National Library
I*E of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

'he quality of this microform s heavily dependent upon the
juality of the original thesis submitted for microfilming.
-very effort has been made to ensure the highest quality of
eproduction possible.

i pages are missing, contact the university which granted
he degree.

>ome pages may have indistinct print especially if the
riginal pages were typed with a poor typewriter ribbon or
F the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
y the Canadian Copyright Act, R.S.C. 1870, c. C-30, and
ubsequent amendments.

IL-339 (r.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons

tout tait pour assurer une qualité supérieure de reproduc-
tion.

S'il_manque des pages, veuillez communiquer avec
f'université qui a conféré le grade.

La qualité dimpression de cernaines pages peut laisser a
désirer, surtout si les pages originaies ont éié dactylogra
ptiées & l'aide d'un ruban usé ou si l'université nous a tad
parvenir une photocopie de qualité infésieure.

La reproduction, méme partielle, de cette microforme est

scumise a la Loi canadienne sur le droit d'auteur. SRC
1970, c. C-30. et ses amendements sut:séquente

Canadi

The University of Alberta

SSE: An Integratec igh Level Synthesis System

by

Tai A. Ly

A thesis
submitted to the Facuity of Graduate Studies and Research
in partial fulfillmei:: of the requirements for the degree
of Doctor of Philosophy

Department of Electrical Engineering

Edmonton, Alberta
Spring, 1992

L]

Canadi

Nationat Library
of Canada

Bibliotheque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be orinted or
otherwise reproduced without his/her per-
mission.

i

o
-
i

et

Service des lhéses canadiennes

L'auteur a accardé une licence irrévocable et
non exclusive pemmettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
Cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

THE UNIVERSITY OF ALBERTA

RELFEASE FORM

NAME OF .*UTHOR: Tai A. Ly

TITLE OF THESIS: SSE: An Integrated High Level Synthesis System

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Doctor of Philosophy
YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to The University of Alberta Library to
reproduce single copies of this thesis and to lend or sell such copies for
private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without
the author’s written permission.

(SIZNEA) veonvnrs Pt
Permanent Address: -
2023 - 52 Street
Edmonton, Alberta

Canada T6L 2G9

Dated 6 December 1991

THE UNIVERSTTY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCHE

The undersigned centify that they have read, and reconmmmend 1o the
Faculiy of Graduale Swdies and Research, for acceptance, o thesis entitled SSE: An
Integrated High Level Synthesis System submiticd by Fai AL Ly in partial

fultillment of the requirements tor the degree of Doctor of Phitosophy

...

Dr. T, A, Marsland

Date Azy. 3¢) T4

ABSTRACT

Traditional high level synthesis systems divide the synthesis problem into a
rizmber of simpler tasks, which are then solved separately in a fix~d order. While this
reduces the complexity of the synthesis algorithms, it does so at the expense of syn-
thesis quality because the synthesis tasks are heavily interdependent on one another.
In this thesis, we propose a novel framework for high level synthesis in which
different synthesis tasks may be solved concurrently. To demonstrate the feasibility of
such a system, we integrate the synthesis tasks of scheduling and allocation in the pro-
totype SSE (for Synthesis by Simulated Evolution) system. Other synthesis tasks can

then be similarly integrated to this system in the future.

The SSE synthesis system features:

I. New Simulated Evolution-based scheduling and allocation algorithms which,
despite their local heuristics and simple cost functions, produce good designs very

quickly by effectively exploring the design space.

2. A generalized formulation of the allocation task which considers unscheduled
operations as having uncertain schedules and applics fuzzy set theory to represent
and reason about such uncertainties, thereby extending the allocation algorithm to

handle incomplete schedules.

3. An integration of the above scheduling and allocation algorithms as concurrent,
algorithmic agents in a Blackboard architecture, allowing more sophisticated syn-

thesis strategies than are possible in previous synthesis systems.

Acknowledgements

I would like to thank Dr. Emil Girczyc for opening my eyes to the field of high
level synthesis, and for his encouragement in the early stages of this research. I also

thank my wife Christina for her love and support throughout my graduate school years.

Table of Content

Chapter 1. Introductionc.cccccoevimnniannn
1.1. High Level Synthesiscccccccueeee
1.1.1. Synthesis Inputoe..e.
1.1.2. Synthesis Outputcccce.
1.1.3. Synthesis Objectives
1.1.4. Synthesis Subtasks

1.2. Thesis Goulsccooeeriiiicniiiicinnnen
1.3. Organization of Thesis
Chapter 2. System Overviewc..c..ec....
2.1. Traditional Synthesis Process
2.2. Proposed Synthesis System
2.3. Prototype System Overview

...

...

...

...

...

...

...

...

...

...

...

...

2.3.1. Applying Simulated Evolution to Scheduling and Allocation
2.3.2. Allocation based on Fuzzy Schedulescccireiiiiiennienciierennieneniaseeeneenns
2.3.3. Integrating Scheduling and Allocationcccceciiiieeiienneeirenceeeseeenesnaenns

2.3.4. ASSumptionscc..ceeeeeveiiinnes
2.3.5. Design Representations
2.3.5.1. CDFG ..occcoiteerinciccvnnens
2.3.5.2. CG .oiircviiiiinen e
Chapter 3. Related Workveeereeecnnns

...

...

D R R Ty R Y LT T PR P TP Y PPy)

...

...

3.1. Separate Scheduling and Allocation SYStemsccccceceeiriccirrccceneeneeraeereeens
3.2. Concurrent Scheduling and Allocation SyStemscccueeeevvieenieereiireereceseeennen
3.3. Transformational Synthesis SYSLEIMSccccceirieeeieeeiirnniieerieeenneeeeeniessessessesrenns

3.4. Comparisonc..ccccceeeeveneceneeresenanns

...

Chapter 4. Optimization by Simulated Evolutioncccoocoiiieeiiiiniieiec e

4.1. The SE Algorithmc.ccccc....
4.2. Optimum Assignment Problem ...
4.3. Implementation of GEMSRATE .
4.4. Implementation of SELECT
4.5. SUMMATY ...coieciiieeieciiieereteee e
Chapter 5. Basic Scheduling Algorithm .
3.1. Previous Scheduling Approaches

..

..

...

..

..

R es 80 0aItestiettnesetsensestassstnntsttasstoserssescarineniesnsay

5.2. Scheduling as an Optimum Assignment Problemccccceveorneveirencvveeennenn.
5.3. The PRIORITY FUNCHON .cciiiiiiiiriieieecreeseirteeenrenaeesctnses veseesseernssenesnnnseseenones
5.4. The INCR FUNCHON ..c.cooiiiiiiiiictintiintee i e tecrteessteesnae s acr s sa s asressssaesasns
5.4.1. Incremental Operator COStccccveeeeerivrnrrerienerrennrenes
5.4.2. Incremental REGIStEr COSEcovreierueirerrerneeeesrerinneret rreseesesssescnsessneensecan

5.4.3. Incremental Interconneci Cost
5.4.4. Incremental Opportunity Cost

...

L T R R P N O Y L ek LR L L R R YT T RO s

WX Hh B WN -~

11
11
13
15

b}
1

16
17
18
19
20
24
26
26
29
30
31
35
35
38
39
40
42
43
43
46
49
S1
51
52
54
55

5.5. The GLOBAL Function

.. 56

5.6. SUIMMTIATY .ooiiiiiiiiitiice ettt et et ettt s et ee e e e e e e et ss e e ess oo oo 58
Chapter 6. Basic Allocation AIZOTIthIMcuo.eeeuiiieieeeeeieeeeeeeeee e 59
6.1. Previous Allocation APProachesooieeeeeceeeeeeeeeeeeeeeeseeoeeeoeoeeeoee oo 59
6.2. Allocation as an Optirnum Assignment Problemooooooiooooooo 60
6.3. The PRIORITY FUNCHON ...ccoeiiiiiiireeeteeteee e e e e e o 63
6.4. The INCR FUNCHON ...cccoiiiiiiiiieennitieeeiieice e e et eeeeese e e oo ee oo 65
6.5. The GLOBAL FUNCHON «.cetiteeniotiteieetiie et ceeeeeeeeseesesee oo e oo e et 67
6.6. SUITHNATY c.ooieiiiiiiiieieienteenteessinese s iresesesmesseeaeseesaesses st eeen s e s e e e oo e e 68
Chapter 7. Refined Synthesis Algorithmscococeevveeeereeevvveneoennn, fesverreeriee e ee 70
7.1. Hardware CONSITAINTSc..coieeiieneeeieireeieetret oo eeee e e eeeeeeseese e eeeees e 71
7.2. Local Timing CONSIAINTSceeieeivieierieceeeeeceeeeeeeeeeeesesee oo eereeeceneenn 71
7.3. CaSE CONSIIUCESciviiiieeieenianeenteseseansesesteseeaesseseene essemessessasmssresseressssssesesssen 72
T4, LIOOPS «eureiiiviiecciieeneniemrie st e seesteeetees seseeareaee s eeesenes ettt teen it ereereetan e aean ey 72
7.5. Area/Time Tradeoffsc.occiiieiiiimienieiiie et ee oot ee e oo 72
7.6. Operation ChainiNgociiiiiiiaiencetieecr e ee e e ee e 73
7.7. Equivalent Allocation Constraints e te e treetere et aeeeennnannnienans 74
7.8. Operators with Permutable INPULSuoceeiuiieuirieiine e e eeeeeee e 75
7.9. Interconnect OPUMIZATON ...eecieoiieiiietieeeeiieeieeeeeeeeeeee oo ee e e e e e 75
7.10. Catastrophic Rip-Up in AIOCAtION ..uouvvevieeieeeeee e oo 76
7.11. Structural Pipeliningccocoveveene. Lereetmrmeiereeeetietnissranetanteretsantrsrneeteaeatennns 76
7.12. Algorithmic PipelNINg ...cooceooieoiioieeeiine et 77
Chapter 8. Design Examples for SE-based Synthesis crerereteeanrreraneeacarnans 79
8.1. Differential Equation Example from HALooooocoiiominmeeeeeoeeeoee e 79
8.2. Pipelined Examples from SEhWacoceeieviuievceeeeeeeeeeceeeeeseeesseeseenenn. eeenreeen 84
8.3. Fifth Order Elliptic Wave Filter (EWF) EXamplec.cocooovveeveoveeeeenrnnnn. 86
B.4. SUMIMATY ...ciuiiiiiiiiiniietneteie et ieetie e s be e theeeeeeeeeseeeeseseeeemsen e eere e e eeseese e 94
Chapter 9. Comparing SE to Simulated Annealmg .. 95
9.1. Simulated ANNEAINEcceeviieivieeeeieeneeetee e e e eeee e ereere s e e s e sees e ee e oo 95
9.2. An Intuitive Comparison of SE and SAcccoomeoreoeeieeeeeeeeoeeeeen 97
9.3. Experiments on Effects of Guided Searchcocoeeeeoemreeomoeeoeieeeeeen 98
9.4. Experiments on Effects of State Transition DiStancec...c.oocoovervvennn.n.. 102
9.5. Combining the SE and SA AIZOTItNMSeeoueeeeeeie oo 106
9.6. SUIMIMATY ...ttt ettt st st ee e e ee e aeeees s e e e e e e e e e 108
Chapter 10. Bottom Up Synthesis based on Fuzzy Schedulesoooooveomooeeeeon 110
10.1. INIOAUCHON ...ooueeiiieetiieentee ettt e et eeeeee et e eeeeeees e et eeeee s e s e e eeeeee oo 110
10.2. Fuzzy Schedulabilitycc..ccioiiuiieariiiceiee oot e e e, 113
10.2.1. FUZZY St TREOIY ...covivtreurenieniirentieereieceeeseeteeeeeeeeesseeeemveneessessemssseemeees oo 113
10.2.2. Fuzzy SChedUICccceieiieeeieieeeeeee et . 114

10.2.5. Allocation using Fuzzv Schedulabilityccccooviiviiiiiiiiiiiinin, 123

10.3. Implementation ISSUEScoiiiiiiiiiimmiiini s 125
10.3.1. Statistical Fuzzy Schedules ...t eeaeseneens 125
10.3.2. Approximate Schedulability Decrementccccoceciiiiiiviininivieniaceesenenns 127
10.3.3. Dependency ANAIYSIScccciirreciieirrniercnneencenreseeeaermessesseiarienssnsasseosssessessras 127
10.3.4. Interval ANAlYSIS ...ciiicvirieiiiiiiioiecrtciiereie e tereeentetaneesassnsrarastessssesarsanse 128

10.4. Experimental RESUILS ..ottt et ceresrenscere e e teaeernn s saeeeses 130

TO.5. DISCUSSIONS .iiiiiiiiiiiaiiiiiiiieieiiietiisesssiseeeeasssesas s sseasssenasesssanseeaasansssasnansesenns 134
10.5.1. Comparing Fuzzy Allocation with Design Partitioningccccccoevn.. 134
10.5.2. Optimistic and Pessimistic Formulationscccocciiriiiiiiiininiinneniieiennnn. 135
10.5.3. Scheduling with Partial AlloCationc.ccccceeceriiiiniinirncieeeeeereernescnnennns 135

1O.6. SUIMMMATY .oooiiiiiiiiiiioiieiieereeraeaseessanresansnrsssseersasssnsessassessssnssesssssosssssesssnsssassses 157

Chapter 11. Integrating Scheduling and Allocationccccceceirieiineeeciaiieseeeeeennenes 139

11.1. Blackboard and Kernel SOftwarec.ccccveeiiieiiiiiiiiniiinieceereaeaneceseesseenans 140

17.2. AlgOTithmic AZENTS ..oiiiiiiiiiiiiiiiiee et e reereeeeee e e aeeeeeeeeeeessensesaanens 141

11.3. Control MeChaniSImS coviieiiiiiiritrc et s ceeeeerrreneeeeraeeeeeesaseeseasanees 142
11.3.1. Intermixing of Synthesis StEPS ..ccovvcviiriiieiiiiiiiiiiiriirivrceeeeeeeseenvrenes 142
11.3.2. Focusing of AtENONccccceiiiiiiieiiiieeieierniiiiecereesseneneesesssessssssnnnsssseanses 144

11.4. Experimems with Synthesis Strategiesccccciiiiiiiiiinnnierineneeereeennereneenn. 146
11.4.1. Fine-Grained INtEZrationcccccccimiieiiiiiinniniiieeaeeneiieeeceeeesceanseseanessesanns 146
11.4.2. Top-Down and Bottom-Up Synthesis with Iterationscccccecveeenene. 147
11.4.3. Allocation based on Iterative Improvementcccooceeireienenenrneciieeneenns 147
11.4.4. Goal Directed Synthesiscccciciiiineiriiiciiircinineetireirteaeeceesesnssesesseeens 150

T1.5. SUMMATY oottt ittt seeseeettess s sressesesssnntasaasasessssnsesasanssssassssnssnsessennns 154

Chapter 12, CoNnCIUSION ...cciiiiiieeiiieeiiirreeceaneeceeeseeree e s ranassesassaresesessssssssnnseesseeeans 155

12,1, SUMMATY oottt ciiterie s etieienteeeesereeasseesesesssssasasssssnssssaeassssnsessssssensasssns 155

12.2. MajOr CONITIDULONScouuieieieieiirieetiieeeenrreeiernessssesessseeseesaesssareessessesessnsesns 157

12.3. Suggestions for FUture WOrKccoiieiiciiiiiiiierreieee e crccceereeeeeessesensennes 158

REIETENCES ...ciiiiiiieiiiiii ettt te e senearee e e s e ea st e e s e e s s teas e s snsnbese s s nnssessasnnne 160

List of Tables

Table 8.1 Design Costs for Differential Equation Example (4 Control
Steps)

.. 82
Table 8.2 Design Costs for Differential Equation Example (8 Control

SEEPS) e ettt et et 82
Table 8.3 Schedule Costs for the FIR Filter Example ..., 86
Table 8.4 Scheduling Performance for the EWF Example ..., 89
Table 8.5 Design Costs for the EWF Exampleococoooioviooiioo 90
Table 8.6 Schedule and Allocation for the EWF Example ..., 91
Table 8.7 Scheduling Performance for the EWF Unrolled 3 Timesooooooooon.... 94

Table 10.1 Experimental Results on the EWF Example (19 Control
SEEPS) e ettt et et s e e 133

List of Figures

Figure 1.1 Design Synthesis Models in the Y-Diagramcccccccccvieiinnnnnniicencrnennen.
Figurc 1.2 Sample HIDL Code SEEMENTccociiiiiiiiciceerreenase e ree s eseaeeeseeeeseens
Figure 1.3 A Simple Synthesis EXamPIEcocccviiiiniininiennnnienecnnnieeeeenenenneesesessnnens
Figure 2.1 Traditional Synthesis ProCesscccccvvriiiivieiieiiniiiieirsenieeeeesnsrsienessssennns

Figure 2.2 Complete Proposed System for Integrated High Level Syn-
TRESIS it rrrtre e rtttee st esree st st te s e e staer e e s e asee s a aas e e e st aeaeanante b ereaseesnsntaseeaeares

Figure 2.3 Two-Phase Clocking SChemecccocviiiiiiiiiiiicciincccc e crscneneneaeaeseae e
Figure 2.4 Sample CDFG Data Nodes and Data EAgescccccvimrvunrirecciriererienenne
Figure 2.5 Sample HDL and CDFG with a LOOP COnstructcccceeecerveeerreecionnne
Figure 2.6 Sample HDL and CDFG with a CASE CONStrucCtccccceeveeveeninereeecennne

Figure 2.7 Example of (a) Minimum and (b) Maximum Timing Con-
SITAIMES coiiiiiiiiinr et et e ttecese et s e e sasssanaaaassaressesanessaesrssnsteeasssnnneesensnnssnsessasssnsens

Figure 2.8 A Sample CG with 2 Functional Umts, 3 Registers, a Mux and a
BUS e ettt e e s se e s at e s sr s a st et a e e b e e e s e st anne senns

Figure 4.1 Pseudo-Code for the SE Algomthmcc.cceiiieiniiiniiiniiccneecieeeeccccnennns
Figure 4.2 Pseudo-Code for GENERATEccoocoiiiiiiiiiiiceinitireeseseeneeseeecanssneeseens
Figure 4.3 Pseud0-Code for SELECT ...ttt e ceeeecsresnrieseressesssesesesssnsnns

Figure 7.1 Algorithmic Pipelining: Consecutive Instances of a LOOP Overlap
I THINIE ittt sttt e st s et se s aeeere s seasseassssnaeeaas snbessasssnnsassssnsnssnss s snsanseessesan

Figure 8.1 CDFG for the Differential Equation EXamplecccccoovmveveeeeninenneennens
Figure 8.2 Circuits for Differential Equation Example (4 Control Steps)
Figure 8.3 Circuits for Differential Equation Example (8 Control Steps)
Figure 8.4 Schedules for the FIR Filter EXamPplecccccoeeeveeeieenseeenieeceeenseneceenes

Figure 8.5 Scheduled Example with Algorithmic Pipeline and CASE Con-
SITUCES <eetiiiiiiiiiieienreeeeeeseneneeraesensenessnnseassesnes frteeeeeaetete et et er et et s e e ee s e et e et aateaseratnnnaeeanann

Figure 8.6 CDFG for the EWF EXQmMPIE «.ccciiiiiieiiiiiinreceieeecieeeeesee e s ceereseeeeeeaeens
Figure 8.7 Circuits for the EWF EXamplecccoveieirvirinieieireeceeieneecesneeesneeeseneens
Figure 8.8 Run Time Profile for SE-based AllOCAONc.oeeviemeeereieveererereneeesenene
Figure 9.1 Pseudo-Code for the SA AIGOTIthIMcccccoieieerieiieneecereereeeeeeeeeeeesenas

Figure 9.2 Performance with Randomized PRIORITY, INCR and GLO-
B A L et rete st e st se st et et e e e e srss e s esae s se st ae s e e s eean

Figure 9.3 Performance Without Component Costs in INCR (Case 1)
Figure 9.4 Performance Without Component Costs in INCR (Case 2)
Figure 9.5 Pseudo-Code for SA-GENERATEooooieiiiiemeecneeeceteeeeneeseneeeseseeens
Figure 9.6 Statistical Performance for SA-Based Schedulingcoccceevueveeenunene.n.
Figure 9.7 SA Failures vs. Maximum State Transition DiStancecc.cocceeveeruenn.
Figure 9.8 SE Failures vs. Maximum State Transition Distanceccoecueuue.....
Figure 9.9 Pseudo-Code for the Combined SE/SA Algorithmcccouveeeeeeecennnn...

Figure 9.10 Performance of SE/SA Based Scheduling for Select T
Values ..

23

24
36
39
41

77
80
81
83
85

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

10.2 §,,(i) for n = 427, 429 and X30 ..ooioieeie oot 120
10.3 1, (i) for n = +27, +29 and x30 e ettt tevetreaetareran s rerataaraeteaneeanaeens 121
10.4 eb, (i+1) for n = +27, +29 and X30cooeoeeveieieenieeeeeeee e 121
10.5 sa, (i—d(n)+1) for n = +27, 429 and X300 .ooovveeeeeeeeeeeeeoeeee e 122
10.6 L, (i) for x = €27 and €29cccccoietererieieicieeceeeeeteee e e e 122
10.7 Sample Statistical Performance for the EWFcoooviivveiieen 131
11.1 The Blackboard/Agent Architecture in SSEcccoovevvvivcereorreenisennsanns 139
11.2 Pseudo-Code for Iterative Improvement Based Allocation 148
11.3 Allocation Performance for Select Values of m and 7 .c...oeveunnee....... 149

11.4 Best Circuit for the EWF Example

Chapter 1. Introduction

As VLSI technology advances and IC designs grow more and more complex, the
importance of design synthesis tools becomes increasingly apparent. In the most gen-
eral sense, design synthesis refers to the automatic generation of a design description
from arother design description at a higher level of abstraction. At the lower levels,
physical design tools generate final layout of a circuit from a structural netlist of a
design (i.e., interconnected cell structures). At a higher level of abstraction, logic syn-
thesis tools generate a structural netlist from a logic equation description of a design.
At the next higher level is the register transfer level (RTL) of design descriptions,
which consist of interconnected functional units (e.g., adders, ALUs, multipliers),
registers, multiplexers, busses, and a finite state machine (FSM) description of the tim-
ing and control of these interconnected cells. RTL synthesis tools generate logic equa-
tions and structural netlists from RTL design descriptions. Finally, above RTL are the
behavioral and algorithmic levels of design descriptions. Synthesis from these levels
of design abstraction is referred to as high level synthesis, which is the subject of this

thesis.
1.1. High Level Synthesis

High level synihesis is concerned with the automatic generation of RTL design
descriptions from the algorithmic or behavioral specifications of digital systems. This
is called high level synthesis because it is at a higher level of design abstraction than
RTL synthesis, logic synthesis and physical design. Fig. 1.1 depicts these design

processes on the "Y-diagram" of design representations [47,58].

Chapter 1. Introduction 1

Structural Functional
High Level ’

Synthesis

Architecture
CPU, Memory

Register Transfer

O Spec.
Algorithmic

3ehavioral

Loagle

Gates, FF's Syrnthesis Boolean Equation

Trangistors Differential Equation

RTL Synthesis

Physical Design

Floor Plan

Physical

Figure 1.1 Design Synthesis Models in the Y-Diagram

1.1.1. Synthesis Input

An algorithmic description of a system specifies the input/output mapping of the
system in terms of functional operations and possibly timing constraints on tiese
operations. A behavioral description, on the other hand, specifies not only the func-
tionality and timing of a system, but also certain structures and/or internal behaviors of
the system [47]. Fig. 1.2 shows a hardware description language (HDL) code segment
for a system that computes the sum of its four inputs. This code segment is an algo-
rithmic specification if we ignore the sequencing of code statermnents, and ignore the
fact that botii statements 2 and 4 assign values to variable r1. However, this code seg-
ment is a behavioral specification if we observe sour.« =« de sequencing (i.e., operation

A+8 is performed before operation C+D), or inw oo Deple assignments to the

N

Chapter 1. Introduction

same variable name (l.e., r1) as storing values to the same memory element (i.e., state-

ments 2 and 4 both write to the same memory ¢' ‘ment).

1: READ(A); READ(B). READ(C). READ(D);
2. t1 «<- A+ B

3: 12« C4+ D;

4: 11 <- 11 + 12;

Figure 1.2 Sample HDL Code Segment

1.1.2. Synthesis Output

The output of high level synthesis is an RTL description which typically specifies
a data path and a control path. The data path is a circuit containing all functional
units (e.g., adders, multipliers and comparators), memory elements (e.g., registers,
register files and RAM) and interconnects (e.g., busses, multiplexers and signal nets)
required to perform all data transfer, data storage and functional operations in the input
specification. The control path is a finite state machine (FSM) which produces all con-
trol signals required for the data path cells. Typically, control paths are implemented
by automatic FSM generators based on microprogram or PLA based controller archi-
tectures. This RTL circuit description is then passed to lower level design tools for

final layout.

Chapter 1. Introduction 3

1.1.3. Synthesis Objectives

The objectives of high level synthesis, like that of any other design activity, are
to minimize costs subject to performance constraints, or maxiniize performance subject
to cost constraints, or a combination of both. In this context, costs of a circuit may
include hardware area, testability, power consumption, etc, whereas the performance of
a design may be measured in terms of throughput and/or response time. For the pur-
pose of this thesis, we measure the cost of a design by the total active area (e.g.. meas-
ured by the number of gates used) in its data path, and we measure the performance of
a design by its throughput. Consequently, given an algorithmic/behavioral
specification, we either minimize the data path area subject to a maximum constraint
on the time delay between inputs and outputs, or minimize this time delay subject to a

maximum constraint on the data path area required.

1.1.4. Synthesis Subtasks

We identify six subtasks in high level synthesis:

1. Translation: This translates the input specification from a high-level HDL
to a Control and Data Flow Graph (CDFG) representation. This makes
explicit all data and control dependencies among operations and variables in
the input specifications, and removes any ambiguity that may arise from
source code sequencing and multiple assignments to named variables.
Fig. 1.3(a) shows a sample HDL code segment, and Fig. 1.3(b) shows the
equivalent CDFG representation for this HDL code. By itself, the CDFG is
an aigorithmic specification of the design. However, if we permit users to
specify explicit bindings of operations (or data values) to clock cycles and/or
hardware cells, and denote these bindings in the CDFG, then the output of

this translation step may be a behavioral specification of the design.

Chapter 1. Introduction 4

2. Functional Gptimization: This applies correctness preserving transforma-
tions to the CDFG representation of the input specification, or simply CDFG,
to optimize the CDFG for subsequent synthesis steps. Fig. 1.3(c) siows a
CDFG which is optimized with respect to circuit throughput from the CDFG
of Fig. 1.3(b).

3. Module Selection: This selects a set of library cells, or modules, to imple-
ment the operations, store the data values, and realize the data transfers in
the (optimized) CDFG.

4. Scheduling: This sequences all operations in the CDFG by assigning them
to specific clock cycles, or control steps, such that all data and control
dependencies are satisfied. Fig. 1.3(d) shows the scheduled CDFG of
Fig. 1.3(c).

5. Allocation: This instantiates and assigns specific hardware cells to opera-
tions and data values in the CDFG, and makes all circuit interconnects to
implement data transfers among these cells. Fig. 1.3(e) shows the data path

created by allocation for the scheduled CDFG in Fig. 1.3(d).

6. Control Path Generation This determines the specification for the control
path FSM by extracting ail control signals required in each control step, and
then passes this specification to an automatic FSM generator. Fig. 1.3(f)
shows the resulting control path which, together with the data path of
Fig. 1.3(e), makes up the final implementation for the input specification in

Fig. 1.3(a).

Chapter 1. Introduction 5

READ(A); READ(B); READ(C):
t<- A+ B;
t<-t+C;
t<-t+ D;

WRITE(t);
(a) Sample HDL Code

i

&

Initial CDFG

@@

(b)

READ(D);

(¢} Optimized CDFG for Throughput

Control
Steps..

1 @g@@@
; o

4 OuUT

(d) Scheduled CDFG

IN

R1 sz
Adder1

| I

(e) RTL Data Path

[J

Control Signals

: to Data Path

ROM

£t

2-bit Counter

reset

{f) RTL Contro! Path

Figure 1.3 A Simple Synthesis Example

Chapter 1. Introduction

1.2. Thesis Goals

In this thesis, we will describe a novel framework in which different tasks in high
level synthesis may be solved concurrently. To demonstrate the feasibility of such a
system, we integrate the tasks of scheduling and allocation in a prototype implementa-
tion named SSE (for Synthesis by Simulated Evolution). Other synthesis tasks, such as
functional optimization and module selection, may then be similarly integrated into this
system in the future. Early work on different components of this system has been
reported in [31,32,34-36].

This work has three major goals. The first goal is to show the value of effective
design space exploration in scheduling and allocation. Previous work in scheduling
and allocation has focused on developing more and more complex heuristics and cost
functions to improve design quality at the expense of increased run times. However,
we will show that simple heuristics and cost functions can produce good designs
quickly if the CPU time is devoted to an effective exploration of the design space
instead. In particular, we will apply the optimization technique of simulared evolution
[22] to scheduling and allocation, and show that the resulting algorithms are simple,

fast, and produce good designs by effective exploration of the design space.

The second goal of this work is to generalize the allocation task to allow for
bottom-up synthesis, in which allocation is performed before scheduling. Previous
work in high level synthesis has largely assumed a top-down approach, in which
operations are only allocated after they have been scheduled, and data values are only
allocated after their lifetimes are well defined (i.e., when the operation producing the
data has been scheduled, and when the latest operation accessing the data has been
scheduled). Only recently did work start on bottom-up synthesis [38,54]. We will
describe a new formulation of the allocation task which considers unscheduled opera-

tions as having uncertain schedules. Fuzzy set theory is then applied to such

Chapter 1. Introduction 7

uncertainties, and the allocation task is generalized to that of finding the smallest cir-

cuit for which a successful schedule is still highly possible.

The third goal of this work is to demonstrate the feasibility of a framework for
concurrent scheduling and allocation based on the above synthesis algorithms. We
will describe how the simulated evolution-based scheduling and allocation algorithms
may be organized as autonomous agents which work on the CDFG in a blackboard
architecture. A supervisor module then dynamically intermixes scheduling and alloca-
tion steps at the level of individual operations and data values. We will also present a
number of supervisor schemes to illustrate the power and flexibility of such a synthesis

system.

1.3. Organization of Thesis

In "Chapter 2: System Overview", we will first describe the traditional top-down
design process for high level synthesis, and propose a new synthesis system in which
all synthesis subtasks are solved concurrently. We then give a brief overview of our

prototype SSE system.

"Chapter 3: Related Work" gives a brief overview of other synthesis systems,
classified according to the way they implement the interactions between the tasks of
scheduling and allocation. We also give a summary comparison between these syn-

thesis systems and the SSE system.

In "Chapter 4: Optimization by Simulated Evolution”, we introduce the general
optimization technique of Simulated Evolution (SE), and describe our implementation
of SE in the context of an optimwm assignment problem. This separates all application
specific components of the SE algorithm into three cost functions, namely PRIORITY ,

INCR and GLOBAL.

Chapter 1. Introduction 8

This paves the way for "Chapter 5: Basic Scheduling Algorithm” and "Chapter 6:
Basic Allocation Algorithm”, which describe SE-based scheduling and allocation algo-
1ithms, respectively, by first formulating each synthesis task as an optimum assignment
problem, and then defining the cost functions PRIORITY , INCR and GLOBAL. for
cach task.

In "Chapter 7: Refined Synthesis Algorithms", we outline a number of extensions
to the basic synthesis algorithms to accommodate "realistic” design constraints such as
synthesis with pipelined functional units, hardware constraints, and local timing con-
straints. This shows that the SE-based synthesis algorithms can be readily extended to
incorporate additional application features with straightforward changes to the cost

functions.

"Chapter 8: Design Examples for SE-based Synthesis" presents experimental
results produced by the SE-based scheduling and allocation algorithms on a number of
design examples taken from the literature. This demonstrates that, compared to other
synthesis systems, the SE-based synthesis algorithms generate comparable designs very

quickly, and generate much better designs when given longer run-times.

In "Chapter 9: Comparing SE to Simulated Annealing", we compare SE and
simulated annealing (SA) in the context of scheduling. We propose two hypotheses as
to why SE may be better than SA, especially for highly constrained problems such as
scheduling, and present experimental results in support of our hypotheses. In the pro-
cess, we will describe a new implementation of SA which allows arbitrarily complex

transformations modeled after the SE algorithm.

"Chapter 10: Bottom Up Synthesis based on Fuzzy Schedules" presents a new
formulation of the allocation task which allows full allocation of all operations and
data values prior to scheduling. We describe the implementation of this new formula-

tion as a simple extension to our SE-based allocation algorithm. We then present

Chapter 1. Introduction 9

experimental results which demonstrate the effectiveness of this new formulation for

bottom-up synthesis.

In "Chapter 11: Integrating Scheduling and Allocation", we describe the integra-
tion of our SE-based scheduling and allocation in our SSE prototype system, and

present a number of synthesis strategies which we have experimented with.

Finally, "Chapter 12: Conclusion” summarizes important contributions in this

thesis, gives a few concluding remarks, and discusses possible directions for future

research.

Chapter 1. Introduction 10

Chapter 2. System Overview

In this chapter, we first describe the traditonal top-down design process for high
level synthesis, and then propose a novel synthesis system in which all synthesis sub-
tasks are solved by autonomous agents defined on the CDFG and organized in a black-
board architecture. This is followed by a brief overview of the prototype system, SSE,

which is designed to demonstrate the feasibility of our proposed synthesis system.

2.1. Traditional Synthesis Process

Fig. 2.1 shows the top-down design process assumed by most high level synthesis
systems. Given a HDL specification, the first step in high level synthesis is transla-
tion to a graph based representation such as CDFG, value trace [15], or ETPN [49].
This is followed by functional optimization, which applies optimization techniques
such as inline expansion, dead-code elimination and code migration (into and out of
loops and case constructs) [59] to the CDFG, in order to optimize the design at the

algorithmic level without changing the function of the CDFG.

The next step is module selection, which selects a set of library cells which are
to be used for implementing the final design [19]. This step usually selects one func-
tional unit type for all operations of the same type, and one register type for all data
values of the same bit width, although subsequent RTL synthesis tools may override

such cell selection decisions by customizing individual cells.

The next two steps, scheduling and allocation, are the primary tasks in high level
synthesis. The scheduling step sequences all operations by assigning these operations
to start in specific control steps, such that all input data for each operation are avail-
able when the operation starts to execute. This defines the lifetimes of all operations
and data values in the CDFG. (The lifetime of an operation is the sequence of control

steps in which the operation will be executing, whereas the lifetime of a data value is

Chapter 2. System Overview 11

HDL Description
(Transtation)
(' Functionat Optimization)
Optimized CDFG

@odule SelectiorD

(_scheduling)

Feedback Paths

Allocation Control Path Spec

CComrol Path Generation)

Control Path

RTL Description
CD Synthesis Subtask © Synthesis Data

Figure 2.1 Traditional Synthesis Process

the sequence of control steps in which the data value must be stored for subsequent
use).

Given the lifetimes of operations and data values, the allocation step assigns cells
to operations and data values, such that all operations (or data values) assigned to the

same cell have non-overlapping lifetimes unless they are on mutually exclusive paths in

Chapter 2. System Overview 12

the CDFG (see Chapter 7). This step also creates all interconnects required to transfer
data between functional units and registers, thereby constructing a data path capable of

implementing the scheduled CDFG.

After scheduling and allocation, the control path generation step constructs a
FSM specification for the control path by mapping control steps to states, embedding
precedence, loop and case constructs in the next-state logic, and specifying all control
signals required in each control step as outputs in the correspondiug state. This FSM

specification is then optimized and passed to FSM generators for implementation.

However, a purely top-down design process suffers from the shortsightedness in
estimating low-level costs for higher-level design decisions. Consequently, feedback
paths are typically provided between module selection, scheduling and allocation as
shown in Fig. 2.1. These feedback paths permit design iteration based on a stepwise
refinement approach, in which the low-level design characteristics of each iteration are
used to guide the high-level design decisiciis in the next iteration. Nevertheless, syn-
thesis tasks are still performed separately, preventing a tight coupling of design deci-

sions in these tasks.

2.2. Proposed Synthesis System

We propose here a framework in which different tasks in high level synthesis are
solved concurrently. Basically, we crganize all synthesis steps as concurrent processes
in a blackboard architecture. The complete proposed system is depicted in Fig. 2.2.
At the center of this system is a centralized data structure (i.e., the blackboard) and
kernel software which provide access to all data posted on the blackboard. The pri-
mary data on the blackboard are the CDFG, the data path circuit structure, and the

control path state graph and circuit structure.

In this system, each synthesis task is incrementally solved by an algorithmic

Chapter 2. System Overview 13

@BL Description

C Translation)
|
v

. fKernel Software I

(Module Selection)‘—-i-zb

Functional
Optimization

Blackboard

Control Path

HC Scheduling)

S SSE

C> Ablioc“e;tion.)4-——’

CControl Path Generation)

C:) Software Module O Synthesis Data

O Data Structure k The SSE Prototype Systert

Figure 2.2 Complete Proposed System for Integrated High Level Synthesis

agent, which is a software module that queries and updates data on the blackboard.
Each agent is required to work independently of other agents, and only makes one
design decision, based on the current state of the blackboard, each time it is activared.
Moreover, since there is no a priori order for the design steps, each synthesis algo-
rithm must be able to accommodate (and hopefuliy, make use of) partial designs by
other synthesis algorithms. For example, when the scheduling agent is activated, it
may assign a control step to one unscheduled operation in the CDFG based on the par-
tial schedules and allocations in the CDFG. Similarly, when the functional optimiza-

tion agent is activated, it may migrate a small number of operations into a case con-

Chapter 2. System Overview 14

struct based on the partial schedules in the CDYrG. 'These synthesis agents are coordi-
nated by a supervisor module which dynamically decides which agent should be

activated next. This allows an arbitrary intermixing of synthesis steps.

Advaritages of this synthesis system are threefold. First, this system allows a
tight coupling between the design steps in different synthesis tasks, even though the
synthesis agents are implemented independently of one another. Second, as a result of
the independence between the synthesis agents, this system is well suited for experi-
menting with different synthesis algorithms. Synthesis agents may be easily added to
or deleted from the system, requiring only updates to the supervisor module. Third, by
arbitrarily inicsmixing synthesis steps, the supervisor module facilitates experimenting
with different synthesis strategies. For example, the system can emulate other design

approaches by enforcing different, fixed ordering of the synthesis steps.

On the other hand, in order to implement our proposed synthesis system, we must
address two issues. First, we need new synthesis algorithms which are fast, incremen-
tal, and produce good designs. Second, we need to develop bottom-up design tech-
niques in order to perform low level synthesis tasks (e.g., allocation) before higher
level synthesis tasks (e.g., scheduling) are completed. In this thesis, we address these
issues by focusing on integrating the tasks of scheduling and allocatien, and we imple-

meni the prototype SSE systemn as a proof of concept.

2.3. Prototype System Overview

The prototype SSE system integrates the tasks of scheduling and allocation in
high level synthesis as proposed in the previous section. This is depicted by the

shaded area in Fig. 2.2.

Chapter 2. System Overview 15

2.3.1. Applying Simulated Evolution to Scheduling and Allocation

In the SSE system, we apply the technique of simulated evolution to the tasks of
scheduling and allocation. Simulated evolution, or SE, is a general optimization tech-
nique modeled after the principle of natural selection [22]. Basically, given a CDFG,
a greedy scheduling (or allocation) algorithm first schedules (allocates) all operations
(and data values) in the CDFG using local cost functions. All scheduling (allocation)
assignments are then graded by a global cost function and assigned normalized costs
between O and 1. Subsequentiy, random thresholds between 0 and 1 are generated to
determine the "survival” of these scheduling (allocation) assignments. For each assign-
ment, if the randomly generated threshold is less than its normalized cost, then the
corresponding operation (or data value) is de-scheduled (de-allocated). All de-
scheduled operations (de-allocated operations and data values) are then re-scheduled
(re-allocated) by the greedy algorithm in the next iteration. This implements a proba-
bilistic hill climbing algorithm which is capable of escaping from local minima in the
design space. Combined with fast greedy algorithms, SE-based syrthesis algorithms
generate very good designs in reasonable run times by rapidly searching over large

regions of the design space [31, 32].

2.3.2. Allocation based on Fuzzy Schedules

While scheduling with partial allocation has been well researched, allocation with
partial (i.e., incomplete) schedules has only recently received some attention [38, 54].
In the SSE system, we extend our allocation algorithm to accommodate incomplete
schedules by considering unscheduled operations as having uncertain schedules. Basi-
cally, we know that each unscheduled operation will start in one of its candidate con-
trol steps, but we do not know which one until the operation is eventually scheduled.

In the mean time, we may estimate the relative merit of the scheduling candidates and

Chapter 2. System Overview 16

apply fuzzy set theory [24] to represent our beliefs that some control steps are better
scheduling candidates than others. This leads to the concept of fuzzy schedules for
CDFG operations. From these fuzzy schedules, we derive the concept of fuzzy life-
times for all operations and data values, and then define a fuzzy schedulability which
measures the belief that a feasible (i.e., conflict-free) schedule still exists given the
allocation. This allows the allocation algorithm to handle incomplete schedules by
trading off hardware cost and the perceived risk of scheduling conflicts. Consequently,
we generalize the task of allocation to that of finding the smallest circuit for which a

Jeasible schedule is still highly possible.

2.3.3. Integrating Scheduling and Allocation

In integrating the SE-based scheduling and allocation algorithms, we implement
two mechanisms for the supervisor module to coordinate the synthesis algorithms.
First, the supervisor dynamically decides whether greedy scheduling or greedy alloca-
tion (of a single operation or data value) should proceed next; and once all operations
(and data values) are scheduled (allocated), the supervisor module decides whether to
invoke probabilistic de-scheduling (de-allocation). Then the system will iterate by re-
scheduling (re-allocating) all de-scheduled (de-allocated) operations (and data values).
Second, the supervisor algorithm dynamically decides which operations and data
values are subject to the probabilistic de-scheduling and de-allocation steps in the syn-
thesis algorithms. This effectively focuses the attention of the synthesis algorithme o
specific portions of the CDFG, and facilitates the implementation of more sophisticated

synthesis strategies.

Chapter 2. System Overview 17

2.3.4. Assumptions

For the purpose of this thesis, we shall assume a synchronous hardware architec-
ture in which a circuit consists of a data path and a control path. The data path is
composed of functional units (e.g., adders, multipliers, ALUs), registers, multiplexers,
busses and wires. The control path is a FSM, most likely micro-program or PLA-
based, which supplies signals to cells in the data path to select functionalities in func-
tional units, latch registers, setup multiplexer/bus addresses, etc. A simple two-phase
clock scheme is assumed (see Fig. 2.3). In the first phase ((—5), the interconnects are
setup so that data from register outputs are transferred to the inputs of functional units,
and data from functional ‘=it outputs are iransferred to the inputs of registers. The
registers load their input data at the rising edge of the clock (unless loading is dis-
abled). The conirol path derives its next state in the second phase (possibly depending
on data path results produced in the first phase), and latches all control signals and
state registers on the falling edge of the clock. Each clock period constitutes a control
step because it corresponds to the duration of a state in the controller FSM. All data
values are latched into registers in the first control step in which they become avail-
able. To simplify extraction of the control path FSM, the lifetimie of a data value con-
sists of those control steps in which a control signal (i.e., load or hold) must be gen-
erated for that data value. Consequently, a data value is /ive from the control step in
which it is generated, until the control step just before it is last accessed.

Moreover, we shall assume that the inputs to the SSE system are a functionally
optimized CDFG, a set of library cells for implementing all operations in the CDFG,
and a global timing constraint which specifies the maximum number of control steps
allowed for one execution of the CDFG. We assume that the hardware cost is calcu-
lated as the total area of cells (including interconnect cells) in the data path. While the

cell areas of functional units and registers are specified by the cell library, the areas of

Chapter 2. System Overview 18

Cne Control Step

k 3
l\
L Data Path Phase Control Path Phase
k X A
1) !
1) !
o 0] 4]
tLatch ali Control Signals tLatch all Registers in Data Path

Figure 2.3 Two-Phase Clocking Scheme

multiplexers and busses are calculated by assuming that they are constructed from 2-
input multiplexers. Specifically, we assume that busses are implemented as multi-
plexers with multiple fanouts, and each n-input multiplexer (n > 2) is implemented as
n — 1 2-input multiplexers. Consequently, we may express the total area of intercon-
nects as the number of 2-input multiplexers required to implement all multiplexers and
busses in the data path. Wiring area and propagation delays are ignored because their
calculations require a circuit model at a much lower level of abstraction than is avail-

able prior to RTL synthesis and physical design.

2.3.5. Design Representations

Two maajor design representations in the SSE system are the CDFG (Control and
Data Flow Graphs) and the CG (Circuit Graph). The CDFG specifies an algorithmic
(or behavioral if partially allocated) description of a circuit, while the CG specifies the
structural description of a circuit at the register-transfer level (i.e., interconnected func-

tional units, registers and multiplexers, etc).

Chapter 2. System Overview 19

2.3.5.1. CDFG

The CDFG consists of two types of elements, namely nodes and edges. A CDFG
node can be either a duta node, which represents a data path operation (e.g., +, *, >),
or a control node, which represents a control construct that is implemented in the con-
trol path (e.g., loop, case). Similarly, a CDFG edge can be either a dara edge, which
represents a data value generated by a data node, or a control edge, which represents i
precedence or timing constraints on the scheduling of the CDFG. Scheduling and allo-
cation information are recorded on CDFG nodes and edges as special attributes.

Data Node
A data node has a fixed number of data edge inputs and data edge outputs as

determined by its functionality.

N1

N2 N3

Figure 2.4 Sample CDFG Data Nodes and Data Edges

For example, the node N3 in Fig. 2.4 represents an integer addition operation
with 2 inputs and 1 output (i.e., § < A + B). This is an exampie of a commuta-
tive operation (i.e., A+B = BE+A). If the selected cell for 2-input addition has
permutable inputs (i.e., input ports may be exchanged), then N3 also has permut-

able inputs. As a result, we may exchange the data edges A and B at the inputs

Chapter 2. System Overview 20)

of this node during aliocation (see Chapter 7).
Data Edge

A data edge has a single input and multiple outputs. The node connected to the
input of an edge is referred to as the producer, or source, node, and the nodes
connected to the outputs of an edge are referred to as the consumer, or sink,
nodes. In Fig. 2.4, the data edge A has a producer node labeled N 1, and consu-
mer nodes labeled N2 and V3. In this case, we say that the edge A is produced
by the node N 1, and accessed by the nodes N2 and N 3.

Control Node

A control node has an arbitrary number of inpu.ws and ouiputs.

READ(v); READ(n); v L ‘< n
LOOP tfor n times LoopBegin
; ~
begin &7 N
°

V<-V + 1 v
end LOOP K /
|

v

@D

()

WRITE(V);

(a)

Figure 2.5 Sample HDL and CDFG with a LOOP Construct

Fig. 2.5(a) shows a HDL code for a simple loop, and Fig. 2.5(b) shows the
corresponding CDFG loop construct, which consists of a loop begin node, a loop
body (CDFG subgraph), and a loop end node. In this example, a variable v is

assigned a valve outside the loop, accessed and then modified inside the loop

Chapter 2. System Overview 21

body. and then accessed by an operation after the loop. The four cdges labeled

’

v, vV, v” and v oin Fig. 2.5(b) represent the same logical data, and must be allo-
cated to the same register (at least for just before and just after the loop, and at
the beginning/end of all loop iterations) in order to ensure functional correctness
regardless of the value of n (i.e., the numbers of iterations in the loop). Conse-
quently, corresponding loop begin and loop end nodes impose certain allocation

constraints on some CDFG edges.

READ(v); READ(condition);
CASE condition is:
begin
condl: Vv <- v + 1;
cond2: v <-v - 1;
otherwise:
end CASE;
WRITE(v);

(a)
O Mutually Exclusive Subgraphs
(b)

Figure 2.6 Sample HDL and CDFG with a CASE Construct

Fig. 2.6(a) shows a HDL code for a simple case statement, and Fig. 2.6(b) shows
the corresponding CDFG case construct, which consists of a conditional Sfork
node, a set of parallel CDFG subgraphs, and a joir node. Each of the parallel
CDFG subgraphs enclosed by the fork and join nodes represents a conditional
branch in the case construct. By definition of the case statements, in each pass of

the CDFG one and only one of the branch conditions can be true. Conscquently,

Chapter 2. System Overview 22

operations and data values in separate branches are ruutually exclusive, in that
they will never be live simultaneously even if they are scheduled to the same
control steps. Again, the edges labeled v, v1,v1’,v2 v2’ v3, and v’ represent
the same logical data, and must be allocated to the same register (at least for just
before and just after the case construct) in order to cnsure correctness regardless

of which branch of the case construct is taken during execution.

Control Edge

A control edge may have multiple inputs and multiple outputs.

(a) delay(C) >0

{b) delay(C) < 0
——P® Control Edge

Figure 2.7 Example of (a) Minimum and (b) Maximum Timing Constraints

Fig. 2.7 shows a control edge labeled C specified from the nodes N1, N2 and
N3 to the nodes N4, N5 and N6. The weight on the control edge (delay(C) in
Fig. 2.7) specifies a minimum delay constraint (in number of control steps)
between (the starting control steps of) the producer nodes and (the starting control

steps of) the consumer nodes of the control edge. If delay (C) > 0 (Fig. 2.7(a)),

Chapter 2. System Overview 23

then € represents a local minimum timing constraint between the two groups of
nodes (i.c., the latest of N1, N2, N3 must start at least delay (C) control steps
before the earliest of N4, N5, N6 starts). If delav(C) < 0 (Fig. 2.7(b)), then C
represents a local maximum timing constraint between the two groups of nodes
(i.e., the latest of N1, N2, N3 must start no later than delay (C) control steps
after the earliest of N4, N5, N6 starts). By convention [26], the case
delay (C) =0 is assumed to specify local maximum timing constraints (i.c.,

treated as if O is a negative number).

2.35.2. CG

R1

register R2 (register R3(register

Wam—]
I |

in0 ini in0 in1

out
l I Functicnal Unit I Mux/Bus
@ Register O 11O Port

mux

Figure 2.8 A Sample CG with 2 Functional Units, 3 Registers, a Mux and a Bus

Chapter 2. System Overview

The CG contains two types of elements: cell instances and signal nets. A cell
instance (or simple cell) represents an instantiation of a library cell in the data path,
while a signal net (or simply net) represents a circuit connection between one output
signal of a cell and multiple input signals of other cells. To connect multiple nets to
an input vort of a cell, a multiplexer is created to select between the nets in each con-
trol step as required by the operations allocated to the cell. Busses are modeled as

multiplexers whose outputs have multiple fanouts. Fig. 2.8 shows a simple example of

the CG.

Chapter 2. System Overview 25

Chapter 3. Related Work

Existing systems for high level synthesis can be classified into three categories by
the way they approach the tasks of scheduling and allocation. The first group of sys-
tems performs scheduling and allocation separately. This includes Facet [57], EMUCS
[15], Chippe [3], HAL [47] and BUD [38]. The second group of systems performs
scheduling and allocation concurrently. This group consists of EIf [11], MAHA [46],
and SSE. The third group of systems does not directly perform the tasks of scheduling
and allocation, but iteratively apply design transformations which may change either
the schedules, the allocations, or both, to improve the initial designs. This includes

DAA [25], Hercules [5], and CAMAD [49].

In this chapter, we give a brief overview of these synthesis systems, and compare
different synthesis approaches. Interested readers are referred to [37] for a comprehen-

sive review of high level synthesis systems and approaches.

3.1. Separate Scheduling and Allocation Systems

Most of the existing synthesis systems perform scheduling and allocation
separately to simplify the problems. For the most part, scheduling is performed prior
to allocation, although recent work [38,54] has perform pre-allocation, in which a
CDFG is partitioned based on low level estimates (e.g., connectivities, propagation

delay and area), before scheduling and final allocation.

Facet

Facet uses as soon as possible scheduling, in which operations are assigned to
their earliest candidate control steps according to data dependencies (i.e., an
operation cannot start unless all of its inputs are available). It then formulates the
allocation of operations, registers and data transfers as separate clique partitioning

problems. For example, to allocate operations to functional units, a graph is

Chapter 3. Related Work 26

created from all operations by connecting two operations with an arc if they may
be allocated to the same functional unit (i.e., their lifetimes do not overlap). By
solving for the minimum number of cliques in this graph, and assigning all opera-
tions in each clique to the same functional unit, one can allocate operations to the
minimum number of functional units. Unfortunately, minimizing the number of
functional units, registers and interconnects separately does not produce an alloca-

tion which minimizes the total hardware cost.
EMUCS

EMUCS makes use of a simple list scheduling algorithm [37] to schedule opera-
tions. It then incrementally allocates operations to functional units, data values to
registers and data transfers to interconnects. The allocation algorithm succes-
sively selects the most critical allocation to perform, which is defined as the best
(i.e., minimum cost) allocation for an operation (or data value) which has the
largest cost difference with respect to the second best allocation for the same
operation (data value). A partial circuit is incrementally updated as allocation
decisions are made, to facilitate cost calculations for subsequent allocation candi-

dates.
Chippe

Chippe uses the Slicer module for scheduling and the Splicer module for alloca-
tion. Slicer [42] is based on the list scheduling algorithm, which levelizes all
operations in the CDFG (from top to bottom), and then schedules operations in
increasing levels, delaying operations whenever the maximum number of func-
tional units are reached in a control step. Splicer [43] incrementally allocates
operations and data values, starting from operations scheduled in the first control
step. Splicer makes use of four special heuristics when allocating data transfers

in order to reduce interconnect costs. These heuristics explicitly consider inter-

Chapter 3. Related Work 27

connects between 1) register outputs and bus inputs, 2) bus outputs and functional
unit inputs, 3) functional outputs to bus inputs, and 4) bus outputs to register
inputs. Chippe incorporates a knowledge-based system which adjusts parameters
of Slicer and Splicer based on design statistics. ‘This implements a design critic
which tunes the synthesis algorithms in successive iterations to improve the

designs.

BUD

BUD first partitions a CDFG according to a distance metric between each pair of
operations which considers their functionality, degree of connections, and poten-
tial parallelism. It then schedules operations using a list scheduling algorithm
which gives priority to operations on the critical paths in the CDFG. Allocation
is then performed on operations and data values in each partition separately, and a
floorplan is developed to evaluate area and delay costs of the design. This design
is then passed to the DAA synthesis system for further optimization.

HAL

HAL performs scheduling using a force directed scheduling algorithm which suc-
cessively makes the best scheduling decisions based on a global calculation of
attraction and repulsion forces between operations. This tries to minimize the
hardware cost of a schedule by balancing the numbers of concurrent operations,
data values and data transfers across control steps. After scheduling, HAL uses
greedy algorithms to first allocate operations to functional units, then data values
to registers, and finally data tvansfers to interconnects. These prelirainary alloca-
tions are then optimized by first exhaustively trying all permutations of functional
unit inputs for commutative operations, and then merging registers and multi-

plexers using weight-directed clique-partitioning algorithms.

Chapter 3. Related Work 28

3.2. Concurrent Scheduling and Allocation Systems

Scheduling and allocation are highly interdependent tasks. EIf and MAHA
attempt to exploit this interdependency by performing scheduling and allocation ¢on-
currently, although in both cases allocation is performed as a secondary task which

guides the scheduling algorithm.
Elf

EIf uses a list scheduling algorithm which gives priority to the operation with the
maximum "urgency", which is defined as a weighted number of control steps
between the candidate contol step and the "as late as possible” schedule for an
operation. EIf also considers potential allocation costs for different scheduling
decisions. Each time an operation is scheduled, it is immediately allocated to a
functional unit. This incrementally builds up a partial circuit, which is then used
to estimate allocation costs associated with different scheduling candidates. Intui-
dively, if the allocation cost is high, EIf would delay the schedule of an operation

until its urgency outweighs its allocation cost.

MAHA

MAHA starts by sequentially allocating operations on the critical path and con-
structing a partial circuit. Operations off the critical path are then iteratively
scheduled in order of increasing "freedom"”, which is defined as the number of
candidate control steps. When scheduling an operation off the critical path, exist-
ing functional units arc examined for possible hardware sharing. The first control
step for which possible hardware sharing is found is scheduled to the operation.
If no hardware sharing is possible, the operaton is scheduled to its "as soon as
possible” control step. Again, operations are allocated as soon as they are
scheduled to update the parial circuit for subsequent scheduling steps. After

scheduling (and allocation of operations), the REAL system [28] is used to

Chapter 3. Related Work 29

allocate data values to registers. REAL uses the /eft-edge algorithm to pack data
values with disjoint lifetimes to the same registers to minimize the number of

registers.

3.3. Transformational Synthesis Systems

Transformational synthesis systems start with a default design, which is typically
the maximally parallel or maximally serial design, and then successively apply design

transformations to improve the current design.

DAA

DAA is a rule-based expert system which improves a design by applying transfor-
mations which directly trade off fast, costly parallel circuitry against slower,
smaller sequential circuitry. DAA originally used a maximally parallel design
(i.e., each operation is allocated to a cell by itself), but now uses the output from

BUD as the initial design.

Hercules

Hercules first generates a default schedule and then a preliminary allocation by
assuming zero delays for combinational circuits (i.e., a maximally serial design).
It then applies logic synthesis to the design to optimize combinational circuitry
and obtain zrea and timing estimates for this circuitry. Iterative refinement is
then performed in which the initial schedules are modified based on information
fed back from logic synthesis. In this case, data path transformations are embed-
ded in the logic synthesis system, while control path transformations are guided

by area and delay estimates provided by logic synthesis.

CAMAD

CAMAD also starts with a maximally parallel design, and then carries out itera-

tive refinement by applying optimizing transformations which directly fexde off

Chapter 3. Related Work 30

circuit area and timing perforrnance. A two level optimization strategy has been
implemented in CAMAD: for operations on the critical paths, CAMAD selects
transformations which minimize timing delay; for operations off the critical paths,

CAMAD selects transformations which minimize circuit area.

Devadas’ System

34.

Devadas’ system [6] formulates the scheduling and allocation problem as a single,
two-dimensional (i.e., space and time) placement problem, and applies the general
optimizaticn technique of simulated annealing [21] to this problem. Starting with
a randomly generated design, this synthesis system randomly applies one of a
small number of design transformations, or moves. If the new design is better
than the current one, then the new design is accepted as the current design; other-
wise, the new design is probabilistically accepted, depending on the cost incre-
ment and a control parameter, the "temperature”. Allocation of data transfers to
interconnects is not explicitly modeled because it does not easily fit into the two-
dimensional placement formulation. Instead, an estimate for the number of

busses required is used to calculate the interconnect costs for different designs.

Comparison

Among all of the systems described above, HAL produces the smallest circuits to

date for data path synthesis. This is to be expected because HAL is the only system

using global scheduling (i.e., HAL calculates the cost of all candidate control steps for

every unscheduled node to determine which node to schedule next), which should pro-

duce better results than local scheduling algorithms (i.e., algorithms which pick the

next node to schedule without comparing all candidate control steps for every node).

However, since the complexity of HAL’s force-directed scheduling algorithm increases

rapidly with the number of operations and the degree of scheduling freedom, HAL is

Chapter 3. Related Work 31

limited to designs with tight timing constraints. For designs with loose timing con-
straints, local algorithms (e.g., force directed list scheduling, or FDLS [47]) must be

used to reduce the computational complexity.

From the point of view of technology potentials, synthesis systems which perform
concurrent scheduling and allocation are better than systems which perform these tasks
separately due to the heavy interdependency between these tasks. However, the com-
putational complexity due to concurrent scheduling and allocation is such that greedy
algorithms and local heuristics must be used. Consequently, these systems tend to get
trapped in local minima, and require many design iterations to produce reasonable cir-
cuits. To date, no system using concurrent scheduling and allocation has been able to

compete with HAL in circuit quality because the computational costs for design itera-

tions are prohibitive.

BUD and Hercules are interesting synthesis systems primarily because they
represent the first steps in integrating high level synthesis with physical design tools.
Just as concurrent scheduling and allocation is potentially better than separate schedul-
ing and allocation, integrating physical design tools, such as floorplanning, module
compilers and logic synthesis tools, with high level synthesis is important for produc-
ing good designs at the final layout level. Unfortunately, the same issue of computa-
tional complexity must be resolved before these systems can compete with other sys-

tems which perform synthesis tasks in isolation.

Transformational synthesis systems are difficult to compare with conventional
high level synthesis systems because they are often targeted for specific application
domains, such as digital signal processing (DSP) and microprocessor designs, for
which large amounts of expert knowledge is available. Such application specific
design knowledge are encoded in the forms of design transformations and the heuris-

tics which govern the application of these transformations. While a well tuned

Chapter 3. Related Work 32

transformational synthesis system may produce designs which are comparable to
human designers in their target domain, major effort is required to port such a system
to another application domain. Nevertheless, a significant advantage of transforma-
ticoal synthesis systems is that, once their transformations have been formally verified,
they generate verifiable designs which are correct by construction.

Recent work in applying transformational synthesis to general purpose synthesis
applications, such as Devadas’ system, percolation scheduling [SO] and SALSA [40],
uses a small set of design transformations and simple heuristics for applying these
transformations. These systems rely on probabilistic search and rapid design iterations

to achieve good designs.

Depending on the supervisor algorithm used, the SSE system may be classified
into any one of the three groups of synthesis systems in the previous section. If we
consider SSE as performing scheduling and allocation separately, then it differs from
previous synthesis systems in this group in the way SE-based synthesis algorithms
combine simple, fast greedy algorithms and probabilistic hill climbing to produce com-
parable designs very quickly, and much better designs when given longer run times

(see Chapter 8).

If we consider SSE as performing scheduling and allocation concurrently, then it
differs from previous synthesis systems in this group in the way it allows arbitrary
intermixing of scheduling and allocation steps. In particular, SSE allows allocation of
unscheduled operations and data values whose lifetimes are ill-defined (see Chapter
10), unlike EIf and MAHA which only allocate operations and data values with well-

defined lifetimes.

Finally, SSE may be considered as performing transformational synthesis in
which each design iteration corresponds to the application of a complex design

transformation. In this case, SSE differs from previous transformational synthesis sys-

Chapter 3. Related Work 33

tems in the way it generates arbitrarily complex transformations on the fly depending

on cost functions in the rip-out and re-construction steps in SE-based synthesis.

Chapter 3. Related Work 34

Chapter 4. Optimization by Simulated Evolution

Simulated Evolution, or SE, is a general optimization technique based on the
analogy between optimization and evolutionary processes. It has been successfully
applied to such problems as standard cell placement [22], switch box routing [29], and
circuit partitioning [52]. In this chapter, we will first introduce the general SE algo-
rithm, and then describe our implementation of SE in the context of an optimum
assignment problem. This separates all application specific components of the SE
algorithm into three cost functions, namely PRIORITY, INCR and GLOBAL, and
paves the way for the definition of SE-based scheduling and allocation algorithms in

Chapters 5 and 6.

4.1. The SE Algorithm

Evolution has two essential features: namely hereditary variation and differential
reproduction. Hereditary variation requires that an evolutionary system changes
through time such that each new state is similar to the current state. On the other
hand, differential reproduction requires that an evolutionary system be subjected to an
evaluation process and probabilistically discards the inferior parts of the system and
retains the superior parts for subsequent states. The most notable example of evolu-
tionary processes is that of biological evolution, in which genetic inheritance and
natural selection combine to determine the most desirable charactezistics of a popula-
tion.

Given a combinatorial optimization problem specified by a finite set of solutions,
&, and a cost function C(X) defined on all solutions X € S, the SE algorithm
(Fig. 4.1) searches for the optimum solutions in S by simulating an evolution of solu-
tions. At each state in this simulated evolution, SE generates a new solution from the

current solution in two steps: SELECT and GENERATE . The SELECT step simulates

Chapter 4. Optimization by Simulated Evolution 35

differential reproduction. In this step, all elements in the current solution are evaluated
with respect to their contributions to the overall cost, C, of the solution. Then ele-
ments with high costs are probabilistically removed from the solution, and the remain-
ing elements are returned as a partial soiution. This partial solution is passed to the
GENERATE step, which simulates hereditary variation. In this step, a new solution is
obtained from the partial solution by adding the missing elements to the partial solu-
tion, thus retaining a similarity with the current solution and introducing variations at
the same time. Fig. 4.1 gives the pseudo-code for the SE algorithm.
Algorithm SE;
/* X is a complete solution */
/* Xpes is the best solution found */
/* p is a partial solution */
begin
X = GENERATE(QD);
Xpest = ?(;
loop until TERMINATE();
begin
p := SELECT(X);
X = GENERATE(p);
if (C(X) < C(Xp.q)) then X, = X;
end;

return(X,, .,):
end SE;

Figure 4.1 Pseudo-Code for the SE Algorithm

Initially, SE constructs the first solution from the ground up by applying the func-
tion GENERATE to the empty partizi solution, &. Subsequently, the algorithm repeat-
edly alternates between SELECT and GENERATE, producing a new solution from the
current solution in each iteration. Throughout these iterations, the minimum cost solu-
tion is recorded, and eventually returned as the best solution found by SE. The termi-
nation criteria, implemented by TERMINATE, are implementation dependent. How-
ever, two useful termination criteria are when a satisfactory solution is found, and

when the number of SE iterations reaches a user-specified maximum.

Chapter 4. Optimization by Simulated Evolution 36

Since SELECT is probabilistic, and since the results of SELECT and GENERATE
depend only on the current solution, the evolution of solutions in SE is a stochastic
process [20] in which each state (i.e., solution) depends only on its previous state.
Consequently, the SE algorithm may be modeled by a Markov chain with stationary
transitions [7]. A useful result of Markov chains is that, if a Markov chain is irreduci-
ble (1.e., every state i can reach every other state j in a finite number of steps),
aperiodic (i.e., every state has 1 as the greatest common denominator of all numbers
of steps in which this state can reach itseif) and recurrent (i.e., every state can reach
itself in a finite number of steps with probability 1), then there exists a positive sta-
tionary probability, x;, for each state i in the Markov chain. The existence of these
stationary probabilities implies that, given sufficiently long time, the probability of the
Markov chain being in any state i is «;, and is independent of the initial state of the
Markov chain. In other words, if we can impiement SE in such a way that the
existence of stationary probabilities is guaranteed, then we can be assured that,
independent of the initial solution (i.e., GENERATE (J)), the SE algorithm asymptoti-

cally obtains the optimum solution.

We propose two conlitions which guarantee the existence of stationary probabili-
ties for SE. First, given any solution in S, we require SELECT to have a non-zero
probability of returning & as the partial solution. Second, given any partial solution,
we require GENERATE to have a non-zero probability of returning any solution in S
as the complete solution. Basiczally, these two conditions guarantee a positive transi-
tion probability between every pair of solutions in §. It is then straightforward to
show that these are sufficient conditions for SE to be irreducible, aperiodic, and
recurrent, and hence for SE to asymptotically obtain the global optimum independent

of its initial solutions.

The organization of this chapter is es follows. In the next section, we will define

Chapter 4. Optimization by Simulated Evolution 37

an optimum assignment problem which is a useful abstraction of the tasks of schedul-
ing and allocation. Given this generic problem, Sections 4.3 and 4.4 describe our
implementation of GENERATE and SELECT, respectively, in accordance with the
above conditions for the desired asymptotic behavior of SE. Finally, Section 4.5 sum-
marizes the cost functions which fully characterize our application of the SE algorithm
to any combinatorial optimization problems which may be formulated as optimum

assignment problems.

4.2. Optimum Assignment Problem

In the optimum assignment problem, we wish 1o assign a finite set of values to N
variables so as to minimize a cost function, C, subject to certain constraints, Q. Many
design problems, including the synthesis tasks of scheduling and allocation, may be
formulated as such problems. In particular, we are interested in the class of NP-hard
problems [8] for which all known exact algorithms have computational complexities

which increase exponentially with the problem size, N.

More formally, suppose there is a set of N variables, denoted by
V ={vivy ...,vy]}, and a finite set R of values. Let b; = (v; ,r) (i =1,..,N)
denote the binding, or assignment, of a value r € R to the variable v;. Then we may
define a solution, X, as a set of N assignments:
X={(b:i=1,2,.,N},
and define the solution space, S, as the set of all possible combinations of N value

assignments:

S=R xR x --+- xR =RV,
Moreover, given the constraints £, we say a solution, X, is feasible if all value assign-

ments in X satisfy Q, otherwise X is infeasible. Let F — S denote the set of all feasi-

ble solutions. Then the objective of the optimum assignment problem is to find a

Chapter 4. Optimization by Simulated Evoiution 38

feasible solution, X € F, which minimizes the objective cost, C (X).

In general, the cost function C is only well defined on the set of feasible solu-
tions, F. For the purpose of this thesis, however, we shall assume C is well defined
on S since we permit SE to generate infeasible solutions in S. This involves no real
loss in generality, since we can easily modify any cost function to be well defined on
infeasible solutions by adding high penalty costs for any violation of Q so that, for

each pair of solutions i € F and j € F, C(i) < C(j) is guaranteed.

Finally, we define a partial solution, p, as a set of N or fewer assignments:

paei{b:i=1,2,.,N}.
Given such a partial solution, p, we say that a variable v; is unassigned in p if b; €

p, ihat v; is de-assigned from p if b; is removed from the set p, and that v; is

assigned a value r if b; = (v; , r)is added top.

4.3. Implementation of GENERATE

Procedure GENERATE(p);
begin
M := get all unassigned variables in p;
X =p;
while (M is not empty) do
begin
v := select a variable in M with maximum PRIORITY(v);
if (RANDOM(0,1) <)
then r := MUTATION(v);
else r := select a value for v with minimum INCR(v,r);
remove v from M;
assign r to variable v;
update X;
end;
return(X);
end;

Figure 4.2 Pseudo-Code for GENERATE

The function GENERATE 1takes a partial solution, p, as input, and produces a

Chapter 4. Optimization by Simulated Evolution 39

complete solution, X O p, as output. To guarantee that SE asymptotically obtains the
global optimum, we require GENERATE to be able to produce every solution, X € §,
with a positive probability when given the partial solution p = &. Trading off solu-
tion quality for computational speed, we implement GENERATE using a greedy algo-
rithm with a random mutation operator. Fig. 4.2 gives the pseudo-code for our imple-

mentation of GENERATE.

Given a partial solution, p, GENERATE first collects all unassigned variables in
p into a set M, and then iteratively assigns a value to the variable, v, in M with the
highest priority (i.e., PRIORITY (v)). For each unassigned variable v, if a randomly
generated number between 0 and 1 (i.e., RANDOM (0,1)) is less than a constant M (the
mutation probability), then a mutation operator is invoked which randomly assigns a
value for v. Otherwise (i.e., RANDOM (0,1) =), the algorithm evaluates all candi-
date values for v, and assigns to v the value r with the lowest incremental cost,
INCR (v,r).

The mutation probability, |, ensures that GENERATE is capatle of producing
every possible solution when given p = . In practice, W is assigned a small number
(e.g., 0.01) so that, for the most part, GENERATE relies on heuristics implemented in
PRIORITY and INCR to assign values to variables.

4.4. Implementation of SELECT

The function SELECT takes a complete solution, X, as input, and produces a par-
tial solution, p < X, as output. To simulate differential reproduction, SELECT must
evaluate the assignments in X, and then randomly remove each b; € X from X (i.e.,
de-assign the variable v;) with a probability which increases as the cost of b;
increases. Moreover, to guarantee that SE asymptotically obtains the global optimum,

we require SELECT to be able to produce the partial solution p = @ with a positive

Chapter 4. Optimization by Simulated Evolution 40

probability when given any complete solution X € S. Fig. 4.3 shows the pseudo-code

for our implementation of SELECT .

Procedure Select (X);
begin
p:=X
for all assignments b=(v,r) do calculate GLOBAL(b);
min := get minimum of GLOBAL(b);
max := get maximum of GLOBAL(b);
for all assignment b=(v,r) do
begin
norm := (GLOBAL(b) - min) / (max - min);
if (RANDOM(-8,1) < norm) then
begin
de-assign v from p;
update p;
end;
end;
return(p);
end;

Figure 4.3 Pseudo-Code for SELECT

Given a solution, X, SELECT first calculates a cost, GLOBAL (b), for eaci vaiue
assignment b = (v , r) in X, normalizes these values to be between 0 and 1 inclusive,
and then probabilistically removes each value assignment b based on its normalized
cost, norm. For each value assignment, b = (v , r), if a randomly generated threshold
cost between -8 and 1 (i.e., RANDOM (-9,1)) is less than its normalized cost, norm,
then the algorithm removes b from p (i.e., de-assigns the variable v from p). This
probabilistically removes each assignment & € X based on the (normalized) value of
GLOBAL (b). In the end, the remaining assignments are returned in the partial solu-
tion, p.

The constant & is a small positive number (e.g., 0.01) which ensures that the pro-

bability of any value assignment being removed is at least T?——S— = O (assuming RAN-

DOM (-3,1) has a uniform probability distribution). Since the probability for removing

all value assignments in any solution X € S is at least (approximately) &V, keeping

Chapter 4. Optimization by Simulated Evolution 41

& > O ensures that SELECT will produce the partial solution p = & from any solution

with a positive probability.

4.5. Summary

Based on the above implementation of GENERATE and SELECT, we may
characterize our application of the SE algorithm to any combinatorial optimization
problem by first formulating it as an optimum assignment problem, and then specifying
the cost functions PRIORITY , INCR and GLOBAL. The function PRIORITY deter-
mines the next unassigned variable to be processed by GENERATE . This implements
application specific heuristics to order the assigaments of interdependent variables.
The function INCR determines the value assigned to each unassigned variable by
GENERATE when the mutation operator is not invoked. This estimates the incremen-
tal increase in the objective cost, C, due to each candidate assignment. The function
GLOBAL determines the probability with which a value assignment is randomly
removed from a solution by SELECT. This calculates the pro-rated cost of each value

assignment based on its contribution to the overall cost of the solution.

The cost functions PRIORITY , INCR and GLOBAL are important in that they
significantly affect the performance of the SE algorithm. However, they do not affect
the correctness of SE, since our SELECT and GENERATE functions ensure that SE

asymptotically obtains the global optimum regardless of these cost functions.

Chapter 4. Optimization by Simulated Evolution 42

Chapter 5. Basic Scheduling Algorithm

In this chapter, we will first review previous scheduling approaches, and then
describe our applica. on of SE to the scheduling task. To do so, we will first formu-
late the scheduling task as an optimum assignment problem, and then characterize our
SE-based scheduling algorithm by defining the cost functions PRIORITY , INCR and
GLOBAL.

To simplify the discussions in this chapter (and those in Chapter 6), we shall tem-
porarily assume that the CDFG contains only data nodes and data edges, and that all
CDFG nodes are scheduled prior to allocation. The first assumption will be removed
in Chapter 7, which describes extensions to the basic scheduling and allocation algo-
rithms for loop and case constructs, local timing constraints, and other synthesis
features such as pipelining, chaining, and interconnect optimization. The second
assumption will be removed in Chapter 10, which describes extensions for allocating a

partially scheduled CDFG and for scheduling a partially allocated CDFG.

5.1. Previous Scheduling Approaches

Existing scheduling algorithms can be classified into two groups: namely the
ierative/constructive group and the transformational group [37]. An
iterative/constructive scheduling algorithm successively assigns operations to control
steps until a complete schedule is corstructed. Different algorithms in this group
differ in their heuristics for ordering operations to be scheduled and for selecting
which candidate control step is scheduled to each operation. The most basic of these
scheduling algorithms is the as soon as possible (ASAP) scheduling [15,56,60], in
which we operations are ordered by their data dependencies, and each operation is
assigned to the earliest control step possible, subject to hardware resource constraints.

List scheduling |11,41] improves on the ASAP scheduling by using a more global

Chapter 5. Basic Scheduling Algorithm 43

view on ordering operations and sc’ecting control steps for these operations. Starting
from the first (last) control step, list scheduling collects all operations whose predeces-
sors (descendents) have all been scheduled in previous control steps into a list of can-
didate operations. These candidate operations are then sorted by some priority func-
tion, which is usually related to how critical or how constrained an operation is. Each
operation is then considered in turn, and may be either scheduled in the current control

step or deferred to subsequent control steps depending on hardware resource con-

straints.

Global formulations of the scheduling problem include freedom-based scheduling
[46], force-directed scheduling [47], and integer linear programming based scheduling
[9,18]. In freedom-based scheduling, the operation with the least freedom, which is
defined as the number of candidate control steps for that operation, is scheduled first.
This gives priority to operations on the critical paths, and then to operations less and
less critical in terms of timing constraints. Operations with equal freedoms are
scheduled in arbitrary order. In force-directed scheduling, attraction and repulsion
forces are calculated for each of the candidate control steps for each operation. The
operation/control step pair with the smallest net force is selected for scheduling. All
forces are then updated to reflect this scheduling assignment. In ILP-based scheduling
(i.e., scheduling based on integer linear programming), the scheduling problem is
translated to a system of linear inequalities, which are then solved using integer linear

programming techniques (i.e., branch and bound).

Most of the above scheduling algorithms (i.e., other than those based on ILP
which uses branch and bound) are ultimately based on greedy algorithms. As such they
are vulnerable to local minima in the design space. While increased look-aheads and
complex cost functions have improved the guality of these scheduling algorithms to

some degree, they do not address the fundamental problem of poor design space

Chapter 5. Basic Scheduling Algorithm 44

exploration in greedy algorithms.

On the other hand, transformational scheduling algorithms depend on effective
exploration of the design space to obtain good designs. Transformational scheduling
algorithms start with a default schedule, which is typically either the maximally serial
or the maximally parallel schedule, and then repeatedly apply correctness preserving
design transformations to improve the current schedules. Different scheduling sysiems
in this group differ in their suwite of transformations and in how they select between
applicable transformations. The Yorktown Silicon Compiler [4] and the CAMAD [49]
systems are based on transformational scheduling, in which large numbers of expert
system rules constitute the design transformations. In percolation scheduling [50], a
small number of primitive transformations, or moves, are defined, and a host of heuris-
tics and cost functions are used to guide the application of these moves. Simulated-
annealing-based (SA) scheduling [6,53] also contains a small number of primitive
moves, but randomly applies these moves to the current schedules, and probabilisti-

caily accepts the new schedules in its search for the globally optimum schedule.

Unlike iterativ./constructive scheduling algorithms, most transformational
scheduling systems can escape from local minima in the design space because they
incorporate hill climbing moves (i.e., the new schedules may be inferior to the current
schedules). Therefore transformational scheduling has the potential of obtaining the
global optimum through effective design space exploration. However, the performance
of such scheduling systems depends greatly on the power of their transformations, and
on the order in which these transformations are applied.

As it turns out, applying SE to the scheduling problem combines the advantages
of both iterative/constructive scheduling and transformation scheduling. Basically,
SE-based schecaling explores the design space by repeatedly ripping out parts of

schedules and then re-constructing these parts to produce new schedules. This is sim-

Chapter 5. Basic Scheduling Algorithm 45

ply iterative/constructive scheduling with design iterations, in which hill climbing
moves are allowed because the re-construction steps may produce worse schedules due
to the simplistic and greedy heuristics in PRIORITY and INCR. On the other hand,
SE-based scheduling can also be seen as transformational scheduling, in which arbi-
trarily complex design transformations are generated on the fly depending on cost func-
tions and heuristics in the rip-out and re-construction steps. Consequently, SE-based
scheduling is simple, fast, and produces good schedules by its effective exploration of

the design space (see Chapter 8).

5.2. Scheduling as an Optimum Assignment Problem

Given a CDFG containing N nodes, denoted by n i =1,2,.,N), and a max-
imum global timing constraint of G control steps (G is a posiive integer), we formu-
late the task of scheduling as an optimum assignment problem as follows. Let 8
(i =1,2,.,N) denote the starting control step of the node n;, and let CS denote a
finite set of control step numbers from 1 to G (i.e., CS = {1,2....G }). We define
the assignment b; =(s; ,t) (=1,2,.,N andz € CS) as scheduling the node n; to

start in control step ¢£. Then we define a complete schedule, denoted by SCHD , as a

set of N scheduling assignments:

SCHD ={b; :i=1,2,.,N},
and a partial schedule, p , as a subset of such a complete schedule:

pg{b;:i=l,2,...,N}.

The task of scheduling is then to optimize SCHD subject to the following constraints:

1. Data Flow Dependency Constraints
For all integers i/ and j such that i # j, 1 <i <N and 1 < <N, if there

is an edge from n; to n ; in the CDFG, then:

S; +d(n‘-) Ssj

Chapter 5. Basic Scheduling Algorithm 46

where d (n;) is the delay of the operation associated with node n; (measured

in number of control steps).

2. Maximum Value Constraint
All nodes must end in or before control step G:

N
MaIX(S" +d(n‘)—l) <G
{ =

Let ¢ denote the objective cost function for the scheduling problem. Assum-
ing that scheduling is performed prior to allocation, Cg.,, cannot calculate the actual
circuit area. Instead, we define Cs,,,; as the minimum area [47] required by the com-
plete schedule, SCHD . This includes the minimum areas of functional units (opera-

tors from now on), registers and interconnects.

The minimum area of operators is determined by the maximum numbers of con-
current nodes with the same operation types, since all concurrent nodes must be allo-
cated to separate operators to avoid resource contention conflicts. Similarly, the
minimum areas of registers and interconnects are determined by the maximum
numbers of concurrent edges and data transfers, respectively. Basically, two nodes,
edges, or data transfers are concurrent if their liferimes overlap. Ignoring pipelined
operators for now, the lifetime of a node n; starts from control step s; and ends in
control step s; + d(n;) — 1. On the other hand, the lifetime of an edge ¢ produced by
n; and accessed by nodes in the set dests (e) starts from control step s; + d(n;) — 1

and ends in the control step

Max s;+d(n;)-1)-1.
n; € dests(e) J (n]))
That is, the lifetime of e ends in the control step just before it is last accessed (see
Section 2.3.4). Finally, for each edge e produced by a node n;, a data transfer is
required in control step s; + d(n;) — 1 to store the data valae corresponding to e in a

register, and a data transfer is required from control step s; tos; +d(n;) — 1 for each

Chapter 5. Basic Scheduling Algorithm 47

node n 5 which accesses e.

To facilitate the calculation of Cg;, and other costs, we define a rally data struc-
ture to keep track of the minimum hardware requirements due to overlapping lifetimes.
Conceptually, the tally is a two dimensional array which records concurrent CDEG ele-
ments by operation types and control step numbers. For each node n; with operation
type op(n;) and a lifeime from control step i to j, we add n; to the sets
tally(op (n;),t) fort =i ,i+1,..., j. Moreover, for each edge e with a lifeime from
i to j, we add e to the sets tally(Rt) fort =i ,i+1,..., J, where R designates the
operation type for registers. Finally, for each data transfer due to e with a lifetime
from i to j, we add e to the sets tally(T',t) fort =i ,i+1,.., J» where T designates
the operation type for interconnects. This counts the number of distinct edges that
require data transfers in each control step, in effect assuming that the interconnect cost

is dominated by the number of busses required.

Given the above, we define the objective cost function, Cg,,,, as:

G
Csecng = Y, c(op) x Max lially (op ,t)|
opeOPS t=1

where OPS is the set of all operation types used in the tally data structure, including

the types R and T .

Given a partial schedule p, we say that a node »n; is scheduled to control step cs
if b; = (n;,cs) € p, that n; is unscheduled if b; ¢ p, and that n; is de-scheduled if b;
is removed from the set p. Consequently, the GENERATE function in SE corresponds
to a greedy scheduling algorithm, and the SELECT function corresponds to a proba-
bilistic de-scheduling algorithm. In the following sections, we define the cost func-
tions PRIORITY, INCR and GLOBAL which completely characterize our SE-based

scheduling algorithm.

Chapter 5. Basic Scheduling Algorithm 48

5.3. The PRIORITY Function

The function PRIORITY calculates the priority of each unscheduled node to
determine the sequence in which they are processed by GENERATE . Following the
practice of solving the most constrained tasks first, we assign the highest priority to the
node with the minimum number of scheduling candidates. This results in a freedom-
based priority scheduling similar to that used by MAHA [46]. However, unlike
MAHA in which nodes with equal freedoms are scheduled in an arbitrary order, we

use the freedoms of neighboring nodes to break such ties.

The freedom of an unscheduled CDFG node n;, denoted by f (n;), is defined as
the number of control steps in which a node n; may be scheduled without violating
any data flow dependency constraints. Given a partially scheduled CDFG, we define
an as soon as possible schedule for n;, denoted by asap (n;), as the smallest legal
value for s;, and define an as late as possible scheduie for n;, denoted by alap (n;), as
the largest legal value for s;. By definition, if n; is already scheduled, then
asap (n;) = alap (n;) = s5;. The freedom for n; is calculated as:

f(n;) =alap(n;) —asap(n;) + 1.

To take into account the freedoms of neighboring nodes, we define the stariing
Sfreedom of a CDFG edge e, denoted by f,,.(¢), as the number of control steps in
which the lifetime of e may start. This is calculated as:

S s (€) = alapStart(e) — asapSrart(e) + 1
where alapStart(e) and asapStart(e) are the as late as possible and as soon as possi-
ble start times of e, respectively. Let src(e) denote the CDFG node which produces
the edge e. Then alapStart (e) and asapStart(e) are defined as:

alapStart(e) = alap (src(e)) + d(src(e)) — 1
and

Chapter 5. Basic Scheduling Algorithm 49

asapStart(e) = asap (src(e)) + d(src(e)) — 1.

Moreover, we define the ending freedom of an edge e, denoted by f end (€), as the
number of control steps in which the lifetime of e may end. This is calculated as:
S end(€e) = alapEnd(e) — asapEnd(e) + 1
where alapEnd(e) and asapEnd (e) are the as late as possible and as soon as possible
end times of e, respectively. Let dests(e) denote the set of nodes which access the

edge e. Then alapEnd(e) and asapEnd (e) are defined as:

alapEnd(e)= Max (alap(n)+ d@n) — 2)

nedests(e)
and

asapEnd(e) = Max) (asap(n) + d(n) — 2).

nedests(e

Given the above, we define PRIORITY as:

PRIORITY (n;) =~ [f (n) + wx(Y faanle) + S foul€))]

ecinputs(n,) e € outputs (n;)

where inputs (n;) is the set of edges accessed by n;, outputs (n;) is the set « ~ edges
produced by n;, and w = 0 is a control parameter which determires the relative impor-
tance between node and edge freedoms. For example, if w is small, then
PRIORITY (n;) depends primarily on f(n;). On the other hand, if w is large, then
PRIORITY (n;) depends primnarily on the cumulative starting (ending) freedoms of the
edges accessed (produced) by »;.

Initially, we assigned a small value for w so as to give priority to node freedoms.
However, extensive experiments showed that a large value of w produces the best
scheduling performance. This was puzzling until we recognized that the cumulative
edge freedoms actually measure the freedoms of the predecessor and certain successor
nodes. The fact that a large value of w results in better scheduling performance is
evidence that the neighborhood freedoms of a node are more important than the actual

node freedom in determining the sequence in which nodes are scheduled. This is

Chapter 5. Basic Scheduling Algorithm 50

confirmed by the dominance of the incremental opportunity cost component (see next

section) as demonstrated by experimental results in Chapter 9.

5.4. The INCR Function

The function INCR determines the control step to which an unscheduled node is
assigned. Given an unscheduled node n; and a scheduling candidate cs
(asap (n;) < cs < alap(n;)), INCR (n;,cs) estimates the increase in Cg.y if n; is
scheduled to ¢s. This is a sum of four component costs:

INCR(n;,cs) = Iop (n;,cs) + Ip(n;,cs) + Ir(n;cs) + Ip (n; ,cs)
where /pp is the incremental operator cost, I is the incremental register cost, I is the
incremental interconnect cost, and /p is the incremental opportunity cost due to the

decreased freedoms in other unscheduled nodes.

5.4.1. Incremental QOperator Cost

The cost function Iyp(n;,cs) measures the increased operator area when n; is
scheduled to control step cs. Basically, if scheduling n; to control step ¢s requires an
additional operator of type op (n;), then Iop is ¢ (op (n;)) (i.e., area cost for one opera-
tor of type op (n;)), otherwise Ipp is 0. If the tally data structure is up-to-date (see
below), then an additional operator is required for the candidate schedule if and only if
there is already a maximum number of operations of type op(n;) in any of the sets

tally (op(n;),t) fort =cs , cs+1,..., cs +d(n,) — 1. Hence we define Iop as:

1. IOP (n,- ,CS) = C(Op (n,-)) if

G cs+d (n;)1
Maf lzally (op £)l = Max ltally (op ,t)|
! = t=c¢s

2. OtherWiSC, Iop (n,- ,CS) =0

At the start of the scheduling algorithm, zally (op,t) is set to & for all operation

Chapter 5. Basic Scheduling Algorithm 51

types op and all control steps ¢. Subsequently, whenever a node »; is scheduled, we
add n; to the sets rally(op(n;),t) for 1t =s5; ,5;+1 ,..., s;+d(n;)-1 1o reflect the
scheduled lifetime of n;. On the other hand, whenever n; is de-scheduled, we delete
n; from the sets tally (op (n;),t) for t =s; , 5;+1 ,..., s;+d (n;)—1 to keep the rally data

structure up-to-date.

5.4.2. Incremental Register Cost

The cost function /p (n; ,cs) measures the increased register area due to scheduling
n; to control step c¢s. When n; is scheduled to c¢s, all CDFG edges accessed by n;
(i.e., inputs(n;)) will have lifetimes which last until at least control step
¢s +d(n;) — 2, and all edges produced by n; (ie., outputs (n;)) will have lif . .aes
which start from control step c¢s + d(n;) — 1. If these lifetimes result in more con-
current edges than the current maximum, then additional registers are required. Unfor-
tunately, calculating the exact register cost is expensive because it requires excessive
updates of the tally data structure. Instead, we calculate the increased register area for
each edge assuming it is the only edge accessed or produced by n;, and then approxi-
mate /p as either the sum of area increases due to edges in inputs (n;), or the sum of

area increases due to edges in outputs (n;), whichever is larger:

Ip(njcs)y=Max(Y Iig(e ,cs+d(n;)-2), > I,ple ,cs +d(n;)-1))

e € inputs(n;) e € outputs(n;)

where Iz (e,t) is the increased register area if e is live at least until control step ¢, and
I,p (e ,t) is the increased register area if e is live from control step . These are calcu-

lated in basically the same way as incremental operator costs are calculated:

1. Iip(et) =c(R)if

G t
Ma.;lc leally R ,i)! = Maljf leally (R ,i) — {e}]
i = i =

where L is a lower bound control step defined as L = Min(alapStart(e) , t)

3

Chapter 5. Basic Scheduling Algorithm 52

2. Otherwise, Iip(e,t) =0.
and,

1. Ip(e,t)=c(R)if

G U
Ma.ic ltally (R i} = Max lally R ,i) — (e }]
i = 1 =1

where U is an upper bound control step defined as
U = Max (asapEnd (e) , t),

2. Otherwise, Igp(e,t) = 0.

At the start of GENERATE , we update rally (R ;t) as follows. First, tally(R,t) is
set to & for all control steps t. Then for each edge e in the CDFG, we add e to the
sets tally (R .r) for t = alapStart(e) , alapStart (e)+1 ,..., asapEnd (e¢). This initializes
the minimum number of concurrent edges even if the complete lifetimes for some of
these edges are not fixed yet (i.e., edges e with alapStart(e) < asapEnd(e)). Subse-
quently, whenever a node n; is scheduled, we update asapStarr(e) and alapStart (e)
for all edges e € outputs(n;), and propagate these changes to the asap times for all
descendent nodes of n;, and the asapStart times for all edges produced by these
nodes. Similarly, whenever n; is scheduled, we update asapEnd(e) and alapEnd (e)
for all edges e € inputs(n;), and propagate these changes to the alap times for all
ancestor nodes of n;, and the alapEnd times for all edges accessed by these nodes.
Then for each edge e with a different alapStart(e) or asapEnd(e), we add e to the
sets tally(R,t) for t = alapStart(e) , alapStart (e)+1 ,..., asapEnd(e) to reflect the
new (partial) lifetime of e. (Note that zally (R ,t) is a set, hence adding e to tally (R ,t)
when e is already in the set does not change rally (R ,t)). However, we do not incre-
mentally update tally (R .,t) after de-scheduling a node in SELECT since it can get very
complicated. Instead, we invalidate the entire rally (R,) data structure whenever a

node is de-scheduled, and then reconstruct it at the start of the next GENERATE step.

Chapter 5. Basic Scheduling Algorithm 53

5.4.3. Incremental Interconnect Cost

The cost function Iy (n;,cs) measures the increased interconnect area due to
scheduling n; to control step cs. When n; is scheduled to cs, each edge accessed by
n; requires a data transfer for control steps t =cs , cs+1 ,..., cs+d (n;)—1, and each
edge produced by n; requires a data transfer for control step c¢s+d (n;)—1. 1If these data
transfer requirements lead to more concurrent data transfers than the current maximum,
then additional interconnects are required, resulting in an increase in interconnect costs.

We define I (n;,cs) as:

cs+d(n;)-2
Iy (n;.cs) = Max (Ii;r (nj,cs+d (n;)—1) , Max I(n;.t))
t =cs

where I;,r(n;,t) is the increased interconnect cost »when all edges accessed and pro-
duced by »; require data transfers in control step ¢, and f;(n;,t) is the increased inter-
connect cost when all edges accessed by »; require data transfers in control step ¢.
These are calculated as follows:

Ligr (n; 1) = c(T) x Max (0 , linputs (n; Yooutputs (n; Yorally (T 1)) — MC (T))
and

I (g t) = c(T) x Max (0 , linputs (n;)otally (T ,t)| — MC(T))
where MC (T') is the maximum number of concurrent distinct data transfers:

MC(T) = 1‘1/1::1;1: ltally (T).

At the start of GENERATE, we first set tally (T ,t) to & for all control steps ¢.
Then for each scheduled node n;, we add the edges inputs (n;) to the sets tally (T ,t)
for t=s5;,s5+1,.,s5+d(n;)-1, and add the edges outputs(n;) to the set
tally (T ,s;+d (n;)—1). Subsequently, whenever a node n; is scheduled, we add the
edges inputs(n;) and outputs (n;) to tally (T ,t) in exactly the same way. However, we

do not incrementally update tally (T ,t) whenever a node is de-scheduled, but invalidate

Chapter S. Basic Scheduling Algorithm 54

the entire rally (T ,t) data structure and then reconstruct it at the start of the next GEN-

ERATE step.

5.4.4. Incremental Opportunity Cost

The cost function Ip(n;,cs) measures the increased risk of additional operator
costs due to scheduling n; to control step cs. When n; is scheduled to cs, the free-
doms for other unscheduled nodes may be reduced due to data flow dependency. This
increases the risk that additional area increases may be required when these nodes are
subsequently scheduled. Unfortunately, calculating the exact cost of this increased risk
is expensive since it involves propagating the effects of each candidate schedule
throughout the entire CDFG, and a detailed analysis of these effeccts. Instead, we only
consider the first order effects, namely the probable increases in operator areas for the

immediate predecessor and successor nodes of n;.

Let pred(n;) denote the set of all predecessor nodes of n;, and let succ(n;)
denote the set of all successor nodes of n;. Then whenever a node n; is scheduled to
cs, each predecessor node n, € pred (n;) must be scheduled no later than ¢cs — d(np),
and each successor node n, € succ(n;) must be scheduled no earlier than cs + dn;).

Consequently, we define Ip (n;,cs) as:

Ip(n;,cs) = 3 C,p ,asap(p),cs—d({p)) + 2, C,(s ,cs+d(m;), alap(s))

pepred(n;) sesucc(n;)
where C,, (n,t,,t;) calculates the probable increase in operator costs for a node n if its

scheduling freedom is reduced to between control steps #; and t, inclusive. This is

calculated as:

1 _ 1
t,—ty+1 fn)

This opportunity cost penalizes those candidate schedules which unduly constrain

Cp(n,ry522) = c(op(n)) x ()

subsequent scheduling of neighboring nodes, and basically implements an one-step

Chapter 5. Basic Scheduling Algorithm 55

look-ahead to the greedy scheduling algorithm. In particular, this opportunity cost
biases the scheduling algorithm so that nodes without inputs tend to be scheduled to
the earlier control steps, and nodes without outputs tend to be scheduled to the later
control steps. The importance of this cost component to scheduling performance will

be demonstrated by experimental results in Chapter 9.

5.5. The GLOBAL Function

The function GLOBAL determines the probability that SELECT will de-schedule
a CDFG node. For each node n;, GLOBAL (n;) calculates a pro-rated cost for n;
based on its contribution to the overall cost, Cg.;y, of the scheduled CDFG. This is a
sum of three component costs:
Global (n;) = Gop(n;) + Gp(n;) + G (n;)
wher: Gop is the pro-rated operator cost, Gy is the pro-rated register cost, and Gy is

the pro-rated interconnect cost.

We pro-rate the operator cost for n; as follows:

s;+d (n;)1
Max ltally (op (n;),t))

Gop () = ¢ (0p () x——o

Ma.ic lzally (op (n;),t)|
t =

That is, if n; is live in a control step with the maximum number of concurrent opera-
tions of the same type (i.e., op (n;)), then Gop(n;) = ¢ (op (n;)); otherwise Gop (n;) is
assigned a fracticn of c(op(n;)) depending on the maximum number of concurrent

operations of type op (n;) during the lifetime of »;.

We pro-rate the register cost for each CDFG edge, e, in a similar way:

alapEnd (e)
Max) ltally (R ,t)!

= AY
GE(€)= C(R) xt asathart(e

MaJlt ltally (R ,0)|
! =

Chapter 5. Basic Scheduling Algorithm 56

and then attribute this cost eyually to the node which produces e and the set of nodes

dests; (e) which last access e:

destsy (e) = { n;

Consequently, we define Gz (n;) as:

: e € inputs(n;) and alapEnd (e) =czlap(nj) +d(nj) -2 1.

Gpn)= 3 Cr)
R eiGnn 1 + ldestsy (e)]

where /0 (n;) is the set of edges which are either produced or last accessed by the
node n;:
10 (n;) = outputs (n;) U { e : n; € dests; (e) }
Finally, we pro-rate the interconnect cost for each data transfer in control step ¢

due to edge e as:

leally (T ,t)!
Gpr(e) = c (T) x— 2 T.1)
Ma;: leally (T)|
1 =
and then attribute this cost to the interconnect cost of the node accessing or producing

e in control step t. For each node #;, the pro-rated interconnect cost is then:

si+d(n; -2
G'l'(ni) = Max (Max G,—,-(n,- 1), Gior(n,-,s,-+d(n,-)—l))

t =3
where G (n;.r) is the sum of the pro-rated interconnect costs for all edges accessed

by n;, and G, ,4(n;,t) is the sum of the pro-rated interconnect costs for all edges

accessed and produced by ;. These are calculated as:

Go(n;,t) = Z Gpr(e.r)
ecinputs(n;)
and
Gior(n; 1) = 2 Gpr(e.r).

€ € inputs (n; Yooutputs (n;)

Chapter 5. Basic Scheduling Algorithm 57

5.6. Summary

In summary, we nave described a SE-based scheduling algorithm in this chapter
by first formulating scheduling as an optimum assignment problem, and then defining
the cost functions PRIORITY , INCR and GLOBAL . The function PRIORITY deter-
mines the order in which unscheduled nodes are selected for scheduling. This imple-
ments a freedom-based heuristic similar to MAHA’s. However, whereas MAHA gives
priority to nodes with small scheduling freedoms, our implementation gives priority to
nodes with small neighborhood freedoms as determined by the cumulative edge free-
doms for all edges produced and accessed by each node. The cost function INCR esti-
mates the increase in Cg,; due to each scheduling candidate. This includes an oppor-
tunity cost, which serves as a one-step look-ahead for the greedy scheduling algorithm
in GENERATE . Finally, the cost function GLOBAL calculates the pro-rated hardware
cost for each node based on its contribution to the overall cost, Cseng- This is defined

as the sum of the pro-rated operator, register and interconnect costs.

Chapter 5. Basic Scheduling Algorithm 5%

Chapter 6. Basic Allocation Algorithm

In this chapter, we will first review previous allocaticn approaches, and then
describe our application of SE to the allocation task. To do so, we will first formulate
the basic allocation task as an optimum assignment problem, and then describe our
SE-based allocation algorithm by defining the cost functions PRIORITY , INCR and
GLOBAL.

6.1. Previous Allocation Approaches

Existing allocation algorithms can be classified into twc groups: namely the
iterative/constructive group and the global group [37]. An iterative/constructive alloca-
tion algorithm successively assigns hardware to operations, data values and data
transfers until a complete data path is constructed. Different systems in this group
differ in their heuristics for selecting the next operation, data value or data transfer to
be allocated, and in the cost functions which determine the best ailocation candidates.
Splicer {43], DAA {25}, EMUCS [15], EIf [11], and MABAL [27] are examples of
iterative/constructive allocation algorithms. Among these synthesis systems, Splicer
allows a branch-and-bound search for better designs, while DAA explores the design

space by applying redesign rules in its expert knowledge base.

On the other hand, global allocation algorithms apply graph theoretic or
mathematical programming techniques to the allocation problem or its subtasks. Facet
(57] and HAL [47] formulate the allocation of operations, data values and data
transfers as three separate clique-partitioning problems (see Section 3.1). However,
clique-partitioning is an NP-hard problem, so heuristics are used to solve the resulting
problems. LYRA {16] formulates ti..- allocation of operations and data values as two
bipariite weighted matching problems, and solves these using the Hungarian method

{44]. The allocation of data transfers is then solved using greedy heuristics. By

Chapter 6. Basic Allocation Algorithm 59

dividing the allocation task into three separate problems, these global techniques do
not permit iradeoffs between functional units, registers and interconnects in the data
path. Hafer [13] formulates the allocation task as a mixed integer linear programming

problem, and applies branch and bound to sclve a small example.

In applying SE to the allocation task, we implement an iterative/. _.ive allo-
cation algorithm which differs from previous allocation algorithm .. = - it probabil-
istically explores the design space using a "rip-up and re-allocar ::- cach.

6.2. Allocation as an Optimum Assignment Problem

Given a CDFG containing N elements (i.e., nodes and edges), denoted by ¢;
(6t =1,2,.,N), and a scheduled lifetime for each CDFG element, we formulate the
task of allocation as an optimum assignment problem as follows. Let a;
(i =1,2,.,N)denote a variable whose value specifies the cell instance (simply cell
from here on) on which the CDFG element ¢; is realized, and let / denote a finite set
of cells sufficient to implement each CDFG element on a separate cell {i.e., the maxi-
mally parallel allocation). We define the binding of inst to a;, denoted by
b, =(a; ,inst} i =1,2,.,N and inst € I), as allocating the CDFG element ¢; to
the cell insr. Then we define a complete allocation, denoted by ALLOC , as a set of N

such allocation assignments:

ALIOC ={(b; :i=1,2,.,N},
and a partial allocation, p, as a subset of such a complete allocation:

pei{b :i=1,2,.,N}.
The task of allocation is then to optimize ALLOC subject to the following constraint:
Resource Contention Constraint
For all integers i and j such thati # j, 1<i <N and1 </ <N, if e; and

e; are concurrent (i.e., have overlapping lifetimes), then a; # a.

Chapter 6. Basic Allocation Algorithm 60

Let Cyy,. denote the objective cost function for the allocation problem. Assum-
ing that scheduling is performed before allocation, C,yy,. can calculate the circuit area
required by ALLOC . This includes the area for all cells allocated to the CDFG ele-
ments, and the area for the interconnects required to implement all data wransfers

between these cells.

The cell area required depends on the numbers and types of distinct cells in the
complete allocation ALLOC . Let I(op) denote the set of cells allocated to CDFG
nodes (or CDFG edges if op = R) with type op:

Ip)={a; :ope;)=0p ,i=1,2,.,N}
where op (e;) is the operator type of e; if ¢; is a CDFG node, and op (e;) =R if ¢; is
a CDFG edge. Then the total area for cells required by ALLOC is:

> cp)xli(p)l
op € OPS
where OPS is the set of all operator types in the CDFG, including the type R for

CDFG edges.

On the other hand, the interconnect areas required by ALLOC depends on the
nuimvers and types of multiplexers required 1o implemem all of the required data
ransfers. We define a data transfer from the n’th output (n being a positive integer)
of a CDFG element e; to the m ’th input of another CDFG element e¢; as the quadruple
dr = (e;,n.e;,m). Ignoring commutative operations for now (see Section 7.8), the
interconnect required to implement this data transfer is a circuit connection from the
n’th output signal of the cell a; to the m’th input signal of a;, ie,
int(dr) = (a;,n,ajm). Let INT denote the set of all distin = irsrconnec: required by
ALLOC:

INT = { int(dt) : dt € DTS }
where DTS denotes the set of all data transfers in the CDFG. Assuming the one-

level-multiplexer scheme of interconnects, an M -to-1 multiplexer is required for each

Chapter 6. Basic Allocation Algorithm 61

input signal with a fan-in of M > 1. The fan-in of, say, the m 'th input signal of a cell
inst is the number of circuit conneciions ending at the input signal. We denote this as
Sfi(inst ,m), formally defined by:

fitGinst,m) =1 { int(dt) : int(dt) € INT and dr = (a; ninst.m) } L
Consequently, the total interconnect area for ALLOC is:

> > XY cufilinst.m))

opeOPS instel(op) m
where ¢;,(n) is the area for an n-to-1 multiplexer.

Given the above, the objective cost function Cy,y,. is defined as:

Catioe = 2 (clp)xWUop)l+ T I cp(fitinst m))).
op e OPS instel(op) m

As stated in Section 2.3.4, we assume that every n-input multiplexer (or bus) is con-
structed from n—1 2-input multiplexers, and the area of a wire is negligible (i.e.,
cpy (1) =0):
{O If n <1
cp(n) =

(n = 1) x cp(2) Ortherwise
Hence we measure the quality of an allocation by the required numbers of registers,

operators, and equivalent 2-input multiplexers.

Given a partial allocation p, we say that a CDFG element e; is allocated 1o cell
inst if b; = (a;,inst) € p, that e; is unallocated if b; ¢ p, and that e; is de-allocated
if b; is removed from the set p. Consequently, the GENERATE function in an SE-
based allocation algorithm corresponds to a greedy allocation algorithm, and the
SELECT function corresponds to a probabilistic de-allocation algorithm. In the fol-
lowing sections, we define the cost functions PRIORITY , INCR and GLOBAL which

completely characterize our SE-based allocation algorithm.

Chapter 6. Basic Allocation Algorithm 62

6.3. The PRIORITY Function

The function PRIORITY calculates the priority of each unallocated CDFG ele-
ment to determine the sequence in which they are processed by GENERATE . This is
defined as a weighted sum of four measures:

PRIORITY (e;) = wxcost (e;) + woxspan(e;) + waXxalloc (e;) + wxconn (e;)
where cost(e;) = c(op(e;)) is the area cost of a new cell for e;, span(e;) is the
number of control steps in the lifetime of e;, alloc (e;) is the total number of allocated
neighbors of e; (i.e., allocated CDFG elements which have data transfers to and fiom
¢;), conn(e;) is the total number of data transfers to and from e;, and w;, w,, w3 and
w4 are decreasing weights,

The motivation for this formulation lies in the way the greedy allocation algo-
rithm calculates the incremental interconnect costs. Basically, the greedy allocation
algorithm allocates each CDFG element, ¢;, to a new cell unless the incremental inter-
connect costs of allocating e; to an existing cell is less than gf x c(op(e;)), where gf
is a control parameter that trades off interconnect and cell costs. The cost function
INCR is defined such that it only considers data transfers between e; and its allocated
neighbors when calculating these interconnect costs (see the next section), hence the
algorithm tends to under-estimate the interconnect costs of ¢; if it is allocated earlier,
when fewer of its neighbors have been allocated. Consequently, the greedy algorithm
tends to allocate earlier CDFG elements to existing cells, and later CDFG elements to
new cells, resulting in poor tradeoffs between interconnect costs and cell costs. To
alleviate this short-sightedness in the greedy allocation algorithm, we try to create new
cells early so that they may be allocated to subsequent CDFG elements, and we try to
create many allocated neighbors as soon as possible so that more accurate interconnect

costs may be used when allocating subsequent CDFG elements.

Chapter 6. Basic Allocation Algorithm 63

Given the above, we now present an intuitive argument for the above formulation
of PRIORITY . First, CDFG elemnents with high cell costs should be allocated to a
small number of cells in spite of high interconnect costs, hence we may safely under-
estimate interconnect costs when allocating such CDFG elements. Since interconnect
costs tend to be under-estimated in the earlier allocations, we give priority to CDFG
elements with high cost(e;). Second, CDFG elements with long lifespans are more
likely to be allocated to new cells because they are more likely to be concurrent with
other CDFG elements already allocated to existing cells. By giving priority to cle-
ments with high span(e;), we try to create new cells as early as possible. Third,
CDFG elements with many allocated neighbors tend to have higher incremental inter-
connect costs for allocating to existing cells, and are therefore more likely to be allo-
cated to new cells. By giving priority to CDFG elements with high alloc (e;), we try
to create new cells early for the sake of subsequent allocations. Finally, CDFG ele-
ments with many data transfers tend to have more neighbors, hence their allocations
have wider impact in terms of the number of allocated neighbors that subsequent
CDFG elements will have. By giving priority to CDFG elements with high conn(e;),

we try to increase the numbers of allocated neighbors as much as possible to facilitate

subsequent allocations.

The weights w, w,, w3 and w, are assigned decreasing values to reflect the rela-

tive importance of their corresponding factors. The exact values of these weights are

set by experimentation.

Chapter 6. Basic Allocation Algorithm 64

6.4. The INCR Function

The function INCR determines which cell is allocated to each CDFG element.
Given an unallocated element e; and a partial allocation p, the allocation candidates
consist of all existing cells of type op(e;) which satisfy all resource contention con-
straints with e;, plus a new cell of the same type. In this context, an existing cell inst
satisfies all resource contention constraints of e; if and only if none of the CDFG ele-
ments already allocated to inst is concurrent (i.e., has overlapping lifetime) with e;.
Since a new cell has not been allocated to any CDFG element, it is always a legal

allocation candidate for ¢;.

For each candidate allocation, say ca, of e;, INCR (¢;,ca) estimates the increase
in Cyy,. when e; is allocated to ca. If ca is an existing cell, then INCR calculates
the incremental interconnect costs required to implement all data transfers between ¢;

and its allocated neighbors:

INCR (e;,ca) = 2 It (e;ca . dt)
dt € DTS (e;)

where DTS (e,) is the set of all data transfers which originate from or are destined for
¢;, and Iy (e;,ca ,dt) is the additional interconnect area required to implement the data
transfer dr assuming a; = ca (i.e., that ¢; is allocated to ca). For example, if dr is a
data transfer which originates from ¢;, then we have dr = (e;,n ,€j ,m) for some n, j
and m, and the interconnect required is int(dt) = (ca .n ,a jom). On the other hand, if
dr is destined for e;, then we have dr = (ej ,n,ca,m), and the interconnect required is

int(dr) = (aj.n,ca,m). In either case, we define /1 as follows:
1. If e¢; is not allocated, then I7(e;,ca.dt) = 0

2. If e; is allocated, and the interconnect inr(dr) already exists in the circuit,

then I (e;,ca dt) = 0,

Chapter 6. Basic Allocation Algorithm 65

3. If €; is allocated, and inr(dr) does not exist in the circuit, then Iy is calcu-
lated as the cost for increasing the fan-in of the destination signal of ins (dr)

by 1:

3.1. If int(dt) = (ca ,n .a;.m), then

Ir(e;.ca.dt) = cpy(1+fi(a;m)) ~ cpy (filaj.m))

3.2 Otherwise (i.e., int(dt) = (aj n.ca,m)),

Ir(e;,ca.dt) = cp (1+fi(ca,m)) — cp (fi(ca,m))

That is, INCR (e;,ca) only considers the cost of adding the missing interconnects

between ca and the cells allocated to the neighboring CDFG elements of ¢; if ca is an

existing cell.
However, if ca is a new cell, then INCR is simply a weighted cell cost of ca:
INCR (e;.ca) = gf x c(op(e;))

where gf > O (for generosity factor, borrowed from MABAL [27}) is a control param-
eter. Basically, a new cell will be allocated to ¢; if and only if the incremental inter-
connect costs for all existing candidate cells of ¢; exceed gf X c(op(e;)). Thus the
control parameter gf determines how the greedy allocation algorithm trades off inter-
connect and cell costs. If gf is very small (e.g., 0.5), then the algorithm will allocate
new celis unless the incremental interconnect cost for allocating to an existing cell is
nearly 0. On the other hand, if gf is very large (e.g., 10.0), then the algorithm will
only allocate new cells when none of the existing cells is a legal allocation candidate.

The default value of gf is set to 1.1, which seemed to produce the best results in our

experiments.

Chapter 6. Basic Allocation Algorithm 66

6.5. The GLOBAL Function

The function GLOBAL determines the probability that SELECT wili de-allocate a
CDFG element. For each element e¢;, GLOBAL (e;) calculates a pro-rated cost for ¢;
based on its contribution to the overall cost, C,;,., of the allocation CDFG. This is a
sum of two component costs:

GLOBAL (e;) = Gpp(e;) + Gr(e;)
where Ggp is the pro-rated cell cost, and Gy is the pro-rated interconnect cost.

To facilitate the calculation of these costs, we define a justification list for each
cell and each interconnect in the circuit. Basically, whenever a cell, ca, is allocated to
a CDFG element, ¢;, we add ¢; to the justification list of ca, denoted by J (ca); when-
ever ¢; is de-allocated, we remove e; from the justification list J(a;). Similarly,
whenever an interconnect, int, is used to implement a data transfer, dr, we add dt to
the justification list J (int); whenever dr is no longer required due to a CDFG element
being de-allocated, we remove dr from the list J (inz(dr)). In a complete allocation,
these justification lists fully specify the CDFG elements and data transfers which make

use of each cell and interconnect in the allocated circuit.

Given the above, we may define the pro-rated cell cost, Gyp, as:

c(op (&)
I J(a,-) |
That is, Gpp(e;) = c (op (¢;)) if the cell a; is only used by the CDFG element ¢;. Oth-

Gopl(e) =

erwise, the cell cost of g; is equally divided among all CDFG elements in J(g;) (i.e.,

CDFG elements to which a; is allocated).

The pro-rated interconnect cost, Gy, is more difficult to define directly. Instead,
we define a pro-rated cost for each data transfer, and then equally divide this cost
between the two CDFG elements involved in the data transfer. Specifically, for each

data transfer dr = (e;,n ..), we define the pro-rated data transfer cost, denoted by

Chapter 6. Basic Allocation Algorithm 67

he function GLOBAL determines the probability that SELECT will de-allocate a
element. For each element e¢;, GLOBAL (e;) calculates a pro-rated cost for ¢;
on its contribution to the overall cost, Cyy,., of the allocation CDFG. This is a
' twO component costs:
GLOBAL (e;) = Gpp(e;) + Gr(e;)

Gop is the pro-rated cell cost, and Gy is the pro-rated interconnect cost.

o facilitate the calculation of these costs, we define a justification list for each
d each interconnect in the circuit. Basically, whenever a cell, ca, is allocated to
G element, e j» WE add e j o the justification list of ca, denoted by J {(ca); when-
j is de-allocated, we remove e; from the justification list J(g;). Similarly,
ser an interconnect, int, is used to implement a data transfer, dr, we add dt to
tification list J (int); whenever dr is no longer required due to a CDFG element
le-allocated, we remove dr from the list J(int(dr)). In a complete allocation,

istification lists fully specify the CDFG elements and data transfers which make

each cell and interconnect in the allocated circuit.

lven the above, we may define the pro-rated cell cost, Gyp, as:

c(op (&)
| J(a,-) |
. Gop(e;) = c(op(e;)) if the cell g; is only used by the CDFG element ¢;. Oth-

Gop(e) =

the cell cost of g; is equally divided among all CDFG elements in J(g;) (i.e.,

elements to which ag; is allocated).

ie pro-rated interconnect cost, Gr, is more difficult to define directly. Instead,
ine a pro-rated cost for each data transfer, and then equally divide this cost
1 the two CDFG elements involved in the data transfer. Specifically, for each

nsfer dt = (e;,n,ej,m), we define the pro-rated data transfer cost, denoted by

" 6. Basic Allocation Algorithm 67

element based on its contribution to the overall cost, C4y,.. This is defined as a sum

of the pro-rated cell and interconnect costs.

Chapter 6. Basic Allocation Algorithm 69

Chapter 7. Refined Synthesis Algorithms

In this chapter, we will describe a number of extensions 10 the scheduling and
allocation algorithms presented in Chapters 5 and 6. Our objective is not to describe
the implementation details of each extension, since most of these extensions have been
implemented by previous synthesis systems in one way or another. Instead, our goal is
to show that such extensions are easily implemented by ~hanging the cost functions in

SE-based synthesis algorithms. Exiensions for the following are considered:
- Hardware Constraints
- Local Timing Constraints
- Case Constructs
- Loops
- Area/7ime Tradeoffs
- Operationn Chaining
- Equivalent Allocation Constraints
- Operators with Permutable Inputs
- Interconnect Optimization
- Caiastrophic Rip-up in Allocation
- Structural Pipelining
- Algorithmic Pipelining

Extensions for allocation with incomplete schedules and scheduling wiih partial

ailucaiion will be deferred to Chapter 10.

Chapter 7. Refined Synthesis Algorithms 70

7.1. Hardware Constraints

Maximum constraints on the numbers of specific cells (e.g., "at most 3 adders"” or
"at most 10 registers”) are handled by adding a penalty cost for constraint violations to
the cost functions INCR and GLOBAL. This biases the scheduling and allocation
algorithms against violating maximum hardware constraints. On the other hand,
minimum constraints (e.g., 'at least 7 interconnects") are treated as user specified cir-
cuit initialization, and provides a look-ahead to the INCR cost function in both the

scheduling and allocation algorithms.

7.2. Local Timing Constraints

Local timing constraints may be specified between any two (groups of) CDFG
nodes using control edges in the CDFG (see Section 2.3.5.1). Recall that a minimum
timing constraint of T ;, control steps from n; to n; is represented by a control edge
from n; to n; with a positive delay of T;,. On the other hand, a maximum timing
constraint of T, control steps from n; to n; is represented by a control edge from n;
to n; with a negauve delay of —71',,, (see Fig. 2.7).

We extend the scheduling algorithm to handle minimum timing constraints by
modifying the definitions of ascp (n;) and alap (n;) (for an unscheduled node n;) to
consider control edges with positive delays. However, maximum timing constraints
are handled by adding a penalty cost for constraint violations to the functions INCR

and GLOBAL to bias the algorithm against violating such constraints.

Chapter 7. Retfined Synthesis Algorithms 71

7.3. Case Constructs

Nodes and edges in different conditional branches of a case construct are mutu-
ally exclusive (see Section 2.3.5.1), and will never be live simultaneously even though
they may have overlapping lifetimes. To accommodate case constructs, we extend the
notion of concurrency to including mutual exclusion: two CDFG elements are con-
current if and only if they are nor mutually exclusive and their lifetimes overlap. The
scheduling and allocation algorithms are modified accordingly to reflect this extended

definition of concurrency.

7.4. Loops

For COFG containing loops, we schedule each loop separately, starting with the
inner most loop if there are nested loops. Each loop is then treated as a special multi-
ple control-step operation which requires exclusive use of the data path. A simple
reservation scheme is implemented in the scheduling algorithm which marks all control
steps in the lifetime of a loop operation as unavailable for (the lifetime of) any other
node. Also. the minimum hardware requirements within each scheduled loop are
treated as minimum hardware constraints for the entire CDFG, thus providing look-

aheads to subsequent scheduling steps.

7.5. Area/Time Tradeoffs

We have extended the scheduling algorithm to explore area/time trad=offs using

objective functions of the form

A x (T-T ;.)V (5.1)
or

A + NX(T-T i) {3.2)
where A is the area cost of the (partial) schedule, T is the total num® controj

Chapter 7. Refined Synthesis Algorithms 72

steps required by the (partial) schedule, T ;;, is the (user specified) minimum nember
of contro! steps in the final schedule, and N 1is a user specified constant. For each
node n;, we define alap ,,;,(n;) as the "as late as possible” schedule if the entire CDFG
must be scheduled in T.,;, control steps. We then extend the cost function
GLOBAL (n;) to multiply the pro-rated area costs by

Max (1, (s;—alap ;. (n; V)
if the objective function is of the form (5.1), or increase the pro-rated area costs by

N x Max (1, (s;—alap .,;(n;)))
if the objective function is of the form (5.2). The cost function INCR is extended in a
similar way, except we dynamically adjust alap ,;, to track changes in the critical path

lengths as CDFG nodes are scheduled and de-scheduled.

7.6. Operation Chaining

Operation chaining refers to scheduling a node to the same control step as its
predecessor and/or successor CDFG nodes. This is feasible if the cumulative delay for
the chained operations is less than the duration of the data path phase (i.e.. ¢) of the
clock. Operation chaining is especially useful when scheduling time critical sequences
of fast and inexpensive operations such as logic operations (e.g., AND, OR and NOT).
To implement operation chaining, we extend the delay model of operations to include
setup and hold times. For operations with single control step delays, the setup and
hold times are equal, and specify operation delays in nanosec.inds. For pipelined
operations, the setup time specifies the delay of the first pipe-stage, and the hold time
specaries the delay in the last pipe-stage of the operation. For non-pipelined operations
with multiple control step delays, the setup time is the duration of the data path phase
(®), and the hold time is the operation delay modulo the period of the clock, ¢. This

prevents chaining a non-pipelined, multiple control step operation with its predecessor

Chapter 7. Refined Synthesis Algorithms 73

because all inputs to the operation must have been stored in registers in order to

remain stable for the duration of that operation.

Given the setup and hold times for all CDFG nodes, we extend the calculation of
asap (n;) and alap (n;) to consider subcycle timing in order to determine if n; may be
chained with its predecessor and successor nodes. For example, let n; be the last
predecessor node for n;, and let n; in turn be the first successor node for n;. Given
that n; ends at /& nanoseconds after the start of control step cs, if d(n;) =1 (orif n;
is implemented by a pipelined cell) and the sctup time for n; is less than or equal o
® — h, then n; may be chained with »; and asap (n;} s set to c¢s. otherwise asap ()
1s =i to cs+1. On the other hand, given that n ; starts at & nanosecond:: before the end
of the & phase in control step ¢s, if d(n;) = 1 (or if n; is implemented by a pipelined
cell) and the hold time for n; is less than or equal to ¢ — k, then n; may be chained
with n; and alap (n;) is set to ¢s — d(n;) + 1, otherwise alap (n;) is set 1o ¢y — d(n;).
We do not permit chaining of a non-pipelined node, n;, with its predecessor nodes if it
has a multi-cycle delay (i.e., d{n;) > 1), since the inputs of n; cannot be held stable
past the ¢ phase of control siep 3; if n; is chained with its predecessors. Finally, we
modify the algorithms to handle CDFG edges with empty lifetimes (i.e., edges whose

asapStart < alapEnd) due to chaining. Such edges do not require storage, but are

implemented as direct data transfers between operators.

7.7. Equivalent Allocation Constraints

Equivalent allocation constraints specify that two or more CDFG elements must
be allocated to the same cells. We use these constraints to ensure that all edges
representing the same logical data (e.g., in loops and case constructs) are allocated to
the same register. These constraints are also useful as a mechanism for direct user

control of the allocation algorithm. Basically, we replace each set of equivalent CDF(

Chapter 7. Refined Synthesis Algorithms 74

elements by a "super” CDFG element which merges all inputs and outputs of the origi-
nal CDFG elements. These "super” CDFG elements are then allocated in exactly the

same way as regular CDFG elements.

7.8. Operators with Permutable Inputs

Certain operators have permnutable inputs in the sense that the data to certain
inputs of these operators may be permuted arbitrarily. For example, a 2-input simple
adder may have 2 permutable inputs and hence 2 ways to connect its input data to its
input ports, while a 3-input AND -gate may have 3 permutable inputs and hence 6
different ways to connect its input data te its 3 input ports. To minimize interconnect
costs, we extend the allocation algorithm to consider all permutations of input connec-
tions and assume the minimum cost permutations when calculating the cost function

INCR in the allocation algorithm.

7.9. Interconnect Optimization

We have interfaced the allocation algorithm to an interconnect optimization algo-
rithm [33] which reduces the total interconnect area by transforming the one-level-
muitiplexer style of interconnects to a mulii-level style of irterconnects (i.e., one in
which two or more multiplexers or busses may be cascaded in series). This intercon-
nect optimization is invoked after greedy allocation, so that the optimized interconnect
areas are used in determining the best allocations. However, since this interconnect
optimization algorithm is quite slow, invoking it in every SE iteration would exces-
sively slow down the allocation speed. Consequently, we invoke interconnect optimi-
zation only if the circuit area prior to optimizatien is within a percentage, say p, of the
minimum circuii area found so far. The percentage p may be specified by nsers, or

dynamically updated as the maximum percentage improvement thar interconnect optim-

Chapter 7. Kefined Synthesis Algorithms 75

ization has ever achieved on the current CDFG. This sacrifices some accuracy for

computational speed, but still provides an override mechanism for user control.

7.10. Catastrophic Rip-Up in Allocation

To further perturb SE-based allocation, we have implemented a catastrophic rip-
up step which is randomly invoked with a low (parameterized) probability at the start
of SELECT. When invoked, this step first evaluates =ach cell, ca, in the circuit on the

basis of its overhead cost per cell arca:

> Global(e ca)
eeJ(ca)
¢ (type (ca))
where J (ca) is the justification list of ca (i.e., the set of all CDFG elements allocated

1

to ca). Basically, this measures the total cost of ca, including the interconnect and
penalty costs incurred by all CDFG elements allocated to ca, as a multiple of the cell
area of ca (i.e., c(nype(ca))). The catastrophic rip-up step then probabilistically
removes cells with high overhead costs by de-allocating all CDFG elements allocated

to these cells.

7.11. Structural Pipelining

In structural pipelining, two or more CDFG nodes may execute concurrently on
different stages in the same pipelined cell. We define the latency of a node n;,
denoted by /(n;), as a positive integer which specifies the number of control steps dur-
ing which n; requires exclusive use o: an operator. If n; is to be implemented on a
pipelined operator, then /(n;) is set to the latency of the pipeline. On the other hand,
if n; is to be implemented on a non-pipelined operator, then [(n;) is set to the delay,

d(l’l").

Given the above, we redefine the lifetime of each node n; in terms of [(n;)

Chapter 7. Refined Synthesis Algorithms 76

instead of d(n;) (e, from s, to s; + [(x2;) = 1 inclusive), in the sense that #; only
requires the exclusive use of an operator for as many control steps as its latency, [(n;).
This also redefines the lifetimes of CDFG edges and data transfers, since each node n;
only accesses its inputs until control step s; + [(n;) — |, but generates its outputs in
control step s; + d(n;) — 1. The cost tunctions INCR and GLOBAL for the schedul-
ing algorithm are modified accordingly to reflect the new lifetimes for nodes, edges

and data transfers.
7.12. Algorithmic Pipelining

Control
Steps

1
Q Q TLatency = 2 Contro! Steps
2 Q

3 Q O
CDFG \d Q
4 .
instance 1
CDFG
instance 2
7
CDFG
8 instance 3

Figure 7.1 Algorithmic Pipelining: Consect.iive Instances of a LOOP Overlap in Time

Chapter 7. Retined Synthesis Algorithms 77

In algorithmic pipelining, successive instances of a CDFG loop body execute con-
currently in the same data path in order to increase throughput at the expense (if any)
of a slightly larger data path [47]. We define the latency, denoted by L, of an algo-
rithmic pipeline as a positive integer which specifies the number of control steps
between consecutive instantiations of a CDFG loop body. Basically, CDFG elements
which are live in control steps i + kXL (k =0, 1,2, --) will be concurrent due to
the overlapping execution of different instances of the loop (see Fig. 7.1). Conse-
quently, we treat the control steps i + kxL (k =0, 1,2, ---) as aliuses of the con-
trol step i, and define a new access function, lially’ (op ,t)|, for the tally data structure

to include elements which are live in all aliased control steps of a control step r:

lrally” (op) = 3, lally (op ,t+k <L)|
k

Chapter 7. Refined Synthesis Algorithms 78

Chapter 8. Design Examples for SE-based Synthesis

We have implemented the SE-based scheduling and allocation algorithms
presented in chapters 5 to 7 in about 6000 lines of Common Lisp and Flavors code on
a SUN 4 running SUN Common Lisp 4.0. In this chapter, we present experimental
results of our SE-based scheduling and allocation algorithms on a number of design
examples from the literature. These results demonstrate that, compared to other syn-
thesis systems, our SE-based synthesis algorithms generate comparable designs

quickly, and generate better designs when given longer run times.

The CPU times reported for our results are measured on a SUN 4 running SunOS
4.1 with 24 MB of RAM and 72 MB of swap space. We have tried some of these
examples on a SUN 4 running SunOS 4.1.1 with 32 MB of RAM and 125 MB of

swap space, and observed a speed up by as much as a factor of 2.

8.1. Differential Equation Example from HAL

The CDFG for this example (Fig. 8.1) is taken from [47]. We schedule and allo-
cate this CDFG under two sets of assumptions as in [47]. In the first case, we assume
a maximum global timing constraint of 4 control steps, and that additions, subtractions
and comparisons are performed by adders, subtractors and comparators, respectively,
whose delays are half the duration of ¢ (i.e., up to two of such operations may be
chained), and multiplications are performed by multipliers whose delays are the dura-
tion of 6 (i.e., no chaining allowed). Also, we assume that constants (i.e., dX, a, and
3) are hard-wired to power and ground. Under these assumptions, it takes 8 schedul-
ing iterations (at an average of 0.35 CPU second per iteration) to obtain a schedule
requiring a minimum of 1 adder, 1 subtractor, 2 multipliers, 1 comparator, 5 registers
and 8 interconnects. However, it takes 32 scheduling iterations (at 0.25 second per

iteration) to find a schedule requiring the same amount of operators and registers but

Chapter 8. Design Examples for SE-based Synthesis 79

I:Z] control

O Operations — Data Vaive E: Corresponding Named Data

Figure 8.1 CDFG for the Differential Equation Example

only 7 interconnec:s. Given this schedule, it takes 43 allocation iterations (at an aver-
age of 0.32 second per iteration) to obtain a design containing the minimum number of
operators and registers, and with less interconnects than the best design reported to
date [47]. Fig. 8.2 compares our circuit with HAL’s circuit for this example.
Table 8.1 compares our design against those reported by Splicer [43], CATREE [10]
and HAL [47] for the same example.

In the second case, we assume a maximum global timing constraint of 8 control
steps. and assume that additions, subtractions and comparisons are performed by
ALU’s i one control step without operation chaining, and multiplications are per-
formed by (structurally) pipelined multipliers in two control steps. Under these
assumptions, it takes 5 scheduling iterations (at 0.6 second per iteration) to obtain the
best schedule requiring 1 ALU, 1 multiplicr, 5 registers and 5 interconnects. Given

this schedule, it takes only 2 allocation iterations (at 1.5 second per iteration) to find a

Chapter 8. Design Examples for SE-based Synthesis &0

bus)

(a) HAL's Circuit

bus1

bus2

A

(b) SSE's Circuit

Figure 8.2 Circuits for Differential Equation Example (4 Control Steps)
design which is slightly better than the best design reported to date [47] (Fig. 8.3(a)).

However, it takes 466 allocation iterations (at an average of 0.64 second per iteration)

to find the best circuit we have ever obtained for this example. This circuit is shown

Chapter 8. Design Examples for SE-based Synthesis 81

FU R Mx Mi ME

Splicer) 6 5 12 7

CATREE 5 6 7 12 5

HAL 5 5 4 10 6

SSE S 5 4 9 5
FU: Functional Units R: Registers

Mx: Muxes/Busses Mi: Mux/Bus Inputs

ME: Equivalent 2-to-1 Muxes (Mi - Mx)

Table 8.1 Design Costs for Differential Equation Example (3 Control Steps)

in Fig. 8.3(b). Table 8.2 compares our design against those generated by Splicer [43]

and HAL [47].

FU R Mx Mi ME
Splicer 3 7 6 16 10
HAL 2 5 4 13 9
SSE 2 5 5 12 7
FU: Functional Units R: Registers
Mx: Muxes/Busses Mi: Mux/Bus Inputs

ME: Equivalent 2-t0-1 Muxes

1 Muiltiplier, 1 Comparator and 1 ALU

e

Constants Stored in Registers
Table 8.2 Design Costs for Differential Equation Exampie (8 Control Steps)

Note that the Splicer design assumes that the comparison operation is implemented on

Chapter 8. Design Examples for SE-based Synthesis 82

-

3 dx

(a) HAL's Circuit

muxi

e

_J mux2

v

R R2
bus1

:

Y

mux3

(b) SSE's Circuit

T3

R4 @5
bus2

Figure 8.3 Circuits for Differential Equation Example (8 Control Steps)

a comparator and that all constants are stored in registers.

Chapter 8. Design Examples for SE-basca Synthesis

8.2. Pipelined Examples from Sehwa

Two examples are taken from [45] to demonstrate scheduling with algorithmic
pipelining, operation chaining, and conditional branches. The first example is a 16-
point digital FIR filter with a global timing constraint of 6 control steps and an algo-
rithmic pipelining latency of 3 control steps. We assume additions are performed by
adders in half the duration of ¢ (i.e., up to 2 additions may be chained), and multipli-
cations are performed by multipliers in a full duration of ¢. For this example, it takes
Jjust 1 scheduling iteration (in 1.13 CPU second) to find a schedule comparable to that
obtained by Sehwa’s exhaustive scheduling method [45] (i.e., requiring 5 adders, 3
multipliers and 24 registers). However, it takes 17 scheduling iterations (at 0.44
second per iteration) to find a schedule requiring one less register (i.e., 5 adders, 3
multipliers and 23 registers). Fig. 8.4(a) shows the schedule produced by Sehwa’s
exhaustive method, and Fig. 8.4(b) shows the schedule produced by 17 iterations of
SE-based scheduling. Note that due to algorithmic pipelining, the minimum number of
registers required by these schedules is determined by the total number of edges enter-
ing control steps 1 and 4, plus the number of edges leaving control step 6. Table 8.3
compares our schedule with those generated by both the backward feasible scheduling

method and the exhaustive scheduling methods in Sehwa [45], and by HAL ([47].

The second example from Sehwa contains mutually exclusive operations in an
algorithmically pipelined CDFG. Nodes and edges from different stages in the algo-
rithmic pipeline are counted as requiring separatc hardware resources if their pipe-
stages overlap in time, even if they belong to mutually exclusive branches of a case
construct. For this example, it takes 31 scheduling iterations (at 0.65 second per itcra-
tion) to find a schedule which is identical to that obtained by Sehwa’s exhaustive
scheduling [45], which is also obtained by HAL [47]. This schedule is shown in
Fig. 8.5.

Chapter 8. Design Examples for SE-bast.. Synthesis 84

Control
Steps

-—

£
L.

N

Control
Steps

VARG,

2

(& -3

=]

(b) SSE's Schedule

Control Step Boundary

Figure 8.4 Schedules for the FIR Filter Example

Chapter 8. Design Examples for SE-based Synthesis

85

Control
Steps + x R T
Sehwa
(Feasible) 7 2 3 31 21
Sehwa
(Exhaustive) 6 > 3 24 20
HAL 6 5 3 - -
SSE 6 5 3 23 20
+: Adders R: Registers
x: Multipliers T: Interconnects

Table 8.3 Schedule Costs for the FIR Filter Example

8.3. Fifih Order Elliptic Wave Filter (EWF) Example

The CDFG for the fifth order Elliptic Wave Filter (EWF) example is taken from
{47} and is shown in Fig. 8.6. This example was chosen as a benchmark for the 1988
High Level Synthesis Workshop [2]. We assume that additions are performed on
adders in one control step without operation chaining, multiplications are performed on
multipliers in two control steps, and all filter coefficients are stored in a small ROM
which is directly connected to one of the inputs of the multipliers. Under these
assumptions, we schedule this CDFG using different global timing constraints and with
both pipelined and non-pipelined multipliers. The results are summarized in Table 8.4.
Note that the CPU time for SE-based scheduling deteriorates as the scheduling free-
dom increases. This is to be expected since, with increasing scheduling freedoms,
there are more scheduling candidates to evaluate (i.e., scheduling steps are slower) and

a larger design space to explore (i.e., more SE iterations are required).

After scheduling, we allocate each of these schedules assuming permutable adder

Chapter 8. Design Examples for SE-based Synthesis 86

Control
2 i3 i4 15 i6 17 i8 Steps

3
4
5
A4
+7
3]
v
ol

o2

@ Case Begin @ Case End

Figure 8.5 Scheduled Example with Algorithmic Pipeline and CASE Constructs

Control Step Beuncary

Chapter 8. Design Examples for SE-based Synthesis 87

+8

+7

(x6)
D

+5

(€ | E13 E26 E33

+12

@ +22

(+23
x9

E38 @

+35

E18

D (37
D) (39
D,

le2] [es] [Eia] le2e) |E3s] |E33]

Figure 8.6 CDFG for the EWF Example

Chapter 8. Design Examples for SE-based Synthesis

E39

x40

+42

[E3a] [E43]

88

Controt Steps Minimum Cost Iterations CPU Time (s)
17 3+, 2xP, 10R, 107 3 2.39
18 3+, 1xP, 10R, 8T 37 24.05
19‘ 2+, 1xP, 10R, 7T 20 14.40
fa) With Pipelined Multipliers
Coritrol Steps Minimum Cost iterations CPU Time (s)
17 3+, 3x, 11R, 11T 2 1.62
18 2+, 2x, 10R, 9T 38 23.94
19 2+, 2x, 10R, 8T 37 24.79
20 ‘ 2+, 2x, 10R, 8T 17 13.26
21 2+, 1x, 10R, 8T 123 105.78
(b) With Non-Pipelined Multipliars
+: Adders x: Multipliers xP: Pipelined Muitipliers
R: Registers T: Interconnacts
Table 8.4 Scheduling Performance for the EWF Example

inputs and with interconnect optimization enabled. The best results are compared with
those reported in [27,48] and summarized in Table 8.5. In all cases, our designs use
the same numbers of operators but fewer registers and less interconnects than those

produced by other systems.

Table 8.6 shows the schedule and allocation for the case of (a maximum global
timing constraint of) 19 control steps and using pipelined multipliers. In this table,

each CDFG edge is named according to the node which produces the edge (e.g., edge
ES5 is generated by node +5 and E6 by node x6), except for edges £1, £2, E13,

Chapter 8. Design Examples for SE-based Synthesis &9

System csotgt;;? FU R Mx Mi ME Time (s)
SSE 17 2xP, 3+ 11 12 31 19 1511
HAL 17 2xP, 3+ 12 -- KR -- -~

CATREE 17 2xP, 3+ 12 -- 38 -- --
SSE 19 2x, 2+ 10 11 31 20 1791
HAL 19 2x, 2+ 12 -- 29 -- --

EMUCS 19 2x, 2+ 12 12 34 22 --
SSE 19 ixP, 2+ 11 9 25 16 2096
HAL 19 1xP, 2+ 12 6 26 20 --
SSE 21 1x, 2+ 11 8 24 16 2870
HAL 21 1x, 2+ 12 .- 31 -- --

SPLICER 21 1x, 2+ .. 9 43 34 --

MABAL 21 2x, 2+ 11 13 43 30 --

Table 8.5 Design Costs for the EWF Example

E26, E33, E39, E18, E38, and E43 which represent equivalent edges (drawn as
square boxes in Fig. 8.6). Fig. 8.7 compares this circuit with HAL’s circuit (which is
still the best one besides ours) for the same set of constraints. Notice that our design
(Fig. 8.7(b)) has a regular architecture: most of the registers are dedicated to storing
values from single (and at most, two) sources; all multiplexers and buss¢s are small
(with only four or fewer inputs); and a simple two-level-multiplexer style of intercon-

nects is used. Moreover, it is interesiing to note that this design happens to use a

Chapter 8. Design Examples for SE-based Synthesis 90

ADC1Y ADD2 |MULT | Ri1 R2 R3 R4 RS R6 R7 R8s R9 | R1Io|R1
IN | E18 | E13] E33 E39])E26]| E2 E38| E1
1 +3 £18 |1 E13 | E33 E39|E26] E3 E38| E1
2 +12 E18 E33 E39|E26 | E3 |E12 | E38) E1
3 |+20 |+32 E18 | E20 | E32 E39 €3 |12 ess| e
4 +25 E25] E18 E32 E39 E3 |E12]| E38) E1
5 x24 E25] E18 E32 E39 E3 |E12]| E38! E1
6 x21 E25| Et18 E32 | €24 ESQ E3 YE12 | E38] E1
7 +27 E25| E18 | E21 | E32 | E27 | E39 E3 |E12]| E38] E1
8 +19 +29 E25) E18 | E19{ E22 | E27 | E39 E3 |E12]| E38] Et
9 +22 | x30 E18 | E19] E22 | E27] E30 E3 [E12 | E3s| €1
10 f+11 +23 E11|E18 | E19{ E30 | E27 E39’ E«6] E3 E38] E1
i1 +31 x9 E12 | E19] E31 E_27 E3G|E26) E3 E38| E1
12 {+41 |+28 E41] €18 | E19]| E31 | E9 [E28[E26 | £ e3s| E1
i3 § +35 -8 x40 E35| £E18 | E19] E31 iE2u é 3 E8 | E38} E1
14 {+10 1+7 | x36 |E3s|E18|E10]E31|Ea3| E7 | E26 ¢ Es | e3s| E1
i5 1 +15 +42 X6 E35| E18 { E15| E36 | E43 | E39 | E26 E8 | E38] E1
16 1+37 x16 E35| E18 | E15! E6 | E431 E20l Eo6 E8 | E38 1
17 +4 E3s|E18 | 15| E16 | €43 | E30[E26 | E4 | E8 | E38
18 } +17 +34 E18 | E1S| E33] E431 E39| E26 | E4 E8 | E38
19 [+14 |+5 E18 | E13|E33 | E43|E39] E26 | E2 E38

Table 8.6 Schedule and Allocation for the EWF Example

non-optimal schedule, with a cost of 2 adders, 1 multiplier, 10 registers and 8 (instead

of the optimum 7) interconnects.

The run times reported in Table 8.5 are misleading in that they may suggest SE-
based allocation is slow. In fact, the contrary is true. SE-based allocation obtains
good results quickly, but then requires progressively longer run times to improve on
these results. Fig. 8.8 plots the cost of the best allocation found as a function of CPUJ

time for the EWF example using 19 control steps and pipelined multipliers. This

Chapter 8. Design Examples for SE-based Synthesis 91

il
|
:)Cﬁtj@f |GG
g mux1 h v
v
I _ADD2 |
] ?
1 v y mux3

(a) HAL's Circuit

tmuxs

muxe

| ADD!?

bus2
ROM :
mux?2 i mux3l mux4

| ADD2

]

] |

3

L

(b) SSE's Circuit

Figure 8.7 Circuits for the EWF Example

Chapter 8. Design Examples for SE-based Synthesis

320

300
S
< % — — — HAL circuit size
< 280
'3
o 1
= } Y
[&]
— 260
s3]
fes]
240 T T \f T T >
20 30 40 50 60

Allocation Time (CPU Minutes on SUN4)

Figure 8.8 Run Time Profile for SE-based Allocation

shows that, while it may take 50 CPU minutes to obtain the best allocation, it only

takes around 45 CPU seconds to obtain a design which just surpasses HAL’s design.

Finally, we unroll the wave filter CDFG 3 times to create a large example con-
taining 110 nodes and 114 edges. The schedvling performance for this example is
summarized in Table 8.7. In [9], this example is scheduled with respect to time and
operator cost alone (i.e., ignoring register and interconnect costs), and a result of 50
control steps, 1 pipelined multiplier, 3 adders, and a CPU time of 40 seconds (solving
linear programming equations using GAMS/MINOS and ZOOM on a IBM PS/2 model
80) is reported. Considering that our results in Table 8.7 include registers and inter-
connects, which would have greatly increased the number of linear inequality equa-

tions in the model of [9], our scheduling performance compare well with that reported

in [9].

Chapter 8. Design Examples for SE-based Synthesis 93

Control Steps Schedule Costs Iterations Time (s)
50 3+, 1xP, 10R, 107 21 22.7
52 3+, 1xP, 10R, 107 13 16.4
54 3+, 1xP, 10R, 8T - 20 34.2
56 2+, 1xP, 11R, 8T 97 134.5
58 2+, 1xP, 11R, 8T 70 116.2
59 2+, 1xP, 10R, 7T 2078 2909.2
50 3+, 2x, “OR, 11T ._93 104.8
52 3+, 2x, 10R, 9T 114 137.2
54 3+, 2x, 10R, 17 185 242.2
56 2+, 2x, 11R, 9T 89 128.1

Table 8.7 Scheduling Performance for the EWF Unrclled 3 Times

8.4. Summary

In this chapter, we have presented experimental results of our SE-based schedul-
ing and allocation algorithms on a number of design examples from the current litera-
ture. These results demonstrate that, compared to other synthesis algorithms, SE-based
scheduling and allocation algorithms generate comparable designs quickly. More
importantly, these results show that, when given longer (but still reasonable) run times,
SE-based synthesis can produce better designs than those reported by other synthesis
systems. In particalar, note that our circuits for the EWF benchmark are the best

designs reported to date on this popular benchmarlk.

Chapter 8. Design Examples for SE-based Synthesis 94

Chapter 9. Comparing SE to Simulated Annealing

Simulated Annealing, or SA, is another general combinationa! optimization algo-
rithm which implements probabilistic search. SA has been successfully applied to a
number of optimization problems in the design and synthesis of VLSI circuits
[6,40,53,55]. While SA has produced excellent solutions in applications such as stan-
dard cell placement [55], it has required considerable CPU run times. On the other
hand, recent work on SE [22,29,31,32] has presented benchmark results which sug-
gest that SE is better than SA in terms of solution quality and/or CPU run time. How-
ever, we are not aware of any work to date which has investigated why this may (or
may not) be so. In this chapter, we will first propose two hypotheses as to why SE
may be better than many implementations of SA, especially for highly constrained
problems such as scheduling and allocation. We will then describe a number of ¢xper-
iments to test these hypotheses in the context of the scheduling problem, and present
results of these experiments to support our intuitive reasoning. Finally, we will
describe an algorithm which combines features in both SE and SA. We will present

experimental results using this algorithm to provide additional insights to the SE algo-

rithm.

9.1. Simulated Annealing

Recall that in general, a combinatorial optimization problem is specified by a
discrete solution space, S, and a cost function, C (X), defined on all solutions X =S,
and the optimization objective is to find X S which minimizes C (X). In this context,
SA is similar to the SE algorithm in that they both implement a probabilistic search
over S by randomly moving from one state i S to the next state j<S according to a
transition probability P (i,j) [51). However, SA differs from SE in the way it deter-

mines the next state to move to from each current state.

Chapter 9. Comparing SE to Simulated Annealing 95

Given a current state, i, the SA algorithm (Fig. 9.1) generates the next state, say
j, by randomly applying a transformation, or move, to i to obtain a new snlution,
ke S, which is then probabilistically accepted as j. The acceptance criteria for k are
that cither C(k)<C() (ie., k& is a better solution than i), or
random (0,1) < exp (—(C (k) — C(i))/T) where T is "temperature”, a control parameter.
Initially, the current state is set to a randomly generated solution, and T is assigned a
large value so SA has a high probability of accepting more costly solutions as the next
states. As SA progresses, ithe value of T decreases according to a cooling schedule,

and SA becomes less and less likely to accept more costly solutions as the next states.

Algorithm SA;
/* X is the current solution */
/* k is a new solution */
begin
X := randomly generated initial solution;
loop until TERMINATE()
begin
loop until Equilibrium()
begin
k := SA-GENERATE(X);
if ((C(k) < C(X)) OR (random(0,1) < exp(- (C(k) - C(X))/T)))

then X :=k;
end loop;
T := update(T);
end loop;
return(X);
end SA;

Figure 9.1 Pseudo-Code for the SA Algorithm

Previous work [1,12,17,39,39,40,51] has tried to improve the solution quality
and run time efficiency of SA by one of two approaches: move-set design and cooling
scheduie improvements. In the first approach, carefully selected moves are used to
reduce the likelihood of generating solutions which are going to be rejected. Some
implementations have combined several simple moves into complex moves to allow

faster exploration of the solution space and a higher probability to escape from local

Chapter 9. Comparing SE to Simulated Annealing 96

minima. Unfortunately, this approach has not been widely used because the move-sets
tend to be problem specific and not generally applicable to other optimization problems
[17). As a result, most work has focused on the second approach, in which the
annealing process is carefully controlled by selecting the initial temperature, dynami-

cally adjusting the way this temperature is decreased, and defining the termination con-

ditions.

As we will show in this chapter, one reason that SE may be better than SA is that
SE uses arbitrarily complex moves whereas most implementations of SA use much
simpler moves. We wiii also describe a general purpose "complex move generator”

for SA which is based on the rip-up and reconstruct principles in SE.

9.2. An Intuitive Comparison of SE and SA

Comparing the SE and SA algorithms, we make two intuitive arguments as to
why SE may be better than many implementations of SA. First, while both SE and
SA implement a probabilistic search over the solution space, the transition probability,
P(i,j), in SA is a simple function of C(i), C(j) and T, whereas P(i,j) in SE
depends on the application specific heuristics and cost functions in the GENERATE
and SELECT steps. Intuitively, SE should be better than SA because it implements a

more guided search than SA.

Second, constructing a new solution from parts of the current solution allows SE
to make arbitrarily distant state transitions (as measured by the number of solution ele-
ments that are different between consecutive states). This contrasts with most SA
implementations which use short-distance moves (e.g., changing the value of a single
solution element, ard interchanging the values of two solution elements). Intuitively,
the distant state transitions allow SE to cover the solution space more effectively than

SA. This is especially pronounced in highly constrained problems such as the schedul-

Chapter 9. Comparing SE to Simulated Annealing 97

ing problem, in which most solutions produced by randomly applied simple moves are
either illegal or higher cost solutions. In this case, SA tends to spend a lot of time
generating new solutions and then rejecting them, hence SA has a higher probability of

being trappes in local minima for long periods of time than SE.

To test the above hypotheses, we designed two sets of experiments in the context
of the scheduling problem. Basically, we separated heuristics guided search and state
transition distance, and tried to measure the effects of each on the performance of pro-

babilistic search. The next two sections present these experimental results.

9.3. Experiments on Effects of Guided Search

In the first set of experiments, we measure the effects of search heuristics using
our SE-based scheduling algorithm. Starting with the SE algorithm, we successively
replace each of the cost functions (i.e., one at a time) PRIORITY , INCR and GLOBAL
by a random number generator, and compare the statistical perforrnance of each of
these 'randomized" scheduling algorithms against that of the original SE-based
scheduling algorithm.

The statistical performance of a scheduling algorithm is measured as follows.
Given a CDFG, we run the scheduling algorithm for a maximum of, say, 100 itera-
tions, terminating as soon as a schedule is found whose cost is less than or equal to a
target cost. This is repeated for a total of 30 runs, and the last iteration number in
each run i> recorded. At the end of 30 runs, we compile the recorded iteration
numbers into a frequency histogram, which represents the statistical distribution of the
number of iterations required to generate the target schedule. This frequency histo-

gram then gives a measure of the statistical performance of the scheduling algorithm.

For the fifth order Elliptic Wave Filter (EWF) example with a global timing con-

straint of 19 control steps and using pipelined multipliers, the best schedules have a

Chapter 9. Comparing SE to Simulated Annealing 98

cost of 2 adders, 1 muliiplier, 10 registers and 7 interconnects.

30
]]
- Originai Scheduling Algoritnm
=)
® 51 with Randomized PRIORITY
o
3 20— [with Randomized INCR
-
é EA with Randomized GLOBAL
5
g 10 |
£
=
z ”
Z
d - 2
0 %I fﬁ.HW.iIrjmlE(

0-9 10-19 20-29 30-39 40-49 50-59 60-
Mumber of SE lterations to Achieve Target Schedules

Figure 9.2 Performance with Randomized PRIORITY, INCR and GLOBAL

Fig. 9.2 shows the statistical performance of each randomized scheduling algorithm for
this exampie using a target cost of 2 adders, 1 multiplier, 10 registers and 8 intercon-
nects (i1.e, just slightly over the optimum). As expected, scheduling performance
deteriorates when each of the cost functions is randomized. Moreover, these results
clearly show that the performance of the SE algorithm depends primarily on INCR,
and then, to a much lesser extent, on GLOBAL and PRIORITY , in that order.

To gain further insight into the effects of INCR on the performance of SE-bused
scheduling, we remove in turn the component costs in /NCR and compare the sritisii-
cal performance of each of these scheduling algorithms. Recall that (Chapter 5, = %
in our SE-based scheduling algorithm consists of four component costs: Iop, which
calculates the incremental operator cost; /5, which calculates the incremental register
cost; Iy, which calculates the incremental interconnect cost; and Ip, which calculates

the incremental opportunity cost due to the decreased freecdoms in the predecessor and

Chapter 9. Comparing SE to Simulated Anncaling 99

successor nodes.

25 7]
Il Original Scheduling Algorithm
_
:93 0o — Z Without Celi Cost
° Without Register Cost
o)
% % t71 Without Interconnect Cost
S g? [] without Oppcrtunity Cost
od \¢
S 10 — Qg
= MM\
2 N
5 N
z N/
X%
; s¢
0 — '32 % H r
0-19 20-39 40-59 60-79 80-99 100-

Number of SE lterations to Achieve Target Schedules

Figure 9.3 Performance Without Component Costs in INCR (Case 1)

Fig. 9.3 shows the results of these experiments, which clearly show that the scheduling
performance depends primarily on /p, and then, to a much lesser zxtent, on Ipp. It is
interesting to note that the removal of /;+ has only a minor effect on the scheduling
performance, and the removal of 7 actually improves the statistical performance of the

SE-based scheduling algorithm.

To verify this, we repeat the above experiments with the optimum target cost of 2
adders, 1 multiplier, 10 registers and 7 interconnects, and ran for a maximum of 300
SE iterations. Fig. 9.4 presents the results of these experiments, which show the same
rclationship between the statistical scheduling performance and the cost functions /p
and /pp. However, they also show that removing /- severely degrades the scheduling
performance, and removing Ip also slightly degrades scheduling performance. This
illustrates that, for this particular benchmark, it is easy to achieve a near optimum

schedule which requires 2 adders. 1 multiplier, 10 registers and 8 interconnects, but

Chapter 9. Comparing SE to Simulated Annealing 100

30 =
Bl original Scheduling Algorithm

;6; Without Cell Cost
°
3 20 i_ § Without Register Cost
2 § Without Interconnect Cost
c R
s [] without Opportunity Cost
o -:.; ithou pportunity Cos
£ o BN
> N
=z A § i
‘ ::':' &
N N | mll o rjh
o - . 55 | v I 33 - 7 . i)

50-99

o
v
o
[Ve]

100-149 150-199 200-249 250-299 300-

Number of SE lterations to Achieve Target Schedules

Figure 9.4 Performance Without Component Costs in INCR (Case 2)

much more difficult to achieve the optimuin schedule requiring only 7 interconnects.

We draw three conclusions from the above results. First, the performance of SE-
based scheduling derives primarily from its ability to make locally optimum decisions
during greedy scheduling (i.e., INCR). Second, the performance of the greedy
scheduling algorithm itself depends primarily on the incremental opportunity cost, /p
(which essentially implements a one step lookahead for the algorithm). Third, for near
optimum schedules, removing certain cost functions (i.e., Ir and /g) not only may not
degrade, but may actually improve, the sc;heduling performance. However, for
optimum schedules, removing any of the cost components in INCR definitely degrades
the performance of SE-based scheduling. This shows that a more random search may
be better at obtaining good schedules since there may be many such sche -iles, but a

directed search is still better at obtaining the optimum schedules.

Chapter 9. Comparing SE to Simulated Annealing 101

9.4. Experiments on Effects of State Transition Distance

In the second set of experiments, we measure the effects of state transition dis-
tance using a SA-based scheduling algorithm which gencrates a new solution from a
current solution by randomly de-scheduling up to M CDFG nodes, and then randomly
scheduling these nodes (see Fig. 9.5). Since at most M nodes may be different
between consecutive schedules, the parameter M controls the maximum state transition
distance in this SA algorithm. This SA implementation is very similar to other SA-
based algorithms if M is small (e.g., 2 or 3), but becomes an unguided version of SE-
based scheduling if M is set to the number of nodes in the CDFG (i.e., N). Conse-
quently, we may measure the effects of (maximum) state transition distance by com-
paring the statistical performance of this SA-based scheduling algorithm for different
values of M.

Function SA-GENERATE(X);
begin
/* M is the maximum state transition distance allowed*/
/* d is a randon:ly generated state transition distance */
/* k is the new schedule generated from the current schedule, X */
d := random(1,M);
casualties := randomly pick d nodes in k;
de-schedule all nodes in casualties from k;
for each node n in casualties do
begin
candidates := determine feasible schedules for n;
update k;
t := randomly pick a control step from candidates;
assign t to the schedule of n in k;
end;
return(k);
end;

Figure 9.5 Pseudo-Code for SA-GENERATE

For the EWF example with 19 control steps and using pipelined multipliers, we

measure the statistical performance of this SA-based scheduling zlgorithm by running a

Chapter 9. Comparing SE to Simulated Annealing 102

maximum of 1200 iterations for 30 runs (starting with the same, randomly generated
initial schedules), and with a target cost of 2 adders, 1 multiplier, 10 registers and 8

interconnects (again, near optimum).

30 _
MR M= 100
M= 15
=) E3 M=10 -
S 20 — M=5 2
3 OO M=2 ’,//
P
= :
& Z
.
-— L]
o y
3 10 %
€ s
po]
=< %
0 T T T T

0-199 200-399 400-599 600-799 800-999 1000-1199 1200-

Number of SA lterations to Achieve Target Schedules

Figure 9.6 Statistical Performance for SA-Based Scheduling

Fig. 9.6 compares the statistical scheduling performance for this case for a few
representative values of M. We also measure the scheduling performance for the case
of 19 control steps, using non-pipelined multipliers, and with a target cost of 2 adders,
2 multipliers, 10 registers and 9 interconnects (the optimum schedules for this case use
1 less interconnect). Fig. 9.7 plots the number of runs in which SA-based scheduling
failed 1o find the target schedules as a function of M for both of these cases (the EWF
example has 38 nodes). These results clearly show that the performance of probabilis-

tic search improves with increasing maximum state transition distance.

Next, we modify SELECT to de-schedule a maximum of M nodes so as to meas-

ure the effects of (maximum) state transition distance on the SE algorithm. For exam-

Chapter 9. Comparing SE to Simulated Annealing 103

30 —

\ With Pipelined Multipliers

\\ With Non-Pipelined Muliipliers

20

10 —

Number of SA Failures
(Out of 30 Runs)

o 5 10 15 20 25 30 35 40

Maximum State Transition Distance (M)

Figure 9.7 SA Failures vs. Maximum State Transition Distance

ple, if M =5, and the number of nodes originally selected for de-scheduling is greater
than 5, then we only de-schedule the 5 most costly of the selected nodes. For the
EWF example with 19 control steps and using pipelined multipliers, we measure the
statistical performance of this SE-based scheduling algorithm by running a maximum
of 70 iterations for 30 runs, with a target cost of 2 adders, 1 multiplier, 10 registers
and 8 interconnects. We also measure the scheduling performance for the case of
G = 19, using non-pipelined multipliers, with a target cost of 2 adders, 2 multipliers,
10 registers and 9 interconnects, and running a maximum of 100 iterations. Fig. 9.8
plots the number of runs in which SE-based scheduling failed to find the target
schedules as a function of M for both cases. These results clearly show the impor-

tance of distant state transitions in the statistical performance of SE.

We draw two conclusions from the above results. First, for highly constrained

Chapter 9. Comparing SE to Simulated Annealing 104

Number of SE Failures

(Out of 30 Runs)

30 -

\ With Pipelined Multipliers
20
\)\ With Non-Pipelined Multipliers
10 |
L 1
i i T
Y 5 10 15 20 25 30 35 40

Maximum State Transition Distance (M)

Figure 9.8 SE Failures vs. Maximum State Transition Distance

problems like scheduling, the SE algorithm should be better than many implementa-

tions of SA because SE permits arbitrarily distant state transitions (i.e., M = N).

Second, we may implement SA to allow arbitrarily distant state transitions and there-

fore improve the performance of SA. Such an implementation may actually out-

perform SE if the larger numbers of SA iterations are more than offset by the increase

in iteration speed as a result of not having to calculate the cost functions PRIORITY ,

INCR and GLOBAL.

Chapter 9. Comparing SE to Simulated Annealing

105

9.5. Combining the SE and SA Algorithms

Finally, we combine the SE and SA algorithms by modifying SE to probabilisti-
cally accept a new solution as the next state using SA’s acceptance criteria (Fig. 9.9).
For the EWF example with G = 19 and using pipelined multipliers, we measure the
statistical performance of this algorithm by running a maximum of 30 iterations for 30
runs (starting with the same schedules produced by GENERATE (3)), and with a target
schedule of 2 adders, 1 multiplier, 10 registers and 8 interconnects. Fig. 9.10 shows
the statistical performance of this algorithm for several representative values for the
initial temperature, T. Basically, the higher T is, the more likely the algorithm is to
accept more costly solutions as the next states in the initial iterations. For example,
setting T g = 1000 effectively reduces the algorithm to SE because every solution gen-
erated is accepted as a next state. On the other hand, setting T, = O reduces the algo-
rithm to a greedy search because only solutions which are cheaper than the current
states are accepted as the next states. For the intermediate cases (i.e., 0 < T < 1000),
the algorithm behaves as SA with different probabilities for accepting hill climbing

moves.

The results in Fig. 9.10 clearly show that the performance of this algorithm does
not depend on thc cooling schedule since, regardless of T, most of the runs have
obtained the target schedules within 10 iterations, before T has even started to
decrease by any appreciable amount. Moreover, the performance of this algorithm for
different values of Ty is so statistically similar that they suggest the SE part of this
algorithm is largely responsible for its performance. (Although Fig. 9.10 seems to
show an improvement in scheduling performance as T decreases, a closer examination
of the raw data revealed that this is primarily a result of the histogram intervals used
in the plot, and we cannot infer that lowering T produces better statistical perfor-

mance. On the other hand, we can infer that lowering T, even to 0, does not

Chapter 9. Comparing SE to Simulated Annealing 106

necessarily degrade the performance for the SE/SA algorithm.)

Algorithm SE-SA;
/* X is the current solution */
begin
X := GENERATE(D);
loop until TERMINATE()
begin
T = TO;
loop until Equilibrium()
begin
/* p is a partial solution */
/* k is a new solution */
p := SELECT(X);
k := GENERATE(p);
if ((Ck) < C(X)) OR (random(0,1) < exp(- (C(k) - C(X))/T)))
then X := k;
end loop;
T := update(T);
end loop;
return(X);
end SE-SA;

Figure 9.9 Pseudo-Code for the Combined SE/SA Algorithmn

25 =
g 5 B T1,- 1000
k) Ty= 100
23 Tg= 50
g Tg= 10
[a st
S 10 [0 T14=0
3
£
=) G
=z 8|

o szD_'_l-n - S

0-4

5-9 10-14 15-19 20-24 25-29 30-
Number of SE/SA lterations to Achieve Target Schedules

Figure 9.10 Performance of SE/SA Based Scheduling for Select T Values

Chapter 9. Comparing SE to Simulated Annealing

107

We draw two conclusions from these (and other similar) experimental results.
First, since the GENERATE and SELECT steps implement arbitrarily distant jumps in
the solution space, the SE algorithm does not benefit from a cooling schedule as in the
case of SA. Second, the performance of SE is not significantly affected by various
acceptance rules for new states. In particular, the statistical performance for Ty =0
shows that GENERATE and SELECT are capable of achieving an effective exploration

of the solution space even with a greedy acceptance rule.

9.6. Summary

In summary, we have presented in this chapter experimental results which demon-
strate that, for highly constrained optimization problems such as the task of scheduling,
SE may be better than many implementations of SA for two reasons. First, the use of
application specific heuristics and cost functions in SE allows it to implement a more
directed search than SA. In particular, its ability to find locally optimum solutions in a
subspace of the solution space appears to be the key to SE’s performance. Second, the
rip-up and reconstruct steps in SE implements much more distant state transitions than
allowed by most implementations of SA. For highly constrained problems like
scheduling, being able to make arbitrarily distant state transitions evidently allows SE
to explore the solution space much more effectively than SA. On the other hand, the
SA algorithm can be implemented so as to allow arbitrary state transitions. In particu-
lar, the SA—-GENERATE function in Fig. 9.5 outlines a general purpose "complex
move generator” for SA which is based on the rip-up and reconstruct principles in SE.
Whether such an implementation would be better than SE then depends on whether the
faster SA iteration speed can make up for the larger numbers of SA iterations required
to achieve the same sclution quality as SE. In our implementation, the SE-based
scheduling algorithm consistently outperforms SA-based scheduling (with maximum

state transition distance) in CPU times by a factor of 10. Other SA-based scheduling

Chapter 9. Comparing SE to Simulated Annealing 108

algorithms [6,40] have achieved more reasonable CPU performance on the EWF

example using better cooling schedules, more efficient representations, and by coding

in C (instead of LISP).

Finally, we have combined SE and SA into a single algorithm which probabilisti-
cally accepts as next states the new solutions generated by SELECT and GENERATE .
Using this algorithm, we have presented experimental results which show that the SE
algorithm does not benefit from a cooling schedule, and that the statistical performance

ot SE is not significantly affected by various acceptance rules for new states.

Chapter 9. Comparing SE to Simulated Annealing 109

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules

Throughout chapters 4 to 9, we have assumed that all CDFG nodes are scheduled
prior to allocation. In this chapter, we remove this assumption by extending our allo-
cation algorithm to accommodate partial or, more appropriately, incomplete schedules.
To do so, we will first describe a new formulation of the allocation problem designed
for fine-grained bottom-up synthesis, in which we assume that all CDFG nodes and
edges are allocated before scheduling. This approach to bottom-up synthesis is novel
because it treats unscheduled nodes as having uncerrain schedules, and applies fuzzy
set theory to quantify these uncertainties during allocation. We will then discuss the
implementation of this formulation as simple extensions to our SE-based allccation
algorithm, and present experimental results which demonstrate the effectiveness of this
approach. We will also describe how our scheduling algorithm is extended to accept a

partially allocated CDFG.

10.1. Introduction

Scheduling and allocation are highly interdependent tasks. Basically, two or more
operations, data values, or data transfers cannot be implemented on the same hardware
resource at the same time. (Mutual exclusion is ignored for now to simplify this dis-
cussion.) Therefore, during scheduling, we need to know if two nodes or edges will be
allocated to the same cells before we schedule them to have overlapping lifetimes; dur-
ing allocation, we need to know if two nodes or edges will be scheduled to have over-
lapping lifetimes before we allocate them to the same cells. This leads to a vicious
cycle: scheduling depends on the results of allocation, which in turn depends on the

results of scheduling.

Previous synthesis systems have approached the tasks of scheduling and alloca-

tion in one of three ways: global, top-down and bottom-up. In the global approach,

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 110

scheduling and allocation are treated as a single task. In the top-down approach,
scheduling is performed first, followed by allocation. In the bottom-up approach, allo-
cation is performed first, followed by scheduling. Most synthesis systems to date have
taken either the global approach or the top-down approach. The global approach is
taken by many transforrnational synthesis systems (see Section 3.3), such as DAA |25}
and CAMAD [49], in which an initial design is successively modified by design
transformations which may change both the schedules and allocations in the designs.
On the other hand, the top-down approach is taken by most constructive synthesis sys-
tems [37], in which allocation is performed either after scheduling (e.g., HAL [48]), or
concurrently with scheduling to provide cost estimates for the scheduling algorithm
(e.g., ELF [11]).

In contrast, the bottom-up approach has only recently received some attention.
The BUD/DAA [38] system incorporates bottom-up design techniques by performing
design partitioning prior to scheduling and final allocation. BUD uses a hierarchical
clustering method to group CDFG nodes into clusters based on a distance metric that
weighs potential hardware sharing, interconnect, and parallelism between each pair of
nodes. These clusters then provide cost estimates for low level characteristics, such as
wire lengths and layout areas, during scheduling. Different granularities of design par-
titions are tried so as to find the best designs. This work has been extended by
Scheichenzuber et. al. [54], who defined a more extensive set of distance metrics
between CDFG nodes, including a schedule distance that takes into account the proba-
bility of schedulinig conflicts between every pair of nodes. Note that design partition-
ing is different from allocation since partitioning only produces subcircuits which may
each contain multiple functional units and registers. These systems can be viewed as
implementing coarse-grained bottom-up synthesis, as opposed to fine-grained bottom-
up synthesis in which full allocation of all CDFG nodes and edges is performed prior

to scheduling.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 111

In this chapter, we present a new formulation of the allocation task designed for
fine-grained bottom-up synthesis. Basically, we view unscheduled CDFG nodes as
having uncertain schedules. We know that each node will be assigned to one of its
candidate control steps, but we do not know which one until the node is eventually
scheduled. In the mean time, we may estimate the relative merit of the scheduling
candidates and apply fuzzy set theory {24] to represent our beliefs that some control
steps are better scheduling candidates than others. This leads to the concept of fuzzy
schedules for CDFG nodes. From these fuzzy schedules, we derive the concept of
fuzzy lifetimes for all CDFG nodes and edges, and then calculate a j.4zzy schedulability
which measures the belief that a feasible schedule still exists given the allocation.
This allows allocation to trade off hardware cost and the perceived risk of scheduling
conflicts. Consequently, we generalize the task of allocation to that of finding the
smallest circuit for which a feasible schedule is still highly possible. We describe our
implementation of these concepts as simple extensions to our SE-based allocation algo-
rithm, and present experimental results to demonstrate the effectiveness of this

approach for bottormn-up synthesis.

The organization of this chapter is as follows. In Section 10.2, we define the
concepts of fuzzy scheduie, fuzzy lifeume, and fuzzy schedulability, and we describe
how incremental changes in fuzzy schedulabilities can be equated with circuit area to
trade off hardware cost and the risk of scheduling confiicts. Section 10.3 discusses a
number of implementation issues which arise when extending our allocation algorithm
to handle fuzzy schedules. Section 10.4 presents experimental results which demon-
strate the strength of fuzzy allocation (i.e., allocatdon with fuzzy schedules), and evalu-
ates different fuzzy allocation schemes based on these results. Section 10.5 compares
fuzzy allocation and design partitioning, discusses alternate formulations of risk of
scheduling conflicts, and describe how we extend our scheduling algorithm to make

effective use of the allocation information in the CDFG. Finally, Section 10.6

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 112

summarizes this chapter.

10.2. Fuzzy Schedulability

Resource contention conflicts occur when CDFG nodes or edges with overlapping
lifetimes are allocated to the same cells. In top-down synthesis, CDFG nodes and
edges have well defined lifetimes when they are allocated, so resource conflicts are
avoided by ensuring that allocation candidates exclude cells which are already allo-
cated to other nodes or cdges with overlapping lifetimes. In bottom-up synthesis, how-
ever, the lifetimes for CDFG nodes and edges are ill-defined during allocation, so a
new way of evaluating the risk of resource conflicts is needed. Toward this end, we
develop the concept of fuzzy schedulability, which quantifies the belief that feasible
schedules are still possible given the allocation. This allows the allocation algorithin

to consider the risk of resource conflicts in the face of uncertain schedules.

In this section, we first give an overview of fuzzy set theory. We then define the
concepts fuzzy schedule, fuzzy lifetime, and fuzzy schedulability. Finally, we equate
changes in fuzzy schedulabilities with circuit area, and describe how these concepts are

incorporated into our allocation algorithm.

10.2.1. Fuzzy Set Theory

In classical set theory, an element, e, in the universe of discourse, {/, either lies
in a set A c U or lies outside the set. This property of classical sets may be
represented by the membership function of the set A, p,:

1 fee A
Hale) =

O otherwise
However, in fuzzy set theory, the 0/1 value restriction on the membership function of

sets is relaxed. Specifically, the membership function, pg(e), for a fuzzy set F takes

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 113

values on any real number from O to 1 inclusive (i.e,, 0.0 S pur(e) <1.0). pr(e) =1
means e is definitely in the set F; ug(e) = 0 means e is definitely not in the set F;
and 0 < purp(e) < 1 means e is possibly in the set F. The higher the value of pUr(e),
the more confident we are about the membership of e in F. In essence, ur(e)
specifies a subjective degree of confidence about the membership of e in F. This is

useful for modeling uncertainties which are not random in nature [24].

Three basic operators on fuzzy sets are set union (A ‘UB), set intersection (A MB),
and set complement (A). These operations may be defined in terms of operations on
the membership functions of their operands as follows [24]:

Haup(e) = Max(uy(e) , uple)),

Hang(e) =Min(uy(e) , up(e)),
uz(e) =1-—pye).

For the purpose of this thesis, we define a fuzzy variable as a countable fuzzy set
in the universe of positive integers. Moreover, to simplify notations, we denote the

membership function, Uy (i), of a fuzzy variable, V, by a function of the same name

G.e., V(@)).

10.2.2. Fuzzy Schedule

We define the fuzzy schedule, S,,, for a CDFG node, n, as a fuzzy variable which
represents the set containing the control step that n will be scheduled to. The
membership function, S, (i), then represents our subjective belief that n will be
scheduled to start in control step i in the firal design. For example, if n is already
scheduled to a control step x, then S,(x)=1 and S,(i)=0 for all i #x. On the
other hand, if n is unscheduled, then 0 £S,(i)< 1 for asap(n) <i < alap(n) and
S, (i) = 0 for all other values of i, where asap (n) and alap (n) denote the as soon as

possible and the as late as possible schedules for n, respectively.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 114

Since every CDFG node n must be scheduled in one and only one control step
between asap (n) and alap (n), we can reduce S,, (i) to a probability measure (ie.. a

funcdon which satisfies the Axioms of Probability [24]) by imposing the condition:

> S,@)=10. (10.1)
Then §,, (i) becomes a probability of belief.

Unlike statistical probability which is a probability measure induced on some ran-
dom event, probability of belief is a probability measurt induced on a predicate |14].
For example, the weather forecast "30% chance of rain" expresses a probability of
belief (i.e., we believe with 30% certainty that it will rain) based on analysis of similar
historical weather patterns. In the case of fuzzy schedules, S, (i) can be interpreted as
the probability that the statement "CDFG node n will be scheduled to control step i "

will be true in the final design.

Given two probability measures A (i) and B (i), we can write:
(AUB)(i) =A()+B(i) — (ANB)(i)

If A(G{) and B(i) are disjoint probabilities, then (ANB)(@) =0 and hence
(AUB)(i) = A(i) + B(i). On the other hand, if A (i) and B (i) are independent proba-
bilities, then (ANB)Yi)=A(@)xB({) and (AUWBYi)=A@G@)+BU)~A(@)B@).
However, if A (i) and B (i) are neither disjoint nor independent, then we do not have
sufficient information to compute either (A\UB)(i) or (AB)(i). In this case, instead
of blindly assuming that A (i) and B (i) are independent, we treat A (i) and B (i) as the
membership functions for the fuzzy variables A and B, and apply fuzzy set operations
to derive the membership functions for the fuzzy variables AUB and A NB.

Ideally, for an unscheduled CDFG node, n, the values S, (i) should reflect the
strengths of evidence that the scheduling algorithm will favor control step i over other
candidate control steps when scheduling the node n. However, it is difficult to analyt-

ically predict the behavior of a scheduling algorithm, so we use a more practical

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 115

measure based on dependency analysis of the CDFG. Basically, a node n with a delay
of d(n) control steps will be scheduled to control step i only if all of its predecessor
nodes, pred{(n), will end before control step i, and if all of its successor nodes,
succ(n), will start after control step i+d(n)—1. Therefore we iteratively adjust the
fuzzy schedule of each CDFG node according to the fuzzy schedules of its predecessor

and successor nodes.

We start with ignorance about the scheduling algorithm, and assume equal proba-

bilities of belief (or simply, beliefs) for all scheduling candidates for each node »n:

1
() = fi j = st .
S, (i) alap () = asap (n) + 1 ori =asap(n) alap (n)

Given these initial values for S, (i), we define eb, (i) as the belief that n will end

before control step i. This is calculated as the belief that n will be scheduled in any
control steps from asap(n)toi —d(n):
t=i—d(n)
eb, ()= Y S,@). (10.2a)
t=asap (n)
Similarly, we define sa, (i) as the belief that n will start after control step i. This is

calculated as the belief that » will be scheduled in any control steps from i + 1 to
alap(n):

alap (n)
sa, @)= 8 S, (10.2b)

t=i+1

Note that in defining the fuzzy variables eb, and sa,, the belief of a CDFG node
n being scheduled in either control step i or j (i # j) is calculated as the sum of
beliefs, S, (i) + S,(j). This is because S, () is a probability distribution function due
to condition (10.1), and that n can never be scheduled to both control steps i and j in

the final design (i.e., S, (i) and S,{j) are disjoint probabilitics whenever i # j).

Given the above definitions, we update the fuzzy schedule of each node n to be

the conjunction of eb, for all pepred(n) and sa; for all sesucc(n):

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 116

S,({) « Min (peﬁ'gg(n)eb @), sc%tﬁn(n)sa @ +d (n)-1)). (10.3)
In this case, we cannot apply simple probability theory because we lack information to
calculate the joint probabilities involving different probability functions. For example,
to calculate the probability that two CDFG nodes, n and m, will both end before con-
trol step ¢, we need to know the joint probabilities between the scheduling of n and
m. In [54], this problem is set aside by (implicitly) assuming that nodes n and m are
scheduled independently, hence the joint probability is calculated by eb, (i) x eb,, (i).
However, this is not a satisfactory solution since the basic assumption (that CDV'G

nodes are scheduled independently of one another) seriously under-estimates the ability

of the scheduling algorithms.

Consequently, we interpret ebp (i) and sa, (i) not as probabilities, but as subjec-
tive beliefs (see [24], in which probability theory is shown as a subset of belief theory)
which we assign as the membership functions of the fuzzy variables eb, and sa,, and
calculate the new S, as a conjunction of these fuzzy variables. Specifically, we suc-
cessively adjust the value of S, by iterating equations (10.2) and (10.3) for a user-
specified number of times (e.g., 3). Basically, each iteration adjusts the value of S, to
take into account the fuzzy schedules for ancestor and descendent nodes which are

more and more distant from n.

The actual calculation of S, is complicated by a normalization step which ensures
that condition (10.1) is satisfied after each update, and by a weight function which uses
the hardware costs of nodes to determine the relative importance among predecessor

and successor nodes:

S,) « NS, <Min(Min w(n,p,eb @)), Min w(n,s.sa(i+d(n)-1))) (10.49)

pepred(n) S € succ (n)
wkere N (S,)) is a normalization factor computed as:

1
N(Sn) ZM"I(Min w(n,p,eb (1)) Min w(n,s,sas(i-*-d(n)—l)))

pepred(n) sesucc(n)

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 117

and w(n;,n;.f) is a weight function which adjusts the belief value f (0.0 < f < 1.0)
according to the relative cell costs for nodes n; and n;:
(c (op (n;))c (op (nj XS if ¢ (op (n;))=c (op (n;))

win;.n;.f) ={ 1.0 ~ (c(op (n;))c(op (n;))*(1.0 — f) otherwise
That is, we give more weight to eb, (or sa,) in equation (i0.4) if the predecessor node

p (successor node s) has a larger cell cost than n by decreasing the values eb, (i)
(sa; (i+d(n)-1)); and we give less weight to eb, (or sa;) in equation (10.4) if the
predecessor node p (successor node s) has a smaller cell cost than n by increasing thz
values eb, (i) (sa;(i+d(n)-1)). This unusual weight function is due to the Min func-
tion in equation (10.4). (Note that we must decrease the value of A if we want to

increase the importance of A in Min (A ,B).)

10.2.3. Fuzzy Lifetimes

Given the fuzzy schedules, we may calculate the lifetime of every CDFG node
and edge as a fuzzy variable. More formally, we define the fuzzy lifetime, live,, for a
CDFG element (i.e., node or edge), x, as a fuzzy variable which represents the set
containing all control steps in which x is live. Intuitively, live, (i) measures the belief
that control step i will lie in the lifetime of x in the final design. For a CDFG node n
with a latency of /(n) control steps (recall that /(n) = d(n) for non-pipelined opera-
tions), n is live in control step i if it starts execution in any control steps from
i—=l(n)+1 to i. Thus live, (i) is calculated as the sum of beliefs for n being scheduled
to control steps from i—-I(n)+1toi:

i

live, (i) = > S, {8).

t = i-l(n)+i
Note that if n is a single cycle operation or a pipelined operation with latency 1,

then live, reduces to the fuzzy schedule S,,.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 118

On the other hand, the lifetime of a CDFG edge, e, starts in the control step in
which the node generating e ends, and ends in the control step just before the last
access of e. For example. if the last of the nodes accessing ¢ ends (or can start a new
pipe-stage) in control step i (i.e., e is last accessed in i), then € must be stored in a
register until control step i — 1, hence its lifetime ends in control step i — 1. More
formally, if we denote by src(e) the node generating e, and denote by dests (€) the set

of nodes accessing e, then we define live, (i) as:

live (i) = Min (ebs,c(ey(i+1) , Max sa,(i—l(n)+1)).
n € dests(e)
That is, an edge e is live in control step i if and only if the node src(e) ends before
control step i+1 (i.e., ends in or before i), and at least one node in dests (e) will still
access e after control step i. (A node n will access its inputs after a control step i if
n starts after the control step i — I(n) + 1). Again, fuzzy set operators are used in the

above equation because ebg, (i +1) and sa,(i+l(n)~1) (n € dests(e)) are obviously

interdependent probabilities.

To illustrate the above calculations, consider the CDFG segment in Fig. 10.1
(taken from the EWF CDFG in Fig. 8.6). We assume that additions are single cycle
operations, multiplications are 2-cycle operations (and not pipelined), and that fuzzy
schedules for nodes +27, +29 and +30 are assigned values shown in Fig. 10.2.
Fig. 10.3 shows the fuzzy lifetimes for these nodes. The fuzzy lifetimes for +27 and

+29 are identical to their fuzzy schedules, and the fuzzy lifetime for +30 is calculated
by:

live ;30(f) = S.430(i—1) + S.30()
since /(+30) = 2. Fig. 10.4 shows the ended before fuzzy variables, and Fig. 10.5
shows the srarted after fuzzy variables for these nodes. Finally, Fig. 10.6 shows the
fuzzy lifetimes for edges 27 and €29. Notice that the lifetime for €27 is determined

by the node +28 (and not by +29) because +28 is the last node accessing e 27.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 119

Figure 10.1 CDFG Segment from the EWF Exampic

+27 0.01 0.33 0.66 0.00 0.00

f—; +29 0.00 0.66 0.33 0.01 0.00
.
]
O

x30 0.00 0.00 0.31 0.38 0.31

8 9 10 11 12

Control Steps

Figure 10.2 S, (i) for n = +27, 429 and x30

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 120

+27 0.01 0.33 0.66 0.00 0.00 0.00
< +29 0.00 0.66 0.33 0.0t 0.00 0.00
2
[
o
x30 0.00 0.C0O 0.31 0.69 0.69 0.31
8 9 10 11 12 13
Control Steps
Figure 10.3 [, (i) for n = +27, +29 and x30
+27 0.01 0.34 1.00 1.00 1.00 1.00
= +29 0.00 0.66 0.99 1.00 1.00 1.00
2
a
O
x30 0.00 0.00 0.00 0.31 0.68 1.00
8 9 10 11 12 13

Control Steps

Figure 10.4 eb,(i+1) for n = +27, +29 and x30

10.2.4. Fuzzy Schedulability

Given the fuzzy lifetimes, we may calculate the conflict-free lifetime of every
allocated CDFG element as a fuzzy variable. More formally, we define the fuzzy
schedulability, schd, ., for a CDFG element x allocated to a cell already allocated to
a set C of other CDFG elements, as a fuzzy variable which represents the set contain-

ing all control steps in which x will be live without resource conflicts. Intuitively,

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 121

+27 0.99 0.67 0.00 0.00 0.00 0.00

COFG Nodes

+29 1.00 0.34 0.01 0.00 0.00 0.00
x30 1.00 1.00 1.00 0.68 0.31 0.00
8 9 10 11 12 13

Control Steps

Figure 10.5 sa,(i-d(n)+1) for n = +27, +29 and x30

g, e27 0.01 0.33 1.00 1.00 1.00 0.84

W

2

8 e29 0.00 0.66 0.99 0.69 0.31 0.00
8 9 10 11 12 13

Control Steps

Figure 10.6 [, (i) for x = €27 and €29

schdy ¢ (i) measures the belief that, in the final design, x will be live in control step i
and zone of the CDFG elements in C will be live in i. If C’ < C denotes the subset
of C containing all CDFG elements whose lifetimes may overlap with that of x (see

Section 10.3.3), then we define schd, (i) as:
schd, ¢ (i) = Min(live, (i) , Min (1 — live,(i)))
' yeC
That is, schd, is calculated as the conjunction of live, and the complements of live,

for all y € C’. Note that if C’ =@ (i.e., if x is allocated to a cell by itself, or if

every CDFG element allocated to the same cell as x is either mutually exclusive or

Chapter 10. Bottorn Up Synthesis based on Fuzzy Schedules 122

has data dependency with x), then schd, (i) have maximum values for all i (i.e.,
schdy ¢ (i) = live,(i)). This corresponds to the maximally parallel allocation of x, in

which there is no possibility of a resource conflict involving x.

10.2.5. Allocation using Fuzzy Schedualability

When allocating a CDFG element, x, with an uncertain lifetime, we may estimate
the risk of resource conflicts for each candidate cell based on the fuzzy schedulability
Schd, ¢, where C is the set of CDFG elements already allocated to the candidate cell.
Specifically, we define a schedulability decrement index, decr, ¢, as the percentage
difference between the peak belief levels for the fuzzy schedulability, Schd, ¢, and the
fuzzy lifetime, live,:

peak, (live,) — peak, (schd, c)

decr, 0 =
*.C peak, (live,)

where,

alap (x) i+l(x)-1
peak, (V) = Max Min V()

i=asap (x) t=i

if x is a CDFG node with a latency of /(x), and

peal (V) = Max V (i)
if x is a CDFG edge.

Intuitively, peak, (schd,) measures the maximum belief that the CDFG element
x will have a conflict-free lifetime if x is allocated to a cell already allocated to the set
C of CDFG elements. If x is a CDFG node, then a conflict-free lifetime requires / (x)
consecutive conflict-free control steps, so the peak belief for such a lifetime is calcu-
lated as the maximum of minima of schd, (t) over a sliding window of /(x) control
steps. On the other hand, if x is a CDFG edge, then a conflict-free lifetime may be as

short as a single control step, so the peak belief for such a lifetime is simply the max-

imum of schd, ¢(t) for all values of t.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 123

By definition of Schd, ¢, the value of peak, (schd,) cannot exceed the value of
peak, (livey) (i.e., the belief that a schedule exists for the maximally parallel alloca-
tion). Consequently, decr, ~ rtepresents a percentage decrease in the maximum belief
in the schedulability of x. Alternately, decr, ¢ may be interpreted as a percentage
increase in the risk of resource conflicts involving the CDFG element x if it is allo-
cated to a cell already allocated to the set C of CDFG elements. The value of decr, ¢
ranges from O (i.e., peak, (live,) = peak,(schd,)), meaning the risk of resource
conflicts is not increased by the allocation, to 1 (i.e., peak, (schd,) = 0), meaning
inevitable resource conflicts involving x if it is allocated to the same cell as the set C

of CDFG elements.

Given the above, we express the increased risk of resource conflicts in terms of
hardware costs by multiplying decr, ¢ by the circuit area required to allocate x to a
new cell, c (op(x)). Adding this cost factor to the allocation cost functions enables
tradeoffs between hardware cost and the risk of resource conflicts during allocation.
More formally, if C,y,. denotes the total area of the allocation, then instead of minim-
izing Cuy,c, We modify the cost functions in the allocation algorithm to minimize a

new objective function, C’ 4y, :

C'atloc = Catloc + X Cre)
x € CDFG
where cpc(x) is the cost associated with the increased risk of resource conflicts due to
the allocation of the CDFG element x. For each CDFG element, x, allocated to a cell
already allocated to a set C of other CDFG elements, we define cpc (x) as:
CPenalty if decry o =1
CReX) =) ¢ x ¢ (op (x)) x decr, ¢ otherwise
where cp,,yr, is a high penalty cost for inevitable resource conflicts, and « is a control

parameter that defaults to 1.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 124

Basically, the new allocation objective is to avoid inevitable resource conflicts at
all costs (due to the high CPenalty)» and then trade off hardware cost and the risk of
resource conflicts based on the control parameter a. For example, if o = 0, then the
allocation algorithm will try to produce a maximally serial allocation by ignoring the
risk of resource conflicts and minimizing the circuit area as much as possible, subject
only to inevitable resource conflicts. On the other hand, if a is very large (e.g., 100),
then the allocation algorithm will minimize the risk of resource conflicts at the expense
of hardware cost, and produce maximally parallel allocations. By adjusting the value
of o in a reasonable range (e.g., between 1 and 10), we obtain intermediate allocations

with different degrees of tradeoffs between hardware cost and the risk of resource

conflicts.

10.3. Implementation Issues

In this section, we discuss a number of implementation issues which arise when

extending our SE-based allocation algorithm to accept fuzzy schedules.

10.3.1. Statistical Fuzzy Schedules

The derivation of fuzzy schedules based on dependency analysis has a serious
shortcoming in that it only reflects one of the many factors considered by a scheduling
algorithm. More importantly, it is computationally expensive, and cannot be readily
extended to take advantage of intermixed scheduling and allocation steps. Conse-

quently, we implement a scheme of adapting fuzzy schedules to statistics gathered

from previous scheduling iterations.

For each CDFG node n, we keep a running poll, P,,(i) (i = asap(n),....alap(n)),
which is a weighted count of the number of times n has been scheduled to control step

i in previous scheduling iterations. At the start of synthesis, we set P, (i) = O for all

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 125

values of i. Subsequently, every time n is scheduled in a control step i, we increment

1 . ..
P_(i) by ——————, wh Global denotes the global cost of scheduling » in i as
n (i) by Global (n) where () g &

calculated by the SE-based scheduling algorithm (Scction 5.5). As the scheduling
algorithm iterates, the value P, (i) reflects not only the frequency with which n has
been scheduled to different control steps, but also the global costs associated with
these control steps. Basically, the higher P, (i) is, the more confiderit we can be that
n will eventually be scheduled to i. At any point in the synthesis process, we may

normaliz= P,, to obtain an up-to-date fuzzy schedule S, :

In essence, we forecast the behavior of the scheduling algorithm based on statis-
tics on the behaviors of past scheduling iterations. This scheme is simple, fast, and
reflects all factors considered by the scheduling algorithm without having to analyze
the cost functions and heuristics used in the algorithm. More importantly, when
scheduling and allocation steps are intermixed, this scheme allows the allocation algo-
rithm to dynamically adapt to changing behaviors of the scheduling algorithm brought
on by the allocation of CDFG elements in the first place. In short, it closes the feed-
back loop between the intermixed scheduling and allocation steps in the synthesis sys-
tem.

A variation on :his scheme is to record in 2,(i) the maximum wvalue of

1

Clobal oy) in previous scheduling iterations. This definition bases the belief of n

being scheduled to i entirely on the minimum global cost ever associated with this
schedule, and ignores the number of times that n has becn scheduled o i. Intuitively,
this scheme assigns fuzzy schedules based on the ideal, as opposed to the typical,

behaviors of the scheduling algorithm. We implement both schemes in the SSE sys-

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 126

tem, and let the users select which schemc to use.

10.3.2. Approximate Schedulability Decrement

The calculation of the schedulability decrement index, decr, ., is computationally
expensive because the set, C, of CDFG elements allocated to each cell change fre-
quently as CDFG elements are allocated and de-allocated. To improve the allocation
run times, we define a quick approximation, decr’, -, which calculates a lower bound
on decr, ¢ based on the schedulability decrement indices between x and individual

elements in C:

decr’y ¢ = ’!lVlEa.é decry () (< decryc).
Consequently, the schedulability decrement between each pair of CDFG elements can
be calculated once and cached for subsequent use as long as the underlying fuzzy
schedules remain unchanged. This speeds up the allocation iterations by as much as
200% (see Section 10.4). Nevertheless, experiments have shown that, as often as not,

allocation using decr’, ¢ produces a better result than that produced by allocation

using decr, ¢ (see section 10.5).

The formulation of this approximation scheme is inspired by the way [54] calcu-
lates the schedule distance between two sets of CDFG nodes from the schedule dis-

tances between every pair of nodes in either sets.

10.3.3. Dependency Analysis

Dependency analysis yields considerable information on whether different CDFG
nodes and edges can have overlapping lifetimes. Basically, two CDFG nodes will
never have overlapping lifetimes if one is the descendent of the other (unless they are
chained operations), and two edges will never have overlappiig lifetimes if the node

producing one edge is the descendent of every node which accesses the other edge.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 127

On the other hand, CDFG edges which are either produced or accessed by the same
nodes must have overlapping lifetimes.

We detect such impossible and inevitable resource conflicts as follows. At the
start of allocation, we traverse the CDFG and collect every pair of dependent nodes.
These are checked when calculating the schedulability decrement, decrx'[},) between
two CDFG nodes or edges x and y. If x and y can never have overlapping lifetimes
due to the above dependency analysis, then we set:

decrx‘{y} = decry'{x] = 0.0.
On the other hand, if x and y will always have overlapping lifetimes, then we set:

decry (yy = decry () = 1.0.
Most of these schedulability decrement values (i.e., all except those for nodes which
may be chained together) may be calculated once and then cached as static (i.e.,
independent of fuzzy schedules) properties of the CDFG. This dependency analysis
further reduces the amount of computation for calculating fuzzy schedulability decre-

ments in the course of fuzzy allocation.

10.3.4. Interval Analysis

An additional check for inevitable conflicts must be performed when allocating
CDFG nodes due to the non-cumulative property of the fuzzy set operators (i.e., Max
and Min). For example, if three (or more) CDFG nodes must be scheduled in the
same two control steps, then they cannot be allocated to the same cell without resource
conflicts (unless, of course, they are mutually exclusive). To avoid allocating such
CDFG nodes to the same cells, we devise a test for inevitable resource conflicts using

interval analysis.

For every CDFG node n with a latency of /(n) control steps, we define the i’th

certainty interval for n, denoted by ci(n,) (i =1,...,/(n)), as the interval of control

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 128

steps in which the i’th control step of n°’s lifetime must lie. For example, if n has a
latency of 2, then the first control step in the lifetime of n lies in the interval
{asap (n) , alap (n)], and the second control step in the lifetime of n lies in the inter-
val [asap (n)+1 , alap (n y+1]. More formally, we define ci(n,i) as:
ci(n,i) = [(asap(n)+i—1) , (@lap (n)+i-1)] fori =1,..,1(n).

Comnsider a set, C, of CDFG nodes which are allocated to the same cell. We may test
for inevitable conflicts among nodes in C by first extracting all certainty intervals for
all nodes in C, and then searching for an interval of control steps, {x , y], which con-
tains fewer control steps than the number of certainty intervals that are completely
enclosed by [x ,y]. If such an interval exists, then resource conflicts are¢ inevitable

when the set C of CDFG nodes are allocated to the same cell.

The actual implementation of this test is facilitated by the incremental nature of
our allocation algorithm. In particular, since we allocate one CDFG node at a time,
we only need to test for inevitable conflicts involving the node being allocated. For
example, when allocating a node n, we check each candidate cell already allocated to
a set C of CDFG nodes by extracting all certainty intervals from n and from all nodes
in C, and then searching for an interval [x , y] which completely encloses at least one
of the certainty intervals of n (i.e., ci(n,i) for some i from 1 to /(n)), and which con-
tains fewer control steps than the number of certainty intervals completely enclosed by
[x . y]. To account for mutually exclusive CDFG nodes, we modify the above test to

extract certainty intervals only from those CDFG nodes in C which are not mutually

exclusive with the node »n.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 129

10.4. Experimental Results

The above concepts have been implemented as extensions to our SE-based alloca-
tion algorithm. For the EWF example, the speed of fuzzy allocation averages 1.3 CPU
second per iteration using the exact schedulability decrement, and 0.6 CPU second per
iteration using the approximate schedulability decrement. In terms of final designs, the
circuits produced by bottom-up synthesis (i.e., fuzzy allocation, followed by schedul-
ing, followed by final allocation) are comparable to those produced by top-down syn-
thesis (i.e., scheduling followed by allocation) presented in Chapter 8. However, it is

not clear whether fuzzy :’!ocation actually helps or impedes the scheduling algorithm.

Consequently, we compare the statistical perfecrmance (see Chapter 9) of our SE-
based scheduling algorithm with and without fuzzy allocation to determine the effects
of fuzzy allocation on our scheduling algorithm. Given a CDFG, we first perform
allocation based on fuzzy schedules, and then measure the statistical performance of
our scheduling algorithm given this allocation (scheduling an allocated CDFG will be
discussed in Section 10.5.3). Basically, if this statistical scheduling performance is
better than that obtained with the unallocated CDFG, then fuzzy allocation helps
scheduling, otherwise it doesn’t. We can also evaluate different fuzzy allocation
schemes by comparing the statistical scheduling performance obtained using the alloca-

tions produced by these schemes.

For the EWF example with 19 control steps and using pipelined multipliers, we
measure the statistical scheduling performance by running a maximum of 100 schedul-
ing iterations for 30 runs, with a target cost of 2 adders, 1 multiplier, 10 registers and
8 interconnects. Table 10.1 summarizes the results of a set of experiments using this

benchmark.

Control parameters for the experiments include 3 values of a (0, 1 and 10), the

exact and approximate schedulability decrement formulations, and 4 different ways of

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 130

assigning fuzzy schedules (from the statistical evidence of 100 scheduling iterations, or
from dependency analysis with 0, 3 and 6 iterations of successive approximation). For
each combination of contro! parameters, we run 100 iterations of fuzzy allocation, then
we record the circuit size for the best allocation found and measure the statistical
scheduling performance using this allocation. In Table 10.1, we list the size of each
circuit by a string of four numbers, a—m—r—i, where a is the number of adders, m is
the number o: pipelined multipiers, is the number of registers, and i is the number
of 2-input muxes required for interconnects. Moreover, we describe the statistical

scheduling performance by first compiling into a frequency histogram (see Fig. 10.7)

=3
2]
°
=]
<3
»
c
S
a et
©
3
€
S
P
1
8 10 12 14

Number of SE lterations Required to Achieve Target Schedules

[] statistical Performance for the unaliocated CDFG <5.2,12.0>

Statistical Performance for an allocated CDFG <18,0,2,0>

{Fuzzy Allocation using @ = 1, exact decr, and DA3)

Figure 10.7 Sample Statistical Performance for the EWF

the statistical distribution of the number of scheduling iterations required to achieve the
target cost, and then describing this frequency histogram by a tuple of four integers

<p.n,w,z>, where p is the pecak frequency (i.e., number of runs out of 30) in the

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 131

histogram, n is the iteration number when p occurs, w is the iteration number by

which 20 runs (i.e., two third of 30 runs) have obtained the target cost, and z is the

number of runs that never achieve the target scheduling cost in 100 iterations.

Fig. 10.7 shows the frequency histogram (described as <5,2,12,0> and <18,0,2,0>,

respectively) corresponding to the statistical scheduling performance obtained for the

unallocated CDFG ad for the fuzzy allocation produced using o = 1, exact schedula-

bility decrement, and with fuzzy schedules assigned from dependency analysis with 3

update iterations (i.e., DA 3).

(_j- oa=0 a=1 a=10

3 8 | Cicuir | Swisical | ey | Swtistical | Gy | Swtistical
Performance Performance Performance

i exact 2-1-12-23 | <8,2,24.0> 2-1-13-20 | <30,0,0,0> {4-2-11-24 | <3,2,56.4>

;f approx §2-1-11-22 | «13,2,6,0> }3-1-11-23 | <14,2.8,0> |4-2-10-26 | <2,56,-,19>

- exact 2-1-9-15 }<16,2,8,0> 2-1-9-20 <9,2,12,0> 2-1-13-27 | <3,14,56,6>

<

Q approx |2-1-8-19 | <7,2,20,0> 2-1-9-18 <17,24,0> |2-1-13-29 | <7,2,20,0>

o~ |Cxact 12-1-9-18 1<132,6,0> [4-1924 | <18,02,0> |6-1-14-33 | <4,10,42,1>

<

D lapprox {21917 [<192.4.0> [3.1.824 | <110.12.05 | 5-1-13.33 | <2.8.-.13>

o |exact 3-1-10-23 | <13,2,18,0> | 4-1-10-26 | <9,2,20,0> |5-1-13-36 | <4,2,20,0>

<

B lapprox [3-1:10-20 | <11,2,6.0> | 4-1-10-23 | <10.2,10.0> |4-1-12-33 | <3.2.28.2>

Keys : exact: using exact schedulability decrement

approx: using approximate schedulability decrement

stats: using statistical fuzzy schedules
DAO: using fuzzy schedules from dependency analysis with 0 update

DAZ3: using fuzzy schedules from dependency analysis with 3 updates
DAG: using fuzzy schedules from dependency analysis with 6 updates

Table 10.1 Experimental Results on the EWF Example (19 Control Steps)

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules

From the results of Table 10.1 (and other similar experimental results), we see
that most fuzzy allocations (i.e., all except some produced with o = 10) improve the

statistical performance of scheduling. Moreover, we make the following observations:

1. The best value of o appears to be 1, and then 0. Several allocations pro-
duced with o = 10 adversely affects the performance of scheduling. The fact
that allocations produced with a = 0 (i.e., minimizing hardware cost subject
only to inevitable resource conflicts) also improve scheduling performance
demonstrates the value of dependency and interval analysis for detecting

inevitable resource conflicts.

2. The best fuzzy schedules are assigned by statistical evidence. This is
expected since statistical fuzzy schedules are based on actual behavior of the
scheduling algorithm. The next best fuzzy schedules are assigned by DA3
(ie., dependency analysis with 3 updates). Dependency analysis with 6
updates (i.e., DA6) turned out to be worse than simply assuming equal
beliefs (i.e., DAQO). This shows that an over reliance on dependency analysis
is counter-productive since data dependencies may not be the primary factor

considered during scheduling.

3. The best fuzzy allocations are produced with exact schedulability decrement.
However, the approximate schedulability decrement is just as likely to pro-
duce a better fuzzy allocation as the exact schedulability decrement. This
can be explained by noting that decr’, » is a more optimistic formulation
than decr, ¢ (see Section 10.5.2). Evidently this is a reasonable optimism

about the ability of the scheduling algorithm.

Chapter 10. Boxtom Up Synthesis based on Fuzzy Schedules 133

10.5. Discussions

In this section, we first compare fuzzy allocation with design partitioning (as
implemented in [38,54]). We then discuss alternate formulations for the risk of
scheduling conflicts. This is followed by a brief outline of how we extend our SE-
based scheduling algorithm to make use of allocation information in a (partially) allo-

cated CDFG.

10.5.1. Comparing Fuzzy Allocation with Design Partitioning

There is a subtle but important difference between fuzzy allocation and design
partitioning in terms of how the results of each approach affect subsequent scheduling.
In design partitioning, CDFG nodes (and the edges they generate) in each partition are
assumed to be in the same subcircuit, which may contain multiple functional units and
registers. More importantly, CDFG elements in different partitions are considered to
be in separate subcircuits, and will never share hardware resources. Consequently,
whenever CDFG elements in a partition cannot be scheduled to have non-overlapping
lifetimes, the scheduling algorithin assumes that new cells will be added to the
corresponding subcircuit, even if cells in other subcircuits may be available. This may
increase the size of the design by preventing the scheduling algorithm to consider
assigning non-overlapping lifetimes to CDFG clements in different partitions so as to
share hardware resources across subcircuits. In contrast, fuzzy allocation does not
have this problem since all CDFG elements are considered to be in the same "subcir-

cuit”.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 134

10.5.2. Optimistic and Pessimistic Formulations

Due to the use of maximum and minimum functions in fuzzy set operators, one
must take great care in the formulation of fuzzy measures. For example, an intuitive
formulation for the risk of scheduling conflicts involving CDFG elements n and m

may be:

conflict(n,m) = M'a.x Min(live, () , live,, (1)).
That is, the risk of conflict is the maximum belief that n and m will both be live in
some control step . However, this is a pessimistic formulation, which basically says
that we believe the scheduling algorithm will assign overlapping lifetimes to CDFG
elements n and m whenever possible, even if we allocate n and m to the same cell.
This produces maximally parallel allocations which degrade the performance of

scheduling in basically the same way that allocations produced by o = 10 do.

In contrast, the schedulability decrement between n and m, decry, (,,}, is an
optimistic formulation which basically says that we believe the scheduling algorithm
will assign to n a lifetime which will not overlap with the lifetime of m whenever
possible, if we allocate n and m to the same cell. By the same logic, the approximate
schedulability decrement, decr’, (,,} < decr, (,,}» is even more optimistic about the
ability of the scheduling algorithm to assign non-overlapping lifetimes to CDFG ele-

ments allocated to the same cells.

10.5.3. Scheduling with Partial Allocation

Since bottom-up synthesis requires that we perform scheduling after allocation,
we must extend our scheduling algorithm to take into account partial allocations in a
CDFG. We have implemented two approaches for scheduling a partially allocated
CDFG.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 135

In the first approach, we treat the allocations as imposing additional constraints on
the scheduling task, in that CDFG elements allocated to the same cells must not be
scheduled to have overlapping lifetimes (unless they are mutually exclusive CDFG ele-
ments). These allocation constraints are treated as soft constraints in the sense that
schedules which violate allocation constraints are still considered valid schedules.
However, we bias the scheduling algorithm against violating these constraints by
adding a penalty cost component to the scheduling cost functions. More formally, if
Cscna denotes the overall hardware cost of a schedule, then instead of minimizing
Cscna» We modify the cost functions in the scheduling algorithm to minimize a new

objective function, C'g.;4:

C'schda = Cscha + 2, Cacx)
x € CDFG
where c,c(x) is the cost for violating the allocation constraint (if any) of the CDFG
element x. For every CDFG element x, we define cs¢ (x) as:
0 if allocation constraint oy x is satisfied
cacx) = ¢ (op (x)) otherwise
where c(op (x)) is the circuit area required for allocating x to a new cell. To check

for violation of allocation constraints, we traverse the tally data structure, and check
each set tally (op,t) for members which are allocated to the same cells but are not

mutually exclusive.

This implementation works very well if a conflict-free schedule exists for the
allocated CDFG. For example, if we perform design iterations in a top-down manner
(i.e., scheduling and then allocation, and then iterate), then this approach finds good
conflict-free schedules very quickly since conflicting allocations serve to steer the
scheduling algorithn: from blind alleys in the solution space. On the other hand, if a
conflict-free schedule does not exist for the allocated CDFG, as in the case of alloca-

tion based on fuzzy schedules, then this implementation often fails to find a good

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 136

schedule because it tries to reduce allocation conflicts at the expense of hardware

COsts.

In the second approach, we treat the allocations as hints, rather than constraints,
to the scheduling task. This is implemented in the greedy scheduling step in our SE-
based scheduling algorithm. Previously, the candidate schedules for each CDFG node
consist of all control steps from the as soon as possible (ASAP) to the as late as possi-
ble (ALAP) schedules for the node. Now, for an allocated node, we redefine its candi-
date schedules to exclude those control steps which will lead to overlapping lifetimes
between the node and other CDFG nodes already allocated to the same cell. If this
results in a CDFG node having no candidate schedules, then a resource conflict is
inevitable, so we revert the definition of candidate schedules to all control steps
between ASAP and ALAP schedules. However, we do not consider allocation
conflicts in either the global cost function or the objective function (i.e., we still
minimize Cg.,,4). Basically, this approach tries to schedule CDFG nodes to avoid allo-
cation conflicts whenever possible, but does not penalize schedules containing such
conflicts. We have found through experimentation that this implementation works
much better for bottom-up synthesis (i.e., allocation and then scheduling) than the first
approach, perhaps due to its greater tolerance for inevitable resource conflicts. The

experimental results in Table 10.1 are obtained using this second approach.

10.6. Summary

In this chapter, we have presented a new formulation of the allocation task for
fine-grained bottom-up synthesis. Basically, we viewed unscheduled operations as
having uncertain schedules, and applied fuzzy set theory to quantify these uncertainties
during allocation. This allowed the allocation algorithm to trade off hardware area and

the risk of resource conflicts. Consequently, allocation is generalized to the task of

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 137

finding the smallest circuit for which a conflict-free schedule is still highly possible.
We have described the implementation of fuzzy allocation as extensions to our SE-
based allocation algorithm, and presented experimental results which demonstrate that
fuzzy allocations improve the statistical performance of the scheduling algorithm.
Finally, we have compared fuzzy allocation with design partitioning, discussed
optimistic and pessimistic formulations of fuzzy schedules, and presented two schemes

for scheduling a (partially) allocated CDFG.

Chapter 10. Bottom Up Synthesis based on Fuzzy Schedules 138

Chapter 11. Integrating Scheduling and Allocation

Given the work presented in previous chapters, we are now ready to describe the
integration of scheduling and allocation tasks in the SSE system. As proposed in
Chapter 2, we organize the SE-based scheduling and allocation algorithms as two con-

current, algorithmic agents in a blackboard architecture as depicted in Fig. 11.1.

Supervisor Module

~ N

~” ~
o A
4) 4

Allocation Agent

Scheduling Agent
2 Kernel)

| GENERATE-1 1™y |_wl GENERATE-1 |

|__sewecT]4——\: BlackBoard :—/——bl SELECT _ |
| rRecover }/v ‘\\.,[RECOVER |
\ J - J - _/
C) Software Module Access Function O Data Structure
—» Data Transfer - — $ Control Link (Function Calls)

Figure 11.1 The Blackboard/Agent Architecture in SSE

In the remainder of this chapter, we will first describe the Blackboard and kerne!
software, and discuss the implementation of algorithmic agents in SSE. We will then
present two control mechanisms by which the supervisor module can coordinate
scheduling and allocation steps and implement different synthesis strategies in SSE.
Finally, we will present experimental results for a number of synthesis strategics to

demonstrate the flexibility of this framework for integrating scheduling and allocation.

Chapter 11. Integrating Scheduling and Allocation 139

11.1. Blackboard and Kernel Software

At the center of SSE is a centralized data structure, namely the Blackboard, and
the kernel software which provides access to all data posted on the Blackboard. The
primary data on the Blackboard are the CDFG, the CG (i.e., the data path circuit
graph), the schedules (which specify the control path state graph), and the allocations
(from which we may derive the control path circuitry). Other data on the Blackboard
include control parameters, user-specified initializations and/or constraints, and status
variables via which agents communicate with each other and with the supervisor

module.

The kemnel software serves two important functions. First, it implements data
independence betwez2n agents and the Blackboard by translating between the data
representation of the Blackboard and that of the individual agents whenever necessary.
For example, whenever the allocation algorithm decides to permute inputs of a CDFG
node to make better use of existing connections in the data path circuit (see Section
7.8), instead of actually changing the CDFG (which might have caused serious prob-
lems o the scheduling algorithm), we record the permutation in the Blackboard. All
access functions for the allocation algorithm take into account such permutations so
that, as far as the the allocation algorithm is concerned, it appears as if the CDFG had

been modified as requested.

The second funciior: implemented by the kernel software is that of maintaining
¢.a consistency in the Blackboard via lazy evaluation (i.e., updating data whenever
they are accessed rather than when they first become out of date). For example, when-
ever a node is scheduled or de-scheduled, the fuzzy lifetimes for its dependent nodes
and edges may become out of date. Since there may be other scheduling/de-
scheduling steps before the next allocation/de-allocation step, we defer updating the

tuzzy lifetimes until the next time they (or other fuzzy measures derived from them)

Chapter 11. Integrating Scheduling and Allocation 140

are accessed so as to reduce unnecessary computation. This lazy update is imple-
mented in the kernel access functions: whenever schedules are changed by the schedul-
ing algorithm, the appropriate fuzzy lifetimes are invalidated; and whenever fuzzy
measures are accessed by the allocation algorithm, all invalidated fuzzy lifetimes are

updated before the access functions retrieve any data.

11.2. Algorithmic Agents

In SSE, scheduling and allocation are performed incrementally by algorithmic
agents. Conceptually, an algorithmic agent is an autonomous software object which
continually performs a particular task (e.g., SE-based scheduling or allocation). We
implement such an algorithmic agent as a software module which has its own internal
states (i.e., persistent, private variables) and which provides three access functions:
GENERATE -1, SELECT and RESTORE (see Fig 11.1). Each of these functions per-
forms a small step in SE-based synthesis. Given a partial solution, the function GEN-
ERATE -1 picks one unassigned variable with the maximum PRIORITY and assigns to
it a candidate value with the minimum I/NCR cost (i.e., the inner loop of GEN-
ERATE). If this produces a complete solution (i.e., all variables have been assigned
values), then GENERATE -1 also records this new solution if it is the best found so
far. The function SELECT is the same function in SE which probabilistically discards
inferior elements of a complete solution and produces a partiai solution. Finally, th:
function RESTORE simply reinstates the best solution found as the current solution.

Given the above, the supervisor module can implement SE-based scheduling (or
allocation) in SSE by issuing the following function calls. First, the supervisor repeat-
edly calls GENERATE —1 in the scheduling (aﬁocation) agent until a complete schedule
(allocation) is obtained. Second, the supervisor calls SELECT to generate a partial

schedule (allocation). Third, the supervisor iterates between the above two steps until

Chapter 11. Integrating Scheduling and Allocation 141

the termination criteria are met. Finally, the supervisor calls RESTORE in the
scheduling (allocation) agent to restore the best schedule (allocation) as the current
schedule (allocation).

Consequently, we can easily implement either purely top-down (i.e., SE-based
scheduling followed by SE-based allocation) or purely bottom-up (i.e., SE-based allo-
catdon followed by SE-based scheduling) synthesis with iterations. More importantly,
since our scheduling and allocation algorithms can handle partial allocation and incom:-
plete schedules, the supervisor module can intermix scheduling and allocation steps
(i.e., scheduling, dc¢-scheduling, allocation, and de-allocation steps) in arbitrary order.
This permits more sophisticated synthesis strategies than purely top-down and purely

bottom-up synthesis.

11.3. Control Mechanisms

We implement two control mechanisms by which the supervisor module can
coordinate the scheduling and allocation steps in SSE: intermixing of synthesis steps,

and focusing of attention for individual agents.

11.3.1. Intermixing of Synthesis Steps

In SSE, the supervisor can dynamically decide whether greedy scheduling or
greedy allocation (of a single CDFG node or edge) should proceed next; and once all
CDFG nodes (and edges) are scheduled (allocated), the supervisor can dynamicaily
decide whether probabilistic de-scheduling (de-allocation) should proceed. Then the
system will iterate by re-scheduling (re-allocating) all de-scheduled (de-allocated)
CDFG nodes (and edges). This allows us to experiment with different synthesis stra-

tegies just by changing the supervisor module in SSE.

For example, given a partially scheduled and partially allocated CDFG, the super-

Chapter 11. Integrating Scheduling and Allocation 142

visor module may implement a "highest priority first" policy by scheduling a node
whenever the priority for scheduling this node is higher than that for allocating a
CDFG element, and vice versa. However, rather than directly comparing the PRIOR-
ITY values between scheduling and allocation, we compare a priority index between

scheduling and allocation. We define the priority index for scheduling (or allocation)

as the ratio, é, where f is the highest PRIORITY value, and s is the second highest

PRIORITY value, for all unscheduled (unallocated) CDFG nodes and edges. This

scheme gives preference to scheduling/allocating the nodefedge with the highest rela-

tive PRIORITY wvalues.

Alternately, i .. supervisor module may implement a "minimum cost first" policy
by scheduling a node whenever the incremental cost for scheduling this node is lower
than that for allocating a CDFG element, and vice versa. Again, rather than directly
comparing the INCR costs between scheduling and allocation, we compare a incre-

mental cost index between scheduling and allocation. We defi.:e the incremental cost
index for scheduling (or allocation) as the ratio, {—, where f is the lowest INCR cost,

and s is the second lowest INCR cost, for all candidates of the next node or edge to
be scheduled (allocated). This schemes gives preference to scheduling/allocating the
node/edge v.ith the lowest relative INCR costs.

On the other hand, given a completely scheduled and completely allocated CDFG,
the supervisor module may implement a "fine-grained integration" policy by always
de-scheduling and de-allocating the CDFG as soon as possible. Under this scheme,
SSE always performs scheduling with a partial allocation and allocation with an
incomplete schedule. Alternately, the supervisor module may implement other,
coarser-grained integration schemes, in which either de-scheduling or de-allocation
may be selectively delayed so as to incorporate scheduling with complete allocations,

or allocation with complete schedules, or both. For example, the supervisor may

Chapter 11. Integrating Scheduling and Allocation 143

implement a "primarily top-down" policy by performing 1 de-scheduling step per 50
de-allocation steps (and after restoring the best allocation found), or a "primarily
bottom-up” policy by performing 1 e ~llocation step per 50 de-scheduling steps

(again, after restoring the best schedule -. .:nd).

11.3.2. Focusing of Atteation

In SSE, the supervisor module can also dynamically restrict the CDFG nodes and
edges which are subject to change by the scheduling or the allocation agents.
Specifically, we define a focus for a scheduling (or allocation) agent as the set of
CDFG nodes (and edges) which can be scheduled (allocated) or de-scheduled (de-
allocated) by the agent. Intuitively, this focuses the attention of the synthesis agents to
particular subsets of the CDFG, since each agent will try to optimize a design by
ripping-out and reconstructing only elements in its focal subset of the CDFG. This
control mechanism facilitates the implementation of even more complex synthesis stra-

tegies.

For example, the supervisor module may implement a "expanding focus" policy
by initially focusing the scheduling agent on the critical path nodes and the allocation
agent on the non-critical path nodes and edges. Subsequently, the supervisor module
expands the focus of each synthesis agent to include more and more CDFG elements,
until eventually the entire CDFG is under focus. Basically, this scheme tries to estab-
lish, early on, a good critical path schedule and a good allocation for non-critical path
CDFG elements, in the hope that subsequent synthesis steps will be positively

influenced by these initial, partial designs.

Alternately, the supervisor module may implement a "contracting focus" policy by
initially focusing the synthesis agents on the entire CDFG, and then gradually reducing
the scheduling focus to CDFG nodes with high scheduling costs, and reducing the allo-

Chapter 11. Integrating Scheduling and Allocation 144

cation focus to CDFG elements with high allocation costs. A simple implementation
of this scheme is to use the normalized global costs in SE as the scheduling/allocation
costs for individual CDFG elements. A more complex implementation may use statist-
ical evidence similar to those presented in Section 10.3.1 to detect CDFG elements
whose schedules (allocations) are probably optimum, and then exclude these elements
from the scheduling (allocation) focus. Intuitively, this scheme presumes that rela-
tively few elements in the CDFG are responsible for poor scheduling and/or poor allo-

cation, thus the synthesis agents should try to identify such CDFG elements and then

concentrate on these to optimize the design.

On the other hand, the supervisor module may incorporate higher level design
knowledge (than the synthesis agents) and use the focusing mechanism to implement
hierarchical or windowing techniques [23], or impose design partitioning (see Section
10.5.1) on the synthesis agents. In all cases, a large CDFG is divided into a number
of possibly overlapping subgraphs, which are separately synthesized (i.e., scheduled
and allocated) and then resynthesized as an entire CDFG. In hierarchical synthesis, the
CDFG is divided along the design hierarchy; in windowed synthesis, the CDFG is
divided by neighborhood size (e.g., scheduling a certain number of connected CDFG
nodes at a time); in design partitioning, the CDFG is divided according to physical
design considerations. Basically, these techniques apply the principle of "divide and

conquer” to try and reduce the computational complexity of scheduling/allocating a

large CDFG.

Chapter 11. Integrating Scheduling and Allocation 145

11.4. Experiments with Synthesis Strategies

In this section, we present a number of synthesis strategies which we have experi-
mented with in the SSE system. Note that our intention is not to develop a definitive
synthesis strategy, but to demonstrate the flexibility and strength of our integration

framework for high level synthesis.

11.4.1. Fine-Grained Integration

The first synthesis strategies we tried are fine-grained integration schemes, in
which de-scheduling is performed whenever all CDFG nodes are scheduled, and de-
allocation is performed whenever all CDFG nodes and edges are allocated. We exper-
imented with three policies for intermixing greedy scheduling and greedy allocation
steps: namely "random" (i.e., randomly intermixing scheduling and allocation steps
with user-specified probability distributions), "highest priority first", and "minimum
cost first" policies. Unfortunately, all of these schemes have veiy poor performance in
that they require large numbers of iterations to generate good designs. This is under-
standable when one considers that fine-grained integration has a much larger design
space than that for either the scheduling or allocation task alone. This leads us to con-
clude that a coarser-grained integration strategy is necessary to impose certain struc-
tures to the synthesis process to reduce the design space and thereby improve synthesis

performance.

Chapter 11. Integrating Scheduling and Allocation 146

11.4.2. Top-Down and Bottom-Up Synthesis With Iterations

The most straightforward coarse-grained integration strategies are purely top-
down and purely bottom-up synthesis with iterations. We implement top-down (or
bottom-up) synthesis by performing a fixed number of SE-based scheduling (alloca-
tion) iterations, restoring the best schedule (allocation) found, and then performing a
fixed number of SE-based allocation (scheduling) iterations, again restoring the best
allocation (schedule) found. This process is then repeated a number of times so that
scheduling is guided by the best allocation found in previous allocation runs, and allo-
cation is guided by the best schedule found in previous scheduling runs. While these
strategies produced good designs in reasonable run times, we were not able to achieve
better designs than those generated by separate SE-based scheduling and allocation

runs (as presented in Chapter 8).

11.4.3. Allocation based on Iterative Improvement

The next strategy we tried is to maintain the same schedule while repeatedly per-
forming a fixed number of SE-based allocation (i.e., invoking RESTORE in the alloca-
tion agent after producing every n complete allocations). This implements a new allo-

cation algorithm based on iterative improvement as shown in Fig. 11.2.

This algorithm generates a new solution from the current solution by performing
n iterations of SE-based allocation. The new solution is then accepted as the current
solution if and only if it is better than the current solution. This is repeated for a total
of m times, requiring mxn SE iterations. This iteratively improves the current solu-
tion by performing a probabilistic search over the neighborhood of the current solu-
tions. In fact, we may consider the straightforward SE algorithm as a special case of

the above algorithm (i.e., with m = 1).

Chapter 11. Integrating Scheduling and Allocation 147

Algorithm Allocate(m,n);
/* repeat m times of n iterations of SE-based Allocation */
begin
X := GENERATE(9D);
Xpest = X .
loop for m times;
begin
X = Xpess .
loop for n times;
begin
p := SELECT(X);
X = GENERATE(p);
if (C(X) < C(Xpesr)) then Xy, = X;
end;
end;
return(Xp,,);
end Allocate;

Figure 11.2 Pscudo-Code for Iterative Improvement Based Allocation

Fig. 11.3 plots the distribution of the best circuit costs obtained for the EWF
example (with 19 control steps and pipelined multipliers) over 10 allocation runs for
different combinations of m and n values. Note that in each case, a total of 3000 SE
iterations are performed. The case of m =1, n = 3000 corresponds to performing
3000 iterations of the normal SE-based allocation algorithm; the case of m = 3000,
n = 1 corresponds to performing 3000 iterations of greedy search (i.e., a new solution
is accepted as the current soiution if and only if the new solutica has a lower cost),
where each new solution is generated from the current solution, X, by applying
SELECT to X and then applying GENERATE to the resulting partial solution. The
other cases correspond to performing m iterations of greedy search, except each new
solution is generated by performing n SE iterations starting from the current solution
and then restoring the best solution found. (To put the circuit costs in Fig. 11.3 in
perspective, HAL’s circuit for the same example in Fig. 8.7(a) has a cost of 280.5, and

SSE’s circuit in Fig. 8.7(b) has a cost of 246.5.)

Chapter 11. Integrating Scheduling and Allocation 148

LT

7
o 1%

245 - 249 250 - 254 255 - 259 260 - 264

Number of Runs (Out of 10)
N
|

Best Circuit Cost Achisved

] m =1, n = 3000 Z m =100, n = 30
m =5 n =660 B m = 1000, n = 3
N m = 10, n = 300 [0 m=3000 n=1

Figure 11.3 Allocation Performance for Select Values of m and n

These and similar experimental results suggest that it may be better to perform
many runs (e.g., 1000} of SE-based allocation, starting from successively better solu-
tions and performing a few SE iteration (e.g., 3) in each run, than to perform a single
run of SE-based allocation for a large number of SE iterations. However, while the
total number of SE iterations remain the same, using larger m values increases the run

time for the algorithm due to the overhead in restoring the best solutions for m times.

Since performing small numbers of SE iterations starting from successively better
solutions can be viewed as searching over the close by neighborhoods of such solu-
tions, we suspect that the design space for allocation may be such that ncar optimal
designs are clustered close together. This makes intuitive sense because most of the
near-optimal circuits differ only in a few multiplexers, and hence should have largely
similar allocations. This observation leads us to formulate the goal-direcied synthesis

strategy in the next subsection.

Chapter 11. Integrating Scheduling and Allocation 149

11.4.4. Goal Directed Synthesis

In goal directed synthesis, the idea is to optimize the critical paths with respect to

time (i.e., sclieduling before allocation), and optimize the non-critical paths with

respect to hardware (i.e., allocation before scheduling). This approach is commonly

used by IC designers, and has been applied by CAMAD [49] to formulate a multi-

level optimization strategy which selects different design transformations depending on

whether the nodes to be changed lie on the critical paths or not. However, unlike

CAMAD, we are able to change the focus of our scheduling and allocation agents to

limit our search to the most promising regions of the design space. The following

steps apply the above ideas in SSE:

1.

Perform 100 iterations of SE-based scheduling with the focus on all CDFG
nodes on the most critical paths (i.e., nodes whose freedoms are 1 if the glo-
bal maximum timing constraint is set to the critical path iength of the

CDFG), and then restore the best partial schedule found.

Perform 300 iterations of SE-based allocation on the entire CDFG based on
the best partial schedule and based on statistical fuzzy schedules for all

unscheduled nodes, and then restore the best allocation found.

Perform 100 iterations of SE-based scheduling with the focus on all CDFG
nodes on the secondary critical paths (e.g., nodes whose freedoms are 2 if
the global maximum timing constraint is set to the critical path length of the
CDFG), and then restore the best partial schedule found.

Perform 300 iterations of SE-based allocation on the entire CDFG based on
the best partial schedule and based on statistical fuzzy schedules for all

unscheduled nodes, and then restore the best allocation found.

Perform 100 iterations of SE-based scheduling with the focus on all

Chapter 11. Integrating Scheduling and Allocation 150

unscheduled CDFG nodes (in this case, nodes whose freedoms are greater
than 2 if the global maximum timing constraint is set to the critical path
length of the CDFG), and then restore the best complete schedule.

6. Perform 300 iterations of SE-based allocation on the entire CDFG based on

the best complete schedule, and then restore the best allocation found.

7. Repeat Step 6. for a total of 10 times, each time reducing the allocation

focus by removing 1 CDFG node or edge with the minimum GLOBAL cost.

For the EWF example, with a maximum timing constraint of 19 control steps und
using pipelined multipliers, the above synthesis steps generated a circuit containing 2
adders, 1 multiplier, 11 registers and 15 equivalent 2-to-1 multiplexers in 1921 CPU
seconds (or 32 CPU minutes). Table 11.1 shows the schedule and allocation for this
design, and Fig. 11.4 shows the corresponding circuit. Note that this is a smaller cir-
cuit than our previous best design, which contains 16 (instead of 15) equivalent 2-to-1
multiplexers (see Fig. 8.7). While this by itself does not mean that goal directed syn-
thesis will always produce better designs, the fact that it actually found a better design
than purely top-down/bottom-up synthesis does lend support to our contention that

intermixing scheduling and allocation steps may produce better designs.

To gain further insight into the above synthesis steps, we perform the following
three experiments. In the first experiment, we replace steps 1 to S by straightforward
SE-based scheduling, and then perform steps 6 and 7. After 10 such synthesis runs,
the best circuit generated contains 2 adders, 1 multiplier, 11 registers and 18 equivalent
2-to-1 multiplexers. This suggests that the above optimum design is not a result of
steps 6 and 7 being a particularly good allocation strategy. In the second experiment,
we initialize the EWF CDFG with the schedule in Table 11.1, and then perform 10
runs of allocation using steps 6 and 7 (and starting from the unallocated CDFG). The

best circuit generated by these runs contains 2 adders, 1 multiplier, 11 registers and 17

Chapter 11. Integrating Scheduling and Allocation 151

ADD1 |ADD2 [MULT|R1 | R2 | R3 | R4 |Rs |Re {R7 |R8 | R9 |R10 |R11
IN E33 | E38 | E18 |E13 | E26 | E1 E39 |E2
1 1+3 +32 E32 |E38 | E18 |E13 | E26 | E1 E39 E3
2 +12 E32 | E38 | E18 E26 | E1 |E12 E39 E3
3 | +20 E32 | E38 | E18 |E20 E1 |E12 E32 E3
4 +25 E32 | E38 | E18 E1 |E12 E39 {E25 |E3
5 x21 |E32 {E38 | E18 E1 |E12 E39 |E25 |E3
6 E32 | E38 | E18 E1 |E12 |E21 |E39 |E25 |E3
7 +19 |x24 |E32 | E38 | E18 |E19 E1 |E12 E39 |E25 |E3
8 {+22 |+11 E32 | E38 | E18 |E19 | E22 | E1 E24 |E39 |E11 |E3
9 +27 |x9 |E32 | E38 | E18 |E19 |E22| E1 E27 |E39 E3
10 +29 E9 |E38 | E18 |E19 |E22|E1 E27 |E39 |E29 |E3
11{+23 {+8 |[x30 E38 | E18 |E19 |E26 | E1 |E8 |E27 |E39 E3
12 +10 | +7 E30 | E38 | E18 |E10 |E26 | E1 |E8 |E27 |E39 |E7
13} +15 |+31 |x6 |E31 |E38 | E18 |E15|E26}E1 |E8 |E27 [E39
14 | +28 | +41 |x16 |E31 |E38 | E18 E26|E1 |[E8 |E6 E41 |E28
15] +4 +35 E31 | E38 | E18 E26 E8 |E16 |E4 |E41 |E35
16]+17 x36 |E31 |E38 | E18 E26 ES E4 |E41 |E35
171 +14 |45 x40 {E31 |E38 | E18 |E13 | E26 E36 E5s |E35
18 +37 E31 | E38 | E18 |E13 | E26 E43 E5 |E35
191 +42 | 134 E33 | E38 | E18 |E13 | E26 E43 |E39 |ES

Table 11.1 Best Schedule and Allocation for the EWF Example

equivalent 2-to-1 multiplexers. This suggests that, while it may be easier to generate a
good allocation from the schedule in Table 11.1 than from other (equally optimum)
schedules, the initial allocation produced by step 4 is very important to the perfor-
mance of goal directed synthesis. In the third experiment, we modify step 7 so that it
does not reduce the allocation focus at all, and perform 10 runs of this version of goal
directed synthesis. The best circuit generated by these runs contains 2 adders, 1 multi-

plier, 10 registers and 20 equivalent 2-to-1 multiplexcrs. This suggests ths? contracting

Chapter 11. Integrating Scheduling and Allocation 152

bus3

Jni VY. VYV VYV Yy¥

gmux1 Ln” mux3 Lmux4 mux5s

Figure 11.4 Best Circuit for the EWF Example

allocation focus does improve the performance in the allocation steps.

Given the above, we conclude that intermixing scheduling and allocation steps
can guide the scheduling algorithm towards a schedule which may result in better allo-
cations than other schedules with equal costs (i.e., Cs.,). Moreover, the allocation
produced on the basis of fuzzy schedules can serve to establish a good starting point

for the final allocation steps. Finally, a policy of contracting focus can improve the

performance of allocation.

Chapter 11. Integrating Scheduling and Allocation 153

11.5. Summary

In this chapter, we have described the integration of scheduling and allocation
algorithms in the SSE synthesis system. Basically, we organize the SE-vased schedul-
ing and allocation aigorithms as concurrent algorithmic agents around a blackboard
architecture. We have described the Blackboard and its associated kemel software, the
implementation of algorithmic agents, and the two control mechanisms by which the

supervisor module coordinates different synthesis agents.

To demonstrate the flexibility of this integration framework, we have presented a
number of synthesis strategies that we have experimented with. Through such experi-
mentation, we have found that fine-grained integration of scheduling and allocation is
ineffective because the resulting design space is too large. We have also found that
iterative improvement based on SE-based allocation consistently achieves better
designs than the straightforward SE-based allocation algorithm. This has led us to for-
mulate a goal-directed sy« hesis strategy, in which we focus the scheduling algorithm
on the critical paths of a CDFG, allocate the entire CDFG, and then schedule the non-
critical paths of the CDFG on the basis of this allocation. Experimental results have
shown that this synthesis strategy can produce better designs than either purely top-
down or purely bottom-up synthesis with iterations. This clearly demonstrates the
advantage of being able to arbitrarily intermix scheduling and allocation steps in the

SSE system.

Chapter 11. Integrating Scheduling and Allocation 154

Chapter 12. Conclusion

In this chapter, we will summarize this thesis, reiterate the major conuibutions of

this work, and then conclude with suggestions for directions for future work.

12.1. Summary

In this thesis, we have proposed a framework in which different tasks in high
level synthesis are solved concurrently by algorithmic agents organized in a blackboard
architecture. Such a framework will allow a tight coupling between different synthesis
tasks, and will facilitate experimenting with different synthesis strategies. However, in
order to implement this synthesis system, we have to address two issues. First, we
need new synthesis algorithms which are fast, incremental, and produce good designs.
Second, we need new bottom-up synthesis techniques in order to perform low ievel
synthesis tasks before higher level wasks are compleied. In this thesis, we have
addressed these issues by focusing on integrating the tasks of scheduling and allocation

in the prototype SSE system.

For fast, incremental and effective synthesis algorithms, we have applied the tech-
nique of Simulated Evolution (or SE) to the tasks of scheduling and allocation. We
have first introduced SE as a general optimization technique based on the analogy
between optimization and evolutionary processes, and then described our implementa-
tion of SE in the context of an oprimum assignment problem. This separates all appli-
cation specific components of SE into three cost functions: PRFORITY , INCR and
GLOBAL. We then described our application of SE to the tasks of scheduling and
allocation by first formulating each of these tasks as an optimum assignment problem,
and then defining the cost functions PRIORITY , INCR and GLOBAL for each task.
We have also outlined a number of important extensions to the basic SE-based

scheduling and allocation algorithms, to show that such extensions are easily

Chapter 12. Conclusion 155

implemented by changing the cost functions in these algorithms.

We have presented experimental results of our SE-based scheduling and alloca-
tion algorithms on a number of design examples from the literature. These results
have shown that, compared to other synthesis systermns, our SE-based algorithms gen-
erate comparable designs very quickly, and generate much better designs when given
longer run times. In particular, our designs for the EWF benchmark are the best
designs ever reporied to date on this popular benchmark. Moreover, we have com-
pared SE and Simulated Annealing (or SA) using the scheduling problem. Experimen-
tal results have shown that SE may be better than many implementations of SA
because it implements a more directed search than SA, and because it is capable of
more distant jumps in the solution space than most implementations of SA. By com-
bining SE and SA into a single algorithm, we have also demonstrated that SE does nct

benefit from a "cooling schedule” as does SA.

For bottom-up synthesis, we have presented a new formulation of the allocation
problem based on the concept of fuzzy schedules. Basically, we view unscheduled
nodes as having uncertain schedules, and apply fuzzy set theory to represent our
beliefs that some control steps are better scheduling candidates tnan others. From such
fuzzy schedules, we derived the concepts of fuzzy lifetime and fuzzy schedulability,
and then defined the fuzzy schedulability decrement metric which measures the incre-
mental risk of scheduling conflicts due to each candidate allocation. We have
described the implementation of these concepts as simple extensii »s to our SE-based
allocation algorithm, and we have presented experimental results which demonstrate

the effectiveness of this approach for bottom-up synthesis.

Finally, we have described the integration of the above SE-based scheduling and
allocation algorithms in the SSE system. We have described two control mechanisms

by which the supervisor module in SSE can coordinate the scheduling and allocation

Chapter 12. Conclusion 156

steps and implement different synthesis strategies. To demonsirate the Hexibility of
this integration framework, we have presented a number of synthesis strategies that we
have experimented with. In particular, we have found that iterative improvement
based on SE-based allocation steps cousistently achieves better performance than the
basic SE-based allocation algorithm. This has led to a goal-directed synthesis strategy
in which we focus the scheduling algoritl.m on the critical paths of the CDFG, allocate
the entire CDFG, and then schedule the non-critical paths on the basis of this alloca-
tion. Experimental results have shown that this ad hoc strategy can produce better
designe than either purely top-down or purely bottom-up synthesis with iterations.

This clearly demonstrates the advantage of the integration framework in SSE.

12.2. Major Contributions

There are three major contributions in the work presented in this thesis. The first
contribution is to demonstrate the value of effective design space exploration in
scheduling and allocation. By applying simulated evolution to scheduling and alloca-
tion, we have shown that simple heuristics and cost functions can produce good
designs very quickly if the CPU times are devoted to effective exploration of the
design space instead. In particular, we have shown that the performance of SE-based
synthesis algorithms is primarily due to their ability to find locally optimal solutions in
a solution subspace, & w . as their ability to rapidly search over large regions of the
design space.

The second contribution of this work is to generalize the allocation task to allow
for full allocation of all CDFG nodes and edges without scheduling. By applying
fuzzy set theory to represent and reason about uncertain lifetimes of CDFG nodes and
edges, we have shown that allocation based on fuzzy schedules can improve the per-

formance of subsequent scheduling runs. More importantly, we have demonstrated

Chapter 12. Conclusion 157

(with goal-directed synthesis) that, while different schedules may have the same
"optimum" costs, they are not necessarily equal in terms of the uliocation algorithm’s
ability to generate a good circuit from these schedules. Bottom-up synthesis has the
advantage of being able to guide the scheduling algorithm towards those schedules

which are more suited to the allocation algorithm.

The third contribution of this work is to demonstrate the feasibility of our integra-
tion framework for synthesis tasks. We have shown how SE-based scheduling and
allocation algorithms can be easily incorporated as autonomous, algorithmic agents.
We have also presented experimental synthesis strategies to demonstrate the flexibility
of our integration framework. The advantage of the SSE system is evident in the fact
that we were able to produce a better design with goal-directed synthesis than with

purely top-down or purely bottom-up synthesis.

12.3. Sueggestions for Future Work

There are three major directions for future research. The first direction for future
work is to integrate other synthesis tasks using the same principles. For example, to
incorporate control path generation into SSE, we would first apply simulated evolution
tn the task of control path optimization, and then generalize the task of control path
generation to accommodate fuzzy schedules and fuzzy allocations (i.e., uncertainties in
the allocation of CDFG elements to hardware cells). On the other hand, in order to
incorporate functional optimization into SSE, we would apply simulated evolution to
the task of functional optimization, and then generalize the task of scheduling to

accommodate fuzzy CDFG'’s (i.e., uncertainties in the CDFG itself).

The second direction for future work is to investigate more sophisticated synthesis
strategies. For example, a more sophisticated goal-directed synthesis strategy may

focus the synthesis agents based on additional factors (than critical paths) such as allo-

Chapter 12. Conclusion 158

cation criticality, probable/possible cost improvements, specialized heuristics, etc.
Another approach may define a suite of "expert” synthesis strategies in different super-
visor modules, and implement a meta-supervisor which selects the appropriate supervi-

sor moduie to use based on characteristics of the CDFG, user hints, and/or previous

synthesis results on similar CDFG’s.

The third direction for future work is to study variations of the SE algorithm as
general probabilistic search algorithms. For example, iterative improvement based on
SE (see Fig. 11.2) may be a good probabilistic search algorithm in itself, especially for
applications such as allocation where good solutions seem to be close to one another.
Other examples of variant SE algorithms worth studying arise when different dynamic
focus strategies are used. In large solution spaces, it may be necessary to structure the
probabilistic search of SE with a "focusing schedule"” (analogous to the cooling
schedules in simulated annealing) which dynamically changes the focus in a problem
independent manner. This will control the evolution process by adjusting the max-

imum state transition distance, and by selecting the solution subspaces to be examined.

Chapter 12. Conclusion 159

References

1.

o

10.

11.

12.

13.

14.
15.

16.

17.

18.

E. H. L. Aarts and P. J. M. van Laarhoven, ‘‘Statistical Cooling: A General
Approach to Combinatorial Optimization Problems,”’ Philips Journal of Research,
vol. 40, pp. 193-226, 1985.

G. Borriello and E. Detjens, ‘‘High-Level Synthesis: Current Status and Future
Directions,”” Proceedings of 25th Design Automation Conference, pp. 477-482,
June 1988.

F. D. Brewer and D. D. Gajski, ‘‘Knowledge-Based Control in Micro-
Architecture Design,”’ Proceedings of the 24th Design Automation Conference,
pp. 203-209, July, 1987.

R. K. Bryton, R. Camposano, G. DeMicheli, R. Otten, and J. vanEijndhoven,
‘““The Yorktown Silicon Compiler,”” in Silicon Compilation, pp. 204-311,
Addison-Wesley, Reading, MA, 1988.

G. DeMicheli and D. C. Ku, ‘““HERCULES: A System for High-Level Syn-
thesis,”” Proceedings of the 25th Design Automation Conference, pp. 483-488,
June, 1988.

S. Devadas and A. R. Newton, ‘‘Algorithms for Hardware Allocation in Data
Path Synthesis,”” Proceedings of IEEE International Conference on Computer-
Aided Design, pp. 768-781, July, 1989.

D. Freedman, Markov Chains, Springer-Verlag, New York, 1983.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, 1979.

Catherine H. Gebotys and Mohamed I. Elmasry, ‘‘Simultaneous Scheduling and
Allocation for Cost Constrained Optimal Architectural Synthesis,’” Proceedings of
the 28th Design Automation Conference, pp. 2-7, June, 1991.

C. H. Gebotys and M. 1. Elmasry, ‘“A VLSI Methodology with Testability Con-
straints,’’ Proceedings of 1987 Canadian Conference on VLSI, Oct. 1987.

E. F. Girczyc, ‘‘Automatic Generation of Microsequenced Data Paths to Realize
ADA Circuit Descriptions,’’ PhD Thesis, Carlton University, July, 1984.

J. W. Greene and K. J. Supowit, ‘‘Simulated Annealing Without Rejected
Moves,”” IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, vol. CAD-S, no. 1, pp. 658-663, January 1986.

L. J. Hafer and A. C. Parker, ‘‘Register-Transfer Level Digital Design Automa-
tion: The Allocation Process,”” Proceedings of the 15th Design Automation
conference, pp. 213-219, June, 1978.

T. Hailperin, Boole’s Logic and Probability, North-Holland, New York, 1986.

C. Y. Hitchcock and D. E. Thomas, ‘“‘A Method of Automatic Data Path Syn-
thesis,”” Proceedings of the 20th Design Automation Conference, pp. 484-489,
June, 1983.

C-Y. Huang, Y-S. Chen, Y-L. Lin, and Y-C. Hsu, ‘“Data Path Allocation Based
on Bipartite Weighted Matching,”” Proceedings of the 27th Design Automation
conference, pp. 499-504, June, 1990.

M. D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, ‘‘An Efficient General
Cooling Schedule for Simulated Annealing,”’ Proceedings of IEEE [nternational
Conference on Computer-Aided Design, pp. 381-384, November 1986.

C. Hwang, Y. Hsu, and Y. Lin, *“‘Optimum and Heuristic Data Path Scheduling
Under Resource Constraints,”” Proceedings of the 27th Design Automation

References 160

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

33.

34.

35.

36.

37.

Conference, pp. 65-70, June, 1990.

R. Jain, A. C. Parker, and N. Park, ‘‘Module Selection for Pipelined Designs,’
Proceedings of the 25th Design Automation Conference, pp. 542-547, June 1983.

S. Karlin, A First Course in Stochastic Processes, Academic Press, 1973.

S. Kirkpatrick, C. D. Geiatt, and M. P. Vecchi, ‘‘Optimization by Simulated
Annealing,’” Science, vol. 220, no. 4598, pp. 671-680, May 1983,

R. Kling and P. Banerjee, ‘‘ESP: A New Standard Cell Placement Package using
Simulated Evolution,”” Proceedings of the 24th Design Automation conference,
pp. 60-66, June, 1987.

Ralph-Michael Kling and Prithviraj Banerjee, ‘‘Optimization by Simulated Evolu-
tion with Applications to Standard Cell Placement,”” Proceedings of the 27th
Design Automation Conference, pp. 20-25, June, 1990.

G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information, Prentice
Hall, Englewood Cliffs, 1988.

T. J. Kowalski. in An Artificial Intelligence Approach to VLSI Design, Kluwer
Academic Publishers, Boston, 1985.

D. Ku and G. De Micheli, ‘‘Relative Scheduling Under Timing Constraints,”’
Proceedings of the 27th Design Automation Conference, pp. 59-64, June, 1990,

K. Kucukcakar and A. C. Parker, “MABAL: A Software Package for Module
and Bus ALlocatcy,’”” Technical Report CRI-88-61, University of Southern Cali-
fornia, March 3, 1¢.'0

F. J. Kurdahi and / . Parker, “REAL: A Program for REgister ALlocation,”’
Proceedings of the 24tk Design Automation Conference, pp. 210-215, June, 1987.

T. Lin, T. Hsu, and F. Tsai, ‘‘SILK: A Simulated Evolution Router,’’ IEEE Tran-
saction on Computer-Aided Design of Integrated Circuits and Systems, vol.
CAD-8, no. 10, pp. 210-215, October 1989.

M. Lundy and A. Mees, ‘‘Convergence of the Annealing Algorithm,”’ Simulated
Annealing Workshop, Yorktown Heights, April 1984,

T. A. Ly and J. T. Mowchenko, ‘‘Applying Simulated Evolution to Scheduling in
High Level Synthesis,”” Proceedings of 33rd IEEE Midwest Symposium on Cir-
cuits and Systems, August, 1990.

T. A. Ly and J. T. Mowchenko, ‘‘Applying Simulated Evolution to Data Path
Allocation in High Level Synthesis,”” Proceedings of Canadian Conference on
VLSI, pp. 6.4.1-6.4.8, October, 1990.

T. A. Ly, W. L. Elwood, and E. F. Girczyc, ‘‘A Generalized I:terconnect Model
for Data Path Synthesis,”” Proceedings of the 27th Design #::.mation Confer-
ence, June, 1990.

T. A. Ly and J. T. Mowchenko, ‘‘Bottom Up Synthesis based on Fuzzy
Schedules,’” Proceedings of the 28th Design Automation Conference, June, 1991.

T. A. Ly and J. T. Mowchenko, ‘‘Comparing Simulated Evolution and Simulated
Annealing using the Scheduling Problem in High Level Synthesis,”” Proceedings
of Canadian Conference on VLSI, August 1991.

T. A. Ly and J. T. Mowchenko, ‘“‘Applying Simulated Evolution to High Level
Synthesis,”” submitted to IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, June 7, 1991.

M. C. McFarland, A. C. Parker, and R. Camposano, ‘‘The High-Level Synthesis
of Digital Systerns,”’ Proceedings of the IEEE, pp. 301-318, February, 1990.

References 161

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

M. C. McFarland, ‘‘Using Bottom-Up Design Techniques in the Synthesis of
Digital Hardware from Abstract Behavioral Descriptions,”” Proceedings of the
23rd Design Autornation Conference, June, 1986.

D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, ‘‘Convergence and Finite-
Time Behavior of Stmulated Annealing,”’ Proc. 1985 Cont. Dec. Conf., December
1985.

J. A. Mestor and G. Krishnamoorthy, ‘“SALSA: A New Approach to Scheduling
with Timing Constraints,”” Proceedings of International Conference on
Computer-Aided Design, Nov. 1990.

J. A. Nestor, ‘‘Specification and Synthesis of Digital Systems with Interfaces,’’
CMUCAD-87-10, Department of Electrical and Computer Engineering, Carnegie-
Mellon, April, 1987.

B. M. Pangrle and D. D. Gajski, ‘‘Slicer: A State Synthesizer for Intelligent Sili-
con Compilation,”” Proceedings of the IEEE International Conference on Com-
puter Design, October, 1987.

B. M. Pangrle, “‘Splicer: A Heuristic Approach to Connectivity Binding,”
Proceedings of the 25th Design Automation Conference, pp. 536-541, June, 1988.
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice Hall,
1982.

N. Park and A. C. Parker, ‘‘SEHWA: A Program for Synthesis of Pipelines,”’
Proceedings of 23rd Design Automation Conference, pp. 454-460, July 1986.

A. C. Parker, J. Pizarro, and M. Milner, ““MAHA: A Program for Data Path Syn-
thesis,”” Proceedings of the 23rd Dcilgn Automation Conference, pp. 461-466,
June, 1986.

P. G. Paulin, ‘‘High-Level Synthesis of Digital Circuits Using Global Scheduling
and Binding Algorithms,’’ PhD Thesis, Carlton University, January, 1988.

P. G. Paulin and J. P. Knight, ‘‘Scheduling and Binding Algorithms for High-
Level Synthesis,”” Proceedings of the 26th Design Automation Conference, pp. 1-
6, June, 1989.

Z. Peng, ‘‘Synthesis of VLSI Systems with the CAMAD Design Aid,”” Proceed-
ings of the 23rd Design Automation Conference, pp. 278-284, June, 1985.

R. Potasman, J. Lis, A. Nicolau, and D. Gajski, ‘‘Percolation Based Synthesis,”’
Proceedings of the 27th Design Automation Conference, pp. 444-449, June, 1990.
F. Romeo and A. Sangiovanni-Vincentelli, ‘‘Probabilistic Hill Climbing Algo-
rithms: Properties and Applications,”” in Chapel Hill Conference on VLSI, pp.
393-417, 198S.

Y. Saab and V. Rao, ‘‘An Evolution-Based Approach to Partitioning ASIC Sys-
tems,”” Proceedings of the 26th Design Automation Conference, pp. 767-770,
June, 1989.

A. Safir and B. Zavidovique, ‘‘Automatic Synthesis of Specific Image Processing
Automata by a Simulated Annealing Based Design Space Search,”” 71989 Sympo-
sium on Circuits and Systems, May, 1989.

J. Scheichenzuh-r, W. Grass, U. Lauther, and S. Marz, ‘‘Global Hardware Syn-
thesis from Be . .ioral Dataflow Descriptions,”” Proceedings of the 27th Design
Automation Conference, pp. 456-461, June, 1990.

C. Sechen and A. Sangiovanni-Vincentelli, ‘‘The TimberWolf Placement and
Routing Package,”” IEEE Journal of Solid-State Circuits, pp. 510 - 522, April,
1985.

References 162

56.

57.

58.

59.

60.

H. Trickey, ‘‘Flamel: A High-Level Hardware Compiler,”’ IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems, pp. 259-269, March,
1987.

C. Tseng and D. P. Siewiorek, ‘‘Automated Synthesis of Data Paths in Digital
Systems,’” IEEE Transactions on CAD, pp. 379-395, July, 1986.

R. A. Walker and D. E. Thomas, ‘‘A Model of Design Representation and Syn-

thesis,”” Proceedings of 22nd Design Automation Conference, pp. 453-459, June,
1985.

R. A. Walker and D. E. Thomas, ‘‘Behavioral Transformation for Algorithmic
Level IC Design,”” IEEE Transactions on CAD of Circuits and Systems, vol. 8,
no. 10, pp. 1115-1127, Cctober 1989.

G. Zimmermann, ‘““MDS - The Mimola Design Methdod,’’ Journal of Digital
Systems, vol. 4, no. 3, pp. 337-369, 1980.

References 163

