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Abstract

We examine two-layer, frontal-geostrophic (FG) models concentrating on non-
linear effects. The FG models are geostrophic to leading order but allow large vari-
ations in layer depths by including the large inertial terms associated with frontal
effects.

Using a baroclinic/barotropic formalism. a general two-layer FG model on a
B-plane is derived. This model leads to the discussion of four important models,
which differ in the scaling of the layer depth ratio and the 5-plane effect. We
examine the nonlinear effects in these models using three forms of analysis. First.
we establish nonlinear invariants of the model and use these to establish nonlinear
stability theorems. Second, we present a finite amplitude analysis which examines
the effect of nonlinearities on a linear wave solution. Finally. we present the results
of numerical simulations of each model.

For the models where the §-plane effect dominates the barotropic equation.
linear instability can only occur if the potential vorticity gradients vanish and all
linearly sloping fronts are nonlinearly stable. Nonlinear effects act to reorganize
linear waves into wave packet/soliton structures that have a larger but bounded
amplitude. While the presence of shear in the flow may lead to initial instability,
this instability acts only to remove the shear and releases little potential energy. In
the long term, variations to a zonal flow evolve toward large-scale, small-amplitude
meanders or alternating jets of weak-zonal flow.

If on the other hand the barotropic equation includes strong quasigeostrophic
terms, the barotropic flow acts to destabilize the front. If the baroclinic equation
does not include frontal effects, rapid linear growth occurs at small scales. However,

if frontal effects are included in the baroclinic equation, they act to steepen the den-



sity gradient. This counteracts the small-scale growth, and leads to the dominance
of waves with finite wavelength. Nonlinear effects act to suppress linear growth at
small zonal length scales but enhance this growth at large zonal scales. This leads
to large-scale meanders of frontal outcroppings that can pinch off to form warm-
core eddies or entrap lower-layer fluid to form cold-core eddies. These large-scale

structures efficiently release the mean potential energy of the front.



And the three men I admire most-
the Father, Son, and the Holy Ghost-
They caught the last train for the coast
The day the music died

Don McLean



Acknowledgement

In the past years I have received invaluable support from a variety of sources.
First and foremost, my supervisor Dr. Gordon Swaters deserves special recognition.
I had the fortune of having him as my guide into the world of scientific research
and geophysical fluid dynamics. His enthusiasm, insight, and dedication served as
great inspiration. For all his contributions to this thesis. and more importantly to
my life, I owe an unpayable debt of gratitude.

I would also like to thank the members of my defence committee. Their
contributions throughout the process of writing this thesis have vastly improved
the final product. As well, I owe a great deal to my colleagues. Carol Slomp.
Curtis Mooney, Francis Poulin, Pat Montgomery, and. especially. Matt Reszka,
who through countless discussions have not only aided my research but made it an
enjoyable experience. I'd like to thank all the professors and staff of the Department
of Mathematical Sciences who have assisted and supported me throughout the years.
And a special thanks to all the graduate students and friends who have provided
the proper amount of diversion to keep me sane.

I'd like to thank my family who have provided support in so many ways.
Finally, I'd like to thank my wife Julie. Her encouragement, patience. and love
made this thesis possible.

Financial support was provided by the Natural Sciences and Engineering Research
Council through Post Graduate A and B scholarships, and by the University of
Alberta through the Izaak Walton Killam Memorial Scholarship.



Table of Contents

l.Introduction . . . . . . . . . . . ¢ . ¢ v e v e .. 1
2. Derivation of Two-Layer, Frontal-Geostrophic Models . . . . . 10
2.1. Shallow Water Equations . . . . . . . . . . . . . . . .. .. .10
2.2. Barotropic and Baroclinic Equations . . . . . . . . . . . . ..o 17
2.3. Geostrophic Equations . . . . . . . . . . .. ... ... .. .19
2.4. Frontal-Geostrophic Models . . . . . . . . . . . . . . .. ... 23
2.5. Potential Vorticity . . . . . . . . . . . . ... .. .. ... .30
2.6. Boundary Conditions . . . . . . . . . . . . . . . . ... ... 32
2.7. Model Invariants . . . . . . . . . . . . . ... .. ... .. .3
3.STmodel . . . . . . . . . ¢ o0 v v v e .. 41
3.1. Model Equations . . . . . . . . . . . . . ... . . ... ..o 4l
3.2. Linear Analysis . . . . . . . . . . . . . ... . . ... .. .43
3.3. Nounlinear Invariants and Stability . . . . . . . . . . . .. .. .04
3.4. Weakly Nonlinear Analysis . . . . . . . . . . . . . . .. .. .89
3.5. The Gently Sloping Front . . . . . . . . . . . . . . . .. . . .60
3.6. The Wedge Front . . . . . . . . . . . . . .. . . .. .. . . .70
3.7. Solutions to the Amplitude Equation . . . . . . . . . . . . .. .79
3.8. Long-wave-short-wave Resonance . . . . . . . . . . . .. .. .87
3.9. Three Wave Resonance . . . . . . . . . . . . . . . ... .. .9
3.10. The Long Wave Solution . . . . . . . . . . . . . . ... . . 102
3.11. Numerical Solutions . . . . . . . . . . . . . . . . ... . . 106
4. VSEmodel . . . . . . . ... ¢ . . 130
4.1. Model Equations . . . . . . . . . . . . . ... . .. .. . . 130
4.2. Linear Analysis . . . . . . . . . . . . . .. ... 132
4.3. Nonlinear Invariants and Stability . . . . . . . . . . . .. .. 137
4.4. Weakly Nonlinear Analysis . . . . . . . . . . . . . ... .. 141
4.5. Solutions to the Amplitude Equation . . . . . . . . . . . . .. 143
4.7. Long-wave-short-wave Resonance . . . . . . . . . . . .. . . 145
4.7. Numerical Solutions . . . . . . . . . . . ... .. ... .. 147
5.SEmodel . . . . . .. ... ... 000000 ... 154
5.1. Model Equations and Transformed Model . . . . . . . . . . .. 154

5.2. Linear Analysis . . . . . . . . . . . . . ... ..., . . 187



5.3. Nonlinear Invariants and Stability . . . . . . . . . . . . . ..
5.5. Weakly Nonlinear Analysis . . . . . . . . . . . . . . . . ..
5.5. Gently Sloping Front . . . . . . . . . . . . . . . . .. ...
5.6. Transformed Model Wedge Front . . . . . . . . . . . . . . ..
5.7. Solutions to the Amplitude Equation . . . . . . . . . . . . . .
5.8. Stable Solutions . . . . . . . . . . .. ... 0L L.
5.9. Numerical Solutions . . . . . . . . . . . .. . . .. .. ..

6. Conclusions
References .
Appendices . . .

Appendix 1. Derivation of General Two-layer Geostrophic Models . . . .
Appendix 2. WVT Model . . . . . . . . . . . .. .. ... ...
Appendix 3. Calculation of Nonlinear Terms for the ST Model . . . . .
Appendix 4. The SE Model Hamiltonian Formulation . . . . . . . . .
Appendix 5. The NLS Equation . . . . . . . . . . . . . . . ...



List of Figures

1.1. Fronts of the North Pacific . . . . . . . . . . . .. .. .. .. 2
2.1. Representing a front with a layered model . . . . . . . . . . . . . 13
2.2. Model configuration . . . . . . . . . . . . . . ... ... 16
2.3. Determiningmodels . . . . . . . . . .. .. ... .. 25
2.4. Length scalesof themodels . . . . . . . . . . .. ... ....27
3.1. Growth rates of BF instability: gently sloping front . . . . . . . . . 81
3.2. Stability boundaries for a wedge front . . . . . . . . . . . . . .. 83
3.3. BF growth rate for a wedge front. . . . . . . . . . . ... . .. 84
3.4. Stability characteristics of LWSW resonance: GS . . . . . . . . . . 92
3.5. Growth rates for LWSW and BF instabilities: GS . . . . . . . . . 93
3.6. Growth rates for BF and LWSW instabilities: WD . . . . . . . . . 96
3.7. Long-wave interaction parameter . . . . . . . . . . . . . . . . 105
3.8. Typical fronts for numerical simulations . . . . . . . . . . . . . 109
3.9. RED model, coupled-front results: t=3-5 . . . . . . . . . . . . 111
3.10. RED model, coupled-front results: t=6-8 . . . . . . . . . . . . 112
3.11. RED model. coupled-front results: eddy drift . . . . . . . . . . 113
3.12. RED model. coupled-front energy plots: eddy formation . . . . . 116
3.13. RED model, coupled-front energy plots: long time . . . . . . . . 118
3.14. ST model, coupled-front results . . . . . . . . . . . . . . .. 119
3.15. ST model, coupled-front energy plots . . . . . . . . . . . .. 121
3.16. ST model, long wave development . . . . . . . . . . . . . .. 123
3.17. ST model, alternating zonal jet development . . . . . . . . . . 125
3.18. ST model, isolated front with shearresults . . . . . . . . . . . 127
3.19. ST model, isolated front with shear energy plots . . . . . . . . 128
3.20. ST model, isolated front with shear zonal spectrum plots . . . . . 129
4.1. Growth rates of BF instability: GS . . . . . . . . . . . .. .. 144
4.2. Growth rates for BF and LWSW instabilities: GS . . . . . . . . 146
4.3. VSE model, coupled-front results . . . . . . . . . . . . . ... 148
4.4. VSE model, coupled-front energy plots . . . . . . . . . . . .. 149
4.5. VSE model, isolated front with shear . . . . . . . . . . . . .. 151
4.6. VSE model, isolated front with shear energy plots . . . . . . . . 152
4.7. VSE model, isolated front with shear spectrum . . . . . . . . . . 153



5.1. Marginal stability curve . . . . . . . . . . . .. . . .. ...

5.2. Gently sloping front correctionterms . . . . . . . . . . . . . .

5.3. Blow-up time of solutions . . . . . . . . . . . . . . .. ...
5.4. SE model, coupled-front results . . . . . . . . . . . . . . ..
5.5. SE model, isolated front results . . . . . . . . . . . . . . ..
5.6. SE model, coupled-front energy plots . . . . . . . . . . . . ..
5.7. SE model, isolated-front energy plots . . . . . . . . . . . . . .
5.8. FG-SE model, coupled-front results . . . . . . . . . . . . ..
5.9. FG-SE model, isolated-front results . . . . . . . . . . . . ..
5.10. FG-SE model, coupled-front energy plots . . . . . . . . . . . .
5.11. FG-SE model. isolated-front energy plots . . . . . . . . . . . .
5.12. FG-SE model, isolated-front spectrum plot . . . . . . . . . . .
A.1.1. General model configuration . . . . . . . . . . . . .. . ..
Al12. QGversusFG . . . . . . ...
A.1.3. QG limit for a thin upperlayer . . . . . . . . . . . . . ..
A.1.4. FG limit for a thin upper layer,no 8-plane . . . . . . . . . .
A.1.5. FG limit for O(e) upper layer. . . . . . . . . . . . . . ...
A.1.6. FG limit for thin lower layer, no 3-plane . . . . . . . . . ..
A.2.1. WVT model, coupled-front results . . . . . . . . . . . . ..
A.2.2. WVT model, coupled-front energy plots . . . . . . . . . . ..
A.2.3. WVT model, isolated-front results: t=54-79 . . . . . . . . . .
A.2.4. WVT model, isolated-front results: t=79-83 . . . . . . . . . .
A.2.5. WVT model, isolated-front energy plots . . . . . . . . . . . .
A.5.1. Phase portraitsfor 43 >0and v >0 . . . . . . . . . . . ..
A.5.2. Phase portraitsfor vy <Oandy >0 . . . . . . . . . . . ..
A.5.3. Phase portraits for v >0and <0 . . . . . . . . . . . ..
A.5.4. Phase portraits for v < 0and <0 . . . . . . . . . . . ..
A.5.5. Plots of the solutions . . . . . . . . . . .. . . . .. ...



List of Tables

1.1. Previous model analysis . . . . . . . . . . . . . . . ... ... 7
2.1. Model scaling and names . . . . . . . . . . . . . . ... ... 24
2.2. Observed parameter values . . . . . . . . . . . . . ... ... 28
3.1. Long-wave-short-wave resonant pairs: WD . . . . . . . . . . .. 91
3.2. Resonant triads: GSF . . . . . . . . . . ... . . ... .. 99
3.3. Resonant triads: WD . . . . . . . . . . . ..o L. 99
6.1. Model scalings . . . . . . . . . . . . . . .. . . . ... . 204

6.2. Analysisresults . . . . . . . . . . . . . .. . ... 206



Chapter 1.

Introduction

Large-scale oceanic fronts are a common phenomenon in the world’s oceans. A
front consists of a large change in the density (often a change in temperature and/or
salinity) over a short length scale, and is seen in observations as a concentration of
isopycnals (lines of constant density). For example. observations taken in the North
Pacific (Roden, 1975) illustrate a typical surface front as a series of concentrated
1sopycnals intersecting the surface (see discussion in §2 and Figure 2.1). Roden
(1975) documented observations of numerous fronts of the North Pacific including
the Subtropical and Subarctic fronts as well as Asian coastal currents such as the
Kuroshio and the Oyastio (see Figure 1.1). Coastal currents. which exist in all the
world’s oceans, may also take the form of isolated fronts overlying bottom topog-
raphy. These vary from weaker eastern boundary currents such as the California
Current (see Ikeda et al., 1984) to the crucial western boundary currents such as
the Kuroshio (see Robinson, 1983).

Fronts can play two important but opposite roles depending on their stability.
When stable, these fronts are important natural barriers (Cushman-Roisin. 1986).
They act to hinder both horizontal and vertical motion restricting the transfer of
heat and momentum as well as biological nutrients. Stable fronts also play a role in
mid-depth water formation, as they force the subduction of cooler waters travelling
equatorward (Spall, 1995). Such stable fronts as those observed in the Subtropical
Convergence Zone of the North Atlantic are known to play an important role in
general ocean circulation.

On the other hand, when fronts are unstable they enhance horizontal and
vertical motion. Fronts are large sources of potential energy, which is stored as
they form. This energy can be released if the front becomes unstable and small
variations in the front grow to form large meanders and eddies. Such meanders
and eddies are a source of a great deal of the mesoscale mixing and transport that
occurs in the oceans. Mixing and transport play an essential role in the general
circulation of the oceans. A major source of error in ocean circulation models is
the improper resolution and inclusion of the effects of eddy transport and mixing
that occur on the western boundary currents and along the frontal outcroppings of

1
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Figure 1.1: Various fronts and boundary currents of the North Pacific as
shown in Roden (1975). The arrows represent the currents that help maintain
the fronts. The location of the subtropical front cross-section shown in Figure
2.1 is also labelled.

isopycnals (see Barth, 1989a and Bush et al., 1993). The parametrization of these
effects is an active area of research (see for example Greatbatch, 1998 and Visbeck et
al., 1997.) As well, unstable coastal currents play a significant role in the upwelling
of nutrients and the creation of cross-shore flows (see Ikeda and Emery, 1984, Ikeda
et al., 1984, McCreary et al., 1991, Haidvogel et al., 1991, and Barth. 1989a).
Observations have illustrated mesoscale variations existing in fronts. The
variations take the form of large-scale meanders which often form cold-core and
warm-core eddies as well as smaller-scale jets and squirts (see Stern, 1986, Stern,
1987, McCreary et al., 1991, Haidvogel et al., 1991, and Barth, 1989a). Ocean

2



1. Introduction

surface fronts are largely geostrophic in nature, that is, the velocity is chiefly deter-
mined by pressure gradients and the effective force of the Earth’s rotation on these
gradients (Robinson, 1983). Thus, sloping isopycnals give rise to a geostrophically
determined baroclinic flow (see Roden, 1975 for examples). Yet. it is the departure
from geostrophy, the ageostrophic effects, that largely determines the existence and
nature of instabilities.

The experimental work of Griffiths and Linden (1981) and Griffiths et al.
(1982) was instrumental in inspiring and directing this area of research. The first
illustrated the slow, nonlinear instability of an isolated front: a front with a single
outcropping and a corresponding unidirectional flow. The second illustrated the
highly unstable nature of a coupled front: a front bounded by two outcroppings
with a sheared flow consisting of a jet in both directions. Both papers made clear
the necessity of a leading-order geostrophic model that also described the highly
dynamic nature of ageostrophic frontal variations.

The difficulty in studying fronts analytically is the large variation in isopycnals
that are prevalent in them. These large deflections cause relatively large velocities
and the nonlinear advection terms cannot be assumed small. As such. the classic
quasigeostrophic (QG) model, which assumes small isopycnal deflection and thus,
small velocities, is not applicable (see Pedlosky, 1987 for details of the QG model).
As well, these fronts are known to be unstable when QG theory would have predicted
stability (Paldor and Killworth, 1987). The goal is to approximate the primitive
equations in such a manner as to allow greater analysis. while including finite-

amplitude isopycnal deflection and the associated ageostrophic effects.

In Griffiths et al. (1982), a reduced-gravity model that models a front as a
single layer with constant potential vorticity over a deep, inactive ocean is ana-
lyzed in the long wavelength limit. Despite its simple nature, the model allowed
for instability without the necessity of an extremum in the potential vorticity. As
well, it illustrated the importance of including the large inertial forces associated
with a rapidly varying front. It is the kinetic energy in the large velocities con-
centrated at the boundaries that allows an initial release of potential energy to
grow into the instabilities observed. While coupled fronts were shown to be linearly
unstable, isolated fronts were shown to be linearly stable in the subsequent works
of Killworth (1983), Paldor (1983a), and Paldor (1983b) unless a reversal of flow
occurs (Killworth, 1983). In Killworth et al. (1984), Paldor and Killworth (1987),

3



1. Introduction

and Paldor and Ghil (1990) these results were extended to a two-layer model and
finite wavelengths. It was shown that the coupled-front instability was essentially
a barotropic instability, while isolated fronts were baroclinic. As well, it was found
that in the one-layer model, the flow was dominated by long waves, while in the
two-layer model short waves with a linearly increasing growth rate dominated. As
such, the addition of a lower layer is essential in the study of isolated fronts. In
Paldor and Ghil (1991), the short wave instabilities seen for coupled fronts were

also found for isolated fronts using a two-layer constant PV model.

The analysis discussed above has been very successful in describing frontal
instability and yet has two drawbacks when it comes to modelling surface ocean
fronts. First, while assuming constant PV simplifies the highly nonlinear terms in
the models, this assumption places a considerable constraint on the form of the
front (see Slomp and Swaters, 1997). The sensitivity of the results to the PV
structure of a front (see Killworth, 1983) suggests that variations from a constant
PV could result in widely varying stability characteristics. Second. the analysis
cannot be generalized to include the effects of the 3-plane approximation or bottom
topography (Benilov and Reznik. 1996). Yet the former is essential in any study of
large-scale, open-ocean fronts, while the latter is essential in the study of coastal

currents.

In Cushman-Roisin (1986), a frontal geostrophic (FG) model was developed to
specifically deal with ocean fronts within the 3-plane approximation (see Cushman-
Roisin and Tang, 1990 for further details). This model assumed the fronts were
geostrophic, but unlike the QG models, where geostrophy is a result of small isopy-
cnal deflections, geostrophy resulted from the large length scales associated with
the fronts. As a result of the large length scale, the models may have to incorporate
the dependence of the Coriolis force on latitude through the 8-plane approximation
(see §2.1). As illustrated in Chapter 2 this leads to an intermediate length scale
model, in that the length scale is limited below by the necessity of geostrophy and
above by the (3-plane approximation. The model was developed for a single layer
over a deep passive layer and is referred to as the reduced gravity (RED) model.
The time scales in the model are necessarily much slower than QG scales, making
the model suitable for the slow growth scales associated with large fronts. Despite
this simplification, the model still included highly nonlinear, second order relation-
ships between the frontal-layer potential vorticity and stream function. Analysis

4



1. Introduction

of this model has shown that all monotonic fronts are stable (Benilov, 1992b), and
that a wedge front gives rise to dispersive, frontally-trapped waves which propagate
with the front to the left (Cushman-Roisin, 1986).

In Chassignet and Cushman-Roisin (1991), an examination of eddies using
both one-layer and two-layer FG models indicated the importance of including the
second layer. Following this work, Cushman-Roisin et al. (1992) constructed a
general two-layer, 3-plane model for all scales of flow. They examined a range
of parameter values and found that several key models could describe the flow of
thin fronts in the FG limit. These models had a similar structure to that of the
reduced gravity model but included lower-layer effects. The necessity of several
F'G models was justified by the range of length and depth scales of observed fronts
(see Table 3 in Benilov and Reznik, 1996). In Benilov (1992a), two more models.
which allowed layers of equal depth, were derived. Benilov has examined the linear
stability of large-scale fronts using these two-layer, FG models (Benilov, 1992a and
Benilov and Cushman-Roisin, 1994). It was demonstrated that fronts were generally
linearly stable when dominated by the background vorticity gradient supplied by
the (-plane, and unstable when this effect was weak. As well, the linear singularity
corresponding to extrema in the frontal profile was shown to be a source of instability
(Benilov, 1995a). Concurrently, and independently, Swaters (1993b) developed and
analyzed one of the models found in Cushman-Roisin et al. (1992), but for a surface
flow over gently sloping bottom topography. This model allowed fronts to be stable
or unstable depending on a balance between the background vorticity gradient (here
provided by topography) and the vorticity gradient associated with the front. Once
again, the difference between the two-layer model and the reduced gravity model

was stressed.

While linear analysis is always useful, instabilities exist in fronts that are
linearly stable and are thus attributed to nonlinear effects (Paldor, 1987). Obser-
vations (Barth, 1989a) and experiments (Griffiths and Linden, 1981) have shown
that finite-amplitude phenomena such as wave breaking and eddy formation are
prevalent in the evolution of fronts. As well, nonlinear interactions are seen to in-
crease the wavelength of these phenomena (Ikeda and Emery, 1984 and Ikeda et al.,
1984). In Paldor (1987) and Ghil and Paldor (1994), it was shown that by including
nonlinear effects in constant PV models, linear growth could be suppressed, leading
to periodic modulation. Nonlinear analysis of jets using QG models has illustrated

5



1. Introduction

the modulation of linearly unstable modes into large meanders leading to the pinch
off of eddies (Feliks and Ghil, 1996). However. it was also concluded that extended
QG theory would not properly describe the nonlinear dynamics because it does not
discriminate between cyclones and anticyclones. while the latter are favoured in

primitive equation models and observations (Boss et al.. 1996).

In Slomp and Swaters (1997), a finite amplitude analysis of the RED model
was undertaken. It was shown that nonlinear effects modulate linearly stable waves,
leading to the evolution of travelling wave/soliton structures. In Reszka (1997), a
finite amplitude calculation using the model of Swaters (1993b) suggested that non-
linearities could both stabilize and further destabilize linearly unstable waves. Most
dramatically, numerical solutions illustrated the development of eddies from both
isolated and coupled fronts. These numerical solutions gave credibility to the belief
that this relatively simple two-layer FG model was capturing the essential physi-
cal process of eddy formation and nonlinear interactions as seen in the numerical
studies of Barth (1994), Spall (1995), and Haidvogel et al. (1991).

We can make four conclusions from the works discussed above. First, QG mod-
els are insufficient to analyze frontal processes. but the instabilities observed share
a similar structure to that produced by QG models. A model that has leading-order
geostrophy built in is desired. Second, the large-amplitude deflections and veloci-
ties associated with fronts must be included in any model designed to capture their
dynamic nature. Third, while the instability of coupled fronts can be barotropic
in nature, the instability of isolated fronts is baroclinic in nature and. therefore,
is dependent on the inclusion of a lower layer. Finally. nonlinear effects play an
essential role in the evolution of instabilities. These conclusions lead us to the focus

of this thesis: the study of nonlinear effects in two-layer FG models.

The plan of this thesis is as follows. In Chapter 2, we discuss the approxima-
tions and scalings that lead to the models examined. Beginning with the two-layer,
shallow-water equations, we follow the analysis of Benilov and Reznik (1996) and
introduce barotropic and baroclinic velocities and the associated equations. Then
a scale analysis is used to reduce the equations to a nondimensional model. Here
we make the F'G assumptions that changes in the upper-layer depth are of the
same scale as the upper-layer depth itself and that the leading-order balance in the
baroclinic motion is the geostrophic balance between the pressure gradient and the
constant Coriolis force. This ensures that the Rossby number is small, and the
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baroclinic velocity can be expanded in a power series in it. By substituting this
expansion of the baroclinic velocity into the remaining equations. one obtains the
general FG model.

The general FG model still allows variation in the scaling of the 8-plane
effect, depth ratio, time, and barotropic stream function. Following the work of
Cushman-Roisin et al. (1992), the time and barotropic stream function scales are
determined once other scales are chosen. It is demonstrated that all possible choices
can be examined by studying four two-layer, frontal-geostrophic models. These four
models are labelled the ST model, the VSE model, the SE model. and the WVT
model. We choose to identify these models by the effect of the 3-plane as being
very strong (VS). strong (S), or weak (W), and the upper-layer depth as being equal
(E) to the lower layer, thin (T), or very thin (VT). As such. the ST model is a model
in which the effect of the 8-plane is strong and the upper layer is thin. and so forth
for the three remaining models.

We complete Chapter 2 by introducing the potential vorticity, boundary con-
ditions, and nonlinear invariants associated with the general FG model. Though
the body of the thesis concentrates on (-plane models, the connection to flows
over bottom topography is made clear in Appendix 1. This allows the models to be
applied to a much greater range of fronts and allows for comparison to the analysis
of Swaters (1993b) and Reszka (1997). As well, it allows comparison to bottom-
trapped flow models, specifically the model developed in Swaters and Flier] (1991)
and Swaters (1991) using the FG assumption.

The FG models have been studied in a variety of works, however the nonlinear
aspects of the models have not been fully discussed. In Table 1.1, we summarize
the previous work that has been done using the FG models and the areas that this
thesis will cover. We include the four two-layer, FG models as well as the reduced
gravity FG model (the RED model) and the lower-layer, strong-topography model
(the LST model) since these models will be used for comparison. In Chapters
3, 4, and 5 we examine in detail the ST, VSE, and SE models, emphasizing the
examination of nonlinear aspects. In each chapter, we begin by presenting the
model equation, the potential-vorticity description, and a brief review of the linear
stability characteristics and solutions. Note that Benilov and Reznik (1996) provides
a good overview of all four two-layer FG models and the linear analysis that has
been done. As such, we are brief in our presentation of these results. Next, based on
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1. Introduction

Model | Derivation |Linear Nonlinear Finite Numerical
Analysis | Stability Amplitude | Solutions
Analysis Analysis
ST CRSTg BCR; Chapter 3 | Chapter 3 | Chapter 3
VSE Beng Beng Chapter 4 | Chapter 4 | Chapter 4
SE Beng Beng Chapter 5 | Chapter 5 | Chapter 5
WVT |CRST3 SwatCr |SwatCr Reszkar Reszkat
SwatCr KarsCr
RED |CRpg CRg Slomp ¢ Slomp CRT;
SwatB¢ Paviay
LST SwatAr SwatATr |SwatBr Mooneyt SwatDr
KarsAr |KarsBr
TABLE 1.1. The table summarizes where previous analysis has been carried

out and the analysis given in this thesis. The subscript 3 indicates a model
with only the 3-plane effect, the subscript T indicates a model with only
bottom topography, and the subscript f indicates an f-plane model with
neither the S-plane effect nor bottom topography. The paper abbreviations
are as follows: CRST=Cushman-Roisin et al. (1992). BCR=Benilov and
Cushman-Roisin (1994), Ben=Benilov (1992a), SwatA = Swaters (1991),
SwatB = Swaters (1993a), SwatC = Swaters (1993b). SwatD = Swaters
(1998). Reszka = Reszka (1997), CR = Cushman-Roisin (1986). Slomp =
Slomp (1995), CRT = Cushman-Roisin and Tang (1990). Pavia = Pavia
(1992), Mooney = Mooney and Swaters (1996), KarsA = Karsten et al
(1995). KarsB = Karsten and Swaters (1996a). KarsC = Karsten and Swa-

ters (1996b).

the nonlinear invariants, we present a nonlinear stability analysis. Then, using the
linear solutions, we present a finite amplitude analysis that examines the evolution
of a slowly varying wavetrain under the influence of weak nonlinear effects. Finally,

we summarize the chapter by presenting numerical solutions to the full model.

Since each chapter is similar in form, we present many of the details and ex-

planation of the analysis only once, in Chapter 3 where the ST model is discussed.
As well, in order to limit the length of the thesis, many of the details of the calcu-
lations are left to the appendices. Since much of the analysis of the WVT model is
based on previous work (see Table 1.1) we present only brief details of the analysis

in Appendix 2.
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In Chapter 6, comparisons are made between the various models and the
results of the previous chapters. Finally, the conclusions of the thesis and comments
on future work are presented.



Chapter 2

Derivation of Two-Layer,

Frontal-Geostrophic Models

2.1 Shallow Water Equations

In the study of fluid dynamics many approximations are made to reduce the
physical laws, often referred to as the primitive equations, to a set of equations more
easily manipulated. The reason for doing so is twofold: first. the full equations are
difficult to solve; second, analyzing the full equations including all scales of motion
often obscures physical insight. It is beyond the scope of this thesis to discuss
all the possible approximations or to go into the detailed arguments of when the
approximations are valid. We give a brief description of the approximations made
in deriving the frontal geostrophic models and include appropriate references for
further detail.

The starting point for modelling oceanographic flow is to assume the dynamics
of the ocean are described by the fluid continuum equations of motion (Pedlosky.
1987). These equations follow from Newton’s laws and the conservation of physical
quantities (mass. energy, etc.), and their derivation can be found in most elementary
fluid dynamics texts (Kundu, 1990. Pedlosky, 1987). The defining characteristic of
geophysical fluid dynamics (hereafter GFD) is that the motion occurs in a rotating
frame of reference, namely the earth. Ideally, the equations of motion would be
developed in a rotating, spherical coordinate system. This, of course, presents a
great deal of complexity. In general, for studies of oceanic phenomena that do
not extend across ocean basins it is not necessary to consider the entire spherical
surface of the earth. For the purposes of this study, the scale of the motion is
small enough that the spherical surface of the earth can be approximated by a flat
plane centred at a chosen latitude, §, and longitude, ¢. Such an approximation is
generally accepted as valid for motions with length scales on the order of hundreds
of kilometres and less (see Pedlosky, 1987, chapter 6 for discussion.) The geometry
is represented locally with rectangular horizontal coordinates, z running west to
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2. Derivation of Two-Layer, Frontal-Geostrophic Models

east and y running south to north, and a vertical coordinate. :. The z — axis is
at an angle 7/2 — @ to the axis of the earth’s rotation. which is directed south to
north. The vectors e;, e;, and e3; represent unit vectors in the z. y. and z directions.
respectively.

In transforming the equations of motion from an inertial frame to a rotating
frame, a new force, the Coriolis force, is found in the rotating frame. This force is
perpendicular to the velocity and hence does no work. In the northern hemisphere it
appears as a force tending to deflect horizontal motion to the right. This force plays
an essential role in GFD and, as we will see, is part of the dominant balance in the
oceanic fronts we are studying. Forces associated with the centripetal acceleration
due to the earth’s rotation are included in the definition of the gravitational force.
Readers interested in the details of deriving the equations of motion on a rotating
frame are referred to Kundu (1990) or Pedlosky (1987).

The Coriolis force is described by the Coriolis parameter
f(8) =2|Q|siné6.

In accordance with the approximate rectangular coordinates. we approximate the
variation of the Coriolis parameter with latitude as a linear function in the merid-
ional coordinate, y. Assuming the flow occurs over a small range of latitude ,
Af < 1, centred on the latitude 6. the Coriolis parameter can be expanded in

a Taylor series about 6 as follows:

f=f(6) + g—g Ab + O(A8)2.
6o

Using A0 = y/R., where R, is the radius of the earth, gives

2|2} cos 6o

2
R. y + O(A§)~.

f=2|Q|sinby +
Ignoring quadratic terms in A@ gives the approximate Coriolis parameter

f = fo+ Boy, (2.1.1)

11



2. Derivation of Two-Layer, Frontal-Geostrophic Models

where

fo =2|Q|sinbp, (2.1.2)
2|Q2| cos 8
Bo = MéSE_O_ (2.1.3)

This approximation, commonly called the 8-plane approximation. is valid provided
the flow occurs over a small range of latitude and the flow occurs away from the
poles where cos 6 = 0. For simplicity we will discuss only the Northern Hemisphere
where 6 > 0, so that f; and [y are both positive quantities. If the meridional
variation is very small, even the linear variations in the Coriolis parameter will be
small compared to the constant part, i.e., Goy < fo. Then the Coriolis parameter
may be considered a constant, known as the f-plane approximation.

It should be noted that while including the 3-plane approximation we have
not included terms associated with the variation of the metric that occur when
changing from a spherical reference frame to a Cartesian frame. These terms relate
longitude variations to eastward length changes and are only negligable at low
latitudes (see Pedlosky, 1987, chapter 6 for a complete discussion). However, since
the goal of this work is to examine nonlinear effects in previously studied models,
we will not include these terms. as they have not been included in the previous
derivations of the two-layer, FG models. We leave the examination of how these
metric variation terms change the model equations to future work.

The next approximation, and possibly the most controversial. is to assume the
ocean is not only incompressible but consists of layers of constant density. While
incompressibility is a common and reasonable approximation for ocean water. the
ocean is known to be continuously stratified. We work with a layered model for
two reasons. The first is simplicity. In order to do a detailed analysis including
nonlinear effects, as this work intends to do, a simple model that allows some
analytical results is necessary. Second, the work on continuously stratified flows
has illustrated that layered models do capture the main characteristics of baroclinic
instability associated with fronts. For example it has been shown that similar
analysis of the Phillips layered model and the Eady continuously stratified model
give qualitatively equivalent results (Pedlosky, 1970). The linear analysis of the FG
models studied here has been extended to continuously stratified models with very
similar results (see Benilov, 1993, Benilov, 1994, and Benilov, 1995b).

12
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Temperature profile of Layered—model
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Figure 2.1: The figure on the left is the observed temperature profile of
the Subtropical front as seen in Roden (1975). The figure on the right is the
idealized representation of the front as an instantaneous jump of temperature

between two layers of constant temperature.

By approximating the ocean as two layers of constant density. a front is rep-
resented as a discontinuity in density across the interface between the two layers.
Such an approximation most accurately models ocean fronts where large density
changes occur over small scales resulting in a concentration of isopycnals. In Figure
2.1, observations of the Subtropical front taken from Roden (1975) are shown with
the idealized two-layer representation of such a front. The location of the cross-
section is shown in Figure 1.1. Note that the two-layer representation chooses the
interface to be an isopycnal (given by the isotherm) not a depth level.

We will assume that the ocean water is inviscid. That is, all forces due to
friction between the fluid and solid surfaces and that between adjacent fluid parcels
are taken to be zero. Friction can have dramatic effects on a flow but these are
usually limited to boundary layers near solid surfaces (coastlines, ocean bottom),
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2. Derivation of Two-Layer, Frontal-Geostrophic Models

or to small-scale dynamics. As such these motions will have little effect on the
large-scale, open-ocean, surface motions of this study. Having said this, it should
be noted that when studying numerical solutions the effects of friction, though
small, can often be used to smooth numerical errors.

For most of our analysis we will assume that the ocean has a flat bottom, as
bottom variations have little effect on mid-ocean fronts. This is not true however for
coastal fronts, where the sloping continental shelf can have important effects, or for
bottom-trapped flows, where the bottom topography is obviously more important.
The equations that result when bottom topography is included are discussed in the
more general model derivation found in Appendix 1. In the context of the analysis
presented in this thesis, bottom topography has effects very similar to the 3-plane
approximation, and most results can be simply extrapolated from those presented
here. As well. models that have strong bottom topography influences have been
examined previously in the FG context (see Swaters. 1991. Mooney and Swaters,
1996, Swaters. 1993b, and Reszka, 1997).

We also assume a rigid lid, that is, we treat the upper boundary of the ocean
as a solid surface, eliminating surface waves and deflections. As argued in Cushman-
Roisin et al. (1992), this approximation is equivalent to setting the external radius
of deformation to infinity. The external radius of deformation is the length scale

over which gravitational forces balance Coriolis forces and is given by

Lp = \/!]T, (2.1.4)
fo

where g and H are the gravitational acceleration and the depth scale. Given that
for typical ocean depths the external radius of deformation is on the scale of 2000
km, such motions should be examined using spherical coordinates and, thus, are
beyond the scope of this thesis. This approximation effectively filters out all surface
gravity waves.

The final approximation is the shallow water approximation. The reduction
to the shallow water equations is based on the assumption that the scale of the
vertical motions, H, is much less than the scale of the horizontal motions, L; that
is, the aspect ratio is very small, H/L < 1. This argument holds well for oceanic
models since the ocean is actually a very thin layer of fluid over the large surface
of the earth. Taking a typical depth of the ocean, say 5 km, as a maximum scale
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for vertical motion and comparing this to the horizontal length scale of the currents
and eddies this paper discusses, which is greater than 50 km. gives that H/L < 0.1.
It should be noted that the vertical scale of the motion in the models derived here is
usually bounded by the thinner, frontal layer, which has a depth less than. and often
much less than, the total ocean depth making this approximation more accurate.
For example, the front shown in Figure 2.1has a horizontal length scale on the
order of 50 km and a vertical length scale on the order of 150 m giving H/L < 0.03.
The assumption reduces the vertical momentum equation to the hydrostatic balance
where vertical changes in pressure are balanced by the weight of the overlying fluid.
As well, horizontal motion is assumed independent of depth and, thus, uniform
throughout a column of fluid. The derivation of the shallow water equations can be
found in any text on GFD (see Pedlosky, 1987 or Kundu, 1990).

The geometry of the flow for a rigid-lid, two-layer ocean over a flat bottom is
shown in Figure 2.2. The model variables use the subscript 1 for the upper layer and
2 for the lower layer. The governing equations for the two-layer, constant-density,

shallow-water model with a rigid lid and flat bottom are

Au -
—371 + (u1 - V)uy + (fo + Boyles x u; = -V, (2.1.5)
oh
—at—l + V- [hiwy] = 0. (2.1.6)
Su _
—atl + (u2 - V)us + (fo + Boy)es x us = —Vpa. (2.1.7)
Oha
87.‘- + V- [hgug] = 0. (2.1.8)
Pi(z,y.t) = g'h1 + P2(z. 9, 1), (2.1.9)
hi + hy = H, (2.1.10)

where u; 2(z,y,t) = (u1,2,v1,2), D1,2(z,y,t), h12(z,y,t), and H are the horizontal
fluid velocities, dynamic pressures per unit mass, layer depths for the upper and
lower layers, and total ocean depth, respectively, V = (8,,0y) is the horizontal
gradient and we use the notation e; X u = (—v,u). In equation (2.1.9), ¢’ is the

reduced gravity defined by

A -
g/ = gap — ?(P2 pl). (2.1.11)
P s(p2 + p1)
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Figure 2.2: The two-layer, rigid-lid, flat-bottom model studied in this the-
sis. The subscripts 1,2 indicate variables corresponding to the upper and
lower layer, respectively. When the subscript is dropped from the variable h
it refers to the upper-layer depth.

In general the density differences are very small, so that Ap <« p and as a conse-
quence ¢’ € g.

Equations (2.1.3) and (2.1.7) represent the conservation of momentum in the
upper and lower layer, respectively. Equations (2.1.6) and (2.1.8) represent the
conservation of mass in the upper and lower layer, respectively. Equation (2.1.9)
follows from the hydrostatic approximation and represents the continuity of pressure
across the interface between the layers. And equation (2.1.10) simply states that
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the layer depths must sum to the total ocean depth which is constant. The reader
is referred to Kundu (1990) and Pedlosky (1987) for further details. Note that the
equations and the geometry are symmetric in the two layers up to a constant in
the pressures. As such, the flow of an upper-layer front is identical to the flow of a
lower-layer front and we can, without loss of generality, assume that H; < H,. This
is not true when bottom topography is included (see discussion in Appendix 1).

2.2 Barotropic and Baroclinic Equations

In reducing the governing equations to the geostrophic models studied in this
thesis, we follow the technique in Benilov and Reznik (1996) by first rewriting
the governing equations in terms of barotropic and baroclinic components. It is
possible to derive many of the models without introducing these components (see
Cushman-Roisin et al., 1992), but we believe it clarifies the relationship between
the barotropic and baroclinic dynamics. As well. it allows the development of a
model not found using the layer approach of Cushman-Roisin et al. (1992).

We introduce the barotropic and baroclinic velocities given by

h1u1 + hgﬂg
Uy = _H-——. (2.2.1)
Upe = U] — U2, (222)

respectively. The barotropic velocity is a depth-averaged velocity and is divergence
free. This can be seen by adding (2.1.6) and (2.1.8), using that H; = 0 and dividing

by H, to get

V- upe = 0. (2.2.3)

The baroclinic velocity measures the difference between the flow in the two layers
and so, is directly attributed to the density front.

Now, we can write the layer velocities in terms of these new velocities, that

17



2. Derivation of Two-Layer, Frontal-Geostrophic Models
is,

h

U; = s + qubc, (2.2.4)
h
Uy = Uy — E‘ubc. (2.2.5)

Rewriting (2.1.6) and (2.1.8) using (2.2.4) and (2.2.3) gives

Oh,

E--i-v- (h1use) + V - (Hyhetsse) = 0. (2.2.6)
oh
# + V - (hottgy) — V - (Hypatipe) =0, (2.2.7)

where we have introduced (or will use shortly) the shorthand notation given by

_hihy  h(H - hy)
The = H?2 H?2 *
_ha—hy _H-2h
T"="F T @

We form the barotropic equation by taking A;*(2.1.5) +h2%(2.1.7), dividing by H,
and using (2.2.4) and (2.2.5). After some simplification. the use of (2.2.6) and
(2.2.7) to eliminate the time derivatives of the layer depths. and the use of (2.1.9)
to eliminate p,, we obtain

O b

—— + (Up - V) Ups + Yhetbpe - Ve + 65V - (Yhatisc)

ot (2.2.10)

1 4
+ (fo + Boy)es xup: +V (Pl —g'h + ;%Vhf) =0.

We form the baroclinic equation by taking (2.1.5)—(2.1.7) and using (2.2.4) and
(2.2.5), which, after some simplification, gives

aubc
ot

1
+ Yh— (b - V) Upe + SUbe (Wbe - Vyn=) + (upe - V) upe
+ (pc - V)upe + (fo + Boy)es X upe + g'Vhy =0.

(2.2.11)
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Since the barotropic velocity is divergence free, that is, (2.2.3) holds. it is

possible to introduce a stream function satisfying

up; = e3 x Vy. (2.2.12)

Taking the curl of (2.2.10), that is, V x (2.2.10), gives

avViy

Eramis J (%, V) + Bovo:

+ (Thauv)zz = (Theu¥)yy — [1ra(u® = ?)] =0,

(2.2.13)

where now, and henceforth, usc = u = (u.v), and J(A,B) = A, By — AyB; is the
Jacobian. Rewriting the baroclinic equation (2.2.11) using the barotropic stream

function gives

1
@ + Yh— (- V)u + S (- V) + J(¢,u)

ot (2.2.14)
+ (u-V)(es x V¥) + (fo + Boy)es x u+ ¢g'Vh = 0.
As well, the continuity equations (2.2.6, 2.2.7) both reduce to
Oh _
5t—+J(w,h)+V-(H7h,u) = 0. (2.2.15)

where now, and henceforth, 2; = h, and hy = H — h. Although it appears we have
lost an equation, this is not the case. The sum of the two continuity equations was
used explicitly in inferring the existence of the barotropic stream function. that is,
in deriving (2.2.3). The governing equations are (2.2.13), (2.2.14), and (2.2.13).

2.3 Geostrophic Equations

In order to make the model equations applicable to a variety of physical sit-
uations, the equations are nondimensionalized by letting

(z,y) = L(z,y)", w=Uu", ¢¥="¢", hy =Hh, t=Tt, (2.3.1)

where L, U, ¥, H;, T, are typical length, baroclinic velocity, barotropic
stream function, upper-layer depth, and time scales for the flow, respectively, and
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the asterisked quantities are nondimensional. Note that in contrast to QG theory
we do not introduce a separate scaling for the interfacial displacement. We assume
that changes in the layer depth are the same scale as the layer depth itself. For a
more detailed examination of the relationship between QG and F'G scaling see the
detailed derivation given in Appendix 1 or Cushman-Roisin et al. (1992).

Applying the scaling (2.3.1) to the governing equations (2.2.13), (2.2.14), and
(2.2.15), and dropping the asterisks, gives

ovV3y , ,
erey—p— + &, J (¥, Vi) + egepis

(2.3.2)
+ € [(7htuv)rz — (Yheuv)yy — [711:(“2 - Uz)] zy} = 0.
Ou 1
T, +evn- (- V)u+ezu(u-Vyp) + e J(v.u)
ot 2 . (2.3.3)
+ew(u-V)(es x Vi) + (1 +egy)es xu+}—2-Vh = 0.
i
oh
GTJE + €pdJ(w.h) + €V - (vh.u) =0. (2.3.4)
where now from (2.2.8) and (2.2.9) we have
Yhe = 6R(1 = éR), (2.3.3)
vhe =1 — 26h. (2.3.6)
and we have introduced the nondimensional parameters
U 1% 5L
L TTRT YT RIE TR
(2.3.7)
s=2 p-_Y
TH T VeH

The parameter € is the Rossby number, classically defined in terms of the
baroclinic velocity. It is a ratio of the velocity of the flow, here the baroclinic
velocity, to a Coriolis velocity. When the Rossby number is order one or less the
Coriolis force is important. When the Rossby number is small, the Coriolis force
dominates the flow. The other parameters, €., are similar in that they compare
motion scales to the Coriolis effect, and can be thought of as Rossby numbers but
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depending on different effects: time changes. barotropic velocities. and 3-plane
effects. The parameter é represents a depth-scale ratio. Under the assumption that
H, < H, we have that § < % The parameter FT is the internal Froude number,
which compares inertial forces to buoyancy forces (Kundu, 1990).

Next we assume that the baroclinic velocity is in geostrophic balance. That is,
the flow is dominated by the Coriolis force and the corresponding pressure balance.
This assumption is based on the fact that frontal measurements of €, eT. €3. and €,
show they are all small, that is,

€ €y, €T, €8 K 1. (2.3.8)

This means the baroclinic and the barotropic velocities are smaller than the velocity
induced by the Coriolis force. The time scale is sub-inertial, slower than that
associated with the Coriolis force, and the 3-plane effect, the effect of the meridional
variation of the Coriolis force, is small in comparison to the constant Coriolis force.
The baroclinic equation is dominated by the constant Coriolis term (the e; x u term
in (2.3.3)) and pressure gradient (the last term in (2.3.3)), seen in the baroclinic
equation through the pressure difference, h. For a balance to hold these terms must

scale similarly, that is, F? = ¢, or in terms of the velocity scales,

g'H,

T (2.3.9)

U=

Once again this stresses the connection between the baroclinic velocity and the front.
It is the variation of the interface between the two layers or equivalently the pressure
difference across the interface that drives the baroclinic velocity. The assumption
(2.3.8) is not only physically reasonable but serves the purposes of eliminating high
frequency motion making analysis easier. Note that in classical QG theory Fy = ¢;
see Appendix 1. The fact that F; = €2 in FG models stresses the fact that inertial
forces are larger when large isopycnal deflections are allowed.

If we use (2.3.9) in the definition of the Rossby number (see (2.3.7)) we find
that

g'H1 R[ z
— — | =L 2.3.
€= g 5 = ( ) , (2.3.10)

21



2. Derivation of Two-Layer, Frontal-Geostrophic Models

where Ry = /g'"H,/ fo is the internal deformation radius. The requirement that
the Rossby number be small requires that the length scale exceed the internal
deformation radius (Cushman-Roisin et al., 1992). Note that the fact that the
Rossby number is the square of the ratio of the length scales means that L > 3R,
is sufficient to make the Rossby number small, € < 1/9. As well, the fact that ez
is small places an upper bound on the length scale, L « fo/080 = Ls. where Lg
is the planetary scale, the length scale where meridional variations in the Coriolis
force are equal to the constant Coriolis force. This leads to the models being called
intermediate length scale models.

To leading order, equation (2.3.3) gives that the baroclinic velocity is deter-

mined geostrophically by
u=e3 Xx Vh+ O(c.€T.€3,€y). (2.3.11)

That is, the baroclinic velocity is. to leading order. determined entirely by pressure
gradients or equivalently the gradient of interfacial displacements. By (2.3.11),
h is the leading-order stream function for the baroclinic velocity; the leading-order
baroclinic flow follows contours of constant frontal height. h. The expression (2.3.11)
can be used to simplify the next order terms in (2.3.3) to obtain

u = (1 —egy)es x Vh — erVhy — eyn_J(h, Vh)

o (2.3.12)
— €uJ(W.Vh) — € J(h. V) + O(eg.€. €. €T)".
Substituting this expression into (2.3.2) and (2.3.4) gives
av?
€Ty atw + J(¥, V0 + egeyy)
1 (2.3.13)
+8e2J [h,h(l —8R)V2h + 5(1 - 26h)]Vh|2] =0,
€ o +J [e ¥ + eegh(l — 6h)y + € (thh + l|v11|’2) h]
T ot Y B y 9 1 (2.3.14)

+ 862V - [h(=3h + 26R%)J(h, Vh)] =0,

where we have ignored the higher order terms in the small parameters. These are
the general two-layer, FG model equations as derived in Benilov and Reznik (1996).

22



2. Derivation of Two-Layer, Frontal-Geostrophic Models

2.4 Frontal-Geostrophic Models

Given the model equations (2.3.13) and (2.3.14), it is not possible to choose
a scaling such that all terms are of the same order (Benilov and Reznik. 1996). As
argued in Cushman-Roisin et al. (1992), “it is reasonable to believe that the system
will select its own pace of evolution and that, at least after some time, barotropic and
baroclinic modal amplitudes will somehow equilibrate.” As such. the parameters
er and €y, are functions of the other parameters, and. thus, called secondary. The
er parameter is determined by enforcing that a balance exists between the largest
of the prognostic terms, those involving time derivatives, and the largest of the
diagnostic terms, those not involving time derivatives, in the baroclinic equation.
The €, parameter is determined by enforcing that a balance exists between the
largest barotropic terms, those involving the barotropic stream function, and the
largest baroclinic terms, those not involving the barotropic stream function, in the
barotropic equation. This is known as the baroclinic limit since the baroclinic
equation is used to determine the time scale. One can discuss the barotropic limit
but all models derived in this limit also exist in the baroclinic limit (Cushman-Roisin
et al., 1992).

We begin by enforcing the time balance in the baroclinic equation (2.3.14).
Examining (2.3.14), such a balance implies that

eT = max(€y, €€3, €2). (2.4.1)

Enforcing the barotropic-baroclinic balance in the barotropic equation, (2.3.13),

gives
de2 Je?
€w = c = i : (2.4.2)
max(er.€g)  max(ey, €3, €?)
where we've used from (2.4.1) that
€T 2 €. (243)

As well, it follows from (2.4.2) that if e, > € then €, < V¢, a contradiction since
§ < 1 and hence, it follows that

€€y (2.4.4)

23



2. Derivation of Two-Layer, Frontal-Geostrophic Models

These two equations, (2.4.3) and (2.4.4), again indicate the baroclinic nature of the
model. The time scale as measured by the temporal Rossby number. er, and the
baroclinic-motion scale as measured by the Rossby number. ¢, is larger than the
barotropic-motion scale, as measured by the barotropic Rossby number, ¢,,. Hence
the motion is baroclinic as the limit implies. It should also be noted that (2.4.2)

implies that
€w > 8%, (2.4.5)

so that the final term in (2.3.14) must always be smaller than the leading-order
balance and can be dropped.

The solution to (2.4.1) and (2.4.2) can be plotted in the § — €3 plane as shown
in Figure 2.3. In the graph, the axes are scaled in powers of €. The axes are not
literal, in that the origin is not § = 1 but is § = O(1). The shaded area represents
areas where solutions cannot exist, that is. § is at most O(1) and €3 <« 1. The
lines on the graph represent boundaries where er and/or ¢, change values. Short
dashed lines indicate er changes value as the boundary is crossed. long dashed lines
indicate €, changes, and solid lines indicate both er and ¢, change. The values for
er and €y in the regions of the graph are given. The graph illustrates that there is
a continuum of possible models to choose from, but only five choices for er and ¢,,
as given by the five regions of the graph.

Important models occur at the vertices where the boundary lines intersect
(the eg axis is also considered to be a boundary). A model chosen with the scaling
at a vertex embodies all the characteristics of the surrounding regions. Any model
resulting from a scaling in one of the surrounding regions must be a simple limit of
the model at the vertex. (By a simple limit we mean a limit in which a parameter
tends to zero and terms in the model equations vanish.) The graph indicates there
are four important models labelled VSE, SE, ST, and WVT. The names of the
models are based on the strength of the #-plane effect and a comparison of the
upper-layer depth to the lower-layer depth. If eg = O(¢), the (-plane effect is
considered strong (S). If g > O(e), the B-plane effect is considered very strong
(VS). If eg < O(e), the B-plane effect is considered weak (W). Similarly, if § = O(1),
§ = O(e), or § = O(€?), then the upper-layer depth is equal (E), thin (T), or very
thin (VT), in comparison to the lower-layer depth, respectively. The naming of the
models is summarized in Table 2.1. These models correspond to the four models
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2. Derivation of Two-Layer, Frontal-Geostrophic Models

Figure 2.3: The solution to (2.4.1, 2.4.2) is plotted in the § — eg plane.
The lines represent boundaries between regions where e and/or €, change
values. The intersections of the boundaries, as marked by the Xs, give rise
to the models, as labelled, studied in this thesis. The RED and BCHY labels
and arrows indicate where the model tends to these models as the baroclinic
and barotropic motion decouple.
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2. Derivation of Two-Layer, Frontal-Geostrophic Models

Model name | B-plane effect Upper-layer depth

VSE Very Strong (VS), |Equal (E) to lower layer.
eg = O(e3) d=0(1)

SE Strong (S), Equal (E) to lower layer,
eg = O(e) 6 =0(1)

ST Strong (S), Thin (T) compared to lower layer,
eg = O(e) d = 0(e)

WVT Weak (W), Very Thin (VT) compared to lower
es = O(€?) layer, § = O(e?)

TABLE 2.1. The table summarizes the scales and resulting names of the
four FG models. The models differ in the size of the 3-plane effect, €3, and
the layer depth ratio, 4.

derived in Benilov and Reznik (1996) and elsewhere (see Table 1.1).

It must be stressed that the different choices for the parameters eg and § are
equivalent to choosing different horizontal and vertical length scales of the motion.
(In the FG limit, the scale height of the upper layer. H;. is the vertical scale of
the motion.) This can be seen if we rearrange the definitions of these parameters.

(2.3.7). giving

L= e;f" —esLs and H, =6H. (2.4.6)

In Figure 2.4, we replot Figure 2.3 in terms of the physical length scales of the
motion. For clarity, we examine a flow at a latitude of 45°N, an ocean of depth
5 km, and a small Rossby number, ¢ = 0.1. The planetary scale is set equal to
the radius of the Earth, which is taken to be 6000 km. This allows actual values
for the horizontal and vertical length scales. As well, we now give the resulting
time and barotropic stream function scales relative to the advective time scaling,
Ts=L/U =1/efo ~ 1 day and the QG barotropic scaling, Yo = H,UL/H. This
allows direct comparison to QG scalings. It should be noted that the values on the
axis vary with the size of the Rossby number and the latitude chosen (both length
scales increase with the Rossby number). From Figure 2.4, it can now be clearly
seen that the VSE and SE models are large-scale models, the ST model represents
smaller vertical scales, and the WVT model represents both small vertical and
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2. Derivation of Two-Layer, Frontal-Geostrophic Models
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Figure 2.4: Replotting Figure 2.3 using the definitions for the horizontal
(L) and vertical (H,) length scales defined by (2.4.6) as axes for a typical
latitude and Rossby number. Once again the four models are indicated. Now
the time scales and barotropic scales are given as ratios to those found in
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2. Derivation of Two-Layer, Frontal-Geostrophic Models

horizontal scales. Time scales are larger than the advective scale and increase as
H, decreases. The barotropic scales can be both larger and smaller than the QG
scaling and decrease with increasing L.

Alternatively, one can examine the length scale of the motion in comparison
to the Rossby deformation radii. We’ve already defined the internal Rossby defor-
mation radius, Ry, and noted that the length scale must exceed this scale if the
Rossby number is small, that is, from (2.3.10) L = e iR;. Equivalently we can
define an internal Rossby deformation radius, Ry, , associated with the total depth
of the ocean, that is, Ry, = /g’"H/fo. Using this length scale, (2.3.10) can be
reformulated to give L = (J/e)%RIH. For the VSE and SE models where § = O(1),
the length scale of the motion must exceed R, since € < 1. This is necessary since
R ~ R, when H; ~ H. As the depth ratio decreases the length scale tends to Ry,
and eventually becomes smaller. Therefore. for the ST model we have L = Ry, .
while for the WVT model we have L = ¢!/2Ry,,.

The existence of different models resulting from different scalings is supported
by the data of Roden (1975) and Nowlin and Klink (1986) as summarized in Benilov
and Reznik (1996). We present a summary of Tables 3 and 4 found in Benilov and
Reznik (1996) in Table 2.2 (see Figure 1.1 for location of the fronts). We use the
data given there and the model classification they decided upon. The data clearly
show a wide range of values for the parameters é and €3 and indicate that study
of all the models is validated. In Benilov and Reznik (1996) no fronts fitting the
WV T model were discussed since all the fronts examined had small Rossby numbers
and relatively large depth ratios. However, other fronts, and especially boundary
currents, where the Rossby number is larger fit the scaling of this model. The
Rossby numbers in Table 2.2 are all very small and it is expected that many of the
fronts do include regions of greater flow and, thus, larger Rossby numbers. This
would shift some of the fronts to the SE and WVT models. As discussed in the
prelude to Figure 2.3, it is expected that models may apply well beyond the strict
parameter values they are derived with. This is true for many models derived using
asymptotic series. Note that we examine this possibility by introducing parameters
that allow for order one variations in the 3-plane and depth ratio in the models
that are studied.

Following the analysis of Chassignet and Cushman-Roisin (1991), (2.3.14)
can be used to establish conditions that determine when the equations for the
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K o SA ST, |ST, |ST; |ACC;|ACC,|ACC;
€ 0.040 |0.026 {0.021 |0.016 |0.021 |0.050 {0.011 |0.022 |0.023
é 0.109 {0.073 |0.091 |0.064 |0.064 | 0.091 |0.400 |0.500 |0.514
€8 0.034 |0.020 {0.031 |0.062 |0.059 |0.059 |0.024 |0.019 |0.009
Model| ST ST ST ST ST ST VSE |SE SE

TABLE 2.2. The table summarizes the data found in Benilov and Reznik
(1996), giving the Rossby number, ¢, the layer depth ratio. 4, and the 3-plane
effect, eg, for various frontal systems in the Pacific. The abbreviations are as
follows: K=Kuroshio, O=0yashio. SA=subarctic front, ST; = subtropical
front, northern jet, ST, = subtropical front, middle jet. ST3; = subtropical
front. southern jet, ACC; = Antarctic Circumpolar Current. northern jet,
ACC, = Antarctic Circumpolar Current. middle jet, ACC; = Antarctic

Circumpolar Current. southern jet.

barotropic and baroclinic motions decouple, that is, when the baroclinic flow evolves
independently of the barotropic flow. These conditions are simply those that ensure

that terms in ¢ are negligible in (2.3.14), that is,
€y < max(er, €eg, €%).

Using the solution shown in Figure 2.3, this requires that

€

2
§ € max (ez, €3. ?3-) . (2.4.7)

This condition is not identical to that derived in Chassignet and Cushman-Roisin
(1991) for the validity of the RED model due to our use of barotropic/baroclinic
dynamics as opposed to layer dynamics. Condition (2.4.7) allows for two types
of uncoupled models. First, if eg > € and (2.4.7) holds, the model is decoupled
with the baroclinic dynamics determined by the baroclinic, hyperbolic equation

(hereafter the BCHY model)
he — BR(1 — éh)h, = 0. (2.4.8)

The one-layer version of this model, § = 0, is also mentioned in Cushman-Roisin
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(1986) as the dominant 3 effect limit of the general reduced gravity FG model
derived there. If, on the other hand, ¢4 < e, then (2.4.7) implies that § <
max(e?,eg) <« 1. We obtain the condition found in Chassignet and Cushman-
Roisin (1991) and the RED model is valid. The RED model was also discussed

in Cushman-Roisin (1986) and is given by
he+J (hVZh + éthl2 + Bhy, h) =0. (2.4.9)

This model is a direct limit of the ST model and will be discussed in §3. In Figure
2.3, the two regions that reduce to the BCHY and the RED models are indicated
by the BCHY and the RED labels, respectively. Note that the ST and VSE models
border the region of the BCHY model and the ST and WVT models border the
region of the RED model, indicating that these models share characteristics of the

corresponding uncoupled model.

2.5 Potential Vorticity

In comparing and analyzing the models of the previous section it is useful
to introduce the concept of potential vorticity (PV). PV is a quantity related to
vorticity that is conserved following the flow. It has been deemed that PV is the
essential variable in GFD. and that “it is hard to exaggerate the importance of
potential vorticity conservation” (Pedlosky, 1987).

For the shallow water equations given by (2.1.5-2.1.9), the potential vorticity,

g, for each layer is given by

\%
o =L +'3°yh+ % (2.5.1)
1
v
@ = fo +ﬁoyh'2*' X uz. (2.5.2)

respectively. All variables in the above expressions are dimensional. The PV for
each layer consists of the absolute vorticity of each layer averaged over the depth
of the given layer. The absolute vorticity is the sum of the planetary vorticity,
fo + Boy, the vorticity due to the Earth’s spinning and the relative vorticity, V x u,
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the vorticity due to the motion of the layer. It can easily be shown that the PV for
each layer is indeed conserved by the equations (2.1.5-2.1.9). As well, the governing
equations can be derived/written in a form stemming from the conservation of PV
in each layer but this does not add great insight to our current work.

Using the substitutions (2.2.4) and (2.2.5) for the layer velocities, the barotropic
stream function definition (2.2.12), and the scaling given by (2.3.1) with ¢ =
fo/H1q7 and ¢2 = fo/Hq;, (2.5.1) and (2.5.2) become the nondimensional potential

vorticities given by

1 2 v —éh
o = + egy + €,V w;e x [(1 5)"]~ (2.5.3)

_ 1+ ey + €, V2 — §eV x [hu]
®= 1-6h ‘

where we have dropped the asterisks and used the notation given in (2.3.7). Finally,
using the leading-order baroclinic geostrophic velocity, (2.3.11), allows us to write

the PV expressions (2.5.3) and (2.5.4) as

1+ epy + €6 V20 + € [(1 — 88)V2h — 6]VA[?]
a =
h
_ 1+ epy + V20 — € [6RV?h + 8| VR[]
2= (1—dh)

+ h.o.t.. (2.5.9)

+ h.o.t.. (2.5.6)

where h.o.t. stands for higher order terms in the small parameters.

One final note on PV formulations: QG models are often studied using basic-
state solutions that have constant PV. Since PV is conserved, it remains constant
for all time and presents an interesting and informative analysis. However, for
the models derived here in the FG limit, imposing leading-order constant PV in
the upper layer imposes the condition that its depth be constant. This, of course,
precludes any interesting motion, and therefore will not be used as a basic-state
solution. It also illustrates the difficulty in dealing with outcroppings from a PV
standpoint, in that the leading-order, upper-layer PV becomes infinite as h vanishes.
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2.6 Boundary Conditions

The models presented in §2.4 must be studied over some domain. In the open
ocean, most fronts extend across the oceans in the East-West direction between

bands of water. This is most easily modelled by a zonally periodic channel given by
Q={(z,y)lzL <z < zR,—00 < W) <y < W3 <oc},

where |W7 2| may be very large. The periodicity represents the extended length
scale in the east-west direction. The upper, frontal layer is confined to the region

ER C Q given by
R = {(z,y)lzL <z < zr. Wi < #1(z.t) < y < d2(z,t) < Wa}.

When the upper layer does not extend to the walls, that is. when ¢, > W) or
¢2 < Wo, the curves y = ¢ 2(z,t) represent the curves defined by the outcroppings
where the upper layer vanishes, = 0. The curves o, 2 are periodic in z. As well, we
define the domain NF = Q\ FR to be the domain where only the lower layer exists,
i.e., where h = 0. (These domains are also suitable for coastal fronts that extend
for long distances along the shoreline.)

It should be noted that boundaries and the conditions imposed on them can
play essential roles in determining ocean dynamics. The formation of the western
boundary currents, for example the Gulf Stream in the Atlantic and the Kuroshio,
in the Pacific, are classic examples of boundary influences. Having noted this, in
this thesis we are concentrating on open-ocean, inviscid motion and, hence, we wish
to eliminate, or at least reduce, the impact of the boundaries on the analysis. In
the analysis, the domain and boundary conditions will play a significant role in
determining the possible solutions, but we want this role to be at most quantitative
rather than qualitative. In the numerical simulations, we attempt to reduce the
impact of the boundaries for both simplicity of computation and comparison to
analysis.

Boundary conditions must be specified on all horizontal boundaries, the bound-
ary of 2 , and at the outcroppings, the boundary of FR . For simplicity, it will be
assumed that the upper layer lies between ¢; < y < W». That is, the upper layer
has a single outcropping at y = ¢; and the upper layer meets the channel wall at
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y = W,. In this manner, the boundary conditions for the upper layer at both an
outcropping and a channel wall will be derived. In order to work with a different
domain, it will be a matter of replacing one set of conditions with the other. The
possibility of an infinite domain is allowed with W, = oc.

At the channel walls there is no normal flow in both layers, which in turn

implies that there is no normal baroclinic or barotropic flow.

vbc=0 on y= '1'2, (261)

vpe =0 on y=Wjp,. (2.6.2)

In the case where the channel extends infinitely in the positive y direction, the

velocities must remain bounded, that is,
[upr. upc| < oc as y— oc. (2.6.3)

Boundary conditions are also required at the dynamical outcropping y = ¢;.
By definition, the frontal height must vanish at such an outcropping so that

hi=0 on y=ds, (2.6.4)
which also implies that the lower layer occupies the entire water column. that is,
h,=H on y=ao. (2.6.5)
The second condition, known as the kinematic condition, stipulates that a parti-
cle on the boundary remain on the boundary as the flow evolves. The kinematic
condition is given by
D ,
E(‘Pl —y)=(h1)t+u(@d1):—v=0 on y=d.

Using (2.2.4) with (2.6.5) reduces this equation to

P1, + (8oc +use) - (#1,,—1) =0 on y=or. (2.6.6)
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Finally, since the channel is periodic, all variables are smoothly periodic. that

is,
(ubtv uva hvpv ¢1 1] +derivs-)lr[_ = (ubte ubcv hv p? le +derivs‘)|.tﬂ A (2’6’7)

where derivs. stands for all derivatives of the given functions. It should be noted
that on any curve that is a material curve, a curve that always consists of the same
fluid particles, Kelvin'’s circulation theorem applies (see Pedlosky, 1987).

By introducing the scaling ¢1 = ¢;/L, using the scaling given by (2.3.1),
and the definitions of the barotropic stream function (2.2.12) and the leading-order
baroclinic velocity, (2.3.11), (2.6.1-2.6.7) reduce to

hy =0 on y=W,. (2.6.8)

Yr=0 on y=W;,, (2.6.9)

IVR|,|Vy| < oc as y— oc. (2.6.10)

hly=o, =0, (2.6.11)

(¥, h, 01, +derivs.)|r, = (¢.h,01. +derivs.)|zp. (2.6.12)

Note that we have dropped (2.6.6). Using the expressions for the baroclinic
and barotropic velocities. (2.3.12) and (2.2.12). equation (2.6.6) becomes

=0, (2.6.13)

y=o1

1
eron, +J (eh +euv + € 5VhF .01 )

where we have used (2.4.5) to drop a term. If we examine (2.3.14) and take the

limit as y — ¢1, we get

=0, (2.6.14)
y=¢

ot

[ETQE +J (ewd) + ezéthF, h)]

where we have used (2.6.11). Now, (2.6.13) follows directly from (2.6.11) and equa-
tion (2.3.14) and therefore is redundant.

Similarly we can derive a boundary condition on the channel wall by taking
the limits of (2.3.13) and (2.3.14) as y — W5, and making use of (2.6.8) and (2.6.9).
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Doing so gives

av?
eres gt + &I (v, V%)

1 (2.6.15)
+ 8€2J [h,h(l —§R)V?%h + -9-(1 - 26h)|Vh|2] =0,
h
er% +e2J [(hvzh + élvm?) ,h] =0, (2.6.16)
evaluated at y = W,. Taking 6(2.6.16) + (2.6.15) gives
2,
JETgt—h = —eTewagt—w - ei,.](w. V2u) + 6262 J(h, h*V?h + h|VA|?). (2.6.17)

evaluated at y = W5. Equation (2.6.17) does not appear to give a useful condition
until one considers the model limits found in §2.4. For the ST, VSE, and SE models
it follows that all terms on the right of (2.6.17) are an order smaller than the term
on the left. Thus, to leading order for these models, (2.6.17) reduces to

Oh

E =0 on y= I’Vg (2618)

2.7 Model Invariants

Associated with any dynamical system there are quantities that remain in-
variant as time evolves. In deriving the shallow water equations, it is used that
momentum and mass are necessarily conserved. In §2.5, the fact that potential
vorticity is conserved was used to derive an alternative form of the governing equa-
tions. In this section, we examine global invariants, that is, invariants that are
not conserved locally following the flow as the PV is, but over the entire domain,
(z,y) € Q and z € [-H,0].

Under Newton’s laws in the absence of any dissipative forces, the total energy
of the system must be conserved. The total energy for the two-layer, shallow-water

system (2.1.5-2.1.9) is given by
_ 1 1.2 9
E= 5 (g'hT + h1t1 - 41 + hous - u2) dedy, (2.7.1)
Q
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where the first term represents the potential energy and the second and third terms
represent the kinetic energy associated with the upper and lower layers. respectively.
The quantity E given by (2.7.1) is invariant under the flow described by (2.1.5-
2.1.9). Using the relationship of the layer velocities to the barotropic and baroclinic
velocities (see (2.2.4) and (2.2.5)) and introducing the barotropic stream function

2.2.12) gives
1 h(H —
2/ /, H

Scaling the equation using (2.3.1) and E = (L?H2g') E* and dropping the asterisks

gives the nondimensional total energy
1 2, o 2
== h* + —|V¥|* + €h(l — éh)u - u | dzdy. (2.7.2)
2 Q de

Using (2.7.2) with the expression for the leading-order geostrophic velocity. (2.3.11),

gives
L[ (2, % 2 2
E=1 // R2 4+ SE\VB? + eh(L — 6R)|VA[? | dzdy + h.ot. (2.7.3)
2 Q 66

In the FG limit where ¢,62/de < 1 (see (2.4.1) and (2.4.2)). the leading-order
total energy is given solely by the potential energy associated with the upper layer
(Cushman-Roisin et al., 1992), that is,

E© = % / / h%dzdy. (2.7.4)
i Q

This quantity is conserved under the FG model given by (2.3.13) and (2.3.14).
Note that we cannot simply assume that the remaining terms are invariant under
the FG model. The next order problem would balance the evolution of the next
order energy as governed by the leading-order model (2.3.13) and (2.3.14) with the
evolution of the leading-order energy (2.7.4) as governed by the next order model,
that is, those terms dropped in the derivation of (2.3.13) and (2.3.14). This brings

us to an important conclusion: given an invariant of the two-layer, shallow-water

36



2. Derivation of Two-Layer, Frontal-Geostrophic Models

system only the leading-order term within the assumptions of the FG model is
conserved by the FG model (2.3.13) and (2.3.14).

The fact that (2.7.4) is a conserved quantity is hardly surprising and also
follows from examining the PV for the upper layer. As discussed previously, the
PV is conserved following the flow, and, as such, any smooth function of the PV,
say ®(q), is conserved as well. Therefore it follows that an invariant of the flow can
be formed by integrating any smooth function of the PV over the domain. Doing

so for each layer gives the invariants

Q1 = f /m h1®1(q1) dedy. (2.7.5)
Q2 = / /ﬂ ha®a(q2) dzdy, (2.7.6)

where the multiplication by the layer depth is a result of the vertical integration.
If (2.7.5) and (2.7.6) are nondimensionalized and written in the notation of the FG

models, we have that

Q1= / /m h,(q1) dzdy, (2.7.7)
Q: = / /Q (1= 6h)®2(qs) dzdy (2.7.8)

are invariants of the flow (2.3.13) and (2.3.14) for any smooth functions ®; , where
q1,2 are given by (2.5.5) and (2.5.6), respectively.
From (2.5.5) it follows that the leading-order. upper-layer PV is

o _ 1
QI = Ev

and hence it follows from (2.7.7) that
¢ =// ®(h)dzdy (2.7.9)
R

is conserved by the FG model for any smooth function ®. As a consequence of (2.7.9)
we get the conservation of area of the upper-layer domain by choosing ®(k) =1
and the conservation of volume of the upper layer by choosing ®(h) = h. (The
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2. Derivation of Two-Layer, Frontal-Geostrophic Models

conservation of volume is also the conservation of mass since the layer is of constant
density.) As well, we again obtain the conservation of potential energy by choosing
®(h) = h?, a result we have already ascertained in (2.7.4). The leading-order term
of (2.7.6) is also an invariant of the FG model. However. since the leading-order.
lower-layer PV differs for the different models under consideration. the specific form
of this invariant is left to the discussion of the individual models.

We have not used the fact that the full expression for energy, (2.7.2), and the
full expression for upper-layer PV, (2.7.7), are invariant. It follows that any linear
combination of (2.7.2) and (2.7.7) for any function ®, is also an invariant of the
two-layer shallow water system. Thus, following Cushman-Roisin et al. (1992), if
we combine these two expressions such that the leading-order terms cancel each
other, we will have constructed a higher order functional that must accordingly be
an invariant of the FG model. The obvious choice is setting ®;(q;) = 1/q; and

constructing the function
1 —
£=E—3Q1, (2(10)

which will result in the leading-order terms cancelling. Using the expression for the
upper-layer PV, (2.5.5), gives
h h?
— = , — + h.o.t.
@1 l+ezy+ e,V +e€[(1 —8h)V2h —§|VhR|?] (2.7.11)
=h? (1 —esy — V20 —¢ [(l — 8R)V?h — JIVhlz]) + h.o.t.

Substituting (2.7.3) and (2.7.11) into (2.7.10) gives

2

1 € ’ )
=1 // 0\ V[ + eh(1 — 6h)|VA[?
0 56

+ A2 (epy + e,V +e [(1 — §R)V?h — 5|Vh|2]) } dzdy,
which can be simplified by integrating the underlined terms by parts to obtain

2
= % / / { ;—':IW:IZ + 2 (egy + €5 V29) — eh(1 — 6h)|Vh|2} dedy. (2.7.12)
Q
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2. Derivation of Two-Layer, Frontal-Geostrophic Models

It follows by construction that the leading-order term in (2.7.12) is conserved by
the FG dynamics given by (2.3.13) and (2.3.14). This energy-PV or pseudo-energy
invariant contains much of the interesting dynamics of the models and can be used
in stability arguments. This is not the only invariant that can be constructed using
the energy and the PV invariants, as it is also possible to use the lower-layer PV
invariant or a combination of both PV invariants to construct a pseudo-energy.
Such is the case for the VSE model where the form of (2.7.12) becomes trivial.

It is well known that symmetries in a given system lead to associated invariants
(see Marsden and Ratiu, 1994, Shepherd, 1990). The most well known examples
are the conservation of momentum and angular momentum when the system is
appropriately symmetric. The presence of the 3-plane removes the meridional and
rotational symmetry from the models we are studying. However the models are
zonally symmetric and the associated invariant is the absolute zonal momentum
or impulse (Shepherd, 1990). The absolute zonal momentum for a shallow water
layer on a B-plane is given by u — foy — %,/30y2 and leads to the two-layer zonal

momentum invariant

1 1
m = // hy (u1 — foy — ;ﬁoyz) + k2 (uz — foy — :5/30312) dzdy
Q 4 =
1
= [ [ hus + (8 = hyue = Bfoy + 50047 dody.
Q -
This quantity is conserved by the two-layer shallow water equations. Introducing

the barotropic and baroclinic velocities, dropping the constant term and making
use of the barotropic stream function and the appropriate scaling, (2.7.13) reduces

to

N = —// ¥y dzdy, (2.7.14)
Q

which is necessarily a conserved quantity of the F'G model. It is easy to show that

the invariance of (2.7.14) implies that

M = / / yV2¢ dzdy (2.7.15)
Q
39



2. Derivation of Two-Layer, Frontal-Geostrophic Models

is an invariant of the flow. Rewriting (2.7.15) gives
ﬁ = //Q Yz + ywyy dzdy

=//Q (yw)mdzdy—//Q wydzdy+/ TRUy|I=y! dz (2.7.16)
rL

=M— [ zrusli=y: dz,
L
where we’ve integrated by parts and used the periodic boundary conditions. The
final term in (2.7.16) is independent of time by Kelvin’s circulation theorem, and
therefore the invariance of 9 and M is equivalent.
We shall also consider the one-layer zonal momentum. which when scaled and

written in the notation of our models is given by
my = - // (hy + exhtoy + €hhy) dzdy + h.o.t.,
Q

where we’ve used the leading-order geostrophic velocity (2.4.1). In the FG limit, it

follows that the leading-order, one-layer zonal momentum invariant is

)¢} =—// yhdzdy. (2.7.17)
Q

The invariant (2.7.17) is the zonal momentum invariant found in Slomp (1995) for
the RED model. As we shall see, (2.7.17) is in fact an invariant for two of the
two-layer FG models as well.

It should be noted that these invariants are often discussed within the struc-
ture of the noncanonical Hamiltonian formulation of a given model (see Shepherd,
1990). However, not all of the FG models have such a structure. The WVT and
SE models do while the ST and VSE do not. As such, in the body of the thesis
we will not examine the details of the Hamiltonian formulation. We will provide a
brief description of the Hamiltonian formulation of the SE model in Appendix 4.
Interested readers are directed to Swaters (1993b) and Karsten and Swaters (1996b)
for a discussion of the Hamiltonian formulation of the WVT model and to Slomp
(1995) and Slomp and Swaters (1997) for discussion of the Hamiltonian formulation

of the RED model.
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Chapter 3
ST model

We begin by examining the ST model. We start with this model because it has
been argued that its scaling is most similar to large-scale oceanic fronts (Benilov
and Reznik, 1996). First we present the model and the potential vorticity as derived
in §2 for the scaling of the ST model. Then we briefly examine the linear. normal-
mode model following the analysis of Benilov and Cushman-Roisin (1994). Next,
we examine the invariants of the flow. and derive a nonlinear stability theorem.
Subsequently, we do a weakly nonlinear analysis of the linear solutions. And finally,
we examine all these aspects through numerical simulations. As mentioned previ-
ously, this model shares much in common with the RED model and the analysis
that follows applies to the RED model in the appropriate limit.

3.1 Model Equations

The ST model corresponds to the scaling

2

d§=pe, eg=LPe er=¢€y=¢, (3.1.1)

where p and [ represent changes in the layer depth ratio and 3-plane effect, respec-
tively, and are included to illustrate how these effects change the model dynamics
and can give rise to reduced models. (Note that since § < 1/2 for all models, we
choose the typical value of u to be one half. All other typical values of the param-
eters, if not explicitly stated, are chosen to be one.) The scaling corresponds to
a model where the effect of the S-plane is strong (S) and the upper-layer depth
is thin (T). This model is referred to as the strong beta model in previous work,
(see Benilov and Cushman-Roisin, 1994 and Benilov, 1995a). The model equations
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3. ST model

(2.3.13) and (2.3.14) reduce to

BYr + pJ [h.hvﬂh + éthl"’] = 0. (3.1.2)

he +J [w + Bhy + RV2h + %thP,hJ = 0. (3.1.3)

The barotropic stream function is related to the upper-layer depth and the lower-

layer pressure, p, by the relationship
¥ ="Lth?+p. (3.1.4)

The equations can be recast with p as a variable as opposed to v (see Benilov and
Cushman-Roisin. 1994 and Benilov. 1995a). One can form a third equation from
(3.1.2) and (3.1.3) by eliminating the nonlinear h terms to get

phe+ J(v.ph + 3y) + puJ (3hy.R) = 0. (3.1.5)

Considering only (3.1.3) in the limit as v — 0 gives the RED model.
Note that when the upper layer vanishes. h = 0. the model reduces to the

equation
Yr =p- =0.

These equations do not describe any dynamics at all, but basically state that, in
the absence of the upper layer, the lower-layer flow is any arbitrary zonal flow. This
causes difficulty when an outcropping occurs as it does not allow for linear solutions
in the frontal region to be properly matched to solutions in the nonfrontal region.
For this reason, the nonfrontal region is not discussed in detail though this difficulty
is mentioned when appropriate.

The potential vorticities for the ST model are found using the scaling (3.1.1)
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3. ST model

in (2.5.5) and (2.5.6) giving

1 V2h
qQ = qio) + eq{l) + 0(62) = E -+ e_f;_*_& + 0(62), (3.1.6)
g2 =1+eq§°) + O(€%) = 1 + e(uh + By) + O(€?). (3.1.7)

Note that the barotropic stream function does not appear in the leading-order poten-
tial vorticities indicating that this model is dominated by the baroclinic dynamics. It
should be noted that in the upper layer, the leading-order stream function, k, advec-
tion of the leading-order PV, 1/h, is zero. Hence, the leading-order upper-layer PV
evolves as a response to the advection of the leading-order PV by the second-order,
ageostrophic stream function, v + %IVhIz. and the advection of the second-order
PV by the leading-order, geostrophic stream function, k (see Cushman-Roisin, 1986
for further discussion).

The boundary conditions for the ST model are given by (2.6.8), (2.6.9),
(2.6.11), (2.6.12), and (2.6.18) with (2.6.10) applied when the channel extends to

infinity.

3.2 Linear Analysis

To analyze the model equations, we need a basic-state flow that is a solution
to the full nonlinear model. From (3.1.2) and (3.1.3) it follows that any zonal flow,
where the model variables are allowed to vary in the meridional direction only, is a
solution to the fully nonlinear ST model. (In fact, any zonal flow is a solution to the
general FG model (2.3.13) and (2.3.14).) The flow is zonal since the leading order
velocities as given by (2.3.11) and (2.2.12) are in the zonal direction when h and
¥ depend only on y. Such flows are often called parallel shear flows since they run
paralle] to the meridional channel walls and allow for meridional shear. Although it
is possible to carry out some analysis on general steady flows, for the purpose of this
thesis we will examine only zonal flows. Hereafter, we will indicate the basic-state,
zonal flow with a subscript zero, that is, ho(y), ¥o(y) is the basic-state, zonal flow.

We examine such flows by setting the model variables to be the sum of the
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3. ST model
basic state and some perturbation, that is,
h = ho(y) + h(z, y. 1),

¥ = voly) + ¥(z, y.t), (3.2.1)
¢ =a; + $(r,t),

where the hatted quantities are the perturbations, ¢; marks the position of the
outcropping of the total flow while the basic-state flow has an outcropping at y = a;,

that is,
ho(a;) = 0. (3.2.2)

Substituting (3.2.1) into the model (3.1.2) and (3.1.3) gives. after dropping the hats,

Bz +p [ — hohoV?hz — (hg)*hzy + (hohg) 'z

+ hg'hhz — hghV2hy — hi(hzher + hyhzy)

(3.2.3)
+ hoJ(h.V2R) + Ry J(h.hy)
+J (h.hv2h + %IVhIQ) } =0.
hy + hooz — Wghz + J(w. k)
- [ — hohoV2hy — (h0)2hey + (hohll) bz
+ h{'hhy — hSRV?h, — Bl (hoher + hyhs
0] z o] 0( z y y) (324)

+ hoJ(h, V2h) + By J(h, hy)
+J <h,hV2h + %|Vh|2) J
— B(hohe + hhs) = 0.

In the following analysis, it is easier to work with these equations if we form
the equation that eliminates the linear terms in ¢ by taking 3 x (3.2.4) — A}, x (3.2.3).
Secondly, for simplicity, we eliminate the nonlinear Jacobian term by taking (3.2.3)+
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3. ST model
@ % (3.2.4). This gives
Bhe + (B + phg) [hghoVhz + (hg)*hey]

— [B¥g + B*ho + (B + phy)(hohy)| ke =
— BJ(¢,h) + B*hh,

+ (8 + uhl) [hghhr — LR V2h, (3.2.5)
+ —hi(hzhzz + hyhzy) + hoJ (h. V2h)
+hhJ(h,hy) + T (h, hV2h + %IVhF) J :

(B + phy)ws = —plhe — (0 + Bho)he + J(w.h) — 8hh].  (3.2.6)

In this thesis, we will be looking at nonlinear interactions. But in order to do
so, it is necessary to understand the linear stability of parallel shear flows. The linear
equations are found by keeping only the terms that are linear in the perturbation

quantities h, ¥ in equations (3.2.3) and (3.2.6) giving

Bhy + (B + phg) [Rgho V2R + (Bg)?hzy)
— [Bv + B2ho + (B + php)(hohg)'] ke = 0,
(B + pho)z = —p [he — (Wg + Bho)hs] . (3.2.8)

(3.2.7)

It is important to note that the equations have been decoupled in the linear limit.
That is, (3.2.7) contains no terms in ¥y and thus can be solved for h independently
of (3.2.8). Once h has been determined, (3.2.8) can be used to determine . This
is always possible when a linear limit is taken but it is noteworthy that here higher
derivative terms need not be introduced to decouple the equations (see Swaters,
1993b or Reszka, 1997 for linear analysis of the WVT model). As well, though
decoupled, (3.2.7) is not the linear RED model, but becomes so in the limit as
u—0.

Several other limits deserve discussion at this point. If hg is constant, (3.2.7)

reduces to the wave equation

he — (%o + Bho) hz =0,
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3. ST model

which has solutions A = h [z + (¥§ + Bho)t.y] (see Whitham. 1974). In this limit.
¢z = 0 and the barotropic flow is a pure zonal flow. In the limit 3 + gk} = 0. the
equation reduces to the same wave equation only now there is no equation governing
the barotropic stream function.

In order to continue our analysis, we make the further assumption that the

perturbations take the form of travelling waves, that is,

h(z.y,t) = h(y) expli(kz — wt)] + c.c.,
¥(z,y,t) = U(y) expli(kz — wt)] + c.c.. (3.2.9)
o(z,t) =0 expli(kz — wt)] + c.c.,

where k is the along-front wavenumber. w is the frequency. and c.c. means complex

conjugate. The phase speed and group speed of the travelling wave are given by

and cGg = %

‘=%
respectively. The group velocity is the speed at which wave energy travels (see
Pedlosky, 1987). In this thesis, we will use both the frequency and phase speed
notation depending on which is most convenient. The frequency (and phase speed)
may be complex, that is. w = wgr + w = k(cg + icr). The normal-mode models
examined in this thesis all have real coefficients and. hence. if they give rise to
complex values of w these values must appear as complex conjugate pairs. Thus, if
wr # 0 there exists a normal mode wave with an amplitude that will grow in time
with a growth rate of o = |wr| = klcf|. If wr = 0 the wave is neutrally stable and
the amplitude remains constant in time.

The linear travelling-wave or normal-mode equations are found by substituting
(3.2.9) into (3.2.7) and (3.2.8) giving

(nhg + B)[ho(hoR' — RGR)]
— (bt + B)hohb”k + B (Bho + g + )| h =0,
b= (¢ + ¥4 + Bho) A. (3.2.11)

(3.2.10)

7
B+ pe
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3. ST model

The boundary conditions (2.6.8-2.6.12) reduce to

R+hi¢=0 on y=a, (3.2.12
hh'<oco as y-— af, (3.2.13)

hat =0 on y=W, (3.2.14)
Rl [¢] <o as y— o, (3.2.13)

where the first condition is the Taylor expansion of the condition that h vanish
at y = a; + &, and the second condition is derived by ensuring the continuity of
pressure and mass flux across the material interface at y = a; in the manner of
LeBlond and Mysak (1978) or Swaters (1993b).

In addition, at an outcropping it is necessary to impose continuity conditions
on the barotropic stream function. Usually (see for example Swaters. 1993b or
Swaters, 1991) these reduce to the condition that the lower-layer pressure is C'
across the outcropping. Here, this condition would reduce to having v smoothly
continuous across the outcropping. However. since the model does not describe
motion in the absence of an upper layer, imposing such a condition would eliminate
all possible wave motion at the outcropping. This is a grave limitation of the model.

This model does allow a linear solution for basic-state fronts with an out-
cropping if we allow a certain approximation to be made at the outcropping. By
definition, an outcropping where hg vanishes must be governed by small-scale, non-
linear dynamics since it no longer holds that h < ho. Therefore, we assume that the
outcropping constitutes a nonlinear boundary layer that allows the linear solution
to be smoothly matched to the nonfrontal, no-wave-motion region. Such an assump-
tion is reasonable, but the inability to describe the solution in this region restricts
the applicability of these solutions. Whenever we analyze the linear solution to the
ST model that has an outcropping, we will remind the reader of the difficulty with
the solution and the assumption made. Thus, all results from this solution must be
considered with the proper amount of discretion.

It is useful to present the analysis for another reason. As mentioned previously,
the analysis can be applied to the RED model in the limit as » — 0. The analysis
for the wedge front that follows is valid for the RED model (see Cushman-Roisin,
1986) in that the assumption of no motion in the lower layer requires no matching
conditions. The finite amplitude analysis of §3.6 is also valid for the RED model
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and is original work extending the f-plane analysis of Slomp and Swaters (1997) to

include the 3-plane approximation.
In Benilov and Cushman-Roisin (1994), the normal mode stability of the ST

model is examined by letting
h = Ryn. (3.2.16)

This transformation is valid provided h{ # 0 anywhere in the domain. Thus, we
are restricting the following analysis to monotonic fronts. Substituting (3.2.16) into

(3.2.10) gives

B (Bho + vy + ¢)
pho + 3

[hohl?n) — [hoh62k2 + ]h(,n =0. (3.2.17)

Multiplying (3.2.17) by the complex conjugate of n and integrating over a; < y <

Wo gives

" 8 (Bho + v +c¢
[ {petho 2t 4 w2t + SR E B2 Dyl gy —o, (3218
a /-lho + .

where we’ve integrated by parts and used (3.2.2). (3.2.13), and (3.2.14). The imag-
inary part of (3.2.18) is given by

"2 3ht
=9 2dy = 0. 3.2.19
e [ rgintdy (3:2.19)

It follows directly from (3.2.19) that if

Bhy .
' 0,V W, 3.2.20
or
Bhg
- < 0,V , Wal, 3.2.21
P < y € [ay, Wr] ( )

then the integrand in (3.2.19) is strictly positive or negative, respectively, for non-
trivial solutions, implying ¢; = 0, and hence, wy = 0 for all wavenumbers. Therefore
if (3.2.20) or (3.2.21) holds, the front is neutrally stable. Instability can only result
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if the basic-state front violates (3.2.20) or (3.2.21). For a smooth front, this can only
occur if hy = 0 or hy = ~f3/pu, for some value of y. These two points are singular
points of equation (3.2.10).

The manner in which instability arises when these singularities exist in the ba-
sic flow is discussed in Benilov (1995a). There, two techniques were used to remove
the singularities thus regularizing the problem. The singularity at frontal extreme
points, kg = 0, is shown to be very similar to the RED model case. Instabilities exist
for all values of the parameters y and 8 with the addition of barotropic/lower-layer
dynamics shifting the instability to larger wavelengths than that seen in the RED
model. The (-plane effect is seen to weaken the instability but not eliminate it.

For the second singular point, hy = —8/u. a smaller growth instability is
possible. The growth rate is dependent on the mean flow velocity at the singular
point. The second point arises from the inclusion of the lower layer and the 3-plane
and is not found in the RED model. These instabilities are not the focus of this
thesis, and we will assume in our further analysis that we are not near these singular
points. We will, however examine their effect in numerical solutions to the model
in §3.11. It should be noted that the regularization of these models requires the
addition of terms not found in the the original model (see Benilov, 1995a) and
therefore the instability may not occur in numerical simulations of the full nonlinear
model.

In the ST model, the leading-order potential vorticities in each layer given by
(3.1.6) and (3.1.7) have gradients given by

dg\® hy dgy”) ,
= _0 = uh .
dy h% s and dy 2243, + ,8

Flows can become unstable only if one of these gradients vanishes. This is a much
stronger necessary condition for instability than in a QG model where if the PV
gradient reverses sign across the layer interface instability is possible. Here, for
instability, one of the PV gradients must vanish as in the RED model. This re-
sult emphasizes the weak coupling of the lower layer in the ST model. Since the
barotropic stream function evolves diagnostically via (3.1.2), it does not change the
stability conditions.

A final note on linear stability. In Benilov and Reznik (1996), the possibility
of short-wave instability is examined by scaling the results of a two-layer, QG model
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according to the ST model scaling. Their results suggest that short waves are stable
if 0 < —phg < B and unstable otherwise. However, these short waves exist at scales
that are beyond the model’s resolution and can only be modelled if QG terms that
are higher order in the Rossby number are retained in the model. The examination
of such a model is not the focus of this thesis and is left to future work.

We will discuss linear solutions for two basic-state fronts: a gently sloping (GS)
front and an outcropping wedge (WD) front. More complicated frontal profiles can
be examined for all the models examined in this thesis. However the solutions must
be found numerically. Qualitatively the results are similar. This type of analysis
is not the focus of this thesis and these results will be presented elsewhere. For a

gently sloping front we take

L
m)=k+a(y-F). o0sysL 529

4 L2974

¢0(y)=07 OSySL,

where R is a positive constant. We've chosen W; = 0 and W, = L. and the front

extends across the entire channel so that the boundary conditions are
h=v=0 on y=0.L. (3.2.23)
We also assume that the slope of the front, a. is small. that is.
a = Aa, (3.2.24)

where 0 < A € 1 and @ = O(1). In order that the leading-order terms in A in

(3.2.10) include the higher order derivatives, we must also assume
B=AB, w=Ad, c=A; (3.2.25)

where 3, &, and & are O(1) parameters. Then to leading order in A, (3.2.10) reduces

to
Ra(ua + B)(R" — k2h) — BRE + &R = 0. (3.2.26)
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Together with (3.2.23) this defines an eigenvalue problem for the eigenvalue. &, and
the corresponding eigenfunction, k. In order to satisfy (3.2.23). we have that

h = Asin(ty), €= — n=1.23.... (3.2.27)

Substitution of (3.2.27) into (3.2.26) gives

(3.2.28)

&(k,0) = —R [B+d(“&+5).(k2+ez)J.

so that the wave is neutrally stable. The group velocity for this solution is given by

s a(pa +3) (3k2 + 2
éc(k.0) = —R [3 L Slua +3)3.( )] , (3.2.29)
and the barotropic stream function from (3.2.11) is given by
~  NuG(k? + )~
5= Dpalk_+ &)y (3.2.30)

3

One important aspect of the solution above is when the phase speed. (3.2.28),
of the waves changes sign. For most parameter values the phase speed is negative,

but it is positive for the small region given by

~L<p<n,
H (3.2.31)

G S —
pp(pp+1)

where p = @/§. Note that for & > 0 the geostrophic flow is westward, u = —h§ <0,
and the waves travel with the flow. When o < 0 the geostrophic flow is eastward,
u = —hgy > 0, and the waves travel against the flow except when (3.2.31) is satisfied.

Benilov and Cushman-Roisin (1994) also found that a solution to the ST
model could be found for a wedge-like front,

ay, ay>0,

3.2.32
0, y<o, ( )

ho(y) = {
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vo(y) =0, (3.2.33)

corresponding to a constant baroclinic flow with no barotropic flow. (In the original
analysis a linearly sheared barotropic flow was included. For our analysis. this
does not add qualitative differences and so for simplicity it is not included.) The
solution is an extension of the linear solution found in Cushman-Roisin ( 1986) for
the RED model and the wedge front (3.2.32). Again. it should be recognized that
the solution below for the wedge front does not meet the condition that the leading-
order barotropic stream function be smooth across the outcropping. Its validity is
based on the assuraption explained previously.

The flow meets the stability conditions and therefore gives rise to a linear
solution of travelling waves. The normal mode equation (3.2.10) reduces to

yh" + k' — [ar?(k)y +¢ k =0. (3.2.34)
where

k2 33 _
w(k) =\ += (3.2.35)

3
= % (3.2.36)

~ 3
3= —"_. 2.37
3 ot 3 (3.2.37)

From (3.2.11), v is given by

ple + Boy)y (3.2.38)

V= B+ po

The boundary conditions on h are simply that it and its y derivative are bounded
at y = 0 and tend to zero as ay — oo. The outcropping position from (3.2.12) is

given by

h(0)

5=-
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3. ST model

Note that « is real if

38 [z
e e ey o —— 3.2.39
&’ pp(up + 1) ( )

where p = a/f3, and imaginary when (3.2.39) does not hold. Imaginary values of
are only possible if —1/y < p < 0. Note that this region is identical to the region

where the phase speed is negative in the previous solution.
When « is real, the solution to (3.2.34) that satisfies the boundary conditions

is

~

h(y,k.n) = Aexp(—ar(k)y)L.(2ax(k)y), (3.2.40)

where L, is the Laguerre polynomial of degree n > 0. with the corresponding

dispersion relationship

0)

+ = = —n.

[R]
] =

ax(k)

(see Cushman-Roisin, 1986 or Slomp. 1995 for details). Rearranging gives that &

satisfies
dk.n)=—ar(k)(2n +1).

Solving for ¢ gives

3 a3k(k)(2n + 1)

k,n)= = 3.2.41
c(k,n) 3 ( )
and the group velocity
_al2n+1) (a?k2(k) + k2)
cg(k,n) = — 3 ( () . (3.2.42)

Since « is real, so is ¢ and all modes are stable travelling waves. The waves
can also be described as frontally trapped since they decay exponentially away
from the front at y = 0. The meridional e-folding scale increases with the along
front wavelength, and so a wave becomes more closely trapped to the frontal out-
cropping as its zonal length scale decreases. For p > 0, a front sloping down toward
the North Pole with westward geostrophic flow, the waves travel westward with the
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3. ST model

front on their left and the phase speed increases with increasing 3 and wavenumber.
For —1/u < p < 0, a front sloping down toward the equator with weak eastward
geostrophic flow and short waves satisfying (3.2.39), the waves travel eastward with
the front on their left and the phase speed decreases with increasing 3 but increases
with increasing wavenumber. For p < —1/u, a front sloping down toward the equa-
tor with strong eastward geostrophic flow, the waves travel westward with the front
on their right and the phase speed increases with increasing 3 and wavenumber.
For k complex, a continuous spectrum of stable travelling waves is realized
(see Cushman-Roisin, 1986 for details). The solution is given in terms of Kum-

mer/hypergeometric functions, M, as

~ 1 ic
. = ] kWM | = ,—2 . 2.
By-kon) = dexplions(R)M (5 + o L-2inlb)y) . (3249
where k2 = —«2. This solution is not suitable for further analysis, and is not
discussed in detail.

For both linear solutions, it should be noted that in the special case where
B8 = 0 the model becomes degenerate and wave solutions are not possible. There
are no longer any terms related to time derivatives. and thus the frequency w. and
as a result no dispersion relationship for w. Physically, without the 3-plane forcing
there is no mechanism to generate barotropic waves.

The reduced-gravity limit for both models is obtained by letting i tend to
zero. When this is done, the region —1/u < p < 0 expands to the entire lower half
plane. As such, waves that travel in the opposite direction as the basic-state flow
are not possible in the RED model. For the wedge model, the results of Cushman-
Roisin (1986) are obtained and then taking 8 — 0 retrieves the result of Slomp
(1995). It should be noted that in the single layer model with 8 = 0 waves are still

possible.

3.3 Nonlinear Invariants and Stability

In this section we discuss the nonlinear invariants as derived in §2.7 for the
ST model. Using these invariants, it is possible to establish a nonlinear stability
theorem similar to that presented in Slomp (1995) for the RED model.

Under the scaling (3.1.1), the leading-order term in pseudo-energy invariant
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3. ST model

(2.7.12). reduces to
£=1 // (hVh - Vh — 8h%y) dzdy. (3.3.1)
2)J/m

HNlustrating that this quantity is invariant can be shown using the governing equa-
tions and the boundary conditions but as it follows from the discussion in §2.7, we

do not present it here.
From §2.7, we also have the invariants associated with the leading-order PV.

For the upper layer, (2.7.9) holds so that

¢ (h) = / /m &, (h)dzdy (3.3.2)

is an invariant of the ST model where ®; is any arbitrary, sufficiently smooth
function of its argument with &;(0) = 0 so that any values associated with the
variation of the outcropping are eliminated. This is not an additional restriction
since the invariants are only determined to a constant that we are free to choose.
For the lower layer, the leading-order PV is given by (3.1.7) and hence it follows
from (2.7.6) that

€2(h)=/_/g @, (ph + 3y)dzdy (3.3.3)

is an invariant of the ST model where ®, is any arbitrary. sufficiently smooth
function of its argument. (Note that (2.7.6) holds for any function of the lower-
layer potential vorticity and, thus, holds for any function of ¢g; — 1 giving the above
result.)

The zonal momentum invariant (2.7.14) is not useful in the ST model since
there are no terms governing the time evolution of the barotropic stream function,
. However, the similarity of the invariants (3.3.2) and (3.3.3) allows us to construct

another invariant. Setting

¢ — ¢
2uB

with ®;(h) = (uh)? and ®,(uh + By) = (uh + By)? gives that

ot =

Mh) = //FR yhdzdy (3.3.4)
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3. ST model

is an invariant of the flow, where we’ve dropped the constant term. We recognize
(3.3.4) as the zonal momentum invariant of the one-layer model (see (2.7.17)). This
stresses the similarity of the ST model to the RED model.

Since none of the above invariants involves the barotropic stream function,
it is not possible to use them to establish stability theorems that bound a per-
turbation norm involving both the upper-layer depth and the barotropic stream
function. We can, however. find conditions on a zonal flow that establish nonlinear
bounds on the perturbation upper-layer depth only. Nonlinear stability analysis
often uses a constrained zonal momentum invariant, the zonal momentum invariant
plus a Casimir, which is just the leading-order PV invariant (see Slomp, 1995 or
Karsten and Swaters, 1996b). But, since the one-layer zonal momentum invariant
derived above is a linear combination of the two PV invariants. it does not need
to be included in the analysis. The analysis can be carried out using only the
PV invariants emphasizing their importance in determining stability. As in Slomp
(1995) and Karsten and Swaters (1996b), for the nonlinear analysis to hold we can
only examine a basic-state front that extends across the entire domain and does not
outcrop.

The stability conditions are determined by considering

J(h) = € (h) — €1(ho) + €2(h) — €2(hg). (3.3.5)
where ho = ho(y) represents a basic-state zonal flow and €; and €, are given by
(3-3.2) and (3.3.3), respectively, with the domains of integration extended to the

entire domain 2. Obviously, J(k) is an invariant of the flow since €;(h) and €;(h)
are. Using (3.3.2) and (3.3.3), (3.3.5) reduces to

I(h) = / /Q 81 (k) — (ko) + Ba(uh + By) — Ba(uho + By) dzdy.  (3.3.6)
We now consider the first variation of J, that is,
53(h) = / / (@ (k) + p®)(uh + By)] h dzdy,
Q

where variations of y and ho(y) are zero since they are independent of time. In
order that 6J vanishes at h = ho, the first order condition necessary in establishing
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3. ST model

stability, we choose the functions ® to satisfy
& (ho) + u®;(uho + By) = 0. (3.3.7)

Note that this condition does not determine ®; and ®,, but only gives a single

condition that they must satisfy.
For nonlinear conditions, we consider h to be composed of a basic-state flow,

ho. plus a finite amplitude perturbation, A, that is, h = & + hq. Then. using (3.3.7),
(3.3.6) reduces to
3+ ho) = [ [ { @105+ ho) — @1(ho)
Q

+ &5 (puh + pho + By) — ®a(uho + By)} dzdy.

(3.3.8)

Now, we assume that the functions & have bounded second derivatives. that is.
—0 < A < ®Y(€) + p?®y(ué + 3y) < B < <. (3.3.9)

for some constants A and B. and for all £ > 0 and y € [W;, Wy]. (Note that &, (&)
and ®,(u€ + 3y) are only defined for £ > 0 since they are defined in terms of A,
which is always positive.) If (3.3.12) is integrated twice with respect to £, first from
ho to € and then from hg to h + ho, and (3.3.7) is used. it follows that

A- - - B-,
5h2 < ®;(h+ho) — ®1(ho) + 2(uh + pho + By) — B2(pho + By) < ;h", (3.3.10)
and hence, from (3.3.8) that
‘4. 72 4 B 12
—h®dzdy < J(h+ hg) < —h*dzdy. (3.3.11)
Q 2 Q 2

The nonlinear stability result follows:
The zonal flow ho(y) is nonlinearly stable in the sense of Liapunov with respect to

the perturbation norm
I = [ [ 72 e,
Q
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3. ST model

if there exists real constants A and B such that either

0<A<®Y(E) +u2PY(uE+By) <B< < (3.3.12)
or
—00 < A < ®Y(€) + 2@y (ué + By) < B <0, (3.3.13)

for all £ > 0 and y € [W;, W>], where
&1 (ho) + u®5(ho + By) = 0. (3.3.14)

The conditions (3.3.12) and (3.3.13) establish that J is either positive or neg-
ative definite, respectively, and Liapunov stability conditions follow accordingly.
Assume (3.3.12) holds. Then from (3.3.11) it follows that

. . . 2 .
J(h+ ho) < g// h?dzdy and // h? dzdy < if](h + hg). (3.3.13)
4 Q Q -

It then follows from the invariance of J that

- 9 - 9 - 9
2 = [ =
A < Z3(k + ho) Aj(h+ho)lt=o<A

Therefore, if

i A\
||Allt=0 < (E) €.

it follows that
lIAl| < e,

establishing stability in the sense of Liapunov. Stability follows from (3.3.13) simi-
larly.

The above stability argument breaks down when an outcropping occurs be-
cause (3.3.7) is only meaningful in the domain of hg. Therefore, we are unable to
bound the finite variations of the outcropping via the above argument as inequality
(3.3.10) holds only over the domain of hg and not over the domain of h + ho as
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3. ST model

required. Again, it should be noted that we have only bounded the perturbations
in A in this theorem and not considered whether v could become unbounded. How-
ever. since it is growth in k that we are most interested in as it represents changes
in the frontal structure and since ¥ is determined diagnostically by k. these results
are useful.

Unfortunately, interpreting and applying the nonlinear stability results is not
a straightforward task. Given a specific front ho(y), determining suitable functions
@, and ®; is not trivial. This is further complicated by the fact that the stability
conditions must hold for all nonnegative values of £ and not only £ = hq as in linear
theory. However, it is possible to establish the nonlinear stability of all linearly
sloping fronts, ho(y) = ay + C, where a and C are chosen so that the front extends
across the domain and does not outcrop. Choosing ®(*) = u(ua + 3)(* — C) and

2(*¥) = a(C — %) satisfies (3.3.14) and gives

®7(6) + 2@ (u€ + 3y) = us.

Hence, (3.3.12) is satisfied and all linearly sloping fronts are nonlinearly stable.
Note that it is not surprising that the singular points. o = 0 and pa+ 3 = 0. do not
cause instability since these fronts are also linearly stable as the linear equations

reduce to linear wave equations (see §3.2).

3.4 Weakly Nonlinear Analysis

In the following sections, the effects of nonlinear terms in the model are ex-
amined. We begin by deriving the envelope equation governing the finite time and
space evolution of the amplitude of a given wavetrain. This analysis naturally leads
to a discussion of resonances. We include a section examining the case of long-wave—
short-wave resonance as well as a brief note on three-wave resonance, including the
second harmonic resonance. As well, we examine the special limit where zonal scales
become large.

The method to derive a finite-amplitude equation governing the evolution of a
slowly-varying wave amplitude follows that of Newell (1974) and Grimshaw (1977),
and is similar to the analysis of the RED model studied in Slomp (1995). As in
any weakly nonlinear calculation the details of the calculation are quite lengthy. In
this thesis, several weakly nonlinear calculations are presented, and as such, we will
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3. ST model

keep our discussion of the calculations to a minimum. In the body of the thesis, we
will present only those details that directly lead to and affect the characteristics of
the amplitude equation. Enough of the remaining details will be presented in the
Appendices so that the calculations can be repeated with reasonable effort.

A necessary result for the weakly nonlinear analysis is the Fredholm Alter-
native Theorem (Zwillinger, 1989). The Fredholm Alternative Theorem (hereafter
F.A.T.) states that an inhomogeneous ordinary differential equation of the form
£G = & has a solution if and only if

(®,0) =0. (3-4.1)

where ¢ € Ker(EA) with £4 being the adjoint operator of €. In our analysis, the
operators are self adjoint so that the theorem implies a solution exists iff (3.4.1)
holds for ¢ a homogeneous solution to E, that is, £& = 0. As well, for our analysis

the inner product is given by
(®,0) = / @ - ody,
2y
where 2, is the appropriate meridional domain.

3.5 The Gently Sloping Front

We begin by examining the gently sloping front as given by (3.2.22). We
introduce the appropriate scalings for a and 3 as given by (3.2.24) and (3.2.25)
dropping the tildes. In order to facilitate a weakly nonlinear analysis, slow space
and time variables are introduced. These allow the space and time scales associated
with nonlinear interaction of the fundamental mode to be examined. This is done

by letting
t=At, T=A% 1t=A3% X=Az, (3.5.1)

where we have used that the rescaling of w in (3.2.25) necessary for the linear solu-
tion is equivalent to a rescaling of time by A. The perturbations are small compared
to the basic-state solution, and are to leading order scaled by the parameter AZ2.
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3. ST model
The perturbation quantities, k, v, are expanded in a power series in A, that is.

(R, ) = A%(h,v) 0 + A3(h.p) D + At (h.e)® + .. (3.5.2)
As in the linear problem, the boundary conditions. reduce to requiring that kA and
¥ vanish at y =0, L at all orders of A.

Taking into consideration (3.2.22), (3.5.1), and (3.5.2) the model equations
(3.2.5) and (3.2.6) become

£(8; + ABT + A?9,,0, + Adx,8y) [hm) + AR L Azh(z)] —

(3.5.3)
AM; + A2M, + O(A?Y),
(2@ + A6 +a2@] = £ 5 _gra,] [A@ + 2R®) 1 AZR)]
' z 3+ QafL ’
+ AP, + AP, + O(A?). (3.5.4)
where the linear operator £ is given by
£(0r. 0z, 0y) = 38; + Ra(B + au)V?2 — R325;. (3.5.5)

and M; and P; represent the expansion of the remaining terms. We do not give
their full expressions here but will list only the simplified terms that are important
as the discussion of the problem continues. If the definition of the slow variables,
(3.5.1), is substituted into the linear operator, it can be expanded in powers of A

to give
E(at + A@T + Azafs O: + AaXv 6!/’ ) = S(at’ ar’ ay)
+ A[B8r + £2(8:,0:,8,)0x] (3.5.6)
1
+ Az [5222(at1 6.1:7 ay)axx + 21 (at’ 6-7"’ ay)a'rJ ?

where subscripts indicate differentiation with respect to the indicated argument and
we have used that £; = (3 so that £;; = £,, = 0. Using this expansion in(3.5.3)
and setting the coefficients of terms in similar orders of A to zero gives a series of
problems that must be solved. The solvability conditions that arise at each order
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according to the F.A.T. give rise to an evolution equation for the slowly varying
amplitude of the linear solution.

The leading-order problem is given by

£(8e. 02,8y, y)R? =0, (3.5.7)
P 7 Yy Ny PAC 3.5.

Assuming a plane wave solution of the form

~

R(® = A(X, T, r)h(y)expli(kz — wt)] + c.c..

~ (3.5.9)
w9 = A(X, T, ) (y)expli(kz — wt)] + c.c..
where A(X, T, 7) is the slowly varying amplitude. gives the equations
L(—iw,ik,8,)h =0, (3.5.10)
~ 2 2y
U= —wh, (3.5.11)

where

sl o225}

As discussed in §3.2, (3.5.10) defines an eigenvalue problem for w and h. The
eigenvalue, w(k, ), is determined by (3.2.28) with the corresponding eigenfunction,
E(y,é), given by (3.2.27) and the stream function by (3.5.11). That is,

L(—iw(k, ),ik,8,)h(y, €) = 0. (3.5.12)

The eigenfunctions, ;z'(y,f) = sin(%y), form an orthonormal basis for the solution
set, that is, functions that can satisfy the boundary conditions.
The O(A) problem, after using the leading-order solution to simplify terms
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reduces to

’c(atva.t’ ay)h(l)

= { — [BAT + Ax £2(—iw(k, £). 1k, 8,)] R(y, €)

L (3.5.13)

+ ika? [(,5 + ap)(k? + %) + ,52] A (y - 5) sin(fy)

— ikba®(8 + au)Acos(Zy)} expli(kz — wt)] + c.c.,

an___ ¥ _ (1)
W - ‘3+a#{[a, R3] A

- [ (AT _ Nalf +op)(k* + &) + 5] Ax) B(y. 0) (3.5.14)

3

—ikBaA <y - TI;-) sin(éy)jl exp[i(kzr —wt)] + c.c.}.

We assume
R = B(X,T,7)G(y) expli(kz — wt)] + c.c. + ®(y. X.T. 7). (3.5.15)

where the function ¢ is a homogeneous solution to the left-hand side of (3.5.13) since
it is independent of = and ¢. Its inclusion is necessary in the next order problem
where its form will be derived. Substituting (3.5.15) into (3.5.13) gives

B(X,T,r)&(—iw(k, £), ik, 8,)G(y)
= — [ATB + Ax £2(—iw(k,0),ik,8,)] h(y, ?)

+ika® [(B + ap)(k® + €%) + 5] A (y - é) sin(ly)
— ikla®(B + ap) A cos(Ly).

(3.5.16)

Equation (3.5.16) obviously has the homogeneous solution G(y) = E(y, ¢). It follows
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from the F.A.T. that for a solution to exist it must hold that

L
/c; { - [BAT + Ax La(—iw(k,¥),ik,0y)] E(y, ¢)

9

+ tka [a(ﬂ +au)(k? +2) + ,52] A (y - £) sin(fy) (3.5.17)

—ikla®(8 + ay)Acos(ey)}’E(y, ¢)dy = 0.

It follows from differentiating (3.5.12) with respect to k that

Lo(—iw(k.),ik,8,)h(y.0) = %(k.é)ﬁl(—iw(k.é).ik.ay)ﬁ(y.é)

Py _ (3.5.18)
= Ba—k(k.é)h(y.é).
Using (3.5.18) and that
L
~ L
| Reow=1.
L _ L I _ (3.5.19)
/0 cos(ly)h(y,€)dy =/ (y - 3> sin(8y)h(y.¢)dy = 0,
0 -
reduces (3.5.17) to
Ow -
Ar + ﬁ(k,E)Ax = 0. (3.5.20)

This is the simple statement that to this order the wave amplitude travels at the
group speed, cg(k,8) = -a—‘,‘ci, given by (3.2.29). Introducing

5 =X - CG(k,e)T, (3.5.21)

with A(X,T,7) = A(€,7) satisfies this equation. Similarly, all variables that are
functions of X, T will now depend solely on £.
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Now the solutions to (3.5.16) can be found as B(X.T. T) = A(£.7) and

_a(B+ap)(k? +0) + 82

SRS F Y YA W ’
ARC2(3 + ap) v=3 Y-
Given (3.5.22), the solution to (3.5.14) is given by
v = A€, 7)F(y) expli(kr — wt)] + c.c. + U(y. X, T. 1), (3.5.23)
where
F= QR;#k Ag sin(ly)
ap(k? + C)a(B+ap)(k* + )+ 8% -
+ 2606 + ap) y(y — L) cos(€y) (3.5.24)
a[(B + ap)(k* — ) + B2(K2 — 302)] Ly .
B 4862(B + ap) (y - 5) snlty)

and ¥ is analogous to ¢ and will be determined in the next order problem.

The O(A?) problem, after using the leading-order solution, (3.5.9, 3.2.27,
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3.2.30) and the O(A) solution, (3.5.15. 3.5.22, 3.5.24) reduces to

£(8t, 8z,0y)h® = — [—cg(k,n)£1(0,0,8y) + £2(0,0,9,)] ®¢
+ 2k2€(8 + 20p) (|A[*)  sin(2¢y)

+ { -~ [BA,- + %A&ﬂzz(—iw(k,l), ik, 8, )] h(y, )

—iAk [;ny + (8 + 20p)(K? + 62)3, (3.5.25)
+ (B + ap)@yy, | sin(éy)
—1Av(y) + Ae M4, (y)} expli(kz — wt)]
+ M.z exp[2i(kz — wt)] + c.c.,
- 20 (4 sm(zéy)} (3:2:20)
+ P.exp(i(kz — Qt )] + P.2 exp[2i(kz — wt)] + c.c..

where

L ) 32 , - o
v(y) = ka®(3 + au) [(y - 5) (G” —(k° + m)G) + G] . (3.5.27)

and where the terms M4, , M,2, Pe, P,2 are not needed in the following analysis and
so are not expanded here.

The terms independent of z.¢ are secular; if a particular solution is found
corresponding to these terms, it will grow unbounded in either z or ¢. This is just
a special case of the F.A.T. where any function of y is a homogeneous solution and
therefore the inhomogeneity must vanish. Therefore, we must choose & and ¥ such
that these terms vanish in both (3.5.25) and (3.5.26), that is,

[_CG‘QI (07 0, ay) + ’82(0’ 0, ay )] QE = kae(:@ + 2&[!) (|A|2)€ Sin(%y)s

(3.5.28)
Ra?(3k? + £2 Qapk?l , o .
T = — ( d )¢E__Z_(|A|~) ¢ sin(26y). (3.5.29)
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The system (3.5.28) and (3.5.29) can in general be solved. but we must con-
sider whether the operator in (3.5.28) has a homogeneous solution and hence re-

quires an application of the F.A.T. First, we assume that
By, &, 7) = JA(E, )2 8(y).
where ®(y) satisfies
[—cc(k.€)£1(0.0,8,) + £2(0,0,8,)] & = 2k%¢(3 + 2apu) sin(2€y). (3.5.30)

The operator in (3.5.30) is similar to the small-wavenumber (long-wave) limit of the
original linear operator. That is, if we expand (3.5.12) about & = 0 we get that a

solution must satisfy
[—cG(0,m)£1(0,0,8,) + £2(0,0,8,) A(y.m) =0 (3.5.31)

as k — 0, where we have chosen the mth meridional mode for the long wave to
differentiate from the ¢th meridional mode used for the fundamental wave. It follows

that the operator in (3.5.30) has a homogeneous solution given by
& = h(y.m)

iff

cg(k.€) = cg(0.m). (3.5.32)
It then follows by the F.A.T. that (3.5.30) will have a solution in this case iff

L ~
/0 sin(28y)h(y,m)dy = 0. (3.5.33)

Only in the case where m = 2£ is (3.5.33) not satisfied. It follows that if

cg(k,€) = cc(0,2¢), (3.5.34)

there is no solution to (3.5.30). Using the form of ¢g, (3.5.34) occurs only when
k = €. When k = ¢, we have what is known as mean flow or long-wave—short-wave
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(LWSW) resonance where the group speed of the fundamental wave is equal to the
group speed/phase speed of a long wave mode where £ = 0. (At k£ = 0 the group
speed and phase speed of a mode are equivalent.) For now, we will assume that
k # € and resonance does not occur and we leave the discussion of the LWSW

resonance to §3.8.
The system (3.5.28) and (3.5.29) then has the solution

_ 2K%(B + 20u)
"~ 3a(B + ap)(k? — £2)
2Ruk?l [3k2(8 + ap) + 02(8 + 5ou)]
B 38(3 + ap)(k? — €2)

|A|? sin(2¢y), (3.5.35)

U= | A% sin(2¢y). (3.5.36)
where it is clear that this solution is not valid when k& = ¢.

We now return to equation (3.5.25). Assuming

R =B (X,T.7)N,(y)expli(kz — wt)]
+ Bo(X,T.7)N2(y) exp[2i(kz — wt)] + c.c..

and considering the exp[i(kz —wt)] problem for equation (3.5.25) with the solutions

(3.5.35) and (3.5.36) and using (3.5.39), gives

B (X, T, 7)&(—iw(k,£),ik,0y) N1(y)
i3 8%w(k. ) ~
=— [ﬁA,- T T Aes] h(y. )

4

— 28T A|A|? cos(28y) sin(y)
~ idy(y) + AeMa (¥).

(3.5.37)

where

RE302[k2(82 + Buo + a?u?) — 362(6? + 3Bua + 3a2u?)]
3Ba(k? — )(B + on) (3.5.38)
RE3€2[k2(1 + pp + p?p%) — 33(1 + 3up + 3up?)] '
3up(k? — £2)(1 + pp)

™
I

?

IR WIR

where p = /3. In deriving (3.6.37) we used that if we differentiate (3.5.18) with
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respect to k we get that

Loz(—iw(k,€),ik,8,)h(y, ) = —if (- o).

where we’ve used that £,; = 0.

(3.5.39)

Once again, equation (3.6.37) has the homogeneous solution N;(y) = A( y.f).

It then follows from the F.A.T. that a solution exists iff

L . 2w -
[ { - [pa - 2250 Rt

— 128T A|A|? cos(28y) sin(ly) — iA~(y)

+ AeMa, (y)}?z'(y., ¢)dy = 0.
Using (3.5.19) and that

L
/ cos(28y) sin(ly)h(y.€)dy = —g.
0
L -~
| M 0ay =0
0
reduces (3.5.40) to
1Ar + Mg +TA = TA|A)%,

where we have multiplied the equation by 7, and let

_ _3Ra(f+ap)k
- B

= —§3NP(1 + up)k,

L

) ~
I'= ~I5 ), Y(y)h(y, ) dy.

69

(3.5.40)

(3.5.41)

(3.5.43)



3. ST model

We can recast (3.5.41) into the standard form of the nonlinear Schrédinger
equation (NLS) by letting

A = exp(il'T) 4, (3.5.44)
so that from (3.5.41) A satisfies
iAr + Mg = TAAJ2. (3.5.45)

The transformation (3.5.44) simply represents a shift in phase speed of the linear
solution to account for the correction resulting from the higher order linear terms.
That is, the phase speed of the linear solution to O(A?) is given by

AT

Cc— T (3.5.46)

Note that the phase speed of the wave plays no role in the analysis that follows so

the form of I is not required.

3.6 The Wedge Front

We now examine the weakly nonlinear behaviour with respect to the wedge
front basic state as given by (3.2.32, 3.2.33). The steps in the analysis are very
similar to that for the gently sloping front and therefore we will be brief. However
differences do arise as a result of the differences in the structure of the linear solution.
The analysis is important in illustrating the changes in the nonlinear effects as
we move from a weak flow similar to QG formulations to a strong flow with an
outcropping requiring the FG formulation. Again, though, the difficulties with
modelling the outcropping, and the continuity of variables across the outcropping
do limit the viability of this solution. We do believe that it is still a very worthwhile
endeavor as it is valid in the RED model limit.

Since the derivation of the linear solution for the wedge model does not require
parameters and time scales to be small, all parameters are O(1) and the slow variable

scaling is
t=t, T=At t=A% X=Arz, (3.6.1)
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as opposed to that in (3.5.1). As well. the perturbations are to leading order O(A).
that is,

(R, %) = A(h, )@ + A2(h,w)V) + A3(h.w)® 4+ ... (3.6.2)

as opposed to (3.5.2). As well, the boundary conditions are those corresponding to
the wedge front; all variables are bounded at y = 0 and as y — oc. Given a solution
h, condition (2.6.11) can then be used to determine the variation of the outcropping
¢ at all orders.

Taking into consideration (3.2.32), (3.6.1). and (3.6.2) the model equations
(3.2.5) and (3.2.6) become

£(8, + A8y + A, 8, + Adx.d,,y) [h<°> + AR 4 A%m]

(3.6.3)
=AM, + A2M, + O(A3).
[¢<°> + Apt) + /_\.21,/;(2)} =— - (8, - Bay5;] [h<°) + AR + A%m]
E4 3+ (277
+ AP, + AP, + O(A?). (3.6.4)
where the linear operator £ is given by
£(8:.8:.0y,y) = B8 + (B + ap) [yVi + 63,:] - B%ayf;. (3.6.3)

and M; and P; represent the expansion of the remaining terms (see Appendix 3 for
more details). The linear operator can be expanded in powers of A, as before, to
give (3.5.6).

The leading-order problem is given by

£(8:,0:,0,,y)h? =0, (3.6.6)
v = ~ e [ — Bayh?)] . (3.6.7)
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Again, we assume a plane wave solution of the form (3.5.9) giving the equations

’c(_iw7ik7 ay1 y);;(yv kvn)
. #h bR Bw \ ~ (3.6.8)
=ia?(B + ap)k [y—2 + 3y <02n2(k)y + m) hJ =0,

b= £ - [e + Bay] h. (3.6.9)

where A is the slowly varying amplitude, with the notation (3.2.35-3.2.37). As
discussed in §3.2, (3.6.8) defines an eigenvalue problem for w and % that has the
solution (3.2.40) with the frequency determined by (3.2.41) provided k satisfies

(3.2.39). That is,
L(—iw(k.n), ik, 8y,y)R(y. k.n) = 0. (3.6.10)

Note that the form of the eigenfunctions differs significantly for this model as com-
pared to the GSF model (compare (3.2.40) to (3.2.27)). The eigenfunctions still
form an orthonormal set. that is,

/ 2ak(k)h(y. k.n)R(y. k,m)dy = Smn. (3.6.11)
0

where the 2ax(k) is simply a weighting factor.
We will use the following properties for the eigenfunctions. First, it follows

from (3.6.8) that

L(—tw, ik, 8y, y)h(y, k,n) = iB(w(k,n) — w)h(y, k,n), (3.6.12)
and subsequently that
/O ” 2i(k)R(y, k,n)L(~iw(k,n), ik, 8y, y))F(y, k) dy = 0, (3.6.13)
for any function F in the space spanned by the eigenfunctions, that is,
F= i frh(y, k, 1), (3.6.14)
r=0
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for some constants f,. One important difference between this analysis and the pre-
vious one is that now the eigenfunctions. Z(y, k.n). are dependent on the zonal
wavenumber k. As such, the derivatives of k with respect to k arise in the following
analysis. Since the Laguerre Polynomials span the space of polvnomials. it follows
that any derivative of Z(y, k,n) with respect to k can be written as a sum of the
eigenfunctions in the form of (3.6.14). It therefore follows that ( 3.6.13) holds for

o /+
F=o (Rly. k.m)).
for arbitrary r.
The O(A) problem is given by
2(6178.1:’ ayv ")h(l)

= — [BAT + Ax£2(81, 8z, 8y, y)] R(y, k, n) exp(if) (3.6.15)
+ 1A% M,z exp(2i8) + c.c.,

1

(3.6.16)
+h) = BayhQ + J (6, ) — ,@h<°)hg°’] - v

where M,z represents the quadratic interaction terms (see A.3.11). Note that there
are no additional linear terms in (3.6.13) as there were in (3.5.13) since the o(1)
linear problem now contains all the linear terms except those associated with slow

space/time derivatives. The solution to (3.6.15) will have the form

rY) = B(X, T, 7)G(y) expli(kz — wt)]

(3.6.17)
+ A?3(y) exp(2i(kz — wt)) + c.c. + 8(y, X, T. 1),
where G and 3 satisfy
B(X,T,7)&(—iw(k,n),ik,8,,y)G
: : ~ (3.6.18)
= — [BAr + AxLa(=iw(k, n), ik,0, )] Ry, k,n),
£(—2iw(k,n), 2k, 8,,v)3(y) = iM,a, (3.6.19)
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and we have included the homogeneous solution @ once again.
As before, it follows that (3.6.18) has the homogeneous solution G(y) =
ﬁ(y, k,n) with the F.A.T. implying that (3.6.18) has a solution iff

/ R(y.k,n) [BAT + AxSa(—iw(k,n), ik, 8y.v)| R(y.k,n)dy = 0. (3.6.20)
0
Again this can be simplified by differentiating (3.6.10) with respect to k to give

Ca(=iw(k, ), ik, 0y, y)i(y, k.n) = B2 (k. n)fi(y, k,n)
Ok (3.6.21)
Oh(y.k.n)

— L(—ww(k,n), ik, 8y.y) 9k

Multiplying (3.6.21) by ‘.Zan(k)ﬁ and integrating gives
/ QQK(k)Z(y, k,n)La(—iw(k,n). ik, 0, y)Z(y. k.,n)dy = 3a—k'(k. n). (3.6.22)
0

Using (3.6.22), (3.6.20) reduces to

Ar + %%(k, n)Ax =0. (3.6.23)

Once again, the wave amplitude travels at the group speed given by (3.2.42) and
we introduce § = X — cg(k,n)T. Setting B(X.T.7) = A¢(€.7) gives from (3.6.18)

that

L(~ww(k,n),ik,8,,y)G = [ﬂg—:(k, n) — La(—iw(k,n), ik, Oy, y)} E(y, k,n).

From (3.6.21) it follows that

_iaﬁ(y,k,n)

G= Ik

(3.6.24)

We now examine (3.6.19). It follows that (3.6.19) has the homogeneous solu-
tion 3 = ;z'(y,2k,m) iff

2w(k,n) =w(2k,m), (3.6.25)
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for some integer m. When this occurs, we have the case of second harmonic res-
onance where the mth mode of wavenumber 2k wave has twice the frequency of
the fundamental wave and is therefore resonant with quadratic interactions of the
fundamental wave. The F.A.T. would apply and would indicate that no solution
exists unless A = 0. Thus, when resonance occurs the problem must be examined
differently (see §3.9). For now, we assume this is not the case. A solution for 3(y)
can be calculated by expressing it as a summation of the eigenfunctions E(y, 2k.m)

in the form

3(y) =D C(k)h(y.2k.7). (3.6.26)
r=0

where

J5° 2ak(2k)h(y. 2k, r) M 2 dy

Crlk) = B(w(2k.7) — 20(k, n)) (3.6.27)

with M,2 given in Appendix 3. The coefficients (,; can be calculated numerically.
Given the solutions (3.6.24) and (3.6.26), (3.6.16) implies that

v = iAeta(y) exp(i6) + A%¥s(y) exp(2i6) + c.c. + T(y. &, 7), (3.6.28)

where

B = — [#(3+ 5»303/)J Oh(y, k,n)

8 ok
B yﬁ(cc;(k;c;) +BoY)g )+ ﬂl?_) (3.6.29)
T (@ + BBay) ﬁ(ﬂ_ ) h :
¥ [“ﬁ ]3(y)+2ﬂ Ftua (wbm) (3.6.30)
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The O(A?) problem is given by

£(6¢,6I,6y, y)h(z) =
= —[—cc(k,n)£:1(0,0.0,,y) — £2(0,0.0y,y)] e + Mo(|Al?)e

+{_BA1'+Me

g2 - . B, (3.6.31)
e [_ﬂa—:(k’") +£2("w(k’n),zk~3y,y)} ah—(%l@

1 -~
- ;222(at7 a.r’ ayv y)h(y~k~ n)} } exp(zG)

+ M,2 exp(2:8) + M3 exp(3i8) + c.c..

8+ pa
+ J(wV AO) 4 J(2'9 AV 4 g (O R0 (3.6.32)

$@ = _ L{ he® + Bayh® — [cg(k.n) + Fay] A"

-3 [h(o’h(rl) + RDRO) 4 h(o’h(so)} } - wf‘é’.
where My and M, are given by (A.3.12) and (A.3.13). respectively. while M.2 and

M.,s will not be required in the following analysis.
As before, we eliminate the constant terms from (3.6.31) by setting

B(y.&, ) = [A(E. 7)[*8(y),
where ®(y) satisfies
[—CG(ka n)‘cl(o’ 0’ aya y) + 22(07 O, 3y,y)] ¢ = -Mf)a
or equivalently
: Bea(k,
id®(B + ap)k [yayy + 0y — (a2n2(0)y + %)] & = M,. (3.6.33)
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The operator in (3.6.33) has a homogeneous solution given by

® = Z(y,O. m),

cg(k,n) = cc(0,m). (3.6.34)

where m is an integer representing the mth meridional mode. If (3.6.34) holds, it
follows by the F.A.T. that (3.5.30) will not have a solution and we have long-wave-
short-wave resonance as discussed in §3.8. For the wedge front, the values of k. n.
and m that allow (3.6.34) to hold are not trivial and will be discussed in §3.8. Note
that if —1/u < a/8 < 0 then x*(0) is negative. « is imaginary. and the operator in
(3.6.33) has a continuous spectrum of solutions. Thus, resonance will always occur
in this region and the remaining analysis pertains only to values of o/ outside this
region. Also note that all solutions to (3.6.34) give a LWSW resonance as opposed
to only the single solution for the gently sloping front analysis.

For now, we will assume that resonance does not occur and that (3.6.33) has

the solution

B(y) =) orh(y.0.7). (3.6.35)
r=0

where

' 2ak(0)h(y, 0, r) My dy

Blcc(0,7) — cg(k,n)) (3.6.36)

¢r=

can be calculated numerically. Again, it is clear that a solution can only be found
provided LWSW resonance does not occur. Given a solution for ®, a solution for ¥
can be found from (3.6.32).

We now return to equation (3.6.31). Assuming

h® =B1(X,T, )N (y) expli(kz — wt)]
+ By(X, T, 7)N2(y) exp(2i(kz — wt)]
+ B3(X, T, 7)N3(y) exp[3i(kz — wt)] + c.c.,
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and considering the exp[i(kz — wt)] problem for the equation (3.6.31) with the
solutions (3.6.35), gives

Bl(Xv T7 T)S(—lw(k, 2)9 2k9 3y7 y)lvl (y)

_ i Pw(k,0) . 1~
=-# {A’ - EWA“} Ay, k.n) (3.6.37)
27 (0 I
— S gtk n), ik, 8, 9) TEE RN 5541410y,

where 28A|A|I?*M(y) is the simplification of M, with 9 a function depending on
the previous solutions (see (A.3.13)). In deriving (3.6.37) we have used that if we
differentiate (3.6.21) with respect to k we find that

Loo(—iw(k,n),ik,dy,y)h(y, k,n)

| 0w : . Oh(y. k
-2 [ﬂa—:(k,n) + 22(—zw(k,n).zk,3y,y)] _(a%c—) (3.6.38)
. OPw ~ ) ) azﬁ(y,k.n
= i85 (k. n)h(y. k.n) = Sl—iu(k.n). ik, 8y.y) —aer ).

Once again, (3.6.37) has the homogeneous solution .V;(y) = E(y. k.n). It then
follows from the F.A.T. that a solution exists iff it holds that

iAr + AAge = TA|A|%, (3.6.39)
where
x 9 ~
T = / ““;(k) M(y)h(y, k,n)dy (3.6.40)
o]
and
3\ = 18%w(k,n)
T2 Bk?
(2n+1) (k(3a252(k) _ k?)) (3.6.41)
- 8 ar3(k) ’
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3.7 Solutions to the Amplitude Equation

The NLS equation governing the evolution of the envelope of the linear so-
lutions A(&,7) given by (3.5.45) and (3.6.39) can be examined in many ways (see
Newell, 1974, Craik, 1985, and Slomp, 1995). For our purposes we discuss two
characteristics of the solutions as presented in Craik (1985). The first is the de-
velopment of Benjamin-Feir (hereafter BF), or side-band. instability of a wavetrain
leading to travelling waves. The second is the development of a soliton solution.

The equation is separated into two forms of solutions based upon the sign of
the ratio £/A. It is this ratio that determines whether or not the fundamental wave
is susceptible to BF instability. To examine this possibility we follow Craik (1985).
First, we recognize that (3.6.39) allows a Stokes wave solution of amplitude ag given

by
A = ggexp[—iZaiT]. (3.7.1)

Now we examine the linear stability of this solution by letting
A = [ap + ay exp(ifE + i0T) + a_ exp(—i&E — ioT)] exp[—ia® 7], (3.7.2)

where & and o are the slow scale wavenumber and frequency, and linearizing the
system in the perturbation amplitudes, as. Applying solvability constraints for a

nontrivial solution gives the dispersion relationship
o? = AR (A\R? + 22a?). (3.7.3)

Imaginary, and hence unstable, roots will occur when the large-scale wavenumber

R satisfies

2435
0< A< —“AL. (3.7.4)

Thus, a finite range of unstable wavenumbers K exists whenever £/\ < 0, and wave-
trains are stable to all wavenumbers £ if £/A > 0. The wavenumber of maximum
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growth and the maximum growth rate of the instability are given by

_(_az)
ﬁqna.r-( /\>.

Omar = lzlag,

(3.7.5)

respectively.
It would appear that the possibility of instability would violate the nonlinear

stability established in §3.3. However, as discussed in Newell (1974) and Slomp and
Swaters (1997), this instability only allows the reorganization of neutral modes into
travelling wave packets/soliton solutions whose amplitude is bounded by the initial
state. Therefore, the fronts are nonlinearly stable.

We briefly review the stability characteristics of both the gently sloping front
and wedge front solutions. For the gently sloping front. we find from (3.5.38) and

(3.5.42) that

B2 K2R (L + pp + % p%) — 30%(1 + 3pp + 3u*p?)]

2 —
AT B3 (Bup(l + up))2 (k2 — @) ) (3.7.6)
which changes signs when k& = £ and k = k. where
3(1 + 3up + 3u?p?) _
2 _ 42
ke =¢ [ (1+ pp + u2p?) |~ (3.7.7)

In Figure 3.1, we plot the contours of the maximum growth rate given in (3.7.3)
in the p = a/B — k/{ plane. The darker the grey. the higher the growth rate, with
the white regions being stable. The important boundaries are the lines & = ¢ and
k = k. as marked on the graph. As well, the lines p = 0 and p = —1/pu are marked as
dashed lines and represent the singular points of the linear model where the growth
rate becomes infinite. Note that the graph is symmetrical about p = —1/2u. The
graph illustrates that all solutions are unstable for large wavelengths with the growth
rate becoming large as the long-wave-short-wave resonance is approached. As well,
all solutions become unstable at small wavelengths with a growth rate that grows
like k3. It is important to note that in the region —1 /@ < p < 0, the wavetrain is
more susceptible to unstable growth. This is also the region where the phase speed

can be negative.
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1/n

a/8

-1/p -

-2/p =

Figure 3.1: Plots of the maximum growth rate of the BF instability for
the gently sloping front as given by (3.7.5). The darker the grey the greater
the growth rate. (The contours are 0,1,2,4... and so the growth rate dou-
bles with each successive contour.) The white regions indicate where the
wavetrain is stable. The vertical line marked k = £ is the wavenumber where
long-wave—short-wave resonance occurs. The second line marks where k = k.
and ¥ smoothly changes sign. The dashed lines at /8 = 0,—1/u indicate
the singular points in the model.
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In the RED model limit, p — 0, we have unstable waves for 0 < k& < £. long-
wave-short-wave resonance at k = ¢, stable waves for £ < k£ < /3£. and unstable
waves for k > v/3¢. The results are now symmetrical about p = 0. As well. in the
limit as the model tends toward equal layer depths, 4 — oc. we have stability for
¢ < k < 3¢, and instability otherwise. Again the results are now symmetrical about
p=0.

The above analysis can be repeated for the wedge front solution where ¥ is
given by (3.6.40) and A by (3.6.41). The forms of these expressions are much more
complicated and the possibilities of an even greater number of resonances clouds
the issue further. In Figure 3.2, we plot the stability regions in the p — k2 plane for
the n = 0 meridional mode. The solid lines marked m = 1,2, 3 are the curves where
long-wave-short-wave resonance occurs with the long wave of the mth meridional
mode. Here ¥ becomes infinite and changes sign. The dashed line marks where &
smoothly changes sign. We see that the greater number of resonances leads to a very
complicated graph. As the zonal length scale (1/k) decreases the size of both stable
and unstable regions becomes very small. We can conclude that increasing the
energy available in the basic state, seen here in moving from a gently sloping front
to a front with an O(1) slope, increases the possibility of resonance and reduces
the importance of the BF instability in determining the nonlinear evolution of a
wavetrain. In fact, especially when p < 0. the regions of instability become quite
concentrated about the long-wave—short-wave resonances.

In Figure 3.3, the maximum growth rate as determined by (3.7.3) is plotted
versus k? for p = 1/2u (the dashed line on Figure 3.2). This graph further indicates
the dominance of the long-wave-short-wave resonance in the wedge front model.
The growth rate becomes extremely large for those values of k near resonance,
indicating that the dynamics are governed by the long-wave-short-wave resonance
and not the NLS equation. We do see an increase in the growth rates as k increases.
It should be noted that if we choose to examine higher values of the meridional mode
n, that is, shorter meridional scales, we see an increase in the number of resonances
and increased growth rates. Thus, the instabilities grow more rapidly at smaller
scales.

If we examine the limit as 4 — 0, we see that in Figure 3.2 the region where
the analysis breaks down extends to the entire lower half of the plane, that is, for
all eastern flows where a > 0. The results for the upper half plane are qualitatively
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1/p

a/B ANALYSIS BREAKS DOWN
B B e At
’ m=1-—
l/ //-mzl—f
o=t /""/":;"5;‘5"
U S ,"-tﬂ;é S
‘/,/ ’_—tﬁa
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o/ | = |

0 2u 40 6u 8u 10u

Figure 3.2: The graphs show the regions where the solution to (3.6.39) is
stable (S) and unstable (U) in the p—k? plane for the n = 0 meridional mode.
The solid lines marked m = 1,2,3 are the curves where long-wave—short-
wave resonance occurs with the long wave of the mth meridional mode. The
dashed line marks where ¥ smoothly changes sign. Only the first few regions
are marked as stable or unstable with the alternating pattern continuing.
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K
Figure 3.3: The graph shows the maximum growth rate of the BF instability
for the wedge front as determined by (3.7.3) versus k2 for p = 1/2u (the
dashed line on Figure 3.2). The growth rate becomes infinite when long-
wave-short-wave resonance occurs.

the same. Our results differ from those of Slomp (1995) for the analysis of the RED
model on an f-plane. The results of Slomp (1995) were that even (odd) meridional
modes were unstable (stable) with a growth rate proportional to k*. No resonances
occurred as these are a result of the addition of the S-plane.

Thus, the instability occurs for large wavelengths of the amplitude envelope,
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but grow most rapidly for small scales in the original wave. As a result, small scales
in the original wave will rapidly form larger scale wave packets. This leads to a
cascade of energy from the smallest scales to larger-scale structures. The effect
that such numerous stability boundaries has on the fully nonlinear evolution of a
given mode, where many other modes, possibly stable or unstable, are excited is
unclear analytically and will be discussed in the numerical section of this chapter
(see §3.11).

Since we expect the formation of larger scale wave packets through the pro-
cess of BF instability, it is interesting to look at possible final-state solutions to
(3.6.39). Equation (3.6.39) can be solved using inverse scattering theory as shown
in a multitude of works. These solutions show that when AT < 0. “localized wave
packets evolve into discrete envelope solitons and a dispersive tail” (Craik. 1985).
These solitons are robust in nature and survive. unchanged. interactions with any
other nonresonant solitons.

The travelling wave packets/soliton solutions can easily be examined by letting

the amplitude take the form of a travelling wave.

A=exp[iRE —iVr]f(E-UT). (3.7.8)
with
D. g
R= % (3.7.9)

Substituting into (3.6.39) gives
ff=nf+vf=0, (3.7.10)

where
>

vV
M= /2 — T and Yo = —-X. (3.7.11)

Equation (3.7.10) occurs several times in our analysis and a complete description of
the solutions is given in Appendix 5. Since f represents a travelling wave it must
be bounded for all values of its argument. Thus, the solutions in Appendix 5 that
become unbounded are not applicable here. The solutions that can occur are those

given in regions 1 and 2, when v, > 0, and region 6 when v, < 0.
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When +; > 0, the form of the wave is governed by its initial amplitude at the
origin, Ao = A(0,0). If A3 > 2(V — AR?)/T then the solution falls in region 1 and
is given by a doubly periodic cnoidal wave (see (A.5.10)). If 42 < 2V — AR2 )/
then the solution falls in region 2 and is given by a doubly periodic dnoidal wave
(see (A.5.12)). Lying in between these solutions is the bright soliton solution given
by (A.5.27). This solution requires that

A2 =2(V - AR?%)/T (3.7.12)
and reduces to
f(E—=Ur) = Ag sech[r(E - UT)]. (3.7.13)
where
TA2\ B}
v = <— N ) . (3.7.14)

We can write the soliton solution using (3.7.8) and the definition of the leading-order

solution of h to get

R = Aq sech[Aw [z — (cg(k, &) + AU ) ¢]]
X {exp [zlz*:r + i@t} ;z'(y, ¢) + c.c.} .

where
k=k+ AR,
w =w(k,l) — ARcg(k,?) + AV

Thus, & denotes a small, arbitrary shift in the fundamental wavenumber k while
the frequency is correspondingly shifted by the group speed times £ plus a small,
arbitrary shift V. The relationships between the soliton amplitude, Ag, the soliton
width, w, the soliton speed U, the wavenumber shift &, and the frequency shift
V, are given by (3.7.9), (3.7.12) and (3.7.14). In this formulation, we see that the
amplitude is modulated by the travelling soliton structure, which travels at a shifted
group speed, cg(k, £) + AU. We've given the solution here in terms of the notation
for the gently sloping front, but the solution holds identically for the wedge front.
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In the stable limit, that is, when 42 < 0 and v; < 0. the solution is determined
by the slope of the solution at the origin, f'(0) = Agp = A¢(0,0). The solution
falls in region 6 and is given by (A.5.20). In the limit where A2, = —42/24, =
—A(R? — V/))?/2%, we get the dark soliton solution given by (A.5.35).

3.8 Long-wave—short-wave Resonance

In the solution of the amplitude equation presented in the previous section.
it became apparent that the long-wave—short-wave (LWSW) resonance is extremely
important in understanding the weakly nonlinear evolution of a given wavetrain.
The BF instability analysis suggests that this resonance is the source of large un-
stable growth. The resonance occurs when a long-wave mode is a solution to the
first order slow problem with a phase speed and group speed equal to that of the
group speed of the fundamental. That is,

cg(0,m) = ¢(0.m) = cg(k. ). (3.8.1)

where m is the meridional mode wavenumber of the long wave. This resonance, as it
occurs in the nonlinear interaction of surface gravity waves. is studied in Grimshaw
(1977) and Djordjevic and Redekopp (1977) and we briefly present some of their
analysis.

We will carry out the analysis first for the gently sloping front, where resonance
occurs for k£ = ¢ and m = 2¢. In order to examine the effects of LWSW resonance,
a long-wave solution must be included in the analysis from the beginning. That is,
we assume the perturbation is composed of two parts: a fast varying or short wave
analogous to the perturbation of the previous analysis and a slowly varying or long

wave independent of the fast variables z,¢. That is,

h = Ahy(z,y, 4 X, T,7) + erhi(y; X, T, 7), (3.8.2)
Y= Av¢s(z,y, 4 X, T, 7) + ertdi(y; X, T, 1), (3.8.3)

where we scale the two parts by small quantities A and ¢;, respectively, and the
subscripts s and ! indicate the short and long waves, respectively. As well, the slow
time and space scales are changed so that we can enforce an appropriate balance.
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We replace (3.5.1) with
t=At, T=ept, T=e3f X =o¢c,z. (3.8.4)

where we introduce the appropriately scaled time, f, and parameters (3, alpha)
associated with the GS front. Henceforth, we drop the tildes. The sizes of ¢; and
€2 are chosen so that we get a desired balance (see Grimshaw. 1977). We want the
second order problem found in the previous analysis to be the same. This requires
that Aez > (Ag1.e261,€2). We then require that the second order slow derivative
terms, O(Ace3), balance the interaction of the long-wave and short-wave, O(Ag;),
giving that &; = £2. Finally, we require that the second order slow derivatives of
the long-wave, O(¢,¢2). be balanced by the short-wave interactions that produce
long-wave terms, O(AZ%e;), giving €162 = A2. This reduces the scaling to £; = A4/3
and e, = A?/3,

We allow for the case of near resonance. That is, we choose
cG(k,?) = (1 + e2¢)cc(0,m), (3.8.5)

where ( is an O(1) tuning parameter that specifies how close to exact resonance.
¢ = 0, we are. This may seem to be an unnecessary difficulty, but it is very
important. As it turns out, relatively large variations in the wavenumber from the
critical wavenumber of exact resonance result in only a small value for the tuning
parameter. In the case of the gently sloping front. (3.8.5) can be expressed as a
function of k? — ¢2, a measure of the difference between the wavenumber and the

wavenumber of exact resonance k = ¢. This gives

1 [ calk,0)

‘= & <CG(O’2£) B 1)
_1 (3a(,ua + B)(k? —42))
= o\ P riaeti )

(3.8.6)

For typical parameter values, 8 = a = £ = 1, u = 0.5, this reduces to

_ 9 g2 p
(—14620: 2%).
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Therefore for €, = (0.1)2/3 the tuning parameter remains O(1), that is. say, || < 5,
for 0 < k < 3.7. Comparing this wave range to Figure 3.1 suggests that the evolution
of the slowly varying amplitude is actually governed by the equations derived in this
section for a substantial range of wavenumbers.

Using the above definitions, the analysis proceeds as in §3.5 and §3.6. At
O(A) the linear solution, (3.2.27, 3.5.11), is obtained for the short wave, h,, with
the slowly varying amplitude A. At O(A%/3), the long wave trivially satisfies the
equations. At O(A®%/3), the solution (3.5.15, 3.5.22, 3.5.23. 3.5.24) for the short
wave is obtained, with the stipulation that the amplitude travels at the group
speed, A = A(§,7) (we drop the mean-flow terms as they are no longer required).
At O(A?), the second harmonic problem is encountered. and can be solved as before
though the results are not needed in the present analysis. Also at O(A?2), the long-
wave equation (3.5.31) is obtained giving the solution h; = B(ﬁ . T)E( y.0.2¢), where
we have used (3.8.5) and (3.8.1). At O(A7/3). the second-order. slow-derivative
terms of A, as given in (3.5.41), are balanced by the leading-order interaction of the
short and long wave. If we repeat the analysis that leads to equation (3.5.41) we

get
160%w . -
A — lgw(k,e)AEE = ZQIAB, (387)
where
2
&, = MBE20) g g2y (3.8.8)

3

At O(A%3), the slow-time-derivative term of B and the tuning error term are
balanced by the interaction of the leading and second order short wave solutions and
slow, quadratic interactions of the short wave with itself as in (3.5.28). Repeating
the analysis leading to the long-wave equation (3.5.28) gives

By —cG,(Be = &;(|A1%)e, (3.8.9)
where ®, is given by
‘ )
&, = 5‘(5—;“0‘—“)%24. (3.8.10)
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Equations (3.8.7) and (3.8.9) are the long-wave-short-wave equations derived
by Grimshaw (1977) and Djordjevic and Redekopp (1977) and studied in Ma (1978).
They can be written in the normalized form

iAr + Mg = AB, (3.8.11)
B = vB¢ + @(|Al*)e. (3.8.12)

where B = —&,B, v = cg.(, A = 13%(k,¢), and & = —&,&,. While (3.8.11,
3.8.12) can be solved using inverse scattering methods (see Ma. 1978) some insight

can be gained from some straightforward analysis.
First, we repeat the stability analysis of the previous section by examining

the stability of a constant amplitude solution by letting

A = [ao + a4 exp[i(RE + o7)] + a_ expli(—fE — o7)]] exp(—iboT).
B =bo + blexp[i(RE + oT)] + exp[i(—RL — o7)]].

and examining the linear equations to get the dispersion relationship
o —vRo? — N2 R'0 + 2002 R% + AR = 0. (3.8.13)

If (3.8.13) has complex roots then the wavetrain is unstable. and the long-wave-
short-wave equations have a BF instability similar to that discussed earlier. When

the resonance is exact, v = 0, it follows that complex roots exist for a finite range

of wavenumbers

1/3
0<8”< (%) .
When tuning is present, the instability is inhibited if the tuning is positive and
shifted to smaller scales if the tuning is negative. In Figure 3.4, the maximum
growth rate, Omaz, and range of unstable wavenumbers, £, as determined by (3.8.13)
are shown versus the wavenumber % using the relationship (3.8.6). It clearly shows
the effect of tuning and illustrates that the maximum growth associated with the
resonance occurs at a wavelength slightly less than exact resonance. Note that the
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range of unstable wavenumbers & appears deceptively small due to the large scale

on the lower graph.

These results can be used to explain the discontinuous results of the previous
section. In order to compare the growth rates associated with the LWSW resonance
with that of the previous section, we must scale them appropriately using the new
slow time scaling (3.8.4). For example, choosing A = 0.1 and scaling the growth
rates in actual time, ¢, we can combine the results for the LWSW resonance with
the BF instability. We assume that the LWSW resonance dominates the flow for
k < k. and that BF instability applies for £ > k. where k. is given by (3.7.7).
Thus, we redraw Figure 3.1 to obtain Figure 3.5. Now the growth rates at smaller
scales are more significant. the region of stability has been diminished. and the
discontinuity across k = ¢ removed. Only the singular points p =0 and p = —1/u
cause difficulty. Still, at large wavenumbers (small wavelengths) the growth rate of
the BF instability becomes comparable to and eventually exceeds the growth rate

associated with the LWSW resonance.

Once again. the analysis can be repeated for the wedge front. Resonance oc-
curs at an infinite number of wavenumbers for a given meridional mode. with the
restriction that the meridional mode of the long wave is greater than the funda-
mental mode. Table 3.1 lists the first four LWSW resonant pairs for the first five
meridional modes. The coefficients ¢; and $, must now be calculated numerically
(see (A.3.14) and (A.3.15)) and the possibility of multiple resonances for a given
fundamental wave arises. Otherwise. the equations (3.8.11) and (3.8.12) still hold
and instability arises as before. For simplicity, we only plot the the graph analogous
to Figure 3.3 in Figure 3.6. The graph illustrates how the LWSW results, given by
the solid lines labelled with the long wave meridional mode number m, compare to
BF instability results, given by the dashed lines, for p = 1/2u. As before, the LWSW
resonance is expected to dominate the BF instability suggesting unstable growth
for all wavenumbers. As well, the possibility of several resonances complicates the
picture, as the instabilities associated with different resonant modes overlap. Thus,
it becomes unclear which instability will dominate the evolution, although it is clear
that growth rates increase as the wavelength decreases. As noted earlier increasing
the meridional mode of the fundamental wave increases the number of resonances,
giving vet a more cluttered picture. One must conclude that increasing the slope of
the front, and hence the amplitude of the zonal flow, allows for a greater number
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! J
0 0.5 1.0 1.5 2.0

k/1

Figure 3.4: Stability characteristics of the LIWSW resonance for the gently
sloping front with £ = 1. The upper graph shows the maximum growth rate
as determined by (3.8.13) versus the small wavenumber k. The lower graph
shows the minimum and maximum values of & for instability as given by
(3.8.13) versus k. The small region in between the two curves is the region
where instability occurs. At k/¢ =1 we have exact resonance.
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1/ s

a/f

-1/

-2/p

Figure 3.5: Contour plots of the maximum growth rate expected when
both the effects of the LWSW resonance and BF instabilities are considered.
White regions are stable while darker grey indicates higher growth rate. The
contour level is 0.1.
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Short Wave Long Wave Short Wave Long Wave

(k.n) mode (m) (k,n) mode (m)
( 1.203, 0) 1 ( 0.853. 2) 3
( 2.036. 0) 2 ( 1.031. 2) 6
( 2.856. 0) 3 (0.371. 3) 4
(3.673,0) 4 ( 0.544. 3) )
(0.395, 1) 2 ( 0.691, 3) 6
(0.913.1) 3 ( 0.826, 3) T
( 1.203, 1) 4 ( 0.324, 4) 5
(1.484, 1) 5 (0.472, 4) 6
( 0.445, 2) 3 ( 0.395, 4) 7
( 0.663, 2) 4 ( 0.707, 4) 8

TABLE 3.1.  The first four long-wave-short-wave resonant pairs for the
wedge front for each of the first five meridional modes. An infinite number
of resonant pairs exists for each short wave meridional mode. The meridional
mode of the long wave is always greater than the meridional mode of the short

wave.

94



3. ST model

of unstable resonances. These resonances complicate the picture so that predict-
ing a dominant pattern is difficult but they do suggest that all wavetrains will be
unstable.

As discussed in Djordjevic and Redekopp (1977). a travelling wave solution
to (3.8.11, 3.8.12) can also be found by letting

-

A=amP%-—W4f@—Um B= £2,

which gives the equation

f"=nf+nfi=0.

with
-4V :
NEToT o T T T e

This is the equation studied in Appendix 5 and similar solutions exist to those found
in §3.7. Note that = is given by the same definition as in §3.7. but that v, differs
and now depends not only on the nonlinear interactions. ®. but also on the tuning
and travelling wave's speed. The solution form again depends on the signs of ~
and ~; with all solutions necessarily bounded. When v2 > 0 (42 < 0). we again

have a bright (dark) soliton solution.

3.9 Three Wave Resonance

In the analysis in §3.6, the second order problem (3.6.19) could not be solved
when second harmonic resonance occurs. Noting the importance of the long-wave—
short-wave resonance in the stability analysis of the envelope evolution, it behooves
us to examine this resonance and others like it. The second harmonic resonance is
a special case of three wave resonance. Three wave resonance occurs when the qua-
dratic interaction of two waves resonates, has the same frequency and wavelength,
as a third wave. This leads to interaction of the three waves at the second order

problem and results in equations that govern the envelope evolution of the three

waves together.
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Figure 3.6: The growth rates of the BF instability (dashed line) and the
LWSW resonance (solid line) in true time scale. The LWSW lines are labelled
with the long-wave mode they correspond to.
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To examine three wave resonance, consider a leading-order solution that is

the superposition of three waves.

3
h =Y Ajh(y,kj.n;)expif; +c.c.. (3.9.1)

=1

where each wave has a slowly varying amplitude, A4;, and phase, §; = kjz + w;jt.
Each wave is a solution to the leading-order problem with the corresponding dis-
persion relationship, wj = w(kj,nj) with w(—kj,n;) = —w(kj.n;). The quadratic
interaction of these waves will consist of waves proportional to expi(+6; * ;) for
7.l = 1,2,3. From the previous analysis, it is clear that a quadratic-interaction
wave will influence the evolution of the fundamental wave if it possesses the iden-
tical structure in z,t, that is, if the interaction wave has the same wavelength and
frequency and resonates with the fundamental. The evolution of the first wave.
.41'5,,1(3/, ki) expi6;, will be influenced by quadratic-interaction waves that have
phase +6; + 6; = 6,. All such cases can be reduced to the restriction

6, +6,+6; =0.

This gives two equations that govern when resonance occurs:

ki + ko + k3 = 0. (3.9.2)
w1 +wy +wsz =0. (3.9.3)

For the given dispersion relationship, (3.2.28). it can be determined that these
equations can be satisfied at various values of k for specific meridional modes.

The case of second harmonic resonance occurs when k; = k-, so that k3 =
—2k; and w(2ky,n3) = —2w(k1,n;), which is condition (3.6.25) found in §3.6 that
prohibits a solution to the problem (3.6.19). Similarly, the long-wave—short-wave
resonance can be described by the triad k&; = k — ¢, ky = —k — ¢, and k3 = —2e.
Substituting into (3.9.3), dividing by 2¢, and taking the limit as ¢ — 0 gives that
%‘—) = ¢(0,n3) = cg(0,n3), which is the condition (3.8.1) necessary for long-
wave—short-wave resonance as discussed in §3.8. However, the infinitesimal size of
the wavenumbers involved in this resonance influences the analysis and necessitates

the separate treatment examined in §3.8.
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To explore three wave resonance, we examine the gently sloping front model
initially and then extend this analysis to the wedge front. The evolution of a three-
wave resonance triad is determined by the O(A) problem. Using (3.9.1) with (3.9.2)
and (3.9.3), the O(A) equation becomes

OA 0A
£(8:,0z, 8y )b = { - [ﬁET—l + 3,-;-22(6,.6:)} sin(1y)

R(8 + 2ua)
9

+id343 (k2 + ) — (13 + 8)]
(3.9.4)

{ (k‘2£3 b k’3e2) Sin(—(éz + eg)y)

+ (k2f3 + k3é€z)sin ((€3 — &2)y) }

where ¢; = n;w/L. As before, the F.A.T. applies to this equation and a condition
that allows a solution is derived. Accordingly, we would multiply the right-hand
side of the equation by sin(¢;y) and integrate over the domain. If the quadratic
term in the second and third waves is to contribute to the solvability condition we

must have that either
—(£2+€3)=:t€1 or (43 —62) = +/4;.

Both cases reduce to an additional requirement for three wave resonance that the

meridional mode numbers must sum to zero, namely
ny+ngy+n3 =0, (3.9.5)

where n; are nonzero integers. Assuming that (3.9.5) holds in addition to (3.9.3)
and (3.9.2), the F.A.T. implies that a solution exists iff

6T1 + dkl axl =’A2A3————( Qﬁ# ) [(k2 + €2) — (K3 + €3)] (ksla — kot3).
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Repeating the analysis for the other two waves leads to the three equations

04, dw; 04

o+ L =iy,
czTAz + c;u;: 364_;1(2 = T3 AAL, (3.9.6)
%}43 + “2"’: g‘; = 31,4} A5,
where
Jus = S E 2O (42 2y (k2 + B)] (koba — kals).  (39.7)

28

A similar system of equations can be derived for the wedge model. Two
differences should be noted. First, because the eigenfunctions for the wedge model
given by (3.2.40) do not have as simple a form and because of the greater number of
quadratic interactions, the terms on the right-hand side of the equation analogous
to (3.9.4) are much more complicated and must be calculated numerically: see
(A.3.16). Second, it so happens that a restriction on the meridional mode number
akin to (3.9.3) is not required for the wedge model. This follows since the quadratic
interaction of the eigenfunctions and their derivatives results in terms that are
infinite sums of the eigenfunctions and so always contain a term proportional to the

homogeneous solution of the right-hand side.
The equations (3.9.6) can be written in standard, normalized form by letting

4 i Ay A i A i A
- 1 = - T 2 = - —’ = - —_?
vV 1331312| V1J323012} V1331 T23|

3 —_—
to get, dropping the tildes,

%‘T‘b ‘3‘]’: %;1{2 = 52 A3 A}, (3.9.8)
where
sy = sgn(J23), s2 =sgn(Js1), s3 =sgn(Ji2). (3.9.9)
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Resonant Triad Interaction

(ki,mi) Parameters

(0.200, 1), (4.800,-2), (-5.000, 1) 1. 1. -1
( 0.250, 1), ( 3.750,-2), (-4.000, 1) 1. 1. -1
(0.320, 1), (2.805.-2), (-3.125,1) . 1, -1
( 0.400, 1), ( 2.100,-2), (-2.500. 1) 1, 1, -1
( 0.500. 1), ( 1.500,-2), (-2.000, 1) 1. 1. -1
( 0.800, 2), ( 4.200.-4), (-3.000. 2) 1, 1, -1
( 1.000, 2), ( 3.000.-4), (-4.000.2) 1. 1. -1
( 1.280, 2), ( 1.845.-4), (-3.125,2) I. 1. -1
( 0.450, 2), ( 0.800.-1). (-1.250.-1) -1, -1 1
( 0.900. 4). ( 1.600.-2). (-2.500.-2) -1 -1 1
( 1.000, 3), ( 3.000,-3). (-4.000.-2) -1 1.1

the other two.

TABLE 3.2. Resonant triads and interaction parameters for the gently slop-
ing front. Note that one interaction parameter always differs in sign from

These are the standard three-wave interaction equations as derived in Craik (1985).
It is also possible to examine the case of near resonance, where (3.9.2) and (3.9.5)

are satisfied but (3.9.3) is replaced by

wi +wa +

w3 =AC,
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Resonant Triad Interaction
(ki,ni) Parameters
( 1.206, 2), (1.206,2), (-2.412,1) -1, -1, 1

(0.686, 3), (0.686,3). (-1.372,2) | -1. -1. 1

(1.717, 4), (L.717,4). (-3.434.2) | -1. -1. 1

(0.388.3), (3.558,0). (-3.946.0) | -i. -1. 1

( 0.926, 3), (4.306,0), (-5.232,0) | -1, -1. 1

(3.041, 3), (4.045,5), (-7.086,2) | -1. -1. 1
(0.577, 4), (4.906,0), (-5.483.0) | -1. -1. 1
(2.205,4), (3.841,4), (-6.046,2) | -1. -1. 1
(1.128,5), (2.194,1), (-3.322,1) | -1, -1, 1

TABLE 3.3. Resonant triads and interaction parameters for the wedge
front. Note that one interaction parameter always differs in sign from the
other two. The first 6 triads are examples of second harmonic resonance.
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where here ¢ is an O(1) parameter representing how well the resonance is tuned.
However, our analysis here is brief and the reader is referred to Craik (1985) for

more details.

The solutions to (3.9.8) have been well studied (see Craik, 1985). Two types
of solutions exist: bounded, periodic transfers of energy occurring between the three
waves when one s differs in sign from the other two, and explosive growth of all
the waves when the signs of the s’s are the same. In all the resonant triads found
for this model, the s’s differ in sign (see Tables 3.2 and 3.3). It is possible to solve
the equations (3.9.8) using the inverse scattering method and to present a solution
that represents a “pump” wave, where one wave’s amplitude grows as a result of
the forcing of the other two. These solutions will not be discussed in detail here
and interested readers are referred to Craik (1985). We simply conclude that three
wave interactions do exist, and that these interactions result in periodic transfers
of energy between the three waves. In Tables 3.2 and 3.3 we give a partial list
of three wave resonances that are possible for the gently sloping and wedge front.
respectively. The tables list the three pairs of zonal and meridional wavenumbers
and the three interaction coefficients. s;. Note that for all cases. the s’s differ in sign.

Also, for the wedge front model. the case of second harmonic resonance occurs where

two of the wavenumber pairs are identical.

3.10 The Long Wave Solution

We look at one final idea associated with the weakly nonlinear analysis. In the
previous analysis. it was assumed, though not stated outright. that the leading-order
normal-mode solution was valid for O(1) length scales, that is, k being O(1). There
are obvious points where the analysis breaks down if £ = 0. Yet, considering these
scales seems relevant to the large scales examined through the weakly nonlinear
analysis and are also relevant to comparison of long wavelength analysis of previous
works, for example Griffiths et al. (1982), and Paldor and Killworth (1987). As

such, we consider the long-wave limit of the previous analysis.

The long-wave equations are derived by considering the limiting case as £k — 0.
This can be done easily by considering the previous analysis with solutions that no
longer vary in fast time and space. (Note: This analysis can also be carried out by
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rescaling the model equations for large zonal length scales.) That is, we consider
(r™, w™) = (B™(X, T, 7)bm(y), D™ (X, T, 7)dm(y)) -

Now, when doing the nonlinear analysis, it follows that £(8;, 8z, 8, )h{™ = 0 for all
orders m and that all nonlinear interactions give rise only to long-wave terms. With
these assumptions, the leading-order problem is trivially satisfied as the solution is
independent of z and ¢. The O(A) problem is given by

[£1(0.0,8,) B + £2(0,0,8,)BY] bo(y) = 0. (3.10.1)

Equation (3.10.1) is similar to one that arises for the constant terms in the O(A?)
analysis of the standard problem (see (3.5.28) and (3.6.33)). Equation (3.10.1) has

the solution
BO(X.T.7)bo(y) = B(£, 7)h(y.0.n).

with € = X — ¢g(0,n)T. as before. Having obtained the form of B(®by. we also
have that

DO(X.T.7)do(y) = BO(E, r)gzif(y,o.n).

Note that in the long wave limit, the phase speed and group speed are equal and
no longer depend on k. Therefore the system has become nondispersive.

Now, the O(A2) problem is given by

B! [-c6(0,n)£1(0,0,8y) + £2(0.0,8,)] b1 ()

a | (3.10.2)
= BBOh(y,0,n) + BBV 65(y),

where ¢g(y) is a function of y representing the slow quadratic interactions. As it
turns out, ¢p is zero for the gently sloping front. This is not surprising since the
quadratic terms also cancelled out in the O(A) problem of §3.5. This indicates
that in order to examine the long-wave model for the gently sloping front, one must
include another large spatial scale to obtain an equation at this order. If this is
done, one obtains an evolution equation that is just the limit of (3.5.41) as £ — 0

with the appropriate slower time and space variables.
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However, in the wedge front model, ¢p is not zero. Its form is complicated
but it can be calculated numerically (see (A.3.17)). Examining (3.10.2). we see that
the operator of the left has the homogeneous solution 7z(y., 0.n) and therefore the
F.A.T. applies. Thus, (3.10.2) has a solution iff

/ 2ax(0)h(y, 0, n) [5B£°)E(y,o,n)+B<°)B;°’og(y) dy =0,
0

which gives the equation

B® = $5B® B, (3.10.3)

where

25 = [ 25 0n(u)A(y.0.n) dv. (3.10.4)
As expected for this nondispersive model, the equation governing the amplitude is
hyperbolic in nature. It should be noted that this equation is a reflection of the
connection between the ST model and the uncoupled BCHY model (see (2.4.8) with
§ = 0). By examining the long-wave. slow-time limit we have essentially reduced
the coupling and the frontal effects in the baroclinic equation thus allowing the
B-plane effect to dominate as seen in the BCHY model.

Equation (3.10.3) can be solved using the method of characteristics. and it is
well known that if the initial data allow for focusing of these characteristics. shocks
will form (see Whitham, 1974). The condition that allows shocks to form in the

solution of (3.10.3) is simply that

QB%(B(‘”(&O)) >0

for some £. The breaking time, 7, is given by

1
op max (& (BO(E,0))

TR =

The breaking time is inversely proportional to g, which depends on the model
parameters. In Figure 3.7, we plot &p versus a/3, for the first meridional mode,
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Figure 3.7: Long-wave interaction parameter $p versus a/3.

n = 0. It can be seen that for a/8 > 0, |®#5| < 1 and so the breaking time is
large (assuming a wave with order one slopes). On the other hand, when a/83 < 0,
|® | becomes large as the parameter values approach the point where a/8 = ~1/u
and the breaking time becomes small. Thus we expect long waves to break for all
parameter values, but generally after a long time. However long waves will break
quickly if near the model singular point a/8 = —1/u.

The result of this analysis can be interpreted as follows. In the absence of
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small-scale variations, large-scale waves will still develop. These waves are hyper-
bolic in nature and tend to form shocks. Such shocks lead to the formation of a
front and small-scale variations that are then governed by the previous analysis.
The idea of shocks within the context of PG equations has been examined before
(see Dewar, 1992) and is thought to play an important role in frontal formation and

thus general circulation.

3.11 Numerical Solutions

In this section, the full nonlinear model is solved using a straightforward
numerical scheme. The purpose is to illustrate how the analytical results of §3.2-
§3.10 manifest themselves. It is not our goal to provide an extensive investigation
into all possible parameter values and frontal geometries. Rather we identify the
important aspects of the model, most notably those corresponding to where the
analysis of the previous section was successful in predicting behaviour and where it
broke down. As well, the complications involved in the weakly nonlinear analysis do
not allow for easy visualization of what the solutions entail. Nor is it a trivial task
to extend these results beyond their limited. idealized configuration. Numerical
solutions allow us to examine some of these difficulties

It should be noted that numerical studies of general geostrophic models includ-
ing frontal effects have been undertaken previously. In Cushman-Roisin and Tang
(1990) the general reduced gravity model is examined and in Tang and Cushman-
Roisin (1992) the general two-layer model derived in Cushman-Roisin et al. (1992)
is examined. Both studies examined general geostrophic models that allow for both
FG and QG limits similar to that discussed in Appendix 1. The focus of these
studies was geostrophic turbulence and not the evolution of specific fronts under
the scaling of a given model. While the results of both studies are restricted to
nonoutcropping fronts with a small depth ratio, § < 0.1, their results and analysis
provide significant insight and will be commented on as appropriate.

The algorithm we use is straightforward: an explicit, finite difference scheme
that is leapfrog in time and central in space. The Jacobian terms are approximated
using the Arakawa (1966) scheme. This scheme preserves energy and enstrophy

when used to approximate the classic QG equation,

qt +J(¢7Q) =01
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for the potential vorticity q and stream function ¥. Although our equations do not
always fit this model, we will use the scheme nonetheless. The simulations are run in
a zonally periodic channel. At the channel walls the no normal flow conditions are
approximated using one-sided derivatives. The approximation on the channel walls
is not sophisticated, rather the geometry of the flow is chosen to limit the effect the
channel walls have on its evolution. Again we stress that although boundaries are
important in GFD, in our modelling of open ocean fronts with no viscosity, they do

not play an important role.

The algorithm is similar to that used in Reszka (1997) and Swaters (1998).
with differences made for the different models. We solve the general frontal geostrophic
equations, (2.3.13) and (2.3.14), choosing the parameters according to the model
we wish to simulate. Equation (2.3.14) is stepped forward in time for all models.
Equation (2.3.13) is solved in a manner depending on the model being solved. For
the RED model, where the lower layer is motionless. (2.3.13) is not solved and the
barotropic stream function is identically set to zero. For the ST and VSE mod-
els, where the barotropic relative vorticity terms. V2u. are weak. the equation is
solved for v, (see (3.1.2) and (4.1.2)) and then integrated in z. For the SE model
the equation is stepped forward in time giving the barotropic relative vorticity.
The stream function is then found using a Laplacian inversion scheme. The WVT
model is solved in a similar manner except that instead of solving (2.3.13). we solve
a vorticity equation (see Appendix 2) to obtain similar results to Reszka (1997).

In the simulations we employ two types of numerical friction. The first elim-
inates negative values of the frontal height. These values are unphysical, since the
frontal height is necessarily a nonnegative quantity. They occur in the numerical
simulations due to numerical error. However, when they occur they cause rapid
breakdown of the simulation. Why this occurs remains a mystery. The introduc-
tion of standard numerical friction schemes was unable to eliminate this breakdown
and so whenever a negative value of the frontal height occurs it is simply set to zero.
In effect, this is like very small-scale, delta-function friction acting on the scale of
the numerical grid itself. We have no justification for this form of friction other
than the fact that it works. Work continues on trying to explain why it works and
whether it can be replaced by some other standard form of friction. Use of this form
of friction does result in a small increase in mass and affects the conservation of the

model invariants. Second, we make use of high power harmonic friction to smooth
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results near outcroppings. We chose to use (V?)® friction. Note that a high power
harmonic friction is necessary to overcome the cubic and quartic nonlinearities and
the fourth order derivatives found in the model equations.

To obtain results that pertain to the model equations, we choose a very small
Rossby number so that only terms that exist in each model contribute to the evolu-
tion. This allows us to directly simulate the model evolution and illustrate aspects
of the analysis presented. However, by solving the general equation. we can also
choose the Rossby number to be more reasonably sized. When we do so. terms that
are higher order terms and do not appear in the model equations will have some
effect on the evolution. In doing so we hope to illustrate the connections between
the models.

The simulations are run using several different basic states chosen to illustrate
aspects of the analysis. For all simulations the barotropic flow is initially set to zero.
This allows us to concentrate on the baroclinic and frontal processes. In Figure 3.8
we plot several typical fronts and the corresponding zonal velocities as determined
by leading-order geostrophic velocity. The first front, Figure 3.8(a), is a coupled

front with two outcroppings given by the Gaussian curve
ho(y) = hmax exp [—azyg] . (3.11.1)

where hmax and a are the maximum frontal depth and steepness parameter. respec-
tively. The corresponding velocity, Figure 3.8(b), has a jet in both the eastward and
westward directions resulting in a strongly sheared flow at the middle of the front.
This front allows us to examine the instability associated with the singular point
h§ = 0 as well as make comparisons to the experiments of Griffiths et al. (1982) and
the numerical results of Pavia (1992) and Reszka (1997). The second front, Figure
3.8(c), is a smooth isolated front with the corresponding velocity, Figure 3.8(d), a
jet with maximum velocity at the middle of the front. Both eastward and westward
jets are considered and fronts with a more abrupt outcropping are also considered.
As well, fronts that are nonmonotonic with regions of stronger shear are considered.
These fronts most accurately model the open ocean fronts (see Figure 2.1 and Be-
nilov and Reznik, 1996) and coastal currents (see Barth, 1989a and Reszka, 1997),
and are used to examine the linear and nonlinear stability aspects of the analysis.
The final two fronts are the wedge front, Figure 3.8(e), and the gently sloping front,
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Figure 3.8: The graphs show typical frontal heights (left) and the corre-
sponding zonal velocities (right) used in the numerical simulations. Plots (a)
and (b) are for a coupled front, (c) and (d) are for an isolated front, (e) and
(f) are for a wedge front, and (g) and (h) are for a gently-sloping front.
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Figure 3.8(g), used in the weakly nonlinear analysis. The corresponding velocities,
Figure 3.8(f) and (h), are constant flows. These fronts are used to examine the
weakly nonlinear analysis and both eastward and westward jets are considered.

For the ST model, it was noted throughout the analysis that it shares a great
deal in common with the RED model. Therefore, we present some results for the
RED model while referencing the works of Cushman-Roisin, et al. (1990). and
Pavia (1992) where further simulations were done. The purpose is twofold. The
RED model is somewhat easier to run numerical simulations for and therefore allows
for a greater variety of simulations to be run and more conclusions made about this
form of model. But also, by comparing the simulations of the RED model and the
ST we can discern the effect of including the lower-layer dynamics. even in the weak
form as they are in the ST model.

We begin by examining the results for the coupled front. In such fronts,
when the current is relatively narrow, we expect the instability to be predominantly
barotropic, that is, feeding off the horizontal shear in the flow rather than the
vertical shear between the layers (Paldor and Killworth. 1987). For this front we
present detailed results for the RED model because, as it turns out, the evolution
of the front is dominated by unstable growth in the upper layer as a result the
strongly sheared flow. The two-layer results for the ST model and the WV'T model
(see Appendix 2) are small modifications to the RED model simulations and are
qualitatively similar.

The standard coupled-front simulation is run using the RED model with 3 =
1, Amax = 0.5, and a = 2.0. The simulation is initialized with a random perturbation
of small amplitude. 1 x 107*hg, added to the basic front (3.11.1). (These are typical
of the values used in all the numerical simulations.) As the simulation begins, the
perturbations adjust themselves and we see the growth of a wave of wavelength
roughly one to one and a half times the width of the current. This wave continues
to grow slowly until about ¢ = 4. Then a rapid growth occurs and the front breaks
up into a series of anticyclonic eddies as shown in Figures 3.9 and 3.10. In the
figures, the grey region represents regions where no front exists, where we’ve chosen
h < 0.02 to represent no upper layer. (Note that this value is chosen only to make
the images clear. After longer periods of time, regions of very small frontal height
are diffused by the numerical friction and truly become regions where h = 0.) We
will not present a detailed analysis of the eddies as this has been done previously (see
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Figure 3.9: Results of the numerical simulation of the RED model coupled-
front simulation for t=3-5. The graphs show the contours of the upper-layer
height. The grey regions are regions where the upper layer vanishes and the
contour interval is 0.1.

Cushman-Roisin, et al., 1990, Chassignet and Cushman-Roisin, 1991, Pavia, 1992,
and Cushman-Roisin and Merchant-Both, 1995). We note that they are elliptical
in shape and that they rotate clockwise with a period of roughly 8 time units. Note
that in Pavia (1992) a zero-PV primitive equation simulation gave very similar
results leading to the conclusion that the RED model captures the major physical
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Figure 3.10: Results of the numerical simulation of the RED model coupled-
front simulation for t=6-8. The graphs show the contours of the upper-layer
height. The grey regions are regions where the upper layer vanishes and the
contour interval is 0.1.

processes of the breakup of a coupled front. Note that the prevalence of anticyclones
is not restricted to coupled fronts but is a general feature of geostrophic turbulence
when scales are beyond the internal deformation radius (Cushman-Roisin and Tang,
1990).

We make one further observation about the eddies. After the eddies have fully
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Figure 3.11: Results of the numerical simulation of the RED model coupled-
front simulation for t=8-48 as in Figures 3.9 and 3.10. The eddies are labelled
so that their westward drift can be observed.

formed, they begin to drift westward with a speed of approximately 0.2 units/time
unit. This is illustrated in Figure 3.11 where we plot the eddies at times ¢ =
8, 28,48. We've labelled the eddies so that their drift is obvious as time proceeds.
Several other simulations were run, varying the value of the parameter 8 and it

was determined that the eddy drift varies linearly with this parameter and is zero
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when 3 = 0. This eddy drift was not observed in Pavia (1992) and Reszka (1997) as
they worked with f-plane models. (The WVT model has the f-plane RED model
as its one-layer limit.) It should be noted that this eddy drift is purely related to
the upper-layer dynamics and not a result of coupling to a lower-layer wave since
the lower layer is assumed motionless. Eddy propagation is examined for isolated
eddies in Cushman-Roisin, et al. (1990) where a similar drift rate is observed and a
formula is presented for calculating this drift rate. Note that at longer times we see
eddy mergers as discussed in Reszka (1997). In fact, the eddy propagation appears
to encourage mergers as slight variances in propagation speed increase the chance
that eddies come close enough to instigate the merger process.

At this time we introduce several diagnostics that we will use to examine
and compare the numerical simulations. We will make use of the pseudo-energy
invariants £ found for each model (see §2.7). The conservation of this variable is
used to estimate how well simulations are running and gauge the effects of numerical
friction and errors. As well, we use it to discuss the energy exchanges that occur as
instabilities occur. We also make use of a measure of the integrated. leading-order,

baroclinic kinetic energy, BCK E. by calculating the quantity
BCKE = // k(1 — 6h)|VA|* dzdy, (3.11.2)
FR

and normalizing by its initial value. We will use the analogous definition to measure
the barotropic kinetic energy, PR E, when discussing the two-layer models. that is.

i [ IVv|? dzdy
P 2 . 3.11.3
RE= BCKE|;=o ( )

where we have normalized by the baroclinic kinetic energy since in most simulations
the initial PKE is zero.

In order to examine the growth of the perturbations and the exchange of
energy from the mean zonal flow, we define the mean upper-layer height as the

zonal average, that is,

_ R b2y,
h(y,t):(h(:c,y,t))—f xf_yz —. (3.11.4)
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and the perturbation height as
E:h(x,y,t) — h(y.t), (3.11.5)

where
(h(z,y,t)) =0. (3.11.6)

The potential energy given by (2.7.4) is conserved for all models. We can expand
the potential energy into mean and perturbation parts

PE =l// k2 dedy

2/ Ja
1 T - 1 72

== h®dzdy + hhdzdy + - /h' dzdy
2 Q Q 2 Q
1 - 72

=3// hzdxdy-}—%// h* dzdy
4 Q < Q

=PE + PE,

where the middle term vanishes via (3.11.6). Since the potential energy is conserved.
it then follows that

d (== d (== -

E(PE) - —E(PE). (3.11.7)
Since PE is a measure of the magnitude of the perturbations. the perturbations
can only grow if there is a release of mean potential energy. This is true for all the
models studied and stresses the baroclinic nature of the instability. In the plots
that follow, we normalize the PE and PE by the initial potential energy. For
the baroclinic kinetic energy we make a similar dissection by introducing the mean

kinetic energy given by

——=—=  [JoR(1 = 6R)|VA[*dzdy
BCKE = BCKE]|i=0 : (3.11.8)
and the perturbation kinetic energy given by
—~— h(1 — §h)|VR|? dzd
BOKE < Jda(l — SR)IVA[ dzdy (3.11.9)

BCKE'::O
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Figure 3.12: The potential energy (PE, upper plot) and the baroclinic
kinetic energy (BCKE, lower plot) for the RED model simulation. The
term zonal is used to indicate the mean zonal average, while pert. indicates
the perturbation to this average.

In Figure 3.12, we plot the potential energy (upper plot) and baroclinic kinetic
energy (lower plot) for the RED model simulation for ¢=0-10. The total potential
energy is conserved, while as the eddies grow, after t = 4, we see a rapid increase
in the size of the perturbation PE at the expense of the mean PFE as predicted
above. Once the eddies have formed a small amount of energy oscillates between
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the mean and perturbation PE as the eddies themselves oscillate. The baroclinic
kinetic energy decreases very slowly during the initial perturbation growth and then
decreases rapidly as the eddies form. This energy release is not feeding the instability
but is attributed to small-scale motion and energy loss due to friction that occurs
during this period. This is justified by noting that the pseudo-energy £ is not well
conserved during the eddy formation, varying up to 15% of its value. This is further
verified by examining the f-plane limit where the baroclinic kinetic energy is also
the pseudo-energy and is conserved. In these simulations we see the same decrease
in BCKE. Examining the mean and perturbation BCK E establishes that there is
also a release of mean BCKE to the growing perturbations. This energy release
reduces the shear in the initial flow, by converting it to the more stable vortical
motion of the eddies. The instability can be described as a mixed barotropic-
baroclinic instability. Both potential and mean kinetic energy are released from the
mean flow, though the PE is an order Rossby number larger in magnitude. Yet,
it is an initial release of A'E that instigates the instability and this occurs with no

lower-layer interaction.

The different simulations for various values of 3 indicated that energy was
being converted into the westward drift of the eddies. The balance in the pseudo-
energy & suggests that BCR'E could rise if on average fluild moves northward.
Despite a movement of fluid northward, the BCR'E is virtually identical in all
simulations including that on an f-plane. As a result, £ is not as well conserved as
3 increases in value. It is postulated that the kinetic energy being converted into
the westward drift of the eddies is not included in the leading-order balance seen in
£.

In Figure 3.13, we extend the time range for the plots in Figure 3.12. After the
eddies have formed, ¢ = 8, and they are drifting westward while rotating about their
axis, there is a small-amplitude oscillation in the exchange of mean and perturbation
energy while the total BCKE remains constant. At ¢t = 127, two eddies merge,
and again at ¢t = 150 two more eddies merge. This merging initiates a much larger
oscillation of the mean and perturbation energies. As the oscillation decays, it is
observed that the eddy mergers have further increased the perturbation energies at
the expense of the mean energies. Note that as eddy mergers occur, we again see a
decrease in the total BCK E, which we again attribute to the increase in small-scale

motions increasing the influence of numerical friction and errors.
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Figure 3.13: The potential energy (PE, upper plot) and the baroclinic
kinetic energy (BC K E, lower plot) for the RED model simulation for longer
times. The term zonal is used to indicate the mean zonal average, while pert.
indicates the perturbation to this average.

If we repeat this simulation, but use the ST model which includes the diagnos-
tically evolving lower layer, we get very similar results. The instability is virtually
identical with the lower layer having little effect. In Figure 3.14, we plot the results
for several times that illustrate the development of eddies and the eventual devel-
opment of corresponding barotropic cells (note the change in the time step for the
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Figure 3.14: Results of the numerical simulation of the ST model for the
coupled-front simulation. The graphs on the left show the contours of the
upper-layer height. The grey regions are regions where the upper layer van-
ishes and the contour interval is 0.1. The graphs on the right show the con-
tours of the barotropic stream function. The grey regions are regions where
the stream function is negative and the contour interval is 0.01.
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final two frames). The eddies develop in a similar fashion to the RED model. but
the barotropic cells take quite some time to develop.

The addition of the lower layer does have two small effects. first it inhibits
the instability and second it reduces the westward drift speed of the eddies after
they have formed. Both effects are small and can be attributed to the energy drag
that the formation of lower-layer cells requires. Note this result agrees with that of
Chassignet and Cushman-Roisin (1991) where the inclusion of a lower layer was seen
to have little effect on the propagation of lens-shaped eddies. The energy exchanges
are to leading-order equivalent to that found in the RED model. In 3.15. we plot
the PE and KF balances compared to the equivalent RED model simulation. It
can be seen that the ST model lags the RED model slightly and has an increased
R E loss. Both results are attributed to the energy required to form the barotropic
cells, show in the R'E plot. As time proceeds, the cells form with only a small
amount of A'E, and all energy balances are virtually identical to that of the RED
model.

In examining isolated fronts, we expect that both the RED and ST mod-
els will not provide dramatic simulations. The linear analysis (see §3.2) suggests
that frontally-trapped waves should develop at an outcropping. In the simulations,
frontally-trapped waves do develop (see the final simulation in this section for ex-
amples). However, the outcropping appears to reduce their phase speed. and often
creates a shear that tends to produce waves that have a small meridional wave-
length. As well, the fact that the outcropping involves nonlinear dynamics and
small frontal heights increases the effect of numerical errors and friction. These
also tend to inhibit the wave structure predicted by linear theory. However. if the
frontally trapped wave develops a stable structure in the outcropping regions it does
propagate with phase speeds similar to what linear theory prescribes. While this
gives some credibility to the linear theory, it is obvious that a better understanding
of the form of the wave in the outcropping region is required.

The linear analysis also suggested that eastward flows with an outcropping
would allow for the possibility of a continuous spectrum of waves and possible
instability if hg = —f. Neither of these features has been observed in the numerical
simulations. Eastward and westward flows show similar behaviour. The instability
predicted by Benilov (1995a) when hj = —f is dependent on including QG terms in
the model equations and, thus, may be associated with the small-wave instability
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Figure 3.15: The potential energy (PE, upper plot) and the baroclinic
kinetic energy (BCKE, lower plot) for the ST model, coupled-front simu-
lation. The term zonal is used to indicate the mean zonal average, pert.
indicates the perturbation to this average, and btp indicates the barotropic
component. The thin lines are the plots for the corresponding values of the
analogous RED model simulation.
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discussed in Benilov and Reznik (1996). Including these terms in the full nonlinear
simulations changes the structure of the barotropic equation in that it adds the
relative vorticity terms found in the SE and WVT models. How these equations
should be solved within the scaling of the ST model is continuing work. Note
that the instability associated with hg = 0 is clearly observed in the coupled-front

simulation discussed above.

The finite-amplitude analysis suggests that initial perturbations can reorga-
nize themselves via resonances and BF instability into travelling wave packets. How-
ever, this process is slow and takes place over very large scales. The effects of an
outcropping, numerical friction, and numerical errors often preclude the visualiza-
tion of such effects. We illustrate two behaviours that are commonly observed in
our simulations. The first is a progression to larger scales. In Figure 3.16. the zonal
spectrum for a simulation using the ST model with a basic-state wedge front is pre-
sented. In the upper graph all wavenumbers are presented with the darker colours
in the graph indicating higher values. In the lower graph the evolution of the ampli-
tude of three waves is presented. The wavenumbers indicate the numbers of waves
in the domain. The simulation was initiated with waves of random amplitude and
wavenumbers that varied from 2 to 20 waves over the zonal domain (corresponding
to wavelengths varying from 30 to 3 units). During the simulation, the size and
energy of the perturbation continually decreased. From the spectral plot. it is clear
that this decrease occurs dramatically at small scales while larger-scales waves ini-
tially increase in amplitude. By the end of this long time simulation. ¢ = 1000, the
largest waves retain an amplitude almost equivalent to their initial amplitude while
all smaller waves have vanished.

The second identifiable finite-amplitude effect is the transfer of energy from
a fundamental wave to a resonant long wave. This is clearly demonstrated using
a gently-sloping front initiated with a single wave with k = ¢, that is, satisfying
the resonant condition. This is illustrated in Figure 3.17. The first two plots
are contour plots of the perturbation upper-layer depth at ¢ = 0 and ¢ = 150.
Comparing the two indicates that almost all zonal variations have vanished and the
meridional variations have shifted to a length scale half that of the original. This is
made clear in the final two plots that examine the zonal and meridional spectrums.
In the third plot the amplitude of the initial short wave, k£ = 4, and the excited
long wave, k = 0, are plotted versus time. The initial wave excites the long wave
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Figure 3.16: The upper graph plots the zonal spectrum for an ST model,
wedge-front simulation. Darker colours indicate higher amplitudes of the
given wavenumber. The wavenumber indicates the number of waves in the
domain. The lower graph plots the time series for three wavenumbers, k =

3,9, 15.
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3. ST model

rapidly through long-wave-short-wave resonance and then decays. The long wave
is stable and maintains its amplitude. Note that no other waves are excited to any
measurable amplitude and that the long wave has a final amplitude approximately
one tenth that of the initial short wave. The final plot is of the meridional spectrum
for wavenumbers 0—12 and time 0-150. It illustrates that the initial wave. ¢ = 4.
excites many other wavelengths through nonlinear interactions. As time proceeds
the amplitude of all the waves decays except the long wave that has half the initial
meridional length scale, £ = 8. Thus. the initial wave’s amplitude decays. while a
long-wave with twice the meridional wavenumber grows to a small amplitude. The
final state of this simulation is a perturbation field consisting of alternating zonal
jets. Such a final state is predicted in the work of Rhines (1975).

Since we have established that monotonic fronts are stable, one may conclude
that the ST model would predict that large-scale. oceanic fronts would show little
variation. This is true if the front is always monotonic. However. examinations
of fronts often indicate that they are not monotonic and have regions of counter
flow leading to a sheared flow (see Figure 2.1, Roden (1973). and Benilov and
Reznik (1996)). Given the highly unstable nature of a coupled front. the question
of how regions of sheared flow affect an isolated front is interesting. Thus. the final
simulation for the ST model is run on an isolated front with a sheared flow that has
a small jet of return flow (see Figure 3.18, t = 0 for a cross-section of the front).

The results of this simulation are shown in Figures 3.18. 3.19. and 3.20. which
plot contours of frontal height and cross sections of zonally averaged height. energy
balances. and zonal spectrums, respectively. The shear in the flow allows for unsta-
ble growth similar to the coupled-front simulation as seen in Figure 3.18. t = 26.
This growth occurs at all scales but becomes largest at a wavelength of 3 units (see
Figure 3.20). The instability results in a release of zonal BCRA E and a correspond-
ing increase in perturbation BC K E but little release in mean PFE (see Figure 3.19).
After the instability has grown, and the frontal shear has been eliminated, we see
the development of frontally-trapped waves (see Figure 3.18). As time proceeds,
we begin to see a decay in the small-scale waves (see Figure 3.20). However, the
large-scale waves, especially that of wavenumber 4 (wavelength 6 units), decay very
slowly and result in a front with large zonal length-scale, small-amplitude mean-
ders (see Figure 3.18, t=66-106, and Figure 3.20). Note that the drop in BCKFE
in this simulation is balanced by a movement of fluid southward (see Figure 3.18)
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Figure 3.17: Plots illustrating the development of an alternating zonal jet
in an ST model simulation. The top plot is a contour plot of the initial per-
turbation. The second plot is the perturbation upper-layer height at ¢ = 150.
In both plots, grey regions indicate negative values. The contour intervals
are 0.025 and 0.0025, respectively. The third plot shows the evolution of
the amplitude initial wave, zonal wavenumber 4, and the long wave, zonal
wavenumber 0. The final plot shows the evolution of the meridional spec-

trum.

125



3. ST model

as required by the conservation of £. Alternatively. the fact that this flow of fluid
south can occur allows a release of BCKE, feeding the growth of the instability
and the development of the waves. The simulation clearly indicates that meanders
can develop and be maintained as a result of a sheared flow with little release of
PE.

The evolution of fronts within the ST model is similar to that discussed in
Tang and Cushman-Roisin (1992) for scales exceeding the Rhines scale. The Rhines

scale is defined as

AH\'?
_ 2
Lpr = (RI Lg H, ) ;
which, using the definition of the nondimensional parameters in (2.3.7). the defini-
tion of the length scales, and that AH = H; for the FG models. gives that

e\ 173
Lpy = (—) L.
€3

Therefore, the length scale of the ST model where € ~ €3 is on the order of the
Rhines scale. The fact that the 3-plane effect is strong at such scales inhibits
baroclinic instability. and the evolution is dominated by Rossby wave dispersion.
The fact that the model does not contain QG terms removes the possibility that
QG effects barotropize the flow as discussed in Tang and Cushman-Roisin (1992).
However. we do see a cascade of energy toward large scales as suggested there.
It should be noted that while the Rhines scale plays an important role in QG
models as the length scale at which energy cascades toward (see discussion in Tang
and Cushman-Roisin, 1992), it does not appear to be as important when frontal
effects are strong (see discussion in Cushman-Roisin and Tang. 1990 and Tang and

Cushman-Roisin, 1992).
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Figure 3.18: Results of the numerical simulation of the ST model for an
isolated front with shear. The graphs on the left show the contours of the
upper-layer height. The grey regions are regions where the upper layer van-
ishes and the contour interval is 0.1. The plots on the right show the zonally
averaged upper-layer height versus y.
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kinetic energy (BC K E, lower plot) for the ST model isolated front with shear
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The wavenumbers indicate the number of waves in the domain.
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Chapter 4
VSE model

We now discuss the VSE model. The VSE model was first derived in Benilov
(1992a) and shares many characteristics with the ST model. Much of the analysis
presented in §3 follows similarly and so we will be brief in this section. The VSE
model does provide important insight into breaking the restriction of a thin upper
layer found in the ST model. By allowing for equal layer depths. a greater scale of
vertical motion can be examined. However. this comes at the cost of requiring a large
length scale, often so large that spherical coordinates may be required. Thus. the
model is not as applicable to open ocean fronts. As well. the model can be described
only in the context of baroclinic/barotropic flow and not as a layer model vis a vis
Cushman-Roisin et al. (1992). This reflects the fact that the model describes the
motion of the two layers equally and not of a single active layer coupled to a passive

layer.

4.1 Model Equations
The VSE model corresponds to the scaling

1

S=pu, €53=2>0€%, e =¢y=e3. (4.1.1)

and corresponds to a model where the 3-plane effect is very strong (VS) and the
layer depths are of the same order or equal (E). The equations (2.3.13) and (2.3.14)

reduce to

Bz +ud [h,h(l — uh)V2h 4+ é(1 — 2uh)|VA]?| =0, (4.1.2)
he + J (¥ + Bh(1 — ph)y, k) = 0. (4.1.3)

Note that in comparison to the ST model the nonlinear terms have been dropped in
the baroclinic equation (4.1.3) while the O(1) thickness of the upper layer leads to

130



4. VSE model

quartic nonlinearities in (4.1.2). Once again, when the upper layer vanishes. h = 0,

the model reduces to the equation
vr = 0.

As before, this causes difficulties when dealing with regions where the upper layer
vanishes and continuity conditions across outcroppings are required. In the limit as
p becomes small. the model does not reduce to the RED model but to the BCHY
model discussed in §2.4.

The barotropic stream function is related to the upper-layer depth and the
lower-layer pressure by the relation

h?
etv=puo+p. (4.1.4)

This is an odd relation as all the variables are assumed to be O(1) and it indicates
that to leading order the RHS of (4.1.4) must vanish. Thus, the upper-layer depth
and lower-layer pressure are strongly coupled. In Benilov (1992a). it is argued that
this relation represents a vertical nonlinear mode. Because of this peculiarity, this
model is difficult to derive without the introduction of the baroclinic and barotropic
equations, say using the layer equations (A.1.30, A.1.31) and the corresponding
continuity equations. (2.2.15) and its lower-layer analogue.

The potential vorticities for the VSE model are given by using the scaling
(4.1.1) in (2.5.5) and (2.5.6) giving

a1 =¢" +e2gV 4¢P +0(e2)

- 2p _ 2 (4.1.3)
= %+e%%+e(l “h)vhh KIVh| +0(e?),
qQ = q§°’ + e%qél) + eqéz) + O(e%)
2 2 (4.1.6)
_ y By  phVih + p|Vh| 3
T=ph T TS ¢ 1o T o)
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4. VSE model

4.2 Linear Analysis

Substitution of (3.2.1) into (4.1.2) and (4.1.3) gives, after dropping the hats,

Bz +p [— ho(1 — ptho)hgV2hz — (1 — 2uho)(hg)*hzy

+ (ho(1 — pho)hy)' bz — 2u [(Rohll) hho(hh)2hh zy)
— (1 — 2uho)hh (hV? + hphyy + hyhyy)

+ ho(1 = ptho)J (h. V2R) + (1 = 2uho)hgJ (h. hy) (42.1)

— uh?(RLV2h, — hi'h;) + (1 — 2uho)J (h.hvzh + é]\?h[?)

— phJ (R.RV*h +|VA?) | =0.

hy + howr — wohe + J (. h)

, (4.2.2)
— 3| ho(l — pho)hr + (1 — 2uhg)hhy — ph*h, } =0.

In the following analysis, it is easier to work with these equations if we form the
equation that eliminates the linear terms in v by taking 3 x (4.2.2) — hj x (4.2.1).

This gives

Bhe + phg [ho(1 — pho)hgV2hz + (1 — 2uho)(hg)hay]
— [Bwg + Bho(1 — pho) + uhi(ho(1 — pho)hg)'] bz
= —BJ(&,h)+ B (L - 2pho)hh, — ph?h;)

+ phg [2;: [(hohl) hho(h))2hhzy)

+ (1 — 2uho)hh(AV? + hohos + hyhay) (42.3)
— ho(1 — pho)J(h, V2R) + (1 — 2uho)Rb I (R, hy)

+ p2h2(hhV2hy — Rh) + 2uhoJ (h,hV2h + %[Vh[z)
+ phJ (h,RV?h + thlz)] .
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4. VSE model

The linear equations, from (4.2.3) and (4.2.2), are

Bhe + phl [ho(1 — o)y V2hz + (1 ~ 2uho)(h))?hay ]

! 2 ’ Y (4’2'4)
— [BYg + B°ho(1 — ptho) + uh(ho(1 — pho)hg)'] bz = 0.
howr = —hs + [wg + Bho(l — pho)] k. (4.2.5)
Substitution of (3.2.9) into (4.2.4) and (4.2.5) gives
uhilho(1 — pho) (k' — hR)Y w26)
— [pho(1 — pho)hb2k? + B(c + wh) + B2ho(1 — pho)lh =0, -
how = [c + wg + Bho(1 — pho)]h. (4.2.7)

with the boundary conditions (3.2.12~3.2.15). The difficulty in dealing with fronts
that outcrop rises again. We will use the same approach to this problem as that
presented for the ST model in §3.2.

Letting h(y) = hgn(y) in (4.2.6) gives

w [ho(1 = uho)(hg)*n']’

12,2 L (4.2.8)
~ [/_Lho(l—pho)ho k2 + B(c+ wh) + 82ho(1 — pho)| n = 0.

Multiplying (4.2.8) by the complex conjugate of  and integrating over a; < y < W
gives. after an integration by parts and use of (3.2.2), (3.2.13). and (3.2.14),

W2
| {ho(1 = who) e )? [ + ¥1nf) }ay
" (4.2.9)

W2
+ [ {1Bte+ 5) + B2ho(1 - who)] nl* }dy = .

a)

The imaginary part of (4.2.9) is given by

W
ﬁcr/ |n|2dy = 0. (4.2.10)

ay
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It follows that the integrand in (4.2.10) is strictly positive for nontrivial solutions
implying ¢y = 0 and, therefore, the front is neutrally stable. Since the above analysis
formally assumed that hj # 0 over the entire domain., it follows that all monotonic
fronts are linearly stable.

In the VSE model, the leading-order potential vorticities in each layer given
by (4.1.5) and (4.1.6) have gradients given by

(@), = hg d (¢, = ho
BT TRy B e T T ke

Flows can become unstable only if these gradients vanish. Once again. this is a
much stronger necessary condition for instability than in a QG model where if the
PV gradient reverses sign across the layer interface instability is possible. (Note
the PV gradient reverses sign across the layer interface for all fronts in the VSE
model.) This result is similar to that established for the ST model but now there
is only the one singular point when hj, = 0.

Once again, we examine two basic-state fronts for which we will discuss linear

solutions: a gently sloping front and a wedge front. For a gently sloping front we

conditions that the frontal slope, 3-plane effect. and frequency are small as given
by (3.2.24) and (3.2.25). Then to leading order in A. (4.2.6) reduces to

~

;l'” _ [k2 + R#(l _’13&#)&2 (é_*_‘ék\‘(]_ — &,U)) J h =0. (4.2.11)

In order to satisfy the boundary conditions we assume the perturbations have the
form given in (3.2.27). Substitution of (3.2.27) into (4.2.11) gives the dispersion

relationship

s _ [xu(l-xugaz(kue?) +BN(1—Ru)J, (4.2.12)

so that the wave is neutrally stable. The group velocity for this solution is given by

cg = — [R“(l — R“)‘f‘z Bk + &) + A%(1 - Np)J . (4.2.13)

B
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and the barotropic stream function by

U= h. (4.2.14)

Note that if we examine the limit as 4 — 0 we do not get the result of the ST
model, but instead get

é=—R3 (4.2.13)
which is the travelling-wave speed of the solution to the hyperbolic system BCHY
as p — 0 (see (2.4.8)).

We have not been able to find an exact linear solution to the VSE model.
But, the similarity of the model to the ST model leads to a solution in the thin
layer limit. If we examine the basic-state wedge front flow given by (3.2.32) and
(3.2.33), the normal mode equation (4.2.6) reduces to

[pa"‘y(l - pay);z"] - [ay(l — pay)(pe®k® + 5%) + 3c] h=0. (4.2.16)

This equation does not have obvious. simple solutions. However. if (1 — pay) = 1
then the equation reduces to one of the form studied in §3.2. Thus. we consider the
limit as x4 < 1, that is, as the upper layer becomes thin. Note that in this limit the
VSE model approaches the limit where the ST model is valid. but the models are
not identical, as will be seen here in the linear solution. As well. since by definition
p < % it is not unreasonable to assume that we can do a perturbation expansion
in pg. In order that all other terms remain in the leading-order equation we assume

that
1
B,c, ¥~ pu2,
and so set

(B,¢,9) = (8,8, 0)u*. (4.2.17)
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Then (4.2.16) reduces to

(a"’y‘l;'), - [o:y(czzlc2 +8%) + 56] h

N i (4.2.18)
=pa? [(a4y2h') _ (a2k2 +.32) y2:| ’
and the relationship for ¥ from (4.2.7) is
o=25 +fay‘iz' - ,uﬂ.ay""'f:. (4.2.19)
Now, to leading order in p we have that
yh" + ' — [0 (k)y + ¢ R =0. (4.2.20)
where, now,
I—._
2 2
rc(k):\/f% %— (4.2.21)
a?  «
c= % (4.2.22)

Note that now, as opposed to the analysis for the ST model. k is always real. The
boundary conditions are that h and its y derivative are bounded at y = 0 and tend

to zero as ay — oo, and the outcropping position is given by

R(0)
“a

o=

The solution to (4.2.20) that satisfies the boundary conditions is, as found in
§3.2,

Ry, k,n) = Aexp(—ar(k)y)La(2ax(k)y), (4.2.23)

with the corresponding dispersion relationship
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Rearranging gives that c satisfies

_atk(k)(2n +1)

é(k,n) = 3

and the group speed is

i(kin) = 222+ 1) (“2"2(") +k2). (4.2.25)
Since k is real, so is ¢ and all modes are stable. frontally-trapped waves. Once
again, in the special case where 3 = 0 the model becomes degenerate and wave
solutions are not possible. Also note that this solution is only valid under the same
assumptions described in the linear solution of the wedge front for the ST model.
Note that the phase speed and group speed for both solutions are always neg-
ative and, so. the waves and the energy travel westward regardless of the direction
of the basic flow. This is a reflection of the strong influence of the 3-plane and the

similarity of these waves to westward travelling Rossby waves.

4.3 Nonlinear Invariants and Stability

In this section we discuss nonlinear invariants of the VSE model. Under the

VSE scaling, the leading-order term in (2.7.12) is
1 2
& =<8 h°y dzdy. (4.3.1)
2 Q

and thus, is an invariant of the flow. This is not an interesting energy invariant
since it has no contribution from the kinetic energy. More interesting invariants can
be examined by examining the PV invariants. From (2.7.7) and (2.7.8) it follows

that the leading-order term in

¢= / /Q hy(q) + (1 — ph)®s(go) dzdy (43.2)

is an invariant of the flow for any smooth functions ®; and $, with the potential
vorticities given by (4.1.5) and (4.1.6). Using the expansions for the PVs given in
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(4.1.5) and (4.1.6) we can Taylor expand € to get that

¢ =// h®y 0+ (1 - ph)®a0 dzdy

+e=/ (@10 + B20) Sy dzdy
(4.3.3)
+e// — (B0 + B%) (hV2h+th|2)
Q
@10
h

”
+ &, VZh + = ( + . 20 ) (By)* } drdy + h.o.t.,

where the subscript 0 on the functions ®; and their derivatives indicate that they are
evaluated at ¢; = q,(-o) and the differentiation of ®; is with respect to its argument,
that is,

o= (50

*=1/ho

We get the leading-order PV invariant from the first term which. using the leading-

order PVs. reduces to
= / ®,(h)dzdy, (4.3.4)
FR

for any sufficiently smooth function ®; with ®,(0) = 0 so that any values associated
with the variation of the outcropping are eliminated. This invariant is the leading-
order PV invariant for both the upper and lower layers. If we choose the functions

® to satisfy

h®10 + (1 — ph)P20 =0, (4.3.5)

we get the next order PV invariant

C = //m ®,(h)y dzdy, (4.3.6)

for any sufficiently smooth function ®, with ®,(0) = 0. We recognize now that
(4.3.1) is just a special case of this invariant. In order to construct a true pseudo-
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energy invariant we consider the expression for the scaled energy (2.7.3)
1 2
E=1 // (B? + eh(1 — ph)|VA|?) dzdy + hoo.t. (4.3.7)
=~ R

Now, in (4.3.3) we choose the functions P to satisfy

hz
h®10 + (1 — ph)®yg = ——.

o
@;0 + Qéo = 0.

which has the particular solution

This reduces (4.3.3) to

h2
m < (4.3.8)

2 92 2
-i-e// %— (1 - il—}i) Vih — ﬁ(1—,uh)(;3y)' dzdy.
m 2 3 7

Adding (4.3.7) and (4.3.8) gives that

2 9 "
£ = // B(L — uh)| VR + = (1 - ﬂ) V2h = By Z ik 8y dedy (4.3.9)
R 2 3 7

is necessarily an invariant of the flow. Integrating the underlined term in (4.3.9) by
parts, using the boundary conditions, and multiplying by u gives that

€= % / /m uh(1 — ph)|VAI? + h(1 — uh) (By)? dedy (4.3.10)

is the pseudo-energy invariant for the VSE model.
As in the ST model, the barotropic momentum function is not of use for the

VSE model since an equation for the time evolution of ¥ is not specified. Instead
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we again examine the zonal momentum impulse associated with the upper layer

given by
(k) =// yh dzdy. (4.3.11)
FR

We recognize this as a special case of (4.3.6) and therefore an invariant of the flow.
The nonlinear stability argument presented for the ST model follows accord-

ingly for the VSE mode. The only change is the differing form of €,. As such, we

present a nonlinear stability theorem without proof. Once again the analysis only

holds for fronts that do not outcrop.

The zonal flow hg(y) is nonlinearly stable in the sense of Liapunov with respect to

1B = / / R dzdy,
Q

if there exist real constants 4 and B such that either

the perturbation norm

0<A<®E)+ydY()<B<oc. V £€>0 and ye[W.Wy]. (4.3.12)

or

—c < A<P/(E)+yPy () <B<0. ¥V £>0 and ye€[W,.Wa]. (4.3.13)

where

&' (ho) + y®)(ho) = 0. (4.3.14)

As with the ST model, all nonoutcropping, linearly sloping fronts, hgo(y) =
ay + C, are stable. This can be seen by choosing ®](*) = * — C and ®(*) = a,
which satisfies (4.3.14) and gives
®7(6) +y®;(€) = 1.

Hence, (4.3.12) is satisfied and all linearly sloping fronts are nonlinearly stable.
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4.4 Weakly Nonlinear Analysis

In this section, the effects of nonlinear terms in the model are examined. The
method and results are very similar to those of §3.5 and. therefore, we will be as
brief as possible. Only the differences that arise will be explored in detail. We
will examine only the gently sloping front, as the wedge front solution is already an
approximation to the ST solution, has the difficulty associated with the outcropping,
and does not give insight into the RED model as the ST model does.

To examine the gently sloping front as given by (3.2.22). we introduce the
appropriate scalings for a and 3 as given by (3.2.24) and (3.2.25) dropping the tildes.
In order to facilitate a weakly nonlinear analysis. slow space and time variables are
introduced through (3.5.1). The perturbations are expanded in a power series given
by (3.5.2). As in the linear problem, the boundary conditions reduce to requiring
that h and p vanish at y =0, L at all orders of A.

Taking into consideration (3.2.22), (3.5.1). and (3.5.2) the model equations
(4.2.3) and (4.2.2) become

£(Bc + Adr + A%0,.0; + Adx.8,) [ + ARM + A%
=AM, + A%M, + O(A3),

(4.4.1)

(0@ + AvD) 4 A252)]

I

= —=F— [0 — N1 - Nw)2,] [h“” +ARM + A'-’hm} (44.2)
3+ ap

+ AP + A2P2 + O(As)

where the linear operator £ is given by
£(0¢,0z,0,) = B0 + Ru(1 — Ru)a®V2E — R(1 — Ru)F%8;. (4.4.3)

and M; and P; represent the expansion of the remaining terms. It can clearly be seen
that the problem varies only slightly from that given in §3.5. The only change in the
linear operator is that (4.4.3) contains the coefficient (1 —Ru), which tends to one as
¢ becomes small. If we proceed as in §3.5, we get similar results. As before the linear
operator can be expanded in powers of A (see 3.5.6). The leading-order problem is
simply the linear problem and has the solution given in the previous sections with
h(© and %(®) determined by (3.2.27) and (4.2.14), respectively, and the frequency
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given by (4.2.12). At the O(A) problem. application of the F.A.T. implies that
the wave amplitude travels at the group speed. cg(k.¢). given by (4.2.13) and we
introduce £ given by (3.5.21). The O(A) solutions have the form of (3.5.13) and
(3.5.23) with

2 k2 g‘z 22
6= (-2 (LE D )y - Dy costan)

(1= 2p) (a:;(:;#—(le? ;yT) (y ~ é ) it (4.4.4)
F =20 ; Rulak , sin(ey)
+ (1 — 2Mp)(k? + &) (" G +€2 ) yly — L)cos(€y)  (44.3)
— (1 —2Xp) (az‘u(ﬁ i;;k- —3¢) 2) (y— —) sin({y).

The O(A?) problem is again very similar. As before we choose ® and ¥ such that
constant terms in the equations vanish. This cannot be done when long-wave-short-

wave resonance occurs. that is. when
cg(k.€) = cg(0.m). (4.4.6)

Using the form of cg, (4.4.6) occurs only when & = ¢. and is discussed in §4.6.

Assuming that k£ # £ and resonance does not occur. we have the solution

4k2¢

= —— | A[®sin(2 4.4.7
¢ Sa(k? = ) | Al sin(28y), (4.4.7)
2Rp(1 — Np)k262 [3k2 + 5¢2] ., . o
¥ =— 3B — 07) |A|° sin(24y), (4.4.8)

where it is clear that this solution is not valid when k = ¢.
Finally, as in §3.5, by using the properties of the linear operator, (4.4.3).
and applying the F.A.T. to the exp[i(kz — wt)] problem we obtain the amplitude

evolution equation
- iAr+ Mg +TA = TA|A)?, (4.4.9)
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where
_ _2Nu(1 — Ru)k362(k? — 9¢02)
Y= 38(k2 = 07) (4.4.10)
1 &w(k, o) _ 3a®Ru(1 - Ru)k
A= O~ 3 . (4.4.11)
9 L ~
r=—— h(y,¢)dy. 4.12
3 ), Y(y)h(y. &) dy (4.4.12)
with
3 L 1t 2 32 !
1y) =ka’p(l —2Ru) | {y— 5 ) (G —(k +=)G | +G
L
- 2a4y2ké (y - 7)-) cos(ly) (4.4.13)

32 L\?
+atplke(k? + 6% + =5 )kt (y - ;) sin(£y).

4.5 Solutions to the Amplitude Equation

The NLS equation governing the evolution of the envelope of the linear solu-
tions, A(£, ), is identical to that found in §3.5 and the analysis found in §3.7 applies.
As before, we use the definition of A and X. as given by (4.4.12) and (4.4.10), to
plot the regions in which BF instability occurs. By (4.4.12). X is always negative.
and therefore BF instability occurs when £ > 0 (see (3.7.4)). The critical value of
k for which the sign of ¥ changes is

k2 =962 (4.5.1)

Thus the regions of stability/instability are easily defined. For £ < £k < 3¢, £ < 0
and the wavetrain is stable. For k < £ or k > 3¢, £ > 0 and the wavetrain is subject
to BF instability. In Figure 4.1, we plot the contours of the maximum growth rate
(see (3.7.5)) in the p — k/¢ plane. The grey regions are regions of unstable growth,
the darker the grey the higher the growth rate, and the white region is stable. The
dashed line marks the singularity that occurs at a = 0. We have BF instability for
k < £ with an increasing growth rate as k — ¢, i.e., as resonance occurs, stability
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-2/p =
0

Figure 4.1: Plots of the maximum growth rate of the BF instability for
the gently sloping front as given by (3.7.5) for the VSE model. The darker
grey regions indicate greater growth with white regions being stable. (The
contours are 0,1,2,4... and so the growth rate doubles with each successive
contour.) The vertical line marked k = ¢ is the wavenumber where long-
wave—short-wave resonance occurs. The second vertical line marks where
¢ = k. and ¥ smoothly changes sign. The dashed line indicates the singular
point in the model.
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for £ < k < 3¢, and instability for £ > 3¢, with an increasing growth rate with
decreasing length scales. Note that this situation is exactly that predicted by the
ST model in the limit as 4 — co (see Figure 3.1 and the discussion in §3.7). We
therefore conclude that although the models differ, the specific form of the gently
sloping front solution eliminates these differences in this analysis. The travelling

wave solutions discussed in §3.7 apply here as well.

4.6 Long-wave—short-wave Resonance

As for the ST model, long-wave-short-wave resonance is extremely important
in understanding the weakly nonlinear evolution of the VSE model. The Benjamin-
Feir instability analysis suggests that this resonance is the source of large unstable
growth. As before. the resonance occurs when a mean-flow mode or long-wave mode
is a solution to the first order slow problem with a phase speed and group speed
equal to that of the group speed of the fundamental.

If we carry out the analysis found in §3.8 for the VSE model we once again

obtain equations (3.8.7) and (3.8.9) with

$, = 2kNpu(1 — Nu) (362 - k2), (4.6.1)
&, = 4kZ20Ru(1 — Np). (4.6.2)

Once again the constant amplitude solution is subject to BF instability and these
results can be used to explain the discontinuous results of the previous section. The
analogue of Figure 3.5 for the VSE model is shown in Figure 4.2. Once again, we
assume that the long-wave-short-wave resonance dominates the flow for k£ < k. and
that BF instability applies for & > k. where k. is given by (4.5.1). Comparing
4.2to Figure 4.1we find that the growth rates at smaller scales are more significant,
the region of stability has been diminished, and the discontinuity across k = ¢
removed. Only the singular point p = 0 causes difficulty. Still, at large wavenumbers
(small wavelengths) the growth rate of the BF instability becomes comparable to
and eventually exceeds the growth rate associated with the long-wave—short-wave

resonance. The travelling wave solutions discussed in §3.8 apply here as well.
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2/p
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k/1

Figure 4.2: Contour plots of the maximum growth rate expected when
both the effects of the long-wave—short-wave resonance and BF instabilities
are considered. White regions are stable while darker grey indicates higher
growth rate. The contour level is 0.05.
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4.7 Numerical Solutions

In this section, the full nonlinear model is solved using the numerical scheme
discussed in §3.11. We first repeat the analysis for the coupled front (3.11.1). For
the VSE model the reduced gravity dynamics are not those of the RED model
but the BCHY model. We therefore expect different results from those for the ST
model. In Figure 4.3, we plot the results of the simulation showing the contour plots
of both the upper-layer depth (the baroclinic stream function) and the barotropic
stream function. As predicted the results are different from the ST model. Unstable
growth occurs as before with small waves developing. growing large. and eventually
coupling the outcroppings to begin the formation of eddies. But. as the eddies
form they take an odd shape, pointed at the western tip and rounded at the rear.
as fluid appears to pile up on itself eventually leading to the development of two
circular eddies. This can be explained as a result of the hyperbolic nature of the
reduced model. The phase speed in the hyperbolic model is inversely proportional
to the fluid depth. Therefore, near the head of the forming eddy the disturbances
are travelling slower than those in the fluid behind it. thus the fluid piles up on
itself to form the eddy. In the ST and RED model, the nonlinear Jacobian terms
counteract this process producing the oval eddies seen there. The barotropic stream
function develops clear dipolar cells corresponding to each eddy. Note that while the
nondimensional time of eddy formation is roughly three to four times that seen in
the ST model. the dimensional times are comparable. Also. once the circular eddies
have formed, they drift westward as in the ST and RED models. This emphasizes
that the nonlinear Jacobian terms play little role in the eddy drift and that the drift
is a result of the 3-plane term.

If we plot the energy balances (see §3.11 for definitions) we find that the
instability does release mean PE and baroclinic A E as found previously. However,
now the growth of the instability is accompanied by an increase in total BCKE.
This is possible as the energy balance in the pseudo-energy £ given by (4.3.10)
allows for an increase in BC K FE if upper-layer fluid spreads outward from y = 0.
This occurs as the eddies form, and results in the increase in BCKE. We see a
release of mean BC K E and an increase in perturbation BCKE as the shear in the
flow is reduced. Once the eddies have formed, friction and numerical error dissipate
some of the energy. The energy transfer to the barotropic cells is greater than that
seen in the ST model as the coupling between the barotropic and baroclinic flow is
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Cross-channel Coordinate (y)

Along-channel Coordinate (x)

Figure 4.3: Results of the numerical simulation of the VSE model coupled-
front simulation for t=18-43. The plots on the left show the contours of
the upper-layer height. The grey regions are regions where the upper layer
vanishes and the contour interval is 0.1. The plots on the right show the
contours of the barotropic stream function. The grey regions are regions
where the stream function is negative and the contour interval is 0.1.
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Figure 4.4: The potential energy (PE, upper plot) and the baroclinic ki-
netic energy (BC K E, lower plot) for the VSE model simulation. The term
zonal is used to indicate the mean zonal average, pert. indicates the pertur-
bation to this average, and btp indicates the barotropic component.

stronger.

For the VSE model, monotonic fronts are linearly stable. This result carries
over to the numerical results. Monotonic fronts, even those with outcroppings, do
not show unstable growth and initial perturbations are diffused away by the numer-
ical friction especially near outcroppings. As for the ST model, we ran simulations
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that illustrated the decay of small waves and the formation of long waves. We do
not include these simulations here as the long space and time scales they involve
may be unphysical. Instead. we repeat the final simulation run for the ST model
that includes the effects of shear.

The results of a simulation for an isolated front with shear are shown in Figures
4.5, 4.6, and 4.7, which plot contours of frontal height and cross-sections of zonally
averaged height, energy balances, and zonal spectra, respectively. Again, the shear
results in the growth of an instability. This instability develops slower than for
the ST model (in nondimensional units) and persists for some time (see Figure 4.5,
t = 26,46). The instability is driven by release of A'E not PE (see Figure 4.6).
The instability develops at all scales, but energy is quickly transferred to the largest
scales, and then all scales decay (see Figure 4.7). The long-waves are not as robust
as those seen in the ST model and the front returns to a stable configuration (see
Figure 4.5). Once again there is a movement of fluid southward. However. this
alone does not allow for a release of BCK'E as in the ST model. Examining the
pseudo-energy £, (4.3.10), we see that a release of BC K E can only occur if A(1—4dh)
increases. Thus, while the initial instability grows. we see the front flatten out the
shear (see Figure 4.5, t = 26.46). Up to this point £ is conserved very well. During
the rest of the simulation the continued decrease in BCKAE is not accompanied
by an equivalent increase in the second term of £. in fact this term decreases. We
attribute this second phase. which results in the decay of small-scale motions. as

being dominated by small-scale processes, numerical friction, and error, resulting

in a smoothing of the front.
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Figure 4.5: Results of the numerical simulation of the VSE model for an
isolated front with shear. The graphs on the left show the contours of the
upper-layer height. The grey regions are regions where the upper layer van-
ishes and the contour interval is 0.1. The plots on the right show the zonally
averaged upper-layer height versus y.
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Figure 4.6: The potential energy (PE, upper plot) and the baroclinic ki-
netic energy (BCKE, lower plot) for the VSE model for an isolated front
with shear. The term zonal is used to indicate the mean zonal average, pert.
indicates the perturbation to this average, and btp indicates the barotropic

component.
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Figure 4.7: The graph plots the time series for several zonal wavenumbers.
The wavenumbers indicate the number of waves in the domain.
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Chapter 5
SE model

The final model we examine in detail in this thesis is the SE model. It was
first examined in Benilov (1992a). A reduced limit of this model. the WT model
discussed in Appendix 1, was analyzed in Benilov and Cushman-Roisin (1994).
The SE model differs substantially from the ST model and the VSE model in that
barotropic dynamics are truly involved in this model as a result of balancing large
vertical scales with large horizontal scales. The result is a model that is very unsta-
ble and subject to ultraviolet catastrophe as the following analysis illustrates. The
model has little in common with the RED model. but shares many characteristics
with the WVT model. As such. the analysis below has similarities to that presented

in Swaters (1993b) and Reszka (1997).

5.1 Model Equations and Transformed Model

The SE model corresponds to the scaling
d=ypu, €eg=03€, €T =¢€,=c¢€. (3.1.1)

and corresponds to a model where the effect of the 3-plane is strong (S) and the
layer depths are of the same order or equal (E). The model equations (2.3.13) and

(2.3.14) reduce to

V2 + J(w, V¥ + 3y)
+pud [h,h(l — ph)V2%h + éu —2uh)|VAR]?| =0,
ke + J(¥,kR) = 0. (5.1.3)

The barotropic stream function is related to the upper-layer depth and the lower-
layer pressure, p, by the relationship

¥ =En?+p. (5.1.4)
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Note that due to the increased upper-layer depth the equations now contain quartic
terms in h, as in the VSE model but not seen in the WVT model. The stronger
coupling between the baroclinic and barotropic modes (the two are scaled equally)
and the weaker 3-plane have reduced the baroclinic equation so that it only contains
the coupling term. Also note the inclusion of relative barotropic vorticity terms,
V21, in the barotropic equation similar to those seen in the QG and WVT models.
A consequence of this is that when the upper layer vanishes, the equations still

describe dynamics via the appropriate limit of (5.1.2), namely
V2% + J (4, V24 + By) = 0. (5.1.5)
Thus the difficulties in dealing with outcroppings found for the ST and VSE models

do not arise here.
The potential vorticities for the SE model are found by using the scaling

(5.1.1) in (2.5.3) and (2.5.6) giving

a1 =a" + el +0()

2. _ 2 _ LIVRI2 + 3 . (5.1.6)
=l+eVL+(l ph)V2h — ulVh[? + y+0(€_).
h h
©=4q +eg; +O0(c)
2., _ 2 _ IVRIZ + 3 (5.1.7)
— 1 +6v Y #hv h /—[l hl + JY +0(62).
1 —puh (1 — uh)

The boundary conditions for the SE model are given by (2.6.8), (2.6.9),
(2.6.11), (2.6.12) and (2.6.18). It should be noted that in the limit y < 1, the
model reduces to the ‘weak beta’ model discussed in Benilov and Cushman-Roisin
(1994), which is also the WT model discussed in Appendix 1.

The SE model given by (5.1.2, 5.1.3) can be simplified through a transfor-
mation of variables presented in Benilov (1992a). The transformation changes the

frontal height h(z,y,t) to a new variable A(z,y,t) given by

h(z,y.t)
A(z,y,t) = /0 V/AE( = E) de. (5.1.8)
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It is not straightforward to define the physical significance of A although it does
appear as some sort of average of the scaled layer depths ph and 1 — ph. It follows

from (5.1.8) that

oh Oh
3 = Vuh(1 “#h)a—*-,

1 (5.1.9)
J(h,V2R) = pJ <h,h(1 — ph)Vh + 5(1 - 2/.zh)th|2) .
where * can be any of z,y.t. Then from (5.1.2.5.1.3) we have
V20, + J(v. V20 + By) + J(h.V2R) = 0. (5.1.10)
ke + J(w, k) = 0. (5.1.11)

Again, it should be noted that this model is identical to the transformed weak beta
model discussed in Benilov and Cushman-Roisin (1994). where the transformation
i1s (5.1.8) in the limit p < 1.

It should be noted that under the transformation (5.1.8) certain regularity
conditions must be imposed on the frontal height h at an outcropping where h = 0
if A is to be well defined there. Rather than discuss these conditions in detail. we
will only use the transformed model to discuss fronts that do not outcrop. This
suits the purpose of the nonlinear analysis that is the focus of this thesis. The
boundary conditions for a front that does not outcrop and extends across a finite-
width channel. (2.6.11) and (2.6.12), reduce to

hizly=wi , =0, (5.1.12)

Ble, = Alzg. (5.1.13)

Note that while this transformation makes possible some of the analysis that
follows, it obscures the physics in the analysis somewhat since the connection be-
tween the quantity k and physical quantities such as the baroclinic velocity and
potential vorticity is unclear. The fact that the transformation is not readily in-
vertible is another drawback. As well, the use of a nonlinear transformation to study
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linear and nonlinear aspects of a model is somewhat confusing. Yet. the transfor-
mation allows us to examine solutions that do not have restrictions on the initial
amplitude of the basic-state flow. This is a very desirable attribute as it allows us
to examine the extension of the analysis of gently-sloping fronts to the strong flows
that the FG models were originally designed to describe.

5.2 Linear Analysis

Once again, we examine the basic solution given by the zonal flow described
in §3.2. We substitute (3.2.1) into the model equations (5.1.2) and (5.1.3) giving,
after dropping the hats,

Ve + vy e — vV, + J (6. Ve + 3y)
+u [ — ho(1 — pho)hgV?h: — (1 — 2pho)(hg) 2 hzy

+ (ho(1 — pho)h)' he — 2 [(hohl]) Rhz ()2 hhzy]
— (1 = 2uho)Rb(RV? + hzhez + hyhzy) :
+ ho(1 — pho)J(h.V2h) + (1 — 2uho)hgJ(h. hy)

(4]
[
—

— ph*(RSV2h, — RIhL) + (1 — 2uho) T (h. h2h + éwhﬁ)

— phJ (. RV2h + IVhlz)} =0.

he + hjwr — wyhe + J(v.h) =0. (5.2.2)
Similarly, we can use
A= ho(y) + A(z, 1),
with (3.2.1) in equations (5.1.10) and (5.1.11) to get, dropping the hats,
V2% + 95" Y2 = Vibz + J(, V2 + By) (5.2.3)
+ J(K, V2R) + Bk, — ByV2h, =0, o
Re + Bgpr — wihe + J(¥, B) = 0. (5.2.4)

157



5. SE model

It is obvious that the transformation has greatly simplified the model.

Once again, we review some of the previous linear analysis and present linear
solutions to the model. The linear SE model from (5.2.1) and (5.2.2) is

Ve + (¥g" + B)¥- — ¥ V0

+ 1 = ho(1 = pho)hs V2 he = (1= 2ho)(Ry)Phey  (5.2.5)
+ (ho(1 — pho)Rg)'he| = 0.
he + hytoy — whhe = 0. (5.2.6)

and the linear transformed model from (5.2.3) and (5.2.4) is

Ve + (8" + B)r — v V2ur + hy'hr — BgV Az = 0, (5.2.7)
he + Rywz — vhhs = 0. (5.2.8)

The linear travelling-wave or normal-mode equations are then found by sub-

stituting (3.2.9) into (3.2.5) and (5.2.6) giving

P

(c+wh)p" — [(c + wh)k? + vf' + Bl
o e (5.2.9)
ey [ho(l — pho) (4R’ — hoh)] — ho(1 — pho)R4E?R| = 0.

—[c+ 4R+ R =0, (5.2.10)

with the boundary conditions (3.2.12-3.2.14). Although they are not discussed in
detail, linear boundary conditions at outcroppings can be derived as in Swaters
(1993b).

Using

K(z,y,t) = A(y) expli(kz — wt)] + c.c., (5.2.11)
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the transformed normal-mode equations from (5.2.7) and (5.2.8) are

(c+wg)e" — (e +up)k* + g’ +B]w

-~ (5.2.12)
+ [RgR" — (kg + k*hy)R] = 0.
~[c+ whlR + Bow = 0. (5.2.13)
The boundary condition (5.1.12) reduces to
F=0 on y=W,. (5.2.14)

Analysis of these equations is given in Benilov (1992a) and in Benilov and
Cushman-Roisin (1994) for the identical transformed weak beta model. We quickly
recap the stability argument. Once again we use the substitution (3.2.16) in (5.2.9)
and (5.2.10) to get that

(c+ wp)u" = [(c+ w)k* + vi' + 3] v

T , L (5.2.15)
+ 1 [ho(1 = o)y 1] = ukho(1 = uho)hyn = 0.
—[c+whln+wv =0. (5.2.16)
Solving (5.2.16) for v and substituting into (5.2.13) gives
{[tc+26)? + mho(1 = o)) v’}
(5.2.17)

—{[(c+v6)? + uho(1 — uho)he?| K2 + B(c +wg) } n = .

We will assume that there is no outcropping. Taking n* times (5.2.17) and
integrating over W, < y < W, gives, after an integration by parts and use of (3.2.14)
at both channel walls,

W,
/wl { [(c+66)" + uhohs(1 - uho)] [1n'? + K2Inf?] }ay
+ [ (st + v }ay =o
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Assume the flow is stable, that is, c is real. Rearranging (5.2.18) gives

/ { [+ 972 + uhoht?(1 - ko)) P
[(c+ v+ 922)' + uhohy(1 yho)J Binltldy  (5:219)

W 52 )
= —|n|*dy.
/W‘ 4k2l17

For bounded solutions it follows that

32 147}
lim —/ in? dy = 0.
Wi

k—oo 4k2

which implies that the limit of the right-hand side of (5.2.19) is also zero. or specif-

ically that
wa 3 2 2 2
tim [ (e v+ ggz) +uhoh’(1 - ko) | KlnPdy =0, (5:220)
k—cc Wl 2k

Equation (5.2.20) can only hold if
(¢ +%0)® +hohy” (1 — pho) =0. ¥ Wy <y < Wy

which implies that
Ry=0, ¥ Wi<y<Ws,

since hg and 1 — pho are nonnegative. Therefore only fronts with constant hg, that
is, fronts of constant height, are stable. All other monotonic, nonoutcropping fronts
are unstable as k& — oo. Since stronger shears and outcroppings are expected to
destabilize fronts, we expect that all fronts are unstable as k£ — oc.

It should be noted that as k¥ — oc some of the assumptions made in deriving
the model break down. Specifically, it was assumed that all terms in (5.1.10) and
(5.1.11) were O(1). Using the normal mode analysis, V2h = k2h. For these terms
to remain O(1), k2 must be O(1), so k? < 1/e. As k becomes large, this assumption
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is invalid; the length scales have become too small to be modelled under the scaling
assumed for this model. This problem. where a model is highly unstable at small
scales beyond the scope of the model. is called ultraviolet catastrophe and is common
to PG models (de Verdiére, 1986). It will be discussed in more detail in the context
of a linear solution below. This form of instability was also observed in the analysis
of Paldor and Ghil (1990), Paldor and Ghil (1991). and Barth (1994).

In the SE model, the leading-order potential vorticities in each layer given by
(5.1.6) and (5.1.7) have gradients of opposite sign at all points except when hj = 0,

since
0 0
@), = ——2% and (&), = uh.

Thus, all flows satisfy the necessary condition for instability in a QG model that
the PV gradient reverses sign across the layer interface (Pedlosky. 1987). Assuming
instability occurs it is possible to derive restrictions on the values of cg and ¢y
analogous to Howard’s semi-circle theorem (Drazin and Reid, 1981). But as the
focus of this thesis is nonlinear aspects. we leave this analysis for another work.
As before, we present the solution for a gently sloping front and a wedge front
of large amplitude. Note that the analysis below does hold for a constant barotropic
flow, ¥v§ = Up, but as can be seen from (5.2.12) and (5.2.13) the effect of such a
flow is only to vary the phase speed by the value L. As before. we begin with the
gently sloping front given by (3.2.22). with boundary conditions (3.2.23). and with
the definitions (3.2.24) and (3.2.25). Making these substitutions into (5.2.9) and

(5.2.10) gives to leading order in A,

&' — [ak2 + 3] T+ pR(1 - uR)& [’H" _ kzﬁ] =0,

_ _ (5.2.21)
—¢h+ay =0.
Eliminating v gives
[ + puR(1 — puR)&?] [i{" - ki”ﬁ] + gk =o0. (5.2.22)
In order to satisfy (3.2.23), we have that
h = Asin(ty), €= "T“ n=123.... (5.2.23)
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Substitution of (5.2.23) into (5.2.22) gives the dispersion relation
(k2 + €2) & + B + Ru(1 — uX)a? (k2 + ¢2) =0,

(5.2.24)

which has solution
-G +1/8% — 4uR(1 — uR)G2 R4
2RK? ’

ék,8) =
where K is the total wavenumber given by K? = k2 + ¢2. The barotropic stream
(5.2.25)

k.

STE Y]

g

function is given by
These solutions are unstable when the imaginary part of ¢ is nonzero. that is. when
(5.2.26)

3% — 4uR(1 — pR)a2K* < 0.

5.2.27)

(

which holds if the total wavenumber satisfies
32

4 ’
K*> oxa —anaz

5.2.28)

(

This implies that all fronts will become unstable as k£ and £ become large, that is, as
the wavelength of the motion becomes small. When the wave is unstable its growth

rate o is given by
o = kér 573
which grows linearly with k for large k. The expressions for the growth rate and

conditions for instability allow for a complete discussion of ultraviolet catastrophe.

We now see that fronts become unstable as the wavelength of the perturbation
becomes small. But, since the growth rate grows with k, the small-wavelength

L \/—52 + 4uR(1 — uR)a2 R4

instabilities grow faster as their size decreases. Thus, the linear analysis leads to
the conclusion that there will be explosive (or catastrophic) unstable growth at small
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(ultraviolet) wavelengths. The occurrence of ultraviolet catastrophe in PG models
is common (de Verdiére, 1986). This is because there are no relative vorticity terms
in (5.1.3) that would prevent growth at small scales. The balance in (5.1.2) is not
able to suppress this growth in the linear model. In Paldor and Ghil (1990), it is
suggested that it is the availability of baroclinic energy as seen through Reynolds
stresses or phase differences between the two layers that leads to this vigorous short
wave instability when layer depths are of the same order. Whether or not nonlinear
effects can suppress this growth is the focus of §5.5.

Examining other parameters, we see that the growth rate grows linearly with
o and decreases like 3. That is, increasing the gradient of the front enhances the
instability, while increasing the background planetary vorticity gradient inhibits it.
The growth rate grows like \/pR(l——yR) and therefore is greatest when the two
layers are of equal depth, uX = % The group speed for this solution is

< 3e(k? — €2) — 2 — uNA2 R4
co(k, o) = 22 - BEkE = &) = 2uR(A - uRIGFRT

= - 5.2.2
Ok 2¢R2 + 3 (5:2.29)

Benilov and Cushman-Roisin (1994) found that an exact solution to the trans-
formed weak beta model could be found by considering the wedge front. This
solution naturally extends to the SE model. The wedge front is given by

hO(y)=R+ays (_‘)30)
9.4,
vo(y) =0.

where the frontal slope. a. is no longer assumed to be small and. thus, corresponds
to a strong flow similar to the wedge front studied for the ST model. The parameters
are chosen so that the upper layer extends across the channel. that is, there is no
outcropping. In this case the linear normal mode equations (5.2.12) and (5.2.13)

reduce to
—c[$" — K9] + BY — a(R" — k?*h) =0,
-~ ~ (5.2.31)
—ch+a =0.
Eliminating b gives

(c® + a?)(R" — k®R) + Bch = 0.
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In this case, where the front extends across the channel. the boundary conditions
become simply ¥y =k =0 on y =0, L. In order to satisfy the boundary conditions,

we have that

R = Asin(fy), (€= "L—” n=123,... (5.2.32)

Substitution of (5.2.32) into (5.2.31) gives the dispersion relation

K2c% + Bc+ K202 = 0.

which has solution

_ =B+ /5% —4a?K*
€= 2K? ’
The solution is virtually identical to that given for the gently sloping front. In the
dispersion relationship the dependence on X and u has disappeared as might be
expected given the form of the transformation (5.1.8). These solutions are unstable

(5.2.33)

when the imaginary part of ¢ is nonzero. that is. when
3?2 —40*R* <0, (5.2.34)

which holds if the total wavenumber satisfies

32
-4 } =9 Q=
R* > ek (5.2.33)

When the wave is unstable its growth rate ¢ is given by

_./32 + 4a2 R’ -
o=kcr=k V. Ve . (5.2.36)
The group speed for this solution is
o k? — %) — 2ua®K*

co =22 = B )~ 2ua” KT (5.2.37)

Bk 2¢K? + 3

The similarity of the two solutions indicates that the solution for the gently
sloping front captures many of the essential characteristics of the model despite
assuming a small-amplitude flow. However, these solutions are limited since they

do not include an outcropping.
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5.3 Nonlinear Invariants and Stability

As for the other models we now discuss the invariants of §2.7 and use these
invariants to attempt to establish nonlinear stability. As mentioned previously, the
SE model can be studied using its noncanonical Hamiltonian formulation. However.
within the context of this thesis the Hamiltonian formulation of the SE model does
not add great insight. Therefore we leave the Hamiltonian formulation to Appendix
4 and discuss the invariants of the flow as we have done for the previous models.

Under the scaling (5.1.1), the leading-order term in pseudo-energy invariant

(2.7.12) reduces to
1
€= ;// V2 dedy — %// h(1 — uh)|Vh[? — B2 (V2 + 8y) dedy. (5.3.1)
Z Q L4 FR

Nlustrating that this quantity is invariant using the governing equations and the
boundary conditions is straightforward but as it follows from the discussion in §2.7
we do not present it here. As well from §2.7, we have the invariants associated with

the leading-order PV. For the upper layer. (2.7.9) holds so that

< =//m<§1(h)d:cdy (

is an invariant of the SE model where @, is any arbitrary. sufficiently smooth
function of its argument. For the lower layer. the leading-order PV is given by

(5.1.7) and hence it follows from (2.7.8) that

(1]
o
(V)

¢. = //mcp(l — ph)dzdy (5.3.3)

is an invariant of the SE model. Obviously, (5.3.2) and (5.3.3) are equivalent.

The equivalence of (5.3.8) and (5.3.3) leads to the search for another invariant
associated with the PVs, one in which the leading-order terms would cancel each
other. From (2.7.7) and (2.7.8) it follows that the leading-order term of

€. = / /myh@(ql) + (1 = uh)®s(qy) dzdy

is an invariant of the flow for any smooth functions ®; and ®,. Using the expansion
of the PVs given by (5.1.6) and (5.1.7) and Taylor expanding the functions ®, ,
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gives that

e = [ uh®i(a®) + (1 - uh)ea(ef”) dudy

+e / /m uhgM &, () + (1 — uh)alM e, (g®) dzdy
+ h.o.t.

Now we choose ®, so that the leading-order terms cancel, that is,
(1= uh)®s (&) = ke (). (5.3.4)

Using (5.3.4) and the expressions for the higher order PV's given by (5.1.6) and
(5.1.7), dividing by € and dropping the higher order terms gives

¢ = // { (V2w + 8y — u|Vh|?) (— - @10) +u<I>1th"'h} drdy.

where we have used the subscript zero to indicate that the function @, is evaluated

at qio) Integrating the final term by parts gives

¢, = // 2w + 3y (ng — @10) dzdy.

an invariant of the flow for any arbitrary ®,9. Therefore, we have the invariant

Ut
90
[]]
h —

&= [[ (Vv +8y) 8(h)dsdy (
R
for any arbitrary function ®.
We can also examine the case when the upper layer vanishes, h = 0. It then
follows from (5.1.7) that the leading-order, lower-layer PV is
&% = V2 + By, (5.3.6)
and hence it follows from (2.7.8) that

- / (V24 + By) dedy (5.3.7)
NF
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is an invariant of the flow. We can combine (5.3.2). (5.3.5). and (5.3.7) into a single

invariant given by

&(¥, k) =// ®,(V2v + 3y)dzdy
ol (5.3.8)

+ // [(Vzw + 8y) &1(h) + <I>3(h)] dzdy.
FR
where ®;, ®2, and ®; are sufficiently smooth functions of their arguments and
(§2Iy=¢x = @1(0) (v2w + rBy) |y=01 + ¢3(0) (53‘9)

so that any values associated with the variation of the outcropping are eliminated.
This is not an additional restriction since the invariant is only determined to a
constant that we are free to choose.

The fact that (5.3.5) is an invariant of the flow implies that the final term in
the energy-PV invariant (5.3.1) is an invariant by choosing ®(k) = h2. This allows

us to reduce the pseudo-energy invariant to

€= %f/ [Vu|?dzdy — f,—‘// h(1 — ph)|VA|? dzdy. (5.3.10)
- Q Z FR

This invariant specifies that the difference between the barotropic A'E and the
baroclinic K E remains constant. This has important consequences for stability since
it allows both the barotropic and baroclinic modes to increase their A E concurrently

(see §5.9). The zonal momentum invariant (2.7.13) becomes

sm:// yV2y dzdy. (5.3.11)
Q

We can attempt to derive nonlinear stability conditions as in §3.3 and Karsten

and Swaters (1996b). To do so we form the invariant function
3(h) = M(, h) — M(to, ho) + €(¥, k) — €(20, ko), (5.3.12)

where (%0, ho) = (¥o(y), ho(y)) represents a basic-state zonal flow and 9t and € are
given by (5.3.11) and (5.3.8), respectively, with the domains of integration extended
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to the entire domain . (Note that the first term in (5.3.8) vanishes since NF vanishes

when the upper layer is extended to the entire domain.) Then. from (3.3.5), we have

J= //9 { [y + 21(R)] (V2% + By) — [y + ®1(ho)] (V240 + 8y)

(5.3.13)
+ &3(h) — ®3(ho )} dzdy.

We now consider the first variation of J, that is,
67 = // {[@’l(h) (V3¢ + By) + @g(h)] Sh + [y + &, (h)] V26w} dzdy.
Q
In order that 63 vanishes at (v.h) = (vg. hqg). we choose &, and ®; to satisfy

&, (ho) = —y. (5.3.14)
®4(ho) = — (V2wo + 3y) &} (ko). (5.3.15)

Now we consider (¥,h) = (zL:.iz) + (wg, hg) where (L/;.il) is a finite amplitude per-
turbation to the basic-state flow. Then, from (5.3.13) using (5.3.14). we have

3(h + how + ¥o)
= [[ (&1 +ho) - @(ho)] (25 + Vw0 + 3) dedy 5516
A 3.

+ / /Q ®3(h + ho) — ®3(ho) dzdy.

Now we assume that ®; and ®3 satisfies the bounds

a1 < B7(6) (V2o +By) +@5(§) < B, Y€ and VyeQ, (5.3.17)
a2 < &1(§) < B2, VE, (5.3.18)

for some constants a;,» and B;,2. If (5.3.17) is integrated twice, first from ho to £
and then from hg to k + ho, and (5.3.18) is integrated once from hq to h+ ho using
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(5.3.15) and taking the absolute value, it follows that
%1-7:2 < [@1(5 + ho) — ®1(ho) ] (V%o + By)

- : 3 . (5.3.19)

+ ®3(h + ho) — ®3(ho) < 7‘}:2.

|<1>1(iz+ho) — &, (ho)| < max(ay, 3)lA. (5.3.20)
Using (5.3.19) and (5.3.20) with (5.3.16) gives

—Lh? - max(az, 32)|R|| V2| } dzdy
AL }

< I(h + ho, ¥ + wo) < (5.3.21)

// { ZLA2? + max(az, f7) |hHVzu[}dxdy

In order to establish conditions for nonlinear stability. we need to establish con-
ditions that guarantee that J is either positive or negative definite. To establish
such bounds would require that we establish conditions such that the bound on the
left (right) in (5.3.21) is positive (negative) for all perturbations. Such conditions

require an inequality of the form

Cf)_1|ﬁ| > max(az, 32)| V20|

or

éIh[ < —max(asz, 32)|V? v]

respectively. These conditions require that the perturbation to the barotropic
stream function be somehow bounded by the perturbation to the upper-layer height,

that is,
V24| < ClAl, (5.3.22)

for some positive constant C. This is clearly not true for general perturbations and
specifically not true as length scales become small. We can relate this condition
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to the analysis in §5.2 by associating V2¢ with k2¢. Then for ( 5.3.22) to hold, we

require
k2| < ClR|,

which will only hold as k£ — oo if either we do not allow perturbations to the stream
function, ¥ = 0, or the perturbations to the frontal layer become large, h — co. The
latter case is instability, unbounded growth in the perturbations. and the former
is a restriction that essentially reduces the model to a single layer/reduced gravity
model. Thus, it is not possible to establish nonlinear stability conditions since it is

not possible to bound the small-scale growth.

5.4 Weakly Nonlinear Analysis

In the following sections, we examine the effects of nonlinear terms in the
model using a weakly nonlinear analysis of the solutions found in §5.2. We begin
with the gently sloping front and then follow this with the analysis of the wedge
front using the transformed model. Once again. both models give rise to the same
envelope equation and solutions to this equation are discussed. Since the weakly
nonlinear analysis of the ST model contains many similarities, we reference §3.4

whenever possible to reduce redundancy.

5.5 Gently Sloping Front

As found in §5.2, the SE model has an exact solution for the gently sloping
front basic state (3.2.22) with assumptions (3.2.24) and (3.2.25) and the dispersion
relation (5.2.33). In the following analysis we will drop the tildes from the small
quantities. The variables are given by the basic solution plus a smaller perturbation,

that is,

h=R+ Aa (y—é) + A2,
P =A%

(5.5.1)

Substituting (5.5.1) into the nonlinear model (5.2.1) and (5.2.2) gives the fully
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nonlinear equations

ht + ayr = A.M, (552)
V2 + Bz — Ru(l — uR)aV2h, = AN, + A2N, + O(A3). (5.5.3)
where
M = J(h.¥), (5.5.4)
Ny = p(l - 28u) [azhzy +a*(y — é)v%,] , (5.5.3)
No = —p(l — 28y) [a(y - é)J(h. V2h) + aJ(h.hy)
- ahV?h; — ahhyr — ahyh,y] (3.5.6)

L\’ _, L
and we reiterate that a, 8, and t have been appropriately scaled for the gently
sloping front with the tildes dropped.

We can construct an equation that eliminates ¢ from the linear terms by
taking (V? + 30:)(5.5.2) — a8:(5.5.3) to give

ot
[9]]
~
A

£(8, 0z, 0y, a)h = A[(V2 + 80;)M — ad; Ni] — A%[ad; Na] + O(A3), |

where
£(8:, 0z, 0y, @) = V2, + Ru(l — Ru)a® V2, + 80;.. (5.5.8)

Equations (5.5.7) and (5.5.2) are the equations we will study.
The marginal stability curve (5.2.26) gives a critical value of the frontal slope
a given by

Qe = B T (5.5.9)
2[uR(1 — uR)]zZR2

where it is assumed that a. > 0 (see later discussion). If @ > a. we have linear
stability, if @ < a. we have linear instability. To facilitate a weakly nonlinear
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analysis. we study a front that is only marginally unstable. That is. a front where
the linear instability will grow slowly allowing the nonlinear interactions to evolve
and be analyzed. Therefore a value of « slightly larger than the critical value is

chosen, that is,

a=a.+ v,

for some small A; and an order one parameter v that allows the growth rate of
the linear instability to be adjusted. The imaginary part of the linear phase speed,
(5.2.33), will then be given by

V2ER(1 — mh)ac A +0(A)). (5.5.10)
In order to simplify this, A = ( Ay)? is introduced so that
a=a.+vAl (5.5.11)

where v is an O(1) parameter that allows us to adjust the size of the linear growth
rate. Figure 5.1 shows the marginal stability curve given by (5.5.9) and the value

for a used in the analysis as given by (5.5.11).

Slow time and space variables as given by (3.5.1) are again introduced, al-

though now we will need only one slow time variable and a second slow space

variable, that is,
T=At, X=Az, X=A%. (5.5.12)

Note that we have already scaled t accordingly for the gently sloping front analysis.
Using the slightly unstable frontal slope, (5.5.11), and the slow variables,
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unstable

=0c

o=0lc+VA?2

> K

Figure 5.1: The marginal stability curve as given by (5.5.9), giving the
critical value of the interface slope, a., versus the wavenumber K. Values of
a greater than a. represent unstable fronts, those less, stable fronts. The
value of o used in the analysis as given by (5.5.11) is shown to be a small
increase in the frontal slope so that the front is in the unstable regime.

173



3. SE model

(5.5.12), in linear operator in (5.5.8) gives

£(8; + ABr,0; + Adx + A?8%,8y.ac + vA?) =
g(atta.tva!ﬁac) +A[£1(a‘tva.l': 6yvac)aT+£2(aharsay~,ac)aa\’]

1
+ A? [;211 (ah a.l‘s ayv CYc)aTT + 212(at7 aJ:~; 6y, C!c:)aTX
- (5.5.13)

£22(at9 al'? ayv ac)aXX + 22(at-, az-, ay- Qc)ax

N

+

+ 1/24(81, 6;., By, ac) .

As in §3.5, the quantities h and w are expanded in a power series in the small

quantity A as follows:
(h,%) = (R, )@ + A(h. )P + A2(R.u)® + ... (5.5.14)

Using this expansion in equations (3.3.7) and (5.5.4) with the slightly unstable
frontal slope. (5.5.11), and the slow variables. (5.5.12). making use of (5.5.13) and
setting the coefficients of terms in similar orders of A to zero gives a series of
problems that must be solved. The solvability conditions that arise at each order
according to the F.A.T. give rise to an evolution equation for the slowly varying
amplitude of the linear solution.

The leading-order problem is given by

2(6:, 6,_-, Oy, &c)h(o) = 0,

0t ® — —h§°’. (5.5.13)

As in §5.2, we assume the perturbations have a wave form, that is, we let
h® = A(X, X, T)exp[i(kz — wt))h(y) + c.c., (5.5.16)
»(® = B(X, %X, T)expli(kz — wt)]z:/;(y) + c.c., (5.5.17)

where A, B represent the slow time and space evolution of the solution envelope.
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This gives the system

L(—iw, ik, 8y, ac)h = —2w3[By, + ]k =0,
w = (5.5.18)

k,

w=kac

which is just system (5.2.21) with a = @, and has the nontrivial solution E(y.é)
given by (5.2.23) provided (5.2.33) holds, that is, if

k3
The O(A?) problem is given by

E(at, a.rv ayv ac)h(l) = [21(6:.61-, aya ac)aT + £2(at- ar-. ay~ac)a.‘(] h(O)

+ (V? + 631).-’\4(0) + —aazN{O). (5‘5.20)
av® = —hM — b — Q) + MO, (5.5.21)

where the M(® and NI(O) represent the leading-order terms in M and NV;, respec-
tively, when (5.5.14), (5.5.11), and (5.5.12) are used. Using the leading-order solu-

tion (5.5.16, 5.5.17, 5.5.18, 5.2.23) gives

s(a‘ta 61.'7 a‘y1 QC)h(l) =
- { [A7Cy(—iw(k, )ik, 8, ac) + Ax La(—iw(k. ). ik. 8y ac)] A(y. €)

L
+ Aadk?u(1 — 28u) [e cos(ly) — (k? + %) (y - ;) sin(éy)] (5.5.22)

} expli(kz — wt)] + c.c.,

5.23)

(]}

avt = —h{Y — Arh(y, €) expli(kz — wt)] + c.c. (

T

Note that all quadratic terms, terms proportional to exp(2:k6), have cancelled each
other as in §3.5 but in contrast to the analysis of §3.6. Examining the operator £
as given in (5.5.8) gives that
£1 (at, Oz, aya ac) = 2V% + 80:,
22(6:, ax, ay, ac) = 261(_1; + &/J(l - #R)a3(4az.‘t.‘t + 23yy_t) + ﬁat.
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Using (5.2.23), (5.5.19), and (5.5.9) gives that

L1 (—iw(k.0),ik, 8y, ac)h(y, ) =0,

. . ~ . k33?2~ (5.5.25)
Lo (—iw(k, 8),ik, 8y, ac)h(y, ) = —lmh(yqf)-
As in §3.4, it is reasonable to assume that the solution has the form
R = C(X, %, T)G(y) expli(kz — wt)] + c.c. + B(y, X, X. 7). (5.5.26)

The function @ is a solution to the left-hand side of (5.5.22) since it is independent
of z and ¢. Its inclusion is necessary in the next order problem where its form will

be derived. Substituting (5.5.26) into (5.5.22) using (5.5.23) gives

l ~
"G = ——— {9 .
G'+0°G = C(X,.‘i?,T){ tkAxh(y,?)

L o i L\ .
+A‘;}\f:f(l - N:)) [ecos(ey) — (K + £2) (y - E) sm“y)] }

(S]]
[J]]
[{V]
-

~

The left-hand side obviously has the homogeneous solution G(y) = h(y, €) = sin(¢y).
and we can apply the F.A.T. as in §3.5. The form of the eigenfunction. E(y, 0). is
identical to that given in §3.5, and the integrals discussed there apply. The final
two terms on the right-hand side in (5.5.27) integrate to zero so that the F.A.T.

reduces to requiring that
Ax =0, (5.5.28)

so that A = A(X,T). Similarly, all variables are now assumed to be independent
of X. At first glance, this result may appear different than that obtained at the
same order for the ST model in §3.5. For the ST model, the O(A?) problem de-
termined that the wave amplitude travelled at the group speed (see derivation of
(3.6.23)). However, if the expression for the group speed for the SE model, (5.2.29),
is examined in the limit as o — «, it is determined that the group speed becomes
infinite on the marginal stability curve. (Note that the two waves that coalesce on
the marginal stability have equal phase speeds, but not group speeds. One tends to
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positive infinity and the other to negative infinity.) The result (5.5.28) corresponds
to the envelope travelling at the infinite group speed so that no variation in X is

Seen.

Now the solutions to (5.5.22) can be found as C(X,T) = A(X.T) and

G =

Given (5.5.

where

y(y — L) cos(&y)

p(l — 28y) [(k? + 02)?

“ONu(1 — Ry) 4¢
(5.5.29)
(K — &) ( —£> in(€y)
7 y— 35 )sinléy)}.
29) the solution to (5.5.23) is given by
vV = ——Arh(y. €) + AF(y) expli(kz — wt)] +c.c., (5.5.30)
p(l—2Rp) | (K% +£)?
= - - 14
“ORp(1 — Ng) 27 Yy — L)cos(y)
(5.5.31)

k2 — ¢2 LY .
- (_482—2 (y - -5) sm(éy)J.

Note that a function analogous to & could be added to (5.5.30) but this function

plays no role in the final equation and so is not included.
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The O(A3?) problem is given by

S(at ,6,;, 3y. C!c)h(2)

= { [Arrésu(—iw(k,e),ik, 8y, ac) + AxLa(—iw(k.0).ik, 8. ac)

+ AvLy(—ww(k, ¢), ik, ayvac)} ;;(yv f)

~~~
[$]]
.Ol
[J%]
(V)

A

~ Aack®Ru(1 — Ry) [2(1:2 + €%)®,, sin(ly)
+ 208y, cos(ly) + 2Py, sin(Ey)]

—1Ay(y) + AT M4, (y)} expli(kz — wt)]

+ M2 exp[2i(kz — wt)] + c.c..
£sin(2¢ ”
+ Esin(24y) (14]?)

[+

+ P.2 exp[2i(kz — wt)] + c.c..

av® + 1P = &7 7 + Pe expli(kz — wt)]

(5.5.33)

where

v(y) = — pk®a(l — 28u) [(y - é) (G — k2G) + G’J

L\? - -
+ pac(k? + 62) (y - ;) sin(4y) (5.5.34)

— pact (y - é) cos(Ly).

and the terms M4, , M.z, P., and P,2 are not needed in the following analysis and
so are not expanded here.

It is now clear why it was necessary to add the homogeneous solution to the
second order solution A1), It is necessary to balance the terms that arise in (5.5.33)
that are independent of z,t¢ and, thus, are also homogeneous solutions to the LHS
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of (5.5.33). Therefore, we choose @ such that these terms vanish, that is,.

_ €sin(26y)

[4

@r (lA|2)T?

or, after integrating,
—Z : -
¢ = a (1A% — |A0|?) sin(2¢y), (5.5.35)

where Ag = Ao(X) = A(X,0) is the initial amplitude of the perturbation. Note that
in (5.5.35) we have chosen the integration constant so that the mean flow correction
® is initially zero. This is not necessarily required and it will be discussed later
how this influences the solution. Also note that the case of the long-wave-short-
wave resonance that occurred in §3.4 does not occur here. This is simply because
all modes on the marginal stability curve have a finite phase speed and an infinite
group speed and so the two can never be equal. The solution (5.5.35) cannot be
found if a. = 0. but this is the case of a flat front and is of no interest.

Using (5.5.35) we have that

ack®Ru(1 — Rp) [2(k% + €)@, sin(€y) + 2£®,, cos(ly) + 2@y, sin(fy))

5.5.36
= =2k Rp(1 — Rp)(k® — &) [sin(8y) — sin(3¢y)] (JA]* - [4o[*) . )
Assuming
h(2) =CI(X7 T7 T),’Vj[ (y) exp[i(kx - ""t)]
+ Co(X,T,7) N2 (y) exp[2i(kz — wt)] + c.c.,
and considering the exp[i(kz — wt)] problem for the equation (5.5.32) gives
Ci(X,T, 7)&(—tw(k,),ik, 8y, ac)N1(y)
k332
_ 2 | p2 .
= [(k*+€)ArT +l(k2 o) Ax
(5.5.37)

— wk2aRu(l — Ru)(k2 + 2)A | h(y, )

— 2%E2Ru(1 — Rp)(k? — £2)A (JAI? — |4o|?) [sin(8y) — sin(3¢y)]
—1Av(y) + AgMa, (y),
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where we’ve used (5.5.25) and that

—Sll( z"‘J(k e) Zk ayvac)h(yv ) (k2 +62)h(y e)
(5.5.38)

L4(—tw(k,8),tk,0y,ac) h(y 0) = 2vk?a Ru(1 — Ru)(k? +€2) (y.¢).

Once again, equation (5.5.37) has the homogeneous solution Ni(y) = 72( y.f).
It follows from the F.A.T. that a solution exists iff it holds that

Arr +ixAg = (6> —T)A - Z (JAP® — |40/*) 4, (5.5.39)
where

- ks (5.5.40)

X = (k2 +62)3 . J.0.
= 2k2Ru(1l — Ry )a., (5.5.41)

Ru(l — Ru)k20%(k? — €2) - =
T = . .0.42
2+ 07 (5.5.42)
I'= —m/o “ y)h(y.l) dy. (0.0.43)

and we’'ve used that
L P~
/ Ma, (y)h(y.€)dy = 0.
)

Equation (5.5.39) is the unstable nonlinear Schrodinger equation (UNLS) de-
rived in Pedlosky (1972) and presented in Tan and Liu (1995) for a two-layer Phillips
model, derived in Reszka (1997) for the WVT model, and derived in Mooney and
Swaters (1996) for the LST model. The parameter o is the small linear growth
of the marginally unstable mode (see (5.5.10)). The parameter ¥ represents the
nonlinear interactions. The parameter I" represents the corrections to the linear
solution growth rate as higher order, linear terms are considered. We write the

equation in a slightly simpler form by introducing

¢ =02 -T+ I|4o|?, (5.5.44)

180



5. SE model
giving from (5.5.39)
ArT +ixAx = cA - TA|A]% (5.5.45)

The correction term I' arises from the approximation that the slope is small
in the basic state and so certain terms in the linear equation are not included in
the leading-order problem. These terms are included when we consider the higher
order terms as we examine the weakly nonlinear analysis and hence the presence of
[ in the envelope equation. These correction terms can either stabilize or further
destabilize the leading-order, marginally-unstable front depending on whether I is
positive or negative. The size of I is very sensitive to the y structure of the linear
solution and grows rapidly as meridional length scale increases. That is. the size of T’
increases with the domain width L but decreases with the meridional wavenumber.
This illustrates that the error in the approximation becomes greater as the size of
y— L/2 grows. In Figure 5.2, plots of I" and o2 are given versus k/¢ for three values
of L. For small L, T is small compared to ¢? and has little effect on the coefficient
. It can be seen that as L increases I' grows to a size where it can dominate o2 so
that 02 — [ is negative for small k/¢. That is. the front is linearly stable for these
parameter values. At higher values of k£/¢ the instability is enhanced as I" becomes
negative.

A second way of looking at this is that the correction terms will move the
marginal stability curve. If this adjustment is great enough, the analysis is no
longer being carried out on a marginally unstable front but on a marginally stable
front. In the following analysis, we wish only to consider the nonlinear modulation
of a linearly unstable front and therefore assume that 02 — I is positive. We do
present some brief analysis of linearly stable fronts in §5.8. and cases where ¢ — T’
is negative are included in this analysis.

Before looking at solutions of this equation, it should be noted that the as-
sumption that a. > 0 is not important in the analysis. Indeed, the above analysis
can be carried out with a, < 0 and the same evolution equation is obtained. The

only change that occurs is that in this case
a=a,—vA%

This is reasonable as the linear results are identical for positive and negative a.
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L=P1

Figure 5.2: Plots of the linear correction term I' (solid line) and the
linear growth rate o (dashed line) versus k/¢ for three channel widths,
L=mn1.57,2r.

182




5. SE model

5.6 Transformed Model Wedge Front

The transformed model that was used to find a solution in §5.2 will also be
used in the weakly nonlinear analysis. The analysis is virtually identical to that in
the previous section, and so we will be brief. The variables are given by the basic

solution plus a smaller perturbation, that is,

h =R+ ay + Ah,
Y = A

(5.6.1)

Substituting (5.6.1) into the transformed model (5.1.10) and (5.1.11). gives the fully

nonlinear equations

By + aw, = AM. (5.6.2)
V3w, + 8wy —aV3ih, = AN. (5.6.3)
where
M = J(h,v), (5.6.4)
N = J(Viu,¥) + J(V3h.R). (5.6.3)

We can construct an equation that eliminates v from the linear terms by taking
(V2 + 88,)(5.5.2) — a8.(5.5.3) to give

£(8y,0z,8,, @)k = A[(V2 + 38, )M — ad, N, (5.6.6)

where
£(8¢,0z,0y, ) = V2, + a*V2_ + 0,,. (5.6.7)

Equations (5.6.6) and (5.6.2) are the equations we will study. The equations are very
similar to those of the previous section with a small change in the linear operator,
no fast-varying linear terms in the higher order problems, and some simplification

in the nonlinear terms.
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The analysis proceeds as before. We begin by choosing a marginally unstable

curve by choosing the frontal slope as in (5.5.11) where now

3

=y (5.6.8)

Qc

We introduce the slow space and time variables (5.5.12) and the analogue of the
expansion (5.5.14). We proceed to solve the leading-order problem. obtaining the
linear solution given in §5.2, and second order problem, getting that the solution
is independent of X. Note that we do not get a solution corresponding to (5.5.29)
since there are no fast-varying linear terms in this and higher order problems. We
proceed to the O(A?) problem, eliminate the constant terms. apply the F.A.T. and

once again obtain the envelope evolution equation (5.5.45) with

k3‘32 _
X = (k2 + £2)3° (5.6.9)
s = 2vk?a. + T|Ao|%, (5.6.10)
2k202(k2 — ¢2)
Yy = . 5.6.
z 21 ) (5.6.11)

As before the analysis can be carried out with a. < 0 and the same evolution
equation is obtained.

The fact that the evolution equations are so similar for the two basic states
is not surprising. However it should be stressed that the analysis of this section
holds for fronts with no limitations on the frontal slope, while the previous section
assumed the frontal slope was small. This leads to the very important conclusion
that weakly nonlinear analysis that is performed under simplifying assumptions can
capture the essential nonlinear aspects of the model even when these assumptions
break down. However, the similarity of the evolution equations is also a result of the
similarity of the eigenfunctions and hence, the expansion of the nonlinear terms. As
shown in the analysis of the ST model if the structure of the eigenfunction changes
a greater array of interactions can occur (see §3.6). This leaves the question open as
to whether the analysis carried out here captures all the essential nonlinear effects

of a basic-state front that has an outcropping.
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5.7 Solutions to the Amplitude Equation

The amplitude equation (5.5.45) has been derived for other models similar to
the SE model. It is the equation derived in Pedlosky’s weakly nonlinear work for
a Phillips model (Pedlosky, 1972) and also has been derived in the weakly nonlin-
ear analysis of the LST model (Mooney and Swaters, 1996) and the WVT model
(Reszka, 1997). The first term on the right-hand side in the equation represents
the linear effects in the model and gives rise to linear growth. (As mentioned be-
fore, we are assuming o2 — I is positive in the gently sloping front analysis and so
¢ > 0, for both models.) The second term on the right represents the influence of
the nonlinear terms in the model. For £ > 0. this term will dampen the growth
of the instability; for £ < 0, this term will enhance the growth of the instability.
The fact that ¥ changes sign at O(1) values in this model will lead to additional
analysis not found in Pedlosky (1970) or Mooney and Swaters (1996) but similar
to that found in Reszka (1997). On the other hand. the lack of a critical shear
value. a positive critical value of o that must be exceeded for instability. results in
no analysis analogous to the critical shear analysis found in Pedlosky (1982) and
Mooney and Swaters (1996).

First. we analyze flows that are independent of X by letting

A(X,T) = f(T).

where for simplicity, f is assumed to be real (see Pedlosky. 1970 or Mooney and
Swaters, 1996). This leads to a nonlinear ordinary differential equation for f given

by

f"=sf+Zf =0, (5.7.1)

which is the equation examined in Appendix 5. The form of the solution depends
critically on the sign of ¥ as one would expect. If £ > 0 the solution lies in region 1
or 2 and is a bounded periodic solution. The exact form of the solution depends on
the sign of v; as defined by (A.5.6), which when written in terms of the parameters
of this section is defined by

2
)

ot
~
N
g

T = Af + & (0745 — (40)?) , (5.
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where we have ignored I'. Therefore, v3 is only negative if A} is sufficiently large.
Two standard cases can be considered:

1. Aj = 0: the initial amplitude of the envelope is specified, and it is not assumed
to be changing.

2. Aj = 0Ag: the initial amplitude is assumed to be growing at a rate equal to that
of the linear growth rate.

Both cases give rise to 3 being positive. The solution lies in region 2 and is plot-
ted in Figure A.5.5. The two different initial conditions have no effect other than
shifting the starting point of the solution. The solution grows initially due to linear
instability, the instability is inhibited by nonlinear terms, and the solution reaches
a maximum. The growth is reversed and the amplitude decreases until linear terms
dominate once again, creating linear growth. and the process repeats itself. If Aj
is chosen sufficiently large to make <3 negative, the solution lies in region 1 and
oscillates through zero, that is, the wave changes phase by 180 degrees.

One can provide a detailed analysis of the characteristics of these solutions
(see Mooney and Swaters, 1996) but we will only give a brief comment on the main
characteristics. For solutions in region 2 the main characteristics are the period
of oscillation and the maximum amplitude of the solution. As found in Reszka
(1997) and Mooney and Swaters (1996) as k increases the period decreases and the
maximum amplitude decreases. As k — ¢, that is, as ¥ tends to zero, the period
and the maximum amplitude both tend to infinity.

If ¥ < 0, the solution lies in region 3, 4, or 7, and becomes infinite in finite
time. A typical plot of the solutions in regions 3, 4, or 7 is given in Figure A.5.5.
The solutions grow initially due to the linear instability and, as the amplitude
becomes finite, nonlinear terms actually enhance the growth. The growth continues
to accelerate leading to the amplitude becoming infinite in finite time. This finite
blow-up time can be calculated and is plotted in Figure 5.3 versus the ratio k/¢ for
B =1 and g = 0.5. The blow-up time becomes large as k tends to £ and zero. The
time of blow-up is a minimum at an along channel wavenumber just slightly less
than the cross channel wavenumber, & = 0.8737¢, where T, = 8.4143.

In deriving the evolution equation, we considered only weak nonlinear effects
by considering a wave of small amplitude. The above analysis suggests that nonlin-
ear effects can enhance the linear growth so that the wave amplitude becomes large
very quickly. Once the wave has become large, the evolution is fully nonlinear. It is
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Figure 5.3: The blow up time for solutions with k < ¢. The blow-up time
becomes infinite as k tends to zero and € and is a minimum at k = 0.8¢

expected that the fully nonlinear effects will eventually suppress the growth of the
wave, since a wave of infinite amplitude is unphysical.

We now return to (5.5.45), which includes spatial variability. We have il-
lustrated the time behaviour of the solutions and now quickly illustrate that the
stable, periodic solutions found when £ > 0 can be associated with travelling-wave
and soliton solutions when slow spatial variations are included with the appropriate
boundary conditions. Such solutions were also found in Pedlosky (1972), Mooney
and Swaters (1996), and Reszka (1997). In order to cast (5.5.45) into the standard
form examined in Appendix 5, we first make the transformation (Reszka, 1997)

i [
A(X,,T) =exp (;/; —¢(€) df) C(X2,T). (5.7.3)
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It is necessary to make this transformation, as opposed to the simple rearranging
done previously, because A9 now depends on X and therefore cannot be included in
the constant coefficients. Note that in Tan and Liu (1995) the term proportional to
|40)? is not in their final equation. This term arises from the condition we imposed
that the mean flow corrections be initially zero (see the derivation of (5.5.35)).
Through this transformation, it is illustrated that whether or not this condition is
imposed does not qualitatively affect the basic governing equation. Substituting
(5.7.3) into (5.5.45) and simplifying gives

Crr +ixCx, + EC|C|? = 0. (5.7.4)

Travelling-wave and soliton solutions to (5.7.4) can be obtained by assuming

C =exp(iRX —iVT) f(X-UT), (5.7.3)
where we choose
_ _X =
V= 5T (5.7.6)

Substituting (5.7.5) into (5.5.45) gives

f"=mnf+7f=0. (5.7.7)
where
(x& + V?) b
nE=TmE ”E

This equation is examined in Appendix 5, and the solutions found there apply.
Now, since we are considering a travelling wave, the solutions must be bounded for
all values of . Hence we must restrict ourselves to regions 1 and 2, where v > 0
and hence £ > 0. As expected from the previous analysis, travelling-wave/soliton
solutions only exist for solutions that are stabilized by nonlinear effects, that is,
when k& > ¢. The solutions in regions 1 and 2 again apply, only now they describe
the evolution of the travelling wave. The characteristics of the solutions are the
same as described above and are not discussed in detail here. Instead we proceed

to illustrate that a limit of these solutions may lead to solitons.
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As discussed in Appendix 5, the limit in which v3 — 0 leads to a bright soliton
solution, a solution that tends to zero as § — toc. Assuming f'(0) = A¢(0.0) =0,
this solution is realized if

2R+ V?)\?
A(0,0) = 4o = (ﬂ—v——)) .

)

The solution from (A.5.27) is

f(X-UT) = Ag sech[w(X-UT)], (5.7.8)
where
AT ®
We can recast the solution (5.7.8) in terms of our original variables by first
using
|4o|® = |C(X.0)]* = |f(X)|* = AJ sech® (mX).
so that

k3 x
/ <<5>ds=-/ (o + T|Ao[?) dé
0 0

TA2

(5.7.10)

=—0X — tanh (0 X).
Using (5.7.8), (5.7.3), (5.7.3), and (3.7.10) the soliton solution is

h(z,y,t) = Ao sech [m(¥ — UT)]

. 5 42 5.7.11
X {exp [i(kx —ot)—1 X‘:JO tanh (roA%)] + c.c.} , (5.7.11)
where
F=k+A? <ﬁ— %) , (5.7.12)
w=w+AV. (5.7.13)

189



5. SE model

The relationships between the soliton amplitude, Ag. the soliton width. ro. the
soliton speed, U, the wavenumber shift. &, and the frequency shift. V. are given by
(5.7.6), (5.7.7), and (5.7.9). We've given the solution here in terms of the notation
for the wedge front but the solution holds identically for the gently sloping front
with I included appropriately.

The form of the solution illustrates that the soliton acts to vary the amplitude
of the linear solution. The carrier wave actually alters the form of the original wave
changing its wavenumber and phase speed over the slow space and time scales. The
tanh term in (5.7.11) and the extra shift term in (5.7.12) can be dropped if we allow
an initial mean flow correction. Note that the solution is stable; the amplitude of
the soliton does not increase with time. The result of Pedlosky (1972) that the
soliton speed lies outside the range of the group speeds of the coalescing waves is
not possible as the group speeds are infinite. Further analysis of soliton interaction
has been examined in Tan and Liu (1995) but it is not of great importance in this

work.

5.8 Stable Solutions

The possibility in §5.5 that the higher order linear terms stabilize the flow
leads to the question of how the weakly nonlinear analysis applies to linearly stable
flows. The above analysis can be repeated for a marginally stable flow equally well

if we choose
o =a.—v,A? (5.8.1)

as opposed to (5.5.11). The analysis is identical to that presented above and leads
to (5.5.45) with v = —v,. The only change is that the linear term in (5.5.45),
which before was dominated by the contribution of the linearly unstable growth
rate o, corresponds to a linearly stable wave and is of the opposite sign. Thus, all
solutions will be initially stable and their amplitude will decrease. In the analysis
for unstable waves, it was found that when k < ¢ the nonlinear effects enhanced
the instability leading to explosive growth and solution breakdown in finite time.
It would seem reasonable that these effects would also act on a marginally stable
flow. The question of greatest interest is whether nonlinear effects can destabilize

the linearly stable flows.
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To answer this question, one only need examine solutions to (5.5.45): when
¢ < 0, the solution is linearly stable. and when ¥ > 0, nonlinear terms act to
destabilize the flow. So equation (5.7.1) would now correspond to an equation
having solutions plotted in Figure A.5.4 and lying in region 6 or 7 as described in
Appendix 5. (Solutions in regions 3 and 5 are not possible since by the definition
of ¢ and the assumption that the solution is linearly stable, ¢/T < |Ag|.) Solutions
in region 6 are stable, periodic solutions (see (A.5.20)). However solutions in region
7 are unstable solutions that become infinite in finite time as discussed previously.
These solutions are possible if v3 > (71/72)2. This is only possible if A takes on
sufficiently large values. For a linearly stable solution, a physical choice for A
would be setting it to zero to reflect the neutral growth of amplitude associated
with a linearly stable solution. Giving Aj a large positive value corresponds to
giving the initial solution a large kick to get it initially growing, and may not be

physical.

5.9 Numerical Solutions

We now examine the numerical solutions to the full nonlinear SE model. The
numerical scheme, basic states, and diagnostics are described in §3.11. Since the
model predicts linear instability at small wavenumbers, we expect the numerical
simulations to illustrate large growth at small scales. We first illustrate this by
examining the coupled-front and isolated-front simulations similar to those of the
previous sections. Note that the SE model does not have a decoupled limit. There-
fore, we do not expect the coupled-front simulation to be similar to that of the
RED, ST, and WVT models. In Figure 5.4, we plot the frontal height for times
t = 6 to 11. These illustrate the growth of small-scale waves initially. These waves
begin to form smaller-scale structures until we have a turbulent current. No large-
scale structures are seen and the results are independent of the form of the initial
perturbation, the inclusion of friction, or the structure of the basic state. Indeed
for a isolated front, the results are similar as shown in Figure 5.5. The instability
takes somewhat longer to grow, but in the end we see development of small-scale
turbulence. Obviously, the ultraviolet catastrophe predicted by the linear analysis
is being observed. This growth is not being suppressed by nonlinear terms as the
weakly nonlinear analysis suggests.

In Figures 5.6 and 5.7, we examine the energy diagnostics for these simula-
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Figure 5.4: Results of the numerical simulation of the SE model coupled-
front simulation for t=6-11. The graphs on the left show the contours of
the upper-layer height. The grey regions are regions where the upper layer
vanishes and the contour interval is 0.1. The graphs on the right show the
contours of the barotropic stream function. The grey regions are regions
where the stream function is negative and the contour interval is 0.04.
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Figure 5.5: Results of the numerical simulation of the SE model isolated-
front simulation for t=14-19. The graphs on the left show the contours of
the upper-layer height. The grey regions are regions where the upper layer
vanishes and the contour interval is 0.1. The graphs on the right show the
contours of the barotropic stream function. The grey regions are regions
where the stream function is negative and the contour interval is 0.04.
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Figure 5.6: The potential energy (PE, upper plot) and the baroclinic ki-
netic energy (BC K E, lower plot) for the SE model, coupled-front simulation.
The term zonal is used to indicate the mean zonal average, pert. indicates the
perturbation to this average, and btp indicates the barotropic component.

tions. As the instability grows, we do see a release of mean potential energy and
a growth of the perturbation PE. The plots of the kinetic energy are in striking
contrast to those of the previous section. We see rapid growth in the total and per-
turbation baroclinic K E as well as the barotropic K E. There is also a small release
in mean BC K E. The large growth is expected as small scales begin to dominate the
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Figure 5.7: The potential energy (PE, upper plot) and the baroclinic ki-
netic energy (BCK E, lower plot) for the SE model, isolated-front simulation.
The term zonal is used to indicate the mean zonal average, pert. indicates the
perturbation to this average, and btp indicates the barotropic component.

flow. The fact that the baroclinic and barotropic K E grow concurrently is required
by the conservation of the pseudo-energy £. Note that in the case of the isolated
front, the release of K E precedes the release of PE and we see a large growth in
K E for a relatively small release of PE.

In order to examine the weakly nonlinear analysis more closely, we ran sim-
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ulations with the gently sloping front. These simulations were not able to produce
results that were identifiable with the analysis. The reason is simple. Small-scale
growth dominates the simulations because the marginal stability curve does not
have a critical value of the frontal slope for instability. While the fundamental wave
may be marginally unstable. waves of smaller scale are also linearly unstable and
not marginally so. Therefore, waves of smaller scale grow quickly, and we postulate
that they grow at such small scales that nonlinear terms that may suppress their
growth cannot develop properly due to the limitations of the numerical grid. (The
nonlinear terms are necessarily of a smaller scale.) Thus, we see small-scale growth
even in simulations chosen to simulate the finite amplitude analysis. (It should be
noted that various forms of numerical friction were implemented in an attempt to
eliminate this small-scale growth with little success.)

As discussed previously, the difficulty with the SE model is that the instability
results in energy cascading to scales that are smaller than the model resolves. One
way to deal with this is to choose a larger Rossby number and allow for some
influence of the nonlinear terms in the baroclinic equation. That is, if we examine
the general baroclinic equation (2.3.14), we see that in the SE model limit the
nonlinear Jacobian term is O(e) smaller than the time derivative term and the
barotropic-baroclinic coupling term. Thus, in the model we’ve dropped these terms.
But. when scales become small these terms become important as the fourth order
derivatives become large. If the Rossby number is not prohibitively small. the
nonlinear Jacobian will effect the evolution of the flow. Evidence that these terms
will inhibit unstable growth at small scales is given by the stability observed in the
RED and ST models and the high wavenumber cutoff for instabilities in the WV T
model (see Appendix 2). Therefore, we solve the full FG equation (2.3.13) and
(2.3.14) with the time and barotropic Rossby numbers given by the SE limit. (Note
that even the final term in (2.3.14) must be included now.)

In Figures 5.8 and 5.9, we present the results of running the coupled- and
isolated-front simulations when the higher order terms are included by choosing
€ = 0.1. We see that small-scale growth has been suppressed and large-scale growth
dominates the flow. In the coupled-front simulation, Figure 5.8, the large-scale
structures form eddies reminiscent of those produced by the RED model; see Figure
3.9. These eddies are not as stable and tend break up into smaller eddies which drift
southward. However, at the end of the simulation we still have large-scale structures,
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Figure 5.8: Results of the numerical simulation of the FG—-SE model coupled-
front simulation for t=6-11. The graphs on the left show the contours of
the upper-layer height. The grey regions are regions where the upper layer
vanishes and the contour interval is 0.1. The graphs on the right show the
contours of the barotropic stream function. The grey regions are regions
where the stream function is negative and the contour interval is 0.04.
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Figure 5.9: Results of the numerical simulation of the FG-SE model isolated-
front simulation for t=14-19. The graphs on the left show the contours of
the upper-layer height. The grey regions are regions where the upper layer
vanishes and the contour interval is 0.1. The graphs on the right show the
contours of the barotropic stream function. The grey regions are regions
where the stream function is negative and the contour interval is 0.04.
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especially in the barotropic stream function. For the isolated front. Figure 5.9,
small-scale waves initially grow and then large-scale structures dominate. These
large waves tend to break backwards often entrapping colder lower-layer water as
a cold-core eddy or pinching off as a warm-core eddy (see t = 51,53.55). These
eddies are coupled with cyclonic and anticyclonic eddies in the barotropic flow. As
well, filaments of lighter fluid extend outward from the front while intrusions of
lower-layer fluid (seen as a vanishing of upper-layer depth) reach across the front to
the far channel wall. In different simulations, with different initial perturbations,
we see different combinations of cold-core eddies. warm-core eddies, and filaments.
Two things are always common, the front is always very unstable and the structures
in the upper layer are always coupled to strong large-scale eddies in the barotropic

stream function.

The simulations si.are much in common with that of the WVT model as one
would expect. Both models produce eddies for both coupled and isolated fronts.
However, for the SE model these structures tend to be unstable and the fronts
remains dynamic after eddies have formed. In the WVT model. the waves tend to
be of larger scale. the eddies tend to be better defined. and the small-scale noisiness
seen in the above figures is not a feature (see A.2.1 and A.2.3). This is indicative
of the greater amount of baroclinic energy available in the SE model due to the
thickness of the active layer. As well, it has been shown that increasing the depth
ratio and increasing the 3-plane effect both lead to a shift to a higher-growth
rate, smaller-scale instability (Barth. 1994). Thus. even though the inclusion of
the higher order nonlinear terms may restrict growth at smaller scales. it does not
eliminate it. The vigorous growing instabilities of the isolated front are indicative
of the short-wave. rapidly growing meanders, eddies, and squirts common to all
coastal currents (Paldor and Ghil, 1991). These active fronts with many dynamic
features are similar to those shown in the works of Haidvogel et al. (1991), Spall
(1995), Barth (1994), and Bush et al. (1996). As well, similar jet meandering and
eddy pinch off were observed using a QG model in Flierl et al. (1987) and Feliks
and Ghil (1996). There, they also saw the baroclinic monopole structure dominate
the upper layer, coupled to barotropic dipoles. Also, nonlinear effects leading to
steady meanders, jets, squirts, and cold and warm-core eddies are well documented
in the above works. These features are all present in the FG-SE model simulations.

For now a complete parameter space examination and comparison to specific works
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and observations is not undertaken but is left to future work.

In Figures 5.10 and 5.11, we examine the energy transfers of the FG-SE
simulations. We can see that the suppression of small-scale instabilities has also
suppressed the unbounded growth of kinetic energy and allowed for a greater release
of PE (compare to Figures 5.6 and 5.7). We conclude that large-scale structures
are more efficient at releasing mean PE. The growth in baroclinic and barotropic
KE is no longer balanced as £ is no longer conserved. However, the isolated-front
instability is still associated with a large growth of K E. This growth does not come
at the expense of zonal K E. This form of instability. where large growth appears,
but apparently not at the expense of mean energy, is discussed in Barth (1989a).
There, the possibility of negative wave energy is discussed. This notion allows wave
amplitudes to grow while mean flow energies remain constant or even increase. We
believe that the instabilities of the isolated front shown here share this structure.
Note that these energy balances are very similar to that seen in the WVT model
simulations (see Figure A.2.5).

It should be noted that these simulations do reflect the results of the finite
amplitude analysis of §5.4. There, it was found that nonlinear effects should re-
sult in periodic modulation of linear growth when zonal scales are smaller than
meridional scales and explosive growth when zonal scales exceed meridional scales.
In both the coupled- and isolated-front simulations the vigorous instabilities and
eddy formation can be connected to explosive growth. If we examine the figures,
especially the barotropic stream function plots, we can conclude that for the large
growth instabilities zonal scales are equal to meridional scales. In Figure 5.12, we
plot the zonal and meridional spectrum of the barotropic stream function. For the
initial 20 time units we see the growth of initial perturbation of zonal wavenumber
10 and little structure meridionally. Over the next 20 time units the growth of this
wave is modulated periodically while meridional structure at larger length scales
begins to form. Then, at the times shown in Figure 5.9, growth at large zonal
scales, wavenumbers 1, 3 and 35, similar to the scale of the meridional structure,
grow explosively. Note that the zonal wavenumber 5 mode, which is a somewhat
smaller scale than the meridional scales, is also modulated before the end of the

simulation.
Once again, these results can be compared to those of Tang and Cushman-
Roisin (1992) (note that their results are found using a small depth ratio). There,
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Figure 5.10: The potential energy (PE, upper plot) and the baroclinic
kinetic energy (BC K E, lower plot) for the FG-SE model coupled-front sim-
ulation. The term zonal is used to indicate the mean zonal average, pert.
indicates the perturbation to this average, and btp indicates the barotropic
component.
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Figure 5.11: The potential energy (PE, upper plot) and the baroclinic
kinetic energy (BC K E, lower plot) for the FG-SE model isolated-front sim-
ulation. The term zonal is used to indicate the mean zonal average, pert.
indicates the perturbation to this average, and btp indicates the barotropic

component.
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Figure 5.12: The zonal (top) and meridional (bottom) spectrum plots for
the FG-SE isolated-front simulation.

it was found that in the frontal regime, a balance between frontal effects and baro-
clinic instability leads to stable anticyclonic eddies. The above results give further
evidence of this. Without the frontal effects, baroclinic instability dominates and we
see small-scale turbulence and rapid increases in the kinetic energy. In the general
model of Tang and Cushman-Roisin (1992) where all QG terms are included, this

leads to a barotropization of the flow.
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Chapter 6

Conclusions

In this chapter we summarize the results of this thesis. We begin by comparing
the structure of the four two-layer FG models. Next we discuss how this differing
structure leads to the results presented in the thesis. We then compare these results
to those of other models and discuss the advantages and shortcomings of the FG
formulation. Finally, we discuss possible future avenues of research.

We begin by comparing the structure of the three models studied in the body
of the thesis and the WVT model described in Appendix 2. For convenience. a
comparison of the scaling of the models is found in Table 6.1. We also include a
description of the baroclinic and barotropic equations using the terms QG. PG. FG,
and 3. We used these terms based on the similarity of the equations to previously
derived equations that use similar nomenclature. As such. QG is applied to models
that involve the evolution of relative vorticity terms, PG is applied to models that
are dominated by layer depth changes and the coupling of the two layers, and FG
is applied to models that include the nonlinear advection terms associated with
frontal effects. The label 3 is used in two ways. When written in regular type it
signifies 2 model that is dominated by the background vorticity gradient provided
by the 3-plane effect. When used as a subscript, it indicates that the model
includes B-plane effects. The baroclinic equation can be described as one of the
first three types of models. The barotropic equation, representing a balance between
baroclinic and barotropic effects, is a balance of two forms of equations. In the last
two columns of Table 6.1 we list the appropriate description of each equation for
the given model. In the description of the barotropic equation we list the barotropic
component first and then the baroclinic component.

From Table 6.1, the effect of the two parameters, é and eg, used to deter-
mine the models is clear. As the depth ratio § increases, the coupling between the
two layers becomes more important and dominates the frontal effects. Thus, the
baroclinic equation for the models where the layers are scaled equally, the VSE and
SE models, are PG in form, while the models where the upper layer is thinner,
the ST and WVT models, are FG in form. As the G-plane effect, €g, increases, it
eventually dominates the relative vorticity terms of the barotropic flow. Thus the
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Model ) €8 €T €w Baroclinic | Barotropic
Motion Motion

ST € € € € FGj 3-FG

VSE 1 €2 €2 €2 PGy B8-FG

SE 1 € € € PG QG;s-FG

WVT € € € € FG QG3-FG
TABLE 6.1. A comparison of the model scalings. Each term is given in
relation to the baroclinic Rossby number of the flow. The final two columns
give the classification of the two equations.

barotropic equation for the models where the 3-plane effect is relatively strong, the
VSE and ST models, are 8-FG in form, while the models where the 3-plane effect
is relatively weak, the SE and WVT models, are QG-FG in form.

These models can be classified as strong-8 and weak-3 models based on a

critical length scale

H 1/6
LC=<R,4L32F‘) :

L. is the scale at which the 3-plane effects and the QG effects balance each other in
the barotropic equation. Using the notation of §2. it is the scale where e = €, = €3.
It can be derived using the parameter definitions given by (2.3.7) and that for all
the two-layer, FG models e = ¢, = Je*/ez (see Figure 2.3). When the length
scale of the model exceeds L., 3-plane effects dominate the barotropic equation
and the models are called strong-# models. Such is the case for the ST and
VSE models, where (L./L)® = e. On the other hand, if the length scale of the
model is less than or equal to L., QG effects dominate the barotropic equation
and the models are called weak-8 models. Such is the case for the SE and WVT
models, where L. = L. As such, L. is analogous to the Rhines scale for QG models
(see §3.11 for definition and discussion). Note that in Benilov and Reznik (1996)
the parameter @ = Ry, /Lg = ege3§~% is introduced to make a more accurate
assessment of the relative importance of the 3-plane effect. The VSE and ST
models both have a = ¢ and are called strong-# models, while the SE and WVT
models have a = ¢%/2 and are called weak-3 models. (It should be noted that a
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similar parameter is introduced in Cushman-Roisin and Tang (1990) and Cushman-
Roisin et al. (1992) with a = R;/Ls. However, this choice of parameter does not
give the clear distinction between strong and weak (-plane models as discussed

above.)

The classification above can also lead to insight into the stability of fronts
described by a given model. In general, PG models are unstable. with the possibil-
ity of ultraviolet catastrophe (de Verdiére, 1986) and therefore increasing the depth
ratio increases the possibility of instability. This is reasonable because increasing
the depth ratio increases the vertical scale of the front and thus increases the avail-
able energy stored in the front. QG models are also subject to instability but the
inclusion of relative vorticity terms provides the apparatus to eliminate growth at
small scales. Thus, QG models give rise to large-scale. unstable. baroclinic waves.
On the other hand, the background vorticity gradient of the 3-plane is generally
a stabilizing force. A stronger (-plane is the result of increasing the horizontal
length scale. This has the effect of reducing isopycnal slopes and diminishing the
relative vorticity terms, thus stabilizing the front.

To classify the FG influences as stabilizing or destabilizing we examine the
RED model results. As the RED model is strictly an F'G model we can attribute
the processes seen there to FG influences. Under the RED model. monotonic fronts
are stable, while coupled fronts are unstable. Generally, we associate frontal effects
with small-scale motions. Only when streamlines are coupled do these motions
progress to larger scales resulting in the forms of instabilities seen for coupled fronts.
This does not occur in isolated fronts and we do not see instability. In general,
frontal effects tend to steepen the front favouring the formation of robust, coherent
structures (see Cushman-Roisin and Tang, 1990 and Tang and Cushman-Roisin,
1992). In summary, we expect PG and QG effects to be destabilizing at smaller
and larger scales, respectively, and 3-plane effects and FG effects to be stabilizing.

Given the classification of the models, and the stability considerations, we
now summarize the results of the nonlinear examination of the body of the thesis.
The results of the analysis of the previous chapters, and those given in Appendix
2, are summarized in Table 6.2. The results listed apply to isolated fronts and
the results for the RED model and LST model are also included (see Table 1.1
for where these results are derived). All models gave unstable growth for coupled
fronts leading to eddy formation. The effect of the lower-layer on the evolution of
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Model |Linear Stability] Nonlinear Finite Numerical
Analysis Stability Amplitude Solutions
Analysis Analysis (isolated front)
ST fronts where |linearly wave packet |stability,
PV gradients |sloping fronts| formation long waves
do not vanish |are stable
are stable
VSE monotonic linearly wave packet |stability,
fronts are sloping fronts| formation long waves
stable are stable
SE unstable to impossible saturation explosive
small-scale to prove or explosive |growth at
disturbances | stability growth small scales
WVT |instability for |nonlinear saturation eddy formation
finite, bounded | stability or explosive
region of possible growth
wavenumbers
RED monotonic linearly sloping| wave packet stability,
fronts are fronts are formation long waves
stable stable
LST instability for |nonlinear saturation instability
finite, bounded | stability (critical layer |leading to
region of possible dominates) vorticity wrap
wavenumbers up and eddy
formation
TABLE 6.2. A comparison of the model results as determined in this
thesis, in bold, and from previous works. Numerical results are for isolated
fronts.

coupled fronts was determined to be small. The differences between the models
occurred chiefly because of the differences in the uncoupled forms of the models.
Thus, while the eddy evolution in the ST and WVT models was almost identical
to that of the RED model, the VSE model illustrated hyperbolic behaviour as seen
in the BCHY model. The SE model coupled-front simulation, which does not have
an analogous uncoupled model, simply illustrated the small-scale growth associated
with ultraviolet catastrophe. The existence of this unstable growth for coupled
fronts points to the importance of the singular point of the models where the PV

gradient vanishes (see Benilov, 1995a).
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The ST and VSE models produce similar results. Both models are dominated
by the 3-plane effect. Each has a diagnostic barotropic equation, which leads to
difficulties when discussing outcrops. For both models all fronts are linearly stable
unless the PV gradients vanish and all linearly sloping fronts are nonlinearly stable.
This indicates the baroclinic nature of the instability of a monotonic front and that
FG effects in the barotropic equations do not destabilize fronts. The finite-amplitude
analysis suggests that stable waves should form wave packet/soliton structures.
The analysis also found that wave resonances are important in the initialization
and evolution of these packets. Numerical simulations illustrate that large-scale
perturbations do develop but they are small in amplitude. Resonances can play a
role in determining long term evolution, as the simulations indicated that long-wave-
short-wave resonances allowed the development of a meridional wave perturbation
to the basic-state low. Although small in amplitude, such a structure may play a
role in determining the long time evolution and structure of stable fronts. Finally,
the development of finite amplitude long-waves can result from a front that has
some shear in it. The shear provides the kinetic energy to feed an instability that
flattens out the front. The long waves that result can persist for long times. In
conclusion. FG models that are dominated by the 3-plane effect produce stable
fronts with nonlinear effects shifting energy to larger scales. This result implies
that as the 3-plane effect becomes strong and begins to dominate frontal effects
we see a transition to the Rossby wave regime discussed in Tang and Cushman-
Roisin (1992). In this regime, there is “little vertical energy transfer” and the

flow “amounts to no more than the dispersion of linear Rossby waves™ (Tang and
Cushman-Roisin, 1992).

The SE model is dominated by its PG baroclinic equation. This leads to large
growth at small scales or what is called ultraviolet catastrophe. The balance of
terms in the barotropic equation does not suppress growth at small scales because
the barotropic relative vorticity terms are balanced by the baroclinic FG terms.
As expected, we see the ultraviolet catastrophe predicted by the linear analysis in
the numerical simulations. Note that energy considerations do not rule out this
growth, as the pseudo-energy invariant £ requires equivalent growth in both the
barotropic and baroclinic kinetic energy. The nonlinear stability analysis was unable
to establish stability results as it was not possible to bound growth at small scales.
Furthermore, the finite amplitude analysis suggests large-scale waves are subject
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to an explosive nonlinear instability. In the numerical simulations. all fronts were
dominated by unbounded small-scale growth. This led to running simulations that
included appropriately scaled FG terms in the baroclinic equations. These terms do
suppress small-scale growth, indicating that F'G terms in the baroclinic equations
are a stabilizing effect at small scales. The result is the development of large-scale
structures within a highly unstable front. These results are similar to many coastal
models that have illustrated the highly unstable nature of fronts using primitive
equation analysis (see Haidvogel et al., 1991 and Barth, 1994).

The WVT model shares characteristics of the ST model and the SE model
(see Appendix 2 for details). The baroclinic equation is of FG form. though there
is no influence of the §-plane. From the analysis of the ST and RED models. we
do not expect this equation to be a source of instability. The QG-FG balance in
the barotropic equation allows the possibility of instability at the large scales QG
favours. This is seen in the linear analysis which predicts instability for a finite band
of wavenumbers. The finite amplitude analysis suggests a suppression of small-scale
growth but explosive nonlinear instability at large scales as seen in the SE model.
We suggest that it is this explosive nonlinear growth that leads to the coherent
eddy formation seen in the numerical solutions of Reszka (1997) and Appendix 2.
It should be noted that while the instabilities of the WVT model occur at larger
scales nondimensionally, the length scale of the model is smaller than the length
scale of the SE model. Therefore, in reality, the instabilities have similar scales. It
should be noted that the numerical results for the SE and WVT models reiterate
the results of Tang and Cushman-Roisin (1992). If frontal effects are important, as
in the WVT model and the FG-SE model, we see stable anticyclonic eddies form.
However, if baroclinic instability dominates frontal effects, as in the original SE

model, we see the destruction of large-scale features.

In comparison to the RED model, it was made clear in the analysis of the ST
model that a weakly coupled barotropic flow does not greatly change the evolution
of a front. On the other hand, coupling a stronger, independent barotropic flow as
seen in the WVT model can destabilize isolated fronts. This leads to the conclusion
that the RED model is generally more applicable than the strict bounds found in §2.
There, the RED model was determined to be applicable when no coupling occurred.
The analysis of this thesis suggests that the RED model still provides accurate
results when only weak coupling occurs. Thus, the RED model is applicable if
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the equations decouple, which occurs under the condition determined in §2. or the
B-plane effect dominates the barotropic equation, that is. €, &« €3. Using the

solutions presented in Figure 2.3, this gives the condition

€
§< 2.
€

This condition allows for the RED model to describe fronts with much thicker upper
layers provided the length scale of motion is long enough.

It is also interesting to compare the results of the two-laver FG models to
the analysis of the LST model. As illustrated in Appendix 1, the LST model is
derived in the FG limit when considering bottom-trapped flow over topography.
The SE and WVT models also have corresponding forms for such flows provided
the topography is scaled appropriately. The baroclinic equation for the LST model
has a PG structure with topographic influences. The barotropic equation is a QG-
topography balance. Despite being derived in the large-amplitude limit. there are
no highly nonlinear FG terms seen in the other FG models. Due to its simplicity.
the LST model allows for greater analysis (see Swaters. 1991. Mooney and Swaters.
1996. Poulin, 1997, Karsten et al, 1995, Karsten and Swaters, 1996b, and Swaters,
1998). A couple of important differences arise between the results of the LST model
and the FG models discussed here. The predominant difference is that the strong
bottom topography in the LST model allows for a release of potential energy that
drives the instability (see discussion in Swaters. 1991 and Swaters, 1993b). Thus,
the instability is asymmetric and is seen as a slumping of fluid down the sloping
bottom. The fact that the barotropic motion is primarily QG means that this
instability occurs for a finite band of length scales and we do not see the ultraviolet
catastrophe of the SE model. The finite amplitude analysis of the LST model
illustrates that nonlinear terms suppress the linear growth (Mooney and Swaters,
1996) at all scales. This effect can be clearly seen in the numerical simulations of
a coupled front in Swaters (1998) where linear instabilities grow to form filaments
that are then rolled up into eddy-like structures. This instability is fundamentally
different from the instability seen in the two-layer FG models examined here. The
instability that develops in the two-layer FG models examined here is symmetric
and the eddies form not as a result of a roll up of filaments but as the growth and
pinch off of a single wave. This eddy formation is present in both coupled and
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isolated fronts for the WVT and SE models. We suggest that it is this explosive
nonlinear growth, predicted in the finite amplitude analysis for the SE and WVT
models, that leads to the coherent eddy formation seen in the numerical solutions
of Reszka (1997) and this thesis.

In the numerical solutions for all the FG models one important advantage
is revealed. All the FG models handle outcroppings with ease, with no additional
code to specify the location of the outcropping. This advantage results from the
fact that the baroclinic equation is given in terms of the upper-layer depth A and
is trivially satisfied when h = 0. Thus. as long as the frontal height is continuous
across an outcropping, the baroclinic equation applies equally well on either side of
the outcropping. It is this feature of the FG models that allows for the dramatic
visualization of the eddies and meanders seen here and in Reszka (1997).

However, it should be noted that the inclusion of the highly nonlinear frontal
terms seen in the four FG models studied here requires small time steps in the
numerical code. Thus, even though the vertical resolution is low (only two layers)
and the horizontal length scale is large (greater than the internal Rossby deforma-
tion) the time step in the code remains small. For example, with the SE model a
nondimensional horizontal grid size of 0.1 requires a time step of 1 x 10~* to run
simulations. In dimensional terms, assuming a Rossby number of 0.1 and an inter-
nal Rossby deformation radius of 10 km, this gives a horizontal grid of roughly 3
km and a time step of roughly 10 seconds. This is a limitation of these models not
seen in the LST model where the nonlinear terms do not arise. However, it does
appear that if the large inertial terms associated with a front are to be included in a
model, even with the reduced structure of the two-layer FG model, that numerical
simulations will be costly.

It is also of interest to compare our results to those of other works. For
example, in Barth (1989a) and Barth (1989b) a coastal front over large topography
was studied using a two-layer model that employed the geostrophic momentum
approximation. It was shown that a zero-energy instability existed; an instability
that grew without a release of energy from the mean state. This instability is similar
in form to that seen in the SE and WVT models where unstable growth can occur
with both the baroclinic and barotropic kinetic energy increasing and little release
of PE. The fact that both baroclinic and barotropic kinetic energy increase together
is in fact required by the conservation of the pseudo-energy £.
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The linear analysis and numerical simulations using primitive-equation models
of McCreary et al. (1991), Haidvogel et al. (1991). and Barth (1994) provide further
insight. Here, both a long and short wave instability were observed and classified as
baroclinic and frontal instabilities. We believe that the results here show that FG
models capture these two forms of instabilities. Indeed, the numerical simulations of
the WVT model show the development of large-scale structures comparable to the
baroclinic instability. Yet, within the simulations of the SE model, and even some
simulations of the WVT model (personal communication from M. Reszka) small-
scale structures develop, grow, and play important roles in the development of the
large-scale structures. In comparing the results to the simulations using primitive
equations, it is clear that the FG models capture the major characteristics of frontal
instabilities.

Although we have attempted to examine a great deal of the nature of FG
models, there still remain many open areas of research. Further examination of the
linear FG models using numerical techniques could provide a more accurate picture
of the form of the instability that develops on coupled and isolated fronts. Detailed
comparison and analysis of specific fronts and currents could be carried out to see
how well the models predict the observed features (see for example Barth. 1989b).

An obvious extension of this work is the examination of several-layer models.
The addition of more layers allows for the examination of more complicated physical
processes and the modelling of more realistic situations (see Spall. 1995). In Benilov
and Sakov (1997). the two-layer LST model description of a bottom-trapped current
is extended to a three-layer model by coupling the LST description of a bottom-
trapped flow to the WT model for a thin, upper-layer front. The analysis there
immediately points out some difficulties. First, one cannot simply match any models
together, as the middle layer must describe dynamics at equivalent scales for both
models. Second, the stability characteristics of one model may dominate the other.
In Benilov and Sakov (1997), the linear stability analysis illustrated that the model
was also subject to ultraviolet catastrophe as the characteristic of the WT model
dominated that of the LST model (the WT model has the same linear characteristics
as the SE model). The question of how three- or possibly four-layer FG models can
be used to accurately describe systems with both surface and bottom currents is
one that requires further investigation.

Finally, a study of how two-layer, FG models could be used to improve ocean
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circulation models could be undertaken. A detailed examination of the numerical
simulations, including the effects of the ageostrophic velocities. would allow for
estimates of the mixing and transport that occur as a front destabilizes. These
could be used to test eddy parametrization schemes. In Greatbatch (1998), it is
proposed that the eddy parametrization of the isopycnal flux potential vorticity be
derived from a thickness-averaged, isopycnal-averaged. potential-vorticity equation.
The FG models studied here allow the simple, two-layer analogue of this equation
to be studied both analytically and numerically. As well. the FG models allow for
measurements of the inertial terms associated with the frontal effects not present
in analysis based on a QG assumption. Finally, the ease with which outcropping
can be numerically modelled allows the details of eddy mixing and transport when
outcroppings are included to be fully examined. Alternatively. the knowledge of
the two-layer FG models could be used to include schemes to resolve the necessary
scales needed to model frontal instabilities with limited vertical resolution. Further

work continues in these areas, and the results will doubtlessly prove very interesting.

213



[9]

References

Arakawa, A., 1966: Computational design for long-term numerical integration
of the equations of fluid motion: two dimensional incompressible flow. Part 1.

J. Comp. Phys., 1, 119-143.

Arnol’d, V. 1., 1965: Conditions for nonlinear stability of stationary plane curvi-
linear flows of an ideal fluid: English. transl. Sov. Math., 6. 773-777.

Arnol'd, V. L., 1966: On an a priori estimate in the theory of hydrodynamical
stability: English. transl. Am. Math. Soc. Transl., Ser. 2, 79, 267-269.

Barth J. A., 1989a: Stability of a coastal upwelling front. 1. Model development
and a stability theorem. J. Geophys. Res.. 94. 10844-10856.

Barth J. A., 1989b: Stability of a coastal upwelling front. 1. Model results and
comparison with observations. J. Geophys. Res., 94. 10857-10883.

Barth J. A., 1994: Short-wavelength instabilities on coastal jets and fronts. J.
Geophys. Res., 99, 16095-16115.

Benilov, E. S., 1992a: Large-amplitude geostrophic dynamics: the two-layer
model. Geophys. Astrophys. Fluid Dyn.. 66. 67-79.

Benilov. E. S., 1992b: A note on the stability of one-layer geostrophic fronts.
Geophys. Astrophys. Fluid Dyn., 66, 81-86.

Benilov, E. S., 1993: Baroclinic instability of large-amplitude geostrophic flows.
J. Fluid Mech., 251, 501-514.

[10] Benilov, E. S., 1994: Dynamics of large-amplitude geostrophic flows: the case

of ‘strong’ beta effect. J. Fluid Mech., 262, 157-169.

[11] Benilov, E. S., 1995a: On the stability of large-amplitude geostrophic flows: the

case of ‘strong’ beta effect. J. Fluid Mech., 284, 137-138.

[12] Benilov, E. S., 1995b: Stability of large-amplitude geostrophic flows localized

in a thin layer. J. Fluid Mech., 288, 157-174.

[13] Benilov, E. S., 1995¢: Baroclinic instability of a quasigeostrophic flow localized

in a thin layer. J. Fluid Mech., 288, 175-199.

214



References

(14] Benilov, E. S. and B. Cushman-Roisin, 1994: On the stability of two-layered
large-amplitude geostrophic flows with thin upper layer. Geophys. Astrophys.
Fluid Dyn., 76, 29-41.

[15] Benilov, E. S. and G. M. Reznik, 1996: The complete classification of large-
amplitude geostrophic flows in a two-layer fluid. Geophys. Astrophys. Fluid
Dyn., 82, 1-22.

[16] Benilov, E. S. and P. V. Sakov, 1997: Dynamics of large-amplitude flows over
bottom topography. Nonlinear Proc. in Geophys.. 4. 55-62.

[17] Boss, E., N. Paldor and L. Thompson, 1996: Stability of a potential vorticity
front from quasi-geostrophy to shallow water. J. Fluid Mech.. 315. 65-84.

[18] Bush. A. B. G.. J. C. McWilliams and W. R. Peltier. 1995: The formation of
oceanic eddies in symmetric and asymmetric jets. Part 1: Early time develop-
ment and bulk eddy transports. J. Phys. Oceanogr.. 25. 1959-1979.

[19] Bush, A. B. G., J. C. McWilliams and W. R. Peltier, 1996: The formation of
oceanic eddies in symmetric and asymmetric jets. Part 2: Late time evolution
and coherent vortex formation. J. Phys. Oceanogr.. 26. 1825-1848.

[20] Craik, A. D. D., 1985: Wave Interactions in Fluid Flows, Cambridge University
Press, Cambridge.

[21] Chassignet, E. P. and B. Cushman-Roisin, 1991: On the influence of a lower
layer on the propagation of nonlinear oceanic eddies. J. Phys. Oceanogr., 21,
939-957.

[22] Cushman-Roisin,B., 1986: Frontal geostrophic dynamics. J. Phys. Oceanogr.,
16, 132-114.

[23] Cushman-Roisin,B., E. P. Chassignet and B. Tang, 1990: Westward Motion of
Mesoscale Eddies. J. Phys. Oceanogr., 20, 2011-2024.

[24] Cushman-Roisin,B. and S. Merchant-Both, 1995: Elliptical warm-core rings in
a two-layer ocean with ambient shear. J. Phys. Oceanogr., 25, 2011-2024.

[25] Cushman-Roisin, B., G. G. Sutyrin and B. Tang, 1992: Two-Layer geostrophic
dynamics. Part I: Governing Equations. J. Phys. Oceanogr., 22, 117-127.

[26] Cushman-Roisin,B. and B. Tang, 1990: Geostrophic turbulence beyond and the



References

emergence of eddies beyond the radius of deformation. J. Phys. Oceanogr., 20,
97-113.

[27] de Verdiére, A. C., 1986: On mean flow instabilities within the planetary
geostrophic equations.. J. Phys. Oceanogr., 16, 1981-1984.

[28] Dewar W. K., 1992: Spontaneous Shocks. J. Phys. Oceanogr., 22, 505-522.

[29] Djordjevic, V. D. and L. G. Redekopp, 1977: On two-dimensional packets of
capillary-gravity waves. J. Fluid Mech., 79, 703-714.

[30] Drazin, P. G. and W. H. Reid, 1981: Hydrodynamic Stability, Cambridge Uni-
versity Press, Cambridge, U. K.

[31] Eady, E. T., 1949: Long waves and cyclone waves.. Tellus, 1, 33-32.

[32] Feliks, Y. and M. Ghil, 1996: Mixed barotropic-baroclinic eddies growing on
an eastward mid-latitude jet. Geophys. Astrophys. Fluid Dynamics ., 82, 137-
171.

[33] Flierl, G. R., P Malanotte-Rizzoli and N. J. Zabusky. 1987: Nonlinear waves
and coherent vortex structures in barotropic 3-plane jets. J. Phys. Oceanogr.,
17, 1408-1438.

[34] Ghil, M. and N. Paldor, 1994: A model Equation for nonlinear wavelength
selection and amplitude evolution of frontal waves. J. Nonlinear Sci.. 4, 471-

496.

[35] Greatbatch. R. J, 1998: Exploring the relationship between eddy-induced trans-
port velocity, vertical momentum transfer, and the isopycnal flux of potential

vorticity. J. Phys. Oceanogr., 28, 422-432.

[36] Griffiths, R. W., P. D. Killworth and M. E. Stern, 1982: Ageostrophic instability
of ocean currents. J. Fluid Mech., 117, 343-377.

[37] Griffiths, R. W. and P. F. Linden, 1981: The stability of buoyancy-driven coastal
currents. Dyn. Atmos. Oceans, 5, 281-306.

(38] Grimshaw, R. H. J., 1977: The modulation of an internal gravity-wave packet,
and the resonance with the mean motion. Studies Appl. Math., 56, 241-266.

[39] Haidvogel, D. B., A. Beckmann and K. S. Hedstrom, 1991: Dynamical simu-

216



References

lations of filament formation and evolution in the coastal transition zone. J.
Geophys. Res., 96, 15017-15040.

[40] Holm, D. D., J. E. Marsden, T. Ratiu and A. Weinstein, 1985: Nonlinear
stability of fluid and plasma equilibria. Phys. Rep., 123, 1-116.

[41] Ikeda, M.and W. J. Emery, 1984: Satellite observations and modeling of mean-
ders in the California current system off Oregon and Northern California. J.
Phys. Oceanogr., 14. 1434-1450.

[42] Ikeda, M., W. J. Emery and L. A. Mysak. 1984: Seasonal variability in meanders
of the California current system off Vancouver Island. J. Geophys. Res.. 89.
3487-3505.

[43] Karsten. R. H. and G. E. Swaters. 1996a: Nonlinear Stability of baroclinic fronts
in a channel with variable topography. Studies Appl. Math.. 96. 183-199.

[44] Karsten, R. H. and G. E. Swaters, 1996b: A note on the stability theory of
buoyancy-driven ocean currents over a sloping bottom. ZAMP. 47. 28-38.

[45] Karsten, R. H., G. E. Swaters and R. E. Thomson, 1995: Stability character-
istics of deep water replacement in the Strait of Georgia. J. Phys. Oceanogr.,
25, 2391-2403.

[46] Killworth, P. D., 1983: Long wave instability of an isolated front. Geophys.
Astrophys. Fluid Dyn., 25. 235-258.

[47] Killworth, P. D., N. Paldor and M. E. Stern. 1984: Wave propagation and
growth on a surface front in a two-layer geostrophic current. J. Mar. Res., 42,
761-785.

[48] Killworth, P. D. and M. E. Stern, 1982: Instabilities on density-driven boundary
currents and fronts. Geophys. Astrophys. Fluid Dyn., 22, 1-28.

[49] Kundu, P. K., 1990: Fluid Dynamics, Academic Press, Inc., San Diego.

[50] LeBlond, P. H. and L. A. Mysak, 1978: Waves in the Ocean, Elsevier, New
York.

[51] Ma, Yan-Chow, 1978: The Complete Solution of the Long-Wave-Short-Wave
Resonance Equations. Studies Appl. Math., 59, 201-221.

217



References

[52] Marsden, J. E. and T. S. Ratiu , 1994: Introduction to Mechanics and Symme-
try, Springer-Verlag, New York.

[63] McCreary, J. P., Y. Fukamachi and P. K. Kundu. 1991: A numerical investiga-
tion of jets and eddies near an eastern ocean boundary. J. Geophys. Res., 96.
2515-2534.

(64] McIntyer, M. E. and T. G. Shepherd, 1987: An exact local conservation theorem
for finite-amplitude disturbances to non-parallel shear flows, with remarks on
Hamiltonian structure and Arnol’d’s stability theorems. J. Fluid Mech., 181,

527-565.

[55] Milne-Thomson, L. M., 1950: Jacobian FElliptic Function Tables, Dover Publi-
cations, New York.

[56] Mooney, C. J. and G. E. Swaters, 1996: Finite amplitude baroclinic instability of
a mesoscale gravity current in a channel. Geophys. Astrophys. Fluid Dynamics,
82, 173-205.

[57] Nowlin, W. D. and J. M. Klink, 1986: The physics of the Antarctic Circumpolar
current. Rev. Geophys., 24, 469-491.

[58] Newell, A. C., 1974: “Envelope Equations,” Nonlinear Wave Motion: Lectures
in Applied Math, Volume 15, American Mathematical Society, 171-191.

[59] Paldor. N., 1983a: Linear stability and stable modes of geostrophic fronts.
Geophys. Astrophys. Fluid Dyn.. 24, 299-326.

(60] Paldor, N., 1983b: Stability and stable modes of coastal fronts. Geophys. As-
trophys. Fluid Dyn., 27, 217-228.

[61] Paldor, N., 1987: Nonlinear waves on a coupled density front. Geophys. Astro-
phys. Fluid Dyn., 37, 171-191.

[62] Paldor, N. and M. Ghil, 1990: Finite-wavelength instabilities of a coupled den-
sity front. J. Phys. Oceanogr., 20, 114-123.

[63] Paldor, N. and M. Ghil, 1991: Shortwave instabilities of coastal currents. Geo-
phys. Astrophys. Fluid Dyn., 58, 225-241.

[64] Paldor, N. and P. D. Killworth, 1987: Instabilities of a two-layer coupled front.
Deep Sea Res., 34, 1525-1539.

218



References

[65] Pavia, N., 1992: The breakup of frontal filaments. J. Phys. Oceanogr.. 22,
399-403.

[66] Phillips, N. A., 1954: Energy transformations and meridional circulations as-
sociated with simple baroclinic waves in a two level. quasi-geostrophic model.
Tellus, 6, 273-286.

[67] Pedlosky, J., 1970: Finite amplitude baroclinic waves. J. Atmos. Seci., 27,
15-30.

[68] Pedlosky. J., 1972: Finite amplitude baroclinic wave packets. J. Atmos. Sci.,
29. 680-686.

[69] Pedlosky, J., 1982: Finite-amplitude baroclinic waves at minimum critical shear.
J. Atmos. Sci.. 39, 555-562.

[70] Pedlosky. J., 1987: Geophysical fluid Dynamics: 2nd edition. Springer-Verlag,
New York.

[71] Poulin. F., 1997: Mesoscale gravity currents and cold-pools within a continu-
ously stratified fluid overlying gently sloping topography. M.SC. Thesis, Uni-
versity of Alberta.

[72] Reszka, M., 1997: Finite Amplitude waves and eddy development on a baro-
clinically unstable front over a sloping bottom. M.SC. Thesis, University of
Alberta.

[73] Rhines P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69,
417-443.

[74] Robinson, A. R. (ed), 1983: Eddies in Marine Science, Springer-Verlag, New
York.

[75] Roden G. I., 1975: On North Pacific temperature, salinity, sound velocity
and density fronts and their relation to the wind energy flux fields. J. Phys.
Oceanogr., 5, 557-571.

[76] Shepherd, T. G., 1990: Symmetries, Conservation Laws, and Hamiltonian
Structure in Geophysical Fluid Dynamics. Advances in Geophysics, 32, 287-
335.

[77] Slomp, C. G., 1995: On the hamiltonian structure, stability characteristics and

219



References

finite amplitude evolution of geostrophic fronts.. M.SC. Thesis. University of
Alberta.

(78] Slomp, C. G. and G. E. Swaters, 1997: On the Finite Amplitude Evolution of
Geostrophic Fronts.. Geophys. Astrophys. Fluid Dyn. . 86, 149-172.

[79] Spall. M. A., 1995: Frontogenesis, subduction. and cross front exchange at
upper ocean fronts. J. Geophys. Res., 100. 2543-2557.

[80] Stern, Melvin E., 1986: On the amplification of convergences in coastal currents
and the formation of “squirts”. J. Mar. Res., 44. 403-421.

[81] Stern, Melvin E., 1987: Large-scale lateral entrainment and detrainment at the
edge of a geostrophic shear layer. J. Phys. Oceanogr., 17, 1680-1687.

[82] Swaters, G. E., 1991: On the baroclinic instability of cold-core coupled density
fronts on a sloping continental shelf. J. Fluid Mech.. 224. 361-382.

[83] Swaters, G. E., 1993a: Nonlinear stability of intermediate baroclinic flow on a
sloping bottom. Proc. R. Soc. Lond. A, 442 249-272.

[84] Swaters, G. E., 1993b: On the baroclinic dynamics. hamiitonian formulation
and general stability characteristics of density-driven surface currents and fronts
over a sloping continenta: shelf. Phil. Trans. R. Soc. Lond.. A 345. 295-325.

[85] Swaters, G. E., 1998: Numerical simulations of baroclinic dynamics of density-
driven coupled fronts and eddies on a sloping bottom. J. Geophys. Res., 103,
2945-2961.

[86] Swaters, G. E., and G. R. Flierl. 1991: Dynamics of ventilated coherent cold
eddies on a sloping bottom.. J. Fluid Mech.. 223. 565-587.

[87] Tan, B. and S. Liu, 1995: Collisions and interactions of solitons in a baroclinic
atmosphere. J. Phys. Oceanogr., 52, 1501-1512.

[88] Tang, B. and B. Cushman-Roisin, 1992: Two-Layer geostrophic dynamics. Part
IT: Governing turbulence. J. Phys. Oceanogr., 22, 128-138.

[89] Visbeck, M., J. Marshall, T. Haines, and M. Spall, 1997: On the specification
of eddy transfer coefficients in coarse resolution ocean circulation models. J.
Phys. Oceanogr., 27, 381-402.

220



References

[90] Whitham, G. B., 1974: Linear and Nonlinear Waves, John Wiley and Sons,
New York.

[91] Zwillinger, D, 1989: Handbook of Differential Equations, Academic Press, New
York.

221



Appendices

Appendix 1. Derivation of General Two-layer Geostrophic Models

In this section we generalize the derivation found in §2 by including bottom
topography and by not expliciting making the FG approximation. This allows us
to explore the relationship between QG and FG models. as well as the relationship
between the 3-plane effect and bottom topography. Finally, through this derivation
the clear distinction between surface buoyancy fronts and bottom-trapped fronts is

illustrated.
Most of the assumptions of §2 are retained but now we allow the ocean bottom

to vary and introduce a variable to describe the interface deflections. As shown in
Figure A.1.1 the model geometry now includes bottom topography hp and interface
deflections n. A variable describing interface deflections separate from layer depths
is necessary if QG dynamics are to be described. From Figure A.1.1, it follows that

hy+ha+hpg =H.
h, = Hy + 1.
ho=H—-Hy  —hg—n=Hy—hg—n.
H,+H,=H.

(A.1.1)

The inclusion of bottom topography in the shallow water equations is straight
forward. in fact there is no change. Equations (2.1.5-2.1.9) still hold, with the effects
of bottom topography seen through the new relationships governing the depths of
the layers as given by (A.1.1). There is a slight change in equation (2.1.9). We now

write pressure continuity as
pi(z,y,t) = g'n+ pa(z. 4, t). (A.1.2)

This redefines the upper-layer pressure p; by subtracting a constant value, g'H;,
from it. This has no effect on the model derivations as the pressure is only deter-
mined up to a constant.

As before we introduce the barotropic and baroclinic velocities given by (2.2.1)
and (2.2.2), respectively, with the barotropic velocity divergent free. The layer
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H, h, PN,/ D,

T

Figure A.1.1: The general model configuration with bottom topography
hp and interface deflections 7.

velocities can be expressed in terms of these new velocities, that is,

H h,

u; = m (‘ubt + —I-I—ubc) 5 (A13)
H hy

u; = i (ubt - Eubc) . (A.1.4)
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Note that these expressions are not equivalent to (2.2.4) and (2.2.5) as h; + k2 is no
longer equivalent to H (see (A.1.1)). Since the barotropic velocity is divergent free
we again introduce the stream function given by (2.2.12). We form the barotropic
equation by taking V x [h; *(2.1.5) + h2*(2.1.7)] and divide by H and the baroclinic
equation by taking (2.1.5) -(2.1.7). After some simplification and the use of (A.1.3),
(A.1.4). (2.1.6), and (2.1.8) we obtain the barotropic, baroclinic and continuity

equations given by

vy ,
ot . +7HJ(w-V2¢) + Bo:
1 2 2
+ '2'J(V'¢) . Vd), 7H) + [¢z¢y(ayy - ?:.r) + (U;_- - w;)@ry] YH (A,],,S)
+ (Thet¥)zz — (TheuV)yy — [Vha(u® — vz)]ry
_Jhe,m) _ g
H 3
6u+ ( V)u-{-lu(u-V* )+ vaJ(v.u)
o T n-(u 5 h=) + vaJ (V.U (A.L6)
+ (u- V) (vues x ¥) + (fo + Boy)es x u+ ¢’V =0,
on -
5 T van) + HiJ(w.ym) + V- (Hymau) = 0. (A.1.7)
respectively, where we have introduced the shorthand notation given by
h1h2 h]hg
.= = . A.1.8
"= Hiky +h) ~ B(E —hg)’ (A18)
H H
= hith,  H—hp’ (A.1.9)
— h2 _hl _ h2—h1
Yh— = hith,  H—hp’ (A.1.10)
h
2 il (A.1.11)

The = R th, H—hp

As before, we introduce typical scales as in (2.3.1) with the addition of the
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scales
n= AHT”? hB = hB‘hth .51 = Plp;x 52 = P2p;’ (A'1°12)

where AH, hpg.. Py, and P;, are typical interfacial displacement amplitude, bottom
variations, upper-layer and lower-layer pressure, respectively.

Applying the scaling (2.3.1) and (A.1.12) to the governing equations, (A.1.5),
(A.1.6) and (A.1.7), and dropping the asterisks, gives

v , , 1 |
Tey—p— + €51 (U, V) + egep s + ewJ(ng - V. Ypg)

+ €%, [Urty(Byy — Bzz) + (w2 — v2)0ry) 15 (A.1.13)

+é [("/htuv)rr = (Thsuv)yy — ["/ht(u2 - Uz)]zy}

— épeJ(hp,p2) = 0.

Ou 1
er— + evh— (- V)u+esu(u- Vip-) + epruJ(v.u)

ot 5o (A.1.14)
+eu (u- V) (vres x Vo) + (1 + eay)es x u + +—=-Vn =0,
On -
€T5A5t- + €w0aJ (¥, Yun) + €wdéuJ (¥, vH) + €V - (vheu) = 0, (A.1.13)
where now from (A.1.8), (A.1.17) (A.1.10) and (A.1.11) we have
(6u +6éan)(éL — éan —dBhB)
. = s A.l.l
K (1—d5ha) ‘ (A-1.16)
1
T = T (A.1.17)
_ §r —dy — 26An — éBhB
Th- = I —dphp , (A.1.18)
Shs (A.1.19)

Tha = 1—-46ghp’
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We have introduced the nondimensional parameters given in (2.3.7) and

U U; U,

F=—e g =—, €6=—— —A—H—’
1 foL’ 2 fOL’

6a = 6p = ——. (A.1.20)

H H

where F' is the Froude number associated with the total depth of the ocean, ¢
and e; are the Rossby numbers associated with the layer velocities, and 5 and dp
are depth ratios associated with the motion amplitude and the bottom topography.
Also, assuming the scales (2.3.1) satisfy (2.2.4) and (2.2.3) gives the relations

€1 = max(€y,dL¢€). (A.1.21)

€2 = max(ey.0r€). (A.1.22)

From (A.1.1) it follows that

duhi +48Lhy +dghp =1,

hl =1+§£ .
v (A.1.23)
hg:].—@-hg—-é-—A .
or o
by + 6 = 1.

We have written all height variations in terms of n to allow the possibility that
changes in layer depth may be scaled differently than the layer depth itself.

We assume that the baroclinic velocity and the velocity in each layer is in
geostrophic balance with the appropriate pressure gradient. For the geostrophic
balance to hold we require F?2 = §¢, or in terms of the velocity scales

_gaH i Eil

=—, Ui=—=—, U= .
foL ! T foL

U ,
foL

(A.1.24)

Then, to leading order, equation (A.1.14) gives that the baroclinic velocity is de-
termined geostrophically by

u=e3 x Vn+O(e er,e3,€yp). (A.1.25)
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The expression (A.1.25) can be used to simplify the next order terms in (A.1.14) to

obtain

\Y%
u=(1=cay)es x V= erVm = enn-J(n, V) = et I (men) oo
- ew‘YHJ(wx VT]) - GwJ(T], 7va) + 0(637 €, €y, €T)2.

Substituting this expression into (A.1.13) and (A.1.15) gives

vy ) =
€Téy + €1 (0, VU) + egeybr + —J(VU - VU, 1ap)

L 9 o
+ eﬁ: [w::l’Jy(ayy - az_z_-) + (1_/,'; —_— ws)ary] 7’13 (A.l._l)

+ €2V - J(0,14.Vn) — 6geaJ(hp.p2) = h.o.t..

0
ETJ_A.EU + €pdaJ(v.7HN) + €uéuJ(v. vH)

— €Yhe [egn,,- + eV, 4+ €V - [va—J(n. V1))

V°n
9 J(Alh—w T])

\%
+ eTn -VJ(Yh--n) +¢€

2 2
+ewV - brard(w. V1) + J(n, 7 Vo) (4-1.28)

+ €6pvH [Yre — (8U +8an)] J(n,hB)
v
— e[ +erVn + enm-J(n,Vn) + eI (h-.7)

+ euru I (6, V1) + e J (0,71 VY)| - Ve = hooit

The relation (A.1.2) reduces to
€1p1 = €n + €202. (A.1.29)

The final term in (A.1.27) contains a term in p, that we wish to write in

terms of ¥ and 7. To do so we consider the expanded versions of the layer velocities
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analogous to (A.1.26), given by

u; =e3 x Vp1 —er(Vpi1): — e1J(p1. V1)

—egyes X Vp; + [0(5T:€17€B)]2~ (A.1.30)
Uz =e3 X Vpo —er(Vp2 )y — e2J(p2. Vp2)
— egyes X Vpy + [O(eT. €2.€3)]°. (A.1.31)

Using these expressions and using WL as a barotropic velocity scale. it follows from
(2.2.1) that

1
eyptp: =€3 X V (Juer) + ;€5A02 + €2P2) (A.1.32)

—edphpey x Vpy + 0[61 (eT,€1.€8), €2(€T, €2, €3)]-

Now, the fact that the barotropic velocity is divergent free places a restriction on
the final term of (A.1.32). Taking the divergence of (A.1.32) gives

526BJ(hB,P2) = 0[61 (eTs €1, 63)7 62(ET7 €2, 65)]'
Since hp and p, are presumed to be O(1) quantities. it follows that either

J(hp.p2) =0, (A.1.33)

or
0B = max (Z—l,l) O(er,€8,€1.€2). (A.1.34)
2

In the former case, the general solution to (A.1.33) is that the lower-layer
pressure is a function of bottom topography, that is, pp = F(khg). Therefore lines
of constant pressure p, are parallel to lines of constant bathymetry, hg. Since, to
leading order, p; is the lower-layer stream function (see (A.1.31)) it follows that the
flow is topographically steered; the flow follows lines of constant bathymetry. This
is not a case that is of interest in this thesis since it is obviously not the front that

is driving the flow in the lower layer but the strong topography.
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In the latter case, in order that (A.1.34) hold even when e; =~ €, it is necessary

that

ép < 1. (A.1.35)

This assumption simply states that the bottom topography we consider is weak
in order to avoid flow that are strongly influenced by topography. This allows
(A.1.16—A.1.19) to be simplified , giving

Yhe = (6u + 0an)(8L — dan — éBhB), (A.1.36)
v =1+ 4dBhs, (A.1.37)

Yo— = (0L — 0y — 26an —dphp). (A.1.38)
Yhs =9dBhB. (A.1.39)

It follows from (A.1.34) that (A.1.32) can be reduced to
1
€2p2 = €u¥ — €byn — 365An2 +O(eT.€1.€3.€3). (A.1.40)

This can be used to eliminate p, in the final term of (A.1.27) and using (A.1.36-
A.1.39) in both (A.1.27) and (A.1.28) gives

vy R , 2
eTew—at— + ;7 (U, V°U) + egepvor + €V - J(1. 7= V)
) (A.1.41)
—dpJ (ha, €yt — edyn — 3€5A772> =0,
on ,
€T5AE + €p0aJ (¥, n) + €wéBOUJ (Y, hB) — €€5ThaTz
—€eV- [5T7htvnt + €‘/h:“/h—J(777 VT’)] (.Atl-’l.?.)

+ ey mnelJ (8, V) + (0, V)]
— edp [(bv +8an)(du + 8an + dhB)] J(n.hB) = h.ot.,

respectively. These are the general barotropic and baroclinic equations analogous
to (2.3.13) and (2.3.14) but now including QG effects and bottom topography.
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We define
é = min(dy,4z), (A.1.43)

so that § < % We also assume that do < 4, that is. the motion amplitude can be at
most the size of the thinnest layer (see Cushman-Roisin et al.. 1992). This allows
us to define the internal Froude number in terms of the thinner layer. F; = §'/2F,
which satisfies,

F} = —e (A.1.44)

With the assumption that €; = e, that is. the upper-layer velocity scales the
same as the baroclinic velocity, substitution of ¥ into (A.1.41) and (A.1.42) gives
equations similar to the barotropic and baroclinic equations found in Cushman-
Roisin et al. (1992) (equations 23 and 31, respectively).

As before, we argue that the secondary parameters, er and €, are functions
of the other parameters. The er parameter is determined by enforcing that a bal-
ance exists between prognostic terms and diagnostic terms in the baroclinic equa-
tions. The €, parameter is determined by enforcing that a balance exists between
barotropic terms and baroclinic terms in the barotropic equations. The addition of
bottom topography makes the flow asymmetric with respect to the layer depths as
seen in the equations (A.1.16—A.1.19). When bottom topography is removed, as in
the body of the thesis, the model is symmetric and one can without loss of generality
choose H; < H,, and thus § = dy. Simply stated, with a rigid lid and flat bottom,
a thin-upper-layer model is identical to a thin-lower-layer model. But, as we have
chosen to include bottom topography, we must examine these two cases separately.
We will discuss the thin-upper-layer case first and then the thin-lower-layer case.

We begin by examining the case where H; < Hj,so that éy = éd and §; = 1-4.
Using these expressions in (A.1.36, A.1.38) gives

Yhe = (8 +0an)(1 — & —dan —dBhB),

A.145
Yh- =1-2(8 +68an) +0(4,64,6B)°. ( )
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Examining (A.1.42) and (A.1.41) gives that

_ max(da¢€y. §0Bey, beeg, 6®, 620 pe. 86%€)
- max(da, de€) )
demax(e,dp)
€y = ]
max(€er, €3,6B)

€T (A.1.46)

(A.1.47)

where we have used that (2.4.4) and (2.4.3) again hold.

From (A.1.46), it becomes evident that an important relation is which term
dominates the numerator, that is, whether dao > €4 or not. In order to examine the
essential role this inequality plays, we examine the very simple case of no bottom
topography or (-plane, that is, g = €g = 0. In this limit, (A.1.46, A.1.47) reduce

to

2
max(éﬁei—‘-.&é)

ET =

max(éa.0e) (A.1.48)
de?
€y = g

The solution to (A.1.48) can be plotted graphically and is shown in Figure
A.1.2 (see §2 for a description of this type of graph). The graph suggests that a
single limit, that found at the X marked QG, embodies the characteristics of all the
regions in the graph. This point is given by

§a =eb, &=0(1), (A.1.49)

that is, the motion amplitude is an order Rossby number smaller than the layer
depth and the layer depths are on the order of the total ocean depth. This is the
classical QG limit (see Pedlosky, 1987).

Upon closer examination, it becomes apparent that this limit cannot describe
the § axis where 5 = O(¢). This limit, where motion amplitude has the same scale
as the layer depth, is the FG limit (Cushman-Roisin, 1986 and Cushman-Roisin et
al., 1992). From the graph, the X marked FG where

Sa =6, &=0(e), (A.1.50)
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Figure A.1.2: The solution to (A.1.48) is plotted in the § — da /é plane.
The shaded regions mark area in which solutions do not exist. The values
for er and ¢, are given, with the lines marking the boundaries where these
change. Important models occur at the vertices of these lines and are marked

with Xs and labelled.
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is the ‘most important’ of these models. It corresponds to a model where the *active’
layer is very thin compared to the total ocean, H./H = O(e?) < 1. Note that this
scaling gives the WVT model with 3 = 0.

This simple limit of no bottom topography or 3-plane leads us to consider
two important limits, QG where 6o ~ €6 and FG where 65 ~ 4. Obviously other
relationships between § and da could be studied but it can be shown that these
are the only limits worth discussing even in the presence of bottom topography
and (-plane effects. Note that these two limits differ in the choice of the internal
Froude number as given by the relation (A.1.44). For the QG limit, F; = € while
for the FG limit, F; = €!/2. Since the Froude number is a ratio of inertial effects to
buoyancy effects, we see that inertial terms are indeed more important in the FG
limit.

We begin by examing the full equations with bottom topography and 3-plane
in the QG limit where §o = €4. For this limit, (A.1.46) and (A.1.47) reduce to

e;r=ma.x(eg,e.563.6§). (A.1.531)

__ bemax(e.dp) -5
~ max(e, €3,6p) (A-1:52)

€y

where we have used (A.1.51) and (2.4.4) in (A.1.52) and in turn used the fact that
(A.1.52) implies that €, < de in (A.1.51). The solution is plotted in Figure A.1.3.
In the figure. the axes are dashed to indicate that they are not attainable points,
that is. points on the axis violate the assumption that e3.6p < 1.

Examining the solution, one finds there are two important points. The first,
labelled as QG, occurs when ¢g = dg = e. At this scaling, where 3-plane effects
and topographic effects are of a similar order, the standard QG model is obtained.
For the most comprehensive model we choose § = O(1), all models with a thinner
upper layer are limits of this model. The scaling for this point is given by

6= 1) da = HE, € = Be, dp = Ke,
(A.1.53)

ET =€y =€, € =€ =¢,

where u, 3, and & are the O(1) variations of the upper-layer depth, the 3-plane
effect, and the bottom topography, respectively. The governing equations (A.1.41)
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Figure A.1.3: The solution to (A.1.531-A.1.52) is plotted in the dp — €3
plane for all values of §. The points on both axis are not possible models
since they violate the assumption ép,€5 < 1.
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and (A.1.42) reduce to

V2 + J(¥. V0) + By,
+ (1 = p)J(n,V?*n) — kJ(hp. ¥ — un) = 0.
ne — (1= p)V2n + J(¥.n) — 8(1 — p)nz
- (1=p) [(1=20)I (0, V?n) + J (¥, V?n) + J(n, V)] (A.1.55)
—kJ(hp. ¥ —pun) =0,

(A.1.54)

and the relations (A.1.40) and (A.1.29) reduce to

¥ = un+ p2, (A.1.56)
p1 =1+ pa, (A.1.57)

respectively.

The second model of importance corresponding to point TS in Figure A.1.3,
occurs at the scaling eg = € and dgmax(d.dg) = ¢. When § = O(1) > dp. this
point coincides with the QG model above and is identical. We only need consider

the case when § « 1. which in turn implies that g > €. The scaling is given by

da =de, €3 =23e. b= —Ke—l— ET = €. €, = de.
max(4.€7)

The governing equation (A.1.41) and (A.1.42) reduces to

J(hs, ¥ —1n) =0, (A.1.58)
e — V20 — B(1 — p)nz — (1 + khp)J(hp,n) =0, (A.1.59)

and the relation (A.1.40) reduces to
v=n+p.

So that from (A.1.58) we have J(hpg,p2) = 0, which is the case of topographic
steering discussed before and is not of interest in this work.
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The FG limit scales the motion amplitude equal to the scale of the thinner
layer, that is, do = 4. This assumption reduces the scaling equations (A.1.46) and
(A.1.47) to

er = max(ey, €€g, €2, 88 ge, 85¢), (A.1.60)

demax(e,dp) (A.1.61)

= max(€y,€3,€2,68)’
where (A.1.60) has been used in (A.1.61). It is not as easy to plot the solution to
these equations as in the case of QG since the solutions depend strongly on three
parameters, 6, ég, and €g. For that reason we plot some simplified solutions.

From past experience and physical models. it has becomes evident that bottom
topography and the 3-plane play a similar role. The limits of one of these factors
being dominant is interesting as they allow comparison to previous works and allow

simplified solutions to exist. In the limit that
max(e, 65,86g) > €3, and max(e’.dg) > €3, (A.1.62)

all terms related to eg are dropped from (A.1.60) and (A.1.61). The solution can
then be plotted in the § — dg plane as shown in Figure A.1.4.

The graph indicates there are four important models labelled TS, SE, ST, and
WVT. The TS model, where dg = €3 and § = € reduces to similar equations given
by the case of topographic steering discussed previously for the QG model and will
not be discussed here. The remaining models correspond to the models discussed
in the body of the thesis provided the value for €z is chosen to be the largest value
allowed under the restrictions (A.1.62). The SE model corresponds to the scaling
(5.1.1) with g = ke, the ST model corresponds to the scaling (3.1.1) with dp = ke,
and the WVT model corresponds to the scaling (A.2.1) with ép = ke

On the other hand, in the limit that

e>dép, and max(e?,eg) > g, (A.1.63)

all terms related to dp are dropped from (A.1.60) and (A.1.61). The solution can
then be plotted in the § — €4 plane as shown in the body of the thesis in Figure
2.3. The graph indicates there are four important models namely the four models
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Figure A.1.4: The solution to (A.1.60-A.1.61) when €g is not important is
plotted in the § — ép plane.
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examined in the body of this thesis. For the models. bottom topography can be
included by choosing the value for ép to be the largest value allowed under the
restrictions (A.1.63). The SE, ST, and WVT models give the scalings and models
found above. The VSE model scales the bottom topography as §g = xe*. Note that
dp = € in all these models emphasizing that in thin-upper-layer models bottom
topography is very similar to the G-plane effect.

The range in between these two limits, where both g and eg determine
the scaling can be examined by plotting solutions for chosen layer depths. For
example, if we choose § = §o = € the solution can be plotted in the dg — €3 plane
as shown in Figure A.1.5. The graph indicates there are three important models
labelled TS, ST, and WT. The TS model is the topographic steering model and the
ST model is the strong thin model found previously.

The WT model corresponds to the scaling

Niw
-

e =e (A.1.64)

and corresponds to a model where the effect of topography and the (3-plane are
weak (W) and the upper-layer depth is thin (T). This model is not a ‘unique’
model from those discussed previously. Indeed, the scaling corresponds to the point
labelled WT on Figure A.1.4, which is not a vertex in this graph. The model exists
midway between the SE and WVT models and the model equations consist of the
terms common to both these models. As such, this model is not as important as
the others discussed so far. However, this is not to say it is not of use. Since the
model equations are somewhat simpler than those of the SE and WVT models, and
since it marks a transition between these models, this model may allow a greater
amount of analysis to be done providing insight into the differences of the two
models. (For example Benilov and Cushman-Roisin (1994) examined the linear
stability characteristics of the WT model.) Obviously, such a ‘mid-model’ exists
between any two of the key models discussed previously.

A final note here. It appears that important points on a solution graph in
the e — ép plane are not always fundamental models as illustrated by the WT
model. These models may mark only a shift in the importance of the bottom
topography relative to the S-plane and not a fundamental shift in the dynamics a

model describes.
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dp — € plane.
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We can now repeat the previous analysis but in the limit where the lower is
the thinner layer. In this case, H, < H; and we have that §; =d and 6y =1 — 6.
Using these expressions in (A.1.16-A.1.19) gives

Yoe = (1 =8+ 6an)(6 —ban —6BhB),

A.1.65
- = —1+2(8 — 8an) + O(8,6a.68)>. ( )

Using the expression (A.1.65), we repeat the previous procedure to find that

_ max(da€y,dpey, deeg, 82, dee,. Spe)
T = max(da,de, dge) ’ (A-1.66)

_ emax(de.dp) (A.1.67)

" max(er.€y.€3.68)

€y

It can be easily shown that (2.4.4) and (2.4.3) also hold in the case of a thin
lower layer. As well, in (A.1.66) if §ge > max(Jda.d¢) then it follows that

max(da€y.deeg, 2.5 ge)
eT =

This contradicts our assumption (2.3.8) and we therefore have that
N
dp < max(-;—,&). (A.1.68)

Using (2.4.4), (2.4.3) and (A.1.68), (A.1.66) and {A.1.67) reduce to

_ max(daey,deeg, 8€*, dpe)
er = s , (A.1.69)
¢y = Smax(de, ) (A.1.70)

" max(er,€5,0B) "

In the case of no bottom topography or S-plane, that is, ég = €g = 0, (A.1.69)
and (A.1.70) reduce to (A.1.48) with the solution given in Figure A.1.2. Therefore,
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it is once again pertinent to discuss the QG and FG limits. In the QG limit where
da = €4, one obtains a model equivalent to thin-upper-layer model (A.1.54-A.1.57).
The FG assumption, éa = 4, reduces the scaling equations (A.1.69) and (A.1.70) to

é
€T =ma.x(e,b,ee‘3,ez,—%€-), (A.1.71)
emax(de,ép)
€y = 3 YRR (A.1.72)
max(ew,eg,e 7637 8 )

where (A.1.71) has been used in (A.1.72).

Once again we look at the limits where either the bottom topography or
3-plane dominates. In the limit that

dpe 9 dpge
max (e, T) >e3, and max(e”.ép, —6-) > e3. (A.1.73)

all terms related to €g are dropped from (A.1.71) and (A.1.72). The solution can
then be plotted in the é — §p plane as shown in Figure A.1.6. The graph indicates
there are three important models labelled SE, WVT. and LST. The value for €3 is
chosen to be the largest value allowed under the restrictions (A.1.73). The SE model
corresponds to the scaling (5.1.1) with dg = xe. and the WVT model corresponds
to the scaling (A.2.1) except that now the bottom topography is weaker. that is.
§p = red. Note that the governing equation differ slightly when considering the case
of a thin lower layer versus a thin upper layer as will be illustrated at the end of
this section.

The LST model corresponds to the scaling

§ =0a =pe, e€g=P¢, OB =kKe, €T =€y =g, (A.1.74)

and corresponds to a unique lower-layer model (L) where the effect of topography
and the -plane are strong (S) and the lower-layer depth is thin (T). This is the
model derived and examined in Swaters (1991), with further work in Karsten and
Swaters (1996a), Mooney and Swaters (1996), and Swaters (1998). The model
equations are presented at the end of this section.

In the limit that

de > ép, and max(e?,es) > max(dp, é?—e-), (A.1.75)
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Figure A.1.6: The solution to (A.1.71-A.1.72) when €g is not important is
plotted in the § — ép plane.
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all terms related to dp are dropped from (A.1.71) and (A.1.72). The solution is
then identical to the upper-layer solution under the restrictions (A.1.63) and is
given in Figure 2.3. Now however, the value for ép is chosen to be the largest
value allowed under the restrictions (A.1.75) which differ from (A.1.63). The SE
and WVT models give the scalings and models found above. The VSE model
corresponds to the scaling (4.1.1) §g = ke* and the ST model corresponds to the
scaling (3.1.1) except that now the bottom topography again is weaker, that is.
8§ = ke?. Note that in the thin-lower-layer models. the WVT and ST models.
bottom topography must be scaled an order smaller than the 3-plane effect. If the
bottom topography is stronger, it dominates the evolution of the thin layer and we
get the LST model. As with the thin-upper-layer analysis, there exist models lying
between the main models, such as the WT model with the necessary change in the
scaling of the bottom topography, g = xe> as opposed to (A.1.64).

For the F'G models, we write the model equations in terms of the layer depth,
h, as opposed to the interface deflections, n. In the case of a thin upper layer,
h = 1+n while in the case of a thin lower layer, h = 1—n—(8g/d)hp. The equations
for both cases are written below using the notation Or; and O to signify that a
term is present in only the thin-upper-layer or thin-lower-layer model, respectively.
The pressure in the thicker layer is given by p. For each of the five FG models
derived above the barotropic equation, baroclinic equation. and stream function
relation are given below.
VSE model:

Br + uJ [h,h(l —yh)Vh + é(l - 2l-lh)|Vh|2]

7
—rJ (hB,eLh - Ehz) =0, (A.1.76)
he + J(,h) — Bh(1 — ph)h; = 0,
e’i’zp = ﬁ;_hz + p.
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SE model:
1
V2% + J (¥, V) + Bz +ud [h, h(1 — ph)Vh + 5(1 — zph)|Vh|2]

—wJ(hB ¥ + OLh — Sh?) =0, (A.1.77)
ht +J(¢,h) =0,
¥ =5h?+p.

ST model:

Bv: +ud (h, hVh + élvm?) —rJ (kB Ou(w - £1%) + 0h] =0,

he+ J(.h) = J (h,th + %;vm?) _ 3hh,

(A.1.78)
+ OLEJ(hB,h) = 0.
= Hp2
U= 2h + p.
WVT model:
1 2
V2 + J(¢, V) + Bz + pJ (h, hVh + ;th|')
_ / =
) kJ(hg,OQuy¥ +0OLh) =0, (A.1.79)
he+ J(v.h) —J (h,th + 3|Vh|2> + @LSJ(hB,h) =0,
¥ =p.
LST model (Only for a thin lower layer.):
Ve + J(9, V) + B¢z — £J(hp, ¥ + h) =0,
phe + pJ (b, h) + J(hB, k) =0, (A.1.80)

Y =p.

A couple of notes on these models. First, linearly sloping, meridional topog-
raphy is often assumed equivalent to a §-plane due to their similarity in the PV
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description of shallow water flow. From the above equations it is clear that they are
similar but not identical. Especially when the lower layer is thinner than the upper
layer (WVT and ST models), the baroclinic dynamics are directly affected by the
bottom topography in a manner different from the 3-plane. It should also be noted
that models that include bottom topography and use the f-plane approx allow for
smaller length scales than the 8-plane models. As shown in 2.4, length scales be-
come large in the 3-plane models if the effects of the 3-plane are to be included
at significant levels. However, bottom topography may have relatively large-scale
variations over smaller length scales. Thus, the effect of bottom topography may
be strong without the length scales becoming large.

Appendix 2. WVT Model

In this appendix we briefly present results for the WVT model. Most of these
results have been established before in the papers Swaters (1993b), Karsten and
Swaters (1996b), and Reszka (1997) and are therefore presented here rather than

the body of the thesis.
The WVT model corresponds to the scaling

§=pe, e = 3%, er =€y = €. (A.2.1)

and corresponds to a model where the effect of the 3-plane is weak (W) and the
upper-layer depth is very thin (VT). The model equations (2.3.13) and (2.3.14)

reduce to

V2, + J(w, V20) + 8o +ud (h.hv2h + %thl"’) =0, (A.2.2)
he+ J(w,h) —J (h,hvgh + ;)1-|Vh|2) =0, (A.2.3)
Y =p. (A.2.4)

Usually, the cubic nonlinear terms are eliminated from (A.2.2) by forming (A4.2.2) +
p x (A.2.3) to give

(V2% + ph)e + J(¢, V2% + ph + By) = 0. (A.2.5)
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The potential vorticities are given by

V2h

—+ O(e?), (A.2.6)

1
a1 =¢2 +e¢t? +0() = Rte

@ =1+ +0(e*)
=1+¢ [V2zb + ph + By] + O().

This linear stability analysis for the WVT model was presented in Swaters
(1993b), where it was established that the model is linearly stable if

W' -3>h;>0. V uy,
or

vy -8 <hi<0, V .

These conditions establish that the leading-order PV gradients in the two layers are
everywhere of the same sign (see (A.2.6) and (A.2.7)). In Reszka (1997), a linear

(3.2.27), the frequency satisfying the dispersion relationship given by

- - 2 .
8+aK*+ \/(ﬁ + &K4) — 4&(ué + 3)A4
28K?

&k, ) = —R

where K2 = k? + ¢2, and the barotropic stream function given by
'(Z = [K 4 -+ ﬁéié] 77:

The waves are unstable, ¢ is complex, whenever

(B — aK*)? — 4ua®K* < 0.
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This gives rise to two marginal stability curves.

dcl = = B 1,
K?2(K? +2u%)

_— 3

acz - - 1., °?
K?(K? - 2u7%)

(A.2.9)

(A.2.10)

where the first curve corresponds to the lower branch and the second to the upper
branch of the marginal stability curve given in Reszka (1997). Note that the inclu-
sion of the nonlinear Jacobian terms in the baroclinic equation has established a
high wavenumber cutoff for instability. That is, instability occurs for

—&,u%-{—\/ +aB<Ix2<ay2+\/&2y+'3,
(A.2.11)

—apt —\/a2u + a0 < K% < —aut +/a%u + &

[o1}
I
+
[o]]
'(Dc

for @ > 0 and & < 0, respectively. Thus. the ‘ultraviolet catastrophe’ seen for the
SE model does not occur here. It also gives analytical justification for the inclusion
of these terms to suppress growth at small scales as was done in §5.9. Note that as
p and (8 become large. the high wavenumber cutoffs given in (A.2.11) both become
large. In this limit the results tend to those of the SE model as one would expect.

The nonlinear invariants and nonlinear stability have been discussed using the
structure of the Hamiltonian formulation presented in Swaters (1993b) and Karsten
and Swaters (1996b). Here we simply list the invariants as derived in §2.7. They

are
£= l// |Vy|? dzdy — 1/ h|Vh|? dzdy. (A.2.12)
2/ /e 2/ Jem
Qj:// @2(V2¢+ph+ﬁy)dxdy+// ®,(h)dzdy, (A.2.13)
Q R
DM = / / yV2y dzdy, (A.2.14)
Q

representing the Hamiltonian or pseudo-energy invariant, the Casimir associated
with the leading-order PV for the lower and upper layer and the zonal momentum
invariant, respectively. Using the Hamiltonian (see Swaters, 1993b) or the zonal

247



Appendices

momentum invariant (see Karsten and Swaters, 1996b) is is possible to establish

linear and nonlinear stability theorems.
A weakly nonlinear analysis was carried out in Reszka (1997)resulting in an

evolution equation identical to (5.5.45) where now

4k3(K? F1)

X = im, (A.Q.ID)
2 Vk? °
- = ek (A.2.16)
. P(K?+1)
T = 2k2¢2 [2 +K?x 47] . (A.2.17)

where the upper sign corresponds to the marginal stability curve (A.2.10) and the
lower sign to (A.2.9). The term I' has a very complicated form (see Reszka, 1997).
Note that these results were derived assuming that 3 = 1, X = 1. and g = 1.
These results can be generalized to reflect arbitrary values of these parameters but
this has not been completed at this time. Solutions follow as in §5.4 or Reszka
(1997). There are again two basic forms of solutions: periodic modulation of the
linear instability when ¥ > 0 and explosive nonlinear instability when ¥ < 0. The

parameter ¥ changes sign when

1+ V1 +4¢2
k2=22l:1:}:—€2 J

Thus, the critical zonal wavenumber where nonlinear terms change from a destabiliz-
ing effect to a stabilizing effect is slightly smaller than the meridional wavenumber
for the upper branch of the marginal stability curve and slightly larger than the
meridional wavenumber for the lower branch.

In Reszka (1997), numerical solutions for the WVT model were also presented.
It was shown that a coupled front would break up into a series of stationary eddies.
As suggested previously, for a coupled front the evolution of the front under the
WVT model is very similar to that given by the RED model in the f-plane limit.
In Figure A.2.1, we plot the results of a coupled-front simulation using the WVT
model. The upper-layer height evolves very similarly to the simulations using the
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Cross-channel Coordinate (y)

Along-channel Coordinate (x)

Figure A.2.1: Results of the numerical simulation of the WVT model
coupled-front simulation for t=6-11. The graphs on the left show the con-
tours of the upper-layer height. The grey regions are regions where the upper
layer vanishes and the contour interval is 0.1. The graphs on the right show
the contours of the barotropic stream function. The grey regions are regions
where the stream function is negative and the contour interval is 0.005.
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Figure A.2.2: The potential energy (PE, upper plot) and the baroclinic
kinetic energy (BCKE, lower plot) for the WVT model simulation. The
term zonal is used to indicate the mean zonal average, pert. indicates the
perturbation to this average and btp indicates the barotropic component.
The thin lines are the plots for the corresponding RED model simulation.
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RED and ST models as expected. The barotropic stream function develops cells
beneath the eddies, which are very weak. The eddies do not drift westward. which
is reasonable since the reduced form of the WVT model is the RED model with
B = 0. In Figure A.2.2, we compare the energy diagnostics for the WVT model
to the corresponding run of the RED model. Though very similar, two differences
occur. First, the instability grows somewhat quicker, indicating that even though
the coupling of the lower layer is weak it does enhance instability. Secondly, the
total BCKE is larger as it is no longer a conserved quantity but can grow as the
barotropic K E grows (see the formulation of £).

For isolated fronts, Reszka (1997) demonstrated that large-scale waves can
grow to finite size, often pinching off into warm-core eddies or enclosing cold-core
eddies. These large-scale waves can also be nonlinearly modulated with amplitudes
that oscillate in time. The conditions that separate these two forms of solutions are
not fully understood (M. Reszka, personal communication) but there is no doubt
that they are related to the two forms of nonlinear effects seen in the finite amplitude
analysis. The development of a barotropic Rossby wave in the lower layer is essential
in the instability process. It is the coupling of this wave to the baroclinic dynamics
that initiates the instability (Reszka. 1997).

For our purpose we present an example simulation for an isolated front for
comparison to the simulations run for the SE model. The results are shown in
Figures A.2.3. A.2.4. and A.2.5. The first figure shows the development of a large-
scale wave and corresponding barotropic cells. These cells cause the waves to break
backwards and eventually pinch off eddies. Note that the growth is seen as the
continual growth at a single scale. In the second figure, A.2.4, we concentrate on
the process of eddy pinch off and reabsorption. We also illustrate that the instability
acts to level out the zonally averaged profile of the front (compare the profile at
t = 83 to the profile at t = 0). By t = 83, the instability has developed into
large meanders of a sharper front. The zonal and meridional length scales of these
meanders are almost equal. Note that longer simulations see the development of
further eddies and even cold-core eddies (see Reszka, 1997).

The final figure, A.2.5, plots the energy balances for the simulation. As the
large wave begins to grow we see an initial release of zonal BCK F combined with an
increase in total and perturbation BC K E as well as barotropic K E. This initiates
a release of zonal PE and the instability grows rapidly with large increases in
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Figure A.2.3: Results of the numerical simulation of the WVT model
isolated-front simulation for t=54-79. The graphs on the left show the con-
tours of the upper-layer height. The grey regions are regions where the upper
layer vanishes and the contour interval is 0.1. The graphs on the right show
the contours of the barotropic stream function. The grey regions are regions
where the stream function is negative and the contour interval is 0.04.
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Figure A.2.4: Results of the numerical simulation of the WVT model for
an isolated front. The graphs on the left show the contours of the upper-
layer height. The grey regions are regions where the upper layer vanishes and
the contour interval is 0.1. The plots on the right show the zonally averaged
upper-layer height versus y.
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Figure A.2.5: The potential energy (PE, upper plot) and the baroclinic
kinetic energy (BC K E, lower plot) for the WVT model isolated-front sim-
ulation. The term zonal is used to indicate the mean zonal average, pert.
indicates the perturbation to this average and btp indicates the barotropic

component.
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baroclinic and barotropic K E. Again. this behaviour is predicted by the pseudo-
energy & as it requires equivalent growth in baroclinic and barotropic KE. As well,
note that PE is only released when large-scale structures have formed after ¢ = 60.
It is the large-scale structures that rapidly flatten out the front (see Figure A.2.4).

Appendix 3. Calculation of Nonlinear Terms for the ST Model

In this appendix we present the form of the nonlinear terms in the ST model
for the wedge front weakly nonlinear analysis. The nonlinear terms in equation

1
M(0z,8y,y){h, ¥} = —(B + pa)J(RV?h + 5Vh - Vh.h) — 3J(p.h)
+ B8%hh; — (8 + pa)a [yJ(Vzh,h) + J(hy.h) (A.3.1)
+ hV3h, + hohor + hyh,y] )
In order to examine the full range of interactions studied in this paper, we examine

the result of the nonlinear operator applied to a solution consisting of a superposition

of various wavetrains. That is, we let
N -~ ~
{h, v} =D Aj{h;(y). b;(y)} exp(ib;) + c.c., (A.3.2)
=1

where A; represents the slowly varying amplitude of the wave, {E i(y), @(y)} are
arbitrary functions, and §; = k;r — wjt. Substituting (A.3.2) into (A.3.1) gives

M(a.tv ayv y){h7 1/’} =
N
Z z‘AmA-n]:‘(:’:km, ‘i{ma 'Zma :tkna 77:n’ Jn) exp[i(iom * en)]

m,n=1

(A.3.3)

N
+ Y iAmAnAi®(tkm, hm, £k, ha, 2k, he) expli(£0m £ 6, £ 61)),

m,n,l=1

where I' represents quadratic interactions while ® represents cubic interactions.
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From (A.3.1) it follows that
r(kma‘i{mﬂ;ma kn’;;n, Jn) =
(B + pa)ay [kn‘iz'ﬁ,"l;n — kmh" Ay
+ k& Fimby, — knkZ Rl Fin]

o I - A3.4
+(ﬁ+ua)a[k R hon — knh hﬁ—%(3km+kn)h’mh; (4.3.4)
K2k + kmk? .
+ (= + +k$,)hmhn]

+ Bk hhin + B [k,,wmh,, - km&}mﬁ;] .
It follows from the form of I" that

ms k hn wn) (A3.5)

P
k.h.¥) =0. (A.3.6)

msilm»
v.k.h.

y. k
E

For the cubic terms, we only need self interaction terms that give rise to of the same

structure as the wave itself, that is. terms given by

&(k.k) = &(k,h,k,h,—k. k) + B(k. k. —k.h,k.h) + B(—k.h.k. h.k.h)

~ o~ ~ ~— (A.3.7)
= k[R"R? — (R')® + 4k?R'R?].
We also require the slow derivative terms given by
“Ml(a.tv aXv aysy){hv w} =
—(B + pa)dy (hV2h + %Vh - Vh, h) — BJ1(¢, k) + B*hhx
— (B8 + pa) I:J(2hh;x + hehx,h) — ayJ,(V2h, k)
(A.3.8)

+ 20yJ(hzx, k) + aVihhx — 2ah . xh;
— adi(hy k) — a(hV?h + SVh - Vh)x

- a(2hhzx + hth)z] .
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Using the substitution (A.3.2) in (A.3.8) gives

Ml(a.tv aX7 ayay){h’ I/)} =

N
Z Am(An)EFI(:tkm9;;m7 lz;m: :’:knsﬁru zZn) exp[l(:tem + on)]

m,n=1

N
+ Y AmAn(A1)¢®1(tkm,hm, £k, ho, 2k, Bi) expli(£0m + 0, £ 61)],
m,n,l=1

(A.3.9)
where once again I'; represents quadratic interactions while ®, represents cubic
interactions. For our analysis we require only the form of quadratic terms that lead
to long-wave terms. those that are independent of z and t. These terms have the

coeflicient

(8 + pa) [ay (h"'h R"R' + 4k’ h) [2(?2')2 - 2k27{2] ]

+ 3%R2 + B(¥ o'k — wR').
(A.3.10)
Using these formulations, we can write down the forms of the nonlinear terms
found in the weakly nonlinear analysis. First we examine the terms present in §3.6.
For the O(A) problem the term M,z in equations (3.6.15) and (3.6.27) represents
the quadratic interactions of the leading-order solutions and is therefore given by

Mg =T (y,k, h(y, k.n), By, k,n), k. By, k,n) By, ki) ) - (A.3.11)

For the O(A?) problem the term My in equations (3.6.31) and (3.6.36) represents the
quadratic interactions of the leading-order solution with the second order solution

and the slow quadratic interaction of the leading-order solution that give rise to
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terms independent of the fast phase. Therefore we have.

dh(y, k,n)

9k 71;2(3/)9 —k,ﬁ(y,k,n),dj(y,k.n))

MO =I (yvkv

e ~ Oh(y. k.n) ~
+T (yy —k, h(y, k.n), lb(y. k,n), k, %J&(y)) (A.3.12)

+T1 (3, k. h(y. k. n), (5, by n), =k, By, k,n), By, kyn) )

where we’ve made use of (A.3.5) and (A.3.10). The term 9N in equations (3.6.40)
represents the quadratic interactions of the leading-order solution with the second
order solution and the cubic interactions of the leading-order solution with itself

that give rise to terms with the phase of the leading-order solution. Therefore we

have,

1

M= 23

I:I‘ k,3(y),t_173(y),—k,ﬁ(y,k,n),g(y,k,n))

()

y k h(y. k.n), &y, k.n),0.8(y). h (y)) (A.3.13)

(v
T (y. =k, h(y. k.n). $(y, k.n), 2. 3(3). va (v))
r(
T (3.0, 8(y). B (y). k- h(y, k,n). 0(y. k.n))

+
+
+
+<1>(k h(ykn)}

In §3.8, the term ®; and P, represent quadratic interactions that have had
the F.A.T. applied to them. The term ®, represents the quadratic interaction of

the short and long wave that give rise to terms in phase with the short wave and is

given by
*ok(k)~
¢, = ——=h(y.k,n
x [T (3, k. By, & m), $ (g, . 1), 0, ”y, 0,m), By, 0,m)) (A.3.14)

+T (y,O,ﬁ(y,O,m),zZ(y, 0,m),k, k(y, k,n), b(y, k,n)) ] dy.
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The term @, once again represents the quadratic interactions of the short wave with
itself that produce waves independent of the fast phase. that is in phase with the

long wave, and is given by

3, = /O 2"[ff’)?z'(y,o,m)Mo(y)dy, (A.3.15)

where My is given above in (A.3.12).
In §3.9, the term J,5. represent the quadratic interactions of waves a and b

that are in phase with wave ¢ appropriately weighted and integrated according to
an applications of the F.A.T. Therefore J,. is given by

* 2x(ke)
Jabe = —

x [T (4> —Fas (¥ as 7). D@ k- a). ~Fs, Bly. k. 0. S (y. Ks, ) (A.3.16)
+T (y? ’—kbvg(yﬁkbsnb)vi/;(y’kb’nb)'_ka’ﬁ(y'ka’na).&;(y'ka~na))}

X i~z(y, keone)dy.

Finally, in §3.10, the term @p represents the slow quadratic interactions of

the long wave with itself and is given by

65 =Ty (y, o,ﬁ(y,o,n),zz?(y,o,n),o,'ﬁ(y.o,n),zZ(y,o.n)) . (A.3.17)

Appendix 4. The SE Model Hamiltonian Formulation

It is a useful endeavor in fluid mechanics to recast governing equations into
what is referred to as Hamiltonian formulation. There is a plethora of material on
Hamiltonian formulations for geophysical flows with good general overviews given in
Holm et al. (1985) and Shepherd (1990). There are several advantages of being able
to recast the governing equations in this formulation as pointed out in Shepherd
(1990).

Hamiltonian structure has been established for several FG models: the WVT-
model in Swaters (1993b) and Karsten and Swaters (1996b), the LST model in Swa-
ters (1993a) and Karsten and Swaters (1996a), and the RED model in Slomp (1995).
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The SE model given by (5.1.2) and (5.1.3) can also be expressed in noncanonical

Hamiltonian form.
The system (5.1.3, 5.1.2) is Hamiltonian and can be written as

_ 55
qe —3E- (A.4.1)

with

1 ,
5(a) = H(. k) = 5 / /ﬂ Vo - Ve dedy

(A.4.2)
— ﬁ/f R(1 — ph)Vh - Vhdzdy.
2J)Jm
where q = (q1,q2)7 with
a1 = ph, (A.4.3)
G2 = V2 + 3y, (A.4.4)

and the operator J = [Ji;] is 2 2 x 2 matrix whose components are given by
Jij = —0ud1J(q1,*) — 6:28;, J(q1, %) — di2d2J (g2, %), (A.4.5)
where d,,n is the Kronecker delta function, in FR and
J = —-J(q2,*), (A.4.6)
in NF. The associated Poisson bracket is given by
[5,8] = //Q %g -Ji—f dzdy. (A.4.7)

The proof that the Poisson bracket satisfies the required properties is lengthy and
does not provide great insight for our purposes. The main difficulty is establishing
the validity of the Jacobi identity. For similar proofs see Karsten and Swaters
(1996b),, Swaters (1993a), Swaters (1993b), Mooney and Swaters (1996), or Slomp

(1995).
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The Hamiltonian (A.4.2) is the pseudo-energy invariant as discussed in §5.3.
Note that the state variables g2 and q; are related to the expressions for potential
vorticity. The connection here is more complicated than for other models (see for
example Swaters (1993a) and Swaters (1993b) where the leading-order PV for each
layer and the state variables are directly correlated). In the upper layer, q; is the
inverse of the leading order potential vorticity given by (5.1.6) but q; is also the
leading-order potential vorticity of the lower layer as given by (5.1.7). The second
state variable, gy, is a relation between the next order potential vorticities, as the
second equation in the model is a balance between the two layers.

A Casimir functional is a functional that Poisson commutes with all other
functionals that is,

[3.€] = 0. (A.4.8)

for all sufficiently smooth functionals F(q). Using the definition of a Casimir,
(A.4.8), and Poisson bracket, (A.4.7), the Casimirs for the SE model are found to
be the PV invariant (5.3.8) found in §5.3. Noether’s theorem (see Shepherd, 1990)
can be used with the fact that $ and J are invariant under translations in ¢ and z.
The invariant associated with the time symmetry of the model is the Hamiltonian.
( Application of Noether’s Theorem actually gives —f).) The invariant associated
with zonal symmetry, is just the zonal momentum invariant (5.3.11) found in §5.3.
In the special case where § = 0, the model, Hamiltonian and operator, are also in-
dependent of y. Therefore a similar meridional momentum invariant can be derived
and an invariant analogous to angular momentum can be derived.

One of the great uses of the Hamiltonian structure is the derivation of linear
and nonlinear stability theorems following the pioneering work of Arnol’d, (Arnol’d,
1965 and Arnol’d, 1966). Arnol’d stability theorems have been demonstrated for a
wide range of hydrodynamic flows (see Shepherd, 1990 and Holm et al., 1985). Both
linear and nonlinear theorems have been established for the WVT model (see Swa-
ters, 1993b and Karsten and Swaters, 1996b), the LST model (see Swaters, 1993a
and Karsten and Swaters, 1996a) and the RED model (see Slomp, 1995). Devel-
oping the stability theorems follows from working with a constrained invariant of
the flow, usually the Hamiltonian, momentum invariant, or some combination of
the two, plus an arbitrary Casimir. If conditions on a basic-state flow can be found
such that the first variation of the constrained invariant is zero and the second vari-
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ation is definite, one has established formal stability. This procedure is equivalent
to illustrating that the invariant has an extreme point in finite dimensions. Lin-
ear stability usually follows from formal stability and considerations of the linear
dynamics. Then by considering the fully nonlinear dynamics it is often possible
to extend these results to nonlinear stability theorems. For examples of this pro-
cess see any of Swaters (1993a), Swaters (1993b), Karsten and Swaters (1996a), or
Karsten and Swaters (1996b). The process is virtually identical to that used to es-
tablish nonlinear stability theorems for the ST and VSE models. In §5.3, the same
process was shown to break down due to an inability to bound small-scale terms.
Such a difficulty remains even if the structure of the Hamiltonian formulation is
used. Therefore, it is not possible to establish formal, linear. or nonlinear stability

theorems for the SE model.
Appendix 5. The NLS Equation

In this appendix we present the solutions f(6) to the equation

d?
=0 (a5.)
with arbitrary initial conditions,
fo)=C. )
£'(0) = D. (452)

When the coefficient of the linear term, 71, is positive (negative) we have linear
instability (stability). When the coefficient of the nonlinear term. <, is positive
(negative) this term acts to enhance (suppress) the linear growth.

First we examine the equation by writing it as a system by letting z; = f and

z2 = f' so that we have

T} = z2,
(A.5.3)

’ - 3
Tz =N1T1 — 72T,

The system has the equilibrium points

(z1,22) = (0,0), (:t :’—1,0),
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where the second and third points are real only when v, /42 > 0. The system (A.5.3)

conserves the quantity
V(zi,z2) = 22 + 22 [J:‘f - 27—11%] , (A.5.4)

that is,

v 8V , v ,

ﬁ=5;1-11+$$2 =0

The solutions can be easily illustrated for arbitrary initial conditions by plot-
ting the phase portraits using (A.5.4). Since V is conserved following the flow,
curves of constant V trace out solutions in the r; — z2 plane. Obviously these
phase portraits depend critically on the signs of parameters v; and .. The combi-
nation of different signs leads to four cases. The phase portraits for these four cases
are plotted in Figures A.5.1, A.5.2, A.5.3, and A.5.4. These portraits illustrate that
three types of solutions exists: periodic solutions, solutions that become infinitely
large or special solutions that tend to equilibrium points. If 42 > 0, solutions are
periodic and nonlinearly stable (see Figures A.5.1, A.5.2) as the nonlinear terms
stablize any initial growth. If 45 > 0, most solutions tend to infinity and are non-
linearly unstable as the nonlinear terms destabilize the solution (see Figures A.5.3,
A.5.4). Solutions are bounded and periodic when +2 > 0 only if the solution is
linearly stable, 43 < 0, and initial conditions are small enough that we are near the
origin (see Figure A.5.4). The phase portraits are labelled with various regions that
correspond to solutions given below. The solid black and dashed black lines repre-
sent the boundaries of these regions and are given by v3 = 0 and 73 = (11/72)?,

respectively, where these parameters are defined below.
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fl

Figure A.5.1: The phase portraits for 71 > 0 and 42 > 0. The solutions
are clearly periodical. Two solution regions exist separated by the separatrix
(solid black line) given by the curve 43 = 0 along which solutions tend to the

equilibrium point (0,0).
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Figure A.5.2: The phase portraits for 4; < 0 and 2 > 0. The solutions
are clearly periodical. Only one region of solutions exists and it is identical
to one of the regions in Figure A.5.1.
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Figure A.5.3: The phase portraits for 4; > 0 and v, < 0. All solutions tend
to infinity, though three different solution regions exist. The lines dividing
the regions are given by v3 = 0 (solid black line) and v3 = (71/72)? (dashed
line).
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Figure A.5.4: The phase portraits for 47 < 0 and ¥z < 0. Solutions lying
near the origin are periodic. All other solution tend to infinity. Four regions
of solutions exist, separated by vz = 0 (solid black line) and v3 = (11 /72)?
(dashed line).

267



Appendices

Equation (A.5.1) can also be solved using Jacobi Elliptic functions. Multiply-
ing (A.5.1) by f’ and integrating gives

(fl)2 _— _? (f4 — 27_1f2 +73> . (A.5.5)
A Y2
where
67
y=—-Ct+2c2_ Zp2, (A.5.6)
Y2 Y2

The solutions depends on the roots of the quartic in f given by (A.5.5). Rearranging

(A.5.5) gives

(f)? = —2(f2 =T1)(f2 - T2). (A5.7)
where
s "/2
Ti2=—=%4/3% — s, (A.5.8)
T2 12

From (A.5.8), we can determine the roots of the quartic and hence the solution
form. We examine the solution process for one region and simply list the solutions
for the others. The solutions are given in terms of the Jacobian elliptic functions:
the snoidal function, sn, the cnoidal function, cn. the dnoidal function. dn, and
the functions

1 cn dn cn

ns=—, cd=— ds=—., c¢s=—

sn dn’ sn’ sn’

The reader is referred to Milne-Thomson (1950) for the definitions and properties
of the Jacobian eliiptic functions. For simplicity we will only consider the solutions
where C,D > 0. From the phase diagrams it is obvious that other solutions are

similar in nature.
Consider Region 1 where 92 > 0 and 73 < 0. From (A.5.8) it follows that

I' >0and I'; < 0. Let
Iy =a® and Ty = -b, (A.5.9)
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so that (A.5.7) reduces to
()2 = Z(a® - f2)(f* + b,

or rearranging

df _ [
V@@ =) (2 +8) \/;de'

Integrating from f(6s) = b to f(6) and using the integrals in Milne-Thomson (1950)

gives
-y 1 |f] @ >
(a2+bz) *en~! l:; aT-!-—b2 = —23(91,—9),
or

2

—“—] : (A.5.10)

mo(@? + b2 3
f(8) =acn [(_/3(_‘_’___)) (6, — 6) 2 152

2

where from the initial conditions

2 3 C a?
S R S 1 [C| o .
6y = (.{2(a2 +bZ)) cn l:a a? + b2 ] . (A.5.11)

Similarly in Region 2 where v» > 0 and 0 < v3 < :: and letting I'; = a°,

T'; = b? gives the solution

2\ 3 2 _ 12
T2a a-—b 3
f(8) =adn ,:( 3 ) (6, — 6) p J . (A.5.12)
where f(6,) = a and from the initial conditions
D) % C a2 _ b2
[ = -1|Y <
6. = (72a2> dn [a = } . (A.5.13)

In Region 3 where v < 0, and 43 < 0, and letting I'; = a2, = —b? gives

the solution

£(6) = (@ + %)} ds [(:_72(";—“’2))5(9& — 8) a—Z%:T} , (A.5.14)
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where f(f) = oo and from the initial conditions

A ] . (A.5.15)

) —<—-——"2 )% ds“[ ¢
7 \2(a? +82) (a2 + b2)} |a? + B2

In Region 4 where v;1 > 0, 72 < 0, and 0 < 73 < (71/72)%, and letting
[y = —a?, T3 = —b? gives the solution

- b2 % b2 a2
F(6) =bcs [( z ) (8o — 6) b,_," J . (A.5.16)
where from the initial conditions
-2 5 L [C v —a? o
O = (W) cs™! [F I—bz—:' . (A.5.17)

In Region 5 where ;1 < 0, 72 < 0, 0 < 73 < (71/72)%. and |C| > 71 /72 and
letting I'; = a2,T2 = b? gives the solution

2\ 3
#(6) = a ns [( e ) (8o — 6) SJ , (A.5.18)
where from the initial conditions
—92\3
O = ( -2> ns~! [E 2] X (A.5.19)
120 ala

In Region 6 where 1 < 0, 72 < 0, 0 < 73 < gi and |C| < 2 and letting

I} = a?,T, = b? gives the solution

a2\ 2
f() =asn [( L ) (8 — 6o) -Z-] , (A.5.20)
where f(6g) = 0 and from the initial conditions
—2\?
we(22)} o[22 -
Y2 ajla
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In Region 7 where v3 > (v1/72)%. the quartic has no roots and a slightly
different approach must be taken. Following Milne-Thomson (1950) we set

o) = L=,
f+
in (A.5.5) giving
(¢")? = (6% — ¢°)(g* + a?), (A.5.22)
where
a? = ‘73,% —“/1/“/2.

The solution to (A.5.22) is

L 1
g(8) = cn [(—27273) 2(6—6s) 1+ a2 ] : (A.5.23)
where we’ve used that b2(1 + a?) = —2~3v3. Using the identity

_ 1+ cn(260|m)
T 1— cn(28im)’

[ ns(]m) cd(8lm)]?

gives the solution

U —Y273 3 1
fW)-m;M[< 22 ) (6 - 6y L+ﬁ]
1 (A.5.24)
—v273\ * 1
~ d[(T) (@ =%) 1+a2J’
where
2 _ %
B = —— cn! [C 7L 2]. (A.5.25)
27§ C24yy I1HE
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Region 1
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Figure A.5.5: Plots of the solutions found in the seven different regions.
In regions 1, 2, and 6 the solutions are periodic functions The solutions for
4, 5, and 7 are all similar and are plotted in the final graph. They

all blow up at the finite value of the argument, 8.,.
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Typical plots of the solutions for all regions are given in Figure A.5.5. In
regions 1, 2, and 6 the solutions are bounded periodic functions. Note that in region
2 the solution does not oscillate through zero. The other region have solutions that
become unbounded in a finite, and relatively small, time. ( Note that the time scale
change in the final diagram.) In regions 3, 4, 5, and 7, the parameter 6. represents
the finite time in which the solution becomes infinite.

The solution that exists on the special curves between these regions also offer
simple insight into the nature of the solutions. The solutions are given in terms of
functions that are more familiar making the nature of the solutions more evident.
Between regions 1 and 3, and between 2 and 4, where ¥, = 0 the solution is given

by

D
v

Between regions 1 and 2, where v, > 0 and +3 = 0, the solution is the limit
of (A.5.10) and (A.5.12) as b — 0 and is given by

sinh{\/716] + C cosh[\/710)]. (A.5.26)

f=

where

9 \3
0, = ( - 2) sech™?! [g] .
724 a

Between regions 3 and 4, where 43 = 0 the solution is the limit of (A.5.14)
and (A.5.16) as a — 0 and is given by

f=0bcsch [(_1252 ) ’ (oo — 9)] ; (A.5.28)

where

N
9]
&
|
-

—
|
———

—9\?
oo = (‘/252)
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Between regions 3 and 5, where 3 = 0 the solution is the limit of (A.5.14)
and (A.5.18) as b — 0 and is given by

f = acsc [(‘7;“2)%

where from the initial conditions

—92\3
O = (—:5) csc™! [g} X (A.5.30)
Tea a

Between regions 4 and 7, where 43 = (7,/72)? the solution is the limit of

(A.5.18) as b — a and (A.5.24) as a — oo and is given by

(foo — 9)] : (A.5.29)

L — H
f =3 csc [( 9273) (6 — 95)] . (A.5.31)
where from the initial conditions
2 \2 C
6y = = R sl .5.32
b (“7202) csc [a} (A.5.32)

Between regions 5 and 7, where 73 = (v1/+2)® the solution is the limit of

(A.5.18) as b — a and (A.5.24) as a — 0 and is given by

— ~ %
f =7 coth [(—7‘;"&) (6 - 06)} ., (A.5.33)
where from the initial conditions
9 3
6y = ( = ) coth™! I:-g] . (A.5.34)
=273 a

Between regions 6 and 7, where 73 = (v1/72)? the solution is the limit of
(A.5.18) as b = a and (A.5.24) as a — 0 and is given by

4

f =17 tanh {(273;4) (6 - ob)} : (A.5.35)
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where from the initial conditions

2 \? e
gy = =) tenh™' ||, (A.5.36)
—Y2v3 Y3

Soliton solutions are possible when § represents a travelling-wave coordinate
and f tends to zero (a constant) as § — +oo for a bright (dark) soliton. From
the phase diagrams and the solutions, it follows that solution (A.5.27) represents a
bright soliton and solution (A.5.35) a dark soliton.
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