
Human Mobility and Location Privacy in Wireless Sensor Networks

by

Ryan Andrew Vogt

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science
University of Alberta

c© Ryan Andrew Vogt, 2014

Abstract

By eavesdropping on a user’s query in a sensor network, an adversary can deduce both the

user’s current location and his/her location of interest. Issuing k queries instead of one

(our “k-query” scheme) protects the privacy of the user’s location of interest, but facilitates

the adversary determining the user’s current location. We propose a formal method for

measuring how well issuing k queries to locations dispersed throughout the network protects

the privacy of the user’s location of interest, as well as a quantitative measure of how much

information the k queries leak about the user’s current location. Experiments reveal that

how physically dispersed the k queries are has no meaningful effect on the user’s privacy.

However, there is a direct trade-off between the user’s location-of-interest privacy and his/her

current-location privacy, controlled by the value of k the user chooses.

User interactions with sensor networks do not occur in featureless, uniform environ-

ments. To facilitate the study of our k-query scheme in a rich environment characterized

by realistically mobile users, we developed a new generative mobility model to produce mo-

bility data for simulated agents. Existing generative mobility models suffer from a number

of limitations. Most significantly, existing models are not representative of actual human

movement. Our new mobility model is based on state-of-the-art work in understanding

pedestrian mobility patterns in urban areas, known as Space Syntax. Under our model,

agents move in a meaningful fashion in terms of destination selection and pathfinding, con-

strained by their surroundings in an outdoor urban environment. Results obtained from our

publicly available Destination-Based Space Syntax Simulator (DBS3), independent from our

k-query experiments, demonstrate which mobility model parameters affect wireless network

simulations in general: the pathfinding metric in grid-based urban centres and centrality

bias in other urban centres.

We combined DBS3 with our k-query scheme in order to study how long in advance a

user should issue the k queries if travelling from some current location to his/her location

ii

of interest. While the exact threshold depends on the urban environment and speed of the

agents in question, the typical threshold is very low, e.g., 10 minutes when using k = 3 in

downtown Edmonton, Canada.

iii

Preface

Chapter 2 is based on a previously published paper: Ryan Vogt, Ioanis Nikolaidis, and

Pawel Gburzynski. A realistic outdoor urban pedestrian mobility model. Simulation Mod-

elling Practice and Theory, 26:113–134, 2012. Ryan Vogt was responsible for the design of

the mobility simulation system described therein, the implementation of that system, experi-

mental design, analysis, and manuscript composition. Ioanis Nikolaidis and Pawel Gburzyn-

ski were supervisory authors, and were involved with concept formation and manuscript

composition.

Chapter 3 is a significant extension of a previously published paper: Ryan Vogt,

Mario Nascimento, and Janelle Harms. On the trade-off between user-location privacy

and queried-location privacy in wireless sensor networks. In Proceedings of the 8th Interna-

tional Conference on Ad-Hoc Networks and Wireless, pages 241–254, 2009. Ryan Vogt was

responsible for the design and implementation of the experiments, analysis, and manuscript

composition. Mario Nascimento and Janelle Harms were supervisory authors, and were

involved with concept formation and manuscript composition.

iv

Dedication

To my beautiful and brilliant wife, Stefanie.

v

Acknowledgements

Thank you to the Natural Sciences and Engineering Research Council of Canada, and

iCORE and Alberta Advanced Education & Technology for funding this research in-part.

Thank you also to Ioanis Nikolaidis, Mario Nascimento, and Pawel Gburzynski for super-

vising me through the arduous journey that was this degree.

vi

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Key Contributions to Mobility Simulation . 2

1.3 Key Contributions to Network Privacy . 4

2 Human Mobility Simulation 6

2.1 Introduction . 6

2.2 Related Work . 9

2.3 Mobility Model Design and Implementation 11

2.3.1 Agents and Maps . 11

2.3.2 Destination Selection . 14

2.3.3 Pathfinding Algorithm . 18

2.3.4 Simulation Initialization . 31

2.4 Mobility Parameters and Wireless Networking Simulations 34

2.5 Verification of DBS3 . 40

2.6 Using DBS3 . 43

2.7 Conclusions . 47

3 The Trade-Off Between Location-of-Interest and Current-Location Pri-

vacy 48

3.1 Introduction . 48

3.2 Related Work . 50

3.3 Adversary Model and Assumptions . 51

3.4 Privacy Metrics . 52

3.4.1 Privacy of the Current Location and Location of Interest 52

vii

3.4.2 Privacy of the Area of Interest . 67

3.5 Choosing the Fake LOIs . 73

3.6 The Partition and Partitioning Problems . 75

3.6.1 NP-Completeness . 76

3.6.2 Greedy Partition Approximation . 78

3.6.3 Divide-and-Conquer Partitioning . 80

3.7 Experimental Results in a Uniform Environment 84

3.8 Experimental Results with Mobility . 91

3.9 Conclusions . 97

4 Conclusions 98

Bibliography 100

viii

List of Figures

2.1 A map of downtown Edmonton, Canada from Google Maps [19], and the

associated street outlines used as input to DBS3. 12

2.2 A map of Fira, Greece from Google Maps [19], and the associated street

outlines used as input to DBS3. 12

2.3 Two potential paths from a source to a destination, labelled with the angle

changes incurred during each change in direction. 19

2.4 Two potential paths to the destination (the star) converging on a shared inter-

mediate point (the left circle). The upper path has both a smaller acquired

cost of θ < θ + ε and a smaller estimated final cost (assuming E estimates

the angle change required to reach the destination by using a straight line to

the destination). However, if ε < ∆, the path with acquired cost θ + ε will

produce the minimal-angle path to the destination. 21

2.5 Two examples in which a path h1 that can be reoriented to path h2 at a cost

of ∆, and h2 can be reoriented to the next intermediate point at a cost of δ. . 22

2.6 The new crumb, cnew , is on the same street as the old crumb, cold , but

in a different location on the street. The star is the destination, and the

angle change incurred by walking in a straight line to the destination is the

admissible heuristic, illustrated for cold as eold 30

2.7 The effect of the centrality bias exponent, α, on the rates of information

spread and information collection in Edmonton. The distance decay expo-

nent, δ, was fixed at zero. Error bars represents 95% confidence intervals

around the mean. 36

ix

2.8 The effect of the centrality bias exponent, α, on the rates of information

spread and information collection in Fira. The distance decay exponent, δ,

was fixed at zero. Error bars represents 95% confidence intervals around the

mean. 36

2.9 The effect of the distance decay exponent, δ, on the rates of information

spread and information collection in Edmonton. The centrality bias exponent,

α, was fixed at zero. Error bars represents 95% confidence intervals around

the mean. 37

2.10 The effect of the distance decay exponent, δ, on the rates of information

spread and information collection in Fira. The centrality bias exponent, α,

was fixed at zero. Error bars represents 95% confidence intervals around the

mean. 37

2.11 The effect of the pathfinding algorithm on the rates of information spread

and information collection in Edmonton. The exponents α and δ were fixed

at zero. Error bars represents 95% confidence intervals around the mean over

2500 trials. 38

2.12 The effect of the pathfinding algorithm on the rates of information spread

and information collection in Fira. The exponents α and δ were fixed at zero.

Error bars represents 95% confidence intervals around the mean over 2500

trials. 38

2.13 The effect of the pathfinding algorithm on the steady state distribution of

agents across ten fixed segments in Edmonton and Fira. The ten segments

chosen were those segments inhabited by the highest percentage of agents in

steady state when the minimizing-turns pathfinder was used. The exponents

α and δ were fixed at zero. 40

2.14 The effect of the centrality bias exponent, α, and the distance decay exponent,

δ, on the correlation between DBS3’s steady state distribution of pedestrians

(using two different pathfinders) and the observed distribution of pedestrians

in Edmonton. 41

x

2.15 A simulation of a highly virulent airborne disease shown in DBS3’s GUI,

which is displaying agent states computed by an external MVISP client.

Agents are shown in the uninfected (black), incubating (blue), conta-

gious (red), or vaccinated (green) states as a virus with a one-minute in-

cubation time and a two-metre infection range spreads among the mobile

agents in Fira, Greece. 44

2.16 The overall architecture of DBS3. The server side is responsible for com-

puting agent mobility and sending those results to clients on-request via a

UAMP server. Alternately, individual simulations can be displayed in the

GUI, optionally using the MVISP server to receive state changes from an ex-

ternal client. Clients that utilize mobility data sent by DBS3 can be written

quickly using the provided UAMP / MVISP client library. 44

3.1 The possible routes from the westernmost central node to the easternmost

central node if fixed shortest-path routing is used (solid lines) or if random

shortest-path routing is used (solid and dashed lines). 54

3.2 The westernmost (blue) node is one of the queried locations, and knowledge

of which malicious (red) nodes did and did not route the query to the LOI

allows the adversary to narrow down the user’s potential current locations. . 57

3.3 A comparison of two choices for k − 1 = 3 fake LOIs (dark nodes) given one

fixed real LOI (starred node). 68

3.4 A comparison of two choices for k = 3 LOIs in a five-node sensor network. . . 69

3.5 A comparison of two choices for k = 4 LOIs in a sensor network, each sur-

rounded by a circle with a fixed, arbitrary radius. 70

3.6 A comparison of two choices for k = 4 LOIs in a sensor network, both having

at least two LOIs close together. 72

3.7 An example of the σ-maximizing choice function leaking the real LOI. 74

3.8 A comparison of the scores of the partitioning computed by three different

partitioning algorithms, and the running time of each 83

3.9 The effect of the α and π parameters on the score and running time of the

divide-and-conquer partitioning algorithm on a grid topology 83

xi

3.10 The effect of the α and π parameters on the score and running time of the

divide-and-conquer partitioning algorithm on a randomized topology 84

3.11 The effect of µ, the maximal partition seed size, on the final score and running

time of the divide-and-conquer partitioning algorithm 84

3.12 The user’s resulting CL-privacy and LOI-privacy over 1000 trials with k = 3 . 86

3.13 The user’s resulting CL-privacy and LOI-privacy, as the number of queries k

is varied, over 1000 trials . 87

3.14 The user’s resulting CL-privacy and LOI-privacy, as the user’s AOI-privacy

is varied, over 1000 trials with k = 3 . 88

3.15 The user’s resulting CL-privacy and LOI-privacy, as the number of distinct

hops in the queries issued by the user is varied, over 1000 trials with k = 3 . . 88

3.16 The user’s resulting CL-privacy and LOI-privacy, as the number of nodes

compromised by the adversary varies, over 1000 trials 89

3.17 The user’s resulting CL-privacy and LOI-privacy, as the type of broadcast

encryption varies, over 1000 trials . 90

3.18 The user’s resulting CL-privacy and LOI-privacy, as the routing algorithm

used in the sensor network varies, over 1000 trials with a global key 91

3.19 The user’s resulting CL-privacy and LOI-privacy, as the routing algorithm

used in the sensor network varies, over 1000 trials with link keys 91

3.20 The user’s resulting CL-privacy and LOI-privacy, in the statistically rich ver-

sus uniform environments, over 5000 trials in Edmonton 93

3.21 The user’s resulting CL-privacy and LOI-privacy, in the statistically rich ver-

sus uniform environments, over 5000 trials in Fira 93

3.22 The success rate of an adversary predicting a user’s location at time t ≥ 0

with and without an oracle revealing the user’s location at time t = 0, in

Edmonton . 95

3.23 The success rate of an adversary predicting a user’s location at time t ≥ 0

with and without an oracle revealing the user’s location at time t = 0, in Fira 95

3.24 The user’s resulting CL-privacy and LOI-privacy, when the user queries their

location of interest at varying times before arriving at it, over 5000 trials in

Edmonton . 95

xii

3.25 The user’s resulting CL-privacy and LOI-privacy, when the user queries their

location of interest at varying times before arriving at it, over 5000 trials in

Fira . 96

xiii

List of Algorithms

2.1 Generation of bounded, random values in DBS3 14

2.2 The destination-selection algorithm in DBS3 17

2.3 The MEA* pathfinding algorithm . 23

2.3.1 Shared helper functions in the MEA* pathfinding algorithm 24

2.3.2 Minimal-angle versions of MEA* helper functions 24

2.3.3 The StreetCut improvement to minimal-angle MEA* 29

2.4 Example information-spread DBS3 client . 47

3.1 Pseudocode for finding all possible current locations and locations of interest

for the user . 58

3.1.1 A näıve implementation of the analysis of queries with unknown destinations 58

3.1.2 An efficient implementation of the analysis of queries with unknown destinations 61

3.2 The divide-and-conquer algorithm for solving the partitioning problem 81

3.3 The random algorithm for solving the partitioning problem 82

xiv

List of Tables

2.1 The running time of a day-long DBS3 simulation of 1000 agents on the Fira

map with α = δ = 1 for each of the three pathfinding metrics, with StreetCut

enabled or disabled. 28

3.1 Major symbols used in Section 3.4 . 53

xv

Chapter 1

Introduction

1.1 Introduction

Privacy is an important challenge in many wireless sensor network applications. Consider a

sensor network where a user with a portable device interacts with the sensor nodes for the

purpose of querying a sensor’s data at a remote location. An often-used practical example

is that of a sensor network in a battlefield deployment being queried by troops. Alternately,

the user could be a pedestrian with a handheld device, querying an urban deployment of

sensors regarding, e.g., crowd densities. The user’s query would be received by a nearby

node and routed through the sensor network to the location of interest, then processed and

returned. Given an assumed sensitive nature of the information returned by the query,

encryption should be used to protect against eavesdropping. Either symmetric encryption

or public-key encryption that is sufficiently inexpensive to be performed by a low-power

sensor node [42] could be used.

However, while cryptography can ensure data confidentiality, encryption alone cannot

provide anonymity against an adversary capable of compromising some of the nodes in a

sensor network. By reading the headers of traffic in the sensor network at compromised

nodes, an adversary could learn: (a) where the queried sensor is, possibly providing signif-

icant insight into the user’s intentions; and (b) where the query originated, thus revealing

the user’s current location.

One contribution of this dissertation, presented in Chapter 3, is to present an effective

method to obfuscate the user’s location of interest by having the user issue not just one

1

query to the location of interest, but instead k queries to a diverse set of locations (our

“k-query” scheme). The trade-off to this approach, aside from the energy cost of processing

an additional k − 1 queries, is that the additional traffic from the user’s current location

facilitates an adversary determining that location. That chapter will study this trade-off

between protecting the privacy of the user’s current location and that of their location of

interest.

Initially, when we start studying the k-query approach, we will consider the sensor net-

work to be in a featureless environment. However, real sensor networks do not exist in

featureless environments, devoid of context. People move in their environments. Is it the

case, then, that a user’s current location is indicative of the location in which they are

interested — potentially, to which they are travelling? To facilitate studying the k-query

approach in this richer context, we will actually begin this dissertation with its other key

contribution: the generation of natural patterns of human mobility in an outdoor urban

environment. In Chapter 2, we will introduce the concept of Space Syntax [26], which seeks

to understand how people perceive distance and move in their environment. Drawing from

the theory of Space Syntax, we have built the Destination-Based Space Syntax Simula-

tion (DBS3), a human-mobility simulator capable of generating realistic movement patterns

in outdoor urban environments.

After we have presented both DBS3, and the k-query approach (both in a featureless

environment, and in the more interesting context generated by DBS3), we will conclude in

Chapter 4.

1.2 Key Contributions to Mobility Simulation

DBS3, using formulas inspired by Space Syntax, realistically simulates the movement of

people in an outdoor urban environment. The biggest advantage of DBS3 over existing

approaches is that it does so with a small set of input parameters.

DBS3 comes with two maps, Edmonton, Canada and Fira, Greece, which form the only

non-trivial input to DBS3. While agent speeds and pause times can be changed from their

default values, there is no need to do so — agents already choose their speed at random,

normally distributed over average walking speed, and choose their pause times at locations

with a realistic log-normal distribution. Agents choose their destinations realistically, tend-

2

ing to head to well-connected locations that are nearby, but there is no need to tag the

map or input any sort of metadata about the map or agents involved. Agents also move

realistically to their destination, minimizing the number of turns they take or the magnitude

of those turns, even at the cost of additional Euclidean distance (as real people in urban

environments tend to do). In order to compute this kind of pathfinding, we developed the

MEA* pathfinding algorithm, which is an extension to the classical A* algorithm [23] that

minimizes Euclidean distance travelled. We also developed an improvement to MEA* called

StreetCut, that reduces its running time with no cost to accuracy.

The only additional inputs to DBS3 are two tuning parameters, which control the

strength of centrality bias — that is, the tendency of people to travel to well-connected

locations — and distance decay — the tendency of people not to want to travel far from

their current location. Both of these tuning constants are input as real numbers. We com-

pared the distribution of people on real streets in downtown Edmonton to the distribution of

agents among the streets in our simulated environment. Using our new approach with both

tuning parameters set to 1.0 (the default values) produced a correlation with real Edmonton

of R2 = 0.96096. On the other hand, the classic approach of simulating agents by minimiz-

ing Euclidean distance travelled and not considering centrality bias and distance decay in

destination selection produced a correlation with the real Edmonton of only R2 = 0.75324.

The only significant error made in DBS3’s distribution of agents around downtown Edmon-

ton is that DBS3 predicted there would be something that would attract a large number of

agents in one specific area of the map, namely where Grant MacEwan University is located.

However, our correlational study was performed in August, when classes were not in ses-

sion. While this result demonstrates one limitation of our non-tagging approach to mobility

simulation, the high correlation on the rest of the map mitigates this limitation.

DBS3 is a freely available. It can be used to produce mobility data en masse, or it can

be used with the included GUI to visualize the results of a single experiment on a map.

It includes libraries for integrating existing programs with either of those uses of mobility

data.

3

1.3 Key Contributions to Network Privacy

Our proposal of issuing k diverse queries, as opposed to just one, is a simple yet effective

mechanism for protecting the privacy of a user’s location of interest. One of the largest

advantages to this approach is that it works well in any sensor network, not requiring any

special programming or hardware in the sensor nodes that process the queries.

One key contribution of this work is to formalize three metrics to quantify how well

a user’s privacy is maintained. These metrics quantify how well the privacy of the user’s

current location is maintained, how well the privacy of the user’s location of interest is

maintained, and how well the privacy of the general area of the sensor network in which the

user is interested is maintained. As part of studying those metrics, we created an efficient

algorithm that could be used by an adversary not only to analyze intercepted messages sent

by the user, but also to analyze messages that are sent and not intercepted by the adversary.

We also discuss the security requirements of how the user must choose the destinations of

the k − 1 fake queries. The user is required to partition the sensor network, and always query

the k sensors within the partition of the sensor they actually wish to query. This result, in

turn, led us to study two problems that we call Partition and Partitioning. We demon-

strate that these are NP-complete problems on a graph. We demonstrate a 2-approximation

for the partition optimization problem. We also designed a divide-and-conquer approach to

approximate an answer to the partitioning problem, which runs significantly more quickly

than a brute-force approach.

We start our discussion of the security results in a featureless environment in which the

popularity of all locations is equal. In this simple environment, we show the direct trade-off

between the privacy of a user’s current location and their location of interest, controlled

directly by the user’s choice of k. Other features that may be beyond the user’s control,

such as the type of cryptography and the type of routing used in the sensor network, also

play a role.

We also study the security results in a more feature-rich environment. Using DBS3, we

simulated agents moving around a map, and used the distribution of agents to gauge the

relative popularity of different locations on the map. Using that information, the adversary

was able to significantly improve the guesses about the user’s current location and (espe-

cially) location of interest. We also study what happens if the adversary is able to assume

4

that the user is moving towards their location of interest. In that case, the adversary has an

additional advantage, unless the user takes additional time before arriving at their location

of interest. For example, in downtown Edmonton, an adversary is able to predict more

accurately where someone is going to be, knowing only where they currently are, for ap-

proximately fifteen minutes. Knowing that the user is travelling to their location of interest

translates into an advantage for an adversary attempting to guess that location, e.g., with

k = 3 in downtown Edmonton, for approximately ten minutes.

5

Chapter 2

Human Mobility Simulation2.a

2.1 Introduction

To study the relationship between human mobility in featured non-homogeneous environ-

ments and location privacy, we require a source of mobility data for such users (called

“agents” in mobility modelling literature). Trace data obtained from tracking actual move-

ment of real people is an appropriate source of such mobility data, which has been used, e.g.,

by González et al. [18]. However, it is difficult to collect accurate mobility traces for a large

number of people, each individually tracked over a lengthy period of time. Using an elec-

tronic device like a cellular phone or laptop as a proxy for each person, for example, yields

trace data of limited granularity, with successive locations inferred from associations with

access points or cellular towers. Additionally, the collection of trace data is limited to those

times when the device is both active and can communicate with the fixed infrastructure.

However, the most pressing issue when resorting to mobility traces is that traces collected

in one environment do not generalize to different spatial configurations,2.b i.e., to a different

building, campus, or city layout. In sharp contrast, generality is a strength of generative

mobility models. A generative mobility model is an algorithm that, using an entropy source

(e.g., a pseudorandom number generator), produces simulated movement for each agent in

an environment. The random waypoint mobility model [33] is one such generative model.

Agents moving according to this model proceed in straight lines to randomly chosen destina-

2.aThis chapter is based on Vogt et al. [62].
2.bWe use the terms “configured” and “configuration” to mean any environment where not every point is

accessible by a human, i.e., an environment with rigid obstacles to free movement.

6

tions in a featureless environment, pausing at each destination for a random amount of time

before choosing a new destination and speed. The random waypoint model is an instance of

the more general random trip model [41], in which agents moving in a bounded, connected

domain move to random destinations according to predetermined destination-selection and

mobility rules. Numerous mobility models similar to random waypoint exist, and they have

been surveyed extensively [6].

It is well understood that random waypoint and models directly derived from it are not

ideal mobility models to use in a simulation. There are mathematical concerns with these

models, such as average agent speed continuously decaying over time in the absence of a

positive lower bound on random agent speeds [69]. But the largest problem with random

waypoint is a fundamental one: it is not a realistic representation of human movement.

People do not move in unobstructed lines to random locations in a featureless environment.

This problem is more than aesthetic, since the choice of mobility model can significantly

affect the results of a network simulation [6]. Despite these issues, the random waypoint

mobility model continues to be used [60, 66].

The key problem we address in this chapter is how to combine the generalizability of

a generative mobility model with the ability to honour both the restrictions and meaningful

patterns of human mobility in configured spaces. Needless to say, we want this combination

to be practically useful in simulations, such as privacy studies. As the most important

objective of a simulation study is a comparison of a number of systems under a representative

range of inputs, we would like to minimize the population of cases constituting a defensible

“representation.” Therefore, an important — if somewhat informal — constraint is to limit

reasonably the degrees of freedom in the parameter space. Our goal is thus to strike a

workable balance between the desire to capture the essential patterns of human mobility

and the ease of description of a modelled case.

One critical observation is that it does not suffice simply to move agents between random

points on an outdoor street map by routes that minimize Euclidean distance travelled.

Human movement is not characterized by such simple rules, because these rules do not

reflect the mental effort that goes into human navigation [44]. Our problem thus becomes

finding a theory that describes human mobility adequately and that can be used to derive

an easily and naturally parameterizable algorithmic, generative mobility model. We adopt

the view on how configured space influences human mobility as it is articulated in the

7

theory of Space Syntax [26]. Space Syntax is now a relatively mature theory, focused

on the design of urban (built) environments. Potential lines of movement unobstructed

by rigid obstacles, called axial lines, collectively define the axial map of an area. Space

Syntax seeks to understand how people perceive distance, move, and cluster on any axial

map. The key result from Space Syntax is that the most heavily frequented locations in an

urban environment are those that are better “integrated” — that is, locations that are a

short distance away from many other locations. This observation allows us to approach the

construction of the mobility model by relying strictly on the graph-theoretic properties of the

map that the agents populate, without the need for additional metadata such as the locations

and characteristics of popular shops or other attractions. While those attributes are not

irrelevant for the accuracy of description, their inclusion would significantly complicate the

model by introducing a number of fuzzy parameters, thereby greatly reducing the model’s

practical appeal. It is in fact one of the most interesting features of our approach that all

those “popularity” parameters of the various spots on the map are implicitly captured by

their purely graph-like connectedness with other spots. This is because highly frequented

attractions cannot be located in poorly connected areas — the natural feedback cycle of

urban development takes care of the requisite correlation. A second key result from Space

Syntax is that humans do not perceive the distance between two locations as the Euclidean

distance that must be travelled between them. Rather, we perceive distance as some measure

of the change in direction of travel that we must make to move between the two destinations.

There’s no clear answer to how we perceive change in direction of travel, but the total

number of changes in direction and the total magnitude of change in direction are two good

candidates.

Based on these two key results, we built the Destination-Based Space Syntax Simula-

tor (DBS3). DBS3 is a freely available,2.c high-performance mobility simulator for agents

in outdoor urban environments. Section 2.2 describes how DBS3 is distinct from related

work on realistic mobility models. Section 2.3 continues by describing the design of our

new mobility model, including the implementation details of DBS3 — in particular the new

multi-expansion A* search (MEA*) used to produce optimal non-Euclidean-distance paths.

We demonstrate how the input parameters to DBS3 affect the results of some model simu-

lation studies in Section 2.4. Section 2.5 then verifies the correctness of the mobility model

2.chttp://www.cs.ualberta.ca/~vogt/dbs3.html

8

by showing high correlation between the mobility patterns produced in DBS3 and observed

pedestrian patterns in downtown Edmonton. Finally, we describe how to use DBS3 in Sec-

tion 2.6, before concluding our discussion on mobility simulation and discussing potential

future expansion on this topic in Section 2.7.

2.2 Related Work

There are two main existing methodologies for building realistic mobility models. The first

methodology is to extrapolate a generative mobility model from traces of actual human

movement. Yoon et al. [71] capture coarse-grained trace data using Wi-Fi connectivity logs

on a campus. This coarse-grained data is subsequently broken into trips between ordered

pairs (i.e., origins and destinations) of enumerated locations on a campus map. The n-

minimal set of paths between origin and destination pairs, measured by Euclidean distance

with ties broken arbitrarily, form the set of possible routes used by their generative model.

That approach is subsequently extended [38] to consider the time of day, adding realism by

considering when students on campus are more likely to travel between different locations.

In fact, the mobility patterns of a fixed individual have a high level of predictability given

the time of day [54].

The second existing methodology used to build realistic mobility models is to survey

individuals to learn how they move in a given environment. Hsu et al. [30] manually defined

locations of interest on a campus, then generated a Markovian transition model between

these locations by conducting a survey of students. A more involved approach was used

by Feeley et al. [12]. They developed a system that not only defined locations of interest,

but also sets of activities to be performed by agents at those locations. What activities

each agent would perform is determined by the role of that agent, which is drawn from a

manually defined set. A similar but time-dependent approach [37] constructed a generative

model using surveys of what activities people do at different times during a workday, along

with an annotated map describing where offices, shops, and other building types are located.

The benefits of our Space Syntax-inspired approach over these existing methodologies

are twofold. First, the pathfinding performed by DBS3 more accurately reflects how humans

perceive distance. Using the new MEA* algorithm (discussed in Section 2.3.3), agents can

move in a manner that minimizes either the number of changes in direction that they

9

make or the total magnitude in the change of their direction, as opposed to the traditional

approach of minimizing the Euclidean distance travelled. Second, agents in DBS3 choose

their sequence of destinations without needing the map on which they move to be annotated.

There are no manually defined locations of interest, and there is no need to define where

different kinds of buildings are located. Instead, the graph-theoretic properties of the street

layout directly define where the most desired destinations are located. Our approach avoids

the notions of preset waypoints and flights by deriving them from the untagged map that

becomes the sole description of the geometry, i.e., destination points and their bias. As

such, our approach generalizes easily across different maps, not requiring new trace data or

surveys for new locales. The most important, novel, and unique feature of our approach is

that it yields a truly flexible generative method whose only nontrivial input is a map of the

studied area. Yet, despite the simplicity of parameterization, DBS3 still realistically reflects

how humans perceive distance and how they select destinations and routes.

To the best of our knowledge, there have been two previous attempts at constructing

generative mobility models based on Space Syntax. The first, by Dalton and Dalton, is

admitted to be a “tentative ‘proof of concept’ pilot study in order to determine whether

the theory of natural movement could be utilized in...a simulation” [9]. Agent destinations

are chosen uniformly at random; only the initial locations of agents are influenced by how

well-integrated those locations are. Such a simulation will drift into a steady state that

has no relation to the initial integration-based distribution of agents (though, as a point

of future study, it would be interesting to see if the initial stage of this simulation accu-

rately reflects more specific cases, such as that of people leaving work at the end of the

day — mostly starting in well-integrated locations, then drifting out). The second effort,

by Kostakos et al. [40] and Kostakos [39], also left a few important loose ends. It does not

express the effect of each individual agent’s pathfinding: agents simply roam along axial

lines, presumably using random selection at intersections to decide where to go next. As

a result, the phenomenon of aggregate mobility patterns over a map — strongly connected

to how individuals find their way between locations on that map — is lost. The actual

result is more like a snapshot in time of agent locations that subsequently drifts, without

maintaining the aggregate pattern first seen in that snapshot. In our work, we preserve a

per-agent notion of destination selection and pathfinding, and a well-defined steady-state

behaviour. In addition, our implementation is made publicly available to be scrutinized,

10

since a common problem with previous attempts is that the implementations have been

tied to particular examples and do not appear to have been widely distributed as general

purpose tools.

2.3 Mobility Model Design and Implementation

2.3.1 Agents and Maps

The mobility model used by DBS3 is an instance of a random trip [41] model. Agents

choose a destination based on their current location, walk to their destination using a route

generated by the pathfinder, then pause for a randomly generated amount of time at that

destination before repeating this process. We start with an overview of how agents move

in their environment, before discussing the details of the destination selection algorithm in

Section 2.3.2, the pathfinding algorithms in Section 2.3.3, and simulation initialization in

Section 2.3.4.

In DBS3, agents walk within a connected set of intersecting rectangular areas. For

simplicity, we refer to these areas in which agents are permitted to move as “streets,”

because these areas correspond precisely to actual city streets in the two maps used in this

dissertation. In general, however, these rectangular areas need not be streets; DBS3 could

simulate agent movement only on sidewalks, or only within a connected set of thin rectangles

representing the axial lines of an arbitrary convex space.

Normally, a Space Syntax-inspired simulator like DBS3 would need an axial map of

the area to be simulated: a graph representation of the area in which each axial line in

the minimal set is represented as a vertex in the graph, and edges connect vertices whose

axial lines intersect. Automated generation of axial maps is a hard computational problem,

but tools do exist [48, 59, 65]. However, because we are limiting our study to outdoor

urban areas, we can assume that there are streets on which our agents will walk, and

the streets themselves make a good approximation of the axial map of an urban area. Like

Yoon et al. [71], we represented any curved street as a sequence of straight streets intersecting

at angles that are neither overly sharp nor overly shallow, where visual approximation and

intuition are used to define what is overly sharp or overly narrow.

The first map used in this dissertation is grid-like downtown Edmonton, Canada, illus-

11

Figure 2.1: A map of downtown Edmonton, Canada from Google Maps [19], and the asso-
ciated street outlines used as input to DBS3.

Figure 2.2: A map of Fira, Greece from Google Maps [19], and the associated street outlines
used as input to DBS3.

trated in Figure 2.1. The second map we use is the more organic and graph-theoretically

interesting Fira, Greece, shown in Figure 2.2.

Like many mobility models, DBS3’s adheres to the invariant property that, at all

times, there is a fixed population of agents in the simulation environment (a useful in-

variant in many wireless network simulations, allowing individuals and their mobile devices

to be tracked over a long period of time). We denote this set of agents on the map as

A = {A1, A2, . . . , Am}. Each agent Ai has a fixed speed Si when mobile, where Si is chosen

randomly according to the speed distribution S. Upon reaching a destination, agent Ai will

pause for a random amount of time t chosen according to the time distribution T . Note that

when Ai starts moving to a new destination after the pause of t, the value of Si does not

change. There are two reasons that we chose to keep each agent’s speed constant for the

duration of the simulation, rather than have agents choose new speeds at each destination.

First, it eliminates speed decay — the potentially infinite decrease of average agent speed

over the duration of the simulation (though it is also possible to eliminate speed decay by

choosing each agent’s initial speed from a steady-state speed distribution S ′, then choosing

subsequent new speeds from the original distribution S [70]). But more importantly, we

feel that our design is more realistic on a per-agent basis, compared to one in which a given

12

agent may be moving at geriatric speeds to one destination then sprint to the next.

Studies have shown that pedestrian speed is approximately normally distributed, with a

mean of 1.52 m/s and a standard deviation of 0.23 m/s [24, 25]. We bound that distribution

at three standard deviations from the mean (i.e., 0.83–2.21 m/s), and use the resulting

distribution as the default speed distribution S in DBS3. It has also been demonstrated

that pause times, i.e., the amounts of time people spend at destinations, are log-normally

distributed [38]. By default, DBS3 uses the arbitrarily chosen pause range of 15–600 seconds

with a log-normal distribution. There is some evidence that the speeds at which people move

may be log-normally distributed as well, instead of normally distributed [38]. For this reason,

DBS3 supports both bounded normal and bounded log-normal distributions (as well as the

classic uniform distribution) for both S and T .

While uniform random values can be generated in an obvious fashion, it is not as clear

how to generate bounded normal or bounded log-normal random values. Normal and log-

normal distributions are defined over infinite domains. When we generate normal or log-

normal values, we must truncate those infinite domains before scaling the generated value

to the bounds, which we will call [min,max].

When generating normally distributed values, we truncate the distribution at three stan-

dard deviations in either direction from the mean. The domain of this truncated normal

distribution contains over 99.7% of the values generated by a non-truncated normal distribu-

tion, so the effect on the shape of the distribution is negligible. Because both the distribution

and truncation are symmetrical, the expected value of the truncated distribution is identical

to the expected value of the infinite-domain distribution.

For consistency with how we generate normally distributed values, we truncate the log-

normal distribution in such a way that the expected value is unaffected and the same

approximately 99.7% of the original distribution’s randomly generated values are contained

in the truncated domain. When we generate random log-normal values by computing eg,

where g is a random Gaussian value with a mean of 0 and standard deviation of 1, values that

are lower than approximately 0.06 or larger than approximately 44.31 are rejected.2.d The

expected value of accepted values remains the same as the expected value of all generated

values, e1/2, and the same proportion of generated values are accepted as in the normal

2.dA more precise numerical representation of these bounds can be found in the DBS3 code. We are
unaware of a closed-form representation of these bounds.

13

distribution’s truncation.

Pseudocode for how these bounded values are generated is provided as Algorithm 2.1,

where GenerateNormal(0.83, 2.21) is the call used to generate values in the default speed

range and GenerateLogNormal(15, 600) is for the default pause range. The function

U(0, 1) returns a random uniformly distributed number between 0 and 1, and the function

G(0, 1) returns a random normally distributed unbounded value with a mean of 0 and a

standard deviation of 1.

Algorithm 2.1 Generation of bounded, random values in DBS3

1: function GenerateUniform(min,max)
2: p← U(0, 1) . Uniform random value in [0, 1]
3: return min + (max −min) · p

4: function GenerateNormal(min,max)
5: repeat
6: g ← G(0, 1) . Normal random with µ = 0, σ = 1
7: until −3 ≤ g ≤ 3
8: p← (g + 3)/6
9: return min + (max −min) · p

10: function GenerateLogNormal(min,max)
11: lb ← 0.06134160902282682206561692291493027192911068582928926771205592947
12: ub ← 44.3138331674263916129427197921989334769855097649027471398635206404
13: repeat
14: g ← G(0, 1) . Normal random with µ = 0, σ = 1
15: l ← eg

16: until lb ≤ l ≤ ub
17: p← (l − lb)/(ub − lb)
18: return min + (max −min) · p

2.3.2 Destination Selection

One key result in Space Syntax is that better-integrated locations, i.e., those locations

that are close to many other locations, see more pedestrian traffic than poorly integrated

locations [27]. Some of this effect comes from through-movement — movement through well-

integrated streets, as people walk along thoroughfares to get to distant locations. However,

this effect is also fuelled by to-movement — that is, well-integrated locations are more likely

to be destinations for people than poorly integrated ones.

Within the confines of to-movement, there are two different factors at play. The first is

that well-integrated locations are inherently more popular than poorly integrated locations.

14

We refer to this observation as centrality bias. As a concrete example, a restaurant (a

popular destination for many people) is typically located along a better-connected roadway,

whereas a house (a destination for very few people) is often located in a less-central location.

The second factor at play is distance decay. Distance decay is the reluctance of people to

travel larger distances from their current location to reach a destination. Returning to our

example, we expect a restaurant located in a well-connected area to be more popular than a

restaurant located in a poorly connected area, just by virtue of being closer to more people.

One of the contributions of this dissertation is to formalize the interplay of centrality

bias and distance decay into an algorithm that can be used to select the next destination for

each agent in a mobility simulation based on its current location. That is, agents in DBS3

choose their next destination by balancing the tendency to travel to more popular locations

(centrality bias) and the tendency to minimize the distance they have to travel from their

current location (distance decay). Recall that destination selection is performed without any

metadata about the map (e.g., where different types of buildings are located on the map);

it is strictly the graph-theoretic properties of the map that matter. Also note that there

is no concept of a final destination in DBS3; agents continue to choose new destinations in

this random trip model.

We begin by assuming that the number of potential destinations on a street is propor-

tional to the length of the street. Note that we are not yet describing the relative popularity

of the destinations on two different streets; rather, we are describing the number of desti-

nations on each street. Consider two streets, s and d. By our assumption, the probability

of an agent who is currently on street s choosing a next destination on street d should be

proportional to the length of d, L(d), factoring in how well integrated (i.e., central) street

d is and how much distance decay there is from street s to street d. Formally, the potential

P for an agent on street s to travel to street d is defined as

P(s, d) =
L(d)

I(d)α ·D(s, d)δ
, (2.1)

where I(d) is a measure of how peripheral d is (with high values for poorly connected streets

and low values for well-connected streets), and D(s, d) represents the human-perceived dis-

tance from street s to street d. The two exponents, α ∈ R and δ ∈ R, are scaling factors

given as input to DBS3, used to adjust the relative effects of centrality bias and distance

15

decay.

Recall from Space Syntax that humans do not perceive distance between two locations

as the minimal Euclidean distance that must be travelled between the two. Perception of

distance is better correlated with the number of changes in direction that have to be made,

or the sum of the magnitudes of change in direction. We use the number of changes in

direction as our measure of distance in DBS3’s destination selection algorithm, since it is

a unitless measure, unlike magnitude of change in direction. Formally, let T(s, d) be the

minimum number of turns an agent would have to make to get from street s to street d.

Then,

D(s, d) = T(s, d) + 1 . (2.2)

Looking to Equation 2.1, in which D(s, d) is used in the denominator, note that D(s, d) ≥ 1.

We use this same measure of distance to compute how well the locations on each street

are integrated. Following the work of Hillier and Iida [27], DBS3 computes how well inte-

grated each potential destination is within its neighbourhood. The neighbourhood of any

location is defined by a globally constant radius, ρ ∈ Z ≥ 0, representing the number of turns

that a person can make from any given location until they perceive themselves to be in a

new “area.” The value of ρ expresses what humans find acceptable walking distance, yet

the notion of distance is subjective — for example, according to the feature-accumulation

hypothesis [44], it depends on the number of “features” encountered and memorized during

locomotion along a given path, which is evidently a cognitive limitation. The feature-

accumulation hypothesis explains some surprising effects [29], like the overestimation of

distances by inner-ring urban residents and the underestimation of distances by outer-ring

suburban residents. In short, both cognitive effects and map effects need to be accounted

for in suggesting an appropriate value for ρ.

To calculate how well connected the locations on street d are to other locations in the

neighbourhood of d, we compute the average distance to each location in the neighbourhood

(recalling that the number of locations on each street is proportional to the length of that

street) as

I(d) =

∑
i | T(i,d)≤ρ (L(i) ·D(i, d))∑

i | T(i,d)≤ρ L(i)
. (2.3)

Again, for use in Equation 2.1, note that 1 ≤ I(d) ≤ ρ+ 1. A large value for I(d) means

that the destinations on street d are poorly connected within their neighbourhood, whereas

16

a small value indicates that street d is highly connected.

Note that there are two implicit assumptions in these equations. First, it is assumed

that D(s, d) is finite for any pair of streets s and d, i.e., that any street is reachable from

any other street. Second, it is assumed that all streets have positive, finite length. DBS3

enforces both of these assumptions.

Equations 2.1–2.3 are used to choose new destinations for agents in DBS3. Specifically,

after an agent reaches a destination on street s and completes its pause time, it chooses the

street on which its next destination will be located proportionally to the value of P(s, d)

over all possible streets d. This behaviour is formalized in Algorithm 2.2; to select a new

destination, an agent calls GetNewDestination(curLoc), where curLoc is its current lo-

cation.

Algorithm 2.2 The destination-selection algorithm in DBS3

1: function GetNewDestination(curLoc)
2: s← the street on which curLoc is located
3: n← the number of streets on the map
4: for i← 1 to n do
5: d← street number i on the map
6: A[i]← P(s, d), computed as per Equation 2.1

7: index ← ProportionalIndex(A)
8: str ← street number index on the map
9: pnt ← a uniform random point on str

10: return point pnt on street str

11: function ProportionalIndex(array)
12: n← the length of array
13: sum ←

∑
1≤i≤n array [i]

14: cdf [1]← array [1]/sum
15: for i← 2 to n do
16: cdf [i]← array [i]/sum + cdf [i− 1]

17: r ← U(0, 1) . Uniform random value in [0, 1]
18: return min{i | r ≤ cdf [i]}

Note that if either α or ρ is zero, centrality bias has no effect on destination selection. If

δ is zero, distance decay has no effect on destination selection. If neither centrality bias nor

distance decay has an effect, the selection algorithm degenerates into a uniform destination

selection algorithm in which all destinations are equally likely to be chosen as the next

destination.

By default, DBS3 sets α = δ = 1. Because the maps of downtown Edmonton and Fira

both represent small urban areas (or small parts of a larger map), we use ρ =∞. It is

17

outside of the scope of this dissertation to suggest a specific ρ value for any appreciably

larger maps. Hence, we leave ρ up to the discretion and control of the user, with the

suggestion that ρ =∞ is acceptable for small maps. Potential future work could even

attempt to find a distribution for ρ, with each agent drawing a personalized value for ρ that

essentially reflects how familiar they are with a given map (e.g., whether they are a local

resident or a visitor).

2.3.3 Pathfinding Algorithm

With the algorithm by which agents can choose a subsequent destination after arriving and

pausing at a previous destination complete, we now present an algorithm that agents can use

to compute the paths that they will follow between destinations. According to Space Syntax,

paths to a destination that minimize either the number of changes in direction or the total

magnitude of all the changes in direction are the best-correlated paths to those taken by

actual humans. As such, DBS3 supports pathfinding between destinations that minimizes

the number of changes in direction or minimizes the sum of the angles of the changes

in direction (as well as, for completeness, the classic pathfinding approach of minimizing

Euclidean distance travelled). Note that the pathfinder that minimizes the total change

in angle should not be confused with search algorithms that attempt to generate smoother

paths while still minimizing Euclidean distance, e.g., Theta* [10].

There are two key observations about human movement that influenced how we trans-

lated these high-level descriptions of human pathfinding into formal algorithms: (a) human

movement lacks pinpoint precision; and, as such, (b) human movement is not perfectly op-

timized. Consider the street network in Figure 2.3 overlaid with two potential paths from

a source to a destination. The angle values in the image represent the change in angle

of movement at each change in direction. Given these two potential paths, an agent that

minimizes total change in angle would always choose the solid path over the dashed path,

as it incurs 2ε less in angle change.

However, humans rarely walk directly to the centre of the intersection between two streets

or sidewalks, nor do they walk to the exact corners of intersections. As such, a realistic

simulated agent seeking to produce paths with low accumulated angle change should not

always use the streets corresponding to the solid path in Figure 2.3 instead of the streets

18

θθ-ε

θθ-ε

Figure 2.3: Two potential paths from a source to a destination, labelled with the angle
changes incurred during each change in direction.

corresponding to the dashed path, in cases where ε is small. As an extreme example, consider

the case where ε is so small as to be imperceptible to a human, but measurable to a computer

simulating agents moving in this environment.

To prevent such over-optimizing of chosen paths and to add a small random element

to agent behaviour at intersections, our pathfinding algorithm to determine a path from a

point src to a point dst functions according to the following logic:

1. For each intersection i on the map, generate a random point pi in that intersection (i.e.,

a new random point is generated in each intersection on every call to the pathfinding

algorithm);

2. For each intersection i, mirror pi into all four quadrants of the intersection, creating

four (almost certainly, but not necessarily, distinct) points pi,1, . . . , pi,4.

3. The agent is allowed to move to any point pi,j for any intersection i on its current

street, or to dst if the destination is on its current street. Let H be the set, exponential

in size to the number of intersections on the map, of all possible paths from src to dst

constrained by these rules.

4. Choose path h ∈ H according to one of three rules. Which of the three rules is used

is a simulation-global choice of the user:

(a) h ∈ H has the minimal Euclidean distance;

(b) H′ ⊆ H is the subset of paths with the minimal number of changes in direction

and h ∈ H′ has the minimal Euclidean distance; or,

(c) H′ ⊆ H is the subset of paths with the minimal total magnitude of change in

angle and h ∈ H′ has the minimal Euclidean distance.

19

To implement this logic in DBS3, we developed an extension to the A* search algo-

rithm [23] called the multi-expansion A* (MEA*) search. We start by presenting a brief

overview of the traditional A* algorithm, before presenting our new MEA* algorithm. Fi-

nally, we present the StreetCut extension to MEA*, which improves the runtime speed of

the algorithm.

Note that the random element in our pathfinding design — the points to which agents

travel in intersections are not fixed — necessitates a runtime pathfinding algorithm. Routes

between all possible source-destination street segments cannot be precomputed. This ap-

parent complication is in fact an important feature of our scheme. The randomization of

choices leading to identical or nearly identical cost values under the assumed optimization

criteria is one of the paramount aspects of the art of simulation. From the viewpoint of a re-

alistic model of human behaviour, this kind of nondeterminism clearly appears as something

natural, owing to the inherent imperfection of human judgment, and cannot be realistically

represented as a simple deterministic optimization problem. The most obvious and intu-

itively natural kind of fuzziness in the input to the pathfinding algorithm is the uncertainty

about an agent’s location within an intersection. A randomized representative, pi, of that

continuous space serves to perturb both distances and angles, allowing MEA* to explore a

larger, more natural state space. The purpose of mirroring the point into the four quadrants

of the intersection is to provide nontrivial yet realistic choices to the pathfinding algorithm.

A*, upon which MEA* is based, works by maintaining metadata for each point on the

map to which an agent may move: the lowest acquired cost yet discovered for reaching that

point, the previous point along the path that generated that lowest cost, and an estimate

of the total cost that will be incurred should the path to the destination be completed from

that point. Here, cost traditionally refers to Euclidean distance travelled. The estimate

for the total cost of the final path through the point p, F(p) = A(p) + E(p), is computed

as the acquired cost of the path up to point p, A(p), plus a heuristic estimate of the cost

that will be acquired by completing the path from point p, E(p). The heuristic E must be

admissible — that is, E(p) must be at most the cost that will be acquired in completing the

path from p (e.g., the length of a straight line from p to the destination, if Euclidean distance

is being used as the pathfinding metric). The A* algorithm then iteratively expands the

search from the point with the lowest estimated final cost, F(p), until the destination point

is expanded; the path from the source to the destination is then reconstructed by iterating

20

θ

θ+ε Δ

Figure 2.4: Two potential paths to the destination (the star) converging on a shared inter-
mediate point (the left circle). The upper path has both a smaller acquired cost of θ < θ + ε
and a smaller estimated final cost (assuming E estimates the angle change required to reach
the destination by using a straight line to the destination). However, if ε < Δ, the path
with acquired cost θ + ε will produce the minimal-angle path to the destination.

along the chain of previous points stored at each point in the path. The final reconstructed

path is optimal in the sense that its cost is minimized, conditioned on the agent being

limited to moving to any of the (up to) four generated points within any intersection.

One feature of A* search is that it only maintains one set of metadata for each point on

the map. If ever a newer path to point p is discovered that has a lower acquired cost A(p)

than the existing path to point p, the older path is replaced by the new path’s acquired cost,

estimated total cost, and previous point metadata. When minimizing Euclidean distance

travelled, if two paths h1 and h2 converge at p, but the acquired cost of h1 is less than or

equal to the acquired cost of h2, then only h1 need be expanded; it is guaranteed that h2 will

not yield a better final path to the destination if it is expanded. However, this guarantee fails

for minimal-angle pathfinding, where the location of the previous point affects the cost of

the outbound edge from a point. Consider the example in Figure 2.4, in which one inbound

path to a shared intermediate point has both a smaller acquired cost and a smaller estimated

final cost, yet the path generated by the other inbound path will yield the minimal final

angle change.

This limitation of A* is addressed by the MEA* search algorithm. In MEA*, multiple

inbound paths can co-exist at, and later be expanded from, a shared intermediate point.

When possible, one inbound path can still obsolete another when it is guaranteed that one

will not produce the optimal path to the destination.

Lemma 2.1. In the minimal-angle variant of MEA*, if one inbound path h1 can be reori-

ented (i.e., rotated) to another inbound path h2, and the acquired cost of h1 plus the cost of

21

cnext

h1

h2

Δ

Δ
c

δ

cnext

h1

h2
Δ

c

δ

Figure 2.5: Two examples in which a path h1 that can be reoriented to path h2 at a cost of
Δ, and h2 can be reoriented to the next intermediate point at a cost of δ.

the reorientation is no more than the acquired cost of h2, then it is guaranteed that h2 will

not form a better path to the destination than h1.

Proof. Consider two inbound paths h1 and h2 to an intermediate point c, with acquired

costs θ1 and θ2 respectively. Let Δ be the difference in the inbound angles between h1 and

h2, and let δ be the cost of reorienting inbound path h2 to face the next point, cnext . Two

such situations are depicted in Figure 2.5.

Let θ′1 and θ′2 be the acquired cost at the next point from the expansion of h1 and h2

respectively. So, by the definition of δ, θ′2 = θ2 + δ. From the triangle inequality applied

to angles, and as depicted in Figure 2.5, the cost of reorienting h1 to face the next point is

bounded within [0,Δ+ δ]. Therefore, θ1 ≤ θ′1 ≤ θ1 +Δ+ δ.

From the lemma description, we assumed that θ1 +Δ ≤ θ2, meaning that

θ′1 ≤ θ2 + δ = θ′2. In other words, the new acquired cost of expanding h1 to the next point

will be no more than the new cost of expanding h2. And, since both expansions will have

an identical inbound angle at the next point (i.e., a line from c to cnext), h2 is guaranteed

not to produce a better path than h1.

Remark 2.2. The minimal-distance variant of MEA* degenerates into classic A*, saving at

most one inbound path to each point. An inbound path h1 to point c will never yield a

better path to the destination than h2 if its acquired cost is greater than or equal to that of

h2. The minimal-turn variant of MEA* has the same guarantee, provided that expanding

an inbound path h at point c to any next point cnext necessitates making a turn.

22

Algorithm 2.3 The MEA* pathfinding algorithm

1: function FindPath(src, dst)
2: queue, pts, cache ← {}, {}, {}
3: for each street s containing point src do
4: nc ← Crumb(src, s,null, dst)
5: AddToCache(nc, src, s, cache)
6: Add nc to queue

7: while True do
8: cur ← PollMinimalLB(queue)
9: if cur .obsolete = true then

10: continue
11: else if cur .pLoc = dst then
12: return ReconstructPath(cur)
13: else if cur .street contains point dst then
14: Add Crumb(dst , cur .street , cur , dst) to queue
15: else
16: for each i ∈ GetIntersections(cur , dst) do
17: Expand(cur , i , dst , queue, pts, cache)

18: procedure Expand(cur , i , dst , queue, pts, cache)
19: nextStr ← i .intersectingStreet
20: for each p ∈ GetRandomPoints(i, pts) do
21: nc ← Crumb(p,nextStr , cur , dst)
22: for each old ∈ GetCache(p,nextStr , cache) do
23: obs ← CheckObsolete(old ,nc)
24: if obs = ObsoleteNew then
25: nc.obsolete ← True
26: break
27: else if obs = ObsoleteOld then
28: old .obsolete ← True
29: RemFromCache(old , p,nextStr , cache)

30: if nc.obsolete = False then
31: Add nc to queue
32: AddToCache(nc, p,nextStr , cache)

23

Sub-algorithm 2.3.1 Shared helper functions in the MEA* pathfinding algorithm

1: function GetRandomPoints(i , pts)
2: if 6 ∃ {intr , p1, p2, p3, p4} ∈ pts with intr = i then
3: p← a random point in i
4: p1, p2, p3, p4 ← p mirrored into each quadrant of i
5: Add {i, p1, p2, p3, p4} to pts

6: return {p1, p2, p3, p4} where {i, p1, p2, p3, p4} ∈ pts

7: procedure AddToCache(crumb, point , street , cache)
8: Add {point , crumb} to cache

9: procedure GetCache(point , street , cache)
10: return {c | {point , c} ∈ cache}

11: procedure RemFromCache(crumb, point , street , cache)
12: Remove {point , crumb} from cache

Sub-algorithm 2.3.2 Minimal-angle versions of MEA* helper functions

1: function Crumb(physicalLoc, street , prevCrumb, dst)
2: c← a new, empty crumb data structure
3: c.pLoc ← physicalLoc
4: c.street ← street
5: c.prev ← prevCrumb
6: c.obsolete ← False
7: if c.prev = null then
8: c.in ← null
9: else if c.pLoc = c.prev .pLoc then

10: c.in ← c.prev .in
11: else
12: c.in ← vector from c.prev .pLoc to c.pLoc

13: c.angle ← accumulated angle change thus far
14: c.dist ← accumulated distance thus far
15: c.angleLB ← total angle change if going straight to dst
16: c.distLB ← total distance if going straight to dst
17: return c

18: function CheckObsolete(old ,nc)
19: if old .in = null then
20: return ObsoleteNew
21: else if nc.in = null then
22: return ObsoleteOld
23: ∆← the angle between old .in and nc.in
24: if (old .angle + ∆ < nc.angle) or
25: (old .angle + ∆ = nc.angle and old .dist ≤ nc.dist) then
26: return ObsoleteNew
27: else if (nc.angle + ∆ < old .angle) or
28: (nc.angle + ∆ = old .angle and nc.dist ≤ old .dist) then
29: return ObsoleteOld
30: return ObsoleteNone

24

The core of the MEA* algorithm is formalized in pseudocode in Algorithms 2.3 and 2.3.1.

Each time DBS3 requires a path from a point src to a point dst , it calls FindPath(src, dst).

Because the initial location could be on multiple streets (i.e., in an intersection), a crumb is

added to the queue for each possible starting street. The crumb is the basic data structure of

the search algorithm, containing not only information like the physical location of the search

expansion it represents, but also the acquired and estimated costs of that expansion. For a

search using Euclidean distance as the cost metric, the acquired cost would be the Euclidean

distance travelled from src to the physical location of the crumb, and the estimated cost

would be the acquired cost plus the cost estimated by an admissible heuristic to complete

the path to dst . For a search using total angle change as the metric, the acquired cost would

be the change in angle so far as well as the acquired Euclidean distance (for breaking ties,

in case two paths yield identical angle change) and the estimated cost would again be the

acquired cost plus an admissible heuristic. The data stored by the minimal-angle crumb

is illustrated in Algorithm 2.3.2. The heuristic used by DBS3 for each of the three search

metrics is as follows:

• For a minimal-distance search, E is the length of a straight line from the crumb to the

destination;

• For a minimal-turn search, E is firstly the number of turns required to get from the

street on which the crumb is located to the street on which the destination is located

(the minimal number of turns between all pairs of streets is precomputed by DBS3).

Ties are broken using the Euclidean length of straight lines from the crumbs to the

destination (though ties could have been broken instead, e.g., by the angle change

incurred to face directly to the destination).

• For a minimal-angle search, E is firstly the angle change that would be incurred in

turning from the crumb’s inbound path to face directly to the destination (turning

clockwise or counterclockwise, whichever produces a smaller change in angle). Ties are

broken using the Euclidean length of straight lines from the crumbs to the destination.

Remark 2.3. Each of the heuristics detailed above is admissible for its respective search

metric. The minimal-distance heuristic is identical to the one used in the original A* algo-

rithm [23]. For the minimal-turn search, there is clearly no path possible to the destination

25

that can be constructed with fewer turns than the minimal number of turns between a

crumb’s street and the destination street (and no tie-breaking Euclidean distance shorter

than a straight line from the crumb to the destination). Similarly, for the minimal-angle

search — subject to the assumption that agents can only travel in the direction they are

facing, which is true in DBS3 — there is no path that could possibly incur less total angle

change than turning (clockwise or counterclockwise, whichever is shorter) and proceeding

in a straight line to the destination.

Similar to A*, MEA* uses a priority queue structure to store all of the crumbs from

which it should expand the search. The PollMinimalLB(queue) function removes from

the queue and returns the crumb with the lowest estimated total cost. For the minimal-angle

search, for example, that would be the crumb with the lowest angleLB value (breaking ties

with the lowest distLB value if necessary). If the crumb with the smallest lower bound on

the cost of completing the path is at the destination, the path is reconstructed by tracing

back from that crumb to the source (the proof of correctness of this behaviour is identical

to that for A*). Otherwise, the crumb is expanded to the four random points chosen for

the relevant intersections on that crumb’s street, or directly to the destination (if the crumb

is located on a street that contains the destination point dst). Which intersections are

relevant depends on the search metric. While it is not incorrect to expand the search to

every intersection on the street, a simple optimization is not to expand the search back to

the previous street in the expansion; for minimal-turn pathfinding, DBS3 optimizes further

by using the precomputed minimal number of turns between all streets, expanding crumbs

only to those intersections whose cross-street is one turn fewer away from the destination

than the current street.

Not every crumb placed at a given location need be expanded, though. One crumb

placed at a given point may obsolete another crumb located at the same point. In the case

of minimal-distance and minimal-turn pathfinding, one crumb will always obsolete another

at the same point, yielding a classic A* search in the minimal-distance case, and something

very similar to classic A* but with a different distance metric in the minimal-turn case.

E.g., with minimal-distance pathfinding: the old crumb already located at that point will

obsolete the new crumb if the old one’s acquired Euclidean distance is less than or equal

to that of the new one; the new crumb will obsolete the old crumb if the new one has a

smaller acquired cost. That the new crumb is obsoleted in the case of ties is necessary for

26

correctness — otherwise, the search algorithm could enter an infinite loop at, e.g., a three-

way intersection, where the search algorithm would keep making new, identical crumbs as

it repeatedly expands over the same set of intersections.

For minimal-angle pathfinding, however, it is not guaranteed that one of two crumbs at

a given location will obsolete the other. Recall from Figure 2.4 that a crumb with a larger

acquired cost at a given point may form a better path than a crumb with a smaller acquired

cost, if the inbound vectors of the two crumbs are different. However, if the acquired cost

of one crumb is much larger, it can still be obsoleted.

Remark 2.4. If ∆ is the angle difference between the two inbound vectors of two crumbs c1

and c2 at the same point, and if a1 + ∆ < a2 where ai is the acquired cost of crumb ci, then

c1 can obsolete c2 (essentially, c1 could be reoriented to c2 and still have a lower acquired

cost).

The minimal-angle obsolescence code is formalized in Algorithm 2.3.2. Regarding one

crumb obsoleting another, it is also worth noting the following from a performance perspec-

tive.

Lemma 2.5. If a new crumb obsoletes an old crumb during a vanilla MEA* search (i.e.,

not using the StreetCut improvement to MEA* that is presented shortly), using any of the

minimal-distance, minimal-turn, or minimal-angle distance metrics, it is guaranteed that

the old crumb has not yet been polled from the queue.

Proof. For simplicity, we limit this proof to the minimal-distance pathfinder and its ad-

missible heuristic, though the proof is similar for the other two pathfinding heuristics. Let

cold be a crumb at point p1 with acquired Euclidean distance aold and an estimated total

distance of aold + d1, where d1 is the straight-line distance from p1 to the destination. Let

cexp be a crumb at a different location p2 that is being expanded to produce a new crumb

cnew at point p1. Assume that cnew obsoletes cold , i.e., anew < aold . To show that the old

crumb has not yet been polled off the queue, we show that the estimated cost of cexp must

be less than the estimated cost of cold (and therefore cexp would be expanded first). Let λ

be the distance between p1 and p2. Then,

anew = aexp + λ < aold

⇒ aexp + λ+ d1 < aold + d1 .

27

Pathfinder StreetCut Disabled
(ms)

StreetCut Enabled
(ms)

Runtime Reduction

Minimize Angle 255751 116392 54.49%
Minimize Distance 46195 30569 33.83%
Minimize Turns 3957 3689 6.77%

Table 2.1: The running time of a day-long DBS3 simulation of 1000 agents on the Fira
map with α = δ = 1 for each of the three pathfinding metrics, with StreetCut enabled or
disabled.

By the triangle inequality, d2 ≤ d1 + λ, so

aexp + d2 ≤ aexp + λ+ d1 < aold + d1 .

Therefore, cexp would be expanded prior to cold .

The ability for one crumb to obsolete another is beneficial, because expanding crumbs

unnecessarily degrades performance by filling the priority queue with ever more crumbs to

expand. It is beneficial to obsolete as many crumbs as possible, if it can be shown that

they are guaranteed not to yield the optimal path to the destination. The basic approach

of allowing one crumb to obsolete another at the same point can be extended to allow one

crumb to obsolete any of the other crumbs on the same street. We refer to this extension

as StreetCut. The important observation underlying this optimization is that if two crumbs

are on the same street, they have the same set of possible intersections to which they can

expand. We extend the reorientation concept described for the vanilla MEA* minimal-angle

obsolescences to allow for translation and reorientation. For example, with the minimal-

distance pathfinder, if two crumbs c1 and c2 are on the same street and λ is the distance

between them, and if a1 + λ ≤ a2, then c1 can obsolete c2 because c1 could be translated over

to c2 and still have no more acquired Euclidean distance. The combination of reorientation

and translation used for minimal-angle StreetCut is formalized in Algorithm 2.3.3, replacing

the listed functions from Algorithm 2.3.1 and Algorithm 2.3.2.

To demonstrate the effectiveness of StreetCut, we simulated 1000 agents on the Fira

map moving for one day according to the destination-selection algorithm with α = δ = 1

and each of the three pathfinding metrics. For each pathfinder, we ran the simulation with

StreetCut enabled and with StreetCut disabled. The running times, as measured on a

2.93 GHz Core i7 with 8 GB of RAM running OS X 10.6.8, are summarized in Table 2.1.

28

Sub-algorithm 2.3.3 The StreetCut improvement to minimal-angle MEA*

1: procedure AddToCache(crumb, point , street , cache)
2: Add {street , crumb} to cache

3: procedure GetCache(point , street , cache)
4: return {c | {street , c} ∈ cache}

5: procedure RemFromCache(crumb, point , street , cache)
6: Remove {street , crumb} from cache

7: function CheckObsolete(old ,nc)
8: if old .in = null then
9: return ObsoleteNew

10: else if nc.in = null then
11: return ObsoleteOld
12: ∆← the angle between old .in and nc.in
13: λ← Euclidean distance from old .pLoc to nc.pLoc
14: if (old .angle + ∆ < nc.angle) or
15: (old .angle + ∆ = nc.angle and old .dist + λ ≤ nc.dist) then
16: return ObsoleteNew
17: else if (nc.angle + ∆ < old .angle) or
18: (nc.angle + ∆ = old .angle and nc.dist + λ ≤ old .dist) then
19: return ObsoleteOld
20: return ObsoleteNone

The runtime for the minimal-turn pathfinder was the fastest because DBS3 precomputes

the number of turns between all street pairs (by running a breadth-first search from each

street prior to simulation initialization), allowing it to expand crumbs only to locations that

are one turn closer to the final destination. The runtime for the minimal angle pathfinder

was the largest because its admissible heuristic was the least accurate of the three, in terms

of predicting the final cost of the crumb’s path. Determining a more accurate admissible

heuristic for minimal-angle searches is one direction of future work. The important result

from this experiment, however, is that in all three cases, enabling StreetCut reduced the

running time of the simulation. In the case of the minimal-angle pathfinder, the running

time was cut by more than half.

Interestingly, the guarantee in Lemma 2.5 generalizes to minimal-distance and minimal-

turn StreetCut pathfinding, but it does not hold with minimal-angle StreetCut pathfinding.

In minimal-angle StreetCut pathfinding, a crumb can be obsoleted after it has been polled

from the priority queue. While not an issue of correctness, it is a negative for performance,

since an obsolete crumb is guaranteed not to produce the optimal path. However, in prac-

tice, such post-polling obsolescences are rare and therefore not a concern. In the day-long

29

cnew

cexp

cold

aold

eold

Figure 2.6: The new crumb, cnew , is on the same street as the old crumb, cold , but in a
different location on the street. The star is the destination, and the angle change incurred
by walking in a straight line to the destination is the admissible heuristic, illustrated for
cold as eold .

minimal-angle StreetCut simulation on the Fira map, approximately 0.03% of all crumbs

that were rendered obsolete had already been polled from the queue. In an identical sim-

ulation on the Edmonton map, approximately 0.24% of all obsolescences were to crumbs

polled from the queue. In other words, while post-polling obsolescences are possible in

minimal-angle StreetCut pathfinding, they are sufficiently rare as not to affect performance

meaningfully.

To understand why post-polling obsolescences are possible, yet rare in practice, when

minimal-angle StreetCut pathfinding is used, consider the following. Let cold be a crumb at

point pold with acquired angle change aold and an estimated final angle change of aold + eold ,

where eold is angle difference between the inbound vector into cold and a vector straight from

pold to the destination. Let cexp be a crumb on a different street that is currently being

expanded, and let cnew be one of the new crumbs that results from the expansion of cexp .

Assume that cnew is on the same street as cold . This scenario is illustrated in Figure 2.6.

What we wish to determine is under what scenario cnew could obsolete cold , given that

cold has already been expanded from the priority queue (i.e., this obsolescence is a post-

polling obsolescence). Given that cold was expanded before cexp , we know that

aold + eold < aexp + eexp (2.4)

(technically, the two values could be equal and the tie could have been broken by estimated

final Euclidean distance; however, despite being a mathematical possibility, it does not occur

30

in practice, so for simplicity we ignore that case here). Because cnew obsoletes cold , we also

know that

anew + ∆new ,old < aold , (2.5)

where ∆new ,old denotes the difference in angle between the inbound vector to cnew and the

inbound vector to cold .

We can rewrite Equation 2.5 by noting that anew = aexp + ∆exp,new , yielding

aexp + ∆exp,new + ∆new ,old < aold . (2.6)

Then, we rearrange Equation 2.4 to determine that

aold < aexp + eexp − eold . (2.7)

By combining Equations 2.6 and 2.7, we determine that

aexp + ∆exp,new + ∆new ,old < aexp + eexp − eold . (2.8)

In other words, post-polling obsolescence can occur only if

∆exp,new + ∆new ,old + eold < eexp . (2.9)

While a post-polling obsolescence will occur if and only if Equations 2.4 and 2.5 are

true, the necessary (but not sufficient) condition illustrated in Equation 2.9 makes it clearer

why post-polling obsolescence is rare in practice: it is necessary for the sum angle change

of three reorientations to be less than the angle change of a single reorientation.

2.3.4 Simulation Initialization

One challenge in creating a meaningful simulation is initializing it in steady state. As a

simple example, we would not want to start DBS3’s mobility simulation every time with all

agents standing in the same spot at the centre of the map, because this is not an expected

state in which to observe the simulation as t→∞, where t is the running time of the

simulation. At any point in time, we would expect to see some agents moving and some

31

agents paused, scattered around the map. More formally, let S be any state in which a

simulation could be, and let P(S) be the probability of observing the simulation in that

state at time t as t→∞. Initializing a simulation in steady state is equivalent to choosing

a starting state S with probability P(S).

An unintuitive observation is that those agents that are moving are expected to be

travelling between two destinations that are further away than the average distance between

destinations on the map [13]. To motivate this point, consider the following example based

on Olofsson [45]. Assume an agent travels at a constant speed of 1 m/s with no pause times.

Also assume that each time that agent chooses a new destination, it has a 50% chance of

choosing a destination 60 m away, and a 50% chance of choosing a destination 120 m away

(so the average distance of any trip is 90 m). Note that any given trip has a 50% chance

of taking one minute and a 50% chance of taking two minutes. The unintuitive detail is

that, if half of the trips are one-minute trips and the other half are two-minute trips, then

1/3 of the agent’s time is occupied performing one-minute trips and 2/3 of the agent’s time

is spent doing two-minute trips (because two-minute trips take twice as long to perform).

Thus, if a third party observes the agent at some random time t, the observer has a 1/3

chance of seeing the agent performing a 60 m trip, and a 2/3 chance of seeing the agent

performing a 120 m trip. So, the expected trip length that the agent is performing in steady

state is

1

3
· 60 m +

2

3
· 120 m = 100 m > 90 m.

A common approach to solving the initialization problem is to place agents in some very

rough but easily computable approximation of steady state, then run the simulation for

some fixed amount of burn-off time to let it converge to steady state before drawing any

mobility data from the simulation [41, 6]. This is the initialization approach used by DBS3.

To place agents in a rough semblance of steady state, DBS3 begins by computing the

equilibrium distribution of the street-transition Markov chain defined by the destination-

selection algorithm presented in Section 2.3.2. Recall that agents on street s choose their

next destination street with probability proportional to P(s, d) over all destination streets

d, where P was defined in Equation 2.1. This street-transition algorithm defines a Markov

32

chain

M =



p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

... · · ·
...

pn,1 pn,2 · · · pn,n


,

where

pi,j =
P(i, j)∑
dP(i, d)

and n is the number of streets. In other words, pi,j is the probability that an agent will

choose a new destination on street j after pausing at a destination on street i.

Because pi,j > 0 for all streets i and j (per the assumptions about street length and

connectivity made in Section 2.3.2), M is trivially guaranteed to be ergodic. Therefore, Mx

converges as x→∞ to a matrix with identical rows π = [π1 π2 · · · πn]. Each entry πi in

the equilibrium distribution vector π represents the probability that street i contains the

xth destination chosen by an agent as x→∞.

DBS3 places each agent at a destination according to the equilibrium distribution π.

That is, for each agent Ai, a street s is chosen according to the distribution π, then a

uniform random location is chosen on s at which to place that agent. After being placed in

an initial location on street s, agent Ai chooses a new destination street d proportionally to

the value of P(s, d) over all possible streets d, and uniformly chooses a destination on street

d. The agent immediately departs the initial location for the destination on street d.

Beginning from this rough but easily computable approximation of the steady state,

DBS3 allows each agent to move according to the pathfinding, destination-selection, and

pause parameters of the simulation for 86400 seconds (one day) prior to the beginning of

the simulation, as observed by a person or program using DBS3 for mobility data. That

is, the one-day burn-off period is performed transparently by DBS3. Assuming one day

is enough time on the user’s map for agent movement to approach steady state, DBS3

simulations begin in steady state from the point of view of the user. Future work will

investigate how alternative proposals for initializing random trip mobility models in steady

state [41] could be adapted to work in DBS3.

33

2.4 Mobility Parameters and Wireless Networking Sim-

ulations

In the previous section, we discussed the three choices that parameterize a DBS3 simulation:

centrality bias, distance decay, and the pathfinding metric. But what effect do those pa-

rameters have on wireless network simulations? To study this problem, we built three client

programs that abstractly represent three different types of network protocols: information

spread, information collection, and token passing. In information spread, one agent begins

with information that has to be disseminated to all of the agents in the simulation, either

directly or via other agents. In information collection, a single collector agent has to collect

information directly from every other agent in the simulation. Finally, in token passing, a

single agent at a time can possess the token, and will pass it when possible to any other

agent that has not yet had the token, until each agent has possessed the token once. We

adjust the centrality bias and distance decay exponents, α and δ, as well as the pathfinding

algorithm used by DBS3, to determine what effect these parameters have on the speed at

which information is spread, at which information is collected, and at which each agent

receives the token.

Because we want to study the effect of mobility parameters on wireless networking results

in general, rather than the effect on any particular protocol implementation, we are not

concerned with simulating underlying MAC protocols or interference models. Rather, we

want to simulate these styles of network operations at a higher, abstract level, to identify

more easily the effects of the mobility parameters themselves. So, our client applications

function according to simple rules. The information spread simulation works as follows:

1. Of the m agents, initially one is coloured red (representing that it has the information)

and the others are coloured black (representing that they want the information);

2. If a red agent comes within r metres of a black agent, the black agent turns red;

3. Continue until all agents are coloured red.

The information collection simulation follows these rules:

1. Of the m agents, initially one is coloured red (the collector agent) and the others are

coloured black (meaning that they have information to be collected);

34

2. If the red agent comes within r metres of a black agent, the black agent turns blue

(representing that its information has been collected);

3. Continue until all agents are coloured red or blue.

Finally, the token-passing simulation performs the following steps:

1. Of the m agents, initially one is coloured red (meaning that it possesses the token)

and the others are coloured black (representing that they want the token);

2. If the red agent comes within r metres of a black agent, the red agent turns blue

(representing that it has previously had the token) and the black agent turns red;

3. Continue until all agents are coloured red or blue.

For each simulation, we arbitrarily fixed the number of agents at m = 25 and the transmis-

sion range at r = 30 metres. Then, we recorded what proportion of agents were coloured

red or blue, i.e., not coloured black, over time. The effects that the mobility parameters

had on the network simulations varied between the two maps, illustrating the different be-

haviour of the mobility model in a regular, grid-like environment and its behaviour in a

more graph-theoretically interesting, organic environment.

As illustrated in Figure 2.7, changing the centrality bias exponent within the range

α = 0 to α = 3 had no significant impact on information spread or information collection in

Edmonton.2.e Because the map of downtown Edmonton is predominantly grid structured,

most streets are one or two turns away from most other streets. In fact, the diameter of

the map (i.e., the largest number of turns required to move between any pair of streets in a

minimum number of turns) is only four. As such, most locations are just as well integrated as

most other locations, meaning that centrality bias has negligible effect on agent movement.

In Fira, on the other hand, centrality bias had a large effect on the results of the network

simulations. Increasing α from zero to three decreased the amount of time the network

protocols took to complete, illustrated in Figure 2.8, as agents interacted more frequently

in the central areas of the 36-turn diameter map. Whereas it took 12.27 minutes on average

for 80% of the agents to become red in the information spread simulations when α = 0, it

took just over three-quarters of that time, 9.40 minutes, when α = 3. In the information

2.eFor clarity of exposition, the token passing graphs have been omitted, since they were consistently
similar to the information collection graphs.

35

The Effect of Centrality Bias on Information Spread in Edmonton

0 5 10 15 20 25
0

20

40

60

80

100

α = 0
α = 1
α = 2
α = 3

Time (minutes)

Pe
rc

en
ta

ge
 o

f A
ge

nt
s

W
ith

 D
at

a

The Effect of Centrality Bias on Information Collection in Edmonton

0 30 60 90 120 150 180
0

20

40

60

80

100

α = 0
α = 1
α = 2
α = 3

Time (minutes)

Pe
rc

en
ta

ge
 o

f I
nf

or
m

at
io

n
C

ol
le

ct
ed

Figure 2.7: The effect of the centrality bias exponent, α, on the rates of information spread
and information collection in Edmonton. The distance decay exponent, δ, was fixed at zero.
Error bars represents 95% confidence intervals around the mean.

The Effect of Centrality Bias on Information Spread in Fira

0 5 10 15 20 25
0

20

40

60

80

100

Time (minutes)

Pe
rc

en
ta

ge
 o

f A
ge

nt
s

W
ith

 D
at

a

α = 0
α = 1
α = 2
α = 3

The Effect of Centrality Bias on Information Collection in Fira

0 15 30 45 60 75 90
0

20

40

60

80

100

α = 0
α = 1
α = 2
α = 3

Time (minutes)

Pe
rc

en
ta

ge
 o

f I
nf

or
m

at
io

n
C

ol
le

ct
ed

Figure 2.8: The effect of the centrality bias exponent, α, on the rates of information spread
and information collection in Fira. The distance decay exponent, δ, was fixed at zero. Error
bars represents 95% confidence intervals around the mean.

collection and token passing experiments, 80% of the agents were coloured blue or red

in approximately 69.97% of the time and 72.59% of the time respectively, when α = 3 as

opposed to α = 0.

Unlike the effects of increasing centrality bias, the effects of increasing distance decay

were not apparent until a large exponent was used. As shown in Figures 2.9 and 2.10,

increasing δ from zero to two in the information spreading experiment — thereby increasing

the expected amount of time until distant agents would come together — only increased the

amount of time until 80% of the agents had the information by 6.09% in Edmonton and by

6.66% in Fira. The effect was even less pronounced in the information collection experiment.

However, when δ was increased to three, distance decay began to have a larger effect on the

abstracted network protocols. Information took approximately 11.70% longer to reach 80%

of the agents in Edmonton; and, on the larger-diameter Fira map where there are more turns

36

The Effect of Distance Decay on Information Spread in Edmonton

0 5 10 15 20 25
0

20

40

60

80

100

δ = 0
δ = 1
δ = 2
δ = 3

Time (minutes)

Pe
rc

en
ta

ge
 o

f A
ge

nt
s

W
ith

 D
at

a

The Effect of Distance Decay on Information Collection in Edmonton

0 30 60 90 120 150 180
0

20

40

60

80

100

δ = 0
δ = 1
δ = 2
δ = 3

Time (minutes)

Pe
rc

en
ta

ge
 o

f I
nf

or
m

at
io

n
C

ol
le

ct
ed

Figure 2.9: The effect of the distance decay exponent, δ, on the rates of information spread
and information collection in Edmonton. The centrality bias exponent, α, was fixed at zero.
Error bars represents 95% confidence intervals around the mean.

The Effect of Distance Decay on Information Spread in Fira

0 5 10 15 20 25
0

20

40

60

80

100

Time (minutes)

Pe
rc

en
ta

ge
 o

f A
ge

nt
s

W
ith

 D
at

a

δ = 0
δ = 1
δ = 2
δ = 3

The Effect of Distance Decay on Information Collection in Fira

0 15 30 45 60 75 90
0

20

40

60

80

100

δ = 0
δ = 1
δ = 2
δ = 3

Time (minutes)

Pe
rc

en
ta

ge
 o

f I
nf

or
m

at
io

n
C

ol
le

ct
ed

Figure 2.10: The effect of the distance decay exponent, δ, on the rates of information spread
and information collection in Fira. The centrality bias exponent, α, was fixed at zero. Error
bars represents 95% confidence intervals around the mean.

to be made between distant streets, information spread took approximately 52.56% longer

compared to when δ = 0. So while large distance decay exponents do affect the network

simulation results, particularly on large-diameter (i.e., less grid-based) maps, reasonable

exponent values in the range 0 ≤ δ ≤ 2 have minimal effect on network simulations.

The final mobility model parameter that we tested was the pathfinding algorithm. We

ran the information spread, information collection, and token passing experiments with all

three pathfinders: the pathfinder that minimizes the number of turns, the pathfinder that

minimizes the magnitude of the change in angle, and the classical pathfinder that minimizes

Euclidean distance travelled. The effects of the pathfinder choice were most pronounced on

the grid-like map of downtown Edmonton. In that environment, a pathfinder that mini-

mizes Euclidean distance travelled will make many additional turns, imparting a diagonal

component to the movement of an agent travelling across the map. This convergence of

37

The Effect of Pathfinding on Information Spread in Edmonton

0 5 10 15 20 25
0

20

40

60

80

100

Minimize angle change
Minimize distance
Minimize turns

Time (minutes)

Pe
rc

en
ta

ge
 o

f A
ge

nt
s

W
ith

 D
at

a

The Effect of Pathfinding on Information Collection in Edmonton

0 30 60 90 120 150 180
0

20

40

60

80

100

Minimize angle change
Minimize distance
Minimize turns

Time (minutes)

Pe
rc

en
ta

ge
 o

f I
nf

or
m

at
io

n
C

ol
le

ct
ed

Figure 2.11: The effect of the pathfinding algorithm on the rates of information spread and
information collection in Edmonton. The exponents α and δ were fixed at zero. Error bars
represents 95% confidence intervals around the mean over 2500 trials.

The Effect of Pathfinding on Information Spread in Fira

0 5 10 15 20 25
0

20

40

60

80

100

Time (minutes)

Pe
rc

en
ta

ge
 o

f A
ge

nt
s

W
ith

 D
at

a

Minimize angle change
Minimize distance
Minimize turns

The Effect of Pathfinding on Information Collection in Fira

0 15 30 45 60 75 90
0

20

40

60

80

100

Minimize angle change
Minimize distance
Minimize turns

Time (minutes)

Pe
rc

en
ta

ge
 o

f I
nf

or
m

at
io

n
C

ol
le

ct
ed

Figure 2.12: The effect of the pathfinding algorithm on the rates of information spread
and information collection in Fira. The exponents α and δ were fixed at zero. Error bars
represents 95% confidence intervals around the mean over 2500 trials.

agents towards the central part of the grid speeds the rate of information dissemination

and collection. As illustrated in Figure 2.11, the minimal-distance pathfinder took approxi-

mately 85.99% as long as the angle-minimizing pathfinder to achieve 80% information spread

in Edmonton. Interestingly, the opposite effect was observed on the Fira map, where the

angle-minimizing and turn-minimizing pathfinders caused agents to prefer the major thor-

oughfares to the side streets, leading to more agent interaction along those thoroughfares.

Information collection, as seen in Figure 2.12, was slower with the pathfinder that minimized

Euclidean distance travelled — the turn-minimizing pathfinder achieved 80% information

collection in 86.43% of the time taken by the minimal-distance pathfinder. However, the

overall effect of the pathfinder choice over all three experiments (information spread, infor-

mation collection, and token passing) was far greater on the grid-like map of Edmonton, on

which there are more potential paths between any two locations.

38

Note that, regardless of which experiment was performed on which map, the angle-

minimizing pathfinder and the turn-minimizing pathfinder produced similar results, whereas

the minimal-distance pathfinder was often the odd one out. We postulate that the two more

realistic pathfinders were producing movement patterns in which agents frequented many of

the same portions of the map, unlike the minimal-distance pathfinder. To test this theory,

we began by segmenting the maps on which agents are moving in DBS3. On each street,

a segmentation point is placed at either end of the street, as well as at any location where

that street is intersected by another street. Recall from Section 2.3.1 that a street in DBS3

does not necessarily correspond to a whole roadway in a city; a named city street could be

represented as multiple streets in DBS3 if the roadway curves. Hence, a real city street could

be broken into multiple streets in DBS3’s representation, and further divided into segments:

those portions of the street that fall between two consecutive segmentation points.

We then determined the proportion of pedestrian traffic on each segment of the map

in DBS3’s steady state. To compute those proportions, we initialized a single agent at

a destination chosen according to the equilibrium distribution, π, of the street-transition

Markov chain defined in Section 2.3.4. That agent then chose a new destination according

to the destination-selection algorithm and travelled to it at a constant speed according to the

pathfinding algorithm, where it then chose a new destination. After one million destinations

had been reached, the proportion of time the agent spent on each segment of the map was

computed. We eliminated pause times from DBS3 during this steady-state distribution

computation, since random pauses would skew the distribution of traversed streets towards

popular destinations (similar to how Hillier and Iida [27] computed pedestrian density in

London by observing pedestrian flow, rather than pedestrian locations).

Using the minimal-turns pathfinder as our baseline, we recorded which ten segments saw

the greatest proportion of agent-time in steady state. We then recorded what proportion

of agent-time those same ten segments received when the other two pathfinders were used

(note that those ten segments were not necessarily the top ten segments used by the other

two pathfinders). The results of this experiment for both the Edmonton map and the Fira

map are shown in Figure 2.13. Particularly on the grid-based Edmonton map, on which

there are many more potential paths between any two locations and the angle formed by

most intersections is approximately 90 degrees, the turn-minimizing and angle-minimizing

pathfinders produced nearly identical amounts of use for the ten chosen segments, contrasted

39

Steady State Distribution of Agents on Edmonton Segments

0

1

2

3

4

Segment

Pe
rc

en
ta

ge
 o

f T
im

e
Sp

en
t o

n
Se

gm
en

t

Minimize turns
Minimize angle change
Minimize distance

Steady State Distribution of Agents on Fira Segments

0

1

2

3

4

5

Segment

Pe
rc

en
ta

ge
 o

f T
im

e
Sp

en
t o

n
Se

gm
en

t

Minimize turns
Minimize angle change
Minimize distance

Figure 2.13: The effect of the pathfinding algorithm on the steady state distribution of
agents across ten fixed segments in Edmonton and Fira. The ten segments chosen were
those segments inhabited by the highest percentage of agents in steady state when the
minimizing-turns pathfinder was used. The exponents α and δ were fixed at zero.

with significantly different usage patterns from the minimal-distance pathfinder. The re-

sults on the map of Fira were similar, though not as pronounced given the highly varied

intersection angles and numerous side streets having only one path in and out. Based on

this result, we can conclude that the minimal-angle and minimal-turn pathfinders will yield

similar network simulation results in general, compared to the minimal-distance pathfinder.

Based on the results presented in this section, we can conclude that (a) centrality bias

will have the greatest effect on simulation results on non-grid maps, in which the larger

map diameter produces a more meaningful measure of which locations are centrally located;

(b) while distance decay can affect simulation results, particularly in larger radius maps,

its effect is minimal when the distance decay exponent is constrained to the reasonable

range of 0 ≤ δ ≤ 2; and, (c) while the choice of pathfinding algorithm will have the greatest

effect on simulation results on a grid-like map, using either of the more realistic pathfinders

(minimal-angle or minimal-turn) will produce similar results, in contrast to the less realistic

minimal-distance pathfinder.

2.5 Verification of DBS3

While we investigated, in the previous section, the effect of DBS3’s parameters on various

model network simulations, the question of what values a DBS3 user should choose remains.

In this section, we will verify that when good values are chosen for those parameters, DBS3

will generate mobility data that is highly correlated to the mobility patterns of real people

40

The Effect of Centrality Bias and Distance Decay with Minimal Turns
Pathfinding on Correlation to Observed Pedestrian Density

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

α

C
or

re
la

tio
n

to
 O

bs
er

ve
d

H
um

an
 D

en
si

ty

δ = 0.00
δ = 0.25
δ = 0.50
δ = 0.75
δ = 1.00

δ = 1.25
δ = 1.50
δ = 1.75
δ = 2.00

The Effect of Centrality Bias and Distance Decay with Minimal Distance
Pathfinding on Correlation to Observed Pedestrian Density

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

α

C
or

re
la

tio
n

to
 O

bs
er

ve
d

H
um

an
 D

en
si

ty

δ = 0.00
δ = 0.25
δ = 0.50
δ = 0.75
δ = 1.00

δ = 1.25
δ = 1.50
δ = 1.75
δ = 2.00

Figure 2.14: The effect of the centrality bias exponent, α, and the distance decay exponent,
δ, on the correlation between DBS3’s steady state distribution of pedestrians (using two
different pathfinders) and the observed distribution of pedestrians in Edmonton.

in an urban environment.

We picked eight segments from the Edmonton map, chosen (a) to represent a wide range

of pedestrian densities as predicted by DBS3; (b) to represent a diverse set of locations on

the map; and, (c) to allow us to quickly travel between all the segments. We recorded the

number of people we observed on those segments as we travelled through them during a

Monday lunch hour in August 2011, creating a snapshot of the number of people on each of

those segments over a short period of time.

We compared the steady-state distribution of pedestrians generated by DBS3 on those

eight segments of the Edmonton map, using the three different pathfinding algorithms as we

varied 0 ≤ α, δ ≤ 2, to the observed distribution of pedestrians in Edmonton. This compar-

ison is summarized in Figure 2.14, which shows the correlation between the generated and

observed pedestrian densities for both the minimal-turn and minimal-distance pathfinders

(the minimal-angle pathfinder produced similar results to the minimal-turn pathfinder and

is omitted for clarity of exposition).

There are several key results that emerged from this study. Foremost, the pedestrian

distribution generated by DBS3 is highly correlated to the observed distribution: using the

minimal-turns pathfinder with α = δ = 1, the coefficient of determination was R2 = 0.96096.

In other words, DBS3 generates mobility distributions that are highly reflective of those of

actual people.

Additionally, DBS3’s mobility model is more accurate than the traditional random way-

point model with pathfinding that minimizes Euclidean distance. Setting α = δ = 0 elimi-

41

nates both centrality bias and distance decay, yielding a random waypoint model over the

configured space of the map. In this case, the minimal-distance pathfinder produced a coeffi-

cient of determination of only R2 = 0.75324. In other words, the novel destination-selection

and pathfinding algorithms introduced in DBS3 produce far more accurate representations

of human movement than traditional approaches.

It should be noted, based on the crisscrossing nature of the minimal-turns correlation

graph in Figure 2.14, that optimizing the values of α and δ to best reflect human movement

is a nontrivial problem. This result is not surprising, since centrality bias and distance

decay are interrelated — one exponent draws agents into better connected areas, while the

other dissuades agents from leaving those areas. High values for both α and δ lead to lower

correlation with observed pedestrian distributions, as do low values for both exponents. We

suggest that α = δ = 1 are good default values, with 0 ≤ α, δ ≤ 2 being a realistic range.

Optimizing the values of α and δ to best reflect human movement across a diverse set of

configured spaces is an area of future study. Notably, our exercise shows a way to address

this problem rigorously for any particular case of a city map: it can be formally defined as

maximizing the coefficient of determination for a collection of static population snapshots

taken in some representative locations in the city at approximately the same time.

We should also note that the northwest corner of the Edmonton map contains the campus

of Grant MacEwan University. Because our correlation study was performed in August

when classes were not in session, we did not include segments from the immediate area of

the campus in the study. As a casual observation, there were far fewer people on those

street segments in August than predicted by DBS3. DBS3 predicted (based on the nature

of the configured space) that there would be something that would attract a large number

of people in that area of the map. Indeed there is — a university campus. However, DBS3’s

model does not take into account the seasonal variation in pedestrian density associated

with something like a university. This result demonstrates the tradeoff in using a mobility

model like DBS3’s, which does not annotate the input map: DBS3 does an excellent job of

predicting, in aggregate over time, how pedestrian traffic will flow on a given map. However,

it cannot predict such details as seasonal or temporal variation in traffic flow for a given

location. Overall, because of how easy it is to parameterize a DBS3 simulation compared

to a mobility model that requires an annotated map, and how well DBS3 predicted the

pedestrian density across the rest of the map, we feel that this tradeoff is well worth it.

42

2.6 Using DBS3

DBS3 is freely available to researchers requiring mobility data for wireless network simu-

lations or other uses. DBS3 delivers its mobility data to applications using a client-server

model: client applications request mobility data as needed, and the DBS3 server replies with

data on-demand. This client-server design allows DBS3 to integrate with arbitrary network

simulators, e.g., ns-2 [4] and SMURPH/SIDE [15], or other non-network simulators that re-

quire mobility data, e.g., an airborne epidemic simulator. There are two different but similar

client-server protocols used by DBS3: the University of Alberta Mobility Protocol (UAMP)

and the Mobility Visualization Protocol (MVISP).

DBS3’s UAMP server should be used when mobility data is needed for a large number

of trials of a given experiment. UAMP clients send a simulation request to DBS3, including

the number of agents they want simulated, the duration of movement data they need, and

a random seed for the server to use (different seeds result in different mobility data). The

UAMP server then sends the requested mobility data to the client. UAMP clients can

prematurely terminate a simulation if they no longer require any more movement data, so

clients that do not know a priori how much movement data they will require should request

the maximum possible duration from DBS3. As a practical example, a flu simulator could

run 100 trials of an experiment by sending 100 different seeds to the UAMP server, thus

receiving 100 different sets of movement data.

The MVISP server in DBS3, on the other hand, should be used to visualize the results

of a single simulation. MVISP clients receive a simulation specification from DBS3 upon

connecting, including the number of agents that DBS3 will be simulating and the duration of

the simulation. The MVISP client then receives this movement data and sends notifications

back to the MVISP server when agents undergo state changes. For example, an MVISP

flu-simulation client might send notifications to DBS3 when agents (i.e., people) change

from the uninfected state to the incubating state. DBS3 includes a GUI with a built-in

MVISP server, providing a view of state changes as they unfold in a single run of a mobility

simulation. Figure 2.15 shows a screenshot of the GUI playing back a mobility simulation.

Agent states in that screenshot were computed by an MVISP client that runs a simplistic

simulation of a highly virulent airborne disease.

The overall architecture of DBS3 is illustrated in Figure 2.16, which shows how client

43

Figure 2.15: A simulation of a highly virulent airborne disease shown in DBS3’s GUI, which
is displaying agent states computed by an external MVISP client. Agents are shown in the
uninfected (black), incubating (blue), contagious (red), or vaccinated (green) states as a
virus with a one-minute incubation time and a two-metre infection range spreads among
the mobile agents in Fira, Greece.

Mobility
Algorithms

UAMP
Server

GUI
MVISP
Server

Client
Library

Server Side

Client
Application

Client Side

DBS3

Figure 2.16: The overall architecture of DBS3. The server side is responsible for computing
agent mobility and sending those results to clients on-request via a UAMP server. Alter-
nately, individual simulations can be displayed in the GUI, optionally using the MVISP
server to receive state changes from an external client. Clients that utilize mobility data
sent by DBS3 can be written quickly using the provided UAMP / MVISP client library.

44

applications (e.g., wireless networking simulators, airborne pathogen simulators, or any

other kind of simulator) receive mobility data from DBS3. As illustrated in that diagram,

DBS3 includes a client library that allows users of DBS3 to quickly and easily create their

own UAMP and/or MVISP client applications. The library is available in both C and Java.

The C version is described below, but the Java version is highly similar.

Using the provided C library, clients can connect to a UAMP or MVISP server with the

uampConnect or mvispConnect functions, respectively. The uampConnect function takes

the number of agents to simulate, the duration of the simulation, and the random seed as

parameters. The mvispConnect function, on the other hand, takes the number of states in

which agents may exist as a parameter, but returns the number of agents and time limit

received from the server. Once connected, the library behaves identically regardless of which

connect function was used (with the exception that only MVISP clients send state change

messages back to the server using the uampChangeState function), meaning that a single

client application can function as both a UAMP and MVISP client depending on which

connect function is called.

When UAMP and MVISP clients request mobility data from the server for a given

agent, the server replies with the next location and point in time at which that agent

changes speed or direction. Clients are therefore able to interpolate the location of each

agent at all times. The client library presents the movement of an agent between two

such interpolation points in a uampCommand structure that contains the time and location

of the agent at the first point and at the second point. This structure is retrieved from

the library using the uampCurrentCommand function, which takes a single agent index as a

parameter. Client programs advance agent mobility by first using the uampIsMore function

to determine if there is any more mobility data for the agent given as a parameter, or if that

agent has reached the end of the simulation. Clients then call the uampAdvance function to

request the next interpolation point from the server for that agent and update the agent’s

uampCommand. (Technically, the client library requests interpolation points in bulk from the

server then buffers them for the client application, improving network performance; but,

the from the point of view of the client application, it is as though interpolation points are

requested from the server one at a time.)

The uampAdvance and uampCurrentCommand functions present clients with an asyn-

chronous view of agent movement, in that the client application can advance the agents

45

independently of each other within the simulation. There are also functions in the client

library that present a synchronous view of agent movement. Recall that the uampCommand

structure for each agent contains an earlier interpolation point and a later interpolation

point. For agent Ai, denote the time (i.e., number of seconds into the simulation) of the

earlier interpolation point a ei and the time of the later interpolation point as li. That

is, the uampCommand for agent Ai holds mobility data covering the range of time [ei, li].

To advance the synchronous view of the agents, the client first calls the uampIsAnyMore

function, which determines if the server has any more data for any agent, i.e., if li is

smaller than the duration of the simulation for any agent Ai. If so, clients can call

uampAdvanceOldest to advance the agent or agents in the simulation with the smallest

li value. The uampIntersectCommand function, which takes an agent index as a parameter,

then returns an interpolated uampCommand structure, covering the time period [e, l] where

e = max{ei} and l = min{li}. By using the uampAdvanceOldest function to advance time

and the uampIntersectCommand function for each agent after each time advance, client pro-

grams will receive a synchronized view of agent movement. This synchronized view allows

simulators to determine, e.g., when any two clients are within a certain range of each other.

An example of the structure of a UAMP client is shown in Algorithm 2.4. It is slightly

simplified compared to an actual UAMP client written, e.g., in C — parameters such as

the hostname and port of the UAMP server, as well as error-checking, have been removed

for clarity of exposition. The example client is modelled on the information-spread client

described back in Section 2.4. One agent begins with the information at time 0. The

client then uses the combination of uampIntersectCommand and uampAdvanceOldest to

maintain a synchronous view of all the agents’ movements (i.e., the start and end times for

the current command is the same across all the agents). The processMovement function

(omitted because it does not actually interact with the UAMP server) is then responsible

for computing whether an agent with the information comes within a threshold distance of

an agent without the information during the current command’s time period, then updating

the time each agent received the data and the number of agents with the data.

46

Algorithm 2.4 Example information-spread DBS3 client

1: procedure DBS3Client
2: agentsWithData ← 1
3: timeReceived [1]← 0
4: for i← 2 to NUM AGENTS do
5: timeReceived [i]←∞
6: client ← uampConnect(NUM AGENTS ,TIME LIMIT ,PRNG SEED)
7: while agentsWithData < NUM AGENTS do
8: for i← 1 to NUM AGENTS do
9: command [i]← uampIntersectCommand(client , i)

10: agentsWithData ← processMovement(command , timeReceived)
11: if uampIsAnyMore(client) = false then
12: break
13: uampAdvanceOldest(client)

14: uampTerminate(client)

2.7 Conclusions

In this chapter, we presented a new generative mobility model inspired by the findings of

Space Syntax. This model, implemented as the publicly available DBS3, is generalizable,

taking only an unannotated map as input. Agents choose their destinations meaningfully,

considering both centrality bias and distance decay in their selection. Additionally, the

new MEA* search algorithm allows for fast runtime pathfinding, delivering more realistic

minimal-turn or minimal-angle paths (as opposed to the common but unrealistic pathfinding

that minimizes Euclidean distance travelled). We showed that setting the centrality bias and

distance decay constants to 1 with either of the more realistic pathfinding options yields

a high correlation to observed pedestrian densities in downtown Edmonton. Finally, we

concluded with discussion about how DBS3 can be used by end-user programs to generate

mobility data.

DBS3’s design uses an unannotated map as input, which is limiting in a sense: DBS3 was

unable to predict the seasonal variation in pedestrian density around a university campus.

However, the tradeoff is that DBS3 has a very simple parameter space, with the map being

the only nontrivial input. The graph theoretic properties of that map alone are sufficient to

generate mobility data that is highly correlated with observed human mobility. Fine tuning

the other parameters — namely the centrality bias and distance decay exponents — across

a wide range of configured spaces is an important area of future work.

47

Chapter 3

The Trade-Off Between

Location-of-Interest and

Current-Location Privacy3.a

3.1 Introduction

Having studied the generation of realistic mobility data in urban environments in the pre-

vious chapter, we now turn our attention to sensor network privacy. The scenario we

investigate in this chapter is one in which a user with a portable device interacts with a

nearby sensor node for the purpose of querying another node in the network at a remote

location. The user’s query is routed through the sensor network to the queried location,

and the result is then returned to the user via the reverse path. The privacy of the query

and reply themselves — i.e., what the user is asking of the remote node and what the reply

is — can be protected using well-studied methods. Symmetric encryption or public-key

encryption designed specifically for low-powered sensor nodes [42] can be used to encrypt

the query and the reply end-to-end. We emphasize that the problem studied in this chapter

is not the privacy of the query and the reply themselves. The problem that we study is the

privacy of the two locations in question for the user: the user’s current location and their

location of interest.

3.aThis chapter is a significant extension of Vogt et al. [61].

48

Consider an adversary who can compromise some of the nodes in the sensor network. If

we assume that the adversary is capable of compromising sensor nodes, then the adversary

could learn, just as an example, a global symmetric key used to encrypt message headers

sent between sensor nodes. The adversary would then learn the ultimate destination of any

overheard or intercepted query message, i.e., the adversary would learn the user’s location

of interest.

The key contribution of this chapter is to present and study a novel method, inspired

by k-anonymity [56], for obfuscating the user’s location of interest: the user issues not one

query to their location of interest, but rather k queries to a diverse set of locations. The

trade-off to this approach, aside from the energy cost of processing an additional k − 1

queries, is that the additional traffic from the user’s current location facilitates an adversary

determining that location. This chapter will study this trade-off between protecting the

privacy of the user’s current location and the privacy of their area of interest, and how the

user should choose the fake locations to query.

It is important to note that in our scenario, the user trusts their own handheld device.

However, the user does not trust the sensor network, as there may be compromised nodes.

Additionally, our approach does not require that the sensor nodes use any specialized soft-

ware or techniques. Our approach will work on any sensor network — the multiple queries

are initiated from the handheld device. In that regard, it is fundamentally different from

onion routing [17] approaches like Tor [11] to the problem of destination privacy. Not only

is onion routing expensive in terms of computational power and energy usage in a sensor

network, but it also requires a sensor network specifically designed to utilize onion routing.

We begin in Section 3.2 by discussing related work. We present our adversary model and

assumptions in Section 3.3. We then present formal metrics for measuring the privacy of the

user’s current location, location of interest, and area of interest in Section 3.4. We discuss

how a user should choose their k − 1 fake locations of interest to query in Section 3.5, followed

by a discussion of the related “partition” and “partitioning” problems in Section 3.6. We

show the results of our k-query scheme in a featureless, uniform environment in Section 3.7,

before adding to the environment the richness of mobility data from DBS3 in Section 3.8.

In Section 3.9 we conclude and discuss future work.

49

3.2 Related Work

The relation between privacy and mobility as a general topic has been studied in the past.

Hong et al. [28] examined how anonymous communication in mobile ad-hoc networks is

impacted as users moved, and Andersson et al. [1] outlined the general requirements for

privacy in mobile ad-hoc networks. Gruteser and Grunwald [21] study how users can remain

anonymous when using location-based services, and Gedik and Liu [16] study how a k-

anonymity approach could work in the context of location-based services. It is possible to

identify users from the location information in cell phone records, based on their mobility

patterns [64, 72]. The problem of compromised nodes affecting privacy in networks has

also been investigated. Pinto et al. [49] examined the unorthodox notion of routing around

compromised nodes to preserve user privacy, under the assumption that the physical location

of compromised nodes is known.

Existing work on privacy in sensor networks focuses on adding features to the sensor

network itself in order to protect user privacy. For example, Misra and Xue [43] show

how clusters of nodes can generate and share pseudonyms used as node identities when

communicating with a sink. Their work is extended by Ouyang et al. [46] to account for

shared keys being compromised. However, these works only look at nodes communicating

with a sink, using pseudonyms known only to the endpoints to ensure that eavesdroppers

will not know which node is sending information. These schemes are not applicable when

nodes need to communicate with each other to route user queries.

Ozturk et al. [47] and Kamat et al. [35] examine a problem similar to our user’s queries

being tracked to their source, as do Yang et al. [67] in the context of a global eavesdropper.

However, these papers have a different focus, namely an adversary that moves over time

towards a source node that produces a continuous stream of data. They propose a solution

called phantom routing, in which each epoch’s data is routed in a random directed walk away

from the source, before being flooded to the sink. This solution would not be appropriate

for our scenario; e.g., a message intercepted during the directed walk phase carries enough

information to immediately yield the number of hops and direction to the source of the

user’s query. A related problem, in which the adversary moves towards the receiver of

sensor network traffic over time, is investigated by Jian et al. [32]. While these approaches

are useful for protecting privacy in certain situations, they are not applicable to our problem,

50

in which the adversary does not have to move towards the user’s current location or location

of interest. In a military scenario, for example, just learning either of these locations could

be sufficient for the adversary.

The largest difference between these existing works and our approach, though, is that

we focus on an environment in which the user trusts their own handheld device that com-

municates with the sensor network, but the network itself is only semi-trusted (i.e., there

may be compromised nodes in the network, eavesdroppers, etc.). We don’t trust the sensor

network to handle our privacy for us; the multiple queries are initiated from the handheld

device. As a corollary, our approach will work on any sensor network, without the need for

specialized software or techniques in the sensor network.

3.3 Adversary Model and Assumptions

In this dissertation, we consider an adversary who is able to compromise individual sensors

in a sensor network. There are no physical or topological restrictions on which nodes the

adversary can compromise. The adversary is, for our purposes, incorporeal — that is, there

is no requirement for the adversary to move physically in the environment.

Any information possessed by a compromised sensor node is instantly learned by the

adversary. For example, any encryption keys known by a compromised node are learned by

the adversary. Additionally, the (potentially encrypted) contents of any message routed by

or overheard by a compromised node are learned by the adversary.

When a user issues k queries into a sensor network, the adversary knows the value of k.

We maintain this assumption even if compromised sensor nodes do not overhear all k of the

queries. We make this assumption because the entropy for even a random choice of k by

the user is constrained by the size of the sensor network, i.e., it is small.

As a simplifying assumption, we treat the user as though he or she is interacting directly

the sensor node closest to his or her physical location. In practice, the user would have, e.g.,

a handheld device that sends and receives messages to and from some node in the sensor

network. However, asymptotically, the additional 2k message transmissions (k queries sent

by the user’s handheld device and k replies from the closest sensor node) make no difference

to our analysis of the scheme and would add unnecessary complexity to our simulations. As

such, we assume both that the user knows the closest sensor node, and communicates with

51

it using, e.g., low-power communication that will not be overheard by other nodes.

3.4 Privacy Metrics

We begin by defining our notation. The sensor network consists of a set N of nodes,

where |N | = n. The user will issue k queries, Qi, each directed to a location Li, where

L = {L1, L2, . . . , Lk} ⊆ N . One node, L ∈ L, is the user’s real location of interest, and the

remaining k − 1 nodes are fake locations of interest. However, some of the nodes in the

sensor network may be compromised by the adversary, and those nodes are able to overhear

communication on the shared wireless medium. Formally, the adversary attempts to decide

on the current location (CL) and location of interest (LOI) of the user using the information

overheard.

To study how well this k-anonymity scheme preserves the privacy of the user’s LOI and

CL, we require formal methods to measure the privacy levels that result from any given set

of k queries. In the following section, we define the metrics used to determine how well the

user’s CL-privacy and LOI-privacy are protected. We follow that up with a discussion of the

closely related concept of the privacy of the user’s area of interest (AOI) in Section 3.4.2.

3.4.1 Privacy of the Current Location and Location of Interest

How much information a user’s queries leak about the user’s current location (CL) and

location of interest (LOI) depends on how much information the adversary is able to overhear

during the routing of the queries. To determine the CL-privacy and LOI-privacy that result

from a set of queries, we will simulate the user issuing queries while malicious nodes attempt

to ascertain the origin and real destination of those queries. This section demonstrates how

an adversary could use the information captured by malicious nodes to narrow down the

possible locations where the user could be.

Central to the technique of narrowing down possible locations is the concept of a possible

route. In the sensor network, which we assume to be connected, there will be a routing algo-

rithm capable of routing messages from any source node to any destination node. Consider

a route R = (N1, N2, . . . , Nl), which is a sequence of l nodes. R is a possible route from

N1 to Nl if it is possible that the routing algorithm used in the sensor network could have

routed a message from N1 to Nl along the path N1, N2, . . . , Nl.

52

C The current location (CL) of the user, C ∈ N

C∗ The adversary’s final guess as to the current location of the
user

C The set of possible current locations of the user, as determined
by the adversary

k The total number of queries sent by the user, where k − 1 are
to fake locations of interest and one is to the real LOI

L The user’s real location of interest (LOI)

L∗ The adversary’s final guess as to the user’s real location of
interest

K The set of query destinations known to the adversary, i.e.,
K ⊆ L

L = {L1, . . . , Lk} The k locations queried by the user, with L ∈ L

LN The set of possible locations queried by the user, as deter-
mined by the adversary, under the assumption that C = N
for some N ∈ C

MAOI , MCL, MLOI The measures of the user’s AOI-, CL-, and LOI-privacy re-
spectively

n The number of nodes in the sensor network

N = {N1, . . . , Nn} The nodes in the sensor network, with |N | = n

PG (condition) A global, aggregate probability over all users that the given
condition is true; for example, PG (C = N | C ∈ C) is the
probability that any user’s current location is N , given that
their current location is known to be in C

Q = {Q1, . . . , Qk} The k queries sent by the user

Ri = (Ni,1, . . . , Ni,li) The route taken by query Qi, transmitted through li nodes

σ (L,N) A measure of how physically dispersed the elements of L are
over the network N

U The set of queries with destinations unknown to the adversary,
i.e., U ⊆ Q

Table 3.1: Major symbols used in Section 3.4

53

Figure 3.1: The possible routes from the westernmost central node to the easternmost
central node if fixed shortest-path routing is used (solid lines) or if random shortest-path
routing is used (solid and dashed lines).

In this chapter, we consider two routing algorithms: fixed shortest-path routing and

random shortest-path routing. Both guarantee that any message from N1 to Nl will arrive

in the fewest possible hops. In random shortest-path routing, each node maintains a table

indexed by the destination of a message, containing all possible next hops that the message

could take to arrive in the fewest hops. When a message arrives at a node Ni destined for

node Nl, Ni will look into its table at index Nl, and randomly choose one of the entries as

the next hop. In fixed shortest-path routing, each node stores only a single next-hop choice

for each possible destination. There is exactly one possible route from N1 to Nl when fixed

shortest-path routing is used, but there can be many possible routes between N1 and Nl

with random shortest-path routing. An example in Figure 3.1 shows one possible route from

the westernmost central node to the easternmost central node if fixed shortest-path routing

is used, but three possible paths if random shortest-path routing is used.

Recall that the user employs a mobile device to communicate with a nearby sensor

node, in order to route queries through the sensor network to the LOIs. The user sends

the k queries, denoted Q = {Q1, Q2, . . . , Qk}, to the closest sensor node, C. As simplifying

assumptions, we assume both that the user knows the closest sensor node, and that the

mobile device and C communicate using low-power communication. That is, the adversary

will only overhear communication between the mobile device and C if C is compromised.

We also assume that the adversary knows k — the implication being that if the adversary

overhears fewer than k of the user’s queries, the adversary knows how many queries were

not overheard. Each Qi takes a route Ri through the network, starting at C and ending

at Li. Denote Ri as a sequence of nodes with length li, Ri = (Ni,1, Ni,2, . . . , Ni,li), where

54

Ni,1 = C and Ni,li = Li. The goals of the adversary are to determine C and to determine

the real location of interest, i.e., to determine L.

While our k-anonymity scheme can be built over any existing query mechanism, we

assume that query and reply messages are designed to maximize privacy. Specifically, a

query message that is being routed from C to Li cannot contain references to C, nor can

a reply; otherwise, the adversary could easily determine C (note, though, that even if

a reference to C were contained in queries and replies, this scheme could still be used to

preserve the privacy of the user’s location of interest, just not their current location). Query

messages contain four pieces of information in addition to the query itself: a unique query

identifier for Qi; the destination Li (which may be the real location of interest or a fake

one); the identifier for the node currently transmitting the query, Ni,j ; and, the next hop in

the route, Ni,j+1. When node Ni,j+1 receives the query, it remembers the previous node in

the route for query Qi, Ni,j . Replies to the query message contain only the query identifier

for Qi. When node Ni,j+1 receives a reply to the query, to be routed back to C, Ni,j+1

uses its memory to identify Ni,j as the next hop in the reply path, and sends the reply to

Ni,j (without unnecessary information such as the identity of Ni,j or Ni,j+1). However, we

assume the worst case: the adversary is able to determine which sensor node is transmitting

a reply message if that reply is overheard.

If a query message for query Qi is overheard and the header can be decrypted by the

adversary (e.g., if a compromised node is routing the query, or if a global encryption key is

used for all transmissions in the sensor network), the adversary learns one of the LOIs, Li.

Additionally, the adversary learns one hop that the query took along the route from C to

Li: Ni,j and Ni,j+1, for 1 ≤ j < li, where j and li are unknown to the adversary. That is,

the adversary learns two consecutive elements in the route, but neither their position in the

route nor the length of the route. If a reply message for query Qi is overheard, the adversary

learns only a single node that was involved in the route: Ni,j , for 1 < j ≤ li, again with

unknown j and li.

The adversary can also construct a list of sensor nodes that were certainly not involved

in routing Qi. Because the adversary has complete knowledge of every message that was

routed through compromised nodes in the user’s sensor network, the adversary knows which

compromised nodes were not involved in routing Qi. An additional consideration for the

adversary is that the malicious nodes could monitor all communication by honest sensor

55

nodes in their communication range. An adversary may conclude that if a malicious node

that is monitoring an honest node within its range did not hear the honest node produce

any traffic regarding query Qi, then the honest node must not have been involved in routing

Qi. However, the malicious node may not have heard a message transmitted by the honest

node due to interference or a collision. As such, we assume that the adversary will restrict

the list of nodes that certainly were not involved with query Qi to the set of compromised

nodes in the sensor network that did not route Qi.

The key insight for the adversary, having collected information on the routes of the

queries, is that if no possible route from a sensor node N to the known destination of Qi,

Li, is consistent with the known information about Qi, then N could not have been the

origin of the query. Formally, a route R = {N1, N2, . . . Nl} from N to Li is consistent with

that information, assuming the destination Li of Qi is known, if:

1. R is a possible route from N to Li (i.e., N1 = N , Nl = Li, and the routing algorithm

could have used this route);

2. For every query message about Qi decrypted by the adversary, sent by Ni,j to Ni,j+1,

there is some k < l such that Nk = Ni,j and Nk+1 = Ni,j+1;

3. For ever query message about Qi overheard but not decrypted by the adversary, sent

by Ni,j to an unknown destination, there is some k < l such that Nk = Ni,j ;

4. For every reply message about Qi overheard by the adversary, sent by Ni,j , there is

some k > 1 such that Nk = Ni,j ; and,

5. No node that is known not to have routed Qi appears in R.

A simple example of the insight provided to the adversary from determining whether or

not possible routes are consistent with known information is illustrated in Figure 3.2. In

the illustrated example, there are two malicious nodes, one of which routed a query to the

LOI and another that did not. Using this information, the adversary can narrow down the

potential set of current locations of the user.

There is a second insight, about queries for which the adversary does not know the

destination. The adversary may still know some information about such a Qi (e.g., non-

decrypted query messages, overheard reply messages, or knowledge about compromised

nodes that did not route Qi). Denote D as a set of possible destinations for the queries

56

Did route query Did not route query

Possible CLs

Figure 3.2: The westernmost (blue) node is one of the queried locations, and knowledge of
which malicious (red) nodes did and did not route the query to the LOI allows the adversary
to narrow down the user’s potential current locations.

with unknown destinations. Specifically, let D be the set of all nodes in N that are not

compromised and are not the destination of a query with a known destination. Let U be

the set of queries for which the destination is unknown to the adversary, where 0 ≤ |U| ≤ k.

If it is not possible to assign a unique destination from D to each query in U , in such a way

as to ensure that there is a possible route from sensor node N to the destination of each

query in U that is consistent with all of the known information about that query, then N

cannot be the origin of the user’s queries.

Using the pseudo-code algorithm presented in Algorithm 3.1 and Algorithm 3.1.1, an

adversary can narrow down the possible current locations of the user. Additionally, each

assignment of potential destinations to the queries that is consistent with the information

known by the adversary represents all the possible query destinations for each possible

current location. The pseudocode returns a set C, representing all possible current locations

for the user, and sets LN for each N ∈ C, representing all the possible locations of interest

(i.e., query destinations) for the user if they are indeed at current location N .

Algorithm 3.1 begins, assuming that the user’s current location is not compromised, by

considering all honest nodes as potential current locations on line 4. However, any honest

nodes from which queries consistent with the adversary’s known information could not have

been sent are removed as potential current locations on line 10. Potential query destinations

from each potential current location obviously includes all known destinations, as computed

on line 18. However, the adversary must compute potential destinations for queries with

unknown destinations as well, as done on lines 13–17.

The pseudocode presented in Algorithm 3.1.1 illustrates the most natural way of thinking

57

Algorithm 3.1 Pseudocode for finding all possible current locations and locations of interest
for the user

1: function Narrow-Possible-CLs-And-LOIs
2: if the node C with which the user is communicating is compromised then
3: return C = {C} ,LC = {L1, . . . , Lk}
4: Nhonest ← {N ∈ N | N is not compromised}
5: C ← Nhonest

6: LN ← {} ∀ N ∈ C
7: for all queries Qi for which the destination is known do
8: for all N ∈ C do
9: if Possible-Consistent(N,Qi) = False then

10: Remove N from C
11: K ← {Li | Li is known}
12: U ← {Qi | Li is unknown}
13: if |U| > 0 then
14: D ← Nhonest \ K
15: for all N ∈ C do
16: if Analyse-Unknown(N,LN ,D,U) = False then
17: Remove N from C
18: LN ← LN ∪ K ∀ N ∈ C
19: return C, {LN | N ∈ C}

20: function Possible-Consistent(src,Q)
21: L← the destination of query Q
22: if ∃ a possible route from src to L, consistent with everything known about Q then
23: return True
24: else
25: return False

Sub-algorithm 3.1.1 A näıve implementation of the analysis of queries with unknown
destinations

1: function Analyse-Unknown(N,LN ,D,U)
2: foundAssignment ← False
3: for D′ ← each of the

(|D|
|U|
)

choices of |U| destinations from D do

4: for all |D′|! assignments of nodes in D′ as destinations for U do
5: if Possible-Consistent(N,Q) = True ∀ Q ∈ U then
6: foundAssignment ← True
7: LN ← LN ∪ D′

8: return foundAssignment

58

about how the adversary can use information gained about queries with unknown destina-

tions. The adversary considers all possible assignments of destinations to all queries with

unknown locations on line 4, adding any possible destinations to the pool of potential des-

tinations for the current locations on 7. If there are no possible assignments of destinations

to queries with unknown destinations, the potential current location is removed from the

pool of current location possibilities by a return of False to Algorithm 3.1. However, the

näıve implementation of this pseudocode would be highly inefficient. The following lemma

allows the adversary to implement the algorithm far more efficiently.

Lemma 3.1. Given a family of sets of integers, {S1, . . . ,Sm} where Si ⊆ Z, we call a set

Gm = {g1, . . . , gm} a sampling if gi ∈ Si for all 1 ≤ i ≤ m, and gi 6= gj for all i 6= j. Let

G′m = {Gm | Gm is a sampling}, i.e., G′m is a set of sets, where each Gm ∈ G′m is a set of m

unique integers, with each integer coming from a different one of the Si, 1 ≤ i ≤ m. Then

either G′m = ∅ or ⋃
Gm∈G′m

Gm =
⋃

1≤i≤m

Si .

Proof. If there is no way to choose a unique integer from each of S1, . . . ,Sm (including if

Si = ∅ for any i), then G′m = ∅, and we are done. Assume there is a way to choose m unique

integers, one from each of the Si (which implies that Si 6= ∅ for all i). The proof will be by

induction on m ∈ Z ≥ 1.

If m = 1, then G′m = {{s} | s ∈ S1}, because {s} is a sampling if and only if s ∈ S1. As

such, ⋃
Gm∈G′m

Gm =
⋃
s∈S1

{s} = S1 =
⋃

1≤i≤m

Si .

Assume for j ∈ Z ≥ 1, ⋃
Gj∈G′j

Gj =
⋃

1≤i≤j

Si ,

and let Sj+1 ⊆ Z be another set of integers. If it is not possible to choose j + 1 unique

integers, one from each of S1, . . . ,Sj+1, then G′j+1 = ∅ and we are done. Assume it is

possible to choose j + 1 unique integers as described above. If there are any elements

e ∈ Sj+1 that are not contained in ∪1≤i≤jSi, then a sampling Gj+1 could be constructed as

59

Gj+1 = Gj ∪ {e}, for any sampling Gj on S1, . . . ,Sj . Hence,

⋃
Gj+1∈G′j+1

Gj+1 =
⋃

1≤i≤j+1

Si ,

because there is guaranteed to be a sampling Gj+1 that contains any element of Sj+1 not

contained in ∪1≤i≤jSi.

Given a potential current location N ∈ C and queries with unknown destinations U ,

we can compute potential destinations S1, . . . ,S|U| for each of the queries. We can then

test if it is possible to choose a unique destination for each query, i.e., choose si ∈ Si with

si 6= sj for all i 6= j, where 1 ≤ i, j ≤ |U|. If it is possible to choose even a single set of

unique destinations, then Lemma 3.1 tells us that the set of all potential destinations for

all the queries with unknown destinations is ∪1≤i≤|U|Si, i.e., no potential destinations can

be excluded. Testing whether it is possible to choose a unique destination from each Si can

be accomplished by creating a graph G = 〈(X,Y), E〉, where X contains a vertex for each

of the |U| sets Si, Y contains a vertex for each potential destination in ∪1≤i≤|U|Si, and E

contains an edge between the vertex in X representing Si and the vertex in Y representing

s if and only if s ∈ Si. It is possible to choose a unique destination from each Si if and only

if there is a bipartite matching on G of size |U|, and testing for a bipartite matching is a

well-studied problem [8, pp. 664–669]. A revised, efficient algorithm for analyzing queries

with unknown destinations is illustrated as Algorithm 3.1.2.

Given the adversary’s ability to narrow down the user’s possible current locations to a set

C and possible locations of interest to a set LN for each N ∈ C, a simple yet expressive way

to measure the security of a user’s location of interest and current location is the probability

that the adversary will guess the LOI and CL incorrectly, respectively. As a simple example,

if the adversary knows the value of k (a necessary assumption to make, as it is unsafe to

assume otherwise), and if the adversary overhears all k queries in a uniform, featureless

environment (i.e., all n potential query destinations in the network are equally probable

destinations), then the user’s resulting LOI-privacy will be k−1
k , because the adversary can

merely guess at random that one of the k destinations is the correct one.

More formally, we begin by assuming the adversary knows — from a global, aggregate

perspective — the probability that a given node in the network is a user’s current location,

60

Sub-algorithm 3.1.2 An efficient implementation of the analysis of queries with unknown
destinations

1: function Analyse-Unknown(N,LN ,D,U)
2: Si ← {} ∀ 1 ≤ i ≤ |U|
3: for all Ui ∈ U do
4: for all D ∈ D do
5: if Possible-Consistent-Assume(N,D,Ui) then
6: Add D to Si
7: X ← a vertex for each Si, 1 ≤ i ≤ |U|
8: Y ← a vertex for each destination in ∪1≤i≤|U|Si
9: E ← edges between vertex representing Si and vertex representing D iff D ∈ Si

10: if there exists a bipartite matching of size |U| on G = 〈(X,Y), E〉 then
11: LN ← LN ∪ S1 ∪ . . . ∪ S|U|
12: return True
13: else
14: return False

15: function Possible-Consistent-Assume(src, L,Q)
16: Assume, just for now, that the destination of Q is L
17: if ∃ a possible route from src to L, consistent with all known/assumed about Q then
18: return True
19: else
20: return False

and the probability that each node is a user’s location of interest given a known current

location. We denote these probabilities as PG (C = N) and PG (L = M | C = N) respec-

tively. For now, we assume that PG (C = N) = PG (L = M | C = N) = 1
n for all nodes N

and M in the network. We will revisit this assumption in Section 3.8.

First, the adversary corrects the probability of each node being the current location,

based on the set of possible current locations. That is, the adversary computes

PG (C = N | C ∈ C) =


PG (C = N)∑
P∈C PG (C = P)

if N ∈ C

0 if N 6∈ C

for each N ∈ C. From the computation of this corrected probability, we naturally get the

formal definition of CL-privacy, which is the probability of the adversary incorrectly guessing

the user’s current location. Define

C∗ = arg max
N∈C

{PG (C = N | C ∈ C)} ,

i.e., C∗ is the adversary’s best guess as to the user’s current location. The formal definition

61

of CL-privacy can then be stated as

MCL = 1−PG (C = C∗ | C ∈ C) .

The user’s LOI-privacy is computed in a similar fashion: the probability that the ad-

versary incorrectly guesses the user’s actual location of interest. First, note that the user’s

actual location of interest may be a destination of one of the k queries where the destination

is known to the adversary (e.g., if a compromised node routed the query), or it may be the

destination of a query where the destination is unknown to the adversary. Based on the

value of PG (L = M | C = N), an adversary may actually guess that the user’s real location

of interest is a location that is not known to be a query destination, if the adversary does

not know the destination of all k queries. To account for this possibility, we first need to

apply a “corrective weight” to the probability that a given location M ∈ N is the user’s real

LOI, assuming that another location N ∈ N is their current location. Let K be the set of

all query destinations that are known to the adversary (i.e., K ⊆ L), then denote

χ(N,M) =



1 if M ∈ K

0 if M 6∈ K and |LN | = |K|

k − |K|
|LN | − |K|

otherwise.

Using χ as a corrective weight, we can compute the weighted probability that M is the

user’s location of interest, given that N is their current location and their location of interest

is in LN , as

φ(N,M) =


PG (L = M | C = N) · χ(N,M)∑
P∈LN

PG (L = P | C = N) · χ(N,P)
if M ∈ LN

0 ifM 6∈ LN ,

for each N ∈ C and M ∈ LN . We subsequently define ψ(N,M) as the probability that both

N is the current location and M is the real location of interest. Namely,

ψ(N,M) = PG (C = N | C ∈ C) · φ(N,M) .

We assume that the goal for the adversary is to choose the most likely real LOI, indepen-

62

dent of the adversary’s guess about the user’s current location (we return to this assumption

shortly). In this case, the adversary would compute the probability that a node M is the

user’s real location of interest over all possible current locations as

ω(M) =
∑
N∈C

ψ (N,M) ,

for all possible LOIs M (i.e., for any M ∈ ∪N∈CLN). The adversary then guesses the real

LOI as L∗ = arg maxM ω(M). As such, the user’s resulting LOI-privacy is

MLOI = 1− ω (L∗) .

Lemma 3.2. If the adversary knows that any user’s real location of interest is in fact their

current location, i.e.,

PG (L = N | C = M) =


0 if N 6= M

1 if N = M ,

then MCL = MLOI .

Proof. First, note that if PG (L = N | C = M) is as described above, then

φ(N,M) =


PG (L = M | C = N) · χ(N,M)∑
P∈LN

PG (L = P | C = N) · χ(N,P)
if M ∈ LN

0 ifM 6∈ LN

=


1 · χ(N,M)

1 · χ(N,M) +
∑
P∈LN\{M} 0 · χ(N,P)

if M ∈ LN and N = M

0 otherwise

=


1 if M ∈ LN and N = M

0 otherwise.

We can further simplify φ by noting that if N = M , then under our assumption about

PG (L = N | C = M) (which implies one of the k queried locations will always be the user’s

current location), it is guaranteed thatM ∈ LN . If the adversary has compromised the user’s

current location C, the adversary would process the query directed to the real location of

63

interest (i.e., C) and add C to LC . If the adversary has not compromised the user’s current

location, then the adversary would not overhear all of the user’s k queries, and would, for

any possible current location N , add N to LN , since a query to a non-compromised current

location always represents a possible assignment of a destination to a query with an unknown

destination. As such,

φ(N,M) =


1 if N = M

0 otherwise.

Using the simplified form of φ, we can simplify ω as well:

ω (M) =
∑
N∈C

ψ (N,M)

=
∑
N∈C

PG (C = N | C ∈ C) · φ (N,M)

=


PG (C = M | C ∈ C) · 1 +

∑
N∈C\{M}PG (C = N | C ∈ C) · 0 if M ∈ C∑

N∈C PG (C = N | C ∈ C) · 0 if M 6∈ C

=


PG (C = M | C ∈ C) if M ∈ C

0 if M 6∈ C .

Next, observe that C ⊆ ∪N∈CLN , by our earlier observation that N ∈ LN for all N ∈ C.

Therefore,

max
M∈∪N∈CLN

ω (M) = max
M∈C

ω (M) ,

since ω(M) = 0 for any M ∈ ∪N∈CLN \ C. Hence,

MLOI = 1− ω (L∗)

= 1− max
M∈∪N∈CLN

ω (M)

= 1−max
M∈C

ω (M)

= 1−max
M∈C

PG (C = M | C ∈ C)

= MCL ,

demonstrating that the two measures are equivalent when the adversary knows that the

64

user’s current location is their real location of interest.

Lemma 3.3. If the user’s current location is compromised, then

MCL = 0

and

MLOI = 1− max
M∈L

PG (L = M | C = C∗ and L ∈ L) .

Consider a uniform, featureless environment — that is, an environment in which, from any

current location, the probability of each location being any user’s real LOI is 1
n . If the user’s

current location is compromised in a uniform, featureless environment, then

MLOI =
k − 1

k
.

Proof. If the node at the user’s current location C is compromised, the adversary will “guess”

with certainty that the user’s current location is C∗ = C — i.e., C = {C}. The adversary

will also know all of the locations queried, i.e., LC = L. In this case, the user’s CL-privacy

drops to

MCL = 1−PG (C = C∗ | C ∈ C)

= 1− 1 = 0 .

65

The user’s LOI-privacy also drops to

MLOI = 1− ω (L∗)

= 1− max
M∈∪N∈CLN

ω (M)

= 1− max
M∈L

ω (M)

= 1− max
M∈L

[∑
N∈C

ψ (N,M)

]

= 1− max
M∈L

ψ (C∗,M)

= 1− max
M∈L

[PG (C = C∗ | C ∈ C) · φ (C∗,M)]

= 1− max
M∈L

φ (C∗,M)

= 1− max
M∈L

[
PG (L = M | C = C∗) · χ(C∗,M)∑
P∈LPG (L = P | C = C∗) · χ(C∗, P)

]
.

Note that, with the user’s current location compromised, M ∈ K for all M ∈ L. Therefore,

χ(C∗,M) = 1 for all M ∈ L. Hence,

MLOI = 1− max
M∈L

[
PG (L = M | C = C∗) · χ(C∗,M)∑
P∈LPG (L = P | C = C∗) · χ(C∗, P)

]
= 1− max

M∈L

[
PG (L = M | C = C∗)∑
P∈LPG (L = P | C = C∗)

]
= 1− max

M∈L
PG (L = M | C = C∗ and L ∈ L) .

In a uniform, featureless environment, where from any current location the probability of

any location being any user’s real LOI is 1
n , that computation simplifies to

MLOI = 1− max
M∈L

[
PG (L = M | C = C∗)∑
P∈LPG (L = P | C = C∗)

]
= 1− max

M∈L

[
1
n∑

P∈L
1
n

]

= 1− max
M∈L

[1
n

k · 1n

]
= 1− 1

k
=
k − 1

k
,

thus completing the proof.

66

Remark 3.4. Previously, we assumed that the adversary would guess the user’s current

location and real location of interest independently of one another (i.e., a best attempt to

get at least one, if not both, of those two locations correct). In some contexts, however

(e.g., intercepting a user who is moving from their current location to a location of interest),

it might be in the interest of the adversary to choose the most likely 〈C∗, L∗〉 pair. That

is, the adversary wants to maximize their chances of guessing both the user’s CL and LOI

simultaneously correctly. Such an adversary would choose C∗ and L∗ as

arg max
〈C∗,L∗〉

ψ (C∗, L∗) ,

and the computation of the user’s CL- and LOI-privacy would remain the same as

MCL = 1−PG (C = C∗ | C ∈ C)

and

MLOI = 1− ω (L∗)

respectively. For the purposes of this dissertation, however, we restrict our investigation to

an adversary who guesses the user’s current location and location of interest independently,

as such an adversary is stronger.

3.4.2 Privacy of the Area of Interest

If it is equally probable that any of the k queried nodes is the real LOI (i.e., in the featureless

environment), then the adversary cannot learn which of the k nodes queried is the real LOI.

Given this assumption, what is actually meant when we discuss protecting the privacy of

the user’s LOI? Consider the two scenarios in Figure 3.3. In both cases, the user’s real

LOI is the starred node in the northeast, and k − 1 = 3 fake LOIs are chosen to disguise

the real LOI. However, in Figure 3.3(a), all four LOIs are clustered in the east. While an

adversary who overhears these queries would not know which node is of interest to the user,

it would be obvious that the user is interested in the eastern region of the sensor network.

In Figure 3.3(b), the four LOIs are dispersed throughout the sensor network, obfuscating

the area of the network in which the user is interested. We need to define a measure of

how dispersed the k LOI choices are. That is, we want to measure how well-protected the

67

(a) A poor choice.

(b) A good choice.

Figure 3.3: A comparison of two choices for k − 1 = 3 fake LOIs (dark nodes) given one
fixed real LOI (starred node).

privacy of the user’s area of interest (AOI) is.

To measure how well the set L of k LOIs preserves the user’s AOI-privacy, we define a

function σ (L,N) to measure how dispersed the LOIs are over the network N . To allow

for comparisons of different methods of choosing the fake LOIs over networks with different

topologies, we normalize the score returned by σ. Let σmin(k,N) and σmax (k,N) be the

minimal and maximal values returned by σ, over all
(
n
k

)
possible sets of k LOIs. The

normalized measure of AOI-privacy is defined as

MAOI (L,N) =

⎧⎪⎪⎨
⎪⎪⎩
1 if σmin (k,N) = σmax (k,N)

σ (L,N)− σmin (k,N)

σmax (k,N)− σmin (k,N)
otherwise.

The function σ must have the property that it returns large values for sets L with minimal

clustering of the LOIs, and small values otherwise. Ideally, it is also easy to compute

on the user’s low-powered, mobile device prior to issuing a query. Next, we discuss some

alternatives for σ.

68

(a) A choice of LOIs that results in two clusters.

(b) A choice of LOIs that disperses the LOIs across the
entire network.

Figure 3.4: A comparison of two choices for k = 3 LOIs in a five-node sensor network.

Variance-Based σ.

One straightforward approach is to compute a variance-like quantity for the positions of the

nodes in L, measuring the squared distance between LOIs:

σ (L,N) =
k−1∑
i=1

k∑
j=i+1

D (Li, Lj)
2
,

where D is the Euclidean distance between two nodes. However, this definition of σ does

not penalize clustering properly. Consider the examples in Figure 3.4. The choice of fake

LOIs in Figure 3.4(a) has two of the LOIs clustered together. In Figure 3.4(b) the three

LOIs are dispersed evenly. However, the σ value for the first choice is higher. This result is

similar to how the variance for the data set {1, 2, 5} is higher than the variance for the data

set {1, 3, 5}.

Union of Circles σ.

Another approach is to determine how much overlap exists among the regions around each

LOI. Specifically, one can draw a circle of radius r around each LOI and let σ be the area

of the union of the k circles. The more clustered the LOIs, the more overlap there would

be among the circles, resulting in a smaller area. An example is presented in Figure 3.5.

With k clustered LOIs, shown in Figure 3.5(a), there is significant overlap among the circles,

unlike with the non-clustered choice shown in Figure 3.5(b).

One way to choose r is to define d as the maximum distance between any two nodes in

N , then set r = d
2 . This definition ensures that there is no overlap between the regions of

the two sensor nodes that are farthest apart, but the regions surrounding any two sensor

69

(a) A choice of LOIs with significant overlap among the
circles.

(b) A choice of LOIs with minimal overlap among the
circles.

Figure 3.5: A comparison of two choices for k = 4 LOIs in a sensor network, each surrounded
by a circle with a fixed, arbitrary radius.

70

nodes that are closer together will overlap. Alternately, r could be chosen as the maximal

size such that k nodes could be chosen from N with no overlap among the k associated

circles.

While this σ properly penalizes clustering, it is unclear what an ideal value for r would

be. Ultimately, we do not investigate this issue further, because this σ is unnecessarily

computationally expensive, compared to the other σ alternatives mentioned subsequently.

Note, however, that there are known methods for computing the area of the union of circles,

including an O(k2) deterministic algorithm and an O(k) Monte Carlo algorithm [55].

Minimal Pairwise Distance σ.

A simple computation that penalizes two LOIs being close together is to measure the minimal

distance between any two LOIs. Formally, let

σ (L,N) = min
j 6=i
{D (Li, Lj)} ,

where D is the Euclidean distance between two nodes. The closer the two closest Li become,

the lower the value of σ. Unfortunately, while this approach properly punishes having two

queried nodes close together, it does not distinguish between a mediocre situation (e.g.,

having two of the Li close together) and a bad situation (e.g., having all of the Li close

together). Consider the situation in Figure 3.6. In Figure 3.6(a), the situation is not ideal:

two of the LOIs are close together; that said, it is not a terrible physical distribution of the

queried location. Figure 3.6(b), on the other hand, illustrates a far worse situation, in which

all of the LOIs are clustered. In both cases, however, the value of σ (L,N) will be the same:

the distance between the two closest nodes (i.e., the two nodes in the upper right).

Sum of Minima σ.

Measuring the sum of minimum distances from each LOI to any other LOI penalizes clus-

tering properly and is easy to compute. Formally, let

σ (L,N) =
k∑
i=1

min
j 6=i
{D (Li, Lj)} ,

71

(a) A mediocre choice with two LOIs close together.

(b) A bad choice with all of the LOIs close together.

Figure 3.6: A comparison of two choices for k = 4 LOIs in a sensor network, both having at
least two LOIs close together.

where D is again the Euclidean distance between two nodes. That is, the farther away each

of the Li are from each other, the higher the value of σ. Returning to the five-node examples

in Figure 3.4, this σ returns a higher value in the scenario where the LOIs are non-clustered;

and, it can be computed quickly, given the location of every node in L. This σ function is

essentially a more expressive version of the minimal-pairwise-distance version of σ, in that

it not only properly punishes clustering, but also properly distinguishes between mediocre

and bad distributions of queried locations.

Considering these four possible σ functions, we use the sum of minima function for most of

this dissertation (it will be noted explicitly when one of the other σ functions is used). We

chose this σ function since we assume that the user, prior to issuing any set of k queries,

will want to precompute the AOI-privacy that will result from the queries using a mobile

device with limited processing power. If processing power were not a concern, the union

of circles metric could be used instead (though how to best choose the radius of the circles

used in the computation remains an open question).

72

3.5 Choosing the Fake LOIs

Given the metrics necessary to measure how well a set of k queries preserves the privacy

of the user’s area of interest (AOI) and current location (CL), we now investigate how the

user should choose the k − 1 fake locations of interest (LOIs) to query, given one real LOI.

Regardless of how the fake LOIs are chosen, recall our assumption that, from the point of

view of the adversary, it is equally probable that any of the k queried nodes is the real

LOI. Any implementation of k-anonymity for sensor network queries must take into account

real-life limitations. For example, if troops using a military sensor network queried one node

at a location of strategic importance and k − 1 nodes at strategically irrelevant positions,

the adversary could guess the real LOI with high probability.

Another situation that could leak the real LOI is if the user issues multiple queries to the

real LOI. Any algorithm used to choose the k − 1 fake LOIs based on the real LOI is required

to choose the same k − 1 fake LOIs each time the user issues a real query. Otherwise, if the

user first queries the k nodes in L1 then later issues queries to the k nodes in L2 6= L1, and

if the adversary can correctly guess that the user was issuing repeat queries to the same

node (it is overly optimistic to assume otherwise), the adversary would learn that the real

LOI is in L1 ∩ L2.

Let F be the choice function that takes the real LOI L and returns a set L of k LOIs to

query, with L ∈ L. If F is deterministic, repeat queries are of no concern, since F (L) = L for

each call to F (L). If F is a random function, taking L and a random seed sL as parameters

and using a cryptographically secure pseudo-random number generator [2] to choose the

fake LOIs, the user should encapsulate F in a deterministic function. For example, the user

could call F′ (L) = F (L, sL), where sL = PRF (s, L) is computed using a stored secure seed

(i.e., a key), s, and pdeudorandom function PRF. The pseudorandom function could be

as simple as a cryptographic hash function, e.g., SHA-2 [5], on the concatenation of s and

L, i.e., PRF (s, L) = SHA-2-256 (s ◦ L), with ◦ representing concatenation. Alternately,

a more robust approach could use a key-derivation function (KDF) as the pseudorandom

function [7].

It is not only multiple queries to the real LOI that pose a problem; even a single set

of k queries could leak the real LOI. Knowledge of how F works could be sufficient for the

adversary to determine the real LOI, given the set L of all k nodes queried. Consider a

73

(a) The k = 3 sensor nodes that were actually queried
by the user.

(b) The nodes that would have been chosen as L were
the westernmost node the real LOI.

Figure 3.7: An example of the σ-maximizing choice function leaking the real LOI.

deterministic F that takes the real LOI L and returns a list L that contains L and the k − 1

fake LOIs, such that σ(L,N) is maximized over all possible choices of k − 1 fake LOIs. This

function, which maximizes the user’s AOI-privacy, may leak the user’s real LOI. Consider

the example in Figure 3.7. If the k = 3 nodes illustrated in Figure 3.7(a) are queried, the

adversary would know that the interior LOI is the real LOI. Were the westernmost node the

real LOI, the central node and the easternmost node would have been chosen by F as the

fake LOIs, as illustrated in Figure 3.7(b), to maximize σ. Similarly, the easternmost node

could not be the real LOI.

For F not to leak information in this fashion, F must generate a set L ⊆ N that is

closed under F. For a deterministic F, this closure requirement means: if F (L) = L for some

L ∈ N , then F (Li) = L for all Li ∈ L. The closure requirement for a non-deterministic F

is more complex. We assume that the random seed s passed to F is secret; because the

seed must remain secret, it must be sufficiently long (e.g., 256 bits) to prevent exhaustive

search of the seed space by the adversary. As such, the adversary cannot compute F (Li, s)

for every Li ∈ L. What the adversary can do is estimate probabilities. Define P (F,L, Li)

as the proportion of all seeds in the seed space for which F will generate L, given Li and

a seed as arguments. Given L, the adversary can estimate P (F,L, Li) for each Li ∈ L

by running F (Li, stest) with a large number of different test seed values. The adversary

can then predict that the largest estimate corresponds to the most likely real LOI. That

is, if Lmax = argmaxLi∈L {P (F,L, Li)}, then Lmax has the highest probability of having

generated L, and hence is the most likely real LOI. Based on this attack, the closure property

necessary for a non-deterministic F is: if F (L, s) = L for some L ∈ N and seed s, then

P (F,L, L) = P (F,L, Li) for all Li ∈ L.

74

The simplest method of fulfilling the closure requirement is to generate an unbiased

random partitioning of the network. When the user wishes to query a real LOI, the fake

LOIs also queried are the other nodes in the real LOI’s partition. Note that the size of the

partitions, while obviously based on the LOI-privacy requirements of the user, may not be

able to be uniform. For example, a network of 50 nodes cannot be divided into partitions

each of size k = 3.

Lemma 3.5. Any network with n ≥ 3 nodes can be partitioned such that each partition

contains 3–5 nodes.

Proof. By induction. For n ∈ [3, 5], use a single partition of size n. Assuming you can

partition a network of size n = 3j + k, where j ≥ 0, k ∈ [3, 5], you can partition a network

of size n+ 3 = 3(j + 1) + k by using an additional partition of size 3.

Because of Lemma 3.5, we will use partitions of sizes 3-5 whenever the need for parti-

tioning a network arises throughout this dissertation. We further investigate the problem

of generating partitions and partitionings on networks in the next section.

3.6 The Partition and Partitioning Problems

The goal of maximizing the minimal distance between nodes in a partition, introduced in

Section 3.4.2, as well as the requirement to partition the nodes in a network discussed in

Section 3.5, give rise to two optimization problems. We refer to these problems as the

partition problem and the partitioning problem.

For this section alone, for simplicity, we will consider the “minimal pairwise distance”

definition of σ presented in Section 3.4.2. That is, in both problems, you are given a set of

distinct points S in R2, with |S| ≥ 2. We define the “goodness” of any subset T ⊆ S as

G(T) = min {D(x, y) | a, b ∈ T, a 6= b} ,

where D is Euclidean distance in R2. In other words, G(T) is the minimal Euclidean distance

between any two points in T . We also extend the notion of goodness to multiple subsets as

G(T1, . . . , Tn) = min {G(T1), . . . ,G(Tn)} .

75

Or, in other words, the goodness of a set of subsets is only as good as the goodness of the

worst subset.

In the partition optimization problem, you are given a set of points S in R2 and an

integer 2 ≤ k ≤ |S|. The goal is to find the subset T of S with |T | = k that maximizes

G(T). This problem is equivalent to maximizing the area of interest (AOI) privacy in a

single set of queries to k sensor nodes (under the “minimal pairwise distance” definition of

σ).

In the partitioning optimization problem, you are given a set of distinct points S in R2

and two integers 2 ≤ kmin ≤ kmax ≤ |S|. The goal is to partition S into subsets T1, . . . , Tm

with kmin ≤ |Ti| ≤ kmax for all i, such that G(T1, . . . , Tm) is maximized. Here, partitioning

into subsets has the usual meaning: Ti ∩ Tj = ∅ for all i 6= j, and ∪iTi = S. This problem

is equivalent to maximizing the AOI-privacy over all the partitions in the partitioning of a

sensor network (again, under the “minimal pairwise distance” definition of σ).

We begin our discussion of these problems in Section 3.6.1 by investigating their hard-

ness. We will follow up that topic with a Θ(1) approximation for the partition problem in

Section 3.6.2, followed by a divide-and-conquer algorithm for effectively solving the parti-

tioning problem in Section 3.6.3.

3.6.1 NP-Completeness

We begin our discussion of the hardness of the partition and partitioning optimization

problems by first presenting variants of these two problems on a graph (as opposed to in

R2), phrased as decision problems:

• Partition-Graph: You are given a graph G = 〈V,E〉, k ∈ Z ≥ 2, and d ∈ Z ≥ 1.

Is there a subset S ⊆ V with |S| = k such that the shortest path between any two

elements in S has length at least d?

• Partitioning-Graph: You are given a graph G = 〈V,E〉, kmin ∈ Z and kmax ∈ Z

with 1 ≤ kmin ≤ kmax ≤ |V |, and d ∈ Z ≥ 1. Can the vertices of G be partitioned into

disjoint sets T1, . . . , Tm such that kmin ≤ |Ti| ≤ kmax and the shortest path between

any two vertices in Ti has length at least d, for all i?

Theorem 3.6. Partition-Graph is NP-complete.

76

Proof. First, we show that Partition-Graph is in NP. Consider a candidate solution. The

distance between any two vertices in the candidate solution could be established by, e.g.,

O(k) breadth-first searches, each running in polynomial time and space. The candidate

solution could then be verified by checking the distance between all pairs of vertices in the

solution, requiring O(k2) distance lookups.

Next, we perform the Turing reduction. Let A(G, k, d) be an algorithm that solves

Partition-Graph (i.e., returns either True or False). Now, consider the following prob-

lem.

• Independent-Set: You are given a graph G = 〈V,E〉, k ∈ Z ≤ |V |. Is there a subset

S ⊆ V with |S| ≥ k such that no two vertices in S are joined by an edge in E?

Independent-Set is known to be NP-complete [36]. Note that an independent set of size k

is equivalent to a partition of size k with a distance of at least two hops between all pairs of

vertices in the partition. Therefore, an instance 〈G, k〉 of Independent-Set can be solved

with a single call to the Partition-Graph solver, A(G, k, 2).

Theorem 3.7. Partitioning-Graph is NP-complete.

Proof. First, we show that Partitioning-Graph is in NP. Consider a candidate solution.

The distance between any two vertices in the graph could be established by, e.g., O(|V |)

breadth-first searches, each running in polynomial time and space. The candidate solution

could then be verified by checking the distance between all pairs of vertices in the same

partition in the solution, requiring O(|V |2) distance lookups.

Next, we perform the Turing reduction. Let A(G, kmin , kmax , d) be an algorithm that

solves Partitioning-Graph (i.e., returns either True or False). Now, consider the fol-

lowing problem:

• Partition-Into-Triangles: You are given a graph G = 〈V,E〉 where |V | = 3q for

some q ∈ Z. Can V be partitioned into disjoint sets V1, . . . , Vq, where |Vi| = 3 and Vi

forms a clique, for all i?

Partition-Into-Triangles is known to be NP-complete [52, 14]. Given an instance 〈G〉 of

Partition-Into-Triangles, first construct the complement graph, G′ = 〈V,E′〉, in which

two vertices are connected by an edge if and only if they were not connected by an edge

in G. Note that V on G can be partitioned into disjoint sets Vi with |Vi| = 3 that all form

77

cliques, if and only if V on G′ can be partitioned into disjoint sets Vi with |Vi| = 3 that all

form independent sets. Having no edges connecting the three nodes is equivalent to them

being a partition of size three with a distance of at least two hops between all pairs of

vertices in the partition. Therefore, calling the Partitioning-Graph solver a single time,

A(G′, 3, 3, 2), yields the solution to a Partition-Into-Triangles instance 〈G〉.

Remark 3.8. The partition optimization problem is known to be NP-hard on R2 as well as

on graphs [63].

Conjecture 3.9. The partitioning optimization problem is NP-hard on R2.

While we do not have a proof that this problem is NP-hard on R2, we also have no reason

to doubt as much. The related problem of partitioning points on Z2 into a given number

of partitions (with no size restrictions) such that the points within any given partition are

a minimum distance apart is believed to be NP-hard [34], and another related problem

of painting colours onto aircraft to maximize the distance between similar colours is also

believed to be hard [51]. A formal proof that the partitioning problem is NP-hard on R2

remains an open problem.

Remark 3.10. The partition optimization problem can be solved in O(n log n) time, where

|S| = n, if we restrict the problem to the case of k = 2 [31]. The solution is based on

performing a Graham scan [20] to find the convex hull of the points S and determining the

two furthest points from each other on the hull [58].

Remark 3.11. The partition optimization problem, for any fixed value of k, can be solved

in polynomial time. That is because the number of candidate solutions is O(nk), where

|S| = n, which is polynomial for a fixed k.

3.6.2 Greedy Partition Approximation

We present here a Θ(1) greedy approximation algorithm to the partition problem, based on

private communication with Har-Peled and Sidiropoulos [22]:

1. Pick x1 to be an arbitrary node in the network; then,

2. Inductively, given Xi = {x1, . . . , xi}, i < k, pick node xi+1 /∈ Xi such that

min (D(x1, xi+1), . . . ,D(xi, xi+1)) is maximized.

78

The algorithm is a simple loop that, in each iteration, considers Θ(n) nodes to be the

next possible node added to the partition — doing so would require only a single distance

computation between the node under consideration and the most recent node added to the

partition, possibly causing the minimal distance to any node in the partition to be updated

for the node under consideration. The loop iterates k − 1 times, so clearly this algorithm

can be implemented in O(nk) time with O(n) memory.

This approximation algorithm is similar to one proposed by Ravi et al. [50] for the

maximal minimum facility dispersion problem. A version for facility dispersion on con-

tinuous graphs was proposed by Tamir [57]. For the convenience of the reader, we have

included an original proof that the algorithm in indeed a Θ(1) approximation — in fact, a

2-approximation — for the partition problem.

Lemma 3.12. Let X = {x1, . . . , xk} be the partition returned by the greedy algorithm, with

minimal pairwise distance d′. Let Y = {y1, . . . , yk} be an optimal solution to the par-

tition problem. Let 1 < s ≤ k be the smallest integer such that there exists t < s where

D(xs, xt) = d′. Then, for all y ∈ Y , there exists an xy ∈ Xs−1 = {x1, . . . , xs−1} such that

D(y, xy) ≤ d′.

Proof. Let y be an arbitrary node of the optimal solution Y with a distance greater than d′

from every node in Xs−1. However, the node chosen by the greedy algorithm as xs has the

greatest minimal distance to any node in Xs−1, namely d′, which is a contradiction.

Theorem 3.13. The greedy algorithm is a 2-approximation for the partition problem.

Proof. Expanding on the notation from Lemma 3.12, let Y be the optimal result to an

instance of the partition problem with minimal pairwise distance d. Let X be the result

from the greedy algorithm with minimal pairwise distance d′, and assume d′ < d
2 .

Define, for all y ∈ Y , Cs(y) as the single closest node in Xs to y (with ties in distance

being broken by the index of the node in Xs). Formally,

Cs(y) = arg min
i
{xi ∈ Xs | D(xi, y) is minimized} .

By definition, |Xs−1| < k = |Y |. Therefore, by the pigeon-hole principle, there must exist

ya, yb ∈ Y, a 6= b, such that Cs−1(ya) = Cs−1(yb) (which we denote as xc).

79

Since xc is the closest node in Xs−1 to ya, and we know from Lemma 3.12 that there must

exist some node x ∈ Xs−1 such that D(ya, x) ≤ d′, we know that D(ya, xc) ≤ d′. Similarly,

D(yb, xc) ≤ d′. Therefore, by the triangle inequality,

D(ya, yb) ≤ 2 · d′ < 2 · d
2

= d ,

meaning that the minimal pairwise distance in Y is less than d, which is a contradiction.

Remark 3.14. The greedy algorithm and its proof in Theorem 3.13 generalize to choosing

points to maximize the minimal pairwise distance over any continuous convex space in R2.

3.6.3 Divide-and-Conquer Partitioning

In this section, we present a divide-and-conquer algorithm for effectively solving the parti-

tioning problem. The idea underlying the algorithm is first to compute the number of nodes

that will be assigned to each partition within the partitioning. The algorithm then finds

a partition of size k, where k is the largest number of nodes that have to be assigned to

any partition (up to a maximum of k = µ). This partition could be found as an optimal

partition via brute-force, or via a Monte Carlo algorithm (in our implementation, we use a

Monte Carlo algorithm that generates π random partitions and chooses the best one). The

nodes in this partition serve as seeds that form the basis of subnets of the network. Each

node in the network is assigned to the subnet of its closest seed, and the number of nodes

to be assigned to each partition are divided evenly among the subnets. The algorithm then

continues recursively on each subnet, until the maximal number of nodes to be assigned to

each partition in a given subnet is only one — at this point, each node in the subnet is

assigned at random to one of the partitions requiring a node from that subnet. The algo-

rithm is formalized in Algorithm 3.2, with the entire process repeating α times and the best

partitioning out of all of those being returned on line 14. The integer division that begins

the Divide-And-Conquer() function is just to divide the number of nodes that will be in

each partition as equally as possible.

First, we compared the divide-and-conquer algorithm to a randomized partitioning al-

gorithm and to a brute-force search that finds an optimal partitioning. The randomized

algorithm is formalized as Algorithm 3.3. It uses the same integer division technique to

80

Algorithm 3.2 The divide-and-conquer algorithm for solving the partitioning problem

1: function Divide-And-Conquer(N , kmin , kmax , α, π, µ)
2: Preconditions: 1 ≤ kmin ∈ Z ≤ kmax ∈ Z ≤ |N |, α ∈ Z ≥ 1, π ∈ Z ≥ 1, µ ∈ Z ≥ 2
3: numPartitions ← |N|/kmin . Integer division
4: if numPartitions · kmax < |N | then
5: error Impossible to generate partitions

6: minSize ← |N|/numParititons . Integer division
7: numLarger ← |N| − (minSize · numPartition)
8: numInPart [i]← minSize + 1 ∀ 0 ≤ i < numLarger . Arrays indexed from 0
9: numInPart [i]← minSize ∀ numLarger ≤ i < numPartitions

10: for i← 0 to α− 1 do
11: Assign N to no partition ∀ N ∈ N
12: Divide-And-Conquer-X(N ,numInPart ,numPartitions, π, µ)
13: p[i]← the current partitioning

14: return the best partitioning out of p[0], . . . , p[α− 1]

15: procedure Divide-And-Conquer-X(N ,numInPart ,numPartitions, π, µ)
16: numSubnets ← min (µ,max (numInPart [1], . . . ,numInPart [numPartitions]))
17: if numSubnets = 1 then
18: for all partitions P with numInPart [P] = 1 do
19: Assign a random unassigned node in N to partition P

20: return
21: subnet [i]← {} ∀ 0 ≤ i < numSubnets
22: capacity [i]← 0 ∀ 0 ≤ i < numSubnets
23: nDist [i][j]← 0 ∀ 0 ≤ i < numSubnets, 0 ≤ j < numPartitions
24: seeds ←Monte-Carlo-Partition(N ,numSubnets, π)
25: for all N ∈ N do
26: if ∃ i such that seeds[i] = N then
27: index ← i
28: else
29: d← the minimal distance from N to any element in seeds
30: indices ← {i | D (N, seeds[i]) = d}
31: index ← a uniform random element of indices
32: Add N to subnet [index]
33: capacity [index]← capacity [index] + 1

34: onSubnet ← 0
35: for onPartition ← 0 to numPartitions − 1 do
36: for i← 1 to numInPart [onPartition] do
37: while capacity [onSubnet] = 0 do
38: onSubnet ← (onSubnet + 1) mod numSubnets

39: nDist [onSubnet][onPartition]← nDist [onSubnet][onPartition] + 1
40: capacity [onSubnet]← capacity [onSubnet]− 1
41: onSubnet ← (onSubnet + 1) mod numSubnets

42: for i← 0 to numSubnets − 1 do
43: Divide-And-Conquer-X(subnet [i],nDist [i],numPartitions, π, µ)

44: function Monte-Carlo-Partition(N , k, π)
45: return the best partition of size k on N , from π randomly generated partitions

81

equally divide the partition sizes as the divide-and-conquer algorithm, starting on line 3;

however, once the partition sizes are equally distributed, it assigns random unassigned nodes

to each partition to fill that partition, on line 18. The entire process of creating a partition-

ing randomly is repeated α times, as with the divide-and-conquer algorithm, and the best

partitioning is returned. For the randomized algorithm, we ran 1000 trials using α = 1000.

The same number of trials were used for the divide-and-conquer algorithm, with α = 1000,

π = 10, and µ = 3. Fewer trials were needed for the brute-force approach; we ran 25 trials

just to get an accurate timing. The experiment was performed on a 9x5 grid of sensor nodes,

and the results are summarized in Figure 3.8. The running times, measured on a 2.93 GHz

Core i7 with 8 GB of RAM running OS X 10.8.4, illustrate that the divide-and-conquer par-

titioning algorithm is orders of magnitude faster than a brute-force search. While it is slower

than a randomized approach, the divide-and-conquer algorithm also returned significantly

better results than the random algorithm.

Algorithm 3.3 The random algorithm for solving the partitioning problem

1: function Random-Partitioning(N , kmin , kmax , α)
2: Preconditions: 1 ≤ kmin ∈ Z ≤ kmax ∈ Z ≤ |N |, α ∈ Z ≥ 1
3: numPartitions ← |N|/kmin . Integer division
4: if numPartitions · kmax < |N | then
5: error Impossible to generate partitions

6: minSize ← |N|/numParititons . Integer division
7: numLarger ← |N| − (minSize · numPartition)
8: numInPart [i]← minSize + 1 ∀ 0 ≤ i < numLarger . Arrays indexed from 0
9: numInPart [i]← minSize ∀ numLarger ≤ i < numPartitions

10: for i← 1 to α do
11: Assign N to no partition ∀ N ∈ N
12: Random-Partitioning-X(N ,numInPart ,numPartitions)
13: p[i]← the current partitioning

14: return the best partitioning out of p[0], . . . , p[α− 1]

15: procedure Random-Partitioning-X(N ,numInPart ,numPartitions)
16: for onPartition ← 0 to numPartitions − 1 do
17: for i← 1 to numInPart [onPartition] do
18: Assign a random unassigned node in N to partition onPartition

The effect of the variables α (the number of Monte Carlo attempts run for the entire

partitioning algorithm) and π (the number of partitions generated each time seeds are

needed) is highlighted in Figure 3.9. We modified the values of α and π, while running the

divide-and-conquer partitioning algorithm on the same 9x5 grid. For each 〈α, π〉 pair, we ran

1000 trials. Unsurprisingly, increasing the values of α and π increases the average quality of

82

Random Brute-force Divide-and-conquer
0

1

2

3

4

0.1

1

10

100

1000

10000

Sc
or

e

Score
Time

Tim
e (m

s, log-scale)

Figure 3.8: A comparison of the scores of the partitioning computed by three different
partitioning algorithms, and the running time of each

1 10 100 1000
0.0

0.5

1.0

1.5

2.0

2.5

Sc
or

e

α

π = 1
π = 10
π = 100

1 10 100 1000
0

5

10

15

20

25

30

α

Ti
m

e
(m

s)

π = 1
π = 10
π = 100

Figure 3.9: The effect of the α and π parameters on the score and running time of the
divide-and-conquer partitioning algorithm on a grid topology

the partitioning that is chosen in the end. However, as evidenced by the running time graph,

increasing π to large values can increase the running time significantly, for comparably little

payoff in the average quality of the partitioning found (relative to increasing α).

We confirmed these results by re-running the experiment, but generating a new random

topology for each trial. Each random topology was generated by placing nodes uniformly

at random in a 10x10 area, measured in an arbitrary unit of length. To account for the

variance in topology, we increased the number of trials for each 〈α, π〉 pair to 5000. The

results on the random topology, illustrated in Figure 3.10, are comparable to those seen on

the grid topology. Based on these results, we recommend using a value of π = 10, with the

α value based on both the size of the network and the necessity of a higher-scoring result

(we chose to use α = 1000 for the remainder of this section).

The µ parameter is simply a safeguard for when the individual partitions in a partitioning

contain a large number of nodes. If this were the case, the size of the partition used as a

seed would be very large. If the seed partition is sufficiently large, relative to the size of

83

1 10 100 1000
0

1

2

3

Sc
or

e

Attempts

π = 1
π = 10
π = 100

1 10 100 1000
0

5

10

15

20

25

30

35

Attempts

Ti
m

e
(m

s)

π = 1
π = 10
π = 100

Figure 3.10: The effect of the α and π parameters on the score and running time of the
divide-and-conquer partitioning algorithm on a randomized topology

2 3 4 5
0.0

0.5

1.0

1.5

2.0

0

5

10

15

µ

Sc
or

e

Score
Time

Tim
e (m

s)

Figure 3.11: The effect of µ, the maximal partition seed size, on the final score and running
time of the divide-and-conquer partitioning algorithm

the network (i.e., if there are a small number of large partitions), the divide-and-conquer

algorithm would nearly degenerate into a randomized partitioning. In most cases, the value

of µ can be safely ignored (i.e., set µ =∞). As illustrated in Figure 3.11, the µ parameter

had no significant effect on the final score, and the individual trial run times are so variable

that µ had no overall significant effect on the running time of the algorithm. We recommend

using µ = 3 for safety’s sake; however, if the usage case precludes large individual partitions,

the µ parameter can be entirely ignored.

3.7 Experimental Results in a Uniform Environment

We begin our experiments on the k-anonymity scheme in a featureless environment, devoid

of any statistics learned from observing human mobility. The network is a 10x10 grid of

nodes placed unit-distance apart, and PG (C = N) = PG (L = M | C = N) = 1
100 for all

84

nodes N and M in the network. The user’s current location is chosen proportional to

PG (C = N) (i.e., uniformly at random, for now), the user’s real location of interest to be

queried is chosen proportional to PG (L = M | C = N) (i.e., also uniformly at random for

the moment), and the k − 1 fake queried locations are always chosen uniformly at random.

Remark 3.15. Since each trial of an experiment will observe the effect on the user’s CL-

privacy and LOI-privacy from a single set of k queries being issued, we do not need to

generate a partitioning of the network in the implementation of the experiment. However,

it should be noted that this behaviour is equivalent to generating a uniform random parti-

tioning, then querying a partition of size k. Because we wish to observe correlations between,

e.g., AOI-privacy and CL-privacy, using a random partitioning scheme (as opposed to the

partitioning scheme discussed in Section 3.6.3) is preferred because it gives us the widest

range of results.

In our first experiment, message headers between sensor nodes are encrypted using a

global key that has been compromised by the adversary. The adversary has compromised

10 of the nodes in the network, and is using them to eavesdrop on communications. The

user issues k = 3 queries into the network from their current location, and the adversary

attempts to determine the user’s current location and real location of interest.

Figure 3.12 plots the user’s resulting CL-privacy and LOI-privacy from issuing a single

set of k queries — each point on the scatterplot represents one of the 1000 trials performed.

Unsurprisingly, there is a significant correlation (P < 0.0001) between the user’s resulting

LOI-privacy and CL-privacy, in that high CL-privacy is essential to achieving high LOI-

privacy. After all, the more information the adversary gains from overhearing some or all

of a set of k queries, the better able the adversary is to determine both the user’s current

location and location of interest. Interestingly, LOI-privacy in the featureless environment is

essentially an “all or nothing” measure, in that the user achieves near-perfect LOI-privacy,

i.e., approximately

|Nhonest | − 1

|Nhonest |
=

89

90
,

or near-minimal LOI-privacy, i.e., approximately

k − 1

k
=

2

3
.

85

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

LOI-privacy

C
L-
pr
iv
ac
y

Figure 3.12: The user’s resulting CL-privacy and LOI-privacy over 1000 trials with k = 3

However, the scatterplot is somewhat misleading: for example, the cluster of points in

the upper-right of the graph do not all have LOI-privacy of 89
90 ; many have LOI-privacy

slightly below that perfect measure. That is, the adversary was always able to deduce, even

in tiny measure, locations that could not have been queried. However, in the featureless

environment, there is no information for the adversary to work with regarding location

popularities, significantly handicapping the adversary who is unable to overhear or deduce

all of the queried locations.

Of more interest to a user, however, might be what changes they can make in order to

increase the privacy of their current location and location of interest. The most obvious

change that the user can make is to adjust k, the number of queries that they send. We re-

peated the previous experiment, this time adjusting k ∈ [2, 5]. As illustrated in Figure 3.13,

lower values of k resulted in significantly higher CL-privacy, as the adversary has fewer

query message with which to “triangulate” the user. On the other hand, higher values of k

resulted in significantly higher LOI-privacy, as it becomes less likely that the adversary will

guess the correct queried location as the user’s real location of interest. Each increment of

k resulted in a significant change to both privacy metrics (P < 0.05), as determined by a

one-way ANOVA test with Bonferroni’s multiple comparison test [53] on each pair of incre-

mental k values (i.e., from k = 2 to k = 3, from k = 3 to k = 4, and from k = 4 to k = 5),

thus indicating a clear trade-off between the user’s ability to protect the privacy of their

current location and the privacy of their location of interest.

Another parameter within the user’s control is their AOI-privacy, which is determined

86

Pr
iv

ac
y

m
ea

su
re

CL-privacy LOI-privacy
0.0

0.2

0.4

0.6

0.8

1.0 k=2
k=3
k=4
k=5

Figure 3.13: The user’s resulting CL-privacy and LOI-privacy, as the number of queries k
is varied, over 1000 trials

by how well-dispersed their k queries are physically around the network. Figure 3.14 shows

the user’s CL- and LOI-privacy, relative to their chosen AOI-privacy over 1000 trials. While

there is a significant correlation (P < 0.0001) between between the user’s AOI-privacy and

their LOI-privacy, it is not large (R2 = 0.0158). While that may seem surprising, given that

the two are conceptually similar measures of how well protected the identity of the user’s real

query destination is, that lack of large correlation just indicates that how physically spread

out the k destinations are is not the most important factor in helping the adversary narrow

down the real location of interest. There is also no large correlation (P < 0.01, R2 < 0.01)

between a user’s AOI-privacy and their CL-privacy. Intuitively, one might think that the

more dispersed the k queries are, the more opportunity there would be for the adversary

to overhear queries and triangulate the user’s location. While that is probabilistically true,

as indicated by the low P value, it is not a largely meaningful factor to the adversary, as

indicated by the low R2 value.

To confirm these results, we studied a metric related to AOI-privacy, more closely related

to the number of opportunities the adversary will have to intercept user queries. That metric

is the number of unique hops the user’s k queries take (i.e., the number of query message

transmissions between unique pairs of sensor nodes), which the user is able to control based

on the chosen nodes to query. Figure 3.15 shows the user’s CL- and LOI-privacy, relative

to the number of distinct hops taken by their query messages over 1000 trials. Again, the

number of distinct hops taken by the user’s queries is significantly negatively correlated

with both the user’s resulting CL-privacy (P = 0.0097) and their resulting LOI-privacy

87

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

AOI-privacy

C
L-
pr
iv
ac
y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

AOI-privacy

LO
I-p
riv
ac
y

Figure 3.14: The user’s resulting CL-privacy and LOI-privacy, as the user’s AOI-privacy is
varied, over 1000 trials with k = 3

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Distinct hops

C
L-

pr
iv

ac
y

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Distinct hops

LO
I-p

riv
ac

y

Figure 3.15: The user’s resulting CL-privacy and LOI-privacy, as the number of distinct
hops in the queries issued by the user is varied, over 1000 trials with k = 3

(P < 0.0001). However, once again, the R2 values are low: R2 = 0.0067 and R2 = 0.0318

respectively. In other words, the user’s control over how dispersed their queries are will,

probabilistically, influence their CL- and LOI-privacy, but blind luck based on query routing

near compromised nodes is a much more important factor.

There are numerous other factors, potentially beyond the control of users of the network,

that affect the adversary’s success as well. One critical factor for the adversary is how many

nodes are compromised in the network. The more nodes that are compromised, the more

likely it is that the adversary will be able to intercept queries, learning the locations queried

and facilitating the computation of the user’s current location. This result is depicted in

Figure 3.16, showing the predictable result that increasing the number of nodes compromised

by the adversary decreases both the user’s CL- and LOI-privacy. Note, however, that

Figure 3.16 illustrates the same trend first illustrated in Figure 3.13: increasing the privacy

constant k — a constant that is entirely under the control of the user — decreases the user’s

CL-privacy but increases the user’s LOI-privacy, illustrating the trade-off between a user

88

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

C
L-

pr
iv

ac
y

1 compromised
3 compromised
5 compromised
10 compromised
15 compromised

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

LO
I-p

riv
ac

y 1 compromised
3 compromised
5 compromised
10 compromised
15 compromised

Figure 3.16: The user’s resulting CL-privacy and LOI-privacy, as the number of nodes
compromised by the adversary varies, over 1000 trials

protecting the privacy of their current location and that of their location of interest.

A property that may or may not be under the control of the user is the type of encryption

used in communication between sensors. Recall that the query proper can be encrypted end-

to-end between the user and the queried node using any number of available cryptographic

techniques. The query itself is not at issue. The issue at hand is what information the

adversary can glean from decrypting the information contained in the headers of overheard

messages. So far, we have assumed that transmissions between the nodes in the sensor

network are encrypted using a global key. Should any node be compromised, the adversary

learns the global key; then, if any query transmission is overheard, the adversary learns

the destination of that query, as well as two nodes along the path to that destination (the

transmitter and the intended recipient of the transmission). However, it is possible that

transmissions between sensor nodes are encrypted using link keys — that is, every pair

of sensor nodes in transmission range of each other share a unique symmetric key. In

this case, an overheard query per se reveals to the adversary only a single node — the

transmitter — in the path from the user’s current location to the queried location (we

must assume that the adversary can determine which node transmitted the query based on

metrics such as signal strength, timing, etc. [3]). It is only if a compromised node is the

recipient of the transmission that the adversary learns the ultimate destination of the query

(and, obviously, the recipient of the transmission). A comparison of the user’s CL- and

LOI-privacy based on whether global keys or link keys are used is illustrated in Figure 3.17;

for the purposes of comparison, an environment in which there is no broadcast transmission

(e.g., optical or wired communication [68]), and thus the adversary learns nothing unless

a compromised node is the recipient or transmitter of a message, is also included. Each

increase in “broadcast security” resulted in a significant increase (P < 0.05) to the user’s

89

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

C
L-

pr
iv

ac
y

Global key
Link keys
No broadcast

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

LO
I-p

riv
ac

y

Global key
Link keys
No broadcast

Figure 3.17: The user’s resulting CL-privacy and LOI-privacy, as the type of broadcast
encryption varies, over 1000 trials

CL-privacy, as determined by a one-way ANOVA test with Bonferroni’s multiple comparison

test on each incremental pair (i.e., from a global key to link keys, and from link keys to a

non-broadcast environment). The first increment illustrates the value to the adversary of

being able to learn more nodes along the communication path and the ultimate destination

of the communication, for the purposes of inferring from where the initial query could have

come. The second increment illustrates the ultimate value to the adversary of overhearing

anything at all. On the other hand, the first increment in “broadcast security” resulted in

a significant increase to the user’s LOI-privacy (P < 0.05), but the move from link keys to

a non-broadcast environment did not (P > 0.10). In other words, being able to decipher

the ultimate destination of an overheard query that a compromised node is not routing is

helpful to an adversary in determining the user’s location of interest, but an overheard query

where the adversary cannot decrypt the final destination is practically meaningless towards

that goal.

Similar to the type of encryption used in the sensor network, the type of routing used also

may or may not be under the control of the user. Here we compare the two types of routing

described in Section 3.4.1: fixed shortest-path and random shortest-path routing. In both

cases, a query sent from the user’s current location to the query destination will arrive in the

fewest number of hops possible; however, in fixed shortest-path routing, a query sent between

those two locations will always take the same path, whereas in random shortest path routing

it could potentially take many different paths. The results are illustrated in Figure 3.18.

Switching to random shortest-path routing significantly improved the user’s CL-privacy, as

the adversary could not ascertain the origin of a query as easily from an overheard message.

Obviously, when using a global encryption key, the type of routing used had no effect on

90

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

C
L-

pr
iv

ac
y

Fixed shortest path
Random shortest path

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

LO
I-p

riv
ac

y

Fixed shortest path
Random shortest path

Figure 3.18: The user’s resulting CL-privacy and LOI-privacy, as the routing algorithm used
in the sensor network varies, over 1000 trials with a global key

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

C
L-

pr
iv

ac
y

Fixed shortest path
Random shortest path

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

LO
I-p

riv
ac

y

Fixed shortest path
Random shortest path

Figure 3.19: The user’s resulting CL-privacy and LOI-privacy, as the routing algorithm used
in the sensor network varies, over 1000 trials with link keys

the user’s LOI-privacy. However, the question remains: if link keys were used instead of a

global key, creating a situation in which the adversary could overhear query messages but

not learn their destination, would implementing random shortest-path routing increase the

user’s LOI-privacy by making it more difficult for the adversary to narrow down possible

destinations for overheard messages? We repeated the previous experiment, this time using

link keys; the results are presented in Figure 3.19. Again, there was no distinction between

the LOI-privacy results whether fixed shortest-path or random shortest-path routing were

used — in essence, being able to easily guess potential destinations for overheard but non-

decrypted packets is not highly important to the adversary.

3.8 Experimental Results with Mobility

Until now, we have run experiments in a uniform, featureless environment, in which

PG (C = N) = PG (L = M | C = N) = 1
|N | for all nodes N and M in the network. How-

91

ever, for a real sensor network in an urban environment, some sensor nodes will be located

at more population locations than other nodes.

To generate such a rich environment, we returned to DBS3 and the maps of Edmonton

and Fira first presented in Chapter 2. We placed sensor nodes centred on both maps in a

grid pattern with 100 m spacing, yielding 112 nodes on the Edmonton map and 84 nodes on

the Fira map. On both maps, we initialized a 10-million-agent simulation, and computed

the closest node to each agent. We then set

PG (C = N) =
ν0(N)

10000000

for each N ∈ N , where ν0(N) is the number of agents for whom N is the closest node at

time zero. We also set PG (L = M | C = N) = PG (C = M) for each M ∈ N . In other

words, the probability that a node is either the current location or the location of interest

is proportional to the amount of pedestrian traffic near it. As before, the user’s current

location is chosen proportional to PG (C = N), the user’s real location of interest to be

queried is chosen proportional to PG (L = M | C = N), and the k − 1 fake queried locations

are chosen uniformly at random (as previously mentioned in Remark 3.15, this behaviour

is equivalent to a random partitioning scheme).

To determine how beneficial this statistical data is to an adversary, we compared the

statistically rich environments of Edmonton and Fira to otherwise equivalent environments

in which PG (C = N) = PG (L = M | C = N) = 1
|N | for all nodes N,M ∈ N . As in the

previous section, message headers between sensor nodes are encrypted using a global key that

has been compromised by the adversary. The adversary has compromised 10 of the nodes

in the network, and is using them to eavesdrop on communications. The user issues queries

into the network from their current location, and the adversary attempts to determine the

user’s current location and real location of interest. Because of the higher variance LOI-

privacy results in the statistically rich environment, we increased the number of trials from

1000 (used in the previous section) to 5000.

The results of this experiment are illustrated for the Edmonton map in Figure 3.20

and for the Fira map in Figure 3.21. As evident from those graphs, both the user’s CL-

and LOI-privacy fell considerably when this additional statistical data was available to

the adversary. Notably, LOI-privacy was more seriously affected than CL-privacy by this

92

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

C
L-
pr
iv
ac
y

Uniform
Mobility-biased

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

LO
I-p
riv
ac
y

Uniform
Mobility-biased

Figure 3.20: The user’s resulting CL-privacy and LOI-privacy, in the statistically rich versus
uniform environments, over 5000 trials in Edmonton

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

C
L-
pr
iv
ac
y

Uniform
Mobility-biased

2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

LO
I-p
riv
ac
y

Uniform
Mobility-biased

Figure 3.21: The user’s resulting CL-privacy and LOI-privacy, in the statistically rich versus
uniform environments, over 5000 trials in Fira

additional information, because the random partitioning scheme potentially resulted in low-

probability LOIs being grouped with the user’s real LOI. Also, note that both privacy

measures were affected more seriously in Fira, which is more complex from a Space Syntax

standpoint, and has more popular central thoroughfares.

Another situation that could possibly benefit the adversary is if the adversary knows

that the user is walking from their current location to their location of interest in the near

future. In this way, the user’s current location would affect the probabilities that the various

nodes in the network are the user’s real location of interest, i.e., PG (L = M | C = N) for

N,M ∈ N . To generate this even richer world, we advanced the 10-million-agent simulation

to some time t ≥ 0. Keeping

PG (C = N) =
ν0(N)

10000000
,

93

we now set

PG (L = M | C = N) =
νt(N,M)

ν0(N)

for each N,M ∈ N , where νt(N,M) is the number of agents for whom N is the closest node

at time zero and M is the closest node at time t.

To motivate that this additional short-time-horizon information could assist the adver-

sary, consider an adversary who, in the absence of any network communication, wants to

predict the user’s location at some time t ≥ 0. Lacking any information about the user to

utilize, the adversary would just guess the most popular location on the map is the user’s

location, guessing successfully with probability maxN∈N PG (C = N). Compare that adver-

sary to one who wants to predict the user’s location at time t ≥ 0, but also has access to an

oracle that reveals the user’s location at time t = 0. Such an adversary could successfully

predict that user’s location with probability

∑
N∈N

[
PG (C = N) · max

M∈N
PG (L = M | C = N)

]
.

These two adversaries are compared on the Edmonton map in Figure 3.22 and on the Fira

map in Figure 3.23. The more complex Fira map with few thoroughfares leads to a higher

baseline success rate for the adversary without an oracle than in Edmonton, and the natural

inclination of pedestrians to move towards and stay on those thoroughfares results in the

oracle-possessing adversary’s success rate declining towards the baseline more quickly than in

Edmonton. However, in either case, the adversary with the oracle has a clear advantage over

the adversary without the oracle up to a time threshold of t ≈ 10–15 (where t is measured

in minutes).

To further investigate this concept of a time threshold, we reran the previous k-query

experiment on the Edmonton and Fira maps. This time, however, we assumed that the

user is travelling from their current location to their location of interest — i.e., we used the

richer definition of PG (L = M | C = N), for some chosen time threshold t between when

the user sends their k queries and when they arrive at their real location of interest. The

resulting CL- and LOI-privacy for the user in Edmonton, over varying time thresholds, is

illustrated in Figure 3.24; the results of the same experiment in Fira are in Figure 3.25.

Counter-intuitively, for small t values, the user’s CL-privacy is higher than at larger

94

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

Pr
ob

ab
ili

ty
 o

f g
ue

ss
in

g
us

er
's

lo
ca

tio
n

If location at time 0 is known
If no location is known

Figure 3.22: The success rate of an adversary predicting a user’s location at time t ≥ 0 with
and without an oracle revealing the user’s location at time t = 0, in Edmonton

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

Pr
ob

ab
ili

ty
 o

f g
ue

ss
in

g
us

er
's

lo
ca

tio
n

If location at time 0 is known
If no location is known

Figure 3.23: The success rate of an adversary predicting a user’s location at time t ≥ 0 with
and without an oracle revealing the user’s location at time t = 0, in Fira

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

C
L-

pr
iv

ac
y

k=2
k=3
k=4
k=5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

LO
I-p

riv
ac

y

k=2
k=3
k=4
k=5

Figure 3.24: The user’s resulting CL-privacy and LOI-privacy, when the user queries their
location of interest at varying times before arriving at it, over 5000 trials in Edmonton

95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

C
L-

pr
iv

ac
y

k=2
k=3
k=4
k=5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

LO
I-p

riv
ac

y

k=2
k=3
k=4
k=5

Figure 3.25: The user’s resulting CL-privacy and LOI-privacy, when the user queries their
location of interest at varying times before arriving at it, over 5000 trials in Fira

t values. Consider the case where, for t = 0, one of the queried locations is guaranteed

to be the user’s current location, effectively decrementing k from the point of view of the

adversary’s ability to intercept the user’s messages. Assuming that the user’s CL-privacy

has plateaued by t = 15 (based on the oracle experiment), we performed a one-way ANOVA

test with Bonferroni’s multiple comparison test between the user’s CL-privacy at t = 15

and each previous time (i.e., comparing t = 0 to t = 15, t = 1 to t = 15, etc.). In Edmonton

using k = 3, there was no significant difference (P > 0.05) in the CL-privacy at any time

4 ≤ t ≤ 14 and the CL-privacy at t = 15. Similarly, in Fira using k = 3, there was no

significant difference (P > 0.05) in the CL-privacy at time 3 ≤ t ≤ 14 and the CL-privacy

at t = 15. Based on these results, we conclude that any benefit to the user’s CL-privacy

from a small t threshold from query to arrival has vanished by 4 and 3 minutes respectively

on the Edmonton and Fira maps when k = 3.

Regarding the LOI-privacy results, recall from Section 3.7 the fundamental trade-off

between the privacy of the user’s current location and that of their location of interest:

as k increases, the user’s LOI-privacy increases at the cost of their CL-privacy. However,

recall Lemma 3.2, which states that when the adversary knows the user’s current location

is their real location of interest (e.g., in this experiment when t = 0), the resulting CL-

and LOI-privacies are identical. This apparent paradox is visible in the LOI-privacy graphs

wherein the lines representing the various k values cross as t increases, before plateauing.

These graphs tell us that, when the adversary knows that the user’s real LOI is at or near

their current location, the LOI-privacy metric is really measuring the privacy of the user’s

current location. Similar to the ANOVA and Bonferroni results on CL-privacy, there was

96

no significant difference (P > 0.05) between the user’s LOI-privacy at any time 10 ≤ t ≤ 14

and at time t = 15 in Edmonton using k = 3; the same holds true in Fira using k = 3 for

any time 6 ≤ t ≤ 14.

From these results, we can conclude that if a user is travelling from their current location

to their real location of interest, they should send their k queries long enough in advance of

embarking to mitigate any advantage the adversary has in predicting the user’s real LOI.

How long is “long enough” will depend on the map in question and the number of queries

sent. However, “long enough” in our experiments was a surprisingly short period of time,

e.g., a mere t = 10 minutes when using k = 3 on the Edmonton map.

3.9 Conclusions

In this chapter, we presented a user-controlled methodology for preserving the privacy of

the user’s location of interest in a wireless sensor network: issuing k queries instead of just

one. This methodology does not require any special security measures in the sensor network

itself (as opposed to, e.g., onion routing). There is a direct trade-off between preserving the

privacy of the user’s location of interest and the privacy of their current location, controlled

by the user’s choice of the security constant k, i.e., the number of queries sent by the user.

The presence of user mobility data, reflecting the popularity of different locations, gives

the adversary a significant advantage in determining a user’s current location and location of

interest, relative to an adversary operating in a featureless, uniform environment. It is even

more difficult for users moving from their current location to their location of interest to

preserve their privacy; however, those users can mitigate this advantage of the adversary by

leaving a long enough time between their query and their arrival at the location of interest.

Future work on this scheme should seek network partitioning schemes that yield guar-

antees of area-of-interest privacy and/or location-of-interest privacy while still satisfying

the closure requirement. In particular, satisfying the closure condition in the presence of

unequal location popularities may be a substantial challenge.

97

Chapter 4

Conclusions

We began this dissertation by presenting a novel and highly accurate generative mobility

model for outdoor urban environments. This generative model, based on the concept of

Space Syntax, is unlike existing realistic generative mobility models in that it takes only an

unannotated map as input. No map tagging or labelling is required, because agents choose

their destinations based on the physical features of the map itself — specifically, based on

centrality bias and distance decay. The new MEA* search algorithm introduced as part of

our implementation of this model, the publicly available Destination-Based Space Syntax

Simulator (DBS3), allows for fast and realistic runtime pathfinding. Not only do agents not

walk along fixed tracks, but they also choose paths based on how people actually perceive

distance: in terms of the number of changes in direction or the magnitude in change of

direction, as opposed to true Euclidean distance.

The lynchpin experimental result in the chapter on DBS3 was that setting the tuning

exponents for centrality bias and distance decay both to 1 yielded agent densities that were

highly correlated (R2 = 0.96096) to pedestrian densities in downtown Edmonton. The only

significant “mistake” made by DBS3 was that it was unable to predict seasonal variation

in pedestrian density around a downtown university campus. DBS3 predicted that the

area would be highly populated with pedestrian traffic, but was unable to account for

our observations of actual pedestrian traffic in Edmonton being taken at a time when the

university was between sessions.

In the second portion of this dissertation, we discussed a method of preserving the privacy

of a user’s location of interest in a wireless sensor network: querying k locations — one the

98

user’s real location of interest, and k − 1 fake locations. This method is controlled and

executed by the user, and does not require any special security measures implemented in

the sensor network. There is a direct trade-off, controlled strictly by the user’s choice of k,

between protecting the user’s location-of-interest privacy and their current-location privacy.

Operating in a non-uniform environment, i.e., one in which the popularity of the different

locations that can be queried is non-uniform (e.g., as per DBS3’s mobility model), gives a

significant advantage to an adversary who is attempting to determine the user’s current

location and real location of interest. Users moving from their current location to their

location of interest in such an environment are at an even greater risk from this adversary.

One solution for those users is a behavioural solution rather than a technical one: leaving a

long enough window of time between querying their location of interest and arriving at it.

There are two key avenues of future work, one from each half of this dissertation. Fine

tuning the centrality bias and distance decay exponents in DBS3 across a wide range of

configured spaces (e.g., other cities and other map sizes) is important to better understand

if and when the tuning parameters to DBS3 need to be adjusted. For the k-query scheme,

devising new network partitioning schemes that provide guaranteed privacy bounds for

the user’s area-of-interest or location-of-interest privacy (while still satisfying the requisite

closure security requirement) could serve to make the scheme even more useful in hostile

environments.

99

Bibliography

[1] Christer Andersson, Leonardo A. Martucci, and Simone Fischer-Hübner. Requirements
for privacy-enhancements in mobile ad hoc networks. In Proceedings of the 3rd German
Workshop on Mobile Ad-Hoc Networks, 2005.

[2] Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo-random
number generator. SIAM Journal on Computing, 15(2):364–383, May 1986.

[3] Mohamed Salah Bouassida, Gilles Guette, Mohamed Shawky, and Bertrand
Ducourthial. Sybil nodes detection based on received signal strength variations within
vanet. International Journal of Network Security, 9(1):22–33, July 2009.

[4] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy,
Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances
in network simulation. IEEE Computer, 33(5):59–67, May 2000.

[5] John Bryson and Patrick Gallagher. Secure hash standard (SHS). FIPS 180-4, March
2012.

[6] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models for ad hoc
network research. Wireless Communications and Mobile Computing, 2:483–502, 2002.

[7] Lily Chen. Recommendation for key derivation using pseudorandom functions (revised).
NIST Special Publication 800-108, October 2009.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. The MIT Press, second edition, 2001.

[9] Nick Sheep Dalton and Ruth Conroy Dalton. The theory of natural movement and
its application to the simulation of mobile ad hoc networks (MANET). In Proceedings
of the Fifth Annual Conference on Communication Networks and Services Research,
pages 359–363, 2007.

[10] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-angle path
planning on grids. Journal of Artificial Intelligence Research, 39:533–579, 2010.

[11] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th USENIX Security Symposium, pages 303–320,
2004.

[12] Michael Feeley, Norman Hutchinson, and Suprio Ray. Realistic mobility for mobile ad
hoc network simulation. In Proceedings of the 3rd International Conference on Ad-Hoc
Networks and Wireless, pages 324–329, July 2004.

[13] William Feller. An Introduction to Probability Theory and Its Applications, volume 2,
chapter XI. Wiley, New York, 2nd edition, 1971.

100

[14] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[15] Pawel Gburzynski and Ioanis Nikolaidis. Wireless network simulation extensions in
SIDE/SMURPH. In Proceedings of the 2006 Winter Simulation Conference, pages
2225–2233, 2006.

[16] Buğra Gedik and Ling Liu. A customizable k-anonymity model for protecting location
privacy. In The 24th International Conference on Distributed Computing Systems, pages
620–629, 2004.

[17] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Communications
of the ACM, 42(2):39–41, February 1999.

[18] Marta C. González, César A. Hidalgo, and Albert-László Barabási. Understanding
individual human mobility patterns. Nature, 453:479–482, June 2008.

[19] Google. Google maps. http://maps.google.com/, 2010.

[20] R.L̃. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1:132–133, 1972.

[21] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based services
through spatial and temporal cloaking. In Proceedings of the 1st international con-
ference on mobile systems, applications and services, 2003.

[22] Sariel Har-Peled and Anastasios Sidiropoulos. Clustering problem. Private communi-
cation, February 2013.

[23] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Transactions of System Science and
Cybernetics, 4(2):100–107, 1968.

[24] L.F̃. Henderson. The statistics of crowd fluids. Nature, 229:381–383, 1971.

[25] L.F̃. Henderson and D.J̃. Lyons. Sexual differences in human crowd motion. Nature,
240:353–355, 1972.

[26] Bill Hillier. Space is the machine: a configurational theory of architecture. Cambridge
University Press, 1996.

[27] Bill Hillier and Shinichi Iida. Network and psychological effects in urban movement.
Lecture Notes in Computing Science, 3693:475–490, 2005.

[28] Xiaoyan Hong, Jiejun Kong, and Mario Gerla. Mobility changes anonymity: new
passive threats in mobile ad hoc networks. Wireless Communications and Mobile Com-
puting, 6:281–293, 2006.

[29] Jessica Horning, Ahmed El-Geneidy, and Kevin J. Krizek. Perceptions of walking
distance to neighborhood retail and other public services. In Transportation Research
Board 87th Annual Meeting. National Academy of Sciences, January 2008.

[30] Wei-Jen Hsu, Kashyap Merchant, Haw-Wei Shu, Chih-Hsin Hsu, and Ahmed Helmy.
Weighted waypoint mobility model and its impact on ad hoc networks. ACM SIGMO-
BILE Mobile Computing and Communications Review, 9(1):59–63, January 2005.

[31] Jerzy W. Jaromczyk and Pawel Gburzynski. Pozdrowienia z ciechanowa. Private com-
munication, July 2012.

101

[32] Ying Jian, Shigang Chen, Zhan Zhang, and Liang Zhang. Protecting receiver-location
privacy in wireless sensor networks. In Proceedings of the 26th IEEE International
Conference on Computer Communications, pages 1955–1963, May 2007.

[33] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless
networks. Mobile Computing, 353:153–181, 1996.

[34] David S. Johnson. The NP-completeness column: An ongoing guide. Journal of Algo-
rithms, 3:182–195, 1982.

[35] Pandurang Kamat, Yanyong Zhang, Wade Trappe, and Celal Ozturk. Enhancing
source-location privacy in sensor network routing. In Proceedings of the 25th IEEE
International Conference on Distributed Computing Systems, pages 599–608, 2005.

[36] Richard M. Karp. Reducibility among combinatorial problems. In Raymond Edward
Miller and James W. Thatcher, editors, Complexity of Computer Computations: Pro-
ceedings of a Symposium on the Complexity of Computer Computations, pages 85–103,
New York, 1972. Plenum Press.

[37] Jonghyun Kim, Vinay Sridhara, and Stephan Bohacek. Realistic mobility simulation
of urban mesh networks. Ad Hoc Networks, 7:411–430, 2009.

[38] Minkyong Kim, David Kotz, and Songkuk Kim. Extracting a mobility model from real
user traces. In Proceedings of the 25th Annual IEEE Infocom Conference, April 2006.

[39] Vassilis Kostakos. Space Syntax and pervasive systems. In Bin Jiang and Xiaobai Yao,
editors, Geospatial Analysis and Modeling of Urban Structure and Dynamics, pages
31–52. Springer, 2010.

[40] Vassilis Kostakos, Tom Nicolai, Eiko Yoneki, Eamonn O’Neill, Holger Kenn, and Jon
Crowcroft. Understanding and measuring the urban pervasive infrastructure. Journal
of Personal and Ubiquitous Computing, 13:355–364, 2009.

[41] Jean-Yves Le Boudec and Milan Vojnović. Perfect simulation and stationarity of a
class of mobility models. In Proceedings of the 24th Annual IEEE Infocom Conference,
pages 2743–2754, March 2005.

[42] Javier Lopez. Unleashing public-key cryptography in wireless sensor networks. Journal
of Computer Security, 14(5):469–482, 2006.

[43] Satyajayant Misra and Guoliang Xue. Efficient anonymity schemes for clustered wireless
sensor networks. International Journal of Sensor Networks, 1(1/2):50–63, 2006.

[44] Daniel R. Montello. The perception and cognition of environmental distance: Direct
sources of information. In S.C̃. Hirtle and A˙ U. Frank, editors, Proceedings of COSIT
’97, pages 297–311, 1997.

[45] Peter Olofsson. Probabilities: The Little Numbers That Rule Our Lives. John Wiley &
Sons, Inc., 2007.

[46] Yi Ouyang, Zhengyi Le, Yurong Xu, Nikos Triandopoulos, Sheng Zhang, James Ford,
and Fillia Makedon. Providing anonymity in wireless sensor networks. In Proceedings
of the IEEE International Conference on Pervasive Services, pages 145–148, 2007.

[47] Celal Ozturk, Yanyong Zhang, and Wade Trappe. Source-location privacy in energy-
constrained sensor network routing. In Proceedings of the 2nd ACM Workshop on
Security of Ad Hoc and Sensor Networks, pages 88–93, 2004.

102

[48] John Peponis, Jean Wineman, Mahbub Rashid, S Kim, and Sonit Bafna. On the
generation of linear representations of spatial configuration. Environment and Planning
B: Planning and Design, 25(4):559–576, 1998.

[49] Pedro C. Pinto, João Barros, and Moe Z. Win. Wireless secrecy in large-scale networks.
arXiv:1102.3617 [cs.IT], February 2011.

[50] S.S̃. Ravi, D.J̃. Rosenkrantz, and G.K̃. Tayi. Heuristic and special case algorithms for
dispersion problems. Operations Research, 42(2):299–310, March-April 1994.

[51] Capt. Ross E.R̃oley. Spacing points in a three dimensional convex region for maximum
separation: a color-space application. Master’s thesis, Air Force Aerospace Medical
Research Laboratory, April 1985.

[52] Thomas J. Schaefer. Private communication with a third-party, recited, 1974.

[53] GraphPad Software. Graphpad statistics guide: the Bonferroni method.
http://www.graphpad.com/guides/prism/6/statistics/index.htm?stat_the_

bonferroni_method.htm, 2013.

[54] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits of
predictability in human mobility. Nature, 327:1018–1021, 2010.

[55] Paul G. Spirakis. Very fast algorithms for the area of the union of many circles.
Technical Report 98, New York University, December 1983.

[56] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[57] Arie Tamir. Obnoxious facility location on graphs. Society for Industrial and Applied
Mathematics Journal on Discrete Mathematics, 4(4):550–567, November 1991.

[58] Godfried Toussaint. Solving geometric problems with the rotating calipers. In Proceed-
ings of IEEE MELECON’83, May 1983.

[59] Alasdair Turner. Depthmap: A program to perform visibility graph analysis. In Pro-
ceedings of the 3rd International Symposium on Space Syntax, pages 31.1–31.9, May
2001.

[60] Christopher N. Ververidis and George C. Polyzos. A routing layer based approach for
energy efficient service discovery in mobile ad hoc networks. Wireless Communications
and Mobile Computing, 9:655–672, 2009.

[61] Ryan Vogt, Mario Nascimento, and Janelle Harms. On the trade-off between user-
location privacy and queried-location privacy in wireless sensor networks. In Proceedings
of the 8th International Conference on Ad-Hoc Networks and Wireless, pages 241–254,
2009.

[62] Ryan Vogt, Ioanis Nikolaidis, and Pawel Gburzynski. A realistic outdoor urban pedes-
trian mobility model. Simulation Modelling Practice and Theory, 26:113–134, 2012.

[63] D.W. Wang and Yue-Sun Kuo. A study on two geometric location problems. Informa-
tion Processing Letters, 29:281–286, 1988.

[64] Stephen B. Wicker. The loss of location privacy in the cellular age. Communications
of the ACM, 55(8):60–68, August 2012.

103

[65] Jean Wineman, James Turner, Sophia Psarra, Sung Kwong Jung, and Nicholas Senske.
Syntax2d: An open source software platform for Space Syntax analysis. In Proceedings
of New Developments in Space Syntax Software, pages 23–26, June 2007.

[66] Xiaojing Xiang, Xin Wang, and Yuanyuan Yang. Stateless multicasting in mobile ad
hoc networks. IEEE Transactions on Computers, 59(8):1078–1090, 2010.

[67] Yi Yang, Sencun Zhu, Guohong Cao, and Thomas LaPorta. An active global attack
model for sensor source location privacy: Analysis and countermeasures. Security and
Privacy in Communication Networks, 19:373–393, 2009.

[68] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network sur-
vey. Computer Networks, 52(12):2292–2330, August 2008.

[69] Jungkeun Yoon, Mingyan Liu, and Brian Noble. Random waypoint considered harmful.
In Proceedings of the 22th Annual IEEE Infocom Conference, pages 1312–1321, March
2003.

[70] Jungkeun Yoon, Mingyan Liu, and Brian Noble. Sound mobility models. In Proceedings
of the 9th Annual International Conference on Mobile Computing and Networking,
pages 205–216, September 2003.

[71] Jungkeun Yoon, Brian D. Noble, Mingyan Liu, and Minkyong Kim. Building realistic
mobility models from coarse-grained traces. In Proceedings of the 4th International
Conference on Mobile Systems, Applications, and Services, pages 177–190, June 2006.

[72] Lisa Zyga. Study shows how easy it is to determine someone’s identity with cell phone
data. http://phys.org/news/2013-03-easy-identity-cell.html, March 2013.

104

