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Abstract 

 

Introduction 

 Early immune maturation and gut microbial composition have a clear impact on 

the development of asthma and atopy in children. There is a large body of evidence 

on the association between immunoglobulin A (IgA), asthma, and other atopic 

diseases. Low secretory Immunoglobulin A (sIgA) (mucosal) levels in infancy have been 

associated with the development of asthma and atopic disease in childhood. As well, 

absence of serum IgA is associated with increased risk for asthma. Serum IgA levels 

have also been shown to be increased in those with food sensitization, despite the 

levels being normal for their age. In this thesis, we determined if lower levels of the 

primary gut mucosal immunoglobulin (sIgA) during infancy were associated with the 

development of asthma and/or wheeze in a large prospective, normal birth cohort. In 

another cohort from a health administrative database, we determined associations 

between serum IgA during in relationship to Emergency Department (ED) visits for 

asthma and/or wheeze (AW) in childhood. 

 

Objectives 

 This thesis aims to determine the relationships between fecal secretory 

immunoglobulin A and childhood AW (Study 1) and serum IgA and childhood 
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emergency department visits for AW (Study 2). The objective of study 1 was to 

determine whether infants with low fecal sIgA (vs normal-high) levels in the first few 

months of life have increased risk for development AW. Study 2 was developed to 

determine if low serum IgA children is a useful biomarker for future ED visits for AW. 

 

Methods 

In study 1, 951 infants from the CHILD study sites, Vancouver, Edmonton and 

Winnipeg were included based on availability of stool samples. A 3-category variable 

was used: breastfed (any fecal sIgA level), formula fed with low sIgA levels (lowest 

tertile) and formula fed with normal-high fecal sIgA levels (highest 2 tertiles). Logistic 

regression models determined the association (Odds Ratio, OR) between low or 

normal to high fecal sIgA levels in non-breastfed infants and child AW in comparison 

to breastfed infants, adjusting for confounding factors identified based on a directed 

acyclic graph to determine the effect of fecal sIgA levels on childhood AW. In study 2, 

anonymized administrative health data of 9,938 children who had serum IgA levels 

assessed when they were <=3 years of age between April 1, 2013 and June 30, 2018 

was obtained for analysis from Alberta Health Services (AHS) (Alberta, Canada). 

Multiple logistic regression models determined the association (Odds Ratio, OR) 

between normal to high serum IgA (top two tertiles compared to the lowest tertile) and 

child ED visits for AW adjusting for covariates identified by directed acyclic graph. 
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Results 

In study 1, when compared to breastfed infants, formula fed infants with low 

fecal sIgA levels had 2.20 times the odds of having a diagnosis of asthma in the first 

three years of life (OR: 2.13; 95%CI: 1.03, 4.43) when controlling for confounding 

factors. Formula fed infants with normal to high fecal sIgA were at increased risk for 

atopic AW at age 1-3 years (OR: 5.45; 95%CI: 1.69, 17.31) compared to their 

breastfeed counterparts. In study 2, when compared to infants with low serum IgA 

levels, infants with normal-high serum IgA levels (ages 1-2) had an adjusted OR of 

having an ED visit for AW of 1.21 (95%CI: 1.00, 1.46), controlling for confounding 

factors. Those with normal-high levels (from 2-3 years) also had significantly increased 

odds of atopic AW (adjusted OR: 1.79 (95%CI: 1.03, 3.09) when compared to those 

without.  

 

Conclusion 

Low levels of infant produced fecal sIgA was associated with increased odds of 

asthma, whereas normal to high levels were associated with increased odds of atopic 

AW in comparison to breastfed infants. Normal-high levels of serum IgA in the first 3 

years of life appear to be associated with ED visits for AW and atopic AW from 1 until 

age 3. Further studies are needed to define the relationships between, sIgA, serum 

IgA, and asthma and atopic sensitization which may provide new insight into the 
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development of respiratory disease and atopic illness in childhood. Overall, both 

serum IgA and secretory IgA may be important biomarkers to aid in early identification 

and treatment of those prone to develop atopic diseases like asthma. 
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This thesis is comprised of 4 separate sections: 

 

Chapter 1: consists of a literature review. The review is followed by an outline of the 

overall purpose, objectives, hypotheses, and sample size calculation for the studies. 

 

Chapter 2: presents the first research study on fecal secretory IgA and asthma in a 

large, prospective normal birth cohort. 

 

Chapter 3: presents the second research study on serum IgA and emergency 

department visits for asthma in a retrospective administrative health database cohort. 

 

Chapter 4: presents general discussion and conclusions based on these works. This 

chapter also covers limitations, strengths, bias assessment and a summary of the 

significance of these findings for families and in clinical practice. 
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1.0 Chapter 1: Introduction 

Chapter 1 provides a literature review on the relationship between asthma and 

Immunoglobulin A (IgA), first focusing on the burden of asthma and why it is a key area 

of study. The chapter then focuses on the factors we understand to play a role in the 

development of asthma, with a particular interest on the role of IgA, the microbiome 

and other factors. The final sections of this chapter outline the role of IgA in mucosal 

immunity, gaps of understanding about the role/association between IgA and asthma 

development, and introduce how this thesis fills some of those gaps.  

 

1.1 The Burden of Asthma  

Atopic disease is an umbrella term that classifies a group of diseases (asthma, 

atopic dermatitis, allergic rhinitis and food allergy) linked by a shared underlying 

problem with the immune system. The main connection between these diseases is 

atopy, which is the development of immunoglobulin E directed against allergens. The 

prevalence of asthma and other atopic diseases place a huge economical and physical 

burden on the world’s population—particularly in western societies [1]. Globally, there 

are estimated to be 300 million cases of asthma and nearly 100 deaths per day are 

attributed to asthma [1,2]. As well as impacting morbidity and mortality, asthma and 

allergy present a significant financial burden to health care. It is estimated that annual 

asthma-related health care costs for Canadian provinces vary between $46 million 

(British Columbia) to $141 million (Ontario) per year. Other atopic diseases have been 

reported to pose a similar economic burden [1,2]. These intricately linked diseases 

significantly reduce quality of life for patients and their families, as well as present a 

large financial cost through missed work and school [2–4]. As such, it is a key area of 

research to understand the factors associated with development of asthma.  
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1.2 Asthma Phenotypes and Trajectories in Children  

  This thesis focuses primarily on childhood asthma, specifically until the end of 

age five. Although a diagnosis of asthma before age five has proved difficult, in the last 

decade, researchers and clinicians have become adept in diagnosing asthma at an 

early age and characterizing the various asthma phenotypes and trajectories that 

predict either short-term wheezing or long-term persistent asthma. In a seminal study 

by Henderson et al., (2008), 6 major trajectories of early childhood wheezing were 

characterized [5]. These trajectories include transient early, prolonged early, 

intermediate, late onset, persistent and never/infrequent which predict chronic and 

persistent asthma into adulthood to varying degrees. As noted in an editorial by Sears 

et al., (2015), there are major shifts towards an increase of prevalence and probability 

of wheezing in intermediate and late phenotypes, which is driven by atopic 

sensitization at 3 and 4 years, respectively [6]. It is these phenotypes in particular which 

are characterized by a greater proportion of atopic sensitization and severity of 

symptoms that are less likely to go into remission in adulthood. By contrast, individuals 

labelled as (non-atopic) transient early and prolonged early phenotypes are less likely 

to have persistent disease into adulthood. Many studies report on the prevalence of 

childhood asthma and wheezing in relation to various demographic and biological 

factors. Longitudinal studies report that wheezing that starts in early life and persists 

past 6 years of age generally persists into adulthood. However, it is important to keep 

the various phenotypes of trajectories in mind as we try to understand underlying 

mechanisms of disease and work to predict outcomes and manage or prevent 

persistent asthma [7].   
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1.3 Early Life Factors and the Development of Asthma  

As noted in these asthma phenotype and trajectory papers, traditionally 

recognized risk factors cannot fully explain the shifting trends of incidence and 

prevalence of childhood asthma and atopy in the past few decades. New causation 

theories are required to explain these trends. The impact of early exposures on disease 

development, known as Developmental Origins of Health and Disease, include various 

pre- and post-natal factors such as gestational age, mode of delivery and breastfeeding 

that have been shown to effect the development of atopic disease [8]. These effects 

are mediated through multiple epigenetic mechanisms; for example, nutrition and the 

microbiome influence the promotion of atopic pathways in susceptible individuals [8]. 

In particular, emerging evidence highlights the significant impacts the human 

microbiome has on the development of early immune tolerance, affecting future 

development of asthma and atopy [9]. For proper development, fecal-oral and vaginal-

oral transmission (‘seeding’) of the microbiome at birth during delivery, and further 

development of a healthy microbiome via breastfeeding, are critical in the 

establishment of a ‘healthy gut’ microbiota [10]. A healthy microbiome is linked to 

disease prevention in issues ranging from depression and atopic disease to obesity  

[11].   

One of the major determinants of a healthy microbiome is mucosal immune 

system function. Immunoglobulin A (IgA) is the major mediator of humoral mucosal 

immunity and is particularly important in development and regulation of the 

microbiome [12]. In particular, differential binding patterns of mucosal IgA to 

microbiota in early life are associated with gut microbial dysbiosis and later 

development of atopic diseases [13]. This thesis will investigate the associations 
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between development of fecal secretory and serum IgA levels early in life, and 

existence of preschool asthma and wheeze.  

  

1.4 Mucosal Immunity, Immunoglobulin A, Asthma and the Microbiome  

An understanding of the ontogeny, or normal development, of the mucosal 

immune system is critical to understand the relationship between IgA and asthma. This 

section will focus on the role of IgA in development of mucosal immunity.  

  

1.4.1 Basic Mucosal Immunity  

The mucosal immune system of humans is a series of lymphoid-associated 

structures at mucosal surfaces throughout the body, including the breast, and 

gastrointestinal, respiratory and urogenital tracts [14,15]. The extensive immune 

protection at mucosal surfaces is mediated by mucosal associated lymphoid tissues 

(MALT), which form vast interconnected networks by the elaborately regulated, 

selective localization of cells and molecules activated at one mucosal site and seeded 

to other sites throughout the body [15]. At these mucosal sites, there is a predominance 

of dimeric IgA (bound by a J-chain) secreting plasma cells. Secretion of this molecule 

onto mucosal surfaces is facilitated by binding of dimeric IgA to polymeric 

immunoglobulin receptor protein (pIgR) which also forms the stabilizing secretory 

component (SC), forming secretory IgA (sIgA) when cleaved and secreted into the 

mucosal surfaces. SC helps stabilize sIgA from breakdown by proteases. Secretory 

Immunoglobulin M (sIgM), which is also polymeric and bound to SC, is secreted by a 

similar process. As well, small numbers of IgM, Immunoglobulin G (IgG) and 
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Immunoglobulin D (IgD) and rare Immunoglobulin E (IgE) secreting plasma cells are 

found at mucosal sites [16]. IgG and IgD are found early in mucosal immune 

maturation, and are also compensatory antibodies in individuals with IgA-deficiency, 

but they are not bound to SC or J-chains [16].   

There are two IgA subclasses (IgA1 and IgA2) which vary in proportion at 

different mucosal sites. IgA2 is predominant in the gastrointestinal tract, whereas IgA1 

is predominant in the salivary glands and nasal lymphoid tissues. Response to protein 

antigens at the mucosal sites are predominantly IgA1, whereas IgA2 subclass 

antibodies are primarily produced in response to polysaccharide antigens [17]. 

Induction of an IgA mediated immune response to antigens and microbes is thought 

to occur largely via antigen sampling through M-cells in Peyer’s patches, and through 

both T-cell independent and dependent mechanisms resulting in terminally 

differentiated IgA+ plasma cells, which yield antibodies of varying affinities [18]. All the 

IgA antibodies and immune cells present at mucosal surfaces serve three main 

functions: a first line of defense from infection by viruses and microbial agents, 

prevention of systemic immune response to commensal microbiota and food antigens, 

and regulating the immune responses to pathogens [19].  

 

1.4.2 Serum IgA vs Secretory IgA in Health  

This project focuses on the role of serum and secretory immunoglobulin A--in 

relation to asthma and respiratory illness in childhood. As outlined above, sIgA (the 

secreted form) is critical to development of the microbiome, infection prevention, and 

the development of asthma. In contrast, serum IgA has less well understood 

relationships to the microbiome and asthma. Some insight can be gained through 
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observation of patients with selective IgA deficiency with extremely low or 

undetectable serum IgA [20,21]. Serum (blood) IgA represents only approximately 7% 

of the total IgA present in the body, and serum levels do not correlate with secreted 

IgA levels [22,23]. Despite the poor correlation between serum IgA and sIgA, children 

with selective IgA deficiency (absence of serum IgA) have an increased risk of 

developing sinopulmonary and gastrointestinal infections, allergy, asthma and 

autoimmune diseases; presumably effects of lacking mucosal immunity associated with 

sIgA [24]. Although there is a well-reported increased risk, only a small number of 

selective IgA deficient individuals are symptomatic in comparison to those who have 

presence of IgA. Interestingly, this mismatch between serum and secretory IgA may 

partially account for the lack of symptoms in the majority of selective IgA deficiency 

individuals since these individuals may retain some levels of sIgA with absence of 

serum IgA. Other compensatory factors, such as increased secretory immunoglobulin 

M in patients with low sIgA may explain this phenomenon but, these relationships 

remain poorly understood [25].  

Besides the research on IgA deficiency and asthma, further studies have shown 

that levels of serum IgA in those without an immunodeficiency also relate to asthma. 

Kim et al. (2015) showed that serum IgA levels were significantly related to sensitization 

to house dust mites and airway hyper responsiveness, two key defining factors in 

asthma exacerbation and diagnosis, respectively [26]. They demonstrated that high 

levels of serum IgA correlated with increased odds of house dust mite sensitization and 

also decreased odds of airway hyperresponsiveness, though this relationship was not 

significant in final models [26]. This research highlights the potential differential 

relationships between serum IgA and secretory IgA on asthma and atopic sensitization, 

since high fecal IgA has previously been associated with reduced risk for atopic disease 

[27].   
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1.4.3 Immunoglobulin A – A Key Factor in Gut Microbiota Development 

As highlighted previously, sIgA has multifaceted roles in the mucosal immune 

system. Key roles include controlling inflammation and regulating the immune 

response to enteric and respiratory pathogens, commensal microflora and certain 

dietary antigens [18,28–31]. This regulation of microbes by sIgA is a critical factor in the 

development of a healthy microbiome [12,18].   

Breastfeeding plays a well-established role in immune system development in 

infancy and one of the main components of breastmilk is sIgA [32]. sIgA in breastmilk 

is particularly important in the development of the early microbiome because it is the 

main source of sIgA during this key period in which the infant’s immune system is 

programmed for tolerance to commensal microbes and antigens. Normally, infants are 

able to produce normal levels by sIgA at 6 months of age [33,34]. Delayed production 

of fecal IgA in infants is associated with increased risk for atopic disease [27].   

Current evidence for the effects of pre- and post-natal influences on sIgA levels 

include: higher 3-month fecal sIgA concentrations with higher breastfeeding status; 

lower 3-month fecal sIgA levels in infants with maternal stress during and after 

pregnancy; and having greater colonization of Clostridioides difficile (C. difficile) in gut 

microbiota [35–37]. Persistently low levels of sIgA in infants may lead to the 

development of atopy, infection and asthma, mediated by effects of an aberrant 

microbiome composition as a result of loss of immune exclusion of typical pathogens, 

and decreased ability to maintain more beneficial bacteria [13,27,38,39]. Exposures 

that affect the interaction between gut sIgA and the microbiota may result in persistent 

altered gut microbial colonization, increasing risk for chronic diseases  

[12,13,36,38,40].   
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1.4.4 The Microbiome and Asthma  

The microbiome provides a major link between sIgA and the development of 

asthma. The next section provides a broad overview of the microbiome and asthma, 

with a particular focus on the role of IgA in both phenomena.  

In the past 5 years, the link between gut microbiota and asthma has become 

increasingly clear [41]. Although the gut microbiota is the most well-characterized 

microbiome, there are distinct microbial communities on the skin, nose, oral cavity, 

respiratory tract, stomach, intestines and vagina [42–48]. Community composition, 

relative abundance, and bacterial load vary significantly between locations in the body, 

but a few phyla have been characterized as the major colonizers in and on the body; 

these include: Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria, 

and Cyanobacteria [49].   

The intestinal microbiome is the most extensively studied, with over 100,000 

articles published in the last 10 years. In the gastrointestinal tract, Bacteroidetes 

represents the most abundant phylum, followed by Firmicutes [50]. Compared to the 

intestinal microbiome, the respiratory tract is one of the least colonized surfaces of the 

body. From the upper respiratory tract to the lower respiratory tract lies a gradient from 

high to low microbial presence [44,51,52]. Similar to the gut, the predominant phyla in 

the airways are the Firmicutes and Bacteroidetes [43–45]. It is important to note that in 

spite of the large number of microbiome studies, their outcomes should be taken with 

a grain of salt. By nature, microbiome studies are inherently biased based on sampling, 

culturing and sequencing techniques used to detect bacteria and estimate 

predominance; methodological hurdles are especially present in characterizing the 

relatively sparse microbiota of the respiratory tract [52]. New techniques to elucidate 

microbial ‘dark matter’ or microbes that are too low of an abundance to detect could 
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provide more useful information for determining true candidates for disease 

causative/associated microbes [53].  

  

1.4.5 The Respiratory Microbiome and Asthma  

Despite the inherent limitations in defining the respiratory microbiome, there is 

evidence to support the association between simultaneous and connected 

development of the intestinal and respiratory microbiome after birth [54]. As shown by 

Madan et al., (2012), a number of bacteria which first appear in the intestine are 

detected subsequently in the respiratory tract, which they hypothesize is due to 

microaspiration of intestinal microbes promoting the development of the airway 

microbiota [54]. As well, fluctuations in diet affect both the respiratory and intestinal 

microbiome [54,55]. Culture and sampling methods in children are challenging and 

there is discordance between upper and lower respiratory tract microbiota; however, 

when the data is combined between all sampling methods, general trends indicate that 

the intestinal and respiratory compartments are closely connected and that changes at 

one site have the potential to impact the other [43,54]. Furthermore, there is a notable 

difference between number and diversity in the airway microbial population between 

healthy subjects and those with asthma [9,45].  

  

 

 

 



 10 

1.4.6 Respiratory and Intestinal Microbiomes and the Link to Asthma  

There are strong shifts in overrepresentation of Proteobacteria and Firmicutes 

with diminished Bacteroidetes in lung microbiomes from those with asthma, compared 

to healthy controls [45]. These changes in the lungs are also comparable to changes in 

the gut microbiome in early infancy associated with development of asthma in 

childhood, and there is further evidence from cross-sectional studies on the microbial 

differences between those with asthma and healthy adults [10,56,57]. This points 

towards a link between in early microbiome dysbiosis and established dysbiosis in the 

respiratory and gastrointestinal tracts in the development of asthma [10,56,57].  

Recurrent gut infection is a sign of microbial dysbiosis, which has been linked to 

increased risk for asthma, atopic disease, depression, and obesity [58–64]. Preliminary 

evidence suggests that probiotics may prevent infection and resultant atopic disease 

in “at-risk” groups, though these results are highly contentious [65]. This is in 

agreement with the hygiene hypothesis, in which typical early exposure to “beneficial” 

microbes may prevent gut dysbiosis through tolerance-inducing mechanisms and 

resultant harmonious balance between Th1 and Th2 T-helper cell subsets [66]. 

Previous research has also linked respiratory infections to chronic airway disease, 

though little is known about how viral and bacterial infections, which underly 

exacerbations of chronic lung disorders, can shape the microbiota or are caused by the 

various gut microbial compositions. Respiratory infections lead to an inflammatory 

state and this inflammation leads to temporary or permanent damage and possible 

reprogramming of immune responses. The difference between temporary damage in 

the average person with a cold, and remodeling or other changes in people with 

chronic lung disease like asthma and cystic fibrosis, may be mediated in part through 

the microbiota. Separately, or possibly additively, the microbiota contributes through 
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the development, maintenance and regulation of immune tolerance/immunity [67]. 

Evidence points to a strong link between respiratory infections and distinct respiratory 

microbiome composition. Yi et al., (2014) recently profiled bacterial communities in the 

upper respiratory tract in patients with acute viral infections including: influenza, 

parainfluenza, rhinovirus, coronavirus, metapneumovirus, adenovirus and respiratory 

syncytial virus [51]. Virus-infected individuals had an increased prevalence of 

Haemophilus and Moraxella but there was no specific virus-associated bacterial profile, 

suggesting that specific respiratory microbiomes are associated with susceptibility to 

viral respiratory illness, though this could be due to the low sample size of the study 

and large variability between viral infections and underlying diseases [51]. 

Interestingly, individuals with chronic respiratory bacterial infections also regularly 

present with two distinct microbes [68]. These microbes strongly compete with each 

other and are also associated with a very distinct composition of airway microbiota [68]. 

Germ-free mouse models that harbor no microbes in the gut or lungs, and other mouse 

studies have also illustrated that the presence of beneficial microbiota is critical for 

defense against influenza virus and certain bacterial pneumonias [69–72]. It is unclear 

at this point why these functional associations exist—does a lack of colonization in the 

gut affect the immune system, or is it due to a lack of protective microbes in the lungs? 

Preliminary evidence suggests that it may be a combination of both.  
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1.4.7 Intestinal and Respiratory Microbiomes, IgA and Asthma  

The literature suggests that sIgA has a similar protective function against 

bacterial and viral pathogens in both the respiratory and gastrointestinal tracts. For 

instance, sIgA protects against respiratory tract Mycobacteria and Chlamydia 

pneumoniae, organisms which have been linked to a potential pathogenic mechanism 

leading to later-onset asthma [45,73–76]. Mycobacteriaceae and Chlamydia 

pneumoniae are also persistently present in the airways of the chronic asthmatic 

population [76–78]. Early infection with respiratory syncytial virus and human rhinovirus 

have also been associated with later onset and development of asthma, independent 

of atopy [74]. It is clear based on this large body of evidence that the development of 

the respiratory and gut microbiomes are linked to each other and to asthma. Because 

of its role in early gut microbiota and immune regulation, sIgA may be an important 

factor in mediating these relationships.  

  

1.5 Summary and Gaps: IgA, the Microbiome and Asthma  

Asthma is an epigenetic, multi-factorial disease with many genetic, 

environmental and lifestyle factors contributing to disease onset and progression. It 

has been established that serum and secretory IgA are separately associated with 

asthma and atopic disease. Studies on the gut microbiome in relation to sIgA and 

asthma show potential links for early life development of the immune system and 

microbiome that impact development of asthma later in life. However, currently there 

is little understanding of the differences between secretory and serum IgA and how 

they associate with asthma development.   
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Dzidic et al., (2015) found that the proportion of sIgA bound to the dominant 

bacteria, rather than total fecal sIgA, was associated with allergic manifestations, in 

particular asthma, up to 7 years of age.  However, all individuals in this cohort were 

breastfed at the early timepoint of stool collection so there may be undiscovered 

differences in total sIgA between formula fed and breastfed infants [13]. As well, high 

total fecal IgA during infancy, which can be comprised of serum and secretory forms at 

a young age when the intestinal barrier is not fully developed, has been shown to be 

associated with reduced risk of atopic diseases at two years of age [27]. It remains to 

be seen whether fecal sIgA levels are predictive of asthma when breastfeeding status 

varies and how this relates to health care utilizations for asthma.  

  A recent paper by Kim et al., (2017) looked at associations between serum IgA 

levels and allergy/asthma in adult patients and found serum IgA was related to airway 

hyperresponsiveness, but only considered those with suspected asthma [26]. An older 

population-based study found that low serum IgA levels (<461 µg/mL) in the 18th to 

23rd months of life were associated with increased cumulative incidence of asthma, 

atopic dermatitis and otitis media. However, this study has limitations because it was 

used cord blood samples which may represent both maternal and newborn 

contributions to total IgA [79]. In comparison, a more recent case-control study from 

Croatia found lower serum IgA levels in children with asthma than controls, but also 

that there was higher serum IgA in those with allergic asthma than those with non-

allergic asthma [80]. A more rigorous prospective cohort study found that higher serum 

IgA levels at two months were associated with respiratory allergic symptoms and 

sensitization at 5 through 20 years of age [81]. Interestingly, these results with infant 

serum IgA levels were more significant than levels of IgA levels in milk during 

breastfeeding, though the breastmilk IgA concentration was inversely associated with 

total serum IgE and positive skin prick test at 20 years of age [81]. Many publications 
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also describe the association between selective IgA deficiency, which is the complete 

absence of serum IgA, and increased risk for asthma, but it remains to be seen if low 

serum IgA levels, as well as its absence, have a similar relationship to asthma [74].   

There is a gap in the literature on the relationship between the maturation of IgA 

levels in the infant and later development of childhood asthma. To date, no large 

population cohort studies exist that have successfully described total levels of fecal 

sIgA in early life in relation to both later development of asthma and health care 

utilizations for asthma. As well, no studies have reported the risk of Emergency 

Department visits for childhood asthma with respect to serum IgA levels in a large 

population-based cohort. It remains to be seen how the relationships between serum 

IgA and fecal sIgA compare with childhood asthma outcomes. This thesis provides 

some much-needed insight on the associations between early life IgA levels and 

development of asthma.  

  

1.6 Hypothesis and Objectives  

This thesis will explore two hypothesis and objectives in separate cohort studies 

to further our understanding of IgA and development of childhood asthma and atopic 

disease.  

The objective of the first study is to determine whether infants with low fecal sIgA 

in the first few months of life have increased odds for asthma compared to those who 

exhibit normal-high levels, using data gathered from the CHILD birth cohort. Our 

hypothesis is that infants with low fecal sIgA will have increased risk for a diagnosis of 

or emergency department visits for AW in childhood. Having low fecal sIgA in infancy 

when there is rapid development of the immune system and microbiome may be an 

important biological marker for aberrant development of these systems, which may 
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relate to later development of childhood asthma. A secondary hypothesis is that fecal 

sIgA is differentially associated with atopic and non-atopic AW. We test this association 

while controlling for the relationships between breastfeeding status, delivery mode, 

antibiotics exposure, gravidity, maternal asthma/allergy, maternal depression 

trajectories, smoke exposure, age, sex and maternal obesity on sIgA and asthma.  

The second study was conducted using an Alberta Health Services (AHS) 

administrative health database. The objective of this retrospective cohort study is to 

determine whether infants with low serum IgA in the first months to years of life are at 

increased risk for emergency department visits asthma compared to those who exhibit 

normal to high levels. Our proposed hypothesis is that patients who have low serum 

IgA levels will be at increased risk for emergency department visits for AW in 

childhood. A secondary hypothesis is that serum IgA is differentially associated with 

atopic and non-atopic AW. We are testing this association while controlling for 

potential confounding pathways that include age, failure to thrive, and infant sex.  

  

1.7 Demographic Factors Related to IgA and Asthma  

The following section will outline various demographic and biological factors 

related to IgA (serum or secretory) and asthma that are potentially important to 

consider when conducting population-based studies on IgA and asthma in childhood.   

  

1.7.1 Tobacco Smoke Exposure  

Parental smoking pre- and post-natally critically impacts the development of the 

immune system and microbiota of the infant and increases the risk for asthma. Maternal 
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smoking may disturb the initial ‘seeding’ of the infant gut microbiota during birth. There 

is a significant change in adult oral and gut microbiomes after smoking cessation 

[82,83]. As well, notable levels of tobacco smoke metabolites are found in the 

meconium of infants of mothers with tobacco smoke exposure, which may have effects 

on the microbiome and immune system [84]. One study on mucosal immunity in infants 

at 12 months of age showed that maternal smoking was associated with increased total 

salivary IgA and an associated increase in chronic upper respiratory tract symptoms 

[85]. This study also showed that infants of mothers who smoked had decreased rates 

of successful breastfeeding initiation and stopped breastfeeding earlier [85]. Other 

studies have shown increased sIgA levels and a trend toward increased wheeze and 

lower respiratory tract symptoms in infants of mothers who smoked [86,87]. Pre- and 

post-natal smoke exposure has also been associated with increased risk for wheeze 

and asthma [88].  

  

1.7.2 Maternal Asthma and Atopic Disease  

There are high rates of correlation between maternal asthma and other atopic 

disease and subsequent development of asthma. Indeed, family history of allergies is 

one of the most important factors in the asthma predictive index, which points towards 

genetic heritability in immune function associated with asthma [89,90]. To date, no 

studies have determined associations between parental atopic diseases and 

immunoglobulin A levels in infants.  
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1.7.3 Maternal Obesity During Pregnancy and Cesarean Delivery 

Maternal atopy and asthma during pregnancy are also associated with maternal 

distress both pre- and post-natally, and obesity [59,91–93]. Interestingly, overweight 

body mass index during pregnancy is linked to significant changes in the infant gut 

microbiome [94]. One prospective cohort study found that both high maternal pre-

pregnancy weight and excessive weight gain during pregnancy were associated with 

a lower abundance of Bifidobacterium in the infant’s gut at 1 month and a higher 

abundance of Clostridium histolyticum at 6 months [95]. Additionally, maternal obesity 

is associated with increased risk of caesarean section, which itself increases the 

likelihood of exposure to antibiotics during birth. Both caesarean section and antibiotic 

exposure are risk factors for changes in the microbiome and may also alter IgA levels 

and increase risk for the later development of asthma [10,29,35– 37,96,97].  

  

1.7.4 Breastfeeding  

As confirmed in many previous studies, breastfeeding has a major influence on 

both infant IgA levels and development of asthma, but the direction of the relationship 

is contentious [13,32,36,37]. Breastfeeding is associated with increased levels of fecal 

IgA and decreased serum IgA levels [32,36]. Although no human studies have directly 

determined whether breastfeeding stimulates sIgA production, increased levels of 

sIgA in the gut have been shown to induce a positive feedback loop for further sIgA 

production [98,99]. As well, breastmilk contains additional components like 

oligosaccharides that favour a greater abundance of Bifidobacteria and Lactobacillus 

[100,101]. Infants supplemented with probiotics that include species of these two 

genera are more likely to have higher fecal IgA than infants without supplementation 
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[102]. Although breastfeeding may promote proper colonization of the infant 

microbiome and sIgA levels in early life, evidence is still not entirely clear as to whether 

breastfeeding has protective abilities in development of asthma and allergy [101].   

  

1.7.5 Maternal Depression and Anxiety  

Maternal depression, anxiety or distress during and after pregnancy have been 

associated with increased risk for physician diagnosed childhood asthma, but these 

associations seem to diminish with child age [103]. As revealed by previous study from 

our lab, in addition to lower levels of interaction and a shorter period of breastfeeding, 

infants of depressed mothers also have reduced fecal sIgA levels, which may be a 

partial mediator in the association between maternal depression and asthma in 

offspring [37].  

  

1.7.6 Antibiotic Exposure  

Antibiotic usage during both delivery and within the first few months of life has 

large effects, decreasing species richness in the infant gut microbial composition and 

increasing risk for childhood asthma [104]. In particular, intrapartum antibiotics used in 

vaginal and C-section deliveries can significantly lower species richness and 

Bacteriodetes abundance in the 3-month period postpartum [105]. In infants, 

antibiotics can impact the total levels negatively and delay timing of production of sIgA. 

These changes in sIgA due to antibiotics were associated with decreased species 

diversity in the microbiome [29].   
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1.7.7 Multigravida  

A population-based study showed that firstborn children had higher total fecal 

IgA than those with older siblings [36]. Additionally, multigravida is associated with 

maternal age, having more offspring and socioeconomic status, which are important 

predictors for infant outcomes including asthma. These are important factors to 

consider in population-based studies of asthma.  

 

1.7.8 Immunoglobulin E  

Based on the etiology of asthma, IgE is an important factor in predicting asthma 

and is one of the key factors in the modified asthma predictive index [90]. Elevated IgE 

levels are a marker of atopy or allergic sensitization [90]. IgA and IgE are intimately 

related in that low fecal IgA has been associated with increased risk for IgE-mediated 

allergic disease [27]. In comparison, both high and low serum IgA have been 

associated with allergic sensitization [79,81]. A significantly positive relationship exists 

between serum IgA and IgE levels [106].  

  

1.7.9 Failure to Thrive  

Failure to thrive is a medical diagnosis given to a child who is failing to gain 

appropriate height or weight, as compared to age- and gender-matched growth 

norms. A previous population-based study revealed that failure to thrive is significantly 

associated with feeding problems, however the differential diagnosis is broad and 

includes organic illnesses such as immunodeficiency, celiac disease, food allergies and 

cystic fibrosis [107]. One survey revealed that only 10% of infants with failure to thrive 
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are diagnosed with organic illness, with most occurrences a result of inadequate 

parenting, child abuse or breastfeeding difficulties [108].    
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1.8 Sample Size Calculation: 

Estimated proportions of relative rates of asthma between IgA deficient and control 

individuals come from Urm et al’s., 2013 study [74]. 

Sample	size	per	group	needed	in	study	based	on	proportions	 = 	n = 2PI8(
p:(1 − p:)

(p> − p8)
) 

PI= Power Index  

To determine the sample size with a 2-sided α of 0.05 and β of 0.20 (power=80%), 

the Power Index (PI) will be: 1.96 + 0.84=2.80 

 

p: = (p> − p8)/2 

PI= 1.96 (0.05⍺, two-tailed) + 0.84(0.20β, two-tailed) = 2.80 

 

Asthma Group Size Needed: 

p> =	Asthma rates in serum IgA deficient individuals = 30.8% = 0.308 

p8 = Asthma rates in control individuals = 11.5% = 0.115  

p: = (0.308 − 0.115)/2 = 0.0965 

 

n = 2(2.8)8(
F.FGHI:::::::::(>JF.FGHI:::::::::)

(F.KFLJF.>>I)M
) = 36.7 individuals per group 
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2.0 Study 1: Infant Fecal Secretory Immunoglobulin A in Relation to Childhood 

Asthma and Wheeze  

 

2.1 Abstract 

Background. Early immune maturation and gut microbial composition have a clear 

impact on the development of asthma and atopy in children. Low secretory 

Immunoglobulin A (sIgA) levels and binding patterns of sIgA to gut microbiota in 

infancy have been associated with the development of asthma and atopic disease in 

childhood. In this study, we determined if lower levels of the primary gut mucosal 

immunoglobulin (sIgA) during infancy was associated with the development of asthma 

and/or wheeze (AW) in a large prospective, normal birth cohort (CHILD). 

 

Objective. The objective of this study was to determine whether infants with low fecal 

sIgA (vs normal-high) levels in the first few months of life have increased risk for 

development AW. 

 

Methods. 951 infants from the CHILD study sites, Vancouver, Edmonton and Winnipeg 

were included based on availability of stool samples. Stool samples from infants age 2-

5.5 months were chosen to limit the known effects of food introduction on mucosal 

immunity. Physician-diagnosed asthma and unexpected doctors visits (UVs) for AW 

were determined from parent report at 1, 2, 3, 4 and 5 years. Atopic sensitization status 

at age 1 and 3 years was determined by skin prick test. Fecal sIgA was quantified using 

Immundiagnostik IG sIgA ELISA kit as previously reported [1]. A 3-category variable 

was used: breastfed (with any fecal sIgA levels), formula fed with low sIgA levels (lowest 

tertile) and formula fed with normal-high fecal sIgA levels (highest 2 tertiles). Using 

STATA v16, logistic regression models determined the association (Odds Ratio, OR) 
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between low or normal-high fecal sIgA levels in non-breastfed infants and child AW in 

comparison to breastfed infants, adjusting for confounding factors identified based on 

a directed acyclic graph to determine the effect of fecal sIgA levels on childhood AW. 

 

Results. About 7% of infants were diagnosed with asthma by age 3, and 10% at ages 

4-5. In all infants, low fecal sIgA levels were found in 68% of infants who were not 

breastfed, 31% of infants who were partially breastfed and 14% of infants who were 

exclusively breastfed (p<0.001). When compared to breastfed infants, formula fed 

infants with low fecal sIgA levels had 2.13 times the odds of having an asthma 

diagnoses in the first 3 years of life (OR: 2.13; 95% CI: 1.03, 4.43) when controlling for 

confounding factors. In the absence of breastfeeding, no associations were found 

between unexpected healthcare utilizations for AW at age 1-3 and higher fecal sIgA or 

between AW at ages 4-5, and low or higher fecal sIgA. Formula fed infants with high 

fecal sIgA were at increased risk for atopic AW at age 1-3 years (OR: 5.45; 95% CI: 1.69, 

17.31). 

 

Conclusions. Low levels of infant produced fecal sIgA in formula-fed infants were 

associated with increased odds of AW, whereas normal to high levels in formula-fed 

infants were associated with increased odds of atopic AW in comparison to breastfed 

infants. Due to these associations, sIgA production in non-breastfed infants may be an 

important biomarker for early-onset non-atopic/atopic AW. 
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2.2 Introduction 

Beginning prenatally through to the 1st year of life, there are key medical, lifestyle 

and environmental factors which contribute to the development of childhood asthma 

[2]. In the past 10-15 years, the human microbiome has emerged as a leading influence 

in the development of immune tolerance, including asthma and atopy [3]. Fecal-oral 

or vaginal-oral transmission (‘seeding’) of the microbiome during delivery and further 

microbiome development via breastfeeding is critical in development of ‘healthy gut’ 

microbiota. This healthy composition is linked to decreased risk of diseases ranging 

from depression and atopy to obesity [4].  

Secretory immunoglobulin A (sIgA) is the main immunoglobulin on the mucosal 

surfaces and is critical to the development of early life gut microbiota composition and 

antigen tolerance [5]. sIgA fulfills these roles by antigen sampling, immune exclusion 

of pathobionts and promotion of colonization of commensal gut bacteria [6–8]. Studies 

in IgA deficient humans show that IgA is critical for proper gut colonization of microbes 

and tolerance to antigens even in spite of compensatory mechanisms by 

immunoglobulin M [9].  

Fecal sIgA levels are linked to microbiota composition and atopy. Lower infant fecal 

sIgA levels at 3 months of age are associated with maternal stress, being formula-fed 

and having greater abundance of Clostridioides difficile (C. difficile) abundance in gut 

microbiota [1,10,11]. Infants with higher fecal IgA at 3-6 months of age had a 

decreased risk of developing any allergic disease by age 2 [12]. There is further 

evidence that different levels of binding of sIgA to bacteria in the gut is associated with 

allergic manifestations up to 7 years of age, in particular asthma, in a breastfed cohort 

[13]. It remains to be seen if total fecal sIgA levels in the first few months of life are 

associated with asthma when breastfeeding status varies. 
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Although sIgA, gut microbiota composition and atopic diseases are clearly linked, 

the mechanism(s) is (are) poorly understood [13,14]. The gut microbiota has been 

shown to have important crosstalk with the immune system and this is implicated in the 

pathogenesis of asthma [15]. Compared to the gut, the respiratory tract is one of the 

least-colonized surfaces of the body; there lies a gradient from the extensively 

colonized naso-oral-pharyngeal tract to the lower respiratory system, which has a low 

ratio of bacterial to human cells [16–19]. Factors implicated in gut microbiota 

composition may also have direct effects on the microbial composition in the 

respiratory system, evidence supports interconnected development of these 

microbiomes. Bacterial species which first appear in the intestine are subsequently 

detected in the respiratory tract, potentially due to micro-aspiration of gut microbiota 

as a route of colonization of airway microbiota [18]. Differences in airway microbiota 

are also noted in those with asthma compared to healthy individuals [20,21]. It follows 

that since fecal sIgA is an important marker for early gut microbial composition and 

mucosal immune system development, it may be an important biomarker for later 

development of asthma. 

This study explores whether infants with low fecal sIgA in the first few months of 

life have increased odds for asthma/wheeze (AW) compared to those with normal-high 

levels, controlling for the relationships between breastfeeding status, delivery mode, 

antibiotic exposure, gravidity, maternal asthma/allergy, maternal depression, smoke 

exposure, sex, age, and maternal obesity on fecal sIgA and AW. 
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2.3 Methods  

2.3.1 Study Population  

This study was based on a sub-sample of the Canadian Healthy Infant 

Longitudinal Development (CHILD) study data [16,22]. The subsample includes 1,071 

infants with available fecal sIgA at 3 (range 2.2 -  5.5) months from the Edmonton, 

Winnipeg and Vancouver sites of the CHILD birth cohort (www.childstudy.ca). Pregnant 

mothers were recruited, screened and enrolled with written consent from 2008 to 

2012. Standardized questionnaires and lab tests were obtained previously by other 

CHILD investigators. This study was approved by the Ethics Committee of the 

University of Alberta, the University of Manitoba Human Research Ethics Board and the 

University of British Columbia/Children’s and Women’s Health Centre of British 

Columbia Research Ethics Board.  

 

2.3.2 Outcomes 

2.3.2.1 Physician-diagnosed Child Asthma 

 Childhood asthma was assessed using maternal-report of physician-diagnosed 

asthma during each of the questionnaires. The item was assessed as a yes/no question 

with no sub-questions. Since previously established asthma trajectories show transient 

early, prolonged early, intermediate early (atopic), late (atopic) and persistent; we 

created our asthma variables to account for the large shift in probability of wheezing 

between asthma phenotypes at different ages [23]. Our study had 2 variables: (1) 

physician-diagnosed asthma from the first 3 years of life and (2) physician-diagnosed 

asthma from years 4 and 5. 
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2.3.2.2 Unexpected Health-Care Visits for Asthma/Wheeze 

 Unexpected health-care visits (UVs) for Asthma/Wheeze (AW) were assessed by 

maternal-reported questionnaire in three questions: (1) unscheduled doctor visits, (2) 

Emergency Department (ED) visits and (3) hospital stays/admissions. Sub-questions for 

the reason of visit included: bad cold, fever, rash, wheezing episode, ear infection, 

allergy, asthma attack, chest infection, accident, coughing episode, other illness(es). 

UVs were considered visits for AW if the visits were for a wheezing episode and/or 

asthma attack and/or coughing episode. This variable was split into the two age-

groups as with the physician-diagnosed asthma variable. These two variables included: 

(1) unexpected healthcare utilization for AW in the first 3 years of life and (2) 

unexpected healthcare utilization for AW in the 4th and 5th years of life. 

 

2.3.2.3 Infant Atopic/Non-Atopic AW 

 Atopic and non-atopic AW were determined by combining atopic status (IgE 

skin-prick test sensitization to food or inhalant allergens; yes/no variable) from clinical 

assessments at 1 and 3 years with AW status (physician-diagnosed asthma and/or 

unexpected healthcare utilizations for AW). Six binomial variables were used to 

determine the differences between atopic and non-atopic AW: (1) Atopic AW vs non-

atopic AW (no)  from ages 1-3 using atopic status at 1 year, (2) atopic AW (yes) vs no 

AW from ages 1-3 using atopic status at 1 year, (3) non-atopic AW vs no AW from ages 

1-3 using atopic status at 1 year, (4) atopic AW vs non-atopic AW from ages 4-5 using 

atopic status at 3 years of age, (5) atopic AW vs no AW from ages 4-5 using atopic status 

at 3 years and (6) non-atopic AW vs no AW from ages 4-5 using atopic status at 3 years. 

We created these groups to restrict the regression analysis to binomial outcomes 

which are easier to interpret compared to multinomial logistic regression models. 
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2.3.3 Exposures  

2.3.3.1 Stool collection and storage 

 Infant stool was collected during the 3-month CHILD study visits as previously 

documented [24]. Stool samples of 5-10 g were aseptically collected from freshly 

soiled diapers, divided into aliquots and stored at -80°C using aseptic technique. 

Freezing and freeze-thaw cycles on sIgA levels show minimal impact on quantification 

of sIgA levels [25,26].  

 

2.3.3.2 Extraction and analysis of sIgA 

 The sIgA ELISA (enzyme-linked immunosorbent assay) kit from 

Immundiagnostik was used to measure the amounts of fecal sIgA in mg per gram of 

wet feces, as per Urwin et al., (2014) [27]. Post thaw, sIgA was extracted from stool with 

the extraction buffer and diluted 1:125 in wash buffer. Diluted samples, controls and 

100 µL standards were aliquoted into a microtiter plate, washed and incubated at 15-

30°C for 60 minutes. After incubation, wells were aspirated and washed with wash 

buffer two times before being tapped dry. 100 µL of the conjugated anti-sIgA antibody 

is added and samples are again incubated at 15 to 30°C for overnight on a shaker. 

After the final washing and aspiration, 3,3′,5,5′-Tetramethylbenzidine (TMB) substrate 

is added and incubated in a dark room for 15 minutes at 15 to 30°C. Absorption is 

determined with an ELISA reader at 450 nm against 620 nm as the reference. Results 

were multiplied by the dilution factor and a standard curve was created based on kit-

included controls to determine concentrations of sIgA in each sample. 

The 3-month stool samples were collected at 3.7 months (2.2–8 months). Of 

1,071 infants, 120 (11%) had stool collected at > 5.5 months. Fecal sIgA levels by 

breastfeeding status are plotted over time in Appendix B, Figure B1. The data beyond 

5.5 months was excluded from the final analysis. Solid food introduction and the 
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ontogeny of infant sIgA production were reasons for restriction [28,29]. Breastfeeding 

status, known to be highly associated with fecal sIgA (and as confirmed in Appendix B, 

Figure B2), was treated as an exposure variable as follows to determine the differential 

and combined associations between maternal sIgA supplementation via breastmilk 

and infant sIgA production [11]. 1) exclusive and mixed breastfeed infants with any 

fecal sIgA levels, 2) formula fed infants with normal to high fecal sIgA levels, 3) formula 

fed infants with low fecal sIgA levels. The groups were mutually exclusive. 

 

2.3.3.3 Potential covariates 

 Covariates obtained from the CHILD cohort questionnaires: maternal 

depression trajectories, infant age at stool collection, breastfeeding status at stool 

collection, tobacco smoke exposure, antibiotic exposure (mothers and infants), 

delivery mode, gravidity, number of children and pets at home, pregnancy overweight, 

and maternal allergy and/or asthma. These variables were created from data obtained 

from CHILD cohort questions.  

 

2.3.4 Statistical Analyses 

2.3.4.1 Descriptive Statistics 

 All infants with a fecal sample from 2-5.5 months of infant age were selected for 

inclusion. Tables 2.1-3 and in Appendix B (Table B2) describes the frequencies and 

row-percentages of demographic factors in relation to the sIgA and childhood AW. 

Pearson Chi O2 or Fisher’s exact tests were run to determine the crude associations 

between demographic variables and fecal sIgA levels and the crude associations 

between demographic variables and child AW. Pearson Chi O2 or Fisher’s exact tests 

were also run to see if the study population varied significantly from the initial CHILD 
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sample population (Appendix B; Tables B1). A p-value of < 0.05 was considered 

statistically significant. 

 

2.3.4.2 Study Analysis 

sIgA concentrations are not normally distributed, so non-parametric tests 

(Mann-Whitney U) were used to detect differences in sIgA median levels according to 

the AW status of the infant. The lowest tertile (0.01-3.99 mg/g feces) compared to the 

top two tertiles (4.01-60 mg/g feces) was used as low fecal sIgA (yes/no) combined 

with breastfeeding status to account for the effects of maternal sIgA provided through 

breastmilk. Logistic regression models used a three-way categorical variable: (1) 

exclusive and mixed breastfed infants with any fecal sIgA levels (0.04-60.0 mg/g feces), 

2) formula fed infants with normal to high fecal sIgA levels (4.07-28.4 mg/g feces), 3) 

formula fed infants with low fecal sIgA levels (0.01-3.93 mg/g feces). The interaction 

between fecal sIgA levels and breastfeeding was significant (Appendix B, Table B3-

B4). 

Logistic regression was used to determine the crude and adjusted association 

between sIgA exposure and child AW. Our analyses followed Shrier and Platt’s seminal 

article explaining creation of Directed Acyclic Graphs (DAGs) and use for 

epidemiological studies, and DAGs were created using dagitty.com [27]. DAGs are first 

built to select a minimum adjustment set of covariates to control for biasing pathways 

and avoid over-adjustment. The final model adjusted for: breastfeeding status, 

maternal depression trajectories, multigravida, maternal overweight or obesity during 

pregnancy, newborn antibiotics, prenatal smoke exposure, stratified by age of 

outcome (Figure 2.1). No significant interactions besides fecal sIgA and breastfeeding 

were found. Statistical analyses were conducted using STAT v16.0, figures were 

generated in GraphPad Prism 8. 
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Figure 2.1. Directed Acyclic Graph (DAG) for the association between fecal sIgA 

and childhood wheeze/asthma was built using dagitty.com. The same DAG was 

used for atopic AW. Arrows between factors indicate known, consistent 

associations. Factors in white were adjusted for following DAG rules to determine 

the total effect of fecal sIgA on childhood wheeze/asthma. Green lines represent 

causal paths, and red lines represent biasing paths. Red circles represent 

ancestors of the exposure and outcome (ie, confounders), blue circles represent 

ancestors of the outcome, and grey circles represent unobserved variables. The 

minimally sufficient adjustment set represents covariates such that the 

adjustment for this set of variables will minimize confounding bias when 

estimating the association between the exposure and the outcome. The final 

minimally sufficient adjustment set comprised breastfeeding status, maternal 

depression trajectories, multigravida, maternal overweight or obesity during 

pregnancy, newborn antibiotics, prenatal smoke exposure, stratified by age of 

outcome. 

Figure 1. Directed Acyclic Graph (DAG) for the association between fecal sIgA and childhood wheeze/asthma was built using dagitty.com. The same DAG was used for atopic 
AW. Arrows between factors indicate known, consistent associations. Factors in white were adjusted for following DAG rules to determine the total effect of fecal sIgA on 
childhood wheeze/asthma. Green lines represent causal paths, and red lines represent biasing paths. Red circles represent ancestors of the exposure and outcome (ie, 
confounders), blue circles represent ancestors of the outcome, and grey circles represent unobserved variables. The minimally sufficient adjustment set represents 
covariates such that the adjustment for this set of variables will minimize confounding bias when estimating the association between the exposure and the outcome. The final 
minimally sufficient adjustment set comprised breastfeeding status, maternal depression trajectories, multigravida, maternal overweight or obesity during pregnancy, 
newborn antibiotics, prenatal smoke exposure, stratified by age of outcome.
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2.4 Results 

2.4.1 CHILD Cohort Sub-sample Characteristics 

 The 1,071 sub-sample of CHILD infants from Edmonton, Vancouver and 

Winnipeg with fecal sIgA data did not differ significantly for the majority of potential 

covariates in comparison to all infants in all CHILD participants (Appendix; Table B1). 

Breastfeeding at time of sample collection and pre- and post-natal smoke exposure 

were slightly higher in the entire CHILD cohort compared to the Edmonton sub-

sample.  

 

2.4.2 Study Population and Child AW 

 In our study, 7% had maternal-reported physician diagnosed asthma and 30% 

had UVs for AW from ages 1-3. In years 4-5, 9% infants had physician diagnosed asthma 

and 14% had an UVs for AW. 3.2% had atopic AW from ages 1-3, increasing to 4% from 

ages 4-5. 

Tables 2.1, 2.2 and Appendix Table B2 report the population characteristics 

distribution according to all the outcomes. Asthma at 1-3 years was significantly more 

prevalent in those who were born by caesarean section (p=0.017) and those exposed 

to maternal depression (p<0.001) (Table 2.1). UVs for AW at ages 1-3 were more 

common in infants who were formula fed (p=0.045), were born by caesarean 

(p=0.036), had exposure pre/postnatal depression (p=0.034), or had post-natal smoke 

exposure (p=0.005) (Table 2.2). 

Considering those with physician-diagnoses of asthma from ages 4-5, being 

born by caesarean (p<0.001), having a mother who had asthma or allergies (p=0.035) 

during pregnancy, or had pre/post-natal depression (p<0.001) was significantly more 

common (Table 2.1). Unexpected health care utilization for AW (ages 4-5) was more in 

those with maternal pre/postnatal depression (p=0.030), or prenatal smoke exposure 
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(p=0.005) (Table 2.2). There were similar significant differences between those with 

atopic AW and non-atopic AW compared to those without in either age groups 

(Appendix B; Table B2).  

 

2.4.3 Study Population and Infant Fecal sIgA 

 In our cohort, 33% of infants were in the lowest tertile of fecal sIgA (0.01-3.99 

mg/gfeces) and 67% were in the two highest tertiles of fecal sIgA (4.01-60 mg/gfeces). 

Table 2.1 reports the distribution of population characteristics according to the lowest 

tertile of fecal sIgA. Differences were observed for breastfeeding status (p<0.001), furry 

pets in the home (p=0.007), maternal obesity (p<0.001), prenatal smoke exposure 

(p=0.004) and maternal depression (p=0.001) (Table 2.1). 

  

Table 2.1. Distribution of low fecal sIgA and physician diagnoses of asthma 

according to demographic and epidemiological factors (n=1071) 
  

Lowest 
tertile sIgA 

(% yes) 
n=314/951 

ChiX2** Physician 
Diagnoses 
of Asthma 

from 1-3 
Years 

n=52/800 

ChiX2** Physician 
Diagnoses 
of Asthma 

from 4-5 
Years 

n=49/486 

ChiX2** 

Co-Variates  
 

Row % (N)  p-value 
(X2 

exact) 

Row % (N)  p-value 
(X2 

exact) 

Row % (N)  p-value 
(X2 

exact) 
Sex Male 32.06 (160) 0.406 6.19 (34) 0.061 9.70 (26) 0.663 

Female 34.62 (152) 
 

3.66 (18) 
 

8.61 (23) 
 

Mode of Delivery Vaginal 32.15 (227) 0.165 3.92 (31) 0.017 7.06 (29) <0.001 

Elective 
Cesarean 

31.52 (29) 
 

8.91 (9) 
 

22.22 (12) 
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 Lowest 
tertile sIgA 

(% yes) 
n=314/951 

ChiX2** Physician 
Diagnoses 
of Asthma 

from 1-3 
Years 

n=52/800 

ChiX2** Physician 
Diagnoses 
of Asthma 

from 4-5 
Years 

n=49/486 

ChiX2** 

Emergency 
Cesarean 

40.29 (56) 
 

8.11 (12) 
 

11.43 (8) 
 

Breastfeeding Status 
  

Exclusive 14.29 (58) <0.001 7.31 (19) 0.102 12.21 (16) 0.259 

Partial 31.48 (96) 
 

5.11 (18) 
 

10.06 (18) 
 

None 68.33 (164) 
 

3.61 (15) 
 

6.67 (15) 
 

Infant Antibiotics No 34.09 (284) 0.701 4.94 (46) 1.00 9.39 (45) 1.00 

Yes 31.67 (19) 
 

4.84 (3) 
 

7.41 (2) 
 

Depression None 31.4 (254) <0.001 3.88 (34) <0.001 7.59 (36) <0.001 

Antenatal 50.88 (29) 
 

9.68 (6) 
 

27.27 (6) 
 

Persistent 33.80 (24) 
 

10.26 (8) 
 

14.71 (5) 
 

Postnatal 61.90 (13) 
 

17.39 (4) 
 

40.0 (2) 
 

Furry Pets in the 
Home 

No 37.84 (165) 0.007 5.76 (27) 0.306 10.79 (26) 0.263 

Yes 29.5 (149) 
 

4.36 (24) 
 

7.96 (23) 
 

Smoke Exposure 
(Prenatal) 

No 31.7 (272) 0.004 4.72 (44) 0.060 8.67 (43) 0.057 

Yes 47.56 (39) 
 

9.41 (8) 
 

18.75 (6) 
 

Smoke Exposure 
(Postnatal) 

No 31.96 (249) 0.053 4.72 (40) 0.395 9.05 (41) 0.734 

Yes 39.76 (66) 
 

6.25 (11) 
 

10.26 (8) 
 

Multigravida No 34.44 (125) 0.597 5.24 (20) 0.786 11.48 (24) 0.136 

Yes 32.77 (195) 
 

4.86 (32) 
 

7.67 (25) 
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  Lowest 
tertile sIgA 

(% yes) 
n=314/951 

ChiX2** Physician 
Diagnoses 
of Asthma 

from 1-3 
Years 

n=52/800 

ChiX2** Physician 
Diagnoses 
of Asthma 

from 4-5 
Years 

n=49/486 

ChiX2** 

Maternal 
Overweight/Obesity 
(During Pregnancy) 

Normal 28.24 (148) <0.001 5.34 (31) 0.241 10.43 (34) 0.209 

Obese 33.17 (69) 
 

6.19 (14) 
 

5.04 (6) 
 

 
Overweight 45.58 (103) 

 
2.98 (7) 

 
10.0 (9) 

 

Maternal 
Allergy/Asthma 
During Pregnancy 

No 32.87 (118) 0.941 4.19 (16) 0.299 5.91 (12) 0.035 

Yes 33.1 (192) 
 

5.67 (36) 
 

11.38 (37) 
 

Maternal Age 
(Greater than 
Median) 

No 36.48 (174) 0.033 7.65 (30) 0.195 10.89 (27) 0.198 

Yes 29.93 (138) 
 

5.39 (22) 
 

7.67 (22) 
 

**Chi(X2) comparison used to investigate whether distributions of categorical variables 

differ from one another. Fisher’s exact test was used when expected frequencies were 

<5 in >20% of cells. Bold indicates a significant difference between the two 

populations 
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Table 2.2. Distribution of low fecal sIgA and unexpected healthcare utilizations 

for AW according to demographic and epidemiological factors (n=1071) 
  

Lowest 
tertile sIgA 

(% yes) 
n=314/951 

ChiX2** UV for AW 
from 1-3 

Years 
n=193/654 

ChiX2** UV for AW 
from 4-5 

Years 
n=79/572 

ChiX2** 

Co-Variates  
 

Row % (N)  p-value 
(X2 

exact) 

Row % (N)  p-value 
(X2 

exact) 

Row % (N)  p-value 
(X2 

exact) 

Sex Male 32.06 (160) 0.406 31.79 (110) 0.175 14.53 (42) 0.613 

Female 34.62 (152) 
 

26.95 (83) 
 

13.07 (37) 
 

Mode of Delivery Vaginal 32.15 (227) 0.165 27.91 (139) 0.036 12.42 (55) 0.200 

Elective 
Cesarean 

31.52 (29) 
 

44.07 (26) 
 

18.87 (10) 
 

Emergency 
Cesarean 

40.29 (56) 
 

28.87 (28) 
 

18.42 (14) 
 

Breastfeeding Status None 68.33 (164) <0.001 35.71 (55) 0.045 17.04 (23) 0.434 

 
Partial 31.48 (96) 

 
31.01 (72) 

 
13.47 (26) 

 

 
Exclusive 14.29 (58) 

 
24.63 (66) 

 
12.30 (30) 

 

Infant Antibiotics No 34.09 (284) 0.701 28.45 (167) 0.384 13.84 (71) 0.551 

Yes 31.67 (19) 
 

35.14 (13) 
 

17.86 (5) 
 

Depression None 31.4 (254) <0.001 27.64 (157) 0.034 12.87 (65) 0.048 

Antenatal 50.88 (29) 
 

45.19 (14) 
 

17.39 (4) 
 

Persistent 33.80 (24) 
 

37.5 (18) 
 

18.42 (7) 
 

Postnatal 61.90 (13) 
 

57.14 (4) 
 

50.0 (3) 
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  Lowest 
tertile sIgA 

(% yes) 
n=314/951 

 UV for AW 
from 1-3 

Years 
n=193/654 

ChiX2** UV for AW 
from 4-5 

Years 
n=79/572 

ChiX2** 

Furry Pets in the 
Home 

No 37.84 (165) 0.007 27.24 (82) 0.293 16.60 (43) 0.095 

Yes 29.5 (149) 
 

31.01 (107) 
 

11.73 (36) 
 

Smoke Exposure 
(Prenatal) 

No 31.7 (272) 0.004 28.83 (175) 0.244 12.78 (68) 0.005 

Yes 47.56 (39) 
 

37.5 (15) 
 

30.30 (10) 
 

Smoke Exposure 
(Postnatal) 

No 31.96 (249) 0.053 27.24 (152) 0.005 14.02 (68) 0.852 

Yes 39.76 (66) 
 

41.76 (38) 
 

13.25 (11) 
 

Multigravida No 34.44 (125) 0.597 31.52 (81) 0.365 12.62 (27) 0.522 

Yes 32.77 (195) 
 

28.21 (112) 
 

14.53 (52) 
 

Maternal 
Overweight/Obesity 
(During Pregnancy) 

Normal 28.24 (148) <0.001 27.62 (108) 0.077 13.91 (48) 0.343 

Obese 33.17 (69) 
 

27.81 (42) 
 

10.77 (14) 
 

 
Overweight 45.58 (103) 

 
38.39 (43) 

 
17.53 (343) 

 

Maternal 
Allergy/Asthma 
During Pregnancy 

No 32.87 (118) 0.941 26.64 (65) 0.236 10.65 (23) 0.087 

Yes 33.1 (192) 
 

31.02 (125) 
 

15.76 (55) 
 

Maternal Age 
(Greater than 
Median) 

No 36.48 (174) 0.033 31.78 (102) 0.212 13.26 (35) 0.722 

Yes 29.93 (138) 
 

27.33 (91) 
 

14.29 (44) 
 

**Chi(X2) comparison used to investigate whether distributions of categorical variables 

differ from one another. Fisher’s exact test was used when expected frequencies were 

<5 in >20% of cells. Bold indicates a significant difference between the two 

populations 
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2.4.3.1 Comparison of sIgA Levels and AW 

 Due to the skewed nature of the sIgA data, to compare median fecal sIgA levels 

between AW groups, non-parametric tests (Mann-Whitney U). Infant sIgA levels were 

only significantly lower in those infants who had UVs for AW in the first 3 years of life 

(p<0.001),  non-atopic AW ages 1-3 (p<0.001), and infants with atopic AW (p=0.04) 

compared to those without AW from ages 1-3 (Figure 2.2). AW groups from ages 4-5 

did not have significantly different levels of sIgA in stool (Appendix B; Figure B1). 

Median sIgA levels were 0.96 mg/g feces lower for those with a physician 

diagnoses of asthma compared to those who did not in the first 3 years of life. Children 

ages 1-3 years who had an UVs for AW had median sIgA levels 2 mg/gfeces lower, 

those with atopic AW had 2.4 mg/gfeces lower and those with non-atopic AW had 2.3 

mg/gfeces lower than those without AW. No other significant differences between 

median levels of sIgA were found (Appendix B, Figure B3). 
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Figure 2.2. sIgA levels among AW groups from ages 1-3. UVs for AW, atopic AW 

and non-atopic AW had significantly lower fecal sIgA levels compared to the 

reference group of those without AW. P-values indicate significant differences 

between groups based on Mann-Whitney U tests. 

 

2.4.4 Breastfeeding Status and sIgA Levels in Stool 

Breastfeeding had a significant relationship to fecal sIgA levels. Low fecal sIgA 

levels were found in 68% of infants who were not breastfed, 31% of infants who were 

partially breastfed and 14% of infants who were exclusively breastfed (p<0.001) (Table 

2.1). Fecal sIgA levels are highly associated with breastfeeding status (Appendix B; 

Figure B2). As such, we treated the exposure variable as follows to determine the 

Yes No
0

20

40

60

Unexpected Healthcare Visits for Asthma/Wheeze (Ages 1-3)

sI
gA

(m
g/

g 
fe

ce
s)

Yes No
0

20

40

60

Atopic Asthma/Wheeze (Ages 1-3)

sI
gA

(m
g/

g 
fe

ce
s)

Yes No
0

20

40

60

Non-atopic Asthma/Wheeze (Ages 1-3)

sI
gA

(m
g/

g 
fe

ce
s)

Yes No
0

20

40

60

Physician Diagnoses of Asthma (Ages 1-3)

sI
gA

(m
g/

g 
fe

ce
s)

p<0.001

p<0.001p=0.04

Figure 1. sIgA levels among AW groups from ages 1-3. UVs for AW, atopic AW and non-atopic AW had significantly 
lower fecal sIgA levels compared to the reference group of those without AW. P-values indicate significant 
differences between groups based on Mann-Whitney U tests.
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differential and combined associations between maternal sIgA supplementation via 

breastmilk and infant sIgA production [11]. We then created a three-way variable as 

follows (Figure 2.3): (1) Reference group: breastfed (mixed or exclusive) and any fecal 

sIgA level, (2) formula-fed, top two tertiles (normal-high) fecal sIgA, (3) formula-fed, 

lowest tertile (low) fecal sIgA. 

 

  
Figure 2.3. Fecal sIgA levels and breastfeeding status. (1) Breastfed, any fecal 

sIgA level (median: 8.00 mg/gfeces, SD: 9.89). (2) Formula-fed, top two tertiles 

of fecal sIgA (median: 6.01 mg/gfeces, SD: 4.25). (3) Formula-fed, lowest tertile 

of fecal sIgA (median: 1.86 mg/gfeces, SD: 1.03). P-values indicate significant 

differences between groups based on Kruskal-Wallis Test. 
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Figure 2. Fecal sIgA levels and breastfeeding status. (1) Breastfed, any fecal sIgA level (median: 8.00 mg/
gfeces, SD: 9.89). (2) Formula-fed, top two tertiles of fecal sIgA (median: 6.01 mg/gfeces, SD: 4.25). (3) 
Formula-fed, lowest tertile of fecal sIgA (median: 1.86 mg/gfeces, SD: 1.03). P-values indicate significant 
differences between groups based on Kruskal-Wallis Test.
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2.4.5 Simple and multiple logistic regression analyses 

2.4.5.1 Fecal sIgA and Asthma and UVs for AW in the First Three Years of Life 

 Low fecal sIgA was associated with an increased odds for a physician diagnoses 

of asthma and UVs for AW in formula fed infants. The crude OR for asthma at 1-3 years 

or age when formula-fed with low fecal-sIgA was 2.40 (95% CI: 1.23, 4.66; Table 2.3), 

which means that with this exposure, when compared to breastfed infants with any 

levels of sIgA, the likelihood of physician diagnosed asthma in the first 3 years of life is 

2.40 times greater than when infants are breastfed. In comparison, those who were 

formula-fed with normal to high fecal sIgA did not have significantly increased odds for 

asthma when compared to breastfed infants (OR: 1.43; 95% CI: 0.45, 4.55) (Table 2.3). 

When assessing odds of having an UV for AW in the first 3 years of life, formula-fed, 

low-fecal sIgA infants had significantly increased odds (OR: 1.64; 95% CI: 1.03, 2.61) 

(Table 2.4).  

The final, adjusted regression model for asthma diagnoses in the first 3 years of 

life showed a 2.13 times (95% CI: 1.03, 4.43) increase in the odds have having an 

asthma diagnosis with the exposure of formula-feeding and low sIgA (Table 2.3). The 

final regression model for having an UVs for AW in the first 3 years of life had marginal 

significance (OR: 1.39; 95% CI: 0.84, 2.31), when compared to infants who were 

breastfed and had any level of fecal sIgA (Table 2.4). All final models adjusted for 

maternal depression trajectories, multigravida, maternal overweight or obesity during 

pregnancy, newborn antibiotics, prenatal smoke exposure. 
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2.4.5.2 Fecal sIgA and Asthma and UVs for AW in the Fourth and Fifth Years of 

Life 

 The same exposures were used to determine the odds of asthma diagnoses in 

the 4th and 5th years of life. The crude OR for odds of asthma diagnosis in ages 4-5 

when formula-fed and with low fecal sIgA was 1.61 (95% CI: 0.78, 3.44) compared to 

those breastfed with any fecal sIgA level (Table 2.5). Formula-fed infants with normal 

to high fecal sIgA also did not have significantly increased odds for asthma diagnosis 

from ages 4-5 when compared to breastfed infants (OR: 1.15; 95% CI 0.39, 3.44) (Table 

2.5). Adjusted odds ratios were also not significant. 

The crude associations for formula fed infants with normal-high or low fecal sIgA 

on UVs for AW in the 4th and 5th years of life were also not significant. For those infants 

who were formula-fed and had low sIgA, there was a non-significant increase in odds 

for AW (OR: 1.23; 95% CI: 0.67, 2.38) compared to breastfed infants with any sIgA 

levels. In the same model, those who were formula-fed with normal to high levels of 

sIgA also had a non-significant increase in the odds of AW when compared to 

breastfed infants with any level of sIgA (OR: 1.25; 95% CI: 0.53, 2.95) (Table 2.6).  

The finals models contained adjustment for covariates as in the models for ages 

1-3 years above. Diagnosis of asthma in infants  4-5 years of age using adjusted models 

had no significant ORs for formula-fed, low sIgA (OR: 1.34; 95% CI: 0.58, 3.08) and 

formula-fed, normal to high sIgA (OR: 1.31; 95% CI: 0.41, 4.17) when compared to the 

reference group of breastfed infants, any level of sIgA (Table 2.5). The final regression 

model for having an UVs for AW in the 4th through 5th years of life had no significance 

in relation to formula-fed, low fecal sIgA (OR: 1.09; 95% CI: 0.53, 2.23) when compared 

to infants who were breastfed with any fecal sIgA level (Table 2.6). Summary forest plot 

of adjusted ORs for formula fed, low fecal sIgA compared to breastfed infants is in 

figure 2.4. 



 61 

 

 
Figure 2.4. Forest plot of adjusted ORs for various AW outcomes (Tables 2.3-10) 

when formula fed with low fecal sIgA when compared to breastfed infants, 

adjusting for maternal depression (CESD Trajectories), multigravida, prenatal 

smoking, maternal weight during pregnancy, infant antibiotics. 

 

2.4.5.3 Fecal sIgA and Atopic AW  

 In contrast to previous associations, normal-high fecal sIgA while formula fed 

was associated with increased odds of atopic AW compared to breastfed infants. 

Atopic sensitization (positive skin prick test) was used to determine the difference 

between atopic AW and non-atopic AW at 1-3 and 4-5 years of age.  

Atopic and non-atopic AW were compared those without AW in separate 

models. In the following models, when infants were formula fed and had low fecal sIgA, 

they had marginally significantly increased odds (p=0.054) for non-atopic AW at age 

1-3 years, compared to breastfed infants in crude models (OR: 1.63; 95% CI: 0.98, 2.71) 

(Table 2.8). This suggests that with the exposure of formula feeding and low fecal sIgA, 

Figure 3. Forest plot of adjusted ORs for various AW outcomes (Tables 5-12) when formula fed with low fecal sIgA when compared 
to breastfed infants, adjusting for maternal depression (CESD Trajectories), multigravida, prenatal smoking, maternal weight during 
pregnancy, infant antibiotics.
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the likelihood of the infant having non-atopic AW in the first 3 years of life was 1.63 

times greater than breastfed infants.  

A different association was seen in atopic AW. Infants who were formula-fed and 

had normal to high fecal sIgA levels were at increased odds for atopic AW from ages 

1-3 in the crude associations (OR: 2.89; 95% CI: 1.01, 8.30), when compared to 

breastfed infants. In the final adjusted models, the association was strengthened (OR: 

5.45; 95% CI: 1.69, 17.31) (Table 2.7).  In the older age group (ages 4-5), the 

associations were insignificant but in the same direction (Table 2.9-10; Figure 2.5). 

 

 
Figure 2.5. Forest plot of adjusted ORs for various AW outcomes (Tables 2.3-10) 

when formula fed with normal to high fecal sIgA when compared to breastfed 

infants, adjusting for maternal depression (CESD Trajectories), multigravida, 

prenatal smoking, maternal weight during pregnancy, infant antibiotics 

 

 

Figure 4. Forest plot of adjusted ORs for various AW outcomes (Tables 5-12) when formula fed with normal to high fecal sIgA when 
compared to breastfed infants, adjusting for maternal depression (CESD Trajectories), multigravida, prenatal smoking, maternal 
weight during pregnancy, infant antibiotics.
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Table 2.3. Likelihood (OR, 95% CI) of Child Asthma Diagnoses (1-3 Years Old) by 

Breastfeeding Status and Fecal sIgA Levels 
 

Asthma Diagnoses at 1-3 
Years Crude OR (95% CI) 

Asthma Diagnoses at 1-3 Years 
Adjusted OR (95% CI) (n=684)* 

BF * Fecal sIgA (2-5.5 months) (Ref: Breastfed, any fecal sIgA 
level) 

  

Formula-fed, Normal-High Fecal sIgA 1.29 (0.44, 3.79) 1.43 (0.45, 4.55) 
Formula-fed, Low Fecal sIgA 2.40 (1.23, 4.66) 2.13 (1.03, 4.43) 

CESD Trajectories   

Antepartum (high levels during pregnancy) or Persistent (high 
levels throughout pregnancy and postpartum up to 2yrs of infant 

age) 
4.24 (1.97, 9.15) 5.29 (2.24, 12.05) 

Postpartum (high levels postpartum) 2.94 (1.29, 6.68) 2.75 (1.13, 6.66) 
Multigravida 0.99 (0.56, 1.77) 1.17 (0.62, 2.25) 
Prenatal Smoke Exposure 3.09 (1.36, 6.98) 2.37 (1.13, 6.66) 
Maternal Overweight/Obesity (During Pregnancy)   

Overweight 1.28 (0.66, 2.47) 1.15 (0.70, 2.98) 
Obesity 0.71 (0.31, 1.65) 0.45 (0.18, 1.17) 

Infant Antibiotics 1.10 (0.33, 3.70) 0.81 (0.23, 2.90) 
*Adjusted for maternal depression (CESD Trajectories), multigravida, prenatal smoking, 
maternal weight during pregnancy, infant antibiotics. Bold indicates statistical significance 
p<0.05 
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Table 2.4. Likelihood (OR, 95% CI) of an UV for AW (1-3 Years Old) by 

Breastfeeding Status and Fecal sIgA Levels 
 

AW at 1-3 Years 
Crude OR (95% CI) 

AW at 1-3 Years Adjusted 
OR (95% CI) (n=608)* 

BF * Fecal sIgA (2-5.5 months) (Ref: Breastfed, any fecal sIgA level)   

Formula-fed, Normal-High Fecal sIgA 1.47 (0.79, 2.76) 1.48 (0.74, 2.97) 
Formula-fed, Low Fecal sIgA 1.64 (1.03, 2.61) 1.39 (0.84, 2.31) 

CESD Trajectories   

Antepartum (high levels during pregnancy) or Persistent (high levels 
throughout pregnancy and postpartum up to 2yrs of infant age) 

2.36 (1.21, 4.57) 2.00 (0.98, 4.08) 

Postpartum (high levels postpartum) 1.57 (0.85, 2.90) 1.35 (0.69, 2.68) 
Multigravida 0.85 (0.61, 1.20) 0.78 (0.53, 1.13) 
Prenatal Smoke Exposure 1.48 (0.76, 2.88) 1.33 (0.64, 2.76) 
Maternal Overweight/Obesity (During Pregnancy)   

Overweight 1.00 (0.66, 1.54) 1.00 (0.63, 1.60) 
Obesity 1.63 (1.05, 2.54) 1.42 (0.87, 2.30) 

Infant Antibiotics 1.36 (0.68, 2.74) 1.28 (0.62, 2.67) 
*Adjusted for maternal depression (CESD Trajectories), multigravida, prenatal smoking, 
maternal weight during pregnancy, infant antibiotics. Bold indicates statistical significance 
p<0.05 
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Table 2.5. Likelihood (OR, 95% CI) of Child Asthma Diagnoses (4-5 Years Old) by 

Breastfeeding Status and Fecal sIgA Levels 
 

Asthma Diagnoses at 4-5 
Years Crude OR (95% CI) 

Asthma Diagnoses at 4-5 Years 
Adjusted OR (95% CI) (n=453)* 

BF * Fecal sIgA (2-5.5 months) (Ref: Breastfed, any fecal sIgA 
level) 

  

Formula-fed, Normal-High Fecal sIgA 1.15 (0.39, 3.44) 1.31 (0.41, 4.17) 
Formula-fed, Low Fecal sIgA 1.61 (0.78, 3.44) 1.34 (0.58, 3.08) 

CESD Trajectories   

Antepartum (high levels during pregnancy) or Persistent (high 
levels throughout pregnancy and postpartum up to 2yrs of infant 

age) 
5.12 (2.10, 12.51) 5.78 (2.21, 15.13) 

Postpartum (high levels postpartum) 2.10 (0.77, 5.75) 2.57 (0.88, 7.54) 
Multigravida 0.64 (0.36, 1.15) 0.61 (0.32, 1.17) 
Prenatal Smoke Exposure 2.43 (0.95, 6.23) 1.63 (0.54, 4.94) 
Maternal Overweight/Obesity (During Pregnancy)   

Overweight 0.46 (0.19, 1.12) 0.58 (0.23, 1.48) 
Obesity 0.95 (0.44, 2.07) 0.82 (0.35, 1.95) 

Infant Antibiotics 0.77 (0.18, 3.36) 0.62 (0.13, 2.92) 
 
*Adjusted for maternal depression (CESD Trajectories), multigravida, prenatal smoking, 
maternal weight during pregnancy, infant antibiotics. Bold indicates statistical significance 
p<0.05 
  



 66 

Table 2.6. Likelihood (OR, 95% CI) of an UV for AW (4-5 Years Old) by Breastfeeding 

Status and Fecal sIgA Levels 
 

AW at 4-5 Years 
Crude OR (95% CI) 

AW at 4-5 Years Adjusted 
OR (95% CI) (n=486)* 

BF * Fecal sIgA (2-5.5 months) (Ref: Breastfed, any fecal sIgA level)   

Formula-fed, Normal-High Fecal sIgA 1.25 (0.53, 2.95) 1.19 (0.45, 3.15) 
Formula-fed, Low Fecal sIgA 1.23 (0.64, 2.38) 1.09 (0.53, 2.23) 

CESD Trajectories   

Antepartum (high levels during pregnancy) or Persistent (high levels 
throughout pregnancy and postpartum up to 2yrs of infant age) 

2.15 (0.88, 5.24) 1.92 (0.74, 4.94) 

Postpartum (high levels postpartum) 1.53 (0.65, 3.61) 0.76 (0.24, 2.40) 
Multigravida 1.18 (0.71, 1.94) 1.18 (0.69, 2.03) 
Prenatal Smoke Exposure 2.97 (1.35, 6.50) 2.84 (1.18, 6.84) 
Maternal Overweight/Obesity (During Pregnancy)   

Overweight 0.75 (0.40, 1.41) 0.48 (0.23, 1.04) 
Obesity 1.31 (0.72, 2.41) 1.01 (0.52, 1.98) 

Infant Antibiotics 1.35 (0.50, 3.68) 1.03 (0.34, 3.17) 
*Adjusted for maternal depression (CESD Trajectories), multigravida, prenatal smoking, 
maternal weight during pregnancy, infant antibiotics. Bold indicates statistical significance 
p<0.05 
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Table 2.7. Likelihood (OR, 95% CI) of Atopic AW vs. No AW (1-3 Years Old) by 

Breastfeeding Status and Fecal sIgA Levels 
 

Atopic AW at 1-3 Years 
Crude OR (95% CI) 

Atopic AW at 1-3 Years 
Adjusted OR (95% CI) 
(n=378)* 

BF * Fecal sIgA (2-5.5 months) (Ref: Breastfed, any fecal sIgA level)   

Formula-fed, Normal-High Fecal sIgA 2.89 (1.01, 8.30) 5.45 (1.69, 17.31) 
Formula-fed, Low Fecal sIgA 0.58 (0.13, 2.49) 0.67 (0.14, 3.12) 

CESD Trajectories   

Antepartum (high levels during pregnancy) or Persistent (high levels 
throughout pregnancy and postpartum up to 2yrs of infant age) 

2.72 (0.75, 9.89) 3.40 (0.78, 14.78) 

Postpartum (high levels postpartum) 1.30 (0.29, 5.81) 1.63 (0.33, 8.00) 
Multigravida 0.63 (0.29, 1.39) 0.49 (0.20, 1.20) 
Prenatal Smoke Exposure 1.46 (0.33, 6.56) 1.13 (0.19, 6.61) 
Maternal Overweight/Obesity (During Pregnancy)   

Overweight 1.14 (0.46, 2.86) 1.33 (0.48, 3.67) 
Obesity 0.77 (0.22, 2.73) 0.79 (0.20, 3.18) 

Infant Antibiotics 1.42 (0.60, 3.43) Omitted 
*Adjusted for maternal depression (CESD Trajectories), multigravida, prenatal smoking, 
maternal weight during pregnancy, infant antibiotics. Bold indicates statistical significance 
p<0.05 
 
  



 68 

Table 2.8. Likelihood (OR, 95% CI) of Non-atopic AW vs. No AW (1-3 Years Old) 

by Breastfeeding Status and Fecal sIgA Levels 
 

Non-Atopic AW at 1-3 
Years Crude OR (95% CI) 

Non-Atopic AW at 1-3 Years 
Adjusted OR (95% CI) (n=526)* 

BF * Fecal sIgA (2-5.5 months) (Ref: Breastfed, any fecal sIgA level)   

Formula-fed, Normal-High Fecal sIgA 1.39 (0.69, 2.81) 1.26 (0.57, 2.79) 
Formula-fed, Low Fecal sIgA 1.95 (1.23, 3.13) 1.63 (0.98, 2.71) 

CESD Trajectories   

Antepartum (high levels during pregnancy) or Persistent (high levels 
throughout pregnancy and postpartum up to 2yrs of infant age) 

2.03 (1.00, 4.07) 1.59 (0.75, 3.40) 

Postpartum (high levels postpartum) 1.83 (0.99, 3.39) 1.56 (0.79, 3.07) 
Multigravida 0.95 (0.66, 1.36) 0.90 (0.61, 1.34) 
Prenatal Smoke Exposure 1.55 (0.78, 3.09) 1.32 (0.62, 2.79) 
Maternal Overweight/Obesity (During Pregnancy)   

Overweight 1.01 (0.65, 1.57) 0.97 (0.60, 1.58) 
Obesity 1.64 (1.04, 2.06) 1.36 (0.81, 2.26) 

Infant Antibiotics 1.76 (0.87, 3.54) 1.63 (0.78, 3.40) 
*Adjusted for maternal depression (CESD Trajectories), multigravida, prenatal smoking, 
maternal weight during pregnancy, infant antibiotics. Bold indicates statistical significance 
p<0.05 
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Table 2.9. Likelihood (OR, 95% CI) of Atopic AW vs. No AW (4-5 Years Old) by 

Breastfeeding Status and Fecal sIgA Levels 

 
Atopic AW at 4-5 Years 
Crude OR (95% CI) 

Atopic AW at 4-5 Years 
Adjusted OR (95% CI) 
(n=390)* 

BF * Fecal sIgA (2-5.5 months) (Ref: Breastfed, any fecal sIgA level)   

Formula-fed, Normal-High Fecal sIgA 1.03 (0.23, 4.64) 1.53 (0.31, 7.50) 
Formula-fed, Low Fecal sIgA 0.90 (0.26, 3.17) 0.70 (0.15, 3.29) 

CESD Trajectories   

Antepartum (high levels during pregnancy) or Persistent (high levels 
throughout pregnancy and postpartum up to 2yrs of infant age) 

2.19 (0.47, 10.09) 2.47 (0.47, 12.84) 

Postpartum (high levels postpartum) 0.70 (0.09, 5.44) 0.69 (0.08, 5.83) 
Multigravida 1.38 (0.56, 3.44) 1.11 (0.41, 2.97) 
Prenatal Smoke Exposure 2.68 (0.74, 9.68) 2.07 (0.39, 10.96) 
Maternal Overweight/Obesity (During Pregnancy)   

Overweight 0.29 (0.07, 1.29) 0.34 (0.08, 1.54) 
Obesity 0.65 (0.19, 2.70) 0.42 (0.09, 2.00) 

Infant Antibiotics 0.90 (0.12, 7.00) 0.83 (0.10, 6.79) 
*Adjusted for maternal depression (CESD Trajectories), multigravida, prenatal smoking, 
maternal weight during pregnancy, infant antibiotics. Bold indicates statistical significance 
p<0.05 
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Table 2.10. Likelihood (OR, 95% CI) of Non-atopic AW vs. No AW (4-5 Years Old) 

by Breastfeeding Status and Fecal sIgA Levels 
 

Non-Atopic AW at 4-5 
Years Crude OR (95% CI) 

Non-Atopic AW at 4-5 Years 
Adjusted OR (95% CI) (n=441)* 

BF * Fecal sIgA (2-5.5 months) (Ref: Breastfed, any fecal sIgA level)   

Formula-fed, Normal-High Fecal sIgA 0.79 (0.30, 2.12) 0.70 (0.23, 2.16) 
Formula-fed, Low Fecal sIgA 1.48 (0.80, 2.76) 1.36 (0.70, 2.64) 

CESD Trajectories   

Antepartum (high levels during pregnancy) or Persistent (high levels 
throughout pregnancy and postpartum up to 2yrs of infant age) 

2.36 (0.95, 5.87) 2.41 (0.92, 6.30) 

Postpartum (high levels postpartum) 1.30 (0.52, 3.26) 0.89 (0.29, 2.74) 
Multigravida 0.92 (0.56, 1.50) 1.01 (0.59, 1.72) 
Prenatal Smoke Exposure 2.07 (0.89, 4.81) 2.14 (0.87, 5.28) 
Maternal Overweight/Obesity (During Pregnancy)   

Overweight 1.00 (0.55, 1.82) 0.71 (0.35, 1.42) 
Obesity 1.39 (0.74, 2.60) 1.11 (0.56, 2.18) 

Infant Antibiotics 1.01 (0.34, 3.02) 0.66 (0.19, 2.31) 
*Adjusted for maternal depression (CESD Trajectories), multigravida, prenatal smoking, 
maternal weight during pregnancy, infant antibiotics. Bold indicates statistical significance 
p<0.05 
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2.5 Discussion 
In this subsample of 951 healthy term children from a prospective birth cohort, 

we found significant associations between total fecal sIgA levels in the first 5.5 months 

of life and development of childhood AW. After exposure to lower fecal sIgA while 

being formula fed, infants were at significantly increased odds for having a physician 

diagnoses of asthma (adjusted OR: 2.13; 95% CI: 1.03, 4.43) in the first 3 years of life 

compared to breastfed infants. This result is consistent with previous studies citing that 

lower IgA in associated with increased risk for preschool age asthma [30]. In 

comparison, formula fed infants that had normal-high fecal sIgA had significantly 

increased odds of having atopic AW (ages 1-3) (adjusted OR: 5.45; 95% CI: 1.69, 17.31) 

compared to breastfed infants. This study is the first to report on fecal secretory IgA 

levels in infants in association with physician diagnoses of asthma, UVs for AW and 

atopic AW in a large population-based cohort. This is a key area of interest due the 

high cost of health-care utilization for AW and potential that early identification may 

promote preventive management strategies.  

There was a trend for increased odds of all AW when having low fecal sIgA while 

formula-fed compared to breastfed infants. Formula-fed infants who had low fecal sIgA 

had increased odds of having a physician diagnoses of asthma, after controlling for 

important covariates. Previous reports link IgA in relation to later development of 

childhood asthma, and our findings suggest that fecal sIgA levels are related to infant 

AW in early life. Early wheeze is a risk factor for later development of asthma, so this is 

an important finding [23]. A previous study from the CHILD cohort found that in 

comparison to breastfed infants, those who were formula fed had increased odds of 

wheezing and this was in a dose-dependent manner, so our findings add an extra level 

to understanding why a decrease in breastfeeding is associated with increased risk for 

wheezing illness [31].  
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As highlighted in previous reports, there are difficulties in the diagnoses of 

preschool asthma, and the diagnosis is even less clear when it is an unexpected 

healthcare utilization [32]. One reason that fecal sIgA may be of value in diagnosis of 

asthma or an unexpected health care utilization for AW at an early age, is that IgA levels 

are suspected to be more related to “variable” asthma which is mediated by 

inflammation than “persistent” asthma caused by remodelling which is more prevalent 

in older age groups [31].  Furthermore, sIgA is an important factor for prevention of 

infection from viruses and various respiratory diseases in early life [32]. As 

asthma/wheezing illness in the first few years of life is largely related to respiratory 

infections and mucosal sIgA has been shown to play a role in prevention of respiratory 

infections, one explanation for our associations is that low fecal sIgA responses to 

microbiota could cause reduced mucosal barrier function and increased susceptibility 

to airway viral infections and later development of asthma [5,33]. A previous report by 

Dzidic et al., (2018) showed that although total sIgA levels were not related to asthma, 

subtle differences in microbe binding to sIgA was linked to asthma development [13]. 

In this study, infants were breastfed at the early time point of stool collection (1 month) 

and thus the maternal source of sIgA would be relevant. Feeding practices have a large 

effect on early life mucosal immune development and the presence of maternal milk 

IgA is important for the early development of mucosal immunity that is thought to 

protect from later development of asthma [34–37].  

We found that normal-high fecal sIgA in formula fed infants was associated with 

atopic AW compared to breastfed infants. It has been previously reported that higher 

fecal IgA is associated with decreased risk for atopic disease. Kukkonen et al., (2010) 

showed that high fecal IgA concentration at the age of 6 months associated with 

decreased risk for IgE-mediated allergic disease up to 2 years of infant age, and 

breastfeeding had no significant confounding effects [12]. This study used a less 
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refined measure of total fecal IgA which may include both serum and secretory forms 

of IgA when the infant’s mucosal barrier is not fully developed, whereas our study 

measured sIgA specifically, perhaps explaining our differential results. As well, there 

are many reports that show that high levels of mucosal sIgA could interfere with the 

interaction between allergens and IgE antibodies in sensitized individuals, thereby 

preventing allergic inflammation and clinical symptoms [32]. Despite these previous 

findings, it is plausible that higher fecal sIgA when formula fed may be a marker for 

aberrant responses of the infant immune system to microbiota, though normal to high 

median levels of fecal sIgA in formula fed infants were still lower than in breastfed 

infants with any fecal sIgA level. In 2019, Gopalakrishna et al., found that infants who 

were formula fed had a higher proportion of IgA that was unbound to microbes, which 

was associated with an increase in Enterobacteriaceae in the microbiota [38]. 

Proinflammatory Protebacteria like Enterobacteriaceae have also been shown to be 

increased in formula-fed infants compared to breastfed infants and development of a 

proper response of sIgA to Proteobacteria aided by passive sIgA from mothers may 

limit a chronic inflammatory response in infants [34,38,39,40,56]. Proteobacteria have 

also shown to induce IgA [41]. As well, in our CHILD cohort, previous research has 

shown that Enterobacteriaceae are over-represented in those with development of 

subsequent food sensitization [42]. Studies in mice models that manipulated sIgA 

production and breastfeeding schemes show that maternally-derived sIgA has a 

strong influence on infant microbiome development that was only magnified when 

mice reached adulthood [34]. These findings seem to indicate the importance of 

receiving maternally derived sIgA when the microbiome is developing. More research 

needs to be done to compare formula-fed infants to their breastfed counterparts to 

determine how their sIgA-mediated immune responses differ in relation to microbiota 

composition and future risk for AW.  
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As we hypothesized, birth characteristics and the environment appeared to 

affect the relationship between fecal sIgA levels and AW. We confirmed the 

associations between various birth characteristics on sIgA levels. Birth mode is highly 

associated with antibiotic exposure, and caesarean birth has additional effects on the 

microbiome, reducing the diversity and altering the composition in a manner which 

may have long-lasting effects on the immune system and IgA production [43]. A direct 

link between changes in the gut microbiota due to early-life antibiotic exposure and 

the immune response towards allergens has been confirmed by human and murine 

studies [44,45]. At the same time, caesarean section is associated with an increased 

risk for development of asthma during childhood and hospitalization due to 

respiratory syncytial virus infection in infancy [35,46,47]. An inverse association has 

been made with breastfeeding and asthma and hospitalizations for asthma [48,49].   

Maternal obesity and overweight during pregnancy were also associated with 

decreased levels of fecal sIgA, possibly mediated through both increased risk for 

caesarean section which has great impacts on the microbiome and the separate effects 

of maternal-infant transmission of an obese microbiome to the infant [50]. Interestingly, 

maternal prenatal smoke exposure was more significantly associated with low fecal 

sIgA than postnatal smoke exposure. Two studies in particular have revealed 

significant changes in the gut microbiome as a result of smoking and another identified 

lower salivary sIgA in infants from mothers who smokers [51–53]. As well, mothers with 

exposure to tobacco smoke pass a significant amount of metabolites to the infant 

which may affect perinatal immune system programming and have long term impacts 

via maternal-infant fecal-oral transmission of the microbiome during birth [54,55]. 

Additionally, we found strong associations between maternal depression trajectories 

and sIgA. Previous studies from our lab, found that infants with higher exposure to 

maternal depressive symptoms pre and post-natally had lower fecal sIgA levels in the 
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first few months of life compared to those who did not [1]. Interestingly, the odds ratio 

for the maternal depression trajectories increased in significance in some fully-

adjusted models, suggesting that sIgA may mediate the associations between 

maternal depression in the pre and postnatal periods and early childhood AW.  

These study findings are encouraging for nursing mothers and physicians, in 

that the current recommendations regarding breastfeeding appear to support the 

development of a healthy infant mucosal immune system, which is associated with 

decreased odds for AW and atopic AW in early life compared to formula fed infants. 

Additionally, despite this, being formula fed and having low/normal-high fecal sIgA 

may not be a clinically significant predictor despite its statistical significance. Further 

research confirming this relationship is needed to fully understand the influence of 

fecal sIgA on development of atopic disease. 

 The CHILD study was designed to evaluate the developmental origins of health 

and disease, specifically in relation to allergy and asthma. The prospective cohort 

design has a number of strengths and weakness. Due to the prospective nature of this 

study, this study can support the temporality of the relationship between infant fecal 

sIgA and childhood AW and maternal report of asthma is a well validated method 

[23,24]. Although this cohort study was able to recruit over 3500 mothers, enough to 

conduct various stratification analyses with potential covariates, a limitation of this 

study is that stool samples were only available for 1,071 individuals which decreased 

our sample size significantly, despite still having adequate power to determine these 

associations. We also had limited information regarding environmental triggers, and 

our sIgA detection kit does not discriminate between sIgA free or bound to microbes 

which may be important based on the results of Dzidic et al., (2017) [13]. In spite of 

these limitations, this is a rigorous cohort study which provides important information 

on a potential biomarker for childhood atopic disease development. Future studies on 
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infant immune system development may be beneficial to confirm if fecal sIgA levels are 

a causative agent in this process or if it is merely a marker for aberrant gut microbiota 

composition and/or immune system development. Ultimately, lower fecal sIgA while 

formula fed is associated with reduced odds for AW in early life (Fig 2.2), whereas 

normal-high fecal IgA while formula fed is associated with increased odds for atopic 

AW compared to breastfed infants. Clearly, this is a complex topic and there are 

differential associations between atopic and non-atopic AW that need to be further 

elucidated. 
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3.0 Study 2: Serum Immunoglobulin A in Relation to Emergency Department 

Visits for Asthma/Wheeze in Childhood  

 

3.1 Abstract 

Background. There is a large body of evidence on the association between serum 

immunoglobulin A (IgA), asthma, and other atopic diseases. Many previous studies 

have shown an association between absence of serum IgA and increased risk for 

asthma. Kim et al., (2017) recently showed that in a cohort of adult patients with 

suspected asthma, low serum IgA levels were positively related to atopic sensitisation 

and airway hyperresponsiveness. In contrast, Possin et al., (2011) showed that serum 

IgA levels were increased in those with food sensitization, but not in those with 

sensitizations to aeroallergens, despite the IgA levels being normal for their age.  In 

our study, we determined associations between serum IgA in relationship to 

Emergency Department (ED) visits for asthma and/or wheeze (AW) and atopic AW in 

childhood. 

 

Objective. The objective of this study is to determine if low serum IgA children is a 

useful biomarker for future ED visits for AW. 

 

Methods. Anonymized administrative health data of 9,938 children who had serum 

IgA levels assessed when they were <3 years of age between April 1, 2013 and June 

30, 2018 was obtained for analysis from Alberta Health Services (AHS) (Alberta, 

Canada). Serum IgA levels were quantified using standardized provincial lab tests. 

Child ED visits for AW were determined via National Ambulatory Care Reporting 

System using ICD-10-CA codes from ages 0-5. Using STATA v16, multiple logistic 

regression models determined the association (Odds Ratio, OR) between normal to 
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high serum IgA (top two tertiles compared to the lowest tertile) and child ED visits for 

AW, atopic AW, non-atopic AW, and atopic asthma and non-atopic asthma adjusting 

for covariates identified by directed acyclic graph. 

 

Results. Approximately 11.4% of children had an ED visit for AW until age 3. Median 

levels of serum IgA from ages 1-2 years were 0.05g/L higher in those children with an 

ED visit for AW until age 3 (p=0.10) than in those without. When compared to infants 

with low serum IgA levels, infants with normal-high serum IgA levels (ages 1-2) had an 

adjusted OR of having an ED visit for AW of was 1.21 (adjusted 95% CI: 1.00, 1.46), 

controlling for confounding factors. Those with normal-high levels (from 2-3 years) also 

had significantly increased odds of atopic AW (adjusted OR: 1.79 (95% CI: 1.03, 3.09) 

when compared to those without.  

 

Conclusions. Normal-high levels of serum IgA in the first 3 years of life appear to be 

positively associated with ED visits for AW and atopic AW from until age 3. Further 

studies are needed to define the relationships between serum IgA and ED visits for AW 

and atopic sensitization which may provide new insight into the development of 

respiratory disease and atopic illness in childhood. 
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3.2 Introduction 

Mucosal IgA, also known as secretory IgA (sIgA), has a role in prevention of infection 

and potentially in development of atopic disease [1–5]. In addition to the conventional 

understanding that mucosal antibodies act as neutralizing antibodies to exclude 

antigens and pathogens, sIgA in the gut also has antigen sampling functions and helps 

promote colonization of commensal bacteria in the gut microbiota [6,7]. 

Despite the emerging and potentially relevant roles of sIgA in prevention of asthma, 

respiratory infections and atopic disease, the literature on the relationships between 

these diseases and levels of serum (i.e. blood) IgA is less clear. One explanation that 

serum IgA levels may be less associated with asthma is that they only make up 

approximately 7% of the total IgA in the body and only loosely correlate to levels of 

sIgA, which is the main mediator of mucosal immunity [8,9]. One study in particular 

showed this using germ-free mice, revealing that with the lack of microbial stimulation 

of sIgA, there was an absence of gut sIgA but retention of up to half of the regular 

serum IgA levels [10]. 

Regardless of the functional differences between secretory and serum IgA, serum 

IgA has also previously been associated with increased risk for asthma and atopic 

sensitization. In 2013, Celani et al. completed a prospective cohort study of individuals 

with IgA deficiency, defined as an undetectable serum IgA level (<0.05 g/L), to 

determine their future risk of asthma and allergic diseases. Their findings suggest an 

increased risk of not only recurrent respiratory infections, but also atopic disease and 

asthma, as compared to the general population [4]. Further evidence from another 

study revealed that when serum IgA levels were low in infancy, asthma was more 

common at age 7 [11]. In contrast, other research has shown that higher serum IgA is 

related to an increased risk of atopic sensitization [12]. Clearly further research is 
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needed on the development of IgA in early life and future risk for asthma and atopic 

disease.  

Asthma exacerbations and wheeze are frequent in childhood, can result in visits to 

the Emergency Department (ED), and account for a substantial amount of annual 

health care expenditures [13]. Pediatric asthma guidelines exist (www.cps.ca, 

www.worldallergy.org), but the control of asthma and wheeze in children is often poor 

and acute attacks of asthma or wheeze often necessitate visits to the ED. As such, it is 

important to study risk factors and potential biomarkers that identify odds of future 

asthma development risk, as well as risk for ED visits. To date, none have studied serum 

IgA in relation to ED visits for AW in childhood.  

The objective of this study is to determine whether children with low serum IgA 

in the first few years of life have increased risk for ED visits for AW or atopic asthma 

and/or wheeze compared to those with normal to high serum IgA levels at the same 

time using a large, population-based administrative health database. This association 

is assessed while controlling for failure to thrive (FTT) and sex to attempt to determine 

the relationship between serum IgA and ED visits for asthma and wheeze. 

 

3.3 Methods  

3.3.1 Data Sources 

This study used Alberta Health Services (AHS) anonymized administrative level 

health data from Alberta, Canada. Patients who had a serum IgA level assessed when 

they were <3 years of age during a period between April 1, 2013 and June 30, 2018 

and had adequate follow up time for each of the outcomes were selected for analysis. 

Alberta is a province with >4 million residents and a uniform single-payer health 

system—the Alberta Health Care Insurance Plan (AHCIP)—that provides medically 
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necessary health care. The Government of Alberta is the custodian of all administrative 

databases used in our study. The University of Alberta Health Research Ethics Board – 

Health Panel approved this study (#Pro00083778) and waived participant consent 

since data was aggregated and anonymized to protect patient privacy. The National 

Ambulatory Care Reporting System (NARCS) collects information on all ED 

presentations and services delivered within acute care institutions in Alberta using the 

International Classification of Diseases diagnostic codes (Canadian Version); ICD-10-

CA for April 2002-present. Each unique service contains a unique patient identifier, ED 

visit start/end and dates/times, diagnosis, and disposition. Additional health record 

level data was extracted from the Alberta provincial lab, National Ambulatory Care 

Reporting System (NACRS) (ED visits only) and practitioner claims (PC) (outpatient visits 

only). All extracted data sets contained a unifying linking identifier (ULI) which was 

coded as an anonymized patient identifier. Provincial lab data included serum IgA and 

IgE levels, the date at which the test was done, patient sex and age at the time of the 

test, the name of the test, the result of the test and the units of the lab test. NARCS 

contained data on dates of ED, ICD-10CA diagnoses codes corresponding to the ED 

visit, procedure codes and disposition of the ED visit. The final data set, CLM (Alberta 

Health Practitioner Claims) contained physician billing claim data including: date of 

physician billing claim, diagnoses corresponding to billing claim and health service 

codes which identify services performed by the health care practitioner. 

 

3.3.2 Child AW 

A pediatric AW-related visit was defined as an ED encounter that resulted in a 

diagnosis of asthma or wheeze (ICD-10 diagnostic codes J45.x  [asthma all forms], J209  

[acute bronchitis], J218  [acute bronchiolitis] and R062  [wheezing all forms] in the 

NARCS two first diagnosis fields). The study population was restricted to individuals 
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aged 0 to 5 years and who had adequate follow up time at the study end; this time 

varied between outcomes. Children were considered to have had asthma or wheeze if 

they were assigned any of these diagnostic codes within the first two principal 

diagnoses fields. All ED presentations were assigned a disposition code according to 

the manner in which they left the ED, including discharged, left against medical advice 

or without being seen, admitted as an inpatient, transferred to another institution, or 

death. Only the ED presentations with the dispositions “discharged” were used for this 

study to ensure the proper final diagnoses code was assigned for the ED visit. 

Asthma trajectories include transient, persistent, atopic and non-atopic 

phenotypes, so this project included asthma variables that account for these 

trajectories, also taking into account how asthma and wheeze are currently diagnosed 

in the ED [12]. Since the diagnoses of asthma in children under the age of 5 is not 

straightforward, ED physicians may prefer to use terms to describe symptoms rather 

than assigning disease classification, so we combined the 

asthma/bronchiolitis/bronchitis/wheeze as an outcome of AW from ages 1 until then 

end of age 3 years and ages 4-5 years. Pediatric atopic AW and atopic asthma was 

determined by combining being in the highest tertile level of IgE (>27.2 kU/L) with 

AW/asthma to create an atopic AW/asthma dichotomous variable. Pediatric non-atopic 

AW/asthma was determined by combining not being in the highest tertile level of IgE 

(<=27 kU/L) with AW/ asthma to create an non-atopic AW/asthma dichotomous 

variable. 

 

3.3.3 Exposures 

3.3.3.1 Extraction and Analysis of IgA 

 Immunoglobulin measurement was performed as part of routine sample 

analysis by laboratories contracted to AHS. The in vitro serum IgA diagnostic kit 
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“Reagent Atellica® CH Immunochemistry / Specific Protein Test Immunoglobulin A For 

Atellica® CH Analyzer 1600 Tests 2 X 9.3 mL” was used following the kit protocol. 

Serum samples were drawn through standard phlebotomy techniques and samples 

delivered to the laboratory using standard clinical practice. 

Serum IgA changes rapidly during the neonatal period, especially in the 1st year 

of life, and reaches stable adult levels around 16 years of age. Scatterplot of serum IgA 

levels by age is shown in Appendix C, Figure C1. As such, we stratified our analysis to 

serum IgA levels from ages 0 to 1, 1 to 2 and 2 to 3 years. In order determine the effect 

of serum IgA at each of these age ranges and ED visits for AW, we used the following 

variable at each age strata: 1) children with low serum IgA levels (lowest tertile) and 2) 

children with normal to high serum IgA levels (top two tertiles). The groups were 

mutually exclusive. 

 

3.3.3.2 Definition of Potential Covariates 

 Covariates investigated in this study were age at serum IgA collection, age at ED 

visit for asthma or wheeze, sex, diagnosis of failure to thrive, IgE level and age at IgE 

level. Serum was extracted using standard phlebotomy techniques and the diagnostic 

kit used in provincial labs for determination of serum IgE levels was “Atellica® IM Total 

IgE (tIgE) Assay For Atellica® IM Analyzer 1400 Tests 2 X 9.3 mL”. These variables were 

created from data obtained from the AHS provincial laboratory data, National 

Ambulatory Care Reporting System (NACRS) (ED visits only) and practitioner claims 

(PC) (outpatient visits only) and linked together by unique patient identifiers. Sex was 

designated by physician reported sex. Immunoglobulin levels E and age at 

immunoglobulin level were based on provincial lab data and age at the time of 

measurement. Diagnosis of failure to thrive (FTT) was determined using PC data by 
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having a diagnosis in the first two health service codes of ICD9-CA code 783.4 [Lack of 

expected normal physiological development in childhood]. 

 

3.3.3.3 Statistical Analyses 

The latest presentation per individual was selected for those with repeated ED 

presentations. Table 1 and Appendix C Table C1 describes the frequencies and row-

percentages of each study variable in relation to the outcomes and exposure in this 

study. Fisher’s exact or Chi O2 tests were run to determine if the co-variate sampling 

distributions varied significantly between outcome and exposure groups. A p-value of 

< 0.05 was considered statistically significant. IgA concentrations were not normally 

distributed, so non-parametric tests (Mann-Whitney U) were used to detect differences 

in serum IgA medians according to the AW status of the child. Only serum IgA levels 

before any ED for AW were used. A logistic regression models used a binomial 

categorical exposure of IgA as follows: (1) normal to high serum IgA levels, 2) low 

serum IgA levels. The top two tertiles compared the lowest tertile was used as normal-

high serum IgA (yes/no). Prototype analyses for the highest tertile compared to the 

lowest two tertiles (high serum IgA (yes/no)) was done (data not shown). 

To determine the association between serum IgA and childhood visits to the 

emergency department for asthma or wheeze, our analyses followed Shrier and Platt’s 

seminal article explaining Directed Acyclic Graphs (DAGs) creation and use for 

epidemiological studies. DAGs were created using dagitty.com. DAGs are first build to 

select a minimum adjustment set of covariates to control for biasing pathways and 

avoid over-adjustment. Final minimally sufficient adjustment set included: Failure to 

Thrive, sex, stratified by age at IgA level (0-1, 1-2, and 2-3 years) and age at diagnoses 

(until age 3 years, 4-5 years) (Figure 1). Statistical analyses were conducted using STAT 

v16.0 and figures were created using Prism v8. 
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Figure 3.1. Directed Acyclic Graph (DAG) for the association between serum IgA 

and childhood ED visits for asthma or wheeze was built using dagitty.com. The 

same DAG was used for atopic AW. Green lines represent causal pathways, and 

red lines represent biasing paths. The minimally sufficient adjustment set 

represents covariates such that the adjustment for this set of variables will 

minimize confounding bias when estimating the association between the 

exposure and the outcome. The finally minimally sufficient adjustment set 

contained age, sex and failure to thrive. Age was taken into account by stratifying 

at age of ED visit and age at IgA levels. 
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3.4 Results 

3.4.1 Study Population and ED Visits for AW 

 From 0 to 1 years of life, 2,040 children had a serum IgA level (median age: 0.5 

years, median value: 0.23 g/L (SD: 0.38). In the 1st through 2nd years of life, there were 

4,079 children with a serum IgA level with a median age of 1.5 years and median value 

of 0.41 g/L serum IgA (SD: 0.38). In the 2nd through 3rd years of life, there were 3,189 

children with a serum IgA level with a median age of 2.5 years and median value of 

0.60 g/L serum IgA (SD: 0.46). Appendix C, figure 1 shows the median level of IgA by 

age in years in our sample.  

11.4% (until age 3 years) and 2.45% (ages 4-5 years) in our sample had ED visit 

for AW. 2.14% and 0.52% had atopic AW from ages 1-3 and 4-5, respectively. 3.18% 

and 0.37% had non-atopic AW from until age 3 and from age 4-5 years, respectively. 

Prevalence of atopic and non-atopic asthma were similar to atopic AW and non-atopic 

AW, respectively (Table 3.1). The prevalence of ED visits for AW is in line with that 

reported by others (www.cihi.ca).  

 Table 3.1 reports the distribution of normal-high children serum IgA and ED 

visits for AW, atopic AW and atopic asthma until age 3 years across potential covariates. 

Being in the top two tertiles of serum IgA from 1-2 and 2-3 years was significantly more 

common in males (p<0.001; p=0.028) and those without a prior diagnosis of FTT 

(p0.053) from ages 2-3. ED visits for AW, atopic AW and atopic asthma at until age 3 

were significantly more common in male children (p<0.001) (Table 3.1). Most of these 

associations were not significant from ages 4-5 (Appendix C, Table C1). All ED 

presentations with a non-missing end date before June 30th, 2018 that concluded in 

discharge were selected for inclusion (<5% had missing end dates).  
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Table 3.1. Proportion of ED Visits for AW (Until age 3 years) and Potential Covariates in the 9,938 n AHS sub-

Cohort with Serum IgA Samples from Ages 0-3 
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3.4.2 Comparison of median serum IgA Levels between those with/without ED 

visits for AW 

Considering ED visits for AW until age 3, median serum IgA levels from ages 0 

to 1 were significantly higher in groups with ED visits for atopic AW and those with 

atopic asthma compared to those without ED visits for AW (Figure 3.2). Median levels 

were 0.02 g/L higher in the groups with ED visits for AW (p=0.152) compared to those 

with no AW. When considering median levels for children with ED visits for atopic AW, 

median serum IgA levels were 0.07 g/L higher (p=0.028) than those without AW. 

Median levels for those with an ED visit for atopic asthma were 0.09 g/L higher 

(p=0.035) than those without AW. Median levels of serum IgA between non-atopic AW 

and non-atopic asthma until age 3 were not different from those without AW. In 

comparison, median levels of serum IgA for those with ED visits for AW (0.02 g/L), 

atopic AW (0.11 g/L) or atopic asthma (0.11 g/L) from ages 4-5 were higher than those 

without AW, but not statistically significant (Appendix C, Figure C2). 
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Figure 3.2. Serum IgA levels (g/L) from ages 0-1 among AW groups until age 3. 

P-values indicates significant differences in median values (red lines) in AW 

groups compared to the reference group of those without AW based on Mann-

Whitney U. 

 

 Median serum IgA levels from ages 1-2 were only significantly higher in groups 

with ED visits for AW until age 3, compared to those without ED visits for AW (Figure 

3.3). Median serum IgA levels were 0.05 g/L higher in the groups with ED visits for AW 

(p=0.21) compared to those with no AW. When considering median levels for children 

with ED visits for atopic AW, median levels were 0.12 g/L higher, but not significantly 

different than those without AW. Median levels for those with an ED visit for atopic 

asthma (not-wheeze) were only 0.07 g/L higher than those without AW. Median levels 

of serum IgA for those with ED visits for AW (0.02 g/L), atopic AW (0.07 g/L) or atopic 

AW U
ntil 

Age 3
 Yea

rs 

Atopic 
AW U

ntil 
Age 3

 Yea
rs

Non-A
topic 

AW U
ntil 

Age 3
 Yea

rs

Atopic 
Asth

ma U
ntil 

Age 3
 Yea

rs

Non-A
topic 

Asth
ma U

ntil 
Age 3

 Yea
rs

No AW U
ntil 

Age 3
 Yea

rs 
0

1

2

3

4

Serum IgA Levels (Ages 0-1)

AW Outcomes (Until Age 3 Years)

Se
ru

m
 Ig

A 
(g

/L
)

0.028

0.035



 101 

asthma (0.12 g/L) from ages 4-5 were higher but not significantly so (Appendix C, 

Figure C3). 

 

 
Figure 3.3. Serum IgA levels (g/L) from ages 1-2 among AW groups until age 3. 

P-values indicates significant differences in median values (red lines) in AW 

groups compared to the reference group of those without AW based on Mann-

Whitney U. 
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with ED visits for atopic AW, median levels were 0.12 g/L higher (p=0.037) than in those 

without AW. Median levels for those with an ED visit for atopic asthma (not-wheeze) 

were only 0.07 g/L higher than those without AW. Median levels of serum IgA from 

ages 2-3 for those with ED visits for AW, atopic AW or atopic asthma from ages 4-5 

were higher, but not significantly compared to those without AW from ages 4-5 

(Appendix C, Figure C4). 

 
Figure 3.4. Serum IgA levels (g/L) from ages 2-3 among AW groups until age 3. 

P-values indicates significant differences in median values (red lines) in AW 

groups compared to the reference group of those without AW based on Mann-

Whitney U. 
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3.4.3 Simple and multiple logistic regression analyses 

 As stated in the methods, the top two tertiles (normal-high) of serum IgA from 

ages 0-1, 1-2 and 2-3 years were compared to the lowest tertile. With this exposure, 

we looked at the odds of ED visits for AW, atopic AW and atopic asthma until age three. 

The logistic regression analysis for outcomes from ages 4-5 is shown in Appendix C. 

Range and mean of those in the lowest tertile for ages 0-1 years was 0 to 0.17 g/L and 

0.08 g/L, from 2-3 years it was 0 to 0.39 g/L and 0.35 g/L and from 2-3 years it was 0 to 

0.39 g/L and 0.25g/L. Range and mean of those in the top two tertiles for ages 0-1 years 

was 0.18 to 3.13 g/L and 0.41 g/L, from 2-3 years it was 0.4 to 9.92 g/L and 0.70 g/L 

and from 2-3 years it was 0.4 to 9.64 g/L and 0.82 g/L. 

 

3.4.4 Serum IgA and ED Visits for AW  

Normal to higher serum IgA levels from ages 1-2 was associated with increased 

odds of ED visits until age 3 years for AW, compared to those in the lowest tertile of 

serum IgA levels. The crude OR for an ED visit for AW (until age 3) when having 

normal/high serum IgA in the 1st through 2nd year of life was 1.24 (95% CI: 1.03, 1.49; 

Table 3.3), and this association was significant. The variables identified via DAG 

directed in the methods as minimally sufficient to adjust for, included: a diagnosis of 

FTT and sex. A final regression model for ED visits for AW (until age 3) showed a 1.21 

(95% CI: 1.00, 1.46) increase in the odds of having an ED visit for AW with the exposure 

normal-high serum IgA (Ages 1-2) compared to those in the lowest tertile after 

adjustment for FTT and sex (Table 3.3). In comparison, having normal to high serum 

IgA from ages 0-1 and 2-3 was not associated with a significantly increased odds of an 

ED visit until age 3 after adjusting for sex and FFT, although the later showed a trend 

(p=0.12) (Table 3.2, 3.4). Similar but not significant associations were seen in the final 

regression model for ED visit for AW in ages 4-5 (Appendix C, Tables C2-C16). 
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Table 3.2. Odds of Emergency Department Visits for Asthma and/or Wheeze 

(Until Age 3 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 

0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for AW vs No AW 
(Until Age 3 Years) Crude OR 
(95% CI) 

ED Visit for AW vs No AW 
(Until Age 3 Years) Adjusted 
OR (95% CI) (n=2,040)* 

Normal-High Serum IgA (0-1 Years) 1.08 (0.80, 1.46) 1.08 (0.80, 1.46) 

Failure to Thrive 0.72 (0.55, 0.95) 0.66 (0.40, 1.11) 

Sex (Ref: Female) 1.48 (1.29, 1.69) 1.49 (1.11, 2.00) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table 3.3 Odds of Emergency Department Visits for Asthma and/or Wheeze (Until 

Age 3 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for AW vs No AW 
(Until Age 3 Years) Crude OR 
(95% CI) 

ED Visit for AW vs No AW 
(Until Age 3 Years) Adjusted 
OR (95% CI) (n=4,079)* 

Normal-High Serum IgA (1-2 Years) 1.24 (1.03, 1.49) 1.21 (1.00, 1.46) 

Failure to Thrive 0.72 (0.55, 0.95) 0.98 (0.71, 1.35) 

Sex (Ref: Female) 1.48 (1.29, 1.69) 1.47 (1.22, 1.79) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table 3.4. Odds of Emergency Department Visits for Asthma and/or Wheeze 

(Until Age 3 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 

2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for AW vs No AW 
(Until Age 3 Years) Crude OR 
(95% CI) 

ED Visit for AW vs No AW 
(Until Age 3 Years) Adjusted 
OR (95% CI) (n=3,819)* 

Normal-High Serum IgA (2-3 Years) 1.16 (0.93, 1.44) 1.14 (0.92, 1.42) 

Failure to Thrive 0.72 (0.55, 0.95) 0.75 (0.49, 1.14) 

Sex (Ref: Female) 1.48 (1.29, 1.69) 1.35 (1.12, 1.62) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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3.4.5 Serum IgA and ED Visits for Atopic/Non-Atopic AW 

Atopic and non-atopic AW were compared to those without AW in separate 

models. The same exposures were used to determine the odds of ED visits for atopic 

AW until age 3 and normal-high serum IgA was associated with increased odds of 

atopic AW. The crude OR for risk of an ED visit for atopic AW for those with normal-

high serum IgA when compared to low serum IgA (Ages 2-3) was 1.85 (95% CI: 1.07, 

3.21; Table 3.9), and this association was significant. After adjusting for covariates, 

the final regression model for atopic AW showed a 1.79 (95% CI: 1.03, 3.09) times 

increase in the odds of having an ED visit for atopic AW with exposure to normal-

high serum IgA (ages 2-3) when compared to those with low serum IgA (Table 3.9). 

The directions of the associations were similar but the associations were non-

significant when considering serum IgA from 0-1 and 1-2 years of age, and atopic 

AW (Tables 3.5 and 3.7). In comparison, adjusted ORs for ED visits for non-atopic 

AW with normal-high serum IgA compared to those with low serum IgA, were 

decreased compared to atopic AW outcomes (Tables 3.6, 3.8, and 3.10). 

Associations for atopic and non-atopic AW from ages 4-5 were also in a similar 

direction with exposure to normal-high serum IgA from 0-1, 1-2 and 2-3 years of 

age, compared to those with low serum IgA, but were not statistically significant 

(Appendix C; Tables C2, C16).  
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Table 3.5. Odds of Emergency Department Visits for Atopic AW (Until Age 3 

Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for Atopic AW vs No 
AW (Until Age 3 Years) Crude 
OR (95% CI) 

ED Visit for Atopic AW vs No 
AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=1,872)* 

Normal-High Serum IgA (0-1 Years) 1.53 (0.68, 3.42) 1.53 (0.68, 3.42) 

Failure to Thrive 0.63 (0.32, 1.23) 1.45 (0.55, 3.80) 

Sex (Ref: Female) 2.49 (1.76, 3.53) 2.42 (1.08, 5.42) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 

Table 3.6. Odds of Emergency Department Visits for Non-Atopic AW (Until Age 3 

Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for Non-Atopic AW vs 
No AW (Until Age 3 Years) 
Crude OR (95% CI) 

ED Visit for Non-Atopic AW vs 
No AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=1,900)* 

Normal-High Serum IgA (0-1 Years) 1.21 (0.70, 2.08) 1.20 (0.70, 2.08) 

Failure to Thrive 0.70 (0.41, 1.18) 0.81 (0.35, 1.90) 

Sex (Ref: Female) 1.22 (0.95, 1.57) 1.18 (0.71, 1.96) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 

Table 3.7. Odds of Emergency Department Visits for Atopic AW (Until Age 3 

Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for Atopic AW vs No 
AW (Until Age 3 Years) Crude 
OR (95% CI) 

ED Visit for Atopic AW vs No 
AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=3,671)* 

Normal-High Serum IgA (1-2 Years) 1.30 (0.78, 2.16) 1.22 (0.73, 2.03) 

Failure to Thrive 0.63 (0.32, 1.23) 1.25 (0.56, 2.77) 

Sex (Ref: Female) 2.49 (1.76, 3.53) 2.46 (1.39, 4.37) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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Table 3.8. Odds of Emergency Department Visits for Non-Atopic AW (Until Age 3 

Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for Non-Atopic AW vs 
No AW (Until Age 3 Years) 
Crude OR (95% CI) 

ED Visit for Non-Atopic AW vs 
No AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=3,746)* 

Normal-High Serum IgA (1-2 Years) 1.22 (0.87, 1.71) 1.21 (0.86, 1.70) 

Failure to Thrive 0.70 (0.41, 1.18) 1.15 (0.67, 1.99) 

Sex (Ref: Female) 1.22 (0.95, 1.57) 1.10 (0.78, 1.54) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 

Table 3.9. Odds of Emergency Department Visits for Atopic AW (Until Age 3 

Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for Atopic AW vs No 
AW (Until Age 3 Years) Crude 
OR (95% CI) 

ED Visit for Atopic AW vs No 
AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=3,453)* 

Normal-High Serum IgA (2-3 Years) 1.85 (1.07, 3.21) 1.79 (1.03, 3.09) 

Failure to Thrive 0.63 (0.32, 1.23) 0.62 (0.23, 1.70) 

Sex (Ref: Female) 2.49 (1.76, 3.53) 2.60 (1.66, 4.09) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 

Table 3.10. Odds of Emergency Department Visits for Non-Atopic AW (Until Age 

3 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for Non-Atopic AW vs 
No AW (Until Age 3 Years) 
Crude OR (95% CI) 

ED Visit for Non-Atopic AW vs 
No AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=3,453)* 

Normal-High Serum IgA (2-3 Years) 0.99 (0.64, 1.54) 0.98 (0.64, 1.52) 

Failure to Thrive 0.70 (0.41, 1.18) 0.56 (0.21, 1.54) 

Sex (Ref: Female) 1.22 (0.95, 1.57) 1.18 (0.81, 1.72) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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3.4.5 Serum IgA and ED Visits for Atopic/Non-Atopic Asthma 

Serum IgA and ED visits were studied in atopic and non-atopic asthma (not 

wheeze), and compared to those without AW in separate models. After adjusting for 

FTT and sex, the final regression models showed only a marginally significant 

increase in the odds of having an ED visit for atopic asthma with exposure to normal-

high serum IgA, compared to those in the lowest tertile of serum IgA from ages 0-1, 

1-2 or 2-3 (Tables 3.11, 3.13, 3.15). When considering those with exposure to 

normal-high serum IgA compared to those with low levels of serum IgA, the odds 

ratios were reduced in most models for an outcome of an ED visit for non-atopic 

asthma compared to ED visits for atopic asthma (Tables 3.11-16). In the crude 

associations, being male was significantly associated with increased odds of atopic 

asthma (OR: 2.89; 95% CI: 1.88, 4.44) but not non-atopic asthma (OR: 1.04; 95% CI: 

0.77, 1.19) compared to females (Tables 3.11-16). Associations for atopic and non-

atopic asthma from 4-5 years of age were also in a similar direction with exposure to 

normal-high serum IgA from 0-1, 1-2 and 2-3 years of age, compared to those with 

low serum IgA, but were not statistically significant (Appendix C; Tables C2-C16). 

Summary forest plots of the adjusted ORs of each of the AW outcomes (until age 3) 

are shown below (Figure 3.5-7) and in Appendix C for ages 4-5.  
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Table 3.11. Odds of Emergency Department Visits for Atopic Asthma (Until Age 

3 Years) After Exposure to the Highest Tertile of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for Atopic Asthma vs 
No AW (Until Age 3 Years) 
Crude OR (95% CI) 

ED Visit for Atopic Asthma vs 
No AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=1,929)* 

Normal-High Serum IgA (0-1 Years) 1.73 (0.63, 4.70) 1.71 (0.63, 4.67) 

Failure to Thrive 0.48 (0.20, 1.19) 0.79 (0.18, 3.40) 

Sex (Ref: Female) 2.89 (1.88, 4.44) 3.57 (1.20, 10.58) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table 3.12. Odds of Emergency Department Visits for Non-Atopic Asthma (Until 

Age 3 Years) After Exposure to the Highest Tertile of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for Non-Atopic 
Asthma vs No AW (Until Age 3 
Years) Crude OR (95% CI) 

ED Visit for Non-Atopic 
Asthma vs No AW (Until Age 3 
Years) Crude OR (95% CI) 
(n=1,947)* 

Normal-High Serum IgA (0-1 Years) 1.97 (0.94, 4.13) 1.97 (0.94, 4.13) 

Failure to Thrive 0.67 (0.77, 1.40) 1.02 (0.40, 2.61) 

Sex (Ref: Female) 1.04 (0.77, 1.40) 1.04 (0.57, 1.90) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table 3.13. Odds of Emergency Department Visits for Atopic Asthma (Until Age 

3 Years) After Exposure to the Highest Tertile of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for Atopic Asthma vs 
No AW (Until Age 3 Years) 
Crude OR (95% CI) 

ED Visit for Atopic Asthma vs 
No AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=3,800)* 

Normal-High Serum IgA (1-2 Years) 1.29 (0.72, 2.32) 1.21 (0.67, 2.16) 

Failure to Thrive 0.48 (0.20, 1.19) 0.89 (0.32, 2.49) 

Sex (Ref: Female) 2.89 (1.88, 4.44) 2.79 (1.42, 5.49) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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Table 3.14. Odds of Emergency Department Visits for Non-Atopic Asthma (Until 

Age 3 Years) After Exposure to the Highest Tertile of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for Non-Atopic 
Asthma vs No AW (Until Age 3 
Years) Crude OR (95% CI) 

ED Visit for Non-Atopic 
Asthma vs No AW (Until Age 3 
Years) Crude OR (95% CI) 
(n=3,846)* 

Normal-High Serum IgA (1-2 Years) 1.13 (0.75, 1.69) 1.14 (0.76, 1.71) 

Failure to Thrive 0.67 (0.77, 1.40) 1.09 (0.56, 2.12) 

Sex (Ref: Female) 1.04 (0.77, 1.40) 0.94 (0.63, 1.41) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table 3.15. Odds of Emergency Department Visits for Atopic Asthma (Until Age 

3 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for Atopic Asthma vs 
No AW (Until Age 3 Years) 
Crude OR (95% CI) 

ED Visit for Atopic Asthma vs 
No AW (Until Age 3 Years) 
Adjusted OR (95% CI) 
(n=3,569)* 

Normal-High Serum IgA (2-3 Years) 1.58 (0.85, 2.95) 1.53 (0.82, 2.84) 

Failure to Thrive 0.48 (0.20, 1.19) 0.66 (0.21, 2.12) 

Sex (Ref: Female) 2.89 (1.88, 4.44) 2.74 (1.59, 4.72) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table 3.16. Odds of Emergency Department Visits for Non-Atopic Asthma (Until 

Age 3 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for Non-Atopic 
Asthma vs No AW (Until Age 3 
Years) Crude OR (95% CI) 

ED Visit for Non-Atopic 
Asthma vs No AW (Until Age 3 
Years) Crude OR (95% CI) 
(n=3,570)* 

Normal-High Serum IgA (2-3 Years) 0.88 (0.53, 1.44) 0.87 (0.52, 1.43) 
Failure to Thrive 0.67 (0.77, 1.40) 0.60 (0.19, 1.90) 
Sex (Ref: Female) 1.04 (0.77, 1.40) 1.21 (0.78, 1.89) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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Figure 3.5. Forest plot of adjusted ORs for AW outcomes until age 3 in children 

with normal to high serum IgA levels (g/L) compared to those with low serum IgA 

levels from ages 0-1, adjusted for failure to thrive and sex.  
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Figure 3.6. Forest plot of adjusted ORs for AW outcomes until age 3 in children 

with normal to high serum IgA levels (g/L) compared to those with low serum IgA 

levels from ages 1-2, adjusted for failure to thrive and sex.  
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Figure 3.7. Forest plot of adjusted ORs for AW outcomes until age 3 in children 

with normal to high serum IgA levels (g/L) compared to those with low serum IgA 

levels from ages 2-3, adjusted for failure to thrive and sex.  
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first 3 years of life was associated with increased odds of ED visits for AW, atopic AW 

or atopic asthma until age 3, and from 4-5, compared to those in the lowest tertile 

of serum IgA. This is the first-time serum immunoglobulin A levels in early childhood 

have been studied in relation to ED visits for AW in early life in a large population-

based cohort. This is a key area of interest because of the high cost of healthcare 

utilization for AW and need to characterize risk factors for childhood presentations 

of AW to the ED.  

In comparison to our findings, some previous studies have found that lower 

serum IgA levels are associated with an increased risk for wheeze, asthma or allergic 

disease. These studies include the findings of Ludviksson et al., (1992), which found 

that low serum IgA in infancy was associated with increased risk for asthma at age 7, 

though the diagnoses of asthma was heavily weighted towards atopic dermatitis or 

sensitization, and was not based on ED visits [11]. As well, IgA and IgE levels were 

determined from cord blood and may partially represent the mother [10]. A study 

by Janzi et al., (2009) also reported that individuals with a complete absence of 

serum IgA at 4 years of age had increased risk of atopic disease and infection, 

though they did not report on asthma as an outcome [15]. Given this literature, we 

expected that serum IgA would be inversely associated with AW. By contrast, we 

found that normal-high concentrations of serum IgA were marginally associated with 

increased odds of AW within the 1st through 3rd years of life. These findings raise the 

question of why higher levels of serum IgA would be associated with increased risk 

for ED visits for AW and with ED visits for atopic asthma/asthma. One explanation is 

that undetectable serum IgA (IgA deficiency) is inherently different from having low 

serum IgA. Completely undetectable levels may be a marker of immune system 

dysfunction and genetic abnormality, whereas low levels of serum IgA may indicate 

a properly functioning immune system with an absence of infection. Previous reports 
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have shown that partial IgA deficiency (low but not absent levels) in childhood was 

not associated with increased risk for atopic disease in comparison to complete IgA 

deficiency [15].  

More recently our findings of normal-high serum IgA being associated with 

asthma have been supported. In particular, Pesonen et al., (2011) found that higher 

serum IgA at 2 months of age was associated with development of atopic sensitization 

at 5, 11 and 20 years of age [16]. These findings were independent of breastfeeding, 

parental atopic disease, sex and tobacco smoke exposure, of which some may have 

been confounders in our study, but these results support the associations we found. 

Thus, having serum IgA levels that are within normal-high range may be an important 

biomarker not only for the development of respiratory illness, but atopic respiratory 

illness in early childhood. We addressed the temporality of relationships in our study 

by limiting our analysis to individuals with serum IgA testing before any ED visits for 

asthma or wheeze, but these individuals may have had various undetected respiratory 

illnesses before the IgA testing happened, which could have been involved in this 

association. For example, respiratory infections like respiratory syncytial virus (RSV), 

which are common in infancy and can contribute to asthma exacerbations, are known 

to increase serum IgA levels after infection, and this increase may last up to a few weeks 

[17–19]. This relationship between RSV and production of IgA following infection might 

also explain the stronger associations between normal-high serum IgA and atopic AW, 

compared to the association between normal-high serum IgA and AW without 

designation of atopic status. A previous study by Schauer et al., (2002) showed that 

RSV infection in the 1st year of life was one of the most important risk factors for allergic 

sensitization (determined by allergen specific IgE values) in children [20]. As well, 

mouse models of RSV infection reveal that infection can promote airway 

hyperresponsiveness and resultant increase in Th2-mediated cytokine production with 
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exposure to various allergens [21]. This relationship between normal-high serum IgA 

and ED visits for atopic asthma/wheezing is an important finding. Previously published 

trajectories reveal that presence of early atopic sensitization in addition to AW is one 

of the best predictors of persistent asthma, though our associations were strongest 

with AW until age 3, in comparison to ages 4-5 which is more highly associated with 

persistence [22]. 

In comparison to serum IgA, sIgA is the main mediator of mucosal 

homeostasis and defence and serum IgA levels may not reflect the function of sIgA. 

Indeed, different induction mechanisms have been elucidated and serum IgA arises 

from B-cells in the bone marrow, whereas sIgA arises from B-cell production in the 

mucosal lamina propria, although there is clonal relatedness between the two forms 

[23]. Although sIgA is not generally considered to be implicated in inflammatory 

reactions, but serum IgA is capable of initiating inflammatory reactions, serum IgA 

may act as a second line of defence when there is breach of the mucosal barrier by 

infectious agents [8,24,25]. This functional distinction may explain why total fecal IgA 

and salivary sIgA were lower in children who developed subsequent atopic disease 

[5,26]. Previous findings by Ladjemi et al., (2018) showed that there is down 

regulation of the polymeric immunoglobulin receptor protein (pIgR), the protein  

responsible for transport of sIgA into the mucosal surfaces, in the bronchial 

epithelium of patients with asthma compared to healthy controls [27]. However,  

asthma severity was not considered, and corticosteroid treatment may have 

confounded these results. This reduction of pIgR could result in reduced sIgA-

mediated protection on the mucosal surfaces, increasing risk for infection and 

inflammation in the airways, and increasing risk for development of asthma. 

Knockout of pIgR in murine models has revealed a significant increase in serum IgA 
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in knockout mice compared to controls, which provides a potential explanation for 

our results [28].    

This AHS cohort study was designed to determine the preliminary associations 

between immune system development in early life and the development of asthma in 

childhood. The experimental design has both strengths and a number of weaknesses. 

The strengths of this study include both its large sample size and standardized testing. 

As well, we limited measurement of serum IgA to before AW presentations to the ED, 

which increases our ability to draw temporal relationships, and the range and mean of 

serum IgA values were comparable to a previous Iranian cohort [29]. However, despite 

the standardization of tests, there is variability in the measurements of serum IgA, as 

testing was done for varying indications, in various labs across the province, by 

different technicians, and using different machines. Additionally, there are many 

inherent limitations with studies based on administrative health care data, since the 

records primarily represent an account of the illness experienced, and not a set of 

standardized questionnaires validated for research. The records were also limited to 

the individuals under study and no information was collected about parental history of 

atopic disease, breastfeeding status, home environment, or birth mode, which are a 

few of many factors related to IgA levels and asthma. Moreover,  since serum IgA levels 

are not routinely taken and are indicated for in the case of chronic infections or 

suspected immunodeficiency, those who have serum IgA levels tested may already be 

at increased risk for asthma or other atopic diseases. Although prevalence was higher 

for ED visits during the ages of serum IgA used, likely indicating some confounding of 

this nature, our results are similar to reported national averages (www.cihi.ca). Overall,  

our data must be interpreted in light of these limitations. Nevertheless, this is an 

important study that provides insight on early development of the immune system and 

future risk for wheeze, atopy and asthma.  
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In conclusion, normal-high levels of serum IgA in early life are associated with a 

increased odds for ED visit for AW and atopic AW in childhood. Further studies are 

needed to link these associations to see if they hold when controlling for various other 

pre/postnatal influences on the development of the immune system and AW. Future 

studies comparing the development of serum and secretory IgA, and risk of atopic 

illness in a prospective, healthy birth cohort would provide key insights into the 

developmental origins of these complex diseases. 
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Chapter 4: Conclusions 

4.1 Key Findings and General Conclusions 

 This thesis was conducted to help understand the relationship between IgA--

both serum and secretory—and asthma and wheeze in childhood. We completed two 

separate cohort studies. Chapter 2 describes the associations between infant fecal 

secretory IgA in the 1st  year of life and childhood asthma and wheeze in the first 5 years 

of life in a prospective, normal birth cohort. Chapter 3 evaluates the associations 

between serum IgA and the first 3 years of life and ED visits for asthma and wheeze in 

the first 5 years of life in a retrospective administrative health database cohort. The 

major findings will be summarized first in this chapter and then we will outline strengths 

and limitations in relation to our CHILD study then our AHS study. The final sub-section 

of this chapter will discuss the implications of this research and potential areas for 

future research. 

 

Key finding #1 Fecal sIgA in formula fed infants in infancy is differentially related to 

atopic and non-atopic AW in comparison to breastfed infants.   

Asthma is one of the most common chronic childhood diseases and is a huge 

burden on society. Research focusing on the developmental origins of asthma is being 

pursued to elucidate areas for future strategies for prevention or to mitigate severity. 

In the past 10 years, the development of the gut microbiome has been revealed as a 

key influence on the etiology of asthma and atopic disease [1]. One of main mediators 

of the effects of the development of the gut microbiota on asthma is sIgA [2–4]. This 

study expands on our knowledge of the relationship between early life sIgA and future 

odds of developing childhood asthma. 

 We showed that lower fecal sIgA in formula fed infants was associated with 

increased risk for non-atopic AW, whereas normal-high fecal sIgA was associated with 
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increased risk for atopic AW in comparison to breastfed infants with any level of fecal 

sIgA. Previous research identified that low sIgA is associated with increased risk for 

asthma and atopic disease [5,6], whereas others have shown that high mucosal IgA is 

associated with increased risk of allergic sensitization and asthma [7]. sIgA may impact 

the development of asthma in a number of ways. Variations in intestinal colonization 

patterns implicated in allergic disease and asthma may be mediated through sIgA 

binding to microbes [4]. Although these studies add to the literature on the relationship 

between fecal sIgA in infancy and childhood atopic disease while controlling for 

breastfeeding status to varying degrees, none report on how formula fed and 

breastfed infants differ. Since the main source of sIgA in infancy is through maternal 

breastmilk, we hypothesized that in the case of formula feeding when an infant relies 

on endogenous production of sIgA, which matures throughout the 1st year of life, there 

may be further differences in risk of atopic disease compared to breastfed infants who 

receive supplementation of maternally derived, protective sIgA. Since, formula feeding 

is already strong predictor of childhood wheeze, differences in total sIgA in formula 

fed infants, may be an important biomarker for aberrant development of the infant 

immune system.  

  We speculate that low fecal sIgA may be a marker for low mucosal immune 

response to microbes, resulting in reduced mucosal barrier function and increased 

susceptibility to viral airway infections [8,9]. By contrast, higher fecal sIgA in formula 

fed infants may be a marker for inflammatory Proteobacteria and an over-

representation of Enterobacteriaceae, a gut microbe found in infants who develop 

food sensitization in childhood [10,11].  

This work leads to interesting questions on how infant feeding, mucosal immune 

development and the microbiome coordinately impact the development of asthma 

and atopic disease. There is potential, as with all epidemiological studies, that an 
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unmeasured confounding variable could lead to these associations. In particular, we 

were unable to measure what microbes were bound to fecal sIgA in our population, a 

potential key consideration [4]. This more basic association may be important in a 

clinical context. Even after controlling for the effects of multiple co-variates, total fecal 

sIgA in formula fed infants was associated with early asthma and atopic AW. 

Interventions such as promotion of breastfeeding or even partial breastfeeding may 

serve as a useful tool for asthma prevention. 

   

Key finding #2 Normal-high serum IgA is associated with increased risk for ED visits 

for AW and atopic AW in childhood. 

 Varying levels of serum IgA have previously been associated with asthma, atopic 

sensitization and infection [12,13]. Although previous results are conflicting, our results 

support that normal-high levels are associated with ED visits for respiratory illness and 

atopic disease in childhood. The most prominent studies linking low serum IgA to 

atopic diseases are those on IgA deficiency, which increases the risk of atopic diseases 

[14]. As well, when serum IgA levels are present, other studies have associated lower 

serum IgA with increased risk of allergic disease at age 7 [15]. In comparison, higher 

serum IgA has also been associated with later development of atopic diseases in 

several studies [12,16,17]. As addressed in Chapter 3, this may be due to early infection 

with RSV, which has been shown to raise serum IgA and IgE levels and increase risk for 

later development of asthma, although research on this relationship is contentious [18–

21].  

 Although our study aids in establishing the relationship serum IgA and atopic 

disease, it should be kept in mind that serum IgA levels likely do not accurately reflect 

the function of sIgA at the mucosal surfaces. sIgA has a larger role in immunological 

tolerance to food antigens and commensal microbes, and as such is more functionally 
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relevant than levels of serum IgA in development of various atopic diseases. The role 

of serum IgA is less well understood, but it has been suggested to act as a second line 

of defence against invasive bacterial infections with a mucosal surface origin [22]. It 

follows that the relationship of higher serum IgA with atopy may reflect decreased sIgA 

at mucosal surfaces. A clearer understanding of the relationship between IgA, sIgA and 

atopy is needed to understand the relevance of IgA levels in development of immune 

tolerance and their ability to predict clinical outcomes. Regardless, this research 

highlights important findings for clinicians; although undetectable levels of serum IgA 

is clearly linked with asthma risk, when serum IgA is present but low, the clinical 

significance is unclear.  

 These findings reveal the intricate relationship between IgA in early life and the 

etiology of childhood atopic disease. Importantly, we showed that fecal sIgA levels may 

be more predictive of development of childhood asthma than serum IgA levels. We 

examined these two cohorts using similar outcomes and exposures, and we were 

interested in particular in the comparison between serum IgA in the first year of life and 

our fecal sIgA sample. In this time frame, fecal sIgA was more highly associated with 

childhood AW than serum IgA levels at one year. This interpretation should be taken 

lightly though as serum IgA may have a similar or greater predictive value but was 

confounded by the limitations in our dataset. Despite this, we showed similar trends 

between serum and sIgA, in particular on the association with atopic AW, though the 

relationships between the two different isoforms and atopic disease may have 

divergent functional explanations. Overall, both serum IgA and secretory IgA may be 

important biomarkers for clinicians to aid in early identification and treatment of those 

prone to develop atopic diseases like asthma. 
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4.2 Strengths and Limitations  

 The strengths and limitations of this thesis will be mentioned briefly in this 

section then outlined more extensively in the next sub-sections on bias and 

confounding. Epidemiological research has intrinsic and inevitable sources of bias. 

This thesis used two different cohort designs; each has different drawbacks. The CHILD 

study is a prospective, normative birth cohort. The main objective was to determine 

the relationship between early fecal sIgA levels and AW in childhood. The AHS study 

is a retrospective cohort study developed to determine the association between serum 

IgA level and emergency department visits for asthma and wheeze in childhood. 

 

4.2.1 General Strengths and Limitations of the CHILD Cohort 

 The CHILD cohort has multiple strengths. The cohort is representative of the 

general Canadian population based on the variety of recruitment methods and high 

rate of retention [23,24]. Because of the large sample size and extensive, accurately 

documented data on covariates, the sample size was sufficient to adjust for many 

important covariates when using multivariate regression analyses. The prospective 

nature of this study allows us to comment on the temporality of the relationships and 

verify that various pre and post-natal exposures came prior to the emergency 

department visits or diagnoses of asthma and wheeze. Despite this, we cannot 

comment fully on the causal relationships, as there are potentially unobserved sources 

of bias in our study.   

In the CHILD study (Chapter 2), many co-variates and outcomes of interest (ED 

visits/physician diagnoses of AW) relied on data collected from standardized 

questionnaires. While standardization improves accuracy, questionnaires relied on 

completeness and correct reporting by mothers, which is an inherent limitation. More 

objective measures of co-variates and AW would have helped to increase the reliability 
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and validity of our findings. Regardless of these limitations, this is a rigorously 

completed cohort study which contributes novelty to the literature on the relationship 

between secretory sIgA and AW in childhood. 

 

4.2.1.1 Selection Bias in the CHILD Cohort 

 Prior to the initial recruitment period for CHILD, specific inclusion and exclusion 

criteria were used to recruit participants from the general Canadian population using 

multiple methods to control selection bias [23,24]. However, there are some discrete 

differences in the recruited population that may limit generalizability, including more 

individuals from the CHILD study are white, urban and from a higher socioeconomic 

status than the rest of Canada [25]. The loss to follow up is low in the CHILD study, with 

92% of mother-child pairs retained when infants reached 1 year of age [24,25]. 

Although this one year evaluation lacked information from the Toronto study site 

(777/3,296 total participants), study bias was minimal because the same recruitment 

and selection methods were used at all sites. One potential source of selection bias is 

due to issues with stool collection from breastfeeding infants (harder to extract from 

diapers), but this was controlled by adjustment for breastfeeding status. 

 

4.2.1.2 Measurement Bias in the CHILD Cohort 

 Measurement bias is the systematic inconsistency in measurements between 

groups of interest. The prospective, normal subject nature of the CHILD cohort 

minimizes this type of bias. Standardized operating procedures for biological samples 

and self-report questionnaires for study participants also serve to reduce systematic 

inconsistencies between groups, though our study could have benefited further from 

a formal physician diagnosis of AW instead of relying on a maternal report of physician 

diagnoses. Despite this maternal-report of childhood asthma is a relatively well-
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validated method [24]. As well, although infant fecal samples were not all collected at 

the same time, the SyMBIOTA research team had all fecal sIgA steps performed by the 

same research technician which helps to minimize systematic differences between 

samples. Further strengths of our study include the use of an ELISA kit to detect 

specifically sIgA in our 3-month stool collection. Despite this, the kit used for detection 

of fecal sIgA is unable to discriminate between sIgA bound and unbound to bacteria 

which may be more important than total levels of fecal sIgA in relation to development 

of asthma as reported by Dzidic et al., (2017) [4].  

 

4.2.1.3 Confounding Bias in the CHILD Cohort 

 As with all epidemiological studies, we aimed to reduce the effects of 

confounding between our exposure and an outcome. In chapter 2, using our Directed 

Acyclic Graph (DAG), we mapped the relationship between various covariates in our 

study and their effects on the relationship between the total effect of fecal sIgA on 

asthma development. This visual representation of the relationships between variables 

helped us understand relationships between covariates and control for potential 

sources of bias in our exposure-outcome relationships [26]. Proponents of DAGs argue 

that they are more robust in helping determine causal relationships than other model 

building methods such as purposeful model building, because over- or under- 

adjustment bias can be avoided by proper identification of a minimally sufficient 

adjustment set. Despite our robust approach to model adjustment, there was limited 

access to data on potentially important issues affecting our relationship of interest. 

These include: timing of food introduction, probiotic supplementation, fiber intake and 

types of formula used. Efforts to control for some of these measures included: tests of 

confounding for duration of breastfeeding, and adjustment for age at fecal sIgA 

samples. 
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 Inherent to all representations of complex biological phenomena are over-

simplifications or misspecifications regarding the relationships of interest. As such, 

there are some limitations of this approach in comparison to more conventional 

approaches, but, since both sIgA and respiratory illness have been well described, we 

are confident our approach addresses a significant amount of the confounding present 

in this cohort study.  

 

4.2.2 General Strengths and Limitations of the AHS Cohort 

 The AHS cohort has both a number of strengths and limitations. Retrospective 

cohort design with database linkage is a cost-effective and valid method to evaluate 

the use of ED visits for asthma [27]. As well, our sample size was large and there was 

continuity of data over a relatively long time period (5 years). Other strengths of the 

study include validated methods used to determine serum immunoglobulin levels and 

characterization of ED visits for both wheeze and asthma. Unfortunately, missing or 

conflicting data within the records could result in bias and loss to follow up can result 

in information bias. 

 

4.2.2.1 Selection Bias in the AHS Cohort 

 Since the AHS cohort was based on patients with available serum 

immunoglobulin A levels in the first 18 years of life between April 1st, 2013 to June 30th, 

2018, there is a large risk for selection bias. The opportunistic sampling method was 

based on the availability of testing which precludes randomization. This healthcare 

record data also only reflects children who sought healthcare for symptoms, increasing 

the likelihood that asymptomatic children were excluded. As well, demographics other 

than age and sex were not available, limiting our ability to account for many potential 

confounders. Since immunoglobulin testing is not done routinely in the general 
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population, it is likely that individuals in our cohort have a higher burden of diseases 

associated with possible abnormal immunoglobulin levels. In particular, our group of 

study reflects individuals that have increased risk of acute and chronic infections, 

immunologic and autoimmune disorders, liver and renal dysfunction, metabolic 

derangement, including malnutrition and diabetes, and certain cancers [13]. The 

plausible higher disease burden in this study population over the general population 

could have introduced significant bias. 

 

4.2.2.2 Measurement Bias in the AHS Cohort 

 There are a number of factors that introduce potential measurement bias to the 

AHS cohort. Due to the association of low immunoglobulin A levels with respiratory 

infection, previous testing of these levels may influence health care providers to more 

readily describe symptoms of asthma as bronchitis or bronchiolitis or vice versa. As 

well, health care providers in the emergency department do not provide a formal 

evaluation for asthma, resulting in the potential for a primary diagnosis that captures 

the patient presentation (e.g. wheeze) but does not accurately reflect the long term 

clinical picture. Resultantly, there is a large potential for heterogeneity in the diagnosis 

of asthma/wheeze/bronchitis/bronchiolitis. We controlled for this by combining all 

these common terms into a single AW variable. We also are aware that in spite of there 

being a fairly standardized protocol for analysis of IgA levels, analyses were done at 

different sites and times, potentially influencing results.  

 

4.2.2.3 Confounding Bias in the AHS Cohort 

 Confounding is a significant risk in this epidemiological study. As with our CHILD 

study, to account for confounding bias in our AHS study we used DAGs to identify 
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minimally sufficient adjustment sets while determining the effect of serum sIgA on ED 

visits for AW and this has the same strengths and limitations as above.  

 As mentioned previously, in contrast to the CHILD study, there were 

substantially less demographic characteristics observed in this study that could bias 

the relationship between IgA levels and asthma. These limitations stem from inherent 

healthcare database issues that reflect opportunistic data collection; not an ideal study 

design. This study design and lack of information likely contributed to bias in our 

estimates, and this limitation is especially clear in the 1st year of life, when feeding 

modes and smoke exposure significantly impact serum IgA levels, immune system 

development and respiratory illness. Interpretation of study results should reflect an 

understanding of these limitations. 

 

4.3 Significance and Clinical Relevance 

Although IgA, gut microbiome and immunity have been studied in animal 

models and various cohort studies, this is the first study to combine two cohort studies 

to report associations between serum IgA and fecal sIgA and asthma and wheeze in 

the first 5 years of life in humans. Since animal models are beneficial to determine 

mechanisms but sometimes not applicable to humans, our study greatly adds to the 

literature on the link between IgA and asthma in humans. Additionally, since there is a 

difference between serum IgA and fecal sIgA, being able to compare these two 

exposures with similar outcomes of asthma and wheeze in children in two cohort 

studies increases the novelty of this work.  

Since a randomized control trial testing this association would be impossible, 

the combined findings of the CHILD and AHS study provide some of the strongest 

possible evidence for these associations. This study provides a significant addition to 

the literature on the interrelation between IgA and asthma. In addition, the asthma 
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model delineated in this thesis connected differences in infant gut IgA and serum IgA 

to child atopy, in turn providing insight on potential infant biomarkers to predict 

development of other common atopic chronic conditions in children. These findings 

should also encourage interventions aimed at breastfeeding promotion as a potential 

means to reduce the risk of developing asthma. 

 

4.4 Implications for future research 

Despite the large body of data on IgA and asthma, these findings reveal that 

more studies on the relationships between IgA in early life and development of asthma, 

wheeze and other atopic conditions are needed. In particular the differential influence 

and mechanisms of IgA and sIgA in relation to the development of asthma and atopic 

disease need further exploration. It would be beneficial to know the optimal levels 

and/or binding of sIgA that promote a healthy infant gut microbiome composition, and 

how serum IgA is related.  

 

4.5 Concluding Remarks 

This thesis investigated the association between serum and secretory IgA and 

childhood respiratory disease in the first few years of life. We found that when a 

formula-fed infant, low fecal sIgA is significantly associated with childhood 

asthma/wheeze, when controlling for various covariates. As well, we found that serum 

IgA in the first three years of life is marginally associated with AW in the first 5 years of 

life. With these population-level findings, this study highlights the importance of early 

infant immune system development as it may contribute to the life-long health of 

children. 
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Appendix B: 

 

Table B1 

Comparison between the general CHILD cohort and the 1071 infant CHILD sub-Cohort with 

available Fecal sIgA Samples 
  

CHILD Cohort 
(Three Sites*) % N 

= 2,502 

sIgA Sample 
Available % (95% CI) 

N =  1071 

ChiX2** 

Co-Variates 
 

Row % (N)  Row % (N)  p-
value(X2) 

Asthma Diagnoses from 
Ages 1-3 

No 56.64 (1,322) 43.36 (1,012) 0.253 

 
Yes 50 (52) 50 (52) 

 

Asthma Diagnoses from 
Ages 4-5 

No 55.23 (612) 44.77 (496) 0.094 

 
Yes 62.88 (83) 37.12 (49) 

 

UV for AW from Ages 1-3 No 53.18 (535) 46.82 (471) 0.165 

 
Yes 57.08 (262) 42.92 (197) 

 

UV for AW from Ages 4-5 No 54.65 (605) 45.35 (502) 0.157 
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  CHILD Cohort 
(Three Sites*) % 

N = 2,502 

sIgA Sample 
Available % (95% 

CI) N =  1071 

ChiX2** 

  Yes 60 (123) 40 (82) 
 

Sex Male 56.63 (722) 43.37 (553) 0.542 

Female 57.85 (678) 42.15 (494) 
 

Mode of Delivery Vaginal 57.61 (1,079) 42.39 (794) 0.701 

Elective 
Cesarean 

56.65 (132) 43.35 (101) 
 

Emergency 
Cesarean 

55.19 (186) 44.81 (151) 
 

Breastfeeding Status Exclusive 25.28 (91) 74.72 (269) <0.001 

 
Partial 45.06 (292) 54.94 (356) 

 

 
None 62.42 (431) 37.58 (431) 

 

Infant Antibiotics No 56.97 (1,238) 43.03 (935) 0.319 

Yes 52.59 (71) 47.41 (64) 
 

Depression None 57.12 (1,200) 42.88 (901) 0.752 

Antenatal 54.23 (77) 45.77 (65) 
 

Persistent 54.02 (94) 45.98 (80) 
 

Postnatal 59.65 (34) 40.35 (23) 
 

Smoke Exposure (Prenatal) No 57.19 (1,281) 42.81 (959) 0.023 

Yes 48.26 (89) 51.74 (89) 
 

Smoke Exposure (Postnatal) No 55.12 (1,072) 44.88 (873) 0.053 

Yes 49.58 (178) 50.42 (181) 
 

Multigravida No 56.01 (489) 43.99 (384) 0.382 

Yes 57.83 (942) 42.17 (687) 
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  CHILD Cohort 
(Three Sites*) % 

N = 2,502 

sIgA Sample 
Available % (95% 

CI) N =  1071 

ChiX2** 

Maternal 
Overweight/Obesity 
(During Pregnancy) 

Normal 57.55 (804) 42.45 (593) 0.909 

Overweight 56.5 (300) 43.5 (231) 
 

 
Obese 56.97 (327) 43.03 (247) 

 

Maternal Allergy/Asthma 
During Pregnancy 

No 56.63 (517) 43.37 (396) 0.945 

Yes 56.48 (845) 43.52 (651) 
 

Maternal Age (Greater or 
less than median) 

No 56.55 (814) 43.45 (603) 0.955 

Yes 55.5 (290) 44.5 (221) 
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Table B2. Distribution lowest fecal sIgA, atopic and non-atopic asthma/wheeze 

according to demographic and epidemiological factors (n=1071) 

  
Lowest 

tertile 
sIgA (% 

yes) 
n=314/9

51 

ChiX2** Atopic 
AW vs 
no AW 

(Ages 1-
3) 

n=26/45
5 

ChiX2** Atopic 
AW vs 
no AW 

(Ages 4-
5) 

n=23/46
3 

ChiX2** Non-
Atopic 

AW vs no 
AW (Ages 

1-3) 
n=175/6

04 

ChiX2** Non-
Atopic 
AW vs 
no AW 

(Ages 4-
5) 

n=78/51
8 

ChiX2** 

Co-Variates  Row % (N)  p-value 
(X2 exact) 

Row % 
(N)  

p-value 
(X2 exact) 

Row % 
(N)  

p-value 
(X2 exact) 

Row % (N)  p-value 
(X2 exact) 

Row % 
(N)  

p-value 
(X2 exact) 

Sex Male 32.06 
(160) 

0.406 7.47 (18) 0.087 6.33 (15) 0.167 30.31 (97) 0.441 15.59 
(41) 

0.731 

Female 34.62 
(152) 

 
3.74 (8) 

 
3.54 (8) 

 
27.46 (78) 

 
14.51 

(37) 

 

Mode of 
Delivery 

Vaginal 32.15 
(227) 

0.165 4.82 (17) 0.204 3.87 (14) 0.046 27.27 
(126) 

0.018 12.56 
(50) 

0.015 

Elective 
Cesarean 

31.52 (29) 
 

11.76 (4) 
 

11.90 (5) 
 

45.45 (25) 
 

24.49 
(12) 

 

Emergenc
y 

Cesarean 

40.29 (56) 
 

7.35 (5) 
 

6.78 (4) 
 

27.59 (24) 
 

22.54 
(16) 

 

Breastfeedin
g Status 

Non 68.33 (163 <0.001 7.22 (7) 0.434 5.41 (6) 0.953 36.62 (52) 0.042 18.60 
(24) 

0.358 

 
Partial 31.48 (96) 

 
6.75 (11) 

 
4.58 (7) 

 
28.97 (62) 

 
15.12 

(26) 

 

 
Exclusive 14.29 (58) 

 
4.10 (8) 

 
5.03 (10) 

 
24.60 (61) 

 
12.90 

(28) 

 

Infant 
Antibiotics 

No 34.09 
(284) 

0.701 5.73 (24) 0.619 4.82 (20) 1.00 27.52 
(150) 

0.112 15.24 
(71) 

0.984 

Yes 31.67 (19) 
 

0.00 (0) 
 

4.35 (1) 
 

40.00 (14) 
 

15.35 (4) 
 

Depression None 31.4 (254) <0.001 5.22 (21) 0.053 4.83 (20) 0.243 27.01 
(141) 

0.059 14.16 
(65) 

0.287 

Antenatal 50.88 (29) 
 

5.56 (1) 
 

6.25 (1) 
 

41.38 (12) 
 

28.57 (6) 
 

Persistent 33.80 (24) 
 

6.67 (2) 
 

3.45 (1) 
 

40.43 (19) 
 

17.65 (6) 
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  Lowest 
tertile 

sIgA (% 
yes) 

n=314/9
51 

ChiX2** Atopic 
AW vs 
no AW 

(Ages 1-
3) 

n=26/45
5 

ChiX2** Atopic 
AW vs 
no AW 

(Ages 4-
5) 

n=23/46
3 

ChiX2** Non-
Atopic 

AW vs no 
AW (Ages 

1-3) 
n=175/6

04 

ChiX2** Non-
Atopic 
AW vs 
no AW 

(Ages 4-
5) 

n=78/51
8 

Postnatal 61.90 (13) 
 

40.0 (2) 
 

25.00 (1) 
 

50.00 (3) 
 

25.00 (1) 
 

Furry Pets in 
the Home 

No 37.84 
(165) 

0.007 5.53 (12) 0.858 5.50 (11) 0.674 26.79 (75) 0.264 18.88 
(44) 

0.034 

Yes 29.5 (149) 
 

5.15 (12) 
 

4.65 (12) 
 

30.94 (99) 
 

12.14 
(34) 

 

Smoke 
Exposure 
(Prenatal) 

No 31.7 (272) 0.004 5.62 (24) 0.647 4.64 (20) 0.135 28.16 
(158) 

0.208 14.37 
(69) 

0.085 

Yes 47.56 (39) 
 

8.00 (2) 
 

11.54 (3) 
 

37.84 (14) 
 

25.81 (8) 
 

Smoke 
Exposure 
(Postnatal) 

No 31.96 
(249) 

0.053 5.74 (23) 0.755 5.37 (21) 0.554 26.32 
(135) 

<0.001 15.14 
(66) 

0.955 

Yes 39.76 (66) 
 

3.85 (2) 
 

2.94 (2) 
 

43.82 (39) 
 

15.38 
(12) 

 

Multigravida No 34.44 
(125) 

0.597 7.26 (13) 0.252 4.05 (7) 0.481 29.66 (70) 0.765 15.74 
(31) 

0.735 

Yes 32.77 
(195) 

 
4.71 (13) 

 
5.52 (16) 

 
28.53 
(105) 

 
14.64 

(47) 

 

Maternal 
Overweight 

Normal 28.24 
(148) 

<0.001 5.71 (16) 0.857 6.27 (18) 0.203 27.07 (98) 0.092 14.33 
(45) 

0.569 

Obese 33.17 (69) 
 

6.48 (7) 
 

1.92 (2) 
 

27.34 (38) 
 

14.29 
(17) 

 

 
Overweig

ht 
45.58 
(103) 

 
4.48 (3) 

 
4.17 (3) 

 
37.86 (39) 

 
18.82 

(16) 

 

Maternal 
Allergy/Asth
ma During 
Pregnancy 

No 32.87 
(118) 

0.941 5.65 (10) 0.940 3.89 (7) 0.367 25.78 (58) 0.210 11.73 
(23) 

0.097 

Yes 33.1 (192) 
 

5.82 (16) 
 

5.78 (16) 
 

30.56 
(114) 

 
17.41 

(54) 

 

Maternal Age 
(Greater than 
Median) 

No 36.48 
(174) 

0.033 5.50 (12) 0.853 4.72 (10) 0.820 31.79 (96) 0.127 16.18 
(39) 

0.504 

Yes 29.93 
(138) 

 
5.91 (26) 

 
5.18 (13) 

 
26.16 (79) 

 
14.08 

(39) 
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Table B3. Test of Interaction between Fecal sIgA (2-5.5 months) and 

breastfeeding status at stool collection 
 

UV for AW at 1-3 Years (95% 
CI) 

Model 1: Crude OR (Low Fecal sIgA (2-5.5 Months)) 1.54 (1.07, 2.22) 
Model 2: Adjusted for Breastfeeding 1.36 (0.92, 2.01) 
Model 3: Breastfeeding * Low Fecal sIgA (2-5.5 Months) (Reference: Breastfed, Normal-High 
Fecal sIgA) 

 

Breastfed*Low Fecal sIgA (2-5.5 Months) 1.69 (0.77, 3.71) 
Formula Fed*Normal-High Fecal sIgA (2-5.5 Months) 1.48 (0.96, 2.29) 

Formula Fed*Low Fecal sIgA (2-5.5 Months) 1.89 (1.21, 2.94) 
 

Table B4. Test of Interaction between Fecal sIgA (2-5.5 months) and 

breastfeeding status at stool collection 

Variable Interactions with fecal sIgA 
Breastfeeding status at stool collection 0.036 

Note: Interactions between a covariate and fecal sIgA variable were tested. When interaction 

terms with p<0.05 were found, the interaction term for each was reported. 
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Figure B1. Fecal sIgA levels (mg/gfeces) by feeding mode and infant age at time 

of stool collection. 

 

 

 

 

 

2 4 6 8
0

20

40

60

Age at Stool Collection (Months)

Fe
ca

l s
Ig

A
 (m

g/
gf

ec
es

) Breastfed

Mixed Fed

Formula Fed

Figure B1. Fecal sIgA levels (mg/gfeces) by feeding mode and infant age at time of stool collection.
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Figure B2. Fecal sIgA levels (mg/gfeces) by feeding mode at time of stool 

collection. BF = Breastfed; MF = Mixed Fed; FF = Formula Fed. P-values indicate 

significant differences between groups based on Kruskal-Wallis Test. 
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Figure B2. Fecal sIgA levels (mg/gfeces) by feeding mode at time of stool 
collection. BF = Breastfed; MF = Mixed Fed; FF = Formula Fed. P-values 
indicate significant differences between groups based on Kruskal-Wallis 
Test.

p<0.001
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Figure B3. sIgA levels among AW groups from ages 4-5. UVs for AW, atopic AW 

and non-atopic AW had significantly lower fecal sIgA levels compared to the 

reference group of those without AW.  

  

Figure B3. sIgA levels among AW groups from ages 4-5. UVs for AW, atopic AW and non-atopic AW had significantly 
lower fecal sIgA levels compared to the reference group of those without AW. P-values indicate significant 
differences between groups based on Mann-Whitney U tests.
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Figure C1. Serum IgA levels (g/L) by age in years from ages 0-3. Red line indicates 

median serum IgA level (g/L) by time of serum IgA collection (years). 5 data points 

were outside the scale of the graph.  
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Table C1. Proportion of ED Visits for AW (Ages 4-5) and Potential Covariates in the 9,938 n AHS sub-Cohort 
with Serum IgA Samples from Ages 0-3 
 
     

  
Two 

Highest 
Tertiles of 

Serum 
IgA  (0-1 

Years)  
n=1,360/

2,040 

ChiX
2** 

Two 
Highest 

Tertiles of 
Serum 

IgA  (1-2 
Years)  

n=2,655/
4,079 

ChiX
2** 

Two 
Highest 
Tertiles 

of 
Serum 

IgA  (2-
3 Years) 

N = 
2,506/3

,819 

ChiX
2** 

ED Visit 
for AW 

(Age 4-5 
Years) vs 

No AW 
n=219/8

,937 

ChiX
2** 

ED Visit 
for 

Atopic 
AW 

(Age 4-
5 Years) 

vs No 
AW 

n=46/8,
764 

ChiX
2** 

ED Visit 
for 

Non-
Atopic 

AW 
(Age 4-

5 Years) 
vs No 

AW 
n=32/8,

750 

ChiX
2** 

ED Visit 
for 

Atopic 
Asthma 
(Age 4-

5 Years) 
vs No 

AW 
n=41/8,

791 

ChiX
2** 

ED Visit 
for 

Non- 
Atopic 

Asthma 
(Age 4-

5 Years) 
vs No 

AW 
n=25/8,

775 

Chi
X2** 

Co-
variates 

 
Row % (N)  p-

value 
(X2 

exact) 

Row % (N)  p-
value 

(X2 

exact) 

Row % (N)  p-
value 

(X2 

exact) 

Row % (N)  p-
value 

(X2 

exact) 

Row % 
(N)  

p-
value 

(X2 

exact) 

Row % 
(N)  

p-
value 

(X2 

exact) 

Row % 
(N)  

p-
value 

(X2 

exact) 

Row % 
(N)  

p-
value 

(X2 

exact) 

Sex Fem
ale 

66.40 
(585) 

0.82
5 

61.50 
(1,131) 

<0.0
01 

63.69 
(1,054) 

0.02
8 

2.08 (82) 0.04
4 

0.41 
(16) 

0.19
5 

0.36 
(14) 

0.95
1 

0.33 
(13) 

0.10
5 

0.26 
(10) 

0.66
5 

Male 66.87 
(775) 

 
68.04 

(1,524) 

 
67.10 

(1,452) 

 
2.74 

(137) 

 
0.61 
(30) 

 
0.37 
(18) 

 
0.57 
(28) 

 
0.31 
(15) 
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  Two 
Highest 

Tertiles of 
Serum 

IgA  (0-1 
Years)  

n=1,360/
2,040 

ChiX
2** 

Two 
Highest 

Tertiles of 
Serum 

IgA  (1-2 
Years)  

n=2,655/
4,079 

ChiX
2** 

Two 
Highest 
Tertiles 

of 
Serum 

IgA  (2-
3 Years) 

N = 
2,506/3

,819 

ChiX
2** 

ED Visit 
for AW 

(Age 4-5 
Years) vs 

No AW 
n=219/8

,937 

ChiX
2** 

ED Visit 
for 

Atopic 
AW 

(Age 4-
5 Years) 

vs No 
AW 

n=46/8,
764 

ChiX
2** 

ED Visit 
for 

Non-
Atopic 

AW 
(Age 4-

5 Years) 
vs No 

AW 
n=32/8,

750 

ChiX
2** 

ED Visit 
for 

Atopic 
Asthma 
(Age 4-

5 Years) 
vs No 

AW 
n=41/8,

791 

ChiX
2** 

ED Visit 
for 

Non- 
Atopic 

Asthma 
(Age 4-

5 Years) 
vs No 

AW 
n=25/8,

775 

ChiX
2** 

Diagno
ses of 
Failure 
to 
Thrive 

No 66.67 
(1,214) 

1.00 65.54 
(2,433) 

0.05
3 

65.94 
(2,379) 

0.08
8 

2.52 
(208) 

0.11
8 

0.48 
(39) 

0.76
9 

0.40 
(32) 

0.17
5 

0.48 
(39) 

0.76
9 

0.31 
(25) 

0.25
7 

Yes 66.76 
(146) 

 
60.49 
(222) 

 
60.19 
(127) 

 
1.57 (11) 

 
0.29 (2) 

 
0.00 (0) 

 
0.29 (2) 

 
0.00 (0) 

 

Age at 
Serum 
IgA 
Level 
(Years) 

0-1 
      

1.67 (30) <0.0
01 

0.28 (5) 0.00
2 

0.34 (6) 0.96
3 

0.28 (5) 0.01
1 

0.23 (4) 0.87
1 

 
1-2 

      
2.03 (75) 

 
0.33 
(12) 

 
0.38 
(14) 

 
0.30 
(11) 

 
0.30 
(11) 

 

 
2-3 

      
3.31 

(114) 

 
0.86 
(29) 

 
0.36 
(12) 

 
0.74 
(25) 

 
0.30 
(10) 

 

**Chi(X2) comparison used to investigate whether distributions of categorical variables differ from one another. 

Fishers exact test was used when expected frequencies were <5 in >20% of cells. Bold indicates a significant 

difference between the two populations.
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Figure C2. Serum IgA levels (g/L) from ages 0-1 among AW groups from ages 4-

5 years. AW groups compared to the reference group of those without AW 

based on Mann-Whitney U.  
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Figure C3. Serum IgA levels (g/L) from ages 1-2 among AW groups from ages 4-

5 years. AW groups compared to the reference group of those without AW 

based on Mann-Whitney U. 
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Figure C4. Serum IgA levels (g/L) from ages 2-3 among AW groups from ages 4-

5 years. AW groups compared to the reference group of those without AW 

based on Mann-Whitney U. 
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Figure C5. Forest plot of adjusted ORs for AW outcomes ages 4-5 years in children 

with normal to high serum IgA levels (g/L) compared to those with low serum IgA 

levels from ages 0-1, adjusted for failure to thrive and sex.  
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Table C2. Odds of Emergency Department Visits for Asthma and/or Wheeze (Age 4-5 

Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for AW vs No AW 
(Age 4-5 Years) Crude OR 
(95% CI) 

ED Visit for AW vs No AW 
(Age 4-5 Years) Adjusted OR 
(95% CI) (n=2,040)* 

Normal-High Serum IgA (0-1 Years) 1.00 (0.52, 1.98) 1.00 (0.52, 1.98) 

Failure to Thrive 0.62 (0.33, 1.14) 0.67 (0.20, 2.19) 

Sex (Ref: Female) 1.33 (1.00, 1.75) 1.12 (0.59, 2.13) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table C3. Odds of Emergency Department Visits for Atopic Asthma and/or Wheeze (Age 

4-5 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for Atopic AW vs No 
AW (Age 4-5 Years) Crude OR 
(95% CI) 

ED Visit for Atopic AW vs No 
AW (Age 4-5 Years) Adjusted 
OR (95% CI) (n=2,010)* 

Normal-High Serum IgA (0-1 Years) 2.02 (0.23, 18.1) 1.97 (0.22, 17.70) 

Failure to Thrive 0.53 (0.13, 2.20) 1 (Omitted) 

Sex (Ref: Female) 1.49 (0.81, 2.74) 3.10 (0.35, 27.8) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 

Table C4. Odds of Emergency Department Visits for Atopic Asthma (Age 4-5 Years) After 

Exposure to the Two Highest Tertiles of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for Non-Atopic AW vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) 

ED Visit for Non-Atopic AW vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) (n=2,013)* 

Normal-High Serum IgA (0-1 Years) 1.51 (0.30, 7.52) 1.57 (0.31, 7.80) 

Failure to Thrive 1 (Omitted) 1 (Omitted) 

Sex (Ref: Female) 1.02 (0.51, 2.06) 0.11 (0.01, 0.90) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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Table C5. Odds of Emergency Department Visits for Atopic Asthma (Age 4-5 Years) 

After Exposure to the Highest Tertile of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for Atopic Asthma vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) 

ED Visit for Atopic Asthma vs 
No AW (Age 4-5 Years) 
Adjusted OR (95% CI) 
(n=2,012)* 

Normal-High Serum IgA (0-1 Years) 2.02 (0.22, 18.1) 1.97 (0.22, 17.70) 

Failure to Thrive 0.60 (0.14, 2.49) 1 (Omitted) 

Sex (Ref: Female) 1.71 (0.89, 3.31) 3.10 (0.35, 27.8) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table C6. Odds of Emergency Department Visits for Non-Atopic Asthma (Age 4-5 Years) 

After Exposure to the Highest Tertile of Serum IgA (Ages 0-1) 

 Ref: Lowest Tertile Serum IgA (0-1 Years) ED Visit for Non-Atopic 
Asthma vs No AW (Age 4-5 
Years) Crude OR (95% CI) 

ED Visit for Non-Atopic 
Asthma vs No AW (Age 4-5 
Years) Crude OR (95% CI) 
(n=2,013)* 

Normal-High Serum IgA (0-1 Years) 2.53 (0.29, 21.7) 2.64 (0.31, 22.72) 

Failure to Thrive 1 (Omitted) 1 (Omitted) 

Sex (Ref: Female) 1.19 (0.54, 2.66) 1 (Omitted) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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Figure C6. Forest plot of adjusted ORs for AW outcomes ages 4-5 years in children 

with normal to high serum IgA levels (g/L) compared to those with low serum IgA 

levels from ages 1-2, adjusted for failure to thrive and sex. 

  

0 2 4 6

ED Visit for Non-Atopic Asthma vs No AW (Age 3-5 Years) 

ED Visit for Atopic Asthma vs No AW (Age 3-5 Years)

ED Visit for Non-Atopic AW vs No AW (Age 3-5 Years)

ED Visit for Atopic AW vs No AW (Age 3-5 Years)

ED Visit for AW vs No AW (Age 3-5 Years)

Normal to High Serum IgA (Ages 1-2) and Adjusted ORs of AW Outcomes

OR (95%CI)



 191 

Table C7. Odds of Emergency Department Visits for Asthma and/or Wheeze (Age 4-5 

Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for AW vs No AW 
(Age 4-5 Years) Crude OR 
(95% CI) 

ED Visit for AW vs No AW 
(Age 4-5 Years) Adjusted OR 
(95% CI) (n=4,079)* 

Normal-High Serum IgA (1-2 Years) 0.90 (0.61, 1.35) 0.88 (0.59, 1.32) 

Failure to Thrive 0.62 (0.33, 1.14) 0.87 (0.42, 1.80) 

Sex (Ref: Female) 1.33 (1.00, 1.75) 1.42 (0.94, 2.16) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table C8. Odds of Emergency Department Visits for Atopic Asthma and/or Wheeze (Age 

4-5 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for Atopic AW vs No 
AW (Age 4-5 Years) Crude OR 
(95% CI) 

ED Visit for Atopic AW vs No 
AW (Age 4-5 Years) Adjusted 
OR (95% CI) (n=4,011)* 

Normal-High Serum IgA (1-2 Years) 1.67 (0.50, 5.54) 1.56 (0.47, 5.20) 

Failure to Thrive 0.53 (0.13, 2.20) 1 (Omitted) 

Sex (Ref: Female) 1.49 (0.81, 2.74) 2.38 (0.64, 8.84) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table C9. Odds of Emergency Department Visits for Atopic Asthma (Age 4-5 Years) After 

Exposure to the Two Highest Tertiles of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for Non-Atopic AW vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) 

ED Visit for Non-Atopic AW vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) (n=4,013)* 

Normal-High Serum IgA (1-2 Years) 1.19 (0.45, 3.13) 1.13 (0.43, 2.97) 

Failure to Thrive 1 (Omitted) 1 (Omitted) 

Sex (Ref: Female) 1.02 (0.51, 2.06) 1.94 (0.68, 5.54) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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Table C10. Odds of Emergency Department Visits for Atopic Asthma (Age 4-5 Years) 

After Exposure to the Highest Tertile of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for Atopic Asthma vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) 

ED Visit for Atopic Asthma vs 
No AW (Age 4-5 Years) 
Adjusted OR (95% CI) 
(n=4,020)* 

Normal-High Serum IgA (1-2 Years) 1.46 (0.43, 4.98) 1.37 (0.40, 4.70) 

Failure to Thrive 0.60 (0.14, 2.49) 1 (Omitted) 

Sex (Ref: Female) 1.71 (0.89, 3.31) 2.15 (0.57, 8.11) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 

Table C11. Odds of Emergency Department Visits for Non-Atopic Asthma (Age 4-5 Years) 

After Exposure to the Highest Tertile of Serum IgA (Ages 1-2) 

 Ref: Lowest Tertile Serum IgA (1-2 Years) ED Visit for Non-Atopic 
Asthma vs No AW (Age 4-5 
Years) Crude OR (95% CI) 

ED Visit for Non-Atopic 
Asthma vs No AW (Age 4-5 
Years) Crude OR (95% CI) 
(n=4,020)* 

Normal-High Serum IgA (1-2 Years) 0.97 (0.33, 2.89) 0.89 (0.30, 2.67) 

Failure to Thrive 1 (Omitted) 1 (Omitted) 

Sex (Ref: Female) 1.19 (0.54, 2.66) 4.56 (1.00, 20.62) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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Figure C7. Forest plot of adjusted ORs for AW outcomes ages 4-5 years in children 

with normal to high serum IgA levels (g/L) compared to those with low serum IgA 

levels from ages 2-3, adjusted for failure to thrive and sex.  
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Table C12. Odds of Emergency Department Visits for Asthma and/or Wheeze (Age 4-5 

Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for AW vs No AW (Age 
4-5 Years) Crude OR (95% CI) 

ED Visit for AW vs No AW (Age 
4-5 Years) Adjusted OR (95% 
CI) (n=3,819)* 

Normal-High Serum IgA (2-3 Years) 1.10 (0.75, 1.60) 1.09 (0.74, 1.59) 

Failure to Thrive 0.62 (0.33, 1.14) 0.95 (0.48, 1.87) 

Sex (Ref: Female) 1.33 (1.00, 1.75) 1.25 (0.91, 1.72) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table C13. Odds of Emergency Department Visits for Atopic Asthma and/or Wheeze (Age 

4-5 Years) After Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for Atopic AW vs No 
AW (Age 4-5 Years) Crude OR 
(95% CI) 

ED Visit for Atopic AW vs No 
AW (Age 4-5 Years) Adjusted 
OR (95% CI) (n=3,723)* 

Normal-High Serum IgA (2-3 Years) 2.53 (0.58, 10.95) 2.52 (0.58, 10.9) 

Failure to Thrive 0.53 (0.13, 2.20) 1.59 (0.48, 5.23) 

Sex (Ref: Female) 1.49 (0.81, 2.74) 1.25 (0.63, 2.51) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table C14. Odds of Emergency Department Visits for Atopic Asthma (Age 4-5 Years) After 

Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for Non-Atopic AW vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) 

ED Visit for Non-Atopic AW vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) (n=3,709)* 

Normal-High Serum IgA (2-3 Years) 1.48 (0.57, 3.88) 1.38 (0.57, 3.33) 

Failure to Thrive 1 (Omitted) 1 (Omitted) 

Sex (Ref: Female) 1.02 (0.51, 2.06) 1.05 (0.42, 2.63) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 
Table C15. Odds of Emergency Department Visits for Atopic Asthma (Age 4-5 Years) After 
Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for Atopic Asthma vs 
No AW (Age 4-5 Years) Crude 
OR (95% CI) 

ED Visit for Atopic Asthma vs 
No AW (Age 4-5 Years) 
Adjusted OR (95% CI) 
(n=3,741)* 

Normal-High Serum IgA (2-3 Years) 1.48 (0.57, 3.88) 1.48 (0.56, 3.87) 

Failure to Thrive 0.60 (0.14, 2.49) 1.82 (0.55, 6.06) 

Sex (Ref: Female) 1.71 (0.89, 3.31) 1.55 (0.73, 3.33) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
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Table C16. Odds of Emergency Department Visits for Non-Atopic Asthma (Age 4-5 Years) 

After Exposure to the Two Highest Tertiles of Serum IgA (Ages 2-3) 

 Ref: Lowest Tertile Serum IgA (2-3 Years) ED Visit for Non-Atopic 
Asthma vs No AW (Age 4-5 
Years) Crude OR (95% CI) 

ED Visit for Non-Atopic 
Asthma vs No AW (Age 4-5 
Years) Crude OR (95% CI) 
(n=3,728)* 

Normal-High Serum IgA (2-3 Years) 2.08 (0.47, 9.15) 2.06 (0.47, 9.07) 

Failure to Thrive 1 (Omitted) 1 (Omitted) 

Sex (Ref: Female) 1.19 (0.54, 2.66) 1.29 (0.47, 3.55) 

Bold indicates p<0.05. *Adjusted for sex and failure to thrive 
 




