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ABSTRACT

The energy crisis has brought about public concern of
the limitation of conventional resources. Suggestions have
been made to conserve energy and to seek alternative
resources. Solar energy has a promising future to serve as
alternative resource es@eciallyl in the area of space
heating.

-

The controls problem of a solar heating system is shown
to have a significant impact on energy use. A nE§ approach
to this problem is proposed and studied in this thesis,
Thermal as well as economic performance of the system under

this new suboptimal controller was also invest'igated.
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- 1. INTRODUCTION

1.1 The Importance of Energy.

From the earliest time,Man has tried to meet his
increasing demands for goods and services through animal and
especially mechanical slaves; tools, machines and engines.
Mechanical slaves, in turn, require fuel to operate, and
fuel appears in various forms such as coal, ‘o0il, uranjum,
etc,

Fuel or Energy which vasrabUﬂéant and reli;ively
inexpensive is fundamental tP present life styie:'eur focd
supply, our tremendous iﬁdusﬁry; our eonveniences cf life,

etc., all depend upon a ready supply of energy.

1.2 The Energy crisis,

The heavy dependencé of the industrialized countries on
oil has made them vulnerable to any happening in the Middle
East. The oil embargoes and price increases of the oil
cartel OPEC have caused chaos and panic among the developed
as well as devélapiﬁg countries, That has ,in turn,
trigggreé public concern about the limitation of the
conventional resources. |

To solve the problem, it has been suggestéd not only

that more domestic explorations into traditional and



alternative sources of energy be promoted but that the
public also be taught the importance of energ{ conservation.

Oilsand projects in Alberta have appeared quite
promising in terms of making Canada independent of imported
oil for at least into the next century. However, this would
be anlyra short teim solution to the “Pefsistent‘ energy
problem, for ailjisxa‘ii;iteé source of energy.

1s coal able‘té-feplace ©1l in providing us with -an
undepletable supply of energy? The answer is quite clear.
Although coal is cansiéefeé one of the most abundant
resources in North America, it is limited in quantity. For

examplé: The U.S. has an estimated 3.2 trillion tons of coal

[1], of which about 217 billion are economically mineable.

The

c
¥y

.S. will run 8ut of an economic coal supply in 180
yearg, if it is mined at the rate of some 1200 million tons
per year as prbposed by the Federal Economic Ageﬁ:y (FEA).

What about the conservation of energy? It's not a
promising sslu;ian either, for it's hard to convince people -
to give up their life styles overnight. Therefore, new
sources of energy such as nuclear pover and solar enEfgf
need to be developed to replace conventional ones.

Nuclear power ca&n certainly satisfy our energy demand
but there are still doubts about its safety. The Three-mile
Island accident is one of the reasons why people feel
concerned. Moreover, it also depends on a finite resource,

uranium.,



On the contrary, solar energy is a renewable source and
poses no potential danger whatsoever to its users. Hence, it

seems to be the answer to our persistent problem.

1.3 Solar Energy, a new source of energy.

resource that can

Looking up at the sky, we see
$supply us with all the energy we need: the inexhaustible,
pollution-free energy coming from the sun. How extensive is

et . C  : ;3
this resource? Lake Erie receives enough sunlight to provide

the total U.S. energy supply.

Before a new source of energy is introduced into our
traditional way of life, three conditions need to
considered; namely, it should be technically sound and
feasible, economically cempé;itive with the conventicnal
sources and socially accepted, i

Although sclar energy is not yet the answer to our
energy problem, it has been proven technically feasible &nd
economically competitive for a few applications. There hss
been increasing interest in the use of sclar energy for
heating and coolding, since the amount of energy saved wculd
be considerable. Space heatihg and water heating account fa:
22% of U.S. energy consumption. For water heating alone, the
amouﬁt saved could light every light in the U.S. twice[1].

Solar energy has also been applied, although on a
limited basis, to agriculture and industry[i]. It has been

d for U.S.

projected that abcut 5% cf enercy dems



agriculture will be supplied by solar energy by 1985. By
2000, the estimated percentage will be 25%, and by 2020 it
will become 50%.

In industrial applications such as industrial hot water
and drying/dehydration systems, it is estimated that abauﬁ
0.2% of the energy needed for such applications may be
supplied by solar energy by 1985, or about 20% by 2020.
Research is also being actively pursued irtc electrical
appli:at{snsg According to [8], by 1983, Bleyle of America
Inc., will receive more than half of its electricity demands
from solar energy, and this project is expected to become
cost-effective by some time between 1990 and 1995,

Regarding environmental concerns, solar enerjy has not
caused any such serious problems as nuclear power, thus
making it socially acceptable; although the ozcupation of

large areas by collectors could be considered de“rimenzal by

some owners. : .
1.4 The heating problem.

Space heating has been recognized as$ the most
favourable area of solar energy appliéatiensi in_a study
reported by Arnold D. Cohen of General Electric[1]), 16
million buildings (21% of all U.S.A. buildings) will be
equipped with solar heating systems by the year 2000.

It is generally agreed that the way a building is

operated has a significant impact on energy use anrd that a

1
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poorly operated building can defeat even the best
energy-conserving design. It is also accepted that the use
of controls will lead to improved system efficiencies and
that the uses of these controls require thorough
investigation.

The approach generally used to solve this problem is to
model the system and then to find an optimal control
strategy for the model.

The active solar heat'ing systems éll use the same kiﬁés

\
of componen s although they might have many different
configurations. A solar collector, storage tanks, pumps, [a
load-heat exchanger, and an auxiéiary heater are the i
components that seem indispensable in an aclive so.ar
heating system.

Each component has a different functicn{2].

The solar ccllector is used to collect enercgy from the
sun which is then delivered to the 1955 through the .vad
heat exchanger or stored in the storage tanks. Suppiemental
energy is provided by the auxiliary heater when solar energy =

is depleted or insufficient., Pumps operate to carry energy

/

from one ;géZ)cf the system to the other. The successful
operation of eaéh component contributes to the successful
operation of the whole system. Depending on the desired
level of complexity, there are many, ways to model those

components. According to D.M. Auslander et all2]:

"...,the load is often modeled as a single 'lump’,



i.e,, one temperature characterizes the instantaneous
state of the load. The storage tank is also modeled as
a single lump. Varying levels of complexity can be used
to model the heat exchangers, we have chosen to use
single lump models for each of the heat exchangers, All
flow components( pumps, piping, valves) have been
modeled as static elements. The collector is modeled as
a heat exchangersln which the heat input from
insolation is a decreasing function of the callecter
temperature. Any desired function can be used.

¢

The controls problem is considered after every component of
the system has been modeled.

The controls problem is concerned with how to control
the interaction between these components t® lead to a

acree2 that the controls

t is generally

problem consists of a regulatios proklem ard a minimization

I

successful design.

problem[2].

uslander has argued that the primary obstacle to

developing a method of comparing competing.contrcller
designs is due to the lack of general agreement ¢n 2 uniform

standard or specifications.

After rejecting as unreasonable the guadratic
performance index which combines temperature deviation from
the set point and Gthef&factcrs such as auxiliary energy

usage, Auslander went on:

<

*

"Rather than a guadratic performance index, then, it
seems reasonable to base controller comparison on some
e temperature band or minimum temperature... Using the
minimum temperature as standard, two competing
controllers could be compared by adjusting them so that

B



they both have the same minimum temperature over the
period of interest. Auxiliary energy usage, or other
perfarmahce factors, could then be compared

directly.. -y

A good controller is one that not only regulates the system
with respect to disturbances, solar heat input and ambient
temperature, but also conforms to the minimization y
standards. According to Winn[3], there are three levels of
minimization,

His first level is minimization of the total heat input
into the load (not just the auxiliary heat). The Ee:aﬁé
meeting the regulation specifications. The last 1&6{1
minimization of parasitic energy.

The second level of minimization is the one that will
be used as as minimization standard in this thecsis. Reasons
for not using the first and third levels have been explained

in detail by Auslander et al in [2].

1.5 Summary of past results.
In [3] B. Winn et al. H;ve divided the optimal problem

of a soclar energy system int ihree kinds:

-

"1. Optimal corrs the First Kind are
represented by ' [ llers that optimally supply
heat to a bulldlng in a~wénner such that a measure of
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the energy supplied and the occupant discomfort is
minimized,

2. Optimal controllers of ‘the Second Kind represent
controllers that maximize the difference between the
useful energy collected and the pumping costs
associated with collecting the solar energy.
3.0ptimal controllers of the Third Kind represent
controllers that combine the collection and
distribution function."

Then, Winn proceeded to find the controllers of the above
three kinds. It is the Second Kind controller that has
practical significance for th collector-control problem,
According to Winn, the solution to the Second Kind problem
is a proportional controller. In establishing the objective
function of the Second Kind optimal controller, Winn
included parasitic losses of the pumps; S@vgver; there is
some éaubt that pumping power should be ctonsidered as a |
loss, since vwith proper placement of components this power
J»ill also be a heat input to the system, thus coffsetting a
‘ earrespaﬁéﬁﬂg amount of auxiliary heat Enput[ilg

There have been debates over whether or not the
collector pump controller should be on-off or prapértiénél.
Before discussing the collector pump controller, it is
necessary to describe the equation of the collector. A flat
plate solar collector is a device that captures heat from
the sun, the useful heat delivered by a solar collector is
equal to the energy absorbed by the collector plate less the
heat lost to the surroundings. The heat rate input to the

system from the collector can be calculgteé as follows[9]:



Qe=Ac(Hyar -0, (T, -T,)) (1.5-1)
vhere, égiuseful heat delivered by the collector
A.= effective collector area (m?)
Hy= incident solar radiation (KJ/hrsm*)
(received on the tilted collector surface)
T= collector cover transmittance
a = plate absorptance
‘U, = collector overall loss coefficient (KJ/hroCm?)
T,= average absorber plate temperature
Ta= ambient temperature
The term AEH§§ ar) is the amount of e€nergy absorbed at
the absorber surface. This quantity depends cn the effective
collector area, the solar radiatior, the transmissivity of
the glazings, and the absorptivity of the absorber surface.
The transmissivity is & function c¢f the glass guality and
the angles at which the sunlight hits the glass. The%efeqeg
major factors that change the transmissivity coefficient., It
is the optical property of the ceilectgr surface that
determines the absorptivity coefficient. Black surfaces have
high absorptivity for the visible range of the solar
spectrum. The absorptivity coefficients of carbon black,
metal oxides, and black paints often have values above 0.95.
The heat loss from the collector is represented by the
term ACBL(Tpi T,).The overall heat las;;:eegfiﬁieﬁt;-UL, is -
in the order of 6 to 11 W/m'°C for one glass glazing and

about 4 W/m?°C for two panes,



10

In equation (1.5-1), T, represents the average plate

' temperature, which is difficult to measure. So, instead of
using T, . we use Ti‘, vhich is the temperature of the fluid
entering the collector, to calculate the~he$t delivered by
the rcollector.

. Q.*F A (H ar-U, (T -T,)) (1.5-2)
where, F is a correction facter, or heat recovery factor.
Its value 18 between 0. and 1. such that éc calculated by

equation (1.5-2) is equal to that evaluated by eguation

b

(1.5-1).
1f we igncre the heat loss in the pipes between the
collector and the storage tank, i.e. the storage tank Te
equals the inlet collector temperature T, , and if ve
inccrporate the collector pump controller, u,, into eguation
(1.5-2), we obtain:
Q. =AF (u,}(H ar-U (T -T,)) (1.5-3)
~1f on-off centrcller is used g
F(u,)=0. if vu,=0.
F(u,)=E 1if u,=u,ggx
-1f proportional controiler is uséd, value of F(u,) is
between 0. and F
To resolve the cont¥oversy over on-cff and proportionai
controllers, a comparative stqdy on on-off and proportional.
controlled system has been reported by Lewis and Carr([5].

The following is results c¢f solar collection in one day

of the two controllers.



1

QQ/QT QB/QI
ET Proportional On-0Off
325 wW/m? 0.934 | 0.955
490. 0.945 0.955
620. . 0.947 0.954
701, ) 0.953 0.954 .
731, 0.955 » 0.955
where Qus eful energy collected

H.= solar insolation incident on absorber plate.

Thus, according to Lewis et al.:

"The slightly lower energy gains made by the
proportionally controlled system are due to the low
fluid fiow rates through the system at low temperature
differentials.

While tn;s low flow rate proved to be advantagecus
at earlier hours by enabling the system tb gain energy
without excessive cycling, it is now of some
disadvantage because the low flow rate holds plate
temperature, &and, therefore heat losses higher than
those enccuntered in the on/cff system."

McDonald et al[6] used an on-off controller on the collector
side and used an adaptive optimal algorithm to control other
variables,

The approach was basically to identify a linearized
model of the system, then to employ optimal control theory

to determine gains of the optimal controller which minimize



12

a cost function. This process repeats itself in the next

intervals of time. As McDonald put it:

"The actual building and HVAC system is a non-linear
system with &perating points which can vary over a wide
range. The linearized model is valid only about a
region of the operating poirt; thus, the identification
of a linearized model must be an on-gcingc process with
optimal controller being modified or adapted for each
new linearized model or cperating pcint of the system."”

The cost was chosen as the integral guadratic cost

functicnal of plant state variables and control variables.

The weighting matrices in the cest functional assigﬁf
relative importance to it;te and control vafiaﬁles. i§§§é
.heightg were given to room temperature and auxiliary energy
varigble in order to maintain comfort conditions &nd to
minimize auxiijary energy variables.

A c@nVEﬁtianal approach was also presented to compare
its result with that of the Adaptive Optimal controller. In
Fig.1.1, T, represents room temperature and Tyis the ambient
temperature. If the point representing room and ambient
temperature in (Tb,Ta) plane 1is in the hatched region, only
solar energy wgll be used, if not §uxi1iafy heat will also
be used. Simulation results for the heating season are

ized in takle 1.1,

L}

summa
Room temperature was shown to maintain slightly more closely

to the desired by the ccnventional controller than the
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adaptive one. However, the adaptive controller used 28% less

auxiliary energy than the conventional due to the fact that

(7, ]

torage tank temperatures were kept at lower values , thus
making the collector operate more efficiently and collect
more solar energy. This appraaéh has once more sclidified
the role of modern control theory in solar energy heating
system ;however, it reguires rather sophisticated
computations at each update and is inherently limited in its
optimization look-ahead time because of the limited duration
of accuracy for the linearized model[4]. In ﬁhié thesis a

more direct approach, based on an accurate nonlinear model,

is taken,

1.6 Scope of this thesis.
A sub-optimal adaptive controller for a solar-assisted
heat-pump system is proposed. Its simulation results are
shown to give significant improvement over those of WATSUN
program [7](more will be said about the WATSUN approach in
chapter three). In view of the results cited above, the
collegtor pump controller is taken to be on-off. Also,
following the suggestion of Auslander et al[2), the building
loop :entrellé; is assumed to be thermostatic. The major
control problem remaining is then just the control of the
heat pump that is used to upgrade the collected solar

*

energy.
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In chipter;tuo, the system models are developed before
the optimization problem is addressed. Alsc presented in
this chapter is the derivation of the adaptive preview
suboptimal controller. The stability of this suboptimal
controller is investigated in chapter three. The simulation
results of the suboptimal controller and the WATSUN approach
aéé ¢ompared and analysed in later sections of chapter
,thr;e. In the last chapter, chapter four, the therﬁal as
well as economic performance of the system are examined when

major parameters of the sysiem are varied,. Tgé viability of
the.system is also addressed Here. |

Although the approach can be practicelly adopted, it is
advisable to make a much more thorough investigation before
success can be assured. The controller has been designed
with the assumption that tHe weather is a deterministic
process, or at least the averege ambient temperature of the
next day is certainly known. However, the author believes
that results will not be very much different even if the
nexé day average ambient temperatuge cannot be predicted
precisely. In other words, it is possible to have similar
results even if the process is stochastic in nature.

This‘contrqller'is believed to be suitablérfay eventual

application even though thé work is just exploratory.



Aux.
CONV  3.74

ADAP 2.66

TABLE 1.1

.Heating Energy

(10%/BTU) Aver. room
solar 1Internal Total temp.
1.05 6.12 10.90 70.01
2.06 6.12 10.84

69.35

%¥saving

28.8%
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2. OPTIMIZATION

2.1 Introduction.

Attention has recently been given to problems of
optimal control of heat storage and heat transfer processes
inVHVAC systems. Control objectives are to minimize the
seasonal consumption of purchased energy where solar
collection and storage are employed, and /or to minimize the
peak-pe-i- 3 consumption of electrical energy where off-peak
charging are utilized. Among the typical control inputs_fcr,
say, a solar assisted heat pump system are macs flow rate
through solar collectors, Peat pump input power, flow rates
to building convectors, -and building air-handling variables.

tate vériables ate typically the building an3 s:orage‘

—

 temperatures. .
Pétential savings with optimal control seem to be
considerable; simulations have shown that improvemehﬁs of
50% or more are possible under certain conditions with
optimal control of solar collector and building variables,
as compared with conventional control[1,2]). Better design
cQncepts are needed, however, for the realization of
practicai, near-optimal feedback controllers for actual HVAC
systems. The equétions which accurately describe the

controlled processes are often nonlinear and cne approach

has been to linearize them, to periodically update the
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parameters of the linearized model by relinearizing the
nonlinear terms(4] or by using a recursive least squares
algorithm to identify parameters from data[2), and then to
solve the matrix Riccati eguation for near-optimal control
in the next time interval. This approach requires rather
sophisticated computations at each update and is inherently
limited in its optimization look-ahead time because of the
limited duration of accuracy for therlineéfizeé model.

We propose thatAa better approach is to explicitly
recognize that many of the HVAC procegses can be accurately
modelled as bilinear prazessesigiée:esnet heat transfer rate
is related to the product of pumping rate and temperature :
difference. This is true for solar collectors, heat pumps,
-and building heat delivery. Thus, if optimal control can be
computed on a basis of a bilinear model that rgméin glébélly
valid, the need for freguent model updating and
reoptimization is eliminated and look-ahead éimes are not
limited by model validity.

The sclutions of bilinear®control-optimization problems
are easily obtained for simple (first order) systems. For a |
solar heating system with one storage tank, Auslander et !
al[5) have shown that simple energy considerations dictate
that the Euiléing=temp&:ature control problem can be "
decoupled from the colector control pféblcm.'Any'geaé
regulator that holds building temperature close to its
. minimum specified level is nearly optimal. Moreover, the

optimal ccllector pump cantrcllé& is bang/bang (or on/off);



when collected solar energy is to be maximized and parasitic
(pumping) losses are not subtracted. This follows from the
fact that the Hamiltonian is linear in control variable
(which ig\the collector heat removal factor, a monotonic
function of pumping rate) and singular arcs can be shown not
to exist.

With the same system, but with parasitic losses
considered, Winn and Hull [1) have shown that the
-Hamiltanian becomes convex and pumping rate becomes a
continuous function of tank and collector outlet
temperatures. There is some doubt that pumping power should
be considered as a less,iz?ueveri since with proper
placgment of components this power will also be a heat input -
to the system, hence will offset a corresponding amount of
auxiliary heat input.

A more practiral sclar heating system for northern
lattitudes will probably turn out to be tiie seriey
solar-assisted heat pump system, hdwever, beéause of the
neccessarily lafgg difference between the building-loop
inlet and ambient temperatures. If two storage tanks are
included, as shown in Fig. 2.1, the system coffers the
further attractive option of efficient day-time solar
collection with a relatively cool collector feeding a lﬁw
temperature tank and efficient night-time (offpeak) heat '
pumping, with a géad coefficient of performance, to the |

high-temperature tank. .



The optimal control problem now becomes much maif
difficult, however, because while the collector and building
controls are still decoupled, the optimal heat pump control
sequence must depend on both tank temperatures and on the
anticipated builé?ﬁé heating load and solar intensity
patterns. !

The formal optimization is difficult, since, while the
Hamiltonian is still linear in the controls, it ecan be shown
that singular arcs are possible with this system and,
indeed, will be involved in the optimal control sequence.
Gunewardana et al [6] have successfully used a numerical
search method to ccmputé’aptimal preview control seguences
for a2 similar nonlinear ‘system,

In the following section we obtain the optimal control
segquences by numerical search methud. We then postulate that

the near-optimal controller could feasibly lemented

with a microprocessor that (1) preselects a point that

depends in a relatively simple way on the weather forecast

s |

(2)uses an adaptive contrcller of which the current value is
determined from the previous one (more will be said about

this controller in the next chapter)

2.2 The system model.
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2.2.1 The hgaging load.
Using the example 13-2 of [10], the house is assuﬁeé to
be constructed as follows:
Exterior walls:
4" common brick
1/2 " plywood
2x4 studs
R-11 insulation
1/2 " plasterboard
rlaefleanstructicn over vented cravlspace
25/32 " hardwood finish flooring
building paper |
1% plywood sgb;flcsr
airspace
R-11 insulation (applied to underside of joists)
Windows: storm windows (4)
Exterior: 1-1/2 " solid core door
Ceiling construction with vented attic space above
1/2" plasterboard
R-19 insulation
The house is 51'x27', and has one wood exterior door
3'x6'-8", and one double glass wood frame sliding patio door
‘with 1/4" air space, 7'x6'-8'. The heat load calculation can

be summarized as follows:
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N U b
(Btu/hrft2°F) (ft?) (Btu/hr °F)
Exterior walls 0.07 974 68.18
Windows and élidjng patio doors
double 0,65 47 30.55
single 0.56 207 115,92
Exterior
slab doors 0.49 20 9.8
Floors 0.07 1377 96.39
Ceilings 0.05 1377 66.85
Total 389.69

For simplicity,

1f we designate a,as the overaill

the building, we have:

a,=389.69 Btu/hr°F=740.06 KJ/hr°C

2.2.2 Collector model. -

infiltration loss

is ignored.

heat-loss coefficient of

(2.2-1)



The collector assumed is a flat plate collector. The
rate of solar energy collection écis given, as previously,
by eguation (1,4-3)

Qe=AcF (u,) [Hoar-U (T,-T,))
Let S=HTgf, we have: 7
Qc=AF(u, ) [S-U, (Tg-T,) ] (2.2-2)
Using the numbers for the example collector given in [1], we
have
Acs*lDC; m*
at=0_ B4
F =0,867
- Uy=12. K3/(hrsm?s°C)
The collector has to be tilted to optimize the reception of
solar .radiation, but only radiation data iﬂ;iéeng_an a
herizental surface are available. Hence, the following
parameters are needed Lo process these data in order to
obtaia values EGF_HT (see Appendix 1). -
The collector is placed due south, Hence TiDQ
The location is in Edmonton, éf which lattitude is 54°

The tilt slope of the collector is 64%(=lattitude+10°)

2.2.3 The storagg tank -ﬂﬂél-[iBJ.
L] B
There are two way. " storing heat, either as sensible

heat or as latent heat.
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Energy may be stored as sensible heat in ligquid (e.q.

vater) or solid medium (e.g. faﬁk) while selected salts are
used to to store latent heat in the form of heat of
crystallization. It is sensible heat that has been widely
and reliably used, although a lot of research is being done
to understand more about the use of latent heat. The amount

*

of energy that can be stored as sensible heat in a storage

0‘-

=meAT (2.2-3)

t
whereiétiheat capacity of system,

m=nass of storage medium.

Cp=Specific heat of storage medium.
AT=Temperature range between which the tank operates,

osses of sensible heat stored in a tank are due to

[

conduction through the temperature difference between the
tank and the suriounding environment.

=2 (T,-T,) (2.2-4)
Q=2, :

tis the heat loss coefficient of the tank

Where, a,
T, is the“tank temparature
T, is the environment temperature
There are two storage tanks in our system, one of which
operates at low temperature, and is called the
low-temperature tank or low-side tank. The other tank, whith
works at higher temperature, is called the highitemééfature
tank or high-side tank.
The low-side tank is used to collect the available

solar energy from the collector., It is cften operational at
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a higher temperature than the ambient. By absorbing all
avallable energy of the collector with only small increase
in 1ts average temperature, the low-side tank helps keep the
average temperature of the collector at lower value than
to high-temperature storage tank, thus increasing the
collector efficiency. Moreover, the temperature of the
low-side tank, which is higher than the ambient temperature
because of the stored solar energy, also helps boost the
coefficient of peg?z?ﬁipce of the heat pump.
The energy balance at the low-side tank is :

C.To= Q- @, éhp (2.2-5)
where Cﬁzléeisiée tank heat :épaiity;

égis Ehg raté at which energy is drawn from the
cullectcr. According to equation (2.2-2):
éCfACF(Qj)[SEUL(TE-Ta)] (2.2-€)

here T_.is replaced by T., temperature of the low-side tank.

écls the heat loss of the tank
3 == s o gm. o - 7’},_777
Q';—BE(TC *a) (2,;_7)
this the rate at’which heat is taken out of the

1ow=te}peraiufe tank by'the heat pump. An expression for Q

hp
will be found in the next section,
The energy balaﬁée at the high-side tank is:
= - : = :I! ’ii : h,ﬁ—
EhTh th Qt Qb (2.2-8)

where Chshigh*side tank heat capacity,
Q;is the heat loss of the tank

Q;iah(ThETE) - (2.2-9)
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ébis the heat delivered to the building
Qb=£u'(Th-Tb) (2.2-10)

where § =heat exchanger coefficient

hp

According to Lof and Tybout [15], the optimum heat storage

is the heat-pump output (see next section).

is 'in the range of 50 to 75 Kg of water per one sQuare meter

of the collector area. The value of 75 Kg/m? is used here.

2.2.4 Heat pump.

Using a commercially available 3-ton heat pump[14],
which is manufactured by the Carrier Corporation, a graph of
the COP with respect to the temperature difference bet#een
the evaporator and the condenser is plotted in Fig.2.2.

The coefficient of performance can be approximatéa by a
straight iine whose equation is:

| COP(Th'Tk)‘1+(Coqmax-1)(1_(Th-Tc)/Tmax) (2.2-11)
Where, COPp_ =3.5 and 'rm:)gs.% .
I1f we designate u, as the heat-pump electrical input, the
rate at which heat;i} taken out of the low-side tank by th?

heat pump is:

). =u, -1.1]. . aue-
o QruafCoR(T T -t (2.2-12)
The heat pump output is calculated as followst o
X - - va
‘ *ohp-u,cow'rh,'rc). o u/.z 13)
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2.2,5 Circulation pumps.

According to experiments, the collector flow rate
should be in the neighborhood of 60 liters/hr per one square
meter of collector area [12]. Actually, the value of u,,
collector flow rate, is not needed as far as eguation
(2?2—2) is concerned.

The building loop pump capacity is calculated as
follows:

The heat load of the building is:
. Q)
where Tbsbuilding temperature=20 C,

Eab(TbiTa) Kjfﬁr (2.2*14)

_ Tg = average ambient §empe:a:ure.
Take T, =-129 [12](aver§gg of January)
The maximum heat delivered by the high-side ‘tank is:
O = EUimax (T, ~T,) KI/hr

where £=0.8

Th =ayerage te

Assume that Th is app!?

In order for the building hLeat load to be fully met by

Jature of the high-side tank,

Bimately equal to 24°.

heat from the high-temperzture tank under these conditions,
the building loop pump capacity must be equal to:
u,maxiab(TbsTi)/E(Th*Tb)

=740.06x32./0.8x(24.-26.)=7400. Kg/hr

LI

2;3;The,St:ldy—S;:tg Optimal Temperatures
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We assume that an effective load regulator holds the
buildﬁng temperature constant at a specified Tbusiﬁg
auxiliary heat if necessary. The collector pump rate
controller is a bang bang optimal controller:

u,zu,max[1.+sgn(S-UL(Tc-Ta))]/2.
l.e., '
1t QC‘S—UL(TC -Ta)>0- U;‘U;max

If QC=S—UIfTC-Ta)$0. u,=0.

The dynamic equation for the two tanks are then:

ChTh-- Eu'(Th-Tb)-ah(Th-Ta)*u,COP(Th,TC? | | (2.3-1a)
CCTC=°U,[COP(Th;TC)-1]-ac(Tc-Ta)‘ACF(U,)[S-UL(TC*TS)]
(2.3-1b)

where the Coefficient of Performance is:
- - -~m

| COP(T, , T )=1.+(CORy  ~1.)[1 (T =T/ Thax )
and where:
Th,Tc@,Tbare hot tank, cool tenk, embient, and building
temperatures.
CpCeare tank heat ccpacities
U,,V,,9, are building louvp pump, heat pump,and collector
purp rates.

s,ah,acare heat transfer coefficients

Ao, F ,UL are collector area, heat removal factor, and 'loss

coefficient.

The required auxiliary heat input rate to the building -

is

0 .ab(Tb—Ta)-Eu.(?h-T )20

aux b
wvhere the equality holds if u, < U, can satisfy the
max y
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equation, i.e. no auxiliary heat is used if the building

load can be supplied from storage,

Minimize J-ab(TbsTi)—Eu'{ThﬁTb) +u,

(J represents the total of auxiliary energy and the input
¥

power to the heat pump).

subject to:

‘—eu.(Th-Tb)*ah(ThiTa)*u;C@P(ThETﬁ)sD (2-3;1)
-u,[COP(Th,TE)i1]*aE(TC-Ta)*AEF(u,)[S‘UL(TE*T‘)]tD (2.3-2)
-3 (T =T, )* U, (T, -T, )50 (2.3-3)
U, U igax <0 (2.3-4)

(2.3-5)

Us~Usmax <0
Establishing Lagrange function and then-using the
KUHN-TUCKER conditions to solve this problem{[9],
the steady-state optimal high-side temperature will be

proved to be:

0 Y (ke -
Thiab(Tb’_Ta)/( £tuimax )+T

T:,u? are found from (2.3-1) and (2.3-2)

b

Proof:let the Lagrange function be defined as follows:
L=J+p,*1hs(2.3-1)+p.*1hs(2.3-2)+p,+1hs(2.3-3)
+p.*1lhs(2.3-4)+p,*1lhs(2.3-5)

whe{e lhs(2.3-1) is the left hand side of the EQuatiaﬁ
(2,3-1)

lhs(2.3-2) is the left hand side of the equation
(2.3-2),etc...
The KUHN-TUCKER conditions are:



dL/3u,=0,3L/du,=0,
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Constraint equations (2.3-1), (2.3-2), (2.3-3),

-

(2.3-4), (2.3-5),
piis!if,’Ll'Lis('ZiB’—i)iC).,i i=1,2,...,5, and

: Eigﬂ, i=3,4,5

Applying the KUHN-TUCKER theorem, we obtain the following

conditions:

]

1)aL/BTh:;Eu.*pi[sgui*aiﬁu;:(cagbax=1)/T!ax,

h
*P, [ﬁ:‘(‘:c’?:a:i1 )/ Tnax1*Psltu.]=0.
2)OL/3T =p . [us#(COPypy = 1) /Ty 0y

*HE‘AEF(H; )ULJ!D

B)BL/BUZ:1+p.CDP(Th,TC)—p;:[:QE(Th,?C)s1]*pigo

(2.3-6)

]+p;t[iu;t(Cng!x=1),Thax

(2.3-7)

(2.3-8)

4)%L/Buif‘E(Tthb)*p.[éE(ThﬁTb)]*pa[E(Thin)]*p.(2i3§9)

=0,
5)The 3pnstraint equations (2.3-1), (2.3-2), (2
(2.3-4), (2.3-5).
6) pP.*1hs(2.3-1)=0
7y p.*1lhs(2.3-2)=0
8) . pP,*1hs(2.3-3)=0
9) pP.*1hs(2.3-4)=0
10)  py*lhs(2.3-5)=0 _
11)no restrictions on p,
i2)no restrictions on p,

13)p,20

(2.3-9)
.3-3),

(2.3-10)
(2.3-11)
(2.3-12)
(2.3-13)
(2.3-14).
(2.3-15)
(2.3-16)
(2.3-17)
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14)p.30 ' o (2.3-18)
15)p,30 . (2.3-19)

Equation (2.3-12) gives:
>, 8[ - -T, T -T, ) ]=0. | O (2.3-12)
p.sl a (T, ~Ty)*gu, (T, Tb)] 0. | | (2.3-12)

Case 1: p,=0. ' ‘ (2.3-20)

Equation (2.3-13) gives: p,[u,-u,p,,]=0. (2.3-13)

Case 1.1: p,=0. ) . (2.3-21)

EQuation (2.3-14) gives: Pylus-Usmag J=0. (2.3-14)
’ Case 1.1.1: p,=0 . . (2.3-22)
From (2.3?20E§£2.3;21),(2i3-§),ue obtain: °,
py=-1. - (2.3-23)"
Substituting (2.3-23) into (2.3-6) and (2.3-7), we find that
there are no values of p, that can satisfy both (2.3-6) and
(2.3-7).

Therefore, this case is g;clué.

- Case 1.1.2: u,=u,max (2.3-25)

This

(2]
\n\
L]
L ]

is excluded for the same reason as the above.

1-725 Lh!qu.x - (2-3‘27)

[a]
o
w
Ly ]

Case 1.2.1: p,=0. é “ (2.3-28) -
From (2.3-8): .
p.:(p;i[C@P(Th,TE)*1]‘1)/GDP(Th,1§£§pf (2.3-29)
Replacing (2.3-29) into (2.3-7) ,and rearranging,we obtain:
p:=(u,*(COR, =)/ (T COP(T, , T ) )]/ ~u,e(COR,, ~1)
/(Tm!xCCP(Th.Tc))*ac‘AEF(u;)UL]g (2-3i30)
Equation (2.3-6) is violated when we substitute the values

of p,, ps, P, vhich are described respectively by equations



(2.3-29), (2.3-30), (2.3-20).
Therefore, this case is also excluded.
Case 1.2.2: u,=u,pay-
Rewriting (2.3-7), we obtain:
p.-p.-p.[ac+acp(u,)UL]/ [”'HGX“COPiax“)/Tnax]

Because COP, >0 and p,30, Hence from (2.3-32)

max
p:.-p.30.
Computing p, from (2.3-8),we have

Ps=-1-p,COP(T ,Tc)*p.[cop('rh,'rc) -1].

h
Or,
p,--1-p,—cop('rh,'rc)[p.-p,]

From (2.3-33), (2.3-34) and for COP(Th,TC)>0 s

P.<0
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(2.3-31)

(2.3-32)

(2.3-33)

(2.3-34)

we derive:

The above condition violates the constraint ineguality

(2.3-19). Hence, this case is excluded.

Case 2.: a (T -T.)-fu.(Th-Tb)-O

Case 2.1.1: p,=0 .

From'equdtionsl(2.3-9) and (2.3-36), we obtain:
P,=1+p, |

Replacing (2.3-38) into (2.3-6), we get:

p.[-a_-u,s(coOP

h max
From (2.3-7) and (2.3~39), we obtain:

pp'p;'o
Replace (2.3-37) an8 (2.3-40) into (2.3-8)
1=0 (Contradiction).

This case is excluded.

=1)/Tpqx J+P: [us s (COR,, | 1) /Ty y =0

(2.3-35)
(2.3-36)
(2.3-37)

(2.3-38)

(2.3-39)

(2.3-40)



Case 2.1.2: u,=U,gax (2,3-41)

This case is also excluded, the proof is exactly iike that

of case 1,2.2.

Case 2.2: u,=u,max (2.3-42)
Case 2.2.1: U;"Uxm.x (2-3*43)

This case is excluded for the same reason as that of case
2.1.2 or 1,2.2.
Case 2.2.2: p,=0 . (2.3-44)

From (2.3-42) and (2.3-3%), as was claimed

O r ’ i
Thsab(Tb-Aa)/(£tu.max)*Tb, (2.3-45)
Tg,u? are found from (2.3-1), and (2.3-2) by solving a

system of equations. The analysis to find existence
conditions for T:, Tg is omitted because the computations
are very involved. Moreover, the suboptimal controller is
not smart enough to take these conditions int> account. This
is one area that needs further studies. However, we note
that when S equals zero the steady-state optimal
temperatures for both tanks do not exist.

The proof is as follows: )

since ﬂgama(because of stored solar energy),

- o_
hence, S UL(Tc T;)so.
This implies F(u,)=0.
From'(2.3~2), ve obtain: *

0 0 0, - Q_
. u,[COP(Tb,TC) 1.3 ac(Tc Tab. !
since, cop('r:,rg)-1.>o., ’
hence, uw9s<o0.

) . *
Because u, is the heat pump electrical input, it cannot take



on negative values;
Hence, uwl=0. (2.3-46)
From (2.3-46), (2.3-42), (2.3-45) and (2.3-1), we obtain:
0 .
Th-(ahT.+Eu...be)/(ah+£u.m,,). (2.3-47)
: that can satisfy both the

equations (2.3-45) and (2.3-47).

There are no values of T

This completes the proof. /

2.3 Optimal control sequence.

Although the steady-state optimal control is of

!
interest in its own right, we are here more interested in

<

the nature of the heat pump control sequences that are
optimal under other than steady-state conditions., This is
because the solar int;nsity S and ambient temperature T are
never fixed for a long time although they are expected to
change gradually. Therefore, the hegt pump control will keép
changing to move the systeé operating point toward the new
steady-state operating point when S and T change.: The
optimal values of u, calculated as above will not
necessarily be optimal under these conditions.

The steepest descent method is used to search for the
optinal.;alues of the heat pump control soquincc that will

minimize a cost index which is a function of auxiliary heat

and electrical energy input to the heat pump.
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2.3.1 The steepest descent method(8]).

The gradient of a function

[

s the vector of partial
derivatives of the function, f, with respect to each of its
variables, The gradient has a very important property, that
is the function value increases at the fastest rate when we
move along the the gradient direction, Therefore, the
gfadignt direction is called the steepest ascent direction.
Similarly, the negative of the gradient direction indicates
the direction of steepest descent.

The steepest descent method is the method for
minimizing a,ost function that makes.use of the direction
of the steepest descent. In this method, we start from an

initial guess point X, for the argument of the function and

iteratively move towards the optimum point dccording to the

formula:

§i+1i£1* N2y

vhere §;1s the negative of ‘the gradient of the function f,
Ayis the optimal step size which is obtained by making an

one-dimensional search along direction Ss-

Because the gradient magnitude gets smaller as it is
approaching the optimum, the rate of convergence becomes
smaller and smaller. In order to improve the convergence
characteristics of the steepest descent, the search
direction needs to be modified. One af the modified steepest
descent methods is the conjugate grgdignt‘methad which
determines the current search direction, based upon the

previous direction, the previous gradient, and the current
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gradient of the function. This method has been shown to
converge guadratically, and it will be used to determine the
optimal control sequence of the heat pump.

Using the algorithm suggested by Fletcher and Reeves to
minimize general functions as follows[8]:
1) Start with an arbitrary point X,
2) Set the first search direction
S, =-Vf(X,)=-Vf,
3) Find the point X, according to thegrela;ien

é;igi*k §|

1
wvhere Alis the eptimal step length in the direction S,

4 l
Set i=2 and go to the nex*t step. ’
4) Find VE,=VE(X,) and set

Sy=-VE (Ve |/t ) )§H»

By trial and error process, the factor multiplying S{lcan be
replaced by a constant.
5) Compute the optimum step length Ayin the direction Sy
and find the new point:
125

éi#jgii*k
6) Test for the optimality of thegai’ht

éifli
If §1+1 is optimum, stop the process. qghérﬂise, set the
value of i equal to i+1, and go back to step 4).

| The program used to find the optimal path of this
system controller is listed in appendix II (the weather
conditions used are hypothetical). Specifically, we can
divide this program into three parts. The first partéaf the

program is to establish the initial trajectory of the
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controller. In the second part, the gradient of the
objective function is evaluated, and then an aﬁ;édimgnsiéned
search is performed along the direction determined by the
gradient. The search is stopped in part three of the
program.

The initial control trajectory is developed as follows:
The building loop pump controller u, is turned on to such a
vélue that the building Meat load is fully met by the heat
from the high-side tank. In the case the building load
cannot completely be statisfied even with the maximum valoe
of u,, the rest of the load is supplied from the auxiliary
.heater. The heat pump controller u, is set to such a value
that the heat removed from the high-side tank will be
replenished by the same amount of heat from the low-side
tank., If this cannot be realized, the heat pump-is turned on
to its maximum value. The collector pump controller is of
on-off nature. It is either switched on to the maximum value
or switched off completely, depending on whether or not the
collector to the ambient.

Noting that the heat pump controller sequence has 50
sampled values, each of which corresponds to a time
interval. In the second part of the program, the gradients
are found by imagining that we have a space of 35
dimensions, each represents one out of the first 35 time
intervals of the controller time sequence. The gradient

vector can be thought of as a 35-dimensioned vector whose
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each camécneﬁt is calculated by varying the corresponding
value of u, along that dimension. The last 15 sampled values
of u, are used to bring the system states back to their
initial values, thus preventing the stealth of energy from
the fi%al States to save on purchased energy (the objective
function).
The new search direction is calculated from the current
gradient veétaf and the old search direction. By experiment,
the coefficients of the gradient vector and the old search
direction are chosen as -0.5 and 0.5, respectively. Here,
the so-called one-dimensioned search actually means
searching along one direction, which is determined as above.
The third part establishes the criterion to stop the

earch,

[Vy]

The optimum control sequence of the heat pump obtained

from running the aﬁcve program is plotted in Fig.2.3[7].

2.3.2 The p:ap@s;; suboptimal controller.

Using the model, which is developed previously, the
numerical optimal path of the heat pump controller seqguence
was found by the steepest desceng.method. However, for
practical reasons, it is very difficult to implement the

optimal controller sequence. Therefore, an implementable

suboptimal controller needs to be developed.
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Various* avenues have been explored to develop a
suitable suboptimal controller for this system. One
promising approach, which is explained in detail in Appendix
V can be be applied to a general bilinear system. However,
more work needs to be done before this subaptimalyccntréller
can be implemented satisfactorily.

We have also devoted much time to another algorithm.
That is, using the constant COP path &nd the discrimination
of T and T_ (Fig. 2.4), the system

h - c
can be moved from its current operating peint to the

curve in the state plan

o
™

corresponding steady-state @ptimgm point when the weather!
changes. For example, the current weather ié fairly good and
the system operating point is at point A in the state plane
(Fig. 2.4). Assuming that the predicted weather is going té
be extremely bad, thus, based upon this prediction, a new
steady-state optimal point B (Fig. 2.4) is determined. The
problem is how and when to get to the new point from the old
one. One proposed way\is to adjgﬁt-tﬁe heat pump such that
its COP (coefficient of performance) is constant, thus
moving the system along a constant COP curve in the state
plane. The reason for this is to keep the heat pump
operating at relatively gaeg values §$~CDP‘uﬁder adverse
weather conditions while waiting for the good weather to
come. When the discrimination function changes sign, heat
pump‘will be turned to its maximum value to reach the new
apfimum point (discrimination curve is a curve which passes

through the new optimum point, with heat pump set to its
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maximum). The timing of the heat pump is adjusted such that
" the new optimum point is reached just when the good weather
conditions arrive, But there are doubts that such a
trajectory always exists for various weather conditions, let
alone being ﬁgaféapgimali It's also impractical to expect
such an abrupt change of the weather. Moreover, the
computation will be very much involved, therefore éeétraying
any prospect of its implementation on a microprocessor.
Based upon the results found from running the above
program with real conditions of weather,iand‘upen the
results cfia process of trial and Ef}éf; we propose a
suboptimal preview adaptive controller sequence as follows:
'u;(n*1)sQQSiu;(ﬂ)*D_SfK(n)¥(1;*Th§!Th(q}) ¥2.4.2-1)
‘where, ' o &
u,(n+1)=the next-step value of the contrdller,
u;(n)=the curent value of the cantfclle;, .
¥ (n)=an adaptive gain changed every step
=ratio of the total Highisiée‘s heat loss to the
heat pump Coeffient of Performance at step n,
i[EP.(n)(Th(n)‘Tb)*ah(Th(n)*Ta)]/CQF(Th(n),Tc(n))

ThsiThe steady-state optimal temperature of the

high-side tank {calculated by using equation (Z,Bﬁés) with T,

beiﬁg the predicted average daily ambient témperatu}e);v
Th(n)-The current temperature of the high=si§e tank,
In the folloWwing, we will prove that the above

suboptimal cantféller tends to bring the high-side

temperatures back to its steady-state optimal values.
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Assuming that T (n)<T (2.4.2-2)
h hs

. u,(n)>K(n) : (2.4.2-3)
According to definition, K(n) is meant to be the required
heat pump electrical input to keep the high-side temperature
unchanged (see eguation (2.3-1a)).
From (2.4.2-3), we obtain:
u,(n)>K(n)i[Eu‘(ﬁ)(Th(n)*Tb)+ah(Th(n)*TE)]/CQE(Th(n),Tc(n)),
From (2.3-1a) and the above condition, we derive:

ChThiﬂi
H , T (n+1)>T (r
ence h(n ) h n)

 Therefore, the current value of u, tends to bring the

value,

On the other hahd; if Th(n){Th§ : (2i4i2=4):i
and | us (n)<K(n) (2.4.2-5)
From (2.4.2-1), (2.4.2-4), and (2.4.2-5), we obtain:

u;(n+1)>u,(n).

Hence, as long as (2.4.2-4) holds, values of u, will be

the next case. °*
1f Th(ﬁ)?Ths (2.4.2-6)
and u,(n)<K(n) ' : (2.4.2-7)

(2.4.2-7) implies that
| ?h(nf,)fTh(n),
The current value of u, tends to stabilize the system by

bringing the high-side temperature back to its steady-state
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optimal temperature.

For the last case, i

if T (n)>T (2.4.2-8)
i h n) hs , |
and u, W)>k(n) (2.4.2-9)

From (2.4.2-8), (2.4.2-9), and (2.4.2-1), we obtain:

us(n+1)<u,(n). . _
Thus, as long as (2.4.2-8) still holds values of u, will be
decreased until u, is less than K (return to the previous
case). However, if (2.,4.2-8) is violated while (2.4.2-9)
still holds, return to the first case.

In conclusion, regardless of the current values of T
and u,, the suboptimal controller tends to bring the
high-side temperature back to its steady-state optimal
values. The reason for this is to minimize the auxiliary
heat input to the building.

Since, if Th(n)-Ths
| u.i[ab(T{Ta)]/[s(Th;Tb>Jiuvnax
So, Qaux™2p{ Ty Ta) "EUmay (T =T )=0.

However, if more information on T, is taken into account so

that u, is minimized at the same time with éaux? there can
be further improvement on the system performance. The
approach described by Appendix V may be useful in doing so.
The stability and the near-optimality of this controller are

fully explored in the next chapter.
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3. SIMULATION and THE SUB-OPTIMAL CONTROLLER

-

3.1 The stability of the suboptimal controller.

For a control system, stability is often considered as
one of the most important criterion to be investigated.
There are many methods such as the Nyquist, the
Routh-Hurwitz, the Lyapunov netha&;etc:. that can be
employed to analyse the stability performance of a system.
In the following, the Lyapunov method will be used to
examine the stability of the solar-assisted heat pump
system,

The dynamic eguations of the gystem are as follows:

X=~AX+ (BX+Cuy +(D; X+ D)u +EF(uy) +H (3.1-1)
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Equation (3.1-1) has thﬁvéorm:
X = {(i,ul,uz,F(u3))

»

In the neighborhood of the steady-stete optimal point, define:

Sx = x- X

(3.1-2)

(3.1-3)

51
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&;1 -u,- uigai!t (3.1-4)
.
U, = u_- u_ ) 3.1-5]
2 2 2 0pt - ( )
N o = - ’ : _ ,
SF(B3) - F(us) - FcuB.épt) . : (3.1-6)
vhere gﬂPt’ uligpc s uziapt‘ u3,apt are the steady-state optimal
values of x, Ujs Uy, u,, respectively.
o ‘ »
Subst{tuting (3.1-3), (3.1-4), (3.1-5), (3.1-6) into (3.1-2),
we obtain:
8k = ic%pt + 6x, ulig ¢ + zSul ‘“z,ap: + 6“2’ FmB,apt)*éF(uZ}))
Linearizing the above equation grcuﬁﬁ the optimum steady state
peint, and retaining only the first-order terms, we get:
!
3f
: = 4 ) —_— &
ox £(3§pt‘ ul,gpt‘ “Z,apt‘ cuz,apt)) *ax +
opt
of of of
— | — | &u. —_— & : 1=7]
b, 6u, + 3 ) bu, + 3?(93) ?(EB) (3.1-7)
“lopt ‘opt " lopt '

where, (...) indicates the expression (...) is evaluated at the

opt
optimum point.

From (3.1-1), we have:
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of I
N = Dx, D
opt
af
=y p 4
3F('u3) B —opt +e
opt .
af -
3 (u,) E
X
opt —opt
Since, f (x , ul,opt’ u2,opt' F(UB,ﬂpt)) = g%pt = 0., (3.1-7) can

opt

be rewritten as:

+ EQ) Su

8 = A+Buy o) 82+ (@ X 1t
(B IBpt+ £)5u2 +E iF(uz) (3.1-8)
—opt
Here, GF(u3) can in principle depend on nggpt - Téi since F(uzl is a

bang-bang controller which changes its value when S*UL(TCQT‘) = 0.

If, for given S and }a’ TZ does not satisfy the above switching
condition, {.e. S’UL(T;'Ta) ¥ 0, there will be a neighborhood of T,

values which do not satisfy it either. Hence, 6F(u3) = 0 in the

neighborhood of X
—opt.



o However, if, for given S and T,, TO satisfies

44 _ = 17 (T*
condition, 1.e. § HL(TE

g | I L
. A_[5-U (T°-T)] 2
x _ c L ¢ "a ,
=opt — *7727 - 0

R <

In short, E, §F(u,) 1s always zero.

x
=opt

So, (3.1-8) becomes:

. - . . +
8% (A+B uzi t)éi + (?1 gﬁpt D2

(B x pt + 08

UZ,

§x = (A+B UZ,QPE)§£

has negative eigenvalues for any given values

%

of uzigpt’

(3.1-9)

Hence, the-+

systeam described by equation (3.1-10) is asymptotically stable [3].

System (3.1-9) reduces to system (3.1-10) when 6éu,+ 0. Hence, according

to [4], the system described by (3.1-9) is al

small values of &x and Sul, 6u2,

2 ,
o asymptoti

cally stable for
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3.2 The neer-optimality characteristics.

In order to prove that the suboptimal controller is
really suboptimal, we used the Ssteepest descent method‘to
find the optimal control sequence of the heat pump with an
initial trial seguence which is the same as that of the

suboptimal controller. Results of the search (in Fig.3.1)

show that the suboptimal controller sequence very close

to that of the optimal controller, and the costd associated
respectively with these two controllers are also\close (the

period involved is one day).

3.3 Simulation‘and design methods.
Simulation has becsme a powerful tool in developing as
well ‘2s designing solar processes. TRNSYS program has been
widely used in obtaining information for various solar
systéms. Programs like f-chart have been used by
manufacturers, and others to design solar heating and
cooling systems. The reason why simulation is so popular in
exploring solar processes is that physical experiments are
expensive, time-consuming, anq.ggnerally not repeatable.
However, simulation can provide us with much information
regarding response and design aspects of the system. As John
Duffie [1]) put it:

K]

"Properly formulated, simulations can provide much of
the same thermal performance information as physical
experiments and require orders of magnitude less time
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and expense. Effects of process design variables can be
studied systemmatically. Thermal performance, with cost
information, allows determination of least :ast systems
when process design parameters are varied.

However, there are some problems confronting the simulator

ss. For instance, one has to ask what level

of a solar pro
of detail is ag?rap:iate for a- simulation? What kind of
collector model should be used? If more than necessary
details are included, caméuter time is wasted. On the other
hand, information obtained could be misleading for lack of
,accuracy in modelling the system components. Meteorological

data is also a problem, as Duffie put it:

.The limited number of locations also leaves many
slmulatars without data for locations of interest to
them, and there are still uncertainti®s in the
:alculatlan of radiation on tilted suffaces from data
on herizontal surfaces.”

Duffie summarized higs remarks concerning simulations as

)

£ =

follows:

"We have at our deposal increasingly powerful and
useful tools for understanding and designing solar
process systems. Simulations can pfaduce for us
information which can not be obtained in any other
pratical way.

The users of simulation programs, however, must be
avare of both the capabilities and the limitations of
the programs they are using. Hf‘use of simulation can
produce more information on system in less time .than
any other method! Users should excercise their
engineering Jjudgement in the use of simulation based on
the best possible knowledge of the science and
engineering of the solar processes they are

e
o
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simulating."”

The simulation is done with the set of weather data for
Edmonton from the first of October, 1967 to the first of
April, 1968. These data which are collected by Ehvifén%ent
Canada, are available only in hourly measurements;
therefore, in our simulation, we assume the weather data are
unchanged during each hour. We also assume that the average
ambient temperature of the day is known one day in advance.
A listing of the simulation program is given in Appendix
I1I. There are six subroutines in this program. To simulate
the suboptimal approach, we need five subroutines, which are
REZADI"N, WEATHR, AVERA, GPSET,‘ and SYSANA. The WATSUN
approaéﬁ is simulated through the use of subroutines READIN,
WEATHR, and SYSWAT. Subroutines SYSWAT and SYSANA have their
own subroutines TEMP1 and TEMP, respectively.

Subroutine READIN is used té read in the parameters of
WATSUN 2 program, is used to process meteorological éata, as
explained in the Appendix I. AVERA is used to calculate the
daily average temperatures that are to be used in evaluating
the adaptive preview suboptimal cantrs}lgr (see section
2.3.2). Subroutine OPTSET ccmputes'ﬁhe optimal steady-state
temperatures of the hiéhﬁtemperatufé tank, these values will
be used as the set points in the suboptimal controller.

SYSANA, with the help of TEMP, carries out the simulation



with information from subroutines WEATHR, AVERA, and OPTSET.
The simulation of the WATSUN approach is done by subroutine
SYSWAT.

The Euler integration method is used with the sampling
time of 15 minutes, or 4 samples per hour. écmpafing the
bulding heat loads calculated respectively for the case of
4, 5, 6 samples per hour (table 3.1), a small error of 0.7%

is reported. This justifies the use of 4 samples per hour.

3.4 Results of the WATSUN 3pprgich!

The strategy of the WATSUN approach is as follows[2]:
1)Check whether or not collection is possible. If no, go to
ﬁhe next step. If yes, is the storage tank less than a
preset maximum temperature? If yes, tank S1 is provided with
solar collected energy, if no, the collected energy is
éumped.
2)Check whether or not heating demand exists? If no, go to
the next step; If yes,can téék S1 meet all the demand? h

-I1f yes, S1 supplies heat to the iaad and go to the
next step.

‘If;na, can tanks S1 and S2 meet all the demand? If no,
auxiliary heat is used to supplement S1 and S2,
3)Can the heat pump work with the existing tenpe}-tqus of -
tanks S1 and $2. If no, return to step 1; If yes, heat pump
takes heat from tank S1 and supplies it to tank S2.

The heat pump used here is a 3-ton Carrier heat pump, as
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mentioned earlier (chapter 2). For lack of specific data, we
assufje éhgt there is no temperature limit on the heat pump's
range of operation except with Taax 25 &N upper limt. The
heat taken from tank S1 to supply to S2 (step 3) is

approximated by equation (2.2-12) with u,, the heat-pump R

“ electrical input, approximated by the following equation
(see Eig;3_2);
u;-2.*(Te—Th*éL)/25; kW (3.4-1)

and u,fwﬁix-zia kW,

3.5 Results of the suboptimal controller.

To use the suboptimal controller approach, we assume
that the heat pump electrical input, u,, can be changed at
will,

The strategy for the control of the collector pump,
heat pump and building circulation pump is as follows:
*,1)Thesgell&ctar control is bang-bang, i.e,, whenever there
is more energy to be collected than to be lgét to the
surroundings, the collector pump is turned on to the
maximum, otherwise, it is switched off.
2)The heat pump controller is based upon the éub@ptim&i
controller sequence which was mentioned earlier,
3)The building circulation pump is used whenever necessary
to keep the building temperature at a pre-determined value,

When the heating load is not fully met by the storage tank,
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auxiliary heat will be used.
4)I1f the low-side tank temperature is above a preset upper
limit, it indicates a mild weather condition. Under this
spesiél condition, the heat pump will be turned off and a
mass exchange between the two tanks instituted, thus
effectively making the system a one-tank pure solar system.
The simulation period is 150 days long. It is from October
1,!1567 to Aprii 1, 1968, This period can be roughly divided
into three smaller periods. The first period is from the Iist
day to the B0th day. The second period is from the 81th day
to the 130th day, and the third period includes days of the
~rest of the simulation period (see Fig.3.3 and Fig.3.4). The
simulation results of the WATSUN and the suboptimal
approaches are plotted in Fig.3.5 and 3.6 which show that
the energy consumed by the WATSUN approach is more than that
of the subeptimalicgntfeller for the first period, and for
the third period. In the first period, the weather is
considered good by the suboptimal controller, hence,
strategy 4 is taken. Therefore, in this period, the saving
@f purchased energy is mainly due to the d@ﬁbling of the
mass storage of the suboptimal controller. In éhe féllewiné,

v

will look at the performances of the two approaches only
in the second and the third periaé (Fig.3i7ﬂgp§ Fig.3.8) to
see whether the suboptimal controller fénsﬁéé;gﬁééé_ﬂf less
energy in less favourable conditions of veigﬁi%_ 1n the
third period of interest, 130th day to 150th day, the

weather is relatively better than the second period (but

<
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worse than the first), and the suboptimal controller (using
strategy 2) makes a saving of 10% in purchased energy ,as
seen in Fig.3.7(the total saving for the entire time, 150
days, is 31%). Fig.3.7 also shows that in the cold period,
BOtﬁ day to 130th day, the suboptimal controller and the
WATSUN approach consume almost the same amount of purchased
energy. In oq)er words, there is no benefit using the
suboptimal controller when the weather is so bad. If we
increase the collector area from 100 to 300 m*, using
strategy 2, 37% sgving of purchased energy is obtained
(Fig.3.8). But most of these savings come from the third
period. This ,once more, confirms the above ccnclu%igﬁ that‘
unless_the weather is very bad the suboptimal controller
always outperforms the WATSUN algorithm, It should also be
noted that the second period is for the months of Decembér
and January which, for Edmonton, aré not likely to be
suitable for solar heating in any case.
v Table 3.1
samples per hour

4 5 6

Building load(GJ) 69.39 69.34 69.33
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4. THERMAL and ECONONMIC ANALYSIS

>

4.1 Thermal sensitivity analysis.

The performance of a solar heating system depenaé on
many factors, some of which are beyond our control, e.g. the
ambient temperature or the insolation. But there afé
posFibilities fo improve the performance of a system. For
example, it has been shown that the: system efficiency caﬁ‘be
enhanced with the proper sizing of system components. The
purpose of this study is to identify areas for possible
performance improvement and (or) cost reduction through
utilizalion of thermal and eéonomic models.

The saving percentege is defined as_the percentage of the
sysEem'hgat load 'which is provided by the solar energy; or
specifically, it is equal to ,in?percent, the difference
between the:total building heat %oad and the purchased

v

energy, divided by tﬁe total building heat load.

4

4.1.1 Mass_s;&ragef

For a given collector area, various values of the
storage mass per unit collector area were used to calculate
the savings percentage (it is assumed that the tanks are

alwayé of equal mass). Using simulations as described in the

70 .
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previous chapter, with the same particular set of weather
data, each value of the storage mass was used to find the
corresponding savings percentage (Fig. 4.1). In Fig.4.1, we
note that when the collector area is small, the system
performance becomes worse as the storage mass per unit
collector area increases from 40. to 100 Kg per one square
meter of collector area. The phenomenon is reversed when the
collector area is large. This is due to the fact that if the
tank storage mass is larger, the average tank temperature
becomes lower, and this leads to a worse heat-pump COP, but
to a better collector efficiency. Hence, it follows that
better performance of the collector does not compensate for
a wors; CoP in.the case of a smafﬁ collectpr. The reverse is

true for a.large collector, because if a collector is large

enough, solar collection would out-perform the heat pump[1].

s

4.1.2 Colléctqé area.

For a given stbrage capacity per unit collector area,
the savings percentage is directlxlproportional to the
collector area (Fig4.2). A larger collector helps capture
more solar energy, and therefore more energy can be stored

to be sent to the load later.

&
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4.1.3 Heat exchanger coefficient.

The heat exchanger coefficient, which is positive and
always less than or equal to unity, cén cause a difference
of 25% in the séving percentage if the coefficient is
increased to 1. from its lower value of 0.1 (Fig.4.3). The
heat exchanger is used to transfer heat from the liquid
inside the duct to the room airspace. A higher heat
exchanger coefficient means a larger amount of heat to be
transferrable and a less amount of auxiliafy heat to be

needed, )
¢

4.1.4 Collector covers.

system with zero-, single-, and doubled-glazed are tabulated

in table 4.1. The zero-glazed is always out-performed by the g
single-, and the doubled-glazed. For large collector, the
double- and the single-glazed save almost the same amount of
energy, but for smaller collector, the single-glazed can

cause a difference of 0.16% in saving of purchased energy,
therefore, the singlEEglazed colector is the most

appropriate. This agrees with the conclusion of [6].

A}

¥

4.1.5 Building loop pump capacity.



Supposing that we encounter a scenario as follows:
there is a large instantaneous heating demand, which the
high-side tank is capable of meeting, but the building loop
pump éapacity is not sufficient to transfer fully to the
room the amount of energy needed. In that case, auxiliary
heat must be used to keep the room at desired temperature,
thus lowering the saving percentage, as can be seen in
Fig.4.4. However, the building loop pump only aids in
transferring heat to the load on the condition that the tank
stores enough energy and a heating demand exists; therefore,
there is a limit on the increase of the saving percentage
when the-loop pump capacity is.ihcreased. This explains the
saturation branch of the curve in Fig.4.4. Approximately 16%
more Jf saving percentage is recorded here. An effective
collector area 'of 20 m?, a mass storage of 75 Kg per unit
collector area (m’), and a heat exchange coefficient of 1,

were used to plot fig.4.4.

4.1.6 Tanks heat loss cbetficicnt. ,

The change of the tanks heat loss coefficient(a.
and 2, ) does not cause a significant change in the
performance of the system. Less than Zi difference of the
saving energy is found vhen the heat loss coefficients are

changed from 5 to 15KJ/hr%C (Fig.4.5).



$.1.7 Tiitislapg_

A variation of the tilt slope could result in a worse
or a better saving percentage. In Figgt_é, the optimum slope .
is found to be in the neighborhood of the region lattitude.
This agrees with the rule of thumb that the optimum tilt
slope is in the range from (latitude-10° ) to

(latituée*i@g ).

4.1.8 Heat pump capacity.

The optimum value of the heat pump capacity is around
5kW (Fig.4.7). The savings percentage is 5iightly lower if
the heat pump capacity is increased beyond 5 KW. This is

understandable if we we note in our simulation time,

dthere are fourteen days, the 93rd day to the 106th day,
without sunlight. Hence, 4dn this periéé, the steady-state
optimal temﬁgratures of the two tanks do not exist (Chipter
I1), though we can still calculate the pseudo-optimal values'
‘of the high-temperature tank by equation (2.3-45),

Therefore, any successful efforts by the heat pump to reach
these pseudo-optimal values will result in more consumptiopn
of purchased energy. When the heat pump capaclity is less
than 5 KW, the system will not be able to reach ihé ‘
pseudo-optimal points. The.feverse is true for systems with
higher heat pump capacity. However, if we shut off the heat |,

pump completely during the cold period this will degrade the
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system performarce. The reason is that the heat pump will |
work ‘'with bad values of the COP (because of low values af
the low-side temperature) when the veather becomes mxlder,
thus decreasing the saving percentage. This is another area
where furthe€r work is needed to improve the performance of

v
the suboptimal controller,

[
.
My

Economic analysis.

The thermal p2f£cfﬁance of tﬁe system was dealt with in
the pfe:eéing discussion, but the real impact on the part of
the designer lies on the queétian of cost. No matter how
good the system perfcfm;ﬁ:e isr_it will not be realizable if
fihe‘c@st is unpractically high. According to J.Duffie and
W.A.Beckman[2], -the annual cost of a solar heating system

:énsi5t§ of many elements such as the annual cost of

-

ownership, the annual cost of operation, and the yearly cest
of maintenance. As Duffie and Peckman put it: |

"The major annual cost of a solar heating system,
without auxiliary energy, includes: the annual cost of
operating the system; the cost of power for the pumps,
blowers, and so on; and the yearly cost of maintenance.
The annual cost of ownership includes cost associated

\ with the initial investment, that is, interest on the
invéstment and its repayment over a spec1f1eé number of
years related to its lifetime. The sum of these is
usually taken as a fixed percentage of investment each
year; for example, for a twenty years amortizatione=and
8X interest rate, the annual cost- is 0.10185 of the
investmen o
Operating costs are primarily for power reguirement for
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pumping water and moving air in the system, summed over
the yearly cpgratlng time of the system. Maintenance
costs include repairs, replacement of glass in
collectors, or any other costs of keeping the system in
operating condition. Consideration of these costs leads
to the conclusion that maintenance must be minimized if
solar heating is to be economically viable,
particularly when labour costs are to be charged as
part of the maintenance expense,

r

: k 4
Similarly, the cost of auxiliary also consists of the

equipment cost (e.g. furnace), the fuel cost,etc..

There are other factors that can further complicate the
matter, for example, insurance or real estate taxes or tax
relief on residential use of solar energ&i For lack of data,
and for simplisity, the cost analysis of a solar heating
system, which is based on [3], and [4] can be broken down as
Ealiaws (Canadian dollar is used): |
~The cost of the heat pump is $3000. The annual operati@g
cost cost of the heat pump is:

C"thxcei
- where,
| th?Amauﬂt of electricity consumed by heat pump
‘ [KWwhr]
c 1:Utility energy rate [$/KWhr)

; CiiAEch1
vhere,

A~ Effective collector area [m’]

Céi = Collector cost [$/m*]
~The storage cost: | .
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C;'Cstst ’ ',’
Cee ™ Storage cost [$/Kg] N
Mg = Storage mass [Kg] .
-The cost of pumps, valves, pipes, heat exchanger f
-
C.-200.+10xAc
~The contfbllér cost:
C|-1500
-The capital cost of the electric heater (used as
auxiliary heater) is $200.
-fhe cost of auxiliary energy used:
> c.=0 c
«“Qaux*tel
I1f 1 is the capital cost of the system, for given amortized
period of N years, and a given annual interest of i%, the
amortized capital cost in year j is{4]):
N N
11(1+1) /Z0(1.+1) -1.] *
"For an annual real inflation rate of fuel at r¥%, the
operating cost in year j isl[4)::
- cJd
+ )C y (1.+r)
, (Qux th el ,
So, the total cost of the system in year j is:

C -(3000.*Achc] *CstMs*ZOO.*1OXAc+

sJ

. .r . N R
150.+4200.)xi(1+i /[(1*1)-1]+(Qau‘+ohp)ce](1+r; |
(4.2-1) .
The total cummulative cost of the solar systeh is:

N
o -g';lc’j ’
Assuming that the mortgage life ,N, is equal to the system-
age, the annual interest rate is 12X, and the annual real

igflation rate of electricity and natural gas is 10%. Using
%

=
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the values in [3],wve have: "
Cc]-$60/m;, .
Cgp=$0.132/Kg, ) | ) .
C.T-$0.00335/KWhr.(Edmonton Power/price) b
The assumed conventional system uses natural gas (which is
widely available in Alberta) to heat the house. Suppoge the
cost of the }ufﬁiée is $1000, which is also financed in the
same amortized period and at the same interest rate as that
of the solar syltem;
Similarly, the total cost of the conventjonal system at year
j is: ' |

N N ;
(o =1000.xi(1+1)/[(1+1) ~1]+chc (1+r)

cvj
The price of natural gas in Edmonton, C

g

g is $2.94/GJ

(Northwestern Utilities price, tax included).

)
!-’A

4;2.1 The viability of the solar syéto-.

A computer program is'written to compare the costs
associated respectively with the aRgpve two systems when the
solar system age va:"&s from 10 to 30 yeérs. ﬁith the
collector, area of 20 m’,'and the storage mass per unit
collector area of 75 Kq, the resﬁlts are calcu&a;éd pnd’
plotted in Fig.4.8, 1 is noted that from this figure that’
the solar heating sysfem is not economically viable. I tﬁe
collector area is increased to 40 m’, the solar heatihg

systemsis not viable either, as seen in Fig.4.9. Hence, the

L4



economic viability of solar heating is possible only if the
solar industry is developed enough to decrease the

“investment cost on solar equipments.

\

v
£.2.2 Costs versus mass storage and collector.

Using the same amortized period, annual interest and
real inflation rate, the system’cummulative éasts change
with respect to respective variation of the csllectcg area
and the mass storage is plotted in Fig.4.10 and Fig.4_11i
These figures show that the cp}lector and the mass storage
are dominating factors inthe;ggtal system costs. Therefore,
we will not be able to baseisu:.design‘criteriaﬁs.Ln the
energy-saving aspéct alone, ﬁnless at soﬁe tﬁture time thé

capital costs spent on thevfollector and the mass storage

are down, v
) 5

¢
-

4.2.3 Costs v‘.‘us Heat Pump Capacity
. Based upon data provided by AAF Ltd. (5718 103 St.

Edsontan, -Alberta), ggg/ﬂtat pump price per kW is

approximated by (Fig.4.12):

P e '250(‘W..x

| - hp _
wvhere -Php =price of heat pu‘C].

'y

}+900 (412.3=1)
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Hn:x =maximum electrical %nput to heat pump
[kw]
Replacing 3000. in equation (4,2-1) by Php , and with the

same assumption regarding interest rate, amortized period,\
etc., the cummulative System costs are calculated with
various values of Woax and plotted in Fig.4.14 (collector
area=20 m’) and Fig.4.13 (collector area=100 m?). Like
collector and mass storage, the heat pump cost also plays a

= . . . * !
dominant role in the system cost

4.3 Racaggend;tiaﬂi

The preceding discussion dealt with the thermal and

results, a few conclusions can be drawn. However, it should
be natedAhereithat due to the unavailability of suitable
data( for example the only complete set of weather data’
available to us is from October 1, 1967 to Apr§1 1, 196é),
the previous results as well as the following éamments
should be taken with caution.

-The tilt slope of the collector should be maéé as close as
possible to the lattitude. :
-Single-glazed collector should be used.

-The building loop pump capacity should be increased to the
neighborhood of a proper 'value if this does not lead to an
increase in total cost. Here, for lack of specific pump

cost, it is not possible to investigate §he economic
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~The heatie:changer coefficient should be kept as clpgi to

1. as practically and economically possible. The economi
aspect of the system response due to variation of th; heat
exchanger is not studied for lack of data.

~The heat loss coefficient of the tanks can cause a 2%
decline in the saving percentage for a change from 5 to
12KJ/hr C. This points out the need for a better insulated
tank though the saving is not much.

-The increased storage mass, heat pumpleapa:ity. and
collector area respectively help boost the saving peréentage
but also make the system more costly.

-The use of solar energy in Edmonton is not viable,

In fact, there are many other ignored factors that can
further complicate the matter and enhance or destroy the
ésgnaﬁi: aspect of the system.iThey are such as tax
incentive, maintenance costs, property tax,etc...and they

are beyond the scope of th®s thesis,
-

4.4 Further research.

As mentioned earlier (section 2.4.2 and 4.1.8), the
suboptimal controller is not "smart"” enough to take in to
account the existence canéitic§ of the steady-state optimal
tank temperatures. However, we believe that there is the ’
possibility to upgrade the thermal performance of the system

if further work is done on this area.



Thus far we assume that the process inv@lvedbis
determiniStic in natuféi In reality, the weather forecast
data, which are only probable values are subject to randem
effects and it is essential that these effects are taken
into account in our calculations. The stochastic optimum
theory may be useful in studying the stochastic nature of
the process.

Another problem which remains unsolved is the _  —
implementation of the suboptimal controller on a
microprocessor. The calculation of the controller values
(equation (2.4.2-1)) is relatively simple. However, if we
want to avoid developing arithmetic subroutines (i.e.
aééitién, subtraétiaﬁ, multiplication, et¢.), a
number-oriented miéroprocessor {(calculator chip) can be used
as in [7]. A:ééfdiﬁg to T.B.Kent et all8), as far as
technical problems to design a microprocessor controller are
concerned they are non-existent. In other words, the
implementation of this subapti&al controller is certainly
possible. The only problems left are to develop proper
- hardware and software to support it. 0
electricity pr§§y:eé during off-peak hours, it would be
economically advantageous to use the auxiliary electrical
energy for the system during that period while reducing peak
hour demands of electricity. The study of this problem can
also be extended to examine the impact of the system

electrical load on the power network.



The above are but a few related areas that needs more

studies,

4.5 Conclusion.

Using the KUHN-TUCKER theorem, we have obtained the
expression of the steady-state optimal values of the
high-side temperature, the low-side temperature, and-the
heat-pump controller. As weather conditions change, the

optimal heat pump controller seqguence is numerically
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evaluated. Based upen this result and upon the results of a

process of trial and error, a suboptimal adaptive preview
controller is proposed. Its simulation result is analysed

and compared with that of the WATSUN approach. Savings of

31% or more are recorded for the suboptimal controller. The

thermal and economic behaviour of the system are also

]
"

investigated to identify areas for possible improvement o

the system performance. Further research is also proposed

f
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]

, - Table 4.1 |

saving percentage

Coilector-area ' ~100 m? » 20 m*
Zero-glazed 36.61% - 30.80%
Single-glazed 42.83% \ 36.86%

Double-glazed . 42.84% 30.72%
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APPENDIX 1

b
Meteorological data processing .

0
The hourly measurements of the radiation and the ambient
temperature are needed for using the suboptimal controller.
It is the radiation incident on the tilted collector that is
needed for calculating the collected energy (and the gain of
Canada are the total radiation (H) incident on a horizontal
surface. A program based upon the following algorithm was
‘written to process these datal[1].

Firét, calculate the beam (H, ) and the diffused(Hd)

b
components of H:

and,

,=KxH
Hd .

vhere, K can be calculated by using a correlation:

K=0.177 if Ky20.75
K=1.56-1,84Ky if 0.35¢K <0.75
o K=1.-0.249Ky if  0.5K;<0.35 :
and Ky =H/Hg

with H, being the instantaneous extraterrestrial radiation
“on a horizontal surface:
"Hg=Sc[1+0.033cos(2xN/365) Jx[coswcosecoss+singsing)

where, Sc= solar constant

109



/ ;110

N= day of the year
6= solar declination
©= lattitude

w = hour angle

The H can be determined from:

T
HT=Rbe +(1+cosS)de/2.+ p (1-cosS)H/2.

S= tilted angle of collector

p= ground reflectance‘fa€tor
Rb is thi:ratio of beam radiation on a tilted SUféaié to
that on a horizontal surface; and if the collector is facing
towards the equator, Rb 18 calculated as follows:
Rbs[cos(v-s)cosac05w +sin{e-s)sin § )/

-
[cospcosscosw +sinesing])

REFERENCES of APPENDIX 1

»

1.N.T.Le and M.Chandrashekar, "WATSUN 2 User's manual"™,

University of Waterloo, Waterloo research institute.



- APPENDIX II

Proggan to find the optimal controller sequence

The following'program is originally form [1], with weather
" data and systeﬁ parameters being purely hypothetical [2].
C PROGRAM TO OPTIMIZE CONTROL FOR
C HEAT PUMP SYSTEM
DIMENSION U1(51),UZ(51),TH(51),TL(51),
1 RL(51),COST(éI),PCOST(51);GRA(51);
2 U2L(51),COSTL($1),DIR(51),DI(51)f

3 CAUX(51) ,GRAD(51) ,RH(51) -

PART ONE /e

ESTABLISHMENT OF THE INITIAL TRAJECTORY

0O 0O 0 n
*q

® 6 5 06 0 % 0 000000000 0000000 ® & 0 & 2 60 0 00 F F F E FEE B E F R W

TB=20.
TA=-20.
b TH(1)=40. .
TL(1)=5, . .
S=1.0
"ITER=1
J=0

COST(1)=0. 4 .



100

4 12

TCMIN=1000.

DO 100 I=1,50
IF(1.GT.15)8=0.
IF(I1.GT.15)TA=-20.
IF(1.GT.35)S=1.0
IF(I1.GT.35)TA=-20.
DELT;TB-TA
U1(I)sO.S:DELT/(?H(I)-TB)
IF(UI(I).GT.1)UI(I)=1.
QAUX(1)=0.1#DELT-0.2¢(TH(I)-TB)sUI(I)
UNUM=0.2+U1(I)*(TH(I)-TB)+0.02%(TH(T)~-TA)
UDEN=20¢(1.—.016:(TH(1)-TL(1)))

" U2(1)=UNUM/UDEN

IF(U2(1).GT. 1)U2(1)=1.

TF((TH(I)-TL(1)).GT.45)U2(1)=0.

U2L(I)=02(1)

RH(1)=UDEN£U2(1)-UNUM

TERM1=20.*U2(I)¢(.715-,016%(TH(I)-TL(1))) .
+0.02#(TL(I1)-TA) '

TERM2=10.%(S-0.025%«(TL(I)~TA))

IF(TERM2.LT.0)TERM2=0.

RL (L) =TERM2-TERM1

TH(I+1)=TH(1)+DT*RH(1) L

TL(3+1)-T£(1)+DT:RL(1)

COST(I+1)=COST(1)+QAUX(1)+5,7sU2(1)

CONTINUE

TCOST=COST(51)



150

WRITE(6,2) (U2(1),1=1,50)
WRITE (6, 6) |
WRITE(6,3)(TH(1),I=1,50)
WRITE(6,8) °

WRITE(6,3)(TL(1),I=1,50) .

PART TWO

EVALUATION OF THE GRADIENTS

P=35
GA1=GAZ

DMAG2=0.

GMAG20.

PCOST(JP) =COST(JP)
U2(JP)=U2L(JP)+0.01
DO 200 I=JP,50
IF(I.GT.15)S=0.

IF(1.GT.15)TA==20.

IF(I1.GT.35)S=1.0

IF(I.GT.35)TA=-20.

DELT=TB~TA

.

U1(1)=0.5¢DELT/{(TH(1)-TB)

.
s
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175

180

200

114

IF(U1(I).GT.1)UI(1)=1.

QAUX(1)=0. 1sDELT-0.2¢(TH(I)-TB)sU1(1)
UNUM=0.2%U1(I)&(TH(I)-TB)+0.02¢(TH(I)~TA)
UDEN=20%(1.-.016#(TH(I)-TL(1)))
IF(I.LE.35)80 TO 175
U2(I)=(1.+1,2(40.-TH(I)))*UNUM/UDEN
CONTINUE

IF(I.EQ.JP)GO TO 180
IF(U2(1).GT.1)U2(1)=1,
IF((TH(I)-TL(1)).GT.45)U2(1)=0.
IF(U2(1).LT.0)U2(1)=0.

" RH(I)=UDEN=2U2(1)-UNUM

TERM1=20.%U2(1)#(.715-.016#(TH(I)-TL(I)))
+0.02# (TL(I)-TA)
TERM2=10.%(S-0.025+ (TL(I)-TA)) ~
IF(TERM2.LT.0) TERM2=0. 4\\
RL(1)=TERM2-TERM1 |
TH(1+1)=TH(I)+DT*RH(I)
TL(I+1)=TL(I)+DT*RL(I)
PCOST(I+1)=PCOST(1)+QAUX(1)+5.7s02(1)
CONTINUE
GRA (JP) =GRAD (JP)
GRAD(JP)=(PCOST(51)-TCOST)/0.01
GMAG2=GMAG2+(GRAD(JP) ) x#2
DIR(JP)=-0.5¢GRAD(JP)+0.5sDI (JP)
DMAG2=DMAG2+(DIR(JP) )ss2
DI (JP)=DIR(JP)



250

270

275

IF(JP.EQ.1)GO TO 250
JP=JP-1

GO TO 150

CONTINUE

GM2=GMA 2

GMA 2=GMAG2
R=GMA2/GM2

JMIN=1

DA 600 J=1,10
G=0.012J

DO 500 I1=1,50
U2(1)=U2L(1)+G*DIR(I)/(DMAG2)#%20.5
IF(I.GT.15)S=0.
IF(I.GT.15)TA=-20,

IF(1.GT.35)S=1.0

IF(I.GT.35)TA=-20.

DELT=TB-TA

U1(1)=0.5#DELT/(TH(I)-T8)
IF(UI(I).GT. 1)U (I)=1,
QAUX(1)=0.1#DELT-0.2%(TH(1)-TB)*U1(1)
UNUM=0.2¢U1(I)®(TH(I)=-TB)+0.02¢(TH(I)=TA)
UDEN=20%(1,-.016%(TH(I)-TL(1)))
IF(I.LE.35)G0 TO 275
U2(I)=(1.+1,.%(40.-TH(I)))*UNUM/UDEN
CONTINUE -
IP(U2(1).GT.1)U2(1)=1,
IF((TH(I)-TL(I)).GT.45)U2(1)=0.

115



50¢

600

610

620

IF(U2(1).LT.0)U2(1)=0.
RH(I)=UDENsU2(1)-UNUM
1£RM1-20.302(1)t(.715-.016t(TH(1)-TL5;J))
. +0.02#(TL(I)-TA)
TERM2=10.%(S-0.025*(TL(1)~TA))
IF(TERM2.LT.0) TERM2=0. '
RL(I)=TERM2-TERM1

CTH(I+1)=TH(1)+DTsRH(I)

TL(I+1)=TL(I)+DT*RL(I)
COST(I1+1)=COST(I)+QAUX(I)+5.7+U2(1)
CONTINUE |
TCOST=COST(51)

IF(KEEP.EQ.1)GO TO 610
IF(TCOST.LT.TCMIN)JIMIN=]
IF(TCOST.LT.TCMIN)TCMIN=TCOST
CONTINUE |

G=0.018JMIN

KEEP= 1

GO TO 270

ITER=ITER+1

DO 620 K=1,30

U2L(K)=U2(K)

KEY=ITER/50

KEEP=0

IF((KEY-LKEY).LT.1)GO TO 125§
LKEY=KEY
WRITE(G,1)ITER,JMIN,TC65T,G
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1 F@RHAT(////IZ,'ITER!:,Il,SZ;Z‘,'CQSTii,FS-Z,FTE;E)
| WRITE(6,4)
¢ FORMAT(//I1X,'U2=")
WRITE(6,2)(U2(1),1I=1,50)
2 FORMAT(1X,10F8.2)

WRITE(6,5)

5 FORMAT(//1X, 'GRAD=")
WRITE(6,3) (GRAD(I),1=1,30) _ g§
3 FORMAT(1X,10F8.2) | |
WRITE(6,6)
6 FORMAT(//1X, 'TH=")

WRITE(6,3) (TH(I),I=1,50)
WRITE(6,8)

WRITE(6,3) (TL(1),1=1,50)

8 FORMAT(//1X, "TL=")

C e i et s oo s actteeoneaesennaneenennan
37T

[ PART: THREE

C CONDITION TO STOP

IF(ABS(GM2-GMA2)/GM2.LE.0.1)G0 TO 125
STOP
END
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APPENDIX 111

Program to simmulate the WATSUN approach and the suboptimal

controller.

C THIS PROGRAM 1S USED TO SIMMULATE THE
C SUBOPTIMAL CONTROLLER AND THE WATSUN APPROACH

C TO RUN THE PROGRAM:

*USE ADAPTIVE CONTROLLER:

CALL READIN,WEATHR,AVERA,OPTSET, SYSANA
CALL READIN,WEATHR,SYSWAT

COMMON /INITL/THI,TLI,U2I ,NDAYS

COMMON /IFILE/IAMB,1AVER,ICOST,IDATA,IOPTI,

+ IPARA,IRAD

COMMON /WEATH/SLOPE,AIMTH,XLAT, RHO

COMMON /PARA/AB,AC,AAC,AH,ALPTAU,CC,CH,COPMAX, UIMAX,
+ U2MAX,UL,TB,TMAX, ZETA,DT,FU3

CALL READIN

CALL WEATHR

119



120

CALL AVERA
10 CALL OPTSET
CALL SYSANA

'~ CALL SYSWAT

0

STOP
END
Cotitnrnttnntesineneennonsnonasaanes

BLOCK DATA
COMMON /PARA/AB,AC,AAC,AH,ALPTAU,CC,CH, COPMAX, U1MAX,
+ U2MAX,UL,TB, TMAX, ZETA, DT, FU3 9
COMMON /INITL/THI,TL1,UZ21,NDAYS
COMMON /IFILE/IAMB,IAVER,I1COST,IDATA,IOPTI,

v e | IPARA, IRAD | -
COMMON /WEATH/SLOPE,AZMTH, XLAT,RHO
DATA I1AMB,IAVER,ICOST,IDATA,IOPTI,IPARA,
+ 1RAD/2,3,7,9,4,8,1/

END

Ciii!!iiiiii!!!!iilEii!iiiii!!!!ljiji!!!iiiiii!!liiii%j:lii?
C THIS SUBROUTINE USED TO DETERMINE THE PURCHASED ENERGY
C CONSUMED BY THE SYSTEM, USING THE SUBOPTIMAL CONTROLLER.

C,ii!!-iiiiii!i!iiiﬁ!é!!ililij!!!iii!il!!,i!!!!!!-!iiliﬂiiﬂl!ii!

C .
SUBROUTINE SYSANA
DIMENSION TH(200),TL(200)

REAL MASS,MONEY, INSOL



< 121

COMMON /PARA/AB,AC,AAC,AH,ALPTAU,CC,CH, COPMAX,
+ UIMAX,U2MAX,UL,TB,TMAX, ZETA,DT,FU3

COMMON /INITL/THI,TL1,U2I,NDAYS

COMMON /IFILE/IAMB,IAVER, ICQST;TDATA,IOPTI,

+ IPARA, IRAD

¢
COMMON /WEATH/SLOPE,AZMTH, XLAT, RHO

o ettt ettt ettt
10 FORMAT(10X,2E15.8)
11 FORMAT(36X,E15.8)
C120 FORMAT(/,1H ,'D',I14,'COST= ',E15.8,' COP=',F6.2, -
C + /," REF. COST=',E15.8,' XSAVE=',F6.2,/)
110 FORMAT(1H ,'S=',E10.4,' TA=',F6.2,' TH=',F6.2,
+ TL-;,F6.2,‘ U2= ',F5.2)
C160 FORMAT(/,1H ,'ANNUAL COST = ',E15.8,' ENERGY COST=',
c + E10.5,/,' COL. AREA=',F6.1,' MASS STORAGE=',E10.5)
Ceteeennernneannnnns e ettt et
REWIND ICOST
COLMAS=75.
1SAMP=4
5 CONTINUE

Co.'oo-oo...ooc-co..cooooo-..oo-oongruc.niiéilli@l-iii-?-i

C SCALE FACTOR 1IS 1000

-

C...l.l.’....l.......'l’.l'i.'...OI.'.n..i‘iii!liiﬂéii!éli

AREA=AAC=1000.
MASSe(CC*1000.)%2./4.18
REWIND IDATA

- REWIND I0OPTI



Cﬁgiéléi!ii!!!iéiiiliji

C INITIAL CONDITONS

RTOTAL=0.
SOLAR=0.

INSOL=0.

- SOLAR=SOLAR COLLECTION

. INSOL=INSOLATION

HPIN=INPUT OF HEAT-PUMP

HPOUTD=OUTPUT OF HEAT-PUMP IN A DAY

C

C

C HPOUT=OUTPUT OF HEAT-PUMP
c

C

C

C HPIND=INPUT OF HEAT-PUMP IN A DAY

c!lﬁ!?

90

HPOUTD=0.
HPIND=O.
HPOUT=0.

HPIN=0,
IMARK=0
ROUNT= 1
CONTINUE

STOTAL=0.

122



c DO 200 ITER=1, 10
COST=0.
RCOST=0.
DO 150 .1=2,24
TH(I)=0.
TL(I)=0. - N
150 CONTINUE |
THN=0,
o
READ(IOPTI, 11)THN
DO 100 I=1,24

READ(IDATA, 10)TA,S

Ceeiiiiiiii teeeenonensonn et et e ferseenseaes .
’

C IF(IDAY.EQ.NDAYS)GO TO 29

C IF(IDAY{NE.KOUNT)GO TO 30

C 29 WRITE(ICOST, 110)S,TA,TH(I),TL(I),U2
30 IF(IMARK.NE.1)GO TO 40
CALL ONETAN(S,TA,TH(I),TL(I),TH(I+1),
+ TL(1+1),COST1,RCOST1,SOLAR1, I SAMP)
U2=0.
HP=(.
GO TO. 50
et e e, e,
c
40 CALL TEMP(S,TA,TH(I),TL(I),U2,MARK,

+ TH(I+1),TL(I+1),THN,COST1,HP,RCOST1,SOLAR1,ISAMP) ~



179

100

124

COST=COST+COST1

SOLAR=SOLAR+SOLAR1

INSOL=INSOL+S

RCOST=RCOST+RCOST1

HPOUTD=HPOUTD+HP

HPIND=HPIND+U2#U2MAX

WRITE(ICOST,110)S,TA, TH(I),TL(1),U2

HPOUT=HPOUT+HP : -
HPIN=HPIN+U2sU2MAX :
5=0.

A=0,.

=3

IF(TL(1+1) .NE.TH(I+1))GO TO 179
IF(TL(I+1).GT.24.)GO TO 100

IMARK=0

GO TO 100

IF(TL(I+1).LT.(TH(I+1)+5.))GO TO 100
AT=(TL(I+1)+TH(I+1))/2. .
TL(I+1)=AT

TH(I+1)=AT

IMARK=1

CONTINUE

IF(IDAY.EQ.NDAYS)GO TO 129
IF(I1DAY.NE.KOUNT)GO TO 130

IF (HPIND.NE.O.)COPD=HPOUTD/HPIND - - . - -
IF (HPIND.EQ.0.)COPD=20.

HPOUTD=0.

HPIND=0.



; 125

SAVE= (RCOST-COST) #100. /RCOST
C129 WRITE(ICOST, 119)IDAY,COST
119 FORMAT(/,1H ,'D',14,'COST= ',E15.8,/)
c WRITE(ICOST, 120)IDAY,COST, COPD, RCOST, SAVE

Cli,,ii!gniliiiiBilii!giiéip

130 TH(1)=TH(25)

RN
TL(1)=TL(25)
180 IDAY=IDAY+1
TOTAL=TOTAL+COST

c STOTAL=STOTAL+COST
RTOTAL=RTOTAL+RCOST
IF (IDAY.GT.NDAYS)GO TO 300
200 CONTINUE g o .
C . KOUNT=KOUNT+10 |
C  WRITE(ICOST,400)STOTAL |
400 FORMAT(/,1H ,'COST OF 10 DAYS=',E15.8)
IF(IDAY.LE.NDAYS}GO TO 90
300 CONTINUE
c WRITE(1COST,400)STOTAL
c WRITE(ICOST, 159) TOTAL
159 FORMATP/, 1H ,'SEASONAL COST (KJ)=',E15.8)
COPHP=HPOUT/HPIN
161 FORMAT(1H ,'TOTAL ENERGY=',E10.5,'COL. AREA=',E10.5,
+'MASS=',E10.5,/," COP=',F4.2,' REF. COST=',E10.5,
+ ' SYSCOP=',F6.4,' COLCOP=',F6.2,/," UL=',F6.2,
. ALPTAU=' ,F4.2,' UIMAX=',F8.2,' AC=',F4.1,/,

+ ' U2MAX=',F6.2,'KW',' ZETA=',



+ F4.1,' SLOPE=' ,F6.2,' DEG',' COLMAS=",

+ F6.2,/,' NUMBER OF SAMPLES=',13,' PER HOUR')

SYSCOP-(RTOTAL-TOTAL)/RTOTAL

COLCOP*SOLAR/INSOL

ACCOEF=AC#1000.

UUIMAX=U IMAX*1000.

UU2MAX=U2MAX* 1000./3600.

SSLOPE=SLOPE*180./3.1415927

126

WRITE(ICOST,161)TOTAL,AREA,MASS,COPHP,RTOTAL,SYSCOP,

+ COLCOP,UL,ALPTAU,UU1MAX,ACCOEF,UUZMAX,ZETA,SSLOPE,:

+ COLMAS,ISAMP

RETURN

END

-~ "SUBROUTINE TEMP(S,TA,TH1,TL1,U2,MARK,

+ THZ2,TL2

COMMON /

,COST1,HP,RCOST1,SOLAR1,ISAMP)

+ U2MAX,UL,TB, TMAX, 2ZETA,DT,FU3

THF 1=TH1

TLF 1=TL 1

DT=1./FLOAT(ISAMP)

TERM1=0,
COST1=0.

Hp.o L]

RCOST1=0.

SOLAR1=0,

A/AB,AC,AAC,AH,ALPTAU,CC,CH,COPMAX, UIMAX

¥



127

ITER= 1
DELT=TB-TA

20 TL11=TL1

100 IF(TH1.LE.TB)U1=0. R

IF(TH1.LE.TB)GO TO 111
U1=AB*DELT/(U1MAX#* (TH1-TB)*ZETA)
111 IF(01.GT.1.)U1=1,

IF(U1.LE.0.)U1=0.
QAUX=AB#* (TB-TA)-U1*UIMAX* (TH1-TB) «ZETA
IF (QAUX.LE.0.)QAUX=0. ol
UNUM=U1#UIMAX*ZETA* (TH1-TB)+AC*(TH1-TA)

C IF TL1 .LT. TA USE AMBIENT AS

C SOURCE FOR HEAT PUMP.

ettt e et a et
IF(TL1.LT.TA)TL11=TA
UDEN=U2MAX#* (1.42.5¢(1.-(TH1-TL11) /TMAX)) -
TERM2=AAC*FU3# (S*ALPTAU-UL# (TL1-TA))
IF (TERM2.LE.0.) TERM2=0.
IF(TL1.GE.B80.)TERM2=0.
U2x0.5#U2+0. 5#UNUM/UDEN2 ( 1.+ (THN-TH1) )

101 CONTINUE

COP=1.+(COPMAX-1.)% (1.~ (TH1-TL1)/45.)

IF(COP.LT.(1.+AH/(ZETA*U1MAX) ) )U2=0.



IF(U2.GT.1.)U2=1,

IF(U2.LE.D0.)U2=0,

RH=UDEN*U2-UNUM
IF(TL1iLTgTA)TERH1:AC$(TL1§%A)*TERH1
IF(TL1.LT.TA)GO TO 107

TERH1§?2HA31U212,51(1;‘(THT*TZ11)/THAZ)*

+ AC*(TL1-TA)+TERM!

L1 IS LESS THAN TA, HEAT PUMP WON'T

C EXTRACT HEAT FROM LOW-TEMPERATURE TANK.

RL=TERM2-TERM1
TH2=TH1+DT*RH/CH
TL2=TL1+DTsRL/CC

COST 1= (QAUX+U2MAX*U2) sDT+COST!
HP=U2*UDEN*DT+HP
RCOST1=AB* (TB-TA) sDT+RCOST
SOLAR1=TERM2/AAC*DT+SOLAR1
TL1=TL2

TH1=TH2

ITER=ITER+1

IF(ITER.LE.ISAMP)GO TO 20



C THIS 1S THE SUBROUTINE TO READ
C PARAMETER DATA OF THE SYSTEM.

SUBROUTIME READIN

COMMON /PARA/AB,AC,AAC,AH,ALPTAU,CC,

+ CH,COPMAX,UTMAX,U2MAX,UL,TB, TMAX, ZETA, DT, FU3

COMMON /IFILE/IAMB, IAVER,ICOST, 1DATA,IOPTI,
%] + IPARA, IRAD
7 COMMON /WEATH/SLOPE,AZMTH,XLAT, RHO
10  FORMAT(//,3E10.3)
20 FORMAT(/,8E10.3)
30 FORMAT(/,4E10.3)
40 FORMAT(/,3E10.3)
50 FORMAT(/,E10.3)

60 FORMAT(/,3E10.3,15)

C;iiii;g;iiiiéég;liiiiii:iiig;:j!éi
C COLLECTOR DATA

Cii!iiiii!§Iiii!!!i!iilil!iiiii»i!ii
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READ(IPARA,29)AAC,ALPTAU,FUB?UE,SLQPE,;LAT;

+ AIMTH ,RHO

C

Gttt i i ettt ittt ntnncnanns
c BUILDING DATA
Gttt it i eenennnnnsnnnnns

READ(1PARA, 30)AB,CB,TB, ZETA

c
ettt eet e e, e
c HEAT-PUMP DATA
C ettt et e e
READ(IPARA, 40)COPMAX, TMAX , U2MAX
c
C et et e e ..
c SAMPLING TIME (STEP TIME) ;
READ (1PARA, 50) DT
c
ettt et
¢ INITIAL CONDITIONS -
Covunnnn it *
READ(IPARA,60)THI,TLI,U21,NDAYS -
c . »
c_!.ii!,.i.,...gg.i_;.._ﬁ..jgifi.. ‘
c SCALED DATA(TO MINIMIZE ROUND-OFF ERROR)

Cliiiééli!iiiigiiin!i-ii:iig;ilgiiiiiiiig:-}iii-i-gi-!
C

C IN THE FOLLOWING , THE STORAGE 1S ASSUMED TO BE



C 75KG PER COLLECTOR SQUARE METER

Ciigiéii!:iigii-ngig!ii;-!g;i-paii!ig;igi!

CC=4.18sAAC*75, =

CH=CC
AC=AC/1000.

AH=AH/1000.
UTMAX=U1MAX/1000.
AAC=AAC/1000.

- AB=AB/1000.
U2MAX=U2MAX*3600./1000.
CC=CC/1000.

CH=CH/1000.
RETURN

END

SUBROUTINE OPTSET USED TO DETERMINE
ALL OPTIMUM SETS OF TH,TL BASED UPON
THE AVERAGE VALUE OF AMBIENT TEMPERATURE

AND RADIATION.

(s T o T o T o T o W o

Y

SUBROUTINE OPTSET
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COMMON /PARA/AE,AC,AAc;AH,ALPTAG;CC.CH,CGPHA!,UIHAS,
+ U2MAX,UL,TB,TMAX, ZETA,DT,FU3 )
COMMON /IFILE/IAMB,I1AVER, ICOST, IDATA, IOPTI,
+ IPARA, IRAD
COMMON /INITL/THI,TL1,U2I,NDAYS
c
10 FORMAT(7X,2E15.8)
15  FORMAT(IH ,'S= ',E15.8,' TA= '/F6.2,' THO= ' E15.,8)

C-;iiiggii!!éi-;ggiig:ilg!i!;!!,iii
REWIND IAVER

REWIND 10PTI

Cii!ii-;iiéii-ggig;i;gii:!ii!iiiii

DO 20 I1=1,NDAYS
READ(IAVER, 10)TA, S
THO=TB+AB* (TB-TA) /(U IMAX#ZETA)
WRITE(IOPTI,15)S,TA, THO
S=0,
TA=0.

20 CONTINUE
RETURN

END

R T LTI
SUBROUTINE WEATHR
C +++++.TO PROCESS METEOROLOGICAL FILES .



~

Ctt“‘t‘tttt30‘8“‘“88‘80“#8.3“O‘t““t“““‘

22
25
21

100

INTEGER RADTN(24),1T(24) ,
COMMON /IFILE/IAMB, IAVER, ICOST,1DATA, 10PTI,
. IPARA, IRAD

COMMON /WEATH/SLOPE ,AZMTH, XLAT, RHO
COMMON /INITL/THI,TLI,U21,NDAYS
FORMAT(17X,24(16, 1X))
FORMAT(17X,24(16,1X))

FORMAT( 15X,12)

FORMAT (3X,'D', 13, 'H",12,2E15.8)
FORMAT ( 30X, 40X)

SINSLP=SIN(SLOPE)

COSSLP=COS ( SLOPE )

SINAZM=SIN(AZMTH)

COSAZM=COS (AZMTH)

SINLAT=SIN(XLAT)

COSLAT=COS (XLAT)
TERM1=SINLAT#COSSLP-COSLAT#SINSLP*COSAZM
TERM2=COSLAT#COSSLP+SINLAT#SINSLP*COSAZM
TERM3=SINSLP#SINAZM |
'RD1=(1.+COSSLP) /4.

RD2={1.-COSSLP) /2.

REWIND I1AMB ’ P

REWIND IRAD ‘ e

REWIND IDATA

C TO FORWARD ONE RECORD,COMMENT, OF IRAD AND

o
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C

c

IAMB DATA FILES

READ(IAMB, 100)

READ(IRAD, 100)

DO 11 IDAY=1,NDAYS

= = & 5 ®

4

43

-3

1

-

v

30 SHOULD BE CHANGED TO 365 OR 366 (DAYS)
DAY=I1DAY+273
OCTOBER 1ST 1S THE 274TH DAY OF THE YEAR

IF(DAY.GT.365.)DAY=DAY-365.
READ(IAMB,21)KRCRIT
IF(KCRIT.EQ.78)GO TO 42
KCRIT=0

GO TO 41

BACKSPACE I1AMB
READ(IAMB,22)1T

READ(IRRD;21>RCRIT
1F(KCRIT.EQ.61)GO TO 44

GO TO 43 !

BACKSPACE IRAD
READ(1RAD, 22 ) RADTN
RHO=RHO®*RD2
56:4871;D¥(1i*03331C@S(1.721425*92* DAY))
DECL=0.40928#SIN(1.72142E-024(284.+DAY))
SINDEC=SIN(DECL) |
COSDEC=COS (DECL)
TERM#=SINDEC*TERM 1

TERM5=COSDEC*TERM2
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TERM6=COSDEC *TERM3
TERM7=SINDEC*SINLAT

TERMB8=COSDEC*COSLAT

Covevnns _ ’
: DO 10 IHR=1,24
TA=IT(IHR)*0.1 * ,
H=RADTN ( THR)
(o
IF(H.LE.0.)GO TO 8
'HRAHGSD;iéiéi(11.5*IHR)
SINHR=SIN(HRANG)
COSHR=COS (HRANG ) )

Covennnns
EDSTTSTERHQ*CDSHE*TERQS*SIHHRSTERHE
IF(COSTT.LE.0.)GO TO 8
C--._;.ii 7
C@STZ*TERH?*CDSHR*?ERHEV
IF(COSTZ.LE.0.)GO TO 8

Ciiiiiis‘ii

_RB=COSTT/COSTZ

IF((Rnwnz.o.).QR.(RB.GT.S.}iiﬁépéEgé*
HEX=SC#COSTZ K e
IF (HEX.LT.H)HEX=H
XKT=H/HEX
Covierniee
IF(XKT.LT.0.35)GO TO 5

IF(XKT.LT.0.75)GO TO 6
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HD=Hs0.1769
GO TO 7
5 HD=Hs(1.0-0.248857+XKT)
GO TO 7
6 HD=H#*(1,.55699-1,.84013#XKT)
7 CONTINUE |
Covvennnn
%
HB=H-HD
o HBT=(0.5¢HD+HB)*RB
C HDT=HD#RD | +H#¢RHO
c | HT=HBT+HDT
HT=RB#*HB+2,*RD 1sHD+RHO*RD2sH
| GO TO 9
8 HT=0.
9 ‘ WRITE(IDATA,31)IDAY,IHR,TA,HT
10 CONTINUE
11 CONTINUE
END FILE IDATA
RETURN |

EQD

C.ooa-oooo--nu.o-'.oo-.ooo-o.oc -----

C THIS PROGRAM USED TO DETERMINE THE
C AVERAGE VALUES OF AMBIENT TEMPERATURE

C AND RADIATION,



Cg-il-i;gé;gyii:!gnigj!:iiij;ciigggil
SUBROUTINE AVERA

DIMENSION T(24),5(24),TAV(200),SAV(200)

COMMON /IFILE/IAHB,IAVER,ICDST,IDATA,fDFTI,

-, IPARA, IRAD

COMMON /INITL/THI,TLI,U2I,NDAYS

REWIND IDATA

REWIND IAVER

DO 10 I=1,NDAYS
SAV(I)=0.

TAV(1)=0.

DO 1 Jﬂ.é@ 7
READ(IDATA, 20)T(J),S(J)

20  FORMAT(10X,2E15.8)
TAV(I)=TAV(1)+T(J)
SAV(1)=SAV(I)+S(J)
T(J)=0.

S(J)=0.

11 CONTINUE
TAV(I)=TAV(1)/24.
SAV(1)=SAV(1)/24.
WRITE(IAVER,30)1,TAV(1),SAV(1)

30 FORMAT(3X,'D',13,2E15.8)

10 CONTINUE

RETURN
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END

C THIS PROGRAM USED TO SIMMULATE THE
C APPROACH ADOPTED BY WATSUN PROGRAM.

C HERE HEAT PUMP IS USED IN ON-OFF
Cc

SUBROUTINE SYSWAT

DIMENSION TH(200),TL(200)

COMMON /PARA/AB;AC;AAC,AH,ALPTAU,CC,CH,CGPHAX;U1QAX
+ UZ2MAX,UL,TB,TMAX, ZETA,DT,FU3 .
COMMON /INITL/THI,TLI,U21 ,NDAYS

COMMON /IFILE/IAMB,IAVER,ICOST,1DATA,IOPTI,

+ IPARA,IRAD

WRITE(ICOST,121)

s s 5 o 6 4 8 % % v ror s o s om e r R s om s s s s EEEEE -
REWIND IDATA .
Covrnnnn e e R
ettt et tateaeeeeeens
C  INITIAL CONDITIONS = SR
Gttt | |
¥
1SAMP=4 :
IDAY =1 "

TH(1)=THI
TL(1)=TLI

HPOUT=0.

£
¥



c
C

c

90

10

29
30

HPIN=0,.

HPIND=0.
HPOUTD=0,
TOTAL=0.

KQUNT!{
CONTINUE
STOTAL=0.

DO 300 ITER=1,10
COST=0.

DO 150 I1T=2,25
TH(IT)=0.
TL(I?)SGi

DO 100 Iéi,zé
FGRMAT(1§X,2E15;8)

IF(IDAY.EQ.NDAYS)GO TO 29

% IF (IDAY.NE.KOUNT)GO TO 30

WRITE(ICOST,110)S,TA,TH(1),TL(1),U2

CALL TEMP1(S,TA,TH(I),TL(I),

+TH(I+1),TL(I+1),THN,COST1,HP,U2,18§

S=0.
TA:OE

COST=COST+COST1

- HPOUT=HPOUT+HP*CC/1000. -
HPINSHPIN+U2%U2MAX*CC/1000.

HPIND=HPIND+U2+#U2MAX*CC/1000.

HPOUTD=HPOUTD+HP#*CC /1000,
L}

AMP)
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100 CONTINUE
Covenenencnncssnassnsnanns
121 FORMAT(//,1H , 10X, 'WATSUN APPROACH',/)
C IF(IDAY.EQ.NDAYS)GO TO 129
C IF(IDAY.NE.KOUNT)GO TO 130
IF(HPIND.NE.O. ) COPD=HPOUTD/HPIND
IF (HPIND.EQ.0.)COPD=20.
HPOUTD=0."
HPIND=0.
€129 WRITE(ICOST, 119)IDAY,COST
119 FORMAT(/,1H ,'D',14,!COST= ',E15.8)

~C129 WRITE(ICOST,120)IDAY,COST,COPD

130 TH(1)=TH(25)
TL(1)=TL(25)
IDAY=IDAY+ 1
TOTAL=TOTAL+COST | —_—
STOTAL=STOTAL+COST
IF (1DAY.GT.NDAYS)GO TO 310
300 CONTINUE
c KOUNT=KOUNT+ 10
WRITE (1COST,400)STOTAL (ﬁ
400 FORMAT(/,1H ,'COST OF 10 DAYS=',E15.8)
IF (IDAY.LE.NDAYS)GO TO 90
310 COP=HPOUT/HPIN
WRITE(1COST,400)STOTAL
c WRITE(ICOST,201)TOTAL S



201

200

120

110

20

C.l..
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FORMAT(/,1H , 'SEASONAL COST (KJ)=',E15.8)
WRITE(ICOST, 200) TOTAL,COP

FORMAT(/,1H ,' TOTAL COST= 'LE15.8,' COP=',Fé6.2/)
FORMAT(/, 'H i'D‘,IB,TK,‘CDST; ',E15.8,' COP=',F6.2/)
FORMAT(1H ,'S=',E10.4,' TA=',F6.2,' TH=',F6.2,

+ ' TL=',F6.2,' U2=',F6.2)

RETURN

SUBROUTINE TEMP1(S,TA,TH1,TL1,

+ TH2,TL2,THN,COST1,HP,U2,1SAMP)

COMMON /PARA/AE.ACiAAC,AH,ALPTAU,@&,CH;CDPHAX;UIHAX,
+ U2MAX,UL,TB,TMAX, ZETA,DT,FU3

THF 1=TH 1

TLF1=TL1 |

DT=1./FLOAT(ISAMP) _ | ;:
COST1=0. |

HP=0,

TERM1=0,

DELT=TB-TA

ITER=1

TL11=TL1
IF(TL1.LT.20.)GO TO 100

e & 3 & ¥ B F B % B B B B K B E P R G & X E & F B OF B E B E &

C IF LOW-TEMPERATURE TANK COULD PROVIDE

€ HEAT TO BUILDING, IT'S WELCOME.



o

UTP=AB#DELT/(U1MAX# (TL1-TB))
IF(U1P.GT.1.)U1P=1,
IF(U1R.LT.0.)U1P=0.

QAUX=AB#* (TB-TA) ~U1P*U1MAX#* (TL1-TB)
IF (QAUX.LE.D. )QAUX=0.

IF(QAUX.NE.0.)GO TO 115

Cl!.ili!§(i¥i!i!!iiéiiliil!giiiiig!iiiiéijilj‘liii

C IN CASE LOW-TEMPERATURE TANK CANNOT PROVIDE

C ENOUGH HEAT, HIGH-TEMPERATURE TANK WOULD

C

C!

COME 1IN,

100

UNUM=AC* (TH1-TA)
TERM1=U1P*UIMAX*(TL1-TB)

GO TO 120

U1=QAUX/(UTMAX* (TH1-TB))
IF(U1.GE.1.)U1=1,
IF(U1.LT.0.)U1=0,
QAUX=QAUX-U1¢U1MAX# (TH1-TB)
IF(QAUX.LE.O.)QAUX=0.
UNUM=U1¢U 1MAX* (TH1-TB) +ACs (TH1-TA)
TERM1=U1PsU1MAX* (TL1-TB)

GO TO 120
Ul=AB#DELT/(UIMAX* (TH1-TB) )
IF(U1.GT.1.)U1=1,
IF(U1.LT.0.)U1=0.

QAUX=AB* (TB-TA)~U1¢UIMAX#(TH1-TB)
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IF (QAUX.LE. 0. )QAUX=0.
UNUM=U1%U1MAX# (TH1-TB)+AC* (TH1-TA)
120 CONTINUE

Caveereenenesennnnnnanns

C IF TL! .LT. TA USE AMBIENT AS

C SOURCE FOR HEAT PUMP.

ettt rereeeeeeeeeennseeenens
IF(TL1.LT.TA)TL11=TA
UDEN=U2MAX#(1.+2.5%(1.-(TH1-TL11)/TMAX))
TERM2=AAC*FU3# (SSALPTAU-ULs (TL1-TA))
IF(TERM2.LE.0.)TERM2=0,

ettt eeeeeeeenenecennneennns

C SOLAR ENERGY DUMPED IF TL1>20.

ettt eeeee e enennnnnnane,
IF(TL1.GT.20. ) TERM2=0.

ettt eeeeennn, e e

C OTHERWISE, TURN ON HEAT-PUMP,

C ELECTRICAL INPUT TO THE HEAT PUMP IS

C APPROXIMATED BY THE FOLLOWING EXPRESSION

Gttt ettt e et aean,
U2=(2.+(TL1-TH1+4¢.)/25.) 3. 6/U2MAX
1F(U2.GT.1.)U2=1.
1F(U2.LT.0.)U2=0.
RH=UDEN$U2-UNUM |
IF(TLT.LT.TA)TERM1=AC#* (TL1-TA)+TERM1
IF(TLY.LT.TA)GO TO 107 |
TERM1=U2MAX#U2¢2.5%(1.-(TH1-TL11) /TMAX) +



C...
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+ AC#(TL1-TA)+TERM]

C IF TL1 1S LESS THAN TA, HEAT PUMP WON'T

//> C EXTRACT HEAT FROM LSW-TEMPERATURE TANK.

C....o.-oc-...oo.‘cno.n..u0.0.-..‘...-0..-0-..

107

C...

RL=TERM2-TERM1
TH2=TH1+DT*RH/CH

TL2=TL1+DT*RL/CC

COST 1= (QAUX+U2MAX*U2 ) «DT+COST1

NP=U2+UDEN*DT+HP

TL1=TL2

TH1=TH2

ITER=ITER+ 1 .

IF(ITER.LE.ISAMP)GO TO 20

TH 1=THF 1

TL1=TLF1 , | ‘ ' N
RETURN

END

SUBROUTINE ONETAN(S,TA,TH1,TL1,TH2,TL2,COST1,RCOST1,

+ ‘ SOLAR1,ISAMP)

.--ooo.oo-.-nu-.oooo-onoo-o..ooooooloonc.-cooooou.o

C THIS SUBROUTINE USED IN THE CASE WHERE TWO TANKS ARE

C TO BECOME ONE-TANK SYSTEM,I.E. S HIGH AND TA LOW

C....t..ll...'...t.....'...l..l.l‘.l‘;....l..l.......l.'.'

-~ ~
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COMMON /PARA/AB,AC,AAC,AH,ALPTAU,CC,CH,COPMAX, U 1MAX,
+ U2MAX,UL,TB,TMAX, ZETA,DT,FU3
THF=TH 1 ' |
DT=1./FLOAT(ISAMP)

ITERs 1

SOLAR1=0.

RCOST1=0.

COST1=0.

DELT=TB-TA

TT1=TH1

CONTINUE
U1=AB*DELT/(UIMAX*(TT1-TB))
IF(U1.GT.1.)U1=1,
IF(UT.LT.0.)U1=0. .
QAUX=AB#* (TB-TA)-U13sUTMAX* (TT1-TB)
IF(QAUX.LE.O.)QAUX=0.

UNUM=U1#U IMAX* (TT1-TB) +AH# (TT1-TA)+

+ AC*(TT1-TA)

TERM=AAC*FU3s (SsALPTAU-UL*(TT1-TA))
IF(TERM.LE.O.)TERM=0.
IF(TT1;GE.90.)TERM=O.

RTT=TERM-UNUM

«TT2=TT 1+DT*RTT/(CC+CH)
COST1=QAUX*DT+COST1
RCOST1=AB*(TB-TA)*DT+RCOST1
SOLAR1=TERM/AAC*DT+SOLAR1

ITER=ITER+1



TT1=TT2
IF(ITER.LE.ISAMP)GO TO 10
TH1=THF

TL1=THF
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APPENDIX IV

Properties of the system eigenvalues .

*

The dynamic equations for the solar-assisted heat pump system are

(equations (2.3<1a) and (2.3-1b):

CuTy = =69 (Ty=T,) = & (T,=T) + u,[1 + (COP___-1)(1 - "<

~
i
]

_E—E}] - ii(,T *I,) +
c ¢ a

C.T. = -u,l(cop _-1)(1 - 7
max

(T, - 1))

AEF(uB)[S,! UL

or:

(GGPEiIEI) uZ(CDngxﬁl)?g

Chlp = [-€uy = &y - uy———ry ¢ Smex <

max max

.

uyTy + 2T, +uCOP o (1Iv.1)

CT =u D) oy (COPL,, D)
‘max ., max

= !c - AEF(BS)UL]?E

=up(COP_=1) + a T, #A F(u)(s+UT) (1v.2)

0

"
i
(]
"I
———
|
L

B I T
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,;;;I _ ;uz(CDPi;;-l)

L Toax%h

| LN
m\
&

[

]
]

|
ol
-~

=}
2]
] ]
£y

=
"

-uz(CQPZigfl? + EE:!_+ AEF(93)(S *,p;?:)

- C

¢ : —
Equations (IV.1) and (IV.2) become:

x+ 7T | o (1v.3)

-

In the following, we will prove that the eigenvalues e.g. (IV.3) dre

alvays Eﬂﬂpaiit{?g.

Proof: According to the Gerschgorin theorem [1],if we designate

Al 32 as the eigenvalues of the system described by (IV.3), we obtain:
s 2

Bp w‘:



and,
-UZ(COP-ax-l) - a -A F(EE)U
——ﬁf—————— c c L u.. (COP -1)- ’
Ay - nax 2 Bax (IV.5)
C T C
c max ¢
-gul -a - uz(CO:max -1
Let f, = 11 - n max (1v.6)
- c a .
h
. -UZ(COPma -1 a - A F(u)U
T c 3°°L
fz = 12 - max {Iv.7)
c .
c
If fl > 0 since COP-ax - 1>0 and u, >0, (IVfA) becomes:
-Eul -\fh - uz(COP-ax-l)
A - | T oax < up(COP D)
G Tuaxh
or A, <-(fu *+ &) (1v.8)

. i %

Hence, Al is nonpositive.

If £ " T

1 < 0, (IV.6) becomes:
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=Eu1 - a - UZEC?PEXELJ,
fl = Al -l . ?ﬁa; <0
1 1 c -
4
°r u,(COP__ -1)
2 max
, 77‘7,T!;; _ (Iv.9)
Therefore, }\1 is always nonpositive.
milarly, we can also prove that
A, < - (4 +AFIU) | (1IV.10)
2 - =
C .
c
or a_ *tA F(uz)u u (COP__ -1)
A, £ - , _ ,Imax (Iv.11)
2 - — c — —
c

1f a and a_ are different from zero, from (IV.8), (IV.9), (IV.10),
(IV.11), we find that the eigenvalues of the system are always negative

re,

no matter what the value of up Uy, F(uj)

Let u, = F(u3) = 1, matrix ¢ reduces to:

= A 4 -
A+Bu,

|

vhere A and B are coefficient matrices of system (3.1-10). Hence, with

nonzero values of a, and a_, the eigenvalues of the system described by

~¢x=(A+Bu)x

B

are alwavs négitivg regardless of the values of u,.
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APPENDIX V

Deadbeat Control of Bilinear Plant

In the following, the controllability and optionality problems

of a general diéere;eéﬁiae bilinear system are investigated. Although,

w

the results look promising from the viewpoint of the suboptimality, it
is imperative that more work needs be done since there are still unsolved
problems with this approach (for example, there are preblems of imple-
menting the controller as well as @f'setciﬁg up the state-transition
matrix, etc.)

For a continuous bilinear plant, its behaviours can'also be examined
in terms of this approach, since, as we will show, the discrete-time

equivalence of a continuous bilinear plant is also discrete-time bilinear.

: N\

Assuming that, the general continuous bilinear system equations can be

written as follows:

N N,
. 9y '1
X(t) ~ H+ I uwuE + I v. E )x(t)+Du+Dw+D
(=1 YU 4l 17V A

or X(t) =¥ x (£)+D v+D, w+D v.1)
where .
&
N N
ny { .
Fr=H+ I ui E 4+ I vi E
i=1 7Y q=) i
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=
ém

D, D = constant matrices
~w’ —o

u, v, w = control vectors
Y

The' homogeneous solutions to the above differential equation is

where, by definitions, the exponential matrix is equal to: \
[

2
2(t-to) + .

2!

F(t-t )

e -1+ 2(:-:0) +F

or by linear approximation, we have

[(lt—to)
e ! = l'+'£(t-to)

Hence,
X (t) = [I + E(t-t )] x (¢ ) (v.2)

L]
The particular solution to (V,1) 1is obtained by using the familiar

method ,§.e. variation of parameters. Assuming that, the solution is

in the form

 E(t-t ) | \)

x(0) =e 9 2(1) (v.3)

Substituting (V.3) into (V.1), we obtain

F(t-t ) E(t-t )
Fe z(t) + e 2(t) = Z.Ep(t) f:gv v + D, w + 20
or  F(t-t)) F(t-t ) ' F(t-t ) )
Fe °z(t) + e 2(t) = Fe 2(t) +D v +D w+D
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This implies
F(t-t ) '
e 2(t) =D v+D w+0D -
v - w- o
80 -Z(t—to)
z(t) = ¢ (Qv v + Ew w + 20)
t -F(c-t)
z(t) = i’ e (Ev y+D, 6w+ Qo) d; (V.‘oa.)

Suppose, vector (P'v v + Q" w + Pv) does not depend on §, (V.4a) can be

written
t Z_(tac)
z(t) =/ e dg (p_v y+D v +_l_)°) : _ (V.Ab?
to ‘
Thus, from (V.4b) and (V.3)
F(t-t)
x (t) = e z(t)
t ~F(g-t)
=/ e dg 0, v +D v +D) ' (v.5)
t
o

The complete solution to (V.1) is
x(t) = x (t) + gp(t)

Since, we wigsh to use this solution over one sample period, let

‘t = nT + T and to = nT, we have:

3
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x(nT + T) =x (aT+T) +x (nT+ T
x x( ) ‘T( + T)
B - nT+T F(aT+T-¢) o
= (] + FT) x(nT) + [ e d;<£v3+£?g*g§)
nT
(V.6)
In equation (V.6), we assume that (using zero-order -hold)
u(z) = u(nT) for nT €L <nT+T
v(z) = v(nT) nT < £ <nT+ T
w(z) = w(nT) nT < ¢ <nT+T
nT+T F(nT+T-Z)
Let —Fl = [ e d with shortened notation, equation (V.6)
y nT ' ‘
becomes x(n+l) = (I + FT) x(n) + F. (D v(n) + D w(n) + D) (v.7)
= - = = =1 = — ~~_— o
N N
u v
or, x(n+l) = (I +HT + I u(mE T+ I v (n)E T) x(n) +
g1 1Y g 1T Y
: 51 D, v(n) + E; D, w(n) + F_ D, . (v.8)
If we let ;
A=1+H
B =E T .
™M ™Y
B, =E T , R . (V.9)
V1 ™ ’ ’ T 7
&=5D

‘J‘n Jn
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2
and change n by k, we obtain
N N
u v
x(k+l) = (A + I ui(k) B + I vi(k) B ) x(k) +
1=1 Mo\ P TV T
gv w(k) + gv vik) + Eﬁ (Vilf)

-t

The above is a general discrete-time belinear system equation. Thus,
it is possible to approximate to the first order a contimuous bilinear
plant by an equivalent discrete-time bilinear one.

The general discrete-time plant equation is rewritten as follows

-

[13}: .
N N
. u v
x(k#1) = [A+ I u (k) B + I v (k)B ] x(k)+C v(k)+
, =1 1 T8y T Yy -
€, ¥k) + C_ : (v.11)
wvhere,

 x(k) = state vector at time (k)
x(k+1l) = state vector at time (k+1)
- ui(k) = multiplicative control input (i) at time (k)
1=1, ..., Hu)
vi(k) = multiplicative and additive control input (i) at time (k)
(i1 =1, ...,NY) .

w(k) = additive control input vector at time (k)

90 = vector of constant imputs to the system
A, B ,B ,C,C,C = constant matrices of respective suitable
= et vt R S

dimensions

I1f we want the plant to operate at state vector g(d) and suppose that this
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state can be made an equilibrium state of the system, i.e.

N N
u v -1
xk,*[I1-A- L u = L v, B ] . -
i:l
‘ : (v.12)
¥4

The above expression is obtained by solving equation (V.11) with the
left hand side set to zero and x(k), u(k), w(k), v(k) f:ipéctively

v are control inputs to keep the

%i Edl Eﬂ’ ;igﬂn !ﬂ‘%

Define the error state vari;bles as follows:
6X(k) = X(k) - §ﬂ
or X(K) = X, + 8X(k) . ‘ (V.l;)
Substituting (V.13) into equation (V,1ll1l), we obtain:
N N
u v
53(&*1) [A L ui(k) B + I ?i(k) B ] éé(k) +
i=1 AT S | Vi
N N
u ; v
[Z(u(k"')éu,)B,,+Z(V(k)-v)E]I+
i=1 i id Ty (=1 id { =
Rl sp . wa
W - W "’.ii’* .
BN
5
N N
u v ¥
Let A, =A+ I u_.B + [ v B
—d {=] id —u, {=1 id -,
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n
o0

Sui(h) = ui(k) - Y4
Svifk) - vi(k) - Vg
§U1(k) = Hi(k) -V

Equation (V.14) can be rewritten as:

N N .
u v : .
SN(kt1) = [A; + I bu (k) B + I &v (k)B, ) EX(Kk)+
, P =1 Y qel I
8u (k)
D | Sv(k) : (V.15)
| sw(k) _ ' |
where,
2= 1o, |0, Ip,)
D =[B .x,]B ,xJ]....!/B _x.]
—u . —ul | ~u, —d ’uuu -
D =[B .x, +C |. ... B .x, +¢C ] /
- ‘—vl Evl EﬂN, =—d *vs
v v
D =(C

Hence, a chosen x, ¥ 0 generally introduced additive control-variation

Ed
terms for all the mulciplicative control variables, and there 1s no
"separation” of additive/multiplicative control inputs (except that
i, if present, remains only additive).

if 8X(o) is the initial error state, and if we can find a control

sequence of length N such that 6X(N) = o, then defining

N N

u v
M = [A + I 6u (3)B + Lév (DB 1+ (v.16)
7 g Ty gy 0Ty
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From (V.15), we can write

7 [ bu(o)]

SX(1) = M 6X(c) + D | dv(o)

L 8w(o)

[ su(1)] 1 g

(1) + D | &v(1) . : (v,ﬁ!)_

$X(2) = M 6)

Su(R-1)]

SX(N) = 0 = M 6X(N-1) + D | §v(N-1)

Sw(N-1)

or, elimina:ing(ail 8X(3) for jJ > o, we obtain:

"My My s - B EXGe) =DM D). [, ... M) D)

- -
[Q_ET(ﬁiu gr(}iil) _QET(Hil)]T :
(V.17)

Hsu"(0) svT(od suwT(0))T

L -

Thus the praélem is to
a) find a séquenze of controls which satisfy the :béve equation,
and ’ | -
b) optimize, in some sinese, the performance of the system.
Condition (a).is the éanttﬂllgbility.érablemi and we shall show that
this has solution, in general; even if only one control variable is

available and it is both additive and multiplic:tive; The more difficult



160

question i8: how to use the freedom of the richer control structure
to optimize performance (b)?
Suppose that we would like to minimize the vector length of the
-

solution control sequence appearing on the right hand side of the

equation (V.17), i.e.,

N1 B . 7 o
min [ I Ga18u)]1? +a [l |12 + ol lewe 1312

L
i=1
Assuming that, minimization of the above expression is directly related
to the elapsed time for the control efforts to bring the plant back to
its equilibrium state, in other words, the faster the system reaches its

equilibrium, the less power it consumes (in a physical system, 8u, Sv,

6w represents power consumed).

Pick one of the control variables, say v, , and initially set it to
zero
6v,(3) =0 j=o0,1, ..., N-1
Then use the remaining control variables to establish a set of state-
transition iatricg: HB, cens Hgil such that each HJ has a "fast" eigen-
vector m, (i.e., M, m, = z_m, with |z |<<1) and the set {m , m_, ...,
e A B B B 'j' ) | DL S

Eﬁ—ll are aB nearly as orthogonal as pé:sible (assuming that N = n =
‘dimension of the state space) i.e., we want them to be a basis in the

state space N: Nv

. u v .
where M, = [A, + L 8u (J)B. + L &v (J) B ] (v.18)
L TS T SR T T £ |

_The idea behind the above algorithm is that, to minimize the control-
variation efforts, we would like to have §v as small as possible, in
some sense. This id achieved if such a set of "fast" eigenéectcrs can

be synthesized using the other control variables (in particular, the



the purely multiplicative ones, the u's, may not involve much energy
)
comsumption so their magnitudes need not be minimized. This 1s true

for a solar-assisted heat pump system). Thus, if 8v_can be kept small,

1
.# 0 on the eigenvectors m

1 =3

so the synthesis will still be fast to a close approximation.

the perturbations caused by dv can be small

To implement the algorithim as closed-loop control switching,

the current measured state vector would be analysized in the basis of

the fast eigenvectors, e.g.:

X =y m +vym + ...+ m (v.19)
-0 oo =1

1 n-1"n-1

Identify the largest component, let us say Ti‘

| > |y,| a11 § #
lygl 2 vyl a1 g 4 4
. -l
Adjust the “other" control variables to produce state transition matrix

Jx

Then, after one sample period, if no further state disturbance’

occurs, the next state would be:

| 8u(o)
¢ - = x + D
8K =M 8 +D| sv(o) {
Sw(o) )
n-1 .
= ¥ + oy 4 £1 4 t [ I K
X, jigngi"j P g% * D, 0w+ D v 4D Su+
hia)
(B X, +C )é§ (v.20)
vl - vl vl
where D, = {last (Hvél) columns of gv}
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Sv' = {last (N -1) components of &v}

Since _Izilfﬂi the dominant m, component of E‘: has been greatly reduced
by the action along the "fast" eigenvector direction.

The additive terms in Su, dw, and §Vj (3 # 1) may be viewed as
constant forcing inputs using the sample period, causing some further
incremental displacement of the state. The remaining additive control
term évl should be set at the appropriate value for "deadbeat control".

For example, suppose we ignore the other additive terms for the present,

Cs..
§§v1

Then X + o in one sample period if the equation o= H 63 + zﬁi has

. =1
* solution v, ().  This is possible 1f and only 1f §X = Hil T for
1 y 4f 6Xx = M T
some scales a 1.e., §X happens to lie along the vector Hil U in state

space, If this is the case, then choose Svl equal to =-a.
Likevise, éjx;, + 0 in two sample periods with an open-loop control
sequence (§v1 (c), & 1(1)} 1f and only if the following equation has a

solution sequence

-

o N v7 B .
° = My gy ) + Tovy )

. y ! A\
or !i(l)(ﬂ (ﬂ) 8X(o) + ¥ v, @1+ 1 6vl(l)

(-]
[ ]

L i

The above equation has solution 1f and only if

- ,ﬁil Ny =1 -1 N
53(5) M (o ) -+ B0 !i(l) -

for some a,f the two-step open loop séquﬁnce would be tSvl (0) = -a

§vl<13 - -



In general, for an n-step dead-beat control sequence, 6X(o) has

to be in the following direction:

)

PRRRNEE - TN ]
X(o) =M 14+ I [n M . ]8 ¥
=1 (o) 1=1 k=0 i)’ "1
where Svl(a) = —g
and 5?1(1) = El 1=1, ..., n-1

(v.21)

Note, however, that only 5vl(a) would be used in closed-loop

163

control (eqn. (V.20)), after one sample period a new feed-back state-

measurement would be available. Nonetheless,*all B's have to be

calculated in order to find a. N

=

The other additivé forcing terms do not really tagﬁlicgte the

matter very much. If we have, for example,

o=M

+ e (c T sw(
{(0) SX(0) + Tovy (o) + T ow(o)

we must have

| T _ w1 Y _ ®
SX(o) = aM () = = Mi(o) v ¥(O)

» '

(v.22)

then évl(a) = -a is chosen, here we have the freedom of adjusting

Sw(o) for a proper a. However, if Su(o) takes the place of éw(o)

in (V.22), o cannot be varied because Su(o) has been fixed by the

-

process of establishing Ei(o)f

From a slightly different point of view, equation (V.17) defines i

an open-loop sequence of comtrol such that:

"My o1y Bi(n-2) vt Bi(o) 18R = (R | My gy D

-t
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iﬁi(n—l) s !_1(1) D) x [ﬂ‘r(n"l) ﬁr(n‘l) _6_‘_'_T(n-l)].r

(V.23a)-

TsuT(o) &vTgo) sw (o))T

Here !N-l' !N—Z’ etc. ... in eqn. (V.17) are replaced by !1(n-1)'
!1(n-2)' etc. ... .
Assuming that 6v1(j) (=1, ..., n) is negligible.

Equation (V.23a) can be rewritten as (compare(V.16) and (V.18)): .

" (ae1) Bi(n2) cor By(@)1EK@) = (D | My D] .

l!i(n-l) cen Ei(l) D] x [Qg?(n-l) gx?(n-l) Qg?(n—l)]r
' ' : ' (V.23b)
' . » -
[su'(0) &vT(o) &w'(o))] o

)

-
i{o), 1(1), etc. ... denote the index of the particular "fast eigenvector

matrix" that Qould be seleﬁted at e;ch sampling period. That is, in

the first sample, solving equation (V.23) give us ijo) (we obtain
6v1(j), j=0, ..., n-1, but only le(o) is needed in this first step)
with all other control; having been given in the process uf establishing

K1) Bon-2)" " Bo(o)°

at the second step is calculated:

~ -

Using equation (V.17a), the state vector

Su(o)
8X(o) + D | Sv(o) | (VA7)

Sw (o)



3

Il
o
(7,1

The control sequence length now is (n-1), solve for 6?1(1) by usi

-
2]
[

the modified equation (V.23b)

"My o) Bine2y oo M) 1D =K

1=

My ety o Mgy B x| (80T (0-1) v (n-1) g6 (n-1)T

sut () sty swTayT

The state vector at the third sample is

Su(1)
SX(2) = M, $XW) + D | sv(1)
Sw(1)

Shere M =M  +
vhere ﬁ’—l gl (1) B,

l§vl(1)

And then repeat the process by using equation (V.23b) to calculate the

control évl(Z), etc. ... From the equation (V.23b), we can write:

§fl(ﬂi1)
=6X(o) = § .le(n-Z) + (a vector independent of §v1) (V.24)

Svl(;)

=1 ==} ~_1 o  ==1
B0 B o Y- gvll"'];i(g) D,

where ° E = [
D = the part of D that multiplies Sv. (it was called '
v v 1 -
in equation V.21).
= B X, +C
Ly

D B X
.o oy 1 N
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The question is what properties the matrix ; =hould have in orde
to minimize the solution [Evl(ﬁsl) Svl(nEZ) - Svl(a)]r? Since we
are inverting this matrix to solve for the §v,'s, the matrix should be
nonsingular and well-conditioned. That 1is, the columns of § must be

linearly indepemndent, should be as nearly orthogonal as possible, and

be

s ]

¢ should be uniformly large in some sense in order for the v 's t

n the sense of the spectral norm, the eigenvalues of

18-

lgrge in magnitude

In general, these conditions may perhaps all be met, as will be

proven in the fallawiﬁg‘ if and only if H 71(1)’ etc. each has éné

=i(0)’

"fast" eigenvector and these eigenvectors are nearly orthogonal.
The sufficient condition of the above statement will be proven

as follows, for the necessary condition it is similar.

Let the last column of ¢ b iﬁ it can be written as:

4 iﬁ(a) =, or 21:1!51(@) e,

Qn can be resolved in the basis of the fast eigenvectars {—i( )
]

By’ Byn-ny!

S 4 T %020 T Byttt % el Bine)

or

Aot " %,0 o) Bio) * %n,1 —i(ﬁ) Byt

By 7 %0 *1(0) B1(o) * %1 Bio) By *

Because Qv is a constant vector, and zi(a) is the fast eigenvalue, hence:

Lz, = constant
an,0 “1(o)
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i

i;(o) is very small, thus e o must be large. Therefore, the component

of Qn along the direction 5i(a) must be large.

Likewise, the next-to-last column of ¢ 1is:

o1 -1
R TR T PR

or,

i) Bio) £om1 Ty

LY

Similarly to the pgevi@us case, the component of vector gi(é) !n-l

along the direction must be large, or ;ﬂ—l must have 3 large

B)

component in the direction of vector Hi( ) ,1(1) which is not closesto

the direction of gi(a)i Suppose it wepe, we .can write:
_1 = am
—i(a) 21(1) =1 (o)

or

B " Moy 2oy T *2ico) Bico)

So, vectors B (1) and m B (o) ard of c *agg direction, this contradicts

the assumption that all the eigenvectors Ei(j)‘ gi(k)‘ (j,rk =0, ..., n=1)

are nearly orthogonal.

Therefore, direction is not close to direction

?'!51( y i) B (o)’

matrix Ei( ) can be thought of as amplifying the component of Ei(l)ﬁ
- 9

that is in the direction of m but that cgmﬁaﬁént is very small

2o’

because Ei(l) and =ﬂ( ) are nearly-orthogonal. In other words, column

g“ is nearly—arthaganai to galuﬁn_gﬁili Continuin ng, the second-to-last

"u

column of

e
-~
n

1 =-1
(

LIPS 1) B2y &y
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ot M ¥a) M) -2 T P-vl

Hence, !1(1) !i(o) Qn—Z has a largg component along the direction of

~-1 =1
51(2) or !n-Z has a large component along the direction of 5%(§) 51(1)

-1 “~1 o, .
Ei(Z)' !1(0) and !i(l) respectively amplify the components of 21(2)

that are in the direction of Ei(o) and Ei(l) respectively, but these

. nd
B (2) is nearly orthogonal to 3 (o) 3nd
1 -1

)’ therefore, direction !1(0) !i(l) B (2) is not close to the

direction of Ei(o) and Ei(l)’ or the direc;ion of the second-to-last

components are small because m

column of §, gn-Z’ is noF close.to the'directions of in-l and iﬂ,
and is nearly-orthogonal to Qn-; and in (because components of iﬁ
along the direction of £n and'_Qn_1 are very small).

Similarly, we can prove t‘ft all the directions of all the ;Qlumna
of § are not close to one another, or they’are linearly indepéndenti
and éép relatively orthogonal to one another.

Let U be a set of bagis rectors which are in the direction of
Ei(o)' é;%o) Ei(l)' é;}o) ﬁi(l) 51(2), etc. ..., respectively.

Because these vectors are nearly orthogonal, if we express columns

of § in this quia, § will be composed of mainly diagonal elements.

the basis vectors U and these elements a}e large, hence, all of ;hé
eigenvalues of § are Large or'§ is uniformly large in terms of spectral
norm.

Solving equation ( -V.Zb),iwe obtain the entire deadbeat open-loop
sequence, But the practical problem of finding the control sequence
6v1 remains difficult, since, as we see previously, the matrix § depends

on the matrices “1(5) (1'=1, ..., n; § =1, «e., n), which, in turn,

.
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changes at every sampling step. So this would mean inverting a different
i at each sample and this is computationafly infeasible with micro-
processor.
Until now we have assumed that null-controllahility of the system
is possible with the two-step process of:
a) First_set 6v1(j) =0 j=0,1, ..., n; then find n different
sets of values for all the other du's, 6v's that give n relatively
orthogonal fast eigenvector:z for the corresponding state-transition
matrices.
b) Then find 6v1 values that tend toward deadbeat control closed
" loop, assuming thai these values are small and do not significantly
affect the fast eigenvectors found in (a).
In the followiﬁg, we will examine this assumption to see whether iF is
indeed possible to have null-cohtrollabllity when le in fact appears
vboth mﬁltiplicatively and additively.

First consider the case n = 2, assuming that 6X(2) = 0 can be

achieved. From eqn. (V.17a), we can write: . p 3
Su(o)
8X(1) = My 8K(@) +D | dv(o) .
. Sw(o)
and . Su(1)

SX(2) = 0 =M, ) 6X(1) +D | sv(1)

Sw(l)

or * Sw(o) Su(l)

27 Ryl )@ + 2 Suled T+ 2 v |

8w (o) sw(1) |/
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or

0 8X(0) + D, 6v,(0) + D, &v (1) +

" i) %y, )
* (a vector independent of le(o)) (v.25)

compare equations (V.16) and (V.18), we obtain

Moo " Hao —Qvlé"l(“) (v.26)

Substituting (V.26) into (V.25)

+ Evlévl(l)] M

i (0) + !vlévl(o)']G_X(o) +

(M +§‘v évl(l)] Qv 6vl(o) +P‘v le(l) +

1(1) . . 7 .
(a vector independent of sv,(0)) .
or
- -1
9 = -6X(o) - My .y * §v1 Sv, (0)] Qvl‘s"l(°?

~ -1 ~ -1
- + +
-[M (0) B l6v1(o)] M (1) B 1le(l)] D lﬁvl({)‘+
(a vector dependent of Su's, &v's, Sw's and other than

6vl(o), 6v1(1)) o ‘ (v.27)

(v.27) is obtained by assuming that le(o) and 6v1(1) are very small and
can be neglected in the last term of the equation. | |

Equation (V.27) is true ;{,lnd only if we can find Gvr(o)'and
6vl(1) such that the vector fynction ‘

- -1 ~ -1
C= [51(0) +'!v16v1(o)] gvldvl(o) + [!1(0) + §v16v1(o)] x
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- o )
My * Evl‘s"l(l)] 91,1‘5”1.(1) (V.28)

4 ’

covers the entire plane, i.e., values of 6v1(o) and le(l) can always
be found suth that this function equalsethevarbitrary vector given by
the other terms in equation (V.27). C can be written as the sum of the

two vector functions:

C = 5[8v,(0)] + tl6v (o), év (1)] ' (v.29)

The locus of s will be examined first. s is a curve in RZ, passing
through the origin when 6v1(o) = 0 and asymptotic to the straight line

-~ 4 “
!i(o) Qvl 6v1(o) as le(o) + 0. For 6v1(o) ¢ 0, there may be up to two

finite, real values of 6vl(o) for which !i(o) + Evl.dvl(o) is singular.

Let vo* be such a value. Then as 6v1(o) - v;, g[évl(o)] + = asymptotic

to the null space of [51(0) + !v vl*f} which is denoted as HG* (Fig. V.1).
) 1 '

**% with, say 0 < va* <.y k&

If the¥e are two singular values vo*‘and Y1 o

then the locus consists of two cudyes, each tending to = as §V1C§) -+ vai

and vo**, respectively (Fig. V.2).
' -1

Agsuming Bvl is nonsingular, as 6v1(o) + to, g + gvl.gvl. if
B is singular:
2y
1
- -1 ’ B
8= M+ g_vlévl(o)] 9v1°"1(°) (V. 30)
or [!i(o) + !vlévl(o)]!-- 2v16v1(o) .

[P

vhen avl(o) + =, 8 * ~, asymptotic to the null spape'of g; . Does the
. 1
curve 8 loop and cut itself? I.e., can we have some s for which

v 37! v -1 ,
Bio) * 3,01 0, (@) = I8 + 5, 817D, 8 SR

s~
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for a ¥ B, a < va*, B = vﬂ*, a and B are two @istinct values of §vl(a)i

(v.31) can be rewritten as:

h )
~ Moy *B @le-D a=0= (M , +B Bls-D 8
1 1 1 ™
or (a-8)(B s~-D ) =20
V.= =V - .
1 1
i .
Since a¥g B 8=~D =290
-y, = =V -
1 1
This implies '
- 0 (v.32)

ﬁi(g)éi‘

But this . is impossible, since gi(b) is a state~transition matrix for

a discrete-time system and it cannot be singular. The only remaining

possibility then is s = 0 as a point of intersection, but from (V.31)

this leads to [H g] and [H 5]!1 ate singular. This
i() =~y ) ¥ 1 _
is a contradiction aince [Hi( ) a] and [Hi( ) + gv 8] are both

™1 "1
well-defined, finite matrices which are nansingular_gﬂd have nonsingular

B, B] . Therefore, 8 = 0 1is

1éver:es [H + B g];l and [M
v —1(o )

=1(0). p 1
' not a point of 1ntgt;g:tid; either. In short, the curve does not loop
. : .
and cut itself,
Now consider the functiofi t
R glévl(n)f év, (1] = [H Moy * 1‘5“ (ﬂ)] ’[_1(1) 15V ™t

< 4 - a T .
: D, 6v,(1) .. - (v.33)
B 1 ‘
for each fixed value of évl(a); E(is;i function of év,(1). t can be

thought ofygs a vector displacement vhich is added to g[&vl(a)] for each

fixed value of 6?1(@”)i t sweeps out a curve in the plane which passes



ot
~Jd
T

through the point s[Gv (o)] for &v (1) = 0. This curve goes to = as
év (1) » vi* or vl** where det[H Mo + B 6v (1)] = 0, the curve goes

i ® T &7,
to inf nity asymptotic to the null spaces N . Nl of [!i(l) B vy I=

!

[H M o ) 1 6v (0))or [ 1**] [51(0) + §v16vl(o)].

—1(1)
- -1
1f gv is singular, t + asymptotic to the line tﬁi(o) + Ev gl(q)] L

[null spaci of gvf when le(l) + tm, | '

If !v is nonsingular, when évl(l) + tm, € [H Mo B L vl(é)]tlz

From an exampled figure in Fig. V.3, we see that each branch of
§[5V1(0)] has, attached to each point on it, a displacement curve
E[fvl(6), 6v1(1)] w}th the corresponding value of le(o). sweeping off
to » as a function of 6v1(1).

It seems quite likely that these curves will cover the whole spa:e
R » in other words, there always exists a null-control se"ence {év (o),
dvl(l)} for an arbitrary "error" state vector. These curves‘certaiﬁly
cover a neighborhood of»the originm ianz, since they are asymptotic ta-
straight lines there. Here the relatively small values Bf 6v1(o),
6v1(1) imply only small curvature will be introduced by the 8v, $0
effect, as a multiplicative control variable, on the state-transition
matrix.

But this picture also raises the question bf how one could compute
the accurate values of 6v1 for open-loop deadbeat control. The previous
glgorithn totally ignores the curvature of the covering loci and would

be accurate only in the limit as &v, + 0 near the origin in Rz (in eqn.

1

( Vv.18) 1f-§v16v1(o) and gvlévl(l) are ignored, 8 and t will be straight
lines and are linear functions of le(o) and 6v1(1) respectively,

that 1is exactly how state-transition matrix EJ is set up in equation
L 3
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( V.18)). That algorithm also igvolved computation of E X(o) (or

at least the bottom rows of all possible 2 mitrices) either on-line or

tAn alternative that would account for the curvature effects as well,

would be to store a grid-map éf pairs of values [Svl(@); évl(l)] that

t:m;gf a sufficiéntly large neighborhood of the origin in mz, then simply

'use.tbe current measured value of §X(o) to look up the correct current

cgnftai value. Actually, only le(n) values are needed with closed

loop control, but they are needed for a two-dimensional (n-dimensional, in
2

genetal) grid of a:i ts inIR . This can become equally demanding of
‘

memory. Havever, since 1if the grid has p points along each dimension
to store Svl(a) values. The previous algoritham requires n x n! words

to store all possible bottom rows §f>§_ Using Stirling's formula:

n.n! # n(n+1) e " J/2mn n(“ N J2m

we gee that this will grow even faster than En for n large,
For n > 2, the loci covering arguments presented above can be
extended in an obvious way to cover a neighborhood afithe origin in R"

with "swept out" manifolds of growing dimension by families of parametric °

curves

2[6‘}1(3)] ’ .
gg + £[§vl.(g)‘ Evl(l)] } . : _, S
2? + Eb + r[ﬁv 8@0), & b:i)- 5V1(§)]



[
-
W

Where ga is a fixed point gl the g(&vl(c)] curve, g‘ + ;b is a fixed

point on the s + t surface and the family of all r displdcements ‘

passing through all such fixed polnts covers a three-dimensional
&

manifold, etc.
It is clear that these manifolds will always cover a neighborhood

of the origin in ini since all the curves are asymptotic to the linear

-
M +M T, D
1 4 1(1) =, (o) =,

S . [
This is assured by the fact that the M matrices are designed to have
rllatively-arthag&nal fast eigenvectors which, for exampie, make
-1 “=1
lndH M
’ —1(a) (o) —1(1) =~ 71
’ laaically. the deadbeat control approach, that has been talked

not parallel or nearly parallel.

about until now, is that assuming one of the multiplicative additive
control inputs, say Svl, is negligibly small so that a sé; of fast
eigenvectors 213 be approximatelygpbtained, and these fast eigenvectors

are used to rest®re the system state back to its equilibrium point.

are proposed, 6v.'s are

The solutions to the problem of finding 6“1’ 7 1

obtained either by inverting a ﬁgt%ix E, or by setting up a map of
values of 6v1'ﬁ P 2 multi-dimensional space.
Although this method looks promising, there are several problems,
as follows, that remain to be sdlved. The global controllability has
! not been examined and it is doubtful that based on the richness of the

system structure, we can obtain global confrollability for a general
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bilinear system. In appendix IV, a particular bilinear system (the
solar-assisted heat pump system) is examined in terms of its eigen-
values As we see, the eigenvalues of this system are always negative,
and this violates the sufficient conditions for complete controllability
(2], although it is not enough for us to draw any conclusion yet, but
it appears the system is hardly globally controllable.

The property of the set of the equilib‘ium points (eqn. V.12)
is not investigated either. This should MWe done and hopefully, to be

®

worthwh{le, the equilibrium set will cover the whole state-gspace or

at least a large portion of 1it.

3 .
There also exists the practical problem of implementing the

éantrgliéf_ This approach

[

an be referred to as supoptimal, never-

theless, nothing has been done to prove that it is nearly optimal.

b
Nefther -is there any proof ‘that we can always obtain a set of fast
] o

eigenvectors. S

Due to the time limifation we have not been able to address every

= L
be feasible especially ep solar-assisted systems,

© o AN
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