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Abstract

Nanoscale optical and mechanical resonators store energy in a way characterized

by a sharp resonance frequency, and through interaction with their surroundings

offer a path to the next generation of sensitive measurement tools. In this thesis we

investigate a particular geometry of nanofabricated devices—that of monolithically

fabricated optical microdisks and nanomechanical resonators, in which the optical

microdisk operates as a high-gain amplifier of the mechanical resonator’s position.

We began the study with nanoscale silicon microdisks and cantilevers fabricated

with a commercial photolithography process for silicon photonics, and used the op-

tomechanical interaction between the cantilevers and optical microdisks to demon-

strate readout of the mechanical motion to the fmHz−1/2 precision level. This ap-

proach has enabled thermally limited readout of forces on the cantilever to 130 ± 40

aNHz−1/2 at room temperature, optimized by their nanometer-sized geometry and

femtogram-scale masses. We then explored the possibility of using these cantilevers

for fundamental quantum measurements of phonon number, and although we con-

cluded the cantilever measurement lacked the necessary characteristics, we developed

a framework for characterizing the type of optomechanical coupling exhibited by an

optomechanical device.

Continuing on resonator development, we switched to fabricating similar geome-

try optomechanical devices from silicon nitride, an insulating material used in semi-

conductor fabrication, known to enable a high quality factor mechanical resonator

geometry termed nanostrings. Using a fiber-waveguide coupling technique we were

able to optomechanically measure picogram-scale nanostring devices down to tem-

peratures below 1 K, finding mechanical quality factors of 106, while exhibiting less

optically-induced heating than similar silicon devices. While the optical microdisks

enable high-precision readout of mechanical motion, they more generally measure
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refractive index changes. Using aqueously submerged silicon nitride microdisks, we

were able to measure LiCl induced refractive index changes down to the 10−6 level.

Finally, we carry out a discussion and review on the subject of digital signal

processing. Although appearing unrelated, the techniques covered in Chapter 7 un-

derline every single experimental result covered in this thesis. With an understanding

of digital signals, flexible and well adapted measurement protocols can be constructed

without being stuck relying on the output of fixed-pipeline measurement tools.
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tilever, ŷ points along in-plane motion of the cantilever, and ẑ points
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Chapter 1

Introduction

1.1 Optical microdisks

Optical cavities capable of trapping light for many round trips of the cavity are a well

studied nanosystem [1]. They act interferometrically, displaying buildup of optical

power when the round trip path length matches integer multiples of the light wave-

length [2]. These cavities can exhibit large quality factors (Qs), defined as the stored

cavity energy per unit energy lost per cavity cycle. These large Qs sharply define the

resonance frequency of the cavity, making these resonators of great interest for a va-

riety of signal processing and quantum applications, as well as in sensing applications

where the resonance frequency strongly depends on the index of refraction sampled

by the optical field.

Optical cavities come in a variety of geometries. The canonical picture of an

optical cavity is that of a Fabry-Pérot cavity—two separated mirrors, with one slightly

transmitting such that light can enter and leave the cavity. At the smallest scale,

photonic crystal (PC) cavities use metamaterial photonic bandgaps to define optical

cavities in dielectric materials [3].
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Optical whispering-gallery-mode (WGM) resonators trap light in a circular path,

borrowing their name from the acoustic phenomena first correctly described by Lord

Rayleigh from his observations of the 33 m diameter dome of St. Paul’s cathedral [4].

Scaling the ∼1 m wavelength of the note F4 (349 Hz) to the ∼1 µm wavelength of

near-infrared light (300 THz), optical whispering-gallery modes would be expected

in circular cavities ∼30 µm in diameter, and correspondingly WGMs with diameters

from a few micrometers up to the millimeter scale have been described. Glass spheres

and toroids represent the larger WGMs, using the surface tension of melted glass to

form very smooth radial surfaces minimizing scattering losses and achieving ultra-

high Qs > 109 [5, 6]. At the smaller scale, optical microdisks can be fabricated with

planar top-down micro/nano-fabrication techniques—similar to PCs—however are

simpler to design, have relaxed fabrication requirements, and can be designed with

narrow line-widths and large Qs up to 106 [7]. For these reasons, we have focused on

using planar whispering-gallery mode microdisk resonators as sensors to detect index

of refraction changes in the microdisk near-field.

In a WGM resonator, the evanescent field of the optical mode will extend out-

side of the resonator into the surrounding medium. Refractive index changes of the

surrounding medium shift the resonance condition, providing the ability to monitor

polarizability of the microdisk environment by monitoring the optical mode frequency.

This technique has been used to great success, and sensors based on whispering-gallery

mode resonators have been used for the label-free detection of single viruses [8, 9],

nanoparticles [10, 11, 12, 13], single proteins [14], nucleotides [15, 16], and are even

being used commercially [17].

In Chapter 6 we describe the use of silicon nitride microdisk resonators to detect

the bulk index of refraction change in water due to the addition of LiCl, and find

we are able to measure refractive index changes with a limit of detection near 10−6

refractive index units.
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Optical resonators have been used to detect the motion of nanomechanical res-

onators placed in the near-field with great precision, below the imprecision required

to satisfy Heisenberg’s uncertainty principle for a continuous measurement—the so-

called standard quantum limit [18, 19, 20]. This measurement precision has encour-

aged interest in the field of cavity optomechanics, exploring the interactions between

a tightly coupled optical cavity and mechanical resonator, often with the goal of ob-

serving quantum effects. In Chapters 3–5 we will describe the use of optical WGM

cavities to measure the motion of mechanical resonators, both for sensing applica-

tions, and with the possible use in studying quantum effects of mesoscale mechanical

resonators.

1.2 Mechanical resonators

While the previously described optical sensors probe the environment electromagneti-

cally, mechanical resonators interact in a physically intuitive manner. In the simplest

sense, mechanical sensors respond via Hooke’s law, F = −kx, for a given force the

mechanical resonator will deflect a proportional distance. Going beyond Hooke’s law,

it is possible to model the dynamic response of the mechanical resonator as a simple

harmonic oscillator with an effective mass different, and usually smaller, than the

geometric mass resonator [21]. These resonators exhibit characteristic motion de-

pendent on resonator properties, and AC forces applied near the resonant frequency

transduce well to large displacements [22]. Operation of these mechanical resonators

at relatively high frequencies reduce environmental 1/f noise where the signal can be

better isolated and well measured by present high-speed electronics [23, 24, 25].

Fabricating smaller, higher frequency mechanical resonators is a proven way to

increase performance in a damped environment [26, 22]. However, measuring the res-

onator’s position becomes difficult—particularly as dimensions fall below the spot size
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of a laser beam (∼1 µm)—and optical methods to detect nanotubes and nanowires

only achieve pmHz−1/2 sensitivity [27, 28, 29], compared with the 5 fmHz−1/2 sen-

sitivity achieved using optical beam deflection [30], or the 2 fmHz−1/2 sensitivity

achieved with interferometry [31], on standard low-frequency (300 kHz) cantilevers.

Using the refractive index sensitivity of a WGM cavity, positioning a nanomechanical

resonator in the near-field of an optical microdisk can allow the mechanical motion

to be measured with great accuracy, down to the fmHz−1/2 scale [32, 33, 22]. Using

nanometer-sized resonators with femtogram effective masses, fabricated beside a mi-

crodisk to decouple mechanics and optics, we have measured position imprecision of

2 fmHz−1/2 as will be shown in Chapter 3.
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Chapter 2

Theory of optical and mechanical

devices

2.1 Theory of optical resonators

We will begin our treatment of optical resonators from the quantum perspective, and

then quickly reduce to a classical treatment. An optical cavity resonant with light

oscillating at angular frequency ω0 can be modelled as a quantum harmonic oscillator

with the Hamiltonian

Ĥopt = ℏω0

(︃
â†â+

1

2

)︃
, (2.1)

where ℏ is the reduced Planck constant and â† and â are the raising and lowering

operators normalized such that n̂ = â†â is the photon number operator of the optical

cavity. From the Hamiltonian the Heisenberg equations of motions can be found,

â̇ = −iω0â (2.2)

â̇
†
= iω0â

†, (2.3)
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giving two uncoupled first-order time-dependent differential equations for â and â†.

While these equations are simplistic and don’t contain much of the optical resonance

behavior we wish to describe, they provide a starting point for further analysis.

At this point, we will drop the quantum-mechanical description and treat a(t) =

⟨â(t)⟩, and a†(t) = ⟨â†(t)⟩, as classical, unitless, complex field amplitudes for the

optical resonator, normalized such that |a(t)|2 represents the number of photons in

the resonator. Doing so we can quickly identify a(t) = |a|e−iω0t and a†(t) = |a†|eiω0t

as solutions to equations (2.2) and (2.3), identifying a(t) and a†(t) as the negative and

positive frequency modes, corresponding in the whispering-gallery mode resonator as

clockwise and counter-clockwise propagating solutions.

2.1.1 Coupling to an optical resonator

Following the treatment of coupled resonators developed by H.A. Haus [34], we will

add coupling terms to the differential equation for a(t). We will focus on only one of

these solutions, a(t), from which we can find the energy in the resonator as |a(t)|2 =

a∗(t)a(t), where a∗(t) the complex conjugate of a(t).

First, we will introduce the intrinsic loss rate of the resonator, κ0:

ȧ(t) = −iω0a(t)− κ0a(t). (2.4)

This equation can be solved to find the solution for the field, a(t) = a0e
−κ0t+iω0t, such

that the energy (number of photons) in the resonator is |a(t)|2 = a20e
−2κ0t, starting

from the initial energy of a20 and decaying at a rate of 2κ0. From here we can define

the quality factor of a resonator as

Q ≡ ω0
W

Pd

, (2.5)
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Figure 2.1: A schematic of the model used for coupling to the optical microdisk.
An optical field with complex amplitude s(t), carrying power |s(t)|2, is incident on
the microdisk coupling light to the disk at a rate κe, while an optical field with
complex amplitude z(t) takes light away from the microdisk. The microdisk supports
an optical mode with energy |a(t)|2, which is lost to the surroundings at a rate κ0

and to the outgoing field at a rate κe such that the total losses from the microdisk
are κ = κ0 + κe. The field in the microdisk is modeled by equation (2.7) in the text,
while the outgoing field z(t) is modeled by equation (2.11).

where W is the energy stored in the resonator, and Pd is the power dissipated from

the resonator [2]. Recognizing W = |a(t)|2 and Pd = −d|a(t)|2/dt = 2κ0, we find for

an optical resonator described by equation (2.4),

Q0 =
ω0

2κ0

. (2.6)

Next we add coupling to the microdisk. As illustrated in Figure 2.1, the optical

microdisk is interfaced with a waveguide running adjacent the microdisk such that

the evanescent field of the waveguide and the microdisk overlap, resulting in coupling.

Incident towards the microdisk in the waveguide is a field s(t) = s̄e−iωt generated by
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a laser tuned to the optical frequency ω, and carrying power |s(t)|2 = s̄2. Away from

the microdisk, the waveguide carries field z(t) with power |z(t)|2.

Adding this interaction involves two modifications to equation (2.4), first an ad-

ditional loss rate from the optical resonator to the waveguide at rate κe. This loss is

in addition to the intrinsic loss rate κ0, such that the total loss rate is κ = κ0+κe, re-

sulting in a loaded Q of Q = ω0/2κ. Second, a coupling from the incoming waveguide

to the optical mode is added, the magnitude of which can be related to κe through

time-reversal symmetry (again, following the procedure of H.A. Haus [34]), such that

the waveguide-coupled equations of motion are

ȧ(t) = −iω0a(t)− κa(t) +
√
2κes(t). (2.7)

We can analyze this equation with complex sinusoids (effectively similar to a Fourier

transform). If the driving field s(t) is rotating with a complex phase e−iωt, then

the response, a(t), will also occur at the same frequency, with a possible amplitude

and phase shift, i.e., a(t) = āe−iωt, and s(t) = s̄e−iωt, where ā and s̄ are complex

constants. Using these functional forms we find

a(t) =

√
2κe

κ− i∆
s(t) (2.8)

where we have introduced ∆ = ω − ω0, the detuning of the laser frequency from the

cavity resonance frequency.

2.1.2 Transmission from an optical resonator

Finally, we would like to solve for z(t), the transmitted waveguide field travelling away

from the optical cavity. We start by recognizing that in linear media, the solution

should be a linear combination of s(t) and a(t): z(t) = c1s(t) + c2a(t), where c1 and

c2 are unknown complex constants. Using power conservation in the case of a perfect
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cavity (κ0 = 0), we can relate the incoming power, |s(t)|2, the power loss from the

cavity,

− d

dt
|a(t)|2 = 2κe|a(t)|2 −

√
2κe(s

∗(t)a(t) + a∗(t)s(t)), (2.9)

and the power leaving the waveguide,

|z(t)|2 = |c1|2|s(t)|2 + c1c2(s
∗(t)a(t) + a∗(t)s(t)) + |c2|2|a(t)|2, (2.10)

such that |z(t)|2 - |s(t)|2 = −(d/dt)|a(t)|2. If we consider the case with no incident

field—s(t) = 0, we find |c2|2 = 2κe [34]. Then considering a nonzero s(t), we find

c1 = −1, such that the transmitted field is

z(t) = −s(t) +
√
2κea(t), (2.11)

with an arbitrary phase-relation between a(t) and z(t) that corresponds to the choice

of where the measurement of z(t) is performed. The power transmitted to the outgo-

ing waveguide is then be found to be

|z(t)|2 = |s(t)|2 − 2κ0|a(t)|2, (2.12)

corresponding to the signal detected when incident on a photodiode.

2.2 Theory of mechanical resonators

A simple, yet powerful, model of a mechanical resonator is the mass on a spring.

We will use this model to describe mechanical resonators that occupy distributed

volumes of space, and will do this by attributing an effective mass to the resonator

such that is can be described as a point mass with mass meff [21]. Basing ourselves

in Newtonian physics, the position of the mass and the forces applied to it, F , are
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linearly proportional and given by Hooke’s law:

Fspring = −kx, (2.13)

where k is the spring-constant, and x is displacement from the equilibrium position

of the mass.

This equation describes the static case, but to describe the dynamic, time-

dependent motion of the resonator, its mass (or effective mass), providing resistance

to changes in motion must be considered. Using Newton’s second law of motion,

Faccel = meffa, where a = ẍ is the acceleration (second derivative) of the mass’s

position, we can equate the acceleration and spring forces to find the second-order

differential equation

meff ẍ(t) = −kx(t), (2.14)

of which x = x̄ cos(Ω0t) is quickly recognized as a solution. That is, the mass oscillates

sinusoidally with amplitude x̄ (determined by the condition x(0) = x̄) at an angular

frequency

Ω0 =

√︃
k

meff

. (2.15)

While this model illustrates an important characteristic of the mass-on-a-spring

system—oscillation at a constant frequency—it can be further improved. As modelled

so far, the mass will oscillate at the same amplitude indefinitely, but as we all know

everything is impermanent.

To remedy this, we will add the phenomenological damping force opposing the

velocity of the resonator,

Fdamp = −meffΓẋ, (2.16)
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where Γ is the damping rate, such that equating the inertial, damping, and spring

forces (recognizing k = meffΩ
2
0) yields

meff ẍ+meffΓẋ+meffΩ
2
0x = 0. (2.17)

Solving this by substituting the complex ansatz x(t) = x̄ert we find two solutions,

x+(t) and x−(t),

x±(t) = x̄e−
Γ
2
t ± iΩ0

√
(1−Γ2/4Ω2

0)t, (2.18)

where we are assuming Γ/2 < Ω0—well satisfied by the mechanical resonators studied

later. This equation illustrates two important effects of the damping term Γ. First,

the oscillating frequency of the resonator is slightly perturbed from the undamped

situation, being reduced by a factor of
√︁

(1− Γ2/4Ω2
0). This effect is often neglected

as, for instance, in the devices studied in Chapters 3–5, Γ/Ω0 < 10−3, putting the

frequency correction below the part-per-million level. In the limit of Γ/Ω0 ≪ 1, we

can and will ignore the second-order corrections. Second, and more importantly, the

amplitude of the mechanical motion,

|x±(t)| = x̄e−
Γ
2
t, (2.19)

exponentially decays at the rate Γ/2.

As described in equation (2.18), x±(t) are complex variables. Since the position

of the mechanical object should generally be a real number, we must use a linear

combination of x+ and x− to achieve this. Two convenient and orthogonal choices

are

xi(t) =
x+(t) + x−(t)

2

= x̄e−Γt/2 cos(Ω0t)

(2.20)
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and

xq(t) =
x+(t)− x−(t)

2i

= x̄e−Γt/2 sin(Ω0t)

(2.21)

which are labelled to refer to the in-phase and quadrature components of x+; xi =

Re(x+) and xq = Im(x+).

2.2.1 Energy and quality factor

The energy (E) of a mechanical resonator is the sum of its kinetic (T ) and potential

(U) energies:

E =
p2

2meff

+
meffΩ

2
0

2
x2, (2.22)

where p = meff ẋ is the momentum of the mechanical object, and the left and right

terms on the right-hand side of equation (2.22) are the kinetic and potential energies

respectively [35]. Examining the potential energy, U(t) = meffΩ
2
0x

2(t)/2 for x(t) =

xq(t), we find

U(t) =
1

2
meffΩ

2
0x̄

2
rmse

−Γt
(︁
1 + cos(2Ω0t)

)︁
, (2.23)

where we have defined x̄rms = x̄/
√
2. Typically we are not so concerned with the

instantaneous value of the potential energy, and as such we will time-average (low-

pass filter) it at a rate slower than Ω0, yet quicker than Γ, to find

⟨U⟩(t) = 1

2
meffΩ

2
0x̄

2
rmse

−Γt. (2.24)

We can repeat this exercise for the kinetic energy (taking the Γ/Ω0 ≪ 1 limit), after

which we find the exact same result for the potential energy, ⟨T ⟩(t) = ⟨U⟩(t), such
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that the total energy of the mechanical resonator is

⟨E⟩(t) = meffΩ
2
0x̄

2
rmse

−Γt. (2.25)

We see that whereas the amplitude of the mechanical oscillator decays at a rate of

Γ/2, the energy in the mechanical oscillator decays at a rate of Γ.

Using the definition of quality factor introduced for optical resonators in section

2.1.1, and recognizing W = ⟨E⟩ and Pd = −d⟨E⟩/dt, we find

Qmech =
Ω0

Γ
. (2.26)

In contrast to the case of the optical resonator, there is a factor of two difference.

This difference is due to the mechanical loss rate, Γ, being given as the full-width

half-max of the mechanical resonator, while the optical loss rate κ is the half-width

half-max of the optical resonator. These definitions of optical and mechanical loss

rates will be used throughout this document.

2.2.2 Effective mass

Throughout this discussion, we have been treating the mechanical resonator as a

point-mass with mass meff located at a position x(t). While this simplification is

useful, there is an obvious disconnect with the three-dimensional nanofabricated me-

chanical objects we are modeling. To bridge this gap we will follow the method of

integrating potential energies used by Hauer et al. to describe how meff and the

coordinate x(t) correlate to a real-world three-dimensional situation [21].

In the continuum limit, we can use the scalar field ρ(r⃗) to describe a solid object

by describing the density of material throughout all space pointed to by r⃗. Coupled

with the material properties E(r⃗) (Young’s modulus) and ν(r⃗) (Poisson’s ratio), an

eigenvalue problem can be set up to determine the vibrational modes of the solid, each
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mode occurring at an angular frequency Ω0 and with a deformation u⃗(r⃗) indicating

the shape of the mode, such that the time dependent displacement of the solid at

position r⃗ nominally follows u⃗(r⃗, t) = u⃗(r⃗) cos(Ω0t).

To relate this vector description to the scalar position coordinate x(t), we will

choose a reference position r0⃗ and normalize the entire displacement field to it such

that we construct the time-dependent vector displacement

x⃗(r⃗, t) =
u⃗(r⃗)

|u⃗(r0⃗)|
x(t), (2.27)

where x(t) is the mass on a spring position coordinate used throughout this chapter.

Thus, if x(t) = 1 nm, it means the mechanical resonator, at the location r0⃗, has

displaced along the unit vector u⃗(r0⃗)/|u⃗(r0⃗)| by 1 nm.

To determine the potential energy of the mechanical mode, we can divide the con-

tinuum structure into small parts of volume dV such that each part can be reasonable

approximated by a mass on a spring oscillating about x⃗(r⃗). Each part then will have

potential energy dU given by

dU(r⃗, t) =
1

2
ρ(r⃗)dV Ω2

0

|u⃗(r⃗)|2

|u⃗(r0⃗)|2
x2(t) (2.28)

such that the total potential energy found by integrating over all 3-dimensional space

is

U(t) =
1

2

∫︂
V

dV ρ(r⃗)
|u⃗(r⃗)|2

|u⃗(r0⃗)|2
Ω2

0x
2(t)

=
1

2
meff Ω

2
0 x

2(t)

(2.29)

where we have defined the effective mass as

meff =

∫︂
V

dV ρ(r⃗)
|u⃗(r⃗)|2

|u⃗(r0⃗)|2
. (2.30)
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Thus we see that both the position coordinate, x(t), and the effective mass are related

and depend upon the choice of reference position r0⃗. A common choice of r0⃗ is the

location where |u⃗(r0⃗)| is maximized, minimizing the effective mass.

2.2.3 Response to external drive

So far, the motion of a mechanical resonator has been investigated in response to

the internal acceleration, damping, and spring forces. To describe the resonator’s

response to arbitrary external forces we will use the mathematical properties of the

Fourier transform to simplify the equations of motion. In response to an external

force F (t) acting on the resonator mass, we can write the equation of motion for the

mechanical resonator:

ẍ(t) + Γẋ(t) + Ω2
0x(t) =

1

meff

F (t). (2.31)

To aid in mathematical analysis, we will perform the Fourier transform on x to

find its frequency-domain description, X(ω) = F
{︁
x(t)

}︁
, such that X(ω) is linearly

related to the driving forces F (ω) = F
{︁
F (t)

}︁
. We find

X(ω) =
F (ω)

meff [Ω2
0 − ω2 + iΓω]

, (2.32)

or simply

X(ω) = χmech(ω)F (ω), (2.33)

where we have introduced the frequency-dependent mechanical susceptibility

χmech(ω) =
1

meff [Ω2
0 − ω2 + iΓω]

. (2.34)
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2.2.4 Thermal noise

The generalized equipartition theorem gives the thermal contribution to the energy

(E) of a system in contact with a heat bath at temperature T as

⟨︃
qi
∂E

∂qi

⟩︃
= kBT, (2.35)

where qi is a degree of freedom in the energy and kB is the Boltzmann constant [36].

Applying this expression to the energy of the mechanical resonator given in equation

(2.22) by using the degree of freedom qi = x, we find

⟨x2
th⟩ =

kBT

meffΩ2
0

. (2.36)

That is, the thermal bath in contact with the mechanical resonator drives the

mechanics to have a mean-squared displacement given by equation (2.36). We can

treat this thermal drive as a random thermal force, Fth(t) acting on the resonator

via equation (2.31). However, because the thermal forces are stochastic, we can

only describe them by their statistical behavior and cannot explicitly write down

the time-series functional form of Fth(t). Instead, we can describe Fth(t) through its

autocorrelation function, and in the frequency domain by its spectral density.

Because the thermal forces are random and therefore uncorrelated in time, they

can be described by an autocorrelation of Fth(t), R
th
F (τ), that takes the form

Rth
F (τ) =

Sth

2
δ(τ), (2.37)

where Sth is a constant and δ(τ) is the Dirac delta function. Note that this is valid

for the case of damping proportional to velocity, which is the damping model used

throughout this thesis, however for alternate damping models the force noise will not

be flat in frequency [37].
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Using the delta correlated autocorrelation presented in equation (2.37), the single-

sided spectral density of Fth(t)—twice the Fourier transform of Rth
F (τ)—is then con-

stant across frequencies and equal to

Sth
F (ω) = Sth. (2.38)

From equation (2.33), we can relate the single-sided spectral densities of the ther-

mally driven motion and the thermal forces by the mechanical susceptibility,

Sth
x (ω) = Sth |χmech(ω)|2, (2.39)

where Sth
x (ω) is the spectral density of xth(t) and Sth

F (ω) = Sth is the spectral density

of Fth(t). This equation can be integrated to relate the mean squared displacement

of x to the thermal power Sth. To do this we integrate both sides of equation (2.39):

1

2π

∫︂ ∞

0

Sth
x (ω)dω = ⟨x2

th⟩

=
kBT

meffΩ2
0

.

(2.40)

and

Sth

2π

∫︂ ∞

0

|χmech(ω)|2dω =
Sth

4Ω2
0m

2
effΓ

, (2.41)

where the solution to the integral in equation equation (2.41) is given in reference

[38]. Equating equations (2.40) and (2.41) and solving for Sth, we find

Sth = 4kBTmeffΓ, (2.42)

the well-known equation for thermal forces acting on a mechanical resonator. For the

use of mechanical resonators as force sensors, Sth represents a fundamental limit on
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the force sensing ability of a mechanical resonator, which will be further explored in

Chapter 3.

2.2.5 Thermomechanical calibration

We can use the thermal forces acting on the cantilever to calibrate the measurement

system of mechanical motion in a way that is completely agnostic to the measurement

technique. All we require is that the measurement technique operates linearly and is

able to resolve the thermomechanical motion of the mechanical device.

For this exercise we will assume the measurement system is outputting a voltage

proportional to the mechanical resonator’s position, that is

v(t) = αtmx(t), (2.43)

where αtm is the gain of the measurement system with units of V/m. The goal of

thermomechanical calibration is to determine αtm such that a voltage reading can be

converted to a position reading of the mechanical resonator.

To perform the calibration, we will measure the thermomechanical motion of the

mechanical resonator and compute the power spectral density of the voltage signal

to investigate in the frequency domain. We will assume the measured voltage PSD

to be the addition of white noise from the measurement system and the transduced

mechanical signal:

Sv(ω) = Snf
v + α2

tmS
th
x (ω), (2.44)

where Snf
v is the voltage noise floor density, which can be approximated as constant

across frequency for a small frequency range of measurement. Substituting in the

thermal displacement noise from equation (2.39), we get

Sv(ω) = Snf
v + α2

tmS
th
F |χmech(ω)|2, (2.45)
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or more explicitly,

Sv(ω) = Snf
v + α2

tm

4kBTΓ

meff

1

(Ω2
0 − ω2)2 + Γ2ω2

. (2.46)

This equation can be fit to the measured voltage PSD of thermomechanical motion

to extract the resonator frequency (Ω0), dissipation (Γ), voltage noise-floor (Snf
v ), and

combination of α2
tmT/meff . Provided the temperature (T ) of the device is known,

and the effective mass (meff) has been determined as described in Section 2.2.2, this

fitting procedure provides determination of the measurement gain αtm.

2.3 Theory of optomechanical systems

Now that we have developed a theory for how optical and mechanical resonators both

can be modelled independently, we will begin discussing the combination of optical

and mechanical resonators together as a coupled optomechanical system. Combining

the optical Hamiltonian from equation (2.1) with the mechanical resonator energy

from equation (2.22), we find the combined (and still uncoupled) system Hamiltonian

H = ℏω0

(︃
â†â+

1

2

)︃
+

p2

2meff

+
meffΩ

2
0

2
x2. (2.47)

The coupling of mechanical systems to optical systems is expressed as a modifica-

tion of the optical resonance frequency to depend on the position of the mechanical

resonator x:

ω0 → ω0(x), (2.48)

where we are assuming the mechanical oscillator moves much slower than the fre-

quency of the optics such that the optical resonance frequency smoothly follows the

mechanical resonators position. Without loss of generality, this dependence on x can
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be expanded around x = 0 to find

ω0(x) = ω0(0) +

(︃
∂

∂x
ω0(x)

)︃
x+

(︃
1

2

∂2

∂x2
ω0(x)

)︃
x2 + ...+

(︃
1

n!

∂n

∂xn
ω0(x)

)︃
xn. (2.49)

We can group these coefficients such that

ω0(x) = ω0(0)−G1x−G2x
2 − ...−Gnx

n, (2.50)

where we call Gn the nth order optomechanical coupling coefficient. Most commonly,

the expansion is truncated after the first coefficient and G1 (or just G) is referred to

as the optomechanical coupling coefficient. In Chapter 4 we will further explore the

effect of second-order optomechanical coupling using the same basic theory developed

here.

Keeping only the linear optomechanical coupling, i.e. ω0 → ω0 −G1x, the Hamil-

tonian in equation (2.47) becomes

Hom = ℏ
(︁
ω0 −G1x

)︁(︃
â†â+

1

2

)︃
+

p2

2m
+

meffΩ
2
0

2
x2. (2.51)

And further retaining only terms that depend on both the optical and mechanical

resonator, we can find the interaction Hamiltonian,

Hint = −ℏG1xâ
†â. (2.52)

Although we won’t explore it further, it is worth pointing out that if we express x in

terms of its raising and lowering operators, x = xzpf(b̂
†
+b̂), where xzpf =

√︁
ℏ/2meffΩ0,

the interaction Hamiltonian becomes

Hint = ℏG1xzpf

(︁
b̂
†
+ b̂

)︁
â†â

= ℏg0
(︁
b̂
†
+ b̂

)︁
â†â,

(2.53)

20



where we have introduced g0 = xzpfG1 as the fist-order optomechanical coupling rate.

This rate, expressed in units of Hz—as opposed to G1, which has units of Hz/m—

expresses a more fundamental coupling between single phonons and single photons

in the mechanical and optical resonators, and it helps normalize the comparison of

optomechanical coupling between mechanical devices which can differ in effective mass

and frequency by many orders of magnitude.

2.3.1 Optical transduction in the bad-cavity limit

Here we will develop a theory of the optical transduction of mechanical motion that

is mediated via the optomechanical interaction. Rather than perform the standard

optomechanical linearization of the interaction Hamiltonian about small fluctuations

in the cavity field [39], we will develop an approximation to the optical equations

of motion that relies upon the optomechanical device being in the bad cavity limit,

where the mechanical resonance frequency is much smaller than the optical loss rate,

or Ω0/κ ≪ 1. In the devices studied in this thesis, Ω0/2π ∼ 106 and κ/2π ∼ 109,

such that Ω0/κ ∼ 10−3, well within this limit.

To begin, we will restate the optical equations of motion determined in equation

(2.7). However, we will do so in the rotating-wave frame of reference, effectively

multiplying the entire equation by eiωt, such that the drive and response both happen

at DC (s(t) → s̄). In doing so, we also must change the ω0 dependency to ∆(x) =

ω−ω0(x), explicitly noting that it is a function of the mechanical resonator position,

x, due to the optomechanical coupling. After these transformations we find

ȧ = −κa+ i∆(x)a+
√
2κes̄. (2.54)

Now, we will make the approximation ȧ = 0. This approximation is motivated by

the fact that since s̄ is constant in the rotating frame, the only time-varying driving

21



term in the above equation is ∆(x). However, we know ∆(x) changes on a time-scale

of 1/Ω0, while the optical resonator will relax into its steady state at a time scale of

1/κ. Due to being in the bad-cavity limit (Ω0/κ ≪ 1), we can therefore treat the

optical resonator as always being relaxed to its steady state solution. In this case we

find

a(x) =

√
2κes̄

κ

1

1− iδ(x)
, (2.55)

and equivalently for the energy (mean photon number) in the resonator, n = |a|2,

|a|2(x) = 2κes̄
2

κ2

1

1 + δ2(x)
. (2.56)

In these equations, we have introduced the normalized detuning, δ(x) = ∆(x)/κ,

which we can explicitly include first-order optomechanical coupling from equation

(2.50) as

δ(x) = δ0 +
G1

κ
x, (2.57)

where δ0 = (ω − ω0)/κ is the low-frequency normalized detuning due to the drive

laser frequency.

We can now linearize |a|2(x) by treating the optomechanical modulations to δ(x)

as small perturbations. If we define the unitless Lorentzian dependence in equation

(2.56) as c0(δ) = (1 + δ2)−1, we can approximate for small modulations u around δ0:

c0(δ0 + u) =
1

1 + (δ0 + u)2
(2.58)

c0(δ0 + u) = c0(δ0) + c1(δ0)u+O(u2) (2.59)
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where

c0(δ) =
1

1 + δ2
, (2.60)

c1(δ) = − 2δ

(1 + δ2)2
, (2.61)

ci(δ) =
1

i!

di

dδi
c0(δ). (2.62)

In Chapter 4 we will explore the effect of higher order terms, however for now we will

focus on the linear transduction of x. Treating u = G1x/κ and expanding equation

(2.56) for small u, we find the cavity energy dependence on x as

|a|2(x) = 2κes̄
2

κ2

(︃
c0(δ0) +

G1

κ
c1(δ0)x

)︃
, (2.63)

where the ci(δ0) are unitless functions of the DC laser detuning, δ0.

We can substitute the results of equation (2.63) into equation (2.12), the signal

detected by direct detection of the transmitted light on a photodetector, to find

|z(x)|2 = s̄2 − 4κeκ0s̄
2

κ2
c0(δ0)−

4κeκ0s̄
2G1

κ3
c1(δ0) x. (2.64)

We can see the detected signal exhibits the laser-detuning-dependent, Lorentzian-

shaped dip in transmission expected for an optical resonator, but with an additional

term proportional to the mechanical resonator’s position. We will call this linear

dependence on x the optomechanical gain, or

α(δ0) =
4κeκ0s̄

2G1

κ3
c1(δ0). (2.65)
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2.3.2 Extraction of G1

In Section 2.2.5, we described how to use thermomechanical calibration to find the

gain of an arbitrary mechanical measurement system. If the measurement system is

a directly detected optomechanical transducer as described in the previous section

(which reads optical watts instead of a voltage), the measurement gain determined

through thermomechanical calibration is the same as the optomechanical gain given

in equation (2.65). Therefore if the optical resonance is characterized such that the

optical loss rates κe and κ are known, as well as the detuning of the laser during

measurement, δ = ∆/κ, the thermomechanically determined gain and equation (2.65)

can be equated to extract G1.

Alternatively, we can express this procedure in slightly more general terms. Going

back to assuming a voltage output from our measurement system, thermomechani-

cal calibration will find the displacement-voltage gain, αtm = dv/dx. Examining the

optomechanical detection mechanism, the displacement to voltage transduction can

be divided into two steps, displacement to optical cavity frequency (ω0) shifts, and

ω0 to transmission (voltage) transduction. Therefore, with help of the chain rule,

dv/dx = (dv/dω0)(dω0/dx). Here dω0/dx is the optomechanical coupling coefficient

G1. By calculating the slope of optical transmission vs. laser frequency at the fre-

quency of light used to detect the mechanical signal, dv/dω0 can be determined,

enabling calculation of G1.

2.3.3 Optical effects on mechanics

In addition to the mechanical motion affecting the optical field, the optical field also

affects the motion of the mechanical resonator. We can find the optomechanical force

applied to the mechanical resonator from the optomechanical interaction Hamiltonian
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in equation (2.52). The force, Fom = −∂Hint/∂x, is

Fom = ℏG1|a(x)|2. (2.66)

We can use our approximation in equation (2.63) for the cavity energy in the bad-

cavity limit, however with one slight addition: we will use the cavity energy based on

the mechanical resonator’s position delayed in time by some small amount τ ∼ 1/κ,

Fom(t) =
2ℏκeG1s̄

2

κ2
c0(δ0) +

2ℏκeG
2
1s̄

2

κ3
c1(δ0) x(t− τ). (2.67)

This optomechanical force contains a DC component—manifesting as a constant offset

to the mechanical resonator’s position—and the term proportional to the slightly

delayed mechanical position. Since we are concerned with the dynamical behavior

of the cantilever, we will neglect the constant force (for the devices studied in this

thesis this force is on the order of nanonewtons, resulting in static displacements of

less than a nanometer), and introduce

β(δ0) =
2ℏκeG

2
1s̄

2

κ3
c1(δ0) (2.68)

as the optomechanically induced force, having units of N/m. We can introduce this

optomechanical force into the mechanical equations of motion from equation (2.31)

to find

ẍ(t) + Γẋ(t) + Ω2x(t) =
β(δ0)

meff

x(t− τ) +
F (t)

meff

, (2.69)

where F (t) is an additional driving term which will at least include the uncorrelated

thermal forces. We will Fourier transform this equation, but first let us inspect the

Fourier transform of x(t− τ). Using properties of the Fourier transform, a time delay
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will result in

F
{︁
x(t− τ)

}︁
= e−iωτX(ω) (2.70)

= cos(ωτ)X(ω)− i sin(ωτ)X(ω). (2.71)

We can make two approximations. First, since X(ω) is centered around Ω0 to a fairly

narrow bandwidth of Γ, we will take ω → Ω0. Then, since τ ∼ 1/κ, small angle

approximations to the sine and cosine terms simplify to

F
{︁
x(t− τ)

}︁
≈ X(ω)− iΩ0τX(ω). (2.72)

Thus we can see the effect of adding a small delay of τ to the forcing term: the in-phase

component of X(Ω) remains unchanged, but a small out-of-phase term appears.

With this result we can Fourier transform equation (2.69), collecting all the terms

proportional to X(ω) on the left-hand side, to find

[︃
Ω2

0 −
β(δ0)

meff

− ω2 + i

(︃
Γ +

Ω0τβ(δ0)

meff

)︃]︃
X(ω) =

F (ω)

meff

. (2.73)

From this equation we can see that the optomechanical back-action terms can be

treated as an effective shift in mechanical resonance frequency and damping:

Ω2
eff = Ω2

0 −
β(δ0)

meff

, (2.74)

or for small perturbations,

Ωeff = Ω0 −
ℏκeG

2
1s̄

2

meffΩ0κ3
c1(δ0), (2.75)

and

Γeff = Γ +
2ℏκeG

2
1s̄

2Ω0τ

meffκ3
c1(δ0). (2.76)
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In Chapter 4, we will revisit the optomechanical spring effect and include higher-order

effects resulting from G2 optomechanical coupling and further expansions to equation

(2.63) to include additional c2(δ) dependence.
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Chapter 3

Multidimensional optomechanical

cantilevers for high frequency force

sensing 1

3.1 Introduction

The atomic force microscope (AFM) [40], has become an indispensable tool for prob-

ing the physical characteristics of microscopic systems. Working by Hooke’s Law,

F = −kx, the tip of the AFM (measured at position x) is displaced proportional to

an applied force, F , transducing forces into a detectable signal. This effect has been

used to great effect for surface imaging, where interatomic forces between an AFM

tip and substrate are measured as raster images of the surface structures down to the

atomic scale [41] and beyond [42]. The ability to use AFMs in liquid environments [43]

has led to their widespread use in biological applications [44], such as live imaging of

biological specimens [45], and non-scanning applications like studying receptor-ligand

binding of surface proteins [46] and deciphering the mechanics of proteins through

1This chapter has appeared in “Multidimensional optomechanical cantilevers for high frequency
force sensing” [22]

28



unfolding experiments [47, 48]. For applications such as these where it is desirable to

monitor the dynamics of the system with great time resolution, the bandwidth of the

measurement process becomes critical.

High-speed AFM, the use of MHz frequency resonators [49], has enabled the dy-

namics of molecular systems to be visualized at speeds of up to 80 ms for a 50× 100

pixel image [50]. This technology has permitted the real-time imaging of individual

motor proteins [50], proteins diffusing and interacting in lipid bilayers [51], and the

folding of synthetic DNA origami structures [52]. When operated dynamically [53],

the maximum time resolution of the measurement is limited by the frequencies of

the structural modes of the cantilever. In the simple harmonic approximation, these

frequencies are Ω0 =
√︁
k/meff , where k and meff are the spring constant and effective

mass of a particular mode, as described in Section 2.2.2 [21]. Therefore AFMs with

small masses, or large spring constants, grant access to the regime of large bandwidth

and exceptional time resolution through increased mechanical frequencies.

The force sensitivity of a mechanical resonator is limited by the thermal forces

acting on the resonator. From the fluctuation-dissipation theorem these forces have

spectral densities

Sth
F = 4kBTmeffΓ (3.1)

= 4kBT
meffΩ

Q
(3.2)

= 4kBT
k

ΩQ
, (3.3)

where kB is the Boltzmann constant, T is the bath temperature, and Q = Ω0/Γ is the

mechanical quality factor [54]. With this equation in mind, the thermal noise on a

force sensor can be minimized in two general ways: by reducing the spring constants

of the devices, or by reducing the effective masses. Single-crystal silicon cantilevers

with low spring constants (10−6 N/m) have long since demonstrated aNHz−1/2 force
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sensitivities at cryogenic temperatures [55]. However, the small k results in lowered

mechanical frequencies, limiting the time resolution of the measurements. On the

other hand, reducing the effective masses of resonators typically increases their me-

chanical frequencies. Further, small dimensions lessen the effect viscous damping has

on the reduction of the mechanical Q [56], and thus reduce thermal forces. Therefore

minimizing the dimensions, andmeff , grants access to the regime of both delicate force

sensing and exceptional time resolution through increased mechanical frequencies.

Today’s nanofabrication tools, in particular electron beam lithography (EBL),

allow for the design of mechanical resonators with nanometer dimensions and effec-

tive masses of picograms or less. Nanomechanical resonators described by Li et al.

have demonstrated room temperature force sensitivities of 510 aNHz−1/2 in vacuum

and 1300 aNHz−1/2 in air [26]. Using a stressed silicon nitride resonator to pro-

vide large mechanical quality factors, Gavartin et al. have demonstrated a vacuum

room temperature force sensitivity of 74 aNHz−1/2 [54]. Deserving special mention

are bottom-up fabricated force sensors using carbon nanotube resonators [57, 58],

and silicon nanowires [59], which owing to their tiny effective masses (∼ 10−20 kg)

have demonstrated unprecedented force sensitivity approaching the zNHz−1/2 level

at cryogenic temperatures [58]. Since the original preparation of this chapter, SiN

trampoline resonators have demonstrated force noise to below 20 aNHz−1/2 [60], while

top-down fabricated graphene resonators have shown force noise to 16 aNHz−1/2 [61].

The force sensing ability of an AFM is dependent on the properties—meff , Ω0,

Qmech (geometry, material)—of its mechanical resonator. However, to perform mea-

surements with the AFM, a detection method is required to observe the motion of

the resonator. While AFMs generally gain better force sensitivity as dimensions are

decreased, the task of detecting the displacement of the resonator becomes more

challenging. Two common methods to detect the displacement of a cantilever are re-

flecting a laser beam off the cantilever onto a position sensitive photodetector, termed
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optical beam deflection (OBD), or recombining the reflected beam interferometrically.

However, as mentioned in Chapter 1, these detection methods scale poorly as the di-

mensions of the nanomechanical devices fall below the spot size of the laser beam (≥

1 µm) [62], creating an effective limit on detectable cantilever sizes (and frequencies)

that has already been reached by modern nanomechanical resonators.

Cavity optomechanics [63, 64, 32] offers excellent displacement sensitivity while

being well suited for nanoscale devices. By spatially localizing optical cavity modes

with a mechanical resonator, motional degrees of freedom are coupled to frequency (or

phase) shifts of the optical modes. These frequency shifts can be carefully monitored,

demonstrated by experiments measuring the imprecision in the motion of nanome-

chanical resonators to the standard quantum limit (SQL)—the theoretical noise floor

of a continuous measurement determined from dynamical back-action and photode-

tector shot noise [65].

3.2 Results and discussion

Here, three sizes of low mass, MHz frequency, optomechanical devices suited to AFM

applications are presented. They consist of cantilever-style nanomechanical resonators

coupled to the whispering gallery modes of optical microdisks and are commercially

fabricated from a 215 nm thick silicon layer of a silicon-on-insulator (SOI) wafer,

ensuring simple fabrication with automatic and reproducible optomechanical cavity

formation. For fabrication details see Appendix A.1. The cantilevers have lengths of

8, 4, and 2 µm, and are on average 400 nm wide, broadening towards the end to al-

low functionalization without compromising the optical cavity quality (Qopt∼ 3× 104

for 20 µm diameter disk). They couple to disks of 20, 10 and 5 µm diameter, re-

spectively. Scanning electron microscopy (SEM) images and finite element method

(FEM) simulations of the first three structural modes of the 8 µm long cantilever are
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Figure 3.1: (a) SEM image of the optomechanical device with a 20 µm diameter
optical microdisk evanescently coupled to an 8 µm long cantilever. Coordinates are
aligned such that x̂ is parallel to the axis of the cantilever, ŷ points along in-plane mo-
tion of the cantilever, and ẑ points out-of-plane. (b) 10 µm disk, 4 µm cantilever and
(c) 5 µm disk, 2 µm cantilever; scale bars 5 µm on all panels. (d)-(f) FEM simulations
reveal the first three modes of the 8 µm long cantilever as an example: an out-of-plane
mode, an in-plane mode and a second out-of-plane mode. Mechanical modes of the
shorter cantilevers are similar. Color scale indicates relative displacement.

shown in Figure 3.1. Devices are measured both in vacuum (10−5 torr) and air to

investigate force sensitivities in different environments. We envision single-molecule

force (folding/unfolding) experiments as the ideal AFM application for these devices,

as this would not degrade the optical Q of micro disk due to a sample, nor would a

separate tip need to be attached.

To measure the motion of our device’s cantilever, single-mode light from a tun-

able diode laser (New Focus TLB-6330, 1550-1630 nm) is passed through a dimpled,

tapered optical fiber [66] placed on the top edge of the optical microdisk opposite

to the mechanical device using three-axis nanopositioning stages (Figure 3.2b). By

slightly detuning the laser from an optical resonance of the disk, modulations in the

frequency of the optical modes induced by the movement of the mechanical resonator

are transduced to a voltage signal from a photodetector (PD) measuring the transmis-

sion through the tapered fiber. A lock-in amplifier (Zurich H2FLI) is used to measure

the high-frequency spectral density of the PD voltage (SV ), which is then thermome-

32



FPCVOATunable
Diode Laser

Vacuum
Chamber

90%

LPF

computer

1550 1560 1570 1580 1590 1600 1610 1620 1630
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 T
ra

ns
m

is
si

on

0.0

0.1

0.2

0.3

Pe
ak

 S
ig

na
l (

V)

1630.7 1630.8 1630.9
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 T
ra

ns
m

is
si

on

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
ak

 S
ig

na
l (

V)

(c)(b)(a)

(d)

Figure 3.2: (a) Schematic of experimental setup (VOA - variable optical attenuator,
FPC - fiber polarization controller, HPF - high pass filter, LPF - low pass filter, PD
- photodiode). (b) Optical image of a dimpled, tapered fiber placed on a 10 µm
diameter disk opposite an 8 µm long cantilever; scale bar 20 µm. (c) Transmission
(normalized to transmission in the absence of coupling) through the tapered fiber
(black), while simultaneously locked-on to the out-of-plane mode (light blue) and the
in-plane mode (yellow), reveals the maximum peak signal occurs slightly detuned
from the optical resonance, approximately corresponding to the maximum slope of
the transmission [33]. (d) Scanning the entire frequency range of the tunable laser
reveals optical resonances that provide maximum signal.

chanically calibrated to displacements of the cantilever’s tip using meff determined

from FEM simulations [21].

In all cases, peaks in the voltage spectral density corresponding to thermodynamic

actuation of the fundamental out-of-plane mode were visible, but when measured in

vacuum the in-plane modes, and the second out-of-plane mode of the 8 µm cantilever

(Figure 3.1f), were additionally visible. Actuation using a broadband longitudinal

piezo buzzer revealed that the lowest-frequency mode was more efficiently actuated,

resulting in its identification as the out-of-plane mode. However, as piezo buzzers

will shake the entire mechanical system, potentially activating orthogonally moving

modes, we cannot be completely sure of mode identification.
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When calculating the effective mass of the cantilevers through FEM simulation,

dimensions where extracted from SEM images of the cantilevers. For the most critical

dimensions—the thinnest widths of the cantilevers—we estimate maximum errors in

dimension of 30%. When comparing frequencies estimated from FEM simulations to

frequencies of the measured modes, we find less an average error of 28%. From this

we can limit the error in effective mass, and therefore the displacement noise floor

and force noise sensitivity, to 30%.

With this estimation of error in mind, displacement noise floors of 2.0 ± 0.6

fmHz−1/2 were observed for the out-of-plane motion of the 4 µm cantilever, equivalent

to the best noise floors observed using traditional AFM detection methods [30, 31],

yet for these radically smaller, lighter, and higher-frequency cantilevers.

The small displacement noise floors achieved with these devices are a result of

the efficiency with which displacements of the cantilever are transduced into fre-

quency changes in the optical disk, coupled with the narrow line-widths of the optical

resonances. This efficiency can be described to first order by the optomechanical

coupling coefficient, G1 = dω0/dz, where ω0 is the optical cavity frequency. The

small gap between the cantilever and the optical microdisk (≈ 130 nm) enables good

optomechanical coupling. In addition, the cantilevers curve with the microdisk to

optimize G1 by increasing overlap between the optical whispering gallery modes and

the cantilever’s motion (Table 3.1). In all devices, the out-of-plane motion of the

cantilever had considerably better optomechanical coupling than the in-plane mo-

tion, resulting in the difference in displacement noise floors between Figures 3.3a and

3.3c, the spectral densities of the 8 µm cantilever’s two first modes. The apparent

symmetry of the out-of-plane motion might suggest a small linear optomechanical

coupling for the out-of-plane mode, however slanted sidewalls of the devices due to

fabrication (Figures 3.4a, 3.4b), the placement of the dimpled fiber touching the top
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Figure 3.3: (a) A peak in the displacement noise density,
√
Sz, corresponding to

out-of-plane motion of the 8 µm cantilever. The peak at higher frequency is the in-
plane mode.

√
Sz is fit to a superposition (blue) of the thermal noise of the cantilever

(
√︁

Sth
z , red dashed) and a constant measurement noise, the displacement noise floor

(
√︁

Snf
z , green). (b) By dividing

√
Sz by the force susceptibility, |χ(ω)|, the measured

force noise density,
√
SF , can be obtained. (c)

√︁
Sy and (d)

√
SF , corresponding to

the 8 µm cantilever’s in-plane plane mode, and (e), (f) second out-of-plane mode. In
all cases

√
SF is limited by thermal forces when at the cantilever resonance frequency

and limited by detector noise off-resonance. (g)
√
Sz, and (h)

√
SF of the 4 µm

device’s out-of-plane mode are dominated by thermal noise across a wide frequency
range due to the low optomechanical detection noise floor. Shown in light brown
are

√
Sz and

√
SF in air, with corresponding fits in dark brown.

√︁
Snf
z in air agrees

with that in vacuum, but
√︁

Sth
F is limited to 2 fNHz−1/2 due to the viscous damping,

compared with 180 aNHz−1/2.

of the optical disk introduce sufficient asymmetries, or even incorrect identification

of mechanical modes explain the large linear optomechanical coupling observed [33].

The linear susceptibility, χ(ω) = z(ω)/F (ω), relates displacements of the can-

tilever’s tip, z(ω), to applied forces, F (ω). By dividing the measured displacement

spectral density by |χ(ω)|2, the observed force spectral density can be found (Figure

3.3b, d, f, and h). The thermal forces on the cantilever impose a minimum force

sensitivity, and in all cases in which the thermomechanical motion of the cantilever

was detected, the total force noise reached a minimum at the cantilever resonant

frequency equal to the thermal noise, Sth
F . In vacuum, both the in-plane and out-of-
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Figure 3.4: (a) Tilted SEM image of a device with a 4 µm cantilever; scale bar 500
nm. Side walls have a slope of approximately 10o from vertical, creating asymmetries
in the optomechanical coupling. (b) FEM simulation of an optical mode in cylindri-
cally symmetric coordinates. Color bar indicates the relative log magnitude of the
electric field. (c) The blue-detuned laser power going into the tapered fiber to detect
the 4 µm device causes stiffening of the cantilever. The frequency of the out-of-plane
motion increased by ∼ 0.1%, while the in-plane motion showed negligible effect due
to its ∼ 100× smaller G1, Table 3.1. Errors in Power and Frequency shift are similar
to the marker size. The optomechanically induced frequency shift of the cantilever
is dependent on the wavelength of light used to detect the device’s motion and the
maximum positive frequency shift is plotted. (d) An example measurement of the
voltage spectral density measured as the laser is scanned towards larger wavelengths.
Darker colors indicate larger spectral density (log scaled). The darkened data point
in (c) corresponds to the data shown in (d).

plane modes of the 8 µm cantilever, exhibited the best observed force sensitivity of

130 ± 40 aNHz−1/2, Figures 3.3b, 3.3d. However in air, the situation was reversed

and the 2 µm cantilever presented best force sensitivity of 1500 aNHz−1/2.

While the devices presented here don’t set a record for any individual metric, we

believe they provide an excellent candidate for carrying out force measurements in

certain regimes, namely the sensitive measurement of forces at room temperature and

atmospheric pressures. The smallest (meff = 50 ag) piezoresistively detected nanome-

chanical resonator of Li et al. [26] achieves a force sensitivity of 1300 aNHz−1/2, not

much smaller then the 1500 aNHz−1/2 achieved with our smallest device, but with

slightly less displacement resolution (39 fmHz−1/2) than with our optomechanical

detection mechanism (18 fmHz−1/2). Alternatively, the in-air, optomechanically de-
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tected, doubly clamped beam geometry of Srinivasan et al. [67] and Liu et al. [68]

achieve 10x better displacement noise floors, but fall short on force sensitivity (4400

aNHz−1/2 vs. 1500 aNHz−1/2).

Optomechanically detected silicon nitride resonators represent the best microma-

chined (i.e. not grown like carbon nanotubes [58] or silicon nanowires [59]) room-

temperature force-sensors reported in the literature [54, 60, 69, 70]. However, these

devices gain their force sensing ability from the high intrinsic (i.e. in vacuum) quality

factors of high-stress silicon nitride strings [56]. Since viscous dissipation mechanisms

present in air would likely dominate over the intrinsic vacuum dissipation mecha-

nisms, we imagine that at atmospheric pressure nanostrings would lose their quality

factor advantage, and because of the much larger meff of the strings (9 pg) versus the

devices presented here (0.14 pg), our devices may well achieve better force sensitivity.

Further, all three of the above compared force sensors were fabricated using electron

beam lithography. Devices presented in this chapter were fabricated at a commercial

foundry (IMEC) using deep UV lithography, a process much better suited to the com-

mercial fabrication of many such devices. We imagine EBL could be used to produce

optomechanically detected cantilevers similar to those presented here, but with meff

similar to those presented by Li et al., providing equivalent force sensitivities, but

with possibly better displacement noise floors.

While Sth
F was reached regardless of detector noise, low displacement noise floors

broadened the frequency range over which thermally limited force noise was observed

(e.g. Figure 3.3b vs. 3.3h). Therefore small displacement noise floors, while not re-

ducing the minimum force sensitivity, allow for larger bandwidth (faster) force mea-

surements.

Operating an AFM at low bath temperatures would reduce thermal noise on the

cantilevers, as described by the fluctuation-dissipation theorem. Accordingly, the best

force sensitivities have been reached on devices at cryogenic temperatures. Assuming
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Cantilever Length meff k Ω0/2π Q (air)
√︂
Snf
z,y (air)

√︁
Sth
F (air) G1

[µm] [fg] [N/m] [MHz] [fmHz−1/2 ] [aNHz−1/2 ] [MHz / nm]

2 out-of-plane 140 2.2 20.1 3,600 (120) 20 (18) 290 (1,500) 2,000
2 in-plane 180 3.3 21.4 5,000 120 280 340
4 out-of-plane 240 0.30 5.43 4,300 (35) 2 (3) 180 (2,000) 720
4 in-plane 260 0.48 7.04 4,400 300 200 6
8 out-of-plane 610 0.087 1.90 6,500 (22) 18 (17) 135 (2,300) 150
8 in-plane 610 0.11 2.18 7,800 390 132 7
8 2nd out-of-plane 610 13 23.2 5,600 55 510 57

Table 3.1: Measured parameters of investigated devices. Data is presented for
three optomechanical devices of varying size, but similar geometry (Figure 3.1), with
cantilevers approximately 2, 4, and 8 µm long. For each device at least two dif-
ferent mechanical modes were detected. Effective masses (meff) for each mode were
computed from dimensions measured with SEM, using FEM to determine the mode
shape [21]. Peaks were thermomechanically calibrated to extract Ω0, the cantilever’s
resonance frequency, Q, the mechanical quality factor in vacuum, and Snf

z , the dis-
placement noise floor. From these parameters we compute k, the mode’s spring
constant, and Sth

F , the spectral density of thermal forces on the cantilever imposing
a force sensing limit. When measured in air, the quality factors of the cantilevers
were reduced by viscous damping and only the out-of plane motion could be detected
thermomechanically. Smaller cantilevers exhibited the larger quality factors in air,
and smaller thermal forces, resulting in better force sensing ability—opposite to the
case in vacuum.

device parameters (meff , Ω, Qvac) remain constant across temperatures, a thermal

force noise of 3 aNHz−1/2 at 100 mK is expected to be detectable above the room

temperature displacement noise floors of the 8 µm cantilever’s out-of-plane motion.

This is comparable with the 0.5 aNHz−1/2 force sensitivity detectable by a conceptu-

ally similar superconducting microwave resonator [20], or the 0.8 aNHz−1/2 sensitivity

of kHz frequency cantilevers used for magnetic resonance force microscopy (MRFM)

[55]. Thus we propose optomechanically detected nanomechanical resonators are also

good candidates for low-temperature, high-frequency, precision force measurements.

While the optomechanical coupling allows readout of the cantilever’s position by

monitoring the optical resonator, the optical resonator provides radiation pressure

back-action on the mechanical device affecting its dynamics. Because the time scale of

optical cavity relaxation is much quicker than the mechanical response time τ ∼ 2π/Ω
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(i.e. quite unresolved sideband regime), the radiation pressure forces provide only an

optical spring effect, allowing the tuning of k to within ∼ 0.1% (Figure 3.4c), as

opposed to any optomechanical heating or cooling [71].

3.3 Conclusion

Optomechanical AFMs provide the path to ultra-sensitive molecular force probe spec-

troscopy, HS-AFM, and other AFM applications. By comparing three different sized

force sensing devices, we have demonstrated a trade off in force sensing ability be-

tween low spring constant and low effective mass devices depending on the applica-

tion of interest: the larger, low spring constant device provided best force sensing in

vacuum, but the smaller devices excelled in a viscous environment. We have demon-

strated optomechanical detection of sub-picogram effective mass multidimensional

AFM cantilevers that are commercially fabricated, with displacement noise floors

down to 2.0 ± 0.6 fmHz−1/2, and 130 ± 40 aNHz−1/2 force sensitivity in vacuum

at room temperature. Challenges remain, including selective attachment of relevant

molecules, yet we envision that extension of the devices presented here to aqueous

environments will open new doors in high-speed, high-resolution molecular force mea-

surements.
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Chapter 4

Nonlinear optomechanics in the

stationary regime 1

4.1 Introduction

Cavity optomechanics has resulted in new levels of extremely precise displacement

transduction of nanomechanical resonators [73, 64, 74]. This precision has reawakened

interest in exploring the quantum limits of measurements of mechanical harmonic

oscillators [75, 76, 77], first discussed in the context of gravitational-wave antennas [78,

79, 80]. Recent quantum measurements of cavity optomechanical resonators include

dynamical back-action cooling to their quantum ground state [81, 82], quantum state

preparation and read-out [83], observation of motional sideband asymmetry [84, 85],

and entanglement of an itinerant photon with a cavity phonon [86].

One of the most fundamental, and as of yet unattained, quantum measurements of

a nanomechanical resonator that could be performed is that of the quantized energy

eigenstates (as has been demonstrated with an electron in a cyclotron orbit [87]).

To achieve this measurement, one cannot measure the displacement of the resonator,

1This chapter has appeared in “Nonlinear optomechanics in the stationary regime” [72]
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but instead must measure the energy directly – without affecting subsequent measure-

ments of the energy – a so-called quantum non-demolition (QND) measurement [19].

QND measurement of phonon number has applications in thermometry [87], prepa-

ration and readout of states for quantum information processing, and macroscopic

studies of quantum decoherence [88, 89].

The accuracy in continuously measuring two conjugate quantities is limited by

the Heisenberg uncertainty principle to the standard quantum limit (SQL) [19, 90].

However, performing a measurement on only one conjugate observable that commutes

with itself at later times imposes no such limit on measurement precision [18, 91, 92,

93, 94]. In the case of a harmonic oscillator, position and momentum do not commute

with themselves at all later points in time and continuous measurements are therefore

limited to the SQL, however resonator energy and the real or imaginary part of the

complex amplitude are QND compatible observables at all times [18, 19].

Here our interest lies in continuous QND measurement of the energy, or the num-

ber of phonons, in a mechanical resonator [95]. In an optomechanical system, this

measurement is expected to be possible by having strong second-order optomechani-

cal coupling in the interaction Hamiltonian [96, 97, 98, 99]. Second-order coupling has

been demonstrated in membrane-in-the-middle Fabry-Pérot cavities [100, 101, 102],

however it has been pointed out there remains first order coupling between the two

optical modes, possibly preventing QND measurements [103]. Exceptionally strong

second-order coupling has been observed in a double disk optomechanical system

[104]. Since the original preparation of this work, nonlinear optomechanical coupling

has been observed in optomechanical “paddle” resonators [105], tunable optomechan-

ical photonic crystal cavities [106] and levitated nanoparticles [107].

Signal from second-order optomechanical coupling, hence measurement of x2, will

display mechanical peaks at twice the fundamental frequency. However, we would also

expect that nonlinear transduction of the displacement of a mechanical resonator from
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a nonlinear optical transfer function would also appear at harmonics of the mechanical

resonance frequency, as has been observed [108, 109, 110].

In this chapter, we report observation of peaks in the mechanical power spectra

at exactly twice the fundamental mechanical frequency, as shown in Figure 4.1. We

derive a model for the origin of the harmonic signal, as well as the optical spring

effect, from both linear and quadratic optomechanical couplings as a function of laser

detuning from the cavity resonance. We develop a framework for understanding non-

linear optomechanical transduction mechanisms by using the detuning dependance of

the linear and quadratic mechanical signals.

Using this framework, we are thus able to determine the coupling contributions to

the nonlinear optical transfer function and find second-order optomechanical coupling

of ∼MHz/nm2, comparable to initial membrane-in-the-middle systems [100], although

second-order coupling up to GHz/nm2 has since been observed [101].

4.2 The optomechanical system

The optomechanical cavity being measured is a nanocantilever with effective mass

m = 240 fg and frequency Ω0/2π = 6 MHz, as described in Chapter 3, fabricated

on-chip to be in the evanescent field of an optical microdisk. The Hamiltonian for

independent optical and mechanical cavities can be written Ĥ = Ĥopt + Ĥm, where

Ĥopt = ℏω0

(︁
â†â+ 1/2

)︁
and Ĥm = ℏΩ0

(︂
b̂
†
b̂+ 1/2

)︂
are the Hamiltonians of the

optical and mechanical resonators. Here we denote ω0 and Ω0 as the optical and

mechanical cavity resonance frequencies, and â† (b̂
†
) and â (b̂) are the creation and

annihilation operators for photons (phonons). We note that since we will be extending

our discussion to the classical regime where the number of quanta in the resonator is

large, we will ignore the ground state contribution to the resonators’ energies.
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Being within the optical mode volume, the mechanical resonator’s motion is cou-

pled to the optical cavity resonance frequency through shifts in the effective index

of refraction. As described in Section 2.3, this coupling can be described to second

order as

ω0 → ω0 −G1x̂−G2x̂
2, (4.1)

where G1 = −∂ω0/∂x and G2 = −(1/2)∂2ω0/∂x
2 are the first and second-order

optomechanical coupling constants. Therefore,

Ĥ int = −ℏ
(︁
G1x̂+G2x̂

2
)︁
â†â (4.2)

is the interaction Hamiltonian to second-order. For a device with symmetric out-of-

plane motion in a symmetric evanescent optical field, one anticipates second-order

optomechanical coupling, with first order coupling arising from asymmetries in the

motion or optical field [22].

4.3 Optical transduction

We measure the optical transmission through a tapered optical fiber coupled to the

optical resonator, Figure 4.1b, in the “tuned-to-slope” regime. As such, the classical

field in an optical cavity, a = ⟨â⟩, coupled to one input waveguide carrying field s̄e−iωt

and one output waveguide carrying away field z, when written in a frame rotating at

the source frequency ω, can be modeled with equation (2.54) as

ȧ = −κa+ i∆a+
√
2κe s̄, (4.3)

where a is normalized such that a∗a = ⟨n̂⟩ = n is the number of photons in the cavity,

κ = κ0+κe describes the total loss rate from the optical resonator both to the output

waveguide (κe) and elsewhere (κ0) [39], ∆ = ω − ω0 is the detuning of the source
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Figure 4.1: (a) The low frequency transmission (< 1 kHz) through the optical cavity
reveals the optical resonance as a tunable laser is scanned over the optical resonance
frequency. The line-shape is distorted due to nonlinear frequency shifts of the opti-
cal resonance as described in the text. (b) A schematic of the experiment above a
tilted scanning electron microscope (SEM) image of the optomechanical device be-
ing measured. PM - power meter, WM - wavelength meter, ADC - low frequency
analog-to-digital converter. PD - photodetector, FPC - fiber polarization controller.
Scale bar 5 µm. Transmission power spectral densities normalized to maximum sig-
nal around (c) 1Ω and (d) 2Ω. Frequency doubling indicates nonlinear transduction.
Log-scaled color bar spans from the minimum noise floor (100 in both) up to (c) 105.4

and (d) 101.
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laser frequency (ω) from the cavity frequency (ω0), and s̄2 is the incoming power in

photons per second. Remember that we have defined κ as the half width at half max

of the optical power resonance, such that the cavity energy rings down as e−2κt.

We restrict our analysis to the bad-cavity limit, or sideband unresolved regime

where κ ≫ Ω0 (for the device presented here κ/Ω0 ≈ 103), hence the optical fields

in the cavity reach steady state in a characteristic time τopt = 1/κ much faster than

the time scale of the mechanical motion (τm = 1/Ω0) [111, 112]. Following the

approximation made in Section 2.3.1 in which we set ȧ = 0, we find the number of

cavity photons, n = |a|2, as

n =
2κes̄

2

κ2

1

1 + δ2
, (4.4)

where δ = ∆/κ is the normalized laser detuning from the cavity resonance in units

of κ.

Again, as done in Chapter 2, we will Taylor expand the Lorentzian detuning

dependence of n, c0(δ) = (1 + δ2)−1, for small perturbations u around δ, except this

time keeping terms up to u2. We find

c0(δ) =
1

1 + δ2
, (4.5)

c1(δ) = − 2δ

(1 + δ2)2
, (4.6)

c2(δ) =
3δ2 − 1

(1 + δ2)3
, (4.7)

ci(δ) =
1

i!

di

dδi
c0(δ), (4.8)

plotted in Figure 4.2a, such that

n(δ + u) ≈ nmax[c0(δ) + c1(δ)u+ c2(δ)u
2], (4.9)
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Figure 4.2: (a) The ci coefficients are unitless, normalized functions which describe
the detuning dependence of the various optomechanical parameters. By comparing
the observed detuning dependence of mechanical spectra with the shape of these ci’s,
the origin of the effects can be determined. (b) Nonlinear effects due to large optical
power in the resonances create asymmetries in the detuning dependence. By adding
an additional power dependent detuning these nonlinear effects can be accurately
modeled [113], as described in the text.

where nmax = 2κes̄
2/κ2. Explicitly substituting the coupling of the mechanical motion

to the cavity detuning, as given by (4.1),

δ → δ +
G1

κ
x+

G2

κ
x2, (4.10)

and G1x/κ+G2x
2/κ as u (keeping terms to second-order in x) we find

n ≈ 2κes̄
2

κ2

[︃
c0 + c1

G1

κ
x+

(︃
c1
G2

κ
+ c2

G2
1

κ2

)︃
x2

]︃
, (4.11)

remembering ci are implicit functions of detuning. Substituting this approximation

for n = |a|2 into equation (2.12), the signal detectable on a photodetector is

Z ≈ s̄2 − 4κeκ0s̄
2

κ2

[︃
c0 + c1

G1

κ
x+

(︃
c1
G2

κ
+ c2

G2
1

κ2

)︃
x2

]︃
. (4.12)
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Equation (4.12) is the time-series representation of the optical transfer function

up to order x2, with three parts: one DC, one oscillating at 1Ω, and one oscillating

at 2Ω. This behavior can be seen by noting the DC dependence is simply

ZDC = s̄2 − 4κeκ0s̄
2

κ2
c0. (4.13)

This equation describes the optical resonance as a function of detuning, as seen in

Figure 4.1a which includes nonlinear effects distorting the symmetry of the resonance

that will be further discussed in Section 4.5. Fourier transforming equation (4.12) to

linear x and neglecting DC components, we find

Z1Ω(Ω) = −4s̄2
κeκ0

κ2

G1

κ
c1x(Ω), (4.14)

such that −4s̄2κeκ0G1c1/κ
3 is the linear, time-invariant part of the optical transfer

function—i.e. the optomechanical gain given in equation (2.65). Equation (4.14)

describes a typical optomechanical transduction of mechanical signal, as seen in Figure

4.1c.

The remaining nonlinear terms arise from the x2 dependence:

Z2Ω(t) = −4κeκ0s̄
2

κ2

(︃
c1
G2

κ
+ c2

G2
1

κ2

)︃
x2(t). (4.15)

Examining x(t) for the case of sinusoidal motion (i.e. taking Γ → 0 such that

there is no damping) demonstrates the quadratic nature of the spectra: x2(t) ≈

x2
0 cos

2 Ωt = x2
0/2 (1 + cos 2Ωt), mixing the x2 signal to Ω + Ω and Ω − Ω (DC).

Here we neglect the DC signal from the nonlinear transduction, as it will be much

smaller than the DC signal from the optical resonance. These three parts of the

optomechanical transduction will be fit to the experimental data to determine the

linear and nonlinear optomechanical couplings, G1 and G2.
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4.4 Mechanical back-action

While the optical cavity is interacting with the motion of the mechanical resonator,

radiation-pressure forces provide back action on the resonator’s momentum. These

forces can be found classically from the interaction Hamiltonian,

F = − ∂

∂x
Hint = ℏG1n+ 2ℏG2nx, (4.16)

equivalent to the forcing term found in equation (2.66) but including an additional

G2 term. Substituting in our perturbation for n from equation (4.11) and putting

these forces into the equations of motion for a thermally driven damped harmonic

oscillator while retaining only force components up to linear in x, we find

mẍ+mΓẋ + mΩ2
0x = Fth + ℏnmaxG1c0

+
2ℏκes̄

2

κ

(︃
G2

1

κ2
c1 + 2

G2

κ
c0

)︃
x, (4.17)

where Γ is the mechanical damping rate and Fth represents uncorrelated thermal forces

actuating the resonator. Collecting terms proportional to x, we see the radiation

pressure-forces shift the effective oscillating frequency of the resonator, Ωeff :

mΩ2
eff = mΩ2

0 −
2ℏκes̄

2

κ

(︃
G2

1

κ2
c1 + 2

G2

κ
c0

)︃
, (4.18)

or

Ωeff − Ω0 ≈ − ℏκes̄
2

mΩ0κ

(︃
G2

1

κ2
c1 + 2

G2

κ
c0

)︃
. (4.19)

Importantly, this optomechanical spring effect has dependence on both G1 and G2

– similar to the optomechanical transduction – yet has different dependence on de-

tuning, δ, providing a complementary determination of G1 and G2 (Figure 4.1c and

Figure 4.3d).
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4.5 Nonlinear effects on the optical resonator

The displacement transduction and optical spring equations given so far have detuning

dependence derived from the ci functions defined above, equations (4.5)–(4.8), which

have symmetric (c0, c2) or antisymmetric (c1) dependence on laser detuning. However,

the observed detuning dependencies (Figure 4.1a, c, d) are stretched towards negative

detuning as compared with ci. This effect can be described by a nonlinearity in the

optical resonance, whereby the cavity resonance frequency depends on the number

of circulating photons [113]. This effect can arise from the optical Kerr effect, or

from heating of the microdisk resonator causing changes in the index of refraction.

Following the work of Barclay et al. [113], only one additional parameter is needed,

δnl, which is a power dependent shift to the detuning. This nonlinear effect can be

described mathematically as

n =
2κes̄

2

κ2

1

1 + (δ + δnln)
2 , (4.20)

which can be numerically solved at each detuning for n. This shift in resonance

frequency, δnln, is added to the laser detuning to compensate for the asymmetric

shifts in resonance frequency. In Figure 4.2b we show example ci(δ + δnln) functions.

4.6 The experiment

To collect data, 1590 nm light from a tunable diode laser is transmitted through the

optomechanical cavity, coupled via a tapered-dimpled fiber [114, 115] touching the

microdisk, and collected on a photodetector. The photodetector signal was simul-

taneously measured with a low frequency analog-to-digital converter and a 50 MHz

digital lock-in amplifier performing heterodyne downconversion to allow low sample

rate measurements of the signal within a ∼ 60 kHz bandwidth of both the 1Ω and
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Figure 4.3: Quantitative signals extracted from Figure 4.1a, c and d, with respect
to laser detuning, δ: (a) DC optical resonance, (b) 1Ω signal, (c) 2Ω signal, and
(d) optical spring effect. Blue points in (b and c) are found by summing across the
mechanical bandwidth. Grey curves are simultaneous least squares fits to all four
signals as explained in the text.
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2Ω signals. The tunable laser was scanned across the optical resonance with ≈ 3.6

s of high frequency transmission data recorded for each detuning, while calibrating

laser drive frequency with an external wavelength meter. The power spectral densities

(PSDs) [21] of the 1Ω and 2Ω signals were estimated from Fourier-transforming the

time-series data [116], as shown in Figures 4.1c and 4.1d.

The signals at 1Ω and 2Ω were measured by integrating across the measured PSD

bandwidth and subtracting the contribution from the noise floor. The spectrally white

off-resonance noise floor was detuning-dependent, and extracted across both the 1Ω

and 2Ω signals. The 1Ω PSD was fit with a damped harmonic oscillator spectrum

[21], extracting values for Ωeff (Figure 4.1d) and Γ (Figure 4.5a) at each detuning.

The power going into the optomechanical cavity, 540 µW, was calibrated by mea-

suring the laser power before the tapered fiber with a power meter. The tapered fiber

was measured to have near-100% transmission when not coupling, and scattering

losses of 36% from touching the optical microdisk. These losses gave excellent agree-

ment to the photodetector’s received power and were used to determine s̄2 = 2.8×1015

photons per second.

A nonlinear least-squares fit was performed simultaneously to all four datasets

presented in Figure 4.3, that is, the three parts of the optomechanical transfer function

– DC optical resonance, mechanical signal at 1Ω and at 2Ω – as well as the optical

spring effect. From the fit, the following parameters were extracted: κ = 5.82± 0.02

GHz, κe = 0.42±0.01 GHz, δnlκ = 5.2±0.6 kHz/photon, G1 = 458±2 MHz/nm, G2 =

−1.0± 0.6 MHz/nm2, and Ω0/2π = 6015.3± 0.3 kHz. Errors are standard deviations

estimated from the fit covariance across a range of initial parameter configurations.

The least squares algorithm used is only guaranteed to have found a local minimum,

however it provides representative numbers and is in reasonable agreement with the

calculations for G1 done in Chapter 3 which found G1 = 720 MHz/nm [22].
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Figure 4.4: Dependence of the (a) 2Ω and (b) optical spring effect signals on the
second-order optomechanical coupling, G2. Here G2 transfers spectral weight between
detunings.
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Figure 4.5: Dynamical effects on the mechanical resonator from the optical cavity.
(a) The linewidth of the mechanical resonator is damped and then amplified as the
optical detuning is varied from negative (red detuning) to positive (blue detuning).
Curve is the theoretical mechanical linewidth using the parameters derived from the
nonlinear least squares fit. (b) The corresponding power spectral densities at three
detunings. The colors of the data correspond to the stars in panel (a), and are 349
K (red), 297 K (green) and 254 K (blue) [117].
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In the present device, the signal at 2Ω is dominated by the contribution to the

optomechanical transfer function from the curvature of the optical resonance, that is

the term proportional to c2G
2
1/κ

2. While this signal is a measurement of x2, it is not

appropriate for a QND measurement as the optical resonator continuously introduces

back action into the phase, creating uncertainty in x̂ at future times. Only the

contribution from G2 is pertinent to a QND measurement of the energy, and in order

to elucidate this contribution we show in Figure 4.4 the 2Ω signal and the optical

spring effect data with varying G2 while keeping all other parameters fixed. It is

interesting to note that while the sign of G1 is irrelevant, the sign of G2 is important.

Specifically, moving from negative to positive values of G2 shifts spectral weight as a

function of detuning.

We note that our optomechanical coupling constants G1 andG2 correspond respec-

tively to a single photon to single phonon coupling rate (G1xzpf) of 35 kHz, and a single

photon to two phonon coupling rate |G2x
2
zpf | of 6 mHz, where xzpf =

√︁
ℏ/2mΩ0 = 76.2

fm. As a minimum requirement, we expect that the single photon - two phonon cou-

pling rate should be larger than Γ (∼ 1.44 kHz) to make a continuous measurement

of the quantized energy states before decoherence—not satisfied with the present

device—although measurements of phonon shot noise may be possible with weaker

coupling [118]. Further requirements, such as minimizing thermal noise by requiring

the thermal phonon occupancy nth ≪ 1, would need to be met. This requirement

could be achieved through the combination of cryostat cooling of the thermal bath,

coupled with optomechanical cooling—which would require devices with a second

optical mode in the sideband-resolved regime [118]. Finally, the first-order optome-

chanical coupling would have to be minimized [119], and although not explored here,

dissipative coupling of the mechanical motion to the optical cavity loss rate κ would

prevent QND measurements of phonon number and therefore need to be minimized

as well [100].

53



4.7 Dynamical backaction

Finally, our stationary regime model does not account for dynamical back-action to

the mechanical spectrum [120, 121], as the optical resonance is always in its steady

state. Nonetheless, back-action from light-induced forces in the sideband unresolved

regime is expected [117, 39]. Analysis of the mechanical linewidth as a function of

detuning from the 1Ω signal (from Figure 4.1c) reveals non-negligible optomechan-

ical damping and amplification, presented in Figure 4.5. The theoretical curve for

optomechanical damping, using the fit parameters determined in Figure 4.3, is given

in Figure 4.5 with reasonable agreement [117, 39]. As a result the mechanical mode

is heated (cooled) from 297 K to 349 K (254 K).

4.8 Conclusion

Motivated by the search for experimentally realizable approaches to continuous QND

measurements of a nanomechanical resonator’s energy, we have developed a method to

separate nonlinear transduction of first order optomechanical coupling from second-

order optomechanical coupling. Both transduction mechanisms give rise to frequency

doubling in the mechanical spectrum, however the detuning dependence in both the

2Ω power spectrum and the optomechanical spring effect allow determination of the

optomechanical coupling constants. Fitting our experimental data to these models

reveals a second-order coupling, G2, of MHz/nm2. Future improvements – includ-

ing extension of this framework to the sideband resolved (non-stationary) regime,

and enhancing this second-order coupling, while eliminating the first order optome-

chanical coupling, through fabricating a fully symmetric device in both mechanical

motion and evanescent optical field – provide a route towards QND measurements

of phonon number, as well as exotic phenomena such as quantum superpositions of

nanomechanical resonators [122].
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Chapter 5

Silicon nitride nanostrings at

cryogenic temperatures

5.1 Introduction

Mechanical resonators fabricated from silicon nitride (SiN) have generated signifi-

cant interest as their intrinsic tensile stress results in abnormally high-quality factors

when operated in vacuum [56]. Silicon nitride membranes at cryogenic temperatures

have demonstrated quality factors of over 108 [123], while at room temperature SiN

trampoline resonators have demonstrated quality factors exceeding 107 [60, 69], and

more recently phononically engineered SiN nanobeams have demonstrated quality

factors of almost 109 at room temperatures [70]. These devices surpass the room-

temperature “quantum coherent” limit of Q× f > 6× 1012, suggesting SiN mechani-

cal resonators may find use in quantum applications without necessitating cryogenic

cooling [69, 70, 39].

At cryogenic temperatures, optomechanical cavities have been used with much

success to demonstrate quantum interactions such as entanglement [86, 124], optical

and mechanical squeezing [125, 126, 127, 128], and single phonon measurements [129,

55



130]. Integrating high-Q SiN mechanical elements in optomechanical cavities [64, 131]

has obvious upsides for quantum experiments [126], as well for low-noise force [54, 60]

and acceleration [132, 133] sensors.

Recent measurements of silicon [134, 135] and gallium arsenide [136] optomechani-

cal cavities at sub-Kelvin temperatures have demonstrated considerable heating of the

mechanics resulting from the optical measurement. Due to the large optical band gap

of SiN, we predict SiN optomechanical devices may produce less heating and therefore

be well-suited to optical measurements at these low temperatures. We present mea-

surements of optically induced heating at sub-Kelvin temperatures in an integrated

optomechanical cavity with the optical and mechanical resonator fabricated from a

single layer of high-stress silicon nitride.

5.2 Device and methods

The mechanical device studied here is a silicon nitride nanostring 16 µm long and

170 nm in width, fabricated from a 220 nm thick film of high-stress stoichiometric

LPCVD silicon nitride—for fabrication details see Appendix A.2. The string exhibits

two mechanical modes, an in-plane mode and an out-of-plane mode, both vibrating

at ∼ 14 MHz and having effective masses of 1.3 pg, as determined through finite-

element method (FEM) modeling of the mechanical modes. FEM modeling indicates

the in-plane mode exhibits a higher resonance frequency, which we used to provide

identification of the modes.

To enable optomechanical readout of the nanostring’s motion, the mechanical

resonator is fabricated 240 nm away from a 30 µm diameter optical microdisk (Qopt ∼

3.8 × 105), such that the mechanical motion is optomechanically transduced into

frequency modulations of the microdisk as described theoretically in Chapter 2, and

similar to the silicon cantilevers described in Chapter 3. To encourage optomechanical
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Figure 5.1: a) Schematic of the experimental setup used to take measurements.
Nominally 1550 nm laser light is conditioned with a variable optical attenuator (VOA)
and fiber polarization controller (FPC) before being modulated with an acousto-optic
modulator (AOM) to control on and off times of the laser with microsecond switching
times. A fiber circulator (FC) is used to collect the reflected signal from the device
which is measured on a digitizing photodetector (DPD). A digital waveform generator
(DIO) is used to send a digital waveform to the AOM and DPD for programming
pulse times and synchronization with data collection. b) An optical microscope image
of the fiber-coupled optomechanical device. Scalebar 50 µm. c) An image of the fiber-
coupled device mounted on the cold-head of a 400 mK 3He probe. d) and scanning
electron microscope (SEM) image of the mechanical resonator positioned next the
the optical microdisk. Scalebar 5 µm.

coupling between the nanostring and the microdisk, the mechanical resonator was

designed with an arc following π/6 radians of the microdisk circumference to increase

overlap of the optical mode’s evanescent field with the nanostring, as can be seen in

Figure 5.1d.

The nanostring and microdisk are fabricated 200 µm from the cleaved edge of

the wafer (see Appendix A.2 for details on how this was achieved), with a 1200 nm

wide waveguide coupled to the microdisk opposite the nanostring. The waveguide

tapers down to a width of 550 nm at the edge of the chip to provide matching of the
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waveguide mode’s effective index of refraction to the that of an optical fiber [131, 137],

such that a cleaved optical fiber can be positioned in-line with the waveguide to

provide coupling with the on-chip optics. Past the optical microdisk, the waveguide

is terminated with a photonic crystal mirror such that the waveguide light is reflected

and returned back to the same coupling fiber. This reflection from the mirror causes

the light to interact with the optical cavity a second time, but in a counter-clockwise

direction. Coupling between the clockwise and counter-clockwise modes, enhanced

by the waveguide mirror, results in hybridization and splitting in the frequencies

of the optical modes [138]. This results in a second optical mode being visible in

the transmission spectrum—slightly visible in Figure 5.2a. Throughout this work the

optical mode was treated as a single optical mode, however a more advanced treatment

considering the coupling between the two optical modes could be considered [138].

By comparing input optical power to the chip with collected power, a total coupling

efficiency of 10% was measured, or assuming equal loss coupling in-to and out-of of

the waveguide, a 32% coupling efficiency in each direction. An optical microscope

image of the fiber-coupled device is shown in Figure 5.1b.

As diagramed in Figure 5.1, measurements were taken by sending light from a 1550

nm tunable diode laser (NewFocus TLB-6330) through an acousto-optic modulator

(Gooch & Housego) to enable microsecond-timescale switching of the optical power to

enable the pulsed measurement scheme described later. A wavelength meter picking

up 10% of the laser output was used to provide low-frequency, Hz-rate feedback to the

tunable laser to stabilize the tunable laser over the time-scale of days. By using a fiber

circulator, reflected light from the device is isolated and detected with a low-noise

digitizing photodetector (Resolved Instruments DPD80).

To investigate the low-temperature behavior of the nanostrings, the device was

fixed to the cold-head of a 3He cryostat capable of cooling to temperatures below 400

mK. By using a fixed fiber-coupling technique, the device is able to attach to low-
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temperature probes with minimal space, negating the need for any low-temperature

positioning stages to perform alignment at cryogenic temperatures, such as done in

[139, 140]. However, during cooldown temperature-induced contractions reduced total

coupling to about 55% of initial value, reducing one-way coupling efficiency to ∼ 24%.

A photographic image of the fiber-chip assembly attached to the cold-head is shown

in Figure 5.1c.

For heat-sensitive measurements at fridge temperatures, a pulsing scheme is used

that will be further described in Section 5.4. A digital waveform generator (DIO)

is used to supply logic signals to the AOM and the digitizing photodetector (DPD)

such that data collection of the second pulse is well synchronized. To perform time-

resolved measurements of the mechanical resonator’s motion, the time-series optical

signal collected with the DPD is demodulated at Ω and filtered to perform a lock-in

type measurement to extract amplitude (see Section 7.3.3). A 2 kHz linear-phase filter

is used such that no delay is introduced to the processed amplitude signal, allowing

precise calibration of pulse turn-on time, however also restricting time-resolution to

∼ 500 µs. To reduce noise, the amplitude signal from 100 pulses are averaged together

to perform a measurement of one pulse—such as the curves in Figure 5.3a. Identical

lock-in measurements are performed off resonance to estimate imprecision noise from

photon shot-noise and measurement electronics and subtracted.

We quickly note that given the frequency of the mechanical resonator (Ω ∼ 14

MHz) and the temperatures studied here (T > 400 mK), we expect at least 600

phonons to occupy the mechanical mode. In this limit (n ≫ 1), we can neglect

the zero-point motion of the mechanical resonator and treat the number of phonons,

n, mean squared displacement of the mechanical mode, ⟨x2⟩, and the effective mode

temperature T as linearly proportional measurements of the same quantity—the mode

energy: E = ℏΩn = meffΩ
2⟨x2⟩ = kBT . Thus even though notation implies phonon

number, it may be given in units of temperature and is interchangeable.
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Figure 5.2: a) DC photodetector signal of the optical transmission as the laser is
scanned over an optical resonance at 1572 nm. Due to asymmetries in the optical
resonance, only datapoints red-detuned from cavity resonance were used to extract
optical parameters (filled purple dots). X-axis is the same across all three subplots.
b) The optomechanical gain and AC optical power measured around 14.159 MHz
(blue–out-of-plane) and 14.038 MHz (orange–in-plane). Circles represent AC power
determined through fitting the mechanical power spectra, while squares indicate AC
power determined from direct integration of band-passed power. c) From the optical
resonance parameters and the optomechanical gain (α), the optomechanical coupling
coefficient, G1 can be determined at each optical detuning. The average of the filled
in markers was used to extract G1/2π of 73 MHz/nm and 55 MHz/nm for the out-
of-plane and in-plane modes respectively.
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5.3 Room-temperature characterization

At room temperature, the optomechanical nanostring-microdisk device was charac-

terized to extract the optomechanical coupling coefficient. Measurements of the ther-

momechanical motion of the nanostring were taken as the tunable laser was stepped

across the optical resonance. In agreement with the tuned-to-the-slope coupling the-

ory presented in Chapter 2, the most effective amplification of the mechanical mo-

tion was observed slightly off resonance where the slope of the optical resonance is

steepest–Figure 5.2. Although the blue-detuned side of the optical resonance dis-

agreed with simple theory due to the presence of the counter-propagating optical

mode, the optomechanical gain (αmax ∼ 30 W/m) was fit on the red-detuned side

of the optical resonance to determine the first-order optomechanical coupling co-

efficient (G1 = ∂ω/∂x) to find G1/2π = 73 ± 5 MHz/nm and G1/2π = 55 ± 4

MHz/nm for the in-plane and out-of-plane modes, respectively. Errors in coupling

rates are the standard deviations of the coupling rates due to their slight optical

tuning dependance—illustrated by the filled markers in Figure 5.2c. With zero-point

motions of xzpf = 21 fm, these coefficients result in optomechanical coupling rates

(g0 = xzpfG1) of g0/2π = 1.6± 0.1 kHz and g0/2π = 1.2± 0.1 kHz.

Although this coupling was strong enough to observe thermomechanical motion

with a sensitivity of 70 fm/
√
Hz, we were unable to observe shifts in frequency as a

result of the optomechanical spring effect, or changes in mechanical line-width from

optomechanical heating or cooling. Compared with the measurements in Chapter 4,

the optomechanical coupling is approximately 10 times smaller. This smaller coupling

may be explained by the relatively large gap between the mechanics and optical disk

of 240 nm, and the larger index of refraction of silicon over silicon nitride. Improve-

ments to the device geometry, fine-tuning the fabrication process and implementation

of stress-induced gap-narrowing process [141] should lead to similar devices with im-

proved optomechanical coupling.
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As the device is under tension, we do not anticipate any significant changes to

the device geometry during cooling to low temperatures and therefore expect the

optomechanical coupling to remain constant. Therefore by using the optomechanical

coupling coefficient extracted at room temperature and optical resonance parameters

extracted at low temperatures, the mean-squared displacement–and thus temper-

ature of the mechanical mode–can be calculated without necessitating calibration

with fridge thermometry. In the following sections and figures, whenever number of

phonons is reported as a temperature, these are determined through this absolute

optomechanical calibration, not through reference with fridge thermometry.

5.4 Low-temperature pulsed measurements

As has been previously demonstrated in optomechanical devices fabricated in silicon

[134, 135] and gallium arsenide [136], optical losses at the resonator can contribute

significant heating to the mechanical modes. These photons lost from the optical res-

onator are absorbed, creating a hot phonon bath that couples to and causes heating

of the mechanical mode. These previous studies have implemented a pulsed measure-

ment scheme to investigate this heating, whereby the optical drive signal is turned

on for a short period and a time-resolved measurement of the mechanical resonator’s

energy, n(t), is performed.

Following the previous work, this heating process can be modeled as coupling of

the nanomechanical mode to two baths: to the hot photon-induced bath np with

coupling rate Γp, and to the cold bath at the base temperature of the fridge nth with

rate Γi. This process can be modeled as a first-order differential equation:

ṅ(t) = −Γn(t) + Γinth + Γpnp, (5.1)
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where Γ is the total coupling, Γ = Γi + Γp. We can solve this equation requiring one

known boundary condition, n(t0) = n0, to find:

nheat(t) = neq + (n0 − neq) e
−Γ(t−t0), (5.2)

where we have introduced neq as the steady-state solution to equation (5.1),

neq =
Γinth + Γpnp

Γ
. (5.3)

That is, given the resonator’s energy at a point in time, n(t0) = n0, n(t − t0) will

exponentially decay towards the steady-state energy over a characteristic time τ =

1/Γ.

During the optical measurement, the hot phonon bath described above is present

and will act to heat the mechanical mode to neq. However, when the optical measure-

ment is turned off, the hot phonon bath and coupling to it, Γp, will go to zero. In this

case, the steady-state occupancy of the mode reduces to the fridge’s base temperature

nth, while the total loss rate from the resonator reduces to the intrinsic damping rate

Γi, such that if the resonator starts with n(t0) = neq, it follows

ncool(t) = nth + (neq − nth)e
−Γi(t−t0), (5.4)

such that the mechanical mode cools to the fridge temperature on a time scale of

τi = 1/Γi.

To measure the intrinsic and hot-bath induced damping rates, a double-pulse

measurement is used to implement a pump/probe scheme [134, 135]. For the pump

pulse, the optical measurement is turned on for a period ton = 15 ms such that the

mechanical mode heats up to steady-state conditions. The measurement laser is then

switched off for a ring-down time period toff , after which a second 15 ms measurement–
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Figure 5.3: a) An example measurement of the probe pulse in the two-pulse measure-
ment scheme described in the text. In-plane mode signal is converted to an effective
mode temperature, and number of phonons, using the optomechanical coupling coef-
ficient determined at room temperature. Pulses measured at varying ringdown times
are color coded according to the colorbar. Fridge temperature is stabilized to 420
mK. An example fit to equation (5.3) for the pulse with a ringdown time of 0.56 s is
overlaid (dashed line). The pulse is fit from 0.5 ms < t < 14.5 ms corresponding to the
filter time-constant (vertical dashed line), and n(t) is extrapolated back to t = 0 to
determine ncool(toff). b) Fitting the exponential decay found from extracting ncool(toff)
and neq extracted from the probe measurements, the intrinsic damping Γi can be de-
termined. Colored circles correspond to the pulses in a). Orange squares correspond
to the out-of-plane mode measured simultaneously with the in-plane mode.
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the probe pulse–is performed and recorded. Finally, the optical measurement is then

turned off again for a much longer period such that the average laser power into the

fridge is 2% of the peak power, and the pump/probe measurement repeated. A set of

probe measurements across a range of ringdown times toff between pump and probe

pulses is shown in Figure 5.3a.

After the pump pulse is turned off, and before the probe pulse measures the

mechanics again, the mechanical mode decays from neq towards nth at a rate Γi

following equation (5.4). Then during the probe pulse, the mechanical mode heats

up from the temperature when the pulse turns on, n0 = ncool(toff), to the steady state

temperature neq. By fitting the probe pulse to equation (5.3), the temperature of

the mechanics at the beginning of the probe, n0 = ncool(toff), and the steady state

temperature neq, can be found.

By repeating this measurement for a range of toff , the ringdown behavior of

ncool(toff) can be mapped out and fit to equation (5.4) to extract the cold-bath tem-

perature nth and the intrinsic dissipation rate of the mechanical resonator, Γi. Figure

5.3b plots the ratio of ncool(toff) to neq for the in-plane mode (corresponding to the

pulse measurements shown in Figure 5.3a) measured at a fridge temperature of 420

mK. The intrinsic dissipation for the in-plane mode was found to be Γi/2π = 13 Hz

(Q = 1.1 × 106) and cold-bath temperature to be nth = 710 mK. Note that based

on our uncertainty in optomechanical coupling rate due to detuning, we expect an

uncertainty level at about 10% in these values.

5.5 Discussion

Although the cold-bath temperature of 710 mK measured in Figure 5.3 does not

agree precisely with fridge thermometry (420 mK), the measured temperature is de-

termined completely through calibration of the optomechanical transduction and not
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Figure 5.4: a) The cold-bath temperatures, nth–orange, and hot photon-induced bath
temperature, np–blue, plotted against intracavity photon number. Mode temperature
is determined using room-temperature optomechanical coupling with low-temperature
optical resonance fits to determine optomechanical gain to provide absolute calibra-
tion of the mechanical resonators displacement, and via the equipartition theorem, the
mode’s energy. Fridge temperature was at 420 mK for all measurements. Filled cir-
cles represent the out-of-plane mode, while open circles represent the in-plane mode.
Dashed lines are linear fits to both in-plane and out-of-plane points for guides to
the eye. b) The dissipation from the mechanical mode to hot photon-induced bath
(blue) and to the cold fridge bath (orange). Again dashed lines are linear fits to both
in-plane and out-of-plane datapoints.
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based off fridge thermometry. The only external temperature reference used is the

room temperature (295 K) used during the thermomechanical calibration illustrated

in Figure 5.2. Despite temperature discrepancies, the device is able to maintain rea-

sonable temperature accuracy over two orders of magnitude of temperature change.

We attribute this to the monolithic fabrication of waveguide, optical resonator, and

mechanical resonator providing relatively-fixed optomechanical parameters.

The mismatch of the mechanical mode temperature with the fridge thermome-

try may be an indication the mechanical device is not well thermalized to the cold

plate of the fridge, inaccuracies in the optomechanical calibration, or a combination

of the two. To further investigate this, measurements were taken while the laser was

set to a variety of detunings on the red-side of the optical resonance to monitor how

intra-cavity photon number in the microdisk affected heating of the nanostring. Mea-

surements of the cold and hot phonon bath temperatures, nth and np, and coupling

to those baths, Γi and Γp, as a function of intracavity phonon number are shown in

Figure 5.4.

We found both the hot-bath temperature np and cold bath temperature nth showed

positive correlations to intracavity photon number, indicating the cold phonon bath

was not fully thermalized to the fridge temperatures. Interestingly, the in-plane and

out-of-plane modes exhibited consistently different hot-bath temperatures (cold-bath

temperatures remained in agreement), with the out-of-plane mode exhibiting an np

1.5 times that of the in-plane mode despite exhibiting an optomechanical coupling 1.3

times smaller than the in-plane mode. This implies that material properties and ge-

ometry play a dominant role in hot-bath temperatures compared with optomechanical

coupling. Cold-bath temperatures remained consistent between in-plane and out-of-

plane modes, and as shown in Figure 5.4b, there did not seem to be a significant

correlation between intracavity phonon number and bath coupling rates.
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Next, we explored the fridge temperature dependence by stabilizing the fridge

to several temperature set-points up to 700 mK, maintaining ∼ 11000 intracavity

photons—Figure 5.5. The intrinsic mechanical dissipation rate Γi (Figure 5.5b), of

which measurement does not depend on absolute optomechanical calibration, does

show a trend of decreasing with temperature, however as measurement is restricted

to a temperature range of only a few hundred mK, measurements over a larger tem-

perature range will be required to make definitive claims of the physical mechanism.

Contrary to what is expected, the measured cold-bath phonon mode temperatures

displayed an inverse correlation to measured fridge temperatures (Figure 5.5a). While

this may indicate improper thermalization to the fridge, because the 500 mK, 600 mK,

and 700 mK cold-phonon bath temperatures are all measured to be less than the fridge

temperatures, this indicates that the optomechanical gain calibration is inaccurate.

The optomechanical gain α, given by equation (2.65) and typically on the order

of α ≈ 30 W/m for these measurements, depends on a number of device parameters:

α =
4κeκ0G1s̄

2

κ3

2∆/κ

(1 + (∆/κ)2)2
. (5.5)

Here s̄2 = 67× 1012 photons/s (8.5 µW) is the off-resonance optical power travelling

through the waveguide, κe and κ0 are the waveguide coupling and intrinsic loss rates

of the microdisk (κe/2π = 0.6 GHz), κ = κe + κ0 is the total microdisk loss rate

(κ/2π = 2.3 GHz), and ∆ is the laser detuning from the optical resonance frequency.

Because each set of ringdown measurements were taken over a couple day time period,

that provides ample time for drift in these parameters, skewing calculation of α.

By better characterizing the optical resonance, carefully keeping track of parameter

drifts by interweaving optical disk characterization with the pulse measurements, we

expect to be able to better accurately determine α and therefore nth to improve the

optomechanical thermometry. Further, using a homodyne detection scheme where the
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Figure 5.5: a) The cold-bath temperatures, nth–orange, and hot photon-induced
bath temperature, np–blue, plotted against fridge temperature. Mode temperature is
determined using room-temperature optomechanical coupling with low-temperature
optical resonance fits to determine optomechanical gain to provide absolute calibra-
tion of the mechanical resonators displacement, and via the equipartition theorem,
the mode’s energy. Filled circles represent the out-of-plane mode, while open circles
represent the in-plane mode. Dashed lines are linear fits to both in-plane and out-of-
plane points for guides to the eye. b) The dissipation from the mechanical mode to
hot photon-induced bath (blue) and to the cold fridge bath (orange). Dashed lines
are linear fits to both in-plane and out-of-plane datapoints.
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laser is locked to optical resonance may also help eliminate drift in optomechanical

transduction.

5.6 Conclusion

The picogram-scale silicon nitride nanostrings described in this chapter display a

number of desirable characteristics that warrant further interest in high-stress silicon

nitride optomechanical devices at sub Kelvin temperatures. With an optical power

of a 8.5 µW coupling to the microdisk, heating of the mechanical resonator only

reaches a couple Kelvin (a couple thousand phonons) in mode temperature. Com-

pared with the similar frequency and geometry silicon devices characterized by Hauer

et al. which heat up to ∼ 80 K (8 × 104 phonons) [135], these devices present an

noticeable improvement in optically-induced heating. We suggest this is due to the

larger optical bandgap of silicon nitride [142], although the much lower optomechan-

ical coupling of our devices may also play a large role–although in the modes studied

here, optomechanical coupling did not correspond to the degree of optically-induced

heating.

Quality factor wise, the best Q = 106 observed for the strings measured here

match or exceed those of the silicon devices measured by Hauer et al. at similar

fridge temperatures [135]. For the silicon nitride membranes measured at sub Kelvin

temperatures by Yuan et al, they report a sharp increase in quality factor below

200 mK [123], suggesting lower temperatures may improve quality factors further–

although device dimensions and mass differ by a factor of about 1000. By expanding

the temperature range of measurements over from mK to 10s of K, the quality factor

dependence of these pg-scale nanostrings could better be characterized.
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Chapter 6

Refractometric sensing of Li salt

with Si3N4 microdisk resonators 1

6.1 Introduction

While in the previous Chapters we have used whisper-gallery mode (WGM) resonators

for sensitive detection of mechanical displacement, optical WGM resonators are also

under avid research for their promise of fast, sensitive and label-free detection of

chemical and biological samples [144, 145, 146]. Sensors based on whispering-gallery

mode resonators have been used for the label-free detection of single viruses [8, 9],

nanoparticles [10, 11, 12, 13], single proteins [14], nucleotides [15, 16], and are even

used commercially [17]. Many geometries have been used for bulk refractometric

sensing. For example, glass whispering gallery mode resonators such as microspheres

[147, 148] and toroids [14, 11, 149] exhibit ultra-high quality factors (Qs) of > 109

allowing precise readout of optical mode wavelengths, and with tens of nm/RIU

sensitivity achieve detection limits of 10−7 refractive index units (RIU) [5, 147]. Glass

WGMs with a hollow core, dubbed liquid core optical ring resonators (LCORRs), have

1This chapter has appeared in “Refractometric sensing of Li salt with visible-light Si3N4 microdisk
resonators” [143]
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been shown to achieve gigantic sensitivities of 570 nm/RIU when carefully engineered

such that the optical mode sits largely in the liquid core instead of the glass [150].

With Qs of 105 these represent the best bulk refractive index sensors in the literature,

achieving a limit of detection of 3.8×10−8 RIU.

LCORRs are remarkably impressive, but for the purposes of integration - such as

into lab-on-a-chip devices - it may be more useful to have WGM resonators fabricated

on CMOS compatible chips. The commercially proven silicon-on-insulator platform

has been used to fabricate optical resonators in planar geometries, which allows for

full integration. Simple planar WGM geometries such as disk [151, 152] or ring

[153, 154, 155] resonators have demonstrated sensitivities up to 160 nm/RIU with

Qs up to 105. Slot WGM resonators are of significant interest, due to their ability

to be engineered such that the optical mode lies mostly within the slot and outside

the resonator medium [156, 157, 158] demonstrating up to 298 nm/RIU [157] but

with Qs reaching only a couple thousand; photonic crystal resonators utilize photonic

bandgaps to highly localize the optical mode [159, 10] and have demonstrated 490

nm/RIU sensitivities with similar Qs.

Here we demonstrate an attractive permutation of an on-chip WGM resonator to

be used for refractive index sensing: a thin silicon nitride microdisk resonator [7, 160].

Si3N4 is a desirable material for optical sensing due to its CMOS compatibility [161],

transparency to visible light, and lower refractive index than silicon resulting in less

mode confinement [162]. Si3N4 refractometric sensors have been described previously

in optical ring and slot geometries [163, 156, 158], and with optimization have achieved

sensitivities of 246 nm/RIU and detection limits of 5 × 10−6 RIU [158]. Here we

exploit silicon nitride’s transparency to 780 nm laser light to enable large portions of

the optical field to be in water, negating much of the optical absorption caused by

water at longer wavelengths. Using thin (< 150 nm) on-chip Si3N4 microdisks and an

under-cut geometry to lower mode confinement, sensitivities of > 200 nm/RIU and
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Figure 6.1: (a) Scanning electron microscope image of 20 µm and 30 µm microdisks.
Scale bar 5 µm. (b) Side view of a dimpled-tapered fiber for visible light used to
couple to individual microdisks. Scale bar 100 µm. (c) A representative ∼140 µL
water droplet deposited on a chip of microdisks. The tapered fiber is visible in the
droplet touching the chip. Scale bar 2 mm. (d) The dimpled-tapered fiber is used to
selectively couple light into a 20 µm microdisk. On resonance, light in the mode is
visible due to surface scattering. Scale bar 10 µm.

a limit of detection of ∼1×10−6 RIU are measured. This responsiveness results from

extending the evanescent field into the aqueous solution, similar to photonic crystal

or slot resonators, yet with less stringent fabrication requirements.

6.2 Experiment and methods

Si3N4 microdisks with diameters of 15, 20, 25 and 30 µm were fabricated and char-

acterized for their bulk index of refraction sensitivity. Devices were fabricated with

electron beam lithography (EBL) from silicon wafers with 3 µm of oxide beneath

a 150 nm LPCVD deposited stoichiometric Si3N4 film (Rogue Valley Microdevices).
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Further fabrication details are given in Appendix A.3. Although EBL was used to

fabricate the current devices, the large minimum feature size of the microdisks would

allow these devices to be fabricated with standard photolithographic processes.

To couple the 780 nm light into and out of the microdisks a dimpled-tapered fiber

was used [114]. It was fabricated by tapering an optical fiber (Thorlabs SM600) to

≲ 1000 nm, the single-mode cutoff diameter for 780 nm light in air [115], and then

molded to produce a section of the tapered fiber out-of-plane to the rest of the fiber

- the dimple - as pictured in Figure 6.1b. The fiber was affixed to a pronged mount

with the dimple extending downwards towards the chip, which was secured to a 3-axis

nanopositioning system, allowing coupling to individual devices fabricated within a

planar array [115]. An optical camera was used to monitor the coupling procedure

and by varying the placement of the fiber, coupling to the microdisk can be tuned.

The dimpled-tapered fiber allows operation over a large wavelength range, achieving

> 50 % transmission through the taper over the entire range of our tunable laser

(765–781 nm). Losses in transmission are primarily from non-adiabatic tapering of

the optical fiber. To our knowledge, this was the first time coupling to a planar

device with a dimpled-tapered fiber has been demonstrated with visible light in a

liquid environment.

To conduct experiments in aqueous solution, a sample cell was created by deposit-

ing ∼ 140 µL of deionized water on top of the 10×10 mm wafer, creating a droplet,

such as the one demonstrated in Figure 6.1c, in which the tapered fiber can be sub-

merged. The system was housed in a closed chamber containing a water reservoir to

increase humidity and minimize evaporation of the sample droplet. A micropipette

was used to add small volumes of solution to the droplet and induce mixing to ho-

mogeneously distribute the solution. Introducing and removing the pipette tip from

the water creates large mechanical oscillations of the droplet which were often enough

to move the dimpled fiber a few µm, altering the coupling to the target resonator.
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Figure 6.2: (a) The transmission spectra of visible laser light through a dimpled-
tapered fiber coupled to a 20 µm diameter Si3N4 resonator. (b) By repeatedly scan-
ning a tunable diode laser over its wavelength range, the time dependence of three
TEn=1 modes can be tracked as LiCl was added to the environment. Transmission
spectra are normalized to uncoupled fiber transmission. Events, described in the text,
are indicated by white lines. Spectrum in (a) was taken at 110 minutes.

This movement was minimized by attaching the fiber to the microdisk to provide

mechanical stability during the experiment. This attachment has the disadvantage

of lowering quality factors and obscuring detection of the n > 1 modes, where n is

the radial mode number, in all but the 30 µm disk as well as inducing an additional

scattering loss (∼ 50 %). Nonetheless, sufficient signal was retained to easily resolve

the TEn=1 modes [2].

Once coupled to a microdisk, the transmission spectra of light from a tunable

diode laser (NewFocus TLB-6712) can be measured to determine the wavelengths

and quality factors of the coupled whispering gallery modes. Before reaching the

disk, the light was attenuated to ≲ 1 mW to ensure linear behavior of the optical

resonances and the polarization was controlled with a three-paddle polarization con-
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Figure 6.3: (a) Fitting the transmission data in Figure 6.2b to Lorentzian line-
shapes provides readout of wavelength (or frequency) shifts of the whispering gallery
modes. The wavelength shifts marked i through v correspond to bulk refractive index
sensitivities of 227, 238, 226, 221, and 229 nm/RIU respectively. Red, blue and green
curves correspond to the wavelength shifts produced by the three optical modes visible
in the range of the tunable laser. (b) Small amounts of concentrated Li salt solutions
are periodically added to the sample cell increasing the LiCl concentration. These
correspond to refractive index shifts above pure water (1.330 RIU) of 0.00886 RIU/M.
Gray lines indicate concentration error limits, chiefly due to uncertainty in the water
evaporation rate.

troller to optimize coupling to TE modes. Wavelengths are calibrated to the internal

wavelength reference of the tunable laser, outputted as a voltage and collected syn-

chronously with the fiber transmission. A wavelength scan while coupled to a 20 µm

diameter microdisk is shown in Figure 6.2a. By automating repeated scanning of

the laser, time resolved spectroscopy of the optical disk can be performed, allowing

the wavelength of multiple whispering gallery modes to be simultaneously tracked, as

visualized in Figure 6.2b.

To measure the bulk refractive index sensitivity of the microdisks, LiCl solutions

with concentrations of 1 mol/L (1 M) were added to the sample cell in 5 µL vol-
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umes, increasing the refractive index from pure water (1.330) linearly proportional

to salt concentration with a slope of 0.00886 RIU/M [164]. This refractive index

change caused wavelength shifts of the optical modes that, by automated fitting of

Lorentzians to the resonances, provide quantitative readout of the wavelength change

of each mode. Extracted wavelength shifts for the run in Figure 6.2b are plotted in

Figure 6.3a. At 9, 15, 67 and 87 minutes, 5 µL of deionized water was added and

mixed to the droplet, and at 21 minutes the droplet was mixed without adding or

removing water. During these events the wavelength of each mode remained rela-

tively unchanged. At 29, 39, 58, and 77 minutes 5 µL of 1 M LiCl was added to

the droplets, causing large positive shifts of mode wavelengths. Interestingly, these

events display transient behavior due to diffusion of the ions inside the droplet. The

known times for Li+ and Cl− ions to diffuse a root-mean-square distance of 1 mm is

4 and 8 minutes respectively—similar to the time scales observed [164].

By tracking the volumes of deionized water and LiCl solution added to the sample

cell, the concentration—and therefore the index of refraction of the environment—

was determined. Uncertainty in the rate of evaporation of water from the droplet

gave uncertainties in LiCl concentration as indicated in Figure 6.3b. Knowing the

wavelength shift and index of refraction of the water allowed the bulk refractive in-

dex sensitivities of the whispering gallery modes to be determined and are plotted

in Figure 6.4a, with errors representing standard deviations coming from a combina-

tion of variance between addition events (e.g. Figure 6.3a i–v), and wavelength and

concentration uncertainties.

Axisymmetric simulations of the whispering gallery modes were performed to de-

termine the theoretical refractive index sensitivity of the whispering gallery modes

[165], as well as the mode quality factors due to radiative losses. Measured sensitivities

for the disks were larger than expected for 150 nm thick disks, Figure 6.4b, however

thinning of the disks during fabrication may explain the enhanced sensitivities. A
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Figure 6.4: (a) The TEn=1,m=121 mode shape of a 20 µm diameter, 130 nm thick,
resonator determined through FEM simulations. Darker colors indicate larger mag-
nitude electric field. Scale bar 1 µm. (b) Measured sensitivities plotted on-top of
simulated sensitivities for a range of disk thicknesses. (c) Measured loaded (dark)
and unloaded (light) quality factors (Qs) plotted on top of simulated radiative loss
quality factors.

Si3N4 etch rate of only 0.3 nm/min would result in 120 nm thick discs. As expected,

observed Qs are less than simulated (Figure 6.2b), as simulations neglect most loss

mechanisms. With the tapered fiber attached to the microdisks, Qs of ∼ 104 are ob-

served, however hovering the tapered fiber away from the disks reduces fiber-induced

losses and reveals unloaded Qs of > 105 for the 25 and 30 µm diameter disks, Figure

6.4c, as well as mode-splitting of a few pm—which could be used as an additional

sensing mechanism [11]. Simulations also predict large radiative losses for TM modes,

incompatible with the measured Qs and therefore provide mode identification as TE,

visualized in Figure 6.4a.

6.3 Conclusion and future work

Evaluating the wavelength stability of the microdisks allows us to estimate the re-

fractive index limit of detection of the microdisks. Taking repeated wavelength scans
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provides a direct method to estimate the uncertainty in mode wavelength by com-

puting the variance between multiple scans. Further, averaging successive scans with

a low-pass filter provides a method to reduce the uncertainty in wavelength measure-

ment by removing the high-frequency stochastic error in each wavelength sweep. The

wavelength stability can be improved upon by using the piezo-scan functionality of

the tunable laser, sacrificing scan range, but increasing wavelength repeatability and

allowing calibration with an external wavelength meter. Scanning a single mode of

a 20 µm disk, as shown in Figure 6.5, allows wavelengths to be determined with a

standard deviation of 0.1 pm over 20 minutes with a filter time constant of 30 s (33

mHz bandwidth). With a 20 µm disk sensitivity of 230± 20 nm/RIU, this sensitivity

corresponds to a three-standard-deviation[166] detection limit of (1.3 ± 0.1) × 10−6

RIU, or a LiCl concentration difference of (1.5 ± 0.1)× 10−4 M.

Further work is required before these devices can be realized as useful sensors. In

particular, we have not addressed specificity towards a particular molecule. Function-

alization of the nitride surface [167] may provide a solution, but it is unknown how

it will affect optical Qs or how the bulk index sensitivity will translate into attached

molecule sensitivity. Nonetheless, extension of aqueous sensing into the visible regime,

through the use of thin silicon nitride microdisks and visible-light dimpled-tapered

fibers, may allow for easing of the technical requirements in sensing applications, such

as the use of cheap diodes and spectrometers for visible wavelengths.

Future improvements should focus on fluid handling. Currently, non-homogenous

mixing of solute, long timescales for mixing, and solvent evaporation create uncer-

tainty in solute concentration. Additionally, mechanical disturbances of the pipette

breaking the water surface may contribute to uncertainty in the mode wavelength.

Therefore integration into a fluid-handling system, such as by using microfluidic de-

vices [158], will be beneficial.
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Figure 6.5: (a) Using the piezo scan functionality of the laser allows for better
spectral resolution at the expense of scanning range. (b) After subtraction of a
constant background slope, the wavelength of a mode can be tracked with a standard
deviation of 0.1 pm. At 30 minutes LiCl was added to the sample cell resulting in a
1.5× 10−5 RIU change, with large signal to noise.

The thin Si3N4 microdisks we have presented are an attractive option for future

whispering gallery mode sensors. The planar configuration allows for mass fabrication

and the possibility of integration with lab-on-a-chip technologies. Sensitivities of

> 200 nm/RIU are observed, comparable with previously described slot resonators

but with lessened fabrication requirements, while maintaining loaded Qs of > 104.
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Chapter 7

Digital signal processing for

experimental physics

7.1 Introduction

Experimental physics has evolved a lot over the past decades. When Dr. John Davis

first joined his lab as a graduate student in 2001, recording charts were still in use.

Now graduate students can easily fill up terabytes of disk space recording what is

now considered low-bandwidth data over moderate time periods. Consider recording

a 100 MHz bandwidth signal at a sample size of 2 bytes/sample. That is 400 MB of

data every second, and 1.4 TB of data for an hour of data collection.

The upside to this is a completely configurable analysis chain. Even months

after running the experiment, fundamental analysis parameters such as frequencies

of interest, bandwidths of measurements, or recovering phase information in a signal

can be extracted from the original data. Conversely, the sheer amount of data and

possible operations on it are enough to overwhelm any analyzer of the data, and a

relatively fixed signal processing pathway providing low bandwidth, but more easily

read and interpreted feedback, can be indispensable.
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In either case, the standard is to record all measurements as digital data stored on

computers, which will be analyzed later using the preferred programming language

such as MATLAB, Python or R. Unfortunately, methods to process these data are not

taught to general physics students and instead remains a somewhat obscure subject

somewhere between engineering and computer science.

For instance, intuitively a student may know they want to “smooth” the data,

however the programming language and numerical analysis package used may not

provide a smooth function. What is in fact desired is to apply a digital low-pass filter

to the data to remove signal power at high-frequencies.

Throughout my graduate degree, I have found much benefit from learning about

digital signal processing techniques and believe many physics students would likewise

benefit from a quick introduction to various basic concepts. I attempt do that here,

starting with a brief introduction to the theory behind digital signal processing with-

out getting bogged down on the mathematical rigor. Hopefully this will help explain

the use of signal processing software packages without getting too far into the gritty

details.

Most of this information I have learned from two excellent books on digital sig-

nal processing, Digital Signal Processing: Principles, Algorithms and Applications

by John G. Proakis and Dimitri G. Manolakis, and Digital Signal Processing (later

re-titled Discrete-Time Signal Processing) by Alan V. Oppenheim and Ronald W.

Schafer [168, 169]. Although much of this chapter is a summarized review of existing

material, Section 7.4.2 presents original work on the design of quadratic-phase FIR

filters.
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7.2 Digital signal processing theory

7.2.1 Digital signals

As physicists, we model physical processes occurring in the world as continuous func-

tions of time that can take on all numbers, even irrational ones. Pi is one of our

favorite numbers. We call such a continuous function an analog signal. However,

when storing these numbers on a computer, they must be discretized in both time

and value to some finite representation.

If we have some continuous physical quantity x(t), we can digitize the signal with

an analog-to-digital converter—sampling at evenly spaced samples spaced Ts seconds

apart—to find the digital signal

x[n] = Q
{︁
x(Tsn)

}︁
. (7.1)

Here Q here refers to a quantization operation, truncating the value x(Tsn) to some

finite value that can be stored in a handful of bytes on a computer. Additionally, we

use square brackets as an allusion to the array indexing notation used in most popular

programming languages, reminding us x[n] is a digital signal, and n can take on only

integer values. Since computers have finite memory, x[n] will only have non-zero

values for a finite range of n, and for all other values of n we set x[n] = 0.

7.2.2 Linear time-invariant systems

Given we have a signal x[n], we wish to perform some operation on it to produce a

new digital signal y[n]. In a very general manner, we say a system T operates on x[n]

and produces y[n]. This operation can be represented mathematically as

y[n] = T
{︁
x[n]

}︁
. (7.2)
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In general, T can perform any operation imaginable, as long as its output is a

quantized, digital signal. However, from here on we are going to restrict T to a class

of systems called linear time-invariant (LTI) systems. That is, T is both linear,

T
{︁
a1x1[n] + a2x2[n]

}︁
= a1T

{︁
x1[n]

}︁
+ a2T

{︁
x2[n]

}︁
, (7.3)

and time-invariant,

y[n− k] = T
{︁
x[n− k]

}︁
, (7.4)

for all integer values of k. This restriction still represents a broad class of systems

that exhibit useful mathematical properties making their use convenient for digital

signal processing applications.

Most often, this system will perform a form of spectral filtering, such as removing

high-frequency components of a signal—a low-pass filter—or perhaps retaining only

frequency information within a certain bandwidth—a band-pass filter. As such, the

terms system and filter will be used interchangeably to refer to any LTI system.

To begin describing how to work with LTI systems, let us first introduce the

discrete δ function,

δ[n] =

⎧⎪⎪⎨⎪⎪⎩
1 if n = 0

0 otherwise.

(7.5)

Using the δ function, it is possible to express x[n] as a linear combination of δ functions

spaced in time,

x[n] =
∞∑︂

k=−∞

x[k]δ[n− k], (7.6)
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where the sum is over all integer values of k. Substituting this expansion of x[n] into

equation (7.2) and using the linear properties of T , we find

y[n] = T
{︃ ∞∑︂

k=−∞

x[k]δ[n− k]

}︃

=
∞∑︂

k=−∞

x[k]T
{︁
δ[n− k]

}︁
.

(7.7)

Here we introduce the unit impulse response of the system T ,

h[n] = T
{︁
δ[n]

}︁
, (7.8)

such that

y[n] =
∞∑︂

k=−∞

x[k]h[n− k], (7.9)

or noting that the sum on the right hand side is the convolution of x[n] and h[n],

y[n] = x[n] ∗ h[n], (7.10)

where ∗ denotes the convolution operation. That is, the LTI system T can be com-

pletely described by the system’s response to a unit impulse, h[n], while the operation

of applying the system T to the signal x[n] can be done via a convolution of x[n] with

h[n].

Causal systems

Although the idea of finding the impulse response h[n] to completely describe any

LTI system is simple and succinct, we run into two practical problems for many types

of LTI systems described this way. The first is causality. When running a system in
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real time, the most recent output of the system, y[n], can only depend on values of

x[n] that have been measured. Therefore, for a system to be causal, h[n] must be

zero for all values of n < 0.

In the case of post-analysis of data, as often done in research environment, the

requirement of causality is not that important, since future values of the input x[n]

have already been measured. This situation allows the use of acausal filters, which

can exhibit desirable properties, to be designed and used. However, for the most part

we restrict our analysis of systems here to causal ones.

The second practical issue is the size of h[n]. In general, and for a wide class

of useful LTI systems, the unit impulse response function can contain an infinite

number of elements, presenting obvious problems when trying to represent the filter

on a finite-memory computer. Therefore, we can broadly classify LTI systems into two

categories: infinite impulse response (IIR) systems, in which h[n] contains an infinite

number of elements, and finite impulse response (FIR) systems that have finite-length

h[n]. IIR systems are typically digital models of analog filter systems, and despite the

infinite length of h[n], can often be numerically more efficient to realize as explained

in the next section. However, FIR filters can be digitally designed to conform to strict

requirements, such as linear phase, or exact frequency cutoff characteristics.

7.2.3 The finite-difference equation

We will now introduce a further formalism for describing LTI systems: the finite-

difference equation. A slightly smaller class of LTI systems can be described in the

following manner:

N∑︂
j=0

ajy[n− j] =
M∑︂
k=0

bkx[n− k]. (7.11)
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Here with have restricted ourselves to causal systems, ie. y[n] only depends on x[n−k],

k ≥ 0, and for systems that can be expressed with a finite number of aj and bk

coefficients.

If we further restrict a0 = 1, which can be obtained by renormalization of the

other coefficients, a recipe for the computation of y[n] can be found:

y[n] = b0x[n] + b1x[n− 1] + ...+ bMx[n−M ]

− a1y[n− 1]− ...− aNy[n−N ].

(7.12)

This equation is the foundation for digital signal processing on the computer, whereby

a huge variety of causal filters can be represented through a set of aj and bk coefficients.

To illustrate an important effect of the aj and bk components, let us consider a

simple example system with b0 = 1, a0 = 1, a1 = A, and all other coefficients set to

0. That is

y[n] = x[n] + Ay[n− 1]. (7.13)

Further, we set x[n] = δ[n], and we assume y[n] = 0 for all values of n < 0. Then we

proceed iteratively,

y[0] = x[0]

y[1] = Ax[0]

y[2] = A2x[0]

...

y[n] = Anx[n].

(7.14)

Since we are computing the response to the unit impulse, y[n] is h[n]—the unit impulse

response—and as we can see, it contains an infinite number of elements. Which leads
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us to the first important fact: systems that can be expressed as a finite-difference

equation containing at least one non-zero aj term, besides a0, are IIR systems.

As can be seen in the above example, despite having an infinitely long unit impulse

response, IIR systems can be succinctly described by just a small number of unique

coefficients. Additionally, they can be computationally quite efficient: computation

of y[n] in the example above requires just two multiplications and an addition.

However, because of their recursive nature, numerical instabilities and errors can

result as terms approach the machine epsilon—the smallest representable number in

the computer. Additionally, the recursive nature of the algorithm prevents much

parallelization of filter computation: y[n− 1] must be determined before y[n] can be

computed. This requirement is not a problem when run on basic microcontrollers,

but modern processors contain vector math units able to perform many operations at

once. For example, the AVX2 instructions present in most modern desktop proces-

sors manufactured since about 2014 are able to multiply eight 32-bit floating point

numbers simultaneously [170], yet are generally unable to speed up computation of

the finite-difference equation expressed above.

In contrast to the situation of IIR systems described above, we can conversely

state that an LTI system that can be expressed with a finite-difference equation in

which all ajs are zero, except a0 = 1, is a finite impulse response system.

Applying the unit impulse function to equation (7.12), it is easy to see that the

unit impulse response is

h[n] =

⎧⎪⎪⎨⎪⎪⎩
bn if 0 ≤ n ≤ M

0 otherwise.

(7.15)

That is, when describing a FIR filter, the unit impulse response is the bk coeffi-

cients, and the computation of the finite-difference equation as in equation (7.12) is

a convolution sum.
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Although, in general, many more coefficients are required for a given filter cutoff

response characteristic, FIR filters are useful in many situations. Not being recursive

in nature, the numerical errors in filter computation can be much better estimated,

and as mentioned previously exact filter characteristics can be designed. Further,

because each calculation of y[n] is independent of y[m],m ̸= n, the computation of

y[n] can be easily parallelized. If y[n] is only required to be calculated for a small

set of n, such as in downsampling applications, FIR filters can be numerically more

efficient for certain cases.

7.2.4 The Z-transform

An important tool in digital signal processing is the Z-transform. The Z-transform

is analogous to the Laplace transform in continuous systems, but for discrete signals,

and it provides a method for visualizing and thinking about discrete LTI systems

along with some mathematically useful tools for analysis of discrete signals [168, 169].

Perhaps most relevant, the Z-transform is a generalization of the discrete Fourier

transform, so all the tools learned will apply when working with the frequency-space

representation of a discrete signal.

The Z-transform of a digital signal x[n], X(z) = Z
{︁
x[n]

}︁
, is a continuous complex-

valued function of a complex variable z:

X(z) = Z
{︁
x[n]

}︁
=

∞∑︂
n=−∞

x[n]z−n. (7.16)

The first thing to note is that X(z) is not defined on the entire imaginary plane. If

x[n] is nonzero for any n > 0, X(z) will be undefined at z = 0. Similarly, if x[n]

is nonzero for any n < 0, X(z) will become non-finite as z → ∞. The area on

the imaginary plane that the z-transform is finite valued in is called the region of

convergence—RoC.

89



For a finite-length signal, z = 0 and |z| = ∞ are the only two locations that may

not converge. For an infinite length, let us examine the sequence in equation (7.14),

x[n] =

⎧⎪⎪⎨⎪⎪⎩
An if n ≥ 0

0 otherwise.

(7.17)

Then the Z-transform of x[n], X(z) is

X(z) =
∞∑︂
n=0

Anz−n

=
∞∑︂
n=0

(Az−1)n

X(z) =
1

1− Az−1
,

(7.18)

where we have used the infinite geometric series sum for the final simplification. This

infinite sum, however, is only valid for |Az−1| < 1. Thus the RoC of X(z) is |z| > |A|.

Although we won’t prove it here, it is possible to show that the Z-transform of

the digital signal,

x2[n] =

⎧⎪⎪⎨⎪⎪⎩
An if n < 0

0 otherwise,

(7.19)

is also X2(z) = 1/(1 − Az−1), however in this case the ROC is |z| < |A|. This illus-

trates two important facts of the Z-transform; the first: a digital signal is uniquely de-

fined from its Z-transform only if both the Z-transform and the region of convergence

is specified. Secondly, for a causal signal—x[n] = 0, n < 0—the region of convergence

is exterior to some radius R, while for an acausal signal—x[n] = 0, n ≥ 0—the RoC

is interior to some radius R. For a signal x[n] containing nonzero values for n < 0

and n ≥ 0, there exists some ring on the imaginary plane, R1 < |z| < R2, where the

Z-transform will converge.
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Properties of the Z-transform

The Z-transform exhibits a number of mathematical properties worth describing. For

proofs on these properties, see the textbooks on this subject recommended in the

introduction [168, 169], or any other good reference on the Z-transform.

Linearity: If x1[n] has the Z-transform Z
{︁
x1[n]

}︁
= X1(z), and x2[n] has the

Z-transform Z
{︁
x2[n]

}︁
= X2(z), then

Z
{︁
a1x1[n] + a2x2[n]

}︁
= a1X1(z) + a2X2(z). (7.20)

Time-shift: If x[n] has the Z-transform Z
{︁
x[n]

}︁
= X(z), then

Z
{︁
x[n− k]

}︁
= X(z)z−k. (7.21)

Scaling: If x[n] has the Z-transform Z
{︁
x[n]

}︁
= X(z), then

Z
{︁
anx[n]

}︁
= X(a−1z). (7.22)

Time-reversal: If x[n] has the Z-transform Z
{︁
x[n]

}︁
= X(z), then

Z
{︁
x[−n]

}︁
= X(z−1). (7.23)

Convolution: If x1[n] has the Z-transform Z
{︁
x1[n]

}︁
= X1(z), and x2[n] has the

Z-transform Z
{︁
x2[n]

}︁
= X2(z), and x1[n]∗x2[n] denotes the convolution of x1[n] and

x2[n], then

Z
{︁
x1[n] ∗ x2[n]

}︁
= X1(z)X2(z). (7.24)
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7.2.5 The system function

Recalling from equation (7.10) that the output of an LTI system can be found by the

convolution of its unit impulse response with the input to the system, y[n] = x[n]∗h[n],

we can use the convolution property of the Z-transform to find

Y (z) = X(z)H(z), (7.25)

and therefore

H(z) =
Y (z)

X(z)
, (7.26)

where Y (z), X(z), and H(z) are the Z-transforms of y[n], x[n], and h[n] respectively.

Here, H(z) is called the system function of the LTI system with unit impulse response

h[n].

Now, let us inspect the finite-difference equation given in equation (7.11), and

apply the Z-transform to both sides,

Z
{︃j=N∑︂

j=0

ajy[n− j]

}︃
= Z

{︃k=M∑︂
k=0

bkx[n− k]

}︃
, (7.27)

using the linearity and time-shift properties of the Z-transform we find

j=N∑︂
j=0

ajX(z)z−j =
k=M∑︂
k=0

bkX(z)z−k, (7.28)

which can be rearranged to find the system transfer function of the finite-difference

equation:

H(z) =
Y (z)

X(z)
=

M∑︂
k=0

bkz
−k

N∑︂
j=0

ajz
−j

. (7.29)
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Thus, for LTI system defined as a finite-difference equation with aj and bk coefficients,

we can easily construct its Z-transform. Conversely, and perhaps more important, if

we are given an LTI system with a system function that can be written as in equation

(7.29), we can extract the aj and bk coefficients to realize the LTI system using a

finite-difference equation that is easily programmed.

Finally, for a system function that can be written as a fraction of two polynomials

in z, it is possible to factor the polynomials to find the poles—locations which the

function goes to infinity— and zeros—location which the function goes to zero—in a

form such as

H(z) = G

M∏︂
k=0

(1− zkz
−1)

N∏︂
j=0

(1− pjz
−1)

, (7.30)

where zk are the zeros and pj are the poles of H(z).

7.2.6 The discrete Fourier transform

We recall the Z-transform of the signal x[n], X(z), is given by equation (7.16),

X(z) = Z
{︁
x[n]

}︁
=

∞∑︂
n=−∞

x[n]z−n. (7.31)

If we evaluate the Z-transform on the unit circle of the complex plane, that is for

z = eiω, and limit the sum to the N samples x[n] is nonzero for, we find

X(eiω) =
N−1∑︂
n=0

x[n]e−iωn. (7.32)

This equation is strikingly similar to the discrete Fourier transform, yet generalized

for continuous values of ω along the unit circle of the Z-transform.
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By sampling at N evenly spaced points around the unit circle, ωk = 2πk/N , we

find the discrete Fourier transform (DFT):

X[k] = X(eiωk) =
N−1∑︂
n=0

x[n]e−i2πkn/N . (7.33)

Here we have introduced the notation X[k], referring to the DFT of x[n], a digital

signal sampled at the N points zk = ei2πk/N from the continuous Z-transform of x[n],

X(z).

Therefore, everything we have described for the Z-transform of x[n] applies to

the DFT of x[n]. The DFT is the Z-transform, but evaluated only at N discrete

complex points on the unit circle, rather than valid throughout the entire region of

convergence. As a corollary, once we claim the DFT of x[n] exists, we automatically

assume the RoC to contain the unit circle.

7.3 Some applications of digital signal processing

7.3.1 Spectral filtering

Now that we have laid the groundwork, we can discuss how we use digital filters for

applications. The way we use filters in digital signal processing can be divided into

three parts: filter design, parameter extraction and system abstraction, and filter

realization—applying the filters.

Filter design and generalization

We will not attempt to describe filter design in any detail, however to illustrate

the basics, we will describe two trivial filters that can be designed by intuition and

used without any knowledge of digital signal processing—the box FIR filter, and the

exponentially decaying IIR filter.
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The box filter is a FIR low-pass filter made by averaging M sequential samples

together. Practically everyone has designed and implemented this filter through aver-

aging subsequent numbers together. In a more formal sense, the filter can be described

by the unit impulse response:

hbox[n] =

⎧⎪⎪⎨⎪⎪⎩
1/M if 0 ≤ n < M

0 otherwise.

(7.34)

To convert this filter into aj and bk representation, remember the bk values are the

unit impulse response, that is bk = h[k], and a0 = 1, aj = 0, when j ̸= 0.

Next up is the exponentially decaying IIR filter. This filter is created by taking a

real valued r with |r| < 1 and constructing the finite difference equation

y[n] = rx[n] + (1− r)y[n− 1]. (7.35)

This filter intuitively makes sense by updating the best guess of x[n], y[n] as a weighted

average of the last best guess, y[n − 1], and the newest measurement, which we

expect to be noisy, x[n]. Equivalently, in terms of equation (7.12), b0 = r, a0 = 1,

a1 = −(1− r) and all other aj and bk’s are equal to zero. The value of r can be found

from the 3 dB cutoff frequency, f3dB, and the sample spacing Ts, through the formula

r = e−2πTsf3dB . (7.36)

Figure 7.1 illustrates both the box filter with M = 4, and the exponential decay

filter with f3dB = 10 kHz. In both cases a sample-rate of 100 kSamples/s is used

for illustration. Both filters display comparable, yet different, frequency responses,

however the FIR box filter requires four multiplication and additions per sample to

compute, while the exponential IIR filter requires two. This computational differ-
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ence is easily made up if, for instance, a modern cpu is able to vectorize the FIR

computation but not the IIR difference equation.

With both these example filters, the aj and bk coefficients are readily extractable

from the design method. However, an alternate design method is manual placement

of poles and zeros on the imaginary plane to design an LTI system with the desired

frequency (and phase) response. Once the poles and zeros have been placed, a sys-

tem function in the form of equation (7.30) can be written, and expanded out to a

rational function with polynomials of z−1 in the numerator and denominator, in a

form equivalent to equation (7.29). From here the aj and bk coefficients can be read

to give a general description of the filter.

Although many recipes for various types of filter design exist, we will simply

suggest using the filter design functions of an existing signal processing library, such

as scipy.signal. Two filters, both with a cutoff of 10 kHz, are designed and shown

in Figure 7.1. The first, a FIR filter constructed with scipy.signal.firwin, uses 50

coefficients and containing 49 zeros in the Z-transform. The second, a Butterworth

IIR filter constructed with the scipy.signal.butter function, of order 8, contains

eight poles and eight zeros in its Z-transform. Both these design functions return a

list of aj and bk coefficients which can later be used without regard to the initially

requested filter characteristics.

Filter realization

Once a filter has been described as aj and bk coefficients, a finite-difference equa-

tion can be constructed to realize the filter. This finite-difference equation can pro-

grammed on a computer relatively easily, and is completely agnostic as to wether the

filter high-passes or low-passes, the filter bandwidth, etc..

The scipy.signal.lfilter function is one such function that can apply an LTI

system represented as aj and bk components to a signal, which can apply for either a
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Figure 7.1: a) The unit impulse response, b) the amplitude transfer function, and
c) the Z-transform of a FIR filter representing the average of four samples. Circles in
c) point out locations of zeros in the system function. Similarly d) the unit impulse
response, e) the amplitude transfer function, and f) the Z-transform of a simple
exponential IIR filter described in the text. Crosses in f) locate poles in the transfer
function.
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Figure 7.2: a) The unit impulse response, b) the amplitude transfer function, and
c) the Z-transform of a 50 sample FIR filter created using the scipy.signal.firwin
function. Circles in c) point out locations of zeros in the system function. Similarly d)
the unit impulse response, e) the amplitude transfer function, and f) the Z-transform
of an 8th-order Butterworth filter designed with scipy.signal.butter function. Cir-
cles in f) point out locations of zeros in the system function, while crosses locate poles
in the transfer function.

FIR or IIR filter. However, in the case of a FIR filter, the finite-difference equation is

exactly that of a convolution. Therefore, a FIR filter can be applied to a signal using

either a convolution algorithm, such as scipy.signal.convolve, or a more general

purpose finite-difference algorithm such as scipy.signal.lfilter.
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7.3.2 Power spectral density estimation

One of the most basic tasks to do with a digital signal is to compute its power spectral

density (PSD). The power spectral density of a signal is a spectral plot of the power

in the signal per unit bandwidth. For instance, if a voltage signal is measured, the

PSD will be in units of V2/Hz, such that by multiplying the signal by a bandwidth

will give the power of the signal—in this case given in units of V2.

The power spectral density is an analog concept, such that ideally it is a continuous

function of frequency. In digital signal processing we can find frequency information

at discrete points by computing the Fourier transform of the signal, however since

digital signals are often talked about in unitless terms, it is not completely obvious

how to compute the PSD from a digital signal. In this section we will start from the

continuous, analog definition of the power spectral density and discretize it to find

how to compute it for a digital signal.

We are interested in estimating the power spectral density of a signal x(t) sam-

pled at discrete points in time tn = nTs spaced at uniform intervals of Ts—the inverse

sample-rate. In the continuous case, the power spectral density can be found by

Fourier transforming the autocorrelation function of a signal—the Wiener-Khinchin

theorem [171]. The time averaged continuous autocorrelation function is, approxi-

mately,

Rx(τ) =
1

T

∫︂ T

0

x(t)x(t+ τ)dt. (7.37)

To be more precise, we should take the limit as T → ∞, but since it is not possible

to sample over time periods extending to infinity, we will use the given form for

convenience, keeping in mind our goal is to estimate the PSD of our sampled signal.

This estimation can be improved by averaging subsequent PSD estimates.
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With the autocorrelation function determined, the PSD can be found by Fourier

transforming it. If we assume our signal is periodic with a period T, the Fourier

transform X(ω) of a periodic signal x(t) is given by

X(ω) =

∫︂ T

0

x(t)e−iωtdt. (7.38)

Discretizing

To calculate the discrete case we will use forward Riemann sums. Given our signal is

sampled N times over a time period T , such that samples are spaced in time by Ts =

T/N , and each sample is indexed by n such that x[n] is our estimate for x(t) during

the interval tn ≤ t < tn+1, we can approximate

∫︂ T

0

f(t)dt ≃
N−1∑︂
n=0

f [n]Ts. (7.39)

Using this approximation we find for equation (7.37)

Rx(m) ≃ 1

NTs

N−1∑︂
n=0

x[n]x[n+m]Ts, (7.40)

and for equation (7.38)

Fk

{︁
x(n)

}︁
≃

N−1∑︂
n=0

x[n]e−iωknTs, (7.41)

where ωk = 2πk/N are the k frequencies we have chosen to evaluate the Fourier

transform at as given in Section 7.2.6. Note that if we take Ts → 1 we find the

discrete autocorrelation and Fourier transform as often given.
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All that is left to do is to put these equations together, such that the discrete

Fourier transform of the discrete autocorrelation function is

Sx[k] =
N−1∑︂
m=0

e−iωkmTs
1

NTs

N−1∑︂
n=0

x[n]x[n+m]Ts

=
Ts

N

N−1∑︂
n=0

eiωknx[n]
N−1∑︂
m=0

e−iωk(m+n)x[m+ n]

=
Ts

N
X∗[k]X[k]

Sx[k] =
Ts

N
|X[k]|2, (7.42)

where X[k] is the standard discrete Fourier transform as given by equation (7.33). We

can note that Ts/N is the frequency spacing of the samples produced by the discrete

Fourier transform, or the resolution bandwidth of the DFT. Therefore the PSD is

found by taking the discrete Fourier transform of a signal, computing its amplitude

squared—power—and dividing by the resolution bandwidth. Which seems obvious

in hindsight.

One additional point is that of single-sided vs double-sided spectral densities. As

given in equation (7.42), Sx[k] is normalized to the time-domain power via the discrete

version of Parseval’s theorem:

Ts

N−1∑︂
n=0

|x[n]|2 =
N−1∑︂
k=0

Sx[k]. (7.43)

However, in the case of real valued x[n], only floor(N/2)+1 coefficients of the Fourier

transform are unique. This fact can be interpreted as the terms with π < ωk < 2π

corresponding to the negative frequencies ωk − 2π. It is often desirable to normalize

the PSD such that only positive frequency terms are summed to match the power in
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the time-series signal. If we define the single-sided PSD,

Sss
x [k] = Sx[0]δ[k] + Sx[N/2]δ[k −N/2] +

N/2−1∑︂
j=1

2Sx[k]δ[k − j], (7.44)

where all the terms are doubled except for ωk = 0—and ωk = π if N is even—the

single-sided Parseval’s theorem holds,

Ts

N−1∑︂
n=0

|x[n]|2 =
N/2+1∑︂
k=0

Sss
x [k], (7.45)

where Sss
x is only summed over the floor(N/2) + 1 positive frequency components.

Finally, as alluded to earlier, the only way to compute the power spectrum exactly

is to extend the autocorrelation function for all time periods extending to infinity.

Therefore we are left to estimate the PSD. Computing one Fourier transform and

normalizing it—sometimes referred to as a periodogram—is not a great estimate,

and therefore we will introduce Bartlett’s method for estimation of the PSD [172].

Bartlett’s method suggests that when given a signal, x[n] containing N samples,

a better estimation of the PSD is made by dividing x[n] into multiple sequential

sequences with M samples each, such that xi[n] = x[iM + n]. Then the periodogram

of each sequence xi[n] can be computed and all averaged together to find a better

estimate for the PSD of x[n]—at the expense of frequency resolution.

7.3.3 Software lock-in amplification

An instrument that is commonly used in experimental physics is the lock-in amplifier

[173]. This instrument extracts a measurement from a noisy signal by isolating the

signal of interest at a narrow band of frequencies around a frequency of interest,

excluding the noise at all other frequencies. This operation is typically done with a
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dedicated instrument, however the exact same operation can be performed digitally

on a signal after capturing it with an analog-to-digital converter.

The signal processing done by a lock-in amplifier only takes a few steps. The signal

of interest is first demodulated at the frequency of interest, effectively frequency

shifting the signal to DC, and then low-passed filtered to remove high-frequency

components. Finally the phase and amplitude of the signal can be extracted.

To perform lock-in amplification, the signal is first collected as the digital signal

x[n]. This signal is typically a 1-channel voltage measurement and thus is real valued.

To demodulate the signal at frequency f0, the signal is multiplied by a complex

sinusoidal signal o[n] = ei2πf0Tsn, where f0 is the demodulation frequency and Ts is

the inverse sample rate, or sample spacing. Thus we compute the intermediate signal

y0[n] = x[n]o[n]

= x[n]e−i2πf0Tsn,

(7.46)

where y0[n] is a complex signal containing the in-phase (I) and quadrature (Q) com-

ponents in the real and imaginary parts, i.e. acting as an IQ demodulator.

The oscillator signal, o[n], is often output from a lock-in amplifier to provide

drive of the system under test at the frequency of demodulation, therefore it may

be useful to output this signal with a digital-to-analog converter, or with a sepa-

rate function generator tuned to the same frequency. Further, o[n] = e−i2πf0Tsn =

cos(2πf0Tsn) − i sin(2πf0Tsn) can be computed using the highly optimized sin and

cos functions present in most programming languages, however in high-frequency

real-time application the sin and cos values can be computed using a digital res-

onator filter [174], realizing o[n] = (e−i2πf0Ts)n, or o[n] = e−i2πf0Tso[n − 1], requiring

just one complex multiplication at each time step.

Next, the signal y0[n] is low-passed filtered to to remove frequency components

away from the demodulation frequency f0. Any FIR or IIR low-pass filter can be
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used for this operation, and selection of the particular filter will be made based on

performance and bandwidth characteristics. We will just say the signal is low-passed

by the LTI system L, such that we find the signal y[n] = L
{︁
y0[n]

}︁
, or

y[n] = L
{︁
x[n]e−i2πf0Tsn

}︁
. (7.47)

Here y[n] is the output of a lock-in amplifier. In the X, Y output of a lock-in

amplifier, X[n] = Re(y[n]), and Y [n] = Im(y[n]), while in amplitude (R) and phase

(ϕ) coordinates, R[n] = |y[n]| and ϕ[n] = arg(y[n]).

7.4 Measuring a system response with a spread-

spectrum drive

In a Section 7.3.2, we demonstrated how to estimate the power spectral density of a

signal sampled as a digital time-series dataset. When measuring the power spectrum,

we are already assuming some external power source is powering the measured signal.

For instance, when measuring the thermomechanical motion of a nanomechanical

cantilever, we are relying on the fact that thermal forces, constant across the frequency

spectrum, are continually activating the mechanical motion of the cantilever in a way

characterized by the mechanical susceptibility described earlier in Section 2.2.3.

However, it is often desirable to measure the response of a system in a controlled

way such that both the phase and amplitude of the system function can be deter-

mined. One of the most straight-forward ways to achieve this is to generate a drive

signal at specific frequency, and measure the response of the system to this drive

signal. The response of an LTI system to a drive signal at a specific frequency is

completely described by an amplitude and phase-shift of the drive signal. In practice,

this response can be measured through the use of a lock-in amplifier—Section 7.3.3.
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This drive signal can be swept over a discrete set of frequencies to map out the system

response. However, determining the system response this way is a slow process, with

only a very narrow bandwidth of the system being analyzed at a given time.

Instead of driving the system under test at a specific frequency, an alternative is to

drive the system with a signal containing a flat frequency spectrum, for instance, with

uncorrelated white noise or a delta function. However, because the drive power is so

broadband, the power at any particular frequency ends up being quite low making

good signal-to-noise measurements hard to realize. Instead, by driving the system

with a drive pulse d[n] containing an approximately flat power spectrum across only

the frequency range of interest, drive power and therefore signal-to-noise can be better

optimized.

Here we describe three methods to generate drive signals with an approximately

flat power spectrum across a well-defined bandwidth of frequencies. This drive signal

can be generated with the use of a digital-to-analog converter (DAC), applied to a

system, and the response measured with an analog-to-digital converter (ADC). By

computing the digital Fourier transform of both the drive, D[n], and response, Y [n],

the system function H[n] = Y [n]/D[n] can be constructed, revealing the phase and

amplitude response of the system under test across the bandwidth of interest.

In this section, we will demonstrate the steps used to generate a drive pulse to

measure the response of a system between 10 kHz and 20 kHz. We will use a sample

rate of 100 kSamples/s, and aim for a resolution bandwidth of 100 Hz, such that

the length of drive and response signal will need to be at least 10 ms in duration,

or 1000 samples. These parameters were chosen to enable visualization of individual

data points in the drive tone, yet containing enough datapoints for a fine-resolution

image of the drive signal and spectral power of the drive. However these recipes

can be adjusted for any combination of drive bandwidth, sample-rate, and resolution

bandwidth requirements.
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7.4.1 Linear phase FIR drive

For the first two methods, we will design a finite impulse response filter with the

desired spectral characteristics, and then use the impulse response of the filter as

the drive tone. For the first case, we will use the method of windowing to create a

linear-phase FIR filter. This is a standard method of filter design implemented, for

instance, by SciPy’s signal.firwin and signal.firwin2 functions and MATLAB’s

fir1 and fir2 functions.

The general method to create a FIR filter with a passband from ω1 to ω2 is as

follows. We define the system function of the filter to be:

H(eiω) =

⎧⎪⎪⎨⎪⎪⎩
e−iωM if ω1 ≤ ω ≤ ω2

0 otherwise,

(7.48)

such that the amplitude response of the filter is unity across the pass-band. The

system function can then be inverse Fourier transformed to find the impulse response

of the filter. In the continuous case—due to the perfectly sharp rising edge of the

filter—the impulse response will be infinitely long, however it can be truncated to

a finite length through the use of a window function, adding a transition width to

the band edges and introducing ripple in the pass-band as a result of the Gibb’s

phenomena [169, 175].

The exact choice of window function presents a trade-off between the length of

transition region at the band edge, and the amount of ripple introduced. However,

for this study we will restrict ourselves to the use of the Hann window—a shifted and

scaled cosine curve—due to its mathematical simplicity and relatively good spectral

characteristics [176]. It is defined by

w[n] =
1

2
(1 + cos(π + 2π

n

N
)), (7.49)
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Figure 7.3: a) Time-series plot of the impulse response generated with the linear-
phase FIR filter design method, f [n] (blue). The ideal filter response f0[n] is enveloped
with a 4 ms Hann window e[n] (gray, dashed). Signals are normalized to a maximum
field amplitude of ±1 V. b) The power spectral density of the drive signals shown in
a).

where w[n] is the Hann window spaced across N samples.

To examine the choice of the phase for the filter described by equation (7.48), let

us recall the time-shift property of the Z-transform (evaluated for z = eiω):

Z
{︁
x[n− k]

}︁
= Z

{︁
x[n]

}︁
e−iωk, (7.50)

that is, the phase shift in equation (7.48), e−iωM , is chosen such that the impulse

response of the filter is delayed by M samples. This shift is done such that when we

window the impulse response to 2M samples in length, the impulse response has no

values at negative time periods and is therefore causal.
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7.4.2 Quadratic phase FIR drive

Linear phase filters are often desired in signal-processing applications due to their

constant delay across frequencies. However for our application of designing a drive

pulse, the linear-phase filter presents a problem: most of the spectral power of the

drive signal is located at the same location in time, causing a spike in the time-domain

signal amplitude similar to a delta function.

Since the ability to generate a drive signal is usually limited by the maximum

amplitude of a signal, a drive signal like that created with the linear-phase technique

limits the average power in the drive signal. To navigate this limitation, we will

design a quadratic-phase filter using the same approximate design methods as the

linear phase filter, but with the characteristic of spreading out the spectral drive

information over time such that larger average drive powers are possible.

To begin, we will introduce the idea of the group delay of a filter. If a filter has

a phase response of ϕ(ω), then the delay applied to a component of the signal with

frequency ω, in samples, is [169, 177]

τg(ω) = −∂ϕ(ω)

∂ω
. (7.51)

We can see that if we use the linear phase ϕ(ω) = −ωM , a simple time delay of

M samples expected, just as determined using the time-shift properties of the Z-

transform.

We can use this to design the phase of the filter with a passband from ω1 to ω2

by requiring signals at ω1 to be delayed to M − D samples, while the signals at ω2

are delayed to M + D samples, such that the spectral band of the signal is spread

over 2D samples centered at a delay of M samples. Starting with a quadratic phase

ansatz of

ϕ(ω) = bω + cω2, (7.52)
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Figure 7.4: a) Time-series plot of the impulse response, q[n] (blue), generated with
the quadratic-phase FIR filter design method described in the text. The ideal filter
response q0[n] is enveloped with e[n] (gray, dashed). Signals are normalized to max-
imum field amplitude of ±1 V. b) The power spectral density of the drive signals
shown in a).

and requiring the conditions

τg(ω1) = −b− 2cω1 = M −D (7.53)

τg(ω2) = −b− 2cω2 = M +D, (7.54)

we find the desired phase of our filter

ϕq(ω) = −
(︃
M +

D

2

ω1 + ω2

ω1 − ω2

)︃
ω +

D

ω1 − ω2

ω2. (7.55)

Using this form for the phase of the filter response, we can construct the digital

system function H[k] = r[k]eiϕ(ωk) and perform an inverse real digital Fourier trans-

form to find the real-valued impulse response h[n]. This impulse response is then
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enveloped with E samples on either side of the 2D region the drive signal is spread

over such that the whole pulse is 2E + 2D = 2M samples long. Figure 7.4 illustrates

such a quadratic drive signal.

7.4.3 Chirp drive

An alternative method to spreading the drive power out over time is to build a chirp

filter. A chirp filter is very similar to the quadratic-phase filter just described, but

constructed in the time-domain, rather than the frequency domain.

We begin by thinking about how the chirp filter should behave. If we imagine

the chirp filter applied to a delta function, we expect the result to be a sine wave

ramping in frequency from DC to the maximum frequency expressible by the sample

rate, with a constant amplitude across frequencies. To construct the chirp, we will

design what we expect the impulse response of the filter to look like.

First, we will introduce the idea of instantaneous frequency—somewhat analogous

to the group delay used in designing the quadratic-phase filter. The instantaneous

frequency of a signal x(t) = A cos(ϕ(t)) is Ω(t) = (∂/∂t)ϕ(t) [178]. We want the

instantaneous frequency of the impulse response to ramp from ω0 to ω1 over a period

T , such that Ω(t) = ω0 + (ω1 − ω0)t. Integrating Ω(t), we find

ϕ(t) =

(︃
ω0 +

1

2

ω1 − ω0

T
t

)︃
t+ C. (7.56)

Digitizing the signal with t = nTs and T = NTs, and choosing C such the signal is 0

at n = 0, we can find the impulse response for our chirp as

c0[n] = sin

(︃
2π(f0 +

1

2

f1 − f0
N

n)nTs

)︃
, (7.57)

where fi = 2πωi. For f0 = 8 kHz and f1 = 22 kHz, c0[n] and its spectral power are

plotted in Figure 7.5.
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Figure 7.5: a) By ramping a sin wave from 8 kHz to 22 kHz instantaneous frequency
a chirp function generated as c0[n] (blue). An envelope, e[n] (gray dashed) is applied
to reduce discontinuity at the beginning and end of the drive and resulting function
c[n] is shown in red. b) Power spectral density of drive signals plotted in a), computed
by padding the drive signal to 15 ms with null signal increased frequency resolution.
The envelope applied on the signal c[n] with PSD |C[n]| acts to smooth the signal in
frequency-space reducing ripple in the drive band.

As can be seen in Figure 7.5, the chirped signal displays approximately the desired

spectral frequency characteristics, however the drive band from 10 kHz - 20 kHz

contains large ripples. To improve the ripple, the signal c0[n] can be enveloped.

By enveloping c0[n] with a Hann window increasing (decreasing) over 2 ms at the

beginning (end) of the chirp, the spectral characteristics are smoothed—Figure 7.5b.

Finally we can compare all three of the drives we have designed—Figure 7.6. Each

drive was designed with a 2 ms rising and falling envelope, and designed to spread

across a 8 ms drive length, with the exception of the linear-phase drive which we

are unable to spread further across time. As shown in Figure 7.6b, the chirp drive

achieves the most spectral power across the frequencies of interest, but the rising

and falling edges of the passband are distributed across a wide range of frequencies,
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Figure 7.6: a) By convoluting the FIR drive signal plotted in Figure 7.3 (c[n],
orange), and the chirped drive shown in Figure 7.5 (c[n], red), a chirped FIR drive
signal is produced (green) that is normalized to ±1 V signal amplitude. b) The
power spectral density of the drive signals reveal the convoluted signal retains the
same spectral shape as the FIR drive signal, but with average power almost reaching
that of the chirped drive.

such that if sharp spectral shapes are required—for instance frequency responses

approaching DC—a chirp drive may be a poor choice. The linear-phase drive achieves

good spectral characteristics, but with significantly less drive power. The quadratic-

phase filter retains much of the same spectral sharpness as the linear-phase drive, but

is able to significantly more drive power, although not as much as the chirp drive.

7.5 Conclusion

We reviewed the basics of digital signal processing, aimed to help experimental physics

researchers manipulate their data in powerful ways. The core approach is the framing

of an operation as a linear time-invariant system. LTI systems represent a wide variety
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of operations, including low-pass, band-pass, and high-pass filters which can be used

to judiciously isolate signals from noise within a particular bandwidth of interest.

The Z-transform, a generalization of the discrete Fourier transform, provides a

tool for manipulation of discrete LTI systems between their various representations.

The system function of an LTI system provides the familiar frequency dependent

amplitude and phase transfer-function depiction of a filter, while the finite-difference

equation form gives an algorithmically implementable realization of the system. With

these tools in hand, common measurement instruments such as a spectrum analyzer—

used to compute the power spectral density of a signal—or a lock-in-amplifier—used

to measure the system response to a sinusoidal tone—can be readily implemented in

software.

Finally, we introduced a technique for driving a system with a broadband pulse,

such that the system function can be determined in a more efficient manner than

through amplitude and phase responses to individual sinusoidal drive tones. Three

different methods for generating a broadband drive tone with sharply defined spec-

tral characteristics were presented, such that fast time-resolved measurements of the

transfer-function of an experimental system can be made.
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Chapter 8

Conclusion

The silicon and silicon nitride optical and mechanical resonators measured in this

thesis show promise as precise measurement devices to measure force and refractive

index. Because they are fabricated from a single layer of material, the devices are

robust and relatively easy to fabricate using either advanced photolithographic pro-

cesses as done in Chapters 3 and 4, or through electron beam lithography as done

in Chapters 5 and 6. Therefore the extension of these devices—either using optome-

chanical detection for high-sensitivity readout of a mechanical resonator, or using

the optical resonators as refractive index sensors themselves—to commercial devices

should be able to be navigated in a fairly straight-forward manner.

In Chapter 2, we developed the background theory of optical microdisks and

mechanical resonators showing how mechanical resonators will fundamentally act as

force sensors, with particularly high force sensitivity at AC frequencies around their

mechanical resonance frequency. In the study of the interaction between optical

and mechanical cavities—optomechanics—we developed a novel theoretical method

of analyzing optomechanical systems in the bad-cavity limit: the regime where op-

tical dissipation happens at a rate much quicker than the mechanical motion. This

regime presents an accessible, well understood parameter space where optomechani-
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cal cavities can act as precision displacement sensors of nanomechanical devices. In

Chapter 3, we demonstrated the detection of femtogram mass cantilevers at 2.0 ± 0.6

fmHz−1/2 which achieve room temperature, thermal limited force sensing of 130 ± 40

aNHz−1/2. This detection is achieved in the directly detected, tuned-to-the-slope op-

tomechanical detection scheme which does not require any additional expensive and

bulky optical components required by, for instance, homodyne detection setups.

When measuring the silicon cantilevers, we observed a signal at exactly twice the

mechanical resonator frequency, indicating a nonlinear transduction processes which

we further inquired in Chapter 4. One sought-after goal in fundamental mechani-

cal resonator research is to measure direct jumps in phonon number between Fock

states—a key signature of quantum behavior. To perform these measurements, a par-

ticular type of measurement—a quantum non-demolition measurement—is required,

and is expected to be able to be achieved through non-linear measurement of posi-

tion arising from second order optomechanical coupling. Using the bad-cavity limit

optomechanical theory we developed, we were able to show that it was nonlineari-

ties elsewhere in the optical transduction, and not more fundamental phonon-number

coupling to the optical resonator, causing the nonlinear transduction. However in do-

ing so we presented a path forward in the characterization of optomechanical devices

which may be able to perform such measurements.

In Chapter 5, we demonstrated that the same optical microdisk detection of

nanomechanical resonators observed in silicon works just as well for devices fabricated

out of silicon nitride. The high-stress silicon nitride that results from LPCVD depo-

sition of stoichiometric silicon nitride resulted in the fabrication of nanostrings with

picogram effective masses and high quality factors. We were able to fiber-waveguide

these devices to create an integrated robust package that was able to withstand cool-

ing to sub-kelvin temperatures, and due to relatively small optically induced heating,

present a promising platform for future cryogenic optomechanical experiments.
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In Chapter 6, we showed silicon nitride microdisks act well as sensors without being

paired with nanomechanical devices. In water, where mechanical motion would be

substantially damped, the refractive index sensing ability of the top-down fabricated

microdisk reached the limit of detection approaching 10−6 refractive index units.

Although not well recognized, digital signal processing has become a foundation

for experimental work in physics. In Chapter 7 we reviewed the basics of digital

signal processing and explore the ways in which filters and LTI systems can be ma-

nipulated for signal processing applications. We introduced the basics of signal mea-

surement tools such as the spectrum analyzer and lock-in amplifier, and presented

a broadband drive technique for the determination of the system function of an ex-

perimental device. Recipes for the generation of drive signals were developed, with

trade-offs between ease-of-implementation, the precision of spectral drive power, and

the amplitude-limited average drive power. These drive tones have been used with

great success in the measurement of superfluid helium Helmholtz resonators, which

were otherwise outside of the scope of this thesis.

Put all together, the monolithically integrated optical and mechanical devices, the

theory on optomechanical direct detection, and the know-how to extract meaning-

ful signals from a noisy measured quantity via digital signal processing techniques,

present a solid foundation to pursue further work in commercialization of these op-

tomechanical sensors.
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S. Gröblacher, M. Aspelmeyer, and O. Painter. Laser cooling of a nanome-
chanical oscillator into its quantum ground state. Nature, 478:89–92, 2011.

[82] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J.
Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds. Sideband cooling
of micromechanical motion to the quantum ground state. Nature, 475:359–363,
2011.

[83] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander,
E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis,
and A. N. Cleland. Optomechanical crystals. Nature, 464:697–703, 2010.

[84] A. H. Safavi-Naeini, J. Chan, J. T. Hill, Thiago P. Mayer Alegre, A. Krause,
and O. Painter. Observation of quantum motion of a nanomechanical resonator.
Phys. Rev. Lett., 108:033602, 2012.

[85] N. Brahms, T. Botter, S. Schreppler, D. W. C. Brooks, and D. M. Stamper-
Kurn. Optical detection of the quantization of collective atomic motion. Phys.
Rev. Lett, 108:133601, 2012.

[86] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert. Entangling
mechanical motion with microwave fields. Science, 342:710–713, 2013.

[87] S. Peil and G. Gabrielse. Observing the quantum limit of an electron cyclotron:
Qnd measurements of quantum jumps between fock states. Phys. Rev. Lett.,
83:1287–1290, 1999.

[88] W. H. Zurek. Decoherence and the transition from quantum to classical. Physics
Today, 44:36–44, 1991.

[89] W. H. Zurek. Decoherence, einselection, and the quantum origins of the classi-
cal. Rev. Mod. Phys., 75:715–775, 2003.

[90] V. B. Braginsky and F. Ya. Khalili. Quantum Measurement. Cambridge Uni-
versity Press, Cambridge, UK, 1992.

123



[91] D. H. Santamore, A. C. Doherty, and M. C. Cross. Quantum nondemolition
measurement of fock states of mesoscopic mechanical oscillators. Phys. Rev. B,
70:144301, 2004.

[92] J. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk, and K. C.
Schwab. Back-action-evading measurements of nanomechanical motion. Nature
Phys., 6:213–217, 2010.

[93] S. K. Steinke, K. C. Schwab, and P. Meystre. Optomechanical backaction-
evading measurement without parametric instability. Phys. Rev. A, 88:023838,
2013.

[94] Alex Szorkovszky, Aashish A Clerk, Andrew C Doherty, and Warwick P Bowen.
Detuned mechanical parametric amplification as a quantum non-demolition
measurement. New Journal of Physics, 16(4):043023, 2014.

[95] A. A. Gangat, T. M. Stace, and G. J. Milburn. Phonon number quantum jumps
in an optomechanical system. New Journal of Physics, 13:043024, 2011.

[96] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin,
and J. G. E. Harris. Strong dispersive coupling of a high-finesse cavity to a
micromechanical membrane. Nature, 452:72–76, 2008.

[97] A. Nunnenkamp, K. Borkje, J. G. E. Harris, and S. M. Girvin. Cooling and
squeezing via quadratic optomechanical coupling. Phys. Rev. A, 82:021806(R),
2010.

[98] S. Huang and G. S. Agarwal. Cooling and squeezing via quadratic optomechan-
ical coupling. Phys. Rev. A, 83:023823, 2011.

[99] K. Borkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin. Signatures of
nonlinear cavity optomechanics in the weak coupling regime. Phys. Rev. Lett.,
111:053603, 2013.

[100] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris. Strong
and tunable nonlinear optomechanical coupling in a low-loss system. Nature
Phys., 6:707–712, 2010.

[101] NE Flowers-Jacobs, SW Hoch, JC Sankey, A Kashkanova, AM Jayich,
C Deutsch, J Reichel, and JGE Harris. Fiber-cavity-based optomechanical
device. Applied Physics Letters, 101(22):221109, 2012.

[102] D Lee, M Underwood, D Mason, AB Shkarin, SW Hoch, and JGE Harris.
Multimode optomechanical dynamics in a cavity with avoided crossings. Nature
communications, 6:6232, 2015.

[103] H. Miao, S. Danilishin, T. Corbitt, and Y. Chen. Standard quantum limit for
probing mechanical energy quantization. Phys. Rev. Lett., 103:100402, 2009.

124



[104] J. T. Hill. Nonlinear optics and wavelength translation via cavity optome-
chanics. Nonlinear optics and wavelength translation via cavity optomechanics.
Ph.D. Thesis (California Inst. of Tech.), 2013.

[105] Hamidreza Kaviani, Chris Healey, Marcelo Wu, Roohollah Ghobadi, Aaron
Hryciw, and Paul E Barclay. Nonlinear optomechanical paddle nanocavities.
Optica, 2(3):271–274, 2015.
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entanglement between two micromechanical oscillators. Nature, 556(7702):473,
2018.
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Appendix A

Nanofabrication of devices

A.1 Nanofabrication of silicon devices

The silicon microdisks and cantilevers measured in Chapters 3 and 4 were fabricated

at the Interuniversity Microelectronics Center (IMEC) foundry, where a deep UV

photolithography process and subsequent etch was used to pattern the 220 nm sili-

con film. Post processing of the wafers received from IMEC were performed, which

included dicing of wafers into 1 cm × 1 cm chips, and release of the mechanical res-

onators by removal of a SiO2 layer with a buffered oxide etch. Post processing of the

chips was performed by Paul Kim and further fabrication details are available in his

masters thesis [179].

A.2 Nanofabrication of silicon nitride nanostrings

The devices measured in Chapter 5 were fabricated from wafers having a 217 nm thick

high-stress LPCVD silicon nitride film covering a 3 µm sacrificial silicon dioxide layer

all deposited on a silicon wafer. Wafers with films deposited on them were purchased

from Rogue Valley Microdevices, which were diced to centimeter scale chips that are

then individually processed.
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In order to fabricate waveguides to the edge of a chip, a specialized electron-beam

lithography (EBL) fabrication process was developed. Typically, when spin-coated

onto a chip, resist gathers at the edge of the wafers causing thickening of the resist

over millimeter distances at the edges—a process called beading. This interferes with

exposure at the edge of the chips preventing accurate patterning to the edges. To

avoid this problem, the chip to be patterned was first scored on the underside with a

dicing saw, leaving ∼200 µm of silicon. The chip is cleaned with a 3:1 H2SO4:H2O2

“Piranha” solution before being spin-coated with ZEP520-A electron beam resist to

a thickness of 350 nm (5 minute 180◦C post-bake). Immediately following, the chip

is further coated with a layer of Electra 92 conductive polymer to aid in dissipation

of electron-beam current during writing. After spin coating, the chip can be easily

cleaved along the score on the bottom of the chip, such that the resist forms a clean

surface to the edge of the chip.

The design is then patterned on the chip with a RAITH150-Two electron beam

lithography writer with a 30 kV acceleration voltage and a 215 µC/cm2 dose, followed

by cold development with the Zed N50 developer at -10 ◦C for 90 s. Development is

stopped with a 20 s rinse in isopropyl alcohol also at -10 ◦C and dried with N2.

Using the ZEP resist as a mask, the Silicon Nitride layer is etched with a CHF3 /

CF4 reactive ion etch (Oxford Instruments PlasmaPro 80 RIE), and the ZEP mask

is removed with UV exposure and gentle agitation in an acetone bath.

To release the mechanics the chip is submerged in a buffered oxide etch (BOE)

bath for 50 minutes to remove ∼2.5 µm of the oxide layer, followed by a critical point

drying (CPD) step.
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A.3 Nanofabrication of silicon nitride optical mi-

crodisks

The silicon nitride optical microdisks studied an Chapter 6 were fabricated from

wafers similar to the nanostrings, except with a 150 nm film of LPCVD silicon nitride

on 3 µm of oxide. Low-voltage electron beam lithography (10 kV, RAITH150-Two)

was used to pattern polymethyl methacrylate (PMMA) electron beam resist to en-

able lift-off patterning of an aluminum hard mask [180]. After development of the

PMMA resist with a 7:3 IPA:water development solution, a thin layer of aluminum

was deposited via electron beam evaporation. The PMMA and unwanted aluminum

was removed with sonication in acetone to leave an aluminum hard mask defining

disk geometry. A SF6 reactive ion etch was performed to etch the SiN layer, after

which a buffered oxide etch removed 3 µm of the buried oxide and the aluminum

mask.
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