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ABSTRACT

Traditional design procedures for determining the shear strength
of slender concrete beams are based primarily on empirical
relationships using an average nominal shear stress. The variable
angle truss model approach introduces a conceptual model which
provides a better understanding of the flow of internal forces and
failure mechanisms in cracked concrete beams. In 1987, a variable
angle truss model was proposed fcr use in the 1989 ACI Code. Since
the traditional concrete contribution shear transfer mechanisms were
not directly included in the proposed design procedure, the variable
angle model appeared to be unnecessarily conservative and was not
accepted. This study was carried out to develop a new concrete
contribution term which can be applied to the truss model design

procedure proposed in the ACI 1987 draft.

The basic behavior of concrete beams subjected to shear is
discussed and the ACI 318-83 procedure is briefly summarized. A
concrete contribution term for shear is derived from the Modified
Compression Field Theory. Expressions suitable for design equations
are developed for both reinforced and prestressed concrete beams.
Predictions of the proposed design procedure are compared to the
results of various experimental investigations and to predictions of
the ACI 318-83 Code. A concrete contribution expression is

recommended and suggestions for further research are given.
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NOTATION

shear span, distance between concentrated load and face of
support, or maximum aggregate size

area of an individual bar

gross area of section

cross-sectional area of prestressed reinforcement
cross-sectional area of web reinforcement

area of web reinforcement within a distance s
width of compression face of member

web width

compressive force in concrete

effective depth, the distance from extreme compression fiber to
centroid of tension reinforcement

distance from extreme compression fiber to centroid of
prestressed reinforcement

diagonal compressive force due to shear, or constant relating
the tensile strength of concrete to vf'c

modulus of elasticity of concrete

specified compressive strength of concrete
compressive stress perpendicular to the crack surface
characteristic concrete strength

stress in the concrete at cracking



allowable compressive stress in an inclined concrete strut
compressive strength of concrete cube

stress due to unfactored dead load at extreme fiber of section
where tensile stress is caused by externally apllied loads

compressive stress in concrete at the level of the centroid due
to effective prestress force

compressive stress at the tension face due to the tensile force
alone

stress in the prestressed reinforcement at nominal strength
specified tensile strength of the prestressing steel
specified yield stress of the prestressed reinforcement
stress in the reinforcement

effective prestress in the prestressing tendons after all losses
stress in the longitudinal reinforcement

principal tensile stress

normal stress caused by flexure

specified yield strength of reinforcement

specified yield strength of stirrups

design stress of the web reinforcement

average principal tensile stress

principal compressive stress in the concrete

tensile force in the compression chord reinforcement due to
shear at an average location between two cracks



F, tensile force in the compression chord reinforcement due to
shear at a crack

h overall thickness of member
I moment of inertia of section

jd  distance between the resultants of the internal compressive
and tensile forces on a cross section

K factor indicating increase in cracking shear stress due to
prestressing

length available for stirrup to develop bond between crack and
midway between cracks

M  bending moment

M. moment causing flexural cracking due to externally applied
loads

M, maximum factored moment at section due to externally
applied loads

M, predicted failure moment

M, decompression moment at transfer related to the tensile fiber
M4, maximum design moment in the span

M, measured failure moment

N.A. neutral axis

N, axial load normal to the cross section

N, axial tension force due to shear

Q first moment of area around the neutral axis
R

resistance or strength



|

mean resistance

stirrup spacing measured along the longitudinal axis of the
beam or sample standard deviation

average crack spacing perpendicular to the crack
vertical spacing of longitudinal bars
tensile force in reinforcement

shear force

component of aggregate interlock in the same plane as the
crack interface

component of aggregate interlock normal to the inclined crack
component of aggregate interlock in vertical direction

shear force carried by the concrete

predicted failure shear

shear force carried by the concrete contribution

shear strength provided by concrete when diagonal cracking
results from combined shear and moment

shear force causing web shear cracking

shear strength provided by uncracked concrete compression
zone

shear force at section due to unfactored dead load, or shear
carried by dowel action

factored shear force at section

nominal shear strength



vertical component of effective prestress force

V., factored shear resistance

V.4, shear limit to prevent web crushing failures

V, component of shear resisted by the web reinforcement
Vg4 design shear force

V,esq measured failure shear from beam test

V, factored shear force at section

V, vertical shear force

Vwq shear force carried by the truss action in the web

V, factored shear force at section due to externally applied loads
occuring simultaneously with My,

W crack width

wg factored uniform load applied to beam

<

mean value of Vg / Veac.

y distance from neutral axis to point on cross section under
consideration

y, distance from the centroidal axis of cross section to extreme
fiber in tension

z lever arm between top and bottom chords of truss model

o inclination of principal tensile stress to the longitudinal axis of
a beam or angle of compression struts in a beam web, or
inclination of a haunched beam.

a; factor to account for the effects of bond



2%]

By

factor to account for the type of loading condition

ratio of depth of rectangular stress block to depth of neutral
axis, or factor including the effect of prestressing on 1.4

factor to account for type of prestressing tendon

shear strain in the web

specified yield stress subtract stirrup stress, fy-f
longitudinal strain at mid-depth of web, tension positive
transverse strain, tension positive

principal tensile strain in the web

principal compressive strain, negative quantity

strain corresponding to peak stress of f'c, negative quantity

correction factor to account for unit weight of concrete

shear stress

concrete contribution shear stress at the crack interface which

is equivalent to a vertical shear stress acting at the section

increase in concrete contribution shear stress due prestressing

shear stress causing diagonal cracking
shear stress causing web shear cracking
nominal shear stress

maximum value of shear stress



Pb

Pv

Pw

O

®s

ratio of nonprestressed tension reinforcement = A /bd

reinforcement ratio corresponding to balanced strain conditions
ratio of prestressed reinforcement

= Av/ bw S

= A/ b, d

strength reduction factor

material resistance factor for concrete

material resistance factor for prestressing tendons

material resistance factor for reinforcement

normal stress on face of element

axial prestress

angle of compression struts in web of a beam or inclination of
principal compressive stress to the longitudinal axis of a beam

angle between the steel member and the compression strut

shear stress on face of element

function relating to the concrete quality
=Ky +Kyp

= Vg / "/Pz

= Vep / Jfc



1. INTRODUCTION

1.1 General

Traditional design procedures for shear in concrete are based
primarily on empirical relationships using an average nominal shear
stress. This average stress is used as a measure of the shear stresses
resulting from an applied shear force. However, the shear failure
mechanisms are more complex and change as the type of beam
changes. Thus, an allowable shear stress procedure is not a very
convincing model regarding the internal mechanism of shear failure.
The variable angle truss model introduces a conceptual model whick
provides a better understanding of the flow of internal forces and

the failure mechanism in a cracked concrete beam.

In the simplest truss model, the beam stirrups act as vertical
tension members resisting the entire vertical shear. The General
Method in the Canadian design code CAN3-A23.3-M841 uses this
procedure, and the nominal shear resistance is entirely provided by
the truss action supplied by the vertical web reinforcement and
inclined concrete struts. However, other mechanisms also provide
resistance to shear, including shear in the uncracked concrete
compression zone, shear transfer by aggregate interlock across the
crack, and dowel action of the longitudinal reinforcement. If this
additional shear capacity, traditionally called the “concrete
contribution” is neglected, the truss model can be unnecessarily
conservative. The Modified Compression Field Theory developed by

1



Collins and Vecchio2 considers the contribution of concrete and
aggregate interlock to shear resistance, and can be used to predict

the shear strength of reinforced and prestressed concrete beams.

1.2 Objectives and Scope

The objective of this work is to derive a new concrete
contribution "V." term for use in the General Method proposed for
the ACI Code Clause 11.4, 1987 draft3 for both reinforced concrete
and prestressed concrete in shear. The derivation will be based on
the modified compression field theory and will be chosen to be

applicable to relatively slender beams with a shear span ratio

greater than 2.5.

A major goal is to develop a final design equation that is simple
and easy to use. The total shear capacity obtained when the new
concrete contribution is added to the truss shear component should
provide strengths comparable to the existing ACI 318 Building Code?
unless there is experimentalbevidence to warrant a change. As a
result, the new method should not require more web reinforcement

than the existing simplified method which has proven to perform

satisfactorily in practice.
1.3 Organization of the Thesis

In Chapter 2 of this thesis, the basic behavior of concrete beams

subjected to shear is discussed. In addition, various models are

2



presented which describe the behavior of web-reinforced beams
subjected to shear. The ACI 318-83 design procedure is briefly
summarized.  Chapter 3 discusses several concrete contribution
expressions that have been developed by other researchers or are
used by other design codes. In Chapter 4, a new concrete
contribution term is derived using the Modified Compression Field
Theory for both reinforced and prestressed concrete beams. A
simplified design equation is also presented. Chapter 5 compares the
predictions of shear strength using the derived concrete contribution
expression, the proposed design equation, and the existing ACI
method to examine the reliability of each method. Chapter 6
presents design examples comparing the proposed design procedure
to the existing ACI Code procedure. The conclusions,

recommendations, and discussion of future research are presented in

Chapter 7.

Because this thesis proposes revisions to the ACI Code, U.S.

Customary units have been used throughout.



2. MODELLING SLENDER BEAMS FAILING IN SHEAR

2.1 Basic Considerations

The behavior of reinforced concrete in shear is complex. Several
factors contribute to this complexity, including the formation of
cracks in concrete, biaxial stress effects, and the influence of beam
and load geometry on beam behavior.  Consequently, the post
cracking behavior of reinforced concrete beams is not identical for all
types of members, and there are various independent parameters

involved in determining the shear strength of a beam.

Since no universally-applicable or universally-accepted theory
exists for beams failing in shear, several rational models for
evaluating the shear strength of concrete beams have been proposed
in recent years. Prior to developing a new expression for the
concrete contribution to the shear strength of concrete beams, the
lack of a generally accepted theory necessitates a discussion of the
basic shear carrying actions and their simulation in models. The
general behavior of concrete beams subjected to shear and various

shear design models are briefly presented in the following sections,

2.1.1 Shear Stresses in Elastic Beams

Examination of an elastic rectangular beam subjected to shear
provides a useful background to examining shear behavior in
cracked concrete beams. Figure 2.1 shows a typical rectangular
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beam subjected to a single point load at midspan. Internal moments
and shears are developed to resist the applied load and maintain
equilibrium of every segment in the beam. From elementary
mechanics of materials, where stresses are proportional to strains,
the shear stress v is given by

vQ
b

V= ——

I (2.1)

where V is the total shearing force at the section investigated, Q
equals the first moment of the section above the point Where shear
stresses are being calculated, I is the moment of inertia of the entire

section about the neutral axis, and b is the beam width.

The flexural stress fy in a beam at any point located a distance 'y’
from the neutral axis can be determined from the flexare formula as

M
=My
(2.2)

where M is the bending moment, with a magnitude less than or equal

to the cracking moment of the section. The flexural stresses are

distributed as shown in Figure 2.1b.

Except at the extreme fibers of the beam, elements located away
from the neutral axis are subject to both shear and bending stresses.
The state of stress at each point can be resolved into equivalent

tensile and compressive principal stresses. The principal tensile



stress f; can be determined from Mohr's circle of stress, which is
widely used for stress transformations as shown in Figure 2.2. The
two principal stresses act on orthogonal or mutually perpendicular
planes, and no shear stresses exist simultaneously with either one of
these stresses. The principal tensile stress acting on a plane inclined

at an angle 0 to the longitudinal axis of the beam can be expressed as

2
f[= (_f_’i) +Vv - .f_’ﬁ
2 2 (2.3)
tan 20 =2f3
x (2.4)

where fy is expressed as a positive quantity in compression.  From
these equations it is evident the magnitude and inclination of
principal stresses are affected by flexural stresses. Curves can be
drawn parallel to the direction of principal stresses. These curves,
known as stress trajectories, indicate the directions of principal
stress, and form a set of orthogonal curves since the principal
stresses are mutually perpendicular at any point. A typical example

is illustrated in Figure 2.1c.

Prior to the formation of cracks, the distribution of shear stress in
a plain rectangular concrete beam without reinforcement will be
similar to that derived for a homogeneous elastic beam as shown in
Figure 2.1b. The shearing stresses will have a parabolic distribution,

and when integrated over the cross section will equal the total
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vertical shear. For a rectangular beam, the maximum shear stress is

given by

15V
Vmax™ "ph (2.5)

The average shear stress is equal to:
bh (2.6)

Materials that are weak in tension, such as concrete, tend to form
inclined cracks at right angles to the principal tensile stresses as
illustrated in Figure 2.1d.  After the first crack forms, internal
stresses must redistribute, thus altering the original assumed stress
distribution. The formation of a crack in a plain concrete beam will
immediately cause failure. Cracking is usually initiated at the
extreme fiber in the flexural tension zone, where large tensile
stresses exist. If a beam has tension reinforcement, further loading
is possible beyond the initiation of flexural cracking. In a cracked
concrete beam, the concrete below the neutral axis is assumed to
carry no tensile stresses, and the longitudinal reinforcement supplies
the entire tensile force required for equilibrium.  Providing shear
stresses are transmitted across the crack, the average shear stresses
between two cracks will be distributed as shown in Figure 2.3. Since
there is no variation in horizontal shear throughout the tensile zone,
the average shear stresses remain constant in this region and no

shear stresses exist below the longitudinal reinforcement. From
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Figure 2.3, equating internal moments on each side of a beam
segment between two cracks and examining the horizontal shear

flow gives the average shear stress in the tension zone as

Ve
bjd (2.7)

A shear stress expressed in this manner gives a general measure of
the average shear stresses resulting from a shear force. However,
the elastic analysis considered in this section provides only a basic
understanding of shear stresses. Reinforced concrete is not an
elastic, homogeneous material, and in its ultimate state the actual
behavior and shear resistance mechanisms in a concrete beam are

more complex, and will be discussed in subsequent sections.
2.1.2 Principles of B and D Regions

The principal stress trajectories for the rectangular beam in
Figure 2.1d are not specifically shown at the supports or at the point
of load application because the stress trajectory pattern is severely
disturbed in these regions. A relatively new concept in the design of
concrete structures is the division of a structure into separate design
regions based on the type of load path and strain distribution, as
presented by Schlaich et al>. Those portions of a beam in which
plane sections remain plane are referred to as B-regions, where B
denotes beam or Bernoulli. At discontinuous or disturbed regions of

a beam such as corners, openings, or concentrated loads, plane

11



sections do not remain plane and the behavior is very different than
in B-regions. These discontinuous portions of a beam are designated

D-regions. Figure 2.4 shows beams with both D and B regions.

D regions, which extend about one member depth on each side of
a discontinuity, transfer load by in-plane forces such as arch action.
As a result, D-regions tend to be stronger than B-regions. Slender
concrete beams generally maintain linear strains over most of their
length and are governed by beam theory or B-region behavior.
Stresses in uncracked B regions are easily determined from cross-
sectional forces and member properties. The post-cracking behavior
of these regions can be determined from truss models, as will be
discussed in later sections. The traditional Pratt truss beam model is
generally not applicable to D-regions, or in members in which this
behavior dominates, such as corbels, brackets and deep beams.
These relatively short and deep members can have different failure
modes as compared to slender beams, and require special attention
to anchorage, bond, bearing and serviceability details. Strut and tie
or truss models developed for the load carrying mechanisms in D-
regions are very dependent on the beam geometry and location of

loads, and members in which this behavior dominates will not be

further considered.

2.1.3 Shear Cracking

As noted previously, inclined cracks will form in a concrete beam
when the principal tensile stress reaches the cracking stress. These

12
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cracks may develop in the webs of reinforced or prestressed concrete
beams as flexure-shear cracks or web-shear cracks. Flexure-shear
cracks form as extensions of or are affected by existing flexural
cracks, and are the most common type of inclined cracking exhibited
by concrete beams. In contrast, web-shear cracks form
independently of any flexural cracks and originate near the centroid
of a member. Web-shear cracks generally occur only in prestressed

thin webbed concrete I beams, and are observed relatively rarely.

The principal tensile stress causing web shear cracking is easily
determined by examining the state of stress at the centroid of a

member, as shown in Figure 2.5. If the concrete cracks when the

principal tensile stress f; reaches the cracking stress fcr, Eqn. (2.3)

becomes
2
f 2 f

far= (%) v -—52 (2.8)

or
f
—-F e
Ve =fer 1+ F (2.9)

where fpc is the compressive stress at the level of the centroid and is
expressed as a positive quantity and vgr is the shear stress that will
cause diagonal cracking. From correlations with several test results,
the ACI Code suggests the principal tensile stress at web shear

cracking be taken as 4Vfc psi (0.33Yfc MPa) . Therefore, the shear

stress to cause web shear cracking vqy can be found from Eqn. (2.9)
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as

f
=4Vfcq/ 1+—2= psi
Vow ¢ Yore P (2.10)

Egn. 2.10 can be approximated by a linear expression as given by

Eqn. 2.11 which is utilized in ACI-318-83.

Vo= 3.5YFC +0.3f,;  (psi) (2.11)
or
Vew=(3.5Yfc +0.3f,) byd  (Ibs) (2.11b)

Predicting the onset of flexure-shear cracking is a complex
problem due to the effects of previously formed flexural cracks. The
stress distribution and stress trajectories for an uncracked beam
cannot be applied, and the principal stresses near the flexural crack
tips initiate diagonal shear cracking. As a result, empirical equations
are generally derived to estimate the flexure-shear cracking stress.
The ACI Code presents the following expression for the shear at

flexure-shear cracking in prestressed concrete beams:

VINIcr
Mmax (2.12)

V.i=06+fcb,d+Vy+

ACI Eqn. 11-11

where M is the flexural cracking moment, V,/Mp,, is the shear to

moment ratio, and V{q is the shear force due to the unfactored dead
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load. Tests indicate Vi obtained using Eqn. 2.12 need not be taken
less than 1.7 +fc byd. Flexure-shear cracking is most often
observed in beam tests adjacent to point load locations, where both
the bending moment and shear force are at their maximum values.
On the other hand, the bending moment and shear force distribution
for a beam with distributed loads would cause the location of crack
initiation to shift towards the support, where web-shear cracking

may predominate.
2.1.4 Function of Shear Reinforcement

Inclined cracks occur along the principal stress trajectories as
shown in Figure 2.1d. The behavior and opening of the cracks is
influenced by several factors, including the amount and location of
both web reinforcement and longitudinal reinforcement. The
horizontal component of crack opening is resisted by the longitudinal
flexural reinforcement. Vertical web reinforcement must be
provided to restrain the vertical component of the crack opening and
assist in maintaining aggregate interlock. In addition to restricting
the growth of inclined cracks, the vertical web reinforcement
transfers vertical shear forces across the cracks. Although the main
purpose of web reinforcement is to provide additional shear
strength, it also improves serviceability and provides additional
ductility to reinforced concrete beams. Also, stirrups can increase
the shear resistance provided by dowel action, since the longitudinal
bars are supported and tied in place. Shear reinforcement is usually

provided by either stirrups or bent bars, in combination with the
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longitudinal reinforcement in the beam. In North America, vertical

stirrups are used predominantly and bent bars or inclined stirrups

are used only rarely.
2.1.5 Modes of Shear Failure

Shear strength is often investigated by testing simply supported
rectangular beams subjected to symmetrical two point loading. The
advantage of this testing arrangement is that it provides an almost
constant shear force in the end portions of the beam. Tests
performed on beams without web reinforcement having constant
cross-section have indicated the mode of failure is highly dependent
on the shear span ratio a/d. The dependance of shear strength on
the a/d ratio is clearly shown in Figure 2.6. The shear stress causing
diagonal cracking is not influenced strongly by the a/d ratio, but at
small a/d ratios the ultimate shear capacity increases substantially
beyond the initial cracking shear. The difference in behavior shown
in Figure 2.6 suggests beams be divided into four categories,

typically referred to as very short, short, slender, or very slender

beams.

Beams with short or very short shear spans are commonly
referred to as deep beams, and their behavior is dominated by D-
region behavior. Very short shear spans, having a/d<l, develop
diagonal cracks connecting the support to the load point, and resist
load by arch action. The tied arch system provides considerable

reserve strength after inclined cracks form. Failure can occur by
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crushing of the concrete compression strut, or more commonly by
yielding or loss of anchorage in the longitudinal reinforcement

tension chord as shown in Figure 2.7.

Relatively short shear spans, with a/d from 1 to 2.5, also exhibit
some reserve strength after inclined cracking. Internal forces
redistribute after cracking, permitting further increases in load.
Failure may occur either by loss of bond in the tension reinforcement
described as a "shear-tension" failure, or by concrete crushing above
the crack, commonly referred to as a "shear-compression” failure, as
shown in Figure 2.8. Failure of short shear span beams usually
occurs prior to the attainment of the flexural capacity, because

inclined cracks generally extend higher into the compression zone

than flexural cracks.

Most practical beams are slender beams having a/d ratios from
approximately 2.5 to 6, which transmit shear primarily by beam
action or B-region behavior. In slender beams without web
reinforcement, flexural cracks form prior to any diagonal cracks,
however when inclined flexure-shear cracks develop, equilibrium
cannot be maintained and failure occurs suddenly without warning.
This type of failure is referred to as diagonal-tension failure. Failure
of slender beams without web reinforcement occurs at the onset of
inclined cracking, and only for small shear spans is the ultimate load
greater than the flexure-shear cracking load. Very slender beams,
with a/d greater than approximately 6, are characterized by flexural

failures prior to inclined cracking, and are able to attain their full
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flexural capacity. As a result, the ultimate strength of very slender

beams is not affected by shear.

In prestressed concrete beams without web reinforcement,
flexural cracking is delayed due to the effects of longitudinal
compressive stresses increasing the flexural stress necessary to cause
cracking. Prior to failure, a considerable portion of a prestressed
beam may remain uncracked in flexure. Slender prestressed
members without web reinforcement fail primarily by two modes,
either flexure-shear cracking, where an inclined crack grows from or
is influenced by a flexural crack, or by web-shear cracking where the
principal tensile stress in an uncracked web reaches the tensile
capacity of the concrete. Either type of cracking is followed by
failure due to crushing of the concrete above the crack, shearing of
the compression zone, loss of anchorage of the tensile reinforcement
or possibly crushing of the concrete web. Since prestressed concrete
members often have cross sectional shapes with compression flanges,
the propagation of inclined cracks into the compression zone may be
postponed, thus delaying shear-compression type failures.
Anchorage failures can occur in prestressed concrete beams,

particularly when pretensioned strands are used and a crack forms

in the vicinity of the support.

Since the shear failure modes of concrete beams without web
reinforcement are very sudden and without warning, web
reinforcement is provided in beams to eliminate the "trough” shown

in Figure 2.6, such that a beam will fail in flexure prior to failing in
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shear. This design philosophy is particularly important in slender
beams, where the formation of an inclined crack can cause
immediate failure if no web reinforcement is provided. Shear
reinforcement is designed to yield prior to reaching the ultimate
shear capacity in order to provide some ductility as compared to the
other shear failure modes.  Another possible failure mode for
concrete beams with web reinforcement is crushing of the web
between two cracks. This is known as a web crushing failure, and
only occurs in thin-webbed I beams. In members without web
reinforcement and large compression flanges, an inclined crack may
extend along the web flange junction until local flange instability

causes failure. The presence of web reinforcement across this

junction tends to stabilize the flange.

Provided the web reinforcement yields, failure of a beam with
shear reinforcement will generally be more gradual than a beam
without, due to the ductile load-deflection response of the
reinforcement. If an insufficient amount of shear reinforcement is
provided, formation of an inclined crack may cause immediate
yielding of the reinforcement resulting in a sudden failure, although
this mode of failure is not well documented. If an excess of web
reinforcement is provided, the beam may fail due to web crushing
prior to yielding of the web reinforcement. Due to its brittle nature,

this is an undesirable failure mode.
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2.1.6 Basic Mechanisms of Shear Transfer

Figure 2.9 shows the free body diagram of a reinforced concrete
beam at an inclined crack location, and identifies several shear

transfer mechanisms. The uncracked concrete in the compression

zone provides a shear resistance V¢z. The longitudinal reinforcement
resists vertical shear transverse to its axis by dowel action V4. Vg,
the component of shear resisted by the web reinforcement, if any, is
provided by tension in the stirrups. Aggregate interlock, Vg, is the
result of relative movement or slip between the rough and

interlocked crack surfaces. As shown in Figure 2.10, aggregate

interlock includes two components, Vap normal to the inclined crack

and V,j in the same plane as the crack interface.

In a beam with web reinforcement, all of the shear transfer
mechanisms participate in the redistribution of internai forces after
the formation of a crack as shown in Figure 2.11. As a crack widens
upon increasing load, the aggregate interlock component of shear
decreases, and dowel action will become ineffective as splitting
cracks form along the longitudinal reinforcement. Consequently, the
proportion of shear transferred by the various shear mechanisms

varies for different stages of loading.

In providing shear strength, the dominance of particular shear
transfer mechanisms changes for different types of beams. For
slender concrete beams without shear reinforcement, the aggregate

interlock and dowel force substantially diminish with increased crack
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width until the entire vertical shear is resisted by the concrete
compression zone above the crack. Failure of this region under
increased load may be very sudden and brittle. Therefore, as noted
previously the shear strength of slender beams without shear
reinforcement is generally assumed to be reached when the first
crack forms. In contrast, deep beams without web reinforcement

develop arch action after inclined cracking, and can have substantial

post-cracking shear strength.

Concrete members with shear reinforcement continue to carry
shear forces after the formation of a diagonal crack. Following
inclined cracking, the proportion of shear carried by web
reinforcement will continuously increase until the shear
reinforcement yields, as shown in Figure 2.11. After it yields, other
shear transfer mechanisms must provide the additional shear
resistance required under increasing applied loads. Final failure will
generally occur due to splitting along the longitudinal reinforcement

or crushing of the compression zone above the crack. Gencerally

failure occurs soon after the stirrups yield.
2.2 Traditional Truss Models for Concrete Beams

As noted previously, an element at the neutral axis of a concrete
beam is subjected to shear stresses. Pure shear stresses produce
tensile and compressive stresses in the element acting at 45° to the
neutral axis as shown in Figure 2.2. Since concrete is weak and

cracks in tension, reinforcement is provided to equilibrate the tensile
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forces, while the concrete is capable of resisting the compressive
stresses.  This development of tension and compression fields
suggests a reinforced concrete beam could be modelled as a truss,
with web reinforcement acting as tension members and portions of
concrete between the cracks acting as diagonal compression
members. The flexural compression zone provides the required
compression chord while the longitudinal tensile reinforcement acts

as a bottom tension chord as illustrated in Figure 2.12.

At the beginning of the century, Ritter6 and Morsch7
independently developed truss analogies for cracked reinforced
concrete beams. Ritter visualized diagonal concrete struts acting
from the top of one stirrup to the bottom of the next. Morsch
introduced the concept that inclined compression fields, not discrete
diagonal compressive struts, can be used to model the flow of forces
in a cracked concrete beam. In its simplest form, several stirrups are
collected into one vertical tension member, and various inclined
concrete struts are combined into one diagonal member as shown in
Figure 2.13b. This model assumes that after cracking the diagonal
compression stresses remain at 45°. Although Morsch recognized the
possible reorientation of the principal compressive stress and the
flatter inclination of crack angle that occurs as loading progresses, he

recommended use of the 45° truss model as a conservative approach

in design.

The traditional truss model is used to investigate equilibrium of

the applied loads, reactions, and internal forces in a beam. In order
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to ensure the truss is capable of resisting the applied loads, the
stresses in the reinforcement, the uniaxially stressed concrete struts,
and the pinned connections must be examined. The truss shown in
Figure 2.13 is statically determinate. Alternatively, if a truss with
closely spaced stirrups is considered it will be statically determinate
if all the stirrups are assumed to yield. From the free body diagram

shown in Figure 2.14 the force in one stirrup is calculated as

Agfy=2S
jd (2.13)
V___Avijd
or s (2.13b)

where V is the vertical force acting on the section, Ay is the total
cross sectional area of web reinforcement within the distance s, and

jd is the internal lever arm.

From Figures 2.14b and 2.l4c, the shear force V can be resolved
into a diagonal compression force D and a horizontal force. For a 45°
truss the horizontal force will be equal to V. In other words, the
horizontal component of the diagonal force must be resisted by an
equal tensile force in the longitudinal reinforcement. If the shear
stresses are uniformly distributed over an area bwjd, then a tensile

force of V/2 acts on both the top and bottom chords of the truss, as

shown in Figure 2.14b.
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Although analysis of the traditional pin-jointed truss is very
simple, it neglects the effects of the uncracked concrete in the
compression zone, dowel action, tensile stresses in the concrete
between and cracks, and aggregate interlock on the crack surfaces.
Since these mechanisms can provide a significant portion of the total
shear resistance, the traditional truss model can be modified to
include their effects and account for the flatter inclined cracks that
form in actual concrete beams. In the ACI Code, the conservatism of
the traditional 45° truss model is accounted for by adding an
empirical correction term, commonly referred to as the concrete

contribution. The ACI shear design procedure will be discussed in

the following section.

2.3 ACI 318-83 Shear Design Procedure

2.3.1 Reinforced Concrete

The ACI Code is based on the 45° truss model, with an empirical
correction to account for the conservatism of the model. The ACI
Code does not consider a whole member approach where an entire
beam is visualized as a truss, but instead derives a sectional
approach from the basic truss concepts, where any section of a beam

can be examined independently of other portions. In the ACI Code,

the nominal ultimate capacity of a concrete beam V, must be greater

than or equal to the factored shear force Vy such that the following

relation is satisfied:
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Vy<6Vp (2.14)

ACI Eqn 11-1

where ¢ is a strength reduction factor equal to 0.85 for shear. The

nominal shear resistance Vp is equal to the sum of two components,

namely

Vn=Vc+Vs (2.15)

ACI Eqn 11-2

where V. is the shear carried by the concrete and Vg is the strength

contributed by the web reinforcement.
2.3.1.1 Shear Strength Provided by the Reinforcement

The ACI Code expression for Vg, the shear strength provided by
the web reinforcement, is obtained by examining a segment of a
concrete beam isolated by an idealized straight diagonal crack. See
Figure 2.15. The horizontal projection of the crack is assumed equal
to the effective depth d, suggesting the crack angle is slightly less
than 45°. If web reinforcement is assumed to yield as the ultimate

shear strength is reached, the shear resisted by vertical stirrups is

Vs-___A,,fxd

§ (2.16)

ACI Egn 11-17
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Eqn. 2.16 is similar to Eqn 2.13 obtained from the simple truss
model, excep: ‘hat the ACI Code assumes the lever arm is equal to

the effective depth.

Shear reinforcement is required whenever the effect of the
factored loads exceeds the resistance provided by the concrete. In
the 1950's, Elstner and Hogne:stad8 illustrated the hazards of using
concrete beams without shear reinforcement. Since many members
experience brittle shear failures after the formation of the first
diagonal crack, ACI Sec. 11.5.5.1 requires a minimum amount of

shear reinforcement wherever

V26 Ve/2 (2.17)

except for slabs, footings, concrete joists, and certain categories of
wide and shallow beams. These members are assumed to be able to
redistribute internal forces before a diagonal tension failure occurs,

and are therefore excluded from the minimum web reinforcement

requirement.

ACI Sec. 11.5.5.3 specifies the minimum area of shear

reinforcement for nonprestressed members as

bys

A,=50 2
fy (2.18)

ACI Eqn 11-14

33



Satisfying this minimum web steel requirement is equivalent to the
reinforcement providing a nominal shear stress of 50 psi ( 0.34 MPa)

acting on the beam web.

In order to ensure that the web reinforcement yields prior to a
shear compression failure or brittle web crushing failure, ACI Sec.

11.5.5.8. places an upper limit on the amount of shear reinforcement

as

VS(maX)=8"/FEbwd (2.19)

This equation also guards against excessive crack widths at service

loads.

Prior to inclined cracking, web reinforcement is subjected to only
minimal strains, and does not become effective until after diagonal
cracking has taken place. Stirrups are therefore ineffective if not
crossed by a crack. As a result, ACI Sec. 11.5.4.1 places a limit on the
maximum spacing of vertical shear reinforcement as the smaller of
d/2 or 24 inches (600 mm) for vertical stirrups. This Code limitation
is based on the assumption of a 45° inclined crack, thus ensuring at
least one stirrup will intercept the crack.  Although Eqn. 2.19
provides a general serviceability check on crack widths, cracks that
widen under high stresses are best restrained by closely spaced and
properly detailed reinforcement. Therefore, when the factored shear
resistance provided by the web reinforcement Vg exceeds 4»/?'_c_bw d,

ACI Sec. 11.5.4.3 requires the maximum spacing for vertical stirrups
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be reduced to d/4 or 12 inches (300mm).

As noted previously, it is desirable to ensure the web
reinforcement yields prior to reaching the ultimate capacity in shear
so as to provide some ductility in the failure mode. Consequently,
shear failures as a result of poor detailing or anchorage failure must
be avoided. As shown in Figure 2.15, both end portions of a stirrup
must be able to anchor or develop the yield strength of the
reinforcement  fy. Since the crack may extend very close to the
extreme compression or tension face of a beam, a vertical stirrup
must be able to develop its yield strength even at the extreme end of
its length. In order to ensure adequate anchorage, ACI Sec. 12.13.1
specifies web reinforcement be extended as close to the compression
and tension surfaces as practical, and several types of permissible

anchorage details are given.
2.3.1.2 Shear Strength Provided by the Concrete

In beams with web reinforcement, the ACI Code assumcs the
shear resisted by the concrete is equal to the strength of a concrete

beam without any shear reinforcement. As 2 result, the shear

iransfer mechanisms denoted in Figure 2.9 are combined into one Vg

term, which has been assumed to be equal to the shear causing

inclined cracking in a beam without stirrups, that is

Ve =Vez+Vg+ Vay = Cracking Shear  (2.20)
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Therefore, although the actual contribution to the total shear capacity

of Vez, V4, and V4 varies, the total contribution of these components

is assumed to be constant throughout all loading stages. For
members subjected to shear and flexure, ACI 318-83 recommends

two equations for the concrete contribution to shear as

ACI Egn 11-3
\Y
V.= (1.9/Fc +2500p “d)bwd
M, (2.22)

ACI Eqn 11-6

where Eqn. 2.22 is that originally presented by the 1962 ACI-ASCE
Committee on Shear and Diagonal Tensiong. Eqn. 2.22 is very tedious
to use because the shear, moment and longitudinal reinforcement
ratio p typically change throughout a beam span, requiring V¢ to be
computed at numerous locations. Test results of both short and
slender beams were used to develop Eqn. 2.22, which therefore
combined the results of beams in which D-region and B-region
behavior dominates respectively. A single equation which attempts
to predict the shear strength of two completely different types of
beam behavior will have shortcomings. Recent studies suggest the
effect of p is underestimated in Eqn. 2.22, and it does not treat the
shear span ratio, expressed as Vd/M, adequately. As noted by the
ACI-ASCE Committee 426 in 1977 10, the applicability of Eqn. 2.22 is

suspect and not recommended. Therefore Eqn. 2.22 will not be
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considered further. Figure 2.16 compares Eqn. 2.21 with the test
results of several simply supported beams without web
reinforcement. Referring to Figure 2.16, Eqn. 2.21 generally
underestimates the shear capacity for beams with large
reinforcement ratios and overestimates the shear strength for small
steel percentages. Although this equation can be very conservative
in some situations, it is very simple to use and the nominal shear

capacity of a reinforced concrete beam with vertical stirrups can be

expressed as

Vn = 2«/?'_(? +é_"_f_¥_(1
S (2.23)

which must be multiplied by the strength reduction factor ¢ = 0.85 to

calculate the factored shear resistance of the section.

From Figure 2.l4c, it is evident the truss model predicts that both
vertical and longitudinal reinforcement is required to resist shear. A
longitudinal tension force is required to equilibrate the horizontal
component of the inclined compressive force and the effect of
inclined cracking is to increase the tension force in the flexural
reinforcement. This will be discussed in more detail in a later
section. The ACI Code does not explicitly specify the amount of
longitudinal reinforcement necessary for shear, but indirectly
considers the increase in tension force through its bar detailing
requirements in ACI Sec. 12.10.3. To include the effects of shear on

longitudinal bar forces, as well as to consider other contingencies, the
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Figure 2.16 Comparison of Eqn. 2.21 with experimental
results (adapted from Ref. 13).
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ACI Code specifies bars be extended a minimum of the effective

depth d or 12 bar diameters past the theoretical cut-off location.

As is evident from Eqn. 2.9, axial compression increases the
inclined cracking stress while axial tension tends to decrease it. For
axial compression and tension, ACI Code Sections 11.3.1.2 and

11.3.2.3 permit the use of simplified expressions as

Axial Compression:

N
V.=2(1 +—2—)f'cb
c ( 3000 Wf'cbd

Ag (2.24)
ACI Eqn 114
Nu 1]
Axial Tension: Ve=2(1 "‘500 Ag)mbwd 2.25)
ACI Eqn 11-9

where Ny is positive in compression and negative in tension. For

members subjected to significant axial tension, ACI Sec. 11.3.1.3
suggests a simplified alternate to Eqn. 2.25 where the concrete is

assumed to carry no shear and the shear reinforcement is designed

to transfer the total shear force.

2.3.2 Prestressed Concrete

For prestressed concrete beams with web reinforcement
perpendicular to their longitudinal axis, the ACI Code gives the

nominal shear strength as
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VvV =MLd+Vc

5 (2.26)

which is identical to the expression used for reinforced concrete
members. As in nonprestressed beams, the shear force V. resisted
by the cracked concrete in a prestressed beam is assumed equivalent
to the shear causing inclined cracking. As mentioned in previous
sections, prestressed concrete beams form diagonal cracks either as

flexure-shear cracks or web-shear cracks. For flexure-shear

cracking, the ACI Code expression is given by

vV, M
Vei=0.6/fc byd +Vy+——¢f
Mmax  (2.12)°
ACI Egn 11-11
Ve 2 LVFC by d (2.12b)

where the terms are as previously defined. The flexure cracking
moment is determined by

Mg, = —(6VFC + £q - f)
Yt (2.27)

ACI Eqn 11-12

where 1y is the distance from the tension face to the concrete
centroid, fpe is the compressive stress at the tension face due to the

tensile force alone, and fq is the extreme fiber stress due to

unfactored dead load. According to ACI Sec. 11.4.2.3, the effective

40



depth d need not be taken less than 80% of the overall depth of the
member. As mentioned in Section 2.1.3, the ACI expression for the

shear force causing web-shear cracking is

Vew=(3.5VFc +0.3fp) by, d +V, (5 2g)

ACI Egn 11-13

where Vp is the vertical component of the effective prestress force.
Eqn. 2.28 is a linear approximation to Eqn. 2.10. In the ACI Code, the
shear resistance provided by the concrete is equal to the lesser of Vj
or Vew. Since calculation of Vi and Vo can be very tedious, ACI
Sec. 11.4.1 provides an alternate expression for members with a

prestress force at least equal to 40% of the flexural reinforcement

strength as

V“d)bwd

v, =(0.64Tc +700
M, (2.29)

ACI Egn 11-10

where Vyd/My is not to be taken greater than 1.0. Where Eqn 2.29
is used, V. need not be less than 24/fc byd and must not exceed
5+fc bwd. Although this equation is easier to use than Eqns. 2.12
and 2.28, it can be very conservative in some situations, particularly

for composite beams or slender I beams“.

The ACI Code requirements for minimum shear reinforcement in

prestressed concrete beams are similar to those for reinforced
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concrete beams, except that in addition to Eqn. 2.18, prestressed

beams must also satisfy a minimum area requirement of

Av=iP_§£u_S_ d
80 f, d by (2.30)

ACI Egn 11-15
where fpu is the specified tenc’ ;th of the prestressing steel
and Apg is the cross-sectional a: ‘nc prestressed reinforcement.
In prestressed concrete mer ... maximum spacing of shear

reinforcement is limited to the smaher of 0.75:: or 24 inches (600

mm). As with reinforced concrete members, when Vg exceeds

44/f'cb,d the maximum spacing limits are reduced by half, resulting

in a maximum spacing of 0.375h or 12 inches (300 mm). The

minimum practical spacing of stirrups is 3 or 4 inches.
2.4 CAN3-A23.3-M84 Simplified Method

The Canadian Standards Association design code, CAN3-A23.3-
mgs 1 presents two shear design procedures, the Simplified Method
and the General Method. The Simplified Method is similar to the ACI
shear design procedure, because it is based on the same sectional
approach, whereby an empirical correction term is added to the 45°

truss model equations. The basic design expression for shear is given

as

Ve2 Vg (2.31)

CSA Egn 11-5
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where V; is the factored shear resistance and Vg is the factored

shear force. The factored shear resistance is given by

Vr= V¢ + Vs (2.32)

CSA Eqn 11-6

where V is the concrete contribution and Vg is the shear resistance

provided by the web reinforcement. In the Simplified Method, the
concrete contribution for reinforced concrete members is expressed

in S.I. units as

V=021 ,4fc bd (2.33)

CSA Eqn 11-7

where ¢ is the material resistance factor for concrete and A is a
factor that accounts for the effects of low density concrete. The
design equations in the Canadian Code are different than the ACI
Code because different load factors are used and the CSA Code
considers specific resistance factors for different materials. In the
1984 Canadian Code, there is no expression similar to Eqn. 2.22,

although a similar expression was used in the 1977 edition.

For prestressed concrete beams, the concrete contribution is the

lesser of
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\
V. = (0.06\fc +6—‘di)¢c byd
Mg (2.34)
CSA Eqn 11-10

or

_o4x¢c«/_(,\/ —P2 __)b,d,+0,V
04>»¢«/— PP (2.35)

CSA Eqn 11-11

but V. need not be taken less than 0.2A¢cVfcbyd. When shear
reinforcement is perpendicular to the axis of a member, the

contribution of shear reinforcement is given by

S (2.36)

CSA Eqn 11-12

where ¢g is the material resistance factor for the reinforcement and
all other terms are as previously defined. If the load factors and
material resistance factors are considered as unity, it is apparent the
shear design provisions in the simplified method of the Canadian
Code are similar to the ACI Code procedures for both reinforced and

prestressed concrete members.

The General Method in the Canadian Code is a new addition based
on the Compression Field Theory developed by Collins and
Mitchelllz. The basic design approach is to model a cracked
reinforced concrete beam as a truss with a continuous field of

diagonal compression struts, verticai tension ties, and parallel top
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and bottom chords. The concrete is assumed to be ineffective in
resisting tensile stresses. In addition to examining equilibrium
relations from the truss model, stress strain relationships and
compatibility requirements are alsc considered.  Within specified
limits, a designer is free to choose the angle of inclination of the
compression field provided it satisfies all of the specified design
requirements.  Since the compressive stress in the diagonal struts
increases as the inclination decreases, the compressive stresses for a
given angle must be checked against a maximum allowable stress to
prevent concrete from crushing.  Although the General Method
provides a rational model for shear design, it does not consider the
contributions of tension in the concrete or aggregate interlock, and it

is a more complex design procedure than the Simplified Method.

2.5 Variable Angle Truss Models

To account for the conservatism of a 45° truss model, both the
ACI Code and the Canadian Code Simplified Method add a concrete
contribution to the capacity of the truss action in the web. The 45°
truss model can also be adjusted and made more accurate by taking
into consideration that © is typically less than 45°, and this
modification is referred to as a variable angle truss model. A
variable angle analogy departs from the traditional assumption that
the inclination of the diagonal compression struts is steadfast at 45°,

and provides a more realistic model of a beam's behavior in shear.

Variable angle truss models can incorporate the different types of
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behavior in a beam's B and D-regions. In B-regions, it is suitable to
model the internal flow of forces as a conti.uous field of parallel
diagonal struts, having a constant angle of inclination 8. In D-regions,
a uniform compression field does not accurately model the internal
flow of forces, and a better representation is provided by a fan

shaped stress field or compression fan, as illusirated in Figure 2.17.

In its original form, the variable angle truss model neglects the
tensile stresses in the concrete. A free body diagram of the internal
forces acting at a section paraliel to a uniform compression field is
shown in Figure 2.18. The truss model does not include the shear
components V¢z, Vay, and V¢ in Figure 2.9, hence the vertical
component of the shear force is resisted entirely by the stirrups in
combination with the inclined compression struts. Vertical

equilibrium of the free body shown in Figure 2.18a gives

A, f, id
s tand (2.37)

V=

where fg is the tensile stress in the stirrups, and all other variables
are as previously defined. Figure 2.18b summarizes additional
equiiivrium conditions for a variable angle truss model. Figure 2.18b
shows a length of beam over which the shear force remains constant,
and considers a vertical section at a location of zero moment. The
vertical sinzar can be resolved into an inclined compression force D

and a horizontal tension force Ny. The total diagonal compressive

force can be expressed as
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Figure 2.17 Variable angle truss model of a beam.
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Figure 2.18 Variable angle truss - equilibrium conditions.



sin 6 (2.38)

The compressive stress f, in the diagonals acts on a web area of (by

jd cos6), and Eqn. 2.38 can be rewritten as

f, by jd cosé =Y

sin@ (2.39)
or
f2 = V
bw_]d cosO sinb (239b)
or
f,= V. (tan® + 1 )
b, jd tan®@ (2.39¢)

From Figure 2.18b, the longitrdinal component of the inclined

compressive force D is resisted by an axial tension force Ny, where

N, =—
tan® (2.40)

If the shear stresses are assumed to be uniformly distridated over

the effective depth of the beam, the resultants D and Ny act at mid-
depth of the beam. Consequently, Ny/2 will act on both the to; and
bottom chords of the truss, and these forces will add to those caused
by flexure and axial load. The variable angle truss model therefore
directly indicates that shear causes tension in both the vertical
stirrups and the longitudinal reinforcement, reducing the force in the
truss compression chord and increasing the force in the tension
chord. As noted in Section 2.3.1.2, the ACI Code indirectly includes

the increase in longitudinal tensior force caused by shear through its
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bar detailing requirements.

At concentrated load locations, the flow of forces in a concrete
beam can be modelled by compression fans, where the inclination of
the compression struts varies and increases to 90° directly below the
load location. From Eqn. 2.40, as 6 approaches 90°, Ny decrsases to
sero and therefore the tension force in the reinforcement at this
location is not influenced by shear. Consequently, the amount of
flexural reinforcement required at the location of maximum moment
is not influenced by shear. At locations away from the point of
maximum moment, the net effect of shear on the longitudinal bar

forces is to shift the moment diagram by an amount jd/2tan®, as

shown in Figure 2.19.

Compared to the ACI Code, a variable angle iruss model more
accurately represents the internal flow of forces in a cracked
concrete beam, but the system of forces is indeterminate, as only
three equilibrium equations are available to solve for the four

unknowns f,, fg, Ny and 8. The trass can be made statically

determinate by assuming the stirrups have yielded at failure, hence
fs = fy. To ensure the stirrups will yield prior to the diagonal
concrete struts crushing in compression, the maximum compressive
stress in the web must be examined. The allowable compressive
stress in an inclined compression strut is less than the concrete
cylinder strength due to several factors, including the effects of
tensile stresses in the concrete caused by the stirrups. Values of

permissible effective concrete strengths in the order of 0.25fc to
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Figure 2.19 Forces in tension and compression chords of truss.
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0.45f'c have been proposedl3. The General Method of the Canadian
Code relates the effective concrete strength to the average strain

perpendicular tc the compression diagonals.
2.6 Staggering Concept for Shear Design

Equilibrium equations for a variable angle truss model are
derived by examining regions of constant shear, where the required
spacing of transverse reinforcement can be readily determined. In
order to determine the distribution of stirrups in a beam with a
varying shear force along its length, additional considerations must

be examined.

A simply supported slender beam subject to a uniformly
distributed load on the top face can be modeled by a variable angle
truss. A uniform compression field with the concrete struts at a
constant angle of inclination can be used throughout the member
except at the supports and at midspan where compression fans occur.
A freebody diagram of the end portion of a beam is shown in Figure
2.20a. Section A-B is the closest inclined section to the support.
Vertical equilibrium requires stirrups crossing section A-B equal the
upward reaction minus the applied load within the length jd/tan®.
Consequently, the stirrups can be designed to resist the shear at B, or
the lowest value of shear within this region This procedure is

known as the "staggering concept” for shear design.

As shown in Figure 2.20b, the staggering rule can also be applied
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to adjacent regions, resulting in uniformly spaced bands of stirrups
throughout the beam length. Figure 2.20c illustrates the shears for
which the stirrups can be designed under the given loading condition
and compares the staggered shear force diagram to the conventional

shear diagram.

The use of a staggered shear dizgram for uniformly loaded beams
that differs in shape from the traditional linear shear force diagram
has been the topic of much discussion in recent years. Hsul 4
examined beams subjected to uniformly distributed load assuming
failure when the first stirrup yielded and assuming no redistribution
of stirrup forces occurs. Hsu concluded the staggering concept is an
upper bound solution and is unsafe. In the discussion of Hsu's paper,

15 16 17 18

Marti -, Regan -, Rogowsky indicate that

and Mueller
according to the theory or plasticity, a safe lower bound solution can
be achieved even with limited plasticity of a concrete beam.

In order to check the validity of the staggering concept, Mailhot19
tested three full scale uniformly loaded concrete beams.  Stirrups
were designed according to the staggering concept and all beams had
continuous longitudinal reinforcement.  The experimental results
indicate the staggered shear design is safe, and that a sufficient

degree of plasticity is obtained by a redistribution of stirrup forces in

20 tested two large scale I-beams

the members. Cerruti and Marti
designed by the staggering rule and curtailed the longitudinal
reinforcement as is common in practice. These test beams also

demonstrate the redistribution of internal forces in a beam web and
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confirm the validity of the staggering concept for shear design.

The General Method in the Canadian Code CSA A23.3 M84 permits
staggered shear design for beams uniformly loaded at the top. For
beams with load applied near the bottom face, stirrup design based
on the lowest shear according to the staggering rule underestimates
the amount of web reinforcement required. Consequently, the
staggering rule must not be applied to beams with loads applied near
the bottom of the member. From Figure 2.20a, if the beam self
weight is substantial and is included in the uniform load wpg, the
overestimation of the downward load in the freebody will
underestimate the shear at section B-B, and an insufficient amount of
web reinforcement may be provided. As a result, use of the

staggering rule should be carefully examined for a particular beam

and loading condition.
2.7 Modified Compression Field Theory

While the ACI Code shear design method generally leads to
satisfactory designs, it is highly empirical and does not provide
designers with a rational model for shear design. A variable angle
truss model provides a better representation of the forces in a
cracked beam by accounting for the possible deviation of the
compressive stress field from 45°, but it does not directly consider
any contribution of the concrete shear transfer mechanisms to shear
strength. The Modified Compression Field Theory developed by

Collins and Vecchio” is an extension of the Compression Field

54



Theory12 originally developed for concrete membrane elements.
This design approach is based on a rational physical model, in which
the behavior and flow of forces in a cracked concrete beam are easily
visualized, and it refines the variable angle truss approach by
considering the contributions of aggregate interlock and tension in

the concrete to shear strength.

Prior to cracking, a portion of a concrete beam subjected to pure
shear develops equal principal tensile and compressive stresses at
459, as shown in Figure 2.21a. After the concrete diagonally cracks,
the tensile stresses in the concrete are reduced, but the tension in
the cracked concrete still contributes to the shear resistance of the
beam. The Modified Compression Field Theory models a cracked
concrete beam as a truss with a continuous field of diagonal
compression in combination with the tensile stresses in the concrete
between the cracks, as illustrated in Figure 2.21b. The inclination of

the compression field is permitted to vary from 45°.

Figure 2.22 shows the stresses resisting the applied shear at a
location of zero moment. At a crack, there is no tensile stress in the
concrete. Due to bond between the concrete and the stirrups, tension
in the stirrups causes tensile stresses in the concrete strut that reach
4 maximum value midway between the cracks. Bond also effects the
tensile stress in the web reinforcement fg, such that the stirrup
stress at the centreline of a strut will be lower than at a crack
location. In developing its equilibrium and compatibility

relationships, the Modifie¢ Compression Field Theory considers
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a) Before cracking b) After cracking

Figure 2.25 Stress fields resisting shear in the web of a
reinforced concrete beam.
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Figure 2.22 Principal stresses and longitudinal equilbrium.
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average stresses in a cracked concrete beam. The average principal
tensile stress f; is at an average location in a concrete strut, and is
less than the maximum tensile stress at the centreline of the strut.
The stresses at an inclined crack and in the concrete between two
cracks are considered more fully in Chapter 4 (See Figure 4.1).
Collins and Vecchio assume the principal stress axes coincide with
the principal strain axes. In order to minimize the effects of local
cracking, the strains in a concrete element are expressed as average
strains, which are measured over lengths long enough to include the

effects of several cracks. From Mohr's circle of strains, the following

relationships can be derived

2 €,—E
tan 0 = X2
€y~ & (2.41)
€1 =By +Ey- € (2.42)

where €, is the longitudinal strain, €, is the transverse strain, and €,
and €, are the principal tensile and compressive strains respectively,
as shown in Figure 2.23. The longitudinal strain is taken at mid-

depth, and compressive strains are expressed as negative quantities.

Collins and Vecchio develop constitutive relationships relating the
average stresses in the concrete to average strains, as shown in
Figure 2.24. The average stress-strain relationships differ from
those of standard concrete cylinder tests, due in part to the effects of

tensile stresses which reduce the compressive strength as compared
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to uniaxial compression tests. In addition to considering the
contribution to shear provided by the average tensile stresses in
cracked concrete, the ability of a crack interface to transmit shear by
aggregate interlock is also examined. This local variation of stress at

crack locations will be more thoroughly discussed in Chapter 4.

The equilibrium, compatibility, and constitutive relationships
developed by the Modified Compression Field Theory can be used to
determine the shear strength and the complete load-deformation
response of a member subjected to shear. The general design
approach is based on a sectional design format, and the same
procedure can be used for both nonprestressed and prestressed
concrete beams. A typical solution algorithm is summarized in
Figure 2.25. The complete response of a beam subjected to shear can
be obtained by following the solution procedure using a range of ¢,
values. Although the Modified Compression Field Theory is a very
involved procedure and it is quite complex as a regular design
method, it may be useful in circumstances where a detailed shear

analysis is required.
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Figure 2.25
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3. REVIEW OF AVAILABLE CONCRETE CONTRIBUTION
EXPRESSIONS

3.1 General

The ACI Code »roccuu= for shear design is based cn the classical
45% (russ model zquations accompanied by an empirical correction
term to account for b~ so called concrete contribution. Consistent
with many codes of practice, the concrete contribution has been
established by examining numerous beam test resuils.  Since the
inclination of diagonal cracks is typically less than 45° as the
ultimate load is approached, the variable angle truss model provides
a more accurate representation of the actual flins of forces in a
cracked concrete beam. However, the beam web in a variable angle
model is typically represented by uniaxial compression struts and
tension ties, where the contributions of shear transfer mechanisms
such as dowel action, aggregate interlock, and th: shear carried by
the compression zone are mnot explicitly gonsidered. These
mechanisms are implicitly included in the variable angle mode! by
allowing the inclination of the compression struts to vary from 45°,
which is the approach adopted in the Canadian Codel. However, in
order to ensure the variable angle truss model is not unduly
conservative, an allowance for the other shear transfer mechanisms
is often included directly in the design model. Several available

expressions for the additional concrete contribution in variable angle

truss models will be discussed in the following sections.
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3.2 Swiss Design Cede SIA 162

As a slender reinforced concrete beam is subjected to load, the
concrete is effectively able to resist the applied shear up to the
formation of the first diagonal crack. After diagonal cracking occurs,
the shear reinforcement begine to carry load and assists in providing
the required shear resistance. Referring to Figure 2.11, the aggregate
interlock component of shear resistance decreases as the cracks
widen under increasing load. The proportion ¢f shear cmried by the
stirrups continuously increases until y.giuuyg of the web
reinforcement occurs. The Swiss Code, Structural Design Code SIA
162 21 is based on a variable angle truss approach, and suggests that
prior to diagona! cracking the concrete contribution eguals the shear
stress necessary to produce diagcmal cracking in the web. After the
formation of cracks, the concretc contribution in a beam with web
reinforcement is considered to confinuously diminish and approach
zero as the applied shear stress increases. Fitnre .1 shows the

concrete contribution suggasted by SIA 162 for a reinforced concrete

beam.

As indicated by Eqn. 2.9, the effect of prestressing is to increase
the diagonal cracking stress. In the Swiss Code, the concrete
contribution for prestressed members is similar to that of reinforced
concrete beams, except the cracking shear is increased by a factor K.
The value of K is dependent on the prestress force, and is determined

by examining the state of stress at the neutral axis of a prestressed
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concrete beam. From Figure 3.2, the effect of prestress on an
uncracked beam is to shift the Mohr's circle, reducing the principal
tension stress for a given shear stress. The principal tensile stress at
the neutral axis of a prestressed member is smaller than the applied
shear stress, but in a reinforced concrete beam the tensile stress
equals the applied shear stress. Prior to diagonal cracking, the

concrete contribution in the Swiss Code is expressed as Kvgr. The

expression for K is 4d-:ermined from the Mohr's circle as

K= l-l-flzg
Y ° 7%, (3.1)

where f; :r ke principal tension stress and fyc is the compressive

M

stress at the neutral axis. This is the siae expression used in
deriving Eqn. 2.10, which is the basis of the ACI Code ~quation for
the web shear cracking strength of a beam. In the same way as for
reinforced concrete beams, the Swiss Code assumes a continuously
diminishing concrete contribution for prestressed concrete beams, as
shown in Figure 3.3. An upper limit of K = 1.0 is used in those
portions of a beam where the extreme fiber stresses are tensile. This

in effect reduces V¢ to the value for reinforced concrete if flexure-

shear cracking can occur.
Once the concrete contribution is determined, the nominal

resistance provided by the truss action and any inclined prestressing

tendons can be combined io determine the total shear resistance of
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Figure 3.3 The Swiss Code concrete contribution
for prestressed concrete beams.
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Figure 3.4 Idealized representation of shear failure.

65



the beam. The shear carried by the truss action is given by

v, = A,fyzcota

5 (3.2)
where z is the lever arm between the top and bottom chords, and a
is the inclination of the compression diagonal. The Swiss Code
suggests the angle of inclination must be within the specified limits

of 27° < a <63°.

The ~nncrete contribution in the Swiss Code is obtained from an
exprese .s easy to use. It is advantageous that the same
gencral ch can be used for both reinforced and ‘prestressed
concrete beams. In SIA 162 the shear strength provided by the
concrete in a prestressed memkber is expressed in a simple manner as
a function of the cracking stress for a reinforced concrete beam. The
resulting desigﬁ procedure is simple to use, particularly when

compared to the ACI design equations for prestress:d concrete

beams.

Although the Swiss Code approach is reasonable, the way in which
the expression for the concrete contribution is presented does have
some disadvantages. For beams that are designed to fail in flexure
prior to failing in shear, the shear stress at the flexural failure load
can be calculated and the corresponding concrete contribution at this
stress can be determined from the suggested relationships. For two

beams that are identical except for different amounts of flexural
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reinforcement, the Swiss Code suggests each beam will have a
different shear resistance. Referring to Figure 3.4, Beam | has a
smaller flexural capacity than Beam 2, and at flexural failure its
shear resistance is determined to be Vj. The shear capacity of Beam
2, which has a larger flexural capacity than Beam 1, is ¢ :culated at a

higher applied shear stress corresponding to the larger failure

moment, and the shear resistance is determined to be V3. Since the
applied shear for Beam 2 equals the shear resistance, V2 corresponds
to the 1ciual failure shear of the beam. which is less than the shear
capacity predicted for Beam 1. Examining the shear capacity
proposed by the Swiss Code reveals it does not represent the
ultimate failure shear of a beam, but is a measure of whether or not
a beam has previously failed in shzas at a specified shear stress.
Consequently, the procedure providess a theoretical shear capacity
and not the actual failure shear of a beam. The actual shear failure
load is reached when thc applied shear equals the total shear
resistance provided by the truss action and the concrete contribution,

as shown schematically in Figure 3.4.

3.3 CEB-FIP Model Code 1978 - Refined Niethod

The European CEZ-FIP Model Code 1978 22 presents two shear
design procedures, the Standard Method and the Refined or Accurate
Method. The Refined Method is based on a variable angle truss
model with an additional concrete contribution resembling the Swiss

Code approach. The concrete contribution continuously diminishes
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after inclined cracking, and is combined with the shear resistance

provided by the truss action of inclined struts and shear
reinforcement. In the CEB-FIP Code, the design shear Vgd, which is

the shear force multiplied by a load safety factor, must satisfy the

relations
Vsd S VRd2 (3.3)
CEB 11-6
and Vsd < de + Vcd (3.4)
CEB 11-7
and 11-8

where VR is a shear limit to prevent web crushing failures, and

Vwd and Vcq are the shear force carried by the truss action in the
web and the concrete contribution respectively. The shear carried

by the truss action is given by

_A .
Vwd = dsm 0.9d fywd (cot® + cota) sina (3.5)

CEB 11-19

where Agy and fywq are the area and design stress of the web
reinforcement respectively, 0 is the angle of inclination of the
compression struts, and o is the inclination of the web reinforcement
to the beam axis. The angle 0 is chosen such that 3/5 <cotd <5/3, or
31° <9 <59°. These limits are chosen to provide control of cracking

under working load conditions, and the most economical value of 6 is

68



at 8 =310, The design stress ot the web reinforcement fywq is the
yield strets <éivided by a resistance safety factor.  For stirrups

perpendicuiar to the beam axis, the truss contribution is expressed as

de
stan O (3.6)

which is similar to the traditional truss contribution commonly used

in North America if 0 = 45°.

The concrete contribution V.4 in reinforced concrete members is

a function of trq, and is given by the following expressions
If Vsd < 2.5 trd bwd @ Ved = 2.7 Trd bwd (3.7)
If Vg2 75 1td bwd : Ved =0 (3.8)

and for intermediate values, Vo4 is obtained by linear interpalaiicr

between the above values. tprq is a function of the concrete quality,

particularly the tensile strength, and values are given in Table 3.1

for different characteristic concrete compressive strengths icx. The

characteristic value of compressive strength corresponds to the lower
5% fractile, and can be related to the mean cylinder compressive

strength by adopting the Model Code expression

= f.x + 8 MPa (3.9)

fC mean

or fc mean = fck +1160 psi (3.9b)
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The CEB-FIP concrete contribution for nonprestressed beams is
shewn graphically in Figure 3.5 as a function of the factored design

shear stress vgq.

fok Trd
(MPa) (psi) (MPa) (psi)
12 1740 0.18 26.1
16 2320 0.22 31.9
20 2900 0.26 37.7
25 3625 0.30 43.5
30 4350 0.34 49.3
35 5075 0.38 55.1
40 5800 0.42 60.9
45 6575 0.46 66.7
50 7250 0.50 72.5

Table 3.1 Valves of tq in the CEB-FIP 1978 Model Code.

For design, the Model Code applies a material safety factor of 1.5 to
the concrete strength. If the material safety factors are removed, the

maximum concrete contribution can b: determined from
Vcd = 3.75 Trd bwd (3.10)

To convert this expression to the form x,Vicbyd, the characteristic

concrete strength must be related to the specified compressive

strength f'c. The specified stength is less than the average strength,
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Figure 3.5 1978 CEB-FIP concrete contribution
for reinforced concrete beams.
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and can be related to the mean strength of the concrete by the

approximate expression

fo mean = 1.15 fc

or by an equation similar to Eqn. 3.9b. Using Eqn. 3.9b and Eqn. 3.11,

values of x, from 1.95 to 3.18 are obtained for various values of f'c

as shown in Table 3.2. This range is with’

the limits suggested in

ACI Section 11.3 for no:prestressed members, where 2.0 < x, £3.5.

fic (psi)

1930
3030
3530
4160
4790
5420
6050
6730
7310

«ame. L2 Values of x, determined from the Model Code.

Ky

1.95
2.17
2.38
2.53
2.67
2.81
2.94
3.05
3.18

For prestressed concrete beams, the CEB Refined Method neglects

the beneficial effect of a prestressing force on shear strength.

simplified or Standard Method attributes a favorable effect

prestressing by increasing values of tyd by

72

The
of



M
=1+ 0. <2
B M

sdu (3.12)

CEB 11-3

where Mgqy is the maximum design moment in the span and M, is

the decompression moment at transfer related to the tensile fiber for

the section where Mgq, is acting. The manner in which prestressing

d23, particularly since its effect is

is considered has been questione
considered in relation to the :i:aximum moment in the span and not
to the moments at the section under consideration. Equation. 3.11
was derived solely on test res .. »f beams failing by flexure-shear
cracking, and web-shear {z:'ui.c were not considered. The 1978

CEB-FIP )shear design procedure for prestressed concrete beams has

been shown to be relatively conservative24, and it contains

inconsistencies such that the more "accurate” Refined Method can

require more shear reinforcement than the Standard Method.

Wairaven2> has criticized the manner in which the values of T4

were determined in the 1978 Model Code, and has proposed
considerably lower values, particularly for higher strength concretes.
Walraven suggests that a concrete contribution which is constant
during all stages of loading and is independent of the nominal shear
stress provides better agreement with test results. Walraven

recommends a concrete contribution expression in the form

Ved = (2.5 Tg +020p) bwd (3 13)
1,4 = 0.0875 (fc)*/ (3.14)
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where Ocp is the axial prestress. He suggests the angle of the

compression struts be limited to 35° <6 <55°.

The 1988 first predraft of the CEB-FIP Model Code 1990 25 has
discontinued the approach of using of two different methods as in
the 1978 Code, and provides a simple truss analogy design procedure
for both reinforced and prestressed concrete beams. The forces in
the truss members are examined at ultimate limit states, and the
additional concrete contribution term shown in Figure 3.5 is no
longer used. The June 1989 draft of MC90 suggests the angle of
inclination of the compression struts in the web may be freely

chosen between 18.4° and 45°,
3.4 Ramirez and Breen

Ramirez and Breen26 proposed a concrete contribution term
similar to that recommended by past Swiss and CEB-FIP codes. This
approach considers a diminishing concrete contribution which
approaches zero as the nominal shear stress increases, as shown in
Figure 3.6(a). To correspond with the ACI Code, Ramirez and Breen
suggest the shear stress necessary to produce diagonal cracking be
taken as 2Vf'c. When the applied shear stress exceeds three times
the uncracked shear strength, it is suggested there is no concrete
contribution to the total shear capacity of the beam at failure. For

prestressed concrete beams, a similar approach is used in which the
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Concrete Contribution V¢

Concrete Contribution Ve

24/fc Ve=1/2(64/f7c - v)
|
|
|
|
l
l o
2+f'c 6+f'c
Nominal Shear Stress v (psi)
a) Reinforced concrete
K(2vf'c) Ve-K/2( (2 +K) 24/Tc-v)
—
K(2vf'c) ' (2 +K) 24f'c

Nominal Shear Stress v (psi)

b) Prestressed concrete beams

Figure 3.6 Concrete contribution proposed by Ramirez
and BreenZ6for concrete beams.
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concrete contribution is equal to Kvgyp, as shown in Figure 3.6(b).
Ramirez and Breen recommend XK be calculated according to Eqn. 3.1,
but 1.0 < K £2.0. At locations of a member where the stress in the
extreme tension fiber at ultimate exceeds 6vf'c. they suggest K shall

be taken equal to 1.0.

As noted in the discussion of the Swiss Code, the concrete
contribution determined in this manner is a theoretical shear
capacity at a specified nominal shear stress, which would typically be
determined at the load causing flexural failure. As a result, it
provides a measure to ensure shear failure has not occurred prior to
the flexural failure, but it does not give the actual failure shear

capacity of the beam.

The benefits of using a variable angle truss model as a conceptual
model for shear in reinforced and prestressed concrete beams are
clearly shown by Ramirez and Breen. Several test results were
examined which generally indicate the proposed concrete
contribution is a safe lower bound solution. In order to
experimentally verify the truss model concrete contribution, Ramirez
and Breen considered tests of beams both with and without web
reinforcement. When examining the capacity of members with little
or very small amounts of web reinforcement, Ramirez and Breen
used graphs similar to Figure 3.7 to suggest that their proposed
concrete contribution is a safe lower bound. Presumably, values

falling outside or above the proposed equation indicate the actual
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Figure 3.7 Ramirez and Breen evaluation of the concrete contribution
in prestressed concrete beams (adapted from Ref. 26).
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Figure 3.8 Replot of data in Figure 3.7 for prestressed concrete beams
without web reinforcement.

77



concrete contribution is greater than estimated, hence a safe
condition. = Values located inside or enclosed by the equation
boundary are unsafe, as the actual concrete contribution is smaller

than estimated.

However, examining data plotted in this manner will not ensure
the concrete contribution from a test beam will always be a safe
lower bound solution. In Figure 3.7 the furthest left data point is
shown to be located above the proposed equation, presumably
indicating the actual concrete contribution is higher than predicted.
Consequently, the proposed concrete contribution is considered a safe
estimation of the actual capacity. If the test data for this particular
beam without web reinforcement is examined, the beam is noted to
have failed at a shear stress of 0.1 ksi. Therefore, the actual concrete
contribution should be at most 0.1 ksi. Using the proposed concrete
contribution expression, the theoretical concrete capacity is
calculated to be 0.17 ksi. This value exceeds the maximum load the

beam could withstand, and is hence an unsafz estimate of the actual

concrete contribution.

A better way of examining this data, would be to determine the
actual, not the theoretical concrete contribution, subtracting the
nominal truss contribution provided by the web reinforcement from
the total shear capacity. This would involve assumptions regarding
the angle of inclination of the compression struts 6. Alternatively,

the data could be examined by observing whether the actual
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concrete contribution minus the proposed concrete contribution is
always a positive quantity. For beams without web reinforcement, if
the predicted concrete capacity falls above a 45° line on a graph
similar to Figure 3.7, the capacity is overestimated and an unsafe
prediction of shear strength results. The test data in Figure 3.7 is
replotted in Figure 3.8. It is evident the concrete contribution
proposed by Ramirez and Breen is not always a safe lower bound
solution. A re-evaluation of the test results summarized by Ramirez
and Breen for beams without web reinforcement indicates the
proposed concrete contribution expression provides a safe estimate
of the concrete contribution for all 141 reinforced concrete beams
investigated. For the 90 prestressed concrete beams without web
reinforcement, 17 had unsafe predictions of the concrete capacity,
with the poorest estimate providing a test/predicted ratic of 0.59.

The mean ratio of all 90 prestressed concrete beams is 1.55 with a

standard deviation of 0.63.
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4. DERIVATION OF A NEW CONCRETE CONTRIBUTION TERM
USING THE MODIFIED COMPRESSION FIELD THEORY

4.1 Concrete Contribution Model

Figure 4.1 shows two sections through the web of a beam. For
clarity, the vertical component of an inclined prestressing tendon, if
any, is not shown. In Figure 4.1b the section is cut along an idealized
inclined crack. In Figure 4.1a, the section is at an average location in
the concrete beam between two inclined cracks, corresponding to
Section A-A in Figure 4.1b. The Modified Compression Field Theory
assumes a tensile stress f; acts on section A-A along with the stirrup
forces Ayfg. A shear stress vgj is assumed to act along the crack
accompanied by stirrup forces Ayfy, where fs < fy. Consequently, the
concrete contribution in a variable angle truss model can be
expressed in two ways, either in terms of tensile stresses in the
concrete between the cracks or as an aggregate interlock mechanism.
Since the truss model assumes the cracks extend through the
compression zone, the shear carrying capacity of the concrete
compression zone is neglected. Also, the dowel action of the

longitudinal reinforcement is not considered.

As shown in Figure 4.1, vertical equilibrium of each force

transmission model provides two equations for the total shear V,
Eqns. 4.1 and 4.1b. A, is the cross-sectional area of web

reinforcement, s represents the spacing of web reinforcement, 8 is
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a) Model 1:Stresses at b) Model 2: Stresses at a crack

an average location
between two cracks

A f.q f A, f,jd
V=Y SJd«« ! bwjd+Vp V=X yl-+vcibwjd+Vp
s tan®

stan® tan6
(4.1) (4.1b)

Figure 4.1 Force transmission models.
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the angle of inclination at ultimate of the cracks or compression
struts, Vp is the vertical component of prestressing force, and jd is

the distance between the centroids of the top and bottom chords of

the truss. Eqn. 4.1 uses the tensile concrete stress f, between the

cracks in conjunction with the stirrup stress fg at an average location

in the compression strut, while Eqn. 4.1b considers the shear stress

at the crack v¢j and the stirrup yield stress fy,. Vecchio and Collins?

assume f; to be the average principal tensile stress in the cracked
concrete. The tensile stress changes from fg to fy along the length of
the web reinforcement because at the crack there is no tensile stress
in the concrete and the reinforcement stress will be higher than
average. Inside the strut, the concrete tension goes from zero at the
crack locations to a maximum at the centreline of the strut. At this
location, midway between the cracks, the reinforcement stress is less
than at the cracks. These locai variations in tensile stress of the
reinforcement must be considered when examining equilibrium of
each model. The longitudinal reinforcement also has variations in
stress along its length with the maximum stress at the crack
locations, because a portion of the force is transferred to the concrete

by bond between cracks.

Since the current ACI Code equation for the nominal strength

provided by shear reinforcement uses the specified yield stress fy

which occurs at the cracks, and because it is easier to visualize
vertical shear being resisted by a "friction” on a crack interface

rather than by tension in concrete between the cracks, Model 2 in
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Figure 4.1 will be used for development of the concrete contribution

term.

The two sets of stresses shown in Figure 4.1 are statically

equivalent. The concrete tension and aggregate interlock are related

by
AV
fi=v.itan8 + (fy-fs)
Sbw (4.2)
or
f A
Vej=—1—- ~—— ( fy-fg)
tan® sbgy tan® (4.2b)

In determining the concrete contribution to shear, two possible
failure modes must be considered, namely the capacity of the
cracked concrete in tension and the capacity of the crack interface.
The smaller or limiting value of these two quantities will provide a
lower bound for the concrete contribution to the truss model. In
order to develop the capacity of a rough and interlocked crack
surface to transmit shear, the cracked concrete member must be
capable of resisting the effects of this force, or the member will fail
before breakdown of the aggregate interlock mechanism. As a result,
either the crack interface will reach its capacity prior to the cracked
concrete failing in tension, or vice versa. The capacity of each

mechanism wil: now be examined separately.
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4.2 Capacity of Crack Interface

As shown in Figure 4.2, the interface shear stress v.j acting on an
inclined crack is equivalent to a shear stress v.j acting on a vertical
section. As a result, an expression for the stress along a crack
interface corresponds to a vertical shear stress, and can be applied
over a beam's web area to determine the shear resistance provided
by aggregate interlock. From Walraven's test data, neglecting the
beneficial effects of axial compression on a crack, Vecchio and

Collins2 derived the following relationship for the shear stress across

a crack

0.18+fc
Vei= s (MPa)
0.31 +
a+16 (4.3)

_ 2.164fc
c1—
031 +—24%__
a+0.63 (4.3b)

(psi)

where w is the crack width (mm or in.) and a is the maximum
aggregate size (mm or in.). Collins and Mitchell27 proposed Eqn. 4.4
for the relationship between shear stress on the crack surface and

crack width, which is shown graphically in Figure 4.3.

Vei= _()_l_@_ (MPa)
0.3 +0.6w (4.4)
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Total force on crack Vci =v,b_ id
W ————
siné

Vertical shear Vv= Vci sind = Ve bwjd

or v=v,
v

Figure 4.2 Transformation of interface shear stress
to vertical shear stress.
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Crack Width w (inches)

Figure 4.3 Crack shear stress based on Collins and Mitchell.
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2.0v/f .
Vci=—————-° (psi)
0.3+15.2w (4.4b)

This is a simple and straightforward relationship which applies to
typical maximum aggregate sizes greater than or equal to 3/4 inch
(20 mm). If the maximum aggregate size is less than 3/4 inch, Eqn.
4.4 overestimates the shear across the crack compared to Eqn. 4.3.
Considering an uncracked beam with zero crack width and 2900 psi
(20 MPa) concrete, the maximum capacity of the crack interface
obtained using Eqn. 4.4 is 360 psi (2.5 MPa), corresponding to
k,=6.69. Although the shear friction concept in ACI Section 11.7
permits stresses up to 0.2 f'c, or 580 psi for 2900 psi concrete, a
shear stress of 360 psi is greater than the ACI Code expression W,
where «,=2.0. In order to ensure Eqn. 4.4 provides strengths
comparable to the existing ACI shear design procedure, an upper
limit is required on the maximum shear stress. As will be shown in a
later section, a limit on shear stress is provided by the maximum
allowable concrete capacity in tension. The concrete tension failure
mechanism will be derived using the tensile capacity of cracked

concrete suggested in the Modified Compression Field Theory.

If the Collins and Mitchell expression for shear stress at a crack
interface is to be used as a design equation, the crack width w must
be easily calculated or determined in terms of other known
variables. A typical crack varies in width along its length, but the
average crack width w can be related to the principal tensile strain g,

and the average crack spacing s;,o measured perpendicular to the
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cracks by

W = €1 Sme (4.5)

Consequently, using Eqn. 4.4 the shear capacity at the crack interface

can be expressed as

vy = —017 Vfe

03 +06 (¢1 5Sme)  (MPa) (4.6)
vy = —20 Ifc

0.3 + 152 (¢ Sme)  (psi) (4.6b)

The July 1988 draft copy of OHBDC-III 28 contains a similar
expression for shear in members with transverse reinforcement
perpendicular to the member axis. Clause 8.9.2.12  gives the

concrete contribution equal to

o 2017 o ffc
“ 03+ 180, (MPa) (4.7)

where ¢, is a material strength resistance factor. In order to be
conservative and underestimate the crack shear stress, the largest
practical denominator in Eqn. 4.6 should be obtained for a design
equation. It is apparent that the OHBDC-III assumes the maximum
average crack spacing will be 12 in. (300 mm). Eqn. 4.7 is the only
expression given for the concrete contribution in the OHBDC-III and

assumes the failure mechanism in shear is based solely on the crack
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interface.

The actual mean crack spacing s;q in Eqn. 4.6 will depend, among
other things, on the amount and location of both transverse and
longitudinal reinforcement in the beam web.  Expressions are
available which can be used to estimate the mean crack spacing,
however they are generally too complex for general use. For
simplicity, Collins and Mitchell 27 recommend the mean crack
spacing be approximated by Eqn. 4.8, where s, equals the vertical
spacing of longitudinal bars distributed in the web and s is the

stirrup spacing. Collins and Mitchell recommend that both s and s,

be taken greater or equal to 4 inches (100 mm).

1
sin® cos#@
+

S Sx (48)

Sme =

It must be recognized that there can be a wide variation in crack
spacings, particularly due to the nonisotropic properties of cracked
concrete. Expressions for the crack spacing can only provide a guide
to estimate the large range of actual crack spacings that can exist in
an actual member. Since the Modified Compression Field Theory is

based on average behavior, however, local variations are not

believed to be critical.

Vecchio and Collins suggest the principal compressive strain €, in

the concrete be taken as -0.002. From Mohr's circle of strains a
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compatibility condition is obtained relating the longitudinal strain €,

at mid-depth of the web and the principal tensile strain €; at mid-
depth, as shown by Figure 4.4 and Eqn 4.9.

€, +0.002

€, =€, +

tan29 (4.9)

Substituting Eqns. 4.8 and 4.9 into Eqn. 4.6 gives

vos 0.17Yfc (MPa)
£,+0.002
0.3+06 (s-:x ) ( )
sin cos 9
(4.10)
2.0Yfc )
Vg= (psi)
£,+0.002
0.3+ 15.2 (ex ) ( )
sin 6 cos 9
(4.10b)

where v.j is the interface shear along the crack, which is equivalent

to a shear stress vgj acting on a vertical section. Eqn. 4.10 is too

complex for general use. The expression can be simplified by

selecting a value of €,, and also by reducing the last term in the

denominator as will be discussed in subsequent sections.

In order to examine the effects of the crack inclination on shear

capacity, the angle 0 will be taken as 20°< 6 <70°. A lower limit is

placed on the angle to control excessive cracking under service loads.
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Figure 4.4 Mohr's circle of average strains.
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Figure 4.5 Compatibility of strains.
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A limit is also required on 6 to control excessive strains in the beam

reinforcement.
4.2.1 Effect of Longitudinal Strain

The compatibility condition for strains, Eqn. 4.9, is shown
graphically in Figure 4.5. It is apparent that for crack inclinations
between 45 and 70 degrees, the principal tensile strain €; is not as
sensitive to changes in €, as it is for inclinations less than 45 degrees.
The sensitivity of Eqn 4.10 to various values of €, is shown in Figures
4.6 and 4.7. Several general trends can be observed from the
figures. As the longitudinal strain €, increases, the rate of change of
crack shear stress v ; decreases. Also, the larger the crack inclination
9, the more sensitive Eqn. 4.10 is to a particular value of e&,. For
small crack inclinations, an increase in the stirrup spacing s or the
vertical spacing of longitudinal bars s, results in a smaller rate of

change of shear stress or value of x,.

In typical design situations 6 would be less than or equal to 459,
The General Method in the Canadian Code CAN3-A23.3-M84 1
suggests ¢, be taken as 0.002. If the actual longitudinal strain is less
than this value, the capacity of the crack interface will be
underestimated. If e, is larger than 0.002, an unsafe prediction of
the capacity results because the crack shear stress is overestimated.

MacGregorl3 suggests the practical range of longitudinal

reinforcement ratios, p, for beams developing shear failures is about
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€
Figure 4.6 Crack shear stress vs. longitudinal strain,
s = 2 inches.
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X
Figure 4.7 Crack shear stress vs. longitudinal strain,

s = 24 inches.
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0.0075 to 0.025. In flexure, the smaller reinforcement ratio will give
the largest longitudinal strain at failure. For beams with p=0.0075,
strains larger than €,=0.002 are obtained at mid-depth of the section
as shown in Table 4.1. As a result, it is possible that in negative
moment regions where maximum moment and maximum shear
coincide, a beam could be designed to fail in shear at a strain ¢,
=0.002, and in flexure at a strain greater than 0.002. This is opposite
to the shear strength design philosophy which sssumes that shear

failure occurs at the same time or after flexural failure.

fe fy (longitudinal bars) €x

(psi) (MPa) (ksi) (MPa) p=0.0075 p=0.75p,

2500 17.2 40 276 0.0060 -8.0x10°°
60 413 0.0030  0.0038

3000 20.7 40 276 0.0078  -8.0x10™°
60 413 0.0042  0.0038

4000 27.6 40 276 00114  -8.0x10°
60 413 0.0066  0.0038

5000 34.5 40 276 0.0140  -8.0x10°°
60 413 0.0083  0.0038

Table 4.1. Mid-depth strain e,, for p=0.0075 and p=0.75p,,.

To ensure the crack capacity equation will always be
conservative, it seems reasonable to select a value of strain larger

than 0.002. However, if values of allowable shear stress are
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evaluated using a conservative estimate of longitudinal strain such as

0.006 , the stress vcj at the crack interface computed using Eqn 4.10
with a 45 degree crack inclination corresponds to transverse shear
stresses considerably less than permitted by the currently used ACI

Code or Simplified Method in the Canadian Code.

Consistent with CAN3-A23.3-M84, a value of £,=0.002 will be
selected to simplify Eqn 4.10 for reinforced concrete beams, unless
test data indicates a change is warranted. Tests of continuous beams
must be examined in addition to simply supported beams in order to
examine the effects at locations where maximum moment and shear
coincide. For prestressed concrete beams, the same value of e,=0.002
is recommended, since, although prestressed members have smaller
strains prior to cracking, the ultimate strains are comparable to
reinforced concrete beams. Consequently, for the purpose of this
derivation the strain distribution at shear failure has been defined as
that producing a mid-depth strain of 0.002 for both reinforced

concrete members and prestressed concrete members.
4.2.2 Effect of Vertical Spacing of Longitudinal Bars

The vertical spacing of longitudinal steel s, complicates the
concrete contribution equation, and selecting a value of s, will
simplify the final design equation. The choice of a large value for s,

leads to a low or safe estimate of v¢j, but the beneficial effects of

longitudinal reinforcement distributed in a beam web which
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restrains cracks from opening is not considered.

The influence of various values of s, on the crack shear stress is
shown in Figure 4.8, assuming a longitudinal strain e, of 0.002. A
value of s, will be chosen to provide a value of k,=2 at 8=45° with a
stirrup spacing of 24 in. (600mm) to agree with the well established
current practice.  This corresponds to a value of s,=8 inches
(200mm). Referring to Figure 4.8, the graph is generally flat for
longitudinal bar spacings greater than about 8 inches. Selecting this

particular value of s, places an upper limit on crack spacings

calculated using Eqn. 4.8, as shown in Table 4.2.

Crack Inclination Maximum Average s,q (Eqn. 4.8)
6 inches (mm) '
20 7.6 (190)
45 8.5 (215)
70 12.2 (310)

Table 4.2. Maximum average crack spacing if s,=8 in. and s=24 in.

The crack spacings given in Table 4.2 represent the largest average
values obtained for a given crack inclination. Actual crack spacings
would fluctuate above and below these average values. As noted
previously, the 1988 draft of OHBDC-I1128 assumes a maximum

average crack spacing of 12 in. (300 mm), regardless of the crack

inclination or stirrup spacing.

In order to verify the selection of s,=8 inches for use in simplifying
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Figure 4.8 Influence of vertical spacing of
longitudinal bars on crack shear.
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the crack spacing term in Eqn. 4.10, average crack spacings were
calculated using Eqn. 4.8 and compared to 39 of the test beams

2
9. Beams were generally of rectangular cross

summarized by Ramirez
section with overall depths ranging from 12 to 35.4 inches and had
web reinforcement with stirrup spacings ranging from 3.5 to 12 inches.
All beams failed in shear under a single or double point load. Average
crack spacings and inclinations were estimated from photographs of the
actual specimens. Comparing the estimated average crack spacing to
that calculated using Eqn. 4.8 with s,=8 inches and the approximate
crack angle O, the ratio of actual to predicted s,o had a meaa value of

1.12. In general, good agreement was obtained using a value of s,

equal to 8 inches in the crack spacing equation.

4.2.3 Effect of Prestressing

Eqn. 4.4, which is the basis for the general concrete contribution
expression given by Eqn. 4.10, neglects the beneficial effects of axial
compression on aggregate interlock. In order to include the effect of
axial compression due to prestressing on the concrete contribution, the
difference in shear behavior as compared to a reinforced concrete beam
must be examined. Generally, prestressing delays the formation of
flexural cracks, and has a favorable influence on shear strength. It is
advantageous to distinguish between regions of a beam that are cracked
and uncracked in flexure. The ACI and CSA Codes accomplish this by
distinguishing between web-shear and flexure-shear cracking. In an

uncracked beam, axial compression tends to increase the shear required
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to produce diagonal cracks as a result of principal tensile stresses in the

concrete. In those portions of a prestressed concrete beam not

26 suggest the

previously cracked in flexure, Ramirez and Breen
increase in concrete contribution as compared to a reinforced concrete

beam be given by

T
24f'c (4.11)

but 1.0<K< 20

K= 1

where f'c is in psi. This expression is similar to Eqn. 3.1, with the
principal tension stress at inclined cracking taken as 2+/f'c. As shown in

Figure 3.6, the concrete contribution varies for different levels of

nominal shear stress.

In flexurally cracked regions of a beam, a portion of the cross-
section is subjected to tension. Ramirez and Breen suggest the
beneficial effects of prestressing not be considered in these zones. They
suggest flexural cracking occurs when the extreme fiber tensile stress
due to effective prestress and factored loads exceeds the tensile
strength of concrete, taken as 6Vfc. K is taken equal to 1.0 in the

flexurally cracked regions. The Swiss Code follows a similar procedure.

One disadvantage of this procedure is that the concrete contribution
abruptly changes at a section where the tensile stress exceeds 6+/f'c, but
the simplicity of the method is well suited to design applications,

particularly when compared to the complexity of the existing ACI shear
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design procedure for prestressed concrete beams. Figure 4.9 compares
Ramirez and Breen's maximum concrete contribution for prestressed
concrete beams to the ACI equation for web shear cracking and to Egn.
4.10b increased by Eqn. 4.11 with e, = 0.002, s, = 8 in. and s = 24 in.
Increasing Eqn 4.10b by the factor K results in concrete contribution
shear stresses less than permitted by the current ACI Code for
prestressed concrete beams. Since it is expected the inclination of an
axial force with respect to a crack interface should affect the friction or
aggregate interlock along the crack surface, Ramirez and Breen's
assumption that the increase in concrete contribution due to prestress is

independent of the crack inclination 6 may not be appropriate.

Eqn. 4.4, which relates the shear stress on a crack surface to the

crack width, is obtained from a more general expression developed by

Collins and Vecchio2 given in inch and psi units as

g 2

Vei=0.18 vV imax +1.64 ;- 0.82—=
Vci max (4.12)

v _ 124/fc
cimax —
031 +-24W

a+0.63 (4.13)

which includes the effect of a compressive stress fci perpendicular to

the crack surface. Eqn 4.4 neglects the influence of fci on aggregate

interlock and is derived from the first term of Eqn. 4.12. An increase in

the concrete contribution shear stress due to a compressive force

100



Tre
(%)

10.0

e
8.0 ~ ’ -
-
-
PR d
6.0 -
-~
2'0 J l'.ll..‘ ll."..l'
0.0 s | - !
0 : . y
N
f'c

Eqns. 4.10b and 4.11
o 9=20 ©

smmsmmes  Ramirez and Breen

ACI Eqn. 11-13

Figure 4.9 Concrete contribution for prestressed beams.
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perpendicular to a crack, denoted vcp, can therefore be expressed as

2
fci

Vei max (4.14)

Vep=1.64 fg;- 0.82

where f;/V. max<1.0. Since the Modified Compression Field Theory is

based on average behavior, it is suggested the prestressing conditions at

the centroid of the section be considered. The component of fy
perpendicular to the crack surface can be obtained from fgj = fpc sin6

and substituting v max=k,¥fc/0.18 into Eqn 4.14 gives

2
f 0.148 0 f 2
lﬁl=1.64—&sin9——-—— —P€. ) sin 6
Vfc vfc Ky ("f'c (4.15)

The increase in shear due to an axial stress fpc in the direction of the
beam axis is therefore dependent on the level of prestress and the crack
inclination. The increase in shear stress given by Eqn. 4.15 is shown
graphicaily in Figure. 4.10 and is compared to the maximum increase in
shear due to prestressing proposed by Ramirez and Breen. Eqn. 4.15
permits larger increases in shear stress due to prestressing, particularly

for increasing values of fpc.

In order to simplify Eqn. 4.15, the following approximate equations

are proposed:

f
Kup =~ = (0.06 +0.018) —2<

P Wfe Vfe (4.16)
Kyp <0.20 - 0.9 (4.16b)
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Figure 4.10 Increase in concrete contribution due to prestressing
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As shown in Figure 4.11, Eqn. 4.16 underestimates the increase in shear
as compared to the more c‘g;tnplex equations and is a safe
approximation. In order to determine the total concrete contribution
for a prestressed concrete beam, the additional shear stress Vep
obtained from Eqn. 4.16 is added to that given by Eqn. 4.10. In
flexurally cracked regionms, it is suggested the effects of prestressing not
be considered and vcp will be taken equal to zero. Consequently, in
regions of a prestressed concrete beam subjected to flexural tension

stresses, the total concrete contribution is equivalent to a

nonprestressed beam.
4.2.4 Expression for Capacity of Crack Interface

In the preceding sections, a basic equation for aggregate interlock as
a function of crack width was expressed in terms of other variables, €., s.
s, and 6. In order to reduce the number of variables and simplify the
expression for use as a design equation, the effect of several parameters

on the capacity of the crack interface was examined. It was suggested
particular values of e, and s, could be chosen as constants in the final

equation. Using the selected values of s,=8 in. (200 mm) and €,=0.002,

Eqn. 4.10 can be expressed as

2.04/f¢c .
Vei = (psi)
0.3 +(o.o304 + 0608 ) ( ! )
2 sin® cos#6
tan 0 +
s 8 (4.17)
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0.174/fc
Vei= < (MPa)

0.3 +(0.0012 +:0024 ) ( 1 )
2e sin 6 +cos(-)

tan
s 200 (4.17b)

and for prestressed concrete beams, the concrete contribution obtained

from Eqn. 4.17 is added to that given by

ch=(0.06 +0019) fpc (416)
< (0.206 - 0.9Wf'c (4.16b)

where vcp=0 in those portions of a beam where the extreme fiber

tensile stress due to factored loads and effective prestress exceeds

6+/f'c.

Since the aggregate interlock expression is based on Eqn. 4.4b, which
assumes an maximum aggregate size of at least 3/4 inch, for smaller
maximum aggregate sizes Eqn. 4.17 may overestimate the interface
shear stress. However, it is suggested Eqn. 4.17 be applied to beams
with maximum aggregate sizes as small as 3/8 inch unless test data

indicates a change is warranted.

Eqn. 4.17 is shown graphically in Figures 4.12 and 4.13. Although
from these graphs it is easy to determine the shear stress for a
particular beam's stirrup spacing and crack angle, Eqn 4.17 is still too

complex for general use. This equation will be simplified for design
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Figure 4.13 Crack shear stress vs. stirrup spacing (Eqn. 4.17b).
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applications by developing easy to use approximate expressions, which

will be presented and discussed in subsequent sections.
4.3 Capacity of Cracked Concrete in Tension

As shown in Figure 4.1, the concrete contribution to shear can be
expressed in terms of tensile stresses in the concrete. In addition to the
aggregate interlock mechanism examined in Sec. 4.2, another possible
failure mode is governed by the capacity of the cracked concrete web in
tension. Since the inclined compression struts are subjected to biaxial
compression-tension, their tensile strength will be less than the uniaxial
tension strength. For a cracked concrete element, Vecchio and Collins

suggest the post cracking tensile stress-strain relationship given by

f - fcr

1=
1 + 20081 (4.18)

where f.,. is defined as the stress in the concrete at cracking. For

diagonally cracked concrete beams, Collins and Mitchel1?7 recommend
Eqn. 4.19. As shown in Figure 4.14, Collins and Mitchell's equation

provides a lower bound to values obtained using Eqn 4.18.

oy azfcr

fi=—09 25
1 ++/500¢, (4.19)

where a1 and a2 are factors originally developed in the CEB-FIP Model

Code to account for the effects of bond and type of loading respectively.
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Figure 4.14 Post cracking tensile stress-strain curves.
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For deformed bars and monotonically applied loads the Model Code
suggests o;=a,= 1.0. For undeformed bars and sustained loads, it
suggests a;=o,= 0.7. The lower estimate of tensile stress obtained from
Eqn. 4.19 will be used in deriving the shear capacity provided by the
concrete web in tension. Since most web reinforcement in the United

States is #3 or #4 deformed bars, oy will be taken as 1.0. In addition,

since the final design equation will be compared to test results of

generally short term loading conditions, a7 will also be taken equal to

unity.

As in the derivation of the crack interface expression, Eqn. 4.19 must
be expressed in terms of easily calculated variables if it is to be used for
design purposes. One simplification is to make use of Eqn. 4.9, which
relates the principal tensile strain €; to the longitudinal strain e,. Also,
since the tensile strength of concrete is approximately proportional to
Vf'c, the stress in the concrete at cracking can be expressed in the form

DVf'c where D is a constant. Consequently, Eqn. 4.19 can be rewritten as

e, +0.002
5004 e, + ———

tan'0 (4.20)

Because it is conceptually easier to visualize shear resistance
resulting from shear stress along the crack than from concrete in
tension, Model 2 in Figure 4.1 was selected as the basis for deriving the

concrete contribution term. Consequently, the principal tensile stress f
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in the cracked concrete must be expressed as an equivalent stress along

the crack interface, which can be accomplished using Eqn. 4.2b. In
order to calculate vgi from this equation, the stress in the reinforcement

f at an average location in the compression strut must be determined.

Denoting the change in reinforcement stress (fy- fs) as Afg, Eqn. 4.2b

becomes

£, AJAf
Vd= -
tan® sbwtane (421)

If a vertical stirrup has only minimal bond to the concrete strut, Afg

is approximately zero. This may be a reasonable approximation if
undeformed web reinforcement is used, because as it contracts in
diameter due to axial tension only minimal bond is expected between
the reinforcement and the concrete. However, if deformed bars are
used the change in stress Afg will not be negligible. To develop a design
expression that will be con.ervative and underestimate Vei, it is
beneficial to use the largest practical Afg. If web reinforcement is

considered to have bond characteristics similar to deformed bars, ACI

Clause 12.2.2 can be used to determine the maximum Afg due to bond as

lb‘Vf’C
Afs o= T
As shown in Figure 4.15, the stress in a stirrup midway between two
cracks can be determined by considering the bond between the bar and

the concrete within half a crack width. For typical maximum crack
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spacings, it can be shown that Afg ... at the centreline of a strut can
equal fy. That is, if a stirrup is considered to have bond similar to a
deformed bar, it is possible to develop the bar's full yield strength
within half of a typical crack spacing. From Figure 4.15, the ultimate
value of tension the concrete can withstand prior to failure is another
condition limiting the maximum Afg at the centreline of a strut.
Consequently, the maximum value of change in stirrup stress that the
concrete is capable of equilibrating in tension can be determined.
However, if the maximum tensile stress at the centreline of a concrete
strut is reached, a new crack forms in the concrete strut but the cracked
concrete beam web still provides resistance to shear. The Modified
Compression Field Theory considers the tensile behavior of a concrete
element as cracking proceeds under increasing loads, and examines the

bar stress at an average location in the concrete, not at the centreline of

a concrete strut. The stress in the reinforcement fg at an average
location in a strut, which is at the inclined section where f] acts, can be
determined by examining the average strains in a cracked concrete

element. The average transverse strain €, can be determined from

Mohr's circle as

0.002
ST 0.002

2
tan (4.23)

€y

where the principal compressive strain is equal to -0.002, as suggested

by Vecchio and Collins.
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If the longitudinal strain €, is taken equal to 0.002, as in the

aggregate interlock expression developed in Section 4.2, e, calculated

y
using Eqn. 4.18 will be greater than a tensile strain of 0.002 for crack
inclinations less than or equal to 45 degrees. Consequently, the
transverse strain equals or exceeds the yield strains of 0.0013 and
0.002 for Grade 40 and Grade 60 reinforcing bars respectively. For
crack inclinations greater than 45° the average transverse strain gy
calculated using Eqn. 4.23 is less than 0.002, and average yielding of the
web reinforcement may not occur. Therefore, if 6 is limited to less than

or equal to 45°, fs (= Esey) at an average location in a strut equals fy in

tension, and Afg in Eqn. 4.21 equals 0. As a result, Eqn 4.21 can be

expressed as

=
tan® (4.24)

Substituting this expression into Eqn 4.20 gives

D+fc

g, +0.002
{1+ 500(€x+————2——-) }tane

tan © (4.25)

Vei=

which is a general expression for the equivalent interface shear of the

concrete contribution provided by cracked concrete in tensior, provided

Afg = 0. To ensure this condition is satisfied, 6 should be limited to less
than or equal to 45° for a longitudinal strain e, = 0.002. Limiting 8to a

value of 459 is reasonable for typical design situations, and is consistent
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with the maximum inclination of 45° permitted in the June 1989 draft

of the CEB-FIP Model Code 1990 2.

4.3.1 Effect of Longitudinal Strain

The influence of &, on the magnitude of shear is shown in Figure

4,16. It is apparent that the larger the crack inclination, the less
sensitive Eqn. 4.25 is to different values of e€,. As in the derivation of

the crack interface expression, &, is selected as 0.002 which gives

Dvfc

{1+ 1+ 22 }tane

tan @ (4.26)

Vei=

Consequently, the strain distribution at shear failure is defined as that
producing a mid-depth strain of 0.002. If the actual e, is larger than
this value, the shear stress calculated using Eqn. 4.26 corresponding to
the concrete capacity will be overestimated. However, as shown in
Figure 4.16, for longitudinal strains greater than 0.002 the curves

flatten out and the variation in concrete contribution is not substantial.

4.3.2 Effect of Concrete Cracking Strength

Eqn. 4.26 is equally valid for either psi or MPa units, provided D is
specified in the corresponding units. The tensile strength of concrete is
approximately proportional to the square root of the compressive

strength, and ACI Sec. 11.4.2.1. suggests a value of 6Vfc for strength

115



fcr=D|f'c ’ a1=(12=1.0

KV
3

(=

psi 2
1
0 I v 1 v 1 ' 1 i LI L ] v 1
0.000 0.002 0.004 0.006 0.008 0.010 0.012

€x

Figure 4.16 Influence of longitudinal strain on
concrete tensile capacity.

116

D/CRACK

ANGLE

(degrees)
4/20

4/45
4/70
6/20
6/45
6170



calculations. ~ The Modified Compression Field Theory suggests the
tensile stress in the concrete at cracking f.. = DVf'c be taken as 4 +fc
psi (0.33 Jfc MPa), which is the same expression used in the ACI Code
for predicting the principal tensile stress at web-shear cracking. Eqn.
4.26 is shown in Figure 4.17 with D ranging from 4 to 6. The value of
D=4 suggested in the Modified Compression Field Theory was not
rigorously established by Vecchio and Collins, but since it provided
reasonable agreement with their test results it was used. In order to
provide shear strengths comparable to the existing ACI Code equation of
24/fc, a value of ky=2.0 should be obtained using the proposed concrete
tension capacity at 6 = 45°.  This requirement suggests a value of
fer=5.5vfc be used in developing the general expression for the shear
capacity provided by cracked concrete in tension. Figure 4.18, which
compares the proposed value of for with the test results given by Collins
and Vecchios O, indicates a choice of D=5.5 is reasonable as a design
simplification, although the number of factors that influence the

cracking strength create a wide scatter of test results.

4.3.3 Effect of Prestressing

Prestressing tends to increase the load at which cracks develop.
The value of for = 4/f'c suggested in the Modified Compression Field
Theory is based on the results of reinforced concrete panels subjected
almost exclusively to pure shear. For a given shear stress, the effect of
axial compression in an uncracked beam is to shift the Mohr's circle of

stress and reduce the the principal tensile stress compared to that
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produced by pure shear. The increase in cracking stress due to

prestressing is given by Eqn. 4.11 as

f
K= 1 +—BC_
24f'c (4.11)
where all terms are as previously defined. Consequently, for

prestressed concrete beams the concrete contribution due to tension in

the concrete can be expressed using Eqn. 4.26 with the numerator in the

form KD«f'c.

In the regions of a beam where flexural cracking has occurred, the
shear capacity of a prestressed beam is similar to that of reinforced
concrete beam, suggesting K=1.0 in this case. Ramirez and Breen
recommend a limit of K=1.0 be imposed to those regions of a beam
where the extreme tensile stress due to the factored load and the
effective prestress exceeds 6+fc. Ramirez and Breen suggest K<2.0.
Based on their evaluation, it is suggested the increase in cracking stress

due to prestressing be calculated according to Eqn 4.11, but 1.0sK<2.0,

and K=1.0 in flexurally cracked regions.
4.3.4 Expression for Capacity of Cracked Concrete in Tension

Using the tensile stress-strain relationship for cracked concrete
recommended by Collins and Mitchell, the contribution to shear

provided by tension in the concrete has been converted into an

equivalent stress vgj acting along a crack interface. The interface shear
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stress is analogous to a vertical shear stress acting on the beam section.
The resulting expression gives an upper limit to the concrete
contribution to shear provided by tensile stresses in a slender

reinforced concrete beam as

5.54fc

: (psi)
{1+ ] +—2 } tane

Vei=

2
tan 9 (4.27)

0.46vfc (MPa)

ci™
{ 1 + 1+ 2 }tan e
2
tan 6 (4.27b)

\%

Eqn. 4.27 is shown graphically in Figure 4.19. Although the general

expression involves only two variables f'c and 6, the equation is
complex and may not be appropriate as a design expression. Simplified
relationships can be derived to approximate Eqn 4.27, as will be

discussed in Section 4.4.

For prestressed concrete beams, the concrete contribution predicted

by Eqn. 4.27 is multiplied by

24fc (4.11)

with 1.0 < K < 2.0. and K=1.0 in flexurally cracked regions.
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4.4 Development of Concrete Contribution Egquations
for Use in Design

For slender reinforced concrete beams, the concrete contribution can

be expressed as

V¢ = vei byjd (4.28)

The shear carried by the concrete, which is equivalent to the interface
shear, is limited by both the aggregate interlock capacity and the tensile
stress-strain response of cracked concrete, as given by Eqns. 4.17 and
4.27 respectively. These expressions are shown in Figure 4.20. It is
apparent that for small crack inclinations, the aggregate interlock along
the crack governs the shear capacity. For large crack inclinations and
small stirrup spacings, the tensile capacity of the concrete controls the
shear strength. In most situations, typical beam designs would use
inclinations less than 45°, and for typical stirrup spacings the aggregate
interlock expression would govern the allowable concrete contribution.
As noted in Section 4.2, OHBDC-III assumes the crack interface controls
the shear strength in all circumstances. As shown in Figure 4.20, this

assumption may not be appropriate for large crack inclinations and

small stirrup spacings.

For prestressed concrete beams, the concrete contribution due to
aggregate interlock is determined by adding the allowable shear stress
from Eqn. 4.16 to Eqn. 4.17. The contribution due to tension in the

concrete is obtained by multiplying Eqn. 4.27 by Eqn. 4.11. The lower
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or limiting value of the two expressions determines the concrete

contribution to shear.

The total shear resistance is calculated by adding the shear carried
by the concrete to the shear resisted by the stirrups plus the vertical
component of any inclined prestressing tendons. Assuming the vertical
stirrups have yielded at failure and the internal lever arm is equal to
the 90% of the effective depth, the shear contributed by the web

reinforcement given by Eqn. 2.37 can be expressed as

v, = Avfy0.9d

s tanb (4.29)

which is the expression suggested in the 1987 draft of Chapter 11 in the

ACI Code.

For a given angle 0, it is difficult to have the stirrup spacing as a
variable in both the concrete contribution as in Eqn. 4.17 and in the web
reinforcement equations, since a trial and error procedure must be used
to solve for the required stirrup spacing. As a result, the expressions
derived earlier in this chapter are considered too complex as Code
equations. Approximate and simple to use equations will be developed
to simplify the concrete contribution expressions, and reduce the

likelihood of calculation errors.
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4.5 Proposed Design Equations

In order to simplify the general expressions derived for the concrete
contribution to shear in B-regions of slender reinforced concrete beams,

the following approximate equations are proposed:
Interface shear capacity: x, = 0.056 - 0.25 (4.30)

Capacity of cracked x, = 4.25 - 0.056 (4.31)
concrete in tension:

where 0 is in degrees and is limited to a maximum value of 45°. A
lower limit on 6 is required to prevent web crushing, which is discussed
in Chapter 5. Eqns. 4.30 and 4.31 are compared to values obtained from
Eqns. 4.17 and 4.27 in Figure 4.21. Eqn. 4.30 provides the smaller or
limiting value of the concrete contribution and governs for all
compression strut inclinations less than 45°, and gives x,=1.0 at 8=25°,
and x,=2.0 at 45°. Consequently, for reinforced concrete beams Eqn.
4.30 determines the allowable concrete contribution in a variable angle
model. At an inclination of 45° the concrete contribution is 2+/fc, which
is the same as given by the ACI expression in Eqn. 2.21. Although the
beneficial effects of tightly spaced stirrups (s=4 in.) in restraining crack
growth and maintaining aggregate interlock are not included in Eqn.
4.30, the proposed design equation is much easier to use than Eqns. 4.17
and 4.27. As shown in Figure 4.21 it is conservative for both the

aggregate interlock and concrete tension limit states.
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The proposed concrete contribution can be expressed in the

traditional ACI form of

Ve = vei byd (4.32)
which can be written as Ve =x, ¥f'c b,d (4.32b)

whege x, = 0.050 - 0.25, 8<45°
4
In Eqn. 4.32 it isc | assumed the interface shear acts over the effective
depth d. In many instances the distance between top and bottom
chords in a concrete truss model is approximately equal to the effective
depth, and this assumption in the concrete contribution expression is
not believed to be critical, particularly when the dowel action and the
shear carried by the uncracked concrete compression zone have been

neglected in the derivation.
Similarly, the effective depth can replace the internal lever arm in

the web reinforcement contribution, such that the shear provided by

stirrups can be expressed as

s tanf (4.33)

The total shear capacity of a reinforced concrete beam is obtained by

adding Vs to V.
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For prestressed concrete beams, the concrete contribution is given

by
Crack Interface: x = (0.056 - 0.25) + Kvp (4.34)

where k. =(0.06 + 0.016) f,//Fc

<0.26 - 0.9
Tension Capacity: x = (4.25 - 0.056) K (4.35)
K=4/1 +—f&
where N 24/Fc
1.0sK<2.0

The concrete contribution proposed by these equations is shown in
Figures 4.22 and 4.23. For small crack inclinations Eqn. 4.34 governs
the concrete contribution, and as 6 approaches 45 degrees Eqn. 4.35
limits the shear strength. In addition, as the compressive stress fpc
increases, the inclination corresponding to the maximum concrete
contribution decreases. In order to further simplify these expressions,

Eqn. 4.35 can be rearranged in a form similar to the crack interface

capacity such that

K=Ky + Kyp (4.36)

By examining the additional concrete contribution due to prestressing as
limited by the smaller value determined from Eqns. 4.34 and 4.35, the

following values of x,, are suggested as design expressions:
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Figure 4,23 Effect of prestress on concrete contribution.
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kyp = (0.010 + 0.06) foe//Fc (4.37)
<0.26 - 1.0

and Kyp £ 8.75 - 0.156 (4.38)

The smaller value of «x,, governs. These expressions provide a
maximum concrete contribution of x=5.7 at =289, with ¥=3.75 at §=20°
and k=4.0 at 8=45°. The concrete contribution obtained from Eqns. 4.37
and 4.38 is shown in Figure 4.24. Values given by the proposed design
equations are comparable to those given by Eqn. 2.28 (ACI 11-13).
Since the upper limit of Eqn. 2.12 (ACI 11-11) is provided by Eqn. 2.28,
the maximum concrete contribution using the Vi and V. expressions
is similar to those given by the proposed equations. The maximum
value of 5.7/fc obtained from the proposed design expressions is larger
than the limit of 5vf'c suggested in the ACI Code Eqn 11-10 (Eqn. 2.29)
for beams with an effective prestress equal to at least 40% of the

flexural reinforcement tensile strength.

For prestressed concrete beams, the concrete contribution is given

by
Ve = v¢j byd + Vep b,d (4.39)
which can be written as Ve =(xy +xvp)«/§ b, d (4.39b)

where x, is calculated according to Eqn. 4.30, and «x,, is the smaller of
Eqns. 4.37 or 4.38. In flexurally cracked regions, x,, is taken equal to

zero such that the concrete contribution is equivalent to a
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nonprestressed concrete beam.

The lower concrete contribution limit of 1.74/F¢ suggested in the AC]

Code includes the vertical component of ap inclined tendon Vp. In the
proposed method, the lower limit is taken as 2vfc at 45° decreasing to
1.0vfc at 25°, and the shear carried by an inclined tendon is not

considered as part of the concrete contribution.  The tota] shear

resistance is given by

V=Vt Ve + v, (4.40)

The following procedure is recommended to account for the

concrete contribution to shear in the General Method proposed for

the ACI Code Clause 11.4, 1987 draft;

1) For nonprestressed members subject to shear and flexure only,

Ve =x,4fc b, d (4.32b)
Ky, = 0.050 - 0.25 (4.30)

where 0 is in degrees and shall not exceed 45,

2) For the case of shear in prestressed concrete members

Ve =(x,+x, Wfc b, d (4.39b)
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where «x, is calculated according to Eqn. 4.30 and x,; is given by

£
ko =(0.010 +0.06)—2<.
P Vfe (4.37)

but shall not be taken greater than 0.26 - 1.0 nor 8.75 - 0.156. In
members where the stress in the extreme tension fiber due to the
ultimate load and the applied effective prestress force exceeds 6Vfc,

Kyp shall be taken equal to zero.

In determining the minimum permissible angle 6 to avoid

diagonal crushing, the ACI 1987 draft suggests

0 >15° +(75,000 +f) —2—
1000 f'c (4.41)

where v, is the nominal shear stress and fg is the stress in the
longitudinal reinforcement in psi. The ACI draft indicates the
reinforcement stress fg may be taken as the yield strength, f,, of the
longitudinal bars for reinforced concrete beams, or as (fyg - fs.) for
members in which the longitudinal reinforcement consists of only
prestressing tendons, where f,; is the stress in the prestressed
reinforcement at nominal strength and f, is the effective stress in
the prestressing tendons after losses. For members with tensile
reinforcement consisting of a combination of reinforcing bars and
prestressing tendons, the ACI draft suggests f; be taken as the larger

of fyor (fys - fgc). As will be shown in Chapter 5, a suitable
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simplification to the proposed ACI procedure in determining a lower
limit on O for prestressed concrete beams is to assume fos equals the

tensile stress of the prestressed reinforcement foy-

4.6 Special Considerations

The concrete contribution expressions developed in the previous
sections are based on a variable angle truss model with a continuous
field of diagonal compression. Although several simplifying
assumptions were required to develop the final design equations, the
derivation is based on a rational model in which the internal forces and
failure mechanisms are easily visualized. It is inherent in the
development of the concrete contribution equations that premature
failures due to poor detailing or crushing of the concrete web are
avoided. These failure modes can be avoided by incorporating adequate
code provisions. Although the design expressions were developed and
generalized to suit a basic design procedure, for simplicity several
factors which may influence the actual concrete contribution were not
considered. Aggregate interlock is a major component of the concrete
contribution model.  Vibrations, load reversals, moving loads and
sustained loads may effect the aggregate interlock mechanism. In
addition, water rise during concrete placement in deeper beams may
weaken the upper portion of concrete, reducing the effectiveness of
aggregate interlock in this zone. Fatigue, creep, and temperature effects

may also influence the shear behavior as predicted by the proposed

design equations.
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In order to rationally consider the factors influencing shear strength,
it is important a design model provide clear concise concepts of shear
failure. ~Therefore, although it is desirable to have design equations
accurately verified by test results, it is also important they provide
rational models of shear failure. Test specimens are normally statically
determinate, and are usually monotonically loaded up to failure by
concentrated loads. In contrast, actual structures will generally not be
limited to the same conditions, and the accuracy of a shear design
equation to practical structures in unclear. The existing ACI shear
design method has generally been substantiated by test specimens, but
it is not based on a clear conceptual design model. The proposed design
equations developed in Chapter 4 have been derived from a rational
shear design model in which the shear failure mechanisms are easily
visualized. @As a result, the proposed procedure is better suited to
examine the factors affecting shear strength in actual structures.
Predictions of shear strength using the proposed equations will be

examined with actual test results in the following Chapter.
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5. COMPARISON OF PREDICTIONS WITH EXPERIMENTAL
RESULTS REPORTED IN LITERATURE

5.1 General

When a beam fails in shear, the internal forces equilibrating the
applied loads have reached their shear capacity or shear resistance.
A theoretically derived shear capacity will not exactly predict the
actual failure load of a test specimen. This variability is due in part
to simplifying assumptions, uncertainty and randomness of material
properties, workmanship, construction methods, and deviations
between actual and specified dimensions. The actual resistance of a
beam, whether it is the shear, moment or axial load resistance, can

be schematically represented by a probability distribution curve as

shown in Figure 5.1.

From an economic and safety standpoint, it is preferable to have a
small dispersion or standard deviation of the actual resistance and
the ratio of the predicted to actual resistances. Since the actual
resistance of a particular type of member is variable, a beam with
below average strength may have a lower capacity than predicted by
theory.  Consequently, when comparing a design equation to test
results, the actual strength of some beams may be lower than the
calculated nominal strength. This concept is illustrated in Figure 5.2
where the flexural capacity of 112 beams is compared to the nominal
flexural capacity using the assumption of a rectangular stress block.

Is is apparent that the actual flexural strength of some beams is
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Figure 5.1 Frequency distribution of resistance R.
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Figure 5.2 Comparison of measured and predicted failure moments
of 112 reinforced concrete beams (adapted from Ref. 13).
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overestimated by the design expression. Similarly, the shear
strength calculated from the proposed design equations may
overestimate the actual failure shears for some test beams.
Resistance factors and the traditional factors of safety attempt to

consider the variability of the resistance of a member.

In order to verify the proposed expressions for the concrete
contribution, predictions of shear strength will be compared to test
results reported in literature for both reinforced and prestressed
concrete beams. Slender beams with a shear span to depth ratio
a/d>2.5 will be examined. In order to select suitable test results,
several conditions assumed in the development of the proposed
equations must be satisfied. Since the variable angle truss model
inherently assumes web reinforcement has yielded, test results
should indicate that yielding of the transverse reinforcement
occurred at or before failure. In addition, no premature web
crushing, loss of bond or other indications of untimely failure should

be evident in the test specimens.

26, the majority of shear failure

As noted by Ramirez and Breen
tests undertaken in North America have been performed on beams
containing no or very small amounts of web reinforcement.
Researchers generally design shear tests to avoid bending failures,
and consequently unrealistically low amounts of shear reinforcement
or unrealistically high amounts of flexural reinforcement are
frequently used. Since beams without stirrups cannot be modelled

as a variable angle truss with vertical web reinforcement acting as
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tension ties, test results on such beams cannot be utilized, This
considerably reduces the number of suitable shear test specimens

reported in the litérature.
5.2 Reinforced Concrete

5.2.1 Selection of Test Beams

Ramirez2? summarizes shear test resylts of several investigators
where slender reinforced concrete beﬁms with vertical stirrups were
tested and yielding of the stirrups  was reported at or before failure,
The majority of the members examined were simply supported
rectangular beams or T-beams, subjected to a Symmetrical single or
tWo point load. A few beams had shear SPan to depth ratios legs
than 2.5, and these specimens are not included in this investigation.
In addition to the test beams considered by Ramirez, severa] other
tests series available in the literature are examined to verify the
proposed ccacrete contribution expressions, including a few beams
subjected to negative bending and to continuous loading, A general
Summary of the test information is provided in Tables 5.1 and 5.2,
Stirrup spacings in the test beams varied from 2.0 to 11.8 inches (50

to 300 mm), and concrete strengths ranged from 1060 to 12000 psi

(7.3 to 83 MPa).

5.2.2  Comparison to A.C.I. Code Procedure

to the failure shears predicted by the existing ACI method with ¢=1.0
using Eqns. 2.16 and 2.21.  The results are shown schematically in
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TEST SERIES f'c(ksi) s (in) a/d SECTION
Anderson & Ramirez 3! 4.23 - 4.69 35-70 2.65
Johnson & Ramirez 32 5.28 - 1049 | 325-105 3.1 §
Elzanaty. Nilson & Slate 33 300-9.10 | 75 40
Bresler & Scordelis 34 3.36 - 4.29 75-825 3.9-49
Mattock et al (N=0)33 1.98 - 6.52 40-75 25-6.0 T
Mphonde & Frantz 39 320-120 | 35 3.6
Cerruti & Marti 20 6.48 41 S):g“m :K
Hsiung & Frantz 3/ 6.00-654 | 42-45 3.0
Taylcr 38 3.00-3.14" 35-45 3.6 -45 - ]
Sorensen 3° 451-497 | 59-83 3.5
Rodriguez et al 40 272 -3.59° ]| 6.0-10.0 28 -4.1
Bach, Nielsen & Braestrup 41 1.06 - 5.28 3.5-8.27 3.0
Debailky et al (a = 0)42 293 - 4.56 394 -7.87 3.5
Clark 43 3.20 - 4.28 6.0-10.0 2.4
Olesen, Sozen & Seiss {ip: -0* 14 | 6.15 - 6.88°¢1] 2.0 - 35 28-42
Lyngberg (Fps=0)+ 373-386 | 6.18 28
Rodrigues & Darwin 46 4.01 - 5.38 7.0 3.9-40
Mailhot 19 5.67 472-11.8 E:;?rm T—_

*fctlakenas 0.8 x[ oype

** Concrete strength fom batch in middle third of beam

ss+* average of two batches used in each beam

Table 5.1 Summary of reinforced concrete test beam properties.
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TEST SERIES

COMMENTS

Anderson & Ramirez

Cracks jcaung possible anchorage failure are evident

Johnson & Ramirez

Roller supports used may have provided some resicaint
agaInst lateral movement of test beams

Elzanaty, Nilson & Slate

Bresler & Scordelis

Yielding of stirrups inferred from vertical
displacement measurements.

x
Mattock et al (N=0)

Stub a:le supports at centrcid of test specimens

Mphonde & Frantz

l

Cerruti & Marti

vlell calculated at edge of support plate

Hsiung & Frantz —
Taylor —_—
Sorensen S

Rodriguez et al **

Bach. Nielsen & Braestrup

Longitudinat steel yield sirength taken as ulimate tensile
strength. Generaily two wires used per leg of stirrup

Debailky et al (o = 0)

Haunched beams not considered.

Clark

e—

Steel ptate supports may restrain latera! beam movement

Olesen, Sozen & Seiss {Fps=0)

Yietding of surrups inferred from measurements of rack
openings.

Lyagberg (Fps=0)

Rodrigues & Darwin

Lightly reinforced T-beams in negative bending

Mailhot

Vu“ taken at support face. Evidence of & flexural fatiure

after yielding of surrups adjacent to support

One¢ restrained beam also included in the test beams examined.

Oue continvous beam with third point loading also included in the test series.

Table 5.2 Details of reinforced concrete test beams.
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Figure 5.3a. For the beams examined, the ACI shear design
procedure safely estimates the failure shear of all but eleven beams.
The mean Vg /V a 1atio is 1.40 with a standard deviation of 0.32
(coefficient of variation of 0.23). The V. /V a. ratio ranges from
0.76 to 2.43. This relatively large spread of predicted capacities is
expected because, as shown in Figure 2.16, Eqn. 2.21 is a lower
hound to the concrete contribution with a relatively larg. scatter of
test results. Three of the test beamns have Vi /V ., ratios less than
0.85, which suggests the strength of these beams is overestimated
when a strengtii reduction factor of ¢6=0.85 is applied to the
calculated shear capacities. The lowest V. /V ., ratio of 0.76 is
obtained from a lightly reinforced T-beam in negative bending tested
by Rodrigues and Darwin46 (Beam E-80, p,f,,=73.5 psi, p,,=0.48%).
As shown in Figure 2.16, for low values of p, the shear capacity is
less than predicted by the ACI Code. Detailed results for each of the

106 beams examined are provided in Appendix A.

5.2.3 Comparison to General Concrete
Contribution Expressions

The failure load of the reinforced concrete ics: btams can also be
predicted using the general concrete contribution expressions given
by Eqns. 4.17 and 4.27. For exach beam, several possible angles of
inclination of the diagonal compressive stresses can be chocen. A
designer is free to chcose the angle of inclination 6 provided the
concrete web does not crush in compression and yielding of the

stirrups is ensured. These requirements can be satisfied by placing
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Figure 5.3 Comparison of measured and computed failure shears

for 106 reinforced concrete beams.
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lower and upper limits on 6. From the derivation of the proposed
concrete contribution equations, limiting 6 to less than or equal to
45° is sufficient to ensure the stirrups yield. Consistent with the
1987 draft of Chapter 11 in the ACI Code, the following lower limit

was imposed:

To avoid diagonal crushing,

0>15 +(75,000 +f)) ——-2
1000 f'c (4.41)

where vp is the nominal shear stress, and f; is the stress in the

longitudinal reinforcement, which may be taken as the yield

strength, fy, all in psi. The lower limit on 6 was also checked in a
more rigorous manner in which the diagonal compressive stress f; is

computed from Mohr's stress circle as

1
)-f,

fz =V, (tan@ +
tano (5.1)

fy=v,(tand + )=~V tand
or tan® (5.2)

and compared to the allowable compressive stresses in an inclined

strut given by the ACI draft as

 __fe(8,-10
47 (50 +£,/2,000) (5.3)
but < 0.85 fc
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where Og¢ is the angle between the steel tension member and the
compressive strut, in degrees. In Eqn. 5.3, both the transverse and
longitudinal reinforcement are considered as tension ties and must

be checked separately to determine the lower limiting value.

For each particular test specimen, © was varied between 15° and
45° in one degree increments, and the allowable lower limit was
determined in each case. The lower limit on 6 given by Eqn. 4.41
provides very good agreement with the value obtained by checking
the compressive stress f, in the inclined strut. For design
applications, the choice of a small 8 decreases the allowable concrete
contribution but increases the number of stirrups crossed by an
inclined crack. Consequently, for each particular test specimen, an
optimum capacity providing the largest shear resistance for the

given member is obtained. The stirrup capacity is calculated from

s tan9 (4.33)

Using this web reinforcement contribution and the general
concrete coniribution expressions derived in Chapter 4, the mean
Viest/ Veale ratio for the 106 beams considered is 1.20 with a
standard deviation of 0.29 (coetficient of variation of 0.24). The

results are shown schematically in Figure 5.3b. Twenty-nine beams

have a Viqq/V g ratio less than 1.0 with the lowestratio equal to

0.68, as compared to only eleven beams below 1.0 in the ACI shear
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design method with the lowest ratio of 0.76. Using the general

concrete contribution expressions, seven beams have a V. /V_ .
ratio less than 0.85 as compared to three beams when using the ACI
procedure. The low value of 0.68 is obtained from the lightly
reinforced T-beam tested by Rodrigues and Darwin46 (Beam E-80),
which is also the most unconservative prediction obtained from the
ACI Code procedure. The two beams with V., /V ., ratios equal to
2.09 and 2.31 shown in Figure 5.3 are T-beams tested by Nielsen et
al*! with concrete strengths of 1400 psi and 1360 psi respectively.
Due to the low concrete strengths, a strut inclination 6 chosen to be
less than 45° but large enough to prevent web crushing according to
Eqn. 4.41 could not be obtained. In order to calculate a shear capacity
such that the web concrete does not crush prior to yielding of the
stirrups, the web reinforcement area was incrementally reduced
until a solution was obtained at 8=45°. As shows in Figure 5.3 and
indicated by the coefficient of variation, the dispersion of predictions
for all the test beams is about the same as in the ACI procedure, but

predicted capacities are closer to the actual failure shears.

5.2.4 Comparison to Proposed Design Equations

Using the proposed concrete contribution design equations given
in Section 4.5 and the stirrup capacity from Eqn. 4.33, the mean
V est/Vealc ratio for all 106 beams is 1.25 with a standard deviation
of 0.29 (coefficient of variation of 0.23), and extreme values of 0.74

and 2.31. Results of the proposed design equations are shown in

Figure 5.4. Twenty three beams fall below a V./Vy ratio of 1.0
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Figure 5.4 Comparison of measured and computed failure shears

for 106 reinforced concrete beams.
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and three beams fall below 0.85. A summary of results using all
three shear design procedures is shown in Table 5.3. The proposed
design equations provide similar results to the more general concrete
contribution expressions, and have a mean test to predicted ratio
closer to 1.0 than the ACI method. The sample standard deviation of
the proposed design equations is a little less than the ACI procedure.

Both shear design methods have a coefficient of variation of 0.23.

If the web reinforcement contribution is calculated according to
the ACI draft expression given by Eqn. 4.29 which is similar to Eqgn.
4.33 with d replaced by 0.9d, the mean V/V_,. ratio is 1.31 with
a standard deviation of 0.30 (coefficient of variation equal to 0.23),
and a low test to predicted ratio of 0.78. Consequently, replacing the
effective depth by an approximate lever arm of 0.9d in the stirrup
contribution slightly decreases the predicted strengths toward

censervative values, but the change is not substantial.
5.2.5 Influence of Cross-Section on Shear Strength

As shown in Figure 5.4b there appears to be two peaks in the
frequency distribution curve, one at a V. /V ., ratio of about 1.0
and the other at ratio of approximately 1.4.  Although there are
many factors that can influence shear strength, the presence of two
peaks in the proposed design equations may be attributed to the
difference between predictions for rectangular beams as compared to
T or I-beams. As shown in Figure 5.5, the 58 T-beams examined

have a mean Vg /V ,ratio of 1.36 while the 48 rectangular beams
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ACI METHOD GENERAL PROPOSED
EXPRESSIONS DESIGN EQNS.
TEST SERIES westsl X | s T | s B
Anderson & Ramirez 3 117 [ 0095 | 090 | 0.073 | 0.94 | 0.069
Johnson & Ramirez 4 1.08 [ 00751 099 [ o047 | 1.03 | 0064
Elzanaty, Nilson & Slate 3 1.32 | 0.212 1.12 0.216 1.10 0.191
Bresler & Scordelis 6 1.56 | 0.077 1.34 0.081 1.37 0.120
Mattock et al (N=0) 15 1.70 0.188 1.37 0.132 1.38 0.123
Mphonde & Franiz 8 1.39 | 0.137 1.11 0.109 1.27 0.154
Cerruti & Marti 1 175 | == 1.36 — 1.40 | =
Hsiung & Frantz 4 101 | 0073 0.83 0.054 0.86 | 0.056
Taylor 2 140 } 0.002 1.03 0.008 1.09 | 0.008
Sorensen 3 175 | 0.184 1.32 0.125 1.33 ] 0.130
Rodriguez et al 5 1.27 ] 0.035 0.99 0.031 0.99 | 0.034
Bach, Mielsen & Braestrup 17 1.44 | 0.443 1.57 0.348 1.59 | 0.346
Debaiky et al (a=0) 6 1.40 | 0.135 1.16 0.159 1.17 ] 0.148
Clark 9 1.36 | 0.15% 1.02 0.126 1.03 | 0.116
Olesen Sozen & Seiss (Fps=0) 8 1.31 | 0.327 1.08 0.228 1.22 { 0.320
Lyngerberg (Fps=0) 2 1.53 10033 | 151 0.002 1.52 | 0.008
Rodrigues & Darwin 7 093 f o111 0.84 0.099 092 | o.110
Mailhot 3 1.73 ] 0.268 1.37 0.005 1.41 | 0.023
TOTAL 106 1.40 | 0.315 1.20 0.293 1.25 | 0.2%0
X - mean Yesl. Y:alc

Table 5.3 Summary of predicted shear capacity results

S = sample standard deviation

for (he reinforced concrete beams examined.
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have a mean ratio of 1.11. Using the ACI method, the T-beams have
a mean test to predicted shear strength ratio of 1.47 and the
rectangular beams have a ratio of 1.31. The difference in predicted
behavior between the two types of members suggests T-beams may
be better capable of redistributing internal forces after stirrups yield
and may have more reserve strength as compared to rectanguiar
beams. In beam tests, I-beams typically fail by web crushing,
whereas rectangular beams usually fail in diagonal tension or shear
compression. T-beams also fail in these two later failure modes, but
the presence of large flanges generally tends to provide better
support reactions for the inclined compression struts. The presence
of flanges may reduce the likelihood of the concrete cover on the
beam web from spalling. It appears from the test specimens
examined that after yielding of the stirrups, the shear strength
predictions of the ACI Code and the proposed design equations are

more conservative for T or I-beams than rectangular beams.
5.2.6  Influence of Reinforcement on Shear Strength

In order to examine the effect of both longitudinal and transverse
reinforcement on the shear capacity predicted by the proposed
equations, several different parameters were investigated.  Many
different types of stirrups were used in the various test series
examined. In each case, anchorage was sufficient to ensure yielding
of the stirrups at or before failure. Provided stirrups are properly
detailed to provide the required anchorage, the effect of stirrup

configuration or differences between detailing wili not be considered.
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Table 5.4 indicates the difference in predicted shear capacities
between test beams with deformed stirrups and smooth stirrups for
both the ACI method and the proposed design equations. Although
more test results are required to substantiate any difference
between the two types of stirrups, in both shear design methods

beams with smooth stirrups had a lower V. /V ,cratio than beams

with deformed stirrups.

The influence of the web reinforcement ratio p, (=A./b,s) and
pyfyy is shown in Figure 5.6. The majority of the test beams with a
Viest/ Veac ratio less than 1.0 are lightly reinforced with p,f,, less
than about 100 psi. From Eqn. 2.18 (ACI Eqn. 11-14) the minimum
value suggested in the ACI Code is 50 psi. As shown in Figure 5.6, as
the amount of web reinforcement decreases, the proposed design
equations generally tend to overestimate the shear capacity. As
previously noted, for beams without web reinforcement the variable
angle truss model is not a suitable design procedure since no
reinforcement is available to act as vertical tension ties.
Consequently, as the amount of web reinforcement decreases, the

shear strength predictions based on the truss model become less

conservative.

The effect of stirrup spacing on the shear strength predicted by
the proposed design equations is shown in Figure 5.7a as a function
of the maximum spacing of d/2 suggested in the ACI Code. Although
several test beams had stirrup spacings exceeding this limit,

generally safe estimates of shear strength were obtained for these
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ACI METHOD PROPOSED EQNS.

BEAM DESCRIPTION |TESTS X X
T or I-Beams 582 1.47 1.36
- deformed stirrups | 3 1.60 1.48
- smooth stirrups 35 1.34 1.35
Rectangular Beams 48P 1.31 1.11
- deformed stirrups | 24 1.33 1.11
_;‘ffgooth stirrups 7 1.14 0.96

i- mean V /V
test calc

a) Type of stirrup not reported for 20 T or [-beams.
b) Type of stirrur not reported for 17 rectangular beams.

Table 5.4 Summary of predicted shear capacity results
for reinforced concrete beams.
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heams. For a variable angle truss model, the Canadian Code suggests
the spacing of transverse reinforcemient be limited to the smaller of
d,/3tan6, d, or 600 mm (24 in.). In order to maintain maximum
spacing requirements in the traditional ACI format, it is sugzested
the internal lever arm -~ '+ be replaced by the effective depth d.
As shown in Figure 5.7b, .. eral beams that exceed a suggested

maximum  stirrzp spacing of d/3tan® have unconservative

predictions of shear s. :ngth using the proposed design equations.

Shear resistance due to dowel action is dependent. among other
things, on the amount of longitudinal reinforcement ir a beam.
Figure 5.8 indicates the influence of the longitudinal reinforcement
ratio p,, (=Ag/b,d) on the shear strength predictions for both the
propcsed method and the ACI shear design procedure. As the
amount of longitudinal reinforcement increases. the V. /V.,ratio
increases for both methods. As shown in Figurs 2.16, The ACI
expression is known to underestimate the shear capacity for beams
with large reinforcement ratios. Since the effect of dowel action is
neglected in the truss model, it is expected that for increasing
amounts of longitudinal reinforcement the shear strength calculated
from the proposed design equations will be underestimated. A
similar trend is shown in Figure 5.9, which indicates the influence of

pwfy on predicted shear strength.
5.2.7 Other Factors Influencing Predicted Shear Strength

High strength concretes tend to have smooth crack surfaces as
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compared to rough crack surfaces typical of lower strength concretes.
The smoothness of a crack surface for high strength concretes may
tend to decrease aggregate interlock, thereby reducing shear carried
by the concrete.  Although the interface shear expression derived
from Eqn. 4.4 does not consider changes in crack surface roughness
for varying concrete strengths, the proposed design equations safely
predicted the failure shears for the very high strength beams

examined, as shown in Figure 5.10.

The influence of shear stress magnitude on the proposed design

equations, expressed as vp/vfc, is shown in Figure 5.11. Generally,
as the mzpsitude of shear stress increases, the V. /V ., cratio

decreases for both rectangular and ~-beam .

In the test beams examined, only slender members with a shear
span to depth ratio greater than 2.5 were considered. The majority
of the beams had shear span to depth ratios between 2.5 and 4.0.
The influence of a/d on the predicted shear strength is shown in
Figure 5.12. Although more test data is required, it does not appear
the proposed design equations for slender beams are influenced by
the a/d ratio. As shown in Figure 2.6, the failure modes of beams
with a/d ranging from about 2.5 to 6.5 are similar. Consequently,
the effect of the a/d ratio on the predicted shear strength of these

beams is not believed t¢ be critical.
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5.3 Prestressed Concrete
5.3.1 Selection of Test Beams

Ramirez2) reports the experimental data from a few different
prestressed concrete beam tests in which yielding of stirrup
reinforcement was reported at or before failure in shear. In addition
to the test results summarized by Ramirez, additional shear tests
available in the literature were also examined in order to evaluate
the proposed concrete contribution expressions. The majority of the
specimens are simply supported and subject to a third point loading.
Ramirez summarizes the results of three uniformly loaded composite
T-b: ams tested by Castrodale47. All of the other prestressed
members examined are T or I-shaped, and all beams have straight
strands.  Consequently, the effects of draping strands are not
inciuded in this investigation. In total 77 beams are examined, three
of which are composite beams. A general summary of the test
specimens is provided in Tables 5.5 and 5.6. Concrete strengths
ranged from 2430 psi to 10700 psi (16.7 - 73.8 MPa), and stirrup

spacings varied between 2.4 and 12 inches (61 - 300 mm).
5.3.2 Comparison to ACI Code Procedure

The concrete contribution for prestressed beams was calculated
from Eqns. 2.12 and 2.28 (ACI 11-11 and 11-13), neglecting the
effect of beam dead load. The stirrup contribution was calculated

from Eqn. 2.16, and the total shear resistance was determined using
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TEsT SERIES feiksi) s (in) a/d SECTION

Casirodale 47 5.12-6.15 | 10.0-120 Uniform T )
. load

Elzanaty, Nilson & Slate 48 580 -10.7 | 5.0-100 38-58 T&
Olesen, Sozen & Seiss 44 243-655 | 25-105 28 -3.6
Lyngberg 47 | 3.99-492 | 6.2 2.8
Bennett & Mlingwa4® 593-642 | 32-79 34
Bennett & Debaiky >0 522-835 | 32-95 3.0 !
Walraven & Krop J! 5.89 - 6.21 24-34 3.1 k

* Composite beams

Table 5.5 Summary of prestressed concrete test beam properties.

TEST SERIES TYPE COMMENTS

1nnannnninanen
RADOKOORANCHARIRNNNN0

Castrodale Composile beams

Elzanaty, Nilson & Slate Prestressing appi.ed 5 days after casting

Yielding of stirrups inferred {rom
measurements of crack openings

Olesen, Sozen & Seiss 1)

Lyngberg Prestressed 14 days after casting

Oaly the beams with :onpre<iretied web

Bennett & Mlingwa 2) ,
reinforcement

Bennett & Debaiky 2)

Walraven & Krop  2) _ﬁ" Prestressing applied 5 days after casting

1) Average of two batches used in each beam

2)fctakenas 0.8 x[ cube

Table 5.6 Details of prestressed concrete test beams.
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$=1.0. A comparison of the actual failure shears to the predicted
capacities is shown in Figure 5.13a. The mean V,./V , ratio using
the ACI Code is 1.33 with a standard deviation of 0.25 (coefficient of
variation eaual to 0.19), and extreme values of 0.82 and 2.06. The
results are shown schematically in Figure 5.13a. The three composite
beams have the largest test to predicted ratios of 1.97, 1.99 and 2.06.
Three beams had ratios less than 1.0, and the lowest Vieat/Veale ratio
149

of 0.82 was obtained from Bennett and Mlingwa specimen. H99,

Detailed results for each beam examined are provided in Apz-ndix B.
§.3.3 Comparison to Concrete Cortribution Equaticns

The concrete contribution for prestressed members was
calculated according to Eqn. 4.39b, with x, determined from Eqn. 4.30
and x,, from Eqns. 4.37 and 4.38. Similar to the procedure used for
nonprestressed beams, 6 was varied between 15° and 45° in one
degree increments, and the allowable lower limit was detesmined in
each case from Eqn. 4.41. For prestressed concrete beams, fg in Eqn.
4.41 is taken as f, of the longitudinal reinforcing bars, (fy - f.) for
members vith prestressing tendons, or the larger of these two
quantities for members with both types of longitudinal
reinforcement. The effective stress in the prestressing tendons after

all losses, f,,is available in the test data, and the stress in the
prestressed reinforcement at nominal strength, f¢, was calculated

from ACI Eqn. 18-3 n:glecting any nonprestressed reinforcement

such that
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(# of specimens)
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Figure 5.13 Comparison of measured and computed failure
shears for 77 prestressed concrete beams.
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fos = fpul(1 - 2, 24])

B,” “fe (5.4)
where f,, is the specified tensile strength of the prestressing
tendons, 7y, and B; are factors to incluc the type of tendon and
concrete  respectively, and pp is the ratio of prestressed
reinforcement.  Although the ACI Code suggests the value of fos
determined from ACI Eqn. 18-3 only be applied to beams wiih f,,
greater than 0.5f,,, to be consistent in the analysis Eqn. 5.4 was used

for all beams. The effect of fy./f,, will be discussed in a later section.

The stirrup contribution from Eqn. 4.33 was added to the
proposed concrete contribution, and the optimum or largest shear
capacity was determined for each beam. Using the proposed
concrete contribution expressions, the mean test to predicted ratio
W beams examined is 1.40 with a standard deviation of 0.21
(ce. fhet ol of variation of 0.15). The lowest Vieq/V acratio using
the proposed method is 1.0, and the results are shown in Figure
5.13b.  Similar to the ACI procedure, the three composite beams
provide the most conservative estimates of shear strength. From
Figure 5.13 it is apparent the proposed concrete contribution has a
smaller range of test to predicted ratios as compared to the ACI

method, and results obtained from the proposed equations are safe

for all beams examined.

In order to simplify the proposed design procedure further, it is
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suggested the value of f,; can be replaced by fy. From the Modified

Compression Field Theory, equating the inclined compressive stress
f, to the maximum allowable compressive stress f, ... results in an

expression in terms of the principal tensile strain e, such that

) _._’i..- f1 = fe
tang” b, d (0.8 +170 ¢,) (5.5)

(tane+

From Eqn. 4.9, the principss tensile strain can be related to the
longitudinal strain €,. Eqn. 4.41 approximates Eqn. 5.5, neglecting the
concrete tension f; and expressing the longitudinal strain in terms of
the longitudinal reinforcement stress. Provided f, is equal to or less
than f,, the minimum permissible angle calculated from Eqn. 4.41
will be overestimated and safe. Figure 5.14 compares the ACI shear
design procedure to the proposed concrete contribution equations
using fps equal to fy in Eqn. 4.41. For the test beams in which the
yield strength was not reported, f, was taken as 0.85f,,. This
simplified procedure for determining the web crushing limits for
prestressed beams has a mean test to predicted ratio of 1.38 with a
standard deviation of 0.22 (coefficient of variation equal to 0.16).
V est/ Vcale ratios ranged from 1.0 to 2.28, with the largest ratios
obtained for the composite beams. A summary of results for all

procedures is shown in Table 5.7.

5.3.4 Influence of Amount of Shear Reinforcement
on Shear Strength

The effect of the amount of shear reinforcement on the proposed
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ACI METHOD PROPOSED EQNS. | ** SIMPLIFIED
PROCEDURE
8 p— -—— [—

TEST SERIES TESTS X S X S X S
Castrodale * 3 2.00 [ 0.047 2.08 Jo.105 2.18 | 0.102
Elzanaty, Nilson & Slate | 16 120 |c.067 | 1.30 |0.138 121 | 0.145
Olesen. Sozen & Seiss 19 | 1.24 |0.128 1.46 |0.166 1.47 | 0.184
Lyngberg 6 1.28 | 0.067 1.56 |0.044 1.40 | 0.640
Benneit & Mlingwa 8 1.03 |0.131 1.26 [0.113 126 | 0.113
Bennett & Debaiky 1§ | 151 {0186 | 1.37 [o.104 1.34 | 0.103
Walraven & Krop 7 1.54 |0.111 1.23 |0.064 1.23 | 0.061

77 .33 10.247 1.40 ]0.208 1.38 | 0.221
* Composite beams X-mean V /V
test calc
** Basedon[ =[ in determining 8 limits S = sample standard deviation
pPs Y

Table 5.7 Summary of predicted shear capacity results
for the prestressed concrete beams examined.
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design equations and on the ACI procedure is shown in Figures
5.15.and 5.16. In contrast to the results for reinforced concrete
beams, less conservative predictions of shear strength are not
obtained as the amount of web reinforcement decreases. For the ACI
shear design procedure the shear capacity predictions become more
conservative as the amount of web reinforcement decreases. This

trend is not pronounced in the proposed design equations.

As shown in Figure 5.17, although several beams exceed stirrup
spacings of d/2 and d/3 tan®, conservative predictions of shear
strength using the proposed concrete contribution and stirrup

capacity are obtained for all of the 77 beams examined.

The influence of the amount of prestressed reinforcement,
expressed as pp, is shown in Figure 5.18. As the amount of
longitudinal prestressed reinforcement increases, the shear strength
predictions of the ACI Code become less conservative. The
prestressed reinforcement ratio generally appears to have no effect

on the predictions of the proposed design method.

For the prestressed concrete beams examined, 24 members had
deformed stirrups, 43 had smooth stirrups, and for the remaining 10
beams the type of stirrup was not reported. In contrast to the
results for reinforced concrete members, beams with smooth stirrups
had a higher Vieq/Vcaic ratio than beams with deformed stirrups for
both the ACI procedure and the proposed design equations.  For

beams with smooth stirrups the ACI predictions have a mean
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Figure 5.15 Effect of amount of shear reinforcment on the
predicted shear capacities, prestressed concrete beams.
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Viest/ Vealc Tatio of 1.34 (standard deviation of 0.21) while the
proposed design equations assuming fy; equals f,, have a mean ratio
of 1.40 (standard deviation of 0.15). Prestressed concrete beams
with deformed stirrups have a mean V . /V ., ratio of 1.18
(standard deviation of 0.14) and 1.30 (standard deviation of 0.14) for

predictions using the ACI Code and proposed design equations

respectively.

5.3.5 Other Factors Influencing Piedicted Shear Strength

Figure 5.19 shows the effect of concrete strength on the calculated
capacities for prestressed concrete beams using the proposed design
procedure and the ACI Code . For the proposed method, the
Viest/ Vealc Tatio decreases as the concrete strength increases.  This
may be attributed to the decrease in aggregate interlock due to the
smooth crack surfaces of high strength concretes. However, even for
the high strength concrete beams examined, the V. /V ., ratio
remained greater than or equal to 1.0. From Figure 5.19b the

influence of concrete strength on the ACI predictions indicates no

significant trends.

The effect of the amount of prestress on the beams examined is
shown in Figure 5.20. As the prestress force increases, the predicted
capacities from the ACI procedure appear to become less
conservative. The amount of prestress has no significant effect on
the proposed design equations. In the determination of the

minimum strut inclination 6 using f,; from ACI Eqn. 18-3, the ACI
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Code suggests that fg./fp, should be greater than or equal to 0.5. For

consistency, Eqn. 5.4 which is obtained from ACI Eqn. 18-3 was used
for all test beams regardless of the f./f,, ratio. Generally, most
beams had a ratio greater than about 0.45, and the influence on Eqn.
54 is not believed to be critical. Figure 5.21 indicates there is no

substantial effect of the fg/f,, ratio on the predicted shear capacities

using either the proposed equation or the ACI procedure.

All of the beams examined have shear span to depth ratios
greater than 2.5, The influence of a/d on the shear strength results
is shown in Figure 5.22. Generally, as a/d increases the ACI
predictions becomes less conservative, while the a/d ratio appears to

have no effect on the proposed design equations.
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Figure 5.21 Influence of prestress stresses on predicted shear
capacities, prestressed concrete beams.
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Figure 5.22 Effect of shear span to depth ratio on predicted
shear capacities, prestressed concrete beams.
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6. Design and Analysis Examples
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Example 1. Determine the web reinforcement required in the region
adjacent to the supports for the simply supported beam shown in

Figure 6.1 (adapted from Ref. 52).

The beam spans 30 feet with a factored load of 4.5 kips/ft, and is
subjected to shear and flexure only. The beam is to be reinforced
with vertical U-stirrups and has following member parameters:

by=13in. d=20 in. f'c= 3,000 psi fyv= 40 Kksi fy= 60 ksi

Calculations:

ACI 318-83
1. Determine factored shear
force diagram:

V, @ support:
= 45(15)=67.5 Kips

Vu @ d:
=67.5 - 4.5(20/12) = 60 kips
2. Determine Vc
q)Vc =¢2Vf'c b, d
= .85(2)V3000 (13)20 = 24.2 Kips

Since Vuz ¢Vc/2 stirrups are required.

3. Determine the required spacing of
stirrups within a distance d from the
support (Assuming #4 stiruups with
A, =04 in.2)

= d/(V -¢V
sreq‘d ¢Avfy /{ f (o c)

s =0.85(0.4) 40 (20)/(60 - 24.2)
= 7.6 in.
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Proposed Design Procedure
1. Determine factored shear
force diagram:

Vu @ support = 67.5 kips

2. Select a diagonal strut inclination 8
Try 6 = 26°
Vu @ d/tané:

=67.5-45 (20/tan 26) /12

= 52.1 kips
3. Check diagonal crushing limit:
8> 15°+ (75,000 + £,) v, /1000 fc
V" 52.1(1000)/13(20) 0.85 = 236 psi

8> 15%+ (75 + 60)210° 236/1000(3000)
»25° Therefore 26° is satisfactory.

Since the factored shear force exceeds
the permissible limit of a beam without
web reinforcement, given by

oV =0 1.0¥fc by, d = 12.1 kips

stirrups are required.



Example 1. Continued.

Calculations:

ACI 318-83

4. Check the maximum permissible

spacing of stirrups:

s <£d/2 =10 in.
max

or <24in.

s of the #4 stirrups corresponding

max - .
to minimum reinforcment area

requirements:
S mag " Avfy/SO bW

= 0.40 (40,000)/50(13)
= 24.6 in

max ,
Therefore, s = |0 in. governs.

5. Extend longitudinal steel d past

where no longer needed for flexure.

Summary:

Within a distance d from the support

use *4 stirrups @ 7.5 in. o.c.
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Proposed Design Procedure

4. Determine the concrete contribution
to shear

x,=0.05 8 - 0.25
- 0.05 (26) - 0.25 = 1.05

oV, = oV T cbyd

= 0.85(1.05)Y¥3000(13) 20 /1000
= 12.7 ¥ips

S. Determine the required spacing of
#4 U-stirrups within d/tane from the

support

f-eq'd- oA, fyd/(Vu - ¢Vc Jtan 0

s = 0.85(0.4) 40(20)/(52.1 - 12.7)tan26
= 14.2 in.

6. Check the maximum permissible
spacing of stirrups:

Smax is the larger of d/2 = 10 in.

or d/3tan® = 13.7 in.

Smaxy ©Of the #4 stirrups corresponding
to minimum reinforcment area
requirements:

smax- Avfy/so bw- 24.6 in
Therefore, s na3= 13.7 in. governs.

7. Extend longitudinal bars d/tané past
where no longer needed for flexure.

Summary:

Within a distance d/tan8 from ihe
support use ¥4 stirrups @ 13.7 in. o.c.



w = 4.5 kips/lt
T T T O R TR TR TTiR]

el

-— = -

a) loading

67.5
V (kips)
24.2
12.1
q
~
‘d ~~\Q

96t
12.3 ft .
15 ft —

b) shear force diagram

Figure 6.1 Simply supported beam - Example 1.
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Example 2. Determine the nominal shear strength of the reinforced
concrete T-beam shown in Figure 6.2. This beam section is similar to
specimen ‘A’ tested by Mailhot 19 having an actual failure shear of

89.4 Kips.

The specified 28 day strength of the concrete is 5700 psi, and the

other beam parameters are:

b =8in. d=12in. A =022in°
w A\

Calculations:

ACI 318-83

1. Determine Vs
V.=Af d/s
5 vy
= 0.22(60) 12 /475 = 33.3 kips

2. Check V; max
Vs max= 8Vf'c by, d

V. < 8/5700(8) 12 /1000 = 58 kips

S

Therefore V; = 33.3 kips is o.k.

3. Determine V¢
Ve = 2Vf¢c b, d
= 2V5700(8) 12/1000 = 14.5 kips

4. Determine the nominal shear
strength

AP A Vs
Vn= 14.5 + 33.3 = 47.8 kips
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s=4.75in. f =60Kksi f_=60 Kksi
yv y

Proposed Analysis Procedure

1. Select a diagonal strut inclination 6
Try 6 = 32°

2. Determine V_

v, - Avfyd /stan @

= 0.22(60) 12/(4.75 tan32°)
= 53.4 kips

3. Determine the concrete contribution
to shear

ky=0.056-0.25
- 0.05(32)- 0.25 = 1.35

V =xffcbyd

- 1.35Y5700 (8) 12 /1000
= 9.8 kips

4. Check limit to avoid diagonal
crushing,

9> 15%+ (75,000 + ry) v, /1000 fc
v, = (9.8 + 53.4) 1000/8 (12) = 658 psi

8> 15% (75 + 60)x10%658/1000(5700)
>31° Therefore 32° is satisfactory.

S. Determine the nominal shear
strength

V,=9.8+53.4=63.2Kips



#3 @ 4.75 in. o.c.

8 in.

Section A- A

Figure 6.2 Details of T-Beam for Example 2.
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Example 3. Determine the shear strength of the prestressed concrete
beam shown in Figure 6.3. The beam is prestressed using tendons with
foy=250 ksi, fp,=270 ksi and an effective force Pe= 97 kips. The beam
has vertical #3 single legged stirrups at 8 in. o.c. with a yield stress of
60 ksi. At the section under consideration the self weight moment and
shear are 1.7 ft-kips and 0.17 kips respectively. The applied forces at
the section give a V/M ratio of 0.22 and an extreme fiber tensile
stress less than 6+4/f'c. The beam has the following section properties:

121952 in* A =91in° y,=85in e=3.8in fc=>5800 psi(40 MPa)
by=3in dp=9.3in h=14in A,=0.11in? A,5-0.88 in?

Calculations:
ACI 318-83 Proposed Analysis Procedure
1. Determine the shear strength 1. Select a diagonal strut inclination 6
provided by the concrete using Eqn o
11-13 Try 6 = 39
Voo (3.5VF ¢+ 0.35,0) by 2. Determine V,
foe B /A = 97000791 = 1066 psi V- AL d/stane
The effective shear depth can be taken - 0.11(60) 11.2/(8 tan39°)
as 0.8h (0.8x14) = lvl.2 in. = 11.4 Kips
Y:w' (3'57N 5.800 +0.3(1066)) 3(11.2)/1000 3. Determine the concrete
= 19.7 kips contribution to shear
2. Determine the shear strength -
provided by the concrete using Eqn Ve = (5, + xypl¥ e byd
t-1l Ky (0.018+0.06)pc /VTC
Te = 0.45 (1066/5800 ) = 6.3
Vci'o'(’bev\p“‘ﬁ*lecr/Mmax >
Tovt - but<0.20 - 1.0 = .2(39) -1.0 = 6.8
M= (17, )6V T v fpe- [g) <875 -0.150=875-.15(39) = 2.9
foe= Pe /A + Pe (elyy /1
Pe 1066 + 97,000 (3.8) 8.5 /1952 Therefore k, = 2.9 governs
- 2670 psi x_=0.058-0.25

V 20.05(39)-025=17

M - 1952(615800+ 2670 - 89)/1000(8.5) | Ve 7 (1.7~ 295800 (3) 11.271000

. 698 kip-in = 58.2 kip-ft

fq= Mgt /1 =1710(12)8.5/1952 = 89 psi

Vij = 0.6Y5800 3(11.2)/1000 +0.17
+0.22(58.2) = 14.6 kips
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Example 3. Continued

Calculations:

ACI 318-83

3. Check minimum limit on Vci
- 1.7Vl cbyd

= 1.7Y5800(3)11.2/1000=4.4 Kips
Since Vci = 14.6 kips, o.k.

V

ci min

4. Determine Vs
V.=A f d/s
s vy
= 0.11(60)11.2/8 =9.2 kips

5. Check V¢ max
Vg mag=8 V¢ b,d

V. < 8/5800(3) 11.2 /1000 = 20.5 Kkips

S

Therefore V; = 9.2 kips is 0.k.

6. Determine the total shear strength

oV + Vg)= 0.85(14.6 + 9.2) = 20.2 kips

Proposed Analysis Procedure

4. Check limit to avoid diagonal
crushing,

0> 15°%+ (75,000 + £) v, /1000 [
v, = (11.8+9.5)1000/3 (11.2) = 634 psi
[ = fpy~ fse = 250,000 - 97.200/0.88

= 13+,500 psi

02152+ (75+139.5)x103634/1000x5800
>38° Therefore 39° is satisfactory.

5. Determine the total shear strength

o(V + Vo) =0.85(11.8+1 1.4) = 19.7 Kips

The beam in this example is similar to specimen CI12 tested by Elzanaty, Nilson

and Slate 4
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8 with an actual failure shear of 27.5 kips.



Figure 6.3 Prestressed concrete beam - Ezample 3.
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7. Summary, Conclusions and Recommendations

7.1 Summary and Conclusions

A new concrete contribution term, V. was derived for both
reinforced and prestressed concrete beams subjected to shear. The
concrete contribution terms developed are based on a variable angle
truss model using the Modified Compression Field Theory and are
applicable to slender beams with a/d ratios greater than 2.5. The
concrete contribution expressions were developed to supplement the
truss model approach proposed in the General Method of Clause 11.4
in the 1987 draft of Chapter 11 of the ACI Code. A deliberate
attempt was made to reduce the complexity of the Modified
Compression Field Theory procedure and parallel the traditional

format of the ACI Code expressions.

In Chapter 5, shear strength predictions using the proposed
concrete contribution equations and the variable angle truss model
approach proposed in the ACI 1987 draft were compared to test
results reported in the literature. The test beam results were also
used to verify the applicability of the current ACI Code provisions.
For reinforced concrete beams, this study showed that within the
range of variables considered, the scatter of predictions using the
proposed design procedure is similar to the existing ACI Code
equations, but the predicted capacities are closer to the actual

strengths than the ACI Code. For a limited number of test beams
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examined having small amounts of longitudinal and shear
reinforcement in negative moment regions, both the current ACI

Code procedure and the proposed design equations overestimate the

actual shear strength.

For prestressed concrete beams, the proposed design procedure
reduces the scatter of predicted strengths as compared to the current
ACI procedure, and is slightly more conservative. Since the proposed
concrete contribution expressions for prestressed beams are much

simpler to use than the existing ACI equations, they are appealing as

design equations.

A truss model approach is well suited to determining the shear
strength of beams since it provides a simple rational examination of
the internal force paths and failure mechanisms of concrete beams.
The proposed design procedure is simple and easy to use, and
departs from the empirical nature and unnecessary complexity of
current ACI Code provisions, particularly for prestressed concrete
beams. Although the proposed concrete contribution expressions
were developed from a variable angle truss model, they are
presented in the traditional section by section design approach, and

are therefore suitable for codification in the ACI Code.
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7.2 Recommendations

The following procedure is recommended to account for the
concrete contribution to shear in the General Method proposed for

the ACI Code Clause 11.4, in thel1987 draft:

1. Calculation of V. - Nonprestressed Members

1.1 - For members subject to shear and flexure only,

Ve =x, Avfc b, d (A)
k, = 0.056 - 0.25 (B)

where 6 is in degrees and shall not exceed 45.

1.2 - The angle 6 in Eqn. (B) shall not be less than

6515 +(75,000 +f,) —2—
1000fc (O

where the stress in the longitudinal reinforcement, f;, may be

taken as the yield strength, f,, of the longitudinal reinforcing

bars.

1.3 - For members without web reinforcement, x, = 2.0.
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2.

Calculation of V. - Prestressed Members

2.1 - For the case of shear in prestressed concrete members
Ve =(x, + xpWf'c b, d

where x, is calculated according to Section 1.1 and

Kyp is given by

f
x,= (0.016 +o.06)—J%

but shall not be taken greater than 0.20 - 1.0 nor 8.75 - 0.156.
In members where the stress in the extreme tension fiber due
to the ultimate load and the applied effective prestress force

exceeds 6vT'c, Kyp shall be taken equal to zero.

2.2 - The angle 8 shall not be less than given by Eqn. (C),
where the stress in the longitudinal reinforcement, f;;, may be
taken as the yield strength, f,, of the longitudinal reinforcing
bars, as (fps - fs¢) for members in which the longitudinal
reinforcement consists of only prestressing tendons, or the
larger of these two quantities for members with tensile
reinforcement consisting of a combination of reinforcing bars
and prestressing tendons. In lieu of a more accurate
determination of f;; based on strain compatibility or the values

given in Sectionl8.7, f,; may be taken as f,.

In order to retain the traditional ACI format in the stirrup

196



contribution to shear, it is suggested the effective shear depth given

as 0.9d in the 1987 draft be replaced by d such that

3. Calculation of Vj

3.1 The nominal shear transferred by shear reinforcement

perpendicular to the axis of a member is

A f,d

s tan 0

3.2 A minimum area of shear reinforcement shall be provided

where the factored shear force Vy exceeds ¢1.0 A v/f'c b, d.

7.3 Future Research

Useful areas of future research on the proposed concrete
contribution expressions include further experimental investigation
of continuous beams, and the effects of lightweight concrete. In
addition, since the conclusions and recommendations in this study
are based on members subjected to static loads, further research is
required to evaluate the effects of dynamic loads, load reversals,
sustained loads and fatigue. It would be advantageous to extend the
variable angle truss procedure with the proposed concrete
contribution expressions to include the effects of axial loads and
torsion. In addition, in order to avoid excessive crack widths at

working loads, serviceability cracking limits should be examined.
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APPENDIX A - REINFORCED CONCRETE RESULTS
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COMPLEX EQUATION RESULTS

Anderson & Ramirez

BEAM Av Fy s fc
(sq in) (kst) (in) (psi)

NW 1 0.440 78.9 7.00 4230
NwW2 0.440 78.9 7.00 4670
NW3 0.220 78.9 3.50 4690

BEAM THETA R-Min R-ACI f2/f2max
NW 1 35. 0.85 1.08 0.90
Nw2 34. 0.99 1.27 0.89
NwW3 35. 0.87 1.17 0.86

R mean 0.90 1.17

Stnd. Dev 0.073 0.095

Johnson & Ramirez

BEAM Av Fy s fc
(sq in) (ksi) (in) (psi)

J2 0.100 69.5 10.S0 5280.
J4 0.100 69.5 10.50 10490.
JS 0.100 €9.5 5.25 8100.
J7 0.100 69.5 10.50 7440,

BEAM THETA R-Min R-ACI f2/f2max
J2 43. 0.93 0.98 0.14
J4a 43. 1.02 1.07 0.10
JS 22. 0.98 1.16 0.88
J7 43. 1.03 1.09 .12

R mean 0.99 1.08

Stnd. Dev 0.047 0.075

Elzanaty et al
BEAM Av Fy s fc
(sq tn) (kst) (tn)  (pst)

G4 0.100 §5.0 7.50 9100.
G5 0.100 55.0 7.50 5800.
G6 0.100 §5.0 7.50 3000.

BEAM THETA R-Min R-ACI f2/f2max
G4 21. 1.34 1.52 0.80
GS 23, 1.12 1.34 0.89
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bw
(in)
16.00
16.00
16 .00

vec/vt
0.21
0.20
0.26

bw
(in)
12.00
12.00
12.00
12.00

vc/vt
0.72
0.78
0.21
0.75

(in)
7.

888

ve/vVt
0.19
0.20

(in)

13.56
13.56
13.56

s/smax
1.03
1.03
0.52

d
(in)
21.21
21.21
21.21
21.21

s/smax
0.99
0.99
0.50
0.99

d
(in)
10.50
10.56
10.56

s/smax
1.43
1.42

fyl
(ksi)
72.0
72.0
73.0

K
1.76
1.68
2.27

fyl

(ksi)

~
[+1]
PO

2.09
2.09
0.82
2.09

fyl

(kst)

63.0

63.0

63.0
K

0.80

Vtest
(kips)
103.00
123.00
113.00

vn/fc**0.5
8.564
8.400
8.737

Vtest

(kips)
50.00
71.00
86.00
63.00

vn/fc**0.5
2.908
2.672
3.850
2.780

Vtest

(kips)
33.10
25.4S
17.45

vn/fc**0.5
3.529
4,041



G6 28.
R mean
Stnd. Dev

0.91

f.12

1.10

1.32

0.216 0.212

Bresler and Scordelis

R mean
Stnd.

Mattock et al

BEAM
A2
A3

Av Fy
(sq in) (kst)
0. 100 47 .2
0.100 47.2
0.100 47.2
0.100 47 .2
0.100 47.2
0.100 47.2
THETA R-Min
41, 1.32
41 . 1.38
41, 1.45
a1, 1.32
25. 1.21
27. 1.33
1.34
Dev 0.081
Av Fy
(sq in) (ksi)
0.100 52.0
0.220 50.0
0.220 50.0
0.220 S50.0
0.100 52.0
0.220 $0.0
0.220 50.0
0.100 52.0
0.220 50.0
0.220 50.0
0.220 66.2
0.220 66.2
0.220 50.0
0.220 50.0
0.220 50.0
THETA R-Min
25. 1.52
31, 1.41

R-ACI f2/f2max

s
in)
.50

.50
.50
.50
.60
.50
.50
.50
.50

.50

NSNSNUASNSNSNSNSNSNNNAENN~

.50

R-ACI
1.82
1.83

206

fc
{(psi)

3490.
3520.
3590.
3360.
4290.
3450.

000000
N
[+

fc
(psi)

4240.
4360.
4150.
4020.
4030.
3500.
4250.
2200.
1980.
6520.
3800.
- 3880.
4240.
4090.
4410.

f2/f2max

0.94
0.90

bw
(in)
12,
12.

288388

ve/vt
.70
.70
62
.61
.23
.25

000000

bw
(in)

888883838838388

ve/vt
0.22
0.21

d
(in)
18.35

s/smax
0.90
0.90
0.83
0.82
0.90
0.90

d

888388883888838

s/smax
1.00
1.00

1.16 4.761
fyl Vtest
(ksi) (kips)
80.5 52.50
80.5 55.00
80.5 50.00
80.5 45.00
80.5 35.00
80.5 36.50
K vn/fc**0.5
2.13 3.061
2.13 3.057
2.17 3.517
2.17 3.562
0.92 4.038
1.06 4.244
fyl Vtest
(kst) (kips)
75.0 43.70
75.0 65.50
75.0 77.00
75.0 61.00
75.0 39.00
75.0 58.50
75.0 54.20
75.0 38.00
75.0 42.50
75.0 74.10
75.0 74.80
75.0 86.20
75.0 63.70
75.0 71.60
75.0 59.10
K vn/fc**0.5%
0.94 4.202
1.40 6.679



R mean
Stnd.

Mphonde & Ffrantz

Dev

-

.37
. 132

(2]
[+
AN O WO

THETA R-Min

BEAM Av
(sq tn)
B50-3-3 0.025
B50-7-3 0.025
B50-11-3 0.025
B50-15-3 0.025
B100-3-3 0.055
B100-7-3 0.055
B10011-3 0.055%
810015-3 0.055
BEAM
850-3-3 36.
850-7-3 36.
BS50-11-3 36.
B50-15-3 36.
B100-3-3 26.
B100-7-3 36.
B10011-3 36.
B10015-3 36.
R mean
Stnd. Dev

Cerruti & Marti

BEAM

CM2

Av
(sq in)
0.220

-

O ot act s s =

.11
. 109

Fy
(ksi)
66.3

BEAM THETA R-Min

1.41 0.85
1.73 0.88
1.64 0.88
1.70 0.92
1.52 0.92
1.88 0.88
1.36 0.80
1.90 0.95
1.78 Q.91
1.52 0.88
1.79 0.93
2.02 0.87
1.64 0.89
1.70
0.188
] fc
(in) (psi)
3.50 3200.
3.50 5800.
3.50 8600.
3.50 12000.
3.50 4000.
3.50 6800.
3.50 9900.
3.50 11900.

R-ACI f2/f2max

1.47 0.33
1.46 0.24
1.32 Q.19
1.31 0.16
1.33 0.91
1.45 0.28
1.61 0.22
1.16 0.20
1.39
0.137
s fc
(in) (pst)
4.10 6480.

R-AC1 f2/f2max

207

0.23 0.53
0.22 1.00
0.24 1.00
0.22 1.00
0.21 1.00
0.28 1.00
0.29 1.00
0.18 1.00
0.21 1.00
0.22 0.67
0.21 1.00
0.22 1.00
0.21 1.00
bw d
(tn) (in)
6.00 11.75
6.00 11.75
6.00 11.75
6.00 11.75
6.00 11.75
6.00 11.75
6.00 11.75
6.00 11.75
Ve/Vt s/smax
0.65 0.60
0.72 0.60
0.75 0.60
0.78 0.60
0.29 0.60
0.58 0.60
0.63 Q.60
0.65 0.60
bw d
(in) (tn)
5.90 32.50
ve/vt  s/smax

-e a A o e A) s s s aa = N
-
-~

NN NN N
w
-~

fyl
(kst)
63.1

K

.785
.766
.212
.012
.747
912
.591
. 180
. 146
176
.753
.T21¢
.649

-
AN OAOOANLEN~NEbIAO

vn/fc**0.5
.646
.319
. 150
.0314
.603
.060
L1718
.648

WWELHEGWWWW

Vtest
(kips)
257.00

vn/fc**0.5



cm2 a7. 1.36 1.75% 0.89 0.19
R mean 1.36 1.75
Stnd. Dev 0.000 0.000
Hsiung & fFrantz
BEAM Av Fy [ fc bw
(sq in) (kst) (in) (psi) (in)
A 0.055% 41.0 4.20 6110. 6.00
B 0.110 44.0 4.50 6540. 12.00
c 0.166 41.0 4.20 6280. 18.00
D 0.166 41.0 4.20 6000. 18.00
BEAM THETA R-Min R-ACI f2/f2max Vc/Vt
A 37. 0.84 1.02 0.24 0.60
8 37. 0.76 0.90 0.23 0.60
C a7. 0.85 1.03 0.24 0.61
] 37. 0.88 1.07 0.25 0.60
R mean 0.83 1.0t
Stnd. Dev 0.054 0.073
Taylor
BEAM Av Fy s fc bw
(sq in) (kst) (in) (psi) (in)
ST1-8-1 0.100 42.0 4.50 3000. 4.50
ST2-c-#3 0.100 42.0 3.50 3140. 4.%50
BEAM THETA R-Min R-ACI f2/f2max Vc/Vt
ST1-B-1 32. 1.03 1.40 0.95 0.23
ST2-c-#3 34. 1.02 1.39 0.96 0.24
R mean 1.03 1.39
Stnd. Dev i..008 0.002
Sorensen
BEAM Av Fy s fc bw
(sg in) (ksfi) (in) (psi) (in)
T21 0. 156 39.0 6.88 4710. 4.33
T22 0.119 64.6 8.27 4510. 4.33
T23 0.088 50.2 5.91 4970. 4,33

208

a3

0.25 2. 12.273
d fyl Vtest
(in) (ksi) {kips)
16.50 65.0 24.80
16 .50 65.0 45.00
16.50 65.0 76.20
16.50 65.0 78.20
s/smax K vn/fc**0.5
0.5t 2.31¢ 3.830
0.95 2.25 3.722
0.5t 2.31 3.818
0.51 2.31 3.853
d fyl Vtest
(in) (ksi) (kips)
10.10 40.3 20.10
10.10 40.3 23.97
s/smax K vn/fc**0.5
0.89 1.77 7.827
0.69 2.17 9.223
d fyl  Vtest
(in) (ksi) (kips)
11.73 60.9 29. 11
11.73 60.9 28.70
11.73 60.9 31.30
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BEAM THETA R-Min R-ACIl £2/f2max
T21 29. 1.26 1.68 0.92
T22 30. 1.23 1.62 0.90
T23 27. 1.46 1.96 0.95

R mean 1.32 1.75

Stnd. Dev 0.12% 0.184

Rodr igues
BEAM Av Fy s fc
(sq in) (kst) (in) (psi)
E2A1 0.222 0.2 10.00 3590.
E2A2 0.222 50.3 10.00 2720.
E2A3 0.222 50.9 10.00 2860.
C2A2 0.222 0.6 10.00 3080.
C3A2 0.222 50.5 6.00 3140.
BEAM THETA R-Min R-ACI f2/f2max
E2A1¢ 29. 0.99 1.31 0.97
E2A2 32. 0.97 1.24 0.93
E2A3 32. 1.03 1.30 0.90
C2A2 30. 0.95 1.24 0.99
C3A2 36. 0.99 1.25 0.91
R mean 0.99 1.27
Stnd. Dev 0.031 0.035
M.P. Nielsen
BEAM Av Fy s fc
(sq in) (ksi) (in)  (psi)

V6002 0.176 46.3 8.27 5180.

V6004 0.176 46.3 5.16 5280.

u6002 0.088 46.3 8.27 2830.

ue004 0.176 46.3 8.27 307S.

ueo07 0.176 46.3 5.16 2130.

Uue010 0.176 46.3 3.78 2390.

ue017 0.486 40.6 6.89 2915.

ueo07c 0.176 49.6 5.16 2650.
ue010c 0.176 49.6 3.78 2800.
Ue013c 0.176 49.6 3.78 1800.
ueo17c 0.486 56.3 6.89 2650.
ueoo7h 0.352 49 .6 5.16 2250.

X6009 0.176 49.6 8.27 1060.

X6018 0.176 49.6 4.13 1360.

89009 0.238 50.3 6.89 1550.

69025a 0.486 53.6 4.13 1780.

89029 0.486 48 .2 3.50 1400.

vec/vt

0.
0.
0.

(in)

o

[ N W]

19
19
20

.03
.00
.13
.19
.13

ve/vt

o

0.
0.
0.
0.

bw
(in)

~~

NN NN NNNNNNS

s/smax
1.47
1.4
1.0t

(in)

12.50
12.50
12.44
12.25
t2.38

s/smax
1.60
1.60
1.61
1.63
0.97

d
(in)
13.50

K vn/fc**0.5
1.27 6.640
1.28 6 818
1.17 5.981
fyl Vtest
{ksi) (kips)
45.6 30.00
44.5 26.95
47 .4 28.95
45.0 27.45
45 .2 39.65
K vn/fc**0.5
1.15 6.710
1.36 7.071
1.36 6.876
1.22 6.871
1.94 Q.426
fyl Vtest
(kst) (kips)
94.9 55.00
94.9 68 .80
94 .9 43.60
94.9 50.40
94.9 45.90
94.9 $8.50
g94.9 68.80
94.9 55.00
94.9 64.30
94.9 45.90
94.9 59.60
24.9 52.80
134.0 29.90
134.0 49.20
102.1 §5.00
134.6 91.70
134.6 87.20



BEAM
V6002
V6004
U6002
us004
u6007
u6010
Ue017
U6007c
uU6010c
U6013c
U6e017c
Us007h
X6009
Xe018
B9009
B9025a
89029

R mean
Stnd.

THETA

Dev

R-

1.

-

** Reduced area

Debaiky

R mean
Stnd.

Clark

BEAM

et al
Av Fy
(sq in) (kst
0.074 46
0.074 46
0.074 46
0.044 45
0.088 45
0.088 45
THETA R-Min
25. 1.33
25. 1.29
30. 0.89
39. 1.20
28. 1.16
28. 1.07
1.16
Dev 0.1%59
Av Fy

1
2
1
1
1
1
1
1.
1.
1
1
1
2
1
1
2

Min

.57

.348

R-ACI f2/f2max
1.92 0.94
1.87 0.91
2.43 0.27
2.0¢ 0.88
1.47 0.73
1.48 0.75
1.37 0.82
1.63 0.76
1.52 0.81

0.76
0.83
0.80
0.50
0.60
1.36 0.64
0.68
0.61

to obtain solution

ve/vt
0.22

99_09900000000000
o Py
~

s fc bw
(in) (psi) (in)
7.87 3560. 4.72
7.87 4070. 4,72
3.94 4330. 4.72
5.91 4550. 4.72
7.87 2930. 4.72
7.87 2975. 4.72

R-ACI f2/f2max Vvc/Vt
1.59 0.98 0.22
1.51 0.87 0.23
1.21 0.89 0.26
1.38 0.24 Q.63
1.43 0.95 0.23
1.31 0.93 0.24
1.40
0.135

s fc bw

210

d

.O'O.O‘O.-O-AOOO—OO*-

(in)
10.
10.
10.
10.
10.
10.

24

LA NANSNANSEUNUNUN LIS CN VIR, |
" . « e e .
[A]

fyl

vn/fc**0.5
.552
.279
.485
. 119
.963
.856
033
. 191
.293
.476
.072
.373
.658
.282
.559
.032
. 350

VAV UVLEDONONONORWD D

vn/fc**0.5
.23%
.021
.499
.52%
.892
.864

bbhbwhhaon

Vtest



{sq in)

D2-6 0.222
02-7 0.222
D2-8 0.222
D4a-1 0.222
Da-2 0.222
D4-3 0.222
DS5-1 0.222
D5-2 0.222
D5-3 0.222

BEAM THETA
D2-6 32.
D2-7 J32.
D2-8 33.
D4-1 31.
Da-2 31.
D4-3 33.
D5-1 28.
D5-2 27.
D5-3 28.

R mean

Stnd. Dev

R-Min

0.
0.
o]

1.

0.
1
1
1
1

.02
. 126

Olesen,Sozen & Siess

BEAM A
(sq

23.18 (o}
23.19 (o)
23.20 0
23.21 0
23.22 0
23.23 0
25.19 0
25.20 0
BEAM THET
23.18 34
23.19 34
23.20 37
23.21 39
23.22 42
23.23 44
25.19 34
25.20 37
R mean
Stnd. Dev

v
in)

.021
.021
.041
.041
. 101
. 101
.021
.041

A

Fy
(ksi

R-Min

1

QO 4 ot ca ct

.08
.228

co0oo0o0000OO-

LY YRR X R -

)

(tn) (pst)
6.00 4280.
6.00 4120.
6.00 3790.
7.50 3970.
7.50 3720.
7.50 3200.
10.00 4020.
10.00 4210.
10.00 3930.
R-ACI f2/f2max
1.19 0.95
1.12 0.98
1.22 0.97
1.41 0.91
1.33 0.97
1.43 0.92
1.45 0.94
1.55 1.01
1.57 0.96
1.36
0. 159
s fc
(in) (psi)
2.75 6200.
2.75 6690.
2.75 6150.
2.00 6665.
3.50 6880.
3.00 6600.
2.75 6850.
2.75 6290.
R-ACI f2/f2max
1.85 0.66
1.78 0.62
1.33 0.77
1.21 0.77
1.1 0.74
1.17 0.76
0.98 0.61
1.09 0.76
1.31
0.327
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(in)

838888888

ve/vt

bw

(in)

WLOWWWwLwWww

9F>OC)O<)O(DO

.18
.18
.18

ve/vt

[eNe

[eNeNeoNeNoNo]

.57
.58
.42
.36
.31
.28
.59
.42

(in
12.

OIS Yo X o)
©
-~

0000000

)
37

(ksf) (kips)

46 .
46.
46 .
46
46 .
46.
46
46.
46 .

oo R U

- st s s b s
H

fyl
(ksi)
234.0
234.
234.
234,
234.
234.
234.
234.

[eNoNeoNoleNoNe)

NORNRONPODON
-
[A]

37.

vn

OHONO®NI~NODD

/fc**0.5
.834
.973
.084
.655
.862
.007
.34%
.380
.405

Vtest
(kips)

15.
1S5.
14

16

18.
21.

8.
12.

vn

NH AN AL

/fc**0 5
.212
.077
.532
. 185
.781
.214
. 090
. 497



Lyngberg

BEAM Av Fy s fc
(sq in) (ksi) (in) (psi)
SA-0 0.156 97.8 6.18 3730.
5B8-0 0.156 93.8 6.18 3860.
BEAM THETA R-Min R-ACl £2/f2max
SA-0 45 1.51 1.51 0.89
SB-0 44 . 1.51 1.56 0.85
R mean 1.51 1.53
Stnd. Dev 0.002 0.033
Rodrigues & Darwin
BEAM Av Fy s fc
(sq in) {(ksi) (in) (pst)
D-80(1) 0.094 46 .6 7.00 5380.
D-80(2) 0.094 40.7 7.00 4070.
D-40 0.050 38.7 7.00 4200.
0-20 0.023 48.5 7.00 4290.
E-80 0.094 40.9 7.00 4010.
E-40 0.050 38.4 7.00 4550.
£-20 0.023 49.8 7.00 4210.
BEAM THETA R-Min R-ACI f2/f2max
D-80(1) 40. 0.92 1.04 0.40
D-80(2) 40. 0.89 1.00° 0.44
D-40 40. 0.79 0.88 0.31
D-20 40. 0.88 0.97 0.26
E-80 40. 0.68 Q.76 0.42
E-40 40. 0.85% 1.06 0.29
E-20 40. 0.76 0.84 0.25
R mean 0.84 0.93
Stnd. Dev 0.099 O.111
Mailhot
BEAM Av Fy s fc
(sq 1n) (ksi) (in) (psi)
A 0.220 $9.0 4.72 5670.
B 0.220 59.0 6.70 5670.
o 0.130 36.3 11.80 5670.
BEAM THETA R-Min R-ACI f2/f2max
A 32. 1.37 1.89 0.95

212

bw
(in)
4.72
4.72

vc/vt
0.19
0.20

bw
(in)

NNNNNNa
w
-

vc/vt
0.62

0900000
]

bw
(in)
7.87
7.87
7.87

ve/vt
0.19

d fy?
(in) (ksi)
21.26 89.3
21.26 90.4

s/smax K
0.58 2.01
0.58 2.05

d fyl
(tn) (kst)
15.44 229.
15.32 229.
15.39 229.
15.21 229.
15.04 213.
213.
213.

[eXeNeNoNoNoNol

15.42

0.9 2.17
0.9t 2.17
0.91 2.17
0.82 2.17
0.93 2.17
0.2 2.17
0.9t 2.17
d fyl
(in) (ksi)
12.00 62.4
12.00 62.4
13.40 65.0

s/smax K
0.79 1.74

Vtest

(kips)
97.80
97.80

vn/fc**0.5
10.577
10.415

Vtest

(kips)
27.85
23.01
16 .90
16.91
17.17
'20.55
14.69

vn/fc+**0.5
.510
.528
.844
.554
.54%
.814
.569

[SIESIANSI N IEANA)

Vtest

(kips)
89.40
70.00
30.10

vn/fc**0.5
9.162



8 29. 1.37 1.87 0.92 0.18 1.12 1.28 7.183

c 43. 1.36 1.42 0.12 0.74 1.76 2.06 2.7814
R mean 1.37 1.73
Stnd. Dev 0.005 0.268
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PROPOSED DESIGN EQUATION RESULTS

Anderson & Ramirez

BEAM Av Fy [ fc
(sq in) (ksi) (in) (psi)
Nw1 0.440 78.9 7.00 4230.
NW2 0.440 78.9 7.00 4670.
NwW3 0.220 78.9 3.50 4690.
BEAM THETA R-M{in R-AC! £2/f2max
Nw1 35. 0.88 1.08 0.88
Nw2 34. 1.01 1.27 0.88
NW3 34, 0.93 1.17 0.88
R mean 0.94 1.17
Stnd. Dev 0.069 0.095
Johnson & Ramirez
BEAM Av Fy s fc
(sq tn) (ksi) (in) (psi)
J2 0.100 69.5 10.50 5280.
J4 0.100 69.5 10.50 10490.
JS 0.100 69.5 5.25 8100.
J7 0. 100 69.5 10.50 7440,
BEAM THETA R-Min R-ACl f2/f2max
J2 21. 0.97 0.98 Q.88
Ja 45. 1.07 1.07 0.09
J5 22. 0.97 1.16 0.89
J7 45, 1.09 1.08 0.10
R mean 1.03 1.08
Stnd. Dev 0.064 0.075
Elzanaty et al
BEAM Av Fy S fc
(sq In) (ksi) (in) (pst)
G4 0.100 55.0 7.50 9100.
GS 0.100 55.0 7.50 5800.
G6 0.100 55.0 7.50 3000.
BEAM THETA R-Min R-ACI f2/f2max
G4 21. 1.29 1.52 0.83
GS 23. 1.09 1.34 0.91¢
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bw
(in)
16.00
16.00
16.00

ve/vt
0.18
0.18
0.18

bw
(tn)
12.00
12.00
12.00
12.00

ve/vt
0.29
0.79
0.22
0.76

bw
(tn)

7.00
7.00
7.00
ve/vt

0.22
0.22

d fyl
(in) (ksi)
13.56 72.0
13.56 72.0
13.56 73.0
s/datq 4

1.08 1.50
1.04 1.45

0.52 1.45
d fyl
(in) (ksi)
21.21 76.1
21.21 76. 1
21.21 76. 1
21.21 76.1
s/d3tgq K

0.57 0.80

1.49 2.00

0.30 0.85

1.49 2.00
d fyl
(tn) (ksi)
10.50 63.0
10.56 63.0
10.56 63.0

s/d3tq K

0.82 0.80

0.90 0.8C

Vtest
(kips)
103.00
123.00
113.00

vn/fc**0.5
8.306
8.175
8. 160

Vtest

(kips)
50.00
71.00
86.00
63.00

vn/fc**0.5
2.778
2.539
3.884
2.639

Vtest

(kips)
33.10
25.45
17.45

vn/fc**0.5
3.661
4.141



G6

R mean
Stnd.

28.

Dev

0.91

1.10
0.191

Bresler and Scordelis

R mean
Stnd.

000000

THET

A

45.
45.
25.
25.
25.
27.

Dev

Mattock et al

BEAM

BEAM
A2
A3

A

w
0

Q000000000000 0O0

THET
25
31

v
in)
100

.220
.220
.220

100

.220
.220

100

.220
.220
.220
.220
.220
.220
.220

A

Fy

R-Min
1.44

- ok ah s A
W
-

1.37

R-Min
1.50
1.44

OOONMNOOOO00000O

1.10 Q.86
1.32
0.212
] fc
(in) (pst)
8.25 3490.
8.25 3520.
7.50 3590.
7.50 3360.
8.25 4290.
8.25 3450.
R-ACI f2/f2max
1.44 0.16
1.51 0. 16
t.61 0.87
1.47 0.92
1.41 0.95
1.56 0.91
1.50
0.077
s fc
(in) (psi)
7.50 4240.
7.50 4360.
4.00 4150.
7.50 4020.
7.50 4030.
7.50 3500.
7.50 4250.
7.50 2200.
7.50 1980.
7.50 6520.
7.50 3800.
5.00 3880.
7.50 4240,
7.50 4090.
7.50 4410.
R~ACI f2/f2max
1.82 0.96
1.83 0.89
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bw
(in)

12.00

12.

38388

ve/Vt
LT
A
.29
.28
.24
.26

[eNeoleNoNo e

-

NN N NNNSNSNNNSNNNNNOC

(

R

2838838838383888%8

d
(in
18.

d
(in
15.

s/d3tq
0.70
0.90

838388388388888

)

)

1.15 4.747
fyl  Vtest
(ksi) (kips)
80.5 52.50
80.5 55.00
80.5 50.00
80.5 45 00
80.5 35.00
80.5 36 .50
K vn/fc**0.5
2.00 2.807
2.00 2.804
1.00 3.503
1.00 3.587
1.00 4 122
1.10 4.286
fyl Vtest
(kst) (kips)
75.0 43.70
75.0 €5.50
75.0 77.00
75.0 61.00
75.0 39.00
75.0 58.50
75.0 54.20
75.0 38.00
75.0 42.50
75.0 74 .10
75.0 74.80
75.0 86.20
75.0 63.70
75.0 71.60
75.0 59. 10
K vn/fc**0.5
1.00 4.262
1.30 6.581



Ad 38 1.20 1.41 0.88 0.17 0.63 1.65 9.456
B3 32 1.38 1.73 0.87 0.20 0.94 1.35 6.638
c2 26 1.38 1.64 0.88 0.25 0.73 1.05 4.249
[og¢] 33 1.37 1.70 0.90 0.20 0.87 1.40 6.854
03 31 1.19 1.52 0.91 0.20 0.90 1.30 6.649
€2 3t 1.60 1.88 0.87 0.27 0.90 1.30 4.814
EJ 40 1.24 1.36 0.84 0.24 1.26 1.75 7.362
F3 27 1.41 1.90 0.95 0.18 0.76 1.10 6.193
G3 35 1.46 1.78 0.89 0.19 1.0 1.50 7.927
G4 39 1.32 1.52 0.92 0.17 0.81 1.70 9.949
Hi 31 1.40 1.79 0.91 0.20 0.90 1.30 6.655
H2 31 1.58 2.02 0.94 0.19 0.90 1.30 6.753
J3 31 1.29 1.64 0.88 0.20 0.80 1.30 6.551
R mean 1.38 1.70
Stnd. Dev 0.123 0.188
Mphonde & Frantz
BEAM Av Fy s fc bw d fyl Vtest
(sq tn) (ksi) (in) (psi) (in) (in) (ksi) (kips)
BS0-3-3 0.025 43.9 3.50 3200. 6.00 11.75 65.0 17.10
BS0-~7-3 0.025 43 .9 3.50 5800. 6.00 11.75 65.0 21.10
B50-11-3 0.025 43.9 3.50 8600. 6.00 11.75 65.0 22.20
B850-15-3 0.025 43.9 3.50 12000. 6.00 11.75 65.0 25.00
8100-3-3 0.055 38.6 3.50 4000. 6.00 11.75 65.0 21.40
B100-7-3 0.055 38.6 3.50 6800. 6.00 11.75 65.0 27.10
B10011-3 0.055 38.6 3.50 93900. 6.00 11.75 65.0 34.00
810015-3 0.05% 38.6 3.50 11900. 6.00 11.75 65.0 26.00
BEAM THETA R-Min R-ACI f2/f2max Vc/Vt s/d3tq K vn/fc**0.5
850-3-3 23. 1.39 1.47 0.92 0.29 0.38 0.90 3.076
B50-7-3 45, 1.46 1.46 0.12 0.74 0.89 2.00 2.686
BS50-11-3 45. 1.32 1.32 0.10 0.78 0.89 2.00 2.564
B50-15-3 45 . 1.3 1.31 0.08 0.81 0.89 2.00 2.477
8100-3-3 25. 1.09 1.33 0.97 0.23 0.42 1.00 4.423
B100-7-3 22. 1.20 1.45 0.91 0.22 0.36 0.85 3.880
B10011-3 20. 1.37 1.61 0.90 0.21 0.33 0.75 3.538
B10015-3 20. 1.03 1.16 0.76° 0.23 0.33 0.75 3.293
R mean 1.27 1.39
Stnd. Dev 0.154 0.137
Cerruti & Marti
BEAM Av Fy s fc bw d fyl vtest
(sq 1in) (ksi) (in) (pst) (in) (tn) (ksi) (kips)
1

CcMm2 0.220 €66.3 4.10 6480. 5.90 32.50 63.1 257.00

BEAM THETA R-Min R-ACI f2/f2max Vc/Vt s/datq K vn/fc**0.5
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CM2 36. 1.40 1.75 0.93
R mean 1.40 1.75
Stnd. Dev 0.000 0.000
Hsiung & Frantz
BEAM Av Fy s fc
(sq in) (ksi) (in) (pst)
A 0.055 41.0 4.20 6110.
8 0.110 44.0 4.50 6540.
c 0.166 41.0 4.20 6280.
D 0.166 41.0 4.20 6000.
BEAM THETA R-Min R-ACI f2/f2max
A 22. 0.87 1.02 0.90
8 22. 0.78 0.90 0.85
c 22. 0.88 1.03 0.89
D 22. 0.91 1.07 0.92
R mean 0.86 1.01
Stnd. Dev 0.056 0.073
Taylor
BEAM Av Fy S fc
(sq in) (ksi) (in) (psi)
ST1-B-1 0.100 42.0 4.50 3000.
ST2-c-#3 0.100 42.0 3.50 3140.
BEAM THETA R-Min R-ACI f2/f2max
ST1-8-1 32. 1.09 1.40 0.91
S$T2-c-#3 33. 1.08 1.39 0.99
R mean 1.08 1.39
Stnd. Dev 0.008 0.002
Sorensen
BEAM Av Fy s fc
(sq in) (ksi) (in) (psi)
T21 0.156 39.0 6.88 4710.
T22 0.119 64.6 8.27 4510,
T23 0.088 50.2 5.91 4970.

217

bw
(in)
6.00
12.00
18.00
18.00

ve/vt
0.23
0.24
0.23
0.23

bw
(in)
4.50
4.50

ve/vt
0.18
0. {6

bw
(in)
4.33
4.33
4.33

0.27

d
(in)
16.50
16.50
16.50
16.50

s/d3tq
0.31
0.33
0.3¢%
0.31¢

d
(in)
10. 10
10. 10

s/d3tq
0.84
0.68

d
(in)
11.73
11.73
11.73

1.5 t1.860
fyl Vtest
(kst) (kips)
65.0 24 .80
65.0 45 .00
65.0 76.20
65.0 78.20
K vn/fc**0.5
0.85 3.683
0.85 3.593
0.85 3.662
0.85 3.727
fyl Vtest
(kst) (kips)
40.3 20. 10
40.3 23.97
K vn/fc**0.5
1.35 7.410
1.40 8.728
fyl Vtest
(ksi) (kips)
60.9 29. 1
60.9 28.70
60.9 31.30



BEAM THETA
T21 29.
T22 30.
T23 27.

R mean

Stnd. Dev

Rodr igues
BEAM Av
(sq tn)
E2A1 0.222
E2A2 0.222
E2A3 0.222
C2A2 0.222
C3A2 0.222
BEAM THETA
E2A1 29.
E2A2 32.
E2A3 32.
C2A2 30.

C3A2 35.

R mean

Stnd. Dev

.P. Nielsen

BEAM A

")
o

V6002
v6004
U002
U604
ue007
ueo10
ueo17
Ueo07¢c
u6010c
U6013c
Uueo17¢c
Uso07h
X6009
X6018
B9009
B9025a
89029

0000000000000 0000

v
in)
176

.176
.088

176
176
176

.486

176
176
176

.486

352

.176

R-Min

1
1
1

1

.27
.24
.48

.33

0.130 0O.184

R-

[oNe)

»9~00

Min

NAWOANOULNOD DWW W LW

R-ACI f2/f2max
1.68 0.91
1.62 0.89
1.96 0.94
1.75

s fc
{in) (pst)
10.00 3%90.
10.00 2720.
10.00 2860.
10.00 3090.
6.00 3140.

R-ACI f2/f2max
1.31¢ 0.98
1.24 0.93
1.30 0.80
1.24 0.99
1.25 0.96
1.27
0.035

S fc
(in) (psi)
8.27 5180.
5.16 5280.
8.27 2830.
8.27 307S.
5.16 2130.
3.78 2390.
6.89 2915.
5.16 2650.
3.78 2800.
3.78 1800.
6.89 2650.
5.16 2250.
8.27 1060.
4.13 1360.
6.89 1550.
4.13 1780.
3.50 1400.
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ve/vt
0.18
0.18
0.19

bw
(in)
6.03
6.00
6.13
6.19
6.13

ve/vt
.18

O000O0

bw
(in)

SN NN NN NN NNNNNN

s/d3tqg
0.98

d

1.

22

0.77

(in)
13,

K vn/fc*+0.5
1.20 6.56G
1.25 6.787
1.10 5.909
fyl Vtest
(kst) (kips)
45.6 30.00
44.5 26.95
47 .4 28.95
45.0 27.45
45,2 39.65
K vn/fc**0.5
1.20 6.765
1.35 7.0€1
1.3% 6.866
1.25 6.904
1.50 9.269
fy! Vtest
(ksi) (kips)
94.9 55.00
94.9 68.80
94.9 43.60
94.9 50.40
e4.9 45.90
94.9 58.50
94.9 68.80
94.9 55.00
94.9 64 .30
94.9 45.90
94.9 59.60
Q94 .9 52.80
134.0 29.90
134.0 49.20
102 .1 §5.00
134 .6 g91.70
134.6 87.20



x

BEAM THETA R-Min R-ACI f2/f2max Vc/Vt s/d3tq vn/fce*0.5

V6002 26. 1.56 1.92 0.95 0.23 0.90 1.05 4.617
V6004 30. 1.48 1.87 0.89 0.21 0.66 1.25 6.033
ueQo2 27. 2.26 2.43 0.83 0.32 0.94 1.10 3.410
usoo4 31. 1.69 2.01 0.87 0.26 1.10 1.30 5.0%58
ueoo7 a1, 1.38 1.47 0.77 0.26 1.00 1.80 6.802
ueo10 43. 1.42 1.48 0.80 0.24 0.78 1.80 7.909
ueo17 44, 1.34 1.37: 0.82 0.22 1.48 1.95 8.929
uenQ7c 38. 1.47 1.63 0.79 0.25 0.93 1.70 6.857
ueN10c 42, 1.43 1.52 0.80 0.23 0.76 1.85 8.009
U6013c **45. 1.36 0.76 0.27 0.84 2.00 7.462
U6017¢c **45. 1.20 0.83 0.22 1.93 2.00 9.079
UB007Th **45. 1.25 0.80 0.24 1.1 2.00 8.360
X6009 **45. 1.77 0.50 0.43 1.76 2.00 4.668
X6018 **45. 2.31 0.60 0.38 0.88 2.00 5.269
B90O09 39. 1.26 1.36 0.74 0.32 1.20 1.70 5.333
89025a **45. 1.73 0.69 0.33 0.89 2.00 6.019
89029 +*45. 2.09 0.61 0.37 0.76 2.00 5.337
R mean . 1.59
Stnd. Dev 0.346

«+ Reduced area to obtain solutton

Debaiky et al

BEAM Av Fy s fc bw d fyl Vtest
(sq in) (ksi) (in) (psi) (in) (in)  (ksi) (kips)

Al 0.074 46.2 7.87 3560. 4.72 10.24 65.6 16.21
ci 0.074 46.2 7.87 4070. 4.72 10.24 65.6 15.99
Dt 0.074 46.2 3.94 4330. 4.72 10.24 65.6 18.41
€3 0.044 45.5 5.91 4550. 4.72 10.24 65.6 13.78
FS 0.088 45.5 7.87 2930. 4.72 10.24 65.6 14.89
Fé 0.088 45.5 7.87 297%. 4.72 10.24 65.6 13.78

BEAM THETA R-Min R-ACI f2/f2max Vc/Vt s/d3tqg K vn/fc**0.5
At 26. 1.33 1.59 0.88 0.25 1.12 1.05 4.213
ct 25. 1.27 1.5¢ 0.89 0.24 1.08 1.00 4.094
D1t 29. 0.93 1.21 0.93 0.19 0.64 1.20 6.240
E3 23 1.24 1.38 0.86 0.26 0.73 0.90 3.407
FS 28 1.16 1.43 0.95 0.23 1.23 1.15 4.895
F6 28 1.07 1.31 0.93 0.24 1.23 1.15 4,867

R mean 1.17 1.40

Stnd. Dev 0.148 0.135

Cclark
BEAM Av Fy s fc bw d fyl Vtest
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(sq 1n) (kst) (in) (pst)
D2-6 0.222 48.0 6.00 4280.
pD2-7 0.222 48.0 6.00 4120.
D2-8 0.222 48.0 6.00 3790.
D4-1 0.222 48.0 7.50 3970.
D4-2 0.222 48.0 7.50 3720.
pD4-3 0.222 48.0 7.50 3200.
DS~1 0.222 48.0 10.00 4020.
D5-2 0.222 48.0 10.00 4210.
DS-3 0.222 48.0 10.00 3930.
BEAM THETA R-Min R-ACI f£2/f2max
D2~-6 32. 0.91 1.19 0.93
D2-7 32. 0.85 1.12 0.96
D2-8 33. 0.94 1.22 0.95
D4-1 30. 1.04 1.41 1.00
D4a-2 31. 1.01 1.33 0.96
D4-3 33. 1.13 1.43 0.91
DS-1 28. 1.09 1.45 0.95
D5-2 28. 1.17 1.55 0.919
D5-3 28, 1.17 1.57 0.97
R mean 1.03 1.36
Stnd. Dev 0.116 0.159
Olesen,Sozen & Siess
BEAM Av Fy s fc
(sq tn) (ksi) (in) (psi)
BwW.23. 18 0.021% 38.6 2.75 6200.
Bw.23.19 0.021 38.6 2.75 6690.
BW.23.20 0.041 38.6 2.75 6150.
8wW.23.21 0.041 38.6 2.00 6665.
Bw.23.22 0. 101 36.8 3.50 6880.
BW.23.23 0. 101 36.8 3.00 6600.
BW.25. 19 0.021 38.6 2.75 6850.
BW.25.20 0.041 38.6 2.75 6290.
BEAM THETA R-Min R-ACI f2/f2max
BwW.23.18 29 1.75 1.85 0.82
BW.23.19 28 1.70 1.78 0.83
BW.23.20 3s 1.18 1.33 0.81
BW.23.21 38 1.09 1.21 0.77
BW.23.22 41 1.04 1. 11 0.77
BwW.23.23 43 1.12 1.17 0.80
BW.25.19 28 0.93 0.98 0.83
BW.25.20 35 0.97 1.09 0.79
R mean 1.22 1.31
Stnd. Dev 0.320 0.327
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Lyngberg

R-
1
1

1

BEAM Av Fy
(sq in) (ksi)
S5A-0 0. 156 97.8
58-0 0.156 93.8
BEAM THETA R-Min
SA-0 45, 1.51
58-0 44. 1.52
R mean 1.52
Stnd. Dev

Rodrigues & Darwin
BEAM Av Fy s fc
(sq in) (ksi) (in) (psi)
D-80(1) 0.084 46.6 7.00 5380.
D-80(2) 0.094 40.7 7.00 4070.
~-40 0.080 38.7 7.00 4200.
0-20 0.023 48.5 7.00 4290.
E-80 0.094 40.9 7.00 4010.
E-40 0.050 38.4 7.00 4550.
E-20 0.023 49.8 7.00 4210.
BEAM THETA R-Min R-ACl f2/f2max
D-80(1) 29. 1.00 1.04 0.82
D-80(2) 31. 0.98 1.00 0.78
D-40 45. 0.88 0.88 0.21
D-20 45. 0.97 0.97 0.17
E-80 30. 0.74 0.76 0.82
E-40 45, 1.06 1.06 0.19
E-20 45, 0.84 0.84 0.17
R mean 0.92 0.93
Stnd. Dev 0.110 O. 111
Mai{lhot
BEAM Av Fy s fc
(sq in) (ksi) (in) (psi)
A 0.220 $59.0 4.72 5670.
B 0.220 §9.0 6.70 $670.
o} 0.130 36.3 11.80 5670.
BEAM THETA R-Min R-ACI f2/f2max
A 32. 1.43 1.89 0.92

s fc
(in) (pst)
6.18 3730.
G.18 3860.

ACI f2/f2max
.51 0.89
.56 0.85
.83

0.008 0.033
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bw
(in)
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4.72

vc/Vvt
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bw
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7.87
7.87
7.87

vec/vt
0.15

d fyl
(in) (ksi)
21.26 8B9.3
21.26 90.4
s/datq K

0.87 2.00
0.84 1.95

d fyl
(in) (ksi)
15.44 229.0
15.32 228.0
15.39 229.0
15.2¢t 229.0
15.04 213.0
15.14 213.0
15.42 213.0
s/d3tq K

0.75 1.20
0.82 1.30
1.36 2.00
1.38 2.00
0.81 1.25
1.39 2.00
1.36 2.00

d fyl
(in) (kst)
12.00 €2.4
12.00 62.4
13.40 65.0
s/d3atq K

0.74 1.35

Vtest

(kips)
97.80
97.80

vn/fc**0.5
10.564
10.311

vn/fc**0.5
3.231¢
. 199
.567
.324
.250
.542
.336

NNWOD O W

vVtest

(k ips)
89.40
70.00
30. 10

vn/fc**0.5
8.776



7 0.91 0.17 0.93 1.20 7.098

8 29. 1.38 .
0.10 0.75 2.64 2.00 2.675

c a5. 1.42 1.42
R mean 1.414 1.73
stnd. Dev 0.023 0.268
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APPENDIX B - PRESTRESSED CONCRETE RESULTS

223



PRESTRESSED CONCRETE RESULTS-COMPLEX METHOD

Castrodale Composite Beams

BEAM Av Fy s
(sq in) (ksi) (tn)
0.40A 0.100 62.6 12.00
0.408 0.100 62.6 12.00
0.45 0.100 62.6 10.00
BEAM fpc fse fpy
(ksi) (kst) (ksi)
0.40A 0.18 143. 261.
0.408 0.18 140. 261,
0.45 0.18 150. 261.
BEAM THETA R-Min f2/f2max
0.40A 27. 2.09 0.80
0.408B 29. 2.18 0.75%
0.45 29. 1.97 0.81
R mean 2.08
Stnd. Dev 0.105
Elzanaty, Nilson & Slate
BEAM Av Fy s
(sq tn) (ksi) (in)
CWi0 0.110 63.0 10.00
Cwi11 0.1%0 63.0 10.00
CwWi2 0.110 63.0 10.00
Cw13 0.110 63.0 10.00
Ccwi4g 0.110 63.0 7.00
CWi5 0.110 63.0 10.00
cwie 0.110 63.0 10.00
CW17 0.050 5.0 10.00
Cc110 0.110 63.0 8.00
CItt 0.110 63.0 8.00
CcI112 0.110 63.0 8.00
CcI113 0.110 63.0 8.00
Cli4 0.110 63.0 5.00
CI15 0.110 63.0 8.00
CIte 0.110 63.0 8.00
Ccli17 0.050 55.0 8.00
BEAM fpc fse fpy
(ksi) (ks1) (kst)
CW10 1.18 112. 254.
Ccwit 1.15 110. 254.
Cwi2 1.15 110. 254.
CW13 1.62 154 . 254.
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fc
(psi)
6150.
5120.
5630.

fpu
(ks1)
270.
270.
270.

bw
(in)
3.

238

rho

d

(1

n)

16.92
16.92
16.92

B1

0.7

94

fpc/fc*.5 s/3dtqg K

2.30
2.52
2.40

fc
(psi)
10600.
8100.
5800.
10500.
10700.
10200.
10600.
10100.
10600.
8100.
5800.
10S00.
10700.
10200.
10600.
10100.

fpu
(ksi)
270.
270.
270.
270.

1.08 1.86
1.18 2.08
0.98 2.04
bw d
(in) (tn)
2.00 14.22
2.00 14,22
2.00 14.22
2.00 14.22
2.00 14.22
2.00 14.22
2.00 14.22
2.00 14.22
3.00 9.32
3.00 9.32
3.00 9.32
3.00 9.32
3.00 9.32
3.00 9.32
3.00 9.32
3.00 9,32
rho B1
.00774 0.650
.00774 0.650
.00774 0.760
.00774 0.650

.00052 0.743 0.140
. 00052
.00052 0.769 0.140

fyl Vtest
(ksi) (kips)
70.0 51.60
72.0 51.20
72.0 53.00
pxfpu
(kst)
0.140
rho v%
0.28
0.28
0.33
fyl Vtest
(ksi) (kips)
63.0 39.00
63.0 35.20
63.0 31.60
63.0 41.00
63.0 42.20
63.0 33.80
63.0 42.00
63.0 32.00
63.0 31.80
63.0 28 .60
63.0 27.50
63.0 34.80
63.0 37.00
63.0 271.20
63.0 36.70
63.0 29.10
pxfpu
(kst)
2.090
2.090
2.090
2.090



Cwi4 .63 156.
.Cw15 1.16 160.
Cwi6 1.62 155.
CWi7 1.63 155.
Cli0 1.09 112,
CI11 1.06 110.
Cli12 1.07 111,
CIt13 1.49 154,
CIt4 1.51 157.
CIi1S 1.07 160.
Cli6 1.50 156.
C117 1.50 155.
BEAM THETA R-Min
CWi10 35. 1.36
Cwi1 38. 1.43
Ccwi2 q1. 1.51
CwWi3 33. 1.35
Cw14 35. 1.21
CW15 33. 1.12
CwWi6 33. 1.38
Cwi17 29. 1.39
CI10 35. 1.23
CIi1 38. 1.29
CIi2 41. 1.47
CI13 32. 1.24
Cli4 35. 1.12
CIi5 33. 1.00
Clté 33. 1.34
CI17 29. 1.3%
R mean 1.30
Stnd. Dev 0.138
Olesen, Sozen & Siess
BEAM Av Fy
(sq in) (ksi)
BW.14.34 0.078 34.0
BwW. 14._38 0.014 43.5
BW. 14.58 0.029 43.0
Bw.14.60 0.029 43.0
BW.23.25 0.021 38.6
Cw.13.28 0.0414 36.8
Cw.14.17 0.014 43.5
Cw.14.22 0.029 35.7
Cw.14.23 0.020 36.8
Cw.14.34 0.049 31.8
Cw.14.37 0.020 36.8
Cw.14.38 0.049 31.8
Cw.14.39 0.014 43.5
CW.14. 41 0.0489 46.0
CwW. 14.47 0.057 35.7
CW.14.50 0.078 34.0
Cw.14.51 0.041 36.8

254,
261.
254.
254,
254,
254,
254.
254,
254,
261,
254,
254,

f2/f2max
.80
.74
.69
.80
.80

O00000000000000O0
[+ -]

S
(in)
10.50

QUALENWONMNMUONUONNDUOON

8888
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270.
270.
270.
270.
270.
270.
270.
270.
270.
270.
270.
270.

.00774
.00536
.00774
.00774
.00472
.00472
.00472
.00472
.00472
.00327
.00472
.00472

0O0000000000O0

.650
.650
.650
.650
.650
.650
.760
.650
.650
.650
.650
.650

fpc/fc*.5 s/3dtq K

11.46 1.48
12.78 1.65
15.10 1.83
15.81 1.37
15.76 1.03
11.48 1.37
15.73 1.37
16.22 1.17
10.59 1.80
11.78 2.01
14.05 2.24
14.54 1.61
14.60 1.13
10.59 1.67
14.57 1.67
14 .83 1.43
fc bw
(psi) (in)
3505. 2.90
3000. 2.95
3278. 2.91
2878. 2.89
6545. 3.00
4085. 1.75
3005. t.76
4660. 1.71
2745. 1.75
3940. 1.77
3850. 1.70
2950. 1.77
3185. 1.75
3400. 1.75
2585. 1.70
242S. 1.75
3383. 1.80

.Q0
.70
.40

g nnaasanaaRoase Ly
1]
(o

d
(in)
10.10
10. 114

[PUUIY, WG| IF S P X }

. 090
. 447
.090
. 080
. 274
.274
.274
.274
.24
.883
.274
.274

000000000000 0000
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X ==
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00000000GCC0000C0OR



.14 .54 0.041 36.8
.24 .27 0.029 43.0
.14.31 0.049 46.0
.14.32 0.049 46.0
.14 .38 0.049 46.0
BEAM fpe fse
(ksi1) (ksi)
14 .34 0.54 123.
14.38 0.54 120.
14.58 0.75 109.
14.60 Q.75 110.
23.25 0.46 86.
13.28 0.60 119,
14.17 0.32 126.
14 .22 0.62 122.
14.23 0.32 126.
14.34 0.70 117.
14,37 0.61 121,
14.38 0.52 156.
14 .38 0.61 120.
14 .41 0.71 118.
14 .47 0.60 119.
14 .50 0.62 122,
14 .51 0.86 116.
14 .54 0.80 107.
24.37 0.43 85.
14 .31 0.5S 121.
14.32 0.54 120.
14.38 0.68 114,
BEAM THETA R-Min
14.34 39, 1.16
14.38 38. 1.21
14.58 38. 1.40
14.60 38. 1.40
23.25 40. 1.40
13.28 45, t1.69
t4.17 a9, 1.30
14.22 41, 1.35
14.23 39. 1.28
14,34 **45, 1.71
14,37 40. 1.53
14.38 42, 1.39
14 .39 41. 1.47
14.41 **45 1.49
14.47 *»45 1.73
14 .50 **45, 1.61
14.51 39. 1.53
14 .54 39. 1.59
24 .37 45, 1.60
14,31 *+45 1.44
14 .32 *°*45 1.05
14.38 **45 1,15
R mean 1.43
Stnd. Dev 0. 188

88848

fpy
(ksi)
218.
222.
242.
242.
234.
219.
222.
222.
222,
244 .
222.
244,
222.
244 .
222.
222.
218.
218.
242.
244,
244,
244

f2/f2max

©000000000000000000000
~
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3400.
3290.
3135.
3420.
3605.

fpu
(ksi)
258.
267.
280.
280.
265,
256 .
267.
267.
267.
274.
267.
274.
267.
274.
267.
267.
258.
258.
280.
274.
274.
274,

- en s o
~
~

rho

.00390
.00398
.00611
. 00608
. 00445
.00402
.00192
.00400
.00192
.00443
.00401
.00333
.003e7
.00451
.00386
.00397
.00583
.00595
.00412
.00336
.00336
. 00447

9f3§)953§)953;)0(3()0(3()0(3()O(DC)O

9.96 0.0
10.06 0.0
10.65 0.0
10.63 0.0
10.68 0.0
B1 pxfpu

(kst)

850 1.006

850 1.062

850 1.711

850 1.702

723 1.179

845 1.029

850 0.513

817 1.068

850 O0.513

850 1.214

850 1.071¢

850 0.912

850 1.060

850 1.236

850 1.057

850 1.060

850 1.530

850 1.535

850 1.154

850 0.921

850 0.921

850 1.225

fpc/fc*.5 s/3dtq K

s
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13.40
12. 10
13.00
10.20
11.50



** Reduced area to obtain solution

Lyngberg
B8EAM Av
(sqg in)
2A-3 0.156
28-3 0. 156
3A-2 0. 156
38-2 0. 156
4A-1 0.156
48-1 0. 156
BEAM fpc
(ksi)
2A-3 0.57
28-3 0.57
3A-2 0.38
3B8-2 0.38
4aA-1 0.20
4B8-1 0.19
BEAM THETA
2A-3 **45.
28-3 **45.
3A-2 *+45,
38-2 **45.
4A-1 **45.
4B-1 **4S5.
R mean
Stnd. Dev

1.

** Reduced area

Bennett & Ml ingwa

BEAM

M77
M62
M39
M3t
H99
HISR
H62

Av
in)
.044
.044
.044
.044
.078
.078
.078

-~
7]
el

0000000

-k ot b -
e e e

fse
(kst

)

135.
135.
13S.
135.
139.
134.

Min

.56
.044

00000O0
~
2]

fc
(pst)

4730.
4920.
4510.
3990.
4570.
4410,

fpu
(kst)
267.
267.
267.
267.
267.
267.

fpc/fc

-]
[ 5]
o

[SECR- NN
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X

to obtain solution

ALWWNONWW
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fc
(pst)
6080.
6420.
6240.

6030.
6200.
5850.

bw
(in)

O
~
N

HbbdbdbL

rho

.00178
.00179
.00120
.00120
.00060
. 00060

*.5 s/

000000

bw
(in)

8883888

000000

d

(1

21.

B1

n)

.813

04

.824
.850
.821
.829

adtq
7

d

WWahdsn

(in)

1

11,
11.
1.
t1.
.
1.

.66

fyl
(ksi)
81.7
81.
82.
82.
89.
89.

oOoOwvman

pxfpu

(kst)
.478
478
.320
.320
. 160
. 160

000000

rho
.50
.50
.43
.38
.50
.45

00000

Vtest
(kips)

113.
115.
109.

7.
105.
102.

v



H49 0.078 72.1
BEAM fpc fse
(ksi) (ksi)
M77 1.06 112,
M62 1.03 109.
M39 1.03 109.
M3t 1.0t 106.
H39 0.99 105.
HI9R 1.014 107.
H62 1.00 105.
H49 0.99 105.
BEAM THETA R-Min
M77 41, 1.53
M62 37. 1.32
M39 35. 1.33
M31 34 1.26
HS9 **45 1.11
HI9R **45. 1.18
H62 42. $1.15
H48 40. 1.33
R mean 1.27
Stnd. Dev 0.134

Bennett & Debaiky

BEAM

NL-6-240
NL-6-160
NL 10-160
PL-6-240
PH-6-160
PL~-€-80
CH-6-240
CL-6-160
CH-6-160
CL-6-80
CM-6-80
CH-6-80
NM6-240
NM6 - 160
PM6- 160
CL6-240
CM6-240
CM6-160

BEAM

NL-6-240
NL-6-160

Av
(sq in)
.049
.049
110
.049
.042
.049
.042
.048
.042
.049
.044
.042
.044
.044
.044
.049
.044
.044

0000000000000 O0O0OO0O0O

fpc
(kst)

1.03

1.03

-~
© <
ARAOANANONNONONONNDO N~

fse
(ksi)

113.

112.

7.87

fpy
(ks1)
221.
221,
221.
221.
221,
221.
221.
221%.

f2/f2max

00000000
~
F-

DODANANDVWLOWIHIODWOHROOOON WO
(A
(o]

fpy
(ksi)

212,

212.

228

5830.

fpu
(ksi)
245,
245,
245,
245,
245 .
245,
245,
245.

2.00 {1.60
rho 81
.00682 0.746
.00682 0.728
.00682 0.738
.00682 0.750
.00682 0.748
.00682 0.740
.00682 0.752
.00682 0.754

fpc/fc*.5 s/3dtq K

fc
(psi)

.59
.85
.04
.04
.75
.83
.96
.86

$630.
5340.
5260.
6030.
$500.
5980.
7890.
8000.
8100.
8240.
8120.
7630.
5250.
5220.
5760.
7710.
7740.
8350.

fpu
(ksi)

250.

250.

0.

‘- me a0

bw
(in)
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
rho

70 4.40
.77 4.80
14 5.00
37 5.10
.02 4.00
.02 4.00
.47 4.30
.71 4.50

d

11.70

66.7

pxfpu
(ksi)
.671
.671
.671%
.671
.671
671
.671
.671

-t b o uh et ot —a

©0000000
N
- -]

u
(7]
oo aean

81 pxfpu

.00510 0.769
.00510 0.783

(ksi)
1.275
1.275

23.

80



NL 10-160 1.04
PL-6-240 1.46
PH-6-160 1.47
PL-6-80 1.43
CH-6-240 1.03
CL-6-160 1.03
CH-6-160 1.03
CL-6-80 1.04
CM-6-80 1.04
CH-6-80 1.05
NMG6-240 1.02
NM6-160 1.04
PMG6-160 t.46
CL6~-240 1.03
CM6-240 1.04
CM6-160 1.02

113.
112.
159.
161.
t12.
113.
112,
113.
114,
114,
111,
113.
161.
113.
114.
111,

BEAM THETA R-Min

NL-6-240 33.
NL-6-160 36.
NL 10-160 41,
PL-6-240 33.
PH-6-160 3S5.
PL~-6-80 35.
CH-6-240 33.
CL-6-160 33.
CH-6-160 3S5.
CL-6-80 36.
CM-6-80 38.
CH-6-80 40.
NM6-240 36.
NM6- 160 37.
PME-160 33.
CL6-240 1.
CM6-240 32.
CMe-160 4.

R mean
Stnd. Dev

walraven & Krop

BEAM Av
(sq in)
.061
.039
.039
.088
.088
.061
.061

CENOOLW
Q000000

BEAM fpc
(kst)

1.

e ok ok ah ed h eh ad wh b b b —h s -

.37
. 104

212.
212.
212,
212.
212,
212.
212.
212.
212.
212.
212.
212,
212,
212.
212.
212.

f2/€2max

9<DOSDO(DO(DO(DC)O()O(DO(DO
~
LF+]
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250.

.00510
.00510
.00510
.00510
.00510
.00510
.00510
.00510
.00S510
.00510
.00510
.00510
.00510
.00510
.00510
.00510

fpc/fc*.5 s/

13.

fc
(pst)

5890.
6000.
6550.
5880.
6100.
6210.
6170.

fpu
(kst)

Y e X o X « PN SO

.787
.748
.775
. 751
.656
.650
.650
.650
.650
.669
.787
.789
762
.665
.665
.650

O()OFDO<DC)O<DO<DO(DO<)O

3dtq K
7

-
w
auUuuasbsaLodbIOUOUMISE AN

L2715
.275
. 2715

.275
.275
.27%
.275
.275
.275
L2795
.275
.275
.27S
.275
.275

-t el b ol s o e s s b A ah —a b o

©00000000000000000
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w

)
64.4
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pxfpu
(ks1)



3 0.32 166.
4 0.29 149.
S 0.26 132.
6 0.54 138.
7 0.52 133.
8 0.46 117,
] 0.39 101.
BEAM THETA R-Min
3 29. 1.18
4 31, 1.31
5 45, 1.27
6 40. .30
7 40. 1.16
8 39. 1.17
9 37. .18
R mean 1.23
Stnd. Dev 0.064

267.
267.
267.
267.
267.
267.
267.

f2/f2max
.80
.73

0000000
~
(S
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278.
278.
278.
278.
278.
278.
278.

.00t
L0011
.00111
.00221
.00221
.00221
.00221

[oNeNeoNoNoNeNeo]

.756
.750
.723
.756
.745
.740
.742

fpc/fc*.5 s/3dtg K
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.84
.97
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PRESTRESSED CONCRETE RESULTS-PROPOSED METHOD

Castrodale Composite Beams

BEAM Av Fy s fc bw d fyl Vtest
(sq in) (ksi) (in) (psi) (in) (in) (ks1) (ktps)
0.40A 0.100 62.6 12.00 6150. 3.00 16.92 70.0 51.60
0.408 0. 100 62.6 12.00 5120. 3.00 16.92 72.0 51.20
0.45 0.100 62.6 110.00 5630. 3.00 16.92 72.0 53.00

BEAM fpc fse fpy

(kst) (ksi) (ksi)
0.40A 0.18 143. 261.
0.408 0.18 140. 261.
0.45 0.18 150. 261.

BEAM THETA R-Min f2/f2max Vc/Vt s/smax K vn (psi)

0.40A 30. 2.19 0.75 0.35 1.42 1.25 464.0
0.408 32. 2.28 0.73 0.37 1.42 1.35 443.3
0.45 32. 2.07 0.75 0.34 t.18 1.35 503.6
R mean 2.18

Stnd. Dev 0.102

Elzanaty, Nilson & Slate

BEAM Av Fy s fc bw d fyl Vtest
(sq in) (ksi) (in) (psi) (in) (in) (ksi) (kips)
CwW1i0 0.110 63.0 10.00 10600. 2.00 14.22 63.0 39 .00
[ol AR 0.110 63.0 10.00 8100. 2.00 14.22 63.0 35.20
cwi2 0.110 63.0 10.00 5800. 2.00 14.22 €3.0 31.60
cw13d 0.110 63.0 10.00 10500. 2.00 14.22 63.0 41 00
Ccwid 0.110 63.0 7.00 {10700. 2.00 14.22 63.0 42.20
CW1i5 0.110 63.0 10.00 10200. 2.00 14.22 63.0 33.80
cw16 0.110 63.0 10.00 10600. 2.00 14.22 63.0 42.00
cwi7 0.050 55.0 10.00 10100. 2.00 14.22 63.0 32.00
CI10 0.110 63.0 8.00 10600. 3.00 9.32 63.0 31.80
CIt1 0.110 63.0 8.00 8100. 3.00 9.32 63.0 28.60
CIt2 0.110 €3.0 8.00 5800. 3.00 g.32 63.0 27.50
CcIl13 0.110 63.0 8.00 10500. 3.00 9.32 63.0 34 .80
CcI14 0.110 63.0 5.00 10700. 3.00 9.32 63.0 37.00
CIl15 0.110 63.0 8.00 10200. 3.00 9.32 63.0 27.20
Clt6 0.110 63.0 8.00 10600. 3.00 9.32 63.0 36.70
CIL17 0.050 55.0 8.00 10100. 3.00 9.32 63.0 29. 10
8EAM fpc fse fpy

(kst) (ksi) (ksi)
Cwi0 1.18 112. 254.
[o"AR] 1.15 110. 254.
Ccw12 1.15 110. 254.
Cwit3 1.62 154. 254.

231



Cwi4
Cwis
Cwie
cwi7
CI10
cit
Cl12
CI13
Cl14
Cli1s
Clte
cI7

BEAM
Cw10
Cwi11
Cwi2
Cw13
Cwi4
Cwis
cwie
Ccw17
Ccl110
Cltt
Cli12
CI13
Clia
CItS
CI16
cI17

R mean
Stnd.

Olesen,

-t b bt b b Al s b s as

156.
160.
155.
155,
112.
110.
111,
154.
157.
160.
156.
155.

THETA R-Min

Dev

Sozen &

0000000000000 0O0OO

Av

in)

.078

.014
.029
.029
.021
.041
.014
.029
.020
.048
.020
.049
.014
.049
.057
.078
.041

1.

- et el e D b h b uh ek b e b b wa

.31
. 145

Siess

PONONVAEBINDNOONO

254.
261,
254.
254,
254.
254.
254.
254.
254.
261.
254.
254.

f£2/f2max

.75
.70

9!35)9535)P<DC)O<3C>O(DC)O
~
n

QUUBNONMNONONMNNDOON
w
o
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vc/Vt

0000000000000 00O0
)]
o

fc

(psi)
3505.
3000.
3278,
2878.
6545,
4095.
3005.
4660.
2745.
3940.
3850.
2950.
3185.
3400.
2585 .
2425,
3383.

bw

-
-.“-Q-.-.-.-.-.‘-.-.“NN”M;
C e e e e e e e e e e e e e o

- o adh s A b ah b o ah b b s s s

vn (psi)
981.4

841.9

712.3

1066 .4

1224 .1

1028.8

1068.¢

810.8

927.2

815.2

667.3

1005.2

1177.0

969.8

1007.8
769.5

fyl Vtest

(kst) (kips)
0.0 12.90
0.0 13.20
0.0 15.30
0.0 t4.60
0.0 20.80
0.0 17.70
0.0 7.89
0.0 13.80
0.0 7.97
0.0 18.20
0.0 12.90
0.0 13.50
0.0 10.90
0.0 14.50
0.0 12.00
0.0 12.10
0.0 12.90



14.54 0.041
24.37 0.029
14 .31 0.049
14.32 0.049
14.38 0.049
BEAM fpc
(ksi)
14.34 0.54
14.38 0.54
14.58 0.75
14.60 0.75
23.25 0.46
13.28 0.60
14. 17 0.32
14,22 0.62
14.23 0.32
14.34 0.70
14.37 0.61
14.38 0.52
14.39 0.61
14.41 0.7%
14.47 0.60
14.50 0.62
14.51 0.86
14.54 0.80
24 .37 0.43
14 .31 0.55
14.32 0.54
14.38 0.68

36.8
43.0
46.0
46.0
46.0

fse
(ksi)
123.
120.
109.
110.
86.
119.
126.
122.
126.
117.
121.
156.
120.
118.
119,
122.
116.
107.
85.
121,
120.
114.

BEAM THETA R-Min

14.34 36
14.38 38
14 .58 39
14.60 40
23.25 40
13.28 43
14,17 40
14.22 39
14.23 39
14.34 **45
14 .37 39
14.38 43
14.39 40
14.41 ¢*45
14.47 ¢+45
14 .50 **45
14.51 a0
14.54 41
24 .37 **44
14.31 **44
14.32 **45
14.38 **45
R mean
stnd. Dev

1

PP G G G Y e e

.07
.21
.43
.48
.40
.59
.30
.27

.44
. 197

83888

fpy
(kst)
218.
222.
242.
242.
234,
219.
222,
222.
222.
244,
222.
244,
222.
244,
222.
222.
218.
218.
242.
244.
244.
244.

f2/f2max

.70
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3400.
3290.
3135.
3420.
3605.

ve/vt
.71
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9.96
10.06
10.65
10.63
10.68
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vn (pst)

410.
366.
367
342.
468.
635.
328.
610.
339.
568.
503.
498.
425.
490.
423.
403.
460.
450.
406 .
459.
490.
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¢+ Reduced area to obtain.solution

Lyngberg
BEAM Av
(sq in)
2A-3 0. 156
2B-3 0. 156
3A-2 0.156
3B-2 0.156
4A-1 0. 156
4B- 1 0.156
BEAM fpc
(ksi)
2A-3 0.57
28-3 0.57
3A-2 0.38
38-2 0.38
4A-1 0.20
4B8-1 0.19
BEAM THETA
2A-3 44 .
2B-3 44,
3A-2 45,
38-2 **45.
4A-1 43.
48-1 44,
R mean
Stnd. Dev

fse
(kst

)

135.
135.
135.
135.
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(psi)
4730.
4920.
4510.
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4570.
4410.

ve/vt
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fyl  Vtest
(ksi) (kips)
81.7 113.80
81.6 115.80
82.4 109.90
82.5 97.30
89.0 105.40
89.8 102.10
vn (psi)
776.5

804.3

783. 4

706.6

758.1

752.8

fyl Vtest
(kst) (kips)
66.7 25.20
66.7 22.10
66.7 18.10
66.7 17.00
66.7 24.00
66.7 26.80
66.7 22.00
66.7 23.80



(ksi

)

112.
109.
109.
106.
105.
107.
105.
105.

THETA R-Min

(ksi)

M77 1.06
M62 1.03
M3s 1.03
M31 1.01
H99 0.99
HI9R 1.01
H62 1.00
H4S8 0.99

BEAM
M77 39.
M62 37.
M39 35.
M3 34.
H99 *+45.
HI99R *+¢45.
H62 42.
H49 a0.

R mean

Stnd. Dev

Bennett & Cebaiky

BEAM

NL-6-240
NL-6-160
NL 10-160
PL-6-240
PH-6~160
PL-6-80
CH-6-240
CL-6-160
CH-6-160
CL-6-80
CM-6-80
CH-6-80
NM6-240
NM6-160
PM6- 150
CL6-240
CM6-240
CM6- 160
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PH-6-160
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212.
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ve/Vt
.48
.53
.64
.68
.33
.32
.40
.45
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fc
(pst)

5630.
5340.
5260.
6030.
5500.
5980.
7890.

8100.
8240.
8120.
7630.
$250.
$220.
5760.
7710.
7710.
8350.

bw
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vn (psi)
749.4

720.3

620.9

582.8

932.8

982.9

827.4

772.3

fyl Vtest
(kst) (kips)
59.5 18.52
59.5 20.35
59.5 23.04
59.5 20.01
59.5 21.02
59.5 23.80
59.5 23.04
59.5 23.04
59.5 25.18
59.5 26.08
59.5 28.33
59.5 31.47
59.5 20.00
59.5 21.00
59.5 21.50
59.5 22.50
59.5 22.50
59.5 25.10



CH-6-240
CL-6-160
CH-6-160
cL-6-80
CM-6-80
CH-6-80
NM6-240
NMG - 160
PME- 160
CL6-240
CM6-240
CM6- 160

BEAM
NL-6-240
NL-6- 160
NL 10- 160
PL-6-240
PH-6-160

PL-6-80
CH-€-24"
CL-6-1&"
CH-6-160

CL-6-80

CM-6-80

CH-6-80

NM6-~240

NM6- 160

PM6-160

CL6-240

CM6-240

CM6- 160

R mean
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161.
113.
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111,
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ve/vt
A
.62
.44

©00000000000000000
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fc
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5890.
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6550.
5890.
6100.
6210.
6170.

bw
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vn (psi)

5582.
590.
748.
580.
765.
837.
749.
726.
846.
904.
994.
1047.
565.
627.
720.
660.
T11.
801.

OMNOUANUNOANNNTOODROW

Vtest



7 0.52 133. 267.
8 0.46 117. 267.
9 0.39 101. 267.

BEAM THETA R-Min f2/f2max Vc/Vt s/smax K vn (psi)

3 32. 1.22 0.75 0.41 0.62 t.35 544 .4
4 at. 1.31 0.71 0.45 0.54 1.30 465.0
S 45, 1.27 0.26 0.71 0.71 2.00 412.9
6 40 1.30 0.70 0.51 0.62 1.75 675.8
7 40. 1.16 0.70 0.52 0.62 1.75 681.9
8 39. 1.17 0.73 0.53 0.50 1.70 648 .9
9 37 1.18 0.72 0.53 0.62 1.60 558. 1

R mean 1.23

Stnd. Dev 0.061
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