
BIM-based Automated Design Checking for Building Permit in the Light-

Frame Building Industry

By

Harish Narayanaswamy

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Civil (Cross-disciplinary)

Department of Civil and Environmental Engineering

University of Alberta

© Harish Narayanaswamy, 2019

ii

ABSTRACT

Automation of the code compliance checking process has been explored extensively,

particularly in recent years with the emergence of building information modelling. Still,

automated code compliance checking has not yet been fully realized, as there is no standardized

method for rule interpretation and building model preparation for code compliance. Manual

checking of design code compliance, meanwhile, requires significant effort and time and is

error-prone, while uncertainty and inconsistency in assessment lead to delays in construction

process. Hence, the development of a BIM tool (i.e., an add-on software application to

Autodesk Revit) to automate municipal zoning bylaw and wood framing design compliance

checking for residential buildings is presented. This research also discusses the pros and cons

of existing methods of code compliance checking and proposes a new classification of building

code regulations for better implementation of the building rules in stages. The proposed

classification is based on the complexity involved in rule interpretation and the level of

difficulty involved in data extraction from the BIM model. The developed tools provide a

novel, simplified framework for rules representation and for interpreting them using .NET

coding language. By creating model views in Autodesk Revit of building objects based on the

required elements’ threshold parameter values, the add-on software application offers

automated code compliance checking functionality to validate zoning bylaws related to lot

dimensions based on municipal bylaws and to validate wood framing designs based on building

code requirements and construction engineering specifications. A case study is presented to

demonstrate the implementation of the application and its benefits compared to existing design

checking approaches.

iii

PREFACE

This thesis is the original work by Harish Narayanaswamy who completes the thesis work

under the supervision of Dr. Mohamed Al-Hussein. The research related topics, proposed

methodology and paper writing were finished by Harish Narayanaswamy with guidance from

Dr. Al-Hussein. One conference paper related to this thesis have been submitted for publishing

and it is listed as below.

List of proceedings:

Narayanaswamy, H., Liu, H., and Al-Hussein, M. “BIM-based Automated Design Checking

for Homebuilders in the Light-Frame Building Industry.” Under Review (Jan., 2019) for

publication in Proceedings, 36th International Symposium on Automation and Robotics in

Construction, Banff, AB, Canada, May. 21-24.

iv

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere appreciation to the many wonderful

people who have supported me during my studies. First, I would like to express my deepest

gratitude to my supervisor, Dr. Mohamed Al-Hussein, for his support, direction,

encouragement and support throughout this research.

I would like to express my thanks to Dr. Hexu Liu, for his continuous support through this

research. Mahmud, Lana, Marko, Beda and to the all administrative and research staff of Dr.

Al-Hussein’s group at the University of Alberta for their care, attention, and technical support.

I would also like to thank my friends Ankit, Anil, Anish, Sushmitha, Vishal, Saraswathi,

Sathish and Ananthan for their help and moral support.

Finally, my deepest gratitude to my family for all the love and encouragement. Especially, I

thank my Dad and brothers for always inspiring me and supporting me through everything.

Also, I would like to dedicate this work to my mother, Lakshmi, for her endless love.

v

TABLE OF CONTENTS

ABSTRACT .. ii

PREFACE ..iii

ACKNOWLEDGMENTS... iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ...viii

LIST OF TABLES.. x

LIST OF ABBREVIATIONS ... xi

FOL logical symbols meaning (Philosophy Index, 2018) ... xii

CHAPTER 1. INTRODUCTION.. 1

1.1 Background .. 1

1.2 Problem Statement and Research Objective .. 4

1.3 Thesis Organization ... 6

CHAPTER 2. LITERATURE REVIEW .. 8

2.1 Existing Techniques in Code Checking ... 8

2.1.1 Corenet (Singapore) ... 9

2.1.2 Statsbygg (Norway) ... 10

2.1.3 Design Check (Australia) .. 11

2.1.4 International Code Council (ICC) and General Services Administration (GSA)

vi

Design Rule Checking (The United States) .. 12

2.1.5 Other Applications ... 13

2.2 Representation of building codes ... 14

2.3 Interpretation of building code ... 16

2.4 Building model views.. 18

2.5 Compliance checking algorithms and reporting .. 20

CHAPTER 3. RESEARCH METHODOLOGY .. 23

3.1 Overview .. 23

3.1.1 Rule Translation ... 24

3.1.2 BIM model preparation ... 35

3.1.3 Rule Checking .. 36

3.1.4 Checking Report .. 37

3.2 Prototype Development ... 38

3.2.1 Edmonton zoning bylaw checking .. 41

3.2.2 Framing Checking.. 52

3.2.3 Domain knowledge from the standard.. 55

3.3 Object-oriented representation.. 61

CHAPTER 4. CASE STUDY ... 63

4.1 Bylaw Checking .. 67

4.2 Framing Checking ... 72

vii

4.3 Discussion .. 78

CHAPTER 5. CONCLUSION AND FUTURE RESEARCH .. 81

5.1 Summary .. 81

5.2 Research Contributions ... 82

5.3 Limitations and Recommendation for Future Work ... 83

5.3.1 Research Limitations ... 83

5.3.2 Future Research and Improvements ... 84

REFERENCES ... 85

APPENDIX A: Glossary .. 92

APPENDIX B: User Manual ... 93

APPENDIX C: All the Regulations Related to Framing from Building Code 99

APPENDIX D: Extended Data Structure Developed for Prototype Excerpt from the C#.Net

.. 110

viii

LIST OF FIGURES

Figure 1. 1. General Structure for Rule Checking Process (C. Eastman et al., 2009a). 3

Figure 1. 2. Building Permit Approval Process. ... 5

Figure 3. 1. Overview of Proposed Methodology. ... 24

Figure 3. 2. System Architecture. .. 40

Figure 3. 3. Illustration of Setback Distances Requirements for RE1 Zone (Adopted from City

of Edmonton Website).. 43

Figure 3. 4. Flow Chart for checking Lot Dimensions. .. 44

Figure 3. 5. Flow Chart for Checking Lot Dimensions of Different Types of Houses. 46

Figure 3. 6. Flow Chart for Checking House Area. .. 48

Figure 3. 7. Flow Chart for Checking of Building Coverage for Different Types of Houses. 49

Figure 3. 8. Height Consideration for Types of Houses (Adopted from City of Edmonton). . 50

Figure 3. 9. Flowchart for checking Height of Building. ... 51

Figure 3. 10. Flow Chart for Framing Checking for Residential Building. 53

Figure 3. 11. Flow Chart for Checking Spacing and Maximum Height of Framing. 55

Figure 3. 12. Excerpt of framing information for checking using UML. 62

Figure 4. 1. 3D Model of Single detached house with Attached Garage (case study model 1).

.. 64

Figure 4. 2. 3D Model of semi-detached house with Attached Garage (case study model 2). 64

Figure 4. 3. Floor Plan of single detached House with Attached Garage (case study model 1).

.. 66

Figure 4. 4. Top view of semi-detached House with Attached Garage (case study model 2). 66

Figure 4. 5. Main User Interface of DCheck add-on. ... 69

ix

Figure 4. 6. User Interface for Entering Project Details... 70

Figure 4. 7. Bylaw Checking Report for single detached house (case study model 1) 71

Figure 4. 8. Bylaw Checking Report for semi-detached house (case study model 2) 72

Figure 4. 9. Framing of Walls and Floors of House. .. 73

Figure 4. 10. User Interface for Entering Framing Details. ... 75

Figure 4. 11. Framing Checking Report for single detached house (case study model 1)....... 75

Figure 4. 12. Framing Checking Report for semi-detached house (case study model 2). 76

Figure 4. 13. Highlighting Failed Rules Related Objects in Basement Floor........................... 77

Figure 4. 14. Final Check Results After correcting all the Errors. .. 78

x

LIST OF TABLES

Table 1. Summary of Typical Literature on BIM-based Design Checking 22

Table 2. Maximum Site Coverage with Respect to Specific Housing Type and Area. 47

Table 3. Spacing and Maximum Height of Studs. .. 54

Table 4. Examples of Rule-based Knowledge for Checking Residential Building.................. 57

Table 5. Framing Regulations from Alberta Building Code 2014. ... 99

Table 6. Maximum spans for floor joist table ... 109

xi

LIST OF ABBREVIATIONS

AEC Architectural, Engineering, and Construction

API Application Programming Interface

BIM Building Information Modelling

CAD Computer-aided Design

COBie Construction Operations Building Information Exchange

CORENET Construction and Real Estate Network

EDM Express Data Management

FOL First-Order Logic

GUI Graphical User Interface

ICC International Code Council

IFC Industry Foundation Class

LoD Level of Details

RASE Requirement (R), Applicability’s (A), Selection (S) and Exceptions (E)

SMC Solibri Model Checker

SQL Structured Query Language

SWRL Semantic Web Rule Language

XML Extensible Mark-up Language

xii

FOL logical symbols meaning (Philosophy Index, 2018)

¬ negation (NOT) The tilde (˜) is also often used.

∧ conjunction (AND) The ampersand (&) or dot (·) are also often used.

∨ disjunction (OR) This is the inclusive disjunction, equivalent to and/or in
English.

⊕ exclusive
disjunction (XOR)

⊕ means that only one of the connected propositions is
true, equivalent to either…or. Sometimes ⊻ is used.

| alternative
denial (NAND)

Means “not both”. Sometimes written as ↑

↓ joint denial (NOR) Means “neither/nor”.

→ conditional (if/then) Many logicians use the symbol ⊃ instead. This is also
known as material implication.

↔ biconditional (iff) Means “if and only if” ≡ is sometimes used, but this site
reserves that symbol for equivalence.

∀ universal quantifier Means “for all”, so ∀xPx means that Px is true for every x.

∃ existential
quantifier

Means “there exists”, so ∃xPx means that Px is true for at
least one x.

() parentheses Used to group expressions to show precedence of
operations. Square brackets [] are sometimes used to
clarify groupings.

http://www.philosophy-index.com/logic/symbolic/negation.php
http://www.philosophy-index.com/logic/symbolic/conjunction.php
http://www.philosophy-index.com/logic/symbolic/disjunction.php
http://www.philosophy-index.com/logic/symbolic/exclusive-disjunction.php
http://www.philosophy-index.com/logic/symbolic/exclusive-disjunction.php
http://www.philosophy-index.com/logic/symbolic/alternative-denial.php
http://www.philosophy-index.com/logic/symbolic/alternative-denial.php
http://www.philosophy-index.com/logic/symbolic/joint-denial.php
http://www.philosophy-index.com/logic/symbolic/conditional.php
http://www.philosophy-index.com/logic/symbolic/biconditional.php
http://www.philosophy-index.com/logic/symbolic/universal-quantifier.php
http://www.philosophy-index.com/logic/symbolic/existential-quantifier.php
http://www.philosophy-index.com/logic/symbolic/existential-quantifier.php
http://www.philosophy-index.com/logic/symbolic/parentheses.php

1

CHAPTER 1. INTRODUCTION

1.1 Background

Technological advancements in the Architectural, Engineering, and Construction (AEC)

industry have digitalized nearly every stage of the building lifecycle, and this digitization has

been a significant advancement in the industry over the past several decades. Automated code

compliance checking saw a major leap with the advent of Building information modelling

(BIM) in the late nineties (Han, Kunz, & Law, 1998). BIM has been the major technological

advancement in the AEC industry that has most benefited AEC professionals over the

traditional computer-aided design (CAD) approach in every stage of the work, starting from

design, execution, and management of construction activities with a digital form of information

in three-dimensional geometry and semantics of individual elements in the form of objects. (C.

Eastman, Lee, Jeong, & Lee, 2009a). In many countries, such as Singapore, England, and

France, BIM has been made mandatory for government projects.

Through many years of research, many researchers believe that the full benefit of BIM

technology is obtained when it is applied from design to demolition stage, while the use of

BIM in every construction process will improve the overall efficiency. With the increase of

complexities in the construction process, getting the correct information for the right task will

help in getting better results. With the development of the neural format know as industrial

foundation class (IFC), project development can fulfil the condition of fragmented planning

tasks, and this led the automatic parametric generation of design and automation checking of

the design (Ismail, Ali, & Iahad, 2017).

BIM technology has been adopted in the AEC industry for the designing of building models,

which can be utilized for a wide variety of applications across the building lifecycle. Automated

code compliance checking system is one of the application processes for checking the models

2

in accordance with building codes, regulations, and bylaws with the use of BIM data models.

Automated rule checking came to light well before the introduction of BIM technology with

use of 2D CAD drawings. Even while so many authorities and researchers have been working

on the automated code compliance checking process for many years, it is not yet completely in

use it is still a semi-automated process. Many researchers have developed an application for

safety, egress, and design checking, but still no application is in use efficiently, even in some

countries where the BIM model for the design checking process was made mandatory.

Singapore, the UK, and the United States use BIM model for automated checking with online

submission of IFC file for approval purposes. But there have been no updates in many

applications since first developed, and even a fewer number of those have survived.

Most of the building code and bylaw compliance work has been done manually by the

professionals in the construction industry, which requires more manpower, and is an error-

prone, time-consuming task that will not be consistent. Automation of checking, where well-

defined rules can be applied automatically with minimum user involvement, is increasingly

needed. With the complete translation of the human-readable natural language code into

computer interpretable language, with suitable methodologies for implementation and clear

understanding of building regulations by the logical representation of regulations, will result in

a good process for the compliance. As many researchers have been involved in this area of

research for many years, the main methodology for implementing this process of transferring

building code into machine-readable format involves four main steps as follows: rule

interpretation, building model preparation, rule execution, and rule reporting, as shown in Fig

1. Each step carries atmost importance as it holds different responsibilities and functions.

3

Figure 1. 1. General Structure for Rule Checking Process (C. Eastman et al., 2009a).

Rule interpretation is the first step, in which the originally produced human language will be

interpreted into a computer-readable format. Classifying the building code into types based on

the level of difficulty in translating the natural building code into computer interpretable format

and the level of difficulty in extracting the information from the BIM model will facilitate the

interpretation of the code in stages based on classification for complete automation. This step

is the most critically important step in developing an automated code compliance checking

application. There are different ways of translating the building code and extract the required

information from BIM model. Next, the model is created using BIM technology with the

required level of details and the required model views for extracting model information. The

next step is rule execution where encoded rule and model are brought together for code

checking, and finally, results are generated in the reporting stage based on the compliance with

rule outputs in text-based reports.

Understanding what amount of information is required for an element in the model plays a very

important role in ensuring its utilization in code compliance checking. Level of details is how

many details are included in model objects related to dimensional, special, quantitative,

qualitative, and other data included in the model element to support required purposes. The

American Institute of Architects (AIA) has published a framework for level of development

required for model element content. There is different level of development known as level of

4

details (LOD): LOD 100, 200, 300, 400 and 500. The LOD for each level are defined as

follows:

LOD 100: The building elements are developed to represent the information on a basic level,

graphical representation of building models is done in this stage.

LOD 200: The building elements are developed with approximate quantities, size, shape,

location, and orientation. Non-graphical information can be attached for model elements.

LOD 300: The building elements are developed with accurate modelling and shop drawings,

where elements are defined with specific assemblies, precise quantity, size, shape, location,

and orientation. Non-graphical information can also be attached to model elements.

LOD 400: The building elements are developed with specific assemblies, with complete

fabrication, assembly, and detailed information, in addition to precise quantity, size, shape,

location, and orientation. Non-graphical information can also be attached to model elements.

LOD 500: The building elements are modelled as constructed assemblies for maintenance and

operations, in addition to field-verified details in terms of size, shape, location, quantity, and

orientation. Non-graphical information may also be attached to model elements.

1.2 Problem Statement and Research Objective

Every building to be built must go through a process of assessing whether it meets legal

requirements based on the building code, regulations and bylaw compliance. The process of

checking the building design model is still manual. The manual application process to obtain

the approval and permit to proceed for construction work is shown in Figure 2. And when it

comes to the framing for residential buildings, the modelling of the framing will be done with

reference to the wood framing construction documentation, except in some special or critical

conditions. Validation of framing is done manually, which is time consuming, error prone and

not consistent.

5

Figure 1. 2. Building Permit Approval Process.

And it is the same with the approval for the building permit, where 2D drawings have been

used for the zoning approval for the construction process, which adds more time to the

processing of permit approval, leads to a delay in start of the project, and if any corrections

have to be done in design, it will become difficult to identify those when comparing with old

drawings.

The major problem in the process of automated checking is the rule interpretation, where all

the human-written codes must be translated to computer-interpretable format. All the building

codes are not self-contained and make reference to various other documents that all industry

professionals should be familiar with. There are many ways to translate the building codes, as

shown in Figure 1. With interpretation using either computer codes or logic, some simple rules

are easily transferred with minimal efforts, but the difficulty level increases with rules or codes

that are difficult to define in computer code or logical format.

This research is based on the following hypothesis:

“Using object-based representation and with classification of building rules, simplified BIM

object model views can be generated to develop an automated checking application in an

Building Permit
application submission

with list of building plans.

Review of Application and
Plans by Building

Inspector.

Initial review
report/comments sent to

applicant within 5
business days.

Follow-up checking
report or approval sent to

applicant within 5
business days.

Plans have been approved
and Permit is issued.

6

efficient and comprehensive way.”

This research involves the development of a BIM-based automated design checking prototype

in the form of a software application (an add-on for Autodesk Revit) for Edmonton zoning

bylaws, used to verify compliance of lot design for residential house construction depending

on the residential zone, and to check that the wood framing design for walls of a residential

building are in accordance with Alberta Building Code 2014 Part 9. The automated checking

software application relies on the representation of the building rules based on building objects

and depends on the classification of the building rules, where the classification is based on how

convenient the code is to translate into computer-readable format, the level of difficulty

involved in the extraction of information from BIM models, and then the representation of

those building rules in logical form, which helps in translating to computable format effectively

and more accurately. The first type of classification of rules includes data that can be easily

accessed from BIM model. The second type of classification requires some expert knowledge

where the required information should be derived from BIM model. The third type of

classification of rules are the ones that need to be simplified and analyzed, and the information

requires an extended data structure.

The DCheck add-on software application developed for Autodesk Revit to accomplish

compliance checking for zoning and framing in residential building design can be used at any

point during the design process for checking the model so that the designer can correct any

errors if present during the design process.

1.3 Thesis Organization

This thesis consists of five chapters. Chapter 1 (Introduction) introduces the topic and research

objective and provides an overview of this thesis. Chapter 2 (Literature Review) provides a

review of the literature gathered about the topic, and background information covering the

development of technology in automated code checking process up until now. It also provides

7

insight into rule classification based on the rule interpretation for automation and different

design checking applications developed by authorities and researchers. Chapter 3 (Research

Methodology) presents the methodology used in this research, which consists of four main

elements: (1) rules translation, (2) BIM model preparation, (3) rule checking, and (4) checking

report. Chapter 4 (Case Study) is a validation of software application using a case study

presented here and discussions about adoption of automated compliance checking. And

Chapter 5 (Conclusion and Future Research) is where conclusions and future scope of research

are presented.

8

CHAPTER 2. LITERATURE REVIEW

This chapter presents the critical review with respect to code checking techniques, building

code representation, building model view, and compliance checking algorithms in order to

clarify the point of departure for this research.

2.1 Existing Techniques in Code Checking

Exhaustive studies have been made in automating the building code by many researchers in the

field, each exploring different techniques in interpreting the rules from their perspectives.

Fenves initiated research that examined how to logically organize the rules and regulations in

the 1960s, where he structured the regulation data in a decision table. His efforts in classifying

the rules into decision tables, combined with those of other researches who followed him, made

progress in this area and has led to this stage in code compliance (Johannes Dimyadi & Amor,

2013). With the use of CAD tools for design purposes by AEC professionals in the 1990s, the

automation of design checking has gained more interest among researchers, and their research

has included the development of the following: logic-based approaches for the organization of

design standards (Rasdorf & Lakmazaheri, 1990); computer representation of design standards

(Fenves, Garrett, & Kiliccote, 1995); and knowledge-based expert systems capable of

reviewing building design (Dym, Henchey, Delis, & Gonick, 1988). With the evolution of BIM

technology and the use of standardized IFC file format through the AEC industry, the

automation of code compliance was made more convenient. So many organizations around the

world have been involved in making this process automated. In some countries, the BIM model

is compulsory for the purpose of building approval, and some countries are trying to make it

mandatory in upcoming years.

Following are the list of applications developed by different countries and government

authorities for automated compliance of their country’s building code.

9

2.1.1 Corenet (Singapore)

In 1995, the building construction authority (BCA) of Singapore initiated CORENET

(Construction and Real Estate Network) as a comprehensive network system with a series of

IT systems for exchange of information between government agencies and parties involved in

construction and real estate (Global Reporting Initiative, 2014). CORENET for approval

process provides electronic web-based submission system incorporating in-house building

plans (BP) expert system to check 2D plans for any technical irregularities with reference to

the building regulations (Preidel & Borrmann, 2015). E-PlanCheck, as part of CORENET, was

the first initiative developed for automated code-checking (Malsane, Matthews, Lockley, Love,

& Greenwood, 2015). In 2002, BCA updated the system to CORENET e-PlanCheck with 3D

model. CORENET consists of three platforms: e-submission, e-PlanCheck, and e-info (S.

Zhang, Teizer, Lee, Eastman, & Venugopal, 2013). Project-related plans and documentation

will be submitted to regulatory authorities through e-submission for approval of building plan,

structural plan, temporary occupational, safety certificate and so on. E-PlanCheck

automatically checks the electronically submitted models for compliance of regulations using

BIM, and information regarding the codes, regulations, guidelines, standards are provided in

e-info (Khemlani, 2005).

Higher level of semantics that are relevant to code checking requirements are added to basic

building model information from IFC through FORNAX and independent platform used by e-

PlanCheck (Khemlani, 2005). FORNAX is an object library made by encapsulating building

components into objects, where an object contains relevant attributes code and rules apply to

that. Development of this application was the result of earlier efforts in this field made by

Singapore’s government authority to translate the building code into computer-readable format

for automated building code compliance checking (W. Solihin & Eastman, 2015), and was used

as a pilot project in Norway and New York with replacement of rules required by Norway and

10

by using ICC (International Code Council) codes for New York.

2.1.2 Statsbygg (Norway)

The Norwegian government organization, Statsbygg, acts as the Norwegian government's key

advisor in construction, building commissioner, property manager and property developer

(“STATSBTGG website,” 2018), CORENET e-plan checking system has been used for a

couple of IFC-based BIM building projects as an early effort by Norwegian authorities

(“Automated compliance checking using building information models,” 2010). Multiple

platforms, like e-PlanCheck, SMC, dRofus, and EDM model Checkers, were also adopted for

the purpose of experimenting for finding a better checking system. “HITOS” is a BIM project

managed by the Statsbygg governmental agency and Tromso University since 2005, for which

several software have been used for modelling architectural, structural, MEP, cost estimation,

and energy simulation, and EDM model server was also used for storing and accessing the

model data in IFC format (Malsane et al., 2015). dRofus was used for spatial requirement

checking: dRofus is a database system used for managing architectural, equipment’s for early

stage planning and through project and technical/functional requirements. dRofus provides

overview and detailed room, department and area information, room data sheets and building

elements planning (“STATSBTGG website,” 2018). Solibir model checker (SMC) was used

for checking accessible design of the model. SMC was developed in 2000 in Finland as a

quality assurance and validation tool. Developed into a stand-alone graphical driven rule-based

compliance checking and reporting application, it was built with a set of rules managed by

ruleset manager and can only be customized in a limited way by changing parameters (Malsane

et al., 2015). Solibri IFC-based universal design checking implementation could reduce

common design failures or deficiencies by 60 to 70% (“Automated compliance checking using

building information models,” 2010). The user can configure rules using a parametric table

structure for the requirements of code and to validate the model. SMC has its rules that are

11

based on JAVA; most of the rules are hardcoded into software, and it is difficult to specify new

types of rules and even to modify hardcoded rules. For HITOS project, the accessibility rules

have been translated into parametric table structure, where the end-user can input the parameter

values for the rules to check if the national or other code change from ISO standards. SMC, as

described above, uses not only geometry of single object, it also considers the other associated

objects and their properties. And the final reports are displayed in graphical or several

documentation file formats, which gives the results in three levels: critical, moderate, and low.

2.1.3 Design Check (Australia)

DesignCheck was developed by Australian authorities for automated building code compliance

for Australia focus on accessible design regulations (Ding, Drogemuller, Rosenman, &

Marchant, 2006). Code checking efforts by Australia involves development in two phases. The

first phase was to assess the capabilities of existing rule checking systems to find out which

would be the best one for computerization of Australian standards (Ding et al., 2006). Both

SMC and Express Data Management (EDM) were considered as possible platforms for

automated code checking. EDM was considered as the more suitable one because of its ability

to provide a publicly accessible definition language to represent building codes. After the first

stage of checking for feasible solution, Different domain-specific knowledge can be encoded

to EDM rule base and can be applied to check a building model (Mike, Automated, &

Drogemuller, 2004). ArchiCAD modelling software, which supports BIM, was used for

modelling purpose, and IFCTreeView approach in ArchiCAD allows the user to select the

element to define extended properties required by the codes (Mike et al., 2004). An internal

model has been developed, that extends the IFC model for compliance of large scope of

interoperability of architectural, structural, fire engineering and building service domains and

object-based rules have been used by EDM database for process of mapping required to

translate CAD model to the IFC2×2 model and then to DesignCheck internal model (Ding et

12

al., 2006).

A graphical approach was taken for accessibility checking, where spaces are accessible to

previously checked adjoining space are defined as accessible. The report of checked rules is

generated in text-based format and saved into XML and HTML documentation. Checking can

be made by clauses of the code or by type of object. It has the ability to check the model at

various stages in the design process, as it has a rule schema for early and detailed design stages,

as well as for specification. Because of this, it is more targeted to architects and designers rather

than just building control certifiers (Ding et al., 2006).

2.1.4 International Code Council (ICC) and General Services Administration (GSA)

Design Rule Checking (The United States)

Studies on automating code compliance by the United States authorities began around 2000.

GSA, an independent agency of the United States government (“Automated compliance

checking using building information models,” 2010), issued BIM-guidance in 2006, and from

2007 made it mandatory to have a BIM model for validation for all the projects seeking

permission for spatial planning projects. The application uses the SMC platform and Design

assessment tool for extending rules, developed by Georgia Institute of Technology. The US

court design guide (CDG) has been used for the spatial rules that have been translated into

parametric tables in SMC platform. Building model elements are mapped to graphical nodes,

where two methods have been used for checking: (1) topological graph checks for routing path

by connecting between spatial elements, and (2) the metric graph represents distances based on

human movements, and is used to know the distance between two spaces (C. Eastman, Lee,

Jeong, & Lee, 2009b). The most interesting initiative in this area is SMARTcode, which was

started in 2006 and handled by ICC, a US-based association that develops the master building

codes for residential and commercial buildings and most institutional buildings. In 2005, the

ICC board approved an investment in making automated code checking for international code

13

in conjunction with AEC3 and Digital Alchemy, which is called SMARTcodes (“AEC3

website,” 2012). SMARTcodes is a project for transforming natural language code into

computer interpretable format, and a dictionary of the properties found within the building

codes have been developed, which helps to reduce the errors in interpretation by facilitating a

search to determine only those that are relevant to topic and to deliver these exclusive of all the

other non-relevant codes (See, 2008). The dictionary is also helpful in communication between

SMARTcodes model checking system and the IFC building model (C. Eastman et al., 2009a).

SMARTcode represents the code in object properties in XML form, and this provides a

significant platform to carry mapping between IFC building model for checking. ICC allows

the end-user to check through the website, where it requires the input of building model and

details related to building location, code to be checked and model checking system. It is limited

to some pre-configured building models. The final report of checking is provided in several

formats, such as PDF, XML, RTF, XLS and HTML, and table-based summaries and graphical-

based reports are also available for analysis report (“AEC3 website,” 2012).

2.1.5 Other Applications

Apart from the above-explained applications, many researchers have developed applications

with different interpretability techniques covering different aspects of code compliance

checking. LicA is an application that performs the automatic code checking for the Portuguese

domestic water system regulation (Martins & Monteiro, 2013): it accomplishes the checking

of water network by nodes that represent flow segments (Poças Martins & Abrantes, 2010),

and the hydraulic analysis results of each node are computed and checked for the regulations.

Fall hazard protection, which comes under safety checking, building models are checked for

the safety issues related to fall from heights (Zhou, Whyte, & Sacks, 2012). This automated

software identifies the dangerous activities in project schedules and areas in the building where

hazards appear and processes protective activities to improve the existing process based on the

14

models designed by providing textual and graphical reports, and warns when guardrails are

missing, partially removed, or incomplete. The rules for safety in construction are checked

from Occupational Safety and Health Administration (OSHA) of United States Department of

Labour. Safety compliance checking for fall protection design and planning is examined in a

study by Melzner et al., the authors examined a customizable automated safety checking

platform by developing an application as an add-on to BIM software, where the regulations

from both the USA and Germany regarding fall protection have been integrated into platform.

Preventive safety equipment is designed, estimated and included in the construction schedule

before construction starts, and further visualization of safety information is developed

(Melzner, Zhang, Teizer, & Bargstädt, 2013).

Implementation of rules and regulations for building design checking is not always

straightforward because ambiguities and other imperfections found in the regulations may

hinder objective data interpretation by the computer, or because manual interpretation of design

information may be required; this reveals that a fully automated code compliance checking

process requires improved fully machine-interpretable building code (N. O. Nawari, 2012).

These kind of issues in LicA have been addressed by creating different categories for the

compliance checking results and by creating a class for checks that were performed but should

be reviewed manually (Martins & Monteiro, 2013).

2.2 Representation of building codes

As the complexity in building design and building construction processes is increasing with

new creative designs and with the use of new technologies in construction, the need for

automatic model checking is becoming more pressing with advancement in other areas of

construction. The representation of code in machine-readable format should possess enough

elasticity and expressiveness for efficient compliance checking (N. Nawari, 2012). All the

applications of code checking discussed so far, all use independent regulatory data for

15

representation of building rules either directly or via other dependent systems where

representation is hardcoded into the machine-readable format, which is subjected to manual

updates by the software developers. As observed by researchers, the representation of some

unique concepts within the code is not always well-defined (Clayton, Fudge, & Thompson,

2013). Studies made by Eastman on the classification of building codes for efficient way of

translating building code, have classified the rules into four different categories (W. Solihin &

Eastman, 2015). They are as follows: 1) Rules that require a single or small number of explicit

data, where explicit attributes and entity references that exist inside the dataset are checked; 2)

Rules that require simple derived attribute values where checks are conducted on a single value

or a simple set of derived values; 3) Rules that require extended data structure, for example,

when an extension to data structure that encapsulates higher level semantic condition of the

building data is required in this class and involves complex requirements for code checking; 4)

Rules that require a proof of solution, for example, the kind of rules that do not require the

check for compliance or non-compliance, but rather require a proof of solution. Performance-

based results are generally represented in this class where the focus is more on how the building

model proves compliance rather than just satisfying prescribed criteria.

Applicability of the rule checking system can be categorized into different code checking

categories based on the applicability of different type of code conditions (W. Solihin &

Eastman, 2015). The codes that are applicable to all buildings can be general building codes

by national, regional or municipality level of organizations. Codes that are best for the

workflow practices within design or engineering firms are the rules that are defined by the

clients’ organizations, and defined by programmatic requirements for buildings made by design

firms, such as space requirements, circulation issues, special site considerations and some that

are defined during project design and construction (C. Eastman et al., 2009b). The scope of

rules within this type fall into different categories, in general they are as follows (W. Solihin

16

& Eastman, 2015):

(1) Checking for well-formedness of building model, where rules are concerned primarily with

syntactic aspects according to the standards or required set of conditions for model views. (2).

Checking for building regulatory, where building codes are well-defined or prescriptive

building regulations. (3). Checking for client requirements, where buildings are designed for a

specific purpose like hospital or courthouse. (4). Checking for constructability and other

contractor requirements, where rules involve temporary objects or those present only during

pre-construction process. (5). Checking for safety, where there are support decisions to

eliminate the potential danger to workers during construction and maintenance staff operations.

(6). Check for warranty approvals. Post-construction issues related to warranty or the cost to

maintain. (7). Checking for BIM data completeness for handover to the facilities management

(FM). BIM data modelling for FM through the lifecycle is often not considered earlier in the

design process in most of the cases, such as the information defined by COBie and other

families of information exchange (IE) (Macit İlal & Günaydın, 2017).

2.3 Interpretation of building code

The crucial part in automated compliance checking is the first step, which is rule interpretation,

different technologies have been applied to transferring the natural language code into

machine-readable format. A visual programming language (flow-based) called “visual code

checking language (VCCL)” Cornelius et al. (2015) used to overcome the complexity and

insufficiencies of existing approaches. With visual language, users who are not familiar with

computer programming can easily approach code compliance using visual symbols that are

connected and nested to automatically generate a machine-readable building code (Kim, Lee,

Shin, & Choi, 2018). The visual language is a representation of modular system of signs and

rules using visual elements instead of textual ones where the users will have transparency and

visibility of the processing and verification and validation can be done simultaneously or

17

trailing plausibility checks (Preidel & Borrmann, 2015). The known visual programming

software applications for building design are grasshopper for Rhinoceros3D (“Rhinoceros3D.,

website,” 2018) or Dynamo for Autodesk Revit (“Autodesk Inc., website,” 2018). Conceptual

graph representation of the rules is useful for eliminating ambiguities in interpretation for

building permit, where it provides a template for analysis and breaks down the complex rules

into easily understandable atomic rules and constraints (Wawan Solihin & Eastman, 2015).

Object-Based representation of the building code has been applied by many researchers with

different scopes with respect to automated checking, examples of which are as follows: Object-

based representation of code in XML language (Tan, Hammad, & Fazio, 2010) for checking

the envelope design where building codes are grouped as decision-tables; DesignCheck (Ding

et al., 2006), which also uses object-based representation of elements properties; and, the

semantically rich object model (Malsane et al., 2015), which was developed for fire safety for

dwellings and houses using England and Wales’ building regulations with pre-checking

application for completeness of information, as well as compliance at any stage of project and

consistency check for building regulation. High-level logical rules-based mechanisms with low

sentence-centred approach according to type of object and properties for Korea building permit

(Park, Lee, Lee, Shin, & Lee, 2015), where three types of method classification have been

done: (1) Divides type of instance, (2) Type of property, (3) Content of checking. These

methods are then combined to form an intermediate pseudo-code, which will be later parsed

into computer interpretable format. KBimcode, a computer-readable script language of the

Korean building code, is carried out in steps from original code sentence, atomic sentence,

translated atomic sentence (TAS), configuration extraction from TAS, arithmetic logic unit

(ALU) and finally, expression of methods and relation, where the conditions and threshold

value to be validated have been expressed in machine-readable format by the end of these steps

(Lee, Lee, Park, & Kim, 2016).

18

Rule-based algorithms have been implemented on top of commercially-available BIM

platforms (S. Zhang et al., 2013), wherein the rules are simplified from the natural language

into computable format with different colour patterns to identify the objects, object attributes,

and prevention system are transferred into algorithms for checking. Context-free grammar

(CFG) in natural language processing and classification of morphemes can be categorized into

four types: (1) Object (noun), (2) method (verb), (3) strictness (model), and (4) others. Rules

are transferred into computer interpretable format automatically by analysing the sentence

based on above classification (Uhm et al., 2015). semantic natural language processing

techniques and express data-based techniques (J. Zhang & El-Gohary, 2017) to extract and

transfer text document automatically into semantic logic based information representation.

This system uses three main modules: (1) “a regulatory information extraction and

transformation module” which translates the building codes into logic rules using semantic

NLP algorithms, (2) “a design information extraction and transformation module” which

transforms the extracted information into logical facts using EXPRESS data processing-based

algorithms, and (3) “a compliance reasoning module” which automatically reason about the

compliance of logic facts with logic rules using semantic-based logic reasoning algorithms (J.

Zhang & El-Gohary, 2017).

2.4 Building model views

Retrieving required information from BIM model, which is the important step in automating

process. For rule execution, both rule interpretation and building model information must be

accurate, and the user should provide the BIM model with all the elements properties

information of building model for check because most of regulation compliance checking are

based on object properties in the model that can be extracted in many ways (Choi, Choi, &

Kim, 2014). The query-based extraction of information can be best suited to providing

information to support decision making processes (Lawrence, Pottinger, Staub-French, &

19

Nepal, 2014). Querying with GML (Geographical Mark-up Language) schema (Nepal, Staub-

French, Pottinger, & Webster, 2012) for location, and to check construction-specific spatial

information, provides rich representation of construction-specific information compared to

existing BIM tools, which then can be integrated in a common XML format for checking.

ifcXML schema is more helpful with XML-based interpretation of building codes for

extracting information from the models (Shih, Sher, & Giggins, 2013). Automated code

conformance checking (AC3) framework developed by Nawari et al. uses the abilities of LINQ

to XML as in-memory programming platform. Where LINQ provides query experience across

different data model, the ability to add more data models within query and flexibility of

encoding unlimited rage of rules increases the interest in interoperability potential of XML (O.

Nawari & Email, 2011).

Object-based building model representation (Yang & Xu, 2004) examines the issues of object-

based representation of code provisions Industrial Foundation class (IFC) with classified rules

based on the object-based rule representation classes with their encapsulated attributes and

methods. Semantic object model developed on IFC methodology with additional entities/types

and reach set of IFC properties can meet the requirements to comply with code. Element view

representation of the building code will help in understanding the impact of building code

clauses on individual building objects and this is an easy way to maintain the relation between

building objects and their related regulations (Malsane et al., 2015).

Semantic technology approach provides building information in a widely interoperable format

based on logic theory (Hjelseth & Nisbet, 2010), i.e., graphical and several rule languages that

are available in semantic web domain to express logic into rules. Where direct deployment of

a declarative implementation can be done, the rule languages enable for better definition of

building regulations and standards with little need to write procedural code. The ontological

aspect is challenging when extracting the information because it is difficult to establish a

20

naming convention for wide use compared with linguistic approach (J. Dimyadi, Solihin, &

Hjelseth, 2016). The key aspects for successful implementation of intelligent applications

through BIM and ontology technology are as follows (Chen & Luo, 2017): (1) ontologies

developed should be in accordance with specific domains and ensure accuracy and

completeness of information; (2) ontological representation of heterogeneous data included

should be accurately described; (3) a standardized and reliable approach of establishing and

implementing SWRL rules. Web Ontology Language (OWL) ontology for IFC (ifcOWL)

allows the user to efficiently model and manage distributed data even with poorly modelled

inter-document references in IFC, because via OWL one can use general-purpose reasoning

tools without developing specific system for each data model (Ebrahimipour & Yacout, 2015).

The representation of well-established IFC data for construction data, where the notion of data

type is different from EXPRESS and OWL data types, the standard ifcOWL ontology from the

EXPRESS schema of IFC for usable and recommendable ifcOWL ontology through the

industry it should remain in OWL2 DL, and should match the original EXPRESS schema and

should be used primarily to allow IFC file conversions into RDF graphs. The OWL class

expressions are used to improve robustness of ifcOWL representation for better integrity,

consistency and applicability (Terkaj & Šojić, 2015).

2.5 Compliance checking algorithms and reporting

Extensive studies have been made in the field of automated code compliance checking by many

researchers around the world, and it started with the logical organization of rules and

regulations by Fenves et al. (1987), followed by the structuring of regulations in decision tables.

Later, with the emergence of building information modelling, complete automation of building

code checking seems achievable. Various technologies in automating code compliance

checking process using BIM technology have been summarised in below Table 1. The rule

interpretation process is the most critical stage in the field of automated code compliance,

21

where various technologies have been investigated and employed. Even with so many

technologies available, there is no standardized method for translating the complete building

rules and regulations into computer-readable format. BIM model preparation being the second

step, where the building models will be developed with BIM technology-enabled software tools

with certain level of details. The code compliance checking process can be made more efficient

by defining the required level of details (LOD) to which building models should be developed.

With many technologies in use for automating the checking process, there should be a

standardized technology for the efficient and comprehensive translation of rules and

regulations, and checking applications should be designed in such a way that updates or

changes, in accordance with updates to building codes and bylaws, are easy to accomplish.

Until now, even after the development of so many applications for automated code compliance

checking, there is no single application that is consistent and efficient in completing the

compliance checking process.

22

Table 1. Summary of Typical Literature on BIM-based Design Checking

Article

Checking
Platform

Focus

Research Theme
Code

representatio
n

MVD Checking
algorithms

Khemlani
2005

FORNAX Rules in Building
plans and services

(Singapore)

Computer code IFC based
(FORNAX)

Object-based
approach

Preidel and
Borrmann

2015

CodeBuilder
plugin

German fire code

VCCL (visual
code checking

language)

VCCL
graph

Flow-based
visual

Language

Pauwels et
al. 2011

Semantic
web

Acoustic
Performance

Checking
Occupational

circulation rules

Semantic rule
language

N3Logic
rules

Semantic Web
Ontology
language

Martins &
Monteiro,

2013

LicA Portuguese
Domestic Water

system

XML-based
parametric

tables

IFC based Structured
Query

Language

Sjøgren
2007

SMC
(Solibri
model

checker)

Norway’s Building
accessibility rules

Parametric
tables

IFC based
with adding
geometric

data

Object-based
parameters
checking

Zhang et al.
2013

Rule
checking
Process

OSHA Fall
protection and

safety

Parametric
tables

Object-
based

parametric
model

Object-based
and logic
approach

See 2008 DA’s
SMART
codes for

SMC, AEC3
XABIO

United States: ICC
Building code

SMART
builder

IFC based RASE

Ding et al.
2006

EDM Australian Design
checking for

disabled access
code.

Rule-based
language

IFC based
using

internal
model

schema.

Object-based
approach

using
ExpressX
language

Tan et al.
2010

Rule Engine Building Envelope
(Canada)

XML based
decision tables

EBIM,
XML based

model

Decision table

Lee et al.
2015

KBIMLogic
program

Korean Building
code

Parametric
table

Object
based

parametric
model

Logic-based
query

23

CHAPTER 3. RESEARCH METHODOLOGY

This research is to automate the building permit approval based on BIM-based design checking.

This chapter illustrates the proposed method in detail and offers a clear explanation of the

development of the prototype software application.

3.1 Overview

Figure 3.1 shows the overview of the process of automated design checking of building code

and municipal bylaws for residential buildings. The outlook of this process involves the input

of building design data from BIM models, which are designed in accordance with building

codes and municipal bylaws and involves the mechanism of developing code checking

functions and BIM model preparation in Revit software and the output of the process is the

final report regarding the compliance checking. This process is then divided into four main

steps: (1) Rule translation, which is the interpreting of natural language building rules into

computer interpretable format; (2) BIM model preparation, which involves the designing of the

building model in Autodesk Revit software and creating model views for extracting the

information from that model; (3) Rule checking, which involves the checking of the designed

model with the encoded rules; and (4) Checking report, which is where the compliance check

result is obtained.

24

Rule Translation

BIM model
Preparation

Rule checking

Checking report

Computer interpretable
format

Building code
(framing and
Zoning rules)

Object based rule
classification

LOD (Level of
Details)

Building Design

Check Results

Function
Building code
Compliance

Output
Compliance Report

Control
Building code s and
Municipal bylaw s

Input
Building Design data

From BIM model

Mechanism
-Code checking functions
-BIM modeling software

Visual C# Express
Visual studio 2015

Autodesk
Revit 2017

Computer code

BIM model views

Dcheck Platform

Text format

A

A0

A1

A2

A3

Rule Assessment
Reporting

Figure 3. 1. Overview of Proposed Methodology.

3.1.1 Rule Translation

Computer-readable representations of the context and content of the building code related to

wall framing and bylaws related to zoning conditions for residential buildings are developed

given that the variables δss, δlot, δBC, δTH and δSB are stud spacing, lot dimension, building cover

area, total height of building, and minimum setback distances, respectively. The building

regulation conditions δss, δlot, δBC, δTH and δSB are represented in logical form as shown in the

equations (1), (2), (3), (4), and (5) below for translating the building regulations conditions into

C# programming language. If the equations return a value of 1 then the respective regulation

has failed to satisfy the condition, else regulation will be in accordance with building codes

and bylaws. Each regulation has a different level of complexity depending on the variables i, j

and k as shown in equations (1, 2, 3, 4, and 5) for translating them into computer-readable

format and depending on the accessibility of the required information from the BIM model for

satisfying the conditions δss, δlot, δBC, δTH and δSB. Building rules must be translated into

computer-readable format with semantically rich and object-oriented information that

25

understands the domain knowledge of building characteristics for comprehensive automated

checking process. In this study, object-oriented programming language (i.e., C#) is used for

compliance checking because of the flexibility and consistency this language offers with

respect to encoding building rules related to wall framing (SSbc – maximum studs spacing) and

municipal bylaws related to different zones (Lbylaw – minimum lot dimensions, BCbylaw –

building coverage area, THbylaw – maximum building height, and SBbylaw – set back distances)

and accessing BIM model information for checking (LBIM - lot dimensions, BCBIM - building

coverage area, THBIM - building height, SBBIM - set back distances and SSBIM - studs spacing).

Rules are classified into three types: easy, intermediate, and difficult based on the complexity

in variables i, j and k to interpret and retrieving information from BIM model (LBIM, BCBIM,

THBIM, SBBIM and SSBIM). Building rules (Lbylaw, BCbylaw, THbylaw, SBbylaw and SSbc) are

represented based on the building objects, so that it will be convenient to know which

information needs to be extracted from the building model required for compliance. As shown

in Figure 3.1, Rule Translation is the first step in the automation process, where regulations

associated with framing SSbc from the 2014 Alberta Building Code, and zoning regulations

Lbylaw, BCbylaw, THbylaw, and SBbylaw from Edmonton Municipal Zoning bylaws are taken as input

in human-readable natural language format. These regulations Lbylaw, BCbylaw, THbylaw, SBbylaw

and SSbc from the building code and bylaws are then represented based on building objects as

shown in Table 5, where the regulations have been represented in detail based on building

objects attributes (LAbylaw – lot area, LDbylaw – lot depth, LWbylaw – lot width, PBbylaw – building

area, ABbylaw – accessory building area, FSBbylaw – front set back, SSBbylaw – side set back, and

so on) with conditions and threshold values for Lbylaw, BCbylaw, THbylaw, SBbylaw and SSbc to be

satisfied with operator. These rules are translated into computable functions like

CheckLaneAbutting, CheckSetBack, CheckWallsstudSpacing and so on, with all the conditions

to be satisfied being encoded into these functions. Threshold values of all rules are defined

26

separately, so that if required, can be easily changed to accomplish automated checking for

different jurisdictional bylaws. Even users with basic coding background can easily access this

and make changes if required. Below is an example of some predefined threshold values related

to Edmonton zoning bylaws that are used in the prototype software application for checking:

public partial class CheckingForm : Form
 {
 #region Properties

 private const double SingleDetached_MinSiteArea = 250.8;
 private const double SingleDetached_MinSiteWidth = 7.6;
 private const double SingleDetached_MinSiteDepth = 30;
 private const double Duplex_MinSiteArea = 300;
 private const double Duplix_MinSiteWidth = 10;
 private const double Duplix_MinSiteDepth = 30;
 private const double semiDetached_MinSiteArea = 488.4;
 private const double semiDetached_MinSiteWidth = 14.8;
 private const double semiDetached_MinSiteDepth = 30;
 private const double MaxBuildingHeight = 10;

 #endregion

 }

In Edmonton city there are ten different zones (Zbylaw), that are Single Detached Residential

Zone (RF1), Residential small Lot Zone (RSL), Low Density Infill Zone (RF2), Planned Lot

Residential Zone (RPL), Small Scale Infill Development Zone (RF3), Semi-detached

Residential Zone (RF4), Residential Mixed Dwelling Zone (RMD), Row Housing Zone, Urban

Character Row Housing Zone (UCRH), Medium Density Multiple Family Zone (RF6). All the

residential houses built in these zones are classified into single-detached housing (sdh), semi-

detached housing (ssh), duplex housing (dh), limited group homes (lgh), garden suite (gs),

secondary suites (ss), and minor home-based business (mhb).

Logical equations for the building regulations δss, δlot, δBC, δTH and δSB are:

Check for lot dimensions:

27

 

 

,

9 7

RF1, RF2, RPL, RF3, RF4, RMD, Row housin g zone, UCHR, RF6

sdh, ssh, dh, lgh, gs , ss , mhb

for i 1 . . .9
 for j 1 . . .7
M [_]

RF1 RF1
, A =

RF6 RF6

bylaw

bylaw

i j

bylaw X

sdh mhb

sdh mhb

i Z

j HT

A
i j

L M A

where

= =

= =



= 



 =






(,)

(,)

get the user inputs :

1 ()
 (,)

1 ()

1 i f
 Equat io

0 otherwise

bylaw

bylawi
bylaw i j

j bylaw

bylaw i j BIM
lot

LA
Z i

f ind A i j L LD
HT j

LW

L L





 
 



 
  =  → → =  =  
  


= 






n (1)

:

 Differnt types of res ident ial zones pre sent in Edmonton ci ty.

 Differnt types of res ident ial bui ldings .

 Check for the fai lure of lot dimensions .

bylaw

bylaw

lot

Where

Z

HT



=

=

=

28

 Lot dimensions informat ion from bylaws data, i .e. Lot Area,

 = Lot Depth,

bylaw BIM

bylaw BIM

bylaw BIM
bylaw BIM

bylaw

bylaw

bylaw b

LA LA

L LD L LD

LW LW

L LA

LD LW

   
   
   = =
   
   
      

= =

 Lot Width.

Lot dimensions informat ion from BIM model. Lot Area,

 = Lot Depth, Lot Width.

ylaw

BIM

BIM

BIM BIM

L LA

LD LW

=

= =

=

Check for building coverage area:

 

 

RF1, RF2, RPL, RF3, RF4, RMD, Row housin g zone, UCHR, RF6

sdh, ssh, dh, lgh, gs , ss , mhb

[Area<300sqm, Area<600sqm, Area 600sqm]

for i 1. . .9
 for j 1 . . .7
 for k 1. . .3

bylaw

bylaw

i Z

j HT

k LA

A

= =

= =

= = 





= 

,

9 7 3

 M [_]

MM M

RF1 RF1
, A =

RF6 RF6

i j

k

bylaw X X

sdh mhb

sdh mhb

i j

BC M A

where





 =

29

(, ,)

(, ,)

get the user inputs and BIM data:

1 ()

1 () (, ,)

1 (k)

1 i f

0 otherwise

i bylaw

j bylaw i j k bylaw

BIM bylaw

bylaw i j k BIM
BC

Z i PB

HT j f ind A i j k BC AB

LA PG

BC BC


  =
 

= → → =  
 

=    


= 






 Equat ion (2)

where:

 Differnt types of resident ial zones pre sent in Edmonton ci ty.

 Differnt types of resident ial bui ldings .

 check for fai lure of bui lding coverage percentage.

 Lot Area,

bylaw

bylaw

BC

bylaw

Z

HT

LA

BC



=

=

=

=

=

 Bui lding coverage area in accordence wi th Edmonton ci ty bylaws.

bylaw BIM

bylaw BIM BIM

BIMbylaw

bylaw

PB PB
AB BC AB

PGPG

BC

   
   

=   
   

   

=

 Bui lding coverage area information from BIM model.

 Principal bui lding area percentage from bylaws.

Accessory bui lding area percentage from bylaws.

 Principal bui lding at ta

BIM

bylaw

bylaw

bylaw

BC

PB

AB

PG

=

=

=

= ched with garage area from bylaws.

30

 Principal bui lding area percentage comp ared with lot dimension

 information from BIM model.

= Accessory bui lding area percentage com pared with lot dimension

 informati

BIM

BIM

PB

AB

=

on from BIM model.

Principal bui lding at tached with garage area percentage compared

 wi th lot dimension informati on from BIM model.

BIMPG =

Check for building height:

 

 

1 1

,

RF1, RF2, RPL, RF3, RF4, RMD, Row housin g zone, UCHR, RF6

sdh, ssh, dh, lgh, gs , ss , mhb

[,]

for i 1. . .9
 for j 1. . .7
 for k 1. . .2
 M [_]

MM M

bylaw

bylaw

type type

i j

k

i Z

j HT

k R Roof Roof

A
i j

= =

= =

= =





= 





9 7 2

RF1 RF1
, A =

RF6 RF6

bylaw X X

sdh mhb

sdh mhb

BC M A

where

 =

31

(, ,)

(, ,)

get the user inputs and BIM data:

1 ()

1 () (, ,)

1 (k)

1 i f
 Equat ion (3)

0 otherwise

i

j bylaw i j k

BIM

bylaw i j k BIM
SC

Z i

HT j f ind A i j k TH

R

TH TH


 =


= → →


=


= 






1 1

where:

 = Check for fai lure of bui lding height .

R= Roof types, {Flat , S loped}. {Gable, H ip, Mansard, Gambrel, Flat}

SC

type typeRoof Roof



 

 Roof type from BIM model.

BH Building height permit ted.

 Total height of bui lding informat ion fr om BIM model.

 Total height of bui lding permit ted in a ccordance with bylaws.

BIM

bylaw

BIM

bylaw

byla

R

TH

TH

Z

=

=

=

=

 Differnt types of resident ial zones pre sent in Edmonton ci ty.

 Differnt types of resident ial bui ldings .

w

bylawHT

=

=

Check for setback distance:

 

 

1 2 3

RF1, RF2, RPL, RF3, RF4, RMD, Row housin g zone, UCHR, RF6

sdh, ssh, dh, lgh, gs , ss , mhb

[,C ,C]

bylaw

bylaw

i Z

j HT

k C C

= =

= =

= =

32

,

9 7 3

for i 1 . . .9
 for j 1 . . .7
 for k 1. . .3
 M [_]

MM M

RF1 RF1
, A =

RF6 RF6

get the user inputs and BIM data:

1 ()

1 ()

1 (k

i j

k

bylaw X X

sdh mhb

sdh mhb

i

j

k

A
i j

BC M A

where

Z i

HT j

C





= 





 =

=

=

=







(, ,)

.

.

 (, ,) SB

)

1 i f ()

1 i f () Equat ion (4)

0 otherwise

bylaw i j k

Min

bylaw BIM

Max

SB bylaw BIM

f ind A i j k

SB SB

SB SB




→ →



 



= 




1

2

3

Where:

 Check for fai lure of setback dis tances of bui ldings.

 different bui lding condi t ions, C {Corner s i te},

 C {Corner s i te, Attached garage},

C {Corner s i te, Attached garage, Bui lding

SB

C

 =

= 



 faces flankside}

33

. .

. . . .

. .

.

 Minimum

Min Max

bylaw bylaw
BIM

Min Min Max Max

bylaw bylaw bylaw bylaw BIM BIM

Min Max
BIM

bylaw bylaw

Min

bylaw

FSB FSB FSB
SB SSB SB SSB SB SSB

RSBRSB RSB

SB

   
    
    

= = =     
    
    

   

=

.

setback dis tance permit ted according to bylaws.

 Maximum setback dis tance permit ted acco rding to bylaws.

 Setback dis tances information from BIM model.

 Front setback dis tance

Max

bylaw

BIM

bylaw

SB

SB

FSB

=

=

= (minimm and maximum).

 Side setback dis tances (minimm and maxi mum).

 Rear setback dis tance (minimm and maxim um).

 Front setback infromation from BIM mode l.

 Side setb

bylaw

bylaw

bylaw

bylaw

SSB

RSB

FSB

SSB

=

=

=

= ack information from BIM model.

 Rear setback information from BIM model .bylawRSB =

Check for stud spacing:

1 2 3 4 5 6

[2x2, 2x4, 2x6,mxn]

[,C ,C , ,C ,C]

[interior, exterior]

size

c

wall

i S

j S C C

k T

= =

= =

= =

34

1 6

1 6

,

6 2

for i 1. . .
 for j 1 . . .6
 for k 1. .2
 M [_]

MM M

2x2 2x2

, A =
mxn mxn

get the s tud, load and wall type detai ls from BIM model:

1

i j

k

bylaw nX X

C C

C C

size

n

A
i j

BC M A

where

S





= 





 =

=

(, ,)

()

1 (j) (, ,) SS

1 (k)

1 i f ()
 Equat ion (5)

0 otherwise

c bylaw i j k

wall

bc BIM
SS

i

S f ind A i j k

T

SS SS





= → →


=


= 






1 2

3

4

Attic not accessible by a stairway},

Att ic Accessible by a stairway plus one/

 {no load}, {

{

{roof loa

two floor, roof load plus one floor}

Att ic not accessible by a stairway,

d,

 At

t i

C C

C

C

= =

=

=

c not accessible by a stairway plus one floor}

Where:

 s tud dimensions.

 wall support condit ions.

size

c

S

S

=

=

35

5

6

Attic accessible by a s tairway plus two floors, Roof load plus two floors}

Att ic accessible by a s tairway plus 3 fl oors Roof load plus two f

{

{ ,

 wall type.

 Check

loors}

 for fai lure of s tu

wall

SS

C

C

T



=

=

=

= d spacing.

SS maximum stud spacing according to bui lding code.

 s tud spacing det ials from BIM model.

bylaw

BIMSS

=

=

3.1.2 BIM model preparation

The BIM model can be defined as a digital representation of physical characteristics like

architectural designs or construction drawings, and functional characteristics like structural

analysis, energy analysis, or a myriad of other simulations with semantically rich information

(Chuck Eastman, 2009), which has been a revolutionary technology in the AEC industry.

Designing an enriched BIM model in Revit is the primary requirement, where the object-based

information modelling would contain the required level of detail for comprehensive automated

code compliance. Building objects modelled in any BIM-enabled software will have parametric

data and properties. For example, a wood stud member in the model will possess types and

properties like dimensions (length, width, depth), material properties, location of element

member (XYZ coordinates), and so on. Because of this, the models developed for code

compliance must be accurate with certain details provided for all the objects modelled. For this

automated design checking, the building model can be developed with level of details (LOD)

above 300, and in this case, the BIM model will contain the required details of building objects

with quantity, size, location, and systematic relationships of object with related to other

building elements. After developing the BIM model with the level of details above 300, the

required information LBIM, BCBIM, THBIM, SBBIM and SSBIM from the model for code compliance

36

checking can be extracted without much need to build the extended data structure to derive

information and get information from users as inputs. Revit provides a way to define and export

extensible and interoperable BIM model data with use of Revit’s API (application program

interface). The API provides information about building objects designed in the model, by

using appropriate API information related to LBIM, BCBIM, THBIM, SBBIM and SSBIM, objects can

be extracted. The structure of APIs for exchanging information is object-based, where the

geometry and properties of objects, such as name, size, location, finishes, faces, and abstract

information like cost, quantities, and so on can be accessed. C# language in Visual Studio

Express 2015 has be used to build the data structure platform called DCheck for exchanging

information for compliance checking, and is used for extracting to LBIM, BCBIM, THBIM, SBBIM

and SSBIM information from the BIM model. As such, for getting details about “property line”

to check for lot dimensions, “PropertyLine” is filtered from the BIM document, storing all the

BIM model information about this in a list and accessing necessary information when required.

FilteredElementCollector(_doc).OfClass(typeof(PropertyLine)).ToElements().ToList().

Some of the properties can be accessed easily with a single command, like for getting the area

of “property line” by using propertyLine.get_BoundingBox(_doc.ActiveView). Some

information like building area compared with lot area in percentage must be derived where we

cannot access the required details directly. DCheck platform has the data structure for checking

building rules and regulations related to wall framing and zoning bylaws mentioned in Table

4.

3.1.3 Rule Checking

The main fundamental aspect of automated compliance checking is the exchange of

information from BIM model with the database platform. However, the building information

present in the BIM model itself is not adequate for compliance checking. This is because some

of the rules to be satisfied, such as check for stud maximum spacing, minimum setback

37

distances, building coverage area, and so on, require building details that cannot be directly

accessed from the BIM model. In this case, we would require higher level semantics of building

elements that can be derived from BIM model developed with LOD more than 300. In the case

for automated framing and zoning bylaw checking, these are provided by the DCheck platform.

With object-based building information extraction, the geometric topology and functional

information of objects, such as faces of building components, vertices, edges, location, and

some derived information that are required for compliance checking are retrieved by this

DCheck system. Mapping between the BIM model and building rules will be done in DCheck

platform in this step, as shown in Figure 3.1. DCheck platform has been developed to support

and to get extended information about objects, and this platform is designed to be extendable

for customization to deal with different conditions, and for updates of regulations. An example

of how DCheck functions are utilized in rules conformance verification are described here with

site coverage area, that is, the percentage of area of the site that is covered by the building at

ground level. A DCheck class GetMaxCoverage is invoked for the facility to check for site

coverage area, which includes various methods to perform checking with different conditions.

Some of the methods used are buildingCoverage, which retrieves the building coverage area;

and Total_Site_Coverage, which retrieves the total site coverage area. Every time the user runs

checking process, DCheck platform will access BIM model data and compute threshold values

retrieved from the model with building regulation values according to rules.

3.1.4 Checking Report

The final step of the automated compliance checking process is providing the user with a final

compliance checking report by notifying where checking results are a success or failure, and

giving suggestions for failed regulation with a reason for failure. This report is displayed for

the user in textual format, and those building objects related to the rules which they have failed

to satisfy will be highlighted in the model, which helps to spot those objects and make

38

corrections. The checking process can be run at any time during the design by the user, so it is

easy for the architects or the draftspersons to check models in a parallel manner while

designing, which helps make the approval process for construction easy and more efficient.

3.2 Prototype Development

The automated building design checking is implemented as an add-on software application for

the Autodesk Revit software, developed in C# language using Revit API’s for retrieving LBIM,

BCBIM, THBIM, SBBIM and SSBIM information from the BIM model. Autodesk Revit is a powerful

modelling tool and is open source, which allows the user to develop extension applications if

required to perform more advanced operations. Figure 3.2 shows the architecture of the

prototyped Revit-based automated design checking software application. The inputs for the

system include: (1) building design of the project and BIM model of the building intended to

be constructed containing the architectural and structural framing information modelled with

a certain level of details; (2) the project applicant information, regarding the applicant,

architect and builder information, and (3) zoning and framing information, regarding site

location, plot number, type of wood used for framing and so on. Criteria for this project are as

follows: (1) building code, in this case Alberta Building Code 2014 Part 9, housing and small

buildings, containing regulations related to framing of residential building; (2) municipal

bylaws, Edmonton zoning bylaws, containing regulations related to different types of zones

and residential building, and (3) Level of details (LOD), development of model with LOD

above 300 will serve the required purpose for automation of building rules checking in this

prototype.

The core processor of this prototype as shown in Figure 3.2 has main components: (1) object-

based representation of building code and model, where building rules are represented based

on the building objects so that required information from building model related to particular

39

building object can be known clearly for extracting information; (2) BIM model view

definition, where required model views information from BIM data for compliance checking

will be extracted; (3) BIM model extension, where some information from the BIM model

needs to be derived which cannot be accessed directly so DCheck extended data structure

platform will provide those values; and (4) code compliance with model, where extracted

information from model will be checked against the already-encoded building rules. These

four components are compiled into Autodesk Revit as an add-on through using C# language.

The object-oriented data of BIM model, in which building objects will have enriched

properties from which geometrical, topology, functional information of building objects can

be extracted efficiently. For compliance checking, data from BIM model will be extracted in

accordance with objects attribute values, which may be material type, geometric placement

reference to object or x, y, z point locations. The output of this process involves displaying of

final checking result in textual format informing whether compliance checking is successful

or has failed, and if failed, displaying the failed rules with suggestions to correct those failed

rules and objects related to those rules can be visually represented by automatically

highlighting the objects related to failed rules.

Input Criteria
Processor

Revit Application Programming interface (API)

Building rules Compliance with model

Output

Check Result Suggestions for
failed rule

Visual represe
-ntation of error

Building codes

Municipal Bylaws

BIM model
Level of details

Zoning and framing
information

Project applicant
information

Building Design

Object model view Properties

- BuildingComponents
 -Name

-ID
 -Type

 -location

 -Geometry

BIM data

-Wall
-Framing
 -Studs

 -GetSpacing
 -stud height
 -King stud
 -Jack stud
 -Corner stud

Autodesk Revit

40

Figure 3. 2. System Architecture.

All the building rules are classified into three different types based on the complexity in

interpreting natural language rules into machine-readable format and extraction of information

from BIM model for compliance. These three types are as follows:

(1) Rules that are classified as easy to translate and where the information required can be

directly extracted from model. These are rules which can be translated from natural human-

readable language into C# easily, for example “In Single Detached Residential Zone (RF1),

types of houses that are allowed to be constructed are single detached housing, secondary

suites, semi-detached housing, duplex housing”. This kind of rules can be translated to C# with

simple functional conditions. And the information required for checking related to this kind of

rules, i.e., types of zone and house, can be directly accessed from the BIM model, where in

this case the user will be providing that information related to types of zones and houses before

checking.

(2) Rules that are classified as difficult to translate and where the information required needs

to be derived. The complexity level of translating these rules into C# language and getting that

information from BIM model involves introducing some new attribute values for defining

some properties of building objects for compliance. For example, “In corner site where the

building faces the front lot line or the side lot line, the minimum side setback abutting the

flanking side lot line shall be 20% of the site width, to maximum of 4.5 m.”. In these kinds of

rules, it is bit difficult to translate to C#. First, it has to satisfy several conditions to check for

threshold value related to side setback distance. And then, to get this required information

from the BIM model, some new attributes should be used for deriving side setback distance

for checking because we cannot access required values directly by using APIs.

(3) Rules that are classified as needing to be simplified in order to translate them, and where

41

the information required needs extended data structure. Some rules need clear understanding

depending on the building design and specifications, and some rules need the building model

to be analyzed to get the required value to be checked, and the information required from the

BIM model will be extracted using extended data structure. For example, “A secondary suite

shall be developed in such a manner that the exterior of the principal building containing the

secondary suite shall appear as a single dwelling”. In this case, the characteristics of the single

dwelling in exterior appearance have to be considered, and checking the model against this

kind of rule requires that all the characteristics of single dwellings to be encoded in checking

platform.

3.2.1 Edmonton zoning bylaw checking

Automation of building rules compliance checking process will make the construction permit

approval process easier and help get the construction process started sooner. With the

automation of compliance checking process and the effective use of the application by both

designer and approval authorities, there will not be any delays in approval of drawings for

construction. Before construction of any houses in the city of Edmonton, the design drawings

have to be checked by the authorities responsible for approval for construction in accordance

with Edmonton Zoning Bylaws. In this study, we are automating the regulations related to lot

checking for different types of houses constructed in different zones. The implementation

process is explained here with some of the rules included in this study. According to Edmonton

city bylaws, principal and accessory buildings can be constructed inside the boundaries of the

site, which will have minimum offsets from building or facilities that exist in site. The

boundary of site is known as property line. The details related to the building are designed

with certain level of details by architects in Autodesk Revit and the information relating to lot

shape, site characteristics, building design and specifications of building that are required to

be submitted for approval for construction, has to be modelled and the user should provide

42

initial inputs regarding zoning and housing type. This is same information the user used to

have to provide with submission of 2D drawings. In the city of Edmonton, there are ten

different zones: Single Detached Residential Zone (RF1), Residential small Lot Zone (RSL),

Low Density Infill Zone (RF2), Planned Lot Residential Zone (RPL), Small Scale Infill

Development Zone (RF3), Semi-detached Residential Zone (RF4), Residential Mixed

Dwelling Zone (RMD), Row Housing Zone, Urban Character Row Housing Zone (UCRH),

Medium Density Multiple Family Zone (RF6). All the residential houses built in these zones

are classified into single-detached housing, semi-detached housing, duplex housing, limited

group homes, garden suite, secondary suites, and minor home-based business. Depending on

the different type of zone, there are different conditions to be satisfied for building a specific

permitted type of house, as shown in Figure 3.3 below, which also gives details about the

minimum setback distances that should be provided depending on zone type, dwelling type

and built with or without attached garage or just principal dwelling. Below is an example of

type 1 rules, where the information required for checking for those building rules can be easily

obtained from BIM model.

“If it is Single Detached Housing: Minimum site/ Lot Dimensions should be, Area: 250.8 m2.
Width: 7.6 m2. Depth: 30 m2 ”

43

Figure 3. 3. Illustration of Setback Distances Requirements for RE1 Zone (Adopted from
City of Edmonton Website)

The generalized flow chart of the checking process for the lot dimensions is shown in Figure

3.4, which checks with specified zone and house type based on data given by the user. Each

type of house has different lot dimension properties conditions to be satisfied in different

zones. Based on user inputs, threshold values related to minimum area of lot (Alot), minimum

width of lot (Wlot), and minimum depth of lot (Dlot) to be checked are chosen from the

municipal bylaw data, which are the threshold values that can be easily changed if required

for checking different jurisdictions’ regulations. Those values are then checked against

designed building model lot dimensions. And if the designed model failed to satisfy any of the

rules, then that particular rule which failed to be satisfied will be displayed after the complete

check for all the rules encoded in the add-on software application is done. Results will be in

text format, where the building object related to that failure will be highlighted and reasons

for the failure with suggestions to correct for that error will be displayed, and from there the

user can easily identify and make changes as required and run the checking add-on software

application again to see if the design is successfully checked without any errors.

44

Start

Select House Type

Check for Min. setback
Distances for houses.

End

Municipal Bylaws data

Is Lot Area > Alot sq.m

Is Lot Width > Wlot m.

Is Lot Depth > Dlot m.

Select Zone Type

Suggestion for
correcting errors

Determine Height of the
building.

No

No

No

Figure 3. 4. Flow Chart for checking Lot Dimensions.

With representation of the building rules in logical form, it will be more convenient for

understanding rules for better interpretation. First order logic (FOL) is also known as

predicate logic, which uses quantified variables over non-logical objects and allows the use

of sentences that contain variables. FOL is also is a symbolized reasoning in which each

sentence is broken down into a subject and predicate. That predicate will define the

properties of subject. In first-order logic (FOL), the above rule for lot dimension checking

can be expressed as:

45

where

a ∈ {RF1, RSL, RF2, RPL, RF3, RF4, RMD, Row Housing Zone, UCRH, RF6}

b ∈ {Single Detached Housing, Semi-Detached Housing, Duplex Housing, Limited group

homes, Garden suite, Secondary suites, Miner Home Based Business}

Alot = Lot Area.

Wlot = Lot Width.

Dlot = Lot Depth.

Hhouse = height of house.

As the first-order logic equation represents checking for lot dimensions for all the zones and

house, only some house types can be built in a particular zone, and depending on that, the check

for house minimum lot area, width and depth is made. If the regulation may be represented in

FOL, then it will be easy for interpreting into machine-readable format by referring to it. These

types of rules can be easily coded into C# and the information required can be extracted directly

from BIM model by using simple Revit API commands. The property line is required to get

details related to area, width and depth of site, and can be accessed by knowing the boundary

details like propertyLine.get_BoundingBox(_doc.ActiveView).

Figure 3.5 shows the lot dimensions checking for different type of houses based on Edmonton

municipal zoning bylaws with specific threshold values to be checked for successful lot

dimensions compliance.

∀𝑎∀b(Zone(𝑎) ⋀ House(b) ⋀ Type(b, a))

∧ ∃b((House(b)⋀Check(b, Alot)⋀(House (b)⋀Check(b, Wlot)⋀(House (b)⋀Check(b,
Dlot))

∧ ∀b((House(b)⋀Check(b, Hhouse))

46

Start

Is it Rf1

Municipal Bylaws

Look for different Zone type

Single Detached
Housing

Semi-Detached
Housing

Duplex Housing

Is Lot Area > 250.8
sq.m.

Is Lot width > 7.6
 sq. m.

Is Lot Depth > 30
Sq. m.

Is Lot Area > 488.4
sq.m.

Is Lot width > 14.8
 sq. m.

Is Lot Depth > 30
Sq. m.

Is Lot Depth > 30
Sq. m.

Is Lot Area > 300
sq.m.

Is Lot width > 10
 sq. m.

Select Zone type

No

Yes

Max. height of house

<10m.

No

Yes

Yes

Yes

Yes

No

No

Is it corner site/abutting
service road

Select House type

Check for Min. setback (Front,
Rear, Side, and in different

 conditions

No

No

No

No

No

No

No

No

No

No

Suggestion for
correcting errors

No

Yes

End

Figure 3. 5. Flow Chart for Checking Lot Dimensions of Different Types of Houses.

Figure 3.6 shows the checking flow chart for checking percentage of lot area to be covered by

the house at ground level. This type of rule can be an example for type 2 rule classification,

where it will be a bit difficult to code this rule into C#, and where the information required for

satisfying the conditions required has to be derived, i.e., the value to be checked cannot be

directly obtained from BIM model as in type 1 classification. Below is the table representing

site coverage rules with respect to specific housing type and area to be satisfied according to

City of Edmonton bylaws.

47

Table 2. Maximum Site Coverage with Respect to Specific Housing Type and Area.

 Principal
Dwelling/Building

Accessory building Principal Building
with Attached
Garage

Single Detached
Housing – Site area
greater than 300 m2

28% 12% 40%

Single Detached
Housing – Site area
less than 300 m2

28% 14% 42%

Duplex Housing 28% 12% 40%

Semi-detached
Housing- Site area
600 m2 or greater

28% 12% 40%

Semi-detached
Housing- Site area
less than 600 m2

28% 14% 42%

All other Uses 28% 12% 40%

As shown in Table 3, depending on site area, house type, and whether the garage is attached or

not, the percent of area the house should cover on the site has to be checked. The house area

can be obtained by getting dimensional measurements of foundation walls by grouping them

all, and the area of the site can be obtained directly from BIM model, and getting the percentage

of area covered depends on the user-specified house type and comparing the BIM model value

with values in the above table.

48

Start

Select Type of Dwelling

Check for Maximum
coverage of site Values

End

Municipal Bylaws data for
Max. site coverage

Is it Principal dwelling.
Max. coverage X%

Is it Accessory Building.
Max. coverage Y%

Is it Accessory Building with
Attached garage.
Max. coverage Z%

Select Type of house

Suggestion for
correcting errors

Determine site area s for
selected house

No

No

No

Figure 3. 6. Flow Chart for Checking House Area.

In first-order logic (FOL), the above rules for checking house area are shown as:

where

a ∈ {Single Detached Housing, Semi-Detached Housing, Duplex Housing, Limited group

homes, Garden suite, Secondary suites, Miner Home Based Business}

∀𝑎∀b(House(𝑎) ⋀ DwellingType(b) ⋀ Type(b, a))

∧ ∃b((DwellingType(b)⋀Check (b, Ahouse)⋁(DwellingType(b)⋀Check (b, Aaccessory)⋁

(DwellingType(b)⋀Check(b, APrincipal))

49

b ∈ {Principal dwelling, Accessory Building, Principal Building with attached Garage}

Ahouse = Area of Principal dwelling.

Aaccessory = Area of Accessory building.

Aprincipal = Area of Principal building with attached garage.

Depending on different housing type in RF1 zone, the flow chart for checking building

coverage area depending on different type of houses and type of building in accordance with

Edmonton municipal zoning bylaws is shown in Figure 3.7 below.

Start

Single Detached Housing
Site area > 300 sq. m.

Select Type of Dwelling

End

Single Detached Housing
Site area < 300 sq. m.

Duplex Housing

Semi-detached Housing
Site area >= 600 sq. m.

Semi-detached Housing
Site area < 600 sq. m.

Is it Principal dwelling.
Max. coverage 28%

Is it Accessory Building.
Max. coverage 12%

Is it Accessory Building with
Attached garage.

Max. coverage 40%

All other Housing

Select Type of house

Suggestion for
correcting errors

Is it Rf1

Municipal Bylaws

A

Select Zone type

Is it Principal dwelling.
Max. coverage 28%

Is it Accessory Building.
Max. coverage 14%

Is it Accessory Building with
Attached garage.

Max. coverage 42%

Select Type of Dwelling

No

No

No

No

No

No Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Look for different Zone type A

Figure 3. 7. Flow Chart for Checking of Building Coverage for Different Types of Houses.

50

H
ei

gh
t

Flat
Sloped

H
e

ig
h

t

Gable Hip Mansard Gambrel

1/
21

/2

Figure 3. 8. Height Consideration for Types of Houses (Adopted from City of Edmonton).

The height of house is measured differently according to specific housing roof design as shown

in Figure 3.8 below. This type of rule can be an example for type 3 classification of rules,

where we need to use some derived attribute values for checking type of roof and determine

height based on that criteria. According to the City of Edmonton bylaws, the height of any

kind of house in the single detached residential zone (RF1) cannot exceed 10 m (32.8 ft) or

2.5 storeys. First, the face details of roof are used to check whether it is flat or sloped by

defining the conditions for flat and sloped roof, and check for those conditions and if it does

not satisfy flat or sloped roof condition then it can be considered as gable or hip or mansard or

gambrel roof. Figure 3.9 shows the flow chart for the height calculation. If the roof type is flat

or sloped, total height of house must be considered as top floor wall height plus roof height,

or if the roof is of gable or hip or mansard or gambrel type, then total height of house should

be considered as top floor wall height plus half of the roof height.

51

Start

Check for type of Roof

Is it Flat or sloped
Roof

Is it Gable/Hip/
Mansard/Gambrel

Roof

Total Height = top floor wall
height + (roof height/2)

End

Total Height = top floor wall
height + roof height

Max. height building
permitted

Check for Max. Height
of Building

No

Yes

Yes

Figure 3. 9. Flowchart for checking Height of Building.

In FOL, to determine the height of house can be shown as:

where

a ∈ {Single Detached Housing, Semi-Detached Housing, Duplex Housing, Limited group
homes, Garden suite, Secondary suites, Miner Home Based Business}

b ∈ {flat, Sloped, Gable, Hip, Mansard, Gambrel}

Rflat/sloped = Flat or Sloped roof type.

RGable/Hip/Mansard/Gambrel = Gable/Hip/Mansard/Gambrel roof type.

Hroof = Height of the roof.

∀𝑎∀b(House(𝑎) ⋀ Roof(b) ⋀ has(a, b))

∧ ∃b((Roof(b)⋀Check(b, Rflat/sloped)⋀Get(b, hroof)⋁(Roof(b)⋀Check (b, R-

Gable/Hip/Mansard/Gambrel)⋀Get(b, hroof))

∧ ∀𝑎∃b((House(a) ⋀Check(a, Hheight)

52

Hheight = Height of the building.

3.2.2 Framing Checking

Another aspect of building design that has been included in this research is wood framing

checking for residential buildings. Wood framing construction comprises main structural

members (the framing) and sheathing (orient strand board or plywood that provides stiffness).

The combination of framing members and sheathing provides rigidity, spaces for insulation,

and a framework for supporting interior finishes and exterior components. Framing works in

conjunction with the house’s foundation to provide strength and stability for the structure by

transferring load to the foundation (Practices, n.d.). Residential buildings built in Alberta must

follow the Alberta Building Code (ABC) 2014, part 9 for framing design details of the

building. All of the residential buildings are framed in accordance with the ABC, which is

adapted from National Building Code. Only in some unique, critical or exceptional cases, the

structural designer needs to design the structure as per bylaws, apart from that all framing of

residential buildings are designed using building code. So, automating the checking process

of framing according to building code helps in validating the model very fast, with consistency

and in less time. Checking these kind of design rules can be done once the design of the

framing of the building is done, and by using the same add-on software application, the user

can provide the inputs required for checking framing. Below is a description of some building

code examples related to framing checking that have been implemented in the prototype add-

on software application. Figure 3.10 shows the flowchart of some rules check for framing

related to spacing, height with different stud dimensions. These kinds of rules can be classified

as type 2, where we need to derive some values from the BIM model to check these codes.

Table 4 below shows some of the building code related to wall framing spacing and maximum

height of studs based on different support conditions and stud dimensions. First, the load

conditions, type of wall and wall support information are taken from the BIM model, which

53

are provided by the user at the

beginning of the checking process. The spacing and maximum height for stud dimensions used

in framing are selected from data and checked against derived BIM model values specific to

Alberta Building Code is as shown in Figure 3.11.

Start

Get support
 information of walls

End

Building code rules

Check for studs
Spacing with code

Check for Max. height
Of studs with code

Input live and dead load
details

Suggestion for
correcting errors

Select wall Type

No

No

Get stud details and
Number of studs in

corners and intersections

Figure 3. 10. Flow Chart for Framing Checking for Residential Building.

In FOL, the above flowchart for framing checking with few rules can be shown as:

where

∀𝑎∀ 𝑏 (∀s(House(𝑎)⋀Wall(𝑏)⋀Studs(s)⋀different(a, b)⋀Structuralmember(s, b))

∧ ∃l ∀𝑑∀e(∃𝑐(Studdimension(𝑐)⋀Spacing(d)⋀Load(l)⋀Height(e)⋀Check(s, d)∧Check(s, e))

∧ ∀f ∀g(Studcount(g)⋀Corners&intersections(f)⋀Check(f, g))))

54

a ∈ {Single Detached Housing, Semi-Detached Housing, Duplex Housing, Limited group

homes, Garden suite, Secondary suites, Miner Home Based Business}

b ∈ {Interior, Exterior}.

Table 3. Spacing and Maximum Height of Studs.

Type of
wall

Supported loads (including dead
loads)

Minimum
Stud Size,
mm

Maximum
Stud
Spacing,
mm

Maximum
Unsupported
Height, m

Interior

No Load 38×38
38×89 flat

400
400

2.4
3.6

Attic not accessible by a
stairway

38×64
38×64 flat

38×89
38×89 flat

600
400
600
400

3.0
2.4
3.6
2.4

Attic Accessible by a stairway
plus one floor
Roof load plus one floor
Attic not accessible by a
stairway plus 2 floors

38×89

400

3.6

Roof load
Attic accessible by a stairway
Attic not accessible by a
stairway plus one floor

38×64

38×89

400

600

2.4

3.6

Attic accessible by a stairway
plus 2 floors
Roof load plus 2 floors

38×89
64×89

38×140

300
400
400

3.6
3.6
4.2

Attic accessible by a stairway
plus floors
Roof load plus 2 floors

38×140

300

4.2

Exterior

Roof with or without attic
storage

38×64
38×89

400
600

2.4
3.0

Roof with or without attic
storage plus one floor

38×89
38×140

400
600

3.0
3.0

Roof with or without attic
storage plus 2 floors

38×89
64×89

38×140

300
400
400

3.0
3.0
3.6

Roof with or without attic
storage plus 3 floors

38×140 300 1.8

55

Start

Input live and dead Load
details

Select Wall Type

Interior wall/Exterior wall

Building supports One floor + attic
accessible by stairs

Building supports One floor + attic
not accessible by stairs

Roof with or without attic
 storage + two floor

Roof with or without attic
 storage + one floor

InteriorExterior

Max. height less than 3.6 m.

Studs spacing less than 16 in.

Studs spacing less than 24 in.

End

Suggestion for
correcting errors

Studs spacing less than 12 in.

Max. height less than 3 m.

Roof with or without
Attic storage

Studs spacing less than 16 in.

Studs spacing less than 24 in.

Suggestion for
correcting errors

No

No

Yes

Yes

Yes

No

No

No

No

Yes

Yes

Yes

Yes Yes

Yes

No No

No

No

2x4 Stud dimension

Yes

A2x4 Stud dimensionA

A Check for other stud Dimensions

Yes

No No

Figure 3. 11. Flow Chart for Checking Spacing and Maximum Height of Framing.

3.2.3 Domain knowledge from the standard

An object-oriented representation of the bylaws and code with a threshold value to be checked

along with the conditions to be satisfied is the best way of representing the code for interpreting

those rules into C# coding language, where the building designs will be modelled in Autodesk

Revit and are always fully coordinated in terms of the building objects. Add-on software

application for Revit that will help in minimizing the drafting or design process is developed

with Revit application programming interface (API). By using Revit APIs building objects

information from BIM model designed can be extracted by filtering that particular object with

rest data like

FilteredElementCollector(_doc).OfClass(typeof(Wall)).Cast<Wall>().ToList(); in which

56

all the objects related to walls are filtered and can get the threshold values need to be checked

with conditions satisfied. As discussed above, some of the information from BIM model can

be easily obtained, some values must be obtained by using simple derived attributes, and some

values need extended data structure to obtain those threshold values to check. Table 5 shows

all the bylaws and building code rules that have been translated into computer interpretable

format using C# language, where each rule is represented with building object, condition to be

satisfied, attribute values to be derived from BIM model, threshold values to be checked for

that object with operator, and the final column shows the formula/mathematical expression for

those rules as represented in FOL equations and flow chart explained above. Table 6 in

Appendix B shows all the building codes related to framing design from the Alberta Building

Code 2014, which is represented based on building objects, conditions to be satisfied, and

threshold value to be checked with respect to building object.

57

Table 4. Examples of Rule-based Knowledge for Checking Residential Building

Requir
ement
Source
s

Domain Knowledge

Object Condition Attributes Operator Threshold
Formula/math
ematical
expression.

Edmon
ton
Zoning
Munici
pal
Bylaw

RF1
Zone
Setbac
k

Height

Single
detach
ed
Housi
ng

Distance
from
building
corner to
Lot end.

If corner
site,
attached
garage
facing
flanking
public
roadway.

If corner
site,
building
facing
front/side lot
line and side
setback
abutting
flanking
side lot line
If corner
site, no
attached
garage and
building
faces
flanking
side of lot
line

If attached
garage faces
flanking
side lot line

Front setback
distance

Rear setback
distance

Side setback

Rear setback
distance

Side setback

Side setback

Side setback

Lot Area.

Lot Width.

Lot Depth.

Minimum

Minimum

Minimum

Minimum

Minimum

Maximum

Minimum

Minimum

Maximum

Minimum

Minimum

Minimum

6.0 m.

7.5 m.

1.2 m.

4.5 m.

20 % of
site width

4.5 m.

3.0 m.

4.5 m.

10 m.

250.8 m2.

7.6 m.

30 m.

𝑑𝑓𝑆 ≥ 6.0𝑚

 ˄

𝑑𝑟𝑠 ≥ 7.5𝑚
 ˄

𝑑𝑠𝑠 ≥ 1.2𝑚

𝑑𝑟𝑠 ≥ 4.5𝑚

0.2 × 𝑤𝑠

≤ 𝑑𝑠𝑠

≤ 4 ⋅ 5𝑚

𝑑𝑠𝑠 ≥ 3𝑚

𝑑𝑠𝑠 ≥ 4.5𝑚

ℎℎ𝑜𝑢𝑠𝑒

≤ 10𝑚

𝐴𝑙𝑜𝑡

≥ 250.8𝑚2

˄

𝑤𝑙𝑜𝑡 ≥ 7.6𝑚

˄

58

All type of
houses

Property/Lot
lines

Site
coverage,
Site area >
300 m2

House area.

Accessory
Building
area.

Principal
building with
attached
garage area.

Minimum

Minimum

Minimum

28 % of
site.

12 % of
site.

40 % of
site.

𝑑𝑙𝑜𝑡 ≥ 30𝑚

𝐴ℎ𝑜𝑢𝑠𝑒

≥ 0.28 ∗ 𝐴𝑠𝑖𝑡𝑒

𝐴𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

≥ 0.12 ∗ 𝐴𝑠𝑖𝑡𝑒

𝐴𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

≥ 0.4 ∗ 𝐴𝑠𝑖𝑡𝑒

Site
coverage,
Site area <
300 m2

House area.
 Minimum

28 % of
site.

𝐴ℎ𝑜𝑢𝑠𝑒

≥ 0.28 ∗ 𝐴𝑠𝑖𝑡𝑒

Accessory
Building
area.

Principal
building with
attached
garage area.

Minimum

Minimum

14 % of
site.

42 % of
site.

𝐴𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

≥ 0.14 ∗ 𝐴𝑠𝑖𝑡𝑒

𝐴𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

≥ 0.42 ∗ 𝐴𝑠𝑖𝑡𝑒

Duple
x
housin
g

Semi-
Detac
hed

Property/Lot
lines

Site
coverage

Property/Lot
lines

Lot Area

Lot Width

Lot depth

House area

Accessory
building area

Principal
building with
garage area

Lot area

Lot width
Lot Depth

Minimum

Minimum

Minimum

Minimum

Minimum

Minimum

Minimum

Minimum
Minimum

300 m2.

10 m.

30 m.

28 % of
site.

12 % of
site.

40 % of
site.

488.4 m2.

14.8 m.
30 m.

𝐴𝑙𝑜𝑡

≥ 300𝑚2

𝑤𝑙𝑜𝑡 ≥ 10𝑚

˄
𝑑𝑙𝑜𝑡 ≥ 30𝑚

𝐴ℎ𝑜𝑢𝑠𝑒

≥ 0.28 ∗ 𝐴𝑠𝑖𝑡𝑒

𝐴𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

≥ 0.12 ∗ 𝐴𝑠𝑖𝑡𝑒

𝐴𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙

≥ 0.40 ∗ 𝐴𝑠𝑖𝑡𝑒

𝐴𝑙𝑜𝑡

≥ 488.4𝑚2

˄

59

Housi
ng

If dwelling
facing side
lot line.

Lot width

Minimum

12 m.

𝑤𝑙𝑜𝑡 ≥ 14.8𝑚

𝑑𝑙𝑜𝑡 ≥ 30𝑚

𝑤𝑙𝑜𝑡 ≥ 12𝑚

Alberta
buildin
g code,
volume
2: part
9.

Walls

Interio
r walls

Exteri
or
walls

Openi
ngs

Element
Spacing

Interior
walls,
building
supports one
floor where
attic
accessible
by stairs

Interior
wall, attic
not
accessible
by stairway
plus one
floor.

Exterior
wall, roof
load with or
without attic
storage.

Exterior
wall, roof
with or
without attic
storage plus
one floor.

Exterior
corners

Opening > 3
m. long

Opening < 3
m. long

Studs

2X4 stud

2×4 stud

2×4 stud

2×6 stud

Studs

studs

studs

Maximum

Maximum

Maximum

Maximum

Maximum

Minimum

Minimum

Minimum

24 inches.

3.6 m.
height and
400 mm.
spacing.

3.6 m
height and
600 m.
spacing.

2.4 m
height and
600 m.
spacing.

3.0 m
height and
600 m.
spacing.

2 No.

3 No.

2 No.

𝑠𝑠𝑡𝑢𝑑𝑠

≤ 24 𝑖𝑛.

𝑠𝑠𝑡𝑢𝑑𝑠.𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

≤ 16 𝑖𝑛.

˄
ℎ𝑠𝑡𝑢𝑑𝑠.𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

≤ 3.6𝑚

𝑠𝑠𝑡𝑢𝑑𝑠.𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

≤ 24 𝑖𝑛.

˄
ℎ𝑠𝑡𝑢𝑑𝑠.𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

≤ 3.6𝑚

𝑠𝑠𝑡𝑢𝑑𝑠.𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟

≤ 24 𝑖𝑛.

˄
ℎ𝑠𝑡𝑢𝑑𝑠.𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟

≤ 2.4𝑚

𝑠𝑠𝑡𝑢𝑑𝑠.𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟

≤ 24 𝑖𝑛.

˄
ℎ𝑠𝑡𝑢𝑑𝑠.𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟

≤ 3.0𝑚

𝑁𝑜.𝑠𝑡𝑢𝑑𝑠.𝑐𝑜𝑟𝑛𝑒𝑟

≥ 2 𝑛𝑜.

𝑁𝑜.𝑠𝑡𝑢𝑑𝑠.𝑜𝑝𝑒𝑛𝑖𝑛𝑔

≥ 3 𝑛𝑜.

𝑁𝑜.𝑠𝑡𝑢𝑑𝑠.𝑜𝑝𝑒𝑛𝑖𝑛𝑔

≥ 2 𝑛𝑜.

60

Top
plates

Floor

Colum
n

Non-
loadbearing
walls

Loadbearing
walls

Joist
cantilevered
distance
beyond their
support

Column
width

Top plate

Top plate

2×8 joist

2×10 joist

Minimum

Minimum

Maximum

Maximum

Minimum

2 inches
one stud
with same
width as
wall studs.
2 inches
two studs
with same
width of
studs.

16 inches

24 inches

Width of
Supportin
g member.

𝑁𝑜.𝑡𝑜𝑝𝑙𝑎𝑡𝑒𝑠

≥ 1 𝑛𝑜.

˄
𝑡𝑡𝑜𝑝𝑙𝑎𝑡𝑒

= 𝑡𝑤𝑎𝑙𝑙.𝑠𝑡𝑢𝑑

𝑁𝑜.𝑡𝑜𝑝𝑙𝑎𝑡𝑒𝑠

≥ 2 𝑛𝑜.

˄
𝑡𝑡𝑜𝑝𝑙𝑎𝑡𝑒

= 𝑡𝑤𝑎𝑙𝑙.𝑠𝑡𝑢𝑑
𝑑𝑓𝑙𝑜𝑜𝑟.𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟𝑒𝑑

≤ 16 𝑖𝑛.
𝑑𝑓𝑙𝑜𝑜𝑟.𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟𝑒𝑑

≤ 24 𝑖𝑛.

𝑤𝑐𝑜𝑙𝑢𝑚𝑛

≥ 𝑤𝑠𝑢𝑝𝑝𝑜𝑟𝑡

61

3.3 Object-oriented representation

For a model to be checked automatically for building regulations, it is a primary requirement

to have object-based building model with required level of information for effective checking.

BIM objects created will have parametric data and properties such as their element name, size,

location, finishes, and their abstract information like quantities, calculations and so on because

this semantic enriched information BIM models will be used in digitizing the different stages

of building lifecycle, including initial requirements, design, construction, maintenance, and

operation. As such, EXPRESS Data Manager (EDM) model checker is an object data based

system used in the HITOS pilot project in Norway, where building model data is stored and

accessed through EDM model server in IFC format, and information for checking are

parametrized, mapped with associated building objects and is executed using Solibri Model

Server (Malsane et al., 2015).

BIM model with required level of information will make extracting the information needed

more efficient, as models developed with more details makes it more convenient for developing

automated code compliance checking. This study identifies the information model about

framing and lot design boundaries for compliance checking. The required information for

checking from model is retrieved from the specific objects it needs as those are mapped to the

compliance checking rules. The excerpt of framing information in this prototype is shown in

Figure 3.12. “Studs” and “plates” are the classes created within visual studio to represent the

BIM information required for checking related to studs and plates. Modelling details in

Autodesk Revit related to these objects are mapped to those classes to facilitate compliance

checking. As shown in Figure 3.12 “BuildingComponent” is base class that has general

information about building elements, and “wall”, “Plates”, and “Studs” are inherited from

“BuildingComponent”. “Framing” is inherited from interface “Project” which has the

properties related to building information and is associated with “studs” and “Plate”. The

62

function of “GetSpacing”, “GetMaxHeight”, “GetCornerStudDetails” and

“GetOpeningsStuds” is attached to “studs”, which utilizes the information related to framing

to extract maximum spacing between the studs, maximum height of studs, details related to

studs present in corner and at connections, and details related to studs placed around openings

respectively for automated code compliance.

Wall

+StartPoint: XYZ
+EndPoint: XYZ
+IsExterior: bool
+IsInterior: bool
+Opening: List<Door/Window>
+Connection: List<Connection>
+LocationCurve: Curve
+TopLevel: Level

+GetOpenings(): List<doors/Windows>

WoodFrameWall

+Studs: List<stud>
+Plates: List<Plate>

+GetStuds(): List<Stud>
+GetPlates(): List<Plate>

Studs

+LocationPoint: XYZ
+TopLevel: Level
+Function: string

+GetSpacing: double
+GetMaxHeight: double
+GetCornerStudDetails: List<ConStud>
+GetOpeningsStuds: List<OpeningsStud>

Plates

+StartPoint: XYZ
+EndPoint: XYZ
+LocationCurve: Curve
Function: string

BuildingComponent

+ID: int
+Name: string
+Type: ElementType
+Project: Document
+Location: Location
+Length: double
+Height: double
+Width: double
+Geometry: Geometry

<< interface >>
Project

-Architech's Business Name: string
-Contact Person: string
-Phone Number: Int
-Builder Name: string
-Project Owner: string
-Mailing Address: string
-Project ID: int
-Plan Number: int
-Block Number: int
-Lot Number: int

Framing

+LumberGrade: List<gradtypes>
+LoadDetails: float
+AtticAccessiblebyStairs: bool
+RoofWithAtticStorage: bool

+GetLoadDetails: float
+GetLumberGrade: void
+IsroofwithAtticStorage: bool
+IsAtticAccessiblebyStairs: bool

+GetGeometry: Geometry

Figure 3. 12. Excerpt of framing information for checking using UML.

63

CHAPTER 4. CASE STUDY

In this chapter, a case study is presented for validation and verification of the proposed

methodology for automated zoning and framing code compliance for light frame residential

building in Edmonton. The validation of the developed add-on software application is carried

out from inception and to completion, including the testing of each command for its intended

purpose. A residential building with attached garage is taken as an example, for which the

bylaws and building framing code rules have been mentioned in Table 5. Rule-based

knowledge checking for residential buildings have been implemented and validated in this

prototype called DCheck. DCheck is an add-on application for Autodesk Revit that performs

the automated code checking of the zoning regulation of Edmonton and the sections of the

building code related to framing of residential buildings. This add-on software application can

be used for approving the BIM models for construction and by the designers to make sure the

design is correct. Regarding this study, three major topics are addressed in this case study

related to the developed add-on software application: (1) Edmonton zoning bylaws

implementation; (2) Alberta Building code 2014 regulations related to framing for light

framing residential buildings; and (3) DCheck extended data structure for extracting the

information from BIM model.

A residential building design has to be modelled in Autodesk Revit as required, with a certain

level of details for more efficient automated-checking process. Before starting checking, users

are required to give some information related to the project, which is same information house

owners or contractors used to provide while submitting 2D CAD drawings for approval. Figure

4.1 and 4.2 show the 3D model of residential buildings with attached garage modelled in Revit

for the purposes of this case study: the brown coloured area represents the lot dimensions for

this house.

64

Figure 4. 1. 3D Model of Single detached house with Attached Garage (case study model 1).

Figure 4. 2. 3D Model of semi-detached house with Attached Garage (case study model 2).

65

Figure 4.3 and 4.4 are the floor plan views of single detached house model and top view of

semi-detached house plans respectively. The major part of the rule checking process is the rule

definitions. Rules apply to each part of subset of BIM model data. Building model preparation

and the development of model views with appropriate subset of data required for rule checking

is important. Model views are a standard form of representation of BIM data that allows

extraction of meaningful required data from the model. It typically includes geometric,

topological, and functional properties of a respected building object. To extract all the required

information from the BIM model for compliance checking, first the building model has to be

developed with required level of details (LoD). The LoD is an important factor to be considered

during development of each objects, as higher the LoD is the more details within the BIM

model. For this study, development of BIM model with LoD of in between 300 to 350 will be

good for getting required and complete data. A model developed with LoD in that range will

be detailed for every specific system, object or assembly in terms of quantity, size, shape,

location and orientation with non-graphical information and adds requirements on interfaces

with other object of building.

66

Figure 4. 3. Floor Plan of single detached House with Attached Garage (case study model 1).

Figure 4. 4. Top view of semi-detached House with Attached Garage (case study model 2).

The other important part of rule checking process is rule definition. The rules are written in

67

human-oriented languages that require significant domain knowledge to translate it into

computer interpretable format. There are many ways of doing this part: in this study we have

used C# language for interpreting natural language-based regulations into computer

interpretable format. In order to interpret the bylaws and building code, the sentences of the

bylaws and code were analyzed to identify the threshold value of rules to be satisfied related

to building objects. Rules are then represented based on object with conditions to satisfy,

attributes related to that objects and threshold value to be checked with operator. This method

of representation is highly efficient to make components pool of building related objects.

As mentioned in the methodology above, automated rule-based checking for design checking

consists of four major steps (1) Rules Translation, from natural language to computer

interpretable format, (2) BIM model preparation, development of 3D model with certain level

of details and development of building model views for extracting information from BIM data

model to check for rules that have been translated in first step, (3) Rule Checking, where

building model is checked against the building code under DCheck platform, and (4) checking

reporting, which is the last step and gives the end results of compliance in text format and

highlights the objects associated with failed rules.

4.1 Bylaw Checking

As if the user selects the zoning type as single detached residential zone (RF1), then the RF1

type of zone is being considered as an object here and the check for height of the building as

per bylaw, threshold value of 10 m, with operator sign less than or equal too. That is, the

building height cannot exceed 10 m for RF1 type zone. Getting the total height of the building

from BIM data depends on the type of roof the model has, as shown in Figure 3.6. For flat and

sloped roof, the total height of building will be second floor wall height from ground level plus

height of roof. If the roof is gable or hip or mansard or gambrel, then total height of building

will be second floor wall height from ground level plus half of the roof height. These conditions

68

have been defined in DCheck extended platform to check if the roof is flat or sloped with

accessing the co-ordinates of roof by using Revit API’s for knowing geometrical property of

roof type under “RoofType” class. Then, the user selects any of the three different house types

that are permitted to be built in RF1 zone, and in this case the user selects single detached

housing for which lot area should be greater than 250.8 m2, lot width should be greater than

7.6 m, and lot depth should be greater than 30 m according to bylaw. If any of these regulations

are not satisfied, then notification regarding the violation of rules and suggestions for correcting

it have been encoded in the platform.

Depending on housing type in RF1 zone. If the house type is single detached house with site

area less than 300 m2 or semi-detached housing with site area less than 600 m2 and the house

is a principal dwelling with separate garage/accessory building, then the house can cover a

maximum of 28% of the site/lot area and accessory building can cover maximum of 14% of

the site area.

If the building has an attached garage and the site area is less than 300 m2, then the building

can cover a maximum of 42% of site area. If, however, the house type is single detached house

with site area greater than 300 m2 or duplex house or semi-detached house with site area

greater than 600 m2 or if house has a separate accessory/garage building, then principal

dwelling can cover maximum of 28% of site area, and accessory/garage building can cover

12% of site area. If the building has an attached garage and the site is greater than 300 m2 then

building can cover maximum of 40% of site area. If any of these cases fail to satisfy, error

message relating to failed criteria will be displayed with suggestion message to correct.

69

Figure 4. 5. Main User Interface of DCheck add-on.

DCheck has been developed as an add-on software application for Revit that performs the

automated design checking. Figure 4.5 shows the main user interface of DCheck application;

as shown, it consists of three main buttons on the Revit ribbon interface. “Checking bylaws”,

“Checking framing” and “Project data”. Clicking on project data button user interface will

appear where user can provide information related to zoning. There are two tabs. The first tab

is for inputs related to bylaws where user needs to input some information, for example, the

type of residential zone the model will be built from: Single Detached Residential Zone (RF1),

Residential small Lot Zone (RSL), Low Density Infill Zone (RF2), Planned Lot Residential

Zone (RPL), Small Scale Infill Development Zone (RF3), Semi-detached Residential Zone

(RF4), Residential Mixed Dwelling Zone (RMD), Row Housing Zone, Urban Character Row

Housing Zone (UCRH), Medium Density Multiple Family Zone (RF6). There is also an input

for house type: single detached housing, semi-detached housing, duplex housing, limited group

homes, garden suite, secondary suites, or minor home-based business. Site characteristics input

is for information about whether it is a corner building, or whether the building fronts on to

70

flanking public roadway or front yard, or whether there is a lane abutting the site.

Figure 4. 6. User Interface for Entering Project Details.

There is also an input for building characteristic information about whether building has

attached garage or not. Figure 4.6 shows graphical user interface form developed for all the

information related to the project that needs to be provided for approval: these are all the

supporting information that needs to be provided while applying for approval for construction.

Details about the architect’s business name, contact person, phone number, fax address, builder

name, project owner, mailing address and project related details like project ID, plan number,

block number, lot number, i.e., identity number provided by the city for site where the proposed

building will be built. By clicking on the OK button after entering all the details related to

zoning and project related details, checking of model will run in background and by clicking

on checking bylaws button, the user interface report form will be displayed as shown in Figure

4.7 with the report related to compliance checking. It will display the report about rules that

failed with attribute name, reason for the failure and details about that rules, so that user can

71

easily understands the error in designs related to zoning bylaws. Figure 4.7 shows the zoning

checking report with message for single detached residential house and Figure 4.8 shows

zoning checking report for semi-detached residential house:

Start to checking

=========

Failed SETBACK :

 - Front SETBACK (Front) = 5.09 m, it must not be less than 6 m.

 - Rear SETBACK (Rear) = 5.62 m, it must not be less than 7.5m in the normal case.

 - Side SETBACK (Left) = 2.45 m, it must not be less than 20% of the side width of the site.

=========

Finish !

Checking Failed.

So, from the text report like shown above, the user will be able to know the failed rules, reason

for failure and can correct them as suggested.

Figure 4. 7. Bylaw Checking Report for single detached house (case study model 1)

72

Figure 4. 8. Bylaw Checking Report for semi-detached house (case study model 2)

Once those errors have been corrected, then by again just clicking on checking bylaws button,

it will run the checking again and display the same user interface report form with message

whether all the rules have been checked successfully or failed with message related to failed

rules.

4.2 Framing Checking

Another aspect that has been covered in this study is framing checking with Alberta Building

Code 2014 for wood-frame houses built with different designs and specifications to provide

safety, maximum occupational health, comfort, durable and cost efficiency. Wood framing

consists of main structural members (i.e., framing) and sheathing. Many types of wood

components can be used in wood-frame construction. Lumber is generally referred to by

nominal dimensions, which are larger than actual dimensions. Considering the wood framing

design guide and advanced framing techniques referred to as optimum value engineering

framing that will reduce wood material use in construction in structurally unnecessary places,

all those rules have been included for checking to get optimized design of framing. Figure 4.9

shows the framing of walls and floors of the case study building; the details of framing are

73

accessed by their naming description as specified in model. Framing of this model has been

done using an add-on called FrameX, in which all the wall studs are named as “Vertical” with

panel number, studs placed at corners and ends are as “End” and “Con”, bottom and top plates

as “BTrack” and “TTrack”, and so on. Details related to each lumber have been extracted by

using naming details specified by the FrameX add-on application.

Figure 4. 9. Framing of Walls and Floors of House.

The framing guidance rules are collected from the Alberta Building Code 2014 Div B Part 9,

Advanced framing construction guide by APA, the Engineered Wood Association, Canadian

wood-frame house construction by Canada Mortgage and Housing Corporation, and Design of

wood framing by residential structural design guide.

Except in some special cases, the framing of a residential building has to be designed as per

authorized designing guidelines, excluding those exceptional cases, and all the remaining

guidelines for checking the framing design have been collected in Table 6 in Appendix B. The

framing rules that have been integrated in the prototype add-on software application for

74

checking considering the load details and type of wall, whether it is interior or exterior, and

dimensions of studs, and checking for spacing and height of studs depending on wall support

load conditions. If the wall is exterior with 2×4 stud dimension and if the walls are supporting

roof load with or without attic storage plus two floors, then stud spacing should be less than 12

inches; or if walls support roof load with or without attic storage plus one floor, then spacing

should be less than 16 inches; or if walls support only roof load with or without attic storage,

then spacing should be less than 24 inches, and also, for every condition the maximum height

of studs should be less than 3 m. The same kind of rules apply to the interior walls too as shown

in the flow chart below. If any of the checking has failed, then suggestion message for failed

rules are displayed.

The user needs to provide some of the information related to framing before starting to check

through the user interface by clicking on project data button and entering details required about

framing in the second tab of interface as shown in Figure 4.10. This second tab is where the

user needs to select lumber grade and whether it is structural or No. 1 and No.2 or No.3 or

construction or standard grade lumber. The user provides live load and dead load details.

Information about whether the attic is accessible by stairway or not, and whether the roof is

with or without attic storage. All the framing rules that have been integrated in this prototype

add-on software application are mentioned in Table 5 and are represented in the same way as

bylaws with building object, attributes, condition and threshold value with operator.

75

Figure 4. 10. User Interface for Entering Framing Details.

After entering all the details required for this check, then by clicking on framing checking

button on ribbon, a checking window will pop up with the checking report related to framing

as shown in Figure 4.11 and 4.12 The failed rules related to framing design for single detached

and semi-detached house are as shown below:

Figure 4. 11. Framing Checking Report for single detached house (case study model 1).

76

Figure 4. 12. Framing Checking Report for semi-detached house (case study model 2).

Start to check

=========

Failed Wall Studs :

-Studs around opening, issue in level: Basement.

-Maximum wall stud spacing, issue in level: First Floor.

-Intersection of exterior walls, issue in level: First Floor.

-Intersection of exterior walls, issue in level: Second Floor.

=========

Finish !

Checking Failed.

With failure report in text format as shown above, the user will be able to know the failed rules,

reason for failure and can correct them as suggested.

By clicking on select failed elements, it will select the building objects that are related to failed

rules so that the user can easily identify and make corrections as shown in Figure 4.13, where

it has selected the door opening and studs beside the door opening because the opening is more

77

than 3 m wide. In this case, the studs beside opening should be tripled as per building code,

i.e., “In lintel opening of wall if it is greater than 3 m long then studs should be tripled on each

side of the opening, with 2 from bottom of lintel to top of bottom of wall plate, and 1 from

bottom of top wall plate to bottom wall plate.”

In the case study model we have 192 in (4.87 m) of opening and have only two studs placed

around the opening on each side, one king and one jack. But as per the above rule, if the opening

is greater than 3 m (118.1 in), it should have three studs on each side of opening, and because

of this, it is highlighted in the basement floor plan as the error message displayed.

Figure 4. 13. Highlighting Failed Rules Related Objects in Basement Floor.

After correcting all the errors and by running the checking process again, if there are no errors

then it will show the text report saying checking successful as in Figure 4.14 below, which

indicates the model is good for the approval of construction as designed.

78

Figure 4. 14. Final Check Results After correcting all the Errors.

4.3 Discussion

Exhaustive studies have been made in this field of research by many researchers around the

world, where it all started by the logical organization of rules and regulations, followed by the

structuring of regulations in decision tables. It is because of these initial research efforts and

the efforts of those researchers who continued their research in this field that progress has made

in this automated code checking field with various different approaches and technologies.

However, to this day, no one in the AEC industry has been utilizing or benefiting completely

from this technology. The Singapore CORENET project was an early initiative started by a

government organization about 23 years ago for the checking of 2D building plans submitted

online for code compliance. And then around 1999, the Solibri company developed an

application called Solibri model-checker (SMC) for checking 2D plans. And even after over

two decades since the start of the CORENET project, there has not been much progress in the

development of an automated checking process, and Solibri is the only commercial software

available for checking some aspects of building design like clash detection, and space

validation, while also providing quantity take-off capabilities. So, the applications developed

79

should provide easy way for future updated and should be user friendly, with development of

application based on building objects as represented in domain knowledge table above provides

easy way of changing or updating the threshold values in according to update of building codes.

With the use of BIM technology by AEC professionals, automated code checking has gained

more interest. Even with most of the AEC industry using BIM models for the complete process

of construction, the process of getting approval from municipalities for construction work has

remained very much a 2D process, which seems like a waste of resources and efforts for

companies to use BIM modelling software for design and construction process from this

prospective. Effectively, the only progress has been the submitting of electronic drawings to

authorities for approval.

With so many constraints in the process of automating the building code compliance checking,

it is good to see the progress in this field. The major problems faced related to automation is

the translation of building code from natural human readable language to computer

interpretable format. Finding the best and most suitable way of translating all the building

regulations for fully automated checking process is very important, with representation of the

building code based on objects, attributes, conditions and threshold value with operator, as was

done in this study, as a way to help better understand the building code and bylaws for efficient

interpretation. Another problem is the BIM model preparation, i.e., the level of details the BIM

model should have for effective checking and extraction of details from BIM model. The

development of extended data structure platform results in a better and more effective way of

automated code compliance checking because it enables all building objects to achieve a certain

required level of detail.

Many researchers around the world, in both commercial and academic fields, are working in

this field to develop better and more efficient ways of automating the building code checking

process. The ultimate benefit of automated code compliance is obtained when the government

80

authorities make BIM models mandatory for all the construction approval processes and

automated checking application are used by both designers and government regulatory

agencies responsible for the reviewing of designs. If used by both designers and government

authorities, the amount of time required for the reviewing process will be greatly reduced and

the efficiency in checking will be increased with less efforts and man power.

81

CHAPTER 5. CONCLUSION AND FUTURE RESEARCH

In this chapter, conclusions, key contributions, and recommendations for future research are

presented. First, the summary of the automated code compliance checking add-on software

application developed is discussed briefly. Then, contribution of this research is summarized;

finally, recommendations for future study are proposed.

5.1 Summary

This thesis presents the automated checking of framing design and zoning regulations

according to the city of Edmonton municipal bylaws for light frame residential buildings

modelled in Autodesk Revit. In this study, the translation of natural language building code

into computer interpretable format is done using C# language. The representation of the

building code based on building objects will make it easier to understand the regulations and

will helps to translate the regulations into computer-readable format more accurately, which

then makes the job of automation of code compliance easier when it is time to develop the add-

on software tool for a different province or jurisdiction where the building codes are different.

If required, only the threshold values will be changed, which can be easily accomplished as per

the explanation in the methodology section. Because of this, DCheck extended data structure

platform can be used for other provinces too, just by changing values according to respective

provinces and this application will perform checking accordingly. Also, with the classification

of building regulations supports the development of the extended data structure platform.

Classification of rules according to complexity in interpreting building regulations into

computer interpretable format and based on retrieving the information from BIM models helps

to translate rules completely based on classification. The first type of classification of rules

includes data that can be easily accessed from BIM model. The second type requires some

expert knowledge where the required information should be derived from BIM model. The

82

third type of rules are the ones that need to be simplified and analyzed, and the information

requires an extended data structure. Extraction of information from BIM model to check with

the threshold values of code is a major challenge. All the information in BIM model is not

explicitly available, even with models developed with 300 to 350 LoD, some information has

to be derived from BIM model introducing some new variables relating to building objects in

BIM model.

The DCheck add-on application for Revit has included the rules listed in Table 5 related to

zoning checking for City of Edmonton municipal bylaws and wood framing design checking

according to the Alberta Building Code 2014. The add-on software application can be used at

any point during the designing for checking the model, so that the designer can correct any

errors if present during the design progress. With the use of automated code compliance

application by both designers and government approval authorities, the approval process can

be made with less effort, fewer errors, and in less time.

5.2 Research Contributions

The research presented in this thesis offers the following contributions:

(1) Object-based representation of building code and bylaws. Building rules are

represented in accordance with respective building object with their attributes,

conditions, and threshold valued with operator to be satisfied. This kind of knowledge

formularization makes it easy to understand the regulation and know the required

threshold value to be checked for that building object in the model with specified

conditions.

(2) Classification of building rules into three categories, from easy to difficult level, based

on complexity for interpretation into computer readable format, and based on the

extraction of information from BIM model. The classification of building rules makes

it very convenient for developing the checking add-on software application platform.

83

The checking system can be developed in stages, which gives the user a clear

understanding of checking process with rules that are incorporated in application

system.

(3) Automated checking process of zoning design in accordance with Edmonton zoning

bylaws. The add-on application for Revit, DCheck, with user interface developed will

check for the design regulations of zoning with minimum user interaction and gives

results in textual format, indicating the failed rules and suggestions to correct.

(4) Automated checking process of framing design in accordance with Alberta Building

Code 2014. Apart from some special or critical cases, framing of residential building

have been done in accordance with the building code, with automated checking of

building code for framing where designers can check for any errors effortlessly and in

no time. The checking report is provided in textual format and the building objects

related to errors are highlighted, which then can be corrected.

(5) Simplified DCheck platform for extracting the information from BIM model for code

compliance. This platform can be used to check for different jurisdictions too by

changing the threshold value with respect to different municipal zoning bylaws.

5.3 Limitations and Recommendation for Future Work

5.3.1 Research Limitations

This research is subjected to a few limitations as follows:

The building regulations have been hardcoded into the add-on software application system by

using the C# coding language, which makes it difficult for the user if there is a requirement to

change anything or for updating the regulations if the user does not have any basic knowledge

related to coding languages. And every time the building codes will be updated, the checking

platform has to be changed as per updates with regard to new codes.

84

This study covers only few aspects of the checking for building permit approval. Automated

checking for structural design analysis of the wood framing is not considered in this study,

because of which in some special cases structural design as to be checked manually.

The checking application is built as an add-on software application for Autodesk Revit, so the

models developed in other modelling software will not be able to be checked with this

application, and this add-on is built on Revit API platform so except for Revit files, no other

file formats can be checked.

5.3.2 Future Research and Improvements

Based on the research presented here, the following would be the recommendations for future

work:

Extension of automated checking process with other aspects of the building codes and bylaws

for developing a complete automated building rules checking process incorporating all the rules

and regulations for building permit approval.

Make the add-on software application more user-friendly by creating an additional user

interface for all the threshold values so the user can easily update or change values if required.

This will also help in using this application for other jurisdictions too just by changing those

values according to their municipal regulations.

Development of mathematical representation of regulations based on the building variables for

better understanding and translation of natural human readable language into computer

interpretable format.

Create better way of communication in connection with same add-on software application

system between the architect or contractor or owner applying for building permit and

authorities responsible for proving approval for better understanding of errors needed to be

corrected.

85

REFERENCES

AEC3 website. (2012). Retrieved from http://www.aec3.com/en/5/5_013_ICC.htm

Autodesk Inc., website. (2018). Retrieved from https://www.autodesk.com/

Automated compliance checking using building information models. (2010), (September), 2–

3.

Chen, G., & Luo, Y. (2017). A BIM and ontology-based intelligent application framework.

Proceedings of 2016 IEEE Advanced Information Management, Communicates,

Electronic and Automation Control Conference, IMCEC 2016, 494–497.

https://doi.org/10.1109/IMCEC.2016.7867261

Choi, J., Choi, J., & Kim, I. (2014). Development of BIM-based evacuation regulation

checking system for high-rise and complex buildings. Automation in Construction, 46,

38–49. https://doi.org/10.1016/j.autcon.2013.12.005

Clayton, M. J., Fudge, P., & Thompson, J. (2013). Automated Plan Review for Building Code

Compliance Using BIM. Proceedings of the 20th International Workshop, 1-3 July, (July

2013), 1–10. Retrieved from www.researchgate.net/publication/254862600

Dimyadi, J., & Amor, R. (2013). Automated Building Code Compliance Checking – Where is

it at? Proceedings of the 19th World Building Congress: Construction and Society, 5-9

May, 172–185. https://doi.org/10.13140/2.1.4920.4161

Dimyadi, J., Solihin, W., & Hjelseth, E. (2016). Classification of BIM-based Model checking

concepts. Journal of Information Technology in Construction, 21(November), 354–370.

Ding, L., Drogemuller, R., Rosenman, M., & Marchant, D. (2006). Automating code checking

for building designs - DesignCheck. Cooperative Research Centre (CRC) for

Construction Innovation, 1–16. https://doi.org/http://ro.uow.edu.au/engpapers/4842/

Dym, C. L., Henchey, R. P., Delis, E. A., & Gonick, S. (1988). A knowledge-based system for

automated architectural code checking. Computer-Aided Design, 20(3), 137–145.

86

https://doi.org/10.1016/0010-4485(88)90021-8

Eastman, C. (2009). What is BIM? Retrieved from http://bim.arch.gatech.edu/?id=402

Eastman, C., Lee, J. min, Jeong, Y. suk, & Lee, J. kook. (2009a). Automatic rule-based

checking of building designs. Automation in Construction, 18(8), 1011–1033.

https://doi.org/10.1016/j.autcon.2009.07.002

Eastman, C., Lee, J. min, Jeong, Y. suk, & Lee, J. kook. (2009b). Automatic rule-based

checking of building designs. Automation in Construction, 18(8), 1011–1033.

https://doi.org/10.1016/j.autcon.2009.07.002

Ebrahimipour, V., & Yacout, S. (2015). Ontology modeling in physical asset integrity

management. Ontology Modeling in Physical Asset Integrity Management, 1–264.

https://doi.org/10.1007/978-3-319-15326-1

Fenves, S., Garrett, J., & Kiliccote, H. (1995). Computer representations of design standards

and building codes: US perspective. International Journal of Construction Information

Technology, 3(1), 13–34. Retrieved from

http://fire.nist.gov/bfrlpubs/build95/PDF/b95012.pdf

Global Reporting Initiative. (2014). Construction and Real Estate. Retrieved from

https://www.globalreporting.org/reporting/sector-guidance/sector-

guidance/construction-and-real-estate/Pages/default.aspx

Han, C. S., Kunz, J. C., & Law, K. H. (1998). A Hybrid Prescriptive-/Performance-Based

Approach to Automated Building Code Checking. Fifth Congress in Computing in Civil

Engineering, 1–12. Retrieved from http://eil.stanford.edu/publications/chuck_han/9810

ICC.pdf

Hjelseth, E., & Nisbet, N. (2010). Exploring semantic based model checking. Proceedings of

CIB W78 Conference, 27, 16–18.

Ismail, A. S., Ali, K. N., & Iahad, N. A. (2017). A Review on BIM-based automated code

87

compliance checking system. International Conference on Research and Innovation in

Information Systems, ICRIIS. https://doi.org/10.1109/ICRIIS.2017.8002486

Khemlani, L. (2005). CORENET e-PlanCheck : Singapore’s automated code checking system.

AECbytes - Building the Future, October, 1–8. Retrieved from

http://www.aecbytes.com/buildingthefuture/CORENETePlanCheck.htm

Kim, H., Lee, J.-K., Shin, J., & Choi, J. (2018). Visual Language Approach to Representing

KBimCode-based Korea Building Code Sentences for Automated Rule Checking. Journal

of Computational Design and Engineering. https://doi.org/10.1016/j.jcde.2018.08.002

Lawrence, M., Pottinger, R., Staub-French, S., & Nepal, M. P. (2014). Creating flexible

mappings between Building Information Models and cost information. Automation in

Construction, 45, 107–118. https://doi.org/10.1016/j.autcon.2014.05.006

Lee, H., Lee, J. K., Park, S., & Kim, I. (2016). Translating building legislation into a computer-

executable format for evaluating building permit requirements. Automation in

Construction, 71, 49–61. https://doi.org/10.1016/j.autcon.2016.04.008

Lee, H., Lee, S., Park, S., & Lee, J. (2015). An Approach to Translate Korea Building Act into

Computer-readable Form for Automated Design Assessment. Proceedings of the 32nd

ISARC, 1–8.

Macit İlal, S., & Günaydın, H. M. (2017). Computer representation of building codes for

automated compliance checking. Automation in Construction, 82(June), 43–58.

https://doi.org/10.1016/j.autcon.2017.06.018

Malsane, S., Matthews, J., Lockley, S., Love, P. E. D., & Greenwood, D. (2015). Development

of an object model for automated compliance checking. Automation in Construction,

49(PA), 51–58. https://doi.org/10.1016/j.autcon.2014.10.004

Martins, J. P., & Monteiro, A. (2013). LicA: A BIM based automated code-checking

application for water distribution systems. Automation in Construction, 29(23), 12–23.

88

https://doi.org/10.1016/j.autcon.2012.08.008

Melzner, J., Zhang, S., Teizer, J., & Bargstädt, H. J. (2013). A case study on automated safety

compliance checking to assist fall protection design and planning in building information

models. Construction Management and Economics, 31(6), 661–674.

https://doi.org/10.1080/01446193.2013.780662

Mike, A., Automated, J. S., & Drogemuller, R. (2004). QUT Digital Repository :

http://eprints.qut.edu.au/ 2 7228 CONFERENCE THEME : VISUALISATION AND

INFORMATION Full Paper, (October), 25–27.

Nawari, N. (2012). The Challenge of Computerizing Building Codes in a BIM Environment.

Computing in Civil Engineering (2012), 1, 285–292.

https://doi.org/10.1061/9780784412343.0036

Nawari, N. O. (2012). BIM-Model Checking in Building Design. Structures Congress 2012,

941–952. https://doi.org/10.1061/9780784412367.084

Nawari, O., & Email, A. (2011). Automating Codes Conformance in Structural Domain, 569–

577.

Nepal, M. P., Staub-French, S., Pottinger, R., & Webster, A. (2012). Querying a building

information model for construction-specific spatial information. Advanced Engineering

Informatics, 26(4), 904–923. https://doi.org/10.1016/j.aei.2012.08.003

Park, S., Lee, H., Lee, S., Shin, J., & Lee, J.-K. (2015). Rule checking method-centered

approach to represent building permit requirements. 32nd International Symposium on

Automation and Robotics in Construction and Mining: Connected to the Future,

Proceedings, 529. Retrieved from

https://www.engineeringvillage.com/share/document.url?mid=cpx_M4a1f008415429f11

f12M469c10178163171&database=cpx

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van De Walle, R., &

89

Van Campenhout, J. (2011). A semantic rule checking environment for building

performance checking. Automation in Construction, 20(5), 506–518.

https://doi.org/10.1016/j.autcon.2010.11.017

Philosophy Index. (2018). No Title. Retrieved May 9, 2018, from http://www.philosophy-

index.com/logic/symbolic/

Poças Martins, J. P., & Abrantes, V. (2010). Automated code-checking as a driver of BIM

adoption. International Journal for Housing Science and Its Applications.

https://doi.org/10.1017/CBO9781107415324.004

Practices, B. (n.d.). Building Framing Systems, 1–20.

Preidel, C., & Borrmann, A. (2015). Automated Code Compliance Checking Based on a Visual

Language and Building Information Modeling. Proceedings of the 32nd International

Symposium of Automation and Robotics in Construction, 15-18 June, 256–263.

https://doi.org/10.13140/RG.2.1.1542.2805

Rasdorf, B. W. J., & Lakmazaheri, S. (1990). L O G I C - B A S E D A P P R O A C H FOR

M O D E L I N G ORGANIZATION O F DESIGN STANDARDS In general , a design

standard is composed of a set of provisions , where each provision defines a set of rules (

constraints) that have to be satisfied in a give, 4(2), 102–123.

Rhinoceros3D., website. (2018). Retrieved from https://www.rhino3d.com/

See, R. (2008). SMARTcodes : Enabling BIM Based Automated Code Compliance Checking

AEC-ST Conference Presentation – 21-May-08 SMARTcodes : Enabling BIM Based

Automated Code Compliance Checking, (October 2007), 1–7.

Shih, S.-Y., Sher, W., & Giggins, H. (2013). Assessment of the building code of Australia to

inform the development of BIM-enabled code checking system. Proceedings of the 19th

World Building Congress: Construction and Society, 5-9 May, 1–12. Retrieved from

http://hdl.handle.net/1959.13/1050708

90

Sjøgren. (2007). in Norway.

Solihin, W., & Eastman, C. (2015). A Knowledge Representation Approach to Capturing BIM

Based Rule Checking Requirements Using Conceptual Graph. Proc. of the 32nd CIB W78

Conference 2015, 27th-29th October 2015, Eindhoven, The Netherlands, 686–695.

Solihin, W., & Eastman, C. (2015). Classification of rules for automated BIM rule checking

development. Automation in Construction, 53, 69–82.

https://doi.org/10.1016/j.autcon.2015.03.003

STATSBTGG website. (2018). Retrieved from https://www.statsbygg.no/

Tan, X., Hammad, A., & Fazio, P. (2010). Automated Code Compliance Checking for Building

Envelope Design. Journal of Computing in Civil Engineering, 24(2), 203–211.

https://doi.org/10.1061/(ASCE)0887-3801(2010)24:2(203)

Terkaj, W., & Šojić, A. (2015). Ontology-based representation of IFC EXPRESS rules: An

enhancement of the ifcOWL ontology. Automation in Construction, 57, 188–201.

https://doi.org/10.1016/j.autcon.2015.04.010

Uhm, M., Lee, G., Park, Y., Kim, S., Jung, J., & Lee, J. K. (2015). Requirements for

computational rule checking of requests for proposals (RFPs) for building designs in

South Korea. Advanced Engineering Informatics, 29(3), 602–615.

https://doi.org/10.1016/j.aei.2015.05.006

Yang, Q. Z., & Xu, X. (2004). Design knowledge modeling and software implementation for

building code compliance checking. Building and Environment, 39(6), 689–698.

https://doi.org/10.1016/j.buildenv.2003.12.004

Zhang, J., & El-Gohary, N. M. (2017). Integrating semantic NLP and logic reasoning into a

unified system for fully-automated code checking. Automation in Construction, 73, 45–

57. https://doi.org/10.1016/j.autcon.2016.08.027

Zhang, S., Teizer, J., Lee, J. K., Eastman, C. M., & Venugopal, M. (2013). Building

91

Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction

Models and Schedules. Automation in Construction, 29, 183–195.

https://doi.org/10.1016/j.autcon.2012.05.006

Zhou, W., Whyte, J., & Sacks, R. (2012). Construction safety and digital design: A review.

Automation in Construction, 22, 102–111. https://doi.org/10.1016/j.autcon.2011.07.005

92

APPENDIX A: Glossary

Abut or abutting - immediately contiguous to or physically touching, and when used with

respect to a lot or Site, means that the lot or Site physically touches upon another lot, Site, or

piece of land, and shares a property line or boundary line with it.

Setback distance - the minimum distance between the edge of property and where the structure

will be built, the distances with respect to orientation of building are called front setback, side

setback, and rear setback.

Corner Lot - a lot situated at the intersection of two or more streets having an interior angle

of intersection of 135 degrees or less, or, where one street bends to create an interior angle of

135 degrees or less.

Lane - an alley as defined in the Highway Traffic Act, 1980.

Zone - specific group of listed Use Classes and Development Regulations, which regulate the

use, and development of land within specific geographic areas of the City. The Use Classes

and Development Regulations are contained in Parts II and IV of this Bylaw and may be subject

to the regulations contained in Part I of this Bylaw, while the geographic areas to which they

apply are shown on the Zoning Map, comprising Part III of the Bylaw.

93

APPENDIX B: User Manual

User manual for DCheck add-on application software,

The step by step process for using the add-on application is as follows:

Step 1. The residential building to be checked for the lot design in according to Edmonton

zoning by laws and framing design according to Alberta building code should be first

designed in Autodesk Revit 2017 with level of details more than LOD 300,

Step 2. Property lines should be drawn with respect to site measurements and framing of the

building model should be done.

Step 3. After completing designing the model, click on the DCheck button in top ribbon in

Revit application, then by clicking on project data button an user interface windows

will pop-up as shown in the figure 1.

Figure 1.User interface of DCheck application.

Step 4. User needs to provide the information related to Edmonton zoning and the wood

framing, that is user needs to select zone where the house is being built from a drop

94

down menu with list of ten different zones, that are Single Detached Residential Zone

(RF1), Residential small Lot Zone (RSL), Low Density Infill Zone (RF2), Planned Lot

Residential Zone (RPL), Small Scale Infill Development Zone (RF3), Semi-detached

Residential Zone (RF4), Residential Mixed Dwelling Zone (RMD), Row Housing

Zone, Urban Character Row Housing Zone (UCRH), Medium Density Multiple Family

Zone (RF6).

Figure 2. Main user interface

Select the residential house intended to build in those zones from drop down list of

single-detached housing (sdh), semi-detached housing (ssh), duplex housing (dh),

limited group homes (lgh), garden suite (gs), secondary suites (ss), and minor home-

based business (mhb).

Select the building fronts on condition and other zoning conditions like lane abutting

site or not. And is it a corner site or not which are related to residential building site

95

conditions.

Step 5. By clicking on framing setting, provide some information regarding framing, like type

of lumber material grade. Load details like live load, dead load and snow load on the

residential building.

Check mark on some condition if present depending on design of residential building,

that are whether attic is accessible stairs or not. Roof with storage area.

Figure 3. interface to provide wood framing details.

Step 6. Provide all the details related to architect, builder and owner of the project and site

location details with respect to Edmonton zoning, all this information’s are same that

needs to be provided even with the submission of 2D CAD drawings manually. And

then press Ok.

Step 7. By clicking on Check Bylaws button, the application will run in background and

windows with bylaw checking related to lot dimensions in accordance with Edmonton

municipal bylaws will be provided in text format.

Which provides the user with all the error’s present in the lot design in BIM model

96

designed. Each error will be provided with reason for failure and information have that

can be corrected to compile with bylaws.

Figure 4. Bylaws check results window showing errors present in design.

Step 8. Press Ok. And then by clicking on Framing Check button in top ribbon, that will pop

up the windows with checking report for the framing design of model.

The report will provide reason for failure and information have it can be corrected, by

clicking on select objects button in windows that will highlights all the error related

objects in the building model, for easy identification of errors and can be corrected.

97

Figure 5. Framing check results window showing errors present in design.

Step 9. After correcting all the errors present in design according to information provided in

the report, then again by clicking on bylaw Check and framing Check button,

application will run and provide a text report if further any errors present in redesigned

model.

Step 10. If there were no errors present in the designed model, then a report with text, check

successful message will be shown as below figure.

98

Figure 6. Final check results without any errors in design.

99

APPENDIX C: All the Regulations Related to Framing from Building Code

Table 5. Framing Regulations from Alberta Building Code 2014.

Object

Conditions Operator Threshold
Value

Studs

Backing
lumber

Small repetitive structural members are spaced.

Span of any structural member (except post
construction, beam, and plank construction and
log construction).

Top plates in walls shall not be notched, drilled
or
reduced the undamaged width to.

Ends of wood joist, beams, and other members
framing into masonry or concrete where bottom
of member is below GL – should be treated to
prevent decay or provide space at end or side.

Non-load bearing walls should be supported on.

Backing lumber shall be.

Interior Load bearing walls parallel to joist
should be supported by Beams/ walls Unless
joists are designed to support.

Loadbearing interior walls perpendicular to
floor joist shall be located within from joist
support.

All studs should be placed at.

Except, wall studs support only load from attic
not accessible by a stairway are permitted
where studs are clad on at least on side with
plywood, OSB or waterboard fastened and
portion of roof supported by studs do not exceed
2.1m. in width. Can be place.

Exterior corners should have at least.

Size of wall plates thickness.

Maximum.

Maximum.

Minimum.

Minimum.

Minimum.

Maximum.

Minimum.

Minimum.

600 mm. o.c.,

12.20 m.

50 mm.

12 mm.

Floor joist. /
on backing
b/w joist.

38x89 mm.
@ Max. 1.2
m. apart.
900mm. if
that wall
NOT
supports
floor.
OR
600mm. if
that wall
supports
floor.
right angle
(90o) to the
wall face.

flat (0o).

2 studs.

38 mm.

100

Top/bottom
plates

If studs are located directly -thickness.
 -width

Studs on sides of openings.
If lintel opening span is more than 3m. long -
studs should be tripled on each side.

If lintel opening span is less than 3m. long -
double studs can be placed on each side.

For non-loadbearing interior walls and walls not
require fire rating.

Opening is less than or equal to required stud
spacing and no such two openings are in
adjacent spaces.

Bottom plate should be provided in all the
cases.

Bottom plate should not project more than.

Top plats in load bearing wall.

Except, wall contain a lintel provided the top
plate forms a tie across the lintel.

Top plate can be not provided for load bearing
wall - if lintel is tied to the adjacent wall section
with.

Minimum.
Minimum.

Equal.

Equal.

Minimum.

At least.

Minimum.

Equal.

Minimum.

19 mm.
Width of wall
stud.
2 from
bottom of
lintel to top
of bottom
wall plate, &
1 from
bottom of top
wall plate to
bottom wall
pate.
1 from
bottom of
lintel to top
of bottom
wall plate, &
1 from
bottom of top
wall plate to
bottom wall
pate.

single studs
on both sides.

single studs
on both sides.

1

 1/3 the plate
width over
the support
2 plates shall
be provided.

1 top plate.

75×150×0.91
mm thick
galvanized
steel.
OR

101

Studs

Floor
Height

Framing over openings.
In non-loadbearing walls - for normal wall.

- for fire resistance
wall.

Notching or drilling of studs.

If more than that, with 2 in. lumber nailed to the
sides of the stud and extending at least 40mm.
and if only solid wood remains.
same for load bearing walls too, at least 2/3 of
solid portion of stud should be remaining or else
it should be.

Partition wall if it does not contain a swinging
door.

Single studs can be used at door openings in
partition wall and can have single top plate
with.

Floor, roof, and ceiling framing members are
permitted to be notched, that notch is located
within half the joist depth form edge and is not
deeper than.

Wall studs which are load bearing or 40 mm. -
load bearing should be not damaged, drilled or
if done damaged portion should be.

Clear Height.
Ceiling height for secondary suite.

Under beams and ducting in secondary suite.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

19×89×300
mm wood
splice nailed
to each wall
section with
Min. 63mm
nails.
38 mm thick
with same
width as stud.
2, 38 mm
thick with
same width
of studs.

1/3 of stud
depth.

600 mm. (24
in.) on each
side.

2×4 nominal
studs at 16 in.
c/c with wide
face of stud
parallel to the
wall.

2 in. thick
lumber with
same width
as the studs.
1/3 of depth
of member.

1/3 of depth
of member.

1.95 m.

1.85 m.

102

Openings.

Roof

Other than above ceiling Height should be.

Storage garage.

Clear height in exit and access to exit (except
for stairways, doorways, and storage garage).

Clear height in exits and access to exit in
storage garages.

For Residential (group C) buildings can have
stories up to.

All other occupancies can have stories up to.

Roof space or attic should be provided with
opening where open space in attic measures
-Area.
-Length/width.
-Height.

Opening for attic should be.

Opening can be less than above when
Area less than.
And all dimensions.

Roof truss members.
or otherwise weakened unless such notching is
allowed in design of truss.

Roof and ceiling framing members openings
greater than 2 rafter or joist spacings wide.

Roof truss if not designed according to part 4,
should support.

When a compression web member in roof
trusses exceed provided with continuous
bracing buckling.

Minimum.

Minimum.

Minimum.

Minimum.

Maximum.

Maximum.

Equal.

Minimum.

Equal.
Minimum.

Minimum.

At least.

2.1 m.

2.0 m.

2.1 m.

2 m.

3.

2/3.

3 m2
1 m. or more.
600 mm.

550 × 900
mm.

0.32 m2
500 mm.

shall not be
notched,
drilled.

shall be
doubled on
each side of
openings.
Ceiling load
(DL+LL) of
0.35kPa + 2
2/3 times the
specific live
roof load for
24 hr.
19 × 89 mm.
nailed at right
to web with
2, 63 mm
nails for each
member.

103

Floor.

Strapping.

A roof that slop is less than 1:3 should be
vertical supported at the peak with.

Gable-end projection extending more than 300
mm.(12 inches) Beyond the wall should be
supported.

Crawl space, an access opening for
-single dwelling unit.
-for other units.

Live load on subfloors and floor framing.

Holes drilled in roof, floor or ceiling framing
members shall be.

And holes should be located, unless member
depth increased by size of hole.

Joist supported by beam when connected on
sides with

- with ledger strip nailed to side of beam.

- with ledger strip nailed to side of beam
with at least.

Strapping in joist should be with

Distance from support or from other strapping
located not more than.

Bridging in joist should be with

from support or from other strapping located
not more than.

strapping not required if furring strip are
fastened directly to the joist or a panel-type
ceiling finish complying directly to the joists.

Minimum.
Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Maximum.

Minimum.

Maximum.

2×6 ridge
beam
supported at
1.2 m (4 ft.)
vertical
struts.
By framing
members
called
lookouts.

500×700
mm.
550×900
mm.

2.4 kPa

1/4 of depth
of member.
50 mm from
edges.

38 × 64 mm.
lumber.

38 × 38 mm.
Four 89 mm
dia. Bolts

19×64mm.
lumber,
nailed at
bottom of
joist.
2,100 mm.

19×64 mm
/38×38 mm
and nailed at
bottom of
joist.
2,100 mm.

12.7 mm
thick.
19×89 mm @
Max. 600

104

Joist

When ceiling is attached to woof furring
- ceiling finish gypsum board, plywood or OSB.
- furring shall be.

Header joist around opening should be doubled
if opening span.

Trimmer joist around floor opening shall be
doubled if length of header joist.

If header joist greater than 3 m for header, 2 m.
for trimmer in length. then size of header should
be decided by calculations.

Floor joist supporting roof load can be
cantilevered beyond their support. Only for roof
load, shall not support floor load. Unless
designed.

Cantilever floor joist right angle to floor joists,
the tail joist in cantilever portion shall extend
inward away from support to a distance of.

A single top plate may be installed in stud walls
provided the plate is adequately tied at joints
provided the rafters or joist are cantered over
the studs with tolerance of.

Joist end bearing should be at least.

Bridging in joist are provided where nominal
depth to thickness ratio of joist exceed installed
at

Support of partitions - may be off set from
supporting members by no more than.

Notches made on the upper lumber joists near
their ends must be located within.

And their depth cannot be more than.

Maximum.

Greater
than.

Maximum.

Minimum.

Minimum.

Minimum.

Equal.

Equal.

Equal.

Equal.

mm o.c.,
OR
19×64 mm @
Max. 400
mm o.c.,

1.2 m.

800 mm

400 mm. with
38×184 mm
joist.
OR
600 mm with
38×235 mm
joist. or
more.

6 times the
length of the
cantilever.

24 mm.

1 ½ in. on
wood.
3 in. on
masonry.
8 ft intervals.

Depth of joist

½ joist depth
from support.

1/3 of joist

105

Columns

Notches are not permitted on the bottom of the
joists.

When load bearing wall runs parallel to joist or
load bearing wall in the basement.

Load bearing wall located at right angle to floor
joist Should be located not more than

- if wall not support a floor.

- supports one or more floors.

Notches at top of joist, deeper joist must be used
so that the net depth at the notch is equal to or
greater than.

Non-load bearing wall parallel to the joist
should bear on joist or on backing between
joists, backing should be

columns
should be for not more than.
live load not exceeds. supported
length of joist not exceed.
sum of snow and occupancy load does not
exceed.

Built-up column shall consist of.

Bolted together with not less than.

Nailed together with not less than.

Wood column should be separated from
concrete in contact with ground by.

the width or diameter of column should be

columns for garages and carports

- round column
- rectangular column

it must.

Maximum.

Maximum.

Equal.

Minimum.

Minimum.
Maximum.
Maximum.
Maximum.

Minimum.

Minimum.

Minimum.

Equal.

Equal.

Minimum.

Maximum.

depth.

be supported
by beam.

900 mm. (36
in.) from the
joist support.
600 mm. (24
in.) from joist
support.

Joist depth.

2×4 in.
nominal with
spaced at 1.2
m (4 ft) or
less on
center.

2 floors.
2.4 kPa.
5 m.
4.8 kPa.

38mm. thick
full-length
members.
9.25 mm.@
Max. 450
mm. o.c.,
76 mm. @
Max. 300
mm. o.c.,
0.05 mm
Polyethylene
film.

Width of
supported
member.

184 mm.

106

Doors

Stairs

- Except above columns can be.

In plank and beam framing method beams of
adequate size is spaced up to.

Joist can rest on top of beam in which case the
top of beam is level with the top of the sill plate.
This joist should lap above the beam and the
recommended length of lap.

House with secondary suite, entrance
door width.
door height.

All doors in at least one line of passage from
exterior to the basement utility rooms.
door width.
door height.

Bathroom, water-closet room shower, doors
located off hallways.
door width.
door height.
(for secondary suite shower room) Door height.

Doorways to public water-closet rooms.
door width.
door height.

Except for doors and corridors width of every
exit.
door width.

Clear height of doorway (for exit doors, doors
open into or located within public corridor, and
doors open into or located in facility that
provides access to exit a suite).
door height.
door width.(if only one leaf door).
door width. (if multi-leaf doors are installed
with active leaves).

exit stairs for single or with secondary suite –
Width

except above mentioned for residential homes –
width

exit stairs and public stairs serving other than
residential/ 8 mm. per person. – width

Maximum.

Minimum.
Minimum.

Minimum.
Minimum.

Minimum.
Minimum.
Minimum.

Minimum.
Minimum.

Minimum.

Minimum.
Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

140×140mm.
89×89 mm.

8 ft
300 mm. (12
in).

810 mm.
1980 mm.

810 mm.
1980 mm.

610 mm.
1980 mm.
1890 mm.

810 mm.
2030 mm.

900 mm.

2030 mm.
800 mm.

1210 mm.

860 mm.

900 mm.

900 mm.

107

Stairs
Landing

clear height over stairs for single or with
secondary suite including their common space
– height.

under beams and ducting in secondary suites –
height

except for stairs in dwelling unit,
shall be provided with.

vertical height of any flight of stairs shall not
exceed.

dimensions for risers (nosing to nosing):

- Private

- Public

dimensions for tread
- Private

- Public

Angled tread

tread dimension

uniformity and tolerance for risers and treads.
- b/w adjacent tread and landing.
- b/w tallest and shortest risers in flight.

slop of treads should not exceed.

winders angle should be in between.

when winders incorporated into stair, each set
shall not turn through more then.

spiral stairs are used if

- rise is.
- average run.
- width of flight.

landing dimensions
For single dwellings - in straight run or landing

Minimum.

Minimum.

Maximum.
Minimum.

Maximum.
Minimum.

Maximum.
Minimum.

Maximum.
Minimum.

Minimum.

Maximum.

Equal.

Maximum.

Equal.

Maximum.

maximum.
More than.
Less than.

1950 mm.

1850 mm.

at least 3
risers in
interior
flight.

3.7 m.

200 mm.
125 mm.

180 mm.
125 mm.

335 mm.
210 mm.

No Limit
280 mm.

200 mm.

Run
dimension +
25 mm.

5 mm.
10 mm.

1 in 50

30o to 45o

90o

230 mm.
140 mm.
660 mm.

108

Decks

turning through less than 30o within dwelling
unit.

- Width.
- Length.

For exterior stair.
- Width.
- Length.

Landing turning through an angle between 30°

to 90.
- Width. (measured at inside edge of

landing)
- Length. (measured from outside of the

landing)

Landing turning through an angle more than 90

o
- Width.
- Length.

For other than single dwellings - in straight run
or landing turning through less than 30o

- Width.
- Length.

Landing turning through 30o or more.

- Width.

- Length.

Clear height over landing in single dwelling or
A house with secondary suite – Height.

Except as permitted above – height.

wood stringers – thickness.

Decks, Porches and balconies over 600 mm.
and less than 1800 mm. above the finished
ground level are required have guard.

Greater than 1800 mm. should have.

Decking thickness should be at least.

Minimum.
Minimum.

Minimum.
Minimum.

Minimum.

Minimum.

Minimum.
Minimum.

Minimum.
Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

Minimum.

at least.

at least.

Minimum.

Width of
stair.
860 mm.

Width of
stair.
900 mm.

230 mm.

370 mm.

Width of
stair.
Width of
stair.

Width of
stair.
Lesser of
width of
stairs/1100
mm.
Width of stair
at right angle
to path of
travel.
Width of
stair.
1950 mm

2050 mm

25 mm

900 mm high.

1070 mm
high.
32 mm. (1 ¼
in.) @ 16 in
centers OR
38 mm. @

109

Low level decks are built at least

Minimum.

24 in centers.

150 mm (6
in.) from
ground.

Table 6. Maximum spans for floor joist table

SPF(Spruce-Pine-Fir)

grade Joist
size,
mm.

Joist spacing with
strapping, m

Joist spacing with
bridging, m

With strapping and
bridging, m

300 400 600 300 400 600 300 400 600
Selected
structural

38×89
38×140
38×184
38×235
38×286

1.95
3.05
3.66
4.31
4.91

1.81
2.85
3.48
4.10
4.67

1.64
2.57
3.31
3.90
4.45

2.06
3.24
3.94
4.59
5.18

1.87
2.95
3.70
4.31
4.87

1.64
2.57
3.38
4.05
4.57

2.06
3.24
4.12
4.76
5.34

1.87
2.95
3.84
4.44
4.98

1.64
2.57
3.38
4.14
4.64

No. 1 and
No.2

38×89
38×140
38×184
38×235
38×286

1.86
2.92
3.54
4.17
4.75

1.72
2.71
3.36
3.96
4.52

1.58
2.49
3.20
3.77
4.30

1.99
3.14
3.81
4.44
5.01

1.81
2.85
3.58
4.17
4.71

1.58
2.49
3.27
3.92
4.42

1.99
3.14
3.99
4.60
5.17

1.81
2.85
3.72
4.29
4.82

1.58
2.49
3.27
4.00
4.49

No. 3 38×89
38×140
38×184
38×235
38×286

1.81
2.84
3.47
4.09
4.67

1.68
2.64
3.30
3.89
4.44

1.55
2.43
2.95
3.61
4.19

1.96
3.08
3.74
4.36
4.92

1.78
2.80
3.52
4.09
4.62

1.55
2.43
2.95
3.61
4.19

1.96
3.08
3.92
4.52
5.08

1.78
2.80
3.61
4.22
4.73

1.55
2.43
2.95
3.61
4.19

Construction 38×89 1.81 1.68 1.55 1.96 1.78 1.55 1.96 1.78 1.55
Standard 38×89 1.70 1.58 1.44 1.88 1.71 1.44 1.88 1.71 1.44

110

APPENDIX D: Extended Data Structure Developed for Prototype Excerpt

from the C#.Net

Excerpt from the C#.Net codes for Extended data structure developed for deriving some

attribute values in DCheck platform:

using Autodesk.Revit.DB;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Checking_Prototype

{

 public static class RevitExtensions

 {

 // for getting width of property line

 public static double GetWidth(this BoundingBoxXYZ bBox)

 {

 return bBox.Max.Y - bBox.Min.Y;

 }

 // for getting depth of property line

 public static double GetDepth(this BoundingBoxXYZ bBox)

 {

 return bBox.Max.X - bBox.Min.X;

 }

 // getting face details of object

 public static List<Face> GetFaces(this Element element)

 {

 var faces = new List<Face>();

 var geom = element.get_Geometry(new Options());

 foreach (GeometryObject item in geom)

 {

 if (item is Solid)

111

 {

 var solid = item as Solid;

 foreach (Face f in solid.Faces)

 faces.Add(f);

 }

 else if (item is GeometryInstance)

 {

 var g = item as GeometryInstance;

 var model = g.GetInstanceGeometry();

 foreach (var g1 in model)

 {

 if (g1 is Solid)

 {

 var solid = item as Solid;

 foreach (Face f in solid.Faces)

 faces.Add(f);

 }

 }

 }

 }

 return faces;

 }
 //for knowing the slop of roof

 public static bool IsSlopedFacein3D(this Face face)

 {

 var triangle = face.Triangulate().get_Triangle(0);

 var pt1 = triangle.get_Vertex(0);

 var pt2 = triangle.get_Vertex(1);

 var pt3 = triangle.get_Vertex(2);

 var vec1 = pt1 - pt2;

 var vec2 = pt3 - pt2;

 var normalVec = vec1.CrossProduct(vec2).Normalize();

112

 if (normalVec.Z.IsApproxEqual(0) || (normalVec.X.IsApproxEqual(0) &&

normalVec.Y.IsApproxEqual(0)))

 return false;

 return true;

 }

 public static bool IsGableRoof(this FootPrintRoof roof)

 {

 var faces = roof.GetFaces();

 if (faces.Any(o => o.IsSlopedFacein3D()))

 return true;

 return false;

 }

 public static bool IsParralel(this Curve c1, Curve c2)

 {

 var dx1 = c1.GetEndPoint(1).X - c1.GetEndPoint(0).X;

 var dy1 = c1.GetEndPoint(1).Y - c1.GetEndPoint(0).Y;

 var dx2 = c2.GetEndPoint(1).X - c2.GetEndPoint(0).X;

 var dy2 = c2.GetEndPoint(1).Y - c2.GetEndPoint(0).Y;

 var cosAngle = Math.Abs((dx1 * dx2 + dy1 * dy2) / Math.Sqrt((dx1 * dx1 +

dy1 * dy1) * (dx2 * dx2 + dy2 * dy2)));

 if (cosAngle > 0.1)

 return true;

 return false;

 }

 public static bool IsOverlapTotaly(this Curve c1, Curve c2)

 {

 var c1_2D = c1.ToLine2D();

 var c2_2D = c2.ToLine2D();

 var pt1 = c1_2D.GetEndPoint(0);

 var pt2 = c1_2D.GetEndPoint(1);

 var proj1 = c2_2D.GetEndPoint(0).GetProjection(c1_2D);

113

 var proj2 = c2_2D.GetEndPoint(1).GetProjection(c1_2D);

 if ((proj1.IsAlmostEqualTo(pt1) || proj1.IsAlmostEqualTo(pt2)) &&

(proj2.IsAlmostEqualTo(pt1) || proj2.IsAlmostEqualTo(pt2)))

 return true;

 return false;

 }

 public static bool ArePointsInSameSide2D(this Curve line, XYZ pt1, XYZ pt2)

 {

 var line2D = line.ToLine2D();

 var pt1_2D = pt1.ToPoint2D();

 var pt2_2D = pt2.ToPoint2D();

 var vec1 = (pt1_2D.GetProjection(line2D) - pt1_2D).Normalize();

 var vec2 = (pt2_2D.GetProjection(line2D) - pt2_2D).Normalize();

 if (vec1.IsAlmostEqualTo(vec2))

 return true;

 return false;

 }

 public static double DistanceToProjection2D(this XYZ pt, Curve line)

 {

 var pt2D = new XYZ(pt.X, pt.Y, 0);

 var line2D = Line.CreateBound(line.GetEndPoint(0).ToPoint2D(),

line.GetEndPoint(1).ToPoint2D());

 return (pt2D.GetProjection(line2D) - pt2D).GetLength();

 }

 public static XYZ ToPoint2D(this XYZ pt)

 {

 return new XYZ(pt.X, pt.Y, 0);

 }

 public static Curve ToLine2D(this Curve line)

 {

114

 return Line.CreateBound(line.GetEndPoint(0).ToPoint2D(),

line.GetEndPoint(1).ToPoint2D());

 }

 //to get edge distance

 public static XYZ GetProjection(this XYZ pt, Curve line)

 {

 var start = line.GetEndPoint(0);

 var end = line.GetEndPoint(1);

 var v1 = pt - start;

 var v2 = end - start;

 var l2 = v2.X * v2.X + v2.Y * v2.Y;

 var dot = v1.DotProduct(v2);

 var nDist = dot / l2;

 return new XYZ(start.X + v2.X * nDist, start.Y + v2.Y * nDist, start.Z +

v2.Z * nDist);

 }

 public static XYZ GetMidPoint(this Curve line)

 {

 return line.GetEndPoint(0) + (line.GetVector().Normalize() * 0.5 *

line.Length);

 }

 public static bool IsLeft(this Curve line,XYZ pt)

 {

 var vec = line.GetVector().ToPoint2D();

 var normVec = new XYZ(-vec.Y, vec.X,0).Normalize();

 var ptVec = (pt - pt.GetProjection(line)).Normalize();

 if (normVec.IsAlmostEqualTo(ptVec))

 return true;

 return false;

 }

115

 public static XYZ GetVector(this Curve line)

 {

 return line.GetEndPoint(1) - line.GetEndPoint(0);

 }

 //getting boundaries of rectangle

 public static List<Curve> GetRectangleBounds(this BoundingBoxXYZ bBox)

 {

 var minX = bBox.Min.X;

 var maxX = bBox.Max.X;

 var minY = bBox.Min.Y;

 var maxY = bBox.Max.Y;

 var list = new List<Curve>();

 list.Add(Line.CreateBound(new XYZ(minX, minY, 0), new XYZ(maxX, minY, 0)));

 list.Add(Line.CreateBound(new XYZ(maxX, minY, 0), new XYZ(maxX, maxY, 0)));

 list.Add(Line.CreateBound(new XYZ(maxX, maxY, 0), new XYZ(minX, maxY, 0)));

 list.Add(Line.CreateBound(new XYZ(minX, maxY, 0), new XYZ(minX, minY, 0)));

 return list;

 }

 public static bool IsApproxEqual(this double num1, double num2)

 {

 return Math.Abs(num1 - num2) < 0.000001;

 }

 public static XYZ GetNormalVec(this Face face)

 {

 var mesh = face.Triangulate();

 var tra1 = mesh.get_Triangle(0);

 var pt0 = tra1.get_Vertex(0);

 var pt1 = tra1.get_Vertex(1);

 var pt2 = tra1.get_Vertex(2);

 var vec1 = pt1 - pt0;

 var vec2 = pt2 - pt0;

116

 return vec1.CrossProduct(vec2).Normalize();

 }

 public static double GetNormalDistanceBetween(this Curve c1,Curve c2)

 {

 return c1.GetEndPoint(0).DistanceToProjection2D(c2);

 }

 public static bool Contains(this Curve line, XYZ pt)

 {

 var dist1 = pt.DistanceTo(line.GetEndPoint(0));

 var dist2 = pt.DistanceTo(line.GetEndPoint(1));

 if (Math.Abs(line.Length - (dist1 + dist2)) < 0.0001)

 return true;

 return false;

 }

 public static Curve GetCurve(this Element elem)

 {

 return (elem.Location as LocationCurve).Curve;

 }

 public static XYZ GetCentroid(this BoundingBoxXYZ bBox)

 {

 return bBox.Min +((bBox.Max - bBox.Min) * 0.5);

 }

 public static void Draw(this Curve c, Document doc)

 {

 using (var t = new Transaction(doc))

 {

 t.Start("Create line");

 doc.Create.NewDetailCurve(doc.ActiveView, c);

 t.Commit();

 }
 }
 }
}

