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Abstract

A satellite rainfall estimation technique (called IMRA) is designed to utilize 

infrared (IR) brightness temperatures (TBs) as the main input data. It uses Slope and 

Hessian techniques to determine the cloud-top temperature gradient for 

discriminating rain/no-rain pixels, and allows for adjustment of derived IR-rainfall 

estimates using microwave TBs and spatial filtering techniques. IMRA rainfall 

estimates for the Peace River Basin of Southwest Floarida (USA) were assessed by 

comparing directly with gauge and radar rainfall data, and indirectly with the 

corresponding streamflow predicted by the SAC-SMA model. Generally, IMRA- 

Slope provided better rainfall estimates than IMRA-Hessian. The daily predicted 

streamflow using satellite rainfall estimates was comparable to that of radar and 

better than the gauge data reflecting the potential of satellite rainfall estimates in 

hydrologic modeling.

A Haar wavelet scheme was used to merge WSR-88D radar and gauged rainfall 

data in order to correct the underestimation of radar rainfall depths but at the same 

time maintain its original spatial variability as much as possible. The scheme was 

evaluated in terms of streamflow simulated by the semi-distributed, physics-based 

rainfall-runoff model (DPHM-RS) for the Blue River Basin of South Central 

Oklahoma (USA) driven by event-based, hourly rainfall data. The tests included the 

effect of radar data accuracy, radar rainfall spatial variability, model resolution, and
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the gauge-radar merging techniques (wavelet scheme versus the Statistical 

Objective Analysis (SOA) Scheme) on the streamflow simulated by DPHM-RS.

Radar rainfall data simulated more accurate runoff hydrographs than gauged data 

for convective storms but significantly under-estimated the observed hydrographs 

for stratiform storms. The data merging schemes (i.e., Wavelet and SOA) 

substantially reduced radar’s under-estimation of observed streamflow hydrographs 

for stratiform storms, with the wavelet performing better than SOA. The influence 

of model resolution and spatial variability of rainfall on predicted streamflow was 

evident, which justifies the expensive and tedious effort to account for spatial 

variability of rainfall and other basin properties via either dense raingauge 

monitoring networks, or radar meteorology, or meteorological satellites, and 

distributed or semi-distributed hydrologic modeling.
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Chapter 1

Introduction, Literature Review, Research 

Objectives, and Site Description

1.1 Introduction
Rainfall is one of the most important driving forces in hydrologic processes. 

Unfortunately, rainfall is also characterized by high spatial and temporal variability. 

There are two basic approaches to measure rainfall. The first is to measure rainfall 

with a raingauge, which is essentially a measuring cylinder. Raingauges generally 

measure accurate rainfall depths at a point scale, even though they suffer from 

measurement errors associated with the shape of the container, its exposure, the 

wind effect, and evaporation loss between measurements (e.g., Legates and 

DeLiberty, 1993; Groisman and Legates, 1994). Ideally, a dense network of 

raingauges can provide accurate estimates of the spatial distribution of rainfall. 

However, such a network is simply not practical because of prohibitive cost and 

sometimes also because of poor accessibility in remote sites.

The second approach of rainfall measurement is via some sort of remote sensors 

that are airborne, spacebome, or ground-based and operate in the visible, infrared,

1
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and microwave spectra. These sensors may be further subdivided into direct sensors 

where the sizes of precipitation droplets are measured and indirect sensors where 

some by-products of the precipitation process, such as clouds, are measured. 

Weather radar is one good example of direct sensors and developed countries such 

as the United States uses weather radar networks for operational rainfall 

measurements, e.g., Weather Surveillance Radar -1988 Doppler (WSR-88D) of 

USA (Crum and Alberty, 1993). However, if  the radar beam originates from the 

ground surface (i.e., ground-based radar), within a few hundred kilometers it will 

reach a height that is mostly above majority of the precipitation droplets. This 

limits the area over which any one radar sensor may be used.

Since both raingauges and ground-based weather radars are limited in terms of cost 

and accessibility, one possible and practical solution is to use space borne satellite 

data. Useful rainfall data can be derived from satellites designed primarily for 

meteorological purposes, including polar orbiters such as Defense Meteorological 

Satellite Program (DMSP) and Tropical Rainfall Measuring Mission (TRMM) 

(Simpson et al., 1996), and geostationary satellites such as Geostationary 

Operational Environmental Satellite (GOES), Geostationary Meteorological 

Satellite (GMS), and Meteorological Satellite (METEOSAT) (e.g., Vicente et al., 

1998; Chen and Li, 2002; Andersen et al., 2002). Geostationary satellites provide 

visible and infrared images with information about the cloud tops, while polar- 

orbiting satellites provide microwave signals that respond primarily to precipitation­

sized water droplets within the clouds (e.g., Chen and Li, 2000).

1.2 Literature Review on Rainfall Estimation
The shortage of ground-based (i.e., gauge and radar) rainfall measurements over 

vast regions of the world landmasses is well known. This poses a problem for 

improving hydrologic modeling of large river basins particularly in developing 

countries (e.g., Andersen et al., 2002). Although imperfect, satellite observations

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



offer the only realistic means of estimating rainfall over large catchments. Satellite- 

based techniques for measuring precipitation exist for visible (VIS), infrared (IR), 

and microwave radiation. The visible and infrared sensors have the advantage that 

they can reside on geostationary space platforms. Therefore good spatial resolution 

(about 4 km x 4 km) visible and IR images are available on a global scale at 30- 

minutes or 1-hour intervals (Clark, 1983; Arkin and Meisner, 1987; Xu et al., 1999). 

Geostationary satellites’ IR and VIS measurements correspond to the cloud-top 

brightness temperature, which is indirectly related to surface rainfall. In contrast, 

passive microwave (MW) radiation interacts strongly with raindrops in the entire 

atmosphere (Xu et al., 1999; Chen and Li, 2000). Therefore, rainfall retrievals from 

MW instruments are capable of producing more accurate instantaneous rainfall 

estimates. However, the poor resolution of MW radiometers limits them to low- 

orbiting satellites, and hence poor time resolution of the resulting microwave data 

(one or two overpasses per day) (Kummerow et al., 1998).

1.2.1 Infrared (IR) and Visible (VIS) Rainfall Retrieval
Kidder and Vonder Haar (1995) proposed four categories of rainfall estimation 

using VIS and IR images: cloud indexing, life history, cloud model, and bi-spectral 

analysis. The basic premise in the cloud indexing technique, pioneered by Barrett 

(1970), lies on the fact that it is relatively easy to identify and classify cloud types in 

satellite images, and, consequently a rain rate can be assigned to each cloud type. 

Life cycle history techniques are based on the cloud’s life cycle. For this purpose, a 

series of geostationary satellite images are required. Typically, the relationship 

between the time rate of change of the area of a cloud and the rain rate of the 

thunderstorm is examined (Stout et al., 1979). The method requires, in addition to 

images, radar or raingauge measurements. The cloud model technique, as the name 

suggests, involve the physics of the cloud by parameterizing convection, or relating 

cloud top temperatures to observed rain rates, or including cloud microphysics (drop 

formation, collection and coalescence, and evaporation). Typical cloud model 

techniques developed to infer precipitation from IR radiation include the GOES

3
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Precipitation Index (GPI) (Arkin and Meisner, 1987), the Auto-Estimator proposed 

by Vicente et al. (1998) and adopted by Rozumalski (2000) and Boi et al. (2004), 

and the Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Network Cloud Classification System (PERSLANN-CCS) by Hong et al. 

(2004), and others.

The bi-spectral techniques combine a set of rules that are capable of predicting 

clouds that are most probable to produce rain. Clouds that are bright in the VIS 

image are more likely to produce rain than darker clouds as brightness is related to 

optical and, consequently, to cloud thickness. Clouds that are cold in the IR image 

are also more likely to produce rain than warm clouds, because cold clouds have 

higher tops than warm clouds (Barrett and Martin, 1981). There are exceptions in 

the aforementioned premises, though. Stratus clouds are bright, but neither produce 

as much nor as frequent rain as cumulonimbus clouds; Cirrus clouds, although they 

are cold, do not produce as much rain as other warm clouds (Houze, 1993). 

Examples of bi-spectral techniques are those of Garand (1989) where rainfall is 

assigned based upon four infrared temperature intervals and six cloud albedo 

intervals obtained from the visible channel, and Tsonis et al. (1996) where the 

optimum boundary is defined in the VIS/IR domain and is used to discriminate 

between rain and no-rain. However, the major drawback of bi-spectral techniques is 

the unavailability o f VIS images during the night that prevents estimation of night­

time rainfall (Tsintikidis et al., 1999).

1.2.2 Microwave (MW) Rainfall Retrieval
Radiative transfer process of rain is separated into two regimes: emission/absorption 

and scattering (Wilheit et al., 1991). Factors determining the type of attenuation are 

precipitation particle sizes, phase of particles (ice or liquid), and spectral bands 

(Kidd et al., 1998). Microwave brightness temperature (TB) observed in emission 

regime represents observation of liquid hydrometeors within the rain cloud, while 

that in scattering regime depends on details of ice layer of raining clouds. The low

4
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emissivity of ocean (0.5 is a typical value) provides a good cold background for 

viewing particles above it with relatively higher emissivities, such as rain. The 

variations in microwave TB due to rainfall rate (RR) over oceans is such that 

microwave TB increases with an increase in RR due to rainfall emission effect 

(Chiu et al., 1990). This applies to low frequency microwave channels (i.e., 10.7, 

19.4, 21.3, and 37 GHz).

In contrast, since land surfaces have emissivities in the range of 0.8-0.95, low 

frequency channels are not suitable for over land applications because high surface 

emissions effectively mask the precipitation emission (Kidd et al., 1998). Due to 

high sensitivity of 85.5GHz channels to volumetric scattering by precipitation, 

especially ice above the freezing level (Spencer et al., 1989), these channels are 

suitable for developing scattering-based methods on both ocean and land. In this 

case, the microwave TB decreases with increasing RR due to volumetric scattering 

by precipitation. The TB at 37GHz also decreases with increasing RR, both due to 

scattering by larger raindrops and emission at lower temperatures (Spencer et al., 

1986). Therefore, microwave observations at 37GHz also have potential to retrieve 

rainfall on both land and oceans.

Due to existence of multiple hydrometeors that can be detected by multi-frequency 

passive MW measurements, MW rain retrieval algorithms suffer from various 

obstacles. The difficulty is more severe for overland retrievals because of the warm 

background that limit the use of lower-frequency observations (i.e., 10, 19, and 22 

GHz). Some algorithms, referred to as physically based, are derived using radiative- 

transfer algorithms through cloud-model simulated precipitation fields (e.g., Evans 

et al., 1995; Kummerow et al., 1996). These algorithms were mainly investigated in 

over ocean retrievals. Studies dealing with physically based retrieval algorithms 

over land are few and have not indicated better performance relative to purely 

statistical algorithms (Druen and Heinemann, 1998), which are conceptually simpler 

and more practical for applications.
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1.2.3 Application of Gauge and Remotely Sensed Rainfall 

in Basin Hydrology
Traditionally, gauge rainfall data (point measurements) have been used with 

hydrologic models. However, raingauge networks alone are usually too sparse to 

capture the spatial variability of rainfall over a river basin. The point measurements 

at any raingauge location are usually extended over its area of influence (such as 

using the Thiessen polygon technique) in hydrologic studies, resulting in poor 

representations of rainfall spatial distribution. This problem usually becomes more 

critical as the size of river basins increases.

Numerous studies have been conducted in the past two decades addressing the 

sensitivity of streamflow hydrographs to the spatial and temporal variations in 

precipitation. Many of these studies examined the effects o f raingauge sampling 

errors on the outflow hydrograph. Wilson et al. (1979) showed that the spatial 

distribution of rainfall had a marked influence on the streamflow hydrograph from a 

small catchment. On the other hand, Beven and Homberger (1982) stated that 

rainfall patterns have only a secondary effect on streamflow hydrographs. For a 

small watershed, Krajewski et al. (1991) found a higher sensitivity to the temporal 

resolution of precipitation than to the spatial resolution. Ogden and Julien (1994) 

and Shah et al. (1996) also investigated the effects of precipitation variability on 

hydrologic simulations.

It is interesting to note that most of these studies were based on synthetically 

generated precipitation and streamflow records due to a lack of appropriate 

observed data. Furthermore, many of the studies emphasizing the importance of the 

spatial variability of precipitation used models based on the Hortonian (i.e., 

infiltration-excess) runoff generation mechanism. Winchell et al. (1998) noted that 

there has been a bias towards the use of infiltration-excess runoff mechanism as
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opposed to the saturation-excess type. Their work with both types of runoff 

generation mechanisms found that saturation-excess and infiltration-excess models 

responded differently to uncertainties in precipitation, with the latter being more 

sensitive than the former. Koren et al. (1999) came to a similar conclusion based on 

simulation results from different rainfall-runoff partitioning mechanisms.

Weather radars have long been recognized for their ability to provide estimates of 

precipitation at high spatial and temporal resolution even though such data still have 

problems. Stellman et al. (2001) evaluated the difference between the WSR-88D 

(Weather Surveillance Radar-1988 Doppler) radar and raingage rainfall data. They 

reported a 50% under-estimation of radar data as compared to raingages during the 

winter months (dominated by stratiform rainfall), while in the summer (dominated 

by convective rainfall) radar reported slightly more rainfall than raingages. 

Similarly, Jayakrishnan et al. (2004) showed that WSR-88D radar underestimated 

the five-year precipitation at vast majority of the 545 raingages used in their study. 

They concluded that, meaningful hydrologic predictions are not possible unless the 

uncertainty associated with the radar-derived precipitation can be quantified and 

corrected for.

There have been some contradictory conclusions on the impact of errors in the radar 

precipitation data. For instance, Numec (1985) argued that errors in precipitation 

input to a rainfall-runoff model would result in significant errors in estimated 

runoff. Wyss et al. (1990) suggested that errors in runoff predictions due to errors in 

the radar-estimated rainfall input are of less significance than errors introduced in 

the rainfall-runoff conversion. Winchell et al. (1998) stated that there has not been a 

consensus on the effects of uncertainty in radar rainfall on hydrologic modeling, nor 

has the topic received adequate attention, e.g., most of the research on radar rainfall 

uncertainty has been mainly confined to comparisons with their raingauge 

counterparts without analyzing their influence on the predicted streamflow 

hydrographs.
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Besides the aforementioned problems with radar data, the lack of weather radars in 

most parts of the world has pushed the scientific community to explore the use of 

satellite data to estimate surface rainfall. Hardy et al. (1989) used daily satellite- 

derived rainfall as input to a conceptual rainfall-rainfall model for daily flow 

prediction in two sub-catchments of the Senegal River Basin. They reported that the 

flow predictions were at least as good when satellite-based rainfall estimates were 

used as input in place of conventional raingauge data. In a similar study for Tano 

River in West Africa, Papadakis et al. (1993) found that the model simulations of 

monthly runoff based on satellite and raingauge rainfall inputs compared equally 

well to observations. Tsintikidis et al. (1999) did a similar analysis for the Nile 

River Basin using a conceptual semi-distributed model with daily time step and 1° x 

1° discretization. In their case a minor improvement was found using the remotely 

sensed rainfall and they recommended its use as input in hydrologic models. 

Andersen et al. (2002) used rainfall estimates from METEOSAT satellite data as 

input to a distributed, physically based hydrologic model applied to three sub­

catchments in the Senegal River Basin. They reported similar model performances 

when compared to the simulated hydrographs obtained from conventional raingauge 

input. In all these studies either a bi-spectral technique of Tsonis et al. (1996) or the 

cold cloud duration (CCD) technique of Arkin and Meisner (1987) was used to 

derive the satellite rainfall estimates. Tsintikidis et al. (1999) recommended the 

modification of the bi-spectral technique (i.e., into a univariate frequency analysis 

method where only IR is used) to enable it to resolve a night-time rainfall, which is 

not possible with VIS frequency. Andersen et al. (2002) pointed out that the cold 

cloud duration (CCD) technique relies heavily on statistical relations and it is 

questionable to which degree it captures the physical processes.
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1.3 Statement of Problems
(1) Due to a lack of distributed precipitation data, distributed and semi-distributed, 

physically based hydrologic models still use gauged rainfall data (point 

measurements) as their input function. This means an inadequate representation 

of rainfall spatial variability when the raingauge network is sparse, and a 

mismatch between model complexity and the primary forcing function 

(precipitation) for computing basin-scale water fluxes (Boyle et al., 2001).

(2) It is possible to map detailed precipitation fields from radar rainfall 

measurements with refined spatial and temporal resolutions, which should 

contribute to the progress of basin-scale hydrologic modeling. However, there 

are many uncertainties associated with rainfall (R) estimated from radar echoes, 

such as beam blockage caused by topography; attenuation by atmospheric gases 

and raindrops; effects of ground clutter and anomalous propagation; 

uncertainties in reflectivity (Z) measurement caused by radar hardware 

calibration and stability issues; inappropriate Z-R relationships; data processing 

problems (e.g., averaging of overlapping radar coverage); and radar range 

effects (Pereira et al., 1998). For example, Stellman et al. (2001) reported that 

radar Mean Areal Precipitation (MAP) underestimated the raingauge MAP by 

about 50% during winter dominated by stratiform storms. A key question is how 

to correct the underestimation of rainfall depth by radar rainfall data but at the 

same time maintain its detailed representation of the space-time variations of 

rainfall fields?

(3) Currently, even the best surface rainfall observing systems (i.e., gauge and 

radar) fail to capture the true spatial distribution of precipitation systems 

(Rozumalski, 2000). Raingauge observations are limited by spatial coverage 

problems (Fulton et al., 1998). In addition, the accuracy and reliability of these 

gauges is also an issue. Although radar estimates are superior to gauge data in
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areal coverage and resolution, they are limited by the assumptions of the 

standard reflectivity to rainfall rate, a Z-R power-law relationship (e.g., Battan 

1973; Doviak and Zmic 1984). In addition, both methods are severely limited 

over mountainous terrain and large bodies of water (e.g., lakes) where coverage 

is poor or nonexistent. Also, weather radars are more restricted to locations near 

major cities, except for the Weather Surveillance Radar -1988 Doppler (WSR- 

88D) network of USA. On the other hand, the growth of space bome satellite 

data has been tremendous and will continue to grow in the foreseeable future, 

especially with NASA of USA launching a series of Earth Observation Satellites 

(EOS) such as EOS AM-1 and EOS PM-1. These satellites carry infrared and 

microwave sounders to measure precipitation volumes, cloud thickness, and 

cloud water content, among others, at global or near global coverage. 

Apparently we can take advantage of such satellite data for rainfall estimation 

and hydrologic modeling.

1.4 Research Objectives
The general goal of this research is to contribute to the progress of basin hydrologic 

modeling by improving the primary input function, i.e., the precipitation field. So, 

this study has three objectives:

(1) Develop an Infrared-Micro wave Rainfall Algorithm (IMRA) for estimating 

rainfall at high spatial and temporal scales using satellite data. The algorithm 

should require less input information, be less dependent on rain gauge data, 

utilize infrared (IR) brightness temperatures (TBs) as the main satellite 

information input, and use cloud physical processes (e.g., cloud-top structure) 

for discriminating rain/no-rain pixels. The IMRA should allow for the 

adjustment of the derived IR-rainfall estimates using microwave (MW) TBs 

information and spatial filtering/smoothing techniques. IMRA rainfall estimates 

are compared with gauge and radar data through hydrologic simulation using the 

Sacramento Soil Moisture Accounting (SAC-SMA) model.
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(2) Develop a data merging scheme that is wavelet based to combine radar rainfall 

with raingauge data to take advantage of both the capability of radar to map the 

spatial variability of precipitation and accurate rainfall depth measurements 

offered by raingauges. If the attributes of both types of rainfall data can be 

preserved in the merged radar-gauge rainfall product, it will contribute to the 

progress of basin hydrologic modeling. The use of wavelet based interpolation 

scheme to merge these two types of data has never been done before.

(3) Assess the effect of radar rainfall uncertainty, the spatial variability of rainfall, 

and that of hydrologic model resolution on streamflow simulation using a semi­

distributed, physically based hydrologic model.

1.5 Study Site Description
The research on satellite rainfall estimation was carried out in Peace River Basin, 

while that on radar rainfall uncertainty and the merging with the corresponding 

gauge rainfall data using wavelet analysis was done in Blue River Basin. The two 

study sites are briefly described below.

(a) Peace River Basin (PRB)

The PRB is located in Southwest Floarida (USA) and receives surface runoff from 

an area of approximately 6086 km . Its headwaters are in central Polk County, and 

the river flows in a southerly direction for about 120 km to the Charlotte Harbor. 

Land-surface altitudes range from about 60 m above sea level near the headwaters 

to sea level at the mouth. Land use and land cover in the study area is dominated by 

agricultural land and rangeland, comprising about 70 percent of the total land area 

of PRB. Annual rainfall averages at about 1320 mm and temperature ranges from an 

average of about 27 °C during the summer to about 16 °C in December and January.
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(b) Blue River Basin (BRB)

The BRB is located in South Central Oklahoma (USA) and has a total catchment 

area of 1233 km2. Its elevation ranges from 153 to 350m above mean sea level. The 

basin has a relatively flat terrain, and the major soil groups are clay and loam mixed 

with sand or silt. Woody Savannah is the dominant vegetation cover occupying 

almost 80% of the basin. The average annual precipitation ranges from about 

400mm in the extreme western panhandle to 1420mm in the southeastern comer of 

the State (Frederick et al., 1977). The January temperature ranges from a daytime 

high of 20°C to a nighttime low well below zero. The primary source of moisture is 

from the Gulf of Mexico. The Pacific Ocean off the coast of Mexico is a source of 

moisture under certain airflow patterns.

1.6 Organization of Thesis
This thesis consists of five chapters. Chapter 1 provides an overview of the general 

background on techniques used in rainfall estimation, particularly remotely sensed 

rainfall, and the influence of its spatial and temporal distribution in basin hydrologic 

modeling. Chapter 2 describes in detail the development and validation of an 

Infrared Microwave Rainfall Algorithm (IMRA) for estimation of rainfall suitable 

for small-scale hydrologic modeling using satellite data. The assumptions, cloud 

physical processes, and the data used in evaluating the IMRA in Peace River Basin 

are also discussed. In Chapter 3, the development and validation of a wavelet based 

data merging scheme for combining radar and gauge rainfall data is described in 

detail, while in Chapter 4, a detailed analysis of the effect of radar rainfall 

uncertainty, the spatial variability of rainfall, and model resolution on streamflow 

prediction using a semi-distributed physically based model is carried out. The 

assessment on advantages of radar data over gauge rainfall data in basin hydrologic 

modeling is also performed. Finally, summary, concluding remarks, and 

recommendations for future work are presented in Chapter 5.
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Chapter 2

Estimation of Rainfall from Satellite Data 

for Basin Scale Hydrologic Modeling

2.1 Introduction
Reliable estimate of mean areal rainfall as input to hydrologic catchments is a 

crucial step for accurate prediction of catchment outflows. The lack o f adequate 

ground-based rainfall measurements (i.e., rain gauges) has inspired a search for 

remotely sensed precipitation data from space platforms (Tsintikidis et al., 1999) 

and radar data. The interest in space platforms is predicated on the assumption that 

this information can potentially provide a cost-effective data source over temporal 

and spatial scales not possible from any other in situ or remote systems 

(Rozumalski, 2000). These precipitation estimates would be a valuable contribution 

to many hydrological applications where high-resolution data are not routinely 

available. A combination of dense networks of rain gauges and ground-based radar 

has been used to provide high-resolution rainfall information for limited areas (e.g., 

Klazura and Imy, 1993). However, for most parts of the earth the in-situ 

infrastructure necessary for this form of precipitation monitoring network is not 

available because of prohibitive costs and poor accessibility in remote sites and 

mountainous areas.
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Satellite-based techniques for rainfall measurement have been actively explored to 

offer an alternative to ground-based data. Passive microwave (MW) data are able to 

provide accurate estimates of instantaneous rain rates, but the poor temporal 

sampling of low earth-orbiting satellites (once or twice per day) makes these data 

most suitable for estimation of accumulated rainfall over longer periods of perhaps a 

month or more (Adler et al., 1993). Satellite infrared (IR) data benefit from the high 

temporal sampling (30-minutes or 1-hour) of geostationary satellites such as 

Geostationary Operational Environmental Satellite (GOES), but IR radiances from 

cloud tops have only a weak, indirect relationship with surface rainfall. Therefore, 

many simple IR algorithms rely on the effects of scale averaging to improve 

accuracy, for instance the GOES Precipitation Index (GPI) which averages rainfall 

estimates in 2.5° x 2.5° grid boxes (Arkin and Meisner, 1987). Compared to polar- 

orbiting satellite data, geostationary satellite data suffer from less sampling errors at 

all temporal scales because the latter can acquire an image every half-hour/hour as 

against the 1 or 2 images per day from polar-orbiting systems. As a result, many 

studies have focused their estimation of basin scale rainfall at short timescales (from 

a few hours to perhaps a few days) using data from geostationary satellites such as 

GOES (e.g., Vicente et al., 1998; Todd et al., 1999; and Hong et al., 2004).

The auto-estimator (AE), which uses GOES infrared (IR) data to compute real-time 

precipitation amounts (especially that of convective storms) at hourly to daily time 

steps and 12 km spatial scale has been developed and tested (Vicente et al., 1998). 

Comparing the results with gauge-adjusted radar precipitation data showed that AE 

produced useful 1 - 6  hour precipitation for flash flood monitoring but exaggerated 

the area of precipitation causing an overestimation of daily rainfall totals. In 

addition, AE uses model-generated relative humidity and precipitable water to scale 

the rainfall amount accordingly. Todd et al. (1999) introduced a continuously 

calibrated IR satellite rainfall estimation technique (CCB4) for computing rainfall 

rate at daily and 5 km spatial scale. Compared to GPI, CCB4 showed improved
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skill in identifying rainy days and estimating daily rainfall amounts, but its major 

drawback is that it heavily relies on the availability of near-real-time rain gauge 

data. Similarly, a method to improve the GPI technique, termed the Universally 

Adjusted GPI (UAGPI) was proposed, where satellite IR and microwave data were 

combined and evaluated on monthly time step and a spatial scale o f 2.5° x 2.5° (Xu 

et al., 1999). The UAGPI results were superior to that of GPI, but it was tested at 

larger scales that are of little interest to basin hydrologic modeling.

From a slightly different perspective, an algorithm termed Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Network Cloud 

Classification System (PERSIANN-CCS) was developed (Hong et al., 2004). This 

algorithm uses IR satellite imagery to extract rainfall distributions at 4 km x 4 km 

resolution and every 30 minutes from local and regional cloud features. The 

PERSIANN-CCS rainfall estimates were evaluated using both radar and gauge 

rainfall measurements at hourly to daily, and spatially at 4 km, 12 km, and 25 km. 

However, the correlation with the observed data are low, partly because of the 

problems in separating cloud image into distinct cloud systems, or separable cloud- 

patch classes and how are these classes associated with the rainfall distribution.

This research presents the development and validation of a new IR/MW satellite 

technique for estimating rainfall rate (R) at high spatial and temporal scales, termed 

Infrared-Microwave Rainfall Algorithm (IMRA) (Section 2.4). It is designed to 

require less input parameters, less dependent on rain gauge data, and utilize both 

satellite IR and microwave brightness temperatures (TB) through locally derived 

nonlinear R-TB relationships.

2.2 Peace River Basin (PRB)
The Peace River Basin (PRB), located in Southwest Florida, USA was selected as 

the study site because it is neither regulated nor channelized, which is not the case
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for most rivers in this area. Also, there is ready access to satellite observations and 

high spatial and temporal resolution raingauge data suitable for developing satellite 

rainfall retrieval algorithms. The Peace River receives surface runoff from an area 

of approximately 6086 km2. Its headwaters are in central Polk County, and the river 

flows in a southerly direction for about 120 km to the Charlotte Harbor. 

Approximately 670 km (11 percent) of the PRB drains into the river downstream 

from the gauging station at Arcadia (station 1, Figure 2.1) and the tributary gauges 

on Joshua Creek, Horse Creek, and Shell Creek (see Figure 2.1). Land-surface 

altitudes range from about 60 m above sea level near the headwaters to sea level at 

the mouth. Land use in the study area is dominated by agricultural land and 

rangeland, comprising about 70 % of the total land area of the PRB. Annual rainfall 

averages about 1320 mm, of which more than half occurs from June through 

September during local convective thunderstorms. The rainfall during fall, winter, 

and spring is usually the result of large frontal systems and tends to be more broadly 

distributed than rain associated with local thunderstorms. October through May is 

dry, with November usually being the driest month. Temperature ranges from an 

average of about 27 °C during the summer to about 16 °C in December and January.

2.3 Data Description
2.3.1 Infrared (IR) and Passive Microwave (MW) Data
The Infrared (IR) cloud-top brightness temperatures were obtained from two 

satellite sources: (a) the Visible/Infra-Red Scanner (VIRS) aboard the Tropical 

Rainfall Measuring Mission (TRMM) satellite provided the channel 4 (at 10.8 pm) 

brightness temperatures at 2.4 km and 12-hour or 24-hour resolutions, and (b) the 

Geostationary Operational Environmental Satellite (GOES) provided the channel 4 

(at 10.7 pm) brightness temperatures at a spatial and temporal resolution of 4 km 

and 1-hour respectively. The level-1B01 VIRS IR data was deemed suitable for 

developing satellite rainfall retrieval algorithms due to their high spatial resolution, 

while the GOES IR data were used for the actual IR-derived rainfall estimation due
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to their high temporal resolution (hourly). An effective 35 x 20 pixels window at 4 

km resolution covering PRB and its vicinity was used, which is 37 x 22 pixels 

window with border pixels included, ranging from latitudes 26.84 N to 28.32 N and 

longitudes 81.64 W to 82.34 W.

The TRMM Microwave Imager (TMI) provided the passive microwave (MW) 

brightness temperatures (TBs). The level-lB ll microwave data used here are from 

microwave channels 8  and 9 at 85.5GHz, labeled as TB8 and TB9 to represent the 

level-lBl 1 TBs at 85.5 GHz vertical (V) and 85.5 GHz Horizontal (H) polarizations 

respectively. The time resolution for these data is once or twice per day, while the 

spatial resolution is about 5 km.

2.3.2 Rainfall and Streamflow Data
On the east side of the PRB, a dense rain gauge network has been installed around 

Melboume-Florida ground-validation (GV) site in a field campaign, which is an 

integral component of the TRMM satellite extensive validation program (Figure

2.2). On this GV site, the rain gauge data are at a high spatial resolution and a time 

resolution of 1 -minute recorded in a continuous basis for days and times when there 

was rainfall. These data are ideal for deriving infrared/microwave satellite rainfall 

retrieval algorithms. Another data used in this study are gauge-adjusted stage IV 

radar precipitation, developed by the National Centers for Environmental Prediction 

(NCEP), found at http://wwwt.emc.ncep.nooa.gov/mmb/ylin/pcpanl/stage4/. These 

data are at 1 hour and 4 km resolutions. Within the PRB there are five National 

Weather Service Meteorological sites (Figure 2.1), which provide continuous 

rainfall time series (from 1931 to Date) at daily time step. In the PRB, historical 

daily streamflow data have been collected as part of the National Water Information 

System (NWIS), and have been reviewed and approved for public release. Both the 

Peace River (at Arcadia) and its tributaries (Figure 2.1) have streamflow records 

starting from 1931 to present. These data sets have been quality controlled by U.S. 

Geological Survey.
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2.4 Infrared-Microwave Rainfall Algorithm (IMRA)
The development of IMRA is based on the following assumptions: (a) raining 

clouds are associated with growing clouds exhibiting overshooting tops (Hong et 

al., 2004); (b) raining clouds with cold tops in the IR imagery produce more rainfall 

than those with warmer tops (Arkin and Meisner, 1987); and (c) passive microwave 

(MW) TBs can provide accurate estimates of instantaneous rain rates and this 

information can be used to improve rainfall estimates from IR data at high temporal 

frequency (Adler et al., 1993; Xu et al., 1999; Chen and Li, 2002; Marzano et al., 

2004). Comparison of GOES IR cloud-top temperature imagery against collocated 

gauge-adjusted radar images have demonstrated that convective thunderstorms are 

characterized by rapid spatial and temporal changes in the structure of the cloud-top 

surface and very low cloud-top temperatures (Vicente et al., 1998). The correct 

rainfall estimates from satellite IR imagery depends not only on the accurate 

estimates of the instantaneous rainfall rates for every pixel, but also the effective 

screening of the non-raining pixels because rainfall tends to be a discontinuous 

variable. Since only the cloud tops can be observed, implying a weak and indirect 

relationship with surface rainfall, it becomes difficult to achieve that goal using one 

IR channel alone. However, analyzing the IR cloud-top temperature distribution on 

a pixel-by-pixel basis helps to locate precipitating areas (Hong et al., 2004).

For a given time step (e.g., hourly), IMRA provides estimates of rainfall rate at 

pixel scale through a three stage process. In stage 1, rainfall rates are computed 

from a nonlinear, power-law regression relationship between gauge measured 

rainfall data and IR cloud-top temperature (R-TBir). Gagin et al. (1985) suggested 

the use of a power-law relation between IR cloud-top temperature and rainfall rates, 

and the idea has been used in recent studies (e.g., Vicente et al., 1998; Hong et al., 

2004). Stage 2 includes two techniques used to separate raining/non-raining pixels. 

First, based on the R-TBir relationship, IR threshold values for minimum detectable
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rainfall rates are determined for use as global (constant) rain/no-rain screening tools. 

Past studies have employed a minimum detectable rainfall rate of 0.25 mm/hr (Xu et 

al., 1999) and 1 mm/hr (Adler et al., 1993). Second, to account for the local-scale 

rainfall/cloud characteristics, analysis of the cloud-top temperature on a single IR 

image is employed to determine a cloud-top temperature gradient at pixel scale. 

Fully developed convective clouds have distinguishable overshooting tops, tight 

temperature gradients, and higher local pixel temperature variations while stratiform 

clouds show more gradual temperature gradients and lower temperature variations 

(Hong et al., 2004). Hence, spatial analysis of cloud systems texture using cloud-top 

temperature gradients can identify raining cloud areas (e.g., Adler and Negri, 1988; 

Vicente et al., 1998). In stage 3, IMRA uses MW-derived rainfall estimates to adjust 

the IR-derived rainfall estimates (see section 2.4.3). The MW-rainfall estimates are 

obtained through a nonlinear, power-law regression relationship between gauge 

rainfall measurements and MW TB (R-TB). Also, IMRA has a spatial 

filtering/smoothing component, which can be used to adjust the IR-derived rainfall 

estimates.

2.4.1 Rain Rate and IR Brightness Temperature (R-TBir) 

Relationship
The IMRA precipitation rates are computed using a power-law fit between 

coincident gauge measured rainfall and satellite measurements of IR TB at cloud 

top. The IR-gauge data were considered coincident if  they were within time 

difference of less than 10 minutes and IR data points are within a 2 km x 2 km pixel 

surrounding a particular rain gauge. In order to have enough coincident IR-gauge 

data, the IR cloud-top TB from the Visible/Infrared Scanner (VIRS) aboard the 

TRMM satellite were used instead of those from GOES platform because the former 

have a resolution of 2.4 km while the latter are at 4.0 km resolution. The original set 

of 1487 pairs of gauge rainfall estimates and IR cloud-top temperatures were 

collected during the month of June to September 2000, which is a period usually
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dominated by convective rainfall systems for this study site at Florida (USA). The 

1487 pairs of data were manually screened until only 273 pairs were retained such 

that for the data retained, we can correctly match higher gauged rainfall rate with 

colder IR cloud top temperature within a 2 km x 2 km grid area surrounding each 

rain gauge. This screening is intended to reduce errors associated with geolocation 

due to errors in geo-referencing of satellite IR data to ground locations, and non­

uniformity of rainfall rate under the raining cloud where colder cloud-top 

temperatures might not be associated with high rainfall rate. This dataset was used 

to derive the power-law regression curve expressed as

f  -1
R = 1.522£ + 12 exp  — \tB ir+60.96T 5235 -  0.33 8 (2.1)

I 207.67 IR

where R is the rainfall rate in mm per hour and TBIR is the IR cloud-top TB in 

Kelvin. The above regression fit had a coefficient of determination (R ) of 0.98 and 

a modeling efficiency (Ef) of 0.95 between observed and estimated rainfall rates 

(Figure 2.3). An independent dataset consisting of 150 pairs of gauge rainfall rate 

and IR cloud-top temperature collected during the month of June to September 2001 

and screened in the same manner as above was used to validate the derived power- 

law regression. In this validation case between observed and estimated rainfall rates 

the R2 was 0.93 and an Ef of 0.89, which is very encouraging.

2.4.2 Rain/No-Rain Discrimination
In general, approximately 90% of the rain from clouds is produced by only 50% of 

the raining cloud area (Vicente et al., 1998). This implies that a major challenge in 

estimating rainfall using IR measurements is to distinguish raining from non-raining 

clouds. A cloud system is more active and produces highest rainfall when the cloud- 

tops are colder, overshooting, and expanding (Griffith et al., 1978; Hong et al., 

2004). To remove non-raining clouds, an empirical procedure termed as SLOPE is 

developed in this study. The proposed technique is compared by the HESSIAN 

method proposed by Vicente et al. (1998).
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2.4.2.1 Slope Technique (ST)
In a 3x3 pixels moving window, a slope (S) parameter of the center pixel is 

computed based on the cloud-top temperature (T) as

^  = ^(‘J) ~ ̂ mean (2 -2 )

where r (; y ) is the IR TB of the center pixel and Tmean is the average temperature of 

the 8 pixels surrounding the current pixel calculated as

Tmean =  {2(i-l,y+ l) +  T( i - \ J )  +  1) +  T(iJ + 1) +  T( i J - 1) +  3

2(i+l, y+1) +  2(/+l,_/) + W i ) } / 8 . 0

An empirically determined cut-off cloud-top temperature gradient of 1° Kelvin is 

suggested for screening rain/no-rain pixels. Thus, all pixels having S  less or equal to 

-1° Kelvin (i.e., ^  < —1) are classified as raining cloud pixels. This screening of 

non-raining clouds is used for all clouds having cloud-top temperatures lower than 

the IR threshold temperature of 243° K discussed in Section 2.4.2.3. In the slope 

technique, the temperature of the analysis (center) pixel does not necessarily need to 

be an absolute minimum as compared to the surrounding pixels.

2.4.2.2 Hessian Technique (HT)
Vicente et al. (1998) suggested a technique for identifying rain/no-rain pixels that 

involves analysis of the first and second derivatives of cloud-top temperature in a 

given IR image, which is referred herein as the Hessian technique (HT). It is also 

implemented in a moving window of 3x3 pixels centered on the pixel P0 = (x0,y0). If 

the cloud-top surface is defined by T = T(x,y), with T being the cloud-top 

temperature as a function of x and y coordinates, the second derivatives of T on the 

pixel P0 are given as

= d2T(x,y)/dx2 ; = S2T(x,y)/dy2;

? 4 - w l  y y .  = 'j2nx,y)/dK)v (2.4)

and the Hessian (H) is given as
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The pixel P0 is characterized as follows: if H  > 0 and T”\x < 0  —» maximum; 

if  H  > 0 and T^x=x > 0  —> minimum; if  H  < 0 —> no maximum, no minimum; 

and if H  = 0 —> not known.

The plan is to identify pixels that represent local temperature minimum and assume 

these pixels indicate active clouds with rainfall underneath them. In a closed 3x3 

pixels window, the HT involves searching if  the IR cloud-top temperature of the 

analysis pixel (P0) is the absolute minimum as compared to the surrounding pixels 

(Weir et al., 2006) in which case it is considered to be a raining pixel.

2.4.2.3 IR Threshold Temperature
A minimum IR threshold TB above that no rain could occur was established from 

the R-TBiR power-law relationship (Eq. 2.1) based on a selected minimum 

detectable rainfall rate (where values from 0 .0  mm/hr to 1 mm/hr were tested). 

From Eq. 2.1, a rainfall rate of O.Omm/hr is equivalent to 243°K and an IR cloud-top 

temperature of 239°K produces 0.25mm/hr. The IR threshold of 243°K was selected 

because it allows estimation of zero rainfall. Therefore the results presented here are 

based on the minimum detectable rainfall rate of O.Omm/hr where the corresponding 

IR threshold temperature of 243°K was employed as a global rain/no-rain 

discriminator. In effect, the above rain/no-rain discrimination techniques help to 

estimate the spatial variability of rainfall at pixel scale.

2.4.3 Microwave (MW) Adjustment of IR-Rainfall Rate
Besides condensation and growth of particle sizes, rainfall generation involves 

variety of physical processes that varies with season, location, and storm types. This 

poses a limitation in accuracy when rainfall is retrieved from a single relation 

between IR cloud-top temperature and surface rainfall rate (Hong et al., 2004). On

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the other hand, the use of a single-function seems to be more appealing and 

practical instead of deriving a different function/curve for each situation. For 

improving the single-function approach to estimate rainfall from satellite data, we 

can rely on the temporal adjustment of the R-TBir estimates from other sources of 

rainfall observations such as surface radar/gauge measurements or low-orbiting 

satellite microwave rainfall estimates, or rely on spatial/temporal accumulations of 

rainfall to lower resolutions such as monthly time step and 2.5° x 2.5° (e.g., Xu et 

al., 1999). Nevertheless, because of the lack of sufficient ground rainfall 

observations, our ability to employ surface radar/gauge measurements is usually 

limited for most parts of the earth. Fortunately, microwave observations from polar- 

orbiting satellites can be used instead, although their poor temporal resolution (one 

or two overpasses per day) provides only instantaneous snapshots of precipitation.

Rainfall rate estimated using the R-TBir power-law curve derived in this study can 

be adjusted by satellite microwave rainfall estimates in every 5x5 pixel area treated 

independently and having its own mean rainfall adjustment factor. The MW 

adjustment factor is given by the ratio of the mean of MW and IR rainfall rates in 

every 5x5 pixel area, and then the MW factor is multiplied with the IR rainfall 

estimates at each individual pixel to adjust IR rainfall estimates. To avoid the 

adjustment factor being zero when MW rainfall rate is zero, or becoming too big 

when IR rainfall rate is too small, the range of MW adjustment factor was limited to 

0.5 and 2 inclusive. Xu et al. (1999) employed a MW adjustment factor range of 0.2 

to 2 inclusive, in estimating satellite rainfall using IR and microwave TB on 

monthly time step and a spatial resolution of 2.5° x 2.5°. A power-law regression 

curve between MW TB and gauge surface rainfall rate was derived as

R = -0.8290E -  0477?82'5915 + 0.6693T590" 63 (2.6)

where R is the rainfall rate in mm/hour, TBs and TBg are microwave TBs in Kelvin 

for channels 8 and 9 respectively. For calibration, 141 data pairs from the summer 

of 2000 were used and the R2 obtained was 0.85, while the Ef was 0.72. Validation 

was done using 110 data pairs from the summer of 2001, and the resulting R was
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0.78 and Ef was 0.60. The performance of Eq. 2.6 is slightly poorer than that of Eq.

2.1 because, it this case the MW-gauge data were considered coincident if  they were 

within time difference of less than 10 minutes and within a 4 km x 4 km pixel 

surrounding a particular rain gauge instead of 2  km x 2  km because of the poorer 

resolution of MW data (i.e., 5.1 km as compared to 2.4 km for VIRS IR data) from 

TRMM Microwave Imager (TMI). Using MW TBs statistics for no-rainfall events, 

the rain threshold for TB8 and TB9 were determined to be 278.42°K and 263.78°K 

respectively, which are within the range suggested by Chen and Li (2000, 2002). 

This means that a pixel with a TB greater than its rain threshold is classified as no­

rain scene, because the channels at 85.5 GHz (i.e., TB8 and TB9) detect rainfall by 

scattering mechanism and hence rain pixels are colder than no-rain pixels.

2.4.4 Spatial Smoothing/Filtering
Spatial smoothing of the estimated satellite rainfall rates were assessed because 

satellite infrared (IR) radiances from cloud tops have only a weak, indirect 

relationship with surface rainfall, and coupled with non-uniform rainfall rate under 

the raining cloud, colder cloud-top temperatures might not be associated with higher 

rainfall rate. The spatial filtering can remove spike or impulsive noise in the satellite 

rainfall estimates and hence improve the satellite-to-radar rainfall comparison. 

Three spatial filtering techniques using a sliding-window described below were 

tested. Figure 2.4 illustrates this sliding-window approach and is similar to the one 

used in Section 2.4.2 above. Consider the 5 x 7 data array on the left-hand side 

(Figure 2.4). A 3 x 3 kernel is convoluted with the 3 x 3 data array beneath it, and 

the result of the convolution is placed at the central pixel (checkered box) location 

in the new filtered image (shaded on the right-hand-side array). This operation is 

repeated by sliding the window, first from left to right and then from top to bottom, 

to create the new filtered image. The border pixels are kept unaltered. An effective 

35 x 20 pixels window at 4 km resolution covering PRB and its vicinity was used, 

where with border pixels included the window was 37 x 22 pixels. The sliding-
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window technique can be written asFA = B , where F  signifies the filtering 

operation on the original a r ra y s , giving the new filtered arrayB .

2 .4 .4.1 Quad-Smoothing (QS)
In this method the 3><3 window is again split into 4 quads (see illustration in Figure 

2.5). The arithmetic average of each quad is performed and is denoted by Qt for the

/th quad. The average of the central pixel value (number 5) with the four quad 

averages is substituted as the smoothed estimate of pixel 5 (Datta et al., 2003). This 

method is referred to as QS in the rest of the chapter, and is equivalent to using a 

weighted average with the 3 x 3  kernel.

2 .4 .4 2  Median Filtering (MF)
Smoothing using median filtering (MF) is also tried. In MF, accumulations in the 3 

x 3 window are first sorted, and then the median of those nine observations is 

substituted for the central pixel value. Suppose we have a 3 x 3 data array, such as

7 18 2

9 3 25
17 10 15

If we sort these nine values, we will have the set {2, 3, 7, 9, 10, 15, 17, 18, 25}. The 

median value of this array is 10, which is substituted for the central pixel. This is a 

nonlinear filtering technique (Jain, 1989) used mainly to remove any noisy pixel 

that shows a spike in the scene.

2 .4 .4 3  Trimming Filter (TF)
In this method, the two lowest and two highest values from the sorted set of nine 

observations are removed first, and then the average of the five central values is 

substituted for the central pixel value. This is a hybrid filter known as an a-trimmed
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mean filter (Efford, 2000). In the current case, a = 2. If we consider the same matrix 

as in MF, then by trimming the two lowest and two highest values of the sorted set 

we will have the central subset {7, 9, 10, 15, 17}. The average of this subset is 11.6, 

which is substituted for the center pixel value.

2.4.5 Rainfall Rate Computation
The single image rainfall rates are calculated for each GOES IR image available 

every 1-hour in this study. The average hourly rainfall rate is computed on a pixel- 

by-pixel basis using a statistical tri-mean (Wilks, 1995) of three consecutive images. 

The tri-mean is a weighted average in which the median of the three values receives 

twice the weight, so that for every pixel the hourly rainfall rate is given as 

Rainh (mm / hr) = (Rainh_x + 2Rainh + Rainh+l) / 4 (2.7)

The accumulated rainfall rate for periods longer than 1-hour (e.g., daily) is 

computed by summing the rainfall rates for all 1-hour collocated pixels in the 

desired period.

2.5 Assessment of IMRA Rainfall Estimates
The performance of the IMRA technique presented here is based on four months of 

data, June-July 2002 and August-September 2003. Although both data sets represent 

summer period which is normally dominated by convective rainfall systems, the 

summer in 2002 had a relatively light rainfall as compared to the summer in 2003 

(see Figure 2.6), and hence the two sets of data were deemed suitable for testing the 

performance of IMRA for estimating relatively light and heavy rainfall. An 

effective 35 x 20 pixels window at 4 km pixel resolution covering Peace River 

Basin and its vicinity was used, where with border pixels included the window was 

37 x 22 pixels. Hourly satellite rainfall rates were computed using IMRA with (a) 

threshold only, (b) threshold plus slope, (c) threshold plus hessian, (d) threshold 

plus slope or hessian and Spatial filter, and (e) threshold plus slope or hessian and 

Microwave (MW) adjustment factors. This procedure of sequential addition of

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



correction factors was employed in order to assess the influence of each factor on 

the derived rainfall rate.

The statistical criteria used to validate the IMRA satellite rainfall estimates are the 

mean, bias, root-mean-square error (RMSE), and correlation coefficient. 

Contingency tables index (False Alarm Ratio (FAR), Probability of Detection 

(POD), and error (ERR)) and rain area are used to evaluate the IMRA rainfall 

estimates qualitatively, particularly its rain/no-rain discrimination component. FAR 

is the number of points incorrectly classified as rain (false alarms) divided by the 

sum of the points correctly classified as rain (rain hits) and the false alarms; POD is 

the number of rain hits divided by the sum of points incorrectly classified as no rain 

(rain misses) and the rain hits; and ERR is the sum of the rain misses and false 

alarms divided by the total number of points under consideration. IMRA rainfall 

estimates are validated on hourly and daily basis for different spatial scales (4 km, 

12 km, and 20 km). Two rainfall observation datasets were used in this validation: 

high-temporal-and-spatial resolution NCEP stage IV gauge-adjusted radar rainfall 

data and high-quality daily point rain gauge data. The former products were chosen 

as the primary ground-truth for comparing with IMRA rainfall estimates because 

they are available at similar spatial resolution (i.e., 4 km x 4 km) as the GOES IR 

rainfall data. For the case of point scale comparison and hydrologic simulations, the 

point gauge rainfall were also used at daily time step. The daily gauge rainfall data 

were considered as independent, because the stage III (from which stage IV is 

derived) estimates incorporate the 1-hour gauge observations to adjust the radar 

derived amounts (Fulton et al., 1998). However, the 24-h gauge observations used 

here are reported solely on a daily basis and hence are not available for processing 

the hourly stage III/IV data.

2.5.1 Spatial Evaluation of Rainfall Estimates
The results presented here are based on statistics derived from the entire respective 

time series including the cases with zero rainfall (i.e., unconditional time series).
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The unconditional time series allows for equal sample sizes for various spatial 

scales and rainfall estimation techniques tested in this study.

2.5.1.1 Effect of Cloud-Top-Temperature Gradient Factor
Tables 2.1 and 2.2 show the evaluation results of hourly IMRA rainfall estimates at 

three spatial scales using the three rain/no-rain pixels screening techniques (i.e., 

Threshold, Slope, and Hessian) for 2002 and 2003 datasets respectively. Although 

the Threshold only outperformed the other cases in terms of POD for all three-pixel 

sizes, it had the worst performance in terms of other statistical measures particularly 

the mean rainfall rate, bias, and RMSE. Examination of last two rows of Tables 2.1 

and 2.2 shows that for Threshold only, the best POD was accompanied by worst 

FAR and ERR because it produced more number of rain pixels as compared to the 

observed radar rain pixels. This is because the Threshold (i.e., all pixels with IR TB 

less or equal to 243°K was considered to be raining) is a crude rain/no-rain 

discriminator.

The introduction of Slope technique (ST) or Hessian technique (HT) for screening 

rain/no-rain pixels lowered the POD and slightly increased the correlation 

(particularly the ST case; i.e., Threshold + Slope) but significantly improved the 

other statistical measures, specifically the mean, bias, and RMSE (Tables 2.1 and

2.2). The trend of IMRA performance on daily basis (Tables 2.3 and 2.4) was more 

or less similar to the one described for the hourly case, but in this case ST gives a 

much better results than the other techniques. The better performance provided by 

ST as compared to HT is due to the fact that HT is a stricter gradient index (it 

searches for the absolute minimum IR TB pixel) and hence it will tend to remove 

(i.e., assign zero rainfall) the pixels covered by the stratiform component (which has 

less spatial temperature gradient) of the convective systems that is normally 

associated with the mature to dissipating stages of the convective systems 

(Schumacher and Houze, 2003). For instance, ST provided a better POD, mean 

rainfall, correlation, and almost identical FAR results to that of HT. However, HT
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has better RMSE and ERR statistics than ST (Tables 2.1 to 2.4) because it has a 

tendency to underestimate rainfall area (i.e., rain pixels) with significant 

underestimation being associated with light rainfall due to weak IR temperature 

gradient, which directly leads to smaller RMSE and ERR values. This can be seen 

in Tables 2.1 to 2.4 where the rain area (i.e., raining pixels) for the Hessian case was 

relatively smaller than the Slope case.

The 1-hour measure scores were much lower than those of 24-hour precipitation 

estimates indicating that the IMRA had less skill over 1-hour than over 24-hour 

periods (see Tables 2.1 to 2.4). The skill measures that showed the greatest 

improvement from hourly to daily rainfall rates were POD and FAR. Tables 2.1 to 

2.4 also show that overall the skill scores improved when IMRA estimates were 

performed on a lower spatial resolution grid, such as 2 0  km x 2 0  km as opposed to 

the native (4 km x 4 km) grid. Apparently by averaging the time and spatial scales, 

we expect better agreements between observed and satellite data retrieved rainfall 

fields. The estimates show a good fit at a resolution of 12km and lower particularly 

in terms of mean rainfall, correlation, RMSE, and POD. Generally the ST (i.e., 

Threshold + Slope) outperformed both the HT (i.e., Threshold + Hessian) and 

Threshold only, on both hourly and daily basis, by producing rainfall estimates that 

are more comparable to the observed (i.e., gauge-adjusted radar rainfall data). Since 

the performance of the Threshold only was clearly poorer as compared to the other 

two techniques particularly in terms of the quantitative measures (i.e., mean rainfall, 

bias, RMSE) with exception of correlation coefficient, it will not be discussed any 

further in this section.

2.5.1.2 Effect of Spatial Smoothing/Filtering
In an attempt to further improve the IMRA rainfall estimates, three spatial 

smoothing/filtering techniques were tested, namely, quad smoothing (QS), median 

filter (MF), and trimming filter (TF). Due to the large quantity of information, the 

results of this analysis are not presented here. Among the three spatial smoothing
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techniques, the MF (i.e., Threshold + Slope/Hessian + MF) tended to reduce both 

the rain area and mean rainfall as compared to Threshold + Slope/Hessian. On the 

other hand, QS and TF generally tended to increase the rain area substantially in 

comparison to Threshold + Slope/Hessian, with QS rain area being larger than that 

of TF, while maintaining and dampening the pixel’s mean rainfall estimates 

respectively. Therefore, in general the spatial smoothing/filtering techniques were 

not effective in improving the rainfall estimates from Threshold + Slope/Hessian 

techniques.

2.5.1.3 Effect of Microwave (MW) Adjustment Factor
Finally, the application of the microwave (MW) adjustment factor generally led to 

underestimation of observed rainfall and hence resulted in poorer statistics such as 

mean rainfall, bias, RMSE, and correlation coefficient (compare Table 2.5 with 

Tables 2.3 and 2.4). This can be partly associated with the poor sampling frequency 

of the microwave data (once or twice per day) as compared to the hourly IR data, 

and partly due to the possibility of diurnal characteristics of the rainfall system over 

the study site. To investigate the diurnal effect, the basin mean areal precipitation 

(MAP) derived from the gauge-adjusted radar rainfall data were averaged over 24 

hours for the 31-day period of August 2003. The resulting 24-h time series strongly 

shows a diurnal trend in the observed rainfall system (Figure 2.7), where despite the 

hourly variability in the values, there is a persistent similarity in timing of the daily 

maximums and minimums of rainfall occurrence where most of the rainfall started 

at late evening (around 17:00 hours) to mid-night. The observed mean rainfall 

amounts were lowest at around 8 :0 0  hours (morning) and increased into the 

evening, peaking near 21:00 hours. This means that if the low-orbit satellite 

measuring the MW data is consistently making over-passes through this region 

(Florida, USA) during the morning and/or early afternoon times, it will be missing 

the rainfall events and hence the resulting observed underestimation of the MW 

adjusted IR rainfall estimates. It is plausible that the diurnal trend had an impact in 

the MW adjusted IR rainfall estimates. However, the forcing of this diurnal trend is
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not immediately apparent. The timing of the maximum and minimum rainfall 

occurrences do not coincide with that expected if rainfall were forced by the solar 

cycle. Under those circumstances, the maximum should occur during late afternoon, 

when convection is more likely to occur.

These results and others (e.g., Arkin and Xie, 1994; Miller et al., 2001) show that, 

there is no strong evidence that combined techniques (i.e., IR-microwave 

techniques) will necessarily give better performance than IR-only techniques. 

Besides the diurnal effect explained above, another possible explanation is that it is 

difficult to estimate accurately the high spatial and temporal variability of the 

precipitation field at hourly or daily time step with the microwave data 

characterized by coarser spatial and temporal resolutions. Generally MW data are 

better for monthly time step or longer and lower spatial resolutions such as 2.5° x 

2.5° (Xu et al., 1999).

2.5.2 Point Scale Evaluation of Rainfall Estimates

2.5.2.1 Cumulative Traces of Rainfall Rates
The performance of IMRA was also considered at point scale (i.e., at rain gauge 

locations) on a daily basis. Since the trend of the plots was the same, the results for 

only one rain gauge location (i.e., Arcadia, see Figure 2.1 for its location) are 

presented. The cumulative rainfall plots comparing gauge, radar, and GOES satellite 

rainfall estimates using different IMRA components (i.e., Threshold, Slope, and 

Hessian) for 2002 and 2003 datasets are shown in Figures 2.8 and 2.9 respectively. 

It can be clearly seen that the use of 243°K threshold only for discriminating 

rain/no-rain pixels provides IMRA estimates that significantly overestimate the 

gauge and radar rainfall for both 2002 and 2003 datasets (Figures 2.8a and 2.9a).

For the 2002 dataset, the introduction of Slope technique (ST) in addition to 

Threshold for rain/no-rain discrimination resulted in an IMRA cumulative rainfall
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plot that follows the radar trace closely, although it slightly underestimated the 

gauge measurements (Figure 2.8b). On the other hand, the Hessian technique (HT) 

of rainfall area delineation resulted into IMRA estimates significantly 

underestimating both the gauge and radar measurements almost throughout the 2 - 

months (i.e., 61 days) (Figure 2.8c). The introduction of ST for the 2003 dataset 

resulted into three plots (i.e., gauge, radar, IMRA estimates) collapsing together in 

good agreement (Figure 2.9b). The Hessian estimates for 2003 dataset resulted in a 

significantly good agreement with gauge and radar measurements as compared to 

the 2002 dataset (Figure 2.9c).

From Figures 2.8 and 2.9, it seems that the Slope Technique generally out­

performed both Hessian and Threshold techniques. ST performance for the 2002 

case was more or less equal to that of 2003 case, while the HT performed much 

better in 2003 than in 2002 datasets. This can be attributed to the fact that, the 2002 

dataset composed of relatively light rainfall while the 2003 period had relatively 

heavy rainfall (Figure 2.6). It is likely that heavier precipitation amounts were 

associated with deep convection while the light precipitation amounts were 

produced by shallow warm-top clouds (i.e., stratiform systems). Tables 2.1 and 2.2 

show the number of raining pixels reported by the hourly gauge-adjusted radar 

rainfall data (observed data) for the two months each in 2002 and 2003 datasets, 

which were 137,802 and 93,744 pixels respectively at the native (i.e., 4 km) pixel 

resolution. It can be seen that the raining pixels for the 2002 case was about 1 Vi 

times that of 2003, while the observed mean rainfall for 2003 was slightly more 

than that of 2002 (see Table 2.1 and 2.2). On daily basis (Tables 2.3 and 2.4), it is 

clear that the 2 0 0 2  observed dataset reported more rain area (but less mean rainfall) 

while the 2003 case has less rain area (but more mean rainfall) at all spatial scales 

tested. These facts and the time series plots of daily point gauged data in Figure 2.6 

show that the magnitudes of rainfall rate for 2 0 0 2  was generally less than that of 

2003. This means that the 2002 datasets were dominated by a persistent wide 

spread rainfall systems while the 2003 were dominated by localized intense
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thunderstorms which are typical characteristics of stratiform (warm-cloud) and 

convective (cold-cloud) rainfall systems, respectively (Schumacher and Houze, 

2003). Thus, since HT is a stricter gradient index (where a rain pixel needs to be an 

absolute minimum IR TB as compared to the surrounding pixels) than ST (where 

rain pixels do not necessarily have to be absolute minima IR TB) it will tend to 

remove (assign zero rainfall) more pixels covered by the stratiform rainfall systems 

because they have less spatial temperature gradient. Also, HT was specifically 

developed for delineating heavy convective precipitation systems characterized by 

high cloud-top temperature gradient for flood forecasting (Vicente et al., 1998; 

Rozumalski, 2000). Hence, this can explain the observed underestimation of rainfall 

depth and rain area by HT as compared to ST for the 2002 dataset dominated by 

stratiform rainfall systems.

2.5.2.2 Daily Comparison of Rainfall Rates at Grid Points
The scatter plots of the daily estimates by IMRA Slope (ST) and Hessian (HT) 

versus gauge-adjusted radar rainfall estimates for both 2002 and 2003 datasets are 

displayed in Figures 2.10 and 2.11 for the case of 20 km and 100 km resolution 

grids, respectively. When compared with HT, the ST demonstrates better agreement 

with the radar rainfall data. The HT shows a general tendency to underestimate the 

observed rainfall at 20 km resolution grid for both 2002 and 2003 datasets (Figure 

2.10). At 100 km resolution and hence a smaller sample size, it can be clearly seen 

that the distributions of satellite rainfall estimates for convective rainfall (Figures 

2 .1 1c and 2 .1  Id) more closely correlate with radar data than that of stratiform 

rainfall (Figures 2.11a and 2.11b) because satellite data have difficulty estimating 

warm cloud stratiform rainfall systems. Also, the underestimation effect of HT is 

significantly reduced at 100 km resolution, particularly in the 2003 dataset (Figure

2 .1  Id) because of the large averaging area.
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2.5.2.3 Histograms of Rainfall Rates
The frequency distribution of rainfall rates estimated by satellite data and the gauge- 

adjusted radar data on daily basis at both 2 0  km and 1 0 0  km resolution grids are 

depicted in Figures 2.12 and 2.13 for 2002 and 2003 datasets, respectively. The HT 

derived satellite measurements significantly overestimated the frequency of rainfall 

rate within 0.0-2.0 mmh' 1 at 20 km resolution grid for both 2002 and 2003 datasets. 

As mentioned earlier, this is because HT is a stricter gradient index than the ST and 

hence have difficulty estimating small rainfall rates that are normally associated 

with warm-clouds (i.e., stratiform clouds) which resulted in many zero rainfall rates 

derived from satellite data and hence the overestimation of rainfall occurrences 

within 0.0-2.0 m m h1 range (Figures 2.12a and 2.13a). For the 100 km resolution 

grids the overestimation of small rainfall rates occurrences by HT is significantly 

reduced because of the large averaging area (Figures 2.12b and 2.13b). Note that 

although both ST and HT share similar frequency distributions, generally ST 

demonstrates better agreement with the gauge-adjusted radar rainfall data (Figures 

2.12 and 2.13).

2.5.3 Hydrologic Simulation
Several studies have been carried out to investigate the potential of applying 

satellite rainfall estimates in hydrologic modeling. Hardy et al. (1989) used daily 

satellite rainfall as input to a conceptual rainfall-rainfall model for daily flow 

prediction in two sub-catchments of the Senegal River Basin. They reported that the 

flow predictions were at least as good when satellite rainfall estimates were used 

instead of conventional raingauge data. In another study for Tano River in West 

Africa, Papadakis et al. (1993) found that the model simulations of monthly runoff 

compared equally well between observations from the satellite and that of 

raingauges. Tsintikidis et al. (1999) conducted a similar analysis for the Nile River 

Basin using a conceptual semi-distributed model with daily time step and 1° x 1° 

discretization. In their case a minor improvement was found using the remotely
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sensed rainfall and they recommended its use as input in hydrologic models. 

Andersen et al. (2002) used rainfall estimates from METEOSAT satellite data as 

input to a distributed, physics-based hydrologic model applied to three 

subcatchments in the Senegal River Basin. They reported similar model 

performances when the gauge and satellite rainfall data were used for simulation of 

observed streamflow hydrographs. In all these studies either a bi-spectral technique 

of Tsonis et al. (1996) or the cold cloud duration (CCD) technique of Arkin and 

Meisner (1987) was used to derive the satellite rainfall estimates. Tsintikidis et al.

(1999) recommended the modification of the bi-spectral technique (i.e., into a uni­

variate frequency analysis method where only IR is used) to enable it to resolve a 

nighttime rainfall. This is because using the VISIBLE channel hinders the 

estimation of rainfall during the night because visible satellite images will not be 

available. Andersen et al. (2002) pointed out that CCD technique relies heavily on 

statistical relations and it is questionable to which degree it captures the physical 

processes. Furthermore, the calibration of infrared and visible satellite images was 

done using raingauge data at daily time step, which meant poor time coincidence 

between the daily surface rainfall and hourly satellite images. All these factors can 

potentially lead to less accurate satellite-derived rainfall estimates.

An assessment of suitability of IMRA rainfall estimates derived from satellite 

infrared (IR) images for hydrologic studies is carried out at daily time step. The use 

of IR images alone allows the estimation of rainfall at day and night which 

potentially leads to more accurate daily satellite rainfall estimates as compared to 

the combined use of IR and visible (not available during the night) images. Also, 

IMRA derives rainfall from IR images by employing the physical processes of the 

cloud-top structure as described in section 2.4. Due to a lack of detailed input data, 

the Sacramento soil moisture accounting (SAC-SMA) model is used to generate 

streamflow because it needs only rainfall and potential evapotranspiration as input 

data, as well as streamflow data for model calibration. The results are compared 

with streamflow estimated using raingauge and gauge-adjusted radar rainfall data.
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2.5.3.1 Sacramento Soil Moisture Accounting (SAC-SMA) 

Model
SAC-SMA is a conceptual rainfall-runoff model of the complex natural processes 

associated with the generation of surface and sub-surface runoff in natural 

catchments with spatially lumped parameters (Bumash et al., 1973; Bumash, 1995). 

The model divides the soil column into an upper and a lower zone, each having 

“free” and “tension” water storages (see Figure 2.14). The upper zone represents the 

upper soil storage (in the top 1 0 -2 0  cm of the soil depth), while the lower zone 

represents the bulk of the soil moisture and, in some cases, groundwater storage. 

Tension water is assumed closely bound to the soil particles and is removed only by 

evapotranspiration. Free water is free to move horizontally and vertically through 

the soil column, and can be depleted as a channel inflow, non-channel groundwater 

flow and as percolation from the upper zone to the lower zone. Percolation controls 

the movement of water throughout the soil profile, and also depends on the degree 

of saturation in both the upper and lower zones. Parameters of the model include: 

capacities of five soil compartments; drainage rates from the free water zones; 

fraction of impervious areas; percolation parameters; and baseflow parameters.

SAC-SMA is generally applied to river basins ranging from 300 km2 to 5000 km2 

(Finnerty et al., 1997), and is normally run at 6 -hour or daily time step. It uses mean 

areal precipitation (MAP) and mean areal potential evapotranspiration (MAPE) 

demand as inputs to produce streamflow at the catchment outlet. The SAC-SMA 

model parameters are manually and automatically calibrated with the objective of 

optimizing the match between simulated and the observed discharge data.

In this study, SAC-SMA was applied at both basin and sub-basin scales in daily 

time step. Since the size of the Peace River Basin (PRB) at Arcadia streamflow
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gauging station used here is 5416 km2, which translates to around 0.74° x 0.74° (i.e., 

74 km x 74 km) single grid size, it is within the recommended range of basin sizes 

for applying the SAC-SMA model. The potential evapotranspiration data were 

estimated using a simple Hargreaves model (Wu, 1997) that requires only two 

climatic parameters, temperature and incident radiation as follows;

[ 218 8 ^
 —   (2 .8)

595.5 -0.0557V

where ET0 is the potential evapotranspiration (mm/day), T the mean temperature

(°C), and Rs the incident solar radiation (MJ/m2/day). The temperature data were

available on daily basis while the solar radiation data were available on monthly 

averages and hence the radiation values were assumed constant for all days of a 

particular month. Wu (1997) showed that the simple Hargreaves model performed 

comparably with the complicated Penman model, which requires many climate data 

such as air temperature, relative humidity, wind, saturation vapor pressure, net 

radiation, roughness height, atmospheric pressure, and air density.

During the calibration of SAC-SMA, the input data used were daily gauge MAP,

MAPE, and observed streamflow at Arcadia gauging station, which is a non-tidal

station (see Figure 2.1). The gauge MAP was computed using four rain gauges

located above the Arcadia basin outflow namely Bartow, Fort Green, Wauchula,

and Arcadia rain gauge stations (see Figure 2.1). Three years of data (1997-1999)

were used for calibrating SAC-SMA. This period was selected because it composed

a wide range of daily streamflow magnitudes recorded at Arcadia gauging station.

Two sets of data were employed in the validation of SAC-SMA, which composed of

three years (1982-1984) and four years (1971-1974) of data for validations 1 and 2

respectively. The calibration and validation results are shown in Figure 2.15. The

statistics of the simulated streamflow during calibration and validation of the SAC-

SMA model are shown in Table 2.6. All calibration and validation statistics are

comparable and encouraging. Finnerty et al. (1997) showed that SAC-SMA’s

parameters are inherently tied to the space-time scale, terrain, geographic location,
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and gauge network from which they are calibrated. Optimally, a lumped basin that 

is disaggregated into sub-basins should be recalibrated to reflect the model’s 

response to a different space scale. Obled et al. (1994) followed this procedure 

when they modeled a basin in a lumped fashion and then in a semi-distributed 

manner with 9 sub-basins. Since there is no streamflow gauging station above the 

Arcadia station (Figure 2.1) for re-calibrating the model at sub-basin scale, the 

calibrated SAC-SMA model parameters at a lumped basin scale were applied to 

evaluate the suitability of satellite rainfall estimates at both basin and sub-basin 

scales to see if the spatial distribution of precipitation play a part in basin-scale 

hydrologic modeling. A Muskingum routing scheme was used to route the 

streamflow from different sub-basins to the basin outlet, and its parameters were 

determined by trial and error.

2.5.3.2 Using IMRA Rainfall Estimates in Hydrologic Modeling
The streamflow simulation results based on IMRA precipitation estimates derived 

with Slope and Hessian techniques with and without microwave adjustment are 

presented in Figure 2.16. In this figure and the rest of the figures in this section, the 

first 61 days (i.e., 1 - 6 1 )  represent the period from June 1 -  July 31, 2002 and the 

remaining 61 days (i.e., 62 -  122) represent the period from August 1 -  September 

30, 2003. In each case described here, the two datasets were combined to form a 

time series with 122 data points for use in the hydrologic simulation. It can be seen 

that the use of satellite rainfall derived by Slope technique (ST) for streamflow 

prediction produced a hydrograph that agrees closely with the observed in both 

2002 and 2003 periods (Figure 2.16a). On the other hand, the use of Hessian 

technique (HT) for rain/no-rain discrimination resulted in significant 

underestimation of observed streamflow for 2002 period while in 2003 period there 

is a better agreement with the observed hydrograph (Figure 2.16b). There was no 

obvious improvement by introducing the microwave (MW) adjustment because it 

led to a general underestimation of observed streamflow in both ST and HT (Figure 

2.16). The 2002 period experienced more underestimation than 2003 period because
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the former was dominated by relatively light rainfall which is potentially associated 

with warm-clouds that are difficulty to detect by high frequency microwave 

channels used here (i.e., 85.5 GHz) since they measure rainfall through scattering 

mechanism by the ice and rain particles and hence smaller particles will scatter less 

MW energy and vice versa (Chen and Li, 2002). These observations are consistent 

with those in sections 2.5.1.1 to 2.5.1.3 of IMRA rainfall estimates evaluation.

For comparison with the gauge and radar simulated streamflow hydrographs, the 

satellite rainfall estimates during the 2002 period were derived using a Slope 

technique and those of 2003 period were derived using both the Slope and Hessian 

techniques (Figure 2.17). In Figures 2.17a and 2.17b the streamflow simulation was 

based on a lumped basin while the results in Figure 2.17c are based on the basin 

divided into 4 sub-basins (see Figure 2.1) where the streamflow from different sub­

basins was routed to the basin outlet through a Muskingum routing scheme. 

However as stated earlier, due to a lack of observed streamflow data at interior sub­

basins for recalibrating the model at each sub-basin, the lumped basin parameters 

were also used in the sub-basin case. It can be seen that, at a lumped basin scale the 

radar hydrographs (Figure 2.17a) are marginally better than satellite and gauge 

hydrographs (Figure 2.17 and Table 2.7). However, at a sub-basin scale, the satellite 

hydrographs (i.e., Slope/Hessian) outperformed that of gauge and was very close to 

radar results (Figure 2.17c and Table 2.7) reflecting the potential of satellite 

precipitation estimates over gauge measurements in hydrologic modeling. 

However, the satellite precipitation scenarios shows some deviations from the rain 

gauge and radar scenarios, e.g., the overestimation of the peak at around day 73 and 

the underestimation and miss timing of the trough at around days 91 to 98. Also, the 

performance of Slope technique in 2003 (i.e., day 62 to 122) was slightly poor as 

compared to Hessian, which resulted to the deviation observed at around day 73 

(Figures 2.17b and 2.17c). But, generally the deviations are modest and the few 

cases of over/under-estimation with the satellite precipitation seem to be balanced 

by the improved simulations in other periods, for instance the last peak at around
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day 101 which was underestimated by both gauge and radar rainfall data (Figures 

2.17b and 2.17c).

Generally, ST produced better satellite rainfall estimates than HT for the case of 

stratiform rainfall (i.e., 2002 dataset), while the HT performed slightly better than 

ST in the case of convective rainfall (i.e., 2003 dataset). Independent qualitative and 

quantitative analysis of the HT (Rozumalski, 2000) has demonstrated that in 

contrast to the reasonable performance of HT for well-defined and short duration 

convective systems, poor results are common for stratiform cloud systems. The 

intense convective systems are the ones for which the Hessian technique was 

originally developed, and hence the technique is expected to perform better during 

these events, although overestimation of daily rainfall accumulations was reported 

(Vicente et al., 1998; Rozumalski, 2000). These observations are consistent with the 

results obtained in this study (Figure 2.16b).

Improved simulation at sub-basin scale seems to depend partly on the spatial 

distribution of precipitation input, and partly on the process relations, grid scale, and 

the calibration of hydrologic model parameters (Andersen et al., 2002). It seems that 

the model performance is marginally improved by providing spatially more refined 

precipitation data. If the hydrologic model parameters can be recalibrated at sub­

basin scales, we anticipate the possibility of further improving basin-scale 

hydrologic modeling from the satellite-based IMRA rainfall estimates obtained in 

this study. Also, Guetter et al. (1996) and Tsintikidis et al. (1999) found that the 

response of a hydrologic model depends substantially on the source of precipitation 

forcing (i.e., raingauges or satellite platforms). That is, using satellite rainfall data 

requires re-calibration of hydrologic models with satellite rainfall data. Hence, the 

observed slightly better performance of gauge precipitation as compared to satellite 

precipitation (e.g., Slope technique) in streamflow prediction can be attributed to the 

fact that the SAC-SMA model parameters used for both scenarios were derived 

using gauge precipitation data.
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2.6 Summary and Conclusions
An Infrared-Microwave Rainfall Algorithm (IMRA) for estimating rainfall at high 

spatial and temporal scales from TRMM and GOES satellite data is developed and 

validated. It is designed to require less input information, be less dependent on rain 

gauge data, utilize infrared (IR) brightness temperatures (TBs) as the main satellite 

input information, and use the Slope technique (ST) and Hessian technique (HT) to 

determine the IR image cloud-top temperature gradient for discriminating rain/no­

rain pixels, in addition to the 243°K IR threshold temperature. The IMRA allows for 

the adjustment of the derived IR-rainfall estimates using microwave (MW) TBs 

information and spatial filtering/smoothing techniques. The evaluation of IMRA 

rainfall estimates was based on four months o f data: June-July 2002 (with relatively 

light rainfall) and August-September 2003 (with relatively heavy rainfall), with the 

intention of testing the performance of IMRA for estimating relatively light and 

heavy rainfall. Further analysis of these datasets showed that, the 2002 dataset were 

dominated by stratiform rainfall while those of 2003 were dominated by convective 

rainfall.

The IMRA rainfall estimates were validated on hourly and daily basis for different 

spatial scales (4 km, 12 km, 20 km, and 100 km). Two observed rainfall datasets 

were used in this validation: high temporal and spatial resolutions, NCEP stage IV 

gauge-adjusted radar rainfall data and high-quality daily point rain gauge data. The 

hourly NCEP stage IV radar products were chosen as the primary ground-truth 

precipitation for comparison with the IMRA rainfall estimates because they are 

available at similar spatial resolution (i.e., 4 km x 4 km) as the GOES IR brightness 

temperatures used herein for satellite rainfall estimation. The IMRA rainfall 

estimates were assessed with respect to the corresponding gauged and radar rainfall 

data, and the streamflow simulated by SAC-SMA driven by these rainfall data. The 

conclusions of the study are summarized below:
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■ The Slope technique (ST) provides good satellite rainfall estimates for both 

stratiform and convective systems (i.e., 2002 and 2003 datasets respectively), 

while the Hessian technique only provides good estimates for convective 

systems.

■ At daily time step, there was no improvement in satellite rainfall estimates by 

introducing the microwave (MW) adjustment factor. Instead, it led to a general 

underestimation in both ST and HT cases.

■ The modest correlation between satellite rainfall estimates and gauge-adjusted 

radar rainfall data at various spatial/pixel scales tested suggests that satellite data 

have difficulty identifying the proper locations of observed raining pixels.

■ In hydrologic simulation, streamflow prediction at basin-scale based on satellite 

data outperformed that of gauge and was very close to radar streamflow 

estimates, reflecting the potential of satellite precipitation estimates in 

hydrologic modeling. Precipitation input at sub-basin scales (e.g., 4 sub-basins) 

consistently produce more accurate streamflow hydrographs marginally than 

basin-scale input for all input data types.

■ For future work, it is recommended that IMRA satellite rainfall estimates should 

be applied at sub-basin scale with model parameters also re-calibrated at sub­

basin scale, in river basin(s) of various climatic/geographical conditions, and the 

development of techniques for identification of rainfall type in real-time using 

satellite data.
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Table 2.1 Comparison of rainfall rate statistics for IMRA (Threshold, Slope, & Hessian) at three pixel sizes for June 1- July 31, 
2002 dataset in HOURLY basis. Bold-faced values show the best statistics.

Version T hreshold Threshold + Hessian Threshold + Slope
Grid size 4km 12km 2 0 km 4km 12km 2 0 km 4km 12km 2 0 km

Sample size 1024800 122976 40992 1024800 122976 40992 1024800 122976 40992
Correlation 0.09 0.15 0.17 0 .0 2 0.09 0.14 0.05 0.14 0.18

GOES Mean 1.40 1.41 1.40 0.06 0.06 0.06 0.38 0.38 0.38
Radar Mean 0 .2 2 0.33 0.33 0 .2 2 0.33 0.33 0 . 2 2 0.33 0.33

Bias 5.33 3.22 3.22 -0.73 -0.82 -0.82 0.72 0.14 0.14
RMSE 28.28 16.36 15.95 16.39 3.56 2.70 2 0 . 8 8 5.16 4.18
FAR 0 .6 8 0.58 0.52 0.67 0.57 0.49 0.67 0.57 0.51
POD 0.54 0.56 0.59 0 .0 1 0 . 2 0 0.35 0.13 0.53 0.58
ERR 0.16 0.17 0.16 0.00 0.05 0.09 0.03 0.15 0.16

GOES rain pixels 251828 35266 13009 51244 11858 7489 55224 32771 12751
Radar rain pixels 137802 26334 10694 137802 26334 10694 137802 26334 10694
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Table 2.2 Comparison of rainfall rate statistics for IMRA (Threshold, Slope, & Hessian) at three pixel sizes for August 1- 
September 30, 2003 dataset in HOURLY basis. Bold-faced values show the best statistics.

Version Threshold Threshold + Hessian Threshold + Slope
Grid size 4km 1 2km 2 0 km 4km 12km 2 0 km 4km 1 2km 2 0 km

Sample size 1024800 122976 40992 1024800 122976 40992 1024800 122976 40992
Correlation 0.16 0.22 0.25 0.04 0 .1 1 0.18 0 .1 0 0.18 0.24

GOES Mean 1 .6 8 1 .6 8 1 .68 0.03 0.05 0.05 0.30 0.36 0.36
Radar Mean 0.15 0.39 0.39 0.15 0.39 0.39 0.15 0.39 0.39

Bias 10.24 3.29 3.30 0.99 -0 . 8 6 -0 .8 6 1.03 -0.09 -0.09
RMSE 40.47 14.99 14.61 21.47 4.68 3.93 15.67 5.11 4.17
FAR 0.75 0.63 0.56 0.76 0.61 0.53 0.69 0.63 0.56
POD 0.71 0.70 0.71 0.13 0 .2 2 0.42 0.32 0.63 0.69
ERR 0.19 0.19 0.18 0.04 0.05 0.09 0.07 0.17 0.17

GOES rain pixels 267023 36065 13073 53083 10926 7234 98430 32505 12697
Radar rain pixels 93744 19026 8094 93744 19026 8094 93744 19026 8094
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Table 2.3 Comparison of rainfall rate statistics for IMRA (Threshold, Slope, & Hessian) at three pixel sizes for June 1- July 31, 
2002 dataset in DAILY basis. Bold-faced values show the best statistics.

Version T ireshoh Thres hold + Hessian Threshold + Slope
Grid size 4km 1 2km 2 0 km 4km 1 2km 2 0 km 4km 1 2km 2 0 km
Sample size 42700 5124 1708 42700 5124 1708 42700 5124 1708
Correlation 0.11 0.13 0.14 0.03 0 . 1 0 0.14 0 . 1 0 0.15 0.19
GOES Mean 33.58 33.85 33.58 1.41 1.41 1.41 9.11 9.12 9.11
Radar Mean 7.96 8.01 7.96 7.96 8 .01 7.96 7.96 8.01 7.96
Bias 3.22 3.22 3.22 -0.82 -0.82 -0.82 0.14 0.14 0.14
RMSE 6.82 6.73 6.64 1.89 1.57 1.47 2.56 1.89 1.69
FAR 0.23 0.13 0 . 1 0 0.19 0.11 0.08 0 .2 1 0 .1 2 0 . 1 0
POD 0.91 0.93 0.93 0.14 0.62 0.83 0.76 0.92 0.93
ERR 0.19 0 .1 1 0.09 0.02 0.02 0.06 0.06 0 .1 1 0.09
GOES rain pixels 36043 4556 1563 5476 2990 1370 29373 4508 1559
Radar rain pixels 30516 4302 1518 30516 4302 1518 30516 4302 1518
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Table 2.4 Comparison of rainfall rate statistics for IMRA (Threshold, Slope, & Hessian) at three pixel sizes for August 1-

Version Threshold Thres hold + Hessian Threshold + Slope
Grid size 4km 1 2km 2 0 km 4km 1 2km 2 0 km 4km 12km 2 0 km
Sample size 42700 5124 1708 42700 5124 1708 42700 5124 1708
Correlation 0.29 0.32 0.35 0.08 0 . 2 0 0.30 0.18 0.29 0.35
GOES Mean 40.22 40.23 40.22 1.29 1.29 1.29 8.53 8.53 8.53
Radar Mean 9.34 9.37 9.34 9.34 9.37 9.34 9.34 9.37 9.34
Bias 3.30 3.29 3.30 -0 .8 6 -0 .8 6 -0 .8 6 -0.09 -0.09 -0.09
RMSE 7.58 7.48 7.42 1.93 1.65 1.53 2.17 1.59 1.39
FAR 0.25 0.13 0.08 0 .2 1 0 . 1 0 0.07 0.24 0.13 0.09
POD 0.91 0.91 0.91 0.13 0.58 0.80 0.75 0.90 0.91
ERR 0 . 2 0 0 . 1 0 0.07 0.02 0.05 0.05 0.15 0 .1 0 0.07
GOES rain pixels 33557 4183 1424 4637 2620 1236 27004 4147 1421
Radar rain pixels 27468 4027 1432 27468 4027 1432 27468 4027 1432

L/iLh



Table 2.5 Rainfall rate statistics for IMRA Slope with MW adjustment (i.e., 
Threshold + Slope + MW) at three pixel sizes for both 2002 and 2003 
dataset in DAILY basis.

Data source 2002 2003
Grid size 4km 12km 2 0 km 4km 12km 2 0 km
Sample size 42700 5124 1708 42700 5124 1708
Correlation 0.09 0.13 0.16 0.17 0.26 0.31
GOES Mean 6.31 6.32 6.31 7.13 7.15 7.13
Radar Mean 7.96 8 .01 7.96 9.34 9.37 9.34
Bias -0 .2 1 -0 .2 1 -0 .2 1 -0.24 -0.24 -0.24
RMSE 2.25 1.72 1.58 2.30 1.71 1.53
FAR 0 .2 1 0 . 1 2 0.09 0.24 0.13 0.08
POD 0.72 0.91 0.93 0.74 0.90 0.91
ERR 0.15 0 .1 1 0.09 0.15 0 . 1 0 0.07
GOES rain pixels 29227 4489 1551 26898 4138 1416
Radar rain pixels 30516 4302 1518 27468 4027 1432
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Table 2.6 Statistics of the simulated streamflow hydrographs by SAC-SMA model 
using gauge rainfall data during calibration and validation periods for the
lumped basin approach.

Mode Date R2(%) Ef(%) Bias
(%)

RMSE
(%)

Calibration Jan 1, 1997-Dec 31, 1999 89.98 79.11 -1 2 .8 8 73.96
Validation 1 Jan 1, 1982-Dec 31,1984 89.02 77.79 -14.29 67.32
Validation2 Jan 1, 1971-Dec 31, 1974 90.84 78.41 -20.04 72.73
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Table 2.7 Statistics of simulated hydrographs by SAC-SMA using gauge, radar, and 
satellite rainfall data during application period. Slope/Hessian means 
IMRA-Slope was used in 2002 (i.e., day 1-61) and IMRA-Hessian was 

________ used in 2003 (i.e., day 62-122) for satellite rainfall estimation.___________
Data source Coefficient of

determination,
R2(%)

Efficiency,
Ef(%)

Bias (%) RMSE
(%)

Lumped Basin
Gauge 87.55 6 8 . 2 0 -17.59 34.18
Radar 88.84 73.21 -1 2 .1 0 31.37
Slope 82.93 65.28 -10.16 37.23
Slope/Hessian 85.69 68.03 -4.30 34.27

Semi-distributed (4 sub-basins)
Radar 89.13 74.15 -13.93 30.82
Slope 85.85 69.80 -0.27 32.46
Slope/Hessian 88.25 73.27 +3.27 31.36
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Figure 2.1 Map of Peace River Basin (Source: U.S. Geological Survey).
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Figure 2.6 Daily time series of point gauge rainfall data showing 
relatively light (2002) and heavy (2003) rainfall rate at three different 
stations: (a)Bartow, (b) Wauchula, and (c) Punta Gorda.
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Figure 2.7 Time series of hourly mean precipitation over Peace 
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Figure 2.8 Comparison of daily cumulative satellite rainfall for 2002 dataset 
at Arcadia station derived by three IMRA techniques with respect to gauge 
and radar data.
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Figure 2.9 Comparison of daily cumulative satellite rainfall for 2003 dataset 
at Arcadia station derived by three IMRA techniques with respect to gauge 
and radar data.
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Figure 2.10 Comparison of daily rainfall rates from radar and satellite 
(derived by IMRA slope and hessian) for both 2002 and 2003 datasets at grid 
points with 2 0  km pixel resolution.
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Figure 2.12 Frequency distribution of daily rainfall rate from gauge- 
adjusted radar and satellite estimates (from IMRA slope and hessian) for 
2 0 0 2  dataset at (a) 2 0  km grid resolution, and (b) 1 0 0  km grid resolution.
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Figure 2.13 Frequency distribution of daily rainfall rate from gauge- 
adjusted radar and satellite estimates (from IMRA slope and hessian) for 
2003 dataset at (a) 20 km grid resolution, and (b) 100 km grid resolution.
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Figure 2.15 Comparison of observed and predicted streamflow 
hydrographs by SAC-SMA model forced with gauge rainfall data 
during calibration and validation periods.
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Figure 2.16 Observed and predicted streamflow hydrographs by 
SAC-SMA model forced with satellite rainfall estimates derived by 
IMRA (a) Slope and (b) Hessian with and without microwave 
(MW) adjustment: Left of vertical dashed line represents 2002 data 
(i.e., day 1-61) and the right side is for 2003 data (i.e., day 62-122).
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Figure 2.17 Observed and predicted streamflow hydrographs from 
gauge, radar, and satellite rainfall estimates for lumped basin [(a) & 
(b)] and 4 sub-basins case [(c)]. Note: Slope/Hessian Slope is used 
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Chapter 3

Merging of Operational WSR-88D Radar 

Precipitation Data with Raingauge 

Measurements using Wavelet Analysis

3.1 Introduction
As the primary input for modeling basin hydrologic processes, it is essential that we 

use representative precipitation data. Since precipitation is characterized by high 

spatial and temporal variability, the traditional point measurements by raingauges 

may fail to capture the precipitation spatial distribution even at high-density 

raingauge networks (Datta et al., 2003). On the other hand, weather radars such as 

the Next generation weather radar (NEXRAD) (previously known as Weather 

Surveillance Radar-1988 Doppler (WSR-8 8 D)) provide precipitation data at much 

better spatial and temporal sampling frequencies than raingauges (Klazura and Imy, 

1993). A quantitative estimate of rainfall from radar data usually uses a power law 

Z-R relationship (e.g., Z = ARb) between the radar reflectivity Z and the rain rate R 

measured at the surface (Atlas et al., 1997; Steiner et al., 1999; Datta et al., 2003). It 

is logical to adjust the radar-derived precipitation estimates with surface raingauges
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data because, operational radar rainfall estimates rarely match the amounts recorded 

by raingauges due to various factors (Fulton et al., 1998; Steiner et al., 1999).

There are several sampling and scaling issues involved in adjusting radar 

precipitation with respect to raingauge measurements because the spatial and 

temporal resolution of radar and gauge differ widely. A gauged rainfall is a point 

measurement accumulated continuously over a sampling area of the order of lm 2 

only, while radar samples the three-dimensional rainfall field over an area of about 

1-2 km and at high temporal frequencies (5-6 min). Given that rain rate can vary by 

a factor of say, 10 within a 2-km distance or 10-minute period (Joss and Waldvogel, 

1990), such large differences in sampling areas between radar and gauge pose a 

major limitation for direct adjustment and comparison (Ciach and Krajewski, 1999; 

Datta et al., 2003). Also, there are various data quality issues for both gauge and 

radar observations. For raingauges, sources of errors (Legates and DeLiberty, 1993; 

Groisman and Legates, 1994) are such as false, multiple, or undetected tips at low 

rain rate associated with tipping-bucket gauges; undercatch problems because of 

wind effect (Neff, 1997); biological detritus and mineral particulate accumulation 

such as dust, blown grass and leaves, dead insects, and bird droppings, which may 

either clog the funnel focusing the rain catch into the tipping bucket or affect the 

tipping mechanism itself (Steiner et al., 1999); and mechanical and/or electrical 

failure of the gauge and data-logging system in the field. Despite of these problems, 

raingauge data are still used to evaluate and/or adjust radar rainfall (Story, 1996; 

Fulton et al., 1998).
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For radar, data uncertainties arise from different sources, such as beam blockage 

caused by topography; attenuation by atmospheric gases and raindrops; effects of 

ground clutter and anomalous propagation; uncertainties in reflectivity measurement 

caused by radar hardware calibration and stability issues; inappropriate Z-R 

relationships; data processing problems (e.g., mosaicking errors); and radar range 

effects. Several studies have been conducted in an effort to quantify the effect of 

these uncertainties on precipitation estimates from WSR-8 8 D or other radars using 

raingauges. Baeck and Smith (1998) compared WSR-8 8 D Stage I radar rainfall 

with raingauge data; they reported that range-dependent biases affected the hourly 

radar rainfall estimates. While overestimation of precipitation occurred in the 

intermediate ranges, significant underestimation was reported at ranges beyond 1 0 0  

km and within 40 km of the radar. Although the bias-corrected stage III WSR-8 8 D 

data could be expected to compare better with the raingauge data, Anagnostou et al.

(1998) reported significant variations in the mean-field bias (MFB) of radar 

estimates, e.g., the MFB of warm seasons was significantly less than that of cold 

seasons. Smith et al. (1996) and Young et al. (1999) found systematic differences 

between two different radars for the same area, indicating problems in radar 

calibration at individual radar sites. Such biases in WSR-8 8 D estimates can 

adversely affect the Stage III products (Young et al., 2000).

Lott and Sittel (1996) reported a radar underestimation of precipitation up to a 

factor of 2 to 3 at 80% of the raingauge locations; Under abnormal humidity and 

temperature gradient, the radar beam bends toward the ground resulting in variable 

ground-clutter returns (Sharp, 1997) which contaminates the radar scene with a 

strong echo similar to severe weather called the anomalous propagation (AP). 

Sometimes birds, insects, and even dusts create false echoes. Westrick et al. (1999) 

and Young et al. (1999) reported degradation of WSR-8 8 D precipitation estimates 

due to partial or complete beam blockage in mountainous terrain. Steiner et al.

(1999) noted that even in flat terrain and under normal atmospheric conditions,
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because of earth’s curvature the center of the radar beam become increasingly 

aboveground with increasing distance from the radar site, and radar irradiates a 

sample volume that also increases with increasing distance due to radar beam 

geometry. These two factors coupled with the high spatial and temporal variability 

of precipitation could potentially lead to overshooting of cloud tops at long ranges, 

inhomogeneous beam-filling problems, observations of the ice layer above the 0°C 

level rather than the rain below, and intersection with the melting layer of clouds 

causing bright band signatures.

The variation in Z-R relationships is also a possible source of errors (Pessoa et al., 

1993; Brandes et al., 1999; Steiner et al., 1999), and is attributed to variations in 

rainfall drop size distribution that may vary significantly from storm to storm and 

even within storms (Fulton et al., 1998; Steiner et al., 1999). Steiner et al. (1999) 

indicated that a standard choice of Z = ARb with A and b values being 300 and 1.4 

respectively is a good approximate relationship. They also demonstrated the 

potential range of “A values” used to accommodate the variability of the raindrop 

size distributions for a given storm, and significant changes in the raindrop spectra 

during the storm that resulted into apparent shifts of the Z-R relation.

The vertical variability of reflectivity affects the quality of WSR-8 8 D rainfall 

estimates by inducing range-dependent errors (Joss and Lee, 1995; Vignal and 

Krajewski, 2001). For convective storms, updrafts and downdrafts and raindrop 

sorting due to wind shear may play a significant role in creating a non-uniform 

vertical structure of radar echoes, while phase change of hydrometeors (i.e., from 

solid to liquid) is among the sources of vertical variability o f reflectivity for 

stratiform storms (Borga et al., 1997). For the case of severe thunderstorms, radar 

signals may be contaminated by graupel or hail resulting in increased radar 

reflectivity, while a considerable attenuation in the radar signal may be associated 

with high precipitation intensities (Vignal and Krajewski, 2001).
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There are discrepancies attributed to errors caused by averaging overlapping radar 

bins to produce WSR- 8 8  stage III data; rainfall estimates near any radar site may be 

compromised when averaged with data from distant radar sites because the radar 

beam spreads out vertically and horizontally as it gets further from the radar 

antenna, making an accurate analysis of radar returns becoming more difficult as the 

range increases, particularly during cold seasons when shallow stratiform rainfall 

dominates (Sharp, 1997; Pereira et al., 1998; Young et al., 1999). Jayakrishnan et 

al. (2004) assessed the WSR-8 8 D stage III precipitation data over the Texas-Gulf 

basin for 1995-1999 using 24-hour accumulations; they reported that WSR-8 8 D 

radar underestimated the five-year precipitation at vast majority of the 545 

raingages used in their study, and recommended that the quality of radar rainfall 

estimates over the study area should be assessed using raingauge measurements and 

necessary improvement be made before their application in hydrologic studies. 

Stellman et al. (2001) reported a 50% underestimation of gauge mean areal 

precipitation (GMAP) by WSR-8 8 D stage III data during the cold seasons in 

Georgia watersheds, while a slight overestimation of GMAP was noted during the 

warm seasons.

The above findings on various sources of errors associated with WSR-8 8 D 

precipitation estimates show the need to adjust radar rainfall using raingauge data. 

We evaluated the quality of stage III WSR-8 8 D precipitation data over the Blue 

River Basin (BRB) of Oklahoma (USA) by storm events using hourly raingauge 

data of 6  Oklahoma Mesonet stations for a seven-year period; second we developed 

a wavelet-based technique for merging gauge and radar-derived precipitation. The
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improvement achieved was assessed by comparing observed with the simulated 

hydrographs of the Distributed Physically-based Hydrologic Model using Remote 

Sensing (DPHM-RS) (Biftu and Gan, 2004).

3.2 Processing of WSR-88D Precipitation Data
The operational WSR-8 8 D precipitation data is produced in a three-stage process 

(Fulton et al., 1998). The original radar reflectivities are measured by volume scans 

over a fixed polar grid with a radial resolution of one degree in azimuth by 1 km in 

range. Stage I involves producing the Hourly Digital Precipitation (HDP) from 

individual WSR-8 8 Ds at a spatial resolution of about 4 km x 4 km, on a polar 

stereographic projection called the Hydrologic Rainfall Analysis Project (HRAP) 

grid (Reed and Maidment, 1999). Then, depending on the prevailing weather 

condition, a convective Z-R (i.e., Z=300R14) or a tropical Z-R relationship (i.e., 

Z=250R12) is used to convert the radar measured reflectivity into a radar rainfall 

rate, which are averaged over the HRAP grids under the individual radar umbrella, 

as the stage I product.

In Stage II, the mean field bias (MFB), average difference (i.e., bias) between radar 

estimates at gauge locations and the corresponding gauge rainfall depths is 

estimated for individual radars using non-zero gauge-radar pairs (minimum of three) 

at the gauge’s nine surrounding HRAP cells. These MFB factors are meant to 

compensate for non-representative Z-R relationships of individual storms (Story, 

1996; Steiner et al., 1999). Hourly WSR-8 8 D precipitation data are adjusted using 

the computed MFB factor for the respective hour over the entire radar coverage area 

until a new set of gauge-radar pairs is obtained. In the absence of at least three 

gauge-radar pairs for a given horn-, the previous hour MFB is applied to the whole 

coverage. If radar data shows rainfall over a gauge that reports zero, the respective 

HRAP bin will be assigned a zero. On the other hand, if a gauge reports rainfall for 

a given hour while the radar data are missing, a maximum value at the gauge’s site
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is assigned to all HRAP cells falling under the gauge’s radius of influence, which is 

typically 2 to 3 HRAP bins.

In stage III, any erroneous gauge or radar data due to anomalous propagation, 

ground clutter, or bright banding is removed, followed by averaging of the 

individual stage II products from the respective overlapping WSR-8 8 Ds within the 

area of coverage into a single map of hourly, operational WSR-8 8 D stage III rainfall 

product. This process is called mosaicking, and it is meant to compensate for the 

under or over-estimation of precipitation by a particular radar using better estimates 

of data from overlapping radars (Story, 1996). However, some studies have reported 

this simple averaging of overlapping radar precipitation values to be the source of 

radar’s underestimation of rainfall especially during the cold season normally 

dominated by stratiform storms (e.g., Pereira et al. 1998, Stellman et al. 2001). 

Klazura and Imy (1993), Smith et al. (1996), and Fulton et al. (1998) provide more 

details on the WSR-8 8 D products and processing algorithms.

3.3 Study Site and Data Processing
3.3.1 Blue River Basin (BRB)
The BRB, located in South Central Oklahoma (USA) (Figure 3.1a), was selected as 

the study site mainly because BRB is not regulated and both the operational WSR- 

8 8 D stage III rainfall data and the Oklahoma Mesonet data, which is a real-time 

environmental monitoring network, are readily available. This region is dominated 

by frontal precipitation associated with large, synoptic scale low-pressure systems 

during fall and winter, with intense convective activity during spring and early 

summer. Rainfall is uniformly distributed throughout the year with a slight 

maximum during the spring. The average annual precipitation ranges from about 

400mm in the extreme western panhandle to 1420mm in the southeastern comer of 

the State (Frederick et al., 1977). The basin, 1233 km2 in area, has a relatively flat 

terrain with elevation ranging from 153 to 350m above mean sea level, and the
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major soil groups are clay and loam mixed with sand or silt. Woody Savannah is the 

dominant vegetation occupying almost 80% of basin.

The basin is divided into 7 sub-basins (Fig. lb) according to the digital elevation 

map (DEM) data, with the original 30-m cell re-sampled to 100-m in size, and 

stream network. DEM data was also used to derive the slope, flow direction, flow 

accumulation, mean elevation, and topographic soil index at 1 0 0 m square 

resolutions. Soil properties such as the saturated hydraulic conductivity, pore size 

index, suction head at saturation, and saturation water content were derived from the 

soil texture data (1-km resolution) and soil properties table of Rawls and 

Brankensiek (1985). The land use/cover data were derived from the vegetation data 

(1-Km resolution) of NASA LDAS (Land Data Assimilation Systems) and the leaf 

area index (LAI) was derived from the monthly Greenness Fraction data (~12-Km 

resolution) of NOAA-AVHRR data.

3.3.2 Rainfall and Streamflow Data
The 1994-2000 WSR-8 8 D stage III radar rainfall data at 1-hour and 4x4 km 

resolution were obtained from the National Weather Service (NWS) through the 

Distributed Model Intercomparison Project (DMIP). The BRB is within the 

Arkansas-Red Basin River Forecast Center (ABRFC) and five WSR-8 8 Ds located 

in Oklahoma, Texas, and Arkansas provided the coverage (Figure 3.1a). The hourly 

gauge rainfall data were processed from 6  Oklahoma Mesonet stations located 

around the basin (see Fig. 3.1b), and that uses tipping bucket gauges to measure 

rainfall accumulation at 5-min intervals. The final data are accumulated to hourly 

time step. The average distance between the raingauge stations is about 30 km.

The hourly observed streamflow data at the basin outlet (Fig. 3.1b), obtained from 

the U.S. Geological Survey, have been quality controlled (but no interpolation) by 

the NWS Hydrologic Laboratory based on a manual and subjective process
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accomplished through visual inspection of observed hydrographs. The streamflow 

data used in this study had no missing data gaps.

3.3.3 Data Processing
The WSR-8 8 D stage III precipitation data from DMIP were provided for the entire 

ABRFC region. Using GIS Arc/Info, each hourly rainfall map was clipped to a 32 x 

32 pixels window at 4 km x 4 km pixel resolution covering the BRB and its 

proximity. Then using GIS Arc View, the raingauge locations were overlaid on the 

radar grid map to determine the radar grid points closest to each of the six 

raingauges. The corresponding grid point hourly WSR-8 8 D stage III precipitation 

data for each raingauge location were extracted from the grip map, and together 

with the hourly raingauge data they formed a database for accuracy assessment of 

WSR-8 8 D stage III precipitation data. A total of 89 storms were selected from 1994 

to 2000 to assess the accuracy of WSR-8 8 D data (Table 3.1). To ensure that the 

selected storms covered the entire BRB and to avoid smaller storms that are prone 

to measurement errors by both radar and gauges (Groisman and Legates, 1994; 

Smith et al., 1996), the selection criteria required that at least three consecutive 

hours of rainfall were recorded at each raingauge location, and the corresponding 

total storm depth was at least 10 mm. The number of selected storms per year 

ranged from 9 to 15 while the storm durations ranged from 3 to 43 hours (see Table 

3.1). During 1994-2000, the total storm depth at individual raingauge ranged from 

10  mm to about 160 mm while the storm average depth over the six raingauges 

varied from about 13 mm to 8 6  mm.

3.4 Accuracy of WSR-88D Stage III Precipitation 
Data

The accuracy of WSR-8 8 D rainfall data was assessed on a storm-by-storm and 

annual basis with respect to gauged data for the 1994-2000 period. The Oklahoma 

Mesonet stations are a real-time environmental monitoring network equipped with 

sound instruments and trained personnel and hence are deemed to provide reliable
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gauged rainfall data. However, at times the quality of raingauge data can still be 

poor even in an experimental watershed (Steiner et al., 1999). The following 

statistics were employed: (a) Total precipitation difference (mm) = Radar total -  

Raingauge total, with the total storm depth taken as the average over the six 

raingauge locations for individual storms analysis (Table 3.1), (b) Bias (%) = a % 

ratio of total precipitation difference to raingauge total, (c) Efficiency coefficient 

(Ef) of Nash and Sutcliffe (1970), and (d) Root Mean Square Error (RMSE).

The radar-gauge data comparison shows that, the average raingauge storm depth 

was larger than the average WSR-8 8 D stage III rainfall amount at the gauge 

locations in 92% of the storms in 1994, and 83%, 67%, 67%, 33%, 44%, and 46% 

of the storms for 1995 to 2000, respectively. In other words, for years greater than 

50%, radar estimated the total storm depths proportionally less than gauged rainfall 

data (Table 3.1). Generally there is an improvement in the performance of the 

WSR-8 8 D over the years, with the underestimation of radar rainfall for 1998-2000 

being significantly lower than that of 1994-1997. The significant reduction in radar 

underestimation errors is attributed to the on-going improvements being made to the 

WSR-8 8 D precipitation processing algorithms by the NWS (Jayakrishnan et al., 

2004).

A closer look at Table 3.1 shows that, the number of storms underestimated by radar 

for the cold season (September to February) normally dominated by stratiform 

storms was generally larger than the number of storms underestimated during the 

warm season (March to August) normally dominated by convective storms. The 

number of storms underestimated by radar for the cold season (warm season) was 

100% (83%), 100% (78%), 67% (67%), 73% (50%), 27% (50%), 67% (33%), and 

25% (80%) for the years 1994 to 2000, respectively. This shows that, with the 

exception of 1998 and 2000, the radar’s underestimation of stratiform storms was 

larger than or equal to the corresponding underestimation of convective storms 

during the 7-year period, and is consistent with the findings of Stellman et al. (2001)
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who also reported that radar underestimated stratiform storms but slightly 

overestimated convective storms.

We further compared the radar-gauge data for the largest (1994) and the smallest 

(1998) year of radar’s underestimation of gauged measurements. In this case, all 

storms in a given year were combined to produce an hourly time series, and the total 

number of hours were 231 and 213 for 1994 and 1998 respectively. The results in 

Table 3.2 indicate that in 1994, raingauges 1 and 6 represented the largest radar‘s 

underestimation with a bias of -13.89% and -14.26%  and an efficiency coefficient 

(Ef) of 0.82 and 0.58 respectively. Although the bias was more or less equal, there 

was a substantial difference in the Ef values. Similar results are seen for 1998 at 

raingauges 2 and 6 when radar overestimated the precipitation (Table 3.2). 

Jayakrishnan et al. (2004) noted that such differences in the two statistics are 

attributed to fact that, in estimating bias over the entire period (e.g., 1 year herein) 

over-estimated storm depths average out the under-estimated storm depths, while Ef 

considers goodness-of-fit on a data point by data point basis. The scatterplots in 

Figures 3.2 and 3.3 shows that poor Ef is associated with poor correlation between 

radar and gauge rainfall measurement regardless of the size of estimated bias and 

vice versa. The average bias for the six raingauges for 1994 and 1998 are -8.29%  

and 4.83%, respectively, which suggests that the radar’s underestimation of rainfall 

is more critical than its overestimation (Stellman et al., 2001). Such large 

differences between both rainfall data sources imply significant differences in 

results if these data were separately applied to basin-scale hydrologic studies.

3.5 Merging Radar and Gauged Rainfall Data
Because operational radar rainfall data have uncertainties, and the major concern is 

the underestimation of rainfall, Pereira et al. (1998), Stellman et al. (2001), and 

Jayakrishnan et al. (2004) proposed to quantify and correct the uncertainties 

associated with the radar-derived precipitation data before applying them in
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hydrologic studies. The correction of radar-derived rainfall can be categorized into 

two basic approaches (Sokol, 2003): The first is based on the identification and 

correction of vertical profiles of reflectivity (VPR). By assuming a spatial 

uniformity of the VPR, the data within few tens of kilometers from the radar 

position are utilized and the derived VPR is applied to correct data from longer 

ranges (e.g., Borga et al., 1997). The second approach is based on gauge-to-radar 

statistical adjustment techniques to adjust radar-derived rainfall to the quantitative 

level of gauge measurements. The second approach may either use gauged 

precipitation to derive the model parameters used to correct the radar data (e.g., 

Gabella and Amitai, 2000), or merge both data sets at each application (e.g., Pereira 

et al., 1998). The raingauge adjustment methods attempt to deal with the primary 

sources of radar errors in a single process, but mostly suffer from the limited spatial 

representation of gauge measurements because the number of raingauges available 

is limited and they only provide point measurements.

Pereira et al. (1998) developed a Statistical Objective Analysis (SOA) scheme for 

improving WSR-8 8 D stage III rainfall data, which will be compared with the 

proposed wavelet analysis in merging gauge and radar-derived precipitation. From 

what we know, this is one of the first attempts using wavelet analysis in merging 

radar and gauged rainfall data. It exploits the strength of radar data that captures the 

spatial variability of rainfall and the strength of raingauges that generally measure 

accurate mean rainfall depths. The two merging techniques are herein described:

3.5.1 Statistical Objective Analysis (SOA) Scheme
SOA, proposed by Pereira et al. (1998) to merge radar and raingauge rainfall data, is 

based on one of the best techniques for interpolating precipitation data, Gandin’s 

(1963) optimal interpolation (Tabios and Salas, 1985). The merged rainfall data at a 

particular grid point is computed as a linear combination of radar and raingauge 

rainfall data from three nearby raingauge stations (i.e., N  = 3) as,
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Rm (XP ’y p ) = RXxp,yP) + YJ wPn K  (x« , yn) - Rr f o > y n)]
n=1

(3-1)

where Rm[xp,yp) is the merged rainfall (mm) at grid point p  , Rr(xp,yp) is radar

estimated rainfall (mm) at grid point p , Rr{xn,yn) is radar estimated rainfall (mm)

with its grid point closest to raingauge station n,  Rg (xn, y n) is gauge rainfall

measurement (mm) at station n , wpn is a posteriori weight, N  is the number of

raingauges, and (x,y) are the coordinates (km). The second term on the RHS of Eq. 

3.1 is meant to correct for the under-estimation of rainfall depth by radar data, 

Rr(xp,yp), with respect to gauge measurements.

The key idea behind SOA is the derivation of optimal weights ( wpn) using an inter­

site correlation function. In this study, three such functions, namely, reciprocal, 

exponential, and polynomial (Table 3.3) were fitted to the inter-site correlation 

coefficients computed between radar grid points from the 1994-1997 radar rainfall 

data. The three calibrated correlation functions were then validated with the inter­

site correlation coefficients computed from the 1998-2000 radar rainfall data. 

Figure 3.4 shows that the polynomial function produced a better fit (higher 

efficiency (E j ) )  than the exponential and reciprocal functions. Thus, the

polynomial spatial correlation function was used in computing the weights wpn.

3.5.2 Wavelet Scheme
In this scheme, for each hourly time step: (a) the two rainfall data sets (radar and 

gauge) are re-sampled to a similar spatial resolution, i.e., the six stations’ gauged 

data (see Figure 3.1b) were interpolated to radar’s grid points; (b) a forward wavelet 

transform is employed to decompose the original data set into subsets of coarser 

resolutions creating one average and three gradients data sets for each data source at
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each scale; (c) a merging rule is applied to select which decomposed data sets to 

merge; and (d) an inverse wavelet transform is applied to the selected fields to 

generate the final product (see Figure 3.5).

3.5.2.1 Wavelet Analysis

A continuous process, R(x), can be decomposed to a coarser scale X by applying

two filters, the scaling (j)x u (x) and the wavelet y/Xu (x) functions for “averaging”

and “differencing” respectively, where u is a location parameter. Filters (pA u (x) and

Wx u (x) are complementary to each other, implying that whatever information is

lost by applying (f)x u (x) on the process is re-captured by applying yrX u (x) on the

same process at the same scale. Discrete Wavelet Transforms (DWTs) are usually 

employed in implementing the wavelet transform on sampled processes, such as 

rainfall. DWTs are obtained by discretizing the scale parameters in dyadic form, X 

= 2m (i.e., T m samples per unit length) and location parameters as multiples of the 

sampling intervals u = n2m (convenient for orthogonal wavelets). The parameters m 

and n are related to scale and location, respectively.

A separable, two-dimensional, multi-resolution framework (Mallat, 1989) can be 

used to extend the formulation to a two dimensional process, R(x, y ) , where the 

scaling function is d>(x,y) = ^>{x)(/>{y) and the three wavelet functions are 

' (x, y)  = <P(x)y/(y) , vF 2 (x,y) = ^ ( x ) ^ ) ,  and '¥3(x,y) = y/(x)y/(y). Therefore, 

the discrete local average at scale m and location (n, k) is represented as

K , k  =  » ,* )(„ i ) e Z 2 } =  “  '5 1 R i , jF <t>(i-2n)F <l>U-2k) ( 3 *2 )
i ,je Z

and the corresponding three wavelet coefficients at the same scale and location are 

expressed as
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ijF<t>(i-2n)F¥ ( j -2 k ) (3.3)

Ri,jFy/(i-2n)F<p(j-2k) (3.4)

iJ^V'(i-2n)Fyr(j-2k) (3.5)

where (p,q)  and Z denote the inner product and set of integer numbers

respectively. The three wavelet coefficients provide the directional information 

about the rainfall storm in horizontal (x), vertical (y), and diagonal directions, 

respectively. The formula used to reconstruct the original process 

R(x ,y)(  = R =Rj j )  from the decomposed fields is,

3.5.2.2 Intuitive Description of Mallat Algorithm
Let be a discrete local average value at scale m and location(/, j )  of the

two-dimensional spatially continuous process, R(x,y).  For instance, if the relative 

scale m corresponds to the radar rainfall data resolution ( 4 x 4  km), m + 1 relates to 

the next higher physical scale (8 x 8 km) with spatial position indices defined by 

(n,k) (see Figure 3.6). Note that the number of grid points is reduced by a factor of 

2  in each direction at the next scale, and that the increase in physical scale is dyadic 

for convenience in implementing the discrete multi-resolution algorithm.

\
(3.6)

n,k€Z n ,k e Z J

where and fy  are inverse of F^and Fv respectively.
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Applying the 2-D orthogonal filters (<t>,lt 'I,4/2, a n d t o  the discrete

fieldRm(/, j )  produces an average field Rm+l(n,k)and three directional “gradient”

fields {/?’+1, («, ̂ ) } ;1 2  , at the next higher scale (m +1). In the next scale (m + 2),

the previous scale’s average field is further decomposed into an average and three 

directional gradient fields, and so on. If Haar wavelet is chosen for decomposition 

(e.g., Kumar and Foufoula-Georgiou, 1993), the average process at scale m +1 is 

represented as

^m+l (n> £) = ~  (*> j )  + 0 + U j )  + Rm O’j  + 1) + 0 + U j  + 1)] (3-7)

and the corresponding three gradient components as

Rm+l(n,k) is the 2-D average of the rainfall process from the previous scale, where

l=i 2 3 rePresent gradients of the previous-scale average process. Therefore,

these rainfall gradients can be easily interpreted as discrete representations of

dRm(i, j ) /dx ,  dRm(i , j ) /dy ,  and d2Rm(i,j)/dxdy,  and hence, they correspond to a

scheme widely used for defining gradients of 2-D processes (Perica and Foufoula- 

Georgiou, 1996). Because of its simplicity and the appealing physical interpretation 

of the wavelet coefficients as directional gradients of the rainfall fields, the Haar 

wavelet was selected as the analyzing wavelet in this study. Further, Haar wavelets 

provide an adequate description of the spatial behavior of rainfall fields (Kumar and 

Foufoula-Georgiou, 1993; Perica and Foufoula-Georgiou, 1996).
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3.5.2.3 Interpolation of Raingauge Data
Implementing the wavelet scheme requires that the rainfall fields from radar and 

gauge be at similar spatial and temporal resolution. But, the gauge-measured 

precipitation exists as point measurements. Thus, gridded rainfall fields for gauges 

must be inferred from neighboring stations through an interpolation technique. 

Possible techniques used for this purpose range from statistical methods (e.g., 

Tabios and Salas 1985, Pereira et al. 1998), distance weighting (Stellman et al., 

2001), to multiple linear regressions (e.g., Marquinez et al., 2003; Sokol, 2003). The 

interpolation technique selected herein is based on the Statistical Objective Analysis 

(SOA) scheme of Pereira et al. (1998) described in Section 3.5.1. The interpolation 

process is accomplished in 3 steps: (a) A first pass of the Barnes analysis scheme 

(Kochi et al., 1983) is used to create a first-guess interpolated field Gb{xp,y p) using

all available rain gauge stations (in this case 6  stations, i.e. K  = 6 ) as follows,

Y lGo(<x^ y k ) * wpk 
Gb(xp,yp) =  j --------------  (3.9)

I > M
k=1

_ j  2 / fc ,
where the weights ( wpk) are computed as wplc =e pk ° in which dpk is the 

distance between k ‘h raingauge station and p th grid point (km), k0 is the distance 

constant equal to 1924.72 km2 for Mesonet stations (Pereira et al., 1996), and 

G0(xk,yk) is the original gauge rainfall measurement at station k;  (b) A back 

interpolation pass of Barnes scheme is used to back interpolate the four grid points 

of the first-guess field [Gb(xp,yp)] surrounding the k th gauge station (Figure 3.6), 

giving its predicted values, Gp (xk, y k) as,

Gp (xk ,yk) =  c{Gb (/, j )  + c2Gb (i + 1, j )  +  c2Gb (i + 1, j  + 1) + c4Gb (/, j  + 1) (3.10)
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where c , , c2, c3, and c4 are the weights computed from the ratio of distances

between the k th gauge station and the four surrounding grid points (see Figure 3.6). 

(c) The “error” between the original gauge data value G0(xk,yk) and its predicted 

value Gp(xk,y k) is used in the final pass to correct the first-guess field Gb(xp,yp) 

through SOA to produce the final interpolated field, Gj-(xp,yp), as the average 

rainfall for a particular pixel,

N

G f ( X p ’ y p ) = G b(Xp ’ y p ) + T J Wpn \G o ( X n > y n ) ~ G p ( X n>yn) ]  O ' 1 1 )
n=1

using only three rain gauge stations (i.e., N  = 3) which are closest to the 

p th analysis grid point.

3.5.2.4 Data Merging Rule
To reconstruct a rainfall field to the original scale an inverse wavelet transform is 

applied. The rule adopted herein is to pick decomposed radar or raingauge fields 

(average and gradient), whichever is large, for merging. The radar and raingauge 

rainfall data were decomposed to only 4 dyadic scales (i.e., m = 4 in sections 3.5.2.1 

and 3.5.2.2 above), because of size limitation of the 32 x32 pixels window selected. 

To illustrate the merging rule, the decomposed fields from the first scale (level) of 

decomposition for storm #13 of 1994 storms (see Table 3.1) are used.

Figures 3.7b to 3.7d show that the gradient fields from radar data were always larger

than that from gauges (i.e., | r{R[i }i=X 2 i \ > | },=12 3 |), because radars have

more sampling points than gauges and hence they tend to capture well the rainfall 

spatial gradient. Absolute values were used in the comparison because rainfall 

gradients can be positive or negative. A perusal o f Figures 3.7b to 3.7d reveals that 

the three gradient fields have different characteristics such that the magnitude of the 

diagonal field is relatively “mild” as compared to the horizontal (jc) and vertical (y)
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directional fields, as was similarly observed by Kumar and Foufoula-Georgiou 

(1993).

On the other hand, other than a few cases, decomposed average rainfall from radar 

was mostly lower than that from gauges (i.e., rR̂  < gR^) (see Figure 3.7a) partly 

because rainfall data measured by radar for shallow stratiform storms could suffer 

from underestimation caused by cloud overshooting problem, e.g., only a small % 

of the radar beam is filled by the cloud and thus the overall returned power is not 

representative of the intensity o f scattering in the filled region. However, because 

radar has the ability to capture intense localized storms that can be missed by few 

raingauges, we see the presence of some isolated large values in radar field ( rRx) as 

compared to gauge field (gR]) (Figure 3.7a).

3.6 Analysis of Rainfall Data Merging Results
Six storms (Table 3.4) have been selected from 89 storms identified in the period 

1994 to 2000. The selection criteria required that the storm should be 

underestimated by radar at all six raingauges because as shown in Section 4 that 

radar precipitation underestimation is more critical than overestimation, and the 

storm duration should be at least 10 hours. Table 3.4 shows the total storm depths 

based on raingauge data and the difference between total storm depths measured by 

radar and that by raingauge. The merged WSR-8 8 D radar and raingauge data of the 

wavelet scheme was compared with that of the SOA scheme in a 32x32 pixels 

window at 4 x 4 km pixel resolution covering the Blue river basin and its vicinity. 

The corresponding simulated streamflow hydrographs were also compared with the 

observed.
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3.6.1 Original versus Merged Rainfall Data
The rainfall spatial pattern (contour maps) and the corresponding statistical 

measures (Table 3.5) based on 32x32 pixels window (i.e., minimum, maximum, 

spatial mean and standard deviation) were used to assess the quality of merged data. 

The contour maps for the two largest and longest storms of the six (i.e., storms #13 

and #9) are shown in Figures 3.8 and 3.9, respectively. These two storms were 

selected partly because they represent the largest underestimations of radar mean 

rainfall as compared to raingauge measurements.

The contrasting capability of radar and raingauge in measuring rainfall is evident in 

the contour plots (see Figures 3.8 and 3.9). Visual inspection of these contour plots, 

mean and standard deviation (Table 3.5) show that radar grossly underestimated the 

rainfall depth, but the spatial distribution of its rainfall field is much better than the 

sparsely spaced raingauges. Comparing the merged rainfall data by the wavelet with 

that of SOA shows that both schemes provide significant improvement over the 

spatial distributions of gauged rainfall field. Nevertheless, wavelet is better than 

SOA because besides providing a spatial distribution closer to that of radar as 

shown by spatial standard deviation (Table 3.5), it also adequately corrected the 

mean depth of the original radar data, albeit in some cases there is a slight 

overestimation over the gauge’s mean depth. SOA could only partially correct the 

underestimation of mean depth by the radar data. The slight overestimation of 

gauge’s mean by the wavelet can be partly due to locations of intense rainfall rates 

where the gradient derived from radar data by wavelet tend to be large. Therefore 

combining the gradient with the mean rainfall could result in an overestimation of 

the mean rainfall depths (Table 3.5).

The complementary capabilities of radar and raingauge are generally better 

exploited by wavelet than SOA because: (a) a multi-resolution analysis employed 

by wavelet (i.e., four scales herein) considers a wider range of rainfall fields as 

compared to a simple linear relationship employed by SOA using only three nearby
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raingauge stations in the merging process (see Eq. 3.1), (b) the wavelet extracts 

individual rainfall gradients for merging with the mean rainfall while SOA uses 

only the weighted difference between radar and gauged data to merge with the radar 

data, and (c) wavelet can better represent localized features o f the rainfall process 

(Perica and Foufoula-Georgiou, 1996).

At point scale, e.g., at the six raingauge locations, the cumulative rainfall plots for 

each storm at the raingauge location where there was a significant radar 

underestimation of gauge rainfall data (see Table 3.4) are shown in Figure 3.10. It 

can be seen clearly that the radar underestimated the storm almost throughout the 

storm duration in comparison to gauge measurement for all six cases. As the 

cumulative rainfall plot of the wavelet scheme tried to follow both the gauge and 

radar traces closely, it resulted in a wavelet total rainfall amounts falling almost in 

between that of gauge and radar. Conversely, the SOA traces are biased towards the 

gauge measurements almost throughout the storm for all storms analyzed, resulting 

in almost identical storm totals with the gauges (Figure 3.10). At a point scale, SOA 

is biased towards gauge measurements because SOA uses three nearby raingauge 

stations in the merging process, which means that raingauge locations that were the 

closest to the radar grid points were used in this analysis and hence they had more 

influence to the merged results through SOA; this is not the case for the wavelet 

scheme because it operates in grid format using a multi-resolution analysis. 

Although SOA’s total rainfall is always larger than that of wavelet at a point scale, 

at the basin scale it is the reverse (Table 3.5). In general wavelet is more superior to 

SOA as will be further demonstrated in Section 3.6.2.

3.6.2 Hydrologic Simulation
There are contradictory views regarding the potential impact of radar rainfall errors 

in hydrologic modeling. For instance, Numec (1985) argued that errors in 

precipitation input to a rainfall-runoff model would result in significant errors in 

estimated runoff. Wyss et al. (1990) suggested that runoff prediction errors due to
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radar rainfall errors are less significant than errors due to rainfall-runoff 

transformation or modeling errors. Winchell et al. (1998) stated that there is not yet 

a consensus on the effects of radar data uncertainty on hydrologic modeling, nor has 

the topic received adequate attention, e.g., most of the research on radar rainfall 

uncertainty has been to compare radar with their raingauge counterparts without 

analyzing their influence on basin-scale hydrologic simulations (e.g., Smith et al., 

1996; Stellman et al., 2001; Jayakrishnan et al., 2004). Borga (2002) reported that, 

albeit there are problems separating uncertainty in radar rainfall data from modeling 

errors, hydrologic modeling remains a viable approach to assessing the suitability of 

radar over gauge rainfall data in basin hydrologic studies. Applying a lumped 

conceptual hydrologic model to the Brae catchment, he found that adjusted radar 

rainfall improved modeling results significantly as compared to unadjusted radar 

estimates. Furthermore, meaningful hydrologic predictions might still be elusive 

unless uncertainties of radar-derived precipitation can be quantified and corrected 

for (Jayakrishnan et al., 2004).

The quality of both the merged rainfall data by wavelet and SOA schemes was 

assessed in terms of hydrologic simulation by the Distributed Physically based 

Hydrologic Model using Remote Sensing data (DPHM-RS) (Biftu and Gan, 2001, 

2004). Four storms, with their dates extended so as to cover the entire flood wave, 

were selected for streamflow simulation (Table 3.6). The two 1998 storms, 

representing winter and summer seasons (i.e., storm # 2  and 6 ) where there was 

little or no radar underestimation problem (see Table 3.1), were used for calibration 

and validation of the DPHM-RS model respectively. The remaining two storms in 

Table 3.6 where the radar underestimated the raingauge data at all six gauges (see 

Table 3.4) were used to assess the effect of radar rainfall errors in hydrologic 

modeling and the improvement gained by merging it with gauged rainfall data. 

From the DEM data, BRB was divided into 7 sub-basins of comparable sizes (see 

Figure 3.1b) to ensure more or less similar sub-basin response functions for deriving 

the surface runoff, so no one sub-basin dominate the overall hydrograph at the basin
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outlet. The simulations began with BRB at a “near wet” antecedent moisture 

condition (AMC), because the events selected were preceded by other storms. 

Further, this “near wet” AMC will lead to more dynamic responses from BRB to 

rainstorms than dry AMC that requires much rainfall to soak up the dry soil mantle 

before surface runoff can expect to occur.

3.6.2.1 DPHM-RS Rainfall-Runoff Model
DPHM-RS is a semi-distributed, physically based, hydrologic model developed by 

Biftu and Gan (2001; 2004). It is chosen for this study partly because it is designed 

to exploit the potential of distributed information retrievable from remotely sensed 

data (e.g., topographical information and land use) in hydrologic modeling, but it 

avoids the unnecessary computation demand of a fully distributed model by 

capturing the essential physics of runoff generation at sub-basin (or semi­

distributed) scale. DPHM-RS is divided into six components: interception, 

evapotranspiration (ET), soil moisture, subsurface flow, surface flow, and channel 

routing.

DPHM-RS accounts for two types of surface runoff generation mechanisms: (1) 

Hortonian or infiltration-excess, and (2) saturation-excess, for vegetated and bare 

land separately. In modeling the saturated subsurface flow, the spatial variability of 

topography; soil properties; and the average water table depth for each sub-basin is 

parameterized by the topographic soil index (= lnfrz^ / tan ) , where Te is the

catchment mean saturated transmissivity, 7), tan and a, are the local

transmissivity, slope and drainage area for pixel i ,  respectively. Land surface 

evaporation and canopy transpiration are computed separately. The surface runoff 

for each sub-basin is based on its average response function derived by the 

kinematic wave equation. To obtain this response function, a reference excess 

rainfall o f 1 .0  cm depth is supplied to all grid cells within each sub-basin for one 

time step. Then for each grid cell, the kinematic wave function is applied and the
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flow is routed from cell to cell based on an eight possible flow directions until the 

reference rainfall excess for each sub-basin is exhausted. Routing through the 

drainage network is accomplished by the Muskingum-Cunge routing method.

The input data and calibrated parameters of the DPHM-RS model are summarized 

in Tables 3.7 and 3.8 respectively. Only three parameters were calibrated (i.e., 

exponential decrease parameter for the saturated hydraulic conductivity (F), surface 

and channel Manning roughness ( nm)), and all of them have moderate model

sensitivity (see Table 3.8). These three parameters were estimated from land use 

classes or literature values and refined through calibration. The other parameters 

were either directly derived from field observation, space platforms data, and 

literature. During calibration and validation, radar and raingauge rainfall data were 

used as input in driving the hydrologic model. The simulated hydrographs are 

shown in Figure 3.11, where the AMC was assumed to be 90% of saturation 

moisture, which was reasonable given that the selected storm events were preceded 

by other storms.

3.6.2.2 Effect of Merging Radar and Gauge Rainfall on 
Streamflow Simulation

In general, the radar-gauge rainfall data comparison carried out in Section 3.4 

indicated that radar tend to report more rainfall than gauges for convective storms 

and less rainfall for stratiform storms, which is also reflected in the hydrographs 

estimated by DPHM-RS in Figures 3.11b and 3.12a that almost represents pure 

convective and stratiform storms respectively. Since radars have high spatial 

resolution and measure rainfall using a large volume sample, they tend to measure 

more accurately the highly spatially variable convective storms than raingauges. As 

for stratiform storms, sparsely spaced raingauges can still accurately capture such 

storms partly because stratiform systems are less spatially variable than convective 

systems. Given the performance of weather radar tends to deteriorate at ranges far 

from the radar site (Smith et al., 1996), radars potentially underestimated these
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shallow stratiform storms because of radar range effect, cloud overshooting (Sharp, 

1997; Pereira et al., 1998; Young et al., 1999) and missing intensive rainfall close to 

the ground due to low-level growth in an environment of warm rainfall processes 

(Steiner et al., 1999), a typical characteristic of stratiform systems. These problems 

are typical for BRB because four out of five WSR-8 8 Ds providing coverage to BRB 

are located at significant distances away (see Figure 3.1a).

There are exceptions to the above general observations such as gauges reporting 

more rainfall than radar in a season dominated by convective storms which can be 

caused by a dominant stratiform component that is normally associated with the 

mature to dissipating stages of the convective systems (Schumacher and Houze, 

2003). Conversely, radar can report more rainfall than gauges in a season 

dominated by stratiform storms such as the case of Figure 3.11a for two possible 

reasons: (a) the stratiform storm may be associated with a deep convective system 

(Schumacher and Houze, 2003) that resulted in more accurate radar rainfall than 

gauged rainfall data (Figure 3.11a), and (b) the ability of radar to capture intense 

localized storms that can be missed by the few rain gauges.

The streamflow hydrographs simulated out of merged radar-gauge rainfall data for 

two events are shown in Figure 3.12. The inability of a few raingauges to capture 

the spatial variability of rainfall is reflected by the time-to-peak-flow error, which is 

smaller for radar than raingauge derived streamflow hydrographs (Table 3.9). 

Hydrographs predicted by Wavelet merged rainfall data are better than that of SOA 

merged rainfall data, particularly for the event dated December 8-14, 1994 (storm # 

13 in Table 3.6) that is possibly a pure stratiform storm (Figure 3.12a). The 

improvement of Wavelet results over that of raingauge estimated hydrographs is 

indicated by the reduction of time-to-peak error (see Table 3.9), which was also 

observed by Krajewski et al. (1991) for spatially more representative rainfall. 

Further, the time-to-peak error for Wavelet results is more or less equal to that of 

radar (Table 3.9), which shows the effectiveness of wavelet analysis in extracting
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the rainfall gradient of the rainfall process measured by the radar for merging with 

the mean rainfall of gauge data. However, the Wavelet merging may lead to slight 

increase in discharge volume (e.g., +16.49% for storm # 13 in Table 3.9) because of 

the slight increase in the mean rainfall as compared to the original gauge rainfall 

data (see Table 3.5). As explained in Section 3.6.1, the slight overestimation of 

mean rainfall by the wavelet can be partly attributed to locations of intense rainfall 

rates where the gradient derived from radar data by the wavelet tend to be large, and 

hence its combination with the gauged rainfall could result in the overestimation of 

the mean rainfall depths. Improving the estimation of both peak-flow magnitude and 

time-to-peak error is very crucial for operational flood prediction.

3.7 Discussion and Conclusions
The findings of this study and references herein suggests that, the bias correction 

using raingauge data applied to produce WSR-8 8 D stage III rainfall data sometimes 

is not adequate. This can be attributed to sparsely spaced point raingauge data being 

used to correct the bias of radar data map, difficulty in identifying rainfall type 

resulting into use of a wrong bias adjustment factor, georeferencing errors, and data 

processing errors such as averaging of overlapping radar data.

Georeferencing errors inherent in WSR-8 8 D stage III radar data are introduced 

through coordinate transformation of the original radar measurement from polar (1- 

km x 1-degree resolution) to rectangular HRAP grid with resolution of 4 x 4 km. 

Errors in georeferencing occur due to the combined effects of scale and shape 

distortions. Reed and Maidment (1999) and Jayakrishnan et al. (2004) indicated 

that the effects of scale and shape distortions vary with latitude, and the difference 

between the actual range of the radar and the mapped range could vary from + 1 .6  to 

+3.1 km (in 30-45° N latitude range) and from +0.35 to -3.55 km (in 25-35° N 

latitude range) depending on radar orientation. Given that the HRAP grid pixel of 

WSR-8 8 D is approximately 4 km, a mapping error in the order of 2-3 km could
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move the location of the actual volume scan of radar to the adjacent HRAP grid 

pixel and away from the actual collocated raingauge location especially if  it is near 

the edge of the HRAP grid pixel. Furthermore, the maximum georeferencing errors 

occur at the maximum range of the WSR-8 8 D (230 km) and should reduce as one 

gets closer to the radar location (Jayakrishnan et al., 2004). Since BRB is located in 

33-34° N latitude range and four out of five WSR-8 8 Ds provide coverage to BRB at 

their maximum ranges (Figure 3.1a), the WSR-8 8 D data of BRB are expected to 

suffer from georeferencing errors.

Also, it is difficult to regard the difference in radar-gauge comparison as pure radar 

rainfall estimation error because as point measurements gauged data are not the 

exact ground truth for the areally-averaged radar rainfall (Ciach and Krajewski, 

1999; Di Michele et al., 2001). Based on studies on extreme spatial/temporal 

rainfall variability (Crane, 1990; Lovejoy and Schertzer, 1990; Over and Gupta, 

1994), the large resolution difference between raingauge and radar, as much as 9 

orders in area, should lead to significant differences between the two measurements. 

Therefore, direct comparisons of data from raingauge and radar are problematic. 

Kitchen and Blackall (1992) showed that the contribution of the raingauge data 

sampling error to the radar-gauge difference could be as large as 50-80% for 

instantaneous and hourly rainfalls at a grid size of 3x3 km. Hence, the 

spatial/temporal rainfall variability could introduce sampling errors in the WSR- 

8 8 D stage III data during data processing stages that normally employ hourly gauge 

measurements for adjusting radar bias (see section 3.2), and the subsequent results
-j

like those presented in this study where point gauge data are compared with 16-km 

areally-averaged radar rainfall data and merged radar-gauge data. Techniques 

suggested by Ciach and Krajewski (1999) on partitioning the difference between 

radar and gauge rainfall measurements into the error of area-averaged radar 

estimates and error due to the difference between the sampling areas of the two 

instruments, and Di Michele et al. (2001) on derivation of areal reduction factors for
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point measurements of storm rainfall from its scaling properties could be adapted to 

improve the comparison and adjustment results.

Even though a practical approximation, the correlation functions are based on the 

assumptions of homogeneity and isotropy that strictly speaking cannot be true. 

Beside the inter-site distance, we would expect the inter-site correlation to also 

depend on factors such as vegetation cover, wind directions and circulations, and 

other possible climatic and topographic factors. In merging radar and gauged data, 

especially that of the wavelet scheme, we demonstrated that despite scaling rainfall 

depth of radar to that of raingauges, the spatial variability of the original radar data 

can still be maintained. However, some data noise/errors present in the original 

radar or raingauge data cannot be filtered by the wavelet or SOA schemes. For 

example, Pereira et al. (1998) showed that areas with artificially large rainfall 

gradients coincide with transition zones of overlapping radar surveillance, and is 

caused by a simple averaging of overlapping radar rainfall data to produce a mosaic 

of individual radar rainfall fields (see section 3.2). Bands in the x- and y- directions 

present in the rainfall contour plots in Figures 3.8b to 3.8d likely indicate the 

presence of such data noise or artifacts because those bands are not present in the 

rainfall contour map of Figures 3.9b to 3.9d. In view of these limitations, it is 

natural that assessing the quality o f radar rainfall data and its derivatives through 

hydrologic simulation has its own problems because of the difficulty in separating 

uncertainties due to radar rainfall measurements, inadequate hydrologic model 

structure, and other input data problems (Winchell et al., 1998; Borga, 2002).

Despite the aforementioned problems of data and the inadequacy of model structure 

(simplified version of nature), and others, generally we can still expect gaining 

insight into the usefulness of radar-gauge merged data over radar or gauge data 

alone in basin hydrologic studies. The goodness-of-fit between observed and 

simulated hydrographs, and contour plots of rainfall fields provide some basis to
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assess the improvement gained from merging radar and gauged rainfall data by the 

wavelet and the SOA methods. Below are the conclusions of the study:

(a) The year-to-year comparison of radar-gauge rainfall data over the 1994- 

2000 period shows that the WSR-8 8 D radar network underestimated 

precipitation in 92%, 83%, 67%, 67%, 33%, 44%, and 46% of the storms. 

This shows a general improvement in the accuracy of the WSR-8 8 D data 

over the years, with the radar underestimation of rainfall for 1998-2000 

being significantly lower than that of 1994-1997. This reduction in radar 

underestimation errors is due to the on-going improvements in the WSR- 

8 8 D precipitation processing algorithms by the NWS of USA.

(b) The WSR-8 8 D underestimation of precipitation was generally more 

pronounced during the cold season (September to February) normally 

dominated by stratiform storms as compared to warm season (March to 

August) normally dominated by convective storms. Over the 7-year period, 

the number of storms (in %) underestimated by radar during cold season or 

winter (warm season or summer) were 100% (83%), 100% (78%), 67% 

(67%), 73% (50%), 27% (50%), 67% (33%), and 25% (80%), respectively.

(c) The overestimation trend in rainfall observed due to recent modifications of 

the WSR-8 8 D precipitation processing algorithms is less critical than its 

underestimation problem. Using all available storms in a year, the results 

showed that the average estimation bias over the six-raingauge locations for 

1994 (largest underestimation) and 1998 (largest overestimation) was -  

8.29% and 4.83% respectively, which means that underestimation is almost 

twice as much as overestimation.

(d) With respect to gauged data, the wavelet technique is quite consistently 

better than SOA in predicting the mean field depths. However, wavelet 

tends to slightly under-estimate while SOA tends to slightly over-estimate
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the standard deviation of radar. Though wavelet may have an edge over 

SOA but more extensive tests are necessary before we can decisively 

conclude which technique is better in exploiting the complimentary nature of 

both radar and raingauge.

(e) The quality of rainfall data was assessed in terms of streamflow hydrographs 

simulated by the hydrologic model DPHM-RS. The time-to-peak-flow error 

for radar derived streamflow hydrographs was smaller than that of 

raingauges, which is mainly caused by the insufficiency of raingauges to 

capture the spatial variability of rainfall.

(f) There is a marked improvement in the volume/depth of streamflow 

hydrographs predicted by wavelet merged input rainfall as compared to that 

of SOA merged data, and the former data is also better than the raingauge 

data alone in terms of the reduction of time-to-peak error. Both these results 

show the effectiveness of wavelet in extracting the rainfall gradient of the 

rainfall process measured by the radar. The results also indicate that even a 

raingauge network that is not dense (i.e., 6  gauges in 1233 km2 herein) is 

sufficient to improve the underestimation of radar rainfall data, and the 

improvement increases with increasing difference between gauged and radar 

rainfall depths. However, wavelet cannot remove (and sometimes amplifies) 

the fictitious sharp gradients in radar rainfall, which according to Pereira et 

al. (1998) are produced by the averaging process in areas of overlapping 

radar coverage particularly at the fringes of the radar umbrellas.

(g) The quality assessment of radar rainfall data using raingauges and the 

subsequent merging of the two is affected by georeferencing errors inherent 

with WSR-8 8 D stage III data, sampling issues associated with the 

comparison between areally averaged and point observations and its 

interpolated derivative. It is recommended that future work should try to 

quantify the amount of these errors.
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Table 3.1 1994-2000 annual information on the selected 89 storms and the 
corresponding results of accuracy assessment of WSR-8 8 D stage III 
precipitation data using raingauge data: Gauge and Radar columns show 
the average storm depth over the six gauge locations, and N is the 
number of raingauges with radar underestimation.

Storm

#

Date (Time) Duration
[hrs]

Gauge
[mm]

Radar
[mm]

N Radar

Gauge
[mm]

Year 1994

1 Feb 28 (1800) - Mar 2 (0700) 38 52.71 51.05 4 -1 .6 6

2 Apr 29 (0700) - Apr 29 (2200) 16 52.11 37.18 5 -14.94

3 May 2 (0900) - May 3 (0100) 17 47.58 43.43 4 -4.15

4 May 26 (0300) - May 26 (0800) 6 47.75 39.31 5 -8.44

5 May 29 (1300) - May 29 (1500) 3 31.03 25.87 6 -5.17

6 Jul 9 (0700) - Jul 9 (2000) 14 44.11 43.14 2 -0.98

7 Aug 7 (1500) - Aug 7 (2300) 9 39.62 47.26 2 7.64

8 Oct 7 (1800) - Oct 8 (0700) 14 37.81 32.79 6 -5.02

9 Nov 5 (0400) - Nov 5 (1400) 8 18.37 15.91 4 -2.46

10 Nov 9 (0900) - Nov 9 (1800) 10 26.55 19.08 6 -7.47

11 Nov 13 (2300) - Nov 15 (1000) 36 67.73 65.82 3 -1.91

12 Nov 20 (0100) - Nov 20 (1700) 17 25.70 24.61 3 -1.09

13 Dec 08 (0800) - Dec 10 (0200) 43 47.88 35.16 6 -12.72
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Table 3.1 continued

Storm

#

Date (Time) Duration

[his]

Gauge

[mm]

Radar

[mm]

N Radar

Gauge
[mm]

Year 1995

1 Jan 26 (1400) - Jan 27 (0800) 2 0 19.24 12.33 6 -6.91

2 Mar 07 (0100) - Mar 7 (1100) 11 18.59 14.66 5 -3.93

3 Mar 13 (0200) - Mar 13 (1900) 18 60.88 60.73 4 -0.14

4 Apr 3 (2100)-Apr 4 (1300) 17 37.82 33.44 5 -4.38

5 Apr 10 (1200) - Apr 11 (0000) 13 33.06 31.30 2 -1.76

6 Apr 19 (1800) - Apr 20 (0000) 7 24.08 16.29 5 -7.80

7 May 1 (0200) - May 1 (0900) 8 27.90 28.01 3 0 .1 1

8 May 8 (0200)-M ay 8 (1300) 12 55.46 61.41 3 5.95

9 May 24 (0200) - May 24 
(0500)

4 14.27 13.79 4 -0.48

10 Jun 10(1500)-Jun 11 (1400) 24 47.67 46.52 3 -1.14

11 Sep 12 (1000)-Sep 12(1700) 8 31.41 24.71 5 -6.70

12 Nov 1 (0800) - Nov 1 (1100) 4 21.67 19.92 3 -1.75
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Table 3.1 continued

Storm

#

Date (Time) Duration

[hrs]

Gauge

[mm]

Radar

[mm]

N Radar

Gauge
[mm]

Year 1996

1 Jan 1 (1000) - Jan 2 (0400) 19 2 1 . 1 2 18.62 4 -2.50

2 Mar 18 (0600) - Mar 18 (1700) 12 17.69 13.98 6 -3.72

3 Mar 27 (0700) - Mar 28 (0200) 2 0 51.90 51.59 5 -0.32

4 Apr 12 (1800) - Apr 13 (0000) 7 31.75 29.98 3 -1.77

5 Apr 22 (0100) - Apr 22 (2300) 23 64.18 68.07 2 3.90

6 Jun 1 (0800) - Jun 1 (1800) 11 72.69 65.81 5 -6.87

7 Aug 27 (0500) - Aug 27 (1500) 11 30.48 31.87 2 1.39

8 Sep 15 (0900)-Sep 15 (1700) 9 44.20 44.49 4 0.29

9 Oct 21 (0300)-O ct 22 (1300) 35 86.44 73.75 5 -12.69

10 N ov7 (0000)-Nov 7 (1100) 12 63.75 60.92 1 -2.83

11 Nov 24 (0400) - Nov 24 (2000) 17 51.73 47.25 3 -4.48

12 Nov 29 (0400) - Nov 29 (1600) 13 28.70 36.53 1 7.83
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Table 3.1 continued

Storm

#

Date (Time) Duration

[hrs]

Gauge

[mm]

Radar

[mm]

N Radar

Gauge
[mm]

Year 1997

1 Feb 6  (0500) - Feb 6  (2000) 16 18.16 17.74 4 -0.42

2 Feb 7 (0600) - Feb 7 (1800) 13 13.85 13.26 5 -0.59

3 Feb 20 (0000) - Feb 21 (0100) 26 63.80 6 6 . 0 0 0 2 . 2 0

4 Feb 25 (2100)-Feb 26 (1600) 2 0 20.49 22.81 1 2.32

5 Apr 4 (0100)- Apr 5 (0300) 27 37.08 40.68 0 3.59

6 A p r il  (1000)-A pr 11 (1500) 6 29.89 28.69 3 - 1 .2 0

7 Apr 25 (1600) - Apr 25 (2300) 8 22.90 28.20 1 5.30

8 Aug 22 (1300) - Aug 22 (1500) 3 21.97 20.58 5 -1.39

9 Oct 12 (0800) - Oct 13 (0200) 19 42.85 35.16 6 -7.68

10 Oct 23 (1500) - Oct 23 (1800) 4 21.67 2 0 .2 1 4 -1.46

11 Nov 9 (1300)-Nov 10(1100) 23 26.67 24.82 2 - 1 .8 6

12 Dec 2 (1900) - Dec 3 (0300) 9 19.77 18.50 5 -1.27

13 Dec 7 (2100) - Dec 8 (0300) 7 15.66 15.56 3 -0 .1 1

14 Dec 20 (0900) - Dec 21 (1500) 31 61.89 63.41 1 1.52

15 Dec 23 (1500) - Dec 24 (0200) 12 30.39 30.17 3 -0.23
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Table 3.1 continued

Storm

#

Date (Time) Duration

[hrs]

Gauge

[mm]

Radar

[mm]

N Radar

Gauge
[mm]

Year 1998

1 Jan 4 (0500)-Jan 4 (1900) 15 39.75 44.34 0 4.59

2 Jan 6  (2200) - Jan 8 (0700) 34 35.60 38.92 0 3.32

3 Jan 21 (2300) - Jan 22 (0800) 10 21.59 29.11 2 7.52

4 Jan 26 (0100)-Jan 26 (1400) 14 22.40 22.25 3 -0.14

5 Mar 7 (1300) - Mar 8 (0000) 12 33.53 33.27 3 -0.26

6 Mar 15 (2300) - Mar 16 (1700) 19 42.84 44.21 0 1.37

7 Apr 27 (0000) - Apr 27 (0500) 6 29.89 28.87 2 -1 .0 2

8 Jun 11 (0800)-Jun 11 (1300) 6 25.74 26.95 2 1.21

9 Oct 2 (1200)-O ct 3 (0300) 16 68.62 60.54 3 -8.08

10 Oct 5 (1400)-O ct 6  (1000) 21 32.68 40.35 1 7.67

11 Oct 17 (2100)-O ct 18(0800) 12 26.75 33.72 2 6.97

12 Nov 1 (1200) - Nov 1 (2000) 9 44.24 45.20 1 0.96

13 Dec 4 (0000)-Dec 4 (1100) 12 40.55 42.36 1 1 .8 6

14 Dec 12 (0000)-Dec 12(1800) 19 26.29 27.41 3 1.14

15 Dec 18 (2000) - Dec 19 (0300) 8 17.40 16.54 5 -0 . 8 6
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Table 3.1 continued

Storm

#

Date (Time) Duration

[hrs]

Gauge

[mm]

Radar

[mm]

N Radar

Gauge
[mm]

Year 1999

1 Jan 29 (0200) - Jan 29 (1700) 16 17.61 18.16 4 0.55

2 Mar 08 (0200) - Mar 8 (1700) 16 29.93 33.34 2 3.41

3 Mar 12 (1100) - Mar 13 (0200) 16 33.99 37.22 1 3.22

4 Mar 27 (1500) - Mar 28 (0900) 19 27.81 26.28 4 -1.53

5 Apr 26 (1400) - Apr 26 (1700) 4 27.81 29.77 3 1.96

6 May 10 (0500) - May 10 (1300) 9 60.96 62.87 3 1.91

7 Jun 24 (2000) - Jun 25 (0100) 6 38.05 26.86 4 -1 1 .2 0

8 Sep 11 (0500)-Sep 11 (1600) 12 67.23 66.93 4 -0.30

9 Oct 30 (0800)-O ct 31 (1400) 31 45.80 45.16 2 -0.64
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Table 3.1 continued

Storm

#

Date (Time) Duration

[In's]

Gauge

[mm]

Radar

[mm]

N Radar

Gauge
[mm]

Year 2000

1 Jan 3 (0700) - Jan 3 (1000) 4 13.84 13.34 5 -0.50

2 Jan 8 (0000) - Jan 8 (0900) 10 14.90 15.18 5 0.27

3 Feb 22 (2300) - Feb 23 (0700) 9 28.61 29.02 2 0.41

4 Apr 11 (1600) - Apr 12 (2300) 32 28.41 28.08 4 -0.33

5 May 1 (0300) - May 1 (0700) 5 26.50 24.25 4 -2.25

6 Jun 10(1400)-Jun 11 (0100) 12 28.83 25.24 2 -3.59

7 Jun 21 (1800) - Jun 22 (0200) 9 18.92 20.97 1 2.04

8 Jul 22 (1100)-Jul 22 (1700) 7 26.41 25.48 3 -0.93

9 Oct 20 (1400) - Oct 21 (0000) 11 23.67 31.68 1 8 .0 1

10 Oct 29 (0400) - Oct 29 (1000) 7 29.72 33.33 2 3.62

11 Nov 5 (2100)-Nov 6  (1200) 16 42.21 42.33 3 0 . 1 2

12 Nov 8 (1000)-Nov 8 (1700) 8 22.57 21.37 3 -1.19

13 Nov 23 (0100) - Nov 24 (1900) 43 45.64 47.25 1 1.61
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Table 3.2 Radar-gauge comparison statistics for storm events observed in 1994 and 
1998, where Ef is the efficiency coefficient and RMSE is the root mean 
square error.

Year Statistic Raingauge station name and number

Sulphur Tishomingo Madill Durant Lane Centrahoma

(1) (2 ) (3) (4) (5) (6 )

1994 Total
gauge
(mm)

555.76 470.39 674.12 655.33 683.
79

599.17

Radar 
bias (%)

-13.89 2.87 -7.81 -5.31
11.3
6

-14.26

EE 0.82 0.65 0.77 0.83 0.90 0.58

RMSE
(mm)

3.46 4.01 3.82 3.07 2.49 4.27

1998 Total
gauge
(mm)

490.73 556.28 457.46 525.78 551.
42

576.31

Radar 
bias (%)

0.38 11.74 4.31 2.79 2.54 7.32

EE 0.93 0 .2 1 0.87 0.80 0.84 0.84

RMSE
(mm)

1.61 5.27 2.24 2.64 2 .2 2 2.33
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Table 3.3 Fitted spatial correlation models for hourly WSR-8 8 D radar rainfall data.

Model Estimated Parameters

Reciprocal Model

P W  =  1-----------T(l+rf/cj
O

sII
Exponential Model 

(p (d) = exp -  —
V C O

CQ = 44.57

Polynomial Model

p{d) = f i a /
i=0

O
sII
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Table 3.4 Six storms used for radar-gauge data merging analysis: Total storm depths 
recorded by gauge and the radar-gauge differences are shown at each 
individual gauge site.

Year Storm

#

Data Source Storm Depth (mm) at Raingauge #

1 2 3 4 5 6

1994 8 Gauge 30.74 54.10 36.58 27.18 61.22 17.02

Radar-Gauge -4.60 -12.52 -6 .1 2 -0.43 -5.36 -1.09

1994 10 Gauge 11.18 30.23 28.70 26.67 30.23 32.26

Radar-Gauge -4.20 -13.54 -4.78 -6 . 2 0 -4.28 -11.80

1994 13 Gauge 52.84 39.11 40.90 42.92 58.93 52.57

Radar-Gauge -21.28 -8.40 -8.45 -10.05 -22.53 -5.62

1995 1 Gauge 14.76 24.38 25.47 17.85 13.30 19.65

Radar-Gauge -3.96 -9.19
12.71

-6.99 -2.33 -6.29

1996 2 Gauge 14.99 18.54 14.73 18.54 19.30 20.06

Radar-Gauge -1.31 -12.40 -2.44 -2.47 -1.67 -2 .0 1

1997 9 Gauge 50.55 44.45 32.52 39.12 43.69 46.74

Radar-Gauge -17.19 -3.62 -0.08 -1 0 .1 0 -1 1 .8 8 -3.22
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Table 3.5 Statistical measures of original (raingauge and radar) and merged (SOA 
and wavelet) rainfall data in a 32 x 32 pixels window at 4 x 4 km pixel 
resolution.

Year Storm # Data
Source

Minimum
(mm)

Maximum
(mm)

Mean
(mm)

Standard
Deviation
(mm)

1994 8 Radar 8.18 62.22 31.53 10.64

SOA 9.07 65.19 34.69 11.19

Wavelet 14.29 70.08 38.51 9.26

Raingage 17.26 61.13 38.06 7.49

1994 10 Radar 1.82 30.86 15.75 5.72

SOA 3.99 34.77 20.63 6.17

Wavelet 15.73 41.45 27.61 4.97

Raingage 11.44 32.21 27.12 3.71

1994 13 Radar 7.13 69.07 31.68 11.27

SOA 12.64 75.38 39.94 11.29

Wavelet 27.73 80.44 49.12 1 0 .2 2

Raingage 39.13 58.89 48.51 4.30

1995 1 Radar 1.70 29.49 18.50 5.61

SOA 6.44 33.75 2 0 .0 1 5.20

Wavelet 10.05 36.78 25.04 5.41

Raingage 13.12 32.21 24.89 2.67

1996 2 Radar 5.34 25.31 13.20 3.63

SOA 8.90 26.00 15.38 2.99

Wavelet 1 1 .1 0 28.30 18.01 3.11

Raingage 14.73 20.04 17.95 1.23

1997 9 Radar 14.88 59.08 34.14 7.54

SOA 17.29 65.74 39.61 8 . 2 0

Wavelet 25.41 65.97 43.43 7.07

Raingage 32.53 50.44 42.86 3.39
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Table 3.6 Characteristics of the four flood/storm events used in hydrologic 
simulation: their dates were extended from their respective original 
selected storms (see Table 3.1) in order to cover the entire flood wave.

Year Storm
#

Date (Time) Duration
[hrs]

Total rainfall depth 
[mmf

Observed 
flood peak 
[m3/sec]

1994 13 Dec 8 (0000) - 

Dec 14 (2300)

168 Radar 34.17 142.35

SOA 45.24

Wavelet 47.99

Raingage 48.55

1995 1 Jan 26 (0000) - 

Jan 31 (2300)

144 Radar 21.54 44.15

SOA 26.91

Wavelet 27.47

Raingage 27.12

1998 2 Jan 4 (0000) - 

Jan 11 (2300)

192 Radar 116.70 175.84

Raingage 114.88

1998 6 Mar 15 (0000) - 

Mar 24 (2300)

240 Radar 91.29 202.65

Raingage 78. 30

a Total rainfall depth is computed from the Mean Areal Precipitation (MAP) for the 
entire basin.
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Table 3.7 Input data of DPHM-RS rainfall-runoff model.

Data type Parameters Source

Topographic Mean altitude, aspect, flow direction, 
surface slope, drainage network, and 
topographic soil index

DEM of USGS 
National Elevation 
Dataset (NED)

Land use Spatial distribution of land use classes, 
surface albedo, and vegetation index

NOAA-AVHRR 
satellite data

Soil properties Spatial distribution of soil types, 
antecedent moisture content, and soil 
hydraulic properties

U.S. State Soil
Geographic
(STATSGO)

Stream flow Hourly stream flow data at the 
catchment outlet, channel cross- 
sections

U.S. Geological 
Survey (USGS)

Meteorological Hourly: precipitation, short-wave 
radiation, air temperature, ground 
temperature, wind speed, and relative 
humidity

Oklahoma Mesonet 
stations and NWS 
Hydrology
Laboratory (NWS- 
HL)

Note: NWS -  National Weather Service; DEM -  Digital Elevation Map
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Table 3.8 Calibrated parameters of the DPHM-RS model (modified from Biftu and 
Gan, 2001).

Parameter Description Sensitivity
Approach/factor 
used to estimate 
parameters

Soil

F
Exponential decrease 
parameter for k s

Moderate Calibration

K
S

Saturated hydraulic 
conductivity

Moderate Soil type

n
m Manning roughness Moderate Calibration

Channel

B Mean cross-sectional top 
width

Moderate Estimated

n
m Manning roughness Moderate Calibration
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Table 3.9 Statistics of the simulated hydrographs by DPHM-RS model for the 
merged and original radar/gage rainfall data.

Year Event Data
source

% Error in
peak
discharge

% Error 
in total 
discharge 
volume

Time to 
peak 
discharge 
error3

Efficienc
y(Er)

DPHM-RS rainfall-runoff model calibration and validation

1998 2  calibration Radar -1.72 -0.75 +25.0 0.92

Raingauge +13.90 +5.52 +6 .0 0.89

1998 6  validation Radar -5.32 -6.48 -25.0 0.87

Raingauge -14.07 -18.05 -2 0 . 0 0.82

DPHM-RS rainfall-runoff model application

1994 13 Radar -36.24 -23.53 +4 0.75

Raingauge - 1 0 .1 0 +3.55 +7 0.90

SOA -15.99 -0.47 +4 0.91

Wavelet -0 . 6 6 +16.49 +4 0.91

1995 1 Radar -49.95 -35.51 -3 0.15

Raingauge -8.52 +4.88 -4 0.81

SOA -23.48 -13.04 -4 0.77

Wavelet -13.44 -3.16 -3 0.91

Negative error denotes underestimation

3 Underestimation of observed peak discharge led to large time to peak error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

‘ Missouri
Kansas

INX'
Arkansas

Oklahomd TLX 4

SRX

\  FDR

Blue R.

R a d a r  L o c a t io n s

1 .  IN X - In o la
2 .  F D R  -  F r e d e r ic k
3 . F W S - F L  W o r th  
4 . S R X - F t .  S m i th  
5 ,  T L X  -  T w in  L a k e s

T exas jFWS

(b)

2 *

Channel Network

•  Meteorological Stations 

■  Stream Gauging Station

Figure 3.1 Map indicating (a) WSR-8 8 D radar sites providing coverage to Blue 

River Basin (BRB) of south central Oklahoma (USA): Circles show the radar 

umbrella with a radius of 230 km, (b) seven sub-basins of BRB derived in this 

study (label a-g), six Mesonet stations (i.e., raingauge stations) with label 1-6, and 

a streamflow gauging station.
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Figure 3.2 Scatterplots of hourly precipitation of radar versus raingauge for 

all storms selected in 1994 at (a) gauge #1, and (b) gauge #6 .
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Figure 3.3 Scatterplots of hourly precipitation of radar versus raingauge for 

all storms selected in 1998 at (a) gauge #2, and (b) gauge #6 .
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Figure 3.4 Spatial correlation functions fitted to 

hourly WSR-8 8 D radar rainfall data for the BRB.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Interpolation Scheme

Point Gage Rainfall Data

Merged Rainfall Data

Gridded Radar Rainfall Data

Gridded Gage Rainfall Data

Data Merging Rule
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Reconstruction of Rainfall Fields

Figure 3.5 Flow chart showing components of the wavelet rainfall 

data-merging scheme.
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Figure 3.6 A 2-D discretization grid at scales m and (m+1); solid lines define 

the original spatial resolution at scale m, dashed lines show the grid size at the 

next higher dyadic scale (m+1), solid circles shows arbitrary raingauge 

locations.
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Figure 3.7 Scatterplots of decomposed rainfall fields (mm) between gauge (g) and 

radar (r) for a typical storm: (a) mean depths, (b) gradients in x  direction, (c) 

gradients in y  direction, and (d) gradients in diagonal direction.
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(a) Gauge (b) Radar

Figure 3.8 Total rainfall contour map (mm) for storm # 13 of December 8 

(08:00) -  10 (02:00), 1994 with a 4.0mm contour interval. The original gauge, 

radar, and radar-gauge merged rainfall fields using wavelet and statistical 

objective analysis (SOA) schemes are shown from (a) through (d), respectively.
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Figure 3.9 Total rainfall contour map (mm) for storm # 9 of October 12 

(08:00) -  13 (02:00), 1997 with a 3.0 mm contour interval. The original 

gauge, radar, and radar-gauge merged rainfall fields using wavelet and 

statistical objective analysis (SOA) schemes are shown from (a) through (d), 

respectively.
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Figure 3.10 Cumulative rainfall plots for all the six storms used in the radar- 

gauge merging analysis at the raingauge showing the largest radar 

underestimation of rainfall (see Table 3.4): (a) storm # 8 (1994) at gauge # 2, (b) 

storm # 10 (1994) at gauge # 2, (c) storm # 13 (1994) at gauge # 5, (d) storm # 1 

(1995) at gauge # 3, (e) storm # 2 (1996) at gauge # 2, and (f) storm # 9 (1997) at 

gauge # 1 .
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Figure 3.11 Observed streamflow hydrographs simulated by 

DPHM-RS model forced by gauged and radar rainfall data during 

(a) model calibration using storm # 2 of January 4 (00:00) -  11 

(23:00), 1998, (b) model validation using storm # 6  of March 15 

(00:00)-24 (23:00), 1998.
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Figure 3.12 Observed streamflow hydrographs simulated by 

DPHM-RS model forced with gauged, radar, and radar-gauge 

merged rainfall data for (a) storm #13 of December 8 (00:00) -  14 

(23:00), 1994, and (b) storm # 1 of January 26 (00:00) -  31 (23:00), 

1995.
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Chapter 4

Influence of Storm Size and Spatial 

Variability on Radar Data Accuracy and 

Streamflow Prediction

4.1 Introduction
To account for spatial variability of meteorological and hydrologic variables, 

distributed and semi-distributed hydrologic models have evolved in the last two 

decades. This happened as a result of spatially distributed data becoming more 

readily available through remote sensing. However, their applications are still 

limited by a general lack of spatially distributed data of appropriate resolution and 

reliable quality, and the uncertainty associated with parameter estimations for 

distributed models. For instance, due to a lack of distributed precipitation data, 

distributed and semi-distributed hydrologic models still used point gauge 

measurements as the input function (e.g., Biftu and Gan, 2001). This means an 

under utilization of a complex model, or a mismatch between model complexity and 

the primary forcing function (precipitation) for computing basin-scale water fluxes 

(Boyle et al., 2001).
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Several studies have been conducted in the past addressing the sensitivity of 

streamflow hydrographs to the spatial and temporal variations in precipitation. 

Many of these studies examined the effects of raingauge sampling errors on the 

outflow hydrograph. Wilson et al. (1979) showed that the spatial distribution of 

rainfall had a marked influence on the streamflow hydrograph from a small 

catchment. On the other hand, Beven and Homberger (1982) stated that rainfall 

spatial patterns have only a secondary effect on streamflow hydrographs. For a 

small watershed, Krajewski et al. (1991) found a higher sensitivity to the temporal 

resolution of precipitation than to the spatial resolution. Ogden and Julien (1994) 

and Shah et al. (1996) also investigated the effects of precipitation variability on 

hydrologic simulations. It is interesting to note that most of these studies were 

based on synthetically generated precipitation and streamflow data due to a lack of 

appropriate observed data.

With the deployment of weather radars such as the Weather Surveillance Radar - 

1988 Doppler (WSR-8 8 D) network of USA (Klazura and Imy, 1993), it is now 

possible to map detailed precipitation fields due to radar’s large aerial coverage, 

refined spatial and temporal resolutions, and the acquisition of data from some 

remote areas not quite accessible by ground. However, the accuracy of WSR-8 8 D 

radar rainfall estimates is influenced by storm type (e.g., convective and stratiform) 

and storm size (e.g., Smith et al., 1996; Stellman et al., 2001), uncertainties in 

converting radar echoes to rainfall estimates, data processing problems, and radar 

range effects (e.g., Smith et al., 1996; Pereira et al., 1998; Stellman et al., 2001). 

For instance, Stellman et al. (2001) found that for Georgia watersheds, the Mean 

Areal Precipitation (MAP) derived from WSR-8 8 D stage III data was slightly more 

than MAP derived from gauge during summer (convective storms), but 

underestimated the gauge MAP by about 50% during winter (stratiform storms). 

Jayakrishnan et al. (2004) did a similar assessment of WSR-8 8 D stage III radar data 

at 24-hour accumulations over the Texas-Gulf basin for 1995-1999. They found that
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the radar data underestimated the five-year precipitation at vast majority of the 545 

rain gauges tested in their study. They recommended that the quality of stage III 

radar rainfall should be assessed using rain gauge measurements and necessary 

improvement be made before applying them in hydrologic studies.

The findings by Jayakrishnan et al. (2004) and references therein suggests that, the 

bias correction using raingauge data applied to produce WSR-8 8 D stage III rainfall 

data may not be adequate. This can be attributed to correcting the bias o f radar data 

using sparsely spaced point raingauge data, difficulty of identifying rainfall type 

resulting in applying wrong bias adjustment factors, georeferencing errors, and data 

processing errors such as averaging of overlapping radar data. Therefore, it seems 

beneficial assessing the accuracy of WSR-8 8 D stage III radar rainfall data by 

comparing its simulated hydrographs with the observed.

There are conflicting views regarding the potential impact of radar rainfall errors in 

hydrologic modeling. For instance, Numec (1985) argued that errors in precipitation 

input to a hydrologic (or rainfall-runoff) model would result in significant errors in 

estimated runoff. Wyss et al. (1990) suggested that runoff prediction errors due to 

radar rainfall errors are less significant than errors due to rainfall-runoff 

transformation or modeling errors. Winchell et al. (1998) stated that there is not yet 

a consensus on the effects of radar data uncertainty on hydrologic modeling, nor has 

the topic received adequate attention, for most of the research on radar rainfall 

uncertainty has been to compare radar with their raingauge counterparts without 

analyzing their influence on basin-scale hydrologic simulations (e.g., Smith et al., 

1996; Stellman et al., 2001; Jayakrishnan et al., 2004). Borga (2002) reported that, 

even though there are problems separating uncertainty in radar rainfall data from 

possible errors in hydrologic models, hydrologic modeling remains a viable 

approach to assess the suitability of radar over gauge rainfall data in basin 

hydrologic studies.
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In view of the aforementioned issues, this study applies a semi-Distributed 

Physically based Hydrologic Model using Remote Sensing (DPHM-RS) of Biftu 

and Gan (2001, 2004) to address the following issues:

(1) the effect of storm type and size on WSR-8 8 D stage III radar rainfall data’s 

accuracy and simulated water fluxes,

(2 ) the effect of rainfall spatial variability on streamflow prediction, and

(3) the effect of hydrologic modeling resolution (related to the spatial averaging of 

rainfall) on the resultant estimated streamflow.

This study is carried out in Blue River Basin (BRB) (Figure 4.1) using hourly WSR- 

8 8 D stage III radar rainfall data and rain gauge data of Oklahoma Mesonet in event 

basis. The DPHM-RS model was selected partly because it is designed to assimilate 

radar rainfall data, and by sub-dividing a basin into an adequate number of sub­

basins (Figure 4.1b), the effect of spatial variability can be effectively accounted for 

without incurring an excessive demand for input data and unnecessary 

computations. Table 4.1 shows the details of the six selected storm/flood events 

used in this analysis, subjectively categorized as large if( 2 ^  > 150/m3/se c ,

medium if 50 < Qpeak < 150m3/se c , and small if  Qpeak < 50m3 / sec. From here

onwards, the term “radar rainfall data” or “radar data” will mostly be used to refer 

to “WSR-8 8 D stage III radar rainfall data”.

4.2 Study Site and Data Description
The Blue River Basin (BRB) of South Central Oklahoma (USA) (Figure 4.1a) is 

used as the study site partly because it is not regulated. BRB has a relatively flat 

terrain with elevation ranging from 153 to 350m above mean sea level. The total 

catchment area is 1233 km2, and the major soil groups are clay and loam mixed with 

sand or silt (see Table 4.2). Woody Savannah is the dominant vegetation occupying 

almost 80% of the basin (see Table 4.3). The climate of this region is dominated by
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frontal precipitation associated with large synoptic scale low-pressure systems 

during the fall and winter, with intense convective activity during spring and early 

summer. The average annual precipitation ranges from about 400mm in the extreme 

western panhandle to 1420mm in the southeastern comer of the State (Frederick et 

al., 1977). In winter, Oklahoma lies in the southern range of the polar jet stream 

and the northern range of the subtropical jet stream, leading to extremely variable 

temperature, precipitation, and strong winds. The January temperature ranges from 

a daytime high of 20°C to a nighttime low well below zero.

Digital elevation map (DEM) and stream network were used in subdividing the 

basin into 7 sub-basins (Figure 4.1b). Slope, flow direction, flow accumulation, 

mean elevation, and topographic soil index at each grid cell of 1 0 0 m square 

resolutions were also derived from DEM data. The land use/cover data were derived 

from the vegetation data (1-Km resolution) of NASA LDAS (Land Data 

Assimilation Systems) and the leaf area index (LAI) was derived from the monthly 

Greenness Fraction data (-12-Km resolution) of NOAA-AVHRR data. Soil 

properties were derived from the DMIP (Distributed Model Inter-comparison 

Project) soil texture data (1-km resolution) and soil properties table of Rawls and 

Brankensiek (1985). The channel cross-sections for BRB were taken from the 

DMIP database.

In BRB there is ready access to operational WSR-8 8 D radar rainfall data, and the 

Oklahoma Mesonet is a real-time environmental monitoring network that provides 

data necessary for driving the semi-distributed, physically based hydrologic 

(DPHM-RS) model. The BRB is within the Arkansas-Red Basin River Forecast 

Center (ABRFC) and five WSR-8 8 Ds located in Oklahoma, Texas, and Arkansas 

provides coverage to BRB (Figure 4.1a). The operational radar stage III data at a 

spatial and time resolution of 4x4 km and 1-hour respectively, were transformed 

from radar reflectivity in three steps as described in Chapter 3 Section 3.2. The 

WSR-8 8 D stage III precipitation data from DMIP were provided for the entire
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ABRFC region. Using GIS Arc/Info, each hourly rainfall map was clipped to a 32 x 

32 pixels window at 4 km x 4 km pixel resolution covering the BRB and its 

proximity.

The hourly gauge rainfall data were obtained from 6  Oklahoma Mesonet stations 

located around the basin (see Figure 4.1b). The Oklahoma Mesonet uses tipping 

bucket raingauges to measure rainfall accumulation at 5-min time intervals. The 

final data are accumulated to hourly time step. The point gauge rainfall data were 

interpolated to radar’s grid points (Figure 4.1c) by using Gandin’s (1963) optimal 

interpolation described in details in Chapter 3 Section 3.5.2.3. The corresponding 

hourly-observed streamflow data at the basin outlet stream-gauging station (Figure 

4.1b) were obtained from the U.S. Geological Survey (USGS).

4.3 Streamflow Prediction Using DPHM-RS Model
The streamflow prediction using gauge and radar rainfall data was carried out 

through a semi-Distributed, Physically based, Hydrologic Model using Remote 

Sensing (DPHM-RS). DPHM-RS is divided into six components: interception, 

evapotranspiration (ET), soil moisture, subsurface flow, surface flow, and channel 

routing (Figure 4.2). The Rutter interception model (Rutter et al., 1971) is used to 

model rainfall interception, and the two-source model of Shuttleworth and Gumey 

(1990) is used to estimate the actual ET based on the amount of sensible and latent 

heat fluxes available at three layers (above canopy, within canopy, and at the soil). 

Land surface evaporation and vegetation canopy transpiration are computed 

separately. A three-layer (active, transmission and saturated layers) soil profile is 

used to model the soil moisture. A uniform soil type is used for the active layer 

(usually ranges between 15 and 30cm deep), transmission, and saturated zones. The 

active layer simulates the rapid changes of soil moisture under high frequency 

atmospheric forcing, while the transmission zone simulates the relatively slow, 

seasonal soil moisture behavior. To model the saturated subsurface flow, the spatial
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variability of topography, soil properties, and the average water table depth for each 

sub-basin, in terms of the local soil index, is parameterized by the wetness or 

topographic soil index of Sivapalan et al (1987). Unsaturated soil’s water transport 

is assumed vertical and its lower boundary is at the top of the capillary fringe.

DPHM-RS can simulate two types of runoff generation mechanisms: (1) Hortonian 

or infiltration-excess and (2 ) saturation-excess, for vegetated and bare land 

separately. The surface runoff for each of the 7 sub-basins of BRB (Figure 4.1b) is 

based on its average response function derived by the kinematic wave equation. To 

obtain this response function, a reference rainfall excess of 1cm depth is supplied to 

all grid cells within each sub-basin for one time step. Then for each grid cell, the 

kinematic wave function is applied and the flow is routed from cell to cell based on 

eight possible flow directions until the reference rainfall excess for each sub-basin is 

exhausted. The response functions of the 7 sub-basins vary widely (Figure 4.3), e.g., 

the response function of sub-basin 3 has a quick hydrograph peak of 22.1m3/sec, 

followed by a few smaller peaks of about 4m3/sec because of its narrow shape and 

the presence of few channels at its mid to upstream portion (see Figure 4.1b) which 

means a quick transfer of generated runoff from this sub-basin to the main channel. 

The latter smaller peaks can be associated with the small average slope of this sub­

basin and the increased channel network from mid to downstream portion (Figure 

4.1b). The bi-modal response functions for sub-basins 6  and 7 are caused by the 

presence of large tributaries contributing flows to the main channel (Figure 4.1b). 

Routing through the drainage network is accomplished by the Muskingum-Cunge 

routing method whose variable parameters are obtained by an iterative four-point 

approach (Ponce and Yevjevich, 1978).

The DPHM-RS model input data are summarized in Table 4.4. The Exponential 

decrease parameter for saturated hydraulic conductivity ( F ), and surface & channel 

Manning roughness (nm) are the only calibrated parameters and all of them have 

moderate model sensitivity (Table 1 in Biftu and Gan, 2001). The initial values of
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these parameters were estimated based on land use classes or literature values and 

then were refined through calibration. The other parameters were either directly 

derived from field observation, satellite data, and literature. The simulations began 

with BRB at a “near wet” antecedent moisture condition (AMC), because the events 

selected were preceded by other storms. By using this “near wet” AMC, we expect 

more dynamic responses from BRB to rainstorms. Relatively dry AMC will result 

in passive hydrologic responses because a large portion of rainfall will first have to 

soak up the dry soil mantle before surface runoff can expect to occur.

4.4 Analysis of Results
The comparison of radar and gauge rainfall data estimated for BRB and the 

corresponding simulated water fluxes (i.e., soil moisture, evapotranspiration, and 

streamflow) are first presented, then the effect of rainfall spatial variability and 

hydrologic model resolution on streamflow prediction are discussed.

4.4.1 Comparison of Radar and Gauge Basin MAP over 

BRB
Because storm types of BRB are primarily season dependent, the data are grouped 

into three seasons, namely, winter - November, December, January, and February 

(NDJF); spring and early summer - March, April, May, and June (MAMJ); and late 

summer and fall - July, August, September, and October (JASO). The hourly mean 

areal precipitation (MAP) of BRB for gauge and radar data were computed by 

averaging the hourly rainfall values for the 57 grid points falling within BRB (see 

Figure 4.1c) from four years of hourly rainfall data, i.e., 1994, 1995,1998, and 1999 

from which the events in Table 4.1 were selected except 1999. Radar and gauge 

data are compared in terms of R2 and Mean Field Bias (MFB), the ratio of 

cumulative radar to cumulative gauge data, i.e., 

MFB = ^  radar _ data / ̂  gauge _ data .
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Figure 4.4 shows the scatter plots for the NDJF, MAMJ, and JASO periods for 

gauge vs. radar data. Figures 4.4a to 4.4c clearly show a significant under­

estimation of rainfall measurements by radar as compared to gauge for the NDJF
■y

period than those of MAMJ and JASO periods, as is also revealed by the lower R 

for NDJF (0.52) as compared to MAMJ (0.72) and JASO (0.58). This is because 

NDJF represents winter dominated by shallow stratiform storm systems which radar 

tends to significantly underestimate. Even though in basin MAP the averaging of 

data can smooth out individual differences, the under-estimation of winter radar 

rainfall was still visible. During MAMJ generally dominated by convective storms 

(Frederick et al., 1977), radar and gauge data are much closer to each other (Figure 

4.4b, R2 = 0.72), which suggests that radar measures convective storms more 

accurately than stratiform storms.

The mixed scatter-plot and a lower R (0.58) indicated by Figure 4.4c can be 

attributed to the possibility that both convective and stratiform storms were present 

in the JASO period because JASO includes both summer (July and August) and fall 

(September and October). Because radar tends to underestimate stratiform storms, 

data points falling well below the 45 degrees line seems to represent that o f the fall 

season (September and October) when BRB might be dominated by stratiform 

storms.

In terms of MFB, the MFB for NDJF equals to 0.69 that represents a 31% under­

estimation by the radar rainfall as compared to gauge rainfall. However, Figure 4.4b 

show that for MAMJ radar even reported slightly more rainfall than the gauge 

(MFB=1.03). For JASO the MFB for the radar vs. gauge data was 1.0 (Figure 

4.4c). For MAMJ dominated by convective storms, an MFB >1 indicates that radar 

data tend to estimate more rainfall than gauge data when convective storms 

dominate. This is partly because in scanning such storms radar data are less 

affected by the radar range effect associated with the averaging of overlapping radar
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bins, because such storms are not shallow as stratiform storms (e.g., Pereira et al., 

1998). Beyond that, since convective storms are more highly variable spatially and 

radar has much denser sampling points than sparsely spaced rain gauges, we expect 

radar to measure such storms more accurately than gauge data. Because JASO 

seems to consist of both convective (JA) and stratiform (SO) storms, the effect of 

radar under-estimation of stratiform storms was more or less cancelled out by the 

over-estimation of convective storms, resulting in a MFB of 1.00.

4.4.2 Effect of Storm Type on Simulated Water Fluxes
The effect of driving DPHM-RS (Biftu and Gan, 2001, 2004) with different 

precipitation data and storm types are assessed in terms of simulated streamflow, 

evapotranspiration (ET), and soil moisture of the active layer on event basis. The 

results for soil moisture and ET are based on the combined simulations for seven 

sub-basins. Figure 4.5 shows the scatterplots for radar versus gauge rainfall, and the 

corresponding simulated soil moisture and ET for convective (Figures 4.5a to 4.5c) 

and stratiform (Figures 4.5d to 4.5f) storms. Rainfall plots indicates that radar 

reports 19% more rainfall than gauge for convective rainfall (R2 = 0.74, MFB = 

1.19) while for stratiform rainfall gauge reports considerable more rainfall (about 

26%) than radar (R2 = 0.46, MFB = 0.74). For convective storms, as expected soil 

moisture simulated from radar data was higher than that simulated from gauge data 

(Figure 4.5b), with R2 of 0.97 and MFB of 1.01. For stratiform storms, the amount 

of soil moisture simulated from both data sources (Figure 4.5e) appear to be similar 

again with R2 of 0.94 and MFB value of 0.99. The relatively large differences 

between radar and gauge rainfall (Figure 4.5d) did not result in much differences in 

the simulated soil moisture, except slightly more scatter points lying below the 45° 

degree line.

For convective storms, MFB for rainfall was 1.19 (radar > gauge rainfall), yet ET 

simulated by radar data was slightly less than that for gauge data (Figure 4.5c), with 

MFB of 0.96, which is slightly less than the MFB for soil moisture of 1.01. This is

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



not quite as expected because more moisture should mean more ET. However, the 

difference between the two MFB is very small. For stratiform storms, gauge data 

resulted in slightly more ET than radar data (MFB=0.93) (Figure 4.5f).

The corresponding simulated streamflow shows a more sensitive response to radar 

and gauge rainfall data (scatterplots not shown), where for convective storms MFB 

was 1.32 because radar reported more rainfall than gauge, and vice versa for 

stratiform storms, where radar reported less rainfall than gauge with a MFB of 0.73. 

The result by DPHM-RS is expected because during a storm, we would expect a 

river basin to generally show more dynamic hydrologic response in terms of runoff 

generations than in terms of changes to soil moisture and ET (which should be 

relatively small because of high humidity), particularly for big storms that generate 

surface runoff. Therefore we should assess the effect of precipitation data accuracy 

on simulated water fluxes in terms of streamflow, not soil moisture or ET. Further, 

we don’t have observed data for the latter.

DPHM-RS’s simulated streamflow forced with rainfall input from gauge and radar 

data are analyzed further. The discrepancies between simulated and observed 

hydrographs are assessed in terms of % Error in peak discharge, % Error in total 

discharge volume, Time to peak discharge error, and the Efficiency coefficient (Ef) 

of Nash and Sutcliffe (1970).

The rainfall histograms for each sub-basin, and corresponding streamflow 

hydrographs for the six selected flood events simulated by DPHM-RS are shown in 

Figures 4.6 and 4.7 respectively. Once again, it can be observed that radar tend to 

report more rainfall than gauges for convective storms (Figures 4.6a to 4.6c), and 

less rainfall for stratiform storms (Figures 4.6d to 4.6f), with the exception of sub­

basin 5 for the medium stratiform storm where radar reported more rainfall than 

gauges (Figure 4.6e), which can be attributed to: (i) the ability of the radar to record 

intense localized storms which can be entirely missed by the sparse rain gauges
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(e.g., for sub-basin 5 the largest difference between grid point rainfall was 

13.14mm/hr from radar data as compared to 0.59mm/hr from gauge data), and (ii) 

errors associated with data processing; for instance, for missing radar data values, a 

maximum-recorded rainfall at the gauge’s site was assigned to all grid points falling 

within the gauge’s radius of influence; also, it is possible that the MFB used to 

correct the radar data for this particular stratiform storm (Dec 8 -  Dec 14, 1994) was 

not representative of the actual rainfall rate at sub-basin 5.

The inability of a few raingauges to capture the spatial variability o f rainfall is 

reflected by the difference in time-to-peak-flow error, which is smaller for radar 

than for raingauge derived streamflow hydrographs (Table 4.5). In Figure 4.7c, 

which represents a small convective storm, both radar and raingauge data derived 

hydrographs substantially under-estimated the observed counterpart. Because the 

magnitude of backscattered signals (radar echoes) detected by radar is heavily 

dependent on the target size and the number of targets within the scanned volume 

(Smith et al., 1996), radar measurement of small storms tends to suffer from severe 

under-estimation problem. Also, tipping bucket raingauges tend to underestimate 

small and large rainfall rates because of wind and under-catch problems (Legates 

and DeLiberty, 1993). In Figures 4.6d and 4.7d, it seems that this large stratiform 

storm was associated with a deep convective system that resulted to a more accurate 

radar rainfall data, and its simulated streamflow hydrograph being more or less 

equal to that of gauged rainfall data.

4.4.3 Effect of Rainfall Spatial Variability on Streamflow 

Prediction
To assess the effect of spatial variations of rainfall on estimated streamflow, 

hydrographs derived from distributed radar rainfall are compared to lumped radar 

rainfall derived hydrographs for the six flood events (Figures 4.8a to 4.8f). Also, the 

effect of representing the rainfall for the whole catchment with radar rainfall series
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of a few pixels (grids), which are sparsely distributed over the catchment area, is 

assessed. To accomplish this, three pixels were randomly selected within the Blue 

River Basin area and numbered from A to C (see Figure 4.1b). Figures 4.8a to 4.8f 

indicate the results of this assessment.

Even for the least spatially variable stratiform events 4, 5, and 6  (Figures 4.8d to 

4.8f), the use of a few radar pixels to represent rainfall for the whole basin area can 

lead to significant errors. These results are totally in agreement with the findings of 

Wilson et al. (1979) and Pessoa et al. (1993) from their synthetic experiments. 

Additionally, the hydrographs derived from the fully distributed and averaged 

(lumped) radar rainfall data are not so different from one another. Thus for event 

studies, appropriate spatially averaged rainfall data (at hourly time step) seem 

adequate to drive the Blue River Basin.

4.4.4 Effect of Hydrologic Model Resolution on Streamflow 

Prediction
The influence of model resolution on streamflow hydrographs is analyzed by 

integration of sub-basins that exhibit similar response functions (i.e., sub-basins 1 

and 2; 6  and 7) (see Figures 4.1b and 4.3) and comparison of the generated 

hydrographs. The model parameters were held constant for this case where 5 sub­

basins represent the entire basin as it was for the 7 sub-basins scenario. Distributed 

radar and raingauge rainfall data were used to predict streamflows. Figures 4.9a to 

4.9d show the results of the large and medium flood events (i.e., 1, 2, 4, and 5). It 

can be seen that model resolution has significant effect on the hydrological response 

of this basin, and the use of 5 sub-basins setup adopted in this case study could lead 

to a marked loss in hydrograph accuracy. This is partly because the hydraulic 

behavior for the processes involved in modeling the subsurface flow by DPHM-RS 

(i.e., groundwater rise and saturation from below) is highly affected by topographic 

differences. Our results agree with the findings of Krajewski et al. (1991) who, in a
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synthetic experiment, reported a severe underestimation of flood peaks by the 

lumped model as compared to the distributed model.

In addition, the 5 sub-basins setup was used to assess whether the inability to 

predict the second observed peaks of events 1 and 2  can be attributed to the basin 

subdivisions and their response functions. Because the integrated sub-basins have 

bimodal response functions (see Figure 4.3), it was expected that it would enhance 

their influence in simulating hydrographs with a second peak. In order to raise the 

peak flow for the 5 sub-basins case obtained above, the infiltration was set to zero 

(Figures 4.10a to 4.10d), which in practice applies to runoff situations where either 

rainfall rates are much higher than the infiltration rates or soils are of very low 

permeability. There is now a second peak especially for event 2 (Figure 4.10b), 

however, this happened at the expense of less accurate recession limbs possibly 

because of the absence of infiltration to dampen the recession process.

When BRB was sub-divided into 13 and 20 sub-basins, the sub-basins’ response 

functions became highly variable, with several relatively large and many small 

response functions (see Figure 4.11). The streamflow simulated by these response 

functions for the 13 and 20 sub-basins (results not shown) revealed that the few 

large response functions tended to dictate the shape of the resulting hydrographs, 

which turn out to be less representative of BRB’s observed hydrographs. Even 

though using large number of sub-basins (e.g., 13 or 20 sub-basins) reduces the 

averaging effect of rainfall as compared to small number of sub-basins (such as the 

case of 5 sub-basins) that could give rise to non-representative rainfall, this 

advantage seems to be outweighed by the dominating effect of a few large response 

functions which can be undesirable.

Apparently there is a need to strive a balance or trade-off between a coarse sub­

division of a river basin to avoid an excessive averaging effect of input rainfall data 

(to properly account for the spatial distribution of rainfall) or an overly refined sub-
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division, which could lead to the dominating effect o f a few large response 

functions. However, the effect of excessive averaging of input rainfall data seem to 

have less influence as shown in Section 4.4.3 where the simulated hydrograph from 

distributed and lumped (i.e., basin MAP) rainfall inputs were almost identical. On 

the basis of simulated hydrographs, subdividing the BRB into 7 sub-basins appears 

to be more or less the optimum.

4.5 Discussion and Conclusions
As the primary input for modeling basin hydrologic processes, it is essential that we 

use representative precipitation data. Even though radar data such as the WSR-8 8 D 

radar rainfall data can generally capture the spatial variability of precipitation fields, 

the accuracy of its rainfall depth depends on the storm type (i.e., convective or 

stratiform) and size. The spatial variability of rainfall is known to decrease with 

increase in time and spatial scales, but there are few guidelines on what should be 

an appropriate choice of resolution for hydrologic modeling. Pessoa et al. (1993) 

showed that a time integration of less than 1 hour has no significant effect on the 

hydrological response. Here we used 1-hour time step (limitation from available 

data), so implicitly we assume that hourly time step represent accurate time 

distribution of rainfall. The results presented here may be limited by the choice of 

sizes of sub-basins and the time scale of available data.

On a whole, the degree of basin subdivision should be dependent on the terrain 

complexity, and the availability of landuse, soil and channel network data of 

appropriate resolution (e.g., Laurenson and Mein, 1988). This study used a trial and 

error approach based on the surface runoff response functions to determine the 

optimum sub-division for a river basin. Because basin hydrology is a dynamic 

outcome of terrain features, land use, soil properties, channel networks, and climate 

that interact with each other over a range of scales, there is likely no one universal
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optimal resolution, even to the same basin subjected to a wide range of hydrologic 

experiences.

The published soil types and properties were assumed to be true in this study, but 

there are uncertainties associated with both the soil types and the soil properties 

defined in terms of soil type. Inaccuracies in channel cross sections can give rise to 

errors in hydrograph shape and timing, but this may not be a problem here because 

field-measured values were used. Overall, the conclusions of this research are:

(a) The storm type (convective/stratiform) and size play a significant role in the 

accuracy of WSR-8 8 D stage III radar rainfall estimates, and is reflected in 

the quality of simulated hydrographs in terms of peak flow and total runoff 

volume. The problem of radar underestimation of rainfall generally grows 

with a decrease in storm magnitude, even for convective storms.

(b) To obtain reliable streamflow predictions, the spatial variability o f rainfall 

should be properly accounted for. Point rainfall collected by rain gauges 

may not realistically represent the spatial precipitation field over a river 

basin particularly for convective storms that are highly variable spatially. 

This justifies the expensive and tedious effort to account for spatial 

variability of rainfall either via dense rain gauge monitoring networks 

(which is logistically impractical and expensive), radar meteorology, and 

meteorological satellites.

(c) To produce reliable flood peaks, besides representative distributed rainfall 

data, the resolution of sub-basins divided from a river basin also plays an 

important role for effectively handling the spatial variability of rainfall, and 

for avoiding the dominating effects of certain large sub-basins on the overall 

hydrograph. It seems dividing BRB into 7 sub-basins is more or less the 

optimum resolution.
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Table 4.1 Characteristics of the six selected flood/storm events used in the study.

Event Storm Type Storm
Size

Period Total
rainfall
depth
(mm)a

Flood peak 
(m3/sec)

1 Convective Large March 15-24, 1998 81.93 202.65
2 Convective Medium March 13-22, 1995 67.31 148.15
3 Convective Small March 9-12, 1994 4.47 34.81
4 Stratiform Large January 4-11, 1998 124.85 175.84
5 Stratiform Medium December 8-14, 

1994
48.55 142.35

6 Stratiform Small January 26-31, 
1995

21.26 44.15

a Total rainfall depth is computed from the Mean Areal Precipitation (V 
entire basin using raingauge data

AP) for the
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Table 4.2 Area, slope, and dominant soil types for each sub-basin of Blue River
Basin.

Sub-basin # Area [Km2] Soil type Average Slope [%]

1 170.57 Silty clay loam 2 .1 1

2 150.34 Silty clay loam 2.18

3 169.68 Silty clay loam 2.03

4 221.51 Sandy clay 2.19

5 188.41 Clay 2 .2 0

6 204.25 Clay 2.30

7 130.37 Clay 2.62
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Table 4.3 Percentage of different land cover types for each sub-basin of Blue River
Basin.

Sub­
basin #

Land use classes

Woody
Savannah

Deciduous
Broadleaf
Forest

Water
body

Grasslands Croplands Urban and 
Built-Up

1 91.57 2.45 0 .0 1 3.74 1.42 0.81
2 88.73 0 .0 1 0 .0 1 11.24 0 .0 1 0 .0 1

3 86.43 10.53 0 .0 1 1.36 1.67 0 .0 1
4 68.70 28.02 0 .0 1 0 .0 1 3.23 0 .0 1
5 83.46 16.28 0 .0 1 0 .0 1 0.25 0 .0 1
6 78.34 16.72 0 .0 1 0.33 1.50 3.10
7 48.00 51.97 0 .0 1 0 .0 1 0 .0 1 0 .0 1
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Table 4.4 Input data of DPHM-RS model (modified from Biftu and Gan, 2001).

Data type Parameters Source
Topographic Mean altitude, aspect, flow 

direction, surface slope, 
drainage network, and 
topographic soil index

DEM of USGS National 
Elevation Dataset (NED)

Land use Spatial distribution of land 
use classes, surface albedo, 
and vegetation index

NOAA-AVHRR satellite 
data

Soil properties Spatial distribution of soil 
types, antecedent moisture 
content, and soil hydraulic 
properties

U.S. State Soil 
Geographic (STATSGO)

Stream flow Hourly stream flow data at 
the catchment outlet, 
channel cross-sections

U.S. Geological Survey 
(USGS)

Meteorological Hourly: precipitation, short­
wave radiation, air 
temperature, ground 
temperature, wind speed, 
and relative humidity

Oklahoma Mesonet 
stations and NWS 
Hydrology Laboratory 
(NWS-HL)
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Table 4.5 Statistics of simulated hydrographs by DPHM-RS model for radar and
gauge rainfall cata.

Event Data
source

% Error in 
peak discharge

% Error in 
total
discharge
volume

Time to 
peak 
discharge 
error3

Efficiency
(Ef)

1 Radar -5.32 -6.48 -25 0.87
Raingage -14.07 -18.05 -2 0 0.82

2 Radar -0.85 -7.88 -23 0.95
Raingage -13.36 -30.39 -24 0.79

3 Radar -44.51 -40.73 -8 0.24
Raingage -61.14 -59.53 -19 -1.34

4 Radar -1.72 -0.75 +25 0.92
Raingage +13.90 +5.52 + 6 0.89

5 Radar -36.24 -23.53 +4 0.75
Raingage -1 0 .1 0 +3.55 +7 0.90

6 Radar -49.95 -35.51 -3 0.15
Raingage -8.52 +4.88 -4 0.81

Negative error denotes underestimation
a Underestimation of observed peak discharge led to large time to peak error (see 
Figure 4.7)
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Figure 4.1 Map of Blue River Basin (BRB) indicating (a) WSR-8 8 D 
radar sites providing coverage to BRB: Circles show the radar range 
rings with a radius of 230 km, (b) seven sub-basins (label 1-7) of BRB 
derived in this study: Letters A-C shows the locations of arbitrary 
selected grids used in rainfall spatial distribution analysis, and (c) 57 
radar grid points falling within BRB.
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(C)

Figure 4.1 continued
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Figure 4.2 A schematic diagram showing the major components 
of DPHM-RS rainfall-runoff model.
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Figure 4.3 Kinematic surface runoff response functions for each of the seven sub- 
basins of Blue River Basin (see Figure 4.1b).
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Figure 4.4 Comparison of hourly rainfall measurements (mm) from 
gauge and radar. Four years of hourly data were used: 1994, 1995, 
1998, and 1999.
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Figure 4.5 Scatterplots of radar and gauge hourly rainfall data and their 
corresponding simulated evapotranspiration and soil moisture at the active 
layer, where C= Convective storm, and S = Stratiform storm.
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Figure 4.7 Observed streamflow hydrographs simulated by DPHM-RS model forced 
by gauged and radar rainfall data, for convective storms: (a) Event 1, (b) Event 2, (c) 
Event 3; and stratiform storms: (d) Event 4, (e) Event 5, and (f) Event 6 .
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Figure 4.8 Streamflow prediction by radar inputs for averaged (lumped), fully 
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Event 1, (b) Event 2, (c) Event 3; and stratiform storms: (d) Event 4, (e) Event 5, 
and (f) Event 6 .
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Figure 4.9 Streamflow prediction indicating hydrographs corresponding to radar 
and raingauge inputs for the case of 5 and 7 sub-basins for: convective storms: 
(a) Event 1, (b) Event 2; and stratiform storms: (c) Event 4, and (d) Event 5.
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Figure 4.10 Peak flow prediction indicating hydrographs corresponding to radar and 
raingauge inputs for the case of 5 sub-basins for: convective storms: (a) Event 1, (b) 
Event 2; and stratiform storms: (c) Event 4, and (d) Event 5.
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functions of the Blue River Basin for the case of: 
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Chapter 5

Summary, Conclusions and 

Recommendations for Future Research

5.1 Summary and Conclusions
The Infrared-Microwave Rainfall Algorithm (IMRA) was developed to estimate 

rainfall field from satellite data for basin hydrologic modeling. IMRA is designed to 

utilize infrared (IR) brightness temperatures (TBs) as the main satellite information 

input. It uses the 243° K IR threshold temperature, Slope technique (ST) and 

Hessian technique (HT) to determine the IR image cloud-top temperature gradient 

for discriminating rain/no-rain pixels. IMRA allows for the adjustment of derived 

IR-rainfall estimates using microwave (MW) TBs information and spatial 

filtering/smoothing techniques. The testing of the IMRA algorithm was based on 

four months of data: June-July 2002 (relatively light rainfall) and August-September 

2003 (relatively heavy rainfall) data. Detailed analysis of these datasets showed that 

the 2002 dataset were dominated by stratiform rainfall while those of 2003 were 

dominated by convective rainfall.
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IMRA rainfall estimates were validated both on hourly and daily basis for different 

spatial scales (4 km, 12 km, 20 km, and 100 km). Two sets of observed rainfall data 

were used in this validation: high-temporal-and-spatial resolutions NCEP stage IV 

gauge-adjusted radar rainfall data and high-quality daily rain gauge data. The hourly 

NCEP stage IV radar rainfall products were chosen as the primary ground-truth for 

the IMRA rainfall estimates because they are at similar spatial resolution (i.e., 4 km 

x 4 km) as the GOES IR data used for satellite rainfall estimation.

IMRA rainfall estimates are assessed by comparing rainfall data from gauge, radar, 

and satellite estimates and the streamflow predicted by Sacramento Soil Moisture 

Accounting (SAC-SMA) model with the observed data. Generally, the Slope 

technique provided good rainfall estimates for both stratiform and convective 

systems (i.e., 2002 and 2003 datasets respectively), while the Hessian technique 

provided good estimates for convective systems and significantly underestimated 

the stratiform rainfall (2002 dataset). However, the Slope technique performed 

slightly poorer than the Hessian technique for convective rainfall systems (i.e., 2003 

dataset). Independent qualitative and quantitative analysis of the Hessian technique 

(Rozumalski, 2000) showed reasonable performance of the technique for well- 

defined and short duration convective systems. The Hessian technique was 

originally developed for intense convective systems, and hence the technique is 

expected to perform better during these events, although there has been 

overestimation of daily rainfall accumulations (e.g., Vicente et al., 1998; 

Rozumalski, 2000), which agrees with the results obtained in this study.

The use of microwave (MW) data as an adjustment factor generally led to 

underestimation of observed rainfall in both hourly and daily basis. This can be 

partly due to poor sampling frequency of microwave data (once or twice per day) as 

compared to hourly GOES IR data, and partly due to diurnal characteristics of 

rainfall system, such that precipitation occurs quite regularly during certain time
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periods of the day over the study site, which can potentially be missed by the less 

frequent (once or twice per day) satellite acquiring MW data. The satellite can 

potentially be making overpasses at a time when it usually does not rain.

Driving the SAC-SMA model with IMRA rainfall estimates, instead of gauge 

rainfall did improve the model performance slightly, for the case when the basin was 

subdivided into 4 sub-basins defined by the same SAC-SMA model parameters 

partly because parameters could not be recalibrated due to a lack of observed 

streamflow data at sub-basin scale. Apparently it is possible to use such satellite 

rainfall estimates for hydrologic modeling in regions where no ground based rainfall 

measurements are available. Andersen et al. (2002) pointed out that improved 

simulation at sub-basin scale seems to depend partly on the precipitation input, and 

partly on the process relations, grid scale, and other types of input data and the 

calibration method. Hence, IMRA rainfall estimates can potentially improve model 

performance because hydrologic responses from a hydrologic model generally 

depends on the precipitation forcing, which are generally better if  they are of 

relatively high spatial resolutions (i.e., satellite versus raingauges data) (Guetter et 

al., 1996; Tsintikidis et al., 1999).

Even though the WSR-8 8 D stage III radar rainfall data can generally capture the 

spatial variability of precipitation fields, the accuracy of its rainfall depth depends 

on the storm type (convective or stratiform storms). The various errors associated 

with WSR-8 8 D stage III data may be caused by the use of sparsely spaced point 

measurements from raingauges to correct for the bias of radar data, difficulty in 

identifying rainfall type resulting in use of wrong bias adjustment factors, errors in 

geo-referencing, sampling errors and errors due to radar data processing, such as 

averaging of overlapping radar data.
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This research component involves: (a) assessing the accuracy of WSR-8 8 D stage III 

radar rainfall data using point gauge rainfall data, (b) the development of Haar 

wavelet scheme to merge radar and gauged rainfall data by exploiting the strength of 

radar that captures the spatial variability of rainfall and the strength of raingauges 

that provide accurate measurements of mean rainfall depth, so that the 

underestimation of radar rainfall depths is corrected for while the spatial variability 

of the original radar data is maintained. The Haar wavelet was used because the 

wavelet coefficients serve as directional gradients of the rainfall process. The 

wavelet scheme and the Statistical Objective Analysis (SOA) scheme of Pereira et 

al. (1998) were compared in terms of individually merged rainfall data and the 

streamflow hydrographs simulated by the semi-distributed, physics-based rainfall- 

runoff model (DPHM-RS of Biftu and Gan; 2001, 2004) driven by these two 

datasets, (c) the suitability of operational WSR-8 8 D stage III radar rainfall data over 

rain gauge data in basin-scale hydrologic modeling with respect to storm type and 

size, and (d) the effect of rainfall spatial variability, based on the modeling 

resolution of DPHM-RS, on streamflow prediction.

The analysis was carried out in the Blue River Basin (BRB) of Oklahoma on event 

basis because of the availability of radar rainfall estimates, topographical, land 

use/cover, solar energy, and meteorological data at a relatively long period (i.e., 

from 1994 to 2000). The WSR-8 8 D’s underestimation of precipitation was generally 

more pronounced during the cold season (September to February) normally 

dominated by stratiform storms than the warm season (March to August) normally 

dominated by convective storms. With respect to gauged data, the wavelet technique 

is generally better than SOA in predicting the mean field depths. However, it tends 

to slightly under-estimate while SOA tends to slightly over-estimate the standard 

deviation of radar rainfall data. Though the wavelet method may have an edge over 

SOA, more extensive testing are necessary before we can conclude which technique 

is better.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Radar data generally simulated more accurate runoff hydrographs than gauged data 

for convective storms but poorer for stratiform storms because radar significantly 

under-estimated stratiform storms. This implies that, for hydrologic applications, it 

is important to identify the storm types associated with the WSR-8 8 D radar rainfall 

data because for convective rainfall cases, WSR-8 8 D stage III radar rainfall data are 

generally useful for basin-scale hydrologic simulations because it can better capture 

both the depth and the spatial variability of precipitation than raingauge data, while 

for stratiform storms, WSR-8 8 D stage III radar rainfall data tend to under-estimate 

the streamflow significantly unless the data were first corrected using rain gauge 

measurements. The problem of radar under-estimating rainfall generally grows with 

a decrease in storm magnitude, even for convective storms. Thus, storm size plays a 

significant role in the accuracy of WSR-8 8 D radar rainfall.

The SOA and Wavelet data merging schemes substantially reduced radar’s under­

estimation of observed streamflow hydrographs for stratiform storms, but the 

adjustment seems to depend on how accurate are the depth measurements of gauges 

and whether radar data under-estimate the rainfall significantly, such as the case of 

stratiform storms. The results also indicate that a raingauge network of 6  gauges in 

1233 km2 is sufficient to improve the underestimation of radar rainfall data, and the 

improvement increases with increasing difference between gauged and radar rainfall 

depths. The results also show the general necessity of considering the spatial 

variability of precipitation data, particularly for convective storms that are highly 

variable spatially and so cannot be adequately represented by point measurements 

collected by rain gauges over a river basin. This justifies the expensive and tedious 

effort to account for the spatial variability of rainfall either via dense raingauge 

networks, radar meteorology, or meteorological satellites. Furthermore, besides 

distributed rainfall data, it is usually necessary discretizing a river basin into sub­

basins of appropriate resolution so as to effectively handle the spatial variability of
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rainfall.

5.2 Recommendations for Future Research
Even though IMRA gave encouraging results in Peace River Basin of Florida, USA, 

the improvement in the predicted streamflow was marginal when compared to 

hydrographs produced by gauged rainfall, and it was tested with GOES infrared (IR) 

data at 1-hour temporal resolution only. To adequately assess the potential of 

satellite rainfall estimates derived by IMRA in hydrologic modeling, we need to 

acquire GOES infrared (IR) data at 30-minutes temporal resolution, and data such as 

topographical, land use/cover, solar energy, and other hydro-meteorological data 

necessary for running more physics-based hydrologic models than the SAC-SMA 

model. If the aforementioned data are available, the following recommendations can 

be implemented to improve the quality of rainfall estimates from satellite data.

(1) Develop techniques for identifying rainfall regime/type, preferably from 

satellite information, such as the convective/stratiform rain classification 

technique using microwave data and the 2A23 rain type product provided by 

Precipitation Radar (PR) on board the TRMM satellite (Grecu and 

Anagnostou, 2001), although both suffer from poor time resolution (i.e., 

once or twice per day);

(2) Implement the IMRA-Slope method using GOES IR data at 30-minutes 

temporal resolution. The derived rainfall estimates should be assessed by 

driving distributed or semi-distributed physically based hydrologic models 

such as the DPHM-RS model (Biftu and Gan, 2001, 2004) to test the 

advantage offered by spatially distributed satellite rainfall data of high 

temporal resolution over gauged rainfall;

(3) Further test the satellite rainfall estimation by the cloud growth technique of 

Vicente et al. (1998) modified by Boi et al. (2004), which requires GOES IR 

data at 30-minute temporal resolution because it compares cloud growth
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between two consecutive IR images.

Lastly, the quality of raw WSR-8 8 D stage III radar rainfall data and the subsequent 

merging of radar and raingauge data using wavelet or SOA schemes is affected by 

geo-referencing errors inherent with such radar rainfall data, sampling issues 

associated with different rainfall measurement technique between radar (i.e., areally 

averaged) and gauge (i.e., point observations) and its interpolated derivative. It is 

recommended that future work should try to quantify the amount of these errors and 

incorporate them in the analysis.
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