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ABSTRACT

When stratified or bottom-water reservoirs are considered for waterflooding,
channeling of the injected fluid into the high permeability zone, or in the case of betton-
water, channeling through the bottom-water zone, is of major concern. In Alberta and
Saskatchewan many light and moderately heavy oil reservoirs contain a high water saturation
zone underlying, and in communication with, the oil zone. Waterflooding such reservoirs
may still be an economically viable process. This research addresses the problem of
waterflooding such reservoirs.

Different strategies were investigated to reduce the water mobility in the bottom-water
zone, while waterflooding the oil zone, to enhance oil displacement. Polymer solution with a
concentration of 500 ppm was used as a blocking agent while waterflooding the oil zone to
improve vertical sweep efficiency. Different surfactant concentrations were used to prepare
10% quality oil-in-water stable emulsions as blocking agents in the bottom-water zone while
polymer was used as the mobility control agent in the oil zone. Horizontal wells were used
for waterflooding in the presence of bottom-water. They were also used in conjunction with
polymer and emulsions to flood the model.

A new mathematical equation was developed to predict accurately the volunie of injected fluid
channeling into the bottom-water layer during a waterflood. The mathematical model
accounts for crossflow while waterflooding a reservoir underlain with bottom-water. A
calculation procedure for oil recovery performance using the crossflow equations was
developed. It is shown that using polymer as the mobility control agent in the oil zone and
emulsion as the blocking agent in the water zone minimizes crossflow. The model was also
used to predict oil recovery performance observed by previous investigators243.55 with an
error of 8% or less. The experiments conducted in this study showed that using blocking
agents (viz. polymer or emulsion) when waterflooding reservoirs with bottom-water
improved oil recovery over that obtained using a conventional waterflood. The use of a
horizontal injector and producer pair in waterflooding prevented formation of an oil bank in
the water zone, but it was no better than a vertical injector-vertical producer combination as
far as oil recovery is concerned.
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Chapter 1

INTRODUCTION

In Alberta and Saskatchewan many light and moderately heavy oil reservoirs contain a
high water saturation zone underlying, and in communication with, the oil zone.
Waterflooding such reservoirs may still be an economically viable process. However,
conventional waterflood has not lived up to expectations. When stratified or bottom-water
reservoirs are considered for waterflood, channeling of the injected fluid into the high
permeability zone, or in the case of bottom-water, channeling through the bottom-water zone,
is of major concern. Waterflood performance can be improved if effective techniques can be
developed to partially plug the bottom-water zone. However, there is relatively little
systematic investigation of flow mechanics in bottom-water models to be found within the

petroleum literature.

In view of the foregoing, this study is an effort to add to the understanding of the
flow behaviour in bottom-water formations. It especially examines experimental recovery
performance under such conditions. To achieve this, a new crossflow equation has been
developed to accurately predict the volume of the injected fluid channeling into the bottom-
water layer as well as the ultimate oil recovery. Effective techniques have also been devised
to waterflood bottcm-water reservoirs using polymer and emulsion as mobility control and/or
blocking agents.



Chapter 2

LITERATURE REVIEW

Waterflooding was practiced as an art for years before a scientific basis for watertlood
design was developed. An understanding of watcrflooding evolved primarily in the late
forties from extensive research and development efforts by companies and universities
combined with field experience in the seventies. The practice of waterflooding apparently
began accidentally. Waterflooding, called secondary recovery, because the process yields a
second batch of oil after a field is depleted by primary production, extended slowly
throughout the oil-producing areas of the United States in the late forties.

2.1 Conventional Waterflood

Waterflooding is a relatively inexpensive secondary recovery method that is being used
widely in the petroleum industry. However, many reservoirs still show poor performance
under a conventional waterflood, especially if a high water saturation zone is present. The
major reason for this is insufficient and incomplete sweep of the reservoir by the injected
water, which tends to move to the producing wells through the more permeable portions of
the reservoir, thus, giving a low recovery.

2.2 Waterflooding Layered Reservoirs

Several laboratory model studies have been undertaken to investigate the effect of
various parameters on oil recovery in layered reservoirs. Documented ¢vidence reveals that
such reservoirs often perform poorly under conventicnal waterflooding. The presence of
bottom-water, as is the case in this study, aggravates the problem. In view of this, as early as
the sixties, many techniques were tried to improve the waterflood performance in stratificd
reservoirs underlain by, and in communication with, bottom-water.

2.2.1 No Crossflow

The behaviour of stratified systems is usually predicted by the Stiles! and Dykstra-
Parsons2 methods or some modification of these. In these two methods, the reservoir is
divided into discrete homogencous layers with no crossflow between layers. The mobility
ratio is assumed to be unity in the Stiles! method while in the Dykstra and Parsons2 method it
is allowed to vary. In Dykstra and Parsons? work, initial oil saturation was the most
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important governing variable as far as oil recovery is concerned. Since crossflow was not
considered in their model, Dykstra and Parsons? developed mathematical equations to
compute the velocity of the interface in each layer, considering a two layer model.

2.2.2 Crossflow

For reservoirs in whick vertical communication exists between layers of differing
permeability, the problem of waterflooding is less severe, according to Jordan3. Evidence
has been obtained from laboratory experiments (Jordan et al.4) that demonstrates
quantitatively the effects of capillarity and the importance of flooding stratified reservoirs at
such rates that beneficial effects of imbibition are realized. Henley et al.5 studied the effects of
well spacing, fluid mobilities, rates of production, capillary and gravity forces, well
penetration and the well completion technique on oil recovery performance in a scaled model
of a bottom-water drive. Through displacement tests they showed how well-spacing to the
oil-zone-thickness ratios affected recovery for a certain producing water-oil ratio. In layered
reservoirs channeling is observed to be more severe because the injected water channels into
the high permeability zones (Robertson and Oefelein®). Fitch and Griffith? conducted an
experimental and mathematical investigation of some factors that control miscible flood
performance. They noticed that alternate gas-water injection behind a miscible front
significantly enhanced miscible flood performance, both within a single layer and in a multi-
layer. It was concluded that injection of a small volume of water ahead of the solvent could
improve the dispersion of solvent in a layered system.

Khan® used a scaled layered model to study water coning. He designed his model
using graded sand consolidated with epoxy resin as the oil zone, and unconsolidated sands of
different mesk sizes as the water zone. He concluded that the mobility ratio had a significant
effect on the water cut and the degree of water coning for a given production rate.

Mungan? used a cylindrical stratified model to investigate the effect of coning. He
injected his fluids from the bottom. It was observed that the tighter layers appeared to have
higher saturation at the time of breakthrough.



2.2.2.1 Analytical and Laboratory Studies

In view of the complexities associated with crossflow behaviour, most analytical
solutions have been limited to two-layered models within specified conditions, while multi-
layer model studies are restricted to numerical solutions only.

Katz and Tek!0 studied the flow of fluids in stratified porous systems with crossflow
between layers. They investigated mathematically the unsteady-state flow of slightly
compressible fluids during depletion of bounded stratified porous systems. Their study was
also restricted to a single-phase flow system. It was reported that the performance of
stratified systems, in terms of cumulative flux as a function of time, lay at all times between
bounds established from single-layer theory. That is, the upper bound was given by treating
the system as a single layer with arithmetically averaged physical properties. The
corresponding lower bound was the summation of the fluxes from each layer treated
individually. They pointed out that the variation in performance of stratified systems between
the upper and lower bounds was determined by the extent to which crossflow occurred in the
system. It was concluded that the early depletion performance of a stratified system lay near
the lower bound, and this tended toward the upper bound as time and the radius of drainage
increased.

Russell and Prats!! investigated mathematically, the performance of a well in a
bounded, layered reservoir with inter-layer crossflow. The system was composed of a
centrally located well in a bounded cylindrical reservoir consisting of two layers of
contrasting physical properties. The reservoir contained a single fluid. They concluded that,
except for early time, in most practical cases the performance of a two-layer reservoir ccould
be represented by that of a single-layer reservoir. The mathematical model they developed
demonstrated that, except for early times, the behaviour of a two layered reservoir with
crossflow could be duplicated by that of an equivalent single layered reservoir, with the same
pore volume and the same drainage and well bore radii, as well as a flow capacity equal to the
sum of the flow capacities of the layers in the crossflow system.

Lambeth and Dawe!2 conducted experimental and theoretical studies of displacements
in heterogeneous porous media. Their experiments were carried out with layered systems and
the displacement fluids had variations in viscosity ratio to study the effect of viscous
crossflow. They observed that crossflow could improve recovery efficiency if properly
accounted for and could lower recovery efficiency if neglected. In their mathematical



derivation they neglected the pressure distribution in the lower layer. This appears to be an
over-simplification of the problem.

Wright et al.!13 studied slug size and mobility requirements for chemically er:hanced
oil recovery in heterogeneous reservoirs. They made changes in the analytical solution
developed by Lambeth and Dawe!2 and added that chemical slug disintegration caused by the
effect of crossflow was more severe than previously considered for heterogeneous
reservoirs. It was observed that a high mobility slug would preferentially sweep the higher
conductance layers, but a low-mobility slug (such as polymer) would tend to some extent to
be pushed by crossflow into the lower-conductance media. For low mobility slugs, they
suggested that the above mechanism must be considered before they are used for waterflood
conformance improvement.

Wright and Dawe!4 studied the influence of mobility ratio on displacement efficiency
for layered porous media. The serious problems that heterogeneous reservoirs pose in
chemical enhanced oil recovery were pointed out in their studies. They reported the lack of
systematic investigation of flow mechanics in heterogeneous reservoirs in the petroleum
literature. Wright and Dawe!4 observed that crossflow was greatest where the composition
changed most rapidly; that is, at the displacement fronts or transition zones between displaced
and displacing fluids. It was pointed out that crossflow of incompressible fluids originated
from three sources: 1) gravity; when fluids have different densities, 2) capillary pressure;
when interfacial tension was large, and 3) viscous forces; when fluids have differing
mobilities. It was concluded that fluid displacements within heterogeneous porous media
involving negligible gravitational, capillary pressure and fluid mixing influences were very
sensitive to mobility ratio, and that viscous crossflow effects played a large part in the flow
mechanics, and must be quantified if predictions of displacement efficiency were to be made.

2.2.2.2 Numerical Studies
For multi-layer reservoirs only numerical solutions have been attempted to examine

the effect of crossflow.

Warren and Cosgrove!S developed a general model that approximates the effect of
crossflow by making a modification in Dietz's theory to account for the variations in
permeability and hydrocarbon pore volume. It was observed that not accounting for all
available permeability data could lead to erroneous predictions in stratified reservoir
performance. By comparing their method of predicting the behaviour of a stratified system



with the Dykstra and Parsons? method, they observed that their method gave lower vertical
sweep for unfavourable mobility ratio and higher values for favourable mobility ratios. This
was attributed to the crossflow effect. They reported that considering a stratified reservoir for
waterflooding, without accounting for crossflow led to large errors in oil recovery
predictions. When reservoirs are underlain with bottom-water the problem is further
aggravated, especially when the water phase is mobile.

Root and Skibal® investigated the crossflow effects during a waterflood in a stratified
reservoir for one incompressible fluid displacing another incompressible fluid of the same
density and viscosity. They concluded that the early breakthrough of displacing fluid could
not be stopped effectively by blocking access to it in the production and injection wells unless
the high permeability zone was completely isolated. When the adjacent strata were in
communication, the single-zone, production-njection method lost much of its effectiveness.

Goddin et al.!7 discussed a numerical study of waterflood performance in a stratified
system with crossflow. In this study, viscous and capillary crossflow were examined in a
field scale model of a two-layer, water-wet sandstone reservoir. It was reported that
maximum crossflow occurred in the vicinity of the flood front in the more permeable layer
just as observed in Barnes'!8 visual model. They concluded that viscous crossflow was a
function of mobility ratio.

Silva and Farouq Ali!® developed a two-phase three-dimensional simulator to
investigate the effect of sele::tive formation plugging in waterflooding a layered model. They
designed a simulator using the Strongly Implicit Procedure (SIP) and this was tested under a
variety of conditions. They observed from their study that partial plugging of high
permeability layers was ineffective if the layers were in communication. They concluded that
reservoirs consisting of a bottom water zone may be susceptible to efficient waterflooding.

El-Khatib?0 developed a mathematical model for waterflood simulation in linear
stratified non-communicating layers with no crossflow, and for communicating layers with
complete crossflow ( that is, lower and upper bounds in the Katz and Tek!0 study). The
study revealed that the effect of crossflow between layers increased the oil recovery at
favourable mobility ratios and decreased it at unfavourable mobility ratios in waterflood
performance predictions.



Wright et al.2! investigated the basic flow mechanisms and dispersion of an injected
chemical in layered reservoirs. They controlled the layer permeability, fluid viscosity and
flow rate and observed that crossflow increased the dispersion effect.

Ahmed et al.22 conducted experiments to study waterflooding in a two-dimensional,
layered sand model that allowed visual observation. It was reported that intermediate oil
recovery during a waterflood in a stratified reservoir with vertical communication was
sensitive to flow rate, oil viscosity and interfacial tension (IFT). Ahmed et al.22 pointed out
that oil recovery increased when flow rate was reduced. It was concluded that oil recovery
increased considerably when the oil viscosity was decreased.

2.3 Waterflooding in the Presence of Bottom-Water

Efficient and economic recovery of oil in a shallow bottom-water oil reservoir is
recognized as a formidable task. High water cuts and rapidly decreasing oil rates early in the
production life of such reservoirs have in many instances prompted their suspension or
abandonment at very low levels of recovery?3. Reservoir fluid characteristics required for a
prediction of reservoir performance consist primarily of oil and water viscosities at reservoir
temperature and pressure. Rock and fluid properties combine to yield the single most
important characteristic of a waterflood: the mobility ratio. Controlling this ratio is the next
topic of discussion, especially for reservoirs underlain with bottom-water.

2.3.1 Mobility Control

Mobility ratio is perhaps the single most important parameter in waterflooding
bottom-water reservoirs. A number of fluids have been used to control the mobility ratio.
These include thickened water, polymer and emulsions.

2.3.1.1 Mobility Control with Thickened Water

A large number of reservoirs have been partially or completely invaded by bottom
water. An attempt to waterflood such reservoirs can be inefficient if the oil has a high
viscosity because the injected water under-runs the oil and emerges at the producing wells
without having displaced much of the oil. Barnes!® recognized this problem in the early
sixties. To improve sweep efficiency he suggested that the waterflood should be preceded by
a slug of water that has been thickened with a chemical additive. A scaled laboratory model
was constructed to investigate the feasibility of injecting viscous water slugs follcwed by
water to improve recovery, while reducing the producing water-oil ratios. It was pointed out
that the injection of a viscous slug in bottom-water reservoirs would: (1) reduce the duration



of the flood, (2) reduce the cost of lifting the oil and (3) increase the ultimate recovery. He
observed also that injecting a large quantity of a viscous slug into such a system increased the
crossflow of oil ahead of the displacing front and this lowered the water-oil-ratio (WOR)
during the displacement period. The visual model showed that crossflow was most severe
immediately ahead of the front and almost vanished completely at the producing well. The
observed crossflow was not quantified. The study was basically directed towards increasing
the viscosity of water; hence, he did not verify the effect of other chemicals on the relative
permeability to water.

2.3.1.2 Mobility Control with Polymers

One of the oldest techniques to control mobility of water in waterflooding is the use of
polymers. This control agent was shown to be effective in the early sixties by Pve?4. He
performed numerous field and laboratory studies of polymer flooding using polyacrylamide
solutions. It was observed experimentally that the viscosity of the water-soluble polymer
solutions measured in the formation sample departed markedly from those obtained usin ga
viscometer. He quantified the unusual departure of the measured values from the expected
response as the resistance factor, R, and defined it as:

R= (kw/p»w)/(kp/up) = ;\.w/)\.p (2.1)

where |, is the apparent viscosity of the polymer solution in the core. It was assumed that
the permeability was constant. Pye24 pointed out that at constant flow the injection pressure
iises, and this effect was not a core plugging problem because the system reached
equilibrium after some time. It was also observed that the extent of departure from the
measured viscosity value was most pronounced at low concentrations. At higher
concentrations the effect was approximately proportional to the solution viscosity. It was
suggested that this unusual behaviour was a property of only selected water-soluble
polymers, among which were the extensive family of acrylamide polymers and copolymers.
It was recommended that rapid laboratory flood rates should be avoided in order to keep the
resistance factor constant.



Candiford?’ reported that a polymer flood increased oil recovery by improving sweep
c¢fficiency, including microscopic displacement efficiency. He noticed a 15-20 percent
recovery increase for polymer floods over conventional waterfloods, at a water-oil ratio of
10. Another interesting observation made was that a polymer flood led to a significant
increase in oil recovery for linear sand packs that contained layers of different permeability.
Many field examples were cited where the injection of polyacrylamide solution improved oil

recovery.

Mungan et al.26 investigated the nature of polymer floods in porous media by
consecutive flow tests with brine, filtered polymer solution and brine at the same flow rate. It
w2 observed that a change in pressure indicated a change in mobility. Another observation
made was that the shear dependency and apparent viscosity increased with concentration and

molecular weight of the polymer.

Dauben and Menzie?? used polyethylene oxides and reported a dilatant rather than
pseudo-plastic flow behaviour. Contrary to previous researchers, they observed a rather high
flow resistance that was a function of flow rate, pore size, molecular weight of polymer and
polymer concentration. It was shown that the apparent viscosity of a polymer solution
approached the solution viscosity at very low flow rates and increased as the flow rate
increased. This was attributed to the high flow resistance of polyethylene oxide solutions due

to the effects of viscoelasticity.

Sherbomne et al.2% observed that polyrier solution was a more effective flooding agent
than other viscous fluids due tc its "abnormal flow resistance.” It was reported that the
presence of interstitial water aided the displacement efficiency by a waterflood as it
established the water flow channels rather uniformly.

Sarem?” pointed out that certain polymeric waterflood additives, such as partially
hydrolyzed polyacrylamides, imparted a useful but seemingly "abnormal” resistance to flow
of flood water through porous rock. This "abnormal” resistance has resulted in a substantial
incresse in waterflood oil recovery beyond what could normallv * : expected from the
viscosity increase that the polymer caused in the flood water. A w.e¢niy was devceloped and
-qualitatively tested on laboratory data to explain the beneficial abnormal property in terms of
interaction between molecular Coulomb and ionic forces. The theory was to demonstrate
how the polymer could reduce the mobility of water but not that of oil.



Zaidel30 used thickened solution (polymer) for formations underlain by bottom-water.
In his analytical model, he assumed an instantaneous gravitational phase segregation along
the vertical. This meant that the polymer solution entered the region with the residual oil
saturation in a given section on'y s:ter it had filled the zone containing zero oil saturation or
the zone without any oil at all. /i ‘rdicated that a polymer with a mobility lower than that of
water, represented as

R= 24, /A >1, 2.2)

where R is the resistance factor, improved oil recovery by increasing the flow resistance in
the bottom-water zone, resulting in a good sweep efficiency in the oil zone. It was further
pointed out that if the polymer mobility was lowered to a certain value (R=4), the increase in
resistance was primarily due to the oil bank formed in the bottom-water zone during the
displacement. It was reported that polymer flooding of a formation underlain by bottom-
water could have both favourable and unfavourable consequences: in the favourable case, an
increase in the rate of oil displacement would be realized; in the unfavourable case, a certain
amount of the oil would be lost or would flow off into the bottom-water zone if the polymer
mobility was too low. It was, therefore, suggested that polymers with moderate mobility (R=
2 to 3) should be considered for displacement in bottom-water formations, in order to
increase the oil rate during the displacement while minimizing loss of oil to the water zone.

2.3.1.3 Mobility Control with Emulsions

An emulsion is the aqueous solution formed when two immiscible fluids are mixed
together, one dispersed as droplets in the other, and stabilized by an emulsifying agent
(Bansbach31). The use of stable emulsions to control mobility and improve oil recovery in
waterfloods was first initiated by McAuliffe32. The mechanism of mobility control and/or
blocking will be discussed in the sections that follow.
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2.4 Flow Mechanism of Polymers in Porous Media
The mechanism of polymer flow through porous media is discussed in the sections

below.

2.4.1 Laboratory and Field Studies

Burcik33 found that at high flow rates dilute solutions of partially hydrolyzed
polyacrylamides were pseudo-dilatant. This meant that the solution viscosity increased with
increase in flow rate as flow occurred in the porous media containing adsorbed polymers.
This effect resulted in a more even flood-out from stratified beds with different permeabilites.
Burcik33 explained the pseudo-dilatancy of the polymer by the uncoiling of molecules
retained in the flow channels under a velocity gradient. He emphasized that polymer
molecules have diameters twenty times smaller than a typical pore size, and could lower the
water permeability and in addition cause pseudo-dilatant flow due to the formation of a

icrogel.

Smith3+ studied the effects of molecular weight of polymer, rock and fluid properties,
flow rate and temperature on polymer solution properties. It was reported that a permanent
reduction in permeability was observed even after the core had been flushed with many pore
volumes. In polymer flooding, the reduction in permeability was observed to be less in
polymers with lower molecular weight and at low flow rates. Smith34 demonstrated that the
¢ latant nature (increased apparent viscosity with increasing flow rate) of the polymer
manifested itself at flow rates greater than 3.5 ml/day. It was shown that the pseudo-plastic
nature of the polymer appeared at lower flow rates and higher concentrations.

Szabo33:36 conducted experiments to determine an optimal concentration for polymer
flooding in a porous medium. This study showed the effect of salinity and polymer
performance in stratified reservoir models using radioactive tracers to measure the
concentrations of the polymers . It was observed that increasing the polymer concentration
and decreasing the salinity enhanced the recovery for small volumes of fluid injected.
Szabo33.36 proposed that the amount of oil recovered was less when polymer was injected at
a later stage in the course of the experiment than when it was injected at irreducible water
saturation. A higher recovery was observed when a stratified reservoir model was used as
compared to that obtained from theoretical considerations. This was attributed to crosstlow
between the layers. It was demonstrated experimentally that mechanical entrapment played a
more important role in low-permeability formations than in medium and high permeability
formations.
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Duda et al.37 studied the combined effects of adsorption, mechanical entrapment,
shear rate and inaccessible pore volume on effective and residuz! permeabilities. It was
pointed out that the residual permeability was only a weak function of the flow rate of the
polymer solution, demonstrating that the amount of polymer retained in the porous medium
was a strong function of the polymer rate. It was suggested that mechanical entrapment was
the major reason for permeability reduction with polyacrylamide, while an adsorbed layer of
polymer molecules was the major reason for permeability reduction in polysaccharides.

Baijal and Dey 38 defined polymer flooding as the method of oil recovery resulting
from the addition of water-soluble polymers to flood water. They suggested that the high
molecular weight polyacrylamides appeared to be the most effective among polymers used
for recovery of oil by polymer flooding. It was observed through laboratory studies that the
reduction of residual oil saturation improved macroscopic sweep efficiency. To achieve a
good mobility control in a flood, it was suggested that the displacing phase should have a
mobility equal to or lower than the mobility of the oil. In their experiments it was observed
that higher polymer concentrations improved oil recovery, and this was attributed to more
favourable mobility ratios. It was reported that mobility reduction was mainly due to
permeability reduction of the sand pack by polymer retention and interaction with solid
surface, and that viscosity effects did not contribute much towards mobility control. It was
finally concluded that polymer retention increased proportionately with polymer concentration
of the injected solution.

Omar3? pointed out that the control of polymer loss was one of the single most
important factors in determining the success or failure of a polymer flooding process. He
concluded that polymer adsorption in a formation was a function of the surface area in contact
with the flooding fluid. The greater the surface area per unit of bulk volume of the flooded
sand, the greater the polymer loss. Thus, fine grained sands adsorbed much more polymer
per unit of bulk volume than did large grained sands. It was observed that polymer loss
chntually resulted in a water-bank ahead of the polymer solution and this greatly reduced the
effectiveness of the polymer in waterflooding.

Dietzel40 studied the stability of polymer slugs under dynamic conditions. He
observed that the action of a polymer slug was based on the adjustment of the mobility
between the displaced phase and the displacing flood water, pointing out that two transition
zones characterized the mechanism of slug flooding: (1) the transition from displaced phase
to the polymer slug and; (2) the transition from the polymer slug to the displacing flood



water. A criterion for judging the dynamic stability of a polymer slug was provided by the
maximal value of the concentration or viscosity in the transition zone between the displaced
phase ar.d the polymer solution. It was concluded that the viscosity profiles in the elute of
flood tests offered a useful method of assessing the dynamic stability of polymer slugs.

Needham and Doe?! asserted that, depending on the type of polymer used, the
effective permeability to water could be reduced in the swept zone. It was reported that
polymer flooding did not reduce the residual oil saturation (ROS), but was a way to reach the
ROS more quickly or to allow it to be reached economically. Three potential ways in which a
polymer flood could make the oil recovery process more efficient were pointed out: (1)
through the effects of polymer on fractional flow, (2) by decreasing the water/oil mobility
ratio and (3) by diverting injected water from zones that have been swept. It was noticed that
the average polymer flood recovery from case histories was 8 % of the original oil in place
(I01P). It was concluded that secondary floods recover substantially more oil for less

polymer than tertiary floods.

Islam#2 and Islam and Farouq Ali*? undertook an extensive experimental study on
using various chemical slugs in waterfloods for reservoirs underlain by bottom-water. They
used chemical slugs such as polymer, emulsion, biopolymer gel, air, foam and carbon
dioxide-activated silica gel. The parameters examined included: permeability contrast, oil
viscosity, injection rate of the mobility control agent, slug size and water-oil layer thickness
ratio. It was reported that polymer and emulsion performed better than the other chemicals
used. A polymer slug was compared with a glycerin slug of the same viscosity and it was
found that the polymer slug improved oil recovery more than the glycerin slug. It was
concluded that the reduction in effective permeability by polymer was caused by mechanical
entrapment and adsorption and this improved recovery by about 27% of IOIP.

Hodaie and = gci* conducted experiments to investigate the selection of the right
type of polymer to be used to augment waterflood in reservoirs underlain by bottom-water.
The effect of vertical and horizontal production wells on oil recovery was also studied. It was
observed that a slightly better recovery was achieved, when a horizontal producer was used
as compared to a vertical producer, for a continuous waterflood. The reverse was, however,
seen when a polymer augmented waterflood was conducted.
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2.4.2 Numerical Studies

Masuda et al.45 developed a simple simulation model to predict the performance of a
one-dimensional polymer flood. In their model, they assumed the two phases, oil and
polymer, to be immiscible with each other. The Buckley-Leverett equation was maodified and
a new approach was used to calculate the fractional-flow curves. The rheological behaviour
of the displacing fluid, that is, polymer, was modeled using Ellis and viscoelastic type
models. Two experiments were conducted to verify the model results, using unconsolidated
cores packed with glass beads of 70-100 mesh size. The polymer flood was conducted after
waterflooding the model. The calculated polymer flood performance was compared with the
experimental data and it was observed that the Ellis model predicted earlier breakthrough of
polymer solution and lower oil recoveries than was observed experimentally. The viscoelastic
model, however, predicted fractional-flow curves, oil recovery performances and
breakthrough times that were very close to the experimental data. It was concluded that the
viscoelastic effect of the polymer solution played a very important role in the enhancement of
oil recovery .

2.5 Flow Mechanism of Emulsions in Porous Media
The mechanism of flow of emulsions in porous media are reviewed in the sections
that follow.

2.5.1 Laboratory and Field Stu...es

The flow behaviour of emulsions in tubes and unconsolidated synthetic porous media
was studied by Uzoigwe and Marsden46. It was noticed that emulsion had a Newtonian
behaviour even after the dispersed-phase concentration reached 50% (volume). The
emulsion, however, exhibited non-Newtonian behaviour after this concentration. The
emulsion was treated as a homogeneous liquid, and no permeability reduction was observed
as a result of the flow.

McAuliffe32 used stable emulsions, that is, oil-in-water, as mobility control agents 10
improve oil recovery in waterfloods. To obtain an oil-in water emulsion, asphaltic crude oil
was added to dilute sodium hydroxide. Emulsions with different drop sizes were injected into
a consolidated sandstone under a constant pressure. It was reported that, for the emulsion to
be an effective mobility control agent, the oil droplets in the emulsion should be slightly
larger than the pore-throat constrictions in the porous medium. In the laboratory work, it was
observed that emulsions tended to have the viscosity of the continuous phase; thus, oil-in-
water emulsions tended to have the viscosity of water. It was noticed that there was a
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permeability reduction even with small-droplet-diameter emulsions. This was not, however,
significant, especially if the core had a fairly high permeability. It was reported that as the oil-
in-water emulsion was injected, a greater amount of the emulsion entered the more permeable
zones; consequently, flow became more restricted and the water began to flow into the less
permeable zones, resulting in greater vertical sweep efficiency. In order to observe the effect
of emulsion flow, the emulsion was diluted to 0.5 percent oil. It was observed that the
average diameter of the oil droplets dictated whether the emulsion flow would substantially
decrease the water permeability of the core or whether it would not. The permeability
reduction caused by injecting emulsion was retained even when the emulsion was followed
by many pore volumes of water. It was concluded that flow of oil-in-water emulsions
through porous media was pseudo non-Newtonian regardless of how much oil the emulsion

contained.

McAuliffe4? reported a field test of an oil-in-water emulsion flood. Three percent pore
volume of emulsion containing 14 percent oil was injected into the formation. Increased oil
production and lower WOR's were observed from the wells surrounding the emulsion-
treated injectors, compared with little or no increase in oil production and increasing water-
oil-ratio for wells surrounding the water injectors. It was concluded that the emulsions
decreased the channeling of the injected water, which increased the volumetric sweep
efficiency, viz., 55,000 bbl of additional oil were produced with 33,000 bbl of crude oil that
were emulsified and injected.

Cooke et al.4® attributed the permeability reduction by the formation of water-in-oil
emulsions to the high viscosity of these emulsions or to the formation of an oil film (lamella)
across the pore throat. It was pointed out that the lamellae formed in the pore spaces
effectively blocked many of the flow paths that were formerly available for the flow of water.
It was reported that the resistance to flow of the lamellae and the plugging of the pores by the
lamellae caused the large increase in pressure gradient that was observed immediately behind
a displacement front. It was argued that the low mobility of the fluid in the region where
lameilae existed and the small amount of oil within the lamellae caused the sharp gradient in
oil saturation that was noticed at the displacement front.
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Johnson*? reviewed the status of caustic and emulsion flooding. The salient features
of emulsions in recovering viscous oils or oils in heterogeneous reservoirs where sweep
efficiency was poor was reported. It was suggested that emulsion flooding was a natural
extension of the caustic flooding emulsification and entrapment mechanism. It was, however,
pointed out that although the potential of emulsions for improving oil recovery was well in
place, the cost of oil for emulsification and injection was a seri us hindrance to wider field
use.

Soo and Radke3? pointed out that another mechanism for permeability reduction was
emulsion. It was argued that when emulsions were injected into a porous medium, droplets
not only blocked pores of the throat sizes smaller than their own, but they were also captured
on pore walls and crevices. It was suggested that in the flow of dilutz and relatively unstable
emulsions two regimes of oil flow existed in the porous medium: a regime which consisted
of oil droplets dispersed in water and a regime which consisted of continuous oil that had
coalesced and which was transported according to its relative permeability. It was reported
that two factors determined the overall permeability reductiou: the volume of drops retained
and how effective these drops were in restricting the flow. It was maintained that as the drop
size of the emulsion increased, the drop retention increased as well. It was, however, pointed
out that, at identical volume retention, smaller sized drops were more effective in restricting
flow. For systems of smaller drop-size emulsions (that is, for dg/d, < 0.2 in their work), the
effect of drop size on retention dominated and an increase in the drop size resulted in
increased permeability reduction. On the other hand, for systems of larger drop-size
emulsions, the effect of drop size on the restriction effectiveness dominated, and increasing
the drop size resulted in less transient permeability reduction. They concluded that the
viscosity of the oil has little effect on both the effluent concentration and transient
permeability histories.

Schimdt et al.5! proposed the use of dilute, stable emulsions to improve mobility
control in enhanced oil recovery processes. It was pointed out that an oil-in-water emulsion
provided microscopic mobility control through entrapment or local permeability reduction and
not through viscosity ratio improvement. It was concluded that mobility ratio improvement
was achievable due to the small oil droplets that were irreversibly captured in the porous
medium as a result of straining and interception, and this lowered the local permeability to
water.
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French et al.52 studied the use of emulsions to control mobility in steamflooding. It
was observed that a reduction in permeability from emulsion plugging might not necessitate
that the median droplet size was equal to or larger than the median pore throat diameter, and
that competition from an ensemble of smaller droplets "crowding” a single pore would have
the same effect in blocking a pore throat. It was reported that the injection of a small slug of
oil-in-water emulsion prepared from oil and water available in a specific field caused a
significant reduction in the permeability of the core froi:: that field.

Islam and Farouq Ali%3 studied the blocking mechanism of emulsions and their
effectiveness in controlling mobility, while waterflooding an oil reservoir, both with and
without a bottom-water zone. It was reported that the reservoir and fluid properties such as
oil-to-water zore thickness, oil-to-water permeability ratio, oil viscosity and emulsion slug
size, affected the blocking ability of emulsions as well as their oil content in a reservoir
underlain by bottom-water. The investigation shcwed that the smaller the oil-to-water zone
thickness, the lower the ultimate oil recovery for low to moderate oil-to-water permeability
ratios. Oil recovery was, however, found to increase slightly for high oil-to-water
permeability ratios as the thickness of the bottom-water zone increased. A significant
improvement in recovery for high viscosity oils was observed, when emulsion was used in
the flood, as compared to that obtained in conventional waterflood. It was concluded that a
minimum of one pore volume (bottom-water zone) of emulsion slug was required for
successful blockage with emulsion, while the optimum slug size was 2.5 pore volumes.

Farouq Ali et al.54 studied the flow of emulsions through porous media at high
temperatures. In their work, they studied thermal stability of emulsions in order to appraise
the flow behaviour at elevated temperatures. Experiments were conducted using surfactants
emulsions, carbon dioxide/water emulsions, sodium hydroxide emulsions, acid emulsions
and distilled water emulsions through porous media to investigate the changes in
characteristics. The study showed that the flow of emulsions through porous media was a
function of the drop-size distribution of the emulsion to pore-size distribution of the porous
medium ratio. It was concluded that, for both oil-in-water and water-in-oil emuisions, the
rheology of emulsions in the porous media was comparable to the rheology in a viscometer.
It was reported that emulsion mobility was governed by the flow velocity, an increase in
which could cause the shearing of the larger drops into smailer ones.
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Yeung3S and Yeung and Farouq Ali%6 introduced three different displacement
techniques, the Emulsion Slug Process (ESP), the Alternating Water Emulsion Process
(AWE) and the Dynamic Blocking Process (DBP) to improve the vertical sweep efficiency
while waterflooding bottom-water formations. For emulsions with low surfactant
concentrations (0.016 to 0.04 % ), the DBP and the AWE processes were found to give
higher oil recoveries than the ESP process under bottom-water conditions. For emulsions
with higher surfactant concentrations (0.4 % ), the reverse was true. Crossflow was very
prominent ahead the flood front for high viscosity fluids, according to Yeung and Farouq
Ali56. It was concluded that a high surfactant concentration did not necessarily give a higher
oil recovery for both homogeneous and bottom-water reservoirs.

Mendoza et al.57 observed that oil recovery was sensitive to injection rate for both oil-
in-water and water-in-oil emulsion floods. It was demonstrated that the flood rate determined
the extent of mobility ratio variation, and this in turn depended on the drop size, type and the
rheological behaviour of the emulsion. Qil recovery, as a function of flood advance rate,
showed a minimum rate of about 10 m/day. The type of emulsion slug (oil-in-water or waier-
in-oil) determined whether recovery increased or decreased with an increase in slug size. It
was concluded that water-driven emulsion slugs may give a viable alternative to thermal
recovery of moderately viscous oils.

Fiori and Farouq AliS8 suggested the use of solvents in adjusting the emulsion
characteristics to increase oil displacement efficiency. Incremental recoveries of up to 70%
were observed when emulsion slugs were injected into partially waterflooded cores. It was
concluded from their studies that carefully designed crude oil emulsions (water-in-oil) could
be used as oil recovery agents for heavy oil reservoirs with low primary conductivity, poor
response to waterflood and low potential for thermal recovery applications.

2.5.2 Numerical Studies

With the growing importance of emulsion as mobility control agent in flow through
porous media, it is important to have a numerical model to predict accurately pressure drops
and frontal movements during emulsion floods.
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Devereux39 proposed the droplet retardation model, which was based on the
mechanism osiginally delineated by McAuliffe4é. The model described the flow of stable oil-
in-water emulsions in porous media with capillary effects, but neglected gravitation and
compression effects. In this model, the transient permeability behaviour was modeled based
on oil droplets passing through pores of throat size smaller than their own diameters resulting
in the oil droplets having to squeeze through the pore constrictions. To pass through the
tortuous paths in the porous medium, the droplets had to overcome capillary resistance in
each pore throat and this retarded the emulsion flow.

Alvarado and Marsden® developed the bulk viscosity model in which they described
emulsion as a single phase and a homogeneous fluid. In this model, emulsion was
considered as a non-Newtonian fluid that did not follow Darcy's law, as a result of the
change in bulk viscosity due to shear rate. Although their model had a limitation as far as
prediction of transient permeability is concerned, it was useful for emulsion computations,
especially for high-concentration emulsions with small drop-size to pore-size ratios.

Soo and Radke®! proposed a filtration model for the flow of dilute, stable emulsions
in porous media. For the type of emulsion flow considered in their model, it was reported
that the drop size was of the order of pore size, hence drops were captured both by the
straining and the interception mechanisms with the possibility of straining being the dominant
mechanism. It was suggested that emulsion droplets were not only retarded when they flow
through porous media as suggested by Devereux3%; they were actually captured. The
filtration model predicted transient and steady state permeability reduction caused by an
emulsion. Soo and Radke®! reported that transient flow behaviour was characterized by three
parameters: a filter coefficient, a flow-redistribution parameter and a flow restriction
parameter. The filter coefficient controlled the emulsions front sharpness, whiie the flow
redistribution parameter dictated the steady state retention in addition to the flow
redistribution phenomenon. Finally, the flow-restriction parameter described the
effectiveness of the retained drops in permeability reduction.
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Abou-Kassem and Farouq Ali263 modified the bulk viscosity model, and made it
more practical for both Newtonian and non-Newtonian emulsions to be handled easily in
numerical studies. For non-Newtonian emulsions, the correlation was presented in the form
of a modified Darcy law and tested using Alvarado and Marsden's®® experimental data. The
correlation demonstrated a quantitative description of the effect of pore size distribution and
tortuousity of porous media on flow. Pressure drop predictions were also possible with this
model within 2.4 % of the average absolute relative deviation based on the Alvarago and
Marsden'sé0 experimental data.

Khambharatana®* undertook extensive experimental work to observe the physical
mechanism that occurs when a stable emulsion flows in a porous medium. Emulsion
rheology and dropiet capture were investigated for different kinds of emulsion flow in two
types of porous media. It was observed that the change in emulsion rheology in a porous
medium had an overall trend similar to that in a viscometer for the shear rz.tes considered. It
was reported that emulsion droplets were captured according to a filtration process. A one-
dimensional, three-phase (oleic, aqueous, and emulsion) model that accounted for the
interactions of a surfactant, oil, water and the rock matrix was developed. This model was
used to simulate linear core floods of stable emulsions and the experimental production
history was compared with the simulated results. It was noticed that a multiphase, non-
Newtonian rheological model of an emulsion with interfacial tension-dependent relative
permeabilites and time-dependent capture showed the best predictions of the experimental
core floods.

2.6 Application of Horizontal Wells in Enhanced Recovery

The use of horizontal wells has been increasing very rapidly throughout the oil
industry as advances in drilling techniques continue. However, inspite of a large increase in
literature references, little has been published on horizontal well applications for enhanced oil
recovery (EOR) methods. The interest in horizontal-weli waterflooding is very recent with
most reports or publications appearing in the last half of 1991. Water coning phenomena is
usually observed in oil reservoirs with a strong water drive or bottom-water. In a strong
water drive reservoir a steady state flow condition prevails in the course of most of the life of
the oil producing wells. The water coning problem is, therefore, dealt with in a steady state
context, so that a constant production rate causes a constant pressure drawdown at every
point within the constant potential boundaries in the reservoir.
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2.6.1 Advantages of Horizontal Wells

The most important advantages horizontal wells have over vertical wells include:
increased productivity index, near elimination of coning problems for strong water drive
reservoire, suppression of the oil bank in the case of reservoirs underlain by bottom-water
and finally a higher probability of intersecting systems of vertical and horizontal fractures in
reservoirs. A brief discussion of these advantages is given below.

2.6.1.1 Increase in Productivity Index

Horizontal wells provide a bigger and more effective contact area between the well
and the reservoir; consequently, they can improve the fluid production rate and efficiency of
the recovery process. Conventional vertical wells act as a point sink and as fluids flow
radially from different regions of the reservoir towards the vertical production well the area
for flow decreases, the flow velocity increases and the pressure gradient rises rapidly near the
vertical well. Vertical wells have only a small part of their total length open for flow of
reservoir fluids. Most of the pressure drop occuss in the vicinity of the wellbore. Horizontal
wells, provide a much larger area for inflow of reservoir fluids. In view of this, the pressure
drop decreases, resulting in a more even, uniform flow distribution and less oil trapping
behind65,

Borisov®6 investigated the idea of oilfield production using horizontal and highly
deviated wells. An approximate equation for oil flow toward an isolated well located in the
centre of a homogeneous and isotropic bed was developed to calculate the oil production rate
based on the total flow resistance that was made up of two components: external resistance to
inflow, and intemal resistance due to flow inside the well. The analysis was conducted using
horizontal wells in reservoirs bounded by a gas cap and a water leg. It was concluded that the
flow of a unit length of a selectively perforated vertical well was much higher than that of a
unit of length of a horizontal well. The above conclusion meant that horizontal wells were not
as productive as vertical wells when water influx or gas cap expansion was the driving force.

Giger$? showed that the productivity of a horizontal well was less sensitive to
unfavourable heterogeneities in its vicinity than it was for a vertical well. It was pointed out
that the pressure drop in flow toward a horizontal well was the sum of two components: the
first component accounted for the partial penetration of the drainage area, and the second
component represented the pressure drop due to the convergence of fluid streamlincs.



Joshi®® derived an equation to compute the steady-state oil production rate for
horizontal wells draining an elliptical drainage area. With this equation parameters like
reservoir anisotropy, thickness, well drainage area and eccentricities (well location other than
the reservoir center) on horizontal well productivity were investigated. He examined gas and
water coning tendencies as well. It was concluded that horizontal well productivity
improvements depended on reservoir thickness, well length and location and reservoir
anisotropy.

Ozkan and Raghavan$9 conducted a study on the performance of horizontal wells in
bottom-water drive reservoirs. An analytical solution was developed to investigate the
pressure distribution in these reservoirs. In the development of the equations, the wellbore
was treated as a line source with an infinite conductivity or a uniform flux boundary
condition. It was concluded that productivity of horizontal wells was less influenced by
reservoir anisotropy as compared to the productivity of vertical wells.

Dikken7® investigated the pressure drop in horizontal wells and its effect on
production performance. It was pointed out that the commonly used assumption of laminar
flow in horizontal wells was not necessarily true for most practical situations, and this was
demonstrated using calculated examples. A second order differential equation was developed
coupling single-phase turbulent well flow with stabilized reservoir flow and solved
numerically for various boundary conditions. It was observed that turbulent well flow in the
horizontal section of a horizontal well brought about an appreciable reduction of drawdown at
various positions away from the lifting end of the section, and that the total production
levelled off and became almost constant when the well length exceeded a certain critical
value.

The use of horizontal injection wells could improve injectivity and reduce polymer
degradation during polymer floods. As a result of the viscous nature of polymer solutions,
injectivity in unfractured wells could be substantially less during a polymer flood than in a
waterflood’!. The higher injectivities allowed by horizontal wells could help to alleviate this
problem. For a given injection pressure, the fluid velocity at the wellbore sand face could be
significantly less in horizontal wells than in vertical wells. Injection and production rates
could be increased by as much as ten times (without an increase in pressure) by using
combinations of horizontal injection and production wells in thin formations and at wide well
spacings.
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2.6.1.2 Suppression of Oil Bank Formation

Chaperon’? conducted studies to investigate the critical production rate of horizontal
wells in anisotropic formations. This study assumed steady-state or pseudo-steady state flow
conditions. The approach was identical to that of Muskat?3; thus, only static stable cones
were considered. Only flow in the plane perpendicular to the horizontal axis was examined. It
was reported that the requirements for static and dynamic equilibrium were used to develop a
simple equation to calculate the critical fluid production rate per unit length of a horizontal
well in anisotropic and isotropic reservoirs. The critical rates for vertical and horizontal wells
were then compared. It was observed that the critical cones came closer to the horizontal
wells than to the vertical wells. The critical production rate per unit length of a horizontzi well
was noticed to be a function of the transmissibility of the oil layer, initial oil column thickness
and the distance between the well and the lateral boundary. It was concluded that the critical
production rate for horizontal wells was not as sensitive to vertical pern.eability variation as

that for vertical welis.

Papatzacos et al.74 derived a semi-analytical equation to calculate the cone
breakthrough time for horizontal wells. In their analysis, they considered the oil-water
contact and the gas-oil contact as moving boundaries. In view of this assumption, the
position, shape and the size of the cones become functions of time. With these moving
boundary conditions, the Laplacian potential flow equation was transformed into
dimensionless form, and solved numerically. Three different cases were studied: a two-cone
case with simultaneous gas and water coning, single-phase gas coning and single-phase
water coning. To simulate the cone breakthrough time, they used different water viscosities,
gas viscosities and anisotropic ratios. The simultated results compared favourably with actual
data for the Helder field in the North Sea.
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Chapter 3
STATEMENT OF THE PROBLEM

The main objectives of this study were to examine ways of efficiently waterflooding

oil reservoirs (oil viscosity 1 to 200 mPa.s) underlain by bottom-water and to develop
analytical expressions for crossflow. These objectives were achieved using theoretical and
experimental methods, which are outlined below:

3.1
1.

Theoretical Objectives

Development of modified mathematical equations for crossflow itat occurs in
waterflooding oil reservoirs with bottom-water

Development of a semi-analytical model using computer programs to make
predictions

Utilization of these equations to calculate volume of injected fluid channeling into
the bottom-water layer and investigation of the effect of frontal locations on the
crossflow behaviour

Prediction of oil recovery utilizing the semi-analytical model

Experimental Objectives

Conduct waterflood experiments in a two-dimensional model using polymer and
emulsion as mobility contrcl and/or blocking agents in different injection techniques
Examine the effect of horizontal injection/production well combinations on
recovery when utilized to waterflood oil reservoirs with bottom-water.



Chapter 4

4. MODIFICATION OF THE PREVIOUSLY DERIVED CROSSFLOW
EQUATION

4.1 Introduction

Several previous studies employed idealized dual-layer porous medium models to
represent the displacement flow problems of layered reservoirs10-16, Such models constitute
a logical starting point for a systematic investigation. Fluid properties and flow conditions
need to be defined for this purpose. The interpretation of previous work is often rendered
difficult by the simultaneous inclusion of several factors such as capillary pressure, relative
permeabilities, fluid viscosities, dispersion and gravity effects!4. In order to make useful
quantitative conclusions it is desirable to be able to investigate each factor independently of

the rest.

Among the previous investigations very few are analytical solutions to layered
reservoirs problems. Katz and Tek!0 and Russell and Prats!! developed analytical solutions
for two-layered reservoirs. They, however, considered only single phase compressible fluid
flow. El-Khatib20 developed a mathematical model for a linear stratified system for the cases
of non-communicating and communicating layers with complete crossflow. It was said that
the model could predict fractional oil recovery, water cut, total volume injected and the
change in the total pressure, or the change in injection rate, at water breakthrough in
successive layers. The mathematical development, however, assumed that the crossflow
between the different layers was instantaneous such that there was no vertical pressure drop.
That implied that there was a high vertical flow conductivity due to the large lateral area for
crossflow. This assumption, however, is not valid for reservoirs underlain with bottom-
water, since the vertical pressure drop is the driving force behind crossflow. Lambeth and
Dawe!2 developed an analytical solution for one fluid displacing another in a two-layer
reservoir. They assumed that the pressure in the lower permeability layer of their model was
not affected by crossflow. This assumption can be justified only when the permeability
contrast of the two layers is quite large. Such an assumption is not applicable to reservoirs
underlain by bottom-water, where permeabilities of the layers are more or less the same. The
next section shows a new derivation of the crossflow equation55 without assuming a linear
pressure distribution with respect te distance in either layer.
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4.2  Derivation of the Modified Crossflow Equation

An expression for crossflow occurring in the course of waterflooding a two-layered
reservoir model, the lower layer being a water zone, was developed by Yeung55. In this
thesis an attempt is made to modify the crossflow equation so as to be able to handle the
channeling of any injected fluid and to calculate the frontal movements of xf1 and xp during
the flood as well as investigate the effect of frontal locations on the crossflow behaviour
which was not possible in the previous workSs.

Consider a two-layer porous medium, where the upper layer is the oil zone with a
permeability to oil, k,,,, and the lower layer is the water zone with an absolute permeability
k. Fluid is being injected at a total rate, Q, of which da enters the oil zone and qy, enters the
bottom zone. The following assumptions are made:

1) flow is steady state;

2) crossflow is vertical;
3) crossflow does not alter the mobility in either layer;
4) fluids are incompressible;

5 displacement is piston-like;

6) only oil is flowing ahead of the flood front in the oil zone;
7) only water is flowing behind the flood front; and

8) capillary and gravity forces are negligible.
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Consider a vertical section of thickness Ax and width w behind the flood front as

shown below:

4 T
)
G @ [ ——dq
’ pb(x)
ny |©

Ax

where qy is the flow rate in Section a at a distance x from the injection end, qx+ax is the flow
rate in Section a at a distance x+Ax from the injection end and dq. is the vertical crossflow
over the interlayer boundary. Note that crossflow is positive from a to b. Applying a mass
balance to the fluid Section a above gives

qx_(qx¢Ax+dqc)=0 (41)

Using Darcy's equation and rearranging one obtains

Ak, 9p Ak, dp 2wAX
a'ts ° A i ) al - . _ is
u. ax x+Ax ul ax L u'lhl +u'bhb (p' pb) ( )
k, k,

where p, and py, are the average pressures of the corresponding sections taken from the centre
of each section. (Note that the subscripts a, b, ¢, d, e, f are used for simplicity.) Taking the
limit as Ax approaches zero, the following differential form of Equation (4.2) results:

82
SE=a.-p) (4.3)
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———, and M,, = —tL-% {5 the mobility of the fluid in Sect to that
h,2+M_ hh, "X,/ ility of the fluid in Section a to tha

in Section b. Carrying out similar procedures for the other sections one arrives at the

where o, =

following equations:

92
afzb =a2(pb 'P.), (4.4)
’p
axzc =3 (p. = Pa)> 4.5)
9’ :
= a(p. ). (4.6)
2%p,
afz =as(pe‘pr)’ 4.7
and
0’ .
5 = (P =p.), (4.8)
where a, = — 2 , Oy =— 2 , a4=T—2___, asz._z__z__..,
hy, +M_h,h, h: +M_h_h, hy + M, hh, h; + M_h_h,
and o, = and where the M's are the mobility ratios for the corresponding

hf +M_hh,
sections. Solving Equations (4.3) and (4.4), (4.5) and (4.6), and finally (4.7) and (4.8)
simultaneously, the following pressure equations are obtained:

p.(x)=c, +c2x+c3[9¢)-sinh(x1/m, +c4), (4.9)
m,
pb(x)=c,+c2x—c{gt-z-J-sinh(me1 +c4), (4.10)
m,
p.(x)=c,'+¢c," x+ c,'(&)-sinh(x1/m2 +c4'), 4.11)
m,

ps(x)=c,+c,'x—¢, (—oi"—] sinh(x«/m2 + c,,'), (4.12)
m,



\
p,(x)=c,"+c2"x+c3"(%- -sinh(x1/m3 +c4"), (4.13)
3/
and
\
a < te
p,(x):c,"+c2"x—c,"(-m—6 -smh(x,/m3+c4 ) (4.14)
3/

where m, =@, +a, M, =0;+0Q, gnd My =0 +04 The following twelve boundary
conditions are used to obtain the twelve constants in the above equations.
(i) q4=4, at x=0;

(ii) q4=q, at x=0;

Giiy P.=0 ar x=L;

@iv) P,=0 2t x=L;

(v) Pc=0 ar x=L:

(vi) Pa=0 5t x=L;

(viiy P.=0 ar x=L;

(viii) Pr=0 at x=L;

(ix) P. = P at the flood front xg;;

(x) Ps = Pq at the flood front xg;;

(xi)  Pc=Pe at the flood front xg; and

(xii)  Pe¢ = Pr at the flood front xg,.

The inflow of fluids into the oil and water zones is allowed to be arbitrary. In other
words the rates, 9a and 9b are independent variables. Applying the above conditions, the
constants are obtained as follows:

a2 hb ql

H.q,L o,
k,A, m

c, =

=t o aha ),
klAl ml a2 hb q.
vl h 1
Cy=——" -M, ;
kA, (q' *h, qb)w/ml cosh(Lwlm,)
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The diagram below illustrates how the crossflow occurs and from this visualization, the
crossflow equations are obtained. It is explicitly assumed here that x; > xgy.

X
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The crossflow streams represented by the vertical arrows are from the fluids in the upper
layer to the lower layer. Using Darcy's equation for fluid flow, the crossflow equations are
obtained as follows:

2wdx

dq,, =m'[}).(x)—}3b(x)] (4.15)
ku kb
and
X k,A X
dq = quc,= o 'a,-caj‘sinh[\/m, (x-L)fx (4.16)
0 ] 0

Integrating the above equation one obtains

_kA, .{coshw%? <xn—L>J—cosh(wm—l)}
1 3 ‘\/m—l

(4.17)
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For crossflow in the middle section, the crossflow is visualized to be ahead of the
flood front in the oil zone and behind the flood front in the bottom-water zone. The
integration is, therefore, from x; to X, and this leads to the equations below

2wdx

dq., =m'[PC(X)-Pd(X)] (4.18)
kc kd
and
Xy k A X _
Qe = I dq., = :1 S0y Cy fsinh[ﬁiz (x—L)}jx (4.19)
Xq ¢ Xy

Integrating the above equation we get

Q.2 = koA, Oy " Cy' {COSh[ m; (X~ L)]/-_COSh[\/}E(x” — L)]} (4.20)
uc v m2

The crossflow in the last section is the crossflow ahead of the front, xg and that is obtained

as
2wdx .
dq., =m[l’e(x)-vr(x)l (4.21)
ke kf
and
f k A F
Ao = x_l;dqc; == ~cg"x_[zsmh[«/m3 (x—L)kix (4.22)

Integrating the above from xp; to L one gets

_Eﬁe_.a . "{l—cosh[\/—rﬁ?(X,Z—L)]}
5 3 'Jm‘3

(4.23)



Chapter 5
EXPERIMENTAL APPARATUS AND PROCEDURE

§.1 Description of the Experimental Apparatus

The experimental apparatus consisted of two constant-rate pumps and a specially
designed aluminum core holder with a rectangular cross-section. The setup is shown in
Figure 5.1. Two constant rate pumps, an ISCO pump and a Jefri pump, were used for fluid
injection. Almost all the experiments required simultaneous injection of fluids; hence, the
ISCO and Jefri pumps were used concurrently. For ti.e few experiments that did not require
two pumps, only the Jefri pump was used. The pump was connected to two cylinders
containing floating pistons. This allowed the use of two different fluids without
contaminating one with the other, at a maximum cylinder vclume of 1000 ml. The maximum
injection rate of the Jefri pump was 1200 ml/hr at a maximum pressure of 7000 kPa. The
Jefri pump was monitored and controlled by an IBM PC and the flow rate could be adjusted
with a precision of 0.1 ml/hr. The ISCO pump had a maximum capacity of 500 ml and a
maximum flow rate of 400 ml/hr. A Validyne wansducer was used to measure the injection
pressure. The diaphragm used in this transducer could withstand a maximum pressure of 483
kPa (70 psi). The rectangnlar core holder was fabricated from tubular aluminum block. The
inside dimensions of the core holder were 5.08 cm (2 in ) width, 7.62 ¢cm (3 in ) depth and
122 ¢cm (4 ft ) length. The greater depth was chosen to allow for the packing of two or more
layers. The core holder was constructed to withstand a maximum pressure of 2100 kPa when
properly sealed. It had one inlet well and one outlet well at the centre of the inlet and outlet
faces, respectively. These were used for the packing of the model and the measurement of
absolute and effective permeabilities. The injection well was specially designed to allow the
simultaneous injection of two different fluids. It consisted of two concentric lengths of
tubing: the inside tubing delivered the fluid to the bottom-water layer, while the annulus was
used to deliver the other fluid into the oil zone. The injection points were located at the middle
of each layer (points A and B in Figure 5.1). The production well had a similar configuration
as the injection well. The wells were located at 4 ¢ from each end of the core holder. They
were made of 0.635 cm diameter tubing and fitted with porous metal-mesh caps to prevent
the flow of glass beads into the production well. The core holder, hereafter referred to as the
model, had a lid along the bottom side. This enabled the packing of one or more layers in the
lateral direction.
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8.2 Procedure for Packing the Model

It took about four working days to perform a typical experiment. Most of this time
was devoted to model preparation. The actual bottom-water experiments lasted normally
about six hours.

To start the packing process, the core holder was mounted vertically, with the
production end pointing downwards and the open (injection) end pointing upwards. Water
was poured into the core holder until it was completely full. The volume of water used was
noted down as the bulk volume of the core holder. The water was then allowed to drain out.
Packing of the glass beads was done by the wet packing method. In this method, water and
glass beads are alternately poured into the core holder. The water was allowed to drain
slowly from the core holder from the outlet end. The water level was always maintained
about 5 cm above the glass-beads column. This was continued until the glass beads reached
the desired heignt inside the core holder. The glass beads used were of 70-100 mesh size
(210-149 microns) wiih an average density of 2.5 g/ml. During the packing process, the
core holder was tamped with a rubber hammer and this in combination with the slow
continuous withdrawal of water by gravity from the pack ensured a uniform packing. Once
the model was packed, high-pressure air was passed through the bead pack for 12-18 hours
to remove all the water from the pack. Then the model was evacuated with a vacuum pump
for about 18 hours to completely dry the glass beads as well as prepare the model for
saturation. At the end of this period there was a vacuum created inside the core holder, and
de-ionized water was allowed to imbibe into the model from the bottom end. The model was
then connected to the Jefri pump from the bottom end and more de-ionized water was
pumped through it until no air bubbles were observed from the water that was produced at
the outlet end. A material balance was performed to determine the pore volume of the bead
pack and the porosity of the porous pack was obtained by dividing the pore volume by the
bulk volume.

The absolute permeability of the porous glass beads pack was then determined. At
this stage the pack was fully saturated with water, and the pressure inside the core holder was
atmospheric. The core holder was then rotated 909 and placed in the horizontal position. A
pressure differential of known magnitude was applied to the core holder by introducing a
stream of water under pressure into the inlet end of the model. Water was allowed to
discharge at the outlet end and, when the pressure stabilized, the flow rate as well as the
applied pressure was recorded. This procedure was repeated several times at different
pressure settings corresponding to different flow rates. Darcy's linear flow equation was
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rearranged and applied to compute the absolute permeability of the porous pack for each
pressure set; that is,

o= 9L
AAp
Given that
L=122m
H = 1.0 mPa.s (viscosity of water at normal conditions)
A = 0.003871 m2 (cross-sectional area of the model)
then

_0.31517q
Ap
The average absolute permeability of the porous pack was obtained from plots of Ap versus

k , where q is in m3/sec, Ap in Pa, and k in m2:

in the above equation. At the end of this process the porous pack was stili completely
saturated with water, but the pressure inside the core holder was no longer atmospheric. The
pressure was therefore close to the last fluid pressure applied to the porous pack. Before
conducting any experiment, the initial oil saturation as well as the irreducible water saturation
must be known. To do this the core holder was moved to the vertical position again. MCT-10
oil was pumped into the porous pack from the top of the vertical core holder, and water wiis
produced through the bottom (outlet). This was to guarantee a uniform displacement from
and inhibit the formation of viscous fingers. Qil was injected until no more water was
produced at the outlet end. Usually about two to two and a half pore volumes ensured that the
water was at irreducible saturation. The difference beiween the volume of water imbibed into
the model initially and the volume of water displaced by oil, when divided by the pore
volume gave the irreducible water saturation. At this point the model was set or placed in the
horizontal position in order to measure the relative permeability to oil at the irreducible water
saturation. Once this was obtained using Darcy's law at different flow rates, the model,
which was still in the horizontal position, was flipped upside down for the bottom-water
layer packing. The model was opened by taking off the lid. The top part of the sand was
scraped off using a specially designed scraper that ensured that the desired height was
attained. Meanwhile, the same glass beads, some of which were used to pack the oil zone,
were soaked in de-fonized water and made ready for packing. The bottom-water layer was
packed manually. As glass beads are easily compacted (uniform size), the absolute
permeability of the bottom-water layer was assumed to be the same as that of the previously
packed glass beads. Once the water-saturated layer (bottom-water) was in place, the lid was
put back on, and the model was rotated 1800 axially to bring the oil zone on top and the
bottom-water zone at the bottom.
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The initial oil-in-place (I0IP) was calculated using the IOIP of the homogeneous pack
multiplied by the ratio of the height of the oil zone thickness to the model thickness.
Obtaining the 10IP of the bottom-water layer this way was found to be quite accurate, with
less than (3-4 %) error compared to weighing the scraped-off layer to obtain the exact amount
of oil removed. Five checks were performed to verify this. Consequently, all the IOIP of the
bottom-water experiments were obtained in this manner.

§.3 Materials and Fluid Systems
The size of glass beads used for packing both the oil zone and the bottom-water layer
was 70-100 mesh size (210-149 microns) . MCT-10 oil, supplied by Imperial Oi! Ltd., was
used as the oil phase and de-ionized water was used as the water phase. Qil-846, also
supplied by Imperial Qi! Ltd., was used as well when the MCT-10 was used up. Table 5.1
shows the properties of the oil and water phases.
Table 5.1 : Properties of Fluids Used at 220 C

Fluids Viscosity Density Interfacial-
(mPa.s) (g/cm3) Tension
(mN/m)
MCT-10 63.0 0.8770 OCil-Water
33.5
0il-846 57.0 0.8681 Oil-Water
29.4
Distilled Water 1.0 0.9978 N/A
Polymer N/A 0.9790 Oil-848-Polymer
(500 ppm) 3n.9

Flopaam 34308, a partially hydrolyzed polyacrylamide powder, supplied by Pfizer
Inc. was used in the polymer displacement experiments. For most of the experiments
conducted, a 500 ppm solution was prepared with distilled water. A 700 ppm polymer
solution was used as well. The stress-strain behaviour of the 500 ppm polymer solution
deviated from that of a Newtonian fluid. The viscosity-shear rate plot shows a reduction in
viscosity as the shear rate increases. Figures 5.2 and 5.3 show these plots.
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Two different oil-in-water emulsions, with a 10% volume dispersed MCT-10 and
later Oil-846, were used in the experiments as blocking agents. This amount of the dispersed
phase was found to be sufficient in an earlier study43. The surfactant concentration
(Stepanform HP-9S, supplied by the Stepan Company) was varied to attain different
emulsions (0.04% and 0.016% of the total volume). The stability of the emulsions was
verified by visual observation. The two emulsions were found to be stable over a 24-hour
time period; that is, the emulsion exhibited a single phase after a 24-hour period, with no
apparent change in viscosity versus shear rate characteristics. The stress-strain behaviour of
the emulsion deviated slightly from a Newtonian fluid. The viscosity-shear rate behaviour
showed a constant viscosity after a shear rate of 100 reciprocalseconds. The viscosity,
however, varies at lower shear rates. These plots are shown in Figures 5.4 and 5.5.
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Chapter 6

EVALUATION OF WATERFLOOD PERFORMANCE UNDER
BOTTOM-WATER CONDITIONS

6.1 Introduction

In this research, waterflood performance was evaluated using polymer and/or
emulsion as a control and/or blocking agent to improve the recovery of light and moderately
viscous oils underlain by water. Basically, when an attempt is made to waterflood reservoirs
with bottom-water, the injected water by passes much of the oil zone thereby resulting in
low vertical sweep efficiency.

In the sections that follow, an attempt is made to mathematically elucidate the
mechanism that prevails when waterflooding an oil reservoir that is underlain by bottom-
water. The various techniques that are used in blocking the bottom-water zone as well as to
control the relative movement of water in the oil zone for better recovery are discussed.

6.2 The Problem
The major issue that is involved in waterflooding bottom-water reservoirs is
crossflow. With respect to the crossflow, qc1, the following deductions can be made based

on the equation. (Note that in Equation (4.17), 0< xf; <L)
f(xg)= cosh[,/m1 (x — L)] - cosh(L m, ) <0,

therefore qc; > 0, if c3 <0. Crossflow occurs from Zone a to b, if c3<0. There is no
crossflow if c3=0 and crossflow reverses direction, that is from b to a, if ¢c3>0. Therefore,
as long as c3 is not equal to zero, crossflow will exist. If the crossflow will not enhance oil
recovery, then a strategy is needed to reduce cs.

The crossflow occurring in the middle section, gcz, controls the formation of the oil
bank. Let us examine the equation that is obtained once again. Consider the function,
f(xr1,xg2), which occurs in Equation (4.20).

f(xg,Xp) = cosh[,/m2 (Xgp — L)]--cosh[,/m2 (% —L)].
Thus, f(xg1, xr2) <0, if xp1<xp; also f(xg1, x£2)=0, if xf1=xg2, and finally f(x¢;, x2)>0 if
Xf1>Xf2,
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sinh[\/;,(h - X )]
Si“h[‘\/m—z(l‘ —Xq )]
From this, the following can be deduced. If ¢3<0 and x¢;<xs2, then the crossflow in Zones
a, b, cand d is from a to b and from ¢ to d. This can be shown as follows:

From the derived equations, ¢,'=c, . Then c¢3' has the same sign as ¢,

q qc2

E@ cl @

B v @ v

Xn

If xp1>xg2 the crossflow from a to b maintains its direction but that occurring from ¢ to d
reverses direction, (The effect on oil recovery will be shown later) as shown below.

B
L >




If ¢3>0 and xg1<xp,, the direction of crossflow from Zone a to Zone b is reversed and that
from Zone ¢ to Zone d is also reversed. That is, crossflow occurs from b to a and from d to
¢. This is shown below:

....é.....
-

® 4

I q!] @ Q.

Vhile c3 is still positive, if xg;>Xyp, the direction of crossflow will be maintained in Zones a
and b as mentioned above but that in Zones ¢ and d will be reversed. In other words
crossflow will occur from b to a and from c to d, as shown below:

IR ETERRERY]
Kol
O
(%]

g
) 4

From a consideration of f(xg,xr2), it can be shown that the magnitude of the function
f=If(xf1, Xp2)! becomes large, as the magnitude of the frontal separation, Ixf-xrp! becomes
large. This determines the volume of the oil bank.
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The crossflow occurring in the last section is designated qc3- Recall that the constant c3" is

, sinh[Jm_z(L - Xp )]

iven by: ¢,''=¢ , and hence c¢3" has the same sign as ¢3' and c3. If
g y: C, 3 sinh[\/m_g(L—xm 3 4 3 3

¢3">0, then qc3<0 and crossflow occurs from f to e, which is the same direction as in Zones
a and b. If ¢3"<0, then qc3>0 and crossflow reverses direction exactly as it does in the first
Section. It can be inferred, then, that crossflow occurs in the same direction in the first and
last Sections, whilst it reverses direction in the middle Section depending on the position of

xf1 in relation to xg. The four possible crossflow scenarios are represented diagramatically
below:

Xq Xn
@ 9 @ Qo @ q o o ©
<l 1 . ‘[ ‘ ‘
fio) ‘ o ‘ o + (W] qcl @ 9, 0 4ga
Xn Xq
Xn xn
® g9, :0@ @, o) o 9, ®
+ 4 ; 4 | e
e o q‘l 0 m qd 9 ' m [

46



6.3 Polymer as Mobility Control Agent and Emulsion as Blocking Agent

The problem is to waterflood an oil reservoir that is underlain with bottom-water. This
results in high mobility cf water in the bottom-water zone compared with that in the oil zone.
To correct this problem, a viscous water slug was used as a control agent in the sixties by
Barnes!® to lower the produced WOR. Islam#2 conducted extensive experiments to select the
most appropriate blocking and/or mobility control agents for bottom-water reservoirs,
concluding that polymer and emulsions were the best candidates for the control of bottom-
water production. Based on this study, Yeung3S selected emulsions for this purpose. The
channeling was not completely eliminated, but it was reduced considerably. To improve
further on what has been achieved, polymer and emulsion have been selected to control the
relative movement of water in the oil zone and to block the injected water from channeling
into the bottom-water zone, respectively, in this work. A diagram illustrating this is shown

below:
Polymer
N /

Y 7
. . : Mobility :
Displacing : coneroil 2
Fluid : Agent : Oil Zone

Bottom-water Zone

Blocking Agent (Emulsion)

The above processes were developed to select between polymer and emulsion the one
that is an effective blocking agent and the one which is an effective control agent. The
Dynamic-Blocking Procedure (DBP)35 was selected since it has been proven to be the best
among the three techniques. Before that, however, experiments were conducted to check
their effectiveness. In this procedure, emulsion slug was injected into the bottom-water zone
which was equivalent to the pore volume of the bottom- water zone. While the emulsion was
being injected, polymer was injected at the same time into the oil zone. To avoid enhancing
polymer crossflow irto the bottom-water zone, the same pore volume was used as in the case
of emulsion. The emulsion and polymer were injected simultaneously into the bottom-water
and oil zone, respectively. After injecting one pore volume of polymer, water injection
followed. The experiment was continued until the water-oil-ratio (WOR) was 20.
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6.4 Emulsion as Mobility Control Agent and Polymer as Blocking Agent

The purpose of using emulsion as the mobility control agent and polymer as the
blocking agent was to determine which would be a better agent as far as mobility control and
blocking are concerned. The same process was used as has been described above. Thus
polymer and emulsion were injected simultaneously into the bottom-water region and the oil
section, respectively. A diagram illustrating this is shown below:

Emulsion
X /

- 7 4
N\ IMobility
Displacing { Control £ (31 70ne
Fluid I Agent  °

Bottom -water Zone

Blocking Agent (Polymer)

While the polymer was being injected, emulsion was injected at the same time into the oil
zone. To avoid enhancing emulsion crossflow into the bottom-water zone, the same pore
volume was used as in the case of polymer. The polymer and emulsion were injected
simultaneously into the bottom-water and oil zone, respectively. After injecting one pore
volume of emulsion, water injection followed. The experiment was continued until the water-
oil-ratio (WOR) was 20.

6.5 Use of Horizontal Wells under Bottom-Water Conditions

The use of horizontal wells in reservoirs underlain by bottom-water is very limited in
the literature as well as in the field. The purpose of these experiments was to study the use of
horizontal wells to improve recovery as well as to try to reduce if not eliminate the oil bank
that was observed when vertical wells were used in reservoirs with bottom-water. Hodaie
and Bagci** studied the effect of vertical wells and horizontal production wells on oil
recovery. They observed that for a continuous waterflood, horizontal producers show a
better recovery than vertical producers.

In this study, horizontal injectors and vertical producers as well as horizontal in jectors
and h<rizontal producers were used to investigate oil recovery enhancement. More detailed
discussions are found in the experimental presentation.

48



Chapter 7

7.1 EXPERIMENTAL DATA PRESENTATION

Thirty-two displacement tests were conducted to investigate waterflooding bottom-
water reservoirs using various injection techniques by the application of polymers and
emulsions. Out of the thirty-two runs conducted, twenty-seven were successful, two were
repeat runs and three were failed runs. The experiments are presented in a chronological
order. Figure 7.1 shows a summary of the different experiments performed. Table 7.1 gives
a listing of the runs. At first, waterfloods were conducted in the absence of any bottom-water
layer. Subsequently, three experiments were performed, viz., waterflood, polymer flood and
emulsion flood with bottom-water zones. These six experiments serve as the base runs for
the subsequent experiments. Following these, various runs were conducted with a bottom-
water zone. Each of the runs that follows will be discussed according to the strategy adopted.
The data for each experiment is presented in Appendix A.

Runs 1, 2 and 3: Base Runs; Homogeneous Pack
Runs 1, 2 and 3 were carried out at the same injection rate (400 ml/hr) in a

homogeneous pack ( that is, no bottom-water layer ). This was undertaken to investigate the
waterflood performance in the absence of a bottom-water layer as well as to estimate the
effective permeability to water, kyor, at residual oil saturation for subsequent analysis.

Run 1 was a waterflood of a homogeneous pack. Water breakthrough occurred after
0.3069 HCPV of fluid had been produced. As expected, the oil cut started at 100% and
dropped sharply to 33.7% after 0.37 of HCPV of fluid had been produced. The oil recovery
was 62.70% of 101P. Figure 7.2 shows the production history for this experiment.

Run 2 was conducted using a 500 ppm polymer as the injection fluid. This was
necessary because polymer was used as a mobility control and/or blocking agent and its
performance in a homogeneous pack for comparison was required. Water breakthrough
occurred after 0.741 HCPV of fluid had been produced. It should be noted that this
experiment was conducted using a smaller cylindrical core holder (2 feet length by 2 inches
diameter) . The oil recovery was 85.0 % of IOIP. The production history for this run is
shown in Figure 7.3.
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Run 3 was carried out by injecting a 10 percent ¢il-in water emulsion into a
homogeneous pack. Water breakthrough occurred after 0.325 HCPV of fluid had been
produced. The oil cut started at 100% and declined to 84% when water started to be
produced. The oil recovery was 70.5% of IOIP. Figure 7.4 illustrates the production history
for this run. These experiments, as well as the three that follow, serve as the base runs for
comparison. In all these runs, the rate used was 400 ml/hr. This in terms of velocity was
2.48 m/day.

Runs 4. 5 and 6: Base Runs; Bottom-Water Layer, hy /hy, = 3, ko/kpw = 1.
Runs 4, 5 and 6 were conducted at the same injection rate, 400 ml/hr, in a bottom-

water layer with oil zone thickness three times that of the water zone ( h, /hy, = 3), to study
the performance of waterflood, polymer flood and emulsion flood under identical conditions.
The absolute permeabilities of both zones were equal (ko/kpw = 1). Both the injection and
production wells were located at a depth of 50% of the oil zone. These tests serve as base
runs since, from here on, various strategies were adopted to improve recovery.

In Run 4, water was injected into the oil zone. Water breakthrough occurred after
0.0415 HCPYV of fluid had been produced. The oil cut dropped sharply to a minimum of
16% before rising. The water-oil-ratio (WOR) at the minimum oil cut was S.4. This value
dropped to 0.92 when the oil cut attained a maximum value of 52% and this occurred after
0.574 HCPV of fluid has been produced. The WOR increased gradually as the oil cut
declined. The oil recovery was 57.0% of IOIP This compares favourably with the oil
recovery of 50.1% obtained in previous work55. The test was concluded when the WOR was
20. Figure 7.5 shows the production history for this experiment.

In Run 5 all the parameters are the same as Run 4. The only difference was the
injection fluid which was polymer and this was injected into the oil zone. Water breakthrough
occurred after 0.0413 HC#V of fluid had been produced. The oil cut dropped gradually and
rose to a maximum of 7%%. The oil recovery was 55.3% of 10IP. Figure 7.6 shows the
production history for this experiment.

Run 6 was conducted by injecting emulsion into the oil zone of a bottom-water pack.
All the parameters were the same as in Run 5, except that the injection fluid was emulsion.
Water breakthrough occurred after 0.0414 HCPV of fluid had been produced. The oil cut
dropped sharply to a minimum of 11.5% before rising. The water-oil-ratio (WOR) at the
minimum oil production rate was 7.7. The WOR declined again to 1.43 when the oil cut
attained a maximum value of 41.2%. The oil recovery was 35.5% of IOIP. Figure 7.7
illustrates the production history for this experiment.
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Run 7: Bottom-Water Run, Polymer Injected into the Bottom-Water and Water Injected into
the Qil Zone, hy/hy, = 3, ko/kpw = 1, Polymer Slug Size = 1.0 PVy,,, Polymer : 500 ppm.

Run 7 was performed by injecting 1.0 PV, of polymer into the bottom-water layer
and water was injected into the oil zone. These injections were done simultaneously. The
injection rate used was 400 ml} /hr. Water breakthrough occurred after 0.04304 HCPV of
fluid had been produced. Two peaks on the oil-cut curve were observed. The maximum oil
cut was 49%. The oil recovery was 64.0 % of IOIP. Figure 7.8 shows the production
history for this experiment.

Run 8: Bottom-Water Run, Polymer was first Injected into the Bottom-Water Zone, after
which Water was Injected into the Oil Zone. hy/h,, = 3, ko/kbw =1, Polymer Slug Size = 1.0
PVyy Polymer : S00 ppm.

Run 8 was conducted to study the injection strategy. One pore volume of polymer
(1.0 PVpw) was first injected into the bottom-water layer. This was followed by water
injection into the oil zone. The injections were performed one after the other, unlike Run 7
where the processes were concurrent. Water breakthrough occurred after 0.0446 HCPV of
fluid had been produced. The oil cut declined to 15.7% and increased to a maximum of
83.5% and dropped rapidly. The oil recovery was 54.0% of 10IP. This technique yielded a
high oil production rate, but the oil recovery was lower than that of Run 7. Figure 7.9 depicts
the production history for the experiment.

Run 9: Bottom-Water Run, Polymer Alternating with Water, hy/hy, = 3, ko/kpw = 1,
Polymer Slug Size = 1.0 PVy,,, Polymer : 500 ppm.

In this experiment one pore volume of polymer (1.0 PVy,,) was divided into four
batches of 0.25 and injected into the bottom-water zone. This was alternated with water of
equal amount (0.25 PVyj] ) injected into the oil zone. The oil cut fluctuated and attained a
peak of 70 % after 0.40 HCPYV of fluid had been recovered. The oil recovery at WOR of 20
wias 56.6 % of 10IP. In this run, the oil cut was better than that of Run 7 but the ultimate oil
recovery was lower. The production history is shown in Figure 7.10.
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Run 10 : Bottom-Water Run, Emulsion Injected into Bottom-Water and Polymer Injected into
the Qil Zone, Surfactant Concentration in Emulsion = 0.016%, Polymer : 500 ppm, hy/h,, =
3, ko/kpw = 1, Slug Size = 1.0 PVow.

In this run, one pore volume of polymer (1.0 PV, ) was injected into the oil zone
and an equal amount (1.0 PV,,,) of emulsion was injected into the bottom-water zone
simultaneously. The polymer injection was followed by water injection. There was a slow
decline in oil cui untii it bottomed at 24% after 0.166 HCPV of fluid had been recovered. It
then increased rapidly to a maximum of 75 % and decreased slowly again. The oil recovery at
WOR of 20 was 69.5 % of I01P. This technique demonstrated a higher oil production rate as
well as higher ultimate oil recovery. Figure 7.11 shows the production history for this

experiment.

Run 11: Bottom-Water Run, Emulsion Injected Into the Oil Zone and Polymer Injected into
the Bottom-Water Zone, Surfactant Concentration in Emulsion = 0.016%, Polymer : 500
ppm, ho/hy = 3, ko/kpw =1, Slug Size = 1.0 PVy,,.

In this run, one pore volume of emulsion and one pore velume of polymer were
injected simultaneously into the oil zone and bottom-water zone respectively. Notice that the
polymer and emulsion injection intervals have been switched to investigate what effect that
will have on recovery. The emulsion injection was followed by water injection. Water
breakthrough occurred after 0.0404 HCPV of fluid had been recovered. The oil cut decreased
gradually until it reached a minimum of 14%, then increased gradually to a peak of 75 % and
finally decreased again. The ultimate oil recovery at WOR of 20, the termination point of the
experiment, was 61.8 %. In Runs 10 and 11, all parameters were the same except the
injection positions of polymer and emulsion. The production history for Run 11 is shown in
Figure 7.12.

From the above experiments, it was observed that the strategy whereby polymer was
injected in the oil zone followed by water, and the injection of emulsion into the bottom-
water, simultaneously, was more efficient. From here on, therefore, all experiments were
conducted in a similar fashion. The conditions under which the experiments were conducted

will be discussed.
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Run 12: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Concentration
in Emulsion = 0.04%, Polymer : 500 ppm, ho/hy, = 3, ko/Kpw = 1, Slug Size = 1.0 PVy,,.

This run was conducted to see the effect of surfactant concentration on recovery. All
the parameters as well as the injection strategy are the same as that of Run 10. The only
change in this test was the surfactant concentration for the emulsion. Water breakthrough
occurred after 0.0392 HCPYV of fluid had been produced. The oil cut decreased sharply and
leveled from 11.2% to 11.8%, before increasing to a maximum of 66% and then decreasing
to a lower value. The oil recovery was 43.0 % of the IOIP, after 2.325 HCPV had been
recovered. Figure 7.13 shows the production history for this test.

Run 13: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Concentration
in Emulsion = 0.016%, Polymer : 500 ppm, hy/hy, = 3, ko/kpw = 1, Slug Size = 0.75 PV,,,..

This run was conducted to investigate the effect of slug size when simultancously
injecting polymer and emulsion into the oil zone and the bottom-water zone, respectively,
The emulsion injected into the bottom-water zone was 0.75 PVpw and an equal volume of
polymer was injected into the oil zone that was followed by water injection. Water
breakthrough occurred after 0.0513 HCPV of fluid had been recovered. The maximum oil
rate was 63.7% and the oil recovery was 51.84% of the IOIP. The production history is
given in Figure 7.14.

Run_14: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Concentration
in Emulsion = 0.016%, Polymer : 500 ppm, ho/hy = 1, ko/kpw = 1, Slug Size = 1.0 PV,,....

This run was conducted to study the effect of bottom-water thickness on recovery,

The oil zone thickness was equal to the bottom-water zone. The water breakthrough occurred
after 0.0621 HCPV of fluid had been recovered. The instantaneous oil production was
almost constant until 1.204 HCPV of fluid had been produced before rising gradually to a
maximum of 40% then it declined to a minimum value. The oil recovery was 51.6% of 101P.
The production history of this test is given in Figure 7.15.
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A series of experiments was conducted to investigate how the rates in the oil zone
and the bottom-water zone affect the instantaneous oil production and the ultimate oil
recovery. Note that the rate in each zone was selected in proportion to the cross-sectional arca
of the zone to simulate a vertical fluid front movement.

Run 15: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Concentration
in Emulsion = 0.016%, Polymer : 500 ppm, hy/hy, = 3, ko/kpw = 1, Slug Size = 1.0 PV,
Rate (oil zone) = 350 ml/hr, Rate (bottom-water zone) = 5G ml/hr.

The total rate for both zones was 400 ml/hr. This rate was divided between the two
zones according to the their cross-sectional areas. This was done in order to simulate a
vertical front advance for each zone. In this experiment, all parameters were the same as
those in Run 10 except that the rates in the oil and bottom-water zones were varied. Water
breakthrough in this test occurred after 0.0386 HCPV of fluid had been produced. The oil cut
dropped sharply to a value of 16%, then increased gradually to a maximum of 76% before
decreasing again. The oil recovery was 57.8% of IOIP. The production history for this test is
depicted in Figure 7.16.

Run 16: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Conceniration
in Emulsion = 0.016%, Polymer : 500 ppm, hy/hy, = 3, ko/kyw = 1, Slug Sive = 1.0 PVy,..,
Rate (oil zone) = 250 ml/hr, Rate (bottom-water zone) = 150 ml/hr.

In this run, all parameters were the same as that in Run 15, except the rate in ithe oil
zone was now changed to 250 ml/hr and the rate in the bottom-water zone was changed to
150 mi/hr. Water breakthrough occurred after 0.0394 HCPV of fluid had been recovered.
The instantaneous oil production increased gradually to a maximum of 64%. The oil recovery
was 45.4 % of 101P. The production history for this experiment is shown in Figure 7.17.

Run 17 : Bottom-Water Run with Polymer and Emulsion Injections, Surfactant
Concentration in Emulsion = 0.016%, Polymer : 500 ppm, ho/hy, = 3, ko/kpw = 1, Slug Size
= 1.0 PVypw, Rate (oil zone) = 325 ml/hr, Rate (bottom-water zone) = 75 mi/hr.

In this run, the rate in the oil zone was 325 ml/hr and the rate in the bottom-water
zone was 75 ml/hr. Water breakthrough occurred after 0.0442 HCPV cf fluid had been
produced. The instantaneous oil production decreased gradually to a va'ue of 13.3 % and
increased rapidly to maximum of 76.4%. The oil recovery was 46.6% of 10OIP. Figure 7.18
shows the production history of the experiment.
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Run 18: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Concentration
in Emulsion = 0.016%, Polymer : 500 ppm, ho/hy, = 3, ko/kpw = 1, Slug Size = 1.0 PV,
Rate (oil zone) = 375 mi/hr, Rate (bottom-water zone) = 25 ml/hr.

In this run, the oil zone rate was changed to 375 ml/hr and the rite in the bottom-
water zone was changed to 25 ml/hr. Water breakthrough was observed after 0.0416 of
HCPV had been recovered. The oil cut decreased slowly until a minimum value of 20% and
then increased rapidly to a maximum value of 73 %. The oil recovery was 52.2% of 10IP.
Figure 7.19 shows the production history of this run.

Run 19: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Concentration
in Emulsion = 0.016%, Polymer : 700 ppm, ho/hy, = 3, ko/kpw = 1, Slug Size = 1.0 PV,
Rate (oil zone) = 350 ml/hr, Rate (bottom-water zone) = SO ml/hr .

The effect of polymer concentration was examined in this test. All the parameters
were the same as that of Run 15, except that the polymer concentration was changed from
500 ppm to 700 ppm to see how it affects recovery. Water breakthrough was observed after
0.0413 HCPV of fluid had been recovered. The oil cut fluctuated for a while before rising to

a maximum of 84% and then declined to very low value. The oil recovery was 52.3 % of

IOIP. The production history for this experiment is shown in Figure 7.20.

Run 20: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Concentration
in Emulsion = 0.016%, Polymer : 500 ppm, hy/h, = 3, ko/kpw = 1, Slug Size = 1.0 PV,,,,,
Rate (oil zone) = 370 ml/hr, Rate (bottom-water zone) = 30 ml/hr .

In this run, the oil zone rate was changed to 370 ml/hr and the rate in the bottom-

water zone was changed to 30 ml/hr. Water breakthrough occurred after 0.0386 HCPV of

fluid had been recovered. The oil cut declined gradually and then rose to a maximum of 80%.
before decreasing again. The oil recovery was 49.3% of 10IP. Figure 7.21 shows the
production history for this experiment.
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Run 21: Bottom-Water Run with Polymer and Emulsion Injections, Surfactant Concentration
in Emulsion = 0.016%, Polymer : 500 ppm, hy/hy, = 3, Ko/kpw = 1, Slug Size = 1.0 PV,,...
Rate (oil zone) = 340 ml/hr, Rate (bottom-water zone) = 60 ml/hr.

In this run, the oil zone rate was changed to 340 ml/hr and the rate in the bottom-
water zone was changed to 60 ml/hr. Water breakthrough occurred after 0.0377 HCPV of
fluid had been produced. The oil cut dropped rapidly to 8% and rose sharply to a maximum
of 80%. The ultimate oil recovery was 51% of IQIP. The production history for this
experiment is shown in Figure 7.22.

To investigate oil recovery by horizontal wells four horizontal wells were designed.
Each well was made up of a quarter inch tubing with a length of 30.48 centimeters. Twenty:
onz .ioles were drilled along one side to serve as the injection/production wells. The aistance
between the holes was 1.3 centimeters. The diameter of the holes was 1 millimeter. Six
experiments were conducted using the horizontal wells.

Run 22: Bottorn-Water Run, Waterflood using Horizontal Injectors and Vertical Producers,
ho/hw =3, ko/kpw = 1.
In this run, horizontal injectors and vertical producers were used. The injection of the

water was into the oil zone only. This run was conducted as a base run to be compared with

the vertical injector/producer run descrit “d under Run 4. Water breakthrough occurred after

0.0421 HCPYV of fluid had been produced. The insiantaneous oil production was constant
throughout the test. The oil recovery was 25.6% of 10IP after 2.489 HCPV of fluid had been
produced. The production history for this run is shown in Figure 7.23.

Run 23: Bottom-Water Run, Horizontal Injectors and Vertical Producers using Polymer and

Emulsion, Surfactant Concentration in Emulsion = 0.016%, Polymer : 54 ppm, h/h.. - 3,
ko/kpw =1, Slug Size = 1.0 PVy,,.

In this run, horizontal injectors and vertical producers were used. Poly, a5
injected into the oil zone as a mobility control agent and emulsion was injected in the bottom
water zone as the blocking agent. Water breakthrough occurred after 0.05 10 HCPV of fluid
had been produced. The oil cut fell sharply and .ose to a maximum of 67%. The oil recovery
was 52.6% of 101P. The production history for this run is shown in Figure 7.24.
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Run 24: Bottom-Water Run, Waterflood using Horizontal Injectors and Horizontal
Producers, hyo/hy = 3, ko/kpw = 1.

In this run, horizontal injectors and producers were used. Water was injected into the
oil zone only. Water breakthrough occurred after 0.0396 HCPV of fluid had been produced.
The instantaneocus oil production dropped sharply from a maximum of 84% to minimum of
7.5 %. The oil recovery was 45.2% of IOIP. The production history for this run is shown in
Figure 7.25.

Run 25: Bottom-Water Run, Horizontal Injectors and Horizontal Producers using Polymer
and Emulsion, Surfactant Concentration in Emulsion = 0.016%, Polymer : 500 ppm, ho /hw
=3, ko/kpw =1, Slug Size = 1.0 PVy,,.

In this run, horizontal injectors and horizontal producers were used. Polymer was
injected into the oil zone as a mobility control agent and emulsion was injected into the
bottom-water zone as the blocking agent. Water breakthrough occurred after 0.0399 HCPV
of fluid had been produced. The instantaneous oil production dropped gradually and rose to a
maximum of 62%. The oil recovery was 57.2% of 10IP. The production history for this run
is shown in Figure 7.26.

Run 26: Bottom-Water Run, Waterflood using Horizontal and Vertical Injectors and
Horizontal and Vertical Producers, ho/hw = 3, ko/kpw = 1.

In this run, horizontal and vertical injectors and horizontal and vertical producers were
used. The horizontal wells were used in the oil zone and the vertical wells were used in the
bottom-water zone. Water breakthrough occurred after 0.0398 HCPV of fluid had been
produced. The oil cut started at a maximum of 74% and dropped sharply to a minimum
value. The oil recovery was 35% of IOIP. The production history of this run is presented in
Figure 7.27.
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Run 27: Bottom-Water Run, Horizontal and Vertical Injectors and Horizontal and Vertical
Producers using Polymer and Emulsion, Surfactant Concentration in Emulsion = 0.016%,
Polymer : 500 ppm, hy/hy, = 3, ko/kpw =1, Slug Size = 1.0 PVy,,.

In this run, horizontal and vertical injectors and horizontal and vertical producers were
used. Polymer was injected into the oil zone as a mobility control agent and emulsion was
injected into the bottom-water zone as a blocking agent. Water breakthrough occurred after
0.1222 HCPYV of fluid had been produced. The instantaneous oil production dropped sharply
from 89% to 37% and increased again to a maximum of 57% before decreasing to a smaller
value. The oil recovery was 55.2% of 10IP. Figure 7.28 shows the production history of

this experiment.

7.2 Experimental Errors and Reproducibility of Experiments
7.2.1 Experimental Errors

The wet-packing method was employed, since a rubber hammer was used to tamp the
core-holder, permeability tended to vary from one experiment to the other. The maximum
permeability was 23.0 pm? and the minimum was 17.0 um?2, the average being 18,7 pm?2.
Another area where errors could be encountered in the experiments was irreducible water
saturation estimation. After the model was wet-packed air was passed through it to dry the
glass beads. Vacuurn was also applied on the core-holder. These attempts were designed to
dry the glass beads, but it is possible that the beads did not dry completely. The irreducible
water saturation was therefore difficult to calculate, hence estimation was often applied.
Another source of error was the calculation of the initial oil-in-place (IOIP). It was calculated
using the IOIP of the homogeneous pack multiplied by the ratio of the height of the oil zone
thickness to the model thickness. Obtaining the IOIP of the F “tom-water layer this way was
found to be quite accurate, with less than (3-4 %) error com .sed to weighing the scraped-off
layer to obtain the exact amount of oil removed. Five chect.. were performed to verify this.
Consequently, all the IOIP of the bottom-water experiments were obtained in this manner.
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7.2 Reproducibility of Experiments

Runs 10 and 11 were repeated as Runs 28 and 29 to establish the consistency of the
experiments. As mentioned in the experimental procedure, the work involved is labour-
intensive hence only two experiments were conducted to verify the repeatability of the
experimental results.

Figures 7.29 and 7.30 compare the cumulative oil recovery and oil cut for Runs 28
and 10 and Runs 29 and 11 respectively.The maximum oil cut for Runs 10 and 11 were 75%
and 75.3%; for Runs 28 and 29 the maximum oil cuts were 79.5% and 75%. The cumulative
oil recovery for Runs 10 and 11 were 69.5% and 61.8% IOIP; the cil recoveries for Runs 28
and 29 were 65.9% and 50.9% IOIP. From the above results it can be concluded that the
experiments in this study are rep.oducible within an error of less than 5% recovery of 101P.

7.3 Description of the Computer Program Used in the Semi-Analytical

Model

The program, given in Appendix B, uses the crossflow equations developed in
Section 4. It is made up of a main program and eight subroutines. The main program is called
Main and the subprograms are called Dataread, Init., Crossflow_calc., Front_calc.1.
Front_calc.2, Performance_calc., Function, and Fileout_result. The Dataread subroutine has
the function of reading the input data. The Init. subroutine sets the initial values for all
variables. The subroutine called Crossflow_calc. calculates crossflow rates in each section.
The Front_calc. 1 and 2 subroutines calculate the front location before breakthrough and after
breakthrough, respectively. The Performance_calc. subroutine calculates production of oil
and water. The Function subroutine, snows all functions used ir. the program and finaliy the

Fileout_result outputs all the results to a file.
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7.4 Calculation Procedure of Oil-Recovery Performance Including
Crossflow Effects

f1] Flood conditions and assumptions:

This program calculates oil-recovery performance in the following flood conditions.

() Consider a two-layer porous medium, where the upper layer is the oil zone and the
lower layer is the watei' zone. The oil zone is initially filled with oil at irreducible water
saturation, and the water zone is 100% saturated with water. The porous medium is
homogeneous and isotropic.

(2) Water/emulsion/polymer solution is injected into the upper/bottom layer at a constant
rate. Crossflow between the upper and lewer layer happens simulianeously depending on the
flow resistance of each layer. Oil is produced from both layers.

(3) The outlet pressures in both layers are constant during the flood.

(4) Gravity and capillarity are neglected.

&) Emulsion and polymer solution are assumed te be Newtonian and miscible with

water. Water viscosity is a function of polymer and emulsion concentration.

(6) No residual oil saturation is assumed in the lower layer. Relative permeability curves

of both layers are given as mentioned below.
(2] Calculation procedure of frontal movement with crossflow.

) At the beginning of the flood, the fronts of injected fluids, xr and xp, appear in both
layers as shown below. This figure also shows how each scction and zone is defined.



X1l
Zone
q, —®| Zone(1j(1) 2] Zone([1}(3]
— Zonel2]! Zone Zone[2)(3)
q, ne[2](1] 202)
X
<« 'l > |
Sect. 1 Sect. 2 Sect. 3

(2) The crossflow rate was calculated in each section at a certain time step, t. Equations
(4 .17y, (4.20) and (4.23) were used to calculate the crossflow rate. The water saturation
and polymer/emulsion concentration in each zone were assumed to be constant in each time
step. The crossflow rates depended on the mobility ratio between each zone and frontal

location of xq1 and xg2. These rates were also constant in each time step.
Step (2) 1s written in the subprograms crossflow_calc0 and crossflow_calcl.

(3 In the upper layer, the saturation plane from Sj to 1-Sor was assumed to move at a
constant speed. In the lower layer, the saturation plane from S, = 0.0 to 1.0 was assumed to
move at a constant speed. By this assumption, the injected and crossflow fluids displace oil
in a piston-like fashion (see Appendix C).

" During the time At, the lengths of zone [1][1], zone [1][2], zone [2][1], zone [2][2],
zone[1]{3] and zone [2}{3] changed due to the flow of the injected and crossflow fluids.
These lengths at time t+1 were calculated using assumption (3). The frontal locations of xg
and xpz at time t+1 were also determined as shown in Appendix C.



5 At the time t+1, the location of each zone was updated. The water saturation and
polymer/emulsion concentration in each zone were calculated. The water viscosity was a
function of polymer and emulsion concentration. The mobility ratios in each section were
calculated from the total mobilities in each zone.

Steps (3) to (5) are written in the subprogram front_calc3.

(6) The oil cut of the production fluids at the upper layer was a function of the water
saturation of zone [1]{3]. The oil cut of the production fluids at the lower layer was a
function of the water saturation of zone [2][3]. The production rate of oil was calculated by
summing up the oil production rates in both layers. Oil recovery efficiency and WOR were
also calculated the same way.

Step (6) is written in the subprogram performance_calc.

) The steps from (2) to (6) were repeated until either xg; or xp; reached breakthrough.

(8 After the breakthrough of either front, only one front of injected fluid, xf; or xp2,
existed in the upper or lower layer. See diagram above. There are two sections existing in the
core.

) The crossflow rate was calculated 1. each section at a certain time step t, in the same
manner as in step (2).

(10) During the time At, the lengths of zone [1]{1], zone [1][2], zone [2][1] and zone
[2][2] changed due to the flow of the injected and crossflow fluids. These lengths at time t+]
were calculated by using assumptions (3). The frontal location of xf; or xg at time t+1 was
also determined as shown in Appendix C. Each front, xq; or xp was dependent on L (core
length).

(11) At the time t+1, the location of each zone was updated in the same manner as in step

(5).

The steps from (10) to (11) are written in the subprogram front_calc2.
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(12) The oil cut of the praduction fluids at the upper layer was a function of the water
saturation of zone [1]{2]. The oil cut of the production fluids at the lower layer was a
function of the water saturation of zone [2][2]. The production performance was calculated in

the same manner as in step (6).

(13) The steps from (9) to (12) were repeated until both fronts, x¢; and x¢, reached
breakthrough.

(14)  After breakthrough of both fronts, only one section existed in the core as shown in
Appendix C. In this case, the crossflow rate was calculated at a certain time step t in the same

manner as in steps (2) and (9).

(15)  The water saturation and polymer/emulsion concentration in each layer were

calculated by material balance.
This step is written in the subprogram front_calc1.

(16)  The oil cut of the produced fluids at each layer was a function of the watsr saturation
of each layer. The production performance was calculated in the same manner as in step (6).

(17)  Steps (14) to (16) were repeated until the end of the flood.
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Chapter 8
DISCUSSION OF RESULTS

8.1 Introduction

In this study, two main objectives were pursued: to develop and investigate the effect
of crossflow, and to examine strategies using polymer as a mobility control agent and
emulsion as a blocking agent to enhance the recovery of light and moderately viscous oil
reservoirs with a water-leg. To achieve this, thirty-two (32) displacement tests were
conducted with water, mobility control and/or blocking agents.

First, the various aspects of the modified crossflow are discussed and validated using
some of the experimental data and data from previous studies. Second, the different injection
strategies using polymer and emulsion as mobility control and/or blocking agents are
discussed.

8.2 Crossflow

Three experiments were conducted to test the crossflow equations. To establish that
the crossflow equations were accurate, data from previous studies were used. The sections
that follow discuss the various aspects of the crossflow equation.

8.2.1 The Effect of Injection Strategy on Crossflow

Runs 7, 8,9, 10 and 11 were designed to study the effect of injection strategy on oil
recovery. The injection intervals were located in both the oil and water zones. The volumetric
flow rate in the oil and bottom-water zones were proportional to the cross-sectional areas of
the respective zones to simulate a vertical-front displacement. The flow rate used in these
runs was 400 mi/hr. The objective for the runs was to block the water zone while
waterflooding the oil zone. Figure 8.1 shows that the waterflood performances exhibit
similar trends, especially the cumulative oil recovery curves. Considering the curves for
Runs 7, 8, 9 and 10, they all intersect each other after 0.4 HCPV of fluid had been produced.
Af*er that the cumulative oil recovery for Run 8 was higher than all the other runs up to 1.05
HC! "hen the injection fluid into the bottom-water zone was changed from polymer to
emulsion in Run 10, the oil recovery difference between Runs 10 and 7 at 1.5 HCPV was
9% IOIP.In Runs 7, 8 and 9 the fluid injected into the water zone was water. The only
difference among them was the mode of injection. At 1.0 HCPV, 15% oil recovery was
obtained in Run 8 more than in Runs 7 and 13% oil recovery more than in Run 9. After 1.0
HCPYV of fluid had been produced, there was more oil recovery in Runs 10 and 11 than the
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other three runs. This is attributed to the injection strategy adopted. Root and Skibai®
pointed out that oil recovery could not be improved by blocking access to « highly permeable
zone in the injection well. These five runs do not support this premise, because an
improvement in oil recovery from 61.8% IOIP in Run 11 to 69.5% IOIP in Run 10 was
observed.

Data from three of the five experiments discussed above were simulated using the
semi-analytical model developed in this study. Figure 8.2 depicts graphically the simulated
results. The cumulative oil recovery trends were similar to the experimental data; however, it
was observed that Runs 7a and 11a showed earlier recovery as compared to what was
observed experimentally. One of the probable causes for this depature from the experimental
result is the fact that the polymer solution in the semi-analytical model was considered to be a
Newtonian fluid. Another reason for the deviation can be attributed to the iack of
understanding of the blocking mechanism of emulsion in the semi-analytical model. The
ultimate oil recovery values are very comparable, viz. 60.6% IOIP for Run 7a, as against
56.0% IOIP for Run 7; 61.1% IOIP for 10a as against 69.5% for Run 10 and 47.9% 1OIP
for Run 11a, as against 61.8% IOIP for Run 11.

8.2.2 The Possible Directions of Crossflow

On the basis of the crossflow equations derived, four possible directions of crossflow
have been identified. Detailed explanations and illustrations have been given in scction 6.2.
In this section, simulated results using experimental data will be used to shed further light on
the crossflow directions and an attempt will be made to show how the direction of crossflow
improves or lowers oil recovery as pointed out by Lambeth and Dawe!2.

The crossflow occurring in the middle section, qc3, controls the formation of the oil
bank as well as the direction of flow. Figure 8.3a shows pore volumes of fluid injected as a
function of the flood-front position. In Run 7 water was injected into the oil zone and
polymer was injected into the water zone. The flood-front in the oil zone x;; was initially
ahead of the flood-front in the water zone, . After the fronts had traversed about 10% of
the model length, xg; overtook xf,. The crossflow as a function of flood-front position is
depicted in Figure 8.3b. The positive slope of the crossflow indicated that, the crossflow was
from the oil zone to the water zone. After the flood-front has moved about 10% of the model
length, the direction of the crossflcw in Zone ¢ reversed direction. just at the beginning of
the flood, crossflow was assumed to be as shown below:
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After the flood-front moved about 10% of the model length, crossflow reversed direction
due to the injection of polymer into the water zone. The water zone thus became a high
resistance region, and the velocity of the flood-tront was reduced considerably. The velocity
of the flood-front in the oil zone, however, increased due to the crossflow into the oil zone.

The diagram below illustrates this:
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This explains why the earlier part of the cumulative oil recovery in Run 7a (Fig. 8.2) is
higher than in Runs 10b and 11c. When polymer was injected into the oil zone and emulsion
was injected into the water zone, the flood fronts maintained their positions (that is, xp, was
ahead of xg;) until the end of the run. Figure 8.3c shows the positions graphically. Figures
8.2d and e show the crossflow as functions of the flood-front positions using Equations
(4.17), (4.20) and (4.23). In Figure 8.3d the crossflow declined to about 25% after the
injection fluid was changed from polymer tc water in the oil zone. The change, however,
was not sensed by flood-front xrp; hence, Figure 8.3e demonstrated no change in the
crossflow pattern. It is worthwhile to note that depending on the fluids being used as
injection fluids and the strategy being adopted crossflow could increase or decrease oil

recovery.

8.2.3 Previous Studies of Reservoirs with Bottom-Water

In this section the semi-analytical method developed in this research was used to
evaluate some of the experimental data of Yeung33, Islam42 and Hodaie and Bagci44.

Yeung's data for Run 1655 was used for the simulation. The run was a bottom-water
run. The oil zone was three times thicker than the bottom-water zone. The permeabilities in
the oil and the water zone were the same. The process of displacement was a dynamic-
displacement procedure, DBP3S. The two fluids, water and emulsion, were injected into the
oil zone and the bottom-water zone simultaneously. The total rate Q of fluid injection was
400 ml/hr. The injection rate into the oil zone was 300 ml/hr and that into the bottom-water
zone was 100 mil/hr. After 1 PVy,, of emulsion was injected into the bottom-water zone, the
emulsion injection was discontinued, and 400 ml/hr of water was injected into the oil zone.
The input parameters for the simulation were: width of the model, w = 5.08 cm; depth of the
model: oil zone thickness, ho = 5.7150 cm, bottom-water zone thickness, hpw = 1.9050 cm;
length of the model, L = 122.0 cm; absolute permeability, ko, = 18.9 um?2; porosity, ¢ =
0.357; oil viscosity, wo = 63.0 mPa.s; water viscosity, H,, = 1.0 mP.s; rate: injection rate into
the oil zone, q = 300 ml/hr, injection rate into the bottom-water zone, q = 100 ml/hr;
irreducible water saturation, S;. = 0.06, residual oil saturation, Sor = 0.4 and surfactant
concentration in emulsion was 0.016% (volume). The simulated result is shown in Figure
8.4.

Islam’s data for Run 542 was used for the simulation. The run was a bottom-water
run with the oil zone five times thicker than the bottom-water zone. The permeabilities in the
oil and the water zone were the same. The displacement started with a waterflood at a rate of
400 ml/hr in the oil zone. After 1 PVy,, of water had been injected, the fluid was changed to a
500 ppm polymer solution of which a slug size of 0.15 PVy,, was injected into the oil zone
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and this was followed again with a waterflood. The input parameters for the simulation were:
width of the model, w = 5.08 cm; depth of the model: oil zone thickness, h, = 6.35 cin,
bottom-water zone thickness, hyy = 1.77 ¢ length of the model, L = 122 cm; absolute
permeability, ko = 15.8 pm?Z; porosity, ¢ = -.360; oil viscosity, po = 50.0 mPa.s; water
viscosity, pw = 1.0 mP.s; rate, q = 400 ml/hr; irreducible water saturation, S;.. = 0.06.
residual oil saturation, Sor = 0.4 and polymer concentration was 500 ppm. The simulated
result is shown in Figure 8.5.

Hodaie and Bagci's data for Run DPF1144 was used for the simulation. The run was
a bottom-water run with the oil zone three times thicker than the bottom-water zone. The
permeabilities in the oil and the water zone were the same. Polymer solution was injected at a
rate of 400 ml/hr into the oil zone. After 0.6 PVy,, of polymer was injected, the fluid was
changed water. The input parameters for the simulation were: width of the model, w = 5.0
cm; depth of the model: oil zone thickness, ho = 8.0 cm, bottom-water zone thickness, hyw =
2.0 cm; length of the model, L = 75 cm; absolute permeability, ko = 12.0 pm?2; porosity, ¢
=0.37 oil viscosity, fig= 14.5 mPa.s; water viscosity, ity = 1.0 mP.s; rate, g = 400 ml/hr;
irreducible water saturation, S;,, = 0.20, residual oil saturation, Sor = 0.4 and the polymer
was 0.5% by weight concentration. The simulated result is shown in Figure 8.6.

The trend of the simulated results is similar to the trend of the experimental results and
the ultimate recovery matches quite well. The semi-analytical model predicis oil recovery for
bottom-water models with a maximum error of about 8%.

8.3 Base Runs
The Base Runs refer to waterfloods in homogeneous and bottom-water models using
one injection fluid at a time and injecting into the oil zone only.

8.3.1 Homogeneous Pack

Runs 1, 2, and 3 were conducted in a single-layer sand pack. The volumetric injection
rate was taken from previous work done by Islam*Zand Yeung55. The effective permeability
to water, kyor. at residual oil saturation was computed using Run 1. Figure 8.7 illustrates
graphically the cumulative recovery of the various runs for a homogeneous pack. The
porosities and absolute pernieabilities of the sand packs in the three experiments were 37.6%,
37.0% and 36.9% and 17 pm?, 18 um? and 17.6 um?, respectively. Water breakthrough
occurred faster in the waterflood experiment &s compared to the polymer and emulsion
floods, viz. breakthrough occurred after 0.3069 HCPV of fluid had been produced. The
water-oil-ratio (WOR), however, increased more rapidly during the polymer flood than in the
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other two. The cumulative recovery for the waterflood was the lowest among the three
experiments (viz. 62.7% of 10IP), after 2.308 HCPV of fluid had been produced. The
cumulative recoveries for polymer and emulsion floods were 85.0% and 70.5%.
respectively.

8.3.2 Bottom-Water Pack

Three experiments were conducted by injecting water, polymer and emulsion into a
model with bottom-water. In each of the experiments, the oil-to-water zene thickness was 3
to 1 (that is, ho/hy, = 3). The permeabilities in the oil and bottom-water zones were equal,
thus, ko/kw = 1. The injection and production wells were situated 50% into the oil zone. In
Run 4, water was the injection fluid. The water-oil-ratio (WOR) at the onset of the tesi was
0.96 and this increased to 5.38 after 0.288 HCPV of fluid had been produced. The oil cut
decreased from 51% to 15.7% before increasing to a maximum of 52% and then dropping
again. An examination of the pressure graph (Fig. 7.5) shows that the injected water
channeled into the bottom-water layer right at the beginning of the experiment and that
explains why the oil cut dropped. The cumulative recovery in this test was 57.0% of the
IOIP. A comparison of Runs 4 and 5 shows that more water was produced at the beginning
of the experiment in the latter than in the former (viz. 2.33 as against 0.96). In Run 5, the
WOR increased to a maximum of 6.43 and declined to a minimum of 0.282 before increasing
again. At the minimum water-oil-ratio of 0.282, the oil cut was 78%. The oil cut was higher
in Run 5 than Run 4 (viz. 78% as against 52%). The cumulative oil recovery was also higher
in Run 5 than Run 4 (viz. 55.3% as against 57.0%). Run 6 was an emulsion flood. The
injection was in the oil zone. All parameters were the same as in Runs 4 and S. The water
breakthrough occurred after 0.0414 of HCPV had been produced. The WOR was the highest
among the three bottom-water experiments (viz. 2.92). The oil cut began at 25.5% and
dropped to 11.5%, which was the lowest , before increasing to 41.1%. The cumulative oil
recovery was 35.5% after 2.27 HCPV of fluid had been produced. This indicates that for a
bottom-water layer pack, polymer is a better displacing fluid, followed by water and then
emulsion. Figure 8.8 shows the production history of the bottom-water layer pack, for the
three cases.
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8.4. Polymer/Emulsion Flooding Under Bottom-Water Conditions

As mertioned earlier, different strategies were adopted to investigate recovery
according to the sub-topics listed below. In the experiments that will be discussed, polymer
was injected in the oil zone followed by water, and emulsion was injected in the bottom-
water zone.

8.4.1 Effect of Surfactant Concentration on Recovery

The effect of surfactant concentration was investigated in Runs 10 and 12. In these
runs, the polymer concentration was 500 ppm. The oil-in-water emulsion was 10% by
volume. The permeabilities in the oil and water zones were equal; thus, ko/ky = 1. The oil-
zone thickness was 3 times that of the bottom-water layer (that is, ho/h,, = 3). The pressure
increased gradually in Run 10 compared to the rapid increase in Run 12. The pressure
climbed to 53.6 kPa (Fig. 7.13) before declining. This came about as a result of the increase
in the surfactant concentration from 0.016% by volume in Run 10 to 0.04% by volume in
Run 12. The increased pressure however, did not result in increased oil cut nor cumulative
oil recovery. In fact it decreased the oil cut from 75.0% (maximum peak) in Run 10 to 66%
in Run 12. The water breakthrough occurred earlier in Run 12 than in Run 10 (viz. after
0.042 HCPV of fluid has been produced as compared to 0.392 HCPV). Figure 8.9 illustrates
these comparisons.

8.4.2 Effect of Polymer Concentration on Recovery

The effect of polymer concentration was examined in Runs 15 and 19. In these runs,
the emulsion had a surfactant concentration of 0.016%. The oil-in-water emulsion was 10%.
by volume. The permeabilities in the oil and bottom-water zones were equal; thus, ky/ky = 1.
The polymer concentration for Run 15 was 500 ppm and that for Run 19 was 700 ppm. The
magnitude of the pressure profile in Run 19 (Fig. 7.20) after 1.4 HCPV of fluid had been
produced was 1.8 times that of Run 15. This can be attributed to the increase of polymer
concentration from 500 ppm by weight in Run 15 to 700 ppm by weight in Run 19. The
increased pressure showed an increase in oil cut from 76% in Run 15 to 84% in Run 19.
However, this was not reflected in the cumulative oil recovery. It actually decreased the oil
recovery from 57.8% of IOIP in Run 15 to 52.3% of IOIP in Run 19. Figure 8.10 shows
these comparisons.
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8.4.3 Effect of Slug Size on Recovery

Runs 10 and 13 were compared to examine the effect of slug size on recovery. The
polymer concentration was 500 ppm and the emulsion had a surfactant concentration of
0.016%. The oil-in-water emulsion was 10% by volume. The permeabilities in the cil and
bottom-water zones were equal; thus, ko/ky = 1. In Run 10, the emulsion and polymer slugs
were equal, (that is, 1.0 PVy,), while in Run 13 the slug sizes for emulsion and polymer
were 0.75 PVy,y,. The shape and magnitude of the pressure profile in Run 13 (Fig. 7.14) was
very different from that of Run 10 (Fig. 7.11). The experimntal results of Runs 10 and 13
show that slug size has an effect on oil recovery. Figure 8.11 shows a comparison of the oil
cut and cumulative oil recovery in Run 10 with that of Run 13. In Run 10, the oil cut starts at
50.5%, declines to a minimum of 24% and peaks at 75.0% before decreasing again. Unlike
Run 10, the oil cut in Run 13 starts at low value of 24.1% and decreases further to 16.8%
before increasing to a maximum of 63.7%. The blocking action of the 1.0 PVbw slug size in
Run 10 is more pronounced. As a result a higher instantaneous oil production is observed.
The cumulative oil recovery after 1.8 HCPV of fluid had been produced was 62.5% of the
IOTP in Run 10 as compared to 51.8% of the IOIP in Run 13.

8.4.4 Effect of Layer Thickness on Recovery

The effect of oil-water zone thickness was investigated in Runs 10 and 14. In these
experiments, the polymer concentration was 500 ppm and the emulsion had a surfactant
concentration of 0.016%. The oil-in-water emulsion was 10% by volume. The permeabilities
in the oil and bottom-water zones were equal, thus, ko/ky, = 1. In Figure 8.12 a compariscon
is made of the recovery curves for Run 10 and Run 14. The oil-zone thickness was 3 times
that of the bottom-water layer (that is, hy/hy, = 3) in the former and in latter the oil-zone
thickness was equal to the water zone(viz. hy/hy, = 1). The effect of the oil-water zone
thickness ratio is apparent in this figure. The WOR in Run 14 increased faster initially and
then decreased after 1.07 HCPV of fluid had been produced. The oil bank formation in the
bottom-water zone was delayed until 1.45 HCPV of fluid had been produced. At this point,
the pressure started increasing rapidly (Fig. 7.15) which indicated that channeling of the
displacing fluid was reduced appreciably; thus, the oil was being displaced from the oil zone.
The ultimate oil recovery for Run 14 was 51.6% IOIP after 3.05 HCPV of fluid had been
produced. The increase of the WOR in Run 10 was gradual and this declined after 0.46
HCPV of fluid had been produced. The oil bank formation took place after 0.5 HCPV of
fluid had been produced. The ultimate oil recovery for Run 10 was 69.5% of IOIP. About
17.9% of the JOIP was not recovered due to the increase in the water zone thickness.
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8.4.5 Effect of Rate on the Degree of Crossflow and Oil Recovery

Figure 8.13 shows the effect of injection rate on oil recovery. To investigate this
effect, the injection rates in the oil and water zone were varied to see whether there was an
optimum rate combination that would yield a higher oil recovery and minimize crossflow as
well. For the seven experiments conducted, the rate ratio, do/qQw = 3, corresponding to an
injection rate of 300 ml/hr of fluid into the oil zone, and an injection rate of 100:inl/hr of fluid
into the water zone, yielded the highest ultimate oil recovery. The experimental results
indicated that as the rate-ratio became smaller, the ultimate oil recovery also became lower. It
was also observed that as the rate-ratio increased the oil recovery attained a maximum value
and declined. To confirm this finding, the experimental results were simulated using the
semi-analytical model developed. The simulated results confirmied that as the rate-ratio
decreased, the oil recovery decreased as well. The simulated results also showed the
maximum oil recovery at qo/qw = 3. It, however, did not show that as the rate-ratio increased
the oil recovery decreased; rather it showed that the oil recovery asymptotically approached o

limiting case.

8.5 Horizontal Well Flooding under Bottom-Water Conditions
Horizontal injectors and producers were designed and six experiments were conducted to

investigate their effect on oil recovery.

8.5.1 Horizontal Injector versus Vertical Injector

This experiment was conducted to investigate the effect of horizontl injectors on oil
recovery, as well as comparing the results with the vertical injection experiments, The
permeabilities in the oil and water zones were equal; thus, ky/kw = 1. The ail-zone thickness
was 3 times that of the bottom-water layer (that is, hy/hy = 3). Figure 8.14 compares the
recovery pertormance from a continuous waterflood using a horizontal injector and vertical
producer, with the recovery performance from a continuous waterflood using a vertical
injector and vertical producer. The oil cut stayed fairly constant at 11.0% in the case of the
horizontal injector as compared to the varying oil cut in the vertical injector. The pressure and
the water-oil ratio (WOR) were constant as well in the horizontal injector, as compared 10
varying pressure and WOR in the vertical injector. The ultimate oil recovery for the horizontal
injector was 24% of I0IP after 2.4 HCPV of fluid had been produced and that for the vertical
injector was 56% of IOIP after 2.4 HCPV of fluid had been produced. The oil bank was
eliminated when a continuous waterflood was carried out using a horizontal injector; this,

however, did not show any improvement over a vertical injector.
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Polymer and emulsion were also used in conducting experiments for the same well
configuration discussed above. The polymer concentration was 500 ppm and the emulsion
had a surfactant concentration of 0.016%. Figure 8.15 shows a comparison of the recovery
performance of the horizontal injector with the vertical injector, using polymer as a mobility
control agent in the oil zone and emulsion as a blocking agent in the bottom-water layer. The
oil-zone thickness was 3 times that of the bottom-water layer (that is, ho/hy, = 3), and the
permeabilities in the oil and water zones were equal; thus, ko/ky, = 1. The oil cut for the
horizontal injector and vertical producer started at 37.5% and peaked a* 67% after 0.49
HCPV of fluid had been produced. The oil cut for the vertical injector and vertical producer
started at 50.5% and rea~hed a maximum of 75.0% after 0.88 HCPV of fluid had been
produced. This indicates that the maximum oil cut for the vertical injector/producer was
attained after twice the HCPV of the horizontal injector and vertical producer had been
produced. On the basis of oil cut only, the horizontal injector and vertical producer appear to
perform better than the vertical injector. This stems from the fact that, after 0.49 HCPV had
been produced in each case, the oil production rate for the herizontal injector was 67% as
compared to 49.3% for the vertical injector. The ultimate oil recovery for the horizontal
injector and vertical producer was 52.6% of I0IP as compared to 69.5% of I0OIP for the
vertical injector/producer. An oil bank was observed in the horizontal injector and vertical
producer experiment. In other words, the application of horizontal injectors and vertical
producers did not eliminate the formation of an oil bank, when polymer and emulsion were
used in the flooding process.
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8.5.2 Horizontal Producer versus Vertical Producer

Figure 8.16 compares experiments conducted using a horizontal injector and producer
with that conducted using a vertical injector and producer, for both a continuous waterflood
and using polymer and emulsion. For the continuous waterflood using horizontal injectors in
both the oil and bottom-water layer, the oil cut started at 84% and dropped to a minimum
value. When vertical injectors and producers were utilized, the oil cut started at 51%, peaked
at 52% and dropped to a minimum value. The oil bank disappeared when horizontal injectors
and producers were used, but existed when vertical injectors and producers were used. The
water-oil ratio (WOR) increased gradually and the pressure remained virtually constant while
using the horizontal injectors and producers. For the vertical injectors and producers the
WOR increased gradually also and the pressure increased to a maximum and then declined.
For the horizontal injectors and producers the ultimate oil recovery was 45.2% of the IOIP,
while that for the vertical injectors and producers, the ultimate oil recovery was 57% of the
I0IP.

In Figure 8.17 recovery performance, for the horizontal injector and producer using
polymer and emulsion, is compared with that for a vertical injector and producer. In the
horizontal injector and producer, the oil cut starts at 58% and is maintained until 0.72 HCPV
of fluid is produced before declining. The oil cut for the vertical injector and producer starts
at 50.5%, declines to 23.5% and then peaks at 75% after 0.88 HCPV of fluid has been
produced. The average WOR in this range (after 0.88 HCPV of fluid has been produced) is
1.071 for the horizontal injector and producer, as compared to 1.70 for the vertical injector
and producer. This indicates that there is better blocking of the bottom-water zone for the
horizontal injector and producer than for the vertical injector and producer. The ultimate oil
recovery for the horizontal injector and producer is 57.2% of the IOIP that is 12.3 percentile
lower than that of the vertical injector and producer. Hodaie and Bagci#4 had a similar result
in their polymer augmented waterflood.
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8.5.3 Horizontal Well Configuration

This section discusses the various horizontal well configurations. For continuous
waterflood, the performance of the horizontal injector and vertical producer, the horizontal
injector and horizontal producer and the horizontal and vertical injector and horizontal and
vertical producer are compared in Figure 8.18. The WOR for the horizontal injector and
vertical producer was constant at 7.40 and so was the oil cut, at 11.0%. For the horizontal
injector and producer, the WOR increased more gradually than did that for the horizontal and
vertical injector and horizontal and vertical producer. The oil cut started at 84% for the
horizontal injector and producer and declined gradually as compared to an oil cut of 74% for
the horizontal and vertical injector and horizontal and vertical producer, which declined at a
faster rate. The cumulative oil recovery for the horizontal injector and producer was 45% of
IOIP, and this was 1.8 times that for the horizontal injector and vertical producer, and 9.8
percentage points higher than that for the horizontal and veriical injector and horizontal and
vertical producer. There was no oil bank observed in any of these three experiments. This
goes to establish that, for a continuous waterflood, horizontal injectors can enhance the oil
rate.

Using the same well configurations as mentioned above, polymer and emulsions were
used as injection fluids in the experiments. Figure 8.19 shows the recovery performance for
the various horizontal well configurations. In all three experiments, when polymer was used
as a control agent and emulsion was used as a blocking agent, oil bank formation was
observed. The horizontal injector and producer well configuration gave the highest recovery,
viz. 57.2% of 10IP. The horizontal and vertical injectors in the oil zone and water zones,
respectively, and horizontal and vertical producers in the oil and water zones, respectively,
yielded an oil recovery of 55.2% of 10IP. The horizontal injector and vertical producer
yielded an oil recovery of 52.6% of 10IP. From these ultimate oil recovery values it can be
concluded that the horizontal injector and producer well configuration in conjuction with the
application of polymer and emulsion will be the best well configutation for bottom-water
reservoirs. This well configuration does not eliminate oil bank formation in the water zone
when polymer and emulsion are used as mobility control and blocking agents, and the oil
recovery results compare very well with the oil recovery results from the vertical injector and
producer well configuration. For bottom-water reservoirs, vertical injectors and producers
can give 12.3 percentage points higher oil recovery than horizontal injectors and producers,
therefore, horizontal wells should be used with caution.
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Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions
This research examined waterflooding reservoirs with a communicating bottom-water

zone. A generalized mathematical model was developed to estimate crossflow of fluids into
or out of the oil zone. A semi-analytical model was developed to predict oil recovery
performance for bottom-water reservoirs. The effect of different injection strategies for
polymer and emulsion slug was studied. From the semi-analytical model, the mathematical
model and the results of the experiments, the following conclusions can be made:

1) For bottom-water reservoirs, the amount of fluid channeling into the bottom-water
zone can be estimated using Equations (4.17), (4.20) and (4.23).

2) Utilizing the semi-analytical model the frontal movements of x¢; and xg2 can be
calculated during a flooding process and the effect of the frontal locations on
crossflow can be investigated.

3) Recovery predictions can be made with very little error using the semi-analytical
model developed in this research.

(4) In a bottom-water reservoir, the greatest crossflow takes place near the injection well.

(5 In a bottom-water reservoir, crossflow reverses direction depending on the fluid
being injected in the oil and water zones.

(6) Under bottom-water conditions, the use of a 500 ppm polymer solution as a mobility
control agent and a 0.016% surfactant concentration in emulsion as a blocking agent
is more effective in enhancing sweep efficiency than other combinations. The
apparent viscosity of the emulsion used was about 2.0 mPa.s.

€)) Under bottom-water conditions, oil recovery is dependent on the rate of fluid
injection, the injection strategy adopted and the fluid being injected.

(8) The blocking action of 1.0 PVy,, of slug size is more pronounced than 0.75 PVy,, of
slug size under bottom-water conditions.

(C)) For bottom-water reservoirs, the use of horizontal injector and producer in
waterflooding prevents the formation of an oil bank in the water zone.

(10) A horizontal injector and vertical producer combination is no better than a vertical
injector and vertical producer. In a few cases, the recovery is 50% 10IP.
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M

)

3)

Recommendations for Future Research

On the basis of the results of this study, the following recommendations are offered
for further vvork.

To obtain results that will match the experimental data from the derived crossflow
equation, a full numerical study should be made;

In the development of the numerical model, the non-Newtonian aspect of the fluids
used should be incorporated in the model;

For further displacement work, polymer should be used as the blocking agent while
waterflooding the oil zone; and

Application of horizontal wells should be explored further, especially the eftect of

horizontal well length on oil recovery.
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APPENDIX B: Computer Program for the Semi-Analytical Model
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PROGRAM FOR CROSSFLOW CALCULATIONS AND OIL RECOVERY
PREDICTIONS

#include "define.h"
dataread(direcname)
char *direcname;
{

FILE *f5;

int i,k;

char infile[80];

strepy(infile,direcname); strcat(infile,"/");
strcat(infile,"input.dat");
if ((f5 = fopen(infile,"rt")) != NULL) {
fscanf(f5,"%If %1f\n",&del_Qical, &Qi_end);
fscanf(f5,"%If %if %If %lf\n",&corelength, &corewidth, &h[1], &h|2]);
fscanf(f5," %If %lIf %If %lf\n",&kd, &porosity, &swi_top, &swi_bottom);
fscanf(f5,"%lf %lf %If %lf %l %I, &siw, &sor, &krw_end, &np,
&kro_end, &mp);
fscanf(f5,"%If %If %lf\n", &visco_water, &visco_emul, &visco_oil);
fscanf(f5,"%d\n", &sequence_no);
for (k=1;k<=sequence_no;k++) {
fscanf(f5,"%d %lf ", &slug_spec[k], &slug_sizelk]);
for (i=1;i<=2;i++) fscanf(f5,"%If ", &pol_conclil|k]);
for (i=1;i<=2;i++) fscanf(f5,"%If ", &emul_conc|i](k]);
for (i=1;i<=2;i++) fscanf(fS,"%If ", &inj_rate{i][k]);
fscanf(f5,"\n");

)

fscanf(f5,"%If %If %lf %lf\n", &k1, &k2, &k3, &k4);
} else {

printf("Datafile [ %s ] is not found!"\n",infile);

exit(1);

fclose(fS);



DATA INITIALIZATION

#include "define.h”

void data_initialize(section_no, bt_flag, direcname)
int *section_no, bt_flag|[];
char *direcname;

{

int ijk;
char ss[80], outfile[80)];
FILE *f6;

/* Setting of output files ¥/

strepy(ss,direcname); strcat(ss,"/');
strepy(outfile,ss); strcat(outfile,"summary.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); streat(outfile,"total_prod.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfile,"layer]_prod.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfile,"layer2_prod.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfile,"profile_sw.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfile,"profile_qc.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfiie,"profile_kro.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfile "profile_krw.res");
f6 = fopen(outfile,"w");

close(f6);

strepy (outfile,ss); strcat(outfile,"profile_visco.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfile,"profile _L.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfile,"profile_cp.res");
f6 = fopen(outfile,"w");

close(f6);

strepy(outfile,ss); strcat(outfile,"profile_ce.res");
f6 = fopen(outfile,"w");

close(f6);
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/* Setting of constant values to specific variables */

*section_no = 3;

swor = 1.0 - sor;

sw_mobile = 1.0 - sor - siw;

for (i=1;i<=2;i++) A[i] = corewidth*h[i];

IOIP = (1.0 - swi_top)*A[1]*corelength*porosity;
a[1] = A[1]*porosity*sw_mobile;

a[2] = A[2]*porosity;

porevol[1] = A[1]*porosity*corelength;
porevol[2] = a[2]*corelength;

for (i=1;i<=2;i++) {
for (k=1;k<=sequence_no;k++) inj_rate[i}{k] /= 3600.0;

for (k=1;k<=sequence_no;k++) {
slug_vol[k] = slug_size[k])*porevol[2];
Qi_slug [k] = 10000.0;

/* Assignment of initial values */

for (i=1;i<=2;i++) {
q_injli] = inj_rate[i][1];
cp_i [i] = pol_conc[il[{1];
ce_i [i] = emul_conc[i][1];

del_t = del_t0 = del_Qical*IOIP / (q_inj[1] + q_inj[2]);
del_Qical0 = del_Qical;

total_Qi = ttime = 0.0;

prod_fo =1.0;

er = wor = cum_wor = 0.0 ;

total_prod_rate = total_oi!_rate = total_water_rate = prod_fw = 0.0;
prod_water = prod_oil = prod_total = cum_oil_prod = cum_water_prod = 0.0;
oil_cut[1] =1.0; oil_cut[2] =0.0;

water_cut[1] = 0.0; water_cut[2] = 1.0;

for (i=0;i<= 2;i++) {
. Xfl[i} = 0.0;
del_oil[i] = del_water[i] = oil_rate[i] = water_rate|i]
= prod_rate[i] = cum_inj [i] = 0.0;
bt_flag[i] = 0;
for (j=1;j<=*section_no;j++) {
L [ij{j] = 0.0;
cplillj] = 0.0;
celi][j1 = 0.0;
)

)

for (j=1;j<=*section_no;j++) fw_qc[j] = cp_qc{j] = ce_gcli] = 0.0;

L [1]{3] = L [2][3] = corelength;



swll]{1] = sw[1][2] = sw[1][3] = swi_top;

sw[2][ 1} = swf2]]2] = sw[2]{3] = swi_bottom;

cp[1][1] = cpl1]12] = cp_qe[1] = cp_i[1];
cell][1] =ce[1]{2] =ce_qgc[l] =ce_i[1];
cpl2][1] =cpl2](2] = cp_i[2];
ce[2]{1] =ce[2][2} = ce_i[2];
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MAIN PROGRAM

#include "defizie.h”
main(argc,argv)
int arge;

char *argv(];

int ik, sectior._no, seq_no, bt_flag[NL}, afbt_flag[NL]:
double cum_slug{NL];
char direcname[80];

if (argc 1=2) |

printf ("This program requires one parameter!\n");
printf ("Ex. of Usage: crosflow-v2 run_ni\n");
exit(1);

strepy(direcname,argv(1]); streat(direcname,”/");

dataread(direcnar
-ata_initialize(&  -10n_no, bt_flag, direcname);

/* Calculation at ime_step = 1 */

for (i=1;i<=z;i++) cum_slug[i] = 0.0;
seq_no =1;
crossflow_calcO(&section_no);
fileout_result(direcname);

/* Calculation at time_step = 2 ¥/

total_Qi += del_Qical;

ttime «=del_g;

front_calcd(&section_no, bt_flag);
performance_calc(&section_no, bt_flag, afbt_flag);
crossflow_calc1(&section_no);
fileout_result(direcname);

do {
switch(section_no) {
case 1: sw_end[1] = sw[l1]{1];
sw_end[2] = sw[2][1];
performance_calc(&section_no, bi_flag, afbt_flag);
front_calc1();
break;
case 2: front_calc2(&section_no, bt_flag);
performance_calc(&section_no, bt_flag, afbt_flag);
break;
case 3: front_calc3(&section_no, bt_flag);
performance_calc(&section_no, bt_flag, afbt_flag);
break;
default: printf("Calculation error\n");
printf("'section_no = %d\n", section_no);
exit();

)
printf("Qi= %10.5¢ q_inj[1]= %10.5¢ q_inj{2]= %10.5¢\n",
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total_Qi, q_inj[1], q_inj[2]);
total_Qi += del_Qical;
ttime +=del_.;
if ((cum_injlk=slug_spec[seq._no]] - cum_slug{k]) >= slug_vol[seq_no])

Qi_slug|seq_no] = total _Qi;
seq_no++;
for (i=1;i<=2;i++) {
cum_slugli] = cum_inj[i];
g_inj [i] = inj_rate [i][seq_no];
cp_t [i] =pol_conc [i][seq_no];
ce_i |1} = emul_conc|i][seq_no];

)

crossflow_calcl(&section_no);
fileout_result(direcname);

} while (total_Qi <Qi_end );

fileout _summuary(direcname, bt_flag);



CROSSFLOW CALCULATIONS

include "define.h"

void crossflow_calc(bt_flag)
int bt_flag[];

{

int i, j, k, bbt_flag[NL];
double water_viscosity(), o_rperm( ), w_rperm( );

for (k=1;k <= 2;k++) {
if (bt_flag[k} == 1) {
Xflk] = corelength;
for (i=1;i<=2;i++) |
L[1]{3] = L{i][2}; L[i}{2] =0.0;
swli][3] = sw[i][2];
cplill3] = cplil(2];
1
J

}

/* [STEP 1] Evaluate viscosity of aqueoas phase, relative permeability,
mobility, mobility ratio and alpha in cach zone and value of m in
each section.

*/

for (j=1;j<=3;j++) {
for (i=1;i<=2;i++) {
visco_wl[i]lj] = water_viscosity(cpli]{j]);
/* viscosity is temporarily assumed to be a function of polymer concentration */
krwli][j] = w_rperm(sw[i][j});
kroli][j] = o_rperm(swli][j]);
rmobli}{j] = krw{i}[j] / visco_wl[i}[j] + kicli]lj] / visco_oil;
]
rmob_ratio] 13{j] = rmob| 1][j] / rmob{2]{j];
rmob_ratio[2]]j] = rmob{2][j| / rmob][ 1 }[j):
alphal1]{j} = 2.0/ (h[1)*h{1] + h[1]*h|2]*rmob _ratic| 1 i;
alpha[2}{j] = 2.0/ (h{2]*h{2] + h[ 1]*h]2]*rmob_ratio| 2]{j]);
m(j] = alpha[1][j] + alpha[2][]};
root_m[j] = sqrt(m[j]);

}

/¥ [STEP 2] Evaluate crossflow rate in cach section, water cut and
polymer concentration of crossflowed fluid.

c3[1] = (rmob_ratio[1][1]*h{1]) / h{2]*Q _i[2] - Q_i[I]) / rmob| 1 1] 1]
/ root_n[1] / cosh(coreiength*root_m|1j);

for (j=2:j<=3;j++) c3[j] = ¢3{j-1)*sinh(root_m[j-1]*(corelength - X115 113,
/ sinh(root_m([j]*(corelength - Xf{}-1});:

for j=1:j<=3;j++) {

~d
A
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qelj] = rmob[1][j] *alpha[1]{j]*c3[j] / root_m[j]*(cosh(root_m(j]*
(corelength - Xf[j])) - cosh(root_m(j]*(corelength - Xf[j-1]))):

if (qefjl > 0) { o _

fw_qclj] = (sw[1][j] - siw) / sw_mobile;

cp_qc [j] = cp[1][j];
} else {

fw_qclj] = sw2](j];

cp_qe [j] = cp(2][3]:



FRONT CALCULATION

#include "define.h”
void front_calcO(section_no, bt_flag)
int *section_no, bt_flag(];
{
int 1,j, k, repeat_flag;
double sw_a, sw_b, sw_c, sw_d, sw_e, sw_f, del_1, led,
swl, sw2, deltal._qi[NL], del_qc[NS],
L_temp[NL]{NS], deltal._qc[NL}[NS];

/* [STEP1] Calculation of frontal location of each section at time n' */

for (i=1;i<=2;i++) deltalL_qi[i] = q_inj{i]*del_t/ a[il;
for (j=1;j<=3;j++) {
del_qgcljl = qcfjl*del_t;
for (i=1;i<=2;i++) {
L_temp [i]lj] = L[i]{jl;
deltal_qcl[i}lj] = del_qcljl/a[i);

Old definition of each zone
la=L[1]{1], lc = L[1}[2], le = L[1][3],
Ib = L[2][1], Id = L[2]{2}, If = L[2][3]

L[1]{1] +=deltal._qi[1] - deltal_qc[1][3];
L{2][1] += deltal._qi[2] + deltal._qc[2][3];
L[1]]2} -=deltal._qc[1]{2];
L[2][2] +=deltal._qc[2][2];
for (i=1;i<=2;i++) {
L[i]]3] = corelength - L[i}[1] - L[i][2];
bt_flagfi] =0,

/* [STEP 2] Calculation of Sw, cp (polymer concentration), ce (emulsion
concentration) of each zone at time n' */

/* zone (1,1), zone_a ¥/

sw_a =sw[1l][1];

sw[1][1] = (swor*deltal._qi[1]-(sw_mobile*fw_qc[3]+siw)*deltal._qc[1][3]

+sw_a*L_temp[1}[1]) / L[1]{1];

cpl1][1} = (sw_mobile*(cp_i[ 11*deltal_qi[1] - fw_gc[3]*cp_qc[3]
*deltal._qc[1][3]) + (sw_a - siw)*cp[1]{1]*L_temp[1][1])
/ (swl1][1] - siw) /L[1]{1];

ce[1][1] = (sw_mobile*(ce_i[1]*deltal._qi[1] - fw_qc[3]*ce_qc[3]
*deltal_qc[1]{3]) + (sw_a - siw)*ce[1][1]*L_temp[1][1])
[ (sw[1][1] - siw) / L[1][1];

/* zone (2,1), zone_b */

177
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sw_b = sw[2][1];
sw[2][}]L=[2(ﬁc;1]:aL_qi[2] + fw_qc[3]*deltal._qc[2][3]+sw_b*L_temp{2][1])
cpl2](1] = (cp_i[2]*deltal _qi{2] + fw_qc[3]*cp_qc[3]*deltal._qc[2][3]
+ sw_b*cp[2][11*L_temp[2]{1]) / sw{2][1] / L[2][1];
ce[2][1] = (ce_i[2)*deltal._qi[2] + fw_qc[3]1*ce_qc[3]*deltal_qc[2][3]}
+ sw_b*ce[2][1]*L_temp[2][1]) / sw[2][1] / L[2]}[1];

/¥ zone (1,2), zone_c */
sw[1i{Z1 = 0.0;
cp[1iiz] = 0.0;
ce[i1is? =0.0;

/* zone (2,2), zone_d */
zwi2][2] = 0.0;
cpl2]{2] = 0.0;
ce[2][2] =0.0;

/* zone (1,3), zone_e */
sw_end[1] = sw[1]{3];

/* zone (2,3), zone_f */
sw_end[2] = sw[2][3];

/* [STEP 3] Update Swlil[j], cplil(j}, celii[j], Lli](j], Xfli]
from time n' to n+1
*/

Xfl1] = L[1][1]; Xf[2]=L[2][1];
if (Xf]1]<Xf12]) {
L [2](1] = Xf[1}; |
L [1][2] =L [2](2] = Xf[2] - X{[1];
L {1]{3] = L[2]{3];
sw[2]{2] = sw[2][1]; cp[2][2] = cp[2][1]; ce[2][2] = ce[2][1];
} SIW[I{HZ] = sw[1][3]; cp[1][2] = cp[11[3]; ce[1][2] = ce[1][3];
else
L [1][1] = Xf{2];
L [2][3] = corelength - Xf[1];
L [2][2] = L[1][2] = Xf[1] - Xf[2]; , A
sw[1}[2] = sw[1][1]; cp[1][2] = cp[1][1]; ce[1]{2] = ce[1]]1];
sw[2]{2] = sw[2][3]; cpl2][2] = cp[2}{3]; ce[2}[2] = ce[2](3};



PERFORMANCE CALCULATION

#include "define.h”

void performance_calc(section_no,bt_flag,afbt_flag)
int *section_no, bt_flag[], afbt_flag(];

/* Calculate production performances. */

inti,j;
double factor();

water_cut[1] = (sw_end[1] - siw) / sw_mobile;
water_cut[2] = sw_end[2];
for (i=1;1<=2;i++) {
cum_inj [1] += g_inj[i}*del_g;
prod_rate[i] = q_injfi];
for (j=1;j<=*section_no;j++)
prod_rate[i] += factor(1)* qc[j];
)
total_oil_rate = total_water_rate = prod_oil = prod_water = 0.0;
for(i=1;i<=2;i++) {
oil_cut [i] =1.0- water_cut{i];
oil_rate[i] = oil_cut[i}*prod_rate[i];
water_rate[i] = water_cut[i]*prod_rate[i];
del_oil ['] =oil_rate[i]*del_t;
del_water[i] = water_rate[i]*del_t;
prod_oil +=del_oil[i];
prod_water += del_water|i];
total_oil_rate += oil_rate[i];
total_water_rate += water_ratel[i];
)
prod_total = prod_oil + prod_water;
total_prod_rate = total_oil_rate + total_water_rate;
prod_fo = total_oil_rate / total_prod_rate;
prod_fw = total_water_rate / totzi_prod_rate;
wor = total_water_rate / total_oi'_rate;
cum_oil_prod += prod_oil;
cum_water_prod += prod_water;
er =cum_oil_prod/IOIP;
cum_wor = cum_water_prod / cum_oil_prod;
for (i=1;i<=2;i++) {
if (bt _flag[i] & !afbt_flag[i]) {
afbt_flag [1] = 1;
cum_inj_BT{i] = total_Qi + del_Qical;
Er_BT[i] = er;
Xf1_BT[i] = Xf[1];
Xf2_BTti] = Xf[2];

17



FRONT CALCULATION

#include "define.h”
void front_calcl1()

{

intij;
double factor();

del_Qical = del_Qical0;
del t =del_t0;

/* zone (1,1), zone_a */

sw[1][1] += (q_inj[1] - water_rate[1] - qc[1]*fw_qc[1D*del_t / porevol[1].

cp[11{1] += (cp_i[1]*q_inj[1] - cp[1]{1]*water_rate[1]

- cp_qc[1]1*fw_qgcl1]*qc{1])*del_t/ porevol{1}/ sw_mobile;
ce[1][1] += (ce_i[1]*q_inj[1] - ce[1]{1]*water_rate[1]

- ce_qc[11¥fw_qc[1]*qcf1])*del_t/ porevol[1] / sw_mobile;

/* zone (2,1), zone_b */
sw[2][1] += (q_inj[2] - water_rate[2] + qc[1]*fw_qc[1])*del_t / porevol|2};
cpl2][1] += (cp_i[2]*q_inj[2] - cp[2][ 1 ]*water_rate[2]
+ cp_qel11¥fw_qe[1}*qcli*del_t / porevol[2}];
ce[2][1} += (ce_i[2]*q_inj[2] - ce[2][1]*water_rate{2]
+ ce_qc[1]*fw_qc[1]*qc[ 1] *del_t/ porevol| 2];
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#include "define.h”
void front_calc2(section_no, bt_flag)
int *section_no, bt_flag|];
{

int i, ]j, k, repeat_flag;

double sw_a, sw_b, sw_c, sw_d, del_l, swi, sw2, sw3, dt_min, dt_adj,

factor(), deltal._gi[NL], del_qc[NS], L_temp[NL][NS],
deltal._qc[NL]{NS], min();

/* [STEPI1] Calculation of frontal location of each section at time n' */

del_Qical = del_Qical0;
del_t =del_10;
di_min = 1.0e+08;
do {
repeat_flag = 0;
for (i=1;i<=2;i++) deltal._qi[i] = q_inj[iJ*del_t/ a[il;
for (j=1;j<=2;j++) {
del_qclj]l = qcljl*del_g;
for (i=1:i<=2;i++) |
L_temp [i][j] = L[i]G];
deltal._qcl[i][j] = del_qc{j]/ a[i);
}

Old definition of each zone
la=L[1][1], Ic = L[1]{2], *section_no =2,
Ib =L[2][1], Id = L[2][2],

LI1][1] +=deltal_qif!] - deltal._qc[1]{1];
L{2][1] += deltal._qi[2] + deltal._qc[2]{1];
for (i=1;i<=2;i++) {
L[i][2] — corelength - L{il[1];
if (fabs(LL[1]{2]) >= HANTEI1) {
if (L[i}{2] <0.0) {
repeat_flag = 1;
dt_adj = a[i]*L_temp[i][2] / (g_inj[i]+factor(i)*qc[1]);
del_t =dt_min = min(dt_min,dt_adj);
del_Qical = del_QicalO*del_t/del_tC;
for (k=1:k<=2;k++) {
for (j=1;j<=2;j++) L[k][j] = L_temp[K][j];

)
} else L[i][2] = 0.0;
} while (repeat_flag);
/* {STEP 2] Calculation of Sw, ¢p (polymer concentration), ce (emulsion
concentration) of each zone at time n' */

/* zone (1,1), zone_a */



sw_a =sw[l][1];
sw[1][1] = (swor*deltal._qi[1] - (sw_mobile*fw_qc[1] + siw)¥deltal_qc[13]1]
+sw_a*L_temp[11[1]) / L{11[1];
if (fabs(sw3 = sw[1][1] - siw) < HANTEI2)
cp[1]{1] =ce[1}{i] = 0.0;
else {
cp[llfl] = (sw_‘mobile*(cp_i[l]*deltaL_qi[l} - fw_qel1]*cp_qc| 1)
*deltaL_qc[1][1]) + (sw_a - siw)*cpl1][1]1*L_temp[1}{1})
/sw3/L[1][1];
cefl]f1] = (sw_mobile*(ce_i[1]*deltal._qi[1] - fw_qci1]*ce_gqc|!])
*deltal_qc[1]{1]) + (sw_a - siw)*ce[1][1 *L_temp[i}{1})
} /sw3 /L[]

/* zone (2,1), zone_b */
sw_b =sw[2][1];
swi2]{1] = (deltal._qif2] + fw_ge[1]*deltal._qc[2){1] + sw_b*L_temp[2]{i ]
/LI2)(1};
if (fabs(swl2][1]) < HANTEI2)
cpl2](1] = ce(2][1] = 0.0;
else (
cpl2](1] = (cp_if2]*deltal._gi[2] + fw_ qcf1)*cp_qgef1]*deltal._qgef2 )| 1]
+sw_b*cp[2][11*L_temp[2][1]) / sw[2][1] / L{2]]} IR
ce{2][1} = (ce_i[2]*deltal._qi[2] + fw_gqcl1]*ce_qel1)*delal._qe[2)11]
+sw_b*ce[2][1]1*L _temp[2]| 1]}/ sw[2][1] / L{2}j!]:

}

/* zone (1,2), zone_c */
sSw_c =sw_end[1] = sw[1][2];
if (fabs(L{1]{2]) < HANTEI1) {

swil]{2] = swil1][1];

cpl1]i2] = cp[1][1];

ce[1][2] = cef1]{1};

} else {

sw{l][2] += (sw_c - siw - sw_mobile*fw_qc[2])*deltal._qcf1]{2]

{LITJ2],
if (fabs(sw3 = sw[1]12] - siw} < HANTEI2)
cpl1]i2] = ce[1]{2] = 0.0;
else {
cpl1]2] += (cp[1][2]1*(sw_c - siw) + sw_mobile*fw_qgcl2]
*cp_qgcl2))*delial_qe[1}{2] /LI1Y2} / sw3:
ce[l1][2} #= (ce[1][2]*(sw_c - siw) + sw_rnobile*fw_qc([2]
*ce_qc[2D*delial_qel11§2) /Li1j{2] / sw3:
}

/* zone (2,2), zone_d */
sw_d = sw_end[2] = sw[2]{2];
if (fabs(L{2}12]) < HANTEI1) {

swiZ][2} = sw[2][1];

cp(2)(2] = cp[2][1];

ce[2]]2] = ce[2][1];
} alse {
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sw(2][2] += (fw_qc[2] - sw_d)*deltal._qc[2][2] / L[2][2];

cpl2][2] += (fw_gc[2]*cp_qcl2] - cp[2][2]*sw_d)*deltal._qc[2][2]
/swi2}[2] / L[2][2];

ce[2][2] += (fw_qc[2]*ce_qc[2] - ce[2][2]*sw_d)*deltal._qc{2][2]
/sw(2]{2] / L[2]{2];

/* [STEP 3] Update Sw[i][j], cplillj], celi]lj]). L{il{j], XfTi]
from time n' to n+1
*/

if (bt_flagi2}) {
Xfl1} =L[1j[1}; Xf12] = corelength;
if (fabs(Xf]1] - corelength) < HANTEI1) {
bt_flag[1l] = 1;
*section_no -= 1;

)
del I=L[2]J[1] - Xfi];
it (del_I >=0) {
swl =del_I*sw[2][1];
sw2 = L[2][2]*sw[2][2];
swi2][2] = (sw3 =swl +sw2) /L[1][2];
if (fabs(sw3) < HANTEI2)
cpl2](2] = ce[2][2] = 0.0;
else {
cpl2](2] = (cpl2][1]*sw1 + cp[2]{2]*sw2) / sw3;
ce[2]{2] = (ce[2][1]*sw] + ce[2][2]*sw2) / sw3;

} else {

swl = L[2])[1}*sw[2]}[1];

sw2 = - del_l*sw[2][2];

sw[2]{1] = (sw3 = swl + sw2) / X{[1];

if (fabs(sw3) < HANTEI2)

cpi2](1} = cel2][1] = 0.0;

else {
cpl2][1] = (cpl[2]{11*sw] + cp[2]{2]*sw2) / sw3;
cel2][1] = (ce[2][1]*swl +~ T2][2]*sw2) [/ sw3;
}

}
L{2][1} = L{1]{1); L[2]{2]=L[1]{-};
} else {
Xf[2j = L{2]]1}; Xfl1] = corelength;
if (fabs(Xf]2] - corelength) <« HANTEI) {
bt_flag[2] = 1;
*section_no -= 1;

)
del_1=L{1]]1] - Xf12];
if (del 1>=0) {
swl =del_I*(sw[1][1] - siw);
sw2 = LI1][2]*¥(sw[1]}[2] - siw);
swill]2] = (sw3 =swl + sw2)/ L[2][2] + siw;
if (fabs(sw3) < HANTEI2)



cpl1l{2] = cel1][2] =0.0;

else {
cpl11(2] = (cp[1][11*sw1 + cp[1][2)*sw2)/sw3;
ce[11[2] = (ce[1][1)*sw1 + ce[1){2)*sw2)/sw3;

} else {
swl =L[1][1]*(sw[1][1] - siw);

sw2 = - del_I*(sw[1][2] - siw);
sW[1][1] = (sw3 = swl + sw2) / X{[2] + siw;
if (fabs(sw3) < HANTEI2)

cpl1l[1] =ce[1][11=0.0;

else {
cpl1][1] = (cp[1][1]*sw1 + cp[1][2]*sw2)/sw3;
ce[1][1] =(ce[l]{1]*swl + ce[1]i2]¥*sw2)/sw3;

}
LI1J[1] = L{2){1]; L1][2] = L[2]{2};
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#include "define.h"
void front_calc3(section_no, bt_flag)
int *sectton_no, bt_flag(}];
{
int i,], k, repeat_flag;
double sw_a, sw_b, sw_c, sw_d, sw_e, sw_f, del_l, lcd, dt_min, dt_adj,
swl, sw2, sw3, factor(), deltal._qi[NL], del_qc[NS]},
L_temp[NL][NS], deltal._qc[NL][NS], min();

/* [STEPI1] Calculation of frontal location of each section at time n' ¥/

del_Qical = del_Qical0;
del_t =del _10;
dt_min = 1.0e+08;
do {
repeat_flag = 0;
for (i=1;i<=2;i++) deltal_qifi] = q_inj[i]*del_t / a[i];
for (j=1;j<=3;j++) {
del_gclj] =qcljl*del_t;
for (i=1;i<=2;i++) {
L_temp [i][j] = L[i](j];
} deltal._gc[i]l[j] = del_qefjl/ali);

Old definition of each zone
la=L[1][i], Ic = L[1]{2], le = L[1][3],
Ib = L[2][1], 1d = L{2][2], If = L[2][3]

L[1][1] += deltal._qi[1] - deltal._qc[1][1];
L[2]{1] += deltal._qi[2] + deltal_qc[2][1];
L{1}[2] -= deltaL_qc[1][2];
L[2]}2] += deltal._qc[2][2];
for (i=1;i<=2;i++) {
L{i][3] = corelength - L{i][1] - L[i][2];
if (fabs(L{i][3]) >= HANTEI1) {
if (L{1}[3] < (.0) {
repeat_flag = 1;
dt_adj = a[i}*L_temp[i]{3]/(q_inj{i]+factor(i)
*(qel1]+qe[2]));
del_t = dt_min = min(dt_min,dt_adj);
del_Qical = del_QicalO*del_t/del_t0;
for (k=1;k<=2;k++) {
for (j=1;j<=3;j++) L[k][j] = L_temp[k][j];

}
} else L[i]l[3] = 0.0;

} while (repeat_flag);
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/* [STEP 2] Calculation of Sw, cp (polymer concentration), ce (emulsion

concentration) of each zone at time n' */

/* zone (1,1), zone_a */
sw_a =sw[l1][1];

sw[1][1] = (swor*deltal_qi[1]-(sw_mobile*fw_qc[ I]+siw)*deltal._qel 1] 1]
+sw_a*l._temp[1}[1}) /L[1}[1];
if (fabs(sw3 = sw[1][1] - siw) < HANTEI2)
cpl1][1] = ce[1][1] = 0.0;
else {
cpl1]{1] = (sw_mobile*(cp_i[1]*deltal._qi[1] - fw_qgcf1]*cp_qel 1]
*deltal._qc[i]{1]) + (sw_a - siw)*cp[1][1]*L_temp{1][1])
/sw3 /L[1][1];
ce[l][i] = (sw_mobile*(ce_i[1}*deltal._qi[1] - fw_qc[1 I¥ce_qef 1]
*deltal._qc[1][1]) + (sw_a - siw)*ce[1][1]*L_temp[1]{1])
} /sw3 /L{1][1];

/¥ zone (2,1), zone_b */
sw_b =sw([2][1];
sw([2][1] = (deltal._qi[2] + fw_qc[1]*deltal_qc[2][ 1]+sw_b*L_temp[2][1})
/L[2](1];
if (fabs(sw[2]{1]) < HANTEI2)
cpl2](1] =ce[2][1] = 0.0;
else {
cpl[2]{1] = (cp_i[2}*deltal._qi[2] + fw_qc[11*cp_qe[1]*deltal._qcf2][ 1}
+ sw_b*cp[2][11*L_temp[2]{1]) / sw[2][1} / L[2]{1];
ce[2][1] = (ce_i[2}*deltal_qi[2] + fw_qc[1]*ce_qgef1]*deltal._qc|2}]1]

} + sw_b*ce[2][1]*L_temp[2][1]) / sw{2][1] / L{2]{1];

/* zone (1,2), zone_c */
sw_c =sw[1][2];
if (fabs(L[1]{2]) < HANTEI) {
sw[1]{2] = sw[1]{1];
cpl1jf2} =cp[1][1};
ce[1](2] =ce[1][1];
} else {
sw[1][2] = (-(sw_mobile*fw_qc[2]+siw)*deltal._qc[1][2]
+sw_c*L_temp[1]12])) /L[1}[2};
if (fabs(sw3 = sw[1]{2] - siw) < HANTEI2)
cpl1){2] = ce[1](2} = 0.0;
else {
cpl1])[2] = (-sw_mobile*fw_qc[2]*cp_qc[2]*deltal._qc[1]{2]
+ (sw_c-siw)*cp[1][2]*L_temp[1][{2]) / sw3 /L[1][2];
ce[1][2] = (-sw_mobile*fw_qc[2]*ce_qgc[2]*deltal._qc|1]]2]
+ (sw_c-siw)*ce[1]{2]*L_temp[1}{2]) / sw3 /L[1]]2];
}
}

/* zone (2,2), zone_d */

sw_d = sw[2][2];

if (fabs(1.[2][2]) < HANTEI1) {
sw[2][2] = sw[2][1];
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cpl2]i2] = cp[2][1];
ce[2][2] = cef2][1];
} else {
swi2][2] = (fw_qc[2]*deltal._qgc{2][2] + sw_d*L_temp[2][2]) /L[21[2);
if (fabs(sw[2][2]) <« HANTEI2)
cpl2](2] = cel2]{2] = 0.0;
else {
cpl2](2] = (fw_qc[Z}*cp_qc[Z]*dcltaL*qc[2][2]+sw_d*cp[2][2]
*L_temp|212]) / swi2]{2] / L[2][2]:
ce[2][2] = (fw_qc['Z]*ce_qc[2]*dcltaL_qc[2][2]+sw_d*ce[2]{2]
| ~L_temp(2](2]) / sw[2}{2} / L[2][2};

)

/* zone (1,3), zone_e */
sw_e = sw_end[1] = sw[1][3];
if (fabs(L[1]{3]) < HANTEI1) {
swl1][3j = sw[1}[2];
ep[1](3] = cp[1][2];
cel[1][3] = ce[1][2];
) else {
sw[1]]3] += (sw_e-siw-sw_mobile*fw_qc[B])*deltaL__qc{l][3] /LI1][3];
if (fabs(sw3 = sw[1}[3] - siw) < HANTEI2)
cpl11[3] = ce[1][3] = 0.0;
else {
cpl1)[3]) += (cp[1][3]*(sw_e - siw) - sw_mobile
*fw_qc[3]*cp_qc[3])*deltal_qc[1][3]/ L[1][3] / sw3;
ce[1][3] += (ce[1][3]*(sw_e - siw) - sw_mobile
*fw_qcl3]*ce_qgel3])*deltal_qc[1]{3]/L{1][3] /sw3:

}

/* zone (2,3), zone_f */
sw_{ = sw_end[2] = sw[2][3};
if (fabs(L[2])[3]) < HANTEI) {
sw(2]]3] = sw{2][2];
cpl2}3] = cp| 2][2};
cef2}{3] = ce[2][2];
} else {
sw[2Z)|3] += (fw_qc[3] - sw_f)*deltal._qc|2][3] / L[2]}{3];
if (fabs(sw[2][3]) < HANTEI2)
cpl21[3] = ce[2][3] = 0.0;
else {
cpl2]i3] += (fw_qc[3]*cp_qc[3] - cp[2][3]*sw_f) ‘
*deltal._qc[2][3] /sw[2][3] / L[2][3};
ce{2]13] += (fw_qc[3]*ce_qc[3] - ce[2][3]*sw_f)
*deltal._qc[2][31/sw[2][3]/ L[2])[3]:

/* [STEP 3] Update Sw[il(j], cplil(j], ce[il(j], L{il[j], Xfli]
from time n' to n+1
*/



if (XfT1]<=X112]) {
Xf{1] =L{1][1]; Xf[2]=L{2]{1] +L[2][2]:
if (fabs(Xf[2] - corelength) < HANTEI1) {
bt_flag[2]=1;
*section_no -= 1;

)
if (Xf[1]<Xf12]) {

[¥ e Start of Case(1) in UPDATE ROUTINE --c--cemmeeee- */
del_1=L[2][1] - Xf[1]; lcd = Xf[2] - Xf[1};
if (del_1 >=0) {

swl = del_l*sw[2][1];

sw2 = L[2][2}*sw]2][2];

sw2][2] = (sw3 = swl + sw2)/ lcd;

if (fabs(sw3) < HANTEI2)

cpl2]12] = ce[2]{2] = 0.0;
else {
cp[2]2] = (cp[2][1}*sw1 + cpl2][21Fsw2) / sw3:
cef2][2] = (ce[2]{1]*sw1 + ce[2][2]*sw2) / sw3;

} else {
swl =LE2][1]*sw][2][1];
sw2 = - del_I*sw[2]{2];
sw[2][1] = (sw3 =swl + sw2)/ Xf[1];
if (fabs(sw3) < HANTEI2)
cpl2][1] =ce[2][1] = 0.0;
else {
cpl2][1] = (cp[2][1]*sw1 + cp[2][2]*sw2) / sw3;
ce[2}[1] = (ce[2][1T*sw1 + ce[2][2]1*sw2) / sw3;

}
L[2}1] = X{[1}; L[2}[2] = Icd;
del_1=L[1}[2] - lcd;
if (del_1>=0) {
swl =del_1*(sw[1][2] - siw);
sw2 = LI1}[3}*(sw[1])[3] - siw);
swlll{3] = (sw3 =swl + sw2) /L[2]{3] + siw;
if (fabs(sw3) < HANTEI2)
cpl113] = ce[1](3] = 0.0;
else {
cp[1](3] = (epl1][2])*sw] + cp[1][3]*sw2)/sw3;
ce[1i{3] = (ce[1][2}*sw]1 + ce[1}[3]*sw2)/sw3;

} else {
swl=L[1][2]1*(sw[1][2] - siw);
sw2 = - del_I*(sw[1]{3] - siw);
swl[1}2] = (sw3 =swl + sw2)/lcd + siw;
if (fabs(sw3) < HANTEI2)
cpl1]2] = ce[1][2] = 0.0;
else {
cpl1]i2]) = (cp[1]{2]*swl + cp[1][3)*sw2)/sw3;
ce[1}[2] = (cef1][2]*sw1 + ce[1}{3]*sw2)/sw3;

I8N
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}
}[1][2] = L[2]{2); L[1]{3]=L[2][3};

¥ End of Case(1) --------mceemmmmrmmemce e */
} else {
/% --eee Start of Case(2) in UPDATE ROUTINE ------eenne- */

swl =sw[2][1]*L[2]{1];
sw2 = sw{2][2]*L[2](2];
sw[2]{1]} = (sw3 = swi + sw2) / XfI2];
if (fabs(sw3) < HANTEI2)
cpl2][1] =ce[2][1] =0.0;
else {
cpl2][1] = (cpl2l[1]*swl + cp[2][2]*sw2) / sw3;
ce[2][1] = (ce[2}{1]*swl + ce[2][2]*sw2) / sw3;

}
L{1][1} = L[2][1] = Xf]2];
L[2]{3] = corelength - XfT1];

swl = L[1][2]*(sw][1][2] - siw);
sw2 = LI1)[31*(sw[1][3] - siw);
sw[1][3] = (sw3 =swl + sw2) / L[2][3] + siw;
if (fabs(sw3) < HANTEI2)

cpl1](3] = ce[1]{3] = 0.0;

else {
cpl11[3] = (cp[1][2]*swl + cp[1][3]*sw2)/sw3;

ce[1]{3] = (ce[1}[2]*swl + ce[1][3]*sw2)/sw3;

)
L{1](3]) = L[2](3];

sw[1}[2] = sw[1][1]; cp[1][2] = cp[1][1]; ce[1][2] = ce[1][1];
sw(2][2) = sw[2][3); cp[2][2] = cp[2][3]; ce[2][2]) = ce[2]{3];
L [2]{2] = L [1][2] = Xf]1] - Xf[2];

/¥ —eeee End of Case(2) ----=--smvmmmmmmm o */

)
} else {
Xf[1]=L[1][1] + L[1]{2]; Xf[2] =L[2][1];
if (fabs(Xf[1] - corelength) < HANTEI1) {
bt_flag{l] =1,
*section_no -= 1;

)
if (Xf]1] <= Xf[2]) {

[¥ —----- Start of Case(3) in UPDATE ROUTINE ---------veeu- */
swl = (sw[1][1] - siw)*L[1][1];
sw2 = (sw[1][2] - siw)*L[1]][2];
sw[1]{1] = (sw3 = swl + sw2) / X{T1] + siw;
if (fabs(sw3) <« HANTEI2)
cp[1][1] = ce[l1][1} =0.0;
else {
cp[1][1] = (cpl[i][1]*sw1 + cp[1]{2]*sw2)/sw3;
ce[1}[1] = (ce[1][1]*swi + ce[1][2]*sw2)/sw3;
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L[2][1]=L[1][1] = Xf]1];
L[1]{3] = corelength - Xf]2];

swl = L[2][2])*sw([2][2];
sw2 = L[2][3]*sw[2][3];
sW[2][3] = (sw3 = swl +sw2) /L[1][3];
if (fabs(sw3) < HANTEI2)
cp[2][3]1 =ce[2][3] = 0.0;
else {
cpl2][3] = (cp[2][2]*sw1 + cp[2][3]*sw2) / sw3:
ge[2][3] = (ce[2][2]*sw1 + ce[2][3]*sw2) / sw3;

L [21(3] = L{1)[3};
swl1][2] = sw[1][3]; cp[1][2] = cp[11[3]; ce[1][2] = ce[1][3];

sw(2){2] = sw[2]{1]; ep[2][2] = cpl2][1]; ce[2][2] = ce[2]{1];
I; [21(2] = L [1][2] = Xf2] - Xf[1};

JAdE End of Case(3) ----emmrmmmccee L */
} else {
[¥ ~oeeme Start of Case(4) in UPDATE ROUTINE -----ccmoeeeee */

del 1=L[1]{1] - Xf[2]; lcd = Xf[1] - Xf12];
if (del_1 >=0) {
swl =del_I*(sw[1][1] - siw);
sw2 = L[1][2]*(sw[1][2] - siw);
sW[1][2] = (sw3 =sw] + sw2) / Icd + siw;
if (fabs(sw3) < HANTEIR2)
cpl11(2] = ce[1]{2] = 0.0;
else {
cpl1][2] = (cp[1][11¥sw1 + cp[1][2]*sw2)/sw3;
ce[1][2] = (ce[1][1]*sw1 + ce[1][2]*sw2)/sw3;

} else {
swl =L[1][1]*(sw[1][1] - siw);
sw2 = - del_I1*(sw[1][2] - siw);
sWII][1] = (sw3 = swl + sw2) / Xf[2] + siw;
if (fabs(sw3) < HANTEI2)
cpl1][1] = ce[1][1] = 0.0;
else {
cp[1][1] = (cp[11[1]*sw1 + cp[1][2]*sw2)/sw3;
ce[1][1] = (ce[1][11*sw] + ce[1][2]*sw2)/sw3;

)
L[1][1] = X{[2]; L[1][2] =lcd;
del_1=L[2][2] - Icd;
if (del_1>=0) {
swl = del_l*sw[2][2];
sw2 = L[2][31*sw[2][3];
sw([2][3] = (sw3 = swl + sw2) / L[1]{3];
if (fabs(sw3) < HANTEI2)
cpl2][3] = ce[21[3] = 0.0;
else {



cp[2][3] = (cp[2][2]*sw1 + cp[2][3]*sw2) / sw3:

ce[2](3} = (ce[2][2]*sw1 + ce[2][3]*sw2) / sw3;

} else {
swl =L[2][2]*sw([2]){2};
sw2 = - del_I*sw([2]{3];
sw[2][2] = (sw3 =sw] + sw2) / lcd;
if (fabs(sw3) < HANTEI2)
cpl2](2] = ce[2][2] = 0.0;
else {

cpl2](2] = (cp[2)[2]*sw1 + cp[2][3]*sw2) / sw3;

ce%2][2] = (cef2][2]*swl + ce[2])[3]*sw2) / sw3;

}
L2}(2] = L[1][2]; L[2]}[3]=L[1][3};
/¥ ------ End of Case(4) - -/
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APPENDIX C: Flow Chart For The Computer Program



Csmart_ >

| Input directory name from the command line.
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dataread(direcname)
Read input data for a simluation.

data_initialize(section_no, bt_flag[NL], direcname)
Setting of constant values and initial values in the valuables.
time =0, total_Qi =0,

crossflow_calc0 (section_no)

(1) Calculate crosstlow rate in each layer.
(2) Calcurate fractional flow of water, emulsion and
polymer concentration in the crossflowed fluids.

water_viscosity(ce, cw)

Calculate the aqueous-phasc
viscosity from emulsion (ce) and
polymer concentration (cp).

fileout_result(direcname, section_no)
Save the results at time = 0 to output files.

total_Qi = total_Qi + del_Qical
time = time + del_t

v

w_rperm(i, sw)
Calculate the relative
permeability to water .

front_calcO (section_no, bt_flag[NL])

(1) Calculate frontal location, water saturation,
emulsion and polymer concentration of each zone.
(2) Calculate XfT1], Xf12].

(3) Calculate section_no.

performance_calc (section_no)

(1) Calculate water cut, oil cut, oil production rate,
water production rate, etc. in each layer.

(2) Calculate water cut, oil cut, wor of total
production fluids and oil-recovery efficiency.

crossflow_calcl (section_no)

(1) Calculate crossflow rate in each section.
(2) Calcurate fractional flow of water, emulsion and
polymer concentration in the crossflowed fluids.

fileout_result(direcname, section_no)
Save the calculated results at time = del_t into
output files.

o_rperm(i, sw)
Calculate the relative
permeability to oil .
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section_no
Y

front_calcl

(section_no, bt_flag[NL])

(1) Xf11] and Xf12] are fixed to L(core
length) after breakthrough of the

both fronts.

(2) Calculate water saturation,
emulsion and polymer

concentration of zone[1][1] and
zone[2][1] by material balance.

front_calc2

(section_no, bt_flag[NL])

(1) Either Xf[1] or Xf2] already
reaches to the end of core. This
front is fixed to L(core length).
(2) Calculate frontal location of
another front. Calculate water
saturation, emulsion and
polymer concentration of
zone[1]{1], zone[1]{2],
zone[2][1] and zone[2]{2].

(3) Calculate section_no.

front_calc3

(section_no, bt_flag[NL])

(1) Both Xf]1] or Xf12] exist in the
core.

(2) Calculate frontal location,
water saturation, emulsion and
polymer concentration of each
zone.

(3) Calculate Xf[1], Xf12].

(4) Calculate scction_no.

performance_calc (section_no)
(1) Calculate water cut, oil cut, oil production rate,
water production rate. etc. in each layer.

(2) Calculate water cut, oil cut, wor of total

production fluids and oil-recovery efficiency.

total_Qi = total_Qi + del_Qical
time = time + del_t

v

Change the injection rate into each layer, polymer and emulsion concentration of

the injected fluids, if total_Qi reaches to the pre-assigned time,

v

crossflow_calcl (section_no)

(1) Calculate crossflow rate in each section.
(2) Calcurate fractional flow of water, emulsion and
polymer concentration in the crossflowed fluids.

filecut_result(direcname, section_no)
Save the calculated results at each timestep into
output files.

total_Qi <Qi_end?

water_viscosity(ce, cw)
Calculate the aqueous-phase

viscosity from emulsion (ce) and
polymer concentration (cp).

w_rperm(i, sw)
Calculate the relative
permeability to water .

o_rperm(i, sw) I
Calculate the relative
permeability to oil .




195
APPENDIX D: Figure for Oil Recovery Performance
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(1) Frontal locations and length of each zone at time t. Crossfiow rates are calculated
in each section.
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(2) Frontal locations and length of each zone at time t+At.  Zone lengths are calculated
by assumption of piston-like displacement.
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(3) Update frontal locations and length of each zone at time t+At. Water saturation
and polymer/emulsion concentration are calculated by averaging in each zone. In
the next time step, the crossfiow rates are caiculated based on this condition, .

Calculation procedure of frontal movement with crossflow when
section number is 3.



