for SLS is another important area

of work, e.g., [2]–[4] optimize for obstacle avoidance. Both problems are important

to achieve high-performance motion control. It is interesting to note that a single

drone SLS can be generalized to a multiple drone SLS that can control the 6D pose

of a rigid body payload, e.g., [1], [5]–[7]. Drone SLSs are part of a larger recent

trend of “unmanned aerial manipulation” that focuses on aerial robots that interact

with their environment. In the case of the SLS, the “environment” is the payload.

See [1], [8], [9] for surveys on aerial manipulation. Figure 1.1 shows the SLS platform

built and tested by the author in Applied Nonlinear Control Lab (ANCL).

The concept of differential flatness was first presented in [10] and a survey of

results is in [11]. The so-called flat outputs differentially parameterize the input

and state. In other words, the state and input can be expressed in terms of the

time derivatives of the flat output. Open-loop motion planning frequently employs

this parameterization. The nonlinear SLS model has been proven flat in [3] under

common modelling assumptions. That paper uses flatness to perform motion plan-

ning and does not explicitly use flatness in the feedback design. Every flat system is

known to be linearizable by endogenous dynamic feedback [10] that is a type of dy-

namic state feedback where controller state and auxiliary input can be expressed as

a function of the system state, system input, and their time derivatives. Flatness is

preserved under this form of feedback [12]. Any endogenous dynamic feedback con-

troller can be transformed into a quasi-static feedback (QSF) [13]. The advantage

of QSF is that it achieves exact linearization without appending controller states to

the closed-loop, unlike dynamic state feedback. We exploit this static linearization
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Figure 1.1: ANCL (University of Alberta) SLS Platform.

property in the proposed design to ensure implementation is possible on common

autopilot hardware.

Recent theoretical work on flatness focuses on the open problem of deriving

complete necessary and sufficient conditions which can be used to construct a flat

output. Only partial results are available, and examples of recent work include [14]

where the system dynamics is taken to be flat after one-fold prolongation. Two-

input systems and endogenous dynamic feedback are considered in [15]. Another

line of work relating to flatness is more practically oriented. For example, flatness is

used for open-loop trajectory planning for drone swarms and wheeled mobile robots

in [16], [17], single quadrotors [18], [19], and the SLS [2], [3]. For traditional quadro-

tors, flatness-based feedback control is developed in [20], [21]. This work provides

convincing experimental results for aggressive trajectory tracking. Flatness-based

control provides high performance with low computation compared to model pre-

dictive controllers (MPC) [22]. For SLSs, although flatness was used for open-loop

trajectory planning [3], there is no previous work on using it for feedback control

to achieve linear tracking error dynamics. Furthermore, the SLS was proven flat in

[3] ignoring rotor drag and flapping, and our work [23] extends this result to prove

flatness with these forces present and directly compensates them with the QSF.

Since tracking error dynamics can be linearized, adopting flatness for closed-loop

control has the advantage of a simple and immediate stability result. This should

be compared to results such as [3], [24], [25] where stability analysis is complicated

by nonlinear multi-loop dynamics. We further elaborate on this difference in more

detail below.

Due to the practical and theoretical interest in SLS motion control, there have
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been a significant number of results on this topic. A standard nonlinear rigid-

body multirotor drone model coupled with pendulum dynamics, which describes the

suspended load, is the foundation of the majority of the work. Multi-loop designs are

common where the coupled translational drone/pendulum dynamics are controlled

at the outer loop. Using a reference from the outer loop, an inner loop regulates

the rotational degree of freedom (DoF) of the drone. This approach is in [3], [25]–

[27]. In particular, a 3-loop geometric control (GC) structure is proposed in [3],

[27] with the innermost loop tracking drone attitude. Load attitude and drone yaw

are controlled by the middle loop. The outer loop tracks load position. This work

proved the entire tracking error dynamics is almost globally exponentially attractive.

The nonlinear error dynamics achieve exponential stability in a difficult-to-describe

local region dependent on controller gain.

The nature of the exponential stability result of the proposed QSF design is

an important aspect of the thesis’s contribution, and to show this we contrast our

result with the GC [23]. A comparison with this work is logical, given that both

methods are nonlinear and track payload position and UAV yaw. We show the GC

is harder to tune and yields very complicated controller expressions that must be

approximated for implementation. Even assuming exact control law expressions are

available, the GC provides almost global exponential attractiveness, but only local

exponential stability on some hard-to-compute region of attraction. In comparison,

our result is exponential stable over a wide and precisely described subset of state

space where control law singularities do not occur. Simulation results show the

GC’s tuning challenges and sensitivity to unmodelled drag and flapping force and

constant disturbance.

Existing work on nonlinear control of SLS, which uses backstepping includes

[24], [28]–[30]. This work inherently performs design subsystems-at-a-time. Work

[30] uses a Lyapunov function-based motion control law for a bare multirotor with-

out pendulum. Backstepping is then used to derive the SLS control law. Only local

exponential stability is proven. Since the control law is specified in a general form,

the complexity and conditions for stability of the particular multirotor control law

used in simulation and experiments are difficult to determine. In [24], a backstepping

control is derived by dividing the SLS into 4 subsystems involving (1) translational

load variables, (2) load direction, (3) quadrotor attitude, and (4) quadrotor angular

velocity. A complex local asymptotic stability proof is required that includes con-

ditions on initial conditions and controller gain. A similar backstepping approach

is taken in [29] that includes adaptation to unknown payload mass. As in [24], the

stability result is local asymptotic, and the stability proof is relatively complicated.

The closed-loop backstepping design in [24] is used in [2] where the main focus is

aggressive open-loop trajectory generation. Here, flatness relations and constrained
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quadratic programming are used to minimize angular velocity actuation through the

fifth-order time derivative of load position. Similarly, load acceleration is designed

to satisfy load angle constraints. The convex optimization problem can be efficiently

solved. Another example of backstepping is in [31] where motion control for a bare

multirotor is used as the first step in the design. Independent of backstepping,

bare multirotor motion controllers which are robust to external disturbance, e.g.,

[32], [33], could potentially be used for SLS control where the pendulum acts as a

disturbance.

A standard nonlinear rigid-body multirotor drone model coupled with a single

rigid pendulum, which describes the suspended load, is the foundation for most

of the literature on nonlinear motion control. Our work models and compensates

parasitic rotor drag. This force arises from the difference in air velocity seen by the

advancing and retreating blades when the UAV has non-zero linear velocity [34].

The importance of compensating parasitic drag has been shown in recent work on

motion control for bare (i.e., no slung load attached) multirotors [21]. We can classify

the large body of work on feedback motion control as multi- or single-loop. Multi-

loop approaches divide the design into two or more loops or subsystems. The most

common is a two-loop structure where the coupled translational UAV/pendulum

dynamics are controlled in an outer-loop. This outer-loop feeds the inner-loop a

reference trajectory, and the inner-loop tracks the attitude error of the drone.

Examples of the multi-loop method are [3], [25]–[27], [35]. A nested control

law is presented in [35] where air resistance of the payload is accounted for. Here

three loops are designed: (1) an attitude control for the quadrotor, (2) a swing

angle control, and (3) a linear velocity controller for the payload. A lengthy local

exponential stability proof assumes zero desired load linear acceleration, which limits

the method to stabilization of payload velocity. Hence, for general time-varying

payload reference positions, tracking error of the payload position will not converge.

This limitation is also found in related work by the same authors [36], [37].

Another nested control result is in [25]. Here, the outer loop is partially feedback

linearized, whereas the inner loop is fully feedback linearized. The load angle is sta-

bilized due to the exponential regulation of drone position error. The disadvantage

of the approach is its inability to track time-varying load positions. Work [38] ex-

tends the geometric control in [3], [27] by considering a pendulum with offset. The

approach proposes a 3-loop controller which requires small quadrotor acceleration.

Examples of single-loop methods are [39], [40]. Here, the entire SLS dynamics

is compensated as a whole, translating to more complex control laws in general.

However, single-loop has the benefit of a complete stability result, which accounts

for interaction between subsystems often neglected in multi-loop designs.

Slung loads are simple, lightweight, passive, mechanical solutions for transport-
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ing a payload at a safe distance from the drone. The advantages of SLSs are that they

are based on almost stock drone platforms, they keep the payload at a distance to

reduce interference with thrust generation and provide improved safety during load-

ing/unloading. High maneuverability of the payload is another important benefit

which allows for package delivery in congested urban environments. The maneuver-

ability of the payload’s position (and full pose more generally for multi-drone SLS

[7]) is due to the additional degrees of freedom provided by suspending the pay-

load. However, reliably achieving complex maneuvers is challenging as it requires

a rigorous compensation of nonlinear and underactuated dynamics. A conventional

quadrotor has four inputs, and even a simplified rigid body SLS dynamics has eight

degrees of freedom with nonlinear coupling between the drone and payload subsys-

tems. Hence, it is unsurprising there is significant attention on developing nonlinear

closed-loop motion control for the SLS in the literature.

1.2.2 Fully-Actuated Aerial Manipulator

I&M is dangerous, mundane, and resource intensive when directly performed by

humans. Given their vast workspace, traditional UAVs have been proven useful for

such applications [41]. They improve efficiency (e.g., lower cost, time, inaccuracy)

by accessing difficult areas while removing humans from danger. Up until now

UAVs have been limited to passive operation where they “see” but cannot “touch”.

However, I&M requires contact and manipulation to perform testing, cleaning, or

sensor deployment. Hence, the second part of the thesis tackles the challenge of

expanding the multirotor UAV’s capability to an innovative new generation of so-

called fully actuated aerial manipulatior (FA AM) which can “push” and “feel” their

environment in a robust and accurate manner.

There are two typical design in AMs, fixed rotor design [42] and tiltrotor de-

sign [43]. A tiltrotor AM provides advantages over a fixed tilt AM for generating

a range of force vectors while maintaining hover efficiency. However, despite these

advantages, tiltrotor systems also come with drawbacks such as additional actua-

tion mass and system complexity, finite arm rotation due to cable windup, and not

encountered in a fixed rotor system. Therefore, morphology design is important to

ensure that the resulting platform meets performance requirements. These require-

ments are defined by tasks, e.g., point inspection, rolling inspection, aerial drawing

and grasping object.

There are general three design goals introduced [43]. Firstly, the system is full

actuated in any hover orientation. This increase the versatility of the platforms

to different and constraint environments. Secondly, the system is able to achieve

high force and torque capabilities in all directions. In addition to fully actuation,

increasing the max achievable force and torque is desired to perform tasks, e.g.,
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heavy load transport or inspections that required high contact force and torque.

Thirdly, high-efficiency hover in at least one orientation. The most obvious advan-

tage of AMs over ground robot arm is the maneuverability, where some objects are

only reachable by flying. However, the trade-off between capabilities and platform

complexity needs to be addressed carefully in practical platform design. Work [44]

optimized the ratio of the desired body force magnitude to the sum of the individual

rotor group thrust magnitudes. Work [45] provided a comprehensive discussion on

the design of FA AMs and provided advantages and disadvantages of each design.

For any kind of AM design, core aerial manipulation capability relies on a stable

force/motion control which does not require knowledge of a contact model. Environ-

ment uncertainty makes force control difficult compared to an already challenging

problem of free motion control in a structured space [46], [47]. New AM force

controls with rigourous stability results and precise conditions for robustness to

environmental uncertainty is essential to achieve force/motion control adaptive to

unknown environments.

Force control for fixed-based arm robotics has enjoyed significant attention for

about 5 decades [48]. Interestingly, most industrial robots do not provide force

control and rely on structured environments or passive compliance between the

robot and the environment. Two main frameworks for force control are: hybrid

force/position (thereafter “hybrid control”) and impedance control [48], [49]. The

AM-specific work is relatively sparse with the first papers appearing about 10 years

ago [50]. Most existing work suffers from limiting assumptions about the environ-

ment.

Hybrid control uses knowledge of motion constraints to decompose the workspace

into constrained and unconstrained directions. The method is favored in tasks where

accurate force control is needed since it uses feedback of estimated or measured

force (and position). In its ideal form, hybrid control assumptions include: the

end-effector remains in contact, friction is negligible, geometry and pose of the envi-

ronment is known, the robot model is ideal, and contact force is perfectly estimated

or measured. To deal with these restrictive assumptions, hybrid control has been

extended to robust and adaptive versions for fixed-based arms. For AMs, there has

been little work which removes the above assumptions [50]–[63]. Work in [64] pro-

posed a rudimentary hybrid control for a unit-direction-thrust· AM for point contact

on a planar surface with known orientation. A more advanced FA AM platform uses

hybrid force control for push-slide on planar surfaces [65]. However, these controllers

rely on most of the abovementioned assumptions and effectively assume a known

environment. An example of AM impedance control is in [42]. Force is indirectly

regulated without the added complexity of contact detection and controller switch-

ing which is required in hybrid control. However, the geometry of the environment
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must be integrated into the impedance model and reference position trajectory. As

well, as the method is indirect, force is not accurately controlled.

Recently, impedance and hybrid control are combined for a simple FA AM for

point contact [56]. The virtual mass of an impedance control is varied along a

single contact axis to provide compliance as required. This assumes the operator

has aligned the AM to the surface normal and the distance to contact is mea-

sured. Impedance control provides some robustness to environment uncertainty by

eliminating controller switching and contact detection, however, choosing a suitable

impedance model implicitly assumes knowledge of the position and geometry of the

surface. A direct force feedback is smoothly mixed with impedance control as a

function of distance in the contact axis. Although initial tests are encouraging,

a significant drawback is the implicit assumption about the environment (i.e., the

surface normal and position of surface is known, the vehicle model known, friction

neglected) which ultimately makes the approach difficult to use outside an academic

lab.

The problem of designing AM force control robust to useful a range of environ-

ment uncertainty is clearly an open problem. Hence, our approach takes a hybrid

force control framework which is adaptive to AM model uncertainty and environ-

ment geometry. Work [66] gave results on curved surface for fixed-base robots on

push-slide tasks where the methods of nonlinear adaptive control can be applied

assuming a general algebraic form for the surface. However, the adaptation law is

based on least square method, which relies on persistent excitation (PE) condition

and leads to complicated stability proof. As hyrbid methods can suffer from transi-

tion chattering, we adopt new methods of contact detection to switch between free

and contact controllers [67].

The last decade has shown that AM vehicle design (or morphology) is critical and

must match the manipulation task considered. Equally important is the accuracy

and robustness of the force/motion control and perception algorithms used. Early

work involves simple tasks and traditional uni-directional thrust (UDT) multirotors,

sometimes with a rudimentary arm mounted to the vehicle [68]. As the vehicle

is underactuated, even simple manipulation (e.g., point contact on a vertical wall

with a sustained practical level of force) is difficult given the limited lateral forces

UDT vehicles apply and that force is generated by rotating the vehicle. The latest

generation of AMs is fully actuated (i.e., can apply any 3D force and torque). Since 6

DoFs are independently controlled, a wide range of wrench can be stably generated.

Here, hexrotor fixed-tilt with non-collinear rotor axes [69], and multirotor variable-

tilt [70] designs are common. Fixed-tilt designs are popular as they can be created

from traditional off-the-shelf multirotors. However, energy efficiency is traded off

with lateral force [71] since internal force not compensating gravity is required to
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generate arbitrary wrench on the environment. On the other hand, variable-tilt AM

are difficult to engineer, heavier, and have finite tilt dynamics bandwidth, but create

no waste in wrench generation. Our research focus on force control of fixed-tilt fully

actuated platforms and derive a new adaptive controller with rigorous and clean

stability proof based on so called immersion and invariance (I&I) adaptive control

theory.

Our innovative adaptive hybrid control method for FA hexrotors builds upon the

extensive development of adaptive control theory, which began in the early 1950s

with the design of autopilots for high-performance aircraft. These aircraft required

sophisticated controllers to adapt to dynamic changes, leading to the development of

model reference adaptive control [72]. However, early efforts lacked stability proof,

causing issues in flight tests [73]. Advances in stability and control theory in the

1960s and 1970s, including breakthroughs in model reference adaptive control using

the Lyapunov design approach, significantly enhanced understanding and applica-

tion in adaptive control.

Recent adaptive control literature focuses on nonlinear dynamical systems with

parametric uncertainties, particularly feedback linearisable systems reliant on un-

known parameters, exemplified by adaptive control in robot arms [74]. The pre-

dominant method for these systems involves the certainty equivalence principle and

a parameter update law to transform a quadratic function of states and parameter

estimation errors into a Lyapunov function, ensuring global stability and bounded-

ness of closed-loop signals. This method removes parameter-dependent terms from

the Lyapunov function’s derivative. While the work in [74], [75] was foundational,

it overlooked environmental uncertainties, an aspect addressed in thesis.

Begin with [76], introduced the I&I control theory, emphasizing the concepts of

system immersion and manifold invariance. It highlights the method’s ability to

design stabilizing control laws without requiring a Lyapunov function, similar to

nonlinear regulator theory. Researchers expanded the I&I framework to various ap-

plications and began exploring its application in adaptive control as an alternative

to adaptive backstepping and sliding mode control [77]–[79]. This approach, differ-

ent from the classic adaptive method, does not require the linear parameterization

condition, nor does it invoke certainty equivalence. It also simplifies the stability

analysis by providing cross terms in the Lyapunov function [79]. In [80], an I&I

method is used to estimate the unknown mass of a VTOL vehicle, and it guarantees

that the estimation converges to its true value. In [81], to control a mini quadrotor

UAV and overcome the uncertainties related with the thrust and drag coefficients,

Fujimoto et al. simplified the dynamic model and developed an adaptive controller

via the I&I methodology. Work in [82] design a outerloop I&I adaptive controller

for quadrotor free motion. Apart from the control of UAV, I&I is also applied in
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visual servoing, aerospace control of pendulum on cart, and many other mecha-

tronic systems [83], [84]. Recent work [85] shows that I&I adaptive control can

achieve asymptotic stability without PE. Work [86] applied I&I to path following of

underactuated mechanical systems to achievable orbital stabilization.

1.2.3 Reinforcement Learning for UAV Motion Control

The problem of motion control for UAVs is a primary area of research which

continues to generate interest. A survey of the area is given in [47]. The inter-

est in motion control comes from a practical need for high performance trajectory

tracking which is robust to external force disturbances and changing dynamics. For

example, external disturbance forces arise in load transportation [87] or during non-

destructive contact inspection [9]. UAV dynamics can change when rotor thrust is

affected by nearby obstacles [88]. Other sources of challenge include underactuated

nonlinear vehicle dynamics [46], input bounds [89], noise/delay in measurements

and state estimates [90]–[92], and limited sensing with autonomous motion con-

trol, e.g., position tracking in GPS denied environments or motion control relative

to visual targets [93]. Much of the work on UAV motion control is traditionally

model-based and the design procedure relies on a physics-based dynamics. Tradi-

tionally, a control law has a fixed structure influenced by the model equations and

which has adjustable gains that affect the closed-loop performance. Tuning these

gains provides a practical implementation challenge. Although a rigourous state-

ment regarding convergence is typical in traditional control, it often holds under

ideal modelling assumptions. Such shortcomings of traditional methods has led to

interest in RL being applied to UAV motion control. RL has the advantage of re-

quiring less domain knowledge in that the design method can be applied to a generic

system. For example, the proposed method uses only simulation data to train the

control law or policy which maximizes an accumulated reward to minimize regula-

tion error. No particular controller structure is needed in advance other than it be a

static state feedback. As well, controller tuning is performed automatically during

training.

RL is concerned with how agents act within an environment in order to maxi-

mize a scalar cumulative reward which measures long term performance. RL enables

a robot to autonomously discover optimal behaviour through trial and error inter-

actions with its environment. Recent research has shown impressive performance

from so-called Deep RL, where “deep” relates to the use of neural nets (NNs) with

multiple layers. Deep RL has been shown to outperform human experts in com-

plex tasks. For example, playing Go [94], Atari games [95], and solving a Rubik’s

Cube [96]. These examples involve action and state spaces which are discrete. Al-

though RL has been used in robotics for decades, it has mainly been confined to the
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high-level decisions (e.g., trajectory planning [97]) rather than control of low-level

actuators. This is because high-level decisions are easier to discretize and thus admit

tabular methods. Recently, it has been shown that deep RL can also be applied to

continuous action and state spaces in robotics [98] due to improved computational

power.

Existing work on RL applied to UAVs can be divided into model-based and

model-free methods. Model-based refers to learning an optimal controller indirectly

by learning a model which can predict the future system state given the current state

and input. Model-free methods learn an optimal controller directly by observing the

reward and system state for a given input. Both model-based and model-free meth-

ods have attracted much attention in recently year. We begin by surveying some of

the relevant model-based approaches. Earlier work [99] considers a design in three

stages where initially an apprenticeship learning algorithm extracts a reference tra-

jectory for the UAV from suboptimal expert pilot demonstrations. Secondly, a full

nonlinear dynamic model for a helicopter UAV is identified. Thirdly, a receding

horizon variation of linear quadratic control based on a linearized model is applied

to the identified dynamics. Experimental results are provided. Work [100] focuses

on inner loop control which maps Inertial Measurement Unit (IMU) measurements

to Pulse Width Modulation (PWM) waveforms for the Electronic Speed Controller

(ESC). During training, a NN identifies a model of the rotational dynamics which is

combined with a Random Shooter Model Predictive Control (MPC) which finds an

optimal control by simulation. Experimental results are provided on the Crazyflie

platform and short term hover performance is demonstrated in experiment. No po-

sition loop control is considered. Work [101] uses the method in [102] to design two

separate Incremental Dual Heuristic Programming (IDHP) controllers for collective

and longitudinal cyclic pitch inputs of a full-sized helicopter. These inputs con-

trol the altitude and pitch DoF. The outer lateral position DoF loops and roll/yaw

control are PID controllers. The reduced number of DoF controlled by RL control

leads to faster learning of simpler dynamics with reduced coupling. An “incremen-

tal” linear model is estimated during training which corresponds to the linearization

of the system dynamics about its trajectory. A detailed simulation model is used to

train the controller and test it’s performance. Work [103] presents an end-to-end RL

method for the full system dynamics with only IMU and a single monocular camera

as sensor input. It uses an abstraction of camera images and IMU measurements

in order to improve transfer from simulation to the real-world. These processed

measurements are fed to a NN which is trained in a simulator to imitate MPC

expert demonstrations with privileged simulation data (i.e., the full UAV state).

Experimental results are demonstrated for aggressive trajectories. From the above

we observe model-based RL has evolved to eliminate the need for expert demon-
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stration. The adoption of NNs in model-based RL has allowed the solution of more

complex problems such as end-to-end vision based control [103].

Model-free RL has been investigated recently to develop NN-based controllers.

These approaches are model-free as they do not try to estimate the transition dy-

namics associated with the Markov Decision Process (MDP). Representative work in

this area is deep Q-learning (DQN) [104], deep deterministic policy gradient meth-

ods (DDPG) [105], trust region policy optimization (TRPO) [106], and proximal

policy optimization (PPO) [95]. Often model-free RL is a policy-gradient method.

This means a parameterized policy (or control law) is optimized using gradient de-

scent. The PPO method is a policy-gradient method and is used in this paper. This

method was chosen based on recent demonstrated performance [95].

A number of researchers have applied model-free RL to UAV motion control.

Model-free approaches are often considered less computational efficient than model-

based methods. However, model-free methods are generally easier to implement

and currently receive more attention in the RL community. Work [107] applies Q-

learning to the UAV landing problem. The controller outputs high-level commands

(i.e., forward, backward, left, right, down) as opposed to low level physical inputs

(i.e., ESC PWM). Work [108] uses the PPO method to solve the attitude control

of fixed-wing UAV. The attitude dynamics are inherently stable which makes the

problem less challenging than quadrotor control. Work [109] improves the DDPG

algorithm by using a double experience replay buffer (DERB) for training. This

DERB-DDPG control is trained using a linearized outer loop system dynamics.

Simulation results are presented using an inner-outer loop control. Work [110] pro-

poses an improvement on the DDPG algorithm by accurately estimating the gradient

of the objective function w.r.t. action. The authors use a Singular Value Decompo-

sition (SVD) method to find the exact solution of the Hessian matrix inverse. This

value is needed to update the actor NN parameters. Motion control is provided for

the full quadrotor dynamics. A PD controller for attitude control is used to assist

the learning and testing performance. Experiments show hover stabilization for a

wide range of initial states.

1.3 Outline

This document is organized as follows:

Chapter 2 starts with modelling for an SLS, fully actuated hexrotor platform.

The modelling is presented using Euler-Newton method. The rotor drag force is

considered in SLS for fast maneuvers. The chapter also includes the presentation of

the hardware and software components of the quadrotor UAV platforms developed,

upgraded and maintained during the course of this thesis. It briefly explains the
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specifications and purpose of each component and highlights the important inter-

connections between them.

Chapter 3 presents the QSFA and its application to SLS. The QSFA can be ap-

plied to general nonlinear systems. This chapter also describes how QSFA is applied

to SLS. SITL results is presented to validate the QSFA controller performance and

its comparison with the state-of-the-art geometric controller.

Chapter 4 first presents the outer-loop dynamics of SLS. It describes applying

QSFA to the outer-loop dynamics of the SLS. Both SITL and real-world experiments

are presented to validate the performance of the proposed controller.

Chapter 5 presents preliminary knowledge of I&I adaptive control. It also

presents the I&I adaptive hybrid force-motion control for a simple explanatory 2

DoF Cartesian robot and UAM interacting with a rigid plane surface. The chapter

also presents the simulation results of I&I adaptive controller.

Chapter 6 presents preliminary knowledge of RL. It also presents a detailed

description of PPO algorithm and how training processes is conducted in finding the

controller for UAV free motion. The chapter also presents the python simulation

environment and the results of the training process and the trained controller.

The document concludes with Chapter 7 where it summarizes the whole thesis

and provides a conclusion. Also, the limitations of the work presented and future

directions for research are outlined.

1.4 Contributions

The contributions made in this thesis are listed below:

• A novel general procedure, called the quasi-static feedback algorithm (QSFA),

is invented for computing a QSF for nonlinear control affine systems. Such

an algorithm does not appear in the literature to date. Rather, existing work

described QSF using specific examples [111]–[113]. Another contribution is

to apply the QSFA to the SLS. Similar to the Dynamic Extension Algorithm

(DEA), the QSFA provides a straightforward and systematic procedure for

testing whether a system is flat relative to a given output. Hence, our work

[40], [114] is a practical method for testing flatness which contrasts with the

intricate theory such as [14], [15] which applies to a restricted system class.

• This thesis presents an implementation of the proposed QSF in a PX4 software-

in-the-loop (SITL) environment to validate performance. This is an important

contribution as it shows the developed control law can be implemented on typ-

ical autopilots and is robust to model error introduced in the SITL simulation

environment. For example, the SITL simulator models drag forces at each
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rotor whereas the model used for control design lumps the effect of individ-

ual rotors together. Both models are based on the same underlying physical

reasoning given in [115]. A video shows the practical performance of the

proposed control in a SITL simulation https://www.youtube.com/watch?v=

Js6GVBOfXts. The code for the PX4-SITL-Gazebo simulation is provided at

https://github.com/ANCL/SLS_PX4_SITL.

• A significant benefit of multi-loop control is that it is generally simpler to im-

plement than single-loop approaches. Based on our past work [40], [116], we

observed an exact QSF linearization of the entire dynamics led to complex con-

troller expressions that are unwieldy for onboard implementation. Although it

is possible to implement such a single-loop QSF control, the reduced complex-

ity multi-loop design proposed in the work is more efficient. We still adopt a

QSF approach but apply it to the outer-loop dynamics. The static QSF lin-

earization of the outer-loop is a contribution, as this design has not appeared

to date. The QSF yields the benefits of exact static state linearizability, such

as ease-of-tuning and a simple stability result as the error dynamics are linear-

time-invariant (LTI).

• A main contribution of Chapter 4 is its experimental validation of a reduced

complexity trajectory-tracking flatness-based QSF using an open-source drone

platform. The code used to generate this paper’s experimental and simulation

results can be downloaded, verified, and extended. The drone hardware and

software are state-of-the-art, open-source, inexpensive, and readily available

today at [117], [118]. This is a key point as much of the existing work has

no experimental validation, e.g., [119], or is based on closed-source hardware

and software platforms with no published code making results impossible to

reproduce or extend. For example, [24], [30] where MATLAB/Simulink is used

and no code provided or [27] where unavailable Astec drones are used and no

source code is provided. The importance of open platforms and reproducible

results is echoed in [120]. A video of the experimental results described in

Section 4.3.2 is at https://www.youtube.com/watch?v=wyE0HNX4Rf8 and the

code used to perform these experiments is at https://github.com/ANCL/

QuasiSLSExp.

• In this thesis, we present the adaptive hybrid force-motion controller for UAM

interacting with a rigid plane surface. We first introduce the I&I control frame-

work and necessary assumptions. Then, an explanatory example is given to

explain how the I&I adaptive control techniques can be applied in the hy-

brid force-motion control problem. We also compare the I&I adaptive control

with the conventional adaptive control based on Lyapunov design. The sim-
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ple example shows that the conventional adaptive control is not able to give

asymptotically stable result and has no guarantee on parameter convergence.

In contrast, I&I adaptive control overcomes these challenges by adding pa-

rameter observer states. The I&I adaptive control gives global asymptotically

stabilisability results. We apply the I&I adaptive control to the UAM hybrid

force-motion control problem. Specifically, we consider the interaction prob-

lem with two common force sensors, 1 DoF and 3 DoF force sensors. The

I&I adaptive hybrid control guarantees the exponential convergence of both

system states, reaction forces and parameter estimations. This is verified in

simulation in Section. 5.5.

• Chapter 6 proposed PPO-based method is unique relative to existing ap-

proaches in that solves the motion control problem for the full dynamics with

the control output being low-level system inputs: total thrust and torque. Ac-

tuating low level inputs and controlling all six UAV DoF is more challenging

than controlling a subset of DoF as in [100], [109]. As well, no traditional

control is used to assist the RL during training or testing. This should be

compared to work [110] where PID assists the RL. Our approach investigates

the choice of reward function on time-domain tracking performance. Previous

RL work does not focus on this design parameter which we show is useful

in improving actual closed-loop performance. Simulation results show hover

and trajectory tracking performance which is comparable to a manually tuned

inner-outer loop PD control. Hence, the method benefits from not requiring a

tuning stage as in traditional control. The code and simulation data for this

project are available at https://github.com/ANCL/QuadPPO.

• The author has enhanced the ANCL flight platform, transitioning from the

ANCL Q3 to the more advanced ANCL Gen2 platform. This upgrade marks

a significant departure from the earlier ANCL Q2 and Q3 models, as refer-

enced in previous works [121], [122]. The ANCL Gen2 showcases substan-

tial improvements in usability, maneuverability, and stability. It features an

compactly designed on-board and off-board system structure, which is highly

conducive to executing complex control algorithms and handling computation-

ally intensive tasks. Furthermore, there has been a noteworthy update in the

PX4 autopilot system used in the ANCL Gen2, advancing from version 1.5.5,

released in 2016, to version 1.13.3, launched in 2023. The author’s modular

Vicon data transmission framework streamlines the integration process with

the PX4 autopilot, significantly reducing the need for extensive modifications.

This efficient design approach enables the ANCL lab to easily stay in sync with

the latest PX4 firmware updates from the community with minimal effort.
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Chapter 2

Platform & Modelling

This chapter introduces the dynamic models of SLS and UAM. The notation is

presented here and will be used throughout the thesis. In Section 2.1, we present the

SLS model. In Section 2.2, we present the UAM model. In addition to dynamics,

Section 2.3 present the hardware platform and software architecture used in this

thesis.

2.1 Sung Load System Dynamics

The suspended load is modeled as a universal joint pendulum with two rotation

DoF attached to the drone’s center of mass (CoM). Fig. 2.1 summarize the notation.

Two reference frames are used: a navigation frame N fixed to the earth and a body

frame B attached to the drone. We assume that N is inertial and has an orthonormal

basis {n1, n2, n3} of vectors oriented north, east, and down, respectively. The origin

of B is the drone’s CoM, and its basis {b1, b2, b3} has vectors oriented forward, right,

and downward, respectively. We denote pendulum position pL, pendulum attitude

q, and drone attitude R. The SLS configuration variable [pL, R, q] ∈ SE(3) × S2.
The unit vector q is expressed in N and parameterized with angles α and β where

α is a rotation about n1 and β is about n2. We have

q = Rn1(α)Rn2(β)n3 = [sβ ,−sαcβ , cαcβ ]T

where Rn1 and Rn2 are elementary rotation matrices about n1 and n2 axis, respec-

tively.

The relation between load position pL and quadrotor position pQ is

pL = pQ + Lq = pQ + L[sβ ,−sαcβ , cαcβ ]T (2.1)
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The SLS is modelled as a spherical pendulum and multirotor drone.

Figure 2.1: The SLS is modelled as a spherical pendulum and multirotor drone.

where L is rod length. Differentiating (2.1) gives

vL = vQ + Lq̇

v̇L = v̇Q + Lq̈ (2.2)

We extend the model used in [114] to include rod mass and inertia. The relation

between the rod CoM pp and drone position pQ is

pp = pQ +
1

2
Lq

Hence, differentiating gives

vp = vQ +
1

2
Lq̇, v̇p = v̇Q +

1

2
Lq̈

Drag forces have been shown to be important in recent aggressive quadrotor flying

experiments such as [20], [22], [123]. Hence, we adopt the quadrotor dynamics,

which models rotor drag under the assumption of no wind in [123]:

ṗQ = vQ (2.3a)

mQv̇Q = mQgn3 −Rūn3 + Tq −RDRT vQ (2.3b)

Ṙ = RS(ω) (2.3c)

Jω̇ = −ω × Jω + τ −ART vQ −Bω (2.3d)

where J = diag(J1, J2, J3) is the inertia the drone about its CoM, T ≥ 0 denotes
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rod tension, ū ≥ 0 is total propeller thrust, τ is propeller torque expressed in B, g
is the acceleration of gravity, and mQ is drone mass. The rotor drag parameters are

constant matrix D = diag(dx, dy, dz) > 0 for drag force coefficients, and constant

matrix A and B for drag moment coefficients. See [115] for the details on rotor drag

modelling. The skew operator S(·) : R3 → so(3) in (2.3c) is

S(x) =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 , where x =

x1x2
x3

 .
We assume that T ≥ 0 which is typical of normal SLS operation. We assume J is

diagonal for simplicity of presentation.

The rotational kinematics (2.3c) is parameterized with the ZYX Euler angles

η = [ϕ, θ, ψ]T ∈ R3:

η̇ =W (η)ω (2.4)

with

W (η) =

1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ


where tθ = tan θ, sθ = sin θ, cθ = cos θ.

We assume the rod has mass mC and an inertia matrix JC relative to its CoM

given by

JC = diag(
1

12
mCL

2,
1

12
mCL

2, 0)

That is, we assume a thin rod with no radial dimension.

The translational pendulum dynamics is

ṗL = vL (2.5a)

mLv̇L = −Tq + (mL +mC)gn3 (2.5b)

The rotational pendulum dynamics is

q̇ = ωL × q (2.6a)

JLω̇L = −ωL × JLωL + Lq × (mLgn3 −mLv̇Q) +
1

2
Lq × (mCgn3 −mC v̇Q) (2.6b)

where JL is the inertia ofmL about the drone’s CoM. Using Steiner’s Theorem [124],

we can express JL as a function of the relative position between the load and drone:

JL = mLL
2(I − qqT ) + JC +mC

L2

4
(I − qqT ) (2.7)
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Eliminating rod tension T in (2.5b) and (2.3b) gives

mQv̇Q +mLv̇L = (mQ +mL +mC)gn3 −Rūn3 −RDRT vQ (2.8)

Substituting for v̇Q in (2.8) using (2.2), we have the translational dynamics for the

load

(mL +mQ)v̇L = (mL +mQ +mC)gn3 −Rūn3 +mQLq̈ −RDRT vQ (2.9)

where we have substituted q̈ = ω̇L × q + ωL × q̇ from (2.6a). Combining (2.9) and

(2.2), we get

v̇Q = − mL

mQ +mL
Lq̈ + (1 +

mC

mL +mQ
)gn3 −

Rūn3 +RDRT vQ
mQ +mL

(2.10)

Substituting (2.7), and (2.10) into (2.6b), we obtain the rotational dynamics of the

load expressed in N :

JLω̇L = −ωL × JLωL + Lq ×
(
(mL +

mC

2
)

(gn3 +
mL

mQ +mL
Lq̈ − (1 +

mC

mL +mQ
)gn3 +

Rūn3 +RDRT vQ
mQ +mL

)
)

(2.11)

In addition, we have the relation between ωL and γα, γβ

ωL =

10
0

 γα +

 0

cα

sα

 γβ (2.12)

and

ω̇L =

10
0

 γ̇α +

 0

cα

sα

 γ̇β +
 0

−sα
cα

 γαγβ

= Rn1(α)

 γ̇α

γ̇β

γαγβ

 (2.13)

Substituting (2.12) and (2.13) into (2.9) and (2.11), and solving for v̇L, γ̇α, γ̇β , we
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obtain the SLS dynamics

ẋ = f(x) + g(x)u (2.14)

f(x) = f̃(x) + df (x)RDR
T (vL − Lq̇) + dτ (AR

T (vL − Lq̇) +Bω)

f̃(x) =



v

γα

γβ

W (η)ω

−sβ(γ
2
αc

2
β + γ2β)LM0

sαcβ(γ
2
αc

2
β + γ2β)LM0

g − cαcβ(γ
2
αc

2
β + γ2β)LM0

2γαγβtβ

−γ2αcβsβ

−J−1S(ω)Jω



, g(x) =

08×1 08×3

ḡ(x) 05×3

03×1 J−1



with x = [pTL, α, β, η
T , vTL , γα, γβ , ω

T ]T ∈ R16, u = [ū, τT ]T ∈ R4, M0 = (2mQ +

mL)/(2(mQ +mL +mC)) and dτ ∈ R16×3 = [03×13, J
−T ]T . df (x), ḡ is given by

ḡ(x) = −df (x)Rn3 , df (x) =



08×3
s2β
M1

− sαsβcβ
M1

cαsβcβ
M1

− sαsβcβ
M1

− s2αc
2
β

M1
− sαcαc2β

M1

cαsβcβ
M1

− sαcαc2β
M1

s2αc
2
β

M1

0 − cα
LmQcβ

sα
LmQcβ

− cβ
LmQ

− sαsβ
LmQ

cαsβ
LmQ

03×3


(2.15)

where M1 = mQ + mL + mp. The drift vector field of (2.14) has singularities

at cβ = cθ = 0 due to parametrizations used for the orientation of the drone and

pendulum. Hence, domain M of x is taken to be a subset of R16 including 0 but

excluding these points. Below we show these singularities appear in the controller.

From a practical point of view, these points are not encountered in typical SLS

motion. As well, cβ = 0 is not physically possible as it means the rod collides with

the frame of the drone.

In order to improve robustness to unmodelled effects, we introduce a force dis-

turbance fe ∈ R3 acting on the UAV CoM, and a torque disturbance τe ∈ R3 acting
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about the UAV’s CoM. We have

mQv̇Q = mQgn3 −Rūn3 + Tq − fe −RDRT vQ (2.16a)

Jω̇ = Jω + τ − τe −ART vQ −Bω (2.16b)

This leads to a state space form

ẋ = f(x) + g(x)u+ df (x)fe + dτ (x)τe (2.17)

2.2 Unmanned Aerial Manipulator Dynamics

We denote the world inertia frame with N , the body frame B, attached to

the hexrotor frame, where origin coincides with the hexrotor CoM. Let the frame

associated with the ith propeller be defined as Pi. The origin OPi is the center of

the spinning and the CoM of the ith propeller. The axes XPi is the axis along the

rotor arm and ZPi is the axis about which the propeller spins and coincides with the

thrust direction. The YPi axis is defined such that the frame Pi is right-handed. The
coordinate definitions is shown in Figure 2.2 and the real-world platform picture is

shown in Figure 2.3. The propeller thrust is denoted by Tthrusti and drag torque to

the body is denoted by τdrag. The thrust and torque are related to the propeller

angular velocity ωi by the following equations:

Tthrusti = [0, 0, CTω
2
i ], τdragi = [0, 0, CD(−1)iω2

i ] (2.18)

We define pBi ∈ R3 the position OPi of the ith propeller in the body frame B.
pBi ∈ R3 is given by

pBi = RZ(λi)

Lxi0
0

 , ∀i ∈ {1, . . . , 6} (2.19)

where RZ(λi) is the rotation matrix about the Z axis by λi and Lxi is the distance

between the ith propeller and the CoM of the hexrotor.

The parameters λi and Lxi represent the geometric perspective of the hexrotor.

To get the total thrust and torque, we sum up the thrust and torque from each

propeller. Each rotor generates a thrust and torque in zpi axis. The rotation matrix

RBpi is defined as the rotation matrix from Pi to B. In order to have clear geometric

perspective, we decompose the rotation matrix RBpi into three rotation matrices

about xpi , ypi and zpi axis

RBPi
= Rz(λi)Rx(αi)Ry(βi) (2.20)
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Figure 2.2: The FA hexrotor

Figure 2.3: The FA hexrotor rotor platform at ANCL.

where

Rx(α) =

1 0 0

0 cosα − sinα

0 sinα cosα

 ,
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Ry(β) =

 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 ,

Rz(λ) =

cosλ − sinλ 0

sinλ cosλ 0

0 0 1

 .
RBPi

can be interpreted by first applying a rotation about zpi axis by λi, then a

rotation about xpi axis by αi and finally a rotation about ypi axis by βi.

The total thrust Tsum and torque τsum are given by

Tsum =
6∑
i=1

RBPi
Tthrusti (2.21)

τsum =
6∑
i=1

RBPi
τdragi + pBi ×RBPi

Tthrusti (2.22)

The dynamics of the hexrotor is given by

mQv̇Q = mQgn3 −RTsum − fe (2.23)

Jω = −ω × Jω + τsum − τe (2.24)

where Tsum = [T1, T2, T3] is the total thrust and τsum = [τ1, τ2, τ3] is the total torque.

The end-effector position pE is given by

pE = pQ +RB[xe, ye, ze]
T (2.25)

where RB is the rotation matrix from B to the end-effector frame E . The rotation

matrix RB is given byRB = I3 as Figure 2.2.

2.3 Platform Hardware and Software Architecture

Our ANCL Gen2 platforms are based on Holybro vision kit. The common com-

ponents of a ANCL Gen2 are shown in Figure 2.4 and their interconnection is shown

in Figure 2.5. Compare the previous general platform ANCL Q2 and Q3 [121], [122],

ANCL Gen2 has improved significantly in terms of usability, maneuverability and

stability. ANCL Gen2 also features a compact on-board and off-board system struc-

ture, which are suitable for complex control algorithm implementation and more

computational heavy tasks. The ANCL Gen2 upgraded PX4 version from v1.5.5

released in 2016 to v1.13.3 released in 2023. The author designed a modular Vicon

data transmit framework, which minimizes the changes needed to be done in the
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PX4 autopilot side and this makes ANCL lab is able to keep up with the latest

firmware version with the PX4 community with minimum efforts.

2.3.1 Hardware Components

The essential components of a quadrotor UAV and the specifications of those

used in the ANCL platforms are described below.

Flight Controller

A flight controller is a mini-computer onboard a UAV that has built-in sensors

and communication ports. The onboard central processing unit (CPU) on a flight

controller runs the autopilot software that contains the estimation, control and

safety-related decision-making algorithms to fly the UAV. Built-in sensors provide

an various measurements that are used by the estimation algorithms to determine

system states. The communication ports allow connection with external sensors,

actuators, ground station computers, and remote controllers.

ANCL Gen2 use Pixhawk 6C from Holybro. The Pixhawk 6C is the latest update

to the successful family of Pixhawk flight controllers, based on the Pixhawk flight

management unit (FMU) v6C Open Standard and Connector Standard. Inside the

Pixhawk 6C, you can find an STMicroelectronics based STM32H743, paired with

sensor technology from Bosch & InvenSense, giving user flexibility and reliability

for controlling any autonomous vehicle, suitable for both academic and commercial

applications. The Pixhawk 6C’s H7 microcontroller contain the Arm Cortex-M7

core running up to 480 MHz, has 2MB flash memory and 1MB RAM. Thanks to the

updated processing power, the author can be more productive and efficient with the

development work, allowing for complex algorithms and models. The FMUv6C open

standard includes high-performance, low-noise IMUs (ICM-42688-P and BMI055)

on board, designed to be cost effective while having IMU redundancy. A vibration

isolation System to filter out high-frequency vibration and reduce noise to ensure

accurate readings, allowing vehicles to reach better overall flight performances.

Motion Capture System (MCS)

The UAVs can obtain a position estimate from a GPS during outdoor flights;

however, GPS is unavailable for indoor flight operations. Therefore, ANCL has

a Motion Capture System in the lab that provides UAV pose estimates with an

accuracy down to 1 mm in translational and 1 degree in the rotational. When

testing control algorithms, this pose estimate is used either as a ground truth or a

system state. ANCL motion capture system consists of 10 Vicon Vero Cameras with

a resolution of 3.3 megapixels and a frame rate of 330 frames per second (fps). The
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Figure 2.4: ANCL Gen2 components (Holybro PX4 Vision Kit).

26



Figure 2.5: Hardware interconnections of ANCL Gen2 platforms [125].
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cameras emit infrared light, which is reflected by the infrared markers in the room,

and projected on cameras to track the location of markers. The system can detect

passive markers of diameter as low as 9 mm, which can be uniquely arranged in a

3D pattern onboard a UAV for identification and tracking. For better reliability, we

use 38 mm diameter markers onboard the ANCL Gen2 platforms. The cameras are

connected to the lab network using two switches which also provide power to the

cameras i.e., Power over Ethernet.

Radios

Communication radios are essential components of a UAV platform. They al-

low a wireless connection between the UAV and its peripherals. The first radio is

a Spektrum receiver and transmitter pair. The transmitter serves as the remote

control for the quadrotor. Its channels are programmed in the autopilot firmware

to operate the quadrotor in specific modes and fly manually. This is essential from

a safety perspective and allows the user to intervene immediately if an accident is

about to happen. In ANCL, we use Spektrum DX8 remote transmitter. This remote

control has safety functions and therefore has the highest priory and uses the most

sophisticated equipment.

The second radio is a Roving Networks ESP8266 802.11b radio, which essentially

serves as a Wi-Fi Adapter for the flight controller computer, connecting it to the

Wi-Fi Network of the QGroundControl PC. This allows us to wirelessly control the

UAV and monitor the flight data online during a flight.

Motors and Propellers

Electric-powered actuators have become favourable for UAVs due to their high

power-to-weight ratio compared to gas-powered internal combustion engines. These

electric actuators consist of a motor-propeller pair. In a quadrotor UAV, there are

four motor-propeller pairs. The motor is a brushless DC outrunner with three inputs.

The motor speed and torque depend upon the voltage levels and phase shift between

the input pulses. The motor speeds are rated in revolutions per minute (RPM) per

volt at no load, often referred to as Kv rating. The motors used in ANCL Gen2 are

T-MOTOR P2207 V3.0 with a Kv rating of 1750 RPM per volt. Their rated voltage

is 7.4 - 16.8V, and their maximum current specification is 38.4 A. The propellers

used in ANCL Gen2 is Gemfan Freestyle 6030-3 with 6-inch diameter and a pitch

of 3 inches. A propeller pitch is defined as the measure of forward distance moved

through a soft solid due to one complete rotation of the propeller.
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Electronic Speed Controllers

The ESC used in the quadrotor receive a PWM signal from the flight controller

and produce DC pulses at its three outputs. The ESCs vary the magnitude and

phase of these pulses with the variation in the PWM input to control the speed of

brushless DC motors. The ESCs used in ANCL Gen2 are BLHeli-S 20A based on

EFM8BB21F16G micro control unit (MCU) 8-bit C8051 core with 50 MHz maxi-

mum operating frequency. BLHeli-S is an open source hardware and BLHeli-S 20A

used the version A-H-30. It supports Dshot150, Dshot300 and Dshot600. Dshot is

digital signal, anti-interference ability is stronger and do not need throttle calibra-

tion.

Onboard Computer

The onboard computer is UP Core computer with Intel Atom x5-z8350 (4 cores

up to 1.92 GHz), 4GB memory and 64GB eMMC storage. It support off-the-shelf

Ubuntu operating system. We choose Ubuntu 20.04 LTS as the OS onboard. The

UP Core computer connected to Pixhawk 6C by universal asynchronous receiver-

transmitter (UART) connection. The onboard PC has two USB 2.0 and one USB

3.0 ports for peripheral device. As 2.4G WiFi channel is fully congested by the

university WiFi broadcast, we used a Netgear wireless AC1200 Wi-Fi dual band

USB adapter to connect onboard computer to local WiFi network to get the Vicon

datastream. As the Vicon datastream provide the absolute position and yaw angle

of the ANCL Gen2, which is essential to a stable flight, it is important to test the

WiFi connection before taking off.

2.3.2 Software Components

Autopilot Firmware

The flight controller’s autopilot firmware is responsible for a multitude of tasks.

It operates drivers for a range of sensors and gathers data from these sensors. Utiliz-

ing estimation algorithms, it calculates the UAV’s state, communicates with external

sensors, and processes user commands, including the ability to switch between dif-

ferent flight modes. Additionally, control algorithms within the autopilot generate

inputs that are transformed into PWM signals. These signals are then relayed to the

ESCs, which in turn drive the UAV’s motors and propellers. Beyond these functions,

the autopilot is also tasked with numerous safety and control-related operations.

At ANCL, version 1.13.3 release of PX4 [117] is currently used. PX4 is based

on a publish-subscribe structure and has several built-in applications for various

UAV models. PX4’s primary programming language is C++. It also provides

many libraries and tools for developers to implement their algorithms. PX4 uses
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a MAVLINK protocol [126] for its communication with onboard components e.g.,

CVS as well as off-board components e.g., Ground station.

The ANCL Gen2 platform fully utilizes the off-board control capabilities of the

PX4 Autopilot. Thus, most outer-loop controller can be implemented on UP Core

computer using ROS. This improves the implementation efficiency.

PX4 computes the attitude using the attitude estimator q module, which

is a quaternion-based attitude estimator and fuses raw IMU measurements. The

IMU sensors are initially calibrated using the QGroundControl software. Attitude

estimates are provided at 250Hz.

Ground Station Software

QGroundControl (QGC) is a ground station software for MAVLINK enabled

UAVs, which provides graphical user interface (GUI) based user-friendly option for

complete setup and configuration of PX4 autopilot. It also provides in-flight sup-

port and mission planning. The Q-Ground Control displays flight maps and UAV

trajectories. The QGC can be used to modify UAV parameters, switch flight modes,

download flight data, monitor instruments online during flight, calibrate UAV sen-

sors, configure control, and several other functions to support UAV flight. QGC

software is a valuable tool for tuning and monitoring. ANCL Gen2 is compati-

ble with the latest version of QGroundControl and should be compatible to future

releases.

ESC Firmware

ESC firmware runs inside the ESC microcontroller and, depending upon the

PWM input, generates an output signal to provide electronic commutation to the

brushless DC motor. The most commonly used open-source firmwares for UAV

ESCs are BLHeli [127].

Offboard Control System

The computer vision system’s software component utilizes the Robot Operating

System (ROS) running on an UP Core computer with Ubuntu 20.04 as the operating

system. ROS is a versatile, open-source framework for robotics, essentially acting

as a meta-operating system layered on top of an existing OS. It offers an array of

tools, libraries, and conventions aimed at easing the task of developing software for

robots. ROS provides the flexibility to work at different levels. At a lower level,

it can be employed for creating drivers for sensors and actuators, enabling direct

control of robotic devices. On a higher level, it is adept at handling more complex

tasks such as robot mapping, localization, control, and estimation algorithms.
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The architecture of ROS is inherently modular, consisting of discrete programs

known as nodes, each designed for specific functions. These nodes communicate

via a process called message passing, exchanging data through streams known as

topics. Typically, a node will subscribe to one or more of these topics, process the

incoming data, and then publish its output to another topic. For instance, a robot

control node in ROS might subscribe to a topic that provides system states or sensor

data. It then processes this data to generate control inputs, which are subsequently

published on a different topic. A driver node would then subscribe to this latter

topic to operate the UAV’s actuators. For ANCL Gen2, the Noetic Ninjemys release

of ROS has been employed for these purposes.

2.3.3 Maple-Matlab-SITL Simulation Pipeline

The Software-In-The-Loop (SITL) creates a virtual autopilot environment, en-

abling the validation of performance in a controlled yet realistic setting. This ap-

proach is critical for ensuring that the design remains resilient against real-world

challenges such as controller saturation, multi-rate sampling, and computational

delays. These factors could potentially compromise the performance or feasibility

of theoretical designs due to limitations in processing power or memory. For our

simulation framework, we have selected the open-source PX4-SITL, coupled with

the Gazebo simulator [128], which utilizes the Open Dynamics Engine (ODE) for

physics simulation. Gazebo was the preferred choice for its straightforward multi-

body model format, open-source nature, and its recommendation by the PX4 de-

velopment community for SITL applications. Unlike the Matlab simulations, where

the model is based directly on differential equations, the Gazebo model eschews the

need for differential equation modeling, relying instead on the geometry and inertial

properties of the system’s components. The PX4-Gazebo SITL simulation incor-

porates the RotorS simulation plugins [129], which are based on a ROS/Gazebo

framework. We have made the simulation source code available to the research

community, enabling independent result reproduction or design modifications on

standard desktop PCs.

The simulation environment’s architecture comprises three main components:

the Gazebo simulator, the PX4 autopilot software, and the ROS Offboard Control.

Gazebo incorporates a multibody dynamics engine, a 3D graphics interface, an SLS

model description file based on the 3DR Iris quadrotor, external disturbances, and

RotorS-derived plugins for simulating onboard sensors such as the GPS, IMU, and

magnetometer. The PX4 autopilot software is emulated to operate on a desktop

environment. The ROS Offboard Control integrates our QSF and coordinate trans-

formations, convertin g the Gazebo world frame into the navigation frame used in

the QSF.
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Model-based controllers such as the QSF benefit from precise theoretical state-

ments about their stability and performance. Their mathematical derivation means

they can be extended systematically to different problems. However, they can suffer

from complex expressions. The QSF proposed in Chapter 3 uses Maple to compute

the high-order Lie derivatives required. The resulting controller expression is very

complex and must be automatically moved from Maple to C++ to avoid errors

and streamline debugging. Therefore, we developed a Maple-Matlab-SITL pipeline

for controller development. First, we do all symbolic calculations, including sys-

tem modeling and the QSFA in Maple. Secondly, the resulting symbolic expression

for the system model and controller is exported to Matlab for efficient simulation.

Finally, the Matlab controller is exported to C++ for SITL using Matlab’s Coder

Toolbox. The full framework code which was used to generate the simulations in

Section 3.3.1 is at https://github.com/ANCL/SLS_PX4_SITL.

SLS Rigid Body Dynamics

The Gazebo simulator uses a Simulation Description Format (SDF) model ob-

ject to describe the SLS model. An SDF file contains information on model links,

joints, collision objects, visuals, and plugins. The SDF file used in this work

is at https://github.com/ANCL/SLS_PX4_SITL/blob/ancl-sls/ancl_sls/iris_

pendulum/iris_pendulum.sdf. The model is built on top of the default 3DR IRIS

model provided in the stock PX4-SITL [117]. Gazebo’s internal dynamics engine is

set to the ODE [130]. ODE provides a convenient way to simulate the SLS as no

differential equation model such as (2.14) is needed explicitly. This should be com-

pared to typical Matlab simulations, where simulation uses differential equations

which must be derived.

The SDF file for the SLS consists of 8 links which are rigid bodies with specified

mass and inertia matrix. The 8 links are denoted base link, imu link, rotor1 link,

rotor2 link, rotor3 link, rotor4 link, pendulum link, load link. Fig. 2.6 shows a subset

of these links. The SLS’s links are interconnected by 7 joints of various types.

Each joint has a parent and a child link. The 7 joints are imu joint, rotor1 joint,

rotor2 joint, rotor3 joint, rotor4 joint, pendulum joint, load joint.

As shown in Fig. 2.6, a Universal Joint connects the pendulum link to the quadro-

tor base link. A Fixed Joint connects the load link to the pendulum link. A Universal

Joint provides 2 rotational DoF between the parent and child links. A full description

of joint types can be found in http://sdformat.org/spec?ver=1.6&elem=joint.

All Gazebo links must be defined as 3D rigid bodies. Thus, we define a pendulum

rod with a mass 1.6 kg and inertia diag(5× 10−5 ,8.3× 10−4 ,8.3× 10−4 ) kgm2 and

spherical load with a mass 0.16 kg and inertia diag(4 × 10−3 ,4 × 10−3 ,4 × 10−3 )

kgm2.
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Figure 2.6: SLS SDF Structure.

Rotor Aerodynamics

The PX4-SITL environment uses RotorS [129] to model the aerodynamic forces

and torques of the rotor. This modelling is based on [131], [132]. As shown in

Fig. 2.7, we denote the thrust of Rotor i (1 ≤ i ≤ 4) as ūi, drag force as FDi, rolling

moment as MRi, and rotor torque as τ̄i. We have the expression

ūi = −Ω2
iCT b3 (2.26a)

FDi = −ΩiCD(I3 − b3b
T
3 )vAi (2.26b)

MRi = ΩiCR(I3 − b3b
T
3 )vAi (2.26c)

τ̄i = (−1)iCM ūi (2.26d)

where Ωi ≥ 0 is rotor speed, CT is thrust constant, CD is rotor drag constant, CR

is rolling moment constant, and CM is the rotor torque constant. All constants are

positive. The linear velocity vAi is the velocity of the ith rotor w.r.t. air velocity

expressed in B. Hence, denoting wind velocity vW expressed in N we have

vAi = RT (vQ + ω × ℓi − vW ) (2.27)

where ℓi is the arm length from the quadrotor CoM to the rotor’s axis of rotation.
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Figure 2.7: Forces and moments on a single rotor

Actuation Thrust and Torque

The output of the QSF is total thrust ū and torque τ in units of N and N ·m,

respectively. From (2.26) the relation between [ū, τ ] and rotor speed Ω is

[
ū

τ

]
= CT


1 1 1 1

−ℓ1 ℓ3 ℓ1 −ℓ3
ℓ2 −ℓ4 ℓ2 −ℓ4
CM CM −CM −CM



Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (2.28)

We take CT = 5×10−6Ns2 and CM = 0.05m. The 3DR Iris has ℓ = [0.22, 0.13, 0.2, 0.13] m.

PX4 expects a normalized thrust ũ ∈ [0, 1] and torque τ̃ ∈ [−1, 1]. Using its

mixer, PX4 converts ũ, τ̃ into normalized rotor speed commands Ω̃i, 1 ≤ i ≤ 4,

using parameters describing the geometry of the multirotor’s frame. In PX4, this

mapping is given by [Ω̃2
1, Ω̃

2
2, Ω̃

2
3, Ω̃

2
4]
T = KP [ũ, τ̃ ]

T , where KP is given by

KP =


1 −0.4377 0.7071 0.9091

1 0.4377 −0.7071 1

1 0.4377 0.7071 −0.9091

1 −0.4377 −0.7071 −1

 (2.29)

Gazebo receives a normalized rotor speed command [Ω̃1, Ω̃2, Ω̃3, Ω̃4] which it

scales to obtain a rotor speed command

Ωi = CΩΩ̃i, 1 ≤ i ≤ 4 (2.30)

where CΩ = 1000 rad/s is the scaling constant.

In the last step, Gazebo uses the traditional quadratic rotor model (2.26a) and

(2.26d) to generate individual propeller thrust and torque from rotor speed command

Ωi. With the assumption the above modelling is known exactly, we can scale the
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QSF output before feeding it to PX4 so that Gazebo applies the desired values of

ū and τ . Given ū, τ = [τ1, τ2, τ3]
T output from the QSF in (4.24) we scale [ũ, τ̃T ] as

[ū/S1, τ1/S2, τ2/S3, τ3/S4]. We can summarize the above discussion with

[
ūG

τG

]
= CTC

2
Ω


1 1 1 1

−ℓ1 ℓ3 ℓ1 −ℓ3
ℓ2 −ℓ4 ℓ2 −ℓ4
CM CM −CM −CM

KP


ū/S1

τ1/S2

τ2/S3

τ3/S4

 (2.31)

where [ūG, τG] is the total thrust and torque in Gazebo. Substituting parameter

values into (2.31) gives scaling parameters S1 = 20, S2 = 1.8383, S3 = 1.8383, S4 =

0.9546 so that ūG = ū, τG = τ .

2.4 Conclusion

In this section, we present a detailed examination of UAV slung load systems and

FA hexarotors. Our focus includes various frame definitions, rotation matrices, and

both kinematic and dynamic modeling. We introduce a UAV slung load model that

incorporates drag force for enhanced maneuverability. Additionally, the modeling of

FA hexarotors, including end-effector dynamics, is explored. Constraint dynamics

specific to FA hexarotors will be further discussed in Chapter 5. This section also

covers the ANCL Gen2 platforms, detailing their crucial hardware components,

functions, and the integration of essential software like PX4, ROS, and PX4-SITL

simulation. This comprehensive approach bridges theoretical models with practical

applications, underscoring the synergy between advanced research and real-world

implementation in robotics.
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Chapter 3

Quasi-static State Feedback Out-

put Tracking for a Slung Load

System

3.1 Quasi-Static Feedback (QSF) Linearization

We consider the control-affine dynamics

ẋ = f(x) +
m∑
i=1

gi(x)ui (3.1a)

yi = hi(x), 1 ≤ i ≤ m (3.1b)

with vector fields f, gi : M → Rn, and output functions hi : M → R defined on

open subset M ⊆ Rn. A QSF has the form u = u(x, v, v̇, v̈, . . . , v(ρ)), where v is an

auxiliary input of dimension m. QSF assigns input v to be a time derivative of y:

y(ri) = vi, 1 ≤ i ≤ m (3.2)

where y(i) denotes the ith time derivative of y. To achieve output tracking, v is taken

to be a linear function of the output tracking error and its time derivatives. The

goal of QSF is to statically linearize flat systems that do not satisfy the conditions

for static state feedback linearization. Compared with dynamic state feedback, QSF

is a static function of state, i.e., it requires no state augmentation. Having a simpler

controller structure is practically important when implementing the autopilot on-

board where computing resources are limited. In Section 3.1.1 we present the QSFA

which generates a linearizing QSF for a flat system of the form (3.1). Section 3.1.2

describes the application of the QSFA to the SLS.
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3.1.1 Quasi-Static Feedback Algorithm (QSFA)

The Lie derivative of a function λ : M → R along the vector field f is defined

by Lfλ(x) = ∂λ
∂xf(x). The QSFA makes use of a vector of indices r = [r1, . . . rm]

where ri is the largest integer satisfying LgjL
k
fhi(x) = 0, 1 ≤ j ≤ m, k < ri − 1,

about some x0 ∈ M. The existence of these indices does not imply a well-defined

relative degree since that requires the decoupling matrix

D(x) =


Lg1L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

... · · ·
...

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)

 (3.3)

is nonsingular at x0.

Variables have superscript ⟨i⟩ to keep track of the algorithm iteration. We begin

the QSFA at Step 0 and assume the decoupling matrix D⟨0⟩ = D given by (3.3) has

a constant rank less than m about x0 ∈ M where r⟨0⟩ = [r
⟨0⟩
1 , . . . , r

⟨0⟩
m ] = r. Define

s⟨i⟩ = rank(D⟨i⟩(x0)), and y
⟨0⟩ = y(r

⟨0⟩) = [y
(r

⟨0⟩
1 )

1 , . . . , y
(r

⟨0⟩
m )

m ]T .

Step 0: From the definition of r⟨0⟩ we can express y(r
⟨0⟩) as

y⟨0⟩ = y(r
⟨0⟩) = a0(x) +D⟨0⟩u (3.4)

We reorder and decompose y⟨0⟩ as

y⟨0⟩ =

[
ỹ⟨0⟩

ŷ⟨0⟩

]
(3.5)

where ỹ⟨0⟩ corresponds to the first s⟨0⟩ independent rows of D⟨0⟩, and ŷ⟨0⟩ corre-

sponds to the dependent rows of D⟨0⟩. We introduce auxiliary input v1 = ỹ⟨0⟩.

Since the last m− s⟨0⟩ rows of D⟨0⟩ are linearly dependent on the first s⟨0⟩ rows, we

have

ỹ⟨0⟩ = ã0(x) + b̃0(x)u = v1 (3.6)

ŷ⟨0⟩ = ŷ⟨0⟩(x, v1) (3.7)

where ŷ⟨0⟩ is affine in v1 and b̃0(x) are the first s⟨0⟩ independent rows of D⟨0⟩. We

remark that in (3.7) we have eliminated u using (3.6). This ensures time derivatives

of u do not appear ˙̂y⟨0⟩ below and we have a static relation between u and v and its

time derivatives.

Next, we compute index r⟨1⟩ using the definition of r but with output ŷ⟨0⟩. We
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have

˙̂y⟨0⟩ = ŷ(r
⟨0⟩+1) =

∂ŷ⟨0⟩

∂x
[f(x) +

m∑
i=1

gi(x)ui] +
∂ŷ⟨0⟩

∂v1
v̇1 (3.8)

= Lf ŷ
⟨0⟩ +

∂ŷ⟨0⟩

∂v1
v̇1 +

m∑
i=1

Lgi ŷ
⟨0⟩ui

= a1(x, v̇1) + b1(x)u (3.9)

where

b1 =


Lg1 ŷ

⟨0⟩
1 . . . Lgm ŷ

⟨0⟩
1

... · · ·
...

Lg1 ŷ
⟨0⟩
m−s⟨0⟩ . . . Lgm ŷ

⟨0⟩
m−s⟨0⟩

 ∈ R(m−s⟨0⟩)×m (3.10)

Three cases are possible depending on the value of b1. If b1 is identically zero, we

must continue taking time derivatives of ˙̂y⟨0⟩. If any row of b1 is linearly dependent

on the rows of b̃0(x) in (3.6), it should be expressed as a function of (x, v1) as in (3.7),

and then time derivatives of these rows are computed. If all rows of b1 are linearly

independent of the rows of b̃0(x) in (3.6), we define r⟨1⟩ = [r
⟨1⟩
1 , . . . , r

⟨1⟩
m−s⟨0⟩ ], so that

y⟨1⟩ = (ŷ⟨0⟩)(r
⟨1⟩). Every row of the corresponding decoupling matrix D⟨1⟩ is linearly

independent of the rows of b̃0. We decompose y⟨1⟩ as

y⟨1⟩ =

[
ỹ⟨1⟩

ŷ⟨1⟩

]
(3.11)

where ỹ⟨1⟩ corresponds to the first s⟨1⟩ independent rows of D⟨1⟩. We introduce

auxiliary input v2 = ỹ⟨1⟩.

Similar to (3.6) and (3.7), y⟨1⟩ can be written as

ỹ⟨1⟩ = ã1(x, v1, . . . , v
(r⟨1⟩)
1 ) + b̃1(x, v1, . . . , v

(r⟨1⟩−1)
1 )u = v2 (3.12)

ŷ⟨1⟩ = ŷ⟨1⟩(x, v1, . . . , v
(r⟨1⟩)
1 , v2) (3.13)

As shown in (3.12), ã1, b̃1 and ŷ⟨1⟩ are functions of x and auxiliary input v. To

track this dependence conveniently, we introduce set STn which contains components

of the auxiliary input and their time derivatives. The largest component of auxillary

input is denoted n and T = [T1, . . . , Tn] ∈ Nn is the highest order of derivatives for

each input component. That is,

STn = {v1, . . . , v(T1)1 , v2, . . . , v
(T2)
2 , . . . , vn, . . . , v

(Tn)
n } (3.14)
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Hence, (3.12) and (3.13) can be written more compactly as

ỹ⟨1⟩ = ã1(x, S
T ⟨1⟩
1 ) + b̃1(x, S

T ⟨1⟩−1
1 )u = v2 (3.15)

ŷ⟨1⟩ = ŷ⟨1⟩(x, ST
⟨1⟩

1 , v2) (3.16)

Step k. Suppose that in Steps 0 through k, y⟨0⟩, . . . , y⟨k⟩ have been defined so that

ỹ⟨0⟩ = ã0(x) + b̃0(x)u

...

ỹ⟨k⟩ = ãk(x, S
T ⟨k⟩
k ) + b̃k(x, S

T ⟨k⟩−1
k )u = vk+2

ŷ⟨k⟩ = ŷ
⟨k⟩
k (x, ST

⟨k⟩
k , vk+1)

where ŷ⟨k⟩ is affine in vk+1. Define y⟨k+1⟩ = (ŷ⟨k⟩)(r
⟨k+1⟩) which can be decomposed

as before:

y⟨k+1⟩ =

[
ỹ⟨k+1⟩

ŷ⟨k+1⟩

]
(3.17)

where ỹ⟨k+1⟩ are the first s⟨k+1⟩ independent rows of D⟨k+1⟩. Introducing auxiliary

inputs vk+2 = ỹ⟨k+1⟩, (3.17) can be written as

ỹ⟨k+1⟩ = ãk+1(x, S
T ⟨k+1⟩
k+1 ) + b̃k(x, S

T ⟨k+1⟩−1
k+1 )u

ŷ⟨k+1⟩ = ŷ
⟨k⟩
k+1(x, S

T ⟨k+1⟩
k+1 , vk+2)

If s⟨0⟩ + s⟨1⟩ + · · · + s⟨k+1⟩ = m, the algorithm terminates. Otherwise, we take the

time derivative of ŷ⟨k+1⟩ and perform the next iteration.

Defining [ỹ⟨0⟩, . . . , ỹ⟨k+1⟩]T = [v1, . . . , vk+2]
T = v ∈ Rm, and when the algorithm

terminates, we have an invertible relation between the original input u and auxiliary

input v:

v =


ã0(x)

...

ãk+1(x, S
T ⟨k+1⟩
k+1 )

+D◦u (3.18)

where D◦ is the final decoupling matrix with rank (D◦) = m.

3.1.2 SLS QSF

For controller design, we assume fe = 0 and τe = 0 in (2.17). This assumption is

true for indoor environments. Moreover, the QSF will be augmented with integral

control to compensate fe, τe.
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Differential Flatness

In this section, we show that the SLS dynamics including rotor drag (2.16) is

differentially flat, as is the model without drag [3]. To prove the flatness property,

we will show that the system state [pL, vL, α, β, γα, γβ , R, ω] and inputs [ū, τ ] can be

written as a function of the flat output and a finite number of their derivatives.

Theorem 3.1.1. System

mQv̇Q = mQgn3 −Rūn3 + Tq −RDRT vQ (3.19a)

ω̇ = J−1(−ω × Jω + τ −ART vQ −Bω) (3.19b)

mLv̇L = −Tq + (mL +mC)gn3 (3.19c)

has a flat output y = [pTL, ψ]
T .

Proof. The expression for Tq in terms of ẏ is obtained immediately from (3.19c).

We obtain expressions for the unit vector q = Tq/∥Tq∥ and tension T = Tq · q.
To show R and ū are functions of y and it derivatives, we reformulate (3.19a) as

mQgn3 − ūb3 + Tq − (dxb
T
1 vQ)b1 − (dyb

T
2 vQ)b2 − (dzb

T
3 vQ)b3 = mQv̇Q (3.20)

Left multiplying (3.20) by bT1 we have

bT1 X̂ = 0, with X̂ = mQgn3 + Tq − dxvQ −mQv̇Q (3.21)

Left multiplying (3.20) by bT2 we have

bT2 X̃ = 0, with X̃ = mQgn3 + Tq − dyvQ −mQv̇Q (3.22)

For our SLS, b1 is defined as the forward direction of the quadrotor and can be

calculated from ψ as

b1 =
yψ × X̂

∥yψ × X̂∥
, with yψ = [−sψ, cψ, 0]

T (3.23)

Since b2 is orthogonal to both b1 and X̃, we have

b2 =
X̃ × b1

∥X̃ × b1∥
(3.24)

Since b3 = b1 × b2. In the above relations for R = [b1, b2, b3] we express vQ, v̇Q in

terms of vL, v̇L using (2.1). This yields the flatness relation for R.
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The flatness relation for ū comes from left multiplying (3.20) by bT3 to get

ū = bT3 (mQgn3 + Tq − dzvQ −mQv̇Q) (3.25)

and eliminating v̇Q.

For the flatness relation for ω, we take the derivative of (3.19a)

mQv̈Q = −RS(ω)ūn3 −R ˙̄un3 + Ṫ q + T q̇

−R((S(ω)D +DST (ω))RT vQ +DRT v̇Q) (3.26)

Left mutiplying (3.26) by bT1 we obtain

bT1 (mQv̈Q + dxvQ) = −ūω2 + bT1 (Ṫ q + T q̇)− ω3(dx − dy)(b
T
2 vQ)

− w2(dz − dx)(b
T
3 vQ) (3.27)

Left mutiplying (3.26) by bT2 we obtain

bT2 (mQv̈Q + dyvQ) = ūω1 + bT2 (Ṫ q + T q̇)− ω3(dx − dy)(b
T
1 vQ)

− ω1(dy − dz)(b
T
3 vQ) (3.28)

Computing bT2 Ṙ we have

ω3 = bT2 ḃ1 (3.29)

Combining (3.27) (3.28) and (3.29), we can solve for ω.

To compute ω̇ from y, we can take the time derivative of (3.27) (3.28) and (3.29).

Next, three independent linear equations can be solved for ω̇. After obtaining ω̇,

(3.19b) can be used to compute an expression for τ .

In the above, the expression for
...
v Q in terms of y and its derivatives is needed

to compute τ . Since
...
v Q =

...
v L + Lq(4) and recalling

q =
Tq

∥Tq∥
=

(mL +mC)gn3 −mLv̇L
∥(mL +mC)gn3 −mLv̇L∥

(3.30)

T = ∥(mL +mC)gn3 −mLv̇L∥ (3.31)

the time derivatives of T and q can be calculated from (3.19c), (3.30), and (3.31).

Hence we observe q(4) depends on v
(5)
L and a flatness relation for τ follows.
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QSFA on SLS

In this section, the QSFA is applied to the SLS model (2.14) and flat output

y = [pTL, ψ]
T (3.32)

As expected, the QSFA yields a QSF which exactly linearizes the SLS dynamics.

Step 0. According to (3.3), we have

D⟨0⟩ =


d
⟨0⟩
11 0 0 0

d
⟨0⟩
21 0 0 0

d
⟨0⟩
31 0 0 0

0 0
sϕ
J2cθ

cϕ
J3cθ

 (3.33)

where d
⟨0⟩
11 , d

⟨0⟩
21 , d

⟨0⟩
31 are functions of state and we have r⟨0⟩ = [2, 2, 2, 2] and rank(D⟨0⟩) =

2 on a subset of M where

d
⟨0⟩
31 (x) = −

[sβ ,−sαcβ , cαcβ ] ·Rn3
mQ +mL +mC

̸= 0 (3.34)

As in (3.4), we obtain

y⟨0⟩ = a0(x) +D⟨0⟩u (3.35)

Hence, y⟨0⟩ is decomposed as ỹ⟨0⟩ = [ÿ3, ÿ4]
T , and ŷ⟨0⟩ = [ÿ1, ÿ2]

T . We introduce

auxiliary input v1 = [ÿ3, ÿ4]
T so that

v1 = ỹ⟨0⟩ = ã0(x) + b̃0(x)u (3.36)

Then, ŷ⟨0⟩ can be written as

ŷ⟨0⟩ =

[
−
(
g − [1, 0]T v1

)
tβ/cα(

g − [1, 0]T v1
)
tα

]
(3.37)

Step 1. Taking a time derivative of ŷ⟨0⟩ we obtain

˙̂y⟨0⟩ =

 v̇1sβ
cβc2α

− γβ(g−v1)
c2βcα

− γαsαsβ(g−v1)
cβcα

−v̇1tα + γα(g−v1)
c2α

 (3.38)

Since the input does not appear in (3.38), we take another time derivative of ŷ⟨0⟩ to

get
¨̂y⟨0⟩ = a1(x, v1, v̇1, v̈1) + b1(x, v1, v̇1)u (3.39)

where a1(x, v1, v̇1, v̈1) ∈ R2×1, b1(x, v1, v̇1) ∈ R2×4 are functions of x, auxiliary input
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v, and its time derivative. Matrix b1 has the form

b1(x, v1, v̇1) =

[
b11 0 0 0

b21 0 0 0

]
(3.40)

We observe that both rows of (3.40) are linearly dependent on the third row of

D⟨0⟩. Hence, ¨̂y⟨0⟩ can be expressed using v1. As a result, (3.39) can be written as
¨̂y⟨0⟩ = ¨̂y⟨0⟩(x, v1, v̇1, v̈1) with u eliminated. Similarly we eliminate u in

(
ŷ⟨0⟩

)(3)
to

obtain a function
(
ŷ⟨0⟩

)(3)
(x, v1, v̇1, v̈1, v

(3)
1 ). Calculating

(
ŷ⟨0⟩

)(4)
gives the decou-

pling matrix D⟨1⟩

D⟨1⟩ =

[
d
⟨1⟩
11 d

⟨1⟩
12 d

⟨1⟩
13 0

d
⟨1⟩
21 d

⟨1⟩
22 d

⟨1⟩
23 0

]
(3.41)

where d
⟨1⟩
ij are functions of (x, v1, v̇1, . . . , v

(3)
1 ) with rank(D⟨1⟩) = 2 and its rows

are linear independent of all rows of D⟨0⟩. Hence, r⟨1⟩ = [4, 4]. Defining v2 =(
ŷ⟨0⟩

)(r⟨1⟩)
= y⟨1⟩, we have

v2 = y⟨1⟩ = ã1(x, v̇1, . . . , v
(4)) +D⟨1⟩u (3.42)

Combining (3.36), (3.42), we have a invertible relation between u and v

v =

[
ã0(x)

ã1(x, v1, v̇1, . . . , v
(4)
1 )

]
+D◦u (3.43)

where

D◦ =


d
⟨0⟩
31 0 0 0

0 0
sϕ
J2cθ

cϕ
J3cθ

d
⟨1⟩
11 d

⟨1⟩
12 d

⟨1⟩
13 0

d
⟨1⟩
21 d

⟨1⟩
22 d

⟨1⟩
23 0

 (3.44)

is the final decoupling matrix with rank (D◦) = 4 on a suitable subset of M.

3.1.3 SLS Output Tracking using QSF

By setting v = [v1, v2]
T = [y

(2)
3 , y

(2)
4 , y

(6)
1 , y

(6)
2 ]T and using (4.24), a linearizing

QSF is obtained. The tracking error is defined as

z̃ = [z̃1, . . . , z̃16] = [y1 − yd1, . . . , y
(5)
1 − y

(5)
d1 , y2 − yd2, . . . , y

(5)
2 − y

(5)
d2 ,

y3 − yd3, ẏ3 − ẏd3, y4 − yd4, ẏ4 − ẏd4]
T

(3.45)

where ydi, 1 ≤ i ≤ 4 are desired outputs. Variables y
(3)
1 , . . . , y

(5)
1 , and y

(3)
2 , . . . , y

(5)
2

are functions of x, v1, v̇1, . . . , v
(4)
1 , while the remaining outputs and their derivatives
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in (4.27) can be expressed as a function of x. We integrate the tracking error

Cz̃ = [z̃1, z̃7, z̃13, z̃15] .

We can express the dynamics in the z̃-coordinates as

˙̃z = Acz̃ +Bcv, with v = ã+D◦u (3.46)

σ̇ = Cz̃ (3.47)

where

Ac = blockdiag(A1, A2, A3, A4)

Bc =
[
e6 e12 e14 e16

]
C =

[
e1 e7 e13 e15

]
ã = [ã0(x), ã1(x, v1, v̇1, . . . , v

(4)
1 )]T

ei ∈ R16 denotes the ith unit vector, and

A1 = A2 =

[
0 1

0 0

]
, and Aj =

[
05×1 I5

0 01×5

]
∈ R6×6

with j = 3, 4. Applying the linearizing control u = D◦−1(Kz̃+Kσσ− ã+ y(r̄)d ) with

y
(r̄)
d = [y

(6)
d1 , y

(6)
d2 , y

(2)
d3 , y

(2)
d4 ]

T to (3.46) we obtain

˙̃z = (Ac +BcK)z̃ +BcKσσ (3.48)

σ̇ = Cz̃ (3.49)

where K ∈ R4×16,Kσ ∈ R4×4 are a control gain chosen so that Ac+BcK is Hurwitz

and transient error tracking is satisfactory. Because v̇1, . . . , v
(4)
1 are calculated using

y3− yd3, ẏ3− ẏd3, y4− yd4, ẏ4− ẏd4 and their time derivatives, the controller depends

only on x and the reference trajectory. Hence, it is a static state feedback. The

expressions for v1, v̇1, v̈1 are

v1 = [ÿd3, ÿd4]
T − k1[z̃13, z̃15]

T − k2[z̃14, z̃16]
T (3.50a)

v̇1 = [y
(3)
d3 , y

(3)
d4 ]

T − k1[z̃14, z̃16]
T − k2(v1 − [ÿd3, ÿd4]

T ) (3.50b)

v̈1 = [y
(4)
d3 , y

(4)
d4 ]

T − k1(v1 − [ÿd3, ÿd4]
T )− k2(v̇1 − [y

(3)
d3 , y

(3)
d4 ]

T ) (3.50c)

where k1, k2 are control gains from K. Similar expressions can be obtained for

v
(3)
1 , v

(4)
1 .
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3.1.4 QSF Domain

In this section, we describe the domain where the QSF is well-defined. The

control is singular at θ = ±90◦ and β = ±90◦ as these model singularities which

occur in (2.14) due to Euler angles. At points where the Jacobian matrix of the z̃-

coordinates is singular, the QSF cannot be evaluated. These points can be obtained

from the singularities of D◦ in (3.44). We obtain

ϕ = ±90◦ (3.51a)

[sβ ,−sαcβ , cαcβ ] ·Rn3 = 0 (3.51b)

p̈3 = g −
cαcβ(γ

2
αc

2
β + γ2β)Lm

mQ +mL
(3.51c)

p̈3 = g (3.51d)

The LHS of (3.51b) (which from (3.34) is d31 scaled) can be geometrically interpreted

as the inner product of q and the direction of thrust Rn3. Thus, when the pendulum

is perpendicular to b3, a physical singularity occurs. Condition (3.51c) corresponds

to ū = 0. When the pendulum’s downward linear acceleration p̈3 = g, we obtain

(3.51d). This is another physical singularity that appears in drone motion control.

Based on the above, we can conclude that the controller’s domain is a practical

subset of M since the above points are atypical of SLS operation.

3.2 Matlab Simulation

In this section, Matlab simulations validate QSF performance. Simulations

demonstrate the importance of compensating for drag force/torque, and disturbance

force/torque. We consider simulations for output stabilization and time-varying out-

put tracking and compare performance with the geometric control (GC) in [3]. The

model parameters used are in Table 4.1. The drag force coefficient D is from [123].

The values of drag moments coefficients A,B are from [115].

3.2.1 Stabilization Performance Comparison

This section considers the stabilization of the SLS at x = 0 with no exter-

nal disturbance. Since the error dynamics of the QSF (3.48) is LTI, designing

transient performance for y is straightforward. We use an LQR gain with Q =

blockdiag (Q1, Q2, Q3, Q4), R = 0.1 ·I4, where Q1 = Q2 = diag (100, 100, 100, 1, 1, 1),

Q3 = Q4 = I2. The integral control gains are Kσ = [2, 2, 0.5, 0.5]. We denote QSF 0

as the QSF with integral control and drag compensation, QSF 1 is without integral

control but with drag compensation, and QSF 2 is without either integral control or
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Table 3.1: Model parameters.
m 1.6 kg
mp 0.16 kg
mc 0.05 kg
L 1m
J1 0.03 kg ·m2

J2 0.03 kg ·m2

J3 0.05 kg ·m2

D diag(0.49, 0.24, 0) s−1

A S([0.01, 0, 0]T ) N · s
B diag(0.9, 0.9, 0.01)N · s ·m

drag compensation. This notation is used throughout Sections 4 and 5. Due to the

three-loop nested controller design and the nonlinear error dynamics of the GC, its

gain tuning is challenging, and we resorted to trial and error in an effort to match

the transient performance of the QSF.

We consider two initial conditions with nonzero position pL(0) = [px0, py0, pz0]
Tm

and remaining states zero (i.e., the SLS is at rest and yaw is zero). We observe

from Fig. 3.1, where pL(0) = [2, 2, 2]T , and Fig. 3.3, where pL(0) = [−0.5, 1.5, 0]T ,

that for the same control gains, the QSF maintains good transient performance

for different initial condition. This convergence is expected, given the LTI error

dynamics. On the other hand, the GC’s transient performance varies dramatically

with initial condition. That is, in Fig. 3.3, the GC has a large 0.8m peak deviation

from its setpoint for pL3. In Fig. 3.1 the peak errors are smaller, but trajectories

of the GC are oscillatory relative to the QSF. For both initial condition, the GC’s

yaw transient response is erratic. Fig. 3.2 shows the control input ū, τ for initial

condition pL(0) = [2, 2, 2]T . The control input of the QSF is smooth and bounded

to practical levels, while the GC’s input has large amplitudes and high-frequency

transients. Comparing QSF 0,1,2 we observe that drag compensation provides a

similar transient response since in hover no drag force is present. Further, integral

action does not affect the response since no disturbance is present.

Next, we study the effects of constant disturbance on the QSF and GC for a

stabilization task. The setpoint is x = 0, external force disturbance fe = [5, 5, 10]TN,

and torque disturbance τe = [1, 0, 0]TN · m. The IC pL(0) = [2, 2, 2]T m and the

remaining states are zero. Fig. 3.4 shows the output response. We observe that

the QSF 0, thanks to integral action, is the only controller which converges to the

setpoint. QSF 1 and QSF 2 do not have integration and have constant steady-

state tracking error. The GC response is highly oscillatory and not convergent.

Fig. 3.5 shows the corresponding control input. As in the previous simulation, drag

compensation in the QSF provides a similar transient response as there is drag in
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QSF_0

QSF_1
QSF_2

Figure 3.1: Stabilization with IC pL(0) = [2, 2, 2]T m: System states pL, ψ. No
disturbance.

QSF_0

QSF_1
QSF_2

Figure 3.2: Stabilization with IC pL(0) = [2, 2, 2]T m: Control input ū, τ . No
disturbance.

hover.

3.2.2 Trajectory Tracking Performance Comparison

The proposed QSF is capable of tracking complex reference trajectories. We

consider a “figure-8” reference

yd(t) =


3 sin(πt/8) m

1.5 sin(πt/4) m

0.5 sin(πt/8)− 9 m

0.02t rad

 (3.52)

47



Figure 3.3: Stabilization with IC pL(0) = [−0.5, 1.5, 0]T m: System states pL, ψ. No
disturbance.

QSF_0

QSF_1
QSF_2

Figure 3.4: Stabilization with IC pL(0) = [2, 2, 2]T m: System states pL, ψ. Constant
disturbance.

Initially, no disturbance is considered. The gain for the QSF was obtained us-

ing LQR with Q = blockdiag (Q1, Q2, Q3, Q4), R = 0.1 · I4, where Q1 = Q2 =

diag (100, 100, 100, 1, 1, 1), Q3 = Q4 = I2. The integral control gains are Kσ =

[500, 500, 30, 30].

Tracking error is shown in Fig. 3.6, and configuration variables are in Fig. 3.7.

The input trajectories are in Fig. 3.8. We observe that for QSF 0 and QSF 1 the

tracking error converges to 0 with an acceptable transient. Further, QSF 2 has

large steady-state tracking error in pL1 and pL2. Hence, we conclude the LTI error

dynamics of QSF 0 and QSF 1, which include rotor drag compensation, provide

accurate high-performance time-varying trajectory tracking. The importance of
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QSF_0

QSF_1
QSF_2

Figure 3.5: Stabilization with IC pL(0) = [2, 2, 2]T m: Control input ū, τ . Constant
disturbance.

drag compensation is consistent with recent results [20], [21]. Input trajectories

remain within a practical range for all QSF controllers. The GC trajectories have

oscillation or diverge due to unmodelled rotor drag.

QSF_0

QSF_1
QSF_2

Figure 3.6: Output tracking: tracking errors for pL, ψ. No disturbance.

Finally we test the QSF and GC for trajectory tracking in the presence of con-

stant disturbance. Control gains are the same as in the previous simulation. Track-

ing error is shown in Fig. 3.9, and the configuration variables are in Fig. 3.10. The

input trajectories are in Fig. 3.11. We observe that tracking error of QSF 0 con-

verges to a practically small bounded error, while QSF 1, which has no integration,

has large steady-state tracking errors. The trajectories for QSF 2 and GC do not

converge and exhibit dangerous oscillations and divergence. Hence, we conclude
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QSF_0

QSF_1
QSF_2

Figure 3.7: Output tracking: System states p, α, β, η. No disturbance.

QSF_0

QSF_1
QSF_2

Figure 3.8: Output tracking: Control inputs ū, τ . No disturbance.
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integral action and drag compensation are important factors to ensure trajectory

tracking performance in the presence of disturbance.

QSF_0
QSF_1
QSF_2

Figure 3.9: Output tracking: tracking errors for pL, ψ. Constant disturbance.

QSF_0
QSF_1
QSF_2

Figure 3.10: Output tracking: System states p, α, β, η. Constant disturbance.

3.3 PX4-SITL Simulation

This section presents Software-In-The-Loop (SITL) simulation of the QSF. SITL

emulates an autopilot environment so that performance can be verified in a safe and

realistic setting. For instance, it ensures the design is robust to unmodeled effects

such as controller saturation, multi-rate sampling, and computational delay. Such

real-world effects can degrade performance of the design or make theory impossible

to implement (e.g., there may not be enough processing power or memory). We
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QSF_0
QSF_1
QSF_2

Figure 3.11: Output tracking: Control inputs ū, τ . Constant disturbance.

choose the open source PX4-SITL framework [117] with the Gazebo simulator using

the ODE as the physics engine [128]. Gazebo is chosen for the simulator because

of its simple multi-body model format and since it is open-source and currently

recommended by the PX4 developers for SITL. Unlike the Matlab simulation in

Section 3.1 where the SLS model directly uses the differential equations (2.14), a

Gazebo model requires no differential equation model but rather is based on the

geometry and inertial properties of the system’s multiple bodies. The PX4-Gazebo

SITL simulation leverages the RotorS simulation plugins [129]. RotorS is based

on a ROS/Gazebo framework. We provide the simulation source code so that the

research community can reproduce the results independently or modify the design

on a standard desktop PC.

The structure of the simulation environment is shown in Fig 3.12. There are

three components: the Gazebo simulator, the PX4 autopilot code, and the ROS

Offboard Control. Gazebo contains a multibody dynamics engine, a 3D graphics

interface, a 3DR Iris quadrotor-based SLS model description file, external distur-

bances, and plugins adopted from RotorS that simulate onboard sensors, e.g., GPS,

IMU, and magnetometer. The PX4 autopilot software is emulated to run on a desk-

top. The ROS Offboard Control contains our QSF and coordinate transformations

that transform the Gazebo world frame to the navigation frame N used in the QSF.

3.3.1 SITL Results

A video of the stabilization and time-varying tracking discussed in this subsection

is at https://www.youtube.com/watch?v=Js6GVBOfXts&t=1s.
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QSF

 Input

Scaling

ROS Offboard Control

PX4

QGroundControl External Disturbance

Open Dynamics Engine

(ODE)

Gazebo Controller

Interface

Simulated Sensors

Gazebo

IRIS 3DR SLS Model

Figure 3.12: PX4-SITL System.

Stabilization

For QSF stabilization, we test the controller first without disturbance and then

with a wind disturbance applied. The set point for the QSF is yd = [0, 0,−10, 0]T .

The quadrotor takes off with the PX4 built-in motion controller and commanded

to a position away from the set point. The configuration variables are in Fig. 3.13

with the QSF 0 activated at t = 55 s. QSF 0 is enabled in the region shaded in

blue. As can be seen from Fig. 3.14, the built-in PX4 controller (which uses the

MC position control module) has weakly decaying oscillations in all configuration

variables. On the other hand, QSF 0 achieves good stabilization performance with

a well-damped transition to the setpoint in about 5 s. This performance is similar to

the stabilization in Matlab given in Section 3.2. The corresponding input trajectories

are given in Fig. 3.14 which are physically realizable and unsaturated.

Next, we study the effect of wind disturbance on stabilization performance. Test-

ing this in Gazebo is relatively simple thanks to the open-source wind disturbance

plugins included [129]. The main source of disturbance caused by wind is rotor drag

[133]. The rotor drag coefficient is set as CD = 0.000 175 kg [129]. The wind velocity

is set to 5 m s−1 in the n2 direction. The set point is yd = [0, 0,−10, 0]T . Simulation

results for the configuration variables are in Fig. 3.15 where the QSF is enabled at

t = 55 s. QSF 0 can achieve exponential convergence while QSF 1 has steady-state

error in the n2-direction.

Trajectory Tracking

One of the advantages of the QSF is its guaranteed tracking performance for any

bounded smooth trajectory for the flat output. We reuse reference trajectory (3.52)

and control gains from Section 3.2.2.

As shown in Fig. 3.16 and Fig. 3.17, the tracking error converges near to zero

exponentially with good transient performance. The small steady state errors seen
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Figure 3.13: SITL stabilization simulation: system states p, α, β, η. QSF 0 is enabled
in the blue region. No wind disturbance.
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Figure 3.14: SITL stabilization simulation: inputs ū, τ . QSF 0 is enabled in the
blue region. No wind disturbance.

in Fig. 3.16 are due to the rotor drag approximation made in the lumped model (4.1).

This should be compared to the Gazebo rotor drag model which acts at individual

rotors as described in Section 2.3.3. The control input remains unsaturated, as

shown in Fig. 3.18. No wind disturbance is applied.
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Figure 3.15: Stabilization SITL simulation with wind disturbance: system states
p, ψ.
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Figure 3.16: Time-varying output tracking SITL simulation: output tracking error
y − yd.

Lastly, we study the importance of compensating rotor drag for trajectory track-

ing by comparing QSF 0 with QSF 2. No wind velocity is applied. Since rotor drag
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Figure 3.17: Time-varying output tracking SITL simulation: system states p, α, β, η.
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Figure 3.18: Time-varying output tracking SITL simulation: inputs ū, τ .

is a function of quadrotor velocity, we expect high-speed flight benefits from rotor

drag compensation. The output tracking error results are shown in Fig. 3.19. We
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can see from Fig. 3.19 that without rotor drag compensation (QSF 2), the tracking

performance degrades significantly, especially in pL1, pL2 direction. These results

confirm those obtained in Matlab and are in line with recent work which stresses

the importance of compensating rotor drag for quadrotors [20], [21].
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Figure 3.19: Rotor drag effect on time-varying output tracking SITL simulation:
output tracking error y − yd.

3.4 Conclusions

A novel algorithm for designing a QSF for a general flat system is presented in

this paper. The QSF achieves LTI exponentially stable tracking error dynamics on

a well-defined and practical region of state space. Although QSF is investigated

in [111]–[113], the design procedure is only demonstrated by specific examples. This

paper is the first to provide a systematic algorithm for QSF. The procedure for ap-

plying the QSFA is described in detail for the SLS. The resulting tracking controller

can be readily tuned thanks to its LTI error dynamics. Compared to dynamic feed-

back linearization, the QSF benefits from a simpler controller expression with static

dependence on state and reference trajectory and its derivatives. We have included

rotor drag in the SLS model and directly compensated these forces/torques in the

QSF. This improves the performance of QSF trajectory tracking, as shown in the

SITL and Matlab simulations. An external disturbance force/torque is added to the

model, and integral control is introduced for its compensation. Matlab simulated

results show enhanced performance in comparison to a popular geometric control. In
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order to demonstrate the proposed QSF can be implemented on a real autopilot, we

present a software pipeline for implementing a PX4/Gazebo SITL simulation. SITL

simulation is a critical step in developing flyable controllers as it proves the design

is robust to unmodelled effects. The developed SITL framework code is available

publicly and can be used to further develop advanced model-based control.
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Chapter 4

Quasi-static Inner-Outer Loop Con-

trol of SLS and Experimental Re-

sults

4.1 SLS Modelling

This section is based on Section 2.1. We present the outer-loop dynamics here,

which will be used in this Chapter.

Compensation for parasitic rotor drag forces has been shown to be important in

recent work on aggressive quadrotor motion control such as [20], [22], [123]. Rotor

drag force depends strongly on the linear velocity of the UAV and significantly

dominates other drag forces such as air resistance due to the fuselage at practical

drone speeds (about 5m s−1 or less). Hence, it is therefore natural to consider drag

force compensation for the more complex SLS dynamics. Following [115], we include

drag forces and torques in the UAV dynamics

ṗQ = vQ (4.1a)

mQv̇Q = mQgn3 −Rūn3 + Tq −RDRT vQ (4.1b)

Ṙ = RS(ω) (4.1c)

Jω̇ = −ω × Jω + τ −ART vQ −Bω (4.1d)

where we denote mQ as drone mass, g is the acceleration of gravity, T ≥ 0 denotes

tension in the pendulum, ū ≥ 0 is total propeller thrust, J = diag(J1, J2, J3) is

the inertia the drone about its CoM, and τ is propeller torque expressed in B. The
rotor drag parameters are D = diag(d1, d2, 0), d1, d2 > 0 for drag force, and constant

matrices A and B for drag torque. Further details on rotor drag modelling can be
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found in [115]. The skew operator S : R3 → so(3) in (4.1c) is

S(x) =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 , where x =

x1x2
x3

 .
The rotation matrix R is parameterized with the ZYX Euler angles η = [ϕ, θ, ψ]T ∈

R3.

The translational pendulum dynamics is

ṗL = vL (4.2a)

mLv̇L = −Tq +mLgn3 (4.2b)

where mL is payload mass. The rotational pendulum dynamics is

q̇ = ωL × q (4.3a)

JLω̇L = −ωL × JLωL + Lq × (mLgn3 −mLv̇Q) (4.3b)

where JL is the inertia of mL about the drone’s CoM, and ωL is the load’s angular

velocity in N . Using the Parallel Axis Theorem, JL can be expressed in terms of q:

JL = mLL
2(I − qqT ) (4.4)

We want to write the SLS dynamics using pQ and vQ in the state. Hence, we first

eliminate T in (4.2b) and (4.1b) to get

mQv̇Q +mLv̇L = (mQ +mL)gn3 −Rūn3 −RDRT vQ (4.5)

The second derivative of (2.1) gives

v̇L = v̇Q + Lq̈ (4.6)

and substituting for v̇L in (4.5) and using (4.6) gives the payload’s translational

dynamics

(mL +mQ)v̇Q = (mL +mQ)gn3 −Rūn3 −mQLq̈ −RDRT vQ (4.7)

where we have substituted q̈ = ω̇L × q + ωL × q̇ from (4.3a). Combining (4.7) and

(4.6), we get

v̇Q = − mL

mQ +mL
Lq̈ + gn3 −

Rūn3 +RDRT vQ
mQ +mL

(4.8)

Substituting (4.4), and (4.8) into (4.3b), we obtain the rotational dynamics of the
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load expressed in N :

mQL(I − qqT )ω̇L = q × (Rūn3 +RDRT vQ) (4.9)

In addition, we have the relation between ω̇L and γ̇α, γ̇β

ωL =

10
0

 γα +

 0

cα

sα

 γβ , ω̇L =

1 0 0

0 cα −sα

0 sα cα


 γ̇α

γ̇β

γαγβ

 (4.10)

which can be substituted into (4.9) to obtain dynamics for γα, γβ .

Given the above, the system dynamics can be separated into inner- and outer-

loop dynamics and written in control-affine form. The outer-loop dynamics is

ẋ = f(x) + g(x) (u0 −RDRT vQ)︸ ︷︷ ︸
u

(4.11)

f(x) =



vQ

γα

γβ

sβ(γ
2
αc

2
β + γ2β)LM0

−sαcβ(γ
2
αc

2
β + γ2β)LM0

g + cαcβ(γ
2
αc

2
β + γ2β)LM0

2γαγβtβ

−γ2αcβsβ



, g(x) =

[
05×3

ḡ(x)

]

with x = [pTQ, α, β, η
T , vTQ, γα, γβ ]

T ∈ R10, u0 = Rūn3, tβ = tanβ, M0 = mL/(mQ +

mL),

ḡ(x) =



05×3
mLc

2
β+mQ

M1

mLsαsβcβ
M1

−mLcαsβcβ
M1

mLsαsβcβ
M1

mL+mQ−mLs
2
αc

2
β

M1

mLsαcαc
2
β

M1

−mLcαsβcβ
M1

mLsαcαc
2
β

M1

mL+mQ−mLc
2
αc

2
β

M1

0 cα
LmQcβ

sα
LmQcβ

− cβ
LmQ

− sαsβ
LmQ

cαsβ
LmQ


(4.12)

where M1 = (mQ +mL)mQ. Input u is related to η and ū by

u = [F1, F2, F3]
T = −

cϕsθcψ + sϕsψ

cϕsθsψ − sϕcψ

cϕcθ

 ū−RDRT vQ (4.13)
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which is an invertible relation between (ϕ, θ, ū) and u (for a given ψ) that is often

used in inner-outer loop control [134]. The inner-loop dynamics is given by (4.1c)

and (4.1d).

4.2 QSF Outer Loop Controller Design

In order to apply QSF, the system must be flat. Hence, we prove the flatness of

the outer-loop (4.11). That is, we show that system states pL, vL, α, β, γα, γβ and

input u can be expressed as a function of the flat output and a finite number of

their derivatives.

Theorem 4.2.1. System

mQv̇Q = mQgn3 − u+ Tq (4.14a)

mLv̇L = −Tq + (mL +mC)gn3 (4.14b)

has a flat output y = pL.

Proof. The expression for Tq in terms of ẏ is obtained immediately from (4.14b).

We obtain expressions for the unit vector q = Tq/∥Tq∥ and tension T = Tq · q.

q =
Tq

∥Tq∥
=

(mL +mC)gn3 −mLv̇L
∥(mL +mC)gn3 −mLv̇L∥

(4.15)

T = ∥(mL +mC)gn3 −mLv̇L∥ (4.16)

It is easy to see that α, β can be calculated from (4.15). Finally, γα, γβ can be

obtained from the derivative of (4.15) and u can be calculated by adding (4.14a)

and (4.14b).

4.2.1 Quasi-Static Feedback Linearization

In this section, a quasi-static feedback (QSF) linearizing controller is designed

with flat output

y = [y1, y2, y3]
T = pL (4.17)

We follow the Quasi-static Feedback Algorithm (QSFA) in [40] to design a QSF

static state feedback with linear error dynamics.

Following the QSFA we first take enough time derivatives of y so that at least

one component of u first appears in every component of y. This occurs with the

second-order time derivative of y:

ÿ = a0(x) +D0(x)u (4.18)
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where

a0 =

a
0
1

a02
a03

 =


−LsβmQ(c2βγ

2
α+γ

2
β)

mQ+mL

LcβsαmQ(c2βγ
2
α+γ

2
β)

mQ+mL

−LcαcβmQ(c2βγ
2
α+γ

2
β)

mQ+mL
+ g



D0 =

D
0
1

D0
2

D0
3

 =
1

mQ +mL

 s2β −cβsαsβ cβcαsβ

−cβsαsβ c2βs
2
α −cαsαc

2
β

cβcαsβ −cαsαc
2
β c2βc

2
α


and D0

i denotes the ith row of D0. We require a feedback design to stabilize UAV

hover as a special case for practical reasons. Hence, we evaluate D0 at α = β = 0

and inspect the linear independence of D0
i , i = 1, 2, 3. We obtain

D0(0) =
1

mQ +mL

0 0 0

0 0 0

0 0 1

 (4.19)

Hence, rank (D0)(0) = 1. Since only the last row of D0(0) is linearly independent,

we perform a linearization by assigning auxiliary input v1 = ÿ3. The first two rows

of D0 are linearly dependent on the third row for all α, β except when cα = 0

where D0
3 = 0, i.e., D0

1 = tβ/cαD
0
3 and D0

2 = −tαD
0
3. Using these relations we can

eliminate u from ÿ1, ÿ2 to obtain their expressions in terms of x and v1:

ÿ1 =
tβ
cα

(g − v1) (4.20a)

ÿ2 = tα(g − v1) (4.20b)

We remark that since rank (D0(x)) = 1 for all x, the system cannot be static state

input-output feedback linearized (w.r.t. y) as relative degree, which requires a non-

singular D0 about some value of x, is not well-defined. Since the system is flat, it can

be dynamically linearized. However, the QSF provides a simpler exact linearization

with static state dependence. Continuing with the QSFA, we take the third time

derivative of y1, y2:

y
(3)
1 =

(v̇1cβsβ − γβ (g − v1)) cα − sαγαcβsβ (g − v1)

c2βc
2
α

(4.21a)

y
(3)
2 =

v̇1sαcα + γα (g − v1)

c2α
(4.21b)
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Since u does not appear in (4.21) we must take a fourth time derivative to obtain[
y
(4)
1

y
(4)
2

]
= a1(x, v1, v̇1, v̈1) +D1(x, v1)u (4.22)

where a1(x, v1, v̇1, v̈1) ∈ R2×1, D1(x, v1) ∈ R2×4 are functions of x, auxiliary input

v1, and its time derivatives. Matrix D1 is

D1(x, v1) =
g − v1

LmQcαcβ

[
1 0 −tβ/cα

0 1 tα

]
(4.23)

Defining a second linearization with auxiliary input v2 = [y
(4)
1 , y

(4)
2 ]T , and combining

it with v1 = ÿ3, we have the relation between u and v = [vT2 , v1]
T :

v =

[
v2

v1

]
= ā(x, v1, v̇1, v̈1) + D̄(x, v1)u (4.24)

where

ā(x, v1, v̇1, v̈1) =

[
a1(x, v1, v̇1, v̈1)

a03(x)

]
, D̄(x, v1) =

[
D1(x, v1)

D0
3(x)

]
(4.25)

The determinant of D̄ is given by

det(D̄) =
(g − v1)

2

(mQ +mL)L2m2
Qc

2
βc

2
α

(4.26)

and hence we can solve (4.24) for u as a function of x and v1, v̇1, v̈1 provided v1 ̸= g,

cβ ̸= 0 and cα ̸= 0. Since these conditions hold for safe flight conditions, they can

be ignored in practice.

By setting v = [vT2 , v1]
T = [y

(4)
1 , y

(4)
2 , y

(2)
3 ]T and using (4.24), a linearizing QSF

is obtained. The tracking error coordinates are defined as

z̃ = [z̃1, . . . , z̃10]
T

= [y1 − yd1, . . . , y
(4)
1 − y

(4)
d1 , y2 − yd2, . . . , y

(4)
2 − y

(4)
d2 ,

y3 − yd3, ẏ3 − ẏd3]
T (4.27)

where ydi, 1 ≤ i ≤ 3 are desired outputs. Applying the linearizing control

u = D̄(x, v1)
−1

(Kz̃ − ā(x, v1, v̇1, v̈1) + y
(r̄)
d ) (4.28)

with y
(r̄)
d = [y

(4)
d1 , y

(4)
d2 , y

(2)
d3 ]

T we obtain linear error dynamics

˙̃z = (Ac +BcK)z̃ (4.29)
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where

Ac = blockdiag(A1, A2, A3)

Bc =
[
e4 e8 e10

]
ei ∈ R10 denotes the ith unit vector, and

A3 =

[
0 1

0 0

]
, and A1 = A2 =

[
03×1 I3

0 01×3

]
∈ R4×4

where Ac ∈ R10×10, Bc ∈ R10×3 are in Brunovsky Controller form [135], and K ∈
R3×10 is a control gain chosen so that Ac + BcK is Hurwitz and the closed-loop

system has appropriate transient performance. An important benefit of LTI error

dynamics is the ease of gain tuning. The z̃ coordinates have physical significance

of position, linear velocity, linear acceleration, and linear jerk. Hence, choosing

the Q and R weights in an LQR gain to achieve suitable transient performance is

intuitive. Because v̇1, v̈1 in (4.24) are calculated using y3 − yd3, ẏ3 − ẏd3 and their

time derivatives, the control law is a static function of x, yd, ẏd, ÿd, y
(3)
d , and y

(4)
d . The

static nature of the feedback law makes it simpler to implement onboard relative

to a dynamic linearization. The expressions for v1, v̇1, v̈1 are linear functions z̃9, z̃10

required to evaluate (4.28) and given by

v1 = ÿd3 − k1z̃9 − k2z̃10

v̇1 = y
(3)
d3 − k1z̃10 − k2(v1 − ÿd3)

v̈1 = y
(4)
d3 − k1(v1 − ÿd3)− k2(v̇1 − y

(3)
d3 )

where k1, k2 are component of gain K.

4.3 Results

4.3.1 Simulation Results

This section presents Software-In-The-Loop (SITL) simulation of the proposed

design. We choose the open-source PX4-SITL framework [117] with the Gazebo sim-

ulator using the open dynamics engine (ODE) as the physics engine [128]. The PX4

project currently recommends this environment for development, and it is a logical

choice since we use Pixhawk/PX4 for the experimental testing in Section 4.3.2. Rel-

ative to Matlab, SITL simulation is a useful tool to check controller performance

before actual flight tests. It ensures that control designs can be implemented within

the constraints of an actual autopilot platform (e.g., controller saturation and sam-
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pling frequency effects). Also, the simulation environment uses the RotorS plugin

which incorporates an accurate drag model [129], i.e., it models drag at individual

rotors and does not assume equal rotor speed as does the model in (4.1b). Hence,

our simulation also tests robustness to model error. The standard 3DR Iris quadro-

tor was modified to include a pendulum. The built-in PX4 module mc_att_control

was used for the inner-loop.

We test the QSF controller for stabilization and compare it with the PX4’s built-

in PID outer-loop control mc_pos_control. (The stock PX4 firmware uses an inner-

outer loop control with inner loop mc_att_control.) The set point for the QSF

is yd = [0, 0,−10, 0]T m. The quadrotor takes off with mc_pos_control and then

commanded away from yd. The configuration variables are shown in Fig. 4.1 with the

QSF active at t ≥ 138 s. We observe from Fig. 4.2 that mc_pos_control has weakly

decaying oscillatory behaviour in all configuration variables. On the other hand,

QSF converges quickly to its setpoint in about 5 s and without oscillation. Input

trajectories are shown in Fig. 4.2 which are unsaturated and practically realizable.
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Figure 4.1: SITL simulation: system states p, α, β, η. QSF is active in the blue area.

4.3.2 Experimental Results

The experiments were conducted in the Applied Nonlinear Control Lab (ANCL),

University of Alberta. The indoor ANCL flying arena is a 10 × 5 × 3 m3 volume.

The video demonstration of the stabilization and time-varying output tracking is

at https://www.youtube.com/watch?v=wyE0HNX4Rf8&t=1s and the code used to

perform these experiments is at https://github.com/ANCL/QuasiSLSExp. The

quadrotor platform is a currently available and relatively inexpensive open-source
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Figure 4.2: SITL simulation: inputs ū, τ . QSF is enabled in the blue region.

Holybro Vision Dev Kit V1.5. Specifications can be found at [118]. The only

modification to the Holybro was a 3D-printed bracket to suspend a rope attached to

a 3D-printed payload. A 10 camera Vicon Vantage 5 motion capture system collects

the pose trajectories of the Holybro and load. The block diagram of the system is

shown in Fig. 4.3. The frequency of the Vicon data is 100Hz and transmitted to the

companion computer using 5GHz Wi-Fi. Knowing pL and pQ allows us to compute q

from (2.1). Knowing vL and vQ we can determine γα and γβ . Yaw ψ is extracted from

the Vicon UAV pose since magnetic disturbance prevented the use of the Pixhawk’s

onboard magnetometer. Velocity states were obtained with low-pass filtered finite

difference on the companion computer. The companion computer sends pQ, ψ to

PX4 at 100Hz. The QSF runs at 50Hz on the companion computer and gets pQ, vQ

from the EKF2 PX4 module, and pL, vL directly from Vicon. The QSF computes the

desired force in 3D and computes the desired attitude setpoint and total thrust. The

desired attitude is tracked by the built-in PID controller mc_att_control. Thrust

commands are compensated for decreasing battery voltage. The model parameters

used in the control are in 4.1.

Table 4.1: Model parameters.
mQ 1.412 kg
mL 0.08 kg
L 1m
J1 0.03 kg ·m2

J2 0.03 kg ·m2

J3 0.05 kg ·m2
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PX4-Autopilot

Companion Computer (Ubuntu/ROS)

EKF2

VICON

SLS MC_ATT
Control

QSF
Convert
Eq. (17)

Figure 4.3: Block diagram of closed-loop used in the experiment.

4.3.3 Set-point stabilization

This section presents stabilization performance. Since the error dynamics (4.29)

of the QSF is LTI, designing transient performance for y is straightforward. A LQR

gain is obtained using Q = blockdiag (Q1, Q2, Q3), R = 0.1 · I3, where Q1 = Q2 =

10 · I4, Q3 = I2. The QSF is enabled in the coloured areas in Fig. 4.4. The three

set points for three coloured areas are [1, 0.5,−0.6] m, [−1, 0,−0.3] m, [0, 0,−0.3] m

respectively. QSF achieves stabilization in about 5 s with a reasonable transient. As

no integration was used in the outer loop, a small steady-state error is observed.
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Figure 4.4: Stabilization experiment: Components of payload position pL
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4.3.4 Time-varying Trajectory Tracking

Next, we test the time-varying tracking performance of the QSF. We choose the

demanding Figure-8 trajectory

yd(t) =

 1.5 sin(πt/8) m

0.75 sin(πt/4) m

0.5 sin(πt/8)− 0.6 m

 (4.30)

We observe good error tracking in Fig. 4.5 which shows the reference in red and the

actual position in blue. The corresponding speed ∥vL∥ is shown in Fig. 4.6.
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-2 -2-1
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Figure 4.5: Time-varying output tracking experiment: Components of payload po-
sition pL

4.4 Conclusion

This paper presented a novel nonlinear motion control for a SLS. A quasi-static

feedback linearization method was applied to the outer-loop of the SLS. The result

was a static state feedback law depending on state and reference trajectory. As the

error dynamics are LTI, gain tuning and the stability proof were straightforward.

The proposed design was tested in a PX4-SITL simulation framework which demon-

strated excellent stabilization performance. The same controller was moved to the

experimental platform where stabilization and time-varying output tracking for a

demanding reference were demonstrated.
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Figure 4.6: Time-varying output tracking experiment: Speed trajectory
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Chapter 5

Contact Manipulation with Fully-

Actuated Aerial Platform

5.1 Preliminaries on I&I Adaptive Control

Consider the system dynamics

ẋ = f(x) + g(x)u (5.1)

with x ∈ Rn, u ∈ Rm and an equilibrium x⋆ to be stabilized, where the function

f(·) and g(·) depend on an unknown parameter vector θ ∈ Rq, and the problem of

finding an adaptive state feedback control law of the form

˙̂
θ = w(x, θ̂) (5.2)

u = v(x, θ̂) (5.3)

such that all trajectories of the closed-loop system (5.1), (5.2) and (5.3) are bounded

and the tracking error e = x− x⋆ converges to zero, is considered.

Since the proposition of immersion and invariance (I&I) control [76], it has been

adopted widely in nonlinear adaptive control design problems. The basic idea of the

immersion and invariance (I&I) approach is to design the control by immersing the

plant dynamics into a lower-order asymptotic stable target system ξ̇ = α(ξ) that

captures the desired closed-loop behaviour. We have x ∈ Rn, ξ ∈ Rp and p < n. A

smooth mapping x = π(ξ) connects the original and target systems. We also require
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the target system to satisfy the following conditions

π(ξ(0)) = x(0) (5.4)

π(0) = 0 (5.5)

f(π(ξ)) + g(π(ξ))µ(π(ξ)) =
∂π

∂ξ
α(ξ) (5.6)

where u = µ(x) is the control law. From (5.4), we conclude that the systems x

and ξ share starting point. Condition (5.5) guarantees those two systems have the

same equilibrium point and (5.6) is equivalent to ẋ = π̇(ξ). Then any trajectory

x(t) is the image of a trajectory ξ(t) of the target system. Thus the stabilisation

problem for the zero equilibrium of the original system can be recast as the problem

of solving the partial differential equation (5.6) with the boundary conditions (5.4)

and (5.5).

Define a manifold in n-dimensional state space as

M = {x ∈ Rn|x = π(ξ), ξ ∈ Rp} (5.7)

with (5.4) and (5.5) hold. From (5.6), the manifold M is invariant. Hence all

trajectories x(t) that start on the manifold remain there and asymptotically converge

to the point π(0), which is the origin. However, from (5.4)-(5.6), the mapping π

and the control law v depend on initial condition x(0). By modifying the control

law u = µ(x) so that, for all initial conditions, the trajectories of the original

system remain bounded and asymptotically converge to the manifold M, then M is

rendered attractive. The attractivity of the manifold M can be expressed in terms

of the distance

z = dist(x,M) (5.8)

which should be driven to zero.

A natural application of the I&I approach is adaptive control. We define x′ =

[xT , θ̂]T as the original system state and the target system state is ξ = x. The

smooth mapping π(ξ) connecting x′ and x can be defined as[
x

θ̂

]
=

[
x

θ − β(x)

]
(5.9)

where β(x) is a continuous function yet to be specified. Hence the invariant manifold

M is defined as

M = {[x, θ̂] ∈ Rn × Rq|θ̂ − θ + β(x) = 0} (5.10)
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And the distance term z is defined as

z = θ̂ − θ + β(x) (5.11)

Thus we transform the adaptive control designed problems into finding the nominal

controller that stabilizes the target system and finding a parameter updating law

that drives z to zero. The main theorem of I&I stabilization is presented below.

Theorem 5.1.1. Consider the system (5.1). Assume that there exist smooth map-

ping α : Rp → Rp, π : Rp → Rn, φ : Rn → Rn−p, c : Rp → Rm and v : Rn×(n−p) →
Rm, with p < n such that the following conditions hold:

1. The target system

ξ̇ = α(ξ) (5.12)

with ξ ∈ Rp has a globally asymptotically stable equilibrium at ξ⋆ ∈ Rp and

π(ξ⋆) = x⋆.

2. For all ξ ∈ Rp,
f(π(ξ)) + g(π(ξ))c(π(ξ)) =

∂π

∂ξ
α(ξ) (5.13)

3. The set identity

{x ∈ Rn|φ(x) = 0} = {x ∈ Rn|x = π(ξ), ξ ∈ Rp} (5.14)

holds.

4. All trajectories of the system

ż =
∂φ

∂x
(f(x) + g(x)v(x, z)) (5.15)

ẋ = f(x) + g(x)v(x, z) (5.16)

are bounded and (5.12) has a uniformly globally asymptotically stable equilib-

rium at z = 0.

Then x⋆ is a globally asymptotically stable equilibrium of the closed-loop system

ẋ = f(x) + g(x)v(x, φ(x)) (5.17)

The Theorem 5.1.1 can be interpreted as follows. From (5.12) and the fact

that ξ⋆ is a globally asymptotically stable equilibrium of (5.12), it follows that ξ(t)

converges to ξ⋆ as t → ∞. From (5.14), it follows that x(t) = π(ξ(t)) converges

to x⋆ as t → ∞. Then, the control input u = v(x, z) is designed to drive the

off-the-manifold coordinates z to zero and keeps the system trajectories bounded.
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To illustrate Theorem 5.1.1, consider the two-dimensional system as an example

ẋ1 = −x1 + θx31x2 (5.18)

ẋ2 = u (5.19)

First, we can observe that the target system is ξ̇ = −ξ. The mapping π(ξ) is defined

as

π(ξ) =

[
ξ

0

]
, c(π(ξ)) = 0, φ(x1, x2) = x2 (5.20)

With (5.20) defined, condition 2 and 3 in Theorem 5.1.1 are satisfied. Now we need

to show that it is possible to select u such that the trajectories of the closed-loop

system are bounded and z = x2 converge to zero.

Let u = −K(x1, x2)x2, with K(x1, x2) ≥ k ≥ 0 for any (x1, x2) and for some

k. We consider the Lyapunov candidate function V = 1/2(x21 + θ2x22). Then its

derivative is shown as

V̇ = x1ẋ1 + θ2x2ẋ2

= −x21 + θx41x2 − θ2x2u (5.21)

For the second term in (5.21), we have

(θx31x2 −
1

2
x1)

2 = θ2x61x
2
2 +

1

4
x21 − θx41x2 ≥ 0 (5.22)

Thus (5.21) becomes

V̇ ≤ −x21 + θ2x61x
2
2 +

1

4
x21 − θ2x2u (5.23)

Design u as

u = −(2 + x81)x2 (5.24)

we have

V̇ ≤ −3

4
x21 + θ2x61x

2
2 − θ2x22(2 + x81)

≤ −3

4
x21 − θ2x22(2 + x81 − x61) (5.25)

It is easily to verify that (2 + x81 − x61) ≥ 0. Thus, we can conclude that V̇ ≤ 0.

With the above discussion, the condition 4 in Theorem 5.1.1 is satisfied. It is worth

noticing that the controller u dose not depend on the parameter θ. This should be

compared to the backstepping-based controller u = −θx41 − x2.

An important application of the I&I approach is the adaptive control. The

74



adaptive control is a control method that uses the information about the unknown

parameters of the system to be controlled to adapt the control law to the system.

The I&I adaptive control is a special case of the I&I control, where the target system

is designed to be the closed-loop system with nominal parameters. To this end, it is

natural to assume that a full-information control law (that depends on θ) is known,

i.e., that the following stabilisability condition holds.

Assumption 5.1.1. There exists a function v(x, θ), where θ is the unknown pa-

rameter vector, such that the system

ẋ = f(x) + g(x)v(x, θ) (5.26)

has a globally asymptotically stable equilibrium x⋆.

The I&I adaptive control problem is then formulated as follows.

Definition 5.1.1. The system (5.1) with 5.1.1 is adaptive I&I stabilizable if there

exists a function β(·), w(·) such that all trajectories of the extended system

ẋ = f(x) + g(x)v(x, θ̂ + β(x)) (5.27)

˙̂
θ = w(x, θ̂) (5.28)

are bounded and satisfy

lim
t→∞

[g(x(t))v(x(t), θ̂(t) + β(x(t)))− g(x(t))v(x(t), θ)] = 0 (5.29)

The main theorem of I&I adaptive control been applied in this section is pre-

sented below.

Theorem 5.1.2. Consider the system below

ẋ1 = f(x1) + g(x1)x2 (5.30)

ẋ2 = θ2u+Φ(x1, x2)θ1 (5.31)

where x1, x2 ∈ R, θ1, θ2 ∈ R are unknown parameters. Without loss of generality,

we assume θ2 > 0. The adaptive I&I state feedback control law

˙̂
θ = −(I +

∂β

∂θ̂
)−1(

∂β

∂x1
(f(x1) + g(x1)x2) +

∂β

∂x2
(−kx2 − ϵ

∂V (x1)

∂x1
g(x1))) (5.32)

u = −(θ̂2 + β2(x, θ1))

(
kx2 + ϵ

∂V (x1)

∂x1
g(x1) + Φ(x)(θ̂1 + β1(x))

)
(5.33)

75



where β(·) = [β1, β2]
T , with

β1(x) = γ1

∫ x2

0
Φ(x1,X )dX (5.34)

β2(x, θ̂1) = γ2

(
k
x22
2

+ ϵ
∂V (x1)

∂x1
g(x1)x2

)
+ γ2

∫ x2

0
Φ(x1,X )(θ̂1 + β1)dX (5.35)

and k > 0, ϵ > 0, γ1 > 0, γ2 > 0 are constants, V (x1) is a positive function and

satisfy the condition
∂V (x1)

∂x1
f(x1) ≤ 0 (5.36)

Then the update law (5.32) is well-defined and the closed-loop system (5.30), (5.31), (5.32)

and (5.33) has a globally stable equilibrium at (x, θ̂) = (0, θ), and limt→∞ x = 0.

The proof is omitted here and can be referred to [79]. In the next section, we

will show how to apply the I&I adaptive control to a simple planar hybrid force-

motion control and compare the result to the classical adaptive controller based on

Lyapunov design.

5.2 An Explanatory Example of I&I Adaptive Hybrid

Force-Motion Control

Consider a simple example of a planar Cartesian manipulator constrained so

that the end effector follows an inclined line with a constant slope. The system

dynamics are given by

p̈1 = u1 + f1 (5.37)

p̈2 = u2 + f2 (5.38)

with scalar constraint p1 +Ap2 = 0, with A are unknown parameters.

Thus, the forces of the constraint are

f1 = λ (5.39)

f2 = Aλ (5.40)

where λ is the constraint multiplier. λ can be solved from the constraint equation’s

time derivatives.

λ = −u1 +Au2
A2 + 1

(5.41)

The control objective is to track a possibly time-varying desired joint position

p2d and force component f1d. Note that since we assume the manipulator remains

in contact with the line, these references determine corresponding p1d and f2d.
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We have a coordinate transformation defined as

q =

[
p1 +Ap2 + b

p2

]
(5.42)

and the inverse transformation is

p =

[
q1 −Aq2 − b

q2

]
(5.43)

The dynamics in the new coordinates are

−Aq̈2 = u1 + f1 (5.44a)

(A2 + 1)q̈2 = −Au1 + u2 (5.44b)

q1 = 0 (5.44c)

Assuming the constraint is exactly known, the hybrid force-motion controller is

designed as

u1 = −A (q̈2d + kv(q̇2d − q̇2) + kp(q2d − q2))− kf (fd − f1)− f1 (5.45a)

u2 = (q̈2d + kv(q̇2d − q̇2) + kp(q2d − x2))−Akf (fd − f1)−Af1 (5.45b)

With this controller, the closed-loop dynamics are

A(ë2 + kv ė2 + kpe2) = −kf (fd − f1) (5.46a)

(A2 + 1)(ë2 + kv ė2 + kpe2) = 0 (5.46b)

where e2 = q2d − q2. We can conclude from (5.46) that

lim
t→∞

e2 = 0 (5.47a)

lim
t→∞

f1 = fd (5.47b)

5.2.1 Lyapunov based adaptive control

Same as the previous case, the dynamics in q coordinates are

−Aq̈2 = u1 + f1 (5.48a)

(A2 + 1)q̈2 = −Au1 + u2 (5.48b)

q1 = 0 (5.48c)
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Since the constraint is not exactly known, the control input is based on the estimated

constraint parameters.

u1 = −Â (ẍ2d + kv ė+ kpe2)− kf (fd − f1)− f1 (5.49a)

u2 = (ẍ2d + kv ė+ kpe2)− Âkf (fd − f1)− Âf1 (5.49b)

Substitute (5.49) into (5.48), we have the closed-loop dynamics

A(ë2 + kv ė2 + kpe2) = Ãv − kf (fd − f1) (5.50a)

(A2 + 1)(ë2 + kv ė2 + kpe2) = AÃv − Ã(kf (fd − f1) + f1) (5.50b)

where

v = q̈2d + kv ė2 + kpe2

Ã = A− Â

Define Lyapunov function candidate as

V =
A2 + 1

2
kpe

2
2 +

A2 + 1

2
ė22 +

1

2
Ã2 (5.51)

The time derivative of V is

V̇ = (A2 + 1)kve2ė2 + (A2 + 1)ė2ë2 + Ã ˙̃A

= (A2 + 1)ė2(kpe2 + ë2) + Ã ˙̃A

= −(A2 + 1)kv ė
2
2 + Ã(Aė2v − ė2(kf (fd − f1) + f1) +

˙̃A) (5.52)

The update law of Â is

˙̂
A = − ˙̃A = Aė2v − ė2(kf (fd − f1) + f1) (5.53)

(5.52) becomes

V̇ = −(A2 + 1)kv ė
2
2 ≤ 0 (5.54)

From (5.54), the time derivative Lyapunov function V (q) is semi-negative definite.

We can conclude that the closed-loop system is stable and limt→∞ ė2 = 0. But

we cannot conclude that limt→∞ Ã = 0. This is usually appeared in the adaptive

control. The adaptive control based on Lyapunov is not able to guarantee the

convergence of the estimated parameters. Then from (5.50b), we have if limt→∞ Ã ̸=
0, then limt→∞ e2 ̸= 0.

Matlab simulation result is given below. We set the nominal parameter value

as A = b = 1, the system initial point as p1 = −1, p2 = 0, the set point is set as
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p1d = −2, p2d = 1. The initial value of line parameter Â = 0.8. The control gain

is chosen as kv = 4, kp = 4, kf = 1. The simulation result is shown in Figure 5.1,

5.2, 5.3, 5.4. We can observe the steady state error of p2 from Figure 5.1 and the

parameter estimation error Ã from Figure 5.4. The steady state error and parameter

estimation error motivate us to design an innovative adaptive controller based on I&I

control. The effects of the persistent excitation condition are shown in Figure ??.

The steady-state errors of the green and cyan lines are smaller than those observed

during stabilization. This improvement is due to the addition of an excitation signal

to the input reference during trajectory tracking.
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Figure 5.1: Stabilization position error q2d − q2.
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Figure 5.2: Stabilization velocity error q̇2d − q̇2.
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Figure 5.3: Stabilization force error fd − f1.
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Figure 5.4: Parameter a convergence error a− â.

5.2.2 I&I adaptive control

The target system is closed-loop system (5.46). Define z = Â − A + β(q2, q̇2).

Take the time derivative of z, we have

ż =
˙̂
A+

∂β

∂q2
q̇2 +

∂β

∂q̇2
q̈2 (5.55)

We design β(q2, q̇2) as

β(q2, q̇2) = γ(kpq2q̇2 +
kv
2
q̇22) (5.56)

Here, we apply the Theorem 5.1.2, specifically the state is q2, q̇2, θ1 = 0, θ2 = A. We
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evaluate (5.35) to get β(q2, q̇2)

With β(q2, q̇2) defined, (5.55) becomes

ż =
˙̂
A+ γ(kpq̇

2
2 + vq̈2)

=
˙̂
A+ γ

(
kpq̇

2
2 + v

−Au1 + u2
A2 + 1

)
(5.57)

where

v = kpq2 + kv q̇2 (5.58)

To make ż negative definite, we design the update law of Â, u1 as

u1 = (Â+ β(q2, q̇2))v − fd (5.59)

u2 = −v − (Â+ β)fd (5.60)

˙̂
A = γ

(
−kpq̇22 + v2 + (fd − f1)

)
(5.61)

Then (5.57) becomes

ż =
˙̂
A+ γ

(
kpq̇

2
2 + v

−A((z +A)v − fd)− v − (z +A)fd
A2 + 1

)
=

˙̂
A+ γ

(
kpq̇

2
2 − v2 + v

−Azv − zvfd
A2 + 1

)
= γ

(
−Azv2 − zvfd

A2 + 1
+ fd(fd − f1)

)
= γ

(
−Azv2 − zvfd

A2 + 1
+ f2d + fd

u1 + au2
A2 + 1

)
= γ

(
−Azv2 − zvfd

A2 + 1
+
zvfd −Azf2d
A2 + 1

)
= − γ

A2 + 1
z(Av2 +Af2d ) (5.62)

Thus we can conclude that the z subsystem is asymptotically stable.

Apply (5.59), (5.60) and (5.61) to (5.48), we have the closed-loop dynamics as

A(q̈2 + kv q̇2 + kpq2) = −zv + fd − f1 (5.63)

(A2 + 1)(q̈2 + kv q̇2 + kpq2) = −Azv − zfd (5.64)

Defining Lyapunov function candidate as

V =
A2 + 1

2
(kpq

2
2 + q̇22) +

A2 + 1

Aγ
z2 (5.65)
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Then the first time derivative of V is

V̇ = (A2 + 1)(kpx2q̇2 + q̇2q̈2) +
A2 + 1

Aγ
zż

= q̇2(−(A2 + 1)kv q̇2 −Azv − zfd)− 2z2(v2 + f2d )

= −kv q̇22 − z2(v2 + f2d )−A2kv q̇
2
2 −Azvq̇2 − z2v2 − f2d z

2 − fdzq̇2 − q̇22

≤ −kv q̇22 − z2(v2 + f2d ) ≤ 0 (5.66)

In the above inequality equation, we utilize the following inequalities,

(Aq̇2 +
1

2
zv)2 = A2q̇22 +Azvq̇2 +

1

4
z2v2 ≥ 0

(fdz +
1

2
q̇2)

2 = f2d z
2 + fdzq̇2 + q̇22 ≥ 0 (5.67)

Finally, we establish the global asymptotically stabilisability of the closed-loop sys-

tem. For the case where V̇ = 0, we have z = 0 and q̇2 = 0. When z = 0 and q̇2 = 0,

we can get q2 = 0 and limt→∞ f1 = fd. Thus, according to LaSalle’s theorem, we

can conclude that the close-loop system is globally asymptotically stable.

The Matlab simulation result is given here. From Fig. 5.5, 5.6, 5.7, 5.8, we can

observe that the state stabilization error of e2 converge to zero and the parameter

estimation error Ã converge to zero. The I&I adaptive controller is able to guarantee

the convergence of the estimated parameters and the global convergence of the

system states.
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Figure 5.5: Stabilization position error q2d − q2.
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Figure 5.6: Stabilization velocity error q̇2d − q̇2.
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Figure 5.7: Stabilization force error fd − f1.

5.2.3 I&I Adaptive Hybrid Force-Motion Controller for Robot Arm

Manipulator

A practical extension of the previous example is the robot arm manipulator.

The dynamics of the robot arm manipulator is given as

M(θ)θ̈ + c(θ, θ̇)θ̇ +G(θ) = τ + τe (5.68)

where M(θ) is the inertia matrix, c(θ, θ̇) is the Coriolis and centrifugal matrix, G(θ)

is the gravity vector, τ is the control input, J(θ) is the Jacobian matrix, f is the
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Figure 5.8: Parameter a convergence error a− â.

constraint force. The dynamics in task space is given as

F = Λ(θ)V̇ + η(θ,V) + Ftip (5.69)

where

Λ(θ) = J−TM(θ)J−1 (5.70)

η(θ,V) = J−T (c(θ, θ̇)θ̇ +G(θ))− ΛJ̇J−1V (5.71)

F = J−T τ , Ftip = J−T τe (5.72)

The end-effector position is given as Xe and the end-effector velocity is given as V.
We have V = Jθ̇. The Λ(θ) and η(θ,V) are the inertia matrix and the Coriolis and

centrifugal matrix in task space.

By setting Fn = Λ−1(F − η),Ftipn = Λ−1Ftip, we have

Fn = V̇ + Ftipn (5.73)

We should notice that (5.73) is in the same format as (5.37). Thus, the I&I adaptive

controller can be directly applied to the plane robot arm manipulator. We set Fn
same as (5.59), (5.60).

Fn =

[
(Â+ β(q2, q̇2))v − fd

−v − (Â+ β)fd

]
(5.74)

The update law of Â is same as (5.61). We also have the map between Fn and τ as

τ = JT (ΛFn + η) (5.75)
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Here, we present the detailed expression for a plane 2 DoF robot manipulator.

M(θ), c(θ, θ̇), G(θ) are given as

M(θ) =

[
m1L

2
1 +m2(L

2
1 + 2L1L2cθ2 + L2

2) m2(L
2
2 + L1L2cθ2)

m2(L
2
2 + L1L2cθ2) m2L

2
2

]
(5.76)

c(θ, θ̇) =

[
−m2L1L2sθ2 θ̇2 −m2L1L2sθ2(θ̇1 + θ̇2)

m2L1L2sθ2 θ̇1 0

]
(5.77)

G(θ) =

[
m2g(L1cθ1 + L2cθ1+θ2)

m2L2gcθ1+θ2

]
(5.78)

And the external force is given by

τe = λ

[
aL1cθ1 + aL2cθ1+θ2 − sθ1L1 − L2sθ1+θ2

aL2cθ1+θ2 − L2sθ1+θ2

]
(5.79)

where a is the line parameter, λ ∈ R is the magnitude of the external force. The

Jacobian matrix is given as

J =

[
−sθ1L1 − sθ1+θ2L2 −sθ1+θ2L2

cθ1L1 + cθ1+θ2L2 cθ1+θ2L2

]
(5.80)

We set the end-effector position as Xe and the end-effector velocity as V. We have

Ẋe =

[
L1cθ1 + L2cθ1+θ2
L1sθ1 + L2sθ1+θ2

]
(5.81)

V = J

[
θ̇1

θ̇2

]
(5.82)

The simulation results of I&I adaptive control for the 2 DoF robot manipulator

is shown in Figure 5.9. We set the nominal parameter value as a = 1, the system

initial point as θ1 = π/6, θ2 = −π/3, the set point is set as Xe2d = 0.5, fd = 10. The

initial value of line parameter â = 0.1. The control gain is chosen as kv = 4, kp =

4, γ = 0.08. We can observe that the state stabilization error of Xe2, f converge

to zero and the parameter estimation error ã converge to zero. The I&I adaptive

controller is able to guarantee the convergence of the estimated parameters and the

global convergence of the system states.

5.3 Free Motion Controller Design for UAM

Since a free motion controller is required for all tasks, a free motion controller is

presented here and is inspired by [71] and the inner-loop controller can be referenced
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Figure 5.9: Simulation results of 2 DoF robot manipulator I&I adaptive control.

from [136]. The system dynamics is given below.

mQv̇Q = mQgn3 −RTsum − fe (5.83)

Jω̇ = −ω × Jω + τsum − τe (5.84)

The controller is designed as

Tsum = RT (mQv̇d +mQgn3 −Kpep −Kvev) (5.85)

τsum = ω × Jω −KReR −Kωeω − J(ω ×RTRdωd −RTRdω̇d) (5.86)

where

eR =
1

2
(RTdR−RTRd)

∨ (5.87)

eω = ω −RTRdωd (5.88)

Assuming no external forces and torques fe = τe = 0, we have the closed-loop

dynamics as

mQėv +Kpep +Kvev = 0 (5.89)

Jėω +Kωeω +KReR = 0 (5.90)
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where

Jėω = Jω̇ + J(ω ×RTRdωd −RTRdω̇d) (5.91)

Then, the zero equilibrium of the tracking errors eR, eω, ep, ev is exponentially stable.

The region of attraction is characterized by (5.92), (5.93) [136].

1

2
tr(I −RTd (0)R(0)) < 2 (5.92)

||eω(0)|| <
2

λmin(J)

(
1− 1

2
tr

(
I −RTd (0)R(0)

))
(5.93)

5.4 Adaptive Controller Design for UAM

The dynamics of UAM interacting with a rigid surface is given as

mQv̇Q = mQgn3 −RTsum − fe (5.94)

Jω̇ = −ω × Jω + τsum − τe (5.95)

To simplify the expression in this section, we define the following variables

F = [F1, F2, F3]
T = (RTsum −mQgn3)/mQ (5.96)

Fe = [Fe1, Fe2, Fe3]
T = fe/mQ (5.97)

Thus (5.94) becomes

v̇Q = −F − Fe (5.98)

The end-effector position is given by (5.100). The constraint surface is defined as

x+A1y +A2z + b = 0 (5.99)

The end-effector position pE is given by

pE = pQ +B RE [xe, ye, ze]
T (5.100)

where BRE is the rotation matrix from B to the end-effector frame E . The rotation

matrix BRE is given byBRE = I3. Define pE = [pE1, pE2, pE3] and substitute into

the constraint equation, we have

pE1 +A1pE2 +A2pE3 + b = 0 (5.101)
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Also from (5.100), we have vE = vQ, v̇E = v̇Q. Define the new coordinate Q =

[x1, x2, x3] as

q1 = pE1 +A1pE2 +A2pE3 + b (5.102)

q2 = pE2 (5.103)

q3 = pE3 (5.104)

The Fe is given by Fe = [1, A1, A2]
Tλ. And by taking the second time derivative

of(5.101) and substitute v̇E from (5.98), λ can be calculated as

λ = −F1 +A1F2 +A2F3

1 +A2
1 +A2

2

(5.105)

The dynamics in X coordinates are

A1q̈2 +A2q̈3 = F1 + λ (5.106)

(1 +A2
1 +A2

2)q̈2 = A1F1 − (1 +A2
2)F2 +A1A2F3 (5.107)

(1 +A2
1 +A2

2)q̈3 = A2F1 +A1A2F2 − (1 +A2
1)F3 (5.108)

Nominal hybrid force-motion controller

The nominal hybrid force-motion controller is designed as

F1 = A1v1 +A2v2 − λd (5.109)

F2 = −v1 −A1λd (5.110)

F3 = −v2 −A2λd (5.111)

where

v1 = q̈2d + kv(q̇2d − q̇2) + kp(q2d − q2) (5.112)

v2 = q̈3d + kv(q̇3d − q̇3) + kp(q3d − q3) (5.113)

5.4.1 I&I adaptive hybrid force-motion controller

We have the adaptive hybrid force-motion controller as

F1 = (Â1 + β1)v1 + (Â2 + β2)v2 − λd (5.114a)

F2 = −v1 − (Â1 + β1)λd (5.114b)

F3 = −v2 − (Â2 + β2)λd (5.114c)
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The closed-loop dynamics after applying the controller (5.114) are

A1(ë2 + kv ė2 + kpe2) +A2(ë3 + kv ė3 + kpe3) = −z1v1 − z2v2 + λd − λ (5.115a)

(1 +A2
1 +A2

2)(ë2 + kv ė2 + kpe2) = −A1z1v1 −A1z2v2

+ z2A2A1λd − (1 +A2
2)λdz1 (5.115b)

(1 +A2
1 +A2

2)(ë3 + kv ė3 + kpe3) = −A2z1v1 −A2z2v2

+ z1A2A1λd − (1 +A2
1)λdz2 (5.115c)

z is defined as

z1 = Â1 −A1 + γė2 (5.116)

z2 = Â2 −A2 + γė3 (5.117)

Taking the derivative of z1, we have

ż1 =
˙̂
A1 + γë2

=
˙̂
A1 + γ

(
q̈2d − v1 +

−A1z1v
2
1 −A1z2v2v1 + z2A1A2λdv1 − (1 +A2

2)λdz1v1
1 +A2

1 +A2
2

)
We design the update law of Â1 as

˙̂
A1 = γ(v1 − q̈2d + F2d − Fe2)

= γ(v1 − q̈2d +A1(λd − λ)) (5.118)

Thus ż1 becomes

ż1 = γ

(
−A1z1v

2
1 −A1z2v2v1 + z2A1A2λdv1 − (1 +A2

2)λdz1v1
1 +A2

1 +A2
2

+A1(λd − λ)

)
= γ

−A1z1v1 −A1z2v2 + z2A1A2λd − (1 +A2
2)λdz1

1 +A2
1 +A2

2

− γA1
A1z1λd +A2z2λd − v1z1 − v2z2

A2
1 +A2

2 + 1

= −γλdz1 (5.119)

Similarly, we design
˙̂
A2 as

˙̂
A2 = γ(v2 − q̈3d +A2(λd − λ)) (5.120)

Thus ż2 becomes

ż2 = −γλdz2 (5.121)
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Based on (5.119) and (5.121), we can conclude that the z subsystem is asymp-

totically stable. The closed-loop dynamics is presented here for convenience

A1(ë2 + kv ė2 + kpe2) +A2(ë3 + kv ė3 + kpe3) = −z1v1 − z2v2 + λd − λ (5.122a)

(1 +A2
1 +A2

2)(ë2 + kv ė2 + kpe2) = −A1z1v1 −A1z2v2

+ z2A2A1λd − (1 +A2
2)λdz1 (5.122b)

(1 +A2
1 +A2

2)(ë3 + kv ė3 + kpe3) = −A2z1v1 −A2z2v2

+ z1A2A1λd − (1 +A2
1)λdz2 (5.122c)

Since z subsystem is asymptotically stable, from (5.122b) and (5.122c), we can

conclude that

lim
t→∞

e2 = 0, lim
t→∞

e3 = 0 (5.123)

Thus, from (5.122a), we can conclude that

lim
t→∞

λ = λd (5.124)

Also since z, ė2 and ė3 converge to zero, we have

lim
t→∞

Â1 = A1, lim
t→∞

Â2 = A2 (5.125)

Here we establish the adaptive hybrid force-motion controller for UAM interacting

with a rigid plane surface. This controller is designed for the case when the UAM

has 3 DoF force measurements. The control gain kp, kv are easy to tune and the

adaptive gain γ can be tuned to change the convergence speed of z subsystem.

5.5 Simulation Results

The hexarotor UAV design used in the UAM simulations is based on Tarot 680

experimental platform, and its parameters are given in Table 5.1. The UAV is

equipped with a 3D force sensor at the end-effector. The mass of the UAV is about

2.5 kg. The control gains are given in Table 5.2.

Table 5.1: Tarot UAM parameters.

Parameter Value Parameter Value

mQ 2.5 kg Jxx 0.05 kgm2

Jyy 0.05 kgm2 Jzz 0.08 kgm2

Jxy 0.0 kgm2 Jyz 0.0 kgm2

Jzx 0.0 kgm2 [xe, ye, ze] [0.6, 0, 0] m

First, we present the simulation result of free motion of Tarot 680 UAM. The
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Table 5.2: Control Gains

Parameter Value Parameter Value

kv 4 kp 4
γ 0.95 KR diag (30, 30, 30)
kω diag (25, 25, 25)

initial point is pQ = (0, 0, 0), (ϕ, θ, ψ) = (0, 0, 0) and the set point is pQ = (1, 2, 3)

m, (ϕ, θ, ψ) = (0.1, 0.2, 0.3). The simulation result is shown in Figure 5.10 and

Figure 5.11. The result shows that the free motion controller can stabilize the UAM

to the set point in fast and smooth way. The control inputs are also smooth and

bounded.

In the second part of simulation, we test the I&I adaptive hybrid force-motion

controller for UAM interacting with a rigid plane surface. The initial point is pE =

(0, 0, 0) m, (ϕ, θ, ψ) = (0, 0, 0) and the set point is pE = (−7, 1, 2) m, (ϕ, θ, ψ) =

(0.1, 0.2, 0.3). The desited force λd = 5 N. The constraint surface is set as

pE1 + pE2 + 3pE3 = 0 (5.126)

which means A1 = 1, A2 = 3, b = 0. The simulation result is shown in Figure 5.12,

Figure 5.13. The result shows that the I&I adaptive hybrid force-motion controller

can stabilize the UAM to the set point in less than 5 seconds. The control inputs

are in reasonable range. The reaction force λ also converge to the desired value λd.

The unknown parameters Â1, Â2 also converge to the true value A1, A2 smoothly.

In the third part of simulation, we present the result of a figure-8 tracking task.

The initial point is pE = (0, 0, 0) m, (ϕ, θ, ψ) = (0, 0, 0). The desired trajectory is

given as

pE2d = x2 = 2 sin t m (5.127)

pE3d = x3 = 2 sin t cos t m (5.128)

The constraint surface is same as the second part. The desired force is set as λd = 5

N. The simulation result is shown in Figure 5.14, Figure 5.15. The 3D view of the

tracking result is shown in Figure 5.16. We can conclude that the tracking error,

the parameter estimation error, and the force tracking error will converge to zero.

The control inputs are within reasonable range.
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Figure 5.10: Stabilization configuration states of UAM free motion.
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Figure 5.11: Stabilization control input of of UAM free motion.
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Figure 5.12: Stabilization configuration states.
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Figure 5.13: Stabilization control input of UAM.
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Figure 5.14: Figure-8 tracking configuration states.
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Figure 5.15: Figure-8 tracking control input of UAM.
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Figure 5.16: Figure-8 tracking 3D view, green line is the desired trajectory, red line
is the actual trajectory

5.6 Conclusion

In this section, we present the adaptive hybrid force-motion controller for UAM

interacting with a rigid plane surface. We first introduce the I&I control framework

and necessary assumptions. Then, an explanatory example is given to explain how

the I&I adaptive control techniques can be applied in hybrid force-motion control

problem. We also compare the I&I adaptive control with the conventional adaptive

control based on Lyapunov design. The simple example shows that the conventional

adaptive control is not able to give asymptotically stable result and has no guar-

antee of parameter convergence. In contrast, I&I adaptive control overcomes these

challenges by adding parameter observer states. The I&I adaptive control gives

global asymptotically stabilisability results. We apply the I&I adaptive control to

the UAM hybrid force-motion control problem. Specifically, we consider the inter-

action problem with two common force sensors, 1 DoF and 3 DoF force sensor. The

I&I adaptive hybrid control guarantees the exponential convergence of both system

states, reaction forces and parameter estimations. This is verified in simulation in

Section. 5.5.
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Chapter 6

Quadrotor Motion Control Using

Deep Reinforcement Learning

6.1 Preliminaries

6.1.1 Markov Decision Process

6.1 shows the closed-loop system in an RL framework. We follow the notation

of [137]. The learner or decision-maker is called an agent, which can be thought

of as the controller in control systems. We remark that with the RL method con-

sidered here, the system operates in a training mode in which the controller design

is performed adaptively based on system measurements. After this design stage is

completed normal operation begins where the controller’s parameters are fixed. The

open-loop system or plant together with any disturbances is called the environment.

The agent computes an action which influences the environment state. The envi-

ronment also provides a reward signal which the agent maximizes over time. From a

control systems perspective, the reward is included in the reference output which is

usually generated in the controller. A discrete-time framework is adopted here as is

customary with RL methods. For every time t = 0, 1, 2, . . . , the agent measures the

environment state St ∈ S in order to compute an action At ∈ A. Here, St, At denote

random variables for each t. We take the state space S = Rn, action space A = Rm,
and reward space R = R where n = 12,m = 4 for the case of the quadrotor. A

MDP is normally used to model the dynamics of the environment. The MDP is

described by the function p : S ×R× S ×A → [0, 1] where

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s,At−1 = a} (6.1)

where s′, s ∈ S, s′ is the next state, r ∈ R, a ∈ A, and Pr denotes probability.

Hence, (6.1) determines the probability a current state and reward occurs given a
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certain action and state at the previous time. Although quadrotor motion control is

normally derived based on a deterministic ODE model, derivation of an RL method

is performed in a stochastic framework.

6.1.2 Policy and Value Function

In this paper we use a stochastic policy π(a|s) which is the probability that

At = a if St = s. In control systems terminology, policy π corresponds to the

control law which is derived from the design method. In deep RL, the policy is

parameterized using a neural net with a vector of parameters θ. The parameterized

policy is πθ(a|s) and the parameterization is described below in Section 6.2.2. The

state-value function vπ(s) of a state s under a policy π is the expected accumulated

reward when starting in s and following policy π:

vπ(s) = Eπ[
∞∑
t=0

γtRt|S0 = s], for all s ∈ S (6.2)

where γ < 1 is the discounting factor and Eπ[·] denotes the expected accumulated

reward following policy π.

Similar to vπ we introduce the action-value function qπ(s, a) for policy π as

qπ(s, a) = Eπ[
∞∑
t=0

γtRt|S0 = s,A0 = a] (6.3)

This function is the expected accumulated reward when starting in s, taking action

a initially, and then following policy π. We remark that policy π is normally derived

using qπ.

Solving a RL task means finding π that achieves a large vπ. Policy π, with cor-

responding vπ, is defined to be better than or equal to policy π′, with corresponding

v′π, if vπ(s) ≥ vπ′(s) for all s ∈ S. In this case we say π ≥ π′. Policies better than

or equal to all other policies are called optimal policies π∗. An optimal policy may

not be unique and all optimal policies share the same value function which is called

the optimal value function v∗(s) = maxπ vπ(s).

In practice, the optimal policy and optimal value function are hard to find if

the environment dynamics is unknown. The methods for finding the optimal policy

without the knowledge of the environment dynamics are called model-free. The

method described in this paper is model-free. Also, for continuous or very large

state and action space, it is impossible to work in extremely large table settings.

Hence, in such situations function approximation techniques are often used.
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Figure 6.1: The agent-environment interaction

6.2 RL Method

The policy gradient method uses gradient descent optimization of a scalar per-

formance measure Jπθ(s) to determine optimal an optimal policy parameter θ. By

introducing Jπθ(s) we generalize the value function vπ(s) and this is an important

factor in improving convergence speed in optimization-based methods. According to

the Policy Gradient Theorem [137, Sec. 13.2], the derivative of Jπθ w.r.t. θ satisfies

▽θJπθ ∝
∑
a,s

qπ(s, a)▽θ πθ(a|s) (6.4)

Hence, the gradient ascent update to maximize Jπθ is

θk+1 = θk + α▽θk Jπθk = θk + α
∑
a,s

qπ(s, a)▽θk πθk(a|s) (6.5)

where α > 0 is the update step size. Although there is no convergence guarantee

for the gradient method, it has been shown to perform in various benchmarks [138].

6.2.1 Parameterized Neural Policy

This Section gives the expression for the feedforward neural nets used. Notation

is adopted from [139]. We consider the so-called Actor Neural Net for approximating

policy π. An activation function is used to transform linear features to nonlinear

features. We choose the tanh function:

g(1)(s) = g(2)(s) = tanh s (6.6)
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where g(k) is evaluated component-wise on the quadrotor state s. The actor neural

net is given by

h(1)(s) = g(1)(θ(1)⊤s+ θ
(1)
b ) (6.7)

h(2)(h(1)(s)) = g(2)(θ(2)⊤h(1)(s) + θ
(2)
b ) (6.8)

µ(s) = θ(3)⊤h(2)(h(1)(s)) + θ
(3)
b (6.9)

πθ(a|s) =
1√
2πσ

exp−(a− µ(s))⊤(a− µ(s))

2σ2
(6.10)

The outputs of the first and second layers are denoted h(1), h(2), respectively. The

dimension of h(1), h(2) is N which is a parameter to be adjusted. Thus, we have

θ(1) ∈ RN×n, θ(2) ∈ RN×N , θ(3) ∈ Rm×N . The biases are denoted θ
(k)
b , k = 1, 2, 3

with their dimension determined from (6.7)–(6.9). The output of the neural net

determines a Gausian pdf in (6.10) which is used to evaluate πθ. The standard

deviation σ in (6.10) is taken as a small constant. A widely used σ is σ = exp (−ω)
where ω is usually chosen on [0.5, 5] [138], [140]. Some methods treat σ as a NN

parameter which can be tuned during training, e.g., [141].

Similarly, the so-called Critic Neural Net which approximates v̂ζ is given by

h(1)(s) = g(1)(ζ(1)
T
s+ ζ

(1)
b ) (6.11)

h(2)(h(1)(s)) = g(2)(ζ(2)
T
h(1)(s) + ζ

(2)
b ) (6.12)

v̂ζ(s) = h(3)(h(2)(h(1)(s))) = ζ(3)
T
h(2)(h(1)(s)) + ζ

(3)
b (6.13)

where ζ is the parameters for the neural net and ζ(1) ∈ RN×n, ζ(2) ∈ RN×N , ζ(3) ∈
R1×N .

6.2.2 Proximal Policy Optimization (PPO)

PPO is a gradient descent method based on an Actor-Critic model. It is currently

considered a state-of-art algorithm in the RL community [95]. It benefits from a

relatively simple implementation and has shown promising performance in practice

[142]. The innovation of PPO comes from the choice of performance measure

Jπθ(s) = min(kt(θ)Ât, σ(kt(θ))Ât) (6.14)

where Ât is the advantageous estimation [106] to the end of an episode of length T :

Ât = δt + γλδt+1 + · · ·+ (γλ)T−t+1δT−1, λ ∈ (0, 1], (6.15)
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Figure 6.2: Critic Neural Net.
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Figure 6.3: Actor Neural Net.

where

δt = rt+1(a, s) + γv̂ζ(st+1)− v̂ζ(st) (6.16)

with rt being a deterministic reward function, and v̂ζ(s) denotes the estimated value

of vπ. Function

kt(θ) =
πθ(at|st)
πθold(at|st)

(6.17)

describes the difference between the previous policy with parameter θold and the

present policy with parameter θ as optimization proceeds. The saturation function

σ : R → R is

σ(ξ) =


1 + ε, ξ > 1 + ε

ξ, 1− ε ≤ ξ ≤ 1 + ε

1− ε, ξ < 1− ε

(6.18)

where the clip ratio ε > 0 is a small value.

We remark that strictly speaking quadrotor stabilization is not an episodic task.

However, taking a sufficiently large episode length T allows us to approximate a

continuing task. A trajectory is a sequence of states and actions, denoted as τ =

(s0, a0, s1, a1, . . . , sT ). In (6.16), the estimated state value function v̂ζ(s) appears.

The reason for introducing v̂ζ(s) and using Ât is to decrease the variance in the
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estimation of ▽θJθ(s) and hence improve the convergence speed of training. Using

the estimated value function v̂ζ(s) to help the convergence speed of policy function

πθ is called an Actor-Critic method. See [143] for details on the benefits of using an

Actor-Critic structure.

Using the Policy Gradient Theorem (i.e., (6.4)), we can take the derivative of

Jπθ relative to θ by taking the derivative of πθ(a|s) relative to θ. Hence, assuming

1− ε ≤ kt(θ) ≤ 1 + ε we obtain

▽θJπθ =

T∑
t=0

Ât ▽θ kt(θ) (6.19)

which is used to estimate the gradient of Jπθ from sampled action and state data

obtained from the agent and environment interaction. The update equation for θ is

θk+1 = θk + α

T∑
t=0

Ât ▽θ kt(θ) (6.20)

It has been shown in [95] that PPO is a refinement of TRPO [144] as it improves

training efficiency by constraining the difference between πθ and πθold . The sat-

uration function σ limits the magnitude of the gradient ▽θkt(θ) and ensures the

updated θ is close to its previous value θold.

In order to compute the estimated state value function v̂ζ in (6.16) we optimize

the following loss function for the critic neural net:

Lζ =
T∑
t=0

(r(at, st) + γv̂ζ(st+1)− v̂ζ(st))
2 (6.21)

The loss function minimizes the one-step look ahead error in v̂ζ . As with (6.19),

sampled data (s, a, r) is used in (6.21) to estimate the error of v̂ζ . The update for ζ

is

ζk+1 = ζk − β ▽ζ Lζ (6.22)

where β is step size.

The pseudocode code of the RL method is in Algorithm 1. Since the update step

size α, β in (6.20) and (6.22) are usually set very small, to accelerate the training pro-

cess, we usually update parameter θ, ζ multiple times for the same set of data. After

the training process is finished then the quadrotor’s motion can be controlled using

the policy πθ(a|s) which maps the measured state to a four-dimensional Gaussian

distribution which can be sampled to determine the physical inputs of quadrotor.
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Algorithm 1: Proximal Policy Optimization (PPO)

1 Input: a differentiable policy parameterization πθ(a|s);
2 Input: a differentiable estimated state value function parameterization

v̂ζ(s);
3 for j = 0, 1, 2, . . . do
4 Run policy πθ for K timesteps and collect {st, at, rt}. Collect

trajectories Dj = {τi}. ;
5 Calculate δt, Ât using (6.16) ;
6 for k = 1:M do
7 Calculate ▽θJπθ with the collected {s, a, r} with (6.19);
8 Update θ with using (6.20) ;
9

θk+1 = θk + α
1

|Dj |T
∑
τ∈Dj

T∑
t=0

Ât ▽θ kt(θ)

10 end
11 for k = 1:B do
12 Calculate ▽ζLζ with the collected {s, a, r} data with (6.21) ;
13 Update ζ using (6.22) ;
14

ζk+1 = ζk − β
1

|Dj |T
∑
τ∈Dj

▽ζLζ

15 end

16 end

6.3 Experiment

6.3.1 Simulated Quadrotor Dynamics

We consider a traditional quadrotor UAV as shown in Figure 6.4. Two refer-

ence frames are needed for the modelling: a fixed inertial navigation frame N with

orthonormal basis {n1, n2, n3} and a body frame B whose origin is at the vehi-

cle’s center of mass (CoM) and with orthonormal basis {b1, b2, b3}. We define b1

to point in the forward direction of vehicle, b2 pointing right, and b3, n3 pointing

down. The configuration of the quadrotor belongs to the special Euclidean group

SE(3), and includes the position p = [p1, p2, p3]
⊤ ∈ R3 of the origin of B relative to

N , and the rotation matrix R ∈ SO(3) which describes the orientation of B and N .

η = [ϕ, θ, ψ] ∈ R is Euler-angles corresponding to the rotation matrix. We assume

each propeller generates thrust in the −b3 direction and denote the total thrust due

to all propellers by the scalar input u ≥ 0. Controlling individual propeller speeds

creates an input torque denoted τ = [τ1, τ2, τ3]
⊤ ∈ R3 which is expressed in B. To

ease the presentation of the control design we take torque τ and thrust u as system
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Figure 6.4: Quadrotor modelling and reference frames

inputs. However, in practice the physical input to the UAV is PWM signals to the

ESC.

The UAV dynamics is

ṗ = v (6.23a)

mv̇ = mgn3 − uRn3 (6.23b)

Ṙ = RS(ω) (6.23c)

Jω̇ = −ω × Jω + τ (6.23d)

where v ∈ R3 is linear velocity expressed in N , ω ∈ R3 is angular velocity in B, m is

mass, J is inertia, g is the gravity constant, and n3 = [0, 0, 1]⊤. The skew operator

S(·) : R3 → so(3) is given by

S(x) =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 , where x =

x1x2
x3

 .
The simulator uses a discretized system model

vt+1 = vt + v̇tdt (6.24a)

ωt+1 = ωt + ω̇tdt (6.24b)

pt+1 = pt + vtdt+
1

2
v̇tdt

2 (6.24c)

ηt+1 = ηt +W (ηt)ωtdt+
1

2
W (ηt)ω̇tdt

2 (6.24d)

W (η) =

1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cosθ

 (6.24e)

which has a sampling interval of dt. This model assumes a constant ω̇ and v̇ be-

tween sampling instants. The simulator runs at dt = 1ms. The parameters for the

quadrotor are m = 0.5 kg, g = 9.81m/s2, J = diag(J1, J2, J3), J1 = 0.0135 kgm2,
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J2 = 0.0135 kgm2, and J3 = 0.024 kgm2.

6.3.2 Reward Design

An important factor in the RL-based control’s motion control performance is the

choice of dependence of the reward function r(a, s) on control input a = [u, τ⊤]⊤

and s = [p⊤, η⊤, v⊤, ω⊤]⊤. In this chapter, we considered three different reward

designs to investigate the influence of reward function on closed-loop performance:

ra(a, s) = r0 − ∥v∥2 − ∥ω∥2 (6.25)

rb(a, s) = r0 − ∥v∥2 − ∥ω∥2 − ∥p∥2 (6.26)

rc(a, s) = r0 − ∥v∥2 − ∥ω∥2 − ∥p∥2 − ∥τ∥2 (6.27)

r0 =

1, −0.5 ≤ p3 ≤ 0.5

−1, otherwise
(6.28)

r0 used here is to accelerate the training process. Reward ra aims to control hover

using only velocity. Reward rb includes an extra term ∥p∥2 to reduce drift in position

due to unmodelled disturbances. Reward rc includes ∥τ∥2 to limit control effort. The

yaw rate of the vehicle is regulated to zero by including the angular velocity in the

reward.

6.3.3 Simulation Results

Training

In order to optimize training, the hyperparameters λ, ε, and learning rates α, β

were adjusted for reward function rc. Parameter λ appears in the generalized ad-

vantage estimator (6.15). As λ → 1 the bias of the estimator decreases. Although

the bias will increase as λ → 0, smaller λ might accelerate the training process.

Parameter ε is the clip ratio in (6.18). It constrains the difference between the old

and new policy. A grid of parameter values was created from λ ∈ {0.35, 0.65, 0.95},
ε ∈ {0.1, 0.2, 0.3}, and (α, β) ∈ {(3 × 10−3 ,1 × 10−2 ), (3 × 10−4 ,1 × 10−3 ), (3 ×
10−5 ,1 × 10−4 )}. This yielded 27 different parameter combinations. The training

was defined to fail if there is convergence to a local maximum which is unable to

stabilize the quadrotor. The hyperparameter search led to successful training when

λ = 0.95 for certain values of ε, α, β as indicated in Table 6.1. The average cumula-

tive reward for a single trajectory collected in the training process using 6 different

random seeds is denoted Vavg, and its value is shown in Figure 6.6 for the 5 cases of

successful training. Parameter Set 3 has the fastest convergence speed and achieves

a relatively high Vavg at around 500 iterations. It is therefore chosen for the final
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Figure 6.5: Training progress for Vavg for different rewards

Hyperparameter Set {λ, ε, α, β}
1 {0.95, 0.3, 3× 10−4 ,1× 10−3 }
2 {0.95, 0.3, 3× 10−5 ,1× 10−4 }
3 {0.95, 0.2, 3× 10−4 ,1× 10−3 }
4 {0.95, 0.2, 3× 10−5 ,1× 10−4 }
5 {0.95, 0.1, 3× 10−4 ,1× 10−3 }

Table 6.1: Hyperparameters sets corresponding to successful training. Training
progress is shown in Figure 6.6

training process. The remaining design parameter values used are in Table 6.2. The

training process is about 12 hours and is run on a single core of a E5-2683 v4 Intel

Broadwell CPU.

Training progress for the three reward functions is shown in Figure 6.5. The

average cumulative reward Vavg for a single trajectory using 6 different random seeds.

We observe Vavg for ra and rb converge to a higher value than rc. This is expected

as rc includes position error and control input as negative reward. The learning rate

for rc is the fastest and steady state is achieved at around 500 iterations. Although

the algorithms can achieve convergence for the three reward cases, the time domain

performances varies between different reward functions.

Performance Testing

Figures 6.7–6.10 present the simulation results after training using the three

reward functions. As well, a traditional manually tuned inner-outer loop PD control
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Figure 6.6: Training progress for Vavg for different hyperparameters

Parameters Values

α 3× 10−4

β 1× 10−3

γ 0.99

λ 0.95

ε 0.2

K 4000

M 80

B 80

T 1000

N 64

Table 6.2: Algorithm Parameters

is provided for comparison. This control is defined by

ϕr = ko1p(p
r
1 − p1) + ko1d

d

dt
(pr1 − p1)

θr = ko2p(p
r
2 − p2) + ko2d

d

dt
(pr2 − p2)

τ1 = ki1p(ϕr − ϕ) + ki1d
d

dt
(ϕr − ϕ)

τ2 = ki2p(θr − θ) + ki2d
d

dt
(θr − θ) (6.29)

τ3 = −k3pψ

u = khp(p
r
3 − p3) + khd

d

dt
(pr3 − p3)
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where ϕr, θr are roll and pitch set points from the outer loop. The control gains

are chosen as ko1p = ko2p = ki1p = ki2p = 0.07, ko1d = ko2d = ki1d = ki2d = 0.09, k3p =

0.1, khp = 2, khd = 8.

The control objective is to stabilize the position [0, 0, 0]⊤ m with the vehicle

initialized to p(0) = [1, 1, 0]⊤ m. The results are given in Figures 6.7–6.10. We

observe for ra that velocity is regulated to zero and roll and pitch have a small

oscillation in steady-state. These oscillations also appear in the inputs. As expected,

there is a large steady-state position error as ra does not measure this error. Using

rb the amplitude of steady-state position error is reduced relative to ra since it

includes position in the reward. The amplitude of steady-state oscillation in input

and roll/pitch is increased. This is likely due to position being added to rb. Reward

rc leads to the best performance with the smallest steady-state input and roll/pitch

oscillation. The increased steady-state error position compared to rb is due to control

input added.

A time-varying trajectory tracking is tested using rc and compared with the PD

controller. A figure-8 reference trajectory pr = [1.5 sin(2t) + 1, 0.75 sin(4t), −4 +

2 sin(2t)]⊤ is used. The tracking error is shown in Figure 6.11. The RL controller

performs better than the PD controller designed for hover. Hence, the proposed

method exhibits performance in tasks more general than what it was trained for.

6.4 Conclusion

We applied the deep RL method PPO to control the full 6 DoF system dynamics

of a quadrotor UAV. Relative to the existing method, the proposed method considers

the full dynamics of the UAV and this makes the design challenging. The work

explored the effect of reward functions on closed-loop performance of the trained

neural net controller. We observed that although different rewards functions can

achieve a stable hover. Including input effort into the reward makes the closed-loop

less sensitive (e.g., reduced impractical oscillation in the input signals). A simulation

comparison of the proposed RL-based control and a classical inner-outer loop PD

controller was presented. The results demonstrate similar hover stabilization and

output tracking performance without requiring manual tuning.

Future work includes testing the control in actual flight, improving the training

speed of the algorithm, and developing a systematic procedure for designing the

reward function. We investigate methods which provide monotone performance im-

provement during training. Finally, we plan to develop algorithms which are robust

to parameter updates. This will enable on-line training and improve robustness to

environment change.
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Figure 6.7: Simulation Results for hover stabilization. Input trajectories
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Figure 6.8: Simulation Results for hover stabilization. Input trajectories
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Figure 6.9: Simulation Results for hover stabilization. Position trajectories
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Figure 6.10: Simulation Results for hover stabilization. Attitude trajectories
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has significantly contributed to the field of unmanned aerial vehi-

cle (UAV) and autonomous navigation systems, focusing on the ANCL Gen2 flight

platform and related technologies. The development of the QSFA (QSF Algorithm)

for nonlinear control affine systems stands as a notable advancement, addressing a

gap in the existing literature. Its application to the SLS, compared with the Dy-

namic Extension Algorithm, provides a practical method for testing system flatness,

diverging from the intricate theoretical approaches prevalent in current research.

The implementation of QSF in the PX4 software-in-the-loop environment demon-

strated the robustness of the developed control law, particularly against model er-

rors in simulation environments. This practical application is supported by the

availability of the code and a demonstration video, enhancing the reproducibility

and transparency of the research.

The thesis introduces a simplified multi-loop control approach, demonstrating

its efficiency over more complex single-loop QSF control methods. The experimen-

tal validation of this approach using an open-source drone platform highlights its

practicality and accessibility.

In the realm of adaptive hybrid force-motion control, the exploration of the I&I

adaptive control within the context of UAM interaction with rigid plane surfaces

has shown promising results, overcoming limitations found in conventional adaptive

control methods.

The novel PPO-based method for motion control challenges traditional approaches

by controlling all six UAV DoF with low-level system inputs, without relying on

traditional control assistance. This focus on reward function design in RL and its

impact on closed-loop performance marks a significant contribution to the field.

Furthermore, the upgrade from ANCL Q3 to the ANCL Gen2 platform, with
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its enhanced usability, maneuverability, and stability, along with the update in the

PX4 autopilot system, exemplifies the practical application of theoretical research

in a real-world environment.

7.2 Future Work

Future research should build upon these foundations to further advance UAV and

autonomous navigation system capabilities. This includes further development of

the QSFA in various control scenarios, expanded use of SITL simulations in complex

environments, and advanced studies in multi-loop control approaches.

Broadening the application of I&I adaptive control to various types of UAV

interactions, expanding the interaction from unknown planes to general unknown

curved surfaces, and deepening research in reinforcement learning with a variety of

algorithms and reward structures could lead to more exciting developments.

Moreover, continued development and sharing of open-source tools, along with

active community engagement, will ensure that the research remains accessible,

reproducible, and relevant, thereby contributing significantly to the advancement of

the field and its applications across various domains.
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