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AяѠѡџюѐѡ
Traditional approaches tomineral exploration rely on personal experience, conceptual geneticmod-

els, past exploration data, and geological characteristics found in analogous target deposit types to

locate and evaluate prospective areas. With the increase in both size and complexity of datasets

used in mineral exploration, mineral prospectivity modeling (MPM) provides a means of exploring

highly dimensional geological datasets in a meaningful way. When exploring for a specific deposit

type, prior knowledge from knownmineral deposits within or near the study area and genetic char-

acteristics of the deposit type are used to understand exploration factors that indicate the presence

of a mineral deposit (i.e., positive information). A concern is that barren locations (i.e., negative

information) are rarely recorded for widespread use by others, yet they are as important as positive

locations in training predictive models. It is likely that prospective areas are not being discovered

as current methodologies are heuristic in nature and do not consider the full spectrum of the truth.

A proposed novel MPM framework provides a means of passing a stochastic multi-element

model and other relevant geological data to a transfer function that calculates the probability that

a particular mineral deposit type exists at each location. The use of a multi-element geochemi-

cal model allows both positive and negative information to be equally represented while avoiding

heuristic searches by not using known mineral occurrences as input. In addition, the multiple re-

alizations of the geochemical model permits uncertainty to be transferred to the final probabilistic

values at each location. The principle challenge within the proposed framework is the prediction of

the required stochastic geochemical model. It is desired to have a flexible multi-element geochemi-

cal model that may be used to perform MPM for many deposit types.

In hopes of providing a straightforward multivariate simulation framework, novel extensions

of the decorrelation and direct cosimulation frameworks that operate in the presence of many sec-

ondary data are developed; however, they fail to adequately reproduce input multivariate statistics.

The introduction of correlation to the once uncorrelated factors during simulation by the condition-

ing of secondary data renders the decorrelation framework inadequate. While the modification

of direct cosimulation is easy to implement, it is hampered by extreme variance inflation and an

inability to reproduce the input correlation structure. As the capabilities of the cokriging and hier-

archical framework to model highly dimensional problems had not been demonstrated, they were

both implemented in an aĴempt to predict 42 variables. A linear model of coregionalization con-

sisting of 903 direct and cross-variograms was fiĴed to the data, however, it did not adequately
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capture the spatial structure of the input variables. The framework also proved to be very computa-

tional expensive. Conversely, the hierarchical framework reasonably reproduces input univariate

and collocated multivariate statistics and provides a viable option for simulating multivariate data

with many exhaustive secondary data.

The proposedMPM framework is demonstrated in a small example workflow that when passed

the geochemical model produced by the hierarchical framework and other relevant geological data,

predicted three locationswith high probability of deposit discovery. All three locationswere in very

close proximity (i.e., within 50-2700 meters) to either a showing, drilled prospect, or past-producer,

which is a promising sign but requires additional research.
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Cѕюѝѡђџ 1

IћѡџќёѢѐѡіќћ
1.1 Thesis SeĴing

Mineral exploration can be described as a two stage process: initial targeting followed by direct

detection. Direct detection (e.g., ground geophysics, drilling) is conducted within relatively small

prospect areas while initial targeting is completed at a global to district scale (Hronsky & Groves,

2008). The traditional approach to initial targeting uses personal experience, conceptual genetic

models, past exploration data, and geological characteristics found in analogous target deposit

types to locate and evaluate prospective areas. The generated targets are then represented on a

map as highlighted areas of interest. While this method is generally fast, it is limited due to its

inherent subjectiveness and bias towards known mineral deposit types (Porwal & Kreuzer, 2010).

Compounding with these issues, the geological characteristics commonly sought can vary between

adjacent deposits, even if they are similar in style (Kreuzer, Etheridge, Guj, McMahon, & Holden,

2008).

As exploration proceeds within known mineral provinces, mineral deposits with obvious geo-

chemical and/or geophysical signatures are discovered increasing the difficulty of locating new

deposits (Groves, 2008). This is illustrated further by a relatively stagnant discovery rate over a

period of time, that sawworldwide exploration expenditures rise from 3 billion in 2002 to 30 billion

US dollars in 2012. Discovery costs have doubled over this period to the figure of 150 and 180 mil-

lion US dollars per gold and base metal deposits respectively (Schodde, 2014b). Schodde (2014a)

suggests these increases are largely due to the general rise in expenditures and that they are weakly

correlated with depth of cover of the deposit. By developing new or advancingmineral exploration

techniques and technologies, the increase in discovery costs can be offset (Schodde, 2014b) while

potentially increasing the likelihood of new deposit discoveries within known mineral provinces

(Hronsky & Groves, 2008).

With the increase in both size and complexity of datasets used in mineral exploration (i.e., ge-

ological, geochemical, geophysical, and remote sensing), mineral prospectivity modeling (MPM)

provides ameans of exploring this data in ameaningful way. Mineral prospectivitymodels are gen-

erated by investigating exhaustive independent data. Factors that are relevant to exploration are

subsequently integrated together, producing a prospectivitymodel specific to a deposit type (Knox-

Robinson, 2000). The produced model illustrates the spatial distribution of relative prospectivity

and are expressed as ranks, categories, or numerical scores (Lisitsin, Porwal, & Mccuaig, 2014).

Traditionally, mineral exploration is heuristic in nature. Analogies of known mineral deposits

1



1. Introduction

are searched for within known mineral provinces. Prior knowledge, be it known mineral deposit

locations or characteristics (i.e., positive information), is applied. Considering this, it is likely that

prospective areas are not being discovered as the methodologies are heuristic in nature. Addi-

tionally, in a data driven approach, barren negative locations (i.e., negative information) are rarely

recorded, yet they are as important as positive locations in training predictive models. As such, the

predictive models are derived from censored data.

1.2 Thesis Statement

A proposed novel MPM framework provides a means of passing a stochastic multi-element model

and other relevant geological data to a transfer function that calculates the probability that a par-

ticular mineral deposit type exists at each location. The use of a multi-element geochemical model

allows both positive and negative information to be equally represented while avoiding heuristic

searches by not using known mineral occurrences as input. In addition, the multiple realizations

of the geochemical model permits uncertainty to be transferred to the final probabilistic values at

each location.

To generate the geochemical model, the prediction of regional geochemical measurements that

have hadmany elements measured is required. As a means of improving prediction, the geochemi-

cal model may be conditioned to numerous exhaustive geological datasets, increasing the complex-

ity of the geostatistical problem. Stream sediments are commonly sampled regionally; however, it

is typical for their geochemical analysis to consist of more than 40 elements when using a technique

such as inductively coupled plasma atomic emission spectroscopy (ICP-AES) (ALS Limited, 2009).

The transfer function of the proposedMPM framework could be defined prior to simulating the geo-

chemical model enabling the number of elements that require prediction to be known. However, if

additional elements are later required, a new geochemical model would need to be generated. The

flexibility of the framework is maximized when all available elements in the regional samples are

predicted and included in the geochemical model as the transfer function can be altered after its ini-

tial construction. In addition, the same geochemical model could then be passed to multiple MPM

transfer functions, each designed for different deposit types. With this level of dimensionality it

is challenging to ensure that input multivariate statistics are reproduced during spatial prediction.

This is the principle challenge of the proposed MPM framework: the multivariate geostatistical

prediction of the stochastic multi-element geochemical model in the presence of many secondary

data.

While the proposedMPM framework provides themotivation of this thesis, it comprises of only

one part of the contributions made by this work. The need for an effective means to generate the

required stochastic multi-element geochemical model in the presence of numerous exhaustive sec-

ondary data is the primary focus of this thesis. Both novel and existing frameworks are explored
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and are proven to not be adequate approaches. One framework is found to be capable of the re-

quired spatial prediction and is used to provide the proposed MPM framework with the stochastic

geochemical model.

1.3 Thesis Outline

A literature review of relevant concepts and geostatistical techniques to this thesis is found in Chap-

ter 2. Novel frameworks for massively multivariate simulation in the presence of numerous ex-

haustive secondary data are developed and tested in Chapter 3. Due to the ineffectiveness of the

frameworks discussed in Chapter 3, Chapter 4 tests existing multivariate simulation frameworks

and discusses the hierarchical framework that is able to model the massively multivariate system.

Chapter 5 develops the proposed MPM framework that utilizes a stochastic geochemical model

that produces a probabilistic mineral prospectivity model using a binary transfer function. Discus-

sion regarding complexities not appreciably handled in the developed MPM framework, future

considerations, and conclusions are discussed in Chapter 6.

The workflows implemented throughout this thesis are not currently available in commercial

software and require specialized software and a scripting environment. Computational intensive

algorithms are implemented using FORTRAN, the majority of which is sourced from Centre for

Computational Geostatistics (2016a) while some are developed for work presented in this thesis.

Scripting was completed using the Anaconda Python distribution: Continuum Analytics (2015). A

significant contribution to the mixed FORTRAN-Python package pygeostat (Centre for Computa-

tional Geostatistics, 2016b) was made for work presented in this thesis.
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Cѕюѝѡђџ 2

LіѡђџюѡѢџђ RђѣіђѤ юћё BюѐјєџќѢћё
2.1 Mineral Prospectivity Modeling

2.1.1 Introduction

MPM provides a means of exploring geological data in a meaningful way by integrating different

data together producing amodel ormap of prospectivity, indicating a spatial distribution of relative

prospectivity. The various types of geological data available to MPM is discussed in this section in

addition to the current MPM frameworks.

2.1.2 Exploration Data

2.1.2.1 Data Types

Data used during mineral exploration can be categorized into three categories: raw, interpreted,

or derived. Raw data consists of directly measured data (e.g., geophysics, remote sensing), while

interpreted data is extrapolated from a small sample of raw data (e.g., geology maps, structure

maps). Derived data is information derived from either raw or interpreted data (e.g., distance to

nearest contact, nearest neighbor lithology) (Mccuaig, Porwal, Joly, & Ford, 2013).

2.1.2.2 Stream Sediment Samples

Stream sediment samples are a composite of materials deposited along drainage systems derived

from upstream sources that have been subjected to weathering and erosion. Elemental analysis

of the samples illustrate the geochemical signature of each sample, that are representations of the

background geochemistry upstream and in rare cases, anomalies (Carranza, 2008).

The area of influence associatedwith stream sediment samples is called a catchment area (Figure

2.1). A catchment area is derived by using a digital elevation model (DEM) to calculate the area

that can contribute to the stream at the location sampled (Jones, 2002). In the case when catchment

areas overlap due to samples being up or downstream from one another, the catchment area(s) of

upstream samples need to be included in the downstream catchment area. Exclusion assumes that

the upstream sample(s) have no influence on downstream samples.

2.1.3 Current Mineral Prospectivity Modeling Frameworks

Various methods exist to integrate the factors relevant to exploration. These methods can be cat-

egorized as either knowledge driven, data driven, or a hybrid of the two (Knox-Robinson, 2000).
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Figure 2.1: An example of delineated catchment areas (black outline) with stream sample locations (red star)
and the drainage network (blue lines). The DEM has been shaded using a light source from the south-east at
an altitude of 30° to aid in visualizing changing elevation.

The distinction between data driven and knowledge driven mineral prospectivity modeling is de-

fined by the role of statistical relationships derived from the data versus theoretical and subjective

considerations. Data driven methods include: weights of evidence (Agterberg, Bonham-Carter, &

Wright, 1990; Bonham-Carter, Agterberg, & Wright, 1989; Carranza, 2004; Debba, Carranza, Stein,

& van der Meer, 2008; Oh & Lee, 2008; Porwal, González-Álvarez, Markwiĵ, Mccuaig, & Mamuse,

2010; Raines, 1999; S. Xu, Cui, Yang,&Wang, 1992), logistic regression (Agterberg&Bonham-Carter,

2005; Chung, 1978; Chung & Agterberg, 1980; Harris, Zurcher, Stanley, Marlow, & Pan, 2003; Oh &

Lee, 2008; Porwal et al., 2010), likelihood ratio (Chung & Fabbri, 1993; Oh & Lee, 2008, 2010), evi-

dence theory (An & Moon, 1993; Carranza, 2009; Carranza & Sadeghi, 2010; Carranza, van Ruiten-

beek, Hecker, van der Meijde, & van der Meer, 2008; Chung & Fabbri, 1993), and artificial neural

networks (Brown, Gedeon, Groves, & Barnes, 2000; Harris & Pan, 1999; Harris et al., 2003; Nykä-

nen, 2008; Porwal, Carranza, & Hale, 2003; Singer & Kouda, 1996; Skabar, 2005). All methods use

known mineral occurrence locations as the independent dataset to train predictive models which

are then used to predict prospectivity. Data driven methodologies can only be applied in mature

mineral provinces which contain sufficient training data (Lisitsin et al., 2014). Conversely, knowl-

edge driven methods include: fuzzy logic (Cheng & Agterberg, 1999; de Quadros, Koppe, Strieder,

& Costa, 2006; Groves et al., 2010; Knox-Robinson &Wyborn, 1997; Lisitsin et al., 2014; M. Moon &

An, 1991; Porwal, Carranza, & Hale, 2006) and belief functions (An, Moon, & Bonham-Carter, 1994;

Carranza, Woldai, & Chikambwe, 2005; Chung & Fabbri, 1993; Moon, 1990; Tangestani & Moore,

2002; Wright & Bonham-Carter, 1996). Both use a user defined deposit model to evaluate the in-

dependent data and predict prospectivity. Knowledge driven methods are commonly applied in

immature mineral provinces where there is insufficient training data (Lisitsin et al., 2014).
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2.2 Multivariate Simulation

2.2.1 Introduction

Various methodologies exist that enable the use of multivariate data in spatial prediction. Ideally,

multiple variables are jointly modeled, consider all secondary data, and reproduce input statistics

such as collocated and spatial correlation structure. As the number of variables increase, implemen-

tation challenges arise, including an increase in computational costs andworkflow complexity. The

following is a summary of methods related to this thesis.

2.2.2 Cokriging Framework

A cokriging framework allows primary variables to be jointly modeled while explicitly considering

spatial cross correlation between them. This is done by extending the kriging system of equations

to account for conditioning by other variables, in addition to its own conditioning data. When

using this framework, spatial direct and cross-covariance functions must be defined by a permis-

sible model of coregionalization; typically, the linear model of coregionalization (LMC) is used

(Goovaerts, 1997).

2.2.2.1 Linear Model of Coregionalization (LMC)

Consider K number of coregionalized continuous functions {zk(u), k = 1, ...,K, ∀u ∈ A}, for all

grid locations u in the domain A, that are also denoted by the vector Z(u). The LMC consists of a

[K(K + 1)]/2 set of direct and cross-variograms. The LMC assumes that Z(u) is constructed by a

linear combination of (L+1) underlying independent factors {Y l(u), l = 0, ..., L, ∀u}. These factors

are defined by their variogram models (i.e., nested structures) {Γ(h)l, ∀l} such that:

γ(h)kk′ =
L∑

l=0

blkk′ · Γ(h)l, ∀k, k′

The set of nested variogram structures are also denoted by the vector Γ(h) and remain the same for

every direct and cross variogram within the LMC. The index of l = 0 is reserved for a nugget effect

model and may not be used in all cases; in expressions containing ∀l, unless it is otherwise stated,

it is assumed that this includes the index for the nugget effect model.

The variance contribution parameters {blkk′ , ∀l, k, k′}, that are also denoted by theK byK core-

gionalization matrix Bl, are adjusted to fit the experimental variograms. For the LMC to licit, the

Bl matrices must be positive definite (Journel & Huijbregts, 1978). A more in depth explanation of

the LMC is found in Journel and Huijbregts (1978).
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2.2.3 Intrinsic Collocated Cokriging

In situations that contain exhaustive secondary data, alternative methodologies are sometimes im-

plemented. A popular methodology considers a single collocated secondary variable at each loca-

tion being considered one at a time. It implements a Markov model (Almeida, 1993; W. Xu, Tran,

Srivastava, & Journel, 1992) that assumes that the collocated secondary data screens the influence of

other distal secondary data. It is an aĴractive methodology as cross-variograms are not a required

input parameters; rather, they come from the variogrammodel of the variable being predicted that

is scaled so the sill is equivalent to the correlation coefficient. However, this methodology is known

to overestimate the conditional distributions variance, that when used in an sequential Gaussian

simulation (SGS) framework, propagates through the simulation (Babak & Deutsch, 2009b).

To avoid variance inflationwithin a collocated cokriging framework, Babak andDeutsch (2009b)

introduced a newmethodology called intrinsic collocated cokriging (ICCK). It implements a cokrig-

ing framework using an intrinsicmodel of coregionalization that considers the collocated secondary

data at the location being estimated and from locations that contain conditioning primary data. By

accounting for these additional secondary variable observations, the variance of the estimated con-

ditional distributions is correctly calculated.

ICCK can consider many secondary data; however, it is computationally expensive to do so as

the system of equations becomes more difficult to solve with an increasing amount of secondary

variables. This is handled by utilizing this methodology with a super-secondary variable (Babak &

Deutsch, 2009a) described below in Section 2.2.4.

This methodology provides a theoretically correct means of considering many secondary data.

By implementing simple cokriging with an intrinsic coregionalization model, correlation between

primary and secondary data is reproduced (Babak & Deutsch, 2009a).

2.2.4 Super-Secondary Variables

Due to the increase in the system of equations needing to be solved with ICCK in comparison with

collocated cokriging methods that implement a Markov assumption, the number of conditioning

secondary variables is an important consideration when implementing the methodology. Babak

and Deutsch (2009a) introduces a theoretically valid means to merge any number of exhaustive

secondary data into a single super-secondary variable for each of the primary variables. The linear

relationships between the primary variable and all secondary variables is defined by a correlation

coefficient. A brief summary of these calculations is detailed below.

Consider a system containing K number of primary variables and I number of exhaustive sec-

ondary variables. The super-secondary variable for all grid locations u within the domain A is

7



2. Literature Review and Background

calculated from the linear summation of weighted secondary values:

ysupk (u) =
I∑

i=1
wi,k · yi(u), ∀k,u ∈ A

The weights are calculated following the procedure:

Css ·w = Csp

The above expression denotes the I by I covariance matrixCss of only the secondary variables, the

I by K matrix of weights w, and the I by K covariance matrix Csp between the primary variables

and all of the secondary variables. The K by 1 vector of correlation coefficients ρsup between the

generated super-secondary variables and the primary variables are calculated following the proce-

dure:

ρsup = diag

{√[
CT

sp ·C−1
ss ·Csp

]}
In the above expression, the diagonal of the calculatedK byK matrix is used to populate the ρsup

vector.

The procedure summarized above producesK number of super-secondary variables for all grid

locations u within the domain A, each having a corresponding correlation coefficient {ρsupk ,∀k}.

2.2.5 Hierarchical Framework

A framework that jointly predicts many variables was introduced by Almeida and Journel (1994)

that performs as well as a cokriging framework without the use of an LMC. It requires the variables

be modeled in an hierarchical fashion rather then simultaneously by using previously modeled

variables to condition subsequent variables prediction. The framework assumes a multi-Gaussian

system and requires that any secondary data be exhaustive. However, Almeida and Journel (1994)

postulates that the approach can perform well in cases that depart from a multi-Gaussian assump-

tion.

This framework may be implemented with SGS using ICCK that allows conditioning to any

number of exhaustive secondary data and any previously simulated variables; that is made easer

by merging all exhaustive conditioning data into a single super-secondary variable. However, im-

plementation is cumbersome as variables are modeled independently and in the defined hierarchy.

Therefore, with K number of variables to model, any number of exhaustive secondary variables,

and L number of realizations to simulate, [(K − 1) · L+ 1] super-secondary variables must be gen-

erated. No program exists that allows this workflow to be completed with one call. Instead, the

simulation program must be called (K ·L) number of times while the super-secondary calculation

program must be called [(K − 1) · L+ 1] number of times.
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2.3 Decorrelation Techniques

2.3.1 Introduction

The theory of linear transformations such as principle component analysis (PCA) and reverse data

sphering (Sphere-R) are discussed in detail by BarneĴ and Deutsch (2015). The authors also explain

the program decorrelate that implements both transformations and the back-transformation pro-

gram decorrelate_b. The following is a summary considered important for this thesis that con-

siders the case where K number of input variables with N number of observations from the grid

locations u within the domain A {Zk(un), k = 1, . . . ,K, n = 1, . . . , N} that is also donated by the

vector Z(un).

2.3.2 Principle Component Analysis

PCA is implemented as a data exploration, dimension reduction, or decorrelation tool. PCA is

a linear transformation that rotates the data frame of reference, orthogonalizing the variables. K

number of input variables withN number of observations are transformed to principle components

(PCs) {Pk(un), ∀k, n} that demonstrate a correlation structure such that {ρkk′ = 0, ∀k ̸= k′}.

By determining orthogonal axes that explain the greatest amount of variance within the input

data, the linear combination required to achieve the diagonal covariancematrix is found. The linear

contribution factors—also known as loadings—of each input variable Zk(un) resulting in Pk(un)

depend on the data correlation structure.

2.3.3 Reverse Data Sphering

Sphere-R is a form of data sphering that modifies PCA with two additional operations. Sphere-

R spheres (i.e., standardizes) then rotates the variables Pk(un) back onto the basis of the original

variables, generating the variables {Rk(un), ∀k, n} that are also denoted by the vector R(un) and

referred to as Sphere-R factors (SRs). Due to these additional steps, the mixing of loadings is min-

imized. As a result, the correlation between the input and output variables ρ(Zk(un), Rk(un)) is

maximized when k = k and still 0when k ̸= k.

2.3.4 Application Considerations

Due to the rotation performed by Sphere-R, dimension reduction is not possible as all of the SRs

contribute appreciably to the variance of the system. Conversely, each subsequent PC calculated

using PCA contributes less to the variance of the system. This feature enables dimension reduc-

tion, that when applied ignores a portion of the systems variance. Sphere-R is not suited to data

exploration.
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Nќѣђљ FџюњђѤќџјѠ ѓќџ MѢљѡіѣюџіюѡђ
SіњѢљюѡіќћ Ѥіѡѕ MюћѦ SђѐќћёюџѦ Dюѡю
3.1 Introduction

In a multivariate case consisting of equally sampled continuous variables to be modeled (primary

variables), a collocated correlation structure (i.e., at a lag distance of 0) can be calculated to repre-

sent the linear relationships between variables. Ideally, these relationships are reproduced during

spatial prediction. The cokriging framework presented in Section 2.2.2 reproduces input statistics;

however, it requires the use of an LMC. A LMC consists of [K(K+1)]/2 number of direct and cross

variograms, making it arduous to implement asK increases. It has been shown thatK = 7 number

of variables can be reasonably fit (Jewbali, 2009), which may inform a practicable limit.

There are a limited number of methodologies that jointly model multiple continuous variables

without the use of an LMC. In a simulation framework, these include:

1. A hierarchical approach introduced by Almeida and Journel (1994) where variables are con-

secutively modeled in a user defined order. Once there is more than one previously simu-

lated variable, they are transformed into a single super-secondary variable (Babak & Deutsch,

2009b). Each variable is then conditioned by the calculated super-secondary variable using

ICCK, introduced by Babak and Deutsch (2009b).

2. The variables beingmodeled are decorrelated allowing independentmodeling of independent

factors that are reconstructed into the variables (Luster, 1985).

3. A block lower upper triangular matrix (LU) simulation with an approximate model of core-

gionalization (Wang & Deutsch, 2009).

The use of these methods in the presence of exhaustively sampled secondary data (secondary

variables) adds additional complexities to the modeling procedure. The hierarchical approach con-

siders all continuous exhaustively sampled secondary data. However, it is only appropriate if the

multivariate relationships are fully characterized by the multivariate collocated correlation struc-

ture (Rossi & Deutsch, 2014).

This chapter investigates and documents two alternatives utilizing secondary variables: first

a decorrelation method and secondly, a novel Gaussian-based approach. Both are found to be

ineffective in reproducing the input collocated correlation structure and other important statistics.

Additional details regarding multivariate simulation are discussed in Section 2.2.
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3.2 Generation of Synthetic Data

3.2.1 Introduction

To evaluate each methodologies ability to simulate multivariate data in the presence of exhaustive

secondary data, a series of synthetic case studies is a reasonable test. They require datasets that

have a known spatial and collocated correlation structure. One approach for generating synthetic

data is detailed in this section that uses a specified LMC to simulate synthetic data.

3.2.2 Simulated Synthetic Data with an LMC

As discussed in Section 2.2.2.1, an LMC is derived from fiĴing a set of experimental variograms to

establish the variogram models and the required Bl matrices. The Bl matrices could be derived

from (L+ 1) number of matrices containing the coefficients {alk, ∀l, k}. These matrices Al take the

form:

Al =


al1
...

alk

 , ∀l

The Bl matrices can then be calculated from:

blkk′ = alk · alk′ , ∀l, k, k′ (3.1)

creating a licit (i.e., positive semi-definite) LMC if the following condition is satisfied:

L∑
l=0

blkk = 1, ∀k (3.2)

The correlation matrix ρ of the multivariate system is wriĴen as:

ρ =


ρ11 . . . ρK1

. . .
. . .

...

ρ1K . . . ρKK


and can be calculated knowing that:

ρkk′ =
L∑

l=0

blkk′ , ∀k, k′ (3.3)

Based on the procedure above, the Al matrices and the pool of nested variogram structures

{Γ(h)l, l = 1, . . . , L} are the only input parameters. They can be generated as deemed appropriate;

however there are some limitations. When generating the Al matrices, the condition from expres-

sion (3.2) must be met. To ensure that the generated correlation matrix of the synthetic data is not

singular when using this methodology, there needs to be as many nested structures as there are
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variables being generated (i.e., L = K). Once the {Γ(h)l, l = 1, . . . , L} variograms are defined, L

number of independent randomvariables {Y l(u), ∀l,u}with amean of 0 and a variance of 1must be

unconditionally simulated. For eachYl variable simulated, the corresponding {Γ(h)l, l = 1, . . . , L}

is used as the input variogram model. Each synthetic variable can be calculated by:

Zk(u) = mk +
L∑

l=1

alk · yl(u), ∀k,u (3.4)

With this procedure, a synthetic dataset is generated with spatial and statistical relationships

described by the LMC calculated from the generated Al matrices and chosen nested structures

Γ(h).

3.3 PCA and Sphere-R Transformed Multivariate Data

3.3.1 Introduction

PCA can be used to decorrelate the primary variables, enabling independent modeling of each PC

(Luster, 1985). The resulting models are then back-transformed into the original units of the input

variables, reintroducing the original collocated correlation structure. Whenusing thismethodology,

a strong assumption is made that the spatial cross-correlation at a lag distances not equal to 0 are

also removed during decorrelation.

In the presence of secondary data, the rotation performed during PCA causes the collocated

correlation structure between the output PCs and their input primary variables to not resemble the

collocated correlation structure observed prior to the rotation. As such, it is possible that strong

correlations that once existed between the primary and secondary variables may change. If this

change results in the collocated correlation between a PC and a secondary variable to become less

than |0.20|, the secondary data is not likely to improve to estimation (Cuba, Babak, & Leuangthong,

2009).

An additional decorrelation technique Sphere-R, is introduced by BarneĴ and Deutsch (2015)

for use in geostatistics. Sphere-R consists of two additional steps once PCA is completed: the PCs

are first sphered then rotated back onto the original basis of the input variables, minimizing the

mixing effect seen with PCA. Due to the reverse rotation, the collocated correlation between the

corresponding input and output variables is maximized (BarneĴ & Deutsch, 2015), as illustrated in

Figure 3.1. The resulting SRs maintain a primary-secondary collocated correlation structure similar

to the one found with the input variables (Figure 3.2).

The following study explores the use of PCA and Sphere-R by evaluating the reproduction of

the collocated correlation structure of multiple small synthetic datasets, each consisting of three

exhaustive primary variables and one exhaustive secondary variable. The datasets are generated

using their own synthetic LMC, resulting in a multivariate dataset with known spatial and collo-

cated statistical relationships. The primary variables are decorrelated using PCA and Sphere-R
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3. Novel Frameworks for Multivariate Simulation with Many Secondary Data

transformations, simulated independently using unconditional SGS with ICCK that considers the

exhaustive secondary variable. Once themodels are back-transformed to their original units, the col-

located correlation structure of the simulated variables from both methodologies are then checked

for reproduction. Additional details regarding PCA and Sphere-R are discussed in Section 2.3.

(a) PCA
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(b) Sphere-R
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0.07 0.9 0.42

0.19 0.42 0.89

Figure 3.1: Loadings of variables generated from the PCA and Sphere-R transformations.

SVar1
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Synthetic

SVar1

-0.18

0.89

-0.42

PCA

SVar1

0.65

-0.76

0.05

Sphere-R

Figure 3.2: The original correlation coefficients between the normal scored primary variables and the normal
scored secondary variable and the corresponding correlation coefficients of their PCA and Sphere-R counter-
parts.

3.3.2 Synthetic Case Study

3.3.2.1 Generation of Synthetic Multivariate Data

To allow predicted models to be checked throughly, synthetic data is generated using a LMC that

has known spatial andmultivariate relationships. The process outlined in Section 3.2 is used to gen-

erate the synthetic data. An example of this process and a description of any necessary parameters

is illustrated below.

To test multiple collocated correlation structures, multiple synthetic datasets are generatedwith

four exhaustive variables K = 4 using their own synthetic LMC. For this study, it is thought that

three primary variables {Zk(u), k = 1, . . . , 3,∀u} and one secondary variable {Z4(u), ∀u} provides

adequate dimensionality in addition to the use of 10 unique data sets allows the methodology to

be tested sufficiently. A two dimensional (2-D) 200 by 200 cell grid is used for all synthetic datasets

along with the same three L = 3 nested variogram structures {Γ(h)l, L = 1, . . . , 3} with no nugget

13
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effect Γ0. Spherical variogram structures are used for the three nested variogram structures with

ranges of 16, 32, and 64.

TheAl coefficients are generated by first populating theA1 andA3 matriceswith randomvalues

between −0.75 and 0.75. TheA2 matrix is then calculated by the calculation:

a2k = 1− a1k − a3k, ∀, k

The coefficients are permissible if the following condition is satisfied:

L∑
l=1

(alk · alk) = 1, ∀k

If the condition passed, the Al matrices is used; otherwise, the procedure is restarted. A positive

semi-definite LMC is then calculated from the generatedAl matrices by completing the procedure

outlined in Section 3.2.

The correlation matrix of each LMC generated is then checked so that it meets the following set

of conditions:

1. The generated correlation coefficients must have a minimum variance of |0.20|.

2. No correlation coefficient can be greater than |0.75|.

3. No correlation coefficient can be within |0.10| of another correlation coefficient.

4. No correlation coefficient between primary variables and a secondary variable can be less than

|0.10|.

5. Noprimary-secondary correlation coefficient can bewithin |0.20| of another primary-secondary

correlation coefficients.

If these conditions aremet, the generated LMC is used to generate a synthetic dataset; otherwise, the

LMC is discarded and the process is repeated. Conditions (1), (3), and (5) ensures that the produced

correlationmatrix does not contain redundant information (e.g., ρ14 = 0.4, ρ24 = 0.4). Condition (2)

ensures that no unrealistically informative information is generated (e.g., ρ14 = −0.95). Condition

(4) ensures that no meaningless information is generated (e.g., ρ14 = 0.05).

Example of Synthetic Data Generation

The following is an example of a set ofAl matrices and their resulting LMC, calculated contribution

matricesBl, and the syntheticmultivariate dataset derived from it. The nested variogram structures

outlined in Section 3.3.2.1 are used. The values illustrated below are from one of the synthetic

datasets used for this case study.

14
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TheAl matrices are first generated

A1 =


−0.47

0.61

0.65

−0.70


, A2 =


0.84

0.33

0.74

0.47


, A3 =


0.28

0.72

0.14

−0.54


After which, the symmetric Bl matrices are calculated using the expression (3.1) with the derived

Al matrices shown above. As an example, the calculation of B1 results in:

B1 =


0.22 −0.29 −0.31 0.33

−0.29 0.37 0.4 −0.43

−0.31 0.4 0.43 −0.46

0.33 −0.43 −0.46 0.49


Using the calculatedBlmatrices, the correlationmatrixρ are calculatedusing the expression (3.3)

and is illustrated in Figure 3.3a.

Direct and cross variograms are defined by the generated LMC. The variograms of the factors

are required. The covariance contributions for each of the nested variogram structures within Γ(h)

are contained within the Bl matrices. In this example case, the direct variograms are as follows:

γ(h)11 = 0.22 · Sph(h)a=16 + 0.70 · Sph(h)a=32 + 0.08 · Sph(h)a=64

γ(h)22 = 0.37 · Sph(h)a=16 + 0.11 · Sph(h)a=32 + 0.52 · Sph(h)a=64

γ(h)33 = 0.43 · Sph(h)a=16 + 0.55 · Sph(h)a=32 + 0.02 · Sph(h)a=64

γ(h)44 = 0.49 · Sph(h)a=16 + 0.22 · Sph(h)a=32 + 0.29 · Sph(h)a=64

Synthetic data are then generated using the expression (3.4) and is summarized in Figure 3.4.

The correlation matrix calculated from the synthetic data (Figure 3.3b) shows liĴle change to the

LMCs theoretical correlation matrix. For illustration purposes, a heat map of two of the generated

(a) LMC model

PVar1 PVar2 PVar3 SVar1

PVar1

PVar2

PVar3

SVar1

1.00 0.19 0.35 0.58

0.19 1.00 0.75 -0.66

0.35 0.75 1.00 -0.18

0.58 -0.66 -0.18 1.00

(b) Synthetic data

PVar1 PVar2 PVar3 SVar1

PVar1

PVar2

PVar3

SVar1

1.00 0.22 0.39 0.59

0.22 1.00 0.77 -0.62

0.39 0.77 1.00 -0.15

0.59 -0.62 -0.15 1.00

Figure 3.3: Correlation matrices of the input LMC model and the resulting synthetic data.
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variables, PVar1 (i.e., k = 1) and SVar1 (i.e., k = 4), is shown in Figure 3.5. Their calculated experi-

mental variograms are ploĴing along side their theoretical variogram determined by the LMC are

shown in Figure 3.6.
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Figure 3.4: Multivariate joint density, histogram, and scaĴer plot matrix of the synthetic data generated.
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Figure 3.5: Example heatmaps of generated 2-D synthetic data in normal score space.
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(a) PVar1
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Figure 3.6: Experimental variograms of the synthetic data (blue) at a azimuth of 90° and the theoretical input
LCMmodel variogram (black).

Summary of Synthetic Data Generated

Figure 3.7 illustrates the range of correlation coefficients generated and subsequently tested by the

10 synthetic datasets.

(a) All correlation coefficients
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(b) Only primary-secondary correlation coefficients
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Figure 3.7: Histograms of the correlation coefficients within the 10 generated correlation matrices.

3.3.2.2 Methodology

SGS with ICCK is run unconditionally for each of the 10 synthetic datasets. The variograms for

the primary variables are specified by the LMC that generate them. The input correlation matrix is

calculated from the decorrelated synthetic exhaustive data once it is normal score transformed. The

three primary variables are then simulated. For the purpose of this study, one hundred realizations

are used to calculate summaries of local uncertainty. The processes is summarized as follows:

1. Normal score transform the primary and secondary variables

2. Calculate the correlation matrix of the transformed synthetic dataset
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3. Decorrelate only the three primary variables using PCA

4. Normal score the generated decorrelated variables

5. Calculate the correlation between the generated PCA variables and the secondary variable,

which is still in normal scored space

6. Simulate one hundred realizations of the generated PCs variables using SGS with ICCK that

considers the secondary variable and the corresponding correlation coefficient from step 5

7. Complete the following back-transformations in order: normal score back-transform, PCA

back-transform, and normal score back-transform

8. Calculate the correlationmatrix of the three simulated primary variables in original units with

the secondary variable in original units

9. Repeat steps 3 to 8 using Sphere-R instead of PCA to decorrelate the primary variables

3.3.2.3 Results

The PCA methodology produced an average absolute error in primary-primary correlation repro-

duction of 0.103 (Figure 3.8a) and a mean squared error (MSE) of 0.022 (Figure 3.9a). The Sphere-R

methodology has an average absolute error in primary-primary correlation reproduction of 0.304

(Figure 3.8b) and a MSE of 0.192 (Figure 3.9b).

The PCA methodology has an average absolute error in primary-secondary correlation repro-

duction of 0.037 (Figure 3.10a) and a MSE of 0.002 (Figure 3.11a). The Sphere-R methodology has

an average absolute error in primary-primary correlation reproduction of 0.068 (Figure 3.10b) and

a MSE of 0.019 (Figure 3.11b).

It is thought by the author that a correlation reproduction error less then |0.20| is reasonable.

Figure 3.12 illustrates the percentage of errors greater than this threshold, showing that the PCA

methodology does not reproduce primary-primary relationships in 16.7% of the cases while the

Sphere-R methodology does not in 56.7% of the cases. The PCAmethodology reproduced primary-

secondary correlations within this threshold in all cases, while the Sphere-R methodology does not

in 6.7% of the cases.

While the simulations are run unconditionally, the variables being modeled are conditioned to

secondary data using ICCK. There is an increased amount of variability. While the effect is negligi-

ble in regards to histogram reproduction, the secondary data does have a noticeable effect on the

realizations variograms. This issue may be mitigated with primary conditioning data.
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(a) PCA
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(b) Sphere-R
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Figure 3.8: Distributions of absolute correlation reproduction errors for primary-primary correlations from
the PCA and Sphere-R workflows.
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Figure 3.9: Cross validation of the true correlation vs. the produced primary-primary correlations from the
PCA (left) and Sphere-R (right) workflows with a fiĴed regression line (red).
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(a) PCA
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(b) Sphere-R
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Figure 3.10: Distributions of absolute correlation reproduction errors for primary-secondary correlations from
the PCA and Sphere-R workflows.
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Figure 3.11: Cross validation of the true correlation vs. the produced primary-secondary correlations from the
PCA and Sphere-R workflows with a fiĴed regression line (red).
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Figure 3.12: Joint bar plot depicting the percentage of correlation reproduction errors above a value of |0.20|
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3.3.3 Conclusion

One of the benefits thought to exist for PCA and Sphere-R methods was that they would repro-

duce primary-primary correlations; however, this was not observed in the study. The correlation

between the decorrelated variables and the conditioning secondary data introduces correlation be-

tween the once decorrelated variables during simulation. After which, the correlation introduced

togetherwith the back transformation process fails to properly reproduce original primary-primary

correlations. An example of this is illustrated in Figure 3.13; a correlation of−0.49 between SR1 and

SR2 is introduced, that when back transformed to original units, becomes−0.24 and not the original

0.22. As both PCA and Sphere-R are linear transformations, the correlation induced by ICCK on

the decorrelated variables is maintained during the back-transformation.

While the PCAmethodology appears to have performed beĴer than the Sphere-R methodology

in regards to producing primary-secondary collocated correlation structure, it is believed this is a

product of the different rotations performed by the two methodologies and is not a theoretical ad-

vantage. As the PCA transformation does not replicate the original primary-secondary collocated

correlation structure, it is believed that this can be advantageous in counteracting the induced cor-

relation during simulation, creating an illusion of beĴer performance. As this unforeseen benefit

cannot be controlled, it should not provide confidence in the methodology.

Some cases exhibited erratic behavior, causing correlation coefficients to become nearly 1 (Fig-

ure 3.14). This effect is thought to occur when the degrees of freedom is reduced due to redundancy

in the collocated correlation structure. This issue occurred in one of the Sphere-R methodology

cases, skewing the results.

As the collocated correlation reproduction from both PCA and Sphere-R methods is unpre-

dictable and erratic, this decorrelation framework in the presence of exhaustive secondary data

is not robust enough to use with confidence.
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(a) Synthetic data in original units

PVar1 PVar2 PVar3 SVar1

PVar1

PVar2

PVar3

SVar1

1.00 0.22 0.39 0.59

0.22 1.00 0.77 -0.62

0.39 0.77 1.00 -0.15

0.59 -0.62 -0.15 1.00

(b) Normal scored SR

SR1 SR2 SR3 SVar1

SR1

SR2

SR3

SVar1

1.00 0.00 0.00 0.65

0.00 1.00 0.00 -0.76

0.00 0.00 1.00 0.05

0.65 -0.76 0.05 1.00

(c) Simulated SRs in normal score space

SR1 SR2 SR3 SVar1

SR1

SR2

SR3

SVar1

1.00 -0.49 0.03 0.63

-0.49 1.00 -0.03 -0.75

0.03 -0.03 1.00 -0.01

0.63 -0.75 -0.01 1.00

(d) Simulated variables in original units
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PVar3

SVar1

1.00 -0.24 0.21 0.60

-0.24 1.00 0.71 -0.64

0.21 0.71 1.00 -0.16

0.60 -0.64 -0.16 1.00

Figure 3.13: Progression of the correlation matrices through the Sphere-R workflow.

(a) Synthetic data in original units

PVar1 PVar2 PVar3 SVar1
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SVar1

1.00 -0.22 0.56 0.69

-0.22 1.00 -0.55 0.53

0.56 -0.55 1.00 0.19

0.69 0.53 0.19 1.00

(b) Simulated variables in original units

PVar1 PVar2 PVar3 SVar1

PVar1

PVar2

PVar3

SVar1

1.00 0.97 0.98 0.13

0.97 1.00 0.95 0.10

0.98 0.95 1.00 0.03

0.13 0.10 0.03 1.00

Figure 3.14: Correlation matrices in original units of the synthetic data and correlation matrix produced by
the Sphere-R method.

3.4 Collocated Cholesky Cosimulation

3.4.1 Introduction

A novel multivariate modeling method that operates within a Gaussian-based simulation frame-

work is introduced and developed. The goal is a straightforward technique aiming to reproduce

the collocated correlation structure of multivariate data in the presence of exhaustively sampled

secondary data, consider spatial conditioning, and honor measured data.

This methodology modifies the direct cosimulation framework (Verly, 1993) where all primary

variables are jointly and independently simulated using SGS with ICCK, that considers the exhaus-

tive secondary data. This framework correlates the deviates that sample the conditional distributes
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at each locations aiming to reproduce the input collocated correlation structure. A summary of this

framework with the additional procedure is as follows:

1. Normal score transform the primary and secondary variables. AmultiGaussian system is now

assumed.

2. Calculate the collocated secondary-primary covariance matrix.

3. Decompose the covariance matrix using Cholesky decomposition.

4. For each realization, complete the following:

a. Define a random path, visiting all grid nodes once.

b. At each node visited, complete the following:

i. Independently estimate the conditional mean and variance of each primary variable

using a simple kriging framework, that is conditioned to measured data as well as

previously simulated values.

ii. Correlate deviates used to sample the distributions by:

A. Seed the secondary variables at the current node and calculate their correspond-

ing independent standard normal deviates.

B. Randomly draw the primary variables independent standard normal deviates.

C. Multiply the L matrix by the independent standard normal deviates vector, re-

producing the seeded secondary data along with unconditional primary values.

iii. Sample the conditional distributes using the previously correlated deviates.

iv. Add the simulated values to the set of conditioning data.

v. Continue to the next unsampled node.

The following section describes how this proposal is implemented, outlines the need and imple-

mentation of ad hoc corrections, and presents a synthetic case study. For ease of communication,

the proposed method is be referred to as collocated Cholesky cosimulation (CCC). In the end, the

method is also not considered a robust and practical methodology.

3.4.2 Methodology

ConsiderK number of interdependent random functions (RFs) to be modeled {Zp,k(u), k = 1, . . . ,

K, ∀u ∈ A} for all grid locations uwithin the domain A, that is also be denoted by the vector Zp(u).

The index p identifies the variables being modeled, that are also referred to as primary variables. N

number of observations exist for each RF within Zp(u) {zp,k(un), k = 1, . . . ,K, n = 1, . . . , N}; that

is also be denoted by the vectorZp(un). If Zp(un) is not equally sampled, imputation is be required.
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Each random variable (RV) within Zp(un)must be normal scored transformed, such that:

yp,k(un) = G−1
(
Fp,k

(
zp,k(un)

))
, k = 1, . . . ,K, n = 1, . . . , N

The results are denoted by the vectorYp(un).

In addition, I number of interdependent exhaustively sampled RFs exist {xs,i(u), i = 1, . . . , I,

∀u ∈ A} for all grid locations u within the domain A, that are also denoted by the vector Xs(u).

The index s identifies the variables used to condition the models of Zp(u), that are also referred to

as secondary variables. Each RV withinXs(u)must be normal scored transformed, such that:

ys,i(u) = G−1
(
Fs,i

(
xs,i(u)

))
, i = 1, . . . , I,∀u ∈ A

The results are also donated by the vector Ys(u). The collocated values of Ys(u) found at the

measured locations of Yp(un) {ys,i(un), i = 1, . . . , I, n = 1, . . . , N} is also donated by the vector

Ys(un). At this point, the multivariate system is assumed to be multiGaussian.

A (I + K) × (I + K) covariance matrix C is computed from the collocated secondary Ys(un)

and primaryYp(un) variables such that:

C =

Css Csp

Cps Cpp


The above Cmatrix contains four sub-matrices:

1. Css denotes the (I × I) covariance matrix ofYs(un).

2. Cpp denotes the (K ×K) covariance matrix ofYp(un).

3. Csp = CT
ps that denotes the (I ×K) cross-covariance matrix between the two vectorsYs(un)

andYp(un).

IfC is not a positive definite symmetric matrix due to different data used to compute the matri-

cides, it needs to be corrected to become such. TheCmatrix then undergoes Cholesky decomposi-

tion such that:

C = LLT =

Lss 0

Lps Lpp

 ·

Lss 0

Lps Lpp


T

(3.5)

The produced lower matrix L is required during the simulation process and consists of 3 sub-

matrices:

1. Lss denotes the decomposed (I × I) lower matrix ofYs(un).

2. Lpp denotes the portion of the L matrix that occupies the lower (K ×K) matrix location but

is not equivalent to the decomposed (K ×K) lower matrix ofYp(un).

3. Lps denotes the portion of the L matrix that occupies the lower (K × I)matrix location but is

a full valued (K × I)matrix.
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Unconditional simulation of theK number of primary variables at all grid locations is run gen-

erating L number of realizations. A joint
((

I +K
)
× 1

)
vector y(u) is generated, consisting of a

(I×1) vector ys(u)of random values {yls,i(u), i = 1, . . . , I, l = 1, . . . , L, ∀u ∈ A} and a (K×1) vector

yp(u) of random values {ylp,k(u), k = 1, . . . ,K, l = 1, . . . , L, ∀u ∈ A} following the procedure:

y(u) = L · ω(u) (3.6)

that can be expanded as:

ys(u)

yp(u)

 =

Lss 0

Lps Lpp

 ·

ωs(u)

ωp(u)

 =

Lss 0

Lps Lpp

 ·



ωl
s,1(u)
...

ωl
s,i(u)

ωl
p,1(u)
...

ωl
p,k(u)


=



yls,1(u)
...

yls,i(u)

ylp,1(u)
...

ylp,k(u)


,

i = 1, . . . , I,

k = 1, . . . ,K,

l = 1, . . . , L,

∀u ∈ A

The
((

I +K
)
× 1

)
vector ω(u) denotes a set of generated independent standard normal deviates

consisting of a (I × 1) vector ωs(u) that contains the values {ωs,i(u), i = 1, . . . , I, ∀u ∈ A} and a

(K × 1) vector ωp(u) consisting of the values {ωp,k(u), k = 1, . . . ,K, ∀u ∈ A}.

As {ys(u) = Ys(u), ∀u ∈ A}, the first I values of y(u) do not need to be simulated as they are

known; however they need to be reproduced. This is accomplished by seeding Ys(u) into ys(u),

allowing ωs(u) to be calculated, facilitating the reproduction ofYs(u). For example:

ω1
s,1(u) =

Ys,1(u)
Lss

, ∀u ∈ A

The remaining values of ωs(u) are calculated recursively. After which, ωs(u) is calculated ωp(u)

with randomly derived independent standard normal deviates. After which, yp(u) is calculated,

that are unconditional standard Gaussian values that have the same correlation structure ofCpp. In

addition, the calculated yp(u) values have the same cross-correlation structure ofCsp withYs(u).

There is still the task of conditioning the simulation toYp(un) and previously simulated values.

Conditioning is accomplished at each location being simulated {u′, ∀u′ ∈ A} by first calculating

an estimate through simple kriging independent to the other primary variables for each location

in Gaussian space, conditioned toYp(un) and previously simulated values. The calculated simple

kriging mean vector ysk
p (u′) consisting of the values {ysk,lp,k (u′), k = 1, . . . ,K, l = 1, . . . , L, ∀u′ ∈ A}

and simple kriging variance vector σsk
p (u′) consisting of the values {σsk,l

p,k (u′), k = 1, . . . ,K, l =

1, . . . , L,∀u′ ∈ A} are used in conjunction with yp(u′) to generate a conditioned simulated vector

ysim
p (u′) consisting of the values {ysim,l

p,k (u′), k = 1, . . . ,K, l = 1, . . . , L, ∀u′ ∈ A} following the

procedure:

ysim
p (u′) = yp(u′) · σsk

p (u′) + ysk
p (u′) (3.7)
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that can be expanded as:
ysim,l
p,1 (u′)

...

ysim,l
p,k (u′)

 =


ylp,1(u′)

...

ylp,k(u′)

 ·


σsk,l
p,1 (u′)

...

σsk,l
p,k (u′)

+


ysk,lp,1 (u′)

...

ysk,lp,k (u′)

 ,
k = 1, . . . ,K, l = 1, . . . , L,

∀u′ ∈ A

The above conditioning step does not simultaneously consider both the collocated multivariate cor-

relation structure and spatial conditioning.

3.4.3 Initial Testing

The proposed CCC methodology is implemented within a modified version of the latest ultimate

sequential Gaussian simulation (USGSIM) program released byManchuk and Deutsch (2015). Initial

testing revealed issues with collocated correlation reproduction. The following illustrates these

findings in a series of case studies used to isolate the source of the problem.

3.4.3.1 Pure Nugget Effect Case Study

To evaluate if CCC can properly reproduce input statistics in a non-spatial case, a test is conducted

consisting of three primary variables and two exhaustive secondary variables. The program is run

unconditionally with three primary variable input variograms consisting of a pure nugget effect

and synthetically generated secondary data. One hundred realizations are simulated using the

input correlation matrix depicted in Figure 3.15. The resulting realizations reproduced the input

direct variograms and histograms perfectly. The input and output collocated correlation structure

is the same to two decimal places.

PVar1 PVar2 PVar3 SVar1 SVar2

PVar1

PVar2

PVar3

SVar1

SVar2

1.00 0.40 -0.00 0.37 -0.41

0.40 1.00 -0.04 0.61 -0.12

-0.00 -0.04 1.00 0.30 -0.35

0.37 0.61 0.30 1.00 0.31

-0.41 -0.12 -0.35 0.31 1.00

Figure 3.15: Correlation matrix in normal score space used in CCC.

3.4.3.2 Intrinsic VariogramModel Case Study

To evaluate if CCC can properly reproduce input statistics in a simplistic spatial case, a test is con-

ducted consisting of three primary variables and two exhaustive secondary variables. The program
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is run unconditionally with the same isotropic semi-variogram for all three primary variables:

γ(h) = 0.1 + 0.9 · Sph(h)a=64

Synthetically generated secondary data is used to condition one hundred realizations using the

input correlation matrix depicted in Figure 3.15. The correlation matrix for the simulated variables

is illustrated in Figure 3.16a and shows considerable difference in primary-primary correlation re-

production from the input correlation structure (Figure 3.16b). Variance inflation is observed for all

three primary variables (Figure 3.17). The input variograms are not reproduced due to the observed

inflation (Figure 3.17).

(a) Simulated correlation matrix

PVar1 PVar2 PVar3 SVar1 SVar2

PVar1

PVar2

PVar3

SVar1

SVar2

1.00 0.78 0.73 0.51 -0.50

0.78 1.00 0.64 0.79 -0.12

0.73 0.64 1.00 0.46 -0.50

0.51 0.79 0.46 1.00 0.31

-0.50 -0.12 -0.50 0.31 1.00

(b) Difference between input and output

PVar1 PVar2 PVar3 SVar1 SVar2

PVar1

PVar2

PVar3

SVar1

SVar2

0.00 0.38 0.73 0.14 -0.09

0.38 0.00 0.68 0.17 0.00

0.73 0.68 0.00 0.16 -0.15

0.14 0.17 0.16 0.00 -0.00

-0.09 0.00 -0.15 -0.00 0.00

Figure 3.16: The resulting correlation matrix of all realizations in normal scored space and its difference to the
input correlation matrix in intrinsic case study.

3.4.3.3 Conclusion

Once spatial correlation of the variables being simulated is considered, collocated correlation struc-

ture is not reproduced. Variance inflation is an issue as well and in some cases it is extreme. It

appears as though an increase in magnitude of a primary-secondary variable correlation coefficient

appears to increase the errors observed.

To ensure that no programing errorsweremade all values used in intermediate calculations—ex-

pressions (3.5, 3.6, and 3.7)—were exported and checked. All calculations were being made cor-

rectly. A theoretical fix or empirical corrections are needed to fix the output correlation matrix and

variance inflation.

3.4.4 Corrections

In an aĴempt to correct variance inflation and errors in the reproduction of the collocated primary-

primary correlation matrix, two empirical fixes are implemented within CCC. The algorithm simul-

taneously adjusts each of the corrections for each variable being simulated in an iterative tuning

fashion. For a single tuning run, 10000 nodes are simulated, checked for errors, and if any exist a
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Figure 3.17: Histogram and variogram reproduction of the primary variables in the intrinsic variogrammodel
case study. The variogram reproduction plots contain the input variogram (black) and the variogram for each
realization (grey).
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fix is aĴempted. If a set of quit conditions are not met, another tuning run is executed. A summary

of this procedure is as follows:

1. Run CCC for 10000 nodes.

2. Calculate the collocated primary-primary correlation matrix and variances of the variables

being modeled.

3. Check for errors in the primary-primary correlation matrix.

a. If required, apply correlation correction (see below); else, keep track of consecutive error

free runs.

b. If five consecutive runs are error free, prevent further changes to the correlation correction.

4. Check for variance inflation.

a. If required, apply variance correction (see below); else, keep track of consecutive error

free runs.

b. If five consecutive runs are error free or the variance inflation fix reaches a predefined

maximum influence, prevent further changes to the variance correction.

5. Run steps 1 to 4 until both the errors are fixed or quit conditions for both fixes is met

To correct variance inflation, amultiplicative factor fp consisting of the values {fp,k, k = 1, . . . ,K}

is implemented that reduces kriging variance for each variable being simulated at each node as fol-

lows:

ysim
p (u′) = yp(u′) · σsk

p (u′) · fp + ysk
p (u′)

fp is adjusted iteratively by reducing its value by 0.02 for each tunning run if the variance of

the variable is above a value of 1.1. If it reaches a value of 0.04, it is reduced by 0.002 until a value

of 0.002 is reached at which point the algorithm does not aĴempt to fix variance inflation for that

variable anymore.

To correct errors in the primary-primary correlation matrix, the Lpp portion of the L matrix is

adjusted, that can be expressed as:

Lpp =


LI+1,I+1 0 0

...
. . . 0

LI+K,I+1 . . . LI+K,I+K


During each tuning run, the primary-primary variable correlation matrix of the 10000 simulated

nodes is calculated and decomposed using Cholesky decomposition. If the input and output corre-

lation coefficient is different by a value greater than |0.25| a correction is made. Using the input Lin
pp

matrix used by the last completed tunning run and the calculated Ltune
pp matrix from the collocated
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correlation matrix calculated from its results, an adjusted Ladj
pp matrix is calculated. For each ρkk′

value that requires correction, its corresponding Ladj
kk′ value is calculated as follows:

Ladj
ii′ =


Ltune
ii′ −

Lin
ii′ −

∑i−2
j=I+1 Li′j · Lij

Lin
i′i′

, if i > I + 2

Ltune
ii′ − Lin

ii′

Lin
i′i′

, otherwise
,

k = 1, . . . ,K,

i = k + I,

i′ = i− 1

(3.8)

If no correction is required for a particular ρkk′ , its corresponding Ladj
kk′ value is copied from Lin

pp.

The correlation correction is done in an iterative fashion such that the values within each column of

the Ladj
pp matrix are calculated top down, moving left to right. Values along the diagonal of Ladj

pp are

calculated once all Ladj values in its column are calculated by completing the following procedure:

x =
i−1∑

j=I+1

Lij · Lij

Ladj
ii =


√
1− x, if x < 1

0.01, otherwise
, k = 2, . . . ,K, i = k + I

Once all corrections are made, the Ladj
pp matrix is used for the subsequent tunning run or in the

case that all quit conditions have is met, modeling of the variables. By adjusting the Lpp matrix,

individual correlation coefficients are adjusted on an as needed basis rather then aĴempting a global

correction.

While testing the implementation of the correlation fix, it was observed that there is a point of

diminishing returns. After which, when aĴempting to fix a correlation coefficient, an increase in the

magnitude of its corresponding Lpp value has less influence and exacerbates the variance inflation

issue. To prevent this, the value Lin
i′i′ used in the expression (3.8) has a forced floor value of 0.3.

3.4.5 Synthetic Case Study

3.4.5.1 Generation of Synthetic Multivariate Data

To allow generated models during research to be checked, synthetic data is generated using a LMC

that has known spatial and multivariate relationships that can be checked for reproduction. The

process outlined in Section 3.2 is used to generate the synthetic data. An example of this process

and a description of any necessary parameters is illustrated below. The process is very similar to the

process used in Section 3.3.2.1; however, and additional exhaustive secondary variable is generated

for this case study to increase the complexity of the multivariate relationships.

To test multiple collocated correlation structures, multiple synthetic datasets are generatedwith

five exhaustive variables K = 5 using a unique synthetic LMC. For this study, it is thought that

three primary variables {Zk(u), k = 1, . . . , 3, ∀u} and two secondary variables {Zk(u), k = 4, 5, ∀u}

provides adequate dimensionality and the use of 10 unique data sets allows the methodology to be
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tested sufficiently. A 2-D 200 by 200 cell grid is used for all synthetic datasets along with the same

five L = 5 nested variogram structures {Γ(h)l, l = 1, . . . , 5} with no nugget effect Γ0. Spherical

variogram structures are used for the five nested variogram structures with ranges of 16, 28, 40, 52,

and 64. Because of the procedure used to generate the synthetic data, there needs to be as many

nested structures as there are variables being generated.

Matrices of coefficients {alk∀l, k} are specified to derive synthetic data that honors a LMC. After

which, the process outlined in Section 3.2 is used and illustrated below.

The Al are generated by populating L = 5 number of 5 by 1 matrices with randomly drawn

values between −0.75 and 0.75. The Al matrices are then corrected so the coefficients met the con-

dition:
L∑

l=1

blkk = 1, ∀k (3.9)

For each LMC, theAl matrices are corrected by first calculating:

asum =
L∑

l=1

alk
2 if k ̸= l, ∀k

If any values within the asum vector is not within the range of (0, 1), the generated Al matrices

are removed, restarting the process. Otherwise, the value required to satisfy the expression (3.9) is

calculated by completing the following calculation:

alk = 1− asumk with l = k, ∀k

A positive semi-definite LMC are then calculated from the generatedAl matrices by completing

the procedure outlined in 3.2.

The correlation matrix of each LMC generated is then checked so that it meet a set of conditions,

as listed below:

1. The Lmatrix calculated by Cholesky decomposition of the correlation matrix must display a

minimum value of |0.20| along the diagonal to avoid a singular matrix.

2. There must be a minimum difference of |0.4| between the primary-secondary correlation co-

efficient for each of the two secondary variables (e.g., |ρ14 − ρ15| > 0.4).

3. No correlation coefficient can be greater than |0.75|.

4. No correlation coefficient between primary variables and a secondary variable can be less than

|0.15|.

5. The correlation coefficient between the secondary variables can not be greater than |0.3|.

If these conditions are met, the randomly generated LMC is used to generate a synthetic dataset;

otherwise, the LMC is discarded and the process restarted.

31



3. Novel Frameworks for Multivariate Simulation with Many Secondary Data

Example of Synthetic Data Generation

The following is an example of a set of derived Al matrices and their resulting LMC, calculated

contribution matrices Bl, and the synthetic multivariate dataset derived from it. The nested vari-

ogram structures outlined in Section 3.4.5.1 are used. The values illustrated below are from one of

the synthetic datasets used for this case study.

TheAl matrices are first generated:

A1 =



−0.02

0.35

−0.53

−0.05

−0.35


, A2 =



−0.05

−0.24

0.33

0.03

−0.38


, A3 =



0.49

−0.13

0.54

0.34

−0.13


, A4 =



0.35

0.49

0.41

0.18

−0.37


, A5 =



0.02

0.48

−0.24

0.70

0.28


then corrected to:

A1 =



0.80

0.35

−0.53

−0.05

−0.35


, A2 =



−0.05

0.62

0.33

0.03

−0.38


, A3 =



0.49

−0.13

0.62

0.34

−0.13


, A4 =



0.35

0.49

0.41

0.62

−0.37


, A5 =



0.02

0.48

−0.24

0.70

0.76


(3.10)

so that the expression (3.9) is satisfied. After which, the symmetrical Bl matrices are calculated

using the expression (3.1) using the derived Al matrices (3.10). As an example, the calculation of

B1 results in:

B1 =



0.63 0.28 −0.42 −0.04 −0.28

0.28 0.12 −0.19 −0.02 −0.12

−0.42 −0.19 0.28 0.03 0.18

−0.04 −0.02 0.03 0.00 0.02

−0.28 −0.12 0.18 0.02 0.12


The correlation matrix ρ calculated using the expression (3.3) is illustrated in Figure 3.18a.
Direct and cross variograms are defined by the generated LMC. As full cokriging is not being

used, only the direct variograms are required. The covariance contributions for each of the nested
variogram structures withinΓ(h) as outlined in Section 3.4.5.1 are containedwithin theBl matrices.
In this example case, the direct variograms is as follows:

γ(h)11(h) = 0.63 · Sph(h)a=16 + 0.00 · Sph(h)a=28 + 0.24 · Sph(h)a=40 + 0.12 · Sph(h)a=52 + 0.00 · Sph(h)a=64

γ(h)22(h) = 0.12 · Sph(h)a=16 + 0.39 · Sph(h)a=28 + 0.02 · Sph(h)a=40 + 0.24 · Sph(h)a=52 + 0.23 · Sph(h)a=64

γ(h)33(h) = 0.28 · Sph(h)a=16 + 0.11 · Sph(h)a=28 + 0.38 · Sph(h)a=40 + 0.17 · Sph(h)a=52 + 0.06 · Sph(h)a=64

γ(h)44(h) = 0.00 · Sph(h)a=16 + 0.00 · Sph(h)a=28 + 0.12 · Sph(h)a=40 + 0.39 · Sph(h)a=52 + 0.49 · Sph(h)a=64

γ(h)55(h) = 0.12 · Sph(h)a=16 + 0.14 · Sph(h)a=28 + 0.02 · Sph(h)a=40 + 0.14 · Sph(h)a=52 + 0.58 · Sph(h)a=64
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(a) LMC model

PVar1 PVar2 PVar3 SVar1 SVar2

PVar1

PVar2

PVar3

SVar1

SVar2

1.00 0.36 0.00 0.36 -0.43

0.36 1.00 0.02 0.59 -0.15

0.00 0.02 1.00 0.34 -0.36

0.36 0.59 0.34 1.00 0.27

-0.43 -0.15 -0.36 0.27 1.00

(b) Synthetic data

PVar1 PVar2 PVar3 SVar1 SVar2

PVar1

PVar2

PVar3

SVar1

SVar2

1.00 0.36 -0.03 0.31 -0.49

0.36 1.00 0.01 0.48 -0.35

-0.03 0.01 1.00 0.38 -0.38

0.31 0.48 0.38 1.00 0.14

-0.49 -0.35 -0.38 0.14 1.00

Figure 3.18: Correlation matrices of the input LMC model and the resulting synthetic data.
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Figure 3.19: Multivariate joint density, histogram, and scaĴer plot matrix of the synthetic data generated.
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Synthetic data is then generated using the expression (3.4) and is summarized in Figure 3.19.

The correlation matrix calculated from the synthetic data (Figure 3.18b) showed liĴle change to the

LMCs theoretical correlation matrix. For illustration purposes, a heat map of two of the generated

variables, PVar1 (i.e., l = 1) and PVar2 (i.e., l = 4), are shown in Figure 3.20. Their calculated

experimental variograms are ploĴing along side their theoretical variogramdetermined by the LMC

are shown in Figure 3.21.
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Figure 3.20: Example heat maps of generated 2-D synthetic data in normal scored space.

(a) PVar1

0 20 40 60 80 100
Lag Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ   

(b) SVar1

0 20 40 60 80 100
Lag Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ   

Figure 3.21: Experimental variograms of the synthetic data (blue) at a azimuth of 90° and the theoretical input
LCMmodel variogram (black).

Summary of Synthetic Data Generated

Using the process discussed above, 10 synthetic datasets are generated. Figure 3.22 illustrates the

range of correlation coefficients generated and subsequently tested.
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(a) All correlation coefficients
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Figure 3.22: Histograms of the correlation coefficients within the 10 generated correlation matrices.

3.4.5.2 Results

CCC does not operate effectively even with both corrections implemented as illustrated by the

cross-validation plots in Figure 3.23. Error in primary-primary correlation reproduction appears

to increase when the magnitude of the input the correlation coefficient increases.

To summarize histogram and variogram reproduction, reproduction plots of a single synthetic

datasets are illustrated in Figure 3.24. Reproduction plots of the other synthetic datasets are not

shown or discussed in detail. Overall findings are discussed in Section 3.4.6. In this example case,

the histograms of the simulated realizations showed that the method underestimated high values

and overestimated low values.

The difference between the inputLpp values and the final values after correction are summarized

in Figure 3.25. The variance inflation factors used are summarized in Figure 3.26.
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Figure 3.23: Cross validation scaĴer plots for each correlation coefficient from all 10 synthetic cases.
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Figure 3.24: Histogram and variogram reproduction of the primary variables simulated from one of the 10
synthetic cases. The variogram reproduction plots contain the input variogram (black), the variogram for each
simulated realization (grey), and the variograms from the LMC representing the secondary data (blue).
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Figure 3.25: Histograms of the difference between the input and fixed lower matrix value controlling each
primary-primary correlation coefficient.
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Figure 3.26: Histograms of the variance factors used for each simulated variable in the 10 synthetic cases.

3.4.6 Conclusion

It is thought by the author that a correlation reproduction error less then |0.20| is reasonable. Fig-

ure 3.27 illustrates the percentage of errors greater than this threshold observed from the case

study discussed in Section 3.4.5. It is clear that CCC could not adequately reproduce the collocated

primary-primary correlation structure.
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Figure 3.27: Summary bar chart detailing the percentage of times a correlation coefficient was not reproduced
within |0.20| of the input value.
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Prior to simulation, it is important to ensure the simulation engine effectively reproduces input

statistics such as the histogram and variograms. This is demonstrated by the pure nugget effect

case study discussed in Section 3.4.3.1. In evaluating the variogram reproduction plots from the

case study discussed in Section 3.4.5, it is clear that the secondary data had a strong influence on

the spatial structure of the simulated variables. Throughout the 10 cases, it was observed that the

simulated realizations of the variables variograms with stronger input primary-secondary correla-

tions would become more similar to the secondary variables variogram and showed a decrease in

variability across realizations.

The corrections implemented in CCC showed diminishing returns as it became increasingly dif-

ficult to correct the Lpp matrix as the number of correlation coefficients fixed increased. Subsequent

corrections had less flexibility and needed a more drastic correction to account for previous cor-

rections (Figure 3.25). The compounding nature of the correlation fix caused variance inflation to

become exacerbated as the diagonal values along the Lpp matrix became smaller with additional

corrections. This issue is reflected in Figure 3.26 as the variance correction factors required by each

subsequent variable became smaller (i.e., more correction).

The magnitude of the corrections needed by CCC are disconcerting and bring the validity of the

methodology into question. It is clear that when spatial correlation is considered, regardless of the

complexity, variance inflation and collocated correlation reproduction become an issue. It is not

clear as to why these issues exist; however, it has been postulated that these issues stem from the

fact that the collocated variance of the spatial conditioning data is not considered (J.G. Manchuk,

personal communication, January 11, 2016). This idea has not been investigated to date.

3.5 Conclusion

The decorrelation framework does not work well when considering exhaustive secondary data. In-

ducing correlation between the simulated factors renders the back transformations of both PCA and

Sphere-R unable to reproduce the original correlation structure.

CCC required excessive ad hoc corrections that could not fully control variance inflation nor

correct erroneous correlation coefficients. Future work could modify the methodology, removing

the ad hoc corrections and ensuring that the collocated secondary data of conditioning data is also

considered when calculating the conditional variance.

Unfortunately, neither the decorrelation method nor CCC proved to be an adequate method-

ology for multivariate simulation with many secondary data. Existing nontrivial frameworks will

need to be explored.
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Cѕюѝѡђџ 4

Iњѝљђњђћѡюѡіќћ ќѓ MѢљѡіѣюџіюѡђ
SіњѢљюѡіќћ Ѥіѡѕ MюћѦ SђѐќћёюџѦ Dюѡю
4.1 Introduction

Effective reproduction of collocated correlation structure and other statisticswhen simulatingmulti-

variate data with many secondary data requires frameworks not tested in Chapter 3 to be explored.

Unlike the synthetic case studies described in Sections 3.3.2 and 3.4.5, a massively multivariate

dataset suitable for MPM is used to test alternatives.

This chapter investigates and documents two frameworks: first the cokriging framework that

requires an LMC and secondly the hierarchical framework. A discussion on the dataset being tested

is followedby two case studies. The cokriging framework is found to be ineffective as the LMC is too

restrictive in a massively multivariate seĴing. The hierarchical framework is found to adequately

reproduce input statistics while characterizing uncertainty.

4.2 Data Source and Processing

4.2.1 Introduction

As discussed in Section 1.2, the geochemical signature of stream sediment samples are thought to

represent the full spectrum of the truth, minimizing the use of censored data and heuristic searches

utilized by current MPM frameworks. Additionally, by considering all available exhaustive sec-

ondary data during the modeling processes, the resulting model improves even if they are poorly

correlated (Cuba et al., 2009). Therefore, it is desired to test a stream sediment geochemical dataset

with exhaustive geological data.

The following section describes the datasets retrieved, processing performed on them, and an ex-

ploratory data analysis (EDA). Data commonly used for mineral exploration andMPM is described

in Section 2.1.2.

4.2.2 Data Source

Due to the extremely extensive geological data available in the Yukon, Canada, it is an excellent

location to source data from. Stream sediment samples (Héon, 2003) and bedrock geology data

(Yukon Geological Survey, 2016b) is collected from Geomatics Yukon (2014). DEM data (Canada

Centre for Mapping and Earth Observation, 2014) is collected from GeoGratis (Natural Resources
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Canada, 2014a). Aeromagnetic data (Geophysical Data Centre, 2014) data is collected from the

Geoscience Data Repository for Geophysical Data (Natural Resources Canada, 2014b).

As the datasets covers most of the Yukon, an area of interest (AOI) is selected using two criteria:

(1) the areamust contain a sufficient number of stream sediment samples of the same vintage so that

the type of geochemical analysis performed on all of the samples are the same, (2) the exhaustive

secondary data—geology, geophysics and DEM—must cover the entire area. A 100 by 100 kilo-

meter (km) AOI is selected that satisfies these conditions and is fully contained within the Yukon

(Figure 4.1).

/

YUKON

Whitehorse

³

500 km

AOI

Figure 4.1: Location of the selected AOI. Base map data provided by ESRI (2012).

4.2.3 Primary Variables

Stream sediment samples from the AOI are extracted and their geochemical signatures are used as

primary variables. The geochemical analysis performed on the samples is extensive and in some

cases, varied between samples. Of the geochemical variables available, 42 are found to be analysed

similarly and are deemed appropriate to use for the purpose of this study. After reduction from

the original 1040, 813 stream sediment samples remain within the AOI and are roughly evenly dis-

tributed (Figure 4.2). The selected 42 geochemical variables are referred to as the primary variables.

4.2.3.1 Calculating Catchment Areas

As discussed in Section 2.1.2.2, stream sediment samples are a representation of their correspond-

ing catchment area. To calculate the stream sediments catchment area, a collection of tools are

used. They include ArcGIS Desktop 10.1 (ESRI, 2012), the Optimized Pit Removal tool (Jackson,

2013), and geographic information system (GIS) functionality developed for this thesis in themixed
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Figure 4.2: Map illustrating the distribution of the stream sediment samples found within the AOI overlying
a DEM.

FORTRAN-Python package pygeostat (Centre for Computational Geostatistics, 2016b). A more in

depth explanation of calculating catchment areas using a DEM is found in Jones (2002). Below is a

summary of the workflow used for this thesis:

1. Upscale the DEM to match the grid definition.

2. Remove pits from the the upscaledDEM, burn drainage network into it, and remove pits again

from the burned DEM.

3. Calculate a flow accumulation grid and define the cutoff to calculate a drainage network.

4. Snap stream sediment samples to nearest drainage network derived from the previous step,

fixing the locations of the pour points of the catchment areas. Visually validate the snapped

pour points.

5. Calculate a flow direction grid.

6. Calculate catchment areas using the flow direction grid and the snapped pour points.

7. Visually inspect all catchment areas and move pour points that require adjusting.

8. Repeat steps 6 and 7 until the calculated catchment areas properly represent their contributing

area.

9. Buffer final catchment areas, increasing their size equal to a single cell.

10. Perform an intersectionwith the relocated pour points and the buffered catchment areas. Pairs

of upstream-downstream catchment areas can now be identified if the intersected pour points

overlap two catchment areas.

11. Determine the hierarchy of the catchment pairs based on their elevation.

12. Build the stream sediment sample networks and determine each stream samples predecessors.
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13. Merge the catchment areas to include their predecessors.

The calculated catchment areas then indicate the cells that contribute to each stream sediments

sample location or catchment pour point (Figure 4.3). If a network of samples exist, the downstream

samples catchment area also includes the upstream samples catchment area. Spatial declustering

is performed with a cell size of 5 km. All 42 primary variables are normal score transformed using

the declustering weights to ensure that all variables are univariate Gaussian; further, they are all

assumed to be multi-Gaussian.

As a means of distinguishing between the background geochemistry and possible anomaly sig-

natures in the measured stream sediment samples geochemical signature, various studies have at-

tempted to calculate the background geochemistry signature so that it may be removed leaving

the residual signature (Arne & Bluemel, 2011; Bonham-Carter & Goodfellow, 1986; Carranza, 2010;

Kramar, 1995; Mackie, Arne, & Brown, 2015; Rantitsch, 2000; Rose, Dahlberg, & Keith, 1970). It

is thought that with proper decisions of stationarity and by constructing MPM transfer functions ,

that concerns of anomalies beingmasked isminimized. As such, the case studieswithin this chapter

uses the measured stream sediment samples geochemical signature.
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Figure 4.3: Map illustrating the distribution of the calculated catchment areas overlying a DEM. Each network
of connected stream sediment samples are grouped together as indicated by the darker outline. Within the
network, catchment areas are darker as you move upstream.

4.2.4 Exhaustive Secondary Variables

The DEM and aeromagnteic data—that includes total magnetic and first vertical derivative sur-

veys—are used as exhaustive secondary variables. The bedrock geology data retrieved is also used

to derive an additional three exhaustive secondary variables. Distance grids to the nearest lithology

contact, fold, and fault are calculated.

Based on the size of the AOI selected, a 4 million cell 2-D grid with 2000 cells in each direc-
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tion and a resolution of 50 by 50 meter (m) is defined. The exhaustive secondary data is rescaled

to the defined grid. The DEM is upscaled while the aeromagnetic data is downscaled; both pro-

cesses utilizing bilinear interpolation. The 3 geological feature distance grids are calculated at the

appropriate scale and do not require adjustment. The normal score transformation is performed on

all exhaustive secondary variables to ensure they are on the same basis (Figure 4.4). These 6 pro-

cessed exhaustive secondary datasets are used to condition the geostatistical models of the primary

variables.
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Figure 4.4: Heat maps of the 6 exhaustive secondary variables in normal score space

4.3 Exploration Data Analysis

4.3.1 Introduction

To beĴer understand the multivariate relationships of the dataset, an EDA is performed. This con-

siders if the primary variables are a true representation of their catchment area, what point location

should be used for the spatial prediction, and the multivariate relationships between the variables.

4.3.2 Catchment Scale and Sample Location

In an ideal case, stream sediment samples are a perfect representation of their catchment areas back-

ground geochemistry and when present, anomalies. This would require that the entire surface of

the catchment area to be evenly weathered and equally represented by the stream sediment sam-

ple. This is not the case and the reality is extremely complex. Understanding the true nature of
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erosion within each individual catchment area, the transportation of eroded sediment, and its final

deposition is not possible. Therefore, assumptions must be made on how the samples are utilized.

Most geostatistical techniques require conditioning data to represent a point support, the best

location of the stream sediment samples must be investigated. It is thought that if the geochemical

signature represents the area, the centroid is more informative, as opposed to the actual sample lo-

cation or pour point. To evaluate how informative a specific location within a catchment area is, the

correlation between the primary variables and the secondary variables is checked in addition to the

relationship the catchments size has with the primary variables. The absolute primary-secondary

variable correlation coefficients of the centroid are subtracted from the corresponding values from

the pour point. The distribution of this difference is illustrated in Figure 4.5. If the average value of

the calculated differences is negative, that indicates that the pour point location is more informative.

Conversely, if the mean is positive, that indicates that the centroid is more informative and that the

geochemical signature is a closer representation of the area. However, the distribution illustrated

in Figure 4.5 has amean of 0.0108 (nearly zero). This does not provide guidance on the best location

to assign to the stream samples.

The bivariate relationships between the primary variables and the size of the catchment area

they represent are illustrated in Figure 4.6. Of the primary variables, only loss on ignition (LOI)

displays a moderate linear relationship with the size of the catchment. Sibbick (1994) aĴributes this

finding to an increased amount of stream energy in smaller catchments causing moss mats sedi-

ments to be transported, increasing the organic content of the stream sediment sample. If stream

sediment samples are representations of areas, it is expected that the primary variables from smaller

catchments would display more variability. Box plots of three primary variables are illustrated in

Figure 4.7 where the size of the catchment areas has been divided into three size ranges with the

same number of catchments. The smaller third of catchment areas shows a minimal increase in

variance compared to the larger catchment areas.
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Figure 4.5: Histogram of the difference between the absolute primary-secondary variable correlation coeffi-
cients at the centroid and pour point of all catchment areas.
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Figure 4.6: Bivariate scaĴer plots of all primary variables and catchment area size in normal score space. The
primary variables indicated within each subplot are ploĴed along their respective y-axis.
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Figure 4.7: Box plots illustrating the variance of three primary variables that are categorized based on the size
of their catchment area.

These findings may indicate that the geochemical signature of stream sediment samples are

not a representation of the entire catchment area. They may represent a smaller area within the

catchment area. This issue may warrant further research; however, for the purpose of the case

studies conducted in this chapter, the centroid of the calculated catchment areas is used as the

location of the corresponding stream sediment sample.

4.3.3 Multivariate Relationships

To beĴer understand the multivariate relationships between the primary variables and their rela-

tionships with the exhaustive secondary variables, a series of statistical exploration techniques are

utilized. Specific aĴention is paid to the collocated correlation structure between primary variables

as it is a desired to reproduce these statistics in the case studies discussed in this chapter. The

possibility of dimension reduction is also explored.

All 861 correlation coefficients are illustrated in Figure 4.8 and are clustered using the hierar-

chical Ward methodology (Ward, 1963). There are distinct clusters of variables that display strong

linear relationships; however, the linear relationships between variables within clusters and those

outside of it varies indicating that the variables within the larger clusters are not redundant. The

clustered correlation matrix does not illustrate enough redundancy between primary variables to

reduce the dimension the a more manageable number of variables (see Section 3.1).

As a means of visualizing the similarity of the primary variables, multidimensional scaling

(MDS) is performed and the first three coordinates are illustrated in Figure 4.9. Similar to the find-

ings from the above correlation matrix, there are distinct clusters of variables; however, there is not

enough redundancy displayedwhere the primary variablesmay have their dimensionality reduced

to a more manageable number of variables (i.e.,K ≤ 7).
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1963).
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Figure 4.9: MDS plot of each primary variables first 2 MDS coordinates that are colored base on their third
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As discussed in Section 2.2.3, ICCK utilizes exhaustive secondary data to inform spatial predic-

tion by using the linear relationships between the primary variable being predicted and the col-

located secondary data. Those relationships are summarized in Figure 4.10. The only exhaustive

secondary variables that displays significant correlationwith the primary variables is theDEM. This

may be due to weathering of bedrock at higher elevations. While the overall correlation coefficients

are not significant for the other geological secondary variables, they do display some moderately

significant linear relationships with the primary variables. However, as stated by Cuba et al. (2009),

spatial prediction improves when using exhaustive secondary data even if the secondary data are

weakly correlated with the primary variables.
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Figure 4.10: Correlation matrix between the primary variables and the collocated exhaustive secondary data
at the centroid of each catchment area.

4.4 Cokriging Framework

4.4.1 Introduction

While a cokriging framework is capable of jointly modeling all primary variables, requires a LMC.

As discussed in Section 2.2.2, a LMC parameterizes the spatial direct and cross-correlation of each

primary variable and primary variable pair. The LMC requires [K(K + 1)]/2 number of direct

and cross variograms, making it arduous to implement as K increases. While it has been shown

that K = 7 number of variables can be reasonably fit (Jewbali, 2009), that is vastly different than

the 42 primary variables in the dataset being used here. With K = 42 variables, 903 direct and

cross variograms would need to be simultaneously fit with the LMC. Due to the limited number

of alternatives to adequately model a massively multivariate dataset, it is interesting to explore the

use of a cokriging framework.

The following section describes the implementation of a cokriging framework. Specifically, the

building of a 42 variable LMC and implementation challenges encountered are described.
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4.4.2 Case Study

4.4.2.1 Methodology

Using the normal score transforms of the primary variables, experimental variograms are calcu-

lated, and fit to a LMC. To simplify the procedure, all variograms are omnidirectional. For each of

the primary variables being modeled, the exhaustive secondary variables are merged into a single

super-secondary variable using the process outlined in Section 2.2.4. SGS with simple cokriging

(SCK) and ICCK is run conditional to the stream sediment samples to model the K = 42 primary

variables.

4.4.2.2 Building the LMC

To model the spatial correlation of the primary variables, 903 experimental omnidirectional direct

and cross variograms are calculated (Figure 4.11). FiĴing a large number of variograms to an LMC

is difficult as the ability to adjust the variance contribution parameters {blkk′ , ∀l, k, k′} of the LMC is

limited by the condition that the finalK byK matrices Bl must be positive definite.

0 20000 40000 60000 80000 100000
Lag Distance (m)

1.0

0.5
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1.0
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γ   
Direct
Cross

Figure 4.11: The 903 omnidirectional experimental direct and cross variograms requiring fiĴing with an LMC

By testing various combinations of variogram parameters (i.e., the number, type, and ranges

of each variogram structure), a fit is found. Two variogram structures L = 2 are used: the first

variogram structure is a spherical model with a range of 20000 m, the second variogram structure

is an exponential model with a range of 45000m. This variogram model can be expressed as:

γkk′(h) = b0kk′ + b1kk′ · Sph(h)a=20000 + b2kk′ · Exp(h)a=45000, ∀k, k′

To fit the experimental omnidirectional direct and cross variograms to a LMC, the LMC vari-

ogram fiĴing (varfit_lmc) program developed by Larrondo, Neufeld, and Deutsch (2003) is used.

The resulting direct variogram models from the LMC are illustrated in Figure 4.12. As displaying

the 861 cross variograms is excessive, a subset is displayed in Figure 4.13. Only cross variograms
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from the LMC with an absolute cross-correlation greater than |0.65| are illustrated as they are the

most informative.

4.4.2.3 Implementation Challenges

The proposed framework is implemented in the latest version of the program USGSIM released by

Manchuk and Deutsch (2015). The size of the system of equations increases with an increasing

number of variables that require modeling. If the number of conditional data available is limited to

10, amatrixwith amaximum size of 486 by 486 ismultiplied by amatrixwith amaximum size of 486

by 42. With this configuration, it takes 0.0368 seconds per estimate. With fourmillion cells requiring

simulation, it takes approximately 41 hours to simulate a single realization (J.G.Manchuk, personal

communication, March 19, 2016). Due to the computational cost, this framework is abandoned.

4.4.3 Conclusion

It is evident that the variograms illustrated in Figures 4.12 and 4.13 are not adequately fit. This is

due to the inability of the fiĴing algorithm of varfit_lmc tomeaningfully alter theBl matrices from

their starting position due to the condition that they must remain positive definite. In Figure 4.12,

the direct variogram models for mercury (Hg) appears reasonably fit by the LMC; however, more

often than not, this is not the case. If a variables input spatial correlation structure is similar to what

the LMC starts at during the fiĴing procedure, then it is likely to be fit well. Of the cross variograms

displayed in Figure 4.13, this issue is also apparent.

It is demonstrated byGuo andDeutsch (2002) that for a 2-D problem, kriging variance converges

and the kriging weights become effectively 0when 40 conditioning data are used. If the simulation

is limited to less than 40 conditioning data the accuracy of the resulting models will be affected.

A maximum number of 10 conditioning data is considered. This is significantly less then the rec-

ommended maximum of 40. By increasing the number of conditioning data to 40, the procedure

becomes even more expensive.

The poorly fit direct and cross variograms is concerning on its own; however, when combined

with the computational cost, it becomes clear that the cokriging framework for simulatingmassively

multivariate datasets is not practicable.
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Figure 4.12: Direct variogram models from the LMC for all 42 primary variables in normal score space.

52



4. Implementation of Multivariate Simulation with Many Secondary Data

0

1

CE-LA
ρ= 0. 97

FE-FE1
ρ= 0. 93

CO-CO1
ρ= 0. 93

NI-ZN
ρ= 0. 91

0

1

CE-TH
ρ= 0. 9

CD-ZN
ρ= 0. 88

LA-TH
ρ= 0. 85

CD-NI
ρ= 0. 82

0

1

RB-TH
ρ= 0. 81

LA-SM
ρ= 0. 8

CE-SM
ρ= 0. 8

EU-SM
ρ= 0. 76

0

1

MO-V
ρ= 0. 73

LU-YB
ρ= 0. 73

MO-SB
ρ= 0. 72

CE-RB
ρ= 0. 71

0

1

SC-TH
ρ= 0. 7

BR-LOI
ρ= 0. 69

HF-TH
ρ= 0. 69

SM-TB
ρ= 0. 68

0

1

SM-TH
ρ= 0. 68

SC-SM
ρ= 0. 68

SB-V
ρ= 0. 68

CO1-MN
ρ= 0. 68

0

1

CE-SC
ρ= 0. 67

ARS-SB
ρ= 0. 67

TB-YB
ρ= 0. 66

LA-RB
ρ= 0. 66

0

1

RB-SC
ρ= 0. 66

0 40000 80000

CU-NI
ρ= 0. 66

0 40000 80000

AG-CD
ρ= 0. 66

0 40000 80000

EU-LA
ρ= 0. 65

0 40000 80000
0

1

CO-MN
ρ= 0. 65

Lag Distance (m)

γ

Figure 4.13: Cross variogram models from the LMC that have an absolute cross-correlation greater than 0.65
in normal score space.
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4.5 Hierarchical Framework

4.5.1 Introduction

As discussed in Section 2.2.5, the hierarchical framework reproduces input multivariate relation-

ships. Previously modeled variables are used to condition subsequently modeled variables, allow-

ing all multivariate relationships to be honored.

The following section describes the implementation of this framework in a case study that uses

jackknife cross-validation as a means to evaluate the predicted models accuracy and precision. The

determination of the variable hierarchy and the results are described.

4.5.2 Case Study

4.5.2.1 Methodology

SGS with ICCK is run conditional to the stream sediment samples and secondary data to model the

K = 42 primary variables using a hierarchical framework. The direct variograms used for each of

the the primary variables are modeled and a hierarchy is specified. Conditioning the model to the

sequentially generated super-secondary variableswith ICCK considers collocated primary-primary

and primary-secondary correlation. One hundred realizations is deemed to provide a reasonable

assessment of uncertainty. Jackknife cross-validation is implemented as ameans ofmodel checking;

20% of the stream sediment samples are randomly removed, leaving the remaining 80% of the

samples to condition the spatial prediction. The process is summarized as follows:

1. Normal score transform the primary and secondary variables

2. Model the primary variables variograms

3. Determine a hierarchy

4. Remove 20% of the primary data and reserve for model checking

5. For each realization, complete the following:

a. For each primary variable in the order specified by the hierarchy, complete the following:

i. Merge any previously simulated primary variable(s) with the exhaustive secondary

variables into a single super-secondary variable

ii. Simulate a single realization

iii. Add the realization to the pool of previously simulated primary variables

6. Back-transform realizations to original units
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4.5.2.2 Implementation

Variography

The hierarchical workflow requires direct variograms for each of the primary variables. Of the 42

primary variable variograms 15 aremodeledwith a omnidirectional variogramwhile the remaining

27 are modeled using a major and minor direction of continuity (Figure 4.14).

Determining Hierarchy

Two criteria are used to determine the order variables are modeled: (1) each variables correlation

with its corresponding super-secondary variable built from the six exhaustive secondary variables

and (2) the continuity of the primary variables variogram.

The correlation between a primary variable and its corresponding super-secondary variable cal-

culated from the exhaustive secondary data is calculated. The primary variables are then sorted

based on their absolute correlation coefficient in decreasing order. This ensures that the primary

variables that are most informed (i.e., high correlation with super-secondary variable) are modeled

first. It is thought that this method of sorting improves the estimates of subsequent primary vari-

ables that initially are not well informed (i.e., low correlation with super-secondary variable).

The continuity of each variables variogrammodel is evaluated and used to create a second rank

value in decreasing order. To do this, the variogram values ranging from (0.0, sill] are discretized

into three zones. The three zones range from (0.00, 0.20], (0.20, 0.50], and (0.50, 1.0] (Figure 4.15).

Within each zone, the h values for each 0.01 variogram value interval is calculated and summed

together. This processes is completed for each of the zones, generating a rank for each zone. The

three zones ranks are then summed and used to rank the variables in increasing order. The lower

the summed rank, the more continuous the variogram model is for the purpose of this ranking

scheme. To place a higher emphasis on the variogram models short range, two of the three zones

cover the first half of the variogram value range. This ensures that the primary variables that are

most continuous are modeled first. It is thought that this method of sorting improves the estimates

of subsequent primary variables that initially are not as informed (i.e., less long range conditioning).

The correlation and continuity rankings are used to determine the hierarchy by seĴing the cor-

relation rank as the primary determinant and allowing the continuity rank to shift the correlation

rankings by ±5 rankings. For example, if a variable has a correlation rank of 7, the highest final

rank it can occupy is 2 and the lowest rank it can occupy is 12.

It is thought that this procedure results in a more accurate model by delaying prediction of

variables that are not as informed or continuous as other primary variables. With additional con-

ditioning data (i.e., previously simulated primary variables), the correlation between the variable

being modeled and its corresponding super-secondary variable may increase, improving spatial

prediction. This idea is not specifically tested in this thesis.
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Figure 4.14: Modeled variograms for all 42 primary variables.
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Figure 4.15: Zones used to calculate the continuity rankings when determining the hierarchy of the primary
variables

Workflow Implementation

The hierarchical simulation workflow is scripted within a Python environment (Continuum Ana-

lytics, 2015), utilizing specialized geostatistical software; specifically USGSIM (Manchuk & Deutsch,

2015) and the geostatistical Python package pygeostat (Centre for Computational Geostatistics,

2016b). The script is run in parallel using five cores; each computing a single realization at a time.

For example, a single core completes the following procedure:

1. Create super-secondary variable combining all exhaustive secondary data.

2. Simulate a single realization of the first primary variable in the specified hierarchy.

3. For the remaining primary variables, complete the following in the sequence specified by the

hierarchy:

a. Combine all previously simulated primary variable for the current realization including

the exhaustive secondary variables.

b. Simulate a single realization of the primary variable currently being modeled.

To complete the process using an Intel i7-4790 3.60 gigaherĵ (GHz) processor and 16.0 gigabyte

(GB) of random access memory (RAM), the simulation takes approximately 2 days and 17 hours to

complete.

4.5.2.3 Results

To summarize histogram and variogram reproduction, two plots are selected to illustrate the best

and worst reproduction (Figure 4.16). Reproduction plots of the other specific variables are not

shown or discussed in detail. The histograms of the simulated realizations for manganese (Mn)

in normal score space shows that the input histogram is reproduced very well. Conversely, the

variable reproduction of cobalt (Co) is the worst of the 42 variables modeled and shows that all

realizations are underestimated. Consistent with the two variables shown here, all of the variables
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modeled display very liĴle variation between realizations. Additional summary statistics for all

variables are illustrated in Figure 4.17 and shows very liĴle variation.

Variogram reproduction varied as illustrated in Figure 4.18 that shows the best and worst vari-

ogram reproduction. All of the variables variogram reproduction appear reasonable.

There are 861 primary-primary variable correlation coefficients, each reproduced in its ownway.

As an example, three are illustrated in Figure 4.19. To beĴer understand the overall performance,

the coefficients for all of the realizations are averaged then subtracted by its corresponding input

correlation coefficient producing an error measure (Figure 4.20). All of the 861 average coefficients

are within ±0.15 of their corresponding input value.

The results of the Jackknife for each of the primary variables modeled in normal score space are

illustrated in Figure 4.21 and ordered based on their MSE. The accuracy and precision of each vari-

able appears reasonable. In the worst cases, 10% of the true values do not fall within the specified

probability interval. This may indicate that the variograms of the variables that displaced this error

may be too continuous.

As ameans of visualizingmultiple realizations, the cell-by-cell average (i.e., E-type average) and

variance (i.e., E-type variance) of the realizations is calculated and displayed in Figures 4.22 and

4.23 respectively. The influence of the exhaustive secondary data is clear in the E-type estimates as

features from the secondary data is visible. The E-type variance illustrate the reproduction of the

conditioning primary data and the influence the multivariate relationships have on reducing the

variance of lead (Pb) (Figure 4.23a) relative to zinc (Zn) (Figure 4.23b).

4.5.3 Conclusion

Overall, histogram reproductionwas reasonably achieved as shownby the histograms of Figure 4.17.

The mean of all realizations in normal score space for all primary variables modeled were within

±6% of their input mean. Additionally, all of the modeled primary variables displayed minimal

variance between each realizations distribution (Figure 4.17b).

It is thought by the author that a correlation reproduction error less then |0.20| is reasonable. As

the average correlation coefficient from each primary variables realizations are within this range,

in addition to that the variation between realizations is minimal, it can be said that the hierarchical

simulation framework also reproduced collocated multivariate relationships.

Variogram reproduction was not achieved for all variables. It is thought that beĴer variogram

reproduction can be achieved with proper decisions of stationarity.

The Jackknife study also showed positive results, with most variables displaying acceptable ac-

curacy and precision. Fair accuracy results shown by some variables may indicate their variograms

are too continuous. Adjustments to the variogram model may improve model accuracy in these

cases.
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Figure 4.16: Examples of the variables with the best (Mn) and worst (Co) histogram reproduction in normal
score space.
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Figure 4.17: Histograms of histogram reproduction summary statistics from each of the 42 primary variables
realizations in normal score space.
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Figure 4.18: Example of the variables with the best (Mo) and worst (Rb) variogram reproduction in normal
score space.
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Figure 4.19: Histograms of two primary-primary variable correlation coefficients calculated from 100 simu-
lated realizations with its input value indicated.
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Figure 4.20: Histogram of correlation coefficient errors for all primary-primary variable pairs between the
average value across all realizations and the input correlation matrix.
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Figure 4.21: Accuracy plots depicting results from the Jackknife cross-validation study.
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Figure 4.22: Heatmaps of the cell-by-cell average of the realizations (i.e., E-type estimate) in normal score space
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Figure 4.23: Heatmaps of the cell-by-cell variance of the realizations (i.e., E-type variance) in normal score
space

4.6 Conclusion

Many issues exist when aĴempting to use a cokriging frameworkwith amassivelymultivariate sys-

tem. Due to the constraining nature of fiĴing an LMC to many variables, it is unable to adequately

fit direct and cross variograms as the fiĴing algorithm can move very liĴle from its initial starting

position. Additionally, the computation cost of solving the large system of equations required by

the framework with an appropriate amount of conditioning data is expensive. These two factors

render the framework impractical.

The hierarchical framework provides a viable option for simulatingmultivariate datawithmany
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4. Implementation of Multivariate Simulation with Many Secondary Data

secondary data. In the case study, collocated correlation structure and input histograms were ad-

equately reproduced. Variogram reproduction was not as close; however, it is thought that with

proper care and aĴention to decisions of stationarity, this concern can be minimized, if not elimi-

nated. The results from the Jackknife study showed that uncertainty was predicted in a precise and

accurate manner. The workflow is cumbersome to implement and debugging is a challenge due to

the number of program calls. With scripting, the task is practical and repeatable.
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Cѕюѝѡђџ 5

PџќяюяіљіѠѡіѐ Mіћђџюљ PџќѠѝђѐѡіѣіѡѦ
Mќёђљіћє
5.1 Introduction

As discussed in Sections 1.2 and 2.1.3, current MPM frameworks integrate factors that are deter-

mined—either statistically or based on expert knowledge—to be relevant in mineral exploration in

order to produce a model illustrating the spatial distribution of relative prospectivity. This process

is complicated due to the massively multivariate nature of geochemical and remotely sensed data,

most of which have unequal support. The key idea is to search for analogies of known mineral

deposits. While the known deposits illustrate positive information, it is censored in that negative

information is not used or is typically not as extensive or accurate as the positive data set.

A novel MPM framework is proposed that provides a means of passing a stochastic multi-

element model and other relevant geological data to a transfer function that generates a model

illustrating the probability that a mineral deposit exists at each location. By using a multi-element

geochemical model, both positive and negative information is equally represented. Bias searches

are avoided by not using the location of known mineral deposits to discover exploration factors

that indicate the presence of a mineral deposit. In addition, by having multiple realizations of the

geochemical model, uncertainty can be be transferred to the final prospectivity modeling that is

represented by a single probabilistic value at each location.

This chapter describes the proposed framework, the type of data that can be passed to theMPM

transfer function, and describes a small exampleworkflowdemonstrating how the proposed frame-

work may be implemented. The transfer function defined in the example workflow is passed the

stochastic multi-element geochemical model generated using the hierarchical framework in Sec-

tion 4.5 in addition to bedrock geology data (Yukon Geological Survey, 2016b) to provide illustra-

tive results.

5.2 Proposed Framework

5.2.1 Introduction

The proposed framework passes a stochastic geochemical model and exhaustive secondary data to

a MPM transfer function. For each realization within the geochemical model, a binary response is

calculated that indicates the presence or absence of a deposit. The average of the binary reposes
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5. Probabilistic Mineral Prospectivity Modeling

across all realizations at each location produces a probability that a mineral deposit exists at that

location.

By having the full spectrum of possibilities represented by the stochastic geochemical model,

concerns relating to heuristic searches and censored data are minimized, while having multiple

realizations allows uncertainty to be passed to the final predictive model. Discussion regarding the

required data and the function methodology is provided.

5.2.2 Input Data

The proposed framework requires the generation of a stochastic multi-element geochemical model

using a simulation framework (Figure 5.1a). This may be done using the methodology discussed in

Section 4.5, where stream sediment samples are conditioned by exhaustive secondary data. Rather

then premeditatedly determine what elements to predict and include in the geochemical model, it

is thought that modeling all possible elements provides the flexibility to change the MPM transfer

function after its initial construction. In addition, the same geochemicalmodel could then be passed

tomultipleMPM transfer functions each designed for different deposit types. Additional geological

features are represented by exhaustive secondary data (Figure 5.1b).

(a) Stochastic geochemistry model (b) Exhaustive secondary data

Figure 5.1: Schematic illustration of the datasets used in the proposed MPM framework.

5.2.3 Transfer Function Methodology

Consider K number of interdependent RFs that are stochastically modeled {zlk(u), k = 1, . . . ,K,

l = 1, . . . , L, ∀u ∈ A} for L number of realizations at all grid locations u within the domain A, that

is also denoted by the vector Z(u). In addition, I number of interdependent exhaustively sampled

RFs exist {xi(u), i = 1, . . . , I, ∀u ∈ A} that are also denoted by the vectorX(u).

The transfer function consists of R number of binary functions {Fr, r = 1, . . . , R} defined by

the user that is also donated by the vector F. The binary functions F are constructed in a way that

when Z(u) and X(u) is passed to it, R number of binary responses are generated {ilr(u), ∀l, r,u}
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5. Probabilistic Mineral Prospectivity Modeling

using the expression:

ilr(u) = Fr(zl(u) or x(u)), ∀l,u ∈ A

For each location and each realization, a binary indicator of any mineral deposit {dl(u), ∀l,u ∈ A}

is calculated using the expression:

dl(u) =


1, if ilr(u) = 1 ∀r

0, otherwise
, ∀l,u ∈ A (5.1)

that are also denoted by the vector D(u). The rule set that constructs the transfer function F in-

dicates the presence or absence of specific deposit types. Exploration factors for the deposit type

under investigation are determined and their relationships to the geochemical model variables or

exhaustive secondary data are identified and evaluated using the transfer function.

The final probabilistic value at each location is then calculated by averaging D(u) at each loca-

tion:

p(u) = 1
L

L∑
l=1

dl(u), ∀u ∈ A

For illustration purposes, Figure 5.2 displays a histogram of D(u) at a single location with

L = 100 realizations. The average of those responses p(u) is the probability of a mineral deposit at

that location. Ideally, uncertainty in the probabilistic predictions across all locations is low, as illus-

trated in Figure 5.3a. In this case, there are minimal locations displaying a moderate probability of

a mineral deposit, rather each location displays a low or high probability. Conversely, higher un-

certainty in the final model, as illustrated in Figure 5.3b, is present when the frequency of locations

displaying moderate probability of containing a mineral deposit is increased.
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Figure 5.2: Example of the possible outcome D(u) from the transfer function at a single location across all
realizations
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(a) Low uncertainty response
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(b) High uncertainty response
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Figure 5.3: Example of the possible histogram of the final prospectivity model values {p(u), ∀u ∈ A}.

5.3 Clastic-Dominated Pb-Zn Deposit Model Illustration

5.3.1 Introduction

As a means of a demonstrating the proposed MPM framework, a small example workflow is illus-

trated. The transfer function is designed to predict the probability of clastic-dominated lead-zinc

(CD Pb-Zn) deposit discovery at each location within the AOI selected in Section 4.2.2 (Figure 4.1).

A brief introduction to CD Pb-Zn deposits is provided, exploration factors and their geochemical

proxies are discussed, a rule set for a transfer function is proposed, and results are discussed.

5.3.2 Clastic-Dominated Lead-Zinc Deposits

CD Pb-Zn deposits are a subtype of sediment-hosted Pb-Zn deposits that includes deposits tradi-

tionally refereed to as sedimentary exhalative (SEDEX) deposits. They are important sources of

Pb and Zn with some deposits containing economical quantities of silver (Ag), copper (Cu), and/or

gold (Au). CD Pb-Zn deposits are precipitated from basinal brines within passive margin, continen-

tal rift, and sag basin tectonic seĴings that are dominated by sedimentary sequences. Host rocks

include shale, sandstone, siltstone, or mixed clastic rocks (Leach et al., 2010). Deposition occurs in

syngenetic to early diagenetic environments or during early burial diagenesis meaning mineraliza-

tion occurs at the same time as deposition or close to. The tectonic seĴing is the main controls on

mineralization and deposit characteristics (Leach et al., 2005). The primary ore minerals are typi-

cally sphalerite and galena with secondary iron sulfides. Gangue mineralogy typically consists of

barite and carbonates (Leach et al., 2010).
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5. Probabilistic Mineral Prospectivity Modeling

5.3.3 Transfer Function

Based on the brief deposit description provided in Section 5.3.2, three exploration factors must

be present for a CD Pb-Zn deposit to exist: (1) an anomalous Pb geochemical signature, (2) an

anomalous Zn geochemical signature, and (3) shale, sandstone, siltstone, or mixed clastic host rock.

Proxies for these exploration factors are found within the geochemical model for both Pb and Zn

that was simulated in Section 4.5 and the bedrock geology data (Yukon Geological Survey, 2016b)

sourced from Geomatics Yukon (2014).

For simplicity, bedrock geology is reclassified into a binary system: clastic or not clastic (Fig-

ure 5.4). To determine anomalous geochemical signatures for Pb and Zn, probability plots are used

to identify outliers (Figure 5.5). It is determined that Pb anomalies display concentrations ≥ 35

parts per million (ppm) and Zn anomalies display concentrations ≥ 2500 ppm.
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Figure 5.4: Lithology reclassified into a binary system within the AOI.
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Figure 5.5: Probability plots of the two geochemical variables in original units with the identified range of
anomalous signatures.
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5. Probabilistic Mineral Prospectivity Modeling

To determine if a CD Pb-Zn deposit exists at a location the following binary rules must be sat-

isfied: (1) the Pb signature must ≥ 35 ppm, (2) Zn signature must be ≥ 2500 ppm, and (3) the

lithology must be clastic. In practice, these rules would be fine tuned for each geological province

and considering local geological conditions.

5.3.4 Results

The stochastic geochemical model for Pb and Zn simulated in Section 4.5 and the binary lithology

data is passed to the transfer function generating a predictive model (Figure 5.6). Very liĴle un-

certainty is observed as 99.939% of the four million locations display 0% probability of CD Pb-Zn

deposit discovery. Of the 2425 locations that displayed some chance of discovery, only 27 locations

showed probability ≥ 3% (Figure 5.7).
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Figure 5.6: Map illustrating the final probabilistic model of CD Pb-Zn deposit discovery. Mineral occurrences
(Yukon Geological Survey, 2016a) are displayed near high potential areas.
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Figure 5.7: Histogram of the locations probability of CD Pb-Zn deposit discovery that displayed probabilities
≥ 3%.
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As a means of validation, current mineral occurrences were sourced from Yukon Geological

Survey (2016a) and ploĴed against the three locations that displayed 100% probability of CD Pb-Zn

deposit discovery (Figure 5.6). All of these locations occur in very close proximity or near a mineral

occurrence. The location displayed in Figure 5.6a lies approximately 2.7 km to the shale-hosted

nickel (Ni)-Zn-barium (Ba) showing Drizzle. The location displayed in Figure 5.6b nearly overlies

the drilled Tryala prospect, a sediment-hosted Ba-Zn deposit. The location displayed in Figure 5.6c

lies directly adjacent to past producer Plata, a Au-Pb-Ag vein deposit.

5.3.5 Conclusion

In this small example workflow, the transfer function may be too restrictive in that nearly no loca-

tions displayed an intermediate probability of deposit discovery. The 3 locations that displayed

high probability of deposit discovery were in very close proximity to either a showing, drilled

prospect, or past-producer, which is a promising sign. However, these occurrences are not of the

desired deposit type.

While only two elements from the geochemical model that contains 42 predicted elements were

used, in practice more complex geochemical rules would be defined utilizingmore elements. As all

elements measured in the stream sediment samples were predicted, the flexibility of the geochem-

ical model is maximized allowing the transfer function to be modified as desired. In cases where

the elements predicted and included in the geochemical model were tailored to a predefined trans-

fer function, if additional elements are later required, a new geochemical model would need to be

predicted.

5.4 Conclusion

The CD Pb-Zn deposit MPM example workflow shows promise for the proposed framework, how-

ever, it requires thorough investigation and evaluation. It is hoped that with a stochastic geochem-

ical model calculated to suit the needs of a carefully constructed transfer function, that MPM can

be completed in an unbiased manor considering the full spectrum of the truth, while passing un-

certainty through the workflow.
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CќћѐљѢѠіќћѠ
6.1 Introduction

Exploratory research presented above has focused on understanding current MPM frameworks

and their shortcomings. Their dependence on heuristic methodologies and censored data that only

explain factors that indicate the presence of mineral deposit and not their absence is limiting. The

stochastic multi-element geochemical model provides both positive and negative information and

allows uncertainty to be transferred to a final prospectivity model. Multiple realizations of the

geochemical model and additional exhaustive secondary data can then be passed to aMPM transfer

function that calculates the probability that a mineral deposit exists at each location. This proposed

framework alleviates the concerns of heuristic searches and the use of censored data.

The desire to develop a novel and improved MPM framework motivates this thesis. Two novel

multivariate simulation frameworks that consider many exhaustive secondary data are formulated

and tested in hopes of developing a straightforward technique; however, neither proved to be ad-

equate. The ability of the cokriging and hierarchical frameworks to model 42 variables in the pres-

ence of 6 exhaustive secondary variables is evaluated. The cokriging framework is found to be

computationally expensive and limited by the restrictive nature of the LMC when a large number

of variables are considered. The hierarchical framework reasonably reproduces input univariate

and multivariate statistics and produced the stochastic geochemical model that was passed to a

contrived MPM transfer function that shows promise; however, the concept requires additional re-

search. A summary of the contributions made by this thesis and their conclusions are described

below with a discussion regarding future research.

6.2 Research Contributions

6.2.1 Novel Frameworks for Multivariate Simulation with Many Secondary Data

To generate a stochastic multi-element geochemical model, a framework that can reproduce the

input univariate and multivariate statistics in the presence of many exhaustive secondary data is

required. The cokriging framework can achieve this; however, it is limited due the need of a LMC.

There may be a practicable limit of about seven variables (Jewbali, 2009) motivating two novel and

straightforward multivariate simulation frameworks were presented and tested in Chapter 3.

The decorrelation framework was implemented using both PCA and Sphere-R as methods to

transform the variables requiring modeling into uncorrelated factors. Once correlation is removed,
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the factors can be independently simulated and the original multivariate relationships is reintro-

duced during back-transformation. However, by conditioning the uncorrelated factors to exhaus-

tive secondary data, correlation between the simulated factors was introduced. This rendered the

back transformations of both PCA and Sphere-R unable to reproduce the input multivariate rela-

tionships.

A novel framework based on the direct cosimulation framework (Verly, 1993) was proposed

that would jointly simulate multiple variables while considering many exhaustive secondary data.

It operates by independently simulating the variables that require modeling and correlating the

deviates that sample the conditional distributions calculated at each location. Secondary data is

considered by seeding the known values into the calculation of the deviates. Implementation is

very straightforward; however, variance inflation was an issue and in some cases extreme. Ad-

hoc empirical corrections were implemented that could not fully control the issue. In addition,

multivariate relationships were not reasonably reproduced.

6.2.2 Implementation of Multivariate Simulation with Many Secondary Data

The cokriging and hierarchical frameworks were tested in Chapter 4 by implementing them in case

studies and evaluating their ability to model 42 primary variables in the presence of six exhaustive

secondary variables.

A LMC was fit to the variables and the cokriging framework successfully ran. However, the

LMC poorly fit most of the 903 direct and cross-variograms as the algorithm was unable to mean-

ingfully alter the initial covariance contributions of the variograms. The computational cost of the

framework is very expensive, as it would have taken 41 hours to simulate a single realization using

only 10 conditioning data (J.G. Manchuk, personal communication, January 11, 2016), which is not

practical.

The hierarchical framework was implemented using SGS with ICCK conditional to the stream

sediment samples and exhaustive secondary data. The framework proved to be a viable option for

simulating multivariate data with many secondary data. It was able to reasonably reproduce the

input univariate and multivariate statistics in the presence of many exhaustive secondary data and

is practical to implement with scripting.

6.2.3 Probabilistic Mineral Prospectivity Modeling

Once the appropriate framework for simulating multivariate data with many secondary data had

been identified, a novel MPM framework was proposed and illustrated in Chapter 5. The proposed

framework requires a stochastic multi-element geochemical model and other relevant exhaustive

geological data to a transfer function that calculates the probability that a mineral deposit exists at

each location.
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Contrary to existing MPM frameworks that have heuristic and biased searches, the proposed

MPM framework allows the full spectrum of the truth to be considered. By using a multi-element

geochemical model, both positive and negative information is considered. Biased searches are

avoided by not using the location of known mineral deposits to discover exploration factors that

indicate the presence of a mineral deposit. In addition, by having multiple realizations of the geo-

chemical model, uncertainty can be be transferred to the final prospectivity modeling that is repre-

sented by a single probabilistic value at each location.

As an illustration, a rule set that contains binary functions is defined that evaluates a input

stochastic geochemical model and exhaustive secondary data in hopes of discovering CD Pb-Zn

deposits. Three exploration factors are considered by the transfer function and produce a single

probabilistic prospectivity model. The contrived transfer function is far too restrictive as very few

locations displayedprobabilities above 0%. The locations that displayed 100%probability of deposit

discovery were in very close proximity to either a showing, drilled prospect, or past-producer. This

is a promising sign, however, none were of the desired deposit type.

6.3 Future Research

Much of the work completed in this thesis focused on discovering the appropriate multivariate sim-

ulation framework to calculate the geochemical model. This focus of efforts motivates two further

areas of research: (1) how stream sediment samples should be utilized in a geostatistical workflow,

and (2) the construction of a MPM transfer function that transforms input exploration factors into

measures of frequency rather than binary responses.

The complexity of the natural system that deposits the stream sediments is immense and dif-

ficult to unravel. The catchment area from which the sampled stream sediments are sourced can

be calculated, however, the measured geochemical signature is not a perfect representation of that

area. Slope, vegetation, mobility of elements, differential weathering of bedrock, and natural ho-

mogenization of sediments are all factors that control the measured geochemical signature. In the

case studies completed in Chapter 4, the stream sediment samples geochemical signature were con-

sidered at a point support. As stream sediment samples are a representation of an area, this is a

simplification. A small exploratory analysis was conducted to beĴer understand the multi-scaled

nature of catchment areas and what location within the catchment area is best suited to represent

the stream sediment samples as a point of support. The use of these complex measurements in a

geostatistical workflow is a topic that warrants future research. Developingmethodologies to deter-

mine the optimal location of the point of support or adapting geostatistical algorithms to consider

an area of support could possibly improve the prediction of the geochemical signature of stream

sediment samples.

The MPM transfer function utilized in Chapter 5 is limited due to it consisting of only binary
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functions to evaluate the input exploration factors and the limited range of geochemical signatures

considered. Developing functions that generate a frequency response would be interesting. The

final probabilistic prospectivity model would consider the frequency responses combined into a

single probabilistic value.
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