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ABSTRACT

l. This paper explores the use of a modified multivariate Generalized AutoRegressive
Conditional Heteroscedastic in Mean (GARCH-M) process in an asset pricing context. In
general, the premise behind the GARCH-M process is that changing univariate variances of
individual assets are unconditionally stationary; howaver, conditional upon observable data they
are heteroscedastic. Moreover, this heteroscedasticity is predictable. The framework postulated
in this paper models changing variances of individual portfolios, after which an asset pricing
model is invuked to determine how changing variances in turn affect expected returns.

b~ proposed :modal results in a more parsimonious approach towards testing asset-
pricing mo.da's in a time-serias context. The findings demonstrate a clear time varying pattern to
both excess retums and conditional variances. From an asset pricing context, the model is
useful in that it preserves the relation between (conditional) risk and return in a familiar CAPM
paradigm. From a statistical standpoint the model is unique in the manner in which covariances
are modelled as products of (stationary) correlations and time-varying conditional variances, in a
pairwise setting. Diagnostics support the mode! and provide motivation for serial dependence in
excess returns.

. Recent work in asset pricing has stressed the time varying nature of security return
moments which characterize conditional stock return dynamics. This paper employs time varying
moments usirg Merton's (1973) intertemporal asset pricing paradigm. Two versions of the model
are presented. In the first, changes in the short term Treasury Bill rate are used as a single state
variable to drive all changes in the investment opportunity set. This results in a closed model of
asset dynamics with one exogenous state variable. In the second, changes in the investment
opportunity set are modelled as functions of previous periods’ conditional variances and squared
residuals. In both cases, time varying moments are preserved and changes in the opportunity
set are driven by elements of the optimizing agent's information set. The empirical resulls
strongly support the second version of the model which implicitly allows for a greater number of
factors at the cost of a diluted economic structure. To the asset pricing literature, this paper
suggests that previous rejections of the static version of the Capital Asset Pricing Model (CAPM)
may be due te model misspecification. Specifically, inclusion of a hedge term for interest rate
risk leads to a significant parameter estimate and does not lead to rejection of the null hypothesis
that the Intertemporal CAPM (ICAPM) holds.
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CHAPTER ONE:
THE CAPITAL ASSET PRICING MODEL
WITH TIME VARYING MOMENTS
Harry J. Turtle

A large portion of the literature concerning the testing of asset pricing models uses
statistical paradigms which assume that conditional moments are stationary. For example, when
testing CAPM, researchers have traditionally nested economic relations in the context of

unconditional means and variances. However, given that the true asset pricing model holds

under a rich information set, say ¢, all means and variances must be stated relative to this

information set. If the asset pricing relation is stated relative to a weaker information set, say ¢p

the relation tested need not hold in general. Moreover, even if the model is properly constructed
in an unconditiona' setting, more powerful test procedures exist in a conditional setting. The
purpose of this paper is to incorporate time varying conditional moments into an asset pricing
context by making use of a Generalized AutoRegressive Conditional Heteroscedastic in Mean
(GARCH-M) process for concitional portfolio variances. Thus, this paper attempts to develop a
better description of the CAPM paradigm by more carefully specifying the dynamics and inter-
relations of excess return moments.

The intuition underlying the model proposed herein is analogous to many asset pricing
paradigms. Shocks to second moments (variances and covariances) impact expected excess
returns through relations specified in an asset pricing model. For example, the traditional version
of CAPM states that the conditional expectation of an asset's excess return is linearly related to
the conditional expectation of the excess return on the market by a slope coefficient called p.
Intuitively, the GARCH process is then used to model the time series behaviour of B, giving B, for
each time period t. The specific form of the CAPM presented is slightly different from the typical
B version in order to resolve econometric problems associated with using ex post excess returns

on the market index, rather than its ex ante conditional expectation. Specifically, the model is



stated in terms of a Constant Coefficient of Relative Risk Aversion (CRRA) whici reduces the
market index problem but does require the assumption of iso-elastic utilty or a similar
assumption of constant return for risk trade-off.

The use of iso-elastic utility functions has been widely studied in the financial economics
literature with the result that, under relatively weak assumptions, an investor's optimal investment
policy converges to the optimal investment policy for a representative investor with an iso-elastic
utility function (see for example Mossin (1968), Cass and Stiglitz (1970), Leland (1972), and
Hakansson (1974)). Thus, only the class of iso-elastic utility functions is considered.

This paper is unique in the manner in which cross-sectional relations are developed. The
existing literature in the area of multivariate GARCH-M models is scant. Most models require
estimation of all unique elements of a time varying covariance matrix which results in a great
number of parameters (see for example Bollerslev, Engle, and Woolridge (1988), or Engel and
Rodrigues (1989)). Due to the difficulties associated with simultaneously estimating a large
number of parameters, these models are virtually always reduced to a simpler form which
typically involves many fewer parameters and, unfortunately, oversimplifies a truer mode!
structure. As a result of the above parameterization problems, researchers using multivariate
GARCH-M models typically find highly significant second moment parameters when all
parameters are analyzed as a whole, yet they have difficulty establishing significance for any
particular second moment parameters.

A premise of this paper is that by assuming correlation matrix stationarity the estimation
problem is reduced considerably, as only the diagonal elements (i.e., conditional variances) of the
covariance matrix need be estimated. The benefit of this assumption is that it is consistent with
the well documented notion of covariance nonstationarity; however, it also allows estimation to
proceed without an excessive number of parameters. In an independent study, Giovannini and
Jorion (GJ,1989) also consider the constang correlation model. This study is unique in that only
correlations with the market are needed to close the mode!, rather than all possible pairwise

: correlations between assets, as is necessary in the GJ model. Given the difficulty associated



with estimating the model when all pairwise correlations are included, this model provides a great
reduction in computational burden with little loss in generality.

The remainder of the paper is organized as follows. Section | provides a description of
the ARCH, GARCH, ARCH-M, and GARCH-M literature. Section |l presents the model, Section
lll describes the data and methodology, and Section IV presents the results. Diagnostic test

results are reported in Section V. Finally, Section VI concludes the paper.
. MODELS FROM THE LITERATURE

Given the speed with which advances in the area of GARCH, GARCH-M, and
multivariate GARCH-M are occurring, any review of the literature cannot hope to be compiete.
Thus, the particular references discussed below are intended to be indicative of the area, and not
an exhaustive description of all related research. All models have been specified in a manner
which remains notationally equivalent to the original work yet still allows for straightforward

comparison across specifications.

Before discussing particular models, it will be helpful to first introduce some standard

notation.

Let
N  be the number of variates included in the market index,

R, be an Nx1 vector of nominal security returns in period t,
Ty be a scalar valued riskless rate,
¥: = Ry - ry @ be an Nx1 vector of excess returns,

where e is an Nx1 vector of ones,
K be an Nx1 conditional mean vector of these excess returns given the

information set ,¢,.1,
H, be an NxN conditional covariance matrix of the Nx1 vector of excess retums

given ¢4, with particular element oy, and
o4 be an Nx1 vector of value weights invested in the N assets at the end of

period t-1,

Given the preceding definitions we can write the excess return on the market in period t

1as,



Y=Y T, (1)

where T denotes the operation of transposition. Similarly, the vector of covariances with the
market can be defined as,

Hy 4. (@)
For the market index, we also have that the conditional expected excess return of the market is
given by,

Bwe= 01 3)

with conditional variance given by,

c2=aT Hio (4)

Mt -1
The following discussion is presented to lead the reader through a sampling of the
important papers in the area of autoregressive conditional heteroscedasticity. Several types of
models are considered. To properly evaluate these models, readers should pay specific attention
to whether a model is univariate or multivariate, as well as to the model's ability in allowing
second moments to impact first moments in a meaningful manner. For example, univariate
GARCH-M processes have difficulty establishing cross-sectional mean relations except in the

special case where the model is fit to the market index.

A. Engle (1982)
In Engle's original paper, which focused on the modelling of conditional univariate
variances, the ARCH regression mode! is specified as,
2| 91 ~N(x 7B, 0 2),
cf = o2 (4)“). and (5)
u=2 -x T,
where z; is the normally distributed random variable oi interest, x, is a vector of exogenous and

lagged endogenous variables, T is the operation of transposition, and f3 is a parameter vector
such that x I B, is the mean of z, | ®.1- The notation o 2 (9, ,). is used to show that the

! conditional variance of z is a function of information at t-1.



Some particular examples for cf are,

2
- e(ao + 0.1 Ut_1)

02 and (6)

of =ao+a1|u'_1|. (7

B. Bollerslev (1986)

Bollerslev introduces his specification of the GARCH(p.q) process as,
Ut l ¢t.1“' N(0,0f),

q p
0'? =Y+ Za, Uf' + ZB, 0"_2I (8)
im1 I=1
=Y+ A(L) 12+ B(L)G2,
where p20! , q>0, ¥>0, 0420 V' I=t,...q, and B20 V ix1,...p.

A similar regression model can be specified for nonzero mean models in a manner

analogous to Engel's approach.

C. Engle, Lilien, and Robbins (ELR, 1987)

ELR are among the first authors to present a model where conditional variances are
allowed to impact upon conditional means. Although this paper provides fundamental
breakthroughs, it leaves two important issues unresolved. First, multivariate relations are not
considered since the model is developed solely within a univariate setting. Secondly, the class of
ARCH processes considered by ELR is a strict subset of the GARCH class and thus the general
methodology deserves further study in a richer GARCH-M environment. In sum, the results of
ELR should be viewed as fundamental in shifting the emphasis in the liters..ure towards the
modelling of means as functions of time varying second moments.

The specific form of ELR's model is,

yi=b + dlog (O +u,,

1 The notation p 2 0 implies that when p = 0, the final summand in (8) is to be ignored.



U | O~ N(O,Gf).

4
5-1T
2 2 -
o2 =y+ ocZwt u? , and where wy = =15~ (9)
Tui

where y, is the excess holding yield on a long term bond relative to a one period Treasury Bil,
with conditional mean b + Slog (6y) and conditional variance cf. Notice this parameterization
forces a declining weight structure on lags of squared residuals. The GARCH process remedies

this problem by allowing the weight structure to be determined implicitly in estimation.

D. Bollerslev, Engle, and Woolridge (BEW,1988)

BEW extend ELR's model by addressing the multivariate nature of asset pricing relations and
also by generalizing relations somewhat by employing the GARCH process. Although BEW
provide important contributions towards modelling multivariate processes, at least two important
issues remain. First, the model must be restricted in a meaningful manner to allow for
parsimonious estimation. Secondly, advances in asset pricing suggest that a richer multivariate
formulation should allow for more meaningful cross-sectional mean relations.

The general multivariate GARCH(p,q)-M CAPM model of BEW is,

yt =b + SHI 0)(_1 + Uy,

q J
vech(H) = C + '} Ajvech(upjuT) + ¥ B vech(H,,) (10)
t i t-i t-i | -]
i1 =1

Ut | G4 ~ N(O, Hy)

where y, is the vector of excess returns in period t with conditional mean b + OH, w.; and d is
the estimate of constant relative risk aversion. Consistent with previous notation, H,is the
contemporaneous conditional covariance matrix of excess returns with particular element Oy and
., is the investment weight vector. To further clarity notation, vech( ) is the column stacking

operator which stacks the lower portion of a symmetric matrix. Thus, the dimensions of Y. by, @,



and u, are NX1, while vech(H,) and vech (u,;, ul'_fl) are 1/2(N)(N+1)X1, and finally A; and B] are

both 1/2(N)(N+1)X1/2(N)(N+1)Vi=1,2, ...qand =1, 2, ... p.
Intuitively, the model fits the evolution of each unique element of the covariance matrix
as a GARCH process and then allows that estimate to impact upon expected returns through the

parameterization of y,. Section Il shows how this parameterization is in fact the familiar CAPM.

The obvious drawback with this approach is the large dimensionality of the parameter
vector P'1r = (b7, §, CT, vech(A,)T, ..., vech(Aq)T. vech(B,)T, ..., vech(B,)T). In full generality, P':'

is of dimension m,X1, where rh, = (N+1) + (1/2)(N)(N+1) + (1/4)(N2)(N+1)2 (p+q). Notice that this
parameterization implicitly allows conditional variances and correlations to be time varying. If
correlations are constant, then the general model presented by BEW can be greatly reduced to
allow estimation of even complex second moment dynamics. (This notion is examined further in

section I1.)
BEW now restrict their model by requiring A;, B,, to be diagonal and by further imposing

p=q=1. This reduces the number of parameters considerably and allows BEW to write their

model as,
N

Yir=by+ 8 0y Oy +uy
1

O = ¥y + Oyli1Ujq + ByGipeq (11)
Vij=1,2, ..N
Uy | O ~ N(O, Hy
where oy is only specified for 1 < j due to symmetry of H,.
This specification still involves estimating a parameter vector
P;' = (bT, 3, CT, (Ae)7, (B,e)T) of dimension m,X1, where

My = (N+1) + 1/2(N)(N+1) + N(N+1)

= ((3/2)N+1)(N+1)

and e is a (1/2)(N){N+1)X1 vector of ones.



Without restricting p=q=1, a large number of parameters remain to be estimated.
Specifically,
My = (N+1) + (1/2)(N)(N+1) + (1/2)(N)(N+1 )(p+q)
= (N+1) + (1/2)(N)(N+1)(1+p+q)

= (1/2)N2(1+p+q) + (1/2)N(3+p+q) + 1

E. Engel and Rodrigues (ER,1989)

The international CAPM model of ER can be written as,

Yi=b + 6H, @, + y,

VAR(u) = H,=PTP + Gut_,ut}; G (12)

U | G ~ N(O, Hy
where P is an upper triangular matrix and G is a symmetric matrix.

This formulation is very similar to that given above in BEW. H, is the contemporaneous
covariance matrix of the vector of excess returns, Yu (0,4 is the weight vector at the end of period
t-1; and & is the coefficient of relative risk aversion for the typical market agent. The difference
between BEW and ER lies in the parameterization of H,.

ER restrict G to reduce the parameterization of their model. Initially, G is treated as a
symmetric matrix after which they further constrain G to be diagonal. Once again notice that the
dimensionality of the parameter vector is very large in the general setting, especially considering
that conditional variances are specified only as first order ARCH processes. Clearly, the models
of BEW and ER could be more parsimoniously specified if there were not such a tremendous loss
in degrees of freedom in the estimation of the conditional covariance matrix. Also notice the
specification of ER could be somewhat generalized by moving to a more flexible GARCH
framework.

ER also mode! asset means as beiqg interrelated through CAPM. The interesting portion

of the relation specified is the parameterization of the covariance matrix H,. The model chosen

limplies that next period's covariance matrix is given by a constant matrix, PTP, plus a variable



term, Gut_,utT;G, which relates the matrix of contemporaneous squared residuals, ut_,ut_Tr to next

period's covariance matrix through a parameter matrix, G.

F. Akgiray (1989)

Akgiray filters returns, R,, of first order autocorrelation before fitting his model. His

GARCH(p,q) model may then be written as,

Ry | Gr1 ~ FlMy Uf h
H = Po + P1Rys
q p

of='y+2a, u5+ZBjct"_-’l. and (13)

=1 J=1

Uy =Ry - Po- Py Rey
where Akgiray subsequently assumes F() to be normal.

Akgiray's paper shows how GARCH processes can be used to forecast conditional
variances more appropriately than other currently available techniques. The manner in which
Akgiray models conditional variances and means is, however, somewhat curious. An important
advantage of the GARCH-M framework in finance is it allows time varying conditional variances
to affect means in an endogenous manner. Akgiray appears to stress the GARCH process, but
not the interaction between means and variances. Clearly, in a univariate context this lack of
interaction presents difficulties given the multivariate nature of financial asset pricing models.
The intuitive nature of GARCH-M models, especially in a multivariate context, is that changing
variances may be viewed as shocks to an otherwise closed system which in turn affect means in

a manner which is predictable, or at least modellable, by an asset pricing paradigm.



G. Giovannini and Jorion (GJ,1 989)

The basic model of GJ can be written as,

yt =b+ SHt wt.1 + ut

VAR(u,) = H,
=T + A"UMUJ; + B'Ht_1 + c'it'1|t:r1 (14)
Ut | Oy ~ N(O, Hy)

where
* represents element by element matrix multiplication (Hadamard product),
L= i; - rye, such that I; is a vector containing a zero for the stock market and the interest

rate for each foreign-currency asset, fy is the scalar valued riskless rate, and e is
a vector of ones,

T, A, B, and C are positive definite symmetric matrices,
H, is again the covariance matrix of excess returns, y,, with market weight vector at the

end of period 1 of ®,.,, and finally,
d is the coefficient of relative risk aversion for the typical market agent.

The model of GJ is very similar to that of ER. The primary differences lie in the
parameterization of the conditional covariance matrix. GJ generalize the work of ER by
modelling conditional covariances as GARCH processes rather than simply ARCH processes.

The other unique feature of GJ is the addition of interest rate differentials to the
covariance formulation. This is motivated as an ad hoc search for a better variance specification.
One problem with this approach is that second moments are functions of interest rate
differentials, while first moments are simultaneously immune to such shifts.

GJ also discuss and briefly report the results obtained when the model is estimated
under the assumption of constant correlations. The constant correlation model presented herein
is distinct from GJ in that only correlations with the market portfolio are required rather than all
possible pairwise correlations between portfolios. This results in a parameterization which allows
computationally feasible model selection over the class of Pairwise GARCH(p,q)-M models. This

approach is discussed in section |I.

1
.

10



Although various advances have been achieved through the employment of GARCH
processes in finance, it is clear that the large number of parameters involved in multivariate

models presents an important dilemma. The proposed model directly addresses this quandary.
Il. THE MODEL

In this section the Capital Asset Pricing Model (CAPM) is discussed as background to the
development and estimation of the model presented in this paper. The framework tested is then
contrasted with the models outlined in Section I. Intuitively, the model presented herein is
intended as a richer alternative to typical tests of the static CAPM paradigm. The model reduces
the number of parameters considerably, with little loss in generality of either second moment
processes or asset pricing mean relations. Specifically, the model assumes constant correlations
to reduce the number of parameters required in estimation of the covariance matrix. [For
empirical evidence regarding constancy of correlations see Gibbons (1986), Elton and Gruber
(1973), Elton, Gruber, and Padberg (1976,1977a,1977b), or Elton, Gruber, and Urich (1978)].
The underlying statistical excess return process implied by this assumption displays conditional
variance nonstationarity and correlation matrix stationarity.

The methodology employed also collapses the fully generalized model to a series of
pairwise models in which each portfolio is compared with the market index. This allows a
computationally feasible search procedure to be employed to determine the order of the
GARCH(p,q)-M model for each of the variates which has not been previously examined.
Moreover, pairwise models allow researchers to avoid strong data set requirements including a
weight vector for each portfolio considered, and a composite market index composed of the value
weighted portfolios.

The ability to estimate models for individual variates using a broad-based market index is
significant in two respects. First, it allows for a better representation of the underlying market

tindex. Secondly, an equivalent to the 'unconditional market mode!' is a by-product of the
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analysis. For example, the chosen pairwise GARCH(p,q)-M model could also be used in an event
study as a control for market risk and return.

The paradigm presented can be intuitively described in a traditional economic context of
second moment shocks affecting first moment equilibrium values. Consider an asset pricing
model which gives rise to cross-sectional restrictions on portfolio mean returns for given
covariances amongst assets (e.g., CAPM or APT). The GARCH process is then used to model
the behaviour of conditional variances, and covariance terms are then specified by simply
multiplying conditional variances by correlations, to close the model. In this particular
formulation, shocks to second moments are modelled by a GARCH process, which in turn impact
on expected excess returns through relations specified by CAPM.

Formal development of the model requires an asset pricing paradigm to specify
equilibrium cross-sectional relations. Throughout, this paper uses the static CAPM which in its
simplest form requires that expected excess returns are linear (with zero intercept in the Sharpe-
Lintner case) in expected market excess returns (see for example Sharpe (1964,1970) or Lintner
(1965)). Merton (1973) extends the CAPM to an intertemporal continuous time setting and finds
a similar relation given a fixed investment opportunity set. More recently, Longstaff (1989)
discusses the problems associated with the temporal aggregation of a continuous-time model
using discrete return data. Longstaff shows that the simple linear CAPM relation may fail in a
discrete time setting although the continuous-time CAPM is in fact the underlying paradigm.
Longstaff's specific discrete time ‘approximate’ CAPM is developed under very strong
assumptions and thus little can be said regarding the true discrete CAPM version generally. In
fact, even if all of Longstaff's assumptions hold, his results are specific to the continuous-time
version of the CAPM. As discussed by Longstaff, the appropriate CAPM paradigm uses the
representative investor's portfolio revision period, which is not necessarily instantaneous as is

assumed under the continuous-time version of the model.
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Monthly return data is used to balance the concerns regarding normality of excess return
data with those regarding the appropriate portfolio revision period. The CAPM restriction on

means then requires,

Hy=b+ B, tpy (15)
H®, 4
where f3, = oz ' (16)

with typical element of B, given by,

Oimt
By= (—J (17)
C o

and if correlations are constant, this can be simpilified to.

OiPim
Bu= [—"m J (18)

The constant term, b in (15), is included to control for effects such as differential taxes
and preferred habitats of investors not modelied by the static version of CAPM.

Thus, CAPM requires that excess returns for any portfolio i satisfy,
Yi=bi+ By +up  Vi=1,2,..N (19)

where W, is the conditional expected excess return on the market index in period t.

A. The Traditional CAPM

Notice the relation specified in (19) above is not testable in its current form because the

conditional market mean in (19), M is not observable, Typically, rational expectations are
assumed to hold to the extent that actual market excess returns equal expected market excess
return plus a mean zero white noise error term. That is, if yy, is unbiased for K. agents do not
systematically deviate from CAPM.

Without loss of generality we can write,

Y = by + Hyy + Upy (20)
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Reversing the above relation, and substituting Hy in the CAPM equilibrium relation, (20), we

obtain,
Yit=b; + Bilym - by - Upp) + Uy
=b; + By + & (21)
where € = u;, - By(by + up).
This substitution will induce time variability into €, because B, is time varying. Ita

researcher is willing to assume that individual security excess return residuals swamp market

excess return residuals and that by, is zero (i.e..& = uy), the model can then be stated as,

OitPim
Ye=b; + [ G | M+ U
Mt
9 P
2 _ 2 *e 2
=Y+ Za'kuit-k + zpnou-l ' (22)
k=1 I=1

Vi=12,..N
U | b1 ~ N(O, Hy) where H, = [o,].

In this specification, the conditional mean of any excess return series Y. IS given by

C.D:
CAPMas b+ [ ;p'M} Ymr With conditional standard deviation obtained by taking the square
Mt

root of the appropriate variance. Each conditional variance is modelled as evolving according to
the specification above where i represents the constant portion of conditional variance, o,

represents linearity of this period's variance in previous squared residuals, and B; is the

coefficient reflecting linearity of current conditional variance in previous conditional variances?.
This specification is undesirable due to autocorrelation in the residuals and also because

it requires estimation of parameters which enter the model through the denominator (i.e., through

Omy). To resolve these issues an alternative but comparable specification is employed.

2 The "'is included only to differentiate this coefficient from By, asset i's covariance with the market.
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B. CAPM under Constant Relative Risk Aversion

The alternative specification of CAPM is developed under the assumption of a constant
coefficient of relative risk aversion, 8. Under this specification, & is equal to the aggregate
measure of Relative Risk Aversion (RRA) given by the harmonic mean of an agent's RRA
weighted by an agent's share of aggregate wealth in equilibrium [see BEW (1988), p. 118].

Using 8 as above, the CAPM relation can be written as,

Now, by comparison of (23) with (15) and (16), we get,
5.t (24)
oMt

Notice the assumption of a constant coefficient of relative risk aversion is simply a
restriction that the equilibrium trade-off of conditional excess market return to risk is constant
over time. The value of an assumption of this sort is it allows model builders to avoid concern
regarding changes in tastes over the period of estimation. Given both theoretical’ and empirical*
results supporting convergence to iso-elastic utility, this restriction seems reasonab's ior the

lengthy data series analyzed herein.

Assuming 8 is constant, the CAPM relation can be written for any particular portfolio as,

Hit = b; + 80y, (25)
Then, by specifying a GARCH process for Oimy the model is complete. To this point the model is
similar to others found in the literature [see for example Bollerslev, Engle and Woolridge (1988),
or Engel and Rodrigues (1989)). Giovannini and Jorion (GJ,1989), in a work independent from

that herein, also model a similar generalized constant correlation model. The discussion which

3 See for example Mossin (1968), Cass and Stiglitz (1970), Leland (1 972), and Hakansson (1974).

il
4 For example, see Fama and MacBeth [(1973), pp. 628-629] who report empirical evidence that O—Mt is
: Mt

relatively stable over time.
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follows distinguishes this paper from existing approaches through its simplicity and parsimonious

specification of oy,

The general version of the model to be tested assumes the conditional covariance
matrix, H,, is determined by the multiplication of constant correlations and changing variances
(not changing correlations and variances as is implicit in BEW, or ER). This approach has the
benefit of pragmaticaily allowing for more specialized GARCH(p.q) processes to specify variances

without explouing parameterizations. The most general version of the model postulated herein is,
N

Yy=b +0 20’,:-1 Ojp +U;
Jat

Ojje = OiC;t Py Vit (26)

where

q p
2_ 2 w2
o=+ Z ik Uy 2 By O
ket

I=t
Vi=12,..N
U | &g ~ N(O, Hy)

The notation and development to this point is similar to BEW to allow comparison

between the models. However, notice that this specification involves estimation of a considerably
reduced parameter vector P;' = (bT, 3, vech(p), YT, oq', a;. a;, B:, B;' [3;) of dimension

myX1, where

Mg = (N+1) + (1/2)(N)(N-1) + N + gN + pN

= (1/2)N2 + ((3/2)+p+q)N + 1

Recalling BEW's reduced model parameter vector without restricting p=q=1, PZ, we can see that

the proposed formulation reduces the number of parameters by,

My - My = [(1/2)N2 (14p+q) + (1/2)(N)(3+p+a) + 1] - [(1/2)N2 + ((3/2)4p+a)N + 1]
= (112)N2 (p+q) - (1/2)N(p+a)

As an example, consider five portfolios with p=q=1, then
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m, = 51, and mg = 31 so, m, - m, = 20.
That is, for five portfolios the above methodology results in a reduction of 20 model parameters.
For 10 portfolios,
m, - my = 90.
Clearly, this reparameterization results in a considerable savings in degrees of freedom.
Giovannini and Jorion (1989) report results for an independent but similar constant
correlation model. The analogous general model results from this study are reported in section

IV-C for completeness.

The reduced version of the model compares each portfolio to the market individually
N

using the market index and the identity 20);(-10'31: = Oyy- This approach allows for a
j=1

computationally feasible search over GARCH(p,q)-M models for each of the variates. Alternative
studies in this area have simply imposed an ad hoc ARCH or GARCH process upon portfolio
varlances. Moreover, given that G, does not involve @4, this procedure allows any broad-
based market index to be employed rather than simply a composite index formed from the
portfolios considered; however, to maintain comparability with earlier work, a similar composite
index is used. The pairwise model can now be written as,

Yit = by + 80y + Uy

Oimt = CuOmt Pim Vit (27)

where
q P
2 2 T )
Cp=Ti+ Z i U + Z By it
K=1 =1

Vi=1,2,...N, and M
02 Cth]

U, | ¢4 ~N(O, H,), forH, =
t| Pt t t [oMcnﬁt
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This section has developed the theoretical background for the paradigm to be tested.
The specific benefits of the constant correlation model have been discussed and examination of

the empirical results of the proposed approach can now be undertaken.

lll. DATA AND METHODOLOGY

The data set used in this paper is chosen to achieve as lengthy a series of returns as
possible in order to capture the dynamic behaviour of second moments. Monthly percentage
returns (with adjustments to include dividends, capital gains, splits and stock dividends) are
employed to produce excess return distributions close to normality. Notice, however, monthly
series will likely exhibit less of a time series pattern than a similar model for more dynamic weekly
returns. For example, if trading volume displays more detectable time series behaviour over
shorter periodicities, then weekly returns will likely display stronger time series behaviour in both
means and variances. Thus, an alternative methodology might suggest a similar approach using
weekly excess returns; however, the results might then be subiject to criticisms of
nonsynchronous trading over shorter intervals as well as criticisms regarding normality of the
multivariate distribution. Thus, to counter these concerns this paper explores monthly returns
while a subsequent paper employs weekly returns.

Stocks selected for the sample contain no missing observations for either monthly
adjusted returns with dividends, or the number of shares outstanding over the period January
1926, through December 1986. Price data is based upon the closing trade price if it is available
or the average of bid and ask prices if the closing price is nct available. Total returns on one
month U.S. Treasury Bills are subtracted from stock returns to convert nominal returns to excess
returns and the result is then multiplied by 100. |

To maintain comparability with the multivariate models found in the literature an index is

required based upon the stocks found in the selection process described above. The Standard

18



Industry Code market index (IC) is created as a weighted average of all stocks for any given
period. Weights are computed as the product of the number of shares outstanding multiplied by
the price per share, divided by the sum of the same quantity over all stocks. The IC market
proxy is thus a limited proxy of the true market, however it does carefully monitor each portfolio’s
weight in the market over time. The alternative approach of using a broader based market index
leads to similar results, as will be shown, but does not allow the model to be naturally extended to
a more general multivariate setting. Standard and Poor's 500 index (SP) from Ibbotson and
Associates is used for comparison purposes relative to the IC index.

Next, stocks are grouped into portfolios based upon the first two digits of the Standard
Industry Code to reduce the dimension of the covariance matrix while maintaining economically
meaningful heterogeneity amongst the portfolios. The final portfolios are described fully in Table
1-1.

The estimation procedure used in this paper is in accordance with the estimation
methodology found in the literature [see for example Er.gle (1982), Bollerslev (1986), Engle, Lilien
and Robbins (1987), Bollerslev, Engle, and Woolridge (1988), Akgiray (1989), Hsieh (1989), or
Giovannini and Jorion (1989)]. The methodology assumes excess return residuals follow a
multivariate normal distribution. Then, for any particular specification of the model with N

variates, the log of the likelihood function is,

T
L(©) = >} (8),
t-1
where
I () = - (n2)log(27) - (1/2)log|H, (8)] - (172) uf(e)H“1 (8) uyd) (28)

is the log of the likelihood for any particular observation t. It is to be understood that all

parameters have been combined into a parameter vector 0. For example, in the most general

version of the mode! we have, 87 = [ bT, 3, [vech(py)IT. Y7, al...of, BT....BT ] where, of

(resp. B}' is the transposed vector of coefficients reflecting linearity of conditional variance in
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previous period's squared residuals (resp. conditional variances) for variate i. The dimension of
a'lr (resp. B':') is q (resp. p), although in general p and q need not be the same across variates.

Clearly, from the specification of the model in section || [see equation (27)], the likelihood
function depends upon 6 in a highly nonlinear manner. This paper maximizes (28) using
numerical derivatives in conjunction with the method of Berndt et al. (1974). As Hsieh (1989)
points out, maximum likelihood procedures provide numerous benefits over least squares
estimation. These include the joint estimation of parameters affecting both means and variances,
and the ability to impose restrictions in a straightforward manner. One common restriction
imposed is nonnegativity of conditional variances, which can be assured through a penatlty on the
likelihood function. It should be noted that all estimates provided in the next section converge
quickly and uniformly to their final values.

To aid in model selection both Akaike's and Schwartz's Information Criterion are reported
(AIC and SIC) where

AIC = -2"max L(0) + 2°k, and

SIC = -2*'max L(6) + k*In(T),
where k is the number of parameters in the estimated model, and T is the total number of
observations. These criterion are used to choose between nested versions of the model in
sections IV.Aand IV.B. In both cases the mode! with the minimum value of the information
criterion is the preferred model. Given the tendency for AIC to overparameterize models, SIC will
be employed when conflicts occur. A survey of the issues and concerns associated with model
selection can be found in de Gooijer, Abraham, Gould, and Robinson (1985) and Mizon (1977).

Section IV presents the specific versions of the mode! tested and the resultant estimates
and standard errors. The findings appear to be both economically meaningful and statistically
significant. One important facet of the results is the highly significant second moment coefficients

which suggests very dynamic conditional variance processes.
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IV. EMPIRICAL RESULTS

In subsection A, the estimation methodology determines the optimal p, q lag lengths for
the iC market index. For comparison purposes, the analogous results for the SP proxy are also
reported. The optimal lag lengths for the univariate IC market index are then imposed upon the
pairwise models to determine the optimal p, q lags for each of the portfolios considered in
subsection B. This procedure consistently determines the optimal lag lengths for each of the
industry portfolios at the cost of a loss in efficiency. The benefit of this approach is that the
dimensionality of the search procedure is reduced from four to two dimensions producing a
tremendous computational savings. Furthermore, consistency of the final test statistics is
maintained in contrast to models which impose ad hoc lag lengths. The fully generalized

multivariate model of (co)variance evolution is then reported in subsection C for completeness.

A. Univariate GARCH Models

The importance of the results from this subsection are twofold. First, they demonstrate
that the time series behaviour of the composite IC index and the broader SP index are very
similar. This is not to suggest that similar time series behaviour assures appropriate asset pricing
relations; however, it is a promising result. Second, and of primary interest, is the development
of an appropriate GARCH(p,q)-M for the IC market index. Because the univariate GARCHY(p,q)-M
for the IC index is nested within each of the pairwise models, the univariate mode! for market
variance provides a straightforward methodology to reduce the search dimension in each
pairwise model. That is, the univariate GARCH(p,q)-M for the market index provides the
appropriate (p,q) orders for the market index within each of the pairwise GARCH-M models.
Thus, when the pairwise GARCH-M models ‘are estimated, the search over optimal lag lengths
r'nay be reduced by two dimensions since the market lags have already been determined. The

}esultant loss in efficiency is countered by the consistency of the resultant test statistics.
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A.1. GARCH(1,1)

The first results considered are those based upon the simplest process consistent with
the methodologyS herein, namely, the GARCH(1,1) process for both the SP and IC market proxy
excess return series. That s, for each series the GARCH(1,1) model,

O = Tm+ Buo, 2+ Oty ( Yt - b2
is estimatedS. Notice in this simple specification by, is the unconditional mean of the series
(assumed constant by construction), Y is the constant portion of the conditional variance, Buis

the coefficient which multiplies last period's conditional variance, and Oy is the coefficient

reflecting linearity of conditional variance in last period's squared deviation from expected return.
Empirical results for the Univariate GARCH(1,1) process are reported in Table 1-2.

One important aspect of the results is that both market indices are strikingly similar with
respect to parameter estimates and significance. Another positive aspect of the results is that
the coefficients reflecting the time variability of conditional variance are extremely significant and
are in accordance with very dynamic second moments for both series.

Notice the importance of B, which reflects linearity of conditional variance in previous
period's conditional variance. This term is ignored in the simple ARCH specification although it is
straightforward to show that the simple GARCH(1,1) can be used to model geometrically
declining weights on previous squared residuals by writing the relationship solely in terms of

previous period's squared residuals. For example, making use of the lag operator, B

5 Notice that this process Is not strictly consistent with the methodology in this paper because it does not
allow conditional variances to affect means. However, the process does demonstrate how univariate
models, like Akgiray (1989), relate to more specialized processes in mean.

6 The models are stated in this reduced form for succinctness. This formulation is identical to that
presented earlier, where residuals are folded into the conditional variance equation. For example, the term
Yt.1 - b Is the deviation from the expected excess return for portfolio y's excess return. Thus, in this simple

:case, the expected excess return is simply by
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(e.g., Bcﬁt = ch_ . the IC market results can be written solely in terms of previous squared
residuals,

2 . 2 2
O 1.35 + .8020Mt_1 + .16th_1

2 _ - 2 -
G2 = (1.35)/(1-.802) + (.16u 2 )(1-802B)
= 6.82+ (.16u 2 ) [1+.802B+.643B2 +.516B° +.414B¢ +.332B5 +..]

+.08u 2 +.07u 2 4.
Mt-

== 2
6.82 + .16u 2 072

2 2
+ .13th_ + .10th.

1 2 3

Notice that the use of one parameter for lags of conditional variance allows researchers greater
flexibility in parsimoniously parameterizing a decaying lag structure on residuals squared. Thus,
any attempt to force an ad hoc decay pattern to squared residuals must justify not employing a

more flexible GARCH process.

A.2. GARCH(1,1)-M

In this section the optimal lag lengths for p and q are established for the IC market proxy.
Given the two dimensional nature of the search procedure, AIC and SIC seem best suited to
determine the optimal lag orders (although an exhaustive search procedure using likelihood ratio
test statistics with adjusted significance levels could also be considered). Previous work has
shown under various circumstances that AIC tends to overparameterize models [see for example
Geweke and Meese (1981), or de Gooijer, Abraham, Gould, and Robinson (1985)], thus SIC will
be employed when the methods conflict. The search procedure for the IC index GARCH(p,q)-M
processes is concentrated over p,q € {1,2} for parsimony. The SIC and AIC values are reported

in Table 1-3. As shown in italics in Table 1-3, the optimal univariate mode! for the market is seen

to be the GARCH(1,1)-M,
Gﬁt =Tm+ BM"Mf_,+ O [ywg.1 - by - 8 GMf_1]2-

This process is distinct from the simple GARCH(1,1) because it allows second moments to

impact upon means through CAPM mean relations and thus expected excess returns are alse
time varying. Notice for this process, by + 0 Grit is the conditional mean of the series, 7, is the
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constant portion of the conditional variance, Bu is the coefficient which multiplies last period's
conditional variance, and o, reflects linearity of conditional variance in the previous period's
squared deviation from expected return.

Although the estimated coefficient of relative risk aversion, 9§, is only marginally
significant for the IC index based Upon a one-tailed test, all coefficients appear to have the
appropriate sign and magnitude relative to literature standards [see for example Akgiray (1 989),
Hsieh (1989), or Engel and Rodrigues (1989)]. Given the admitted inefficiency in the estimate of
d in this univariate setting, judgments regarding significance should be deferred until the pairwise
models are presented. The primary importance of the univariate model is to establish the markel
lag lengths to employ in the pairwise estimation in subsection B. It is interesting to observe that
the GARCH(1,1) and GARCH(1 +1)-M frameworks lead to very comparable results in that both

suggest highly dynamic conditional variances.
B. Pairwise GARCH-M Models

In this section, each of the five industry portfolios is compared to the IC market index in a
pairwise GARCH(p,q)-M model. The notation p and q represent the order of the industry portfolio
lag lengths, not market lag lengths (recall subsection A determined the optimal market lag
lengths to be pa1 and q=1). Thus, for each portfolio i the pairwise GARCH(p,q)-M model specifies

the variance process for the industry portfolio as,

P q
o2=1+ ZBI} cita-j + D00 Yiey - by - 8 PiMOit-kOmt-kI?
1 k=

and the conditional variance of the market as,
%= T+ Buoy? -+ Oy g - by - 3 e’
That is, the conditional mean of any portfolio i is given by the relation, b; + 8 py,G, Oy In

addition 7; is the constant portion of the conditional variance, Bij is the coefficient which multiplies

1
&
.
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the j lag of conditional variance, and oy is the coefficient reflecting linearity of conditional

variance in the k™ lag's squared deviation from expected return.

Using the above specification, without requiring that 8;=8,,, each IC portfolio excess
return is jointly estimated with the market index which is constructed as the weighted average of
all the portfolios for orders of p,q € {1,2}. The AIC and SIC criterion are then used to select the
favoured model and the results are reported in italics in Table 1-4. As shown in the table, the
Pairwise GARCH(1,1)-M is the selected model for portfolios 1, 3, and 5. However, portfolio 2
selects the Pairwise GARCH(1,2)-M, while portfolio 4 selects the Pairwise GARCH(2,1)-M
process’. In all cases the AIC criterion chooses at least as large values for both p and q.

After the optimal p and q have been established, CAPM statistics test the restriction,

8= By=3fori=1,2 3,4, and 5 versus the alternative unrestricted process where 8, §,,.
CAPM then tests the restriction that these  coefficients are equal. For completeness the
Lagrange Multiplier, Likelihood Ratio, and Wald statistics are reported in Table 1-48; all test
statistics are asymptotically %2(1). All portfolios except portfolio 2 do not reject the null
hypothesis, providing support for the proposed model. Portfolio 2 rejects the CAPM restriction at
the 10% level of significance for the Lagrange Multiplier and Likelihood Ratio test statistics but
not for the Wald statistic.

The results provide support for the static Sharpe-Lintner version of the model in a
pairwise setting. Given the strong rejection of CAPM in studies such as Giovannini and Jorion
(1989) or Engel and Rodrigues (1989), it remains to be seen whether these rejections are a result

of more powerful multivariate methods, or misspecification errors over lag length choices for p

7 It Is worth noting that methods which arbitrarily impose GARCH or ARCH lag lengths (such as ER, 1989
or GJ, 1989) and then subsequently test economic relations, may reject solely dus to model
misspacification, rather than failure of the tested paradigm. In fact, Engel and Rodrigues (1989) cite
evidencs that if the conditional covariance matrix is misspecified estimates of § are quite likely inconsistent
[see Pagan (1984), and Pagan and Ullah (1988)).

8 Earller studies have solely employed the Lagrange Multiplier test statistic [ see for example ER (1989)
and GJ (1989)). It is interesting to note that for all five portfolios Em > LR > &w- This empirical resuit
§uggests the familiar numerical inequality Ew LR 2 &\ established when testing linear restrictions on

parameters in the classical regression model with normal errors (see for example p. 43 Godfrey, 1988)
does not extend to this nonlinear heteroscedastic setting.

25



and q. However, it is interesting to note that similar studies have resulted in negative point
estimates of 5, while this study finds & to be strictly positive in all cases (although not highly
significant). For example, Engel and Rodrigues (1989) estimate & to be -18.8 ir their most
general model while Giovannini and Jorion (GJ,1989) report & = -142.91 in their constant
covariance model (although GJ's general mode! leads to an insignificant positive & estimate).
The estimates and standard errors reported in Table 1-4 are also supportive of the

model. Several items deserve mention. First, the estimates of relative risk aversion across

pairwise models are fairly constant relative to their standard errors. Also notice that by, Yy, B
and o, the market parameters, are comparatively stable relative to their standard errors.
Moreover, all of these parameters are highly significant individually. Finally, notice that for each
of the variates, the second moment coefficients Yoo Bi1, Bia 0y, and o, are all individually highly
significant with the exception of [3;; for portfolio 4.

The second moment parameters lend considerable explanatory power to \ne evolution of
conditional variances. In addition, the parameters determining the evolution of conditional
variance are remarkably similar for both the market and the individual IC portfolios, as expected.
However, there are important differences across portfolios in terms of the appropriate orders of p
and q.

Figure 1-1 plots the conditional variance and excess return of the IC market index
against time to demonstrate the highly dynamic nature of the market proxy over time. Notice that
the conditional variance based upon the model responds very well to volatility in the actual
éxcess retumn series, as desired. The depression years lend tremendous support to the notion of
dynamic conditional moments although it is interesting to note that in preliminary work, removal of
this early period did not drastically alter the resultant estimates. To exclude a period of extreme
volatility seems irresponsible, especially in light of October 1987,

Figure 1-2 shows the evolution of cqnditional expected returns based upon the model
presented. Clearly, any model based upon the assumption of constant expected returns will be

difficult to justify in anything but an unconditional setting of very weak information. However, in
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this context, tests lack power even if they can be correctly specified. Notice that, even when the
pre-1940 data is ignored, expected returns can vary by as much as 30 to 50 basis points over
relatively short periods of time. This model suggests that, if powerful asset pricing tests are to be
constructed, time varying moments must be considered®. it may be argued that expected returns
may be safely treated as stationary over the post 1940 years. However, this stability might just
as likely be due to a temporary lull in an inherently volatile series.

Finally, Figure 1-3 is included to heuristically show that beta estimates need not be
constant, as is commonly assumed. That is, this figure simply plots portfolio 1's beta over time,

c
constructed as By, = p —L] where all quantities in B, are replaced by their sample
1t im Oy 1t

estimates. The invariance principle of maximum likelihood estimation ensures that the estimate

of B,, will also be the maximum likelihood estimate for B, This figure shows how the

assumption of conditional beta constancy is seriously violated by the data.

C. Generalized Constant Correlation Multivariate GARCH-M Model

The fully generalized constant correlation model is presented next for completeness and
to allow comparison with similar studies in the area. Given the computational burden in
estimation of this fully generalized model, only the GARCH(1,1)-M version is presented!?. As

discussed in section Il, the most general version of the model under the CAPM restriction is,

9 Plots of actual excess returns and conditionally expected excess retumns against time display the desired
pattern of expected returns being larger in periods of greater excess return volatility. However, due to
nolse in the excess return series relative to expected excess returns, plots Including actual excess returns
are not as Informative in demonstrating the time variability of expected returns as plots of conditionaily
expected excess returns alone.
10" similar studies in the area such as Engel and Rodrigues (1989), and Giovannini and Jorion (1989) also
estimate only the Multivariate GARCH(1,1)-M process. To further consider the methodology of this paper
In a fully generalized multivariate setting, the pairwise modsls could be naturally extended by imposing the
! optimal lag lengths determined upon the generalized model.
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The general multivariate GARCH(1,1 )-M specification results in the estimates reported in
Table 1-5. Due to difficulties in obtaining convergence of maximum likelihood estimates,

unconditional correlation estimates are employed!!. The estimate of § from the generalized

model is very similar to that obtained under the pairwise models. Moreover, the coefficients

reflecting linearity of period t's conditional variance in past conditional variances, f3;'s, and past

squared residuals, oy's, are also very similar.

V. DIAGNOSTICS

A number of diagnostic tests are employed in this section to examine the merit of the
pairwise GARCH(p,q)-M process. Diagnostic summary statistics will be presented first, followed
by tests for parameter stability over the estimation period. The diagnostics suggest the proposed
pairwise GARCH(p,q)-M process adequately models conditional means and variances:; however,
parameter stability is strongly rejected over this lengthy series of observations. A pragmatic

solution to parameter instability may be to employ weekly data sets and/or shorter calendar data

11 Engel and Rodrigues (1989), and Giovannini and Jorion (1989) report similar issues in the estimation of
multivariate ARCH and GARCH specitications. The solution employed by both of these alternative papers
Is to ensure positive definiteness of all contemporaneous covariance matrices. The similarity between
restricting correlations and ensuring positive definiteness by alternative means should be apparent.
should also be emphasized that the simple version of the model! which makes pairwise comparisons with
‘the market encounters no such difficulties.
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series in future studies. However, under these circumstances the long term predictive ability of
the model may be suspect as well as the normality of the initial data set.

Table 1-6 presents numerous summary statistics of interest in evaluating the model's
success. Skewness and kurtosis values are centered about zero under the assumption of
normality. A positive value for skewness indicates a lengthy right tail, similarly, a positive value of
kurtosis indicates a leptokurtic distribution with long tails. Panel A presents summary statistics
for the raw excess return data and replicates Table 1-1 to some extent. Panel B presents
statistics for squared residuals from unconditional sample means. That is, for each series the
unconditional mean is subtracted from each observation and the resuit is then squared. Panel C
is based upon standardized residuals computed as Todel residuals divided by conditional

u:
standard deviation estimates for each portfolio (i.e., g"). Finally, Panel D statistics are computed
it

from squaring the standardized residuals of Panel C.

The sample autocorrelations of the series levels and residuals squared are Py(r) and
Pxx(r) respectively; both are asymptotically standard normal random variables. Similarly, the Box-
Pierce Porimanteau statistics, Q,(r) and Q,,(r) are asymptotically xf random variables under the
null hypothesis of independent identically distributed random variables [see McLeod and Li
(1983)).

Panel A shows the raw excess return series to be right skewed and leptokurtic as
expected. However, comparison with Panel C shows that the model removes virtually all
systematic skewness and substantially reduces leptokurtism. Moreover, the standardized
residuals appear to be very close to mean zero and unit variance, although there is a slight
tendency towards negative residuals or overprediction of the conditional mean.

Comparison of Panel A with Panel C also shows that virtually all autocorrelation in the
series levels has been removed. The Box-Pierce Portmanteau statistic further demonstrates
that, for all but portfolio 3, autocorrelation in'the series levels has been virtually eliminated. It is

,worth emphasizing that the point of Akgiray's inclusion of autocorrelations is explainable in this
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pairwise CAPM GARCH-M model without explicitly modelling correlations in the series levels.
That is, conditional means are significantly affected by time varying second moments, resulting in
autocorrelation in excess returns themselves if considered in isolation. Thus, the correlation
estimates found by Akgiray may be due to varying second moments filtering down on first
moments.

Panels B and D are included to monitor the performance of the model in fitting second
moment dynamics. The unconditional squared residuals of Panel B show large individual
correlations causing both Q,(12) and Q,,(24) to strongly reject at very high significance levels.
Panel D demonstrates the ability of the model to remove the time variability in the second
moments of the standardized residuals. Comparison of the autocorrelations in Panel D with
those in Panel B suggests the model is quite successtul. In addition, the Q,,(12) and Q,,(24)
statistics show that, for all portfolios except portfolio 2, second moment dynamics have been
adequately captured by the model.

The results from Table 1-7 present strong evidence of changing parameters over the
period of estimation. To test parameter stability, the entire sample is split into two equal halves.

The CAPM version of the model is estimated for each data subset as well as for the entire

sample period. The log likelihood for the entire sample (say Lg) is then subtracted from the sum
of the log likelihoods for each subset (say Ly + L) and the sum is multiplied by two. The
resuitant quantity E.:LR [=2(Ly; +Lys - Lg )] is distributed as a X2 random variable with degrees of
freedom given by the number of parameters for each pairwise model. As is seen in Table 1-7, all
X2 statistics are highly significant and soundly reject the null hypothesis of parameter stability.
Given the extreme volatility of the late 1920's and the extremely lengthy series analyzed, this

result is not surprising!2.

1
A

12 Further research will examine a similar model over a shorter calendar time period using weekly data,
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VI. CONCLUSIONS

The literature concerning autoregressive conditional heteroscedasticity in asset pricing
paradigms appears to have arrived at a conundrum. Univariate models seem to fail in financial
contexts because they are difficult to nest within multivariate asset pricing models. Similarly,
multivariate models suffer due to the difficulty in parameterizing a time varying covariance matrix.
This paper presents an alternative in which a multivariate model is restricted in a manner
consistent with current financial thought, yet allows for a rich class of processes for conditional
portfolio variances. The approach is computationally feasible and allows information criterion to
be used to determine the appropriate order of time series processes.

The results of the research presented herein must be viewed as supportive of time
varying moments in asset pricing. The pairwise model demonstrates the importance of variation
in excess return moments. In addition, the methodology employed allows for interesting second
moment dynamics and yet greatly reduces the number of parameters required in estimation
through the assumption of constant correlations.

Diagnostics provide support for the ability of the model to capture the essential elements
of excess return moments. However, likelihood ratio tests for changes in mode! parameters over
the estimation period result in rejection. Given the nature of time series models to 'fit' rather than
‘explain’, this conclusion is not surprising. Pragmatically, this rejection may be handled by using
a weekly data set over a shorter period of calendar time!3. it remains to be seen, however, if
weekly data will result in distributions as close to normality as those displayed by the
standardized residuals of this data set over monthly data.

The analysis also suggests an apparent resolution of an issue put forth by Akgiray
(1989). Akgiray stresses that autocorrelated excess returns violate the assumptions necessary

for maximum likelihood procedures which require independent observations. However,

13 The lengthy time serles of monthly data including the depression years may also exacerbate the
groblem. Similarly, using a monthly data set over a shorter period of calendar time might resolve the
stability issue; however, some of the benefits associated with a large number of observations might also be

lost.

31



diagnostics show that second moment dynamics and the relation between first and second
moments in CAPM induces autocorrelation in excess returns although there is no such
autocorrelation in the standardized residuals and therefore maximum likelihood procedures are
acceptable. An asset pricing paradigm may thus present an alternative method to correct for
autocorrelation in raw excess returns instead of explicit estimation of autocorrelations.

The pairwise model employed herein has numerous benefits over the fully generalized
constant correlation model [see for example Giovannini and Jorion (1989)]. The use of
correlations with the market rather than all possible pairwise correlations results in correlation
estimates which are in accordance with unconditional estimates, as desired (more general
models lead to larger than expected correlation estimates). !n addition, the use of the fully
generalized model requires a greater number of parameters, restricted data sets (due to the
necessity of defining a weight vector), and tremendous computational expense. The proposed
pairwise model produces a nested approach to determine GARCH(p,q)-M lag lengths in an asset
pricing context while still maintaining a feasible search procedure.

Empirically, the main difference between the pairwise approach and the fully generalized
model is that the generalized multivariate model strongly rejects CAPM while the pairwise
approach does not. This lack of rejection may be due to a less powerful procedure or a more
careful search methodology over GARCH(p,q)-M lag lengths before testing the asset pricing
relations.

Two areas for future research appear worth examination, first, in respecifying the model
for different processes such as the Exponential GARCH, and secondly, in theoretically
respecifying the asset-pricing paradigm to explicitly consider temporal aggregation issues, and

hedging state variables.
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Table 1-1

Descriptive Statistics for Excess Returns on Standard
Industry Code (IC) Portfolios and Market Proxles *

The five IC portfolios are constructed from the first two digits of the underlying stocks'
Standard Industry Codes. The IC market index is then constructed as the weighted average of
the individual portfolios' excess returns. Weights are time varying and are computed by dividing
the total market value of the industry by the total market value across all industries. All excess
returns are stated in percent per month form. The Standard and Poor's (SP) 500 index is taken
from the Ibbotson and Associates Data base.

(% per month)

STANDARD INDUSTRY CODE STANDARD
PORTFOLIO MEAN MINIMUM MAXIMUM DEVIATION
1. Mining and Construction  1.3391 -31.853 66.784 8.4369
2. Manufacturing 1.2679 -30.463 63.259 6.6614
3. Transporiation and
Public Utilities 72145 -25.272 32.526 5.0517
4. Wholesale and Retail Trade 1.0300 -31.103 39.750 6.7251
5. Finance, Insurance and
Real Estate .98435 -22.695 35.925 6.0916
IC Market Index 1.1384 -28.322 41.831 5.8963
SP Market Index 87205 -29.752 42.466 6.4648
. All results are based upon the 500 observations from January 1926 through August

1966. The remaining observations through December 1986 are reserved for forecasting in a
paper to follow. Means and standard deviations in the above table are unconditional estimates.
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Table 1-2

Estimates of the Univariate GARCH(1,1) Process
for the period January 1926-August 1966.

2 - 2 - 2
O =Tm+ B MOyt * OM(Ymet - By)

The univariate GARCH(1,1) process is estimated for the Standard and Poor's (SP) 500
market index and the Standard Industry Code (IC) market index. All excess returns are stated in
% per month form. Asymptotic standard errors are given in parentheses.

SP 500 Index IC Index
bm 1.20593 (.197648) 1.33051 (.192618)
v 1.44873 (.212469) 1.34691 (.189157)
BM 795868 (.021097) 802242 (.019713)
oy 167595 (.028518) 169978 (.026390)
Log-Likelihood = -1523.609 -1494.700

37



Table 1-3

Estimates of the Univariate GARCH(1,1)-M Process
for the period January 1926 - August 1966

2 - 2 - - 2,2
G'Mt —YM+ BMth_«‘ + aM( yMt-1 bM 80Mt-1)

The univariate GARCH(1,1 )-M process is the selected model for the Standard Industry
Code (IC) market index based upon Schwartz's Information Criterion (SIC). Akaike's Information
Criterion (AIC) is also stated for completeness. The results for the univariate GARCH(1,1)-M are
reported for both the IC index and the Standard and Poor's 500 market index. All excess returns
are stated in % per month form. Asymptotic standard errors are given in parentheses.

SP 500 Index IC Index

bM 1.063982 (.269359) 1.080205 (.278395)
Y™ 1.465258 (.232272) 1.454126 (.237764)
BM 793174 (.021415) .790872 (.020489)
oy 170332 (.029577) 167062 (.028240)
) 005999 (.008499) .013687 (.009210)
Log-Likelihood = -1523.4365 -1494.1295
GARCH(p,q) AlC SIiC

(1,1 2998.26 3019.33

(1,2) 2994.11 3019.40

(2,1) 2996.55 3021.84

(2,2) 2995.00 3026.50
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Table 1-4

Estimates of the Pairwise GARCH(p,q)-M Process
for the period January 1926-August 1966.

[ q
G2 =%+ Z ch,;j +Z Oy( Vit = by - 8PipyOi.1Opar.1) 2
J=1 l=1

2 _ 2 “by-8G 2,2
Ot =Tm+ BM(’Mt_, + Oy Yt - by 8°Mt_1

Each Pairwise GARCH(p,q)-M model reported is the selected process based upon
Schwariz's Information Criterion (SIC) for each of the Standard Industry Code (IC) portfolios
against the IC market index. Akaike's Information Criterion (AIC) is also reported for
completeness. All excess returns are stated in % per month form. Asymptotic standard errors
are given in parentheses.

PORTFOLIO

ONE TWO THREE FOUR FIVE

b, 1.1376(4127) .61262(.3060) .57358 (.2025) .67339 (.3314) 99438 (.3462)
Y 5.5653(8719) 2.1849(.2786) 1.0677 (.1555) 2.8700 (8447} 7.5702 (1.015)
Bu 76028 (.0197) .80049 (.0164) .82556 (.0205) .03755 (.0395) .64456 (.0499)

B .73506(.0380) __
oy .14672(.0231) .08095(.0173) .11981(.0196) .15108 (.0233) .15688 (.0377)
o .05336 (.0130)

by  1.0382(3099) .56910(.2869) .91817 (.2627) .79857 (.3163) 1.0204 (.3034)
Ym  1.5586(.2862) 1.7438(.2112) 1.7005 (.2758) 2.2971(.3242) 1.7704 (.3940)
Bu  81886(.0188) .81608 (.0138) .81529 (.0219) .77589 (.0259) .79900 (.0243)
oy 12560 (.0200) .11815(.0146) .12202 (.0212) .13767 (.0284) 13782 (.0249)
&  .00807 (.0121) .02521(.0110) .01779(.0103) .02042(.0107) .01004 (.0110)
Pm 78294 (0127) .98653 (.0012) .82886 (.0106) 76644 (.0158) .67934 (.0202)

Log-Likelihood =
-2948.3816 -2144.2731 -2612.5840 -2859.0925 -2936.7065
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Mode! Selection Statistics *:
GARCH
(Pg) AIC SIC AlC SIC AlIC SIC AIC SIC AIC SIC

(1,1) 5917.4 5963.8 4323.2 4369.6 5247.2 5293.5 5750.8 5797.2 5894.9 5941.3
(1,2) 5919.3 5969.8 4309.3 4359.8 5249.2 5299.7 5752.8 5803.4 5895.1 5945.7
(2,1) 5914.6 5965.1 4325.2 4375.8 5248.5 5209.1 5741.7 5792.2 5893.8 5944.3
(2,2) 5911.8 5966.6 4308.9 4363.7 5248.9 5303.7 5741.9 5796.7 5892.5 5947.3

CAPM Test Statistics **:

&LM = 2.46083 3.82297 .00536 77296 .73592
gLR = 1.37744 3.28279 .00567 .52646 .50484
E.,W = .99284 2.08284 .00015 21603 .29096
. Model selection statistics are based upon the unrestricted models where 8, and &, are

not restricted to be equal.
i CAPM statistics test the null hypothesis H, :5; =8,, versus Ha :§; # 8. To develop

these statistics let 8 be the unrestricted parameter vector under the alternative and let § be the
restricted parameter vector under the null. Also let s(6) be the score vector, L(0) be the
likelihood function, let V(8) be the covariance matrix of parameters, and let R be the restriction
vector. The Lagrange Multiplier test statistic is then Eum = 8(6)T V(B)s(). The Likelihood Ratio
test statistic is & 5 = 2[L(B) - L(D)]. The Wald test statistic is then Ew = (RO)T [RV(B)RT 11 (RD).
All test statistics have a limiting %2 distribution with 1 degree of freedom.
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Table 1-5

Estimates of the General Multivariate GARCH(1,1)-M Process
for the period January 1926-August 1966

N 2

02 =7+ Bio2 + ¥y -b;-8 > ©it-1P4Oit. 1G4
J=1

Oj = P;jCiOy
Hy = (Oy)

The General Multivariate GARCH(1,1)-M process estimates all model parameters
simultaneously with the exception of the pairwise correlation estimates. Unconditional correlation
estimates are reported below. All excess returns are stated in % per month form. Asymptotic
standard errors are given in parenthesis for all parameters except correlations.

PORTFOLIO
ONE TWO THREE FOUR FIVE
by 6732 (3398) 8223 (.2247) 4138 (.1740) 5708 (2864) .6090 (3057)
T 1.777(5774) 5733 (1305) 3524 (0706) 1.212(.2345) 3.192 (.6509)
B, 8074 (.0358) .8414(.0247) 8479 (.0243) .8481(.0227) .7467 (.0463)

oy 0871 (.0178) .0444 (.0089) .0473 (.0090) .0452 (.0110) .0878 (.0238)

0 042915 (.013983)
Py 82515 .71554 67295 .63795
.80975 .79912 68377
73774 61818
63067

Log of the Likelihood = -7002.23

Note: A simple t-test of Hozpij = 0 results in rejection for all correlations at the 1% level.
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Table 1-6

Diagnostic Summary Statistics for Palrwise Garch(p,q) Models
for the period January 1926-August 1966

Portfolio excess returns are as described in Table 1-1 and are reproduced below along
with autocorrelations and Box-Pierce Portmanteau x2 statistics. Unconditional squared residuals
are simply computed as actual excess returns less their respective unconditional means.

A

u A
Standardized residuals are computed as T" where U, is the residual from the selected pairwise
Ot
A
GARCH(p,q)-M model under the null restriction and Oy is the respective conditional variance

estimate. The Box-Pierce Portmanteau statistic is distributed as a %2 random variable with
degrees of freedom given by the number of autocorrelations evaluated.

PORTFOLIO STANDARD INDUSTRY
CODE MARKET
ONE TWO THREE  FOUR FIVE INDEX

PANEL A. EXCESS RETURNS

Mean 1.339 1.268 0.721 1.030 0.984 1.138
Variance 71.182 44.374 25519 45227 37.108 34.766
Skewness 1.529 1.048 0.385 0.275 0.265 0.678
Kurtosis 11.556 11.614 7.135 5.751 2.865 9.393
First five
Autocorrelations
1 0.07 0.12 0.16 0.06 0.00 0.1
2 0.02 -0.02 -0.01 -0.05 0.00 -0.02
3 -0.12 -0.13 -0.15 -0.07 -0.04 -0.15
4 0.07 0.06 -0.01 -0.01 0.04 0.05
5 0.04 0.04 0.05 0.06 0.04 0.05

Box-Pierce Portmanteau Test &
Qx(‘l 2) 28.51** 35.66** 47.51** 39.14** 14.11* 38.86**

Q,,(24) 58.21** 63.39"" 75.77* 63.13** 32.69** 65.82**
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PANEL B. UNCONDITIONAL SQUARED RESIDUALS

Mean 71.039 44,288 25.468 45.136 37.034 34.697
First five
Autocorrelations

1 0.15 0.20 0.35 0.28 0.14 0.24

2 0.1 0.11 0.20 0.29 0.09 0.15

3 0.12 0.16 0.26 0.22 0.14 0.20

4 0.09 0.13 0.18 0.07 0.09 0.13

5 0.01 0.03 0.14 0.05 0.05 0.05
Box-Pierce Portmanteau Test

Q,(12) 144.21** 186.95" 359.12** 357.62** 85.84* 251.32**

Q,(24) 193.10*"  247.31*  432.04** 423.27** 111.09* 319.58**

PANEL C. STANDARDIZED RESIDUALS

Mean -0.004 -0.003 -0.034 -0.007 -0.027 -0.058
Yariance 1.001 1.006 1.001 1.007 1.002 1.000
Skewness 0.685 -0.071 -0.032 0.103 0.224 -0.246
Kurtosis 3.636 1.729 3.251 3.956 2.276 2.010
First five
Autocorrelations

1 0.03 0.05 0.09 0.01 -0.03 0.03

2 0.02 0.04 0.10 0.02 0.02 0.05

3 -0.03 -0.03 0.01 0.01 -0.01 -0.01

4 0.06 0.08 0.07 0.08 0.04 0.08

5 0.05 0.06 0.07 0.07 0.04 0.07
Box-Pierce Portmanteau Test

Q,(12) 11.78 16.83 26.57** 16.24 16.47 15.88

Q,,(24) 28.36 26.94 37.08* 25.60 31.40 27.42
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PANEL D. SQUARED STANDARDIZED RESIDUALS

Mean 0.999 1.004 1.000 1.076 1.001 1.002
First five
Autocorrelations
1 0.03 -0.02 0.02 0.00 -0.01 -0.04
2 0.00 0.04 0.00 0.07 -0.04 0.02
3 0.03 0.03 0.02 0.01 0.02 0.00
4 -0.04 ¢.00 0.01 0.03 0.01 -0.01
5 -0.04 -0.01 0.00 -0.02 -0.01 -0.02
Box-Pierce Portmanteau Test
Q,(12) 12.05 27.67** 17.69 8.50 6.97 13.82
Q,,(24) 35.74 53.15** 34.19 18.85 19.22 34.47

& ** Significant at the 1% level.
* Significant at the 5% level.
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Table 1-7

Likelihood Ratio Tests for Parameter Stability for each of the Pairwise
Garch(p,q) Models for the period January 1926-August 1966

Parameter stability for each of the selected Pairwise GARCH(p.q) models from Table 1-4 is
considered using a Likelihood Ratio test statistic. Each Likelihood Ratio statistic & 5 is

asymptotically distributed as a x? random variable, where r is the number of parameters allowed
to vary over the subsample periods.*

PORTFOLIO

ONE TWO THREE FOUR FIVE
Selected
GARCH(p,q)
Model (1.1) (1.2) (1.1) (21) (1.1)
r 10 11 10 11 10
ERb = 85.075 59.476 55.180 40.101 60.056
. Each Likelihood Ratio statistic tests the null hypothesis Hy: 8;=6, versus Hy :0,= 8,
where 8, is the parameter vector for the first half of the sample, and €, is the parameter vector

A A T A T T
for the second half of the sample period. To develop these statistics let 0 = [61 62] be the

unrestricted parameter under the alternative and let é be the restricted parameter vector under

A ~
the null. Letting L(6) be the likelihood function gives & g = 2[L(6) - L(B)) a x? where r is the

number of restrictions.
4 ** Significant at the 1% level.
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CHAPTER TWO:
AN INTERTEMPORAL ASSET PRICING MODEL
WITH TIME VARYING MOMENTS
Harry J. Turtle

A vast amount of literature has dealt with appropriately specifying conditional asset
pricing relations in terms of both conditional and unconditional asset moments. Previous
research has handled the issue of time varying moments in one of two manners. First, some
researchers have been content to use estimation techniques which are consistent in spite of time
varying moments although they may result in less powerful test statistics!¢. Others have
postulated a statistical framework which explicitly models the time varying nature of asset return
moments!S. This paper stresses the use of conditional moments in the hopes of maintaining
powerful test statistics.16 Although many paradigms in the literature have used time varying
conditional moments, little work has simultaneously extended the static two-period asset pricing
paradigm into a more general intertemporal framework. This paper examines an intertemporal

Capital Asset Pricing Model (ICAPM) in the context of time varying conditional moments.

14 A good example of this is Shanken's (1990) use of heteroscedasticity-consistent standard errors in
multiple regressions to develop asset pricing test statistics. Shanken uses a methodology adapted from
Jobson (1982) and Jobson and Korkie (1982). Shanken's methodology is similar to this paper; however,
there are important differences. First, as discussed above, Shanken does not axplicitly model changing
vaiiances to construct his asset pricing test statistics and thus his resultant statistics are likely understated.
In fact, In conclusion Shanken suggests using a multivariate GARCH process for residuals in future
research. Secondly, Shanken develops his test statistics from intercept restrictions on a series of multiple
regressions. Although this approach is simple, intuitive, and does not require the assumption of a constant
price of market or bond risk, Shanken implicitly assumes agents can pertectly forecast excess returns (see
footnote 4 for further discussion and clarification of this point). Finally, all of Shanken's test results are
based upon Intercept restrictions and thus may rasult in rejection solely duse to misspecification of the slope
relations.

15 see for example Engle, Lillien and Robbins (1987), Bollerslev, Engle and Woolridge (1988), Giovannini
and Jorion (1989), or Engel and Rodrigues (1989).

16 1tis important to note that, although the approach of modelling time varying moments can increase the
power of tests, it can also lead to inappropriate tests if the statistical process for moment evolution is not
suitable. This paper attempts to mitigate these concerns by first selecting an appropriate process using
Schwartz's Information Criterion [see de Gooijer, Abraham, Gould, and Robinson (1985)]. Previous papers
which simply impose an ad hoc process on moment evolution may result in misspecified models and test
!statistics.
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One body of literature exploring the use of conditional moments in asset pricing involves
the use of GARCH-M (Generalized AutoRegressive Conditional Heteroscedastic in Mean)
processes. These papers nest static versions of CAPM within mean relations and test the
restrictions implied [see for example Giovannini and Jorion (1989), or Engel and Rodrigues
(1989)). However, nesting static models in a setting of dynamic moments is only appropriate
under restrictive assumptions [see Fama (1970), Merton (1971 and 1973), or Rubinstein (19786),
for a complete discussion]. Meaningful mean relations must include terms which provide for
hedging against unfavourable shifts in the investment opportunity set. Ignoring the intertemporal
aspect of asset pricing while simultaneously modelling time-varying covariances may misspecify
the framework for analysis.

Two specific formulations are posited for conditional asset variances. The first is
intended in the spirit of the single state variable world of Merton (1973). In this case, changes in
the one week riskless Treasury Bil! rate are used as a state variable to drive all changes in the
investment opportunity set. The second formulation is also consistent with Merton's analysis; but
conditional variances are now functions of previous conditional variances and squared residuals.
The motivation for the latter approach is to fit, rather than model in a strict economic sense,
changes in the investment opportunity set.

The remainder of the paper is organized as follows. In section | the basic model is
motivated and discussed in detail. The cata, estimation methodology, and primary empirical
results of the paper are presented in section II. In section lll, diagnostic analysis is performed to
verify the integrity of the statistical assumptions as well as to ascertain the success of the mode!

in capturing moment dynamics. Concluding comments are offered in sectic., {V.

I. THE MODEL

Merton's (1973) Intertemporal Capital Asset Pricing Model (ICAPM) is empioyed to

]
a

develop mean relations. Merton's analysis allows researchers to relax the typical normality
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assumptions with the somewhat weaker notion of continuous sample price paths. Locally, then,
the natural lojarithm of gross returns will be normally distributed. In addition to the typical market
risk term of the static CAPM, ICAPM posits risk terms which result from investors hedging
against unfavourable shifts in the investment opportunity set.

The general framework considers an agent maximizing expected lifetime utility over
consumption and portfolio choices. Merton (1973) solves the problem generally under numerous
state variables and subsequently derives a relatively simple solution for the case in which
changes in the investment opportunity set are driven by a single state variable. Appendix One
replicates the relevant work of Merton and specializes the analysis to the case of constant
covariance risk premiums for both the market (M) and long term bond portfolio (B)!7.

The choice of Merton's ICAPM in conjunction with constant risk premiums is motivated
by a desire to mode! moment dynamics in a manner consistent with economic theory. To
meaningfully model time varying moments requires restrictions on beliefs or tastes!8. This paper
combines both types of restrictions. Tastes are restricted to satisfy constant relative risk
aversion as discussed in Appendix One. Moreover, correlations between all assets are assumed

to be constant over time. This implies all time variation in covariances is due to changing

17 Shanken criticizes this constancy assumption; however, he fails to point out the effects of assuming
perfect market expectations In his framework. Spacifically, Shanken posits stock returns can be written as
a constant, plus a time varying 'market beta' multiplied by the actual market excess return, plus a ‘bond
beta’ times the actual bond portfolio excess return. Using the notation developed below and in Appendix
One,

Yt = Bjor + bjyeYme + DiartYer + Uy
Aithough this approach Is intuitive it is not a strict representation of the asset pricing relation based upon
conditional expectations. That is, the use of actual excess returns, if strictly interpreted, implies that
agents can perfectly forecast market and bond excess returns (Ym and yg, respectively). If this were not
the case, the modsl should be posited witi: conditional expectations of the market excess return and bond
excess return. If the market and bond excess returns in Shanken’s model are partitioned into expected
and unexpectec . smponents, notice the residual term is equal to u; as above plus the time varying
parameters (bﬂt and bjzt) multiplied by the unexpected portion of market and bond excess returns. As an
aside, it should be noted that this criticism arises largely because the parameters in Shanken's model are
time varying. Traditional studies using constant parameters simply add greater noise to residuals by
ignoring the expectation problem. )
18 Rubinstein (1976) first discussed the tradeoff betwaen restrictive bellefs (about subjective probability
distributions) and tastes (utility functions) in micro-economic models of uncertainty. This paper restricts
'utlllty functions in an effort to maintain the critical links between the asset pricing relation and economic
thought.
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variances and not changing correlations. Constancy of correlations has been extensively studied
by Elton, and Gruber (1973), Elton, Gruber, and Padberg (1976, 1977a and 1977b), Elton,
Gruber and Urich (1978), and Gibbons (1986) with the finding that correlations are relatively
constant, especially over relatively short intervals such as 5 years. Gibbons (1986) also presents
evidence that the nonstationarity in asset return covariances is due to changing variances, not
correlations. The assumption of a constant coefficient of relative risk aversion is supported by
empirical evidence in Fama and MacBeth (1973) as well as theoretically by Mossin (1968), Cass
and Stiglitz (1970), Leland (1972), and Hakansson (1974). The assumption of constant relative
risk aversion has intuitive appeal in this model because it allows second moments to vary over
time while maintaining constancy of tastes over the estimation period.

Using the assumptions discussed above, along with the development in Appendix One,

results in the basic mean relation for all assets,

it =0 [piM- pinBM] O + Oz [M'Pﬂ GOpt + Uy (1)

1 'ng :

1-pem

where y; is the excess return on security i, p;is the correlation between asseti and j assumed
constant by construction, Oy, is the time varying covariance between asset i and j, constructed

as, Oy = P; CxOjp and Uy is a mean zero normal variate with time varying conditional

variance, cﬁ. The vector of excess return residuals, U = { U;} , is distributed as a multivariate
normal random variable with a zero mean vector and time varying covariance matrix given by

The parameters 8, and 3, are developed from the relations,

(Cm— ") (Ot~ i)
8“5 —_2_- and 82tE +-2—.
Omt Bt

Now, as developed in Appendix One, using the assumptions of constant relative risk aversion

and constant correlations between assets allows us to write 8,,= 8, and 8, = 3,. The intuition

]
.
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behind these parameterizations is simply that the reward per unit of risk is constant over time.
This particular parameterization is beneficial as it allows for straightforward interpretation of
estimated coefficients. Specifically, the magnitude of the parameters gives a direct interpretation
of the importance of the different risk prices. The price of market and bond risk are also affected
by the correlation between market and bond portfolio returns, but this parameterization allows a
categorization of the differences between naive reward to risk tradeoffs and the effects of
correlations.

To close the system as specified in (1) requires a method of parameterizing the
conditionally nonstationary variances. Two different specifications for variance evolution are
suggested to close the system. Both processes assume period t's conditional variance is a
deterministic function of the information set available to investors at . The first process is
developed under the assumption that all changes in the investment opportunity set are driven by
changes in the riskless Treasury Bill rate (the single state variable). The premise of this
parameterization is that unanticipated changes in the short term Treasury Bill rate are the only
state variable of importance to investors. In the second case, excess retum variances are fit as
GARCH processes. The GARCH methodology attempts to model variances as deterministic
functions of previous periods' squared residuals and conditional variances!9. This approach
presumes a myriad of factors may affect conditional variances and thus, the best wey to model
variances may be to use information implicit in previous own variances and previous own

squared disturbances.

19 Mandelbrot (1963, and 1966) first considered the notion that periods of instability tend to persist. Thus
: large (small) shocks tend to be followed by further large (small) shocks of either sign.
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Regardless of which variance evolution method is chosen, it is clear that the mean
relation to be subsequently tested will be affected by the choice in variance processes. That is,
the ICAPM mean relation given in equation (1) is clearly dependent upon the selected GARCH
variance processes, as it posits asset returns are functions of second moments. Therefore, the
choice of the variance processes must be general enough to capture the essential aspects of
variance evolution. |f the variance structure is not appropriately fit , misspecified mean relations
may result?0, Thus, it is critical to choose processes which capture variance evolution without
overparameterizing the model. To determine the appropriate lag lengths in the variance models
discussed below, Schwartz's Information Criterion (SIC) is employed.

The entire research methodology is complicated by the fact that all parameters should be
jointly estimated. This means that the variance process lag lengths are determined
simultaneously with the parameters in (1). Unfortunately, the parameters in (1) are the essential
elements of the subsequent asset pricing tests. Therefore the methodology must take care not
to find a variance process which is only optimal conditional upon the ICAPM mean relation (1). If
the search procedure was blindly performed under the mean relation (1), then subsequent tests
would tend to find (1) to be less restrictive than if the search occurred under another mean
relation. However, ignoring the mean relation when searching for variances results in a
riisspecified search procedure. To mitigate problems due to the mean relation confounding

subsequent tests, (1) is relaxed to allow parameters to deviate from ICAPM as follows,
Ye=by + dyoom + dy00g - Uy (1%

This approach allows a variance process search over GARCH parameterizations without
imposing the ICAPM mean relation (1). This generalized mean relation is restricted in the

sections which follow to incorporate additional economic information about the ICAPM mean

20 Engel and Rodrigues (1989), Pagan (1984), and Pagan and Ullah (1988) present evndence that if the
: covariance matrix is misspecified, estimates of the mean relation [such as (1)] may be inconsistent.
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relation for the bond and market portfolio of excess returns and to avoid problems due to
noncdnvergence in (sub)systems of numerous variates.2! The essential problem with
nonconvergence is apparent from (1*). By not imposing any restrictions on the parameters
across equations, the search procedure chooses b;, dy;, and d, values for each variate which
maximizes the likelihood in each (sub)system. As an example, consider the bivariate system of
the market and bond portfolio using (1) and (1*). Under the unrestricted (1*), 6 mean parameters
must be estimated; however, using the restricted ICAPM relation (1), only 2 mean parameters
need be estimated. The restrictions on (1*) in the sections which follow will be carefully

discussed as they are implemented.
A. The Caseofa Single State Variable

In the case of a single state variable, the variance specification is a function of
unexpected changes in the state. Expected changes in the state variable are removed using a
time series approach explained below. The sole use of unexpected changes to drive variances
implies, for example, that large expected deviations in changes of the riskless Treasury Bill rate
will not make the economy more uncertain, or forecasts more difficult?2, Thus, the variance

specification for the state variable only models unexpected shocks to the economy.

21 The mean relation in (1*) results in nonconvergence difficulties in the largest subsystems. To
overcome this difficulty the alternative mean relation (17) is restricted to exclude the intercept term for all
varlates. Notice , there are still (N-1)°2 restrictions Imposed upon the slope coefficients, where N is the
number of variates in the system.
22 Statistically, to show that any variate X depends solely on unexpected changes in Y requires more
care. A sufficlent set of assumptions to show,
E(XIY) = E[X|E(Y)+D(Y)] = E[X|D(Y)]

where Y is partitioned into an expected cc—ponent, E(Y),

and a deviation from expectation, D(Y).
are that X and E(Y) are independent, that E(Y) and D(Y) are independent, and that X, E(Y), and D(Y) are
jointly normally distributed,

The first assumption Is treated as a behavioural assumption, and motivated by economic arguments.
Specifically, new information may only arrive through unanticipated shocks. Thus, changes in all moments
of X may only be related to unanticipated shocks to Y. The latter two assumptions follow from the
p’lethodology employed in the paper.

' The analogous result for variances follows without loss of generality by defining Z = [X-E(X|D(Y))}? and
considering E[Z]Y] = E[Z|E(Y)+D(Y)].
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To further examine the motivation for only considering unexpected changes in the state
variable consider equation (1). Using the arguments set forth in Appendix One, and a desire to

maintain a relatively parsimonious modelling construct, the parameters representing market and

e (O —Th) (Cat=Tn) ,
bond risk prices, 8; | ==——%——| and §, | s=—5—| respectively, are assumed constant.
Omt Ogt

Essentially this requires that the reward to risk tradeoff for both of these types of risk (cet. par.)
remains constant over the period of estimation. That is, changes in the state variable may impact
expected market return and conditional market risk, but it is assumed the impact on the ratio of
expected excess return to risk is constant.

To operationalize this notion, both the conditional mean and variance of the state variable are
jointly estimated with the variates of concern in any particular (sub)system?3. Now define the

state variable, T,, as the first difference of Treasury Bill returns, ry, - ry_4, and write the mean

relation for the state variable using a Box-Jenkins (1976) type relation,

J K

Ty =My~ Tyq =bye z(p] ( Tty = Tt-14) ) + Zek(u,,_k) + Uy, (2
J=1 k=1

where by is the constant portion of the state variable, ¢] is the impact of the state variable of j

periods’ past upon the current state variable, and 0, is the impact of unanticipated changes in the

state variable k periods' past. Because the state variable is the first difference of short term

Treasury Bill returns, a positive b; represents an upward trend in short rates. The other

coeificients used to model state dynamics are intended to capture the tendency for changes in

short rates to be functions of previous short rate changes ( M - 1) ) @nd previous deviations

23 In a related paper which tests a static version of CAPM, Engel and Rodrigues (1989) model state
variables as ARIMA processes and then square the resultant residuals to use as regressors in a
Muttivariate ARCH specification. This mathodology has two serious drawbacks. First, the use of
generated regressors will likely cause all test statistics to be overstated (see Murphy and Topel (1985) for
a discussion of the impact of using generated regressors from an auxiliary econometric model as though
they were true random variables of interest). Secondly, this formulation has the unpalatable implication

, that although the excess returns are conditionally heteroscedastic, the state variable is homoscedastic

' (since 1t is fit using an ARIMA methodology).
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from expectations of short rate changes ( Uik ). The term Uy, is a zero mean conditionally

normally distributed random disturbance term with variance given by the GARCH process,

Pt af
2 2 2
On =% + Zﬁfp Oft.p + Z%Un-q (3)
p=1 g=1

where ¥; represents the constant portion of conditional variance, pr represents the portion of this
period's variance attributed to the conditional variance p periods ago, and Oy represents the
impact of squared disturbances g periods ago from the mean relation specified in (2)24,

Equations (2) and (3) are intended to model the first and second moment dynamics for the single
state variable in the model. It is important to recognize that this specification is used to model the

evolution of the state variable to separate expected changes in the state variable,

J K
bf’zq)] (Tt = Fheyy) + Zek Ui from unexpected changes, ug,. Unexpected changes are then
J=1 k=1

used to model unexpected state variable shocks through the variance specification (3).
For all versions of the single state variable model, equations (2) and (3) are used to
describe the evolution of the state variable with the other variates in the model. The novelty of

the single state variable model is that second moments for all other variates in the system are

functions of unexpected changes in the state variable, U, through c,,?p and u,fq. Specifically,

the variance of the excess return, y, is written as,

Pi Qi
2 2 2
Glt ='Yi + ZBIP 0“_p * Za,q Uh_q . (4)
pat q=1

It is important to note that the variance specification of asset i is solely a function of

previous values of the single state variable's conditional variances, Op.p. and residuals squared,

24 The model development to this point uses unobservable disturbances ( U;,). Implementation of this

specification requires the use of model residuals; that is, observable ex post realizations of differences
between model expectations and sample data. The empirics of the paper use residuals in place of
! unobservable disturoances.
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u,fq, not its own previous variances, ci:‘p, and residuals squared, ui,:. The traditional GARCH

process discussed in section B, models changes in variances, and hence the opportunity set,

. . . . 2 . 2
through inclusion of previous own variances, Cir.p» and own residuals squared, Uy, q-

To integrate the traditional GARCH methodology with the state variable approach, a
researcher might simply add terms in own variances, Un?k' and own squared residuals, u,f,, to
equation (4) for each excess return variance specification. Unfortunately, this approach would
have at least two serious implications. First, from a pragmatic point of view, the dimensionality of
the search over lag lengths would be in two additional directions for each variance function.

-y, the parameter estimates would not easily lend themselves to interpretation due to

“w. Detween regressors and the combination of two inherently distinct methodologies. To

- 2, SUppOSe own previous variances and squared residuals are included and resuit in
2rynificant parar- ster estimates, but insignificant parameters result for unexpected state shocks.
Own regrassors might then be claimed to efficiently capture variance dynamics; unfortunat
little could be said about state shocks. The idea behind the GARCH time series approach s to
statistically fit variances using previous own variances and squared residuals, assuming the
relationship will remain stable over time. Unfortunately, previous own variances and own
squared residuals are likely to be highly related to previous state variable shocks. This

collinearity between regressors may result in serious difficulties in obtaining significance of state

variable shock parameters.
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B. The Case of Traditional GARCH Variances

. . . 2 . ,
The GARCH variance process writes all variances, 0y, as functions of past variances, c,,_zp, and

squared residuals, ui,_aq. That is, all versions of the GARCH formulation for variances use the

mean relation specified in (1) or (1*), in conjunction with the variance process {(5),

Pi Qi
2 2 2
Oy =% + Z Bip Oirp + Z Qlig Ujt.q - ()
pa1 Q=1

The intuition underlying the GARCH formulation of the model is that a single state
variable may have difficulty expiicitly modelling changing variances. Thus, the inclusion of past
conditional variances and squared residuals in the variance equation are intended to 'fit'
variances, rather than strictly modelling variances in an economic sense. This approach is
consistent with the time series philosophy.

Both of the above specifications model moment evolution in a manner consistent with
Merton's (1973) ICAPM, and simultaneously allow variances to time vary and impact upon the
mean. The next section discusses how the appropriate lags are determined for all of the
statistical processes given in equations (2), (3), (4) and (5). The ICAPM tests statistics are then

carefully detailed.

Il. DATA, METHODOLOGY, AND EMPIRICAL RESULTS

Weekly returns for the period July 14, 1983 to December 15, 1989 are studied. Stock
return data is obtained from the Center for Research in Security Prices (CRSP) at the University
of Chicago. Weekly stock returns are computed by compounding the total daily returns reported
by CRSP from Thursday close until Thursday close. Bond returns and Treasury Bill rates are
obtained from Reuters Canada. All data sources are fully described in Appendix Two. The

1
.

56



decision to examine weekly returns is motivated by the desire to avoid weekend effects, while
maintaining a reasonably short ho!ding period for testing a continuous time model. Because
effective weekly returns display more skewness than similar effective monthly returns, and
because the continuous time asset pricing theory is developed using continuously compounded
returns, 100 times the natural logarithm of 1 plus the effective return is examined to preserve
near normality of returns.

Table 2-1 presents descriptive statistics for the variables examined. The first interesting
fact to note from the table is that the continuously compounded Treasury Bill return is highly
nonstationary. The slow decay of the sample autocorrelations shown in the table, as well as the
omitted autocorrelations which continue to decay slowly, demonstrate clear nonstationarity in
mean. First differencing of this series appears to result in a stationary series for analysis.

One method of considering whether the first K autocorrelations as a group display

significant differences from zero is to use the Box-Pierce Portmanteau test statistic,
K

QK =T Y p2,

l
where T is the number of observations in the series being considered, p,2 is the squared sample
autocorrelation at lag I, and K is the number of autocorrelations being considered in the statistic.
This statistic is distributed as a %2 random variable with degrees of freedom given by the number
of sample autocorrelations considered less the number of parameters estimated?s,

The Q(36) statistic shows the initial 36 autocorrelations for bond returns, market returns,
and the first difference ot Treasury Bill returns are significantly different from zero when
considered as a whole. The market portfolic presents the weakest evidence of time variability in
means as it only rejects at the 5% level. Moreover, none of the autocorrelations for the first four

lags suggests serious time variability in means for the market portfolio. Both the bond portfolio

25 The notation Q = Qy is introduced later in the paper to denote the fact that the statistic relates to the
first moment of the series considered. Qyy Is introduced to consider time variability in second moments in

: the diagnostics section,
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and the first difference of Treasury Bill returns indicate strong evidence of changing conditional
means according to both the individual sample autocorreiations and the Q statistic.

Another interesting result from the table is the pattern of long term bond portfolio returns
over the sample period. Notice the long term bond portfolio performed extremely well over the
sample period ex post, relative to the value weighted market portfolio. Moreover, the standard
deviation for the long term bond portfolio was much less than for the market portfolio. The likely
cause of this was the heightened interest rates of the early eighties. As the general rate of
interest subsequently fell, long term bondholders realized generous capital gains. The pricing of
interest rate risk after these events is of particular concern as investors were made cognizant of
its effects.

Because the mean and variance specifications in section | are very general, they are
difficult to estimate for even moderate numbers of variates. To overcome this problem, subsets
of the total set of assets are initially considered to determine the number of lags to be included in
each of the statistical processes. Specifically, in the case of a single state variable, the lag
lengths for both the mean and variance of the state variable are first determined by searching
over alternative lengths for mean and variance processes. Having determined these lengths, the
system is enlarged to include the market portfolio and the appropriate lag lengths for the market
portfolio variance process are established, conditional on the previously determined lag lengths
for the state variable process. The lag lengths for the bond portfolio variance process are then
established by jointly estimating the bond and state variable processes. Next, the system of the
state variable, bond portfolio, and market portfolio are jointly estimated using the lag lengths
found earlier. This procedure is employed to generate a computationally feasible search
procedure. The determined lag lengths will be consistent aithough not efficient; however, the
final parameter estimates are efficient given the Ig lengths chosen. That is, this subset
procedure entails numerous searches over’relatively few dimensions, rather than a single search

over a large number of dimen: ‘ons. The specifics of the procedure are discussed below.
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The case of traditional GARCH variance processes is similar to the single state process
except the state variable prccess is excluded from the analysis. Specifically, the market is first
analyzed as a univariate process to determine variance lag lengths. Next, the bond portfolio
variance process is @stablished in isolation. The joint bond and market subsystem is then
estimated using the lag lengths established in the univariate systems. Finally, each of the size
portfolios is added to the bond and market subsytem to determine and efficiently estimate
parameter estimates in a system of three variates. For convenience the following terminology is
employed: univariate analysis refers to the consideration of one variate in isolation, pairwise or
bivariate analysis refers to the joint investigation of two variates, and t1variate analysis refers to
the joint investigation of three variates.

In each of the (sub)systems discussed previously all variance processes, except the
staie variable variance process, are determined in conjunction with the unrestricted mean relation
given by (1*). This is important, as discussed in section |, to mitigate the impact that the variance
search procedure has on subsequent asset pricing tests based upc.: the ICAPM mean relation

(1). For each (sub)system, the model displaying the minimum value for Schwartz's Information

Criterion (SIC),

where SIC = -2.max(Likelit 20d) + (number of parameters)-In(number of samiple obs.)26
is chosen. This method consistently determines the apj.iupriate lag structure for each subset of
processes examined. The system of assets is then expanded and the search over lag iengths
continues for undetermined systems until all of the appropriate lag orders have been deterrined
under (1*)27.

The remainder of section |l is organized in two subsections. First, the case of a single

state variable is developed. The estimation methodology is detailed and the resultant parameter

26 For more discussion see de Gooijer, Abraham, Gould, and Robinson (p. 319-320, 1985). Ses also
Geweke and Meese (1981) for Monte Carlo evitence that SIC consistently estimates corract lag lengivs.
27 1tis recognized that this method Is not the most efficient way of determining process lag lengths but it
does ease the tremendous computational burden of jointly estimating every process for all possible lag
lengihs while maintaining a consistent estimation methodology. The efficiency of the estimators for the

! chosen lag lengths improves as the subsyter is enlarged.
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estimates and test statistics are discussed. Next, GARCH variance processes are used to
develop the mode! and test the intertemporal asset pricing model under the alternative variance

specification.

A. The Caseofa Single State Variable

The first process to be considered is that of the riskless Treasury Bill rate. Preliminary
identification runs using Box-Jenkins methodology clearly indicates nonstationarity for the
Treasury Bill process in levels. Supplementary analysis of the riskless variable allowing both the
mean and variance to change also supports the notion that differencing of r, is necessary=#,
TFus, the state variable used for anaiysis is the first difference of 100 times the natural logarithm
of one plus the effective weekly Treasury Bill rate. To determine the appropriate time series
process for the state variable, the system of equations (2) and (3) are considered in isolation to
determine lag lengths (l.e. J, K, Pf, and Qf).

To implement the above methodology, the search for the Treasury Bill process given by
equations (2) and (3} is conicentrated over the following lag lengths,

(JK,Pf,Qf) e {(1,1,2.2),(0.1,2,2).(1,0,2,2),(1,1,2,1),(0.1.2.1),(1,0,2,1).

(1,1,1,2),(0,1,1 2),(1,0,1,2),(1,1,1,1),(0,1,1, “W1,0,1,1)).
Models with J=K=0 are excluded from the search due to the strong time variability in the mean of
the state variable as reported in Table 2-1.
Table 2-2 reports the estimated mode! for the chosen state variable process as well as summary
measures for the remaining models including their likelihood values at the optimum and
Schwartz's Information Criterion (SIC). Asdiscussed above, first differences of the Treasury Bill
rate are used as the single state variable whici: describes changes in the investment opportunily

set. The lower portion of Table 2-2 presents the results which determine the chosen state

28 The estimated coefficient of first order autocorrelation, p,, from the state variable system (2) and (3)
for e level of r, (not fy = T With =1, K=1, Pf=1, and Qf=1 leads 10 an estimata of p, =.998715 with a
standard error of .04299.
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variable process. Each of the lag structures for past first differences, residuals, conditional
variances, and squared residuals are employed to find the best process to describe the state
variable based upon the SIC value. The state variable mode! with lag lengths resulting in the
minimum value for Schwartz's Information Criterion (SIC) is given by the mean process,

T = f-fra=by + 6 Uy + U
and variance process,

Uﬁ =Y + B 0ff1 + Oy Un?r
The maximum ~ 'hood parameter estimates demonstrate first differet;. 2s in the Treasury Bill
rate are best modelled as a constant less 88% of last periods' resia'at plus a mean zero normal
residual with time varying second moment given by a constant plus 58% of last periods’
conditional variance and 20% of last periods residual squared.

The state variable process is only important in that it is used to purge expectations iic:
the state variable series. The residuals from the model can then be used as unexpected state
shocks in larger subsystems. Table 2-2 does not determine the shocks for the larger
subsystems; rather, it determines the process for the state variable in these larger subsystems.
The larger subsystems use the process found in Table 2-2 for the state variable in conjunction
with the other variates in the system.

Given the appropriate orders of J=0, K=1, Pf=1, and Qf=1, the system is expanded to

include either the market index or the bond process. To develop the market index subsystem,

consider equation (1) for yy,and notice the second term is zero for i = M. That s,

5 Pmm - PmePem 3 Prie - PmvPem
Ymt = Oy 2 OmiOmt + 02 2 OmOpt + Um
1-Paiu 1-pgm
2
= 8101 + Uy

Similarly, for the bond subsystem consider equation (1) for i = B and notice the first risk term is

zero. Thus, for given values of J, K, Pf, and Qf, the optimal orders of PM, QM, PB and QB are
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determined using (1*) and omitting the redundant risk term. For example, the specific form of
(1*) for the market subsystem is,

Ym =by + d,o3 + Uppe
Similarly, for the bond subsystem, bg is included in (1*) to relax the restrictions imposed by the
ICAPM model®. The market portfolio is then jointly estimated with the state variable, to
determine the appropriate variance lag structure using (1*) for Ym as discussed above, (2) with
J=0 and K=1, (3) with Pt=1 and Qf=1, and (4) to determine PM and QM. To close the model,
constant correlations are also estimated and used to construct covariances as the product of time
varying standard deviations and constant correlations. The subsystem of the bond portfolic and
the state variable are jointly estimated in a similar manner.

Table 2-3 presents the results for the bond and market subsytems. The left portion of
the table shows results for the market portfolio, and the bond portfolio results are dispiayed on
the right. In both cases, the market or bond portfolios are cu.mbined with the riskless state
variable to find the most appropriate variance structure usirig (1) as the relevant mean relation
The maximum likelihood estimates shown are those obtained wi en the resirictions from equation
(1) are imposed upon the model. That is, for each of the subsystems 1>+ varance process is
determined using (3) and (4) in conjunction with (1%). The reported values are those obtained
under the restrictions of (1)30,

Itis critical to note that the regressors tor the market and bond portfolio variances are
based upon the state variable series, not the market or bond poitfolios own previous variances ¢
squared residuals. The results from these subsystems are not particularly satisfying. Obtaining
convergence of these models is very difficult and expanding lag structures has only moderate

benefit for even low order models. The lack of significance for the important variance evolution

parameters, By, and Pg, in Table 2-3 suggest that the single state variable does not adecuately

29 Further relaxations of the system to allow for less restrictive mean relations whan searching :ur
variance processes such as adding a redundant risk term would likely result in nonconvergence, as even
the addition of a constant leads to difficulty in estimation.

30 pis interesting to note that the reported parameter values do not change considerably when an

 Intercept Is added to the ICAPM mean relation (1).
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capture either market or bond portfolio variance evolution. Because the variances for both the

market and bond portfolio are based upon shocks to state variable evolution, the only stationarity

requirement on parameters is that By, + 0y, be less than unity which ensures oft is defined. The

extreme parameter values for By, and Bg, along with their lack of significance suggests perhaps

changes in the riskless rate are simply not large enough to explain the variability of market or
bond variances. Table 2-1 shows that the unconditional standard deviations for both the levels
and first differences of Treasury Bill returns are much less variable than thos:: for the ma-ket or
bond portfolio excess returns. This lack of variability in both levels and first ditferences of
Treasury Bill rates supports both the magnitude and significance of the impact of unexpected
shocks on bond and market variances (i.e. the large values for BM1 and Bs1)~ Unfortunately, the
use of weekly data may have resulted in a series of Treasury Bill rates whic are so close to
maturity that price differences are minimal. This results in a lack of variability in the riskless rate
and hence in first differences of the riskless rate. This lack of variability leads to explosive,
insignificant coefficients as obtained above. In the future, it would be interesting to consider a
similar type of model with multiple state variables based upon ditferent poinis on the yield curve.

Given the optimal values for PM, QM, PB, and QB as determined in Table 2-3, and the
earlier determined values for J, K, Pf, and Qf from Table 2-2, the trivariate model based upon
equations (1%), (2), (3) and (4) is estimated using the state variable, the market, and the long term
bond portfolio. The model based upon equations (1), (2), (3), and ") results when the

restrictions Dy = 0 and bg = 0 are imposed. These restrictions are used 1o test whether the

asset pricing model adequately captures mean relations. Specifically, the null hypothesis to be

tested is Ho: by = bg = 0. To test these restrictions, a likelihood ratio statistic is used. The

likelihood value under the alternative is compared to the (restricted) likelihood value under the

null to give the test statistic,

X2(2) = 2+(Unrestricted Likelihood - Restricted Likelihood),
which is distributed as a ¥2(d.1.) random variable with degrees of freedom given by the number of

restrictions imposed. The results are reported in Table 2-4.
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This trivariate joint system is also of only limited success. although a number of
conclusions can be drawn. First notice that the parameter estimates from the joint system under
the null are very similar to the less efficient estimates given in Table 2-3. The mean and variance
parameters for state variable evolution are virtually unchanged with moderate decreases in
standard errors as expected. The only exception to this is Oy, which shows a slight increase in
magnitude in comparison to the bivariate systems. This may be a direct result of the relative
importance of the state variable increasing as another variate enters the analysis. That is,
because the state variance process determines second moments for the state variable and both

the market and bond portfolios, it is not surprising to see the parameters of 0,2, change as

another variate is added to the subsystem. Both variance process slope parameters for the bond
and market portfolio (Bg and Bay) remain insignificant in the joint system of Table 2-4. Thus,
although the state variable process is clearly time varying, the impact of unanticipated state
changes is minimal. The intuition behind this result is discussed above. The unexpected portion
of Treasury Bill returns represents a very limited attempt at capturing changes in the investment
opportunity set. Clearly the entire term structure may be important in determining the risks due 1o
changing interest rates at any point in time. Rather than attempt to parameterize this elusive
relationship, the risks associats: 1 with holding a long term bond portfolic are used to capture the
important elements of interest rate risk facing investors in the development which follows. Using
the traditional GARCH methodology for the long term bond portfolio may allow the relevant
interest rate risk facing investors to be parsimoniously fit.

Notice that the ICAPM likelihood ratio iest statistic of 3.3 from Table 2-4 is also insignificant
at even the 10% level, which lends support to the intertemporal asset pricing model. Other author's
have rejected the static CAPM [see for example Giovannini and Jorion (1989), or Enge! and

Rodrigues (1989)] using similar asymptotic test statistics. The significance of the rist. aremiums in

this model may begin to explain these differénces. Notice the market risk term, 8, is clearly
msngnmcant even after imposing the nuil. However, the interest rate risk term, &, is significant at

the 1% level for a one tailed t-test of Ha: 8, > 0. Thus, it is possible that earlier rejections may
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have been due to model misspecification by ignoring interest rate risk in the mean relation (1).
That is, testing a static CAPM using time varying variances implies risks are changing unless very
restrictive assumptions are met3!,

The remainder of this section uses the traditional GAHCH methodology to further pursue
the ICAPM model with time varying second moments. As discussed above, long term bond
portfolio returns may better capture risks associated with interest rate changes. Similarly, own
previous variances and squared residuals for the market portfolio may better capture market risk
than unanticipated changes in the Treasury Bill rate. Variances remain functions of elements

available in the investor's information set, and thus the basic modelling structure is unchanged32.

B. The Case of Traditional GARCH Variances

For the traditional GARCH specification of the model, the same general approach is
followed to determine the appropriate orders of PM, QM, PB, and QB. To determine PM and
QM, equation (1) is considered for i = M. Noting the second term is zero, equations (1*) without
the second risk term, and (5) result in a direct univariate GARCH(PM,QM)-M model. Specifically,
the ICAPM mean relation is as shown in subsection A above,

Ym = 8101\2/“ + Upmp

Relaxing this relation to allow for a nonzero intercept, the variance process is estimated

under (1) given by,

2
Ym =Dy + diogy + Uper

31 This point is discussed further in the introduction. See for example Fama (1970), Merton (1971 and
1973) or Rubinstsin (1976) for further discussion.

32 Although the GARCH model is similar, there is one critical difference. Above, variances were
modelied as functions of a single state variable. The fact this single state variable modei did not
adequately capture variance dynamics suggests another parameterization is necessary, perhaps including
additional state variables. The case of traditional GARCH processes specifies variances in a manner
consistent with, but not restricted by the asset pricing model developed.
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in conjunction with the variance evolution equation (5). Using i = B with equation (1*), leads to a
similar univariate GARCH(PB,QB)-M for the bond process to determine the appropriate values
for PB and QB. Given the optimal values of PM, QM, PB, and QB the bivariate
GARCH(PM,QM,PB,QB) is estimated where all parameters for both the bond and market
portfolio are jointly estimated.

Table 2-5 presents the results of the search procedure to determine the appropriate lag
lengths for the market and bond variance processes. Each model is independently estimated
using different lag structures, and Schwartz's Information Criterion (SIC) is again used to
defermine the optimal variance process. It should be noted that the estimation procedure has
extreme difficulty converging for (sub)systems with large numbers of parameters. Models with
many lags tend to result in nonconvergence due to excessive numbers of paraniaiers. These
models are important only insofar as they identify the most appropriate lower order system. To
implement the lag length search procedure, large (sub)systems which do not converge are
restricted to obtain convergence. The restrictions imposed are chosen to ensure the model does

not result in a lower order system being estimated independently (e.g. estimating the

GARCH(2,2)-M with BM2 = 0 results in a GARCH(1,2)-M). As an example, consider the

GARCH(2,2)-M process as described in Table 2-5 with B restricted to zero. This restriction

leads to the model,

Ym =Dy + 8105: + Upn

0'5: =Y + Bwm 0'Mi1 + Bwe CMf-z + Oy UM?J + Oy UMf-z st By =0

=W + Bme ch-2 + Oy Uqu + Oy UMf-z

Alternative parameterizations such as the model which results when o, = 0 are also estimated
whenever nonconvergence occurs. The model with the minimum SIC is reported in all such
cases.

As shown in the table, both the market and bond variance processes are best fit using a

9ARCH(1,1)-M process. In the case of the bond subsytem, after imposing the ICAPM intercept

restriction bg = 0, the chosen model states that this week's conditional variance is given by a
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constant, plus 59% of last periods' variance, plus 28% of last periods' residual squared. In
addition, both subsytems result in significant parameter estimates for all parameters at the 1%
level with the exception of 8,, the price of market risk. The risk price in the market subsystem is
significant at the 5% level. It is also interesting to note the variance processes for both excess
return series are very similar. The bond portfolio variance process evolves more in relation 1o
previous variances, than previous squared residuals in comparison with the market variance

process although these differences are relatively minor.

Table 2-6 shows the results of the joint system for the market and bond portfolios using
the selected bond and market variance processes from Table 2-5. The increase in efficiency
obtained by jointly estimating the bivariate system of market and bond portfolio returns results in
larger parameter values and both risk price terms are now significant at the 1% level. The aciual
parameter values are similar to their univariate counterparts but the reduction in standard errors

is noticeable. For second moment parameters, the joint bivariate model affects bond and market

portlolio variances differently. The market variance constant, Y. decreases whereas the bond
variance constant, g, increases. The important slape coefficients of the variance ralations are
less distinct. There is a uniform increase in the parameters reflecting the importance of pravious
own squared residuals as shown by Oy and 0tgy. However, the parameter reflecting previous
own conditional variances increases for the market portfolio, Bu1. and decreases for the bond
portfolio, Bg;. Clearly, these changes do not occur in isolation. For example a decrease in the
constant portion of market variance and a simultaneous increase in both time variability

components is consistent wiih a constant unconditional variance. Table 2-6 provides further

support for the ICAPM model, in that the null hypothesis of Ho: by = bg = 0 is not rejected at

even the 50% level given the reported %2 value of 1.003.
Table 2-7 takes the lag structures for both the market and bond portfolios as given and

adds three size portfolios to the analysis, one at a time, resulting in a trivariate system to
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determine size portfolio lag structures33. These results are particularly interesting. First, notice
that the significance levels and point estimates for both risk premiums are remarkably similar
across trivariate models which is comforting. As found in Tables 2-5 and 2-6, the price of market
risk is the least significant of the risk price terms. In the models with the largest, mid and
smallest third of all firms 81 is significant at the 10, 1, and 2% levels, respectively. However,
also notice the variance behaviour for the largest size portfolio is markedly ditferent from either of
the similar two smaller size portfolios. The trivariate models for the smaller portfolios result in
similar bond and market parameter estimates as found earlier in Table 2-6. The only meaningful

differences between Table 2-6 and Table 2-7 for the smaller portfolios lies in the tendency for t4e

constant portion of market variance, Ym . to increase and for the portion due to last periods’
squared residual, oy, to decrease. This may be a direct result of the larger relative noise in the
smaller size portfolios' conditional variances.

The trivariate model for the largest size portfolio leads to some very interesting results.
First, the constant portion of market variance declines markedly and it becomes insignificant from
zero at even the 10% level. The portion of variance due to last periods' market variance
increases dramatically, but the portior -iue to last period's squared market residual falls to near
zero. Also notice that the selected model does not include last periods' size portiolic residual
squared. Inclusion of this squared residual led to nonconvergence. To see why this result
occurred, notice that the large portfolio behaves very similarly to the market portfolio and the
correlation hatween this portfolio and the market is considerably larger than the other size
portfolios. It may be that the largest size portfolio and market portfolio residuals are so similar
that the estimation procedure treats them as nearly identical. For discussion purposes, suppose

both residuals are equal (i.e. Uy, = Uy), then knowledge of either residual determines the other.

Similarly, squared residuals are also equal for all previous lags, and hence, previous variances as

33 various trivariate m--Jels led to difficulty in estimation when the ICAPM mean relation is completely
relaxed as in (1*). To resolve estimation problems the search and alternative version of the model are
qbtained when all intercepts are resticted to zero, and slope relations for the mean are unrestricted for
éach size portfolios' risk premiums. This implies two restrictions in each trivariate model for the likelihood
ratio test statistic.
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well. Thus, the search procedure may be parsimoniously generating a (1,2)-M process implicitly
for both the market and largest size portfolio in the first trivariate model.

For discussion purposes, the conditional market variances developed according to the
trivariate GARCH model for the largest portfolio are plotted in Figure 2-1. The figure clearly
demonstrates the ability of the model to impound information in excess return residuals into
conditional variances. That is, a large shock to market excess return leads to a quick response
in the market's conditional variance. Moreover, shocks of differing magnitude impact conditional
variances with comparable changes in the magnitude of variances.

Generated residuals and conditional variances for the bond portfolio under the trivariate
GARCH model for the largest size portfolio are plotted in Figure 2-2. The results from Figure 2-2
are interesting because they further support the model's ability to capture pericds of increased
volatility using GARCH variances. Moreover, this figure concurs with Figure 2-1 with regards to
the identification of periods with increased voiatility. That is. ~~~cks appear to affect the entire
system of variates. This final point Is important as it may a, % * .ure research to focus on a

single source of economy wide uncertainty34.
The ICAPM test statistics reported in Table 2-7 are once again not contrary to the

intertemporal asset pricing model. In fact, the largest %2 value reported of 1.608 is well below its

critical value of 4.605 at even the 10% level. The clear significance of risk price terms in all

models, in conjunction with insignificant %2 values lends support to the ICAPM paradigm with

time varying moments.

lil. DIAGNOSTIC ANALYSIS

The purpose of this section is to examine the time series properties of the original data

series and the standardized residuals from the model to determine the success of the paradigm

¥ This motivation led to the single state variable mode! presented in the paper. Unfortunately, first
differences of the short term Treasury Bill rate do not fully capture economic shocks.
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in capturing moment dynamics. The results of this analysis are presented in Table 2-8. The data
presented in the table is used to evaluate the success of the mode! in capturing the time series
nature of excess returns. Panel A considers the raw excess return series themselves, y,. Panel
B squares difference between each raw return and its unconditional sample imean for each
observation and then reports summary statistics for the resultant series, (Y - 9,)2

u
Standardized residuals, o—" » are examined next and discussed in Panel C. Finally, panel D
it

U,
presents the results for the squared standardized model residuals, [o—'j 2
i

McLeod and Li (1983) show that sample autocorrelations for both residuals and squared
residuals are asymptotically standard normal random variables and the Box-Pierce Portmanteau
test statistics are asymptotically distributed as X2 random variables. The Box-Pierce

Portmanteau test statistics are defined as,

K K K

Q) =T Dpf = QK) =T X2, and Qi) =T Yp2,.

lw |=1 lat

where T is the number of observations in the series being considered, p,ﬁ is the sample
autocorrelation at lag | squared. For Q,(K), py is the sample autocorrelation between the current
residual and the residual of | lags. Similarly for Qux(K), Py is the sample autocorrelation
between the current squared residual and the squared residual of | periods past. K denotes the
number of autocorrelations being considered in the statistic. Both Q,(K) and Q,,(K) are
distributed as %2 random variables with degrees of freedom given by the number of sample
autocorrelations considered less the number of Farameters estimated. These statistics are used
to determine if the first K autocorrelations are significantly different from zero as a group.

The first two panels of Table 2-8 present summary statistics for the raw data series.
Panel A studies the time series properties of the raw excess returns prior to analysis. Th
sample autocorrelations show that raw portfc'>lio excess returns tend to display positive

autocorrelation for initial lags. Notice all size portfolios, the market portfolio, and the bonc
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portiolio display significant autocorrelation in raw excess retur .is before the model is employed.
The results for Panel B show unconditional squared residuals tend to be positively related, as
expected. However, the Q,, statistics suggest the long term bond portfolio and smallest size
portfolio are the dominant variates requiring GARCH modelling to remove variance persistence.
The latter two panels of Table 2-8 demonstrate the model's ability to capture first and
second moment dynamics. Panel C shows the time series properties of the standardized model!
residuals. Comparison of panels A and C suggests the model effectively removes
autocorrelations from the long term bond portfolio and is moderately successful in removing
persistence from the market portfolio for all trivariate models. However, the only size portfolio
which demonstrates any clear success in removal of autocorrelations Is the largest portfolio. The
final panel shows that the GARCH models have effectively removed any patterns of second

moment persistence in the excess return data.

IV. CONCLUSIONS

The motivation for this study is twofold. First, the study of intertemporal asset pricing
paradigms with time varying moments has been largely unexplored in the finance literature.
Shanken (1990) provides an alternative framework for analysis which is markedly distinct fror-
the GARCH methodology used herein, but has significant limitations. A second motivation for
this paper is to examine the weekly variance processes associated with excess returns on stock
portfolios (monthly analysis was performed in Turtle 1990). The primary result from this study is
support for the intertemporal asset pricing model. A primary research question remaining is how
to specify variance dynamics in a manner consistént with economic theory while still providing an
adequate description of the underlying process.

The initial section of the paper employs changes in the short term Treasury Bill rate as a

1]

éingle state variable to explain the evolution of the investment opportunity set. Unfortunately, the
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preliminary resaarch provided in this paper suggests this single state variable does not
adequately capture second moment dynamics. Future research may be useful in any of three
directions. First, it might be useful to specify variances which are tunctions of state variables
related to the yield curve. Secondly, combining short rate chang- -~ wih yield curve state
variables and traditional GARCH terms may better describe evolving variances. This approach
requires solving a serious methodological issue which is not addressed by previous researchers
in this area. The underlying motivation behind the GARCH methodology is that variance
dynamics can be captured by a deterministic statistical process. If pure economic theory
motivates model variances, tnen the use of carelfully specified state variables as variance
function regressors is warranted. To lump both of these effects into one variance function may
result in dubious conclusions. For example, if the traditional GARCH approach dominates and
economic state variables prove insignificant, this does not necessarily imply economic states are
not important. It may only imply that the GARCH process captures the importance of the
economic state variables. A final avenue for future research is suggested by Figures 2-1 and 2-2
which reveal variance evolution patterns for market and bond portfolio conditional variances
which have peaks at similar points in time35. This tendency suggests a single explanatory state
variable or a composite state variable may be constructed to explain variance evolution. Earlier
results using changes in the Treasury Bill rate as a state variable, may simply indicate this is not
the best state variable for parameterizing variance cvolution.

Some interesting conclusions can be drawn from this research. First, as mentioned
above, variance dynamics are bettcr explained by tracitional GARCH processes than by
unanticipated variances of changes in Treasury F:f retirns. This may be largely due to the fact
that for weekly data the variability of changes in weekly Treasury Bill returns is small relative to
the variability in bond or stock portfolio returns. Second, none of the suggested models reject

ICAPM for any reasonable level of significance. Finally, the strong significance of the interest

35 similar results were obtained for size portfolio conditional variances but were omitted for “vity,

72



rate risk premium throughout the paper may he'p to rationalize earlier rejections of static versions
of CAPM [see Giovannini and Jorion (1989), or Engel and Rodrigues (1989)).

Unfortunately there are at least two other possible reasons for the lack of rejection of
ICAFM. The test statistics in this paper are based upon systems of three variates, not the entire
system of assets under consideration. This simplification is employed to allow a feasible search
procedure over GARCH lag lengths; however, this procedure also leads to inefficient test
statistics as the entire residual covariance structure is not considered. The search procedure
over lag lengths is employed to ensure consistency of test statistics. Unfortunately, although the
resultant tesi statistics are consistent, they may not »e powerful in comparison with larger
multivariate systems. Thus, rejection of asset pricic, imodels in other papers may be due to
misspecified asset pricing relations, misspecified variance processes, or failure to use the most
powerlful test procedures.

The methodciogy of this paper initially searches over GARCH specifications to find the
best variance process for each variate. This p-. . edure seeks a variance process consistant
with, but not biased by, e asset pricing paradigm. i ¢ intent of this approach is to de an
appropriate variance structure for residuals. This will lead to consistent parameter es.  .tes . J
will ultimately result in correctly specified test statistics. T°  model appears to be very successiul
at capturing second moment dynamics although the time se:ies properties in the conditional
means of all series are relatively unaffected by the modelling. In fact, with the exception of bond
portfolio standasuized residuals, there still appears to be evidence of autocorrelation in excess
return standardized residuals. Market portfolio and size portfotio sample autocorrelations appear
to be reduced, although rot statistically eliminated. An interesting area for future research is to
explore how moment dynamics change with the periodicity of the data being considered. For
example, Turtle (1990) finds much stronger support for the GARCH methodology using a
lengthier monthly return series in comparison to the weekly data set used herein. The nature of
time aggregation in GARCH models warrants closer attention to help link the various publications

employing GARCH methodology. The periodicity of data across various publications varies
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tremendously [see for example Bollerslev et al ( 1988) for quarterly, Morgan and Morgan (1987),
Engel and Rodrigues (1989), Engle et al (1990), or Schwert and Seguin (1990) for monthly,
Giovannini and Jorion (1989) for weekly, and Bollerslev (1987), Akgiray(1989), or Hsieh(1939),
Lamoureux and Lastrapes (1990) for daily periodicity] but has not been carefully studied in the
context of changing moments and an intertemporal asset pricing model.

A great deal of work remains to be examined in the ganeral area of GARCH processes
and asset pricing models. A more careful examination of essential multivariate restrictions on
~airwise correlations to assist in the estimation and examination of multivariate structures would
be useful for both thearatical and empirical research. Future research must concentrate upon
reducing the number of parameters in large systems in @ manner consistent with financial thought

to allow meaningful empirical research to be undertaken.
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Table 2-1
Descriptive Statistics for Weekly Returns from
July 1983 through December 1989

Unconditional summary statistics for the 337 continuously compounded weekly returns
(multiplied by 100) from July 14, 1983 to December 15, 1989 are shown in the table. Weekly
Treasury Bill (r,) and long term bond portfolio returns (rgy) are constructed from data provided
by Reuters. The market portfolio (ry,) is derived from the daily value weighted market index
provided by CRSP. All series are fully described in Appendix 1. Mean and S.D. are the
unconditional maximum likelihood estimates of the sample mean and standard deviation. The
Q(36) statistic reported is the Box-Pierce Portmanteau test statistic to determine if the first 36
autocorrelations are significantly different from zero as a group. Q(36) is distributed as a Chi-
squared random variable with 36 degrees of freedom.

Sample Autocorrelations

Portfolio Re:um Mean S. D. P1 P2 Ps P4 Q(386)

T-Bill return = ry 0.127 0036 060" 055" 061" 069" 3252.42*
100%(ry - ry.q) 0.048 3354 -0.40** -0.14* -0.03 0.25" 230.63**
LT Bond Portfolio  0.305 1758  0.22** 0.25" 0.15"* 0.14" 89.59**
return =rg,
Market Portfolio 0.143 2143 008 003 -002 -0.07 57.38*

return =ry,

* significa:t ai the 5% level
** sigr. cant atth - - % levsd
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Table 2-2
The Selected Process for the Continuously Compounded Treasury
Bill Rate from July 1983 through December 1989

First differences of the one week continuously compounded Treasury Bill rate (r - ry.q) are
used as the state variable to describe changes in the investment oppontunity set in the initial
portion of the paper. This table presents the results of the choice over J, K, Pf, and Qf which
determine the appropriate lag structures for the state variable. Model selection is pased upon
the minimum value of Schwartz's Information Criterion (SIC). Standard errors are tgported in
parenthaes below maximum likelihood parameter estimates.

J K
Ty = fy-fhg=by. z¢‘1 (fry - Mpr) + ZOKlU“.K) + Uy,
]=1 kw1
Pt Qf
2 % PR 2
Gn =‘onZBtp0-ﬁpo Lafqul‘t-Q'
p=1 Q1

Maximum Likelihood Estimates

b, 8, Y By 0y
-0.000234 -0.881934 0.000145 0.57720S 0.203401
(.000168) (.028640) (.000046) (.0912106) {.0571528)

Model (P1Qf)-(J,K) Likelihood SIC
(2.2)-(1,1) 777.8519 -1509.1669
(2.2)-(0.1) 777.8534 -1514.9870
{2,2)-(1,0) 727.3958 -1414.0718
(2,1 1) 776.6069 -1512.4940
oL 776.5069 -1518.3111
{2 1)1.0) 7236177 -1412.3328
(1.2-(1.1) 777.8542 -15149888
(1.2)-0.1) 7778536 -1520.6045
(1,2)-(1,0) 727.3961 -1419.8896
(1,1)-(1,1) 776.6069 -1518.3111
(1,1)40,1) 776.6069 -1524.1282
(1,13-(1,0) 723.6179 -1418.1501
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Table 2-5

Determining the Lag Orders for the Market and Bond Subsystems
Using GARCH Variance Processes

To determine the lag orders for the market and bond portiolio excess returns (Ypm and

Yeu fespectively), each is independently estimated under various GARCH parameterizations.

The model with the minimum value for Schwartz's Information Criterion (SIC), is then selected.
Maximum I'celihood estimates for parameters are reported for the selected model under the

null hypothesis in each subsystem (i.e. Ho: by = 0 or bg = 0, respectively). Standare - 17 «
are reported below parameter estimates in parentheses.
The Market Suusytem The Bond Subsytem

2
Ym=by + 8« Upy,

2
Yar=bg + 8,0g .+ Ug,,

PM am PB QB
Grj’t bl (VIS Z Buo ch-p . Z Uvg Uqu » and 0'92t =Yg+ Z BBp C'::«tz-p . Z Olpq Usfq » and
p=1 q=1 p=1 q=1
8, (Y] Bus Oy [ s Bas g,
048737 901448 547480 259042 092221 465637 .585382 280354
(024122) (.299985) (.082484)  (.026657) | (.031335) (.178141)  (.082948)  (.0481:39)
Model Selection Criterion
Model Unrestricted Schwartz's Model Unrestricted Schwartz's
(PM,QM) Likelihood Information (PB,QB) Likelihood Information
Criterion Criterion
(SIC) (SIC)
(2,2)2 -700.1942 1435.2911 (2,2)¢ -650.7907 1330.6669
(1,2)® -701.4725 1432.0306 (1,2)¢ -648.4861 1326.0578
(2,1) -699.3578 1435.6180 (2,1) -634.2758 1303.4543
(1,1) -700.1805 1429.4466 (1,1) -635.6621 1300.4098
a To obtain convergence for this model ¢ To obtain convergence for this model
required B,,, be restricted to zero. required both B, and a,, be restricted to zero.
® By, Was also restricted to zero in this model. | 9 a,, was restricted to zero in this model.
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Table 2-6
The Market an¢! Bond Subsystem Using Weekly data over
the peris 1 July 1983 through December 1989

Given the lag structures dis --ad in Table 2-5 for the market and bond excess returns
(ym and yg, respectively), both zeries are jointly estimated. To close the system covariances

are computed as the product of standard deviations and constant correlations. The maximum
likelihood estimates reported obtain when Ho: by= bg= 0 is imposed. Standard errors are

given in parentheses below parameter estimates. The Intertemporal Capital Asset Pricing
Model (ICAPM) test statistic is the likelihood ratio statistic based upon the difference of the

likelihood under the alternative and null hypothesis and is distributed as X2 with 2 degrees of
freedom.
2 2
Ym=bym + 8iOp « Upy, yg=bg + 3,04 - Ug,,

2 2 2 2 2 L2
Om =Ym * Bmi Omet + Qi Umey - @nd Ogy =Yg - By Opgyy + g, SRR

Restricted Maximum Likelihood Estimates

3, 3, ™ By Ol Yo Bg; gy Pme

0.05898 0.09982 0.41633 0.57404 0.32325 0.97481 0.46970 0.34392 0.37247

(.02125) (.03038) (.10072) (.05542) (.03727) (.29321) (.06000) (.04756) (.05217)

%2 (2) = 2*(Unrestricted Likelihood - Restricted Likelihood) = 1.00333
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APPENDIX ONE
MODEL DEVELOPMENT

Consider the problem of maximizing expected lifetime utility over consumption and

portfolio decisions [see Merton (1971 and 1973)),

Tk
max Ey | [ UKck(s),s]ds + BWK(TK),T¥] (A1)
(Ck. m‘) O
subject to the budget constraint
n n
W= |3 olfey- 1)+ Wedt + 'Y ofWrodg; | - cht (A2)
jm1 im1
and the boundary condition
JWK T ) = BYWKT), (A3)

where E, is the conditional expectation operator at time zero given initial wealth, WX(0), and

the state variables of the investment oppcrtunity set,

cX(t) is the consumption flow of agent k at time 1,

UX[cX(t),t] is the von Neumann-Morgenstern utility k at time t,

BY{WK(T*),TK] is the strictly concave bequest function of agent k for the terminal
date Tk which need not be known,

m"‘ is the fraction of wealth agent k holds in asseti € {1,2,...,n} which may also vary
over time, and

Jk(-) is agent k's derived utility of wealth function36.

36 The derived utility of wealth function is the maximum value function,

Tk
SWetn) = max E | [ UKcK(s),s]ds + BYWK(TK),T¥]| .
X 0¥
i t
That is, J(*) gives the maximum expected lifetime utility for agent k over the remainder of his/her life at any

p'oint intime t. Using J(*) allows Merton to employ the stochastic Bellman equation to solve the problem
providing the solutions shown abova. The interested reader is referred to Merton (1971, pp.380-381).
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The remaining terms used in the above problem formulation (i.e. ¢, r,, ©, and dq,) relate to

asset price dynamics and changes in the investment oppoitunity set. Asset price dynamics are

assumed to satisfy,

dP,

where time subscripts have been ignored for notational convenience, dq, is a Wiener process and
0 is asset i's instantaneous expected rate of return with instantaneous standard deviation ¢,
The single stochastic state variable r; (the instantaneous riskless rate) similarly satisfies the
diffusion process,

dry= fdt + odq. (AS)
where time subscripts are again ignored for simplicity, dq, is a Wiener process and { is the
expected change in the riskless rate in the next instcnt with instantaneous standard deviation o,.

Further, let p; be the instantaneous correlation coefficient between dg; and dq;. Itis assumed

that (A4) and (A5) together form a Markov system.
Given the above problem formulation, the investor's solution satisfies the following two

first order conditions [see Merton (1973},

k 3
= K1) - K
0= U (ck1) - J_(WKr), (AB)

and

k k N Kk
j=1
foralli=1,2,..n.

The intuition underlying these n+1 first order conditions is straightforward and appealing.
Condition A6 simply requires the marginal utility of current consumption equal the

marginal utility of wealth. [f this condition fails and current consumption provides more utility at
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the margin than future consumption, then investors have an incentive to shift their consumption
plan to include more current consumption and to use future wealth to finance this consumption.
This will result in an increase in the marginal utility of future consumption and a reduction in the
marginal utility of present consumption until the two equate.

The latter n first order conditions represented by A7 simply require that each security
contribute equally to utility at the margin. This contribution to marginal utility can be partitioned
into three components. First, the benefit each security provides to portfolio return in excess of
the riskless rate. This term represents the payment made to investors for incurring the risks
represented by the latter two terms. The first of the latter two terms illustrates the loss in utility
associated with an increase in portfolio variance. The third term embodies the loss in utility
associated with changes in the investor's opportunity set.

The general three-fund separation theorem Jeveloped by Merton assumes there exists
an asset whose return is perfectly negatively correlated with the state variable. This relationship
is not necessa.y for Merton's theorem but it does illuminate the underlying discussion and
intuition. The asset presumed to have this intuitive relation with changes in short rates is the
return on a default free long term Treasury bond. Clearly, this assumption is a simplification of
reality, however, the intuition is appealing. Consider an investor holding long term Treasury
bonds when an unanticipated decline in short rates occurs. If the decline in short rates is truly
unanticipated and will continue for some period of time, then the price of the long term bond will
rise until it is again priced in equilibrium. The expected return on the long term bond portfolio will
clearly fall to reflect a general decline in rates; however, the existing long term bondholder will
simultaneously experience a capital appreciation in bond price. Thus, there is an obvious role for
an assumption of ex post long term bond returns being negatively correlated with changes in
short term riskless rates. Unfortunately, as short rates change so does the entire yield curve in
general. Thus, the assumption of an asset yvhose return is perfectly negatively correlated with
changes in the riskless rate is nontrivial. Fortunately, neither Merton's three fund separation

!theorem, nor the specific application of Merton's theorem to include a long term Treasury bond,
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requires this perfect negative correlation assumption between changes in the riskless rate and
bond returns. In fact, all that is required is that the correlation between changes in the shor rate
and the long term bond portfolio are scalar multiples. Clearly, this is a very restriclive
assumption, but it does result in a closed and tractable system?’.

Using A6, A7, and the correlation assumption discussed above, Merton (1973, pp 878-

879) shows the following continuous time analogue 1o the static security market line can be

posited,
w Hoy
(li - r' = A o.iM + ACB O'iB (A8)
Gi ( Pim- PisPam) O; ( Pig - PimPam)
= aM - r' ) + (18 - r'
om( 1-Pam) ( * og(1-paw) ( )
such that
K
W = Total market wealth at timet = Y, Wk |
ket
K LK
A= 2 Ak, Ak o —¥ (A9)
k=1 'wa
K - k
Ifw
H= D Hk, Hk o (A10)
k=1 wa

Jk(w,t,r,) = agent k's derived utility function.
Equation (A8) is the fundamental asset pricing relation of this paper. The second line of

equation (A8) states that, in equilibrium, the expected excess return on any security i is given by

. . Gi ( Pim- PisPam) o .
a price of market risk, B, = 2 » multiplied by an expected market risk premium,

Om( 1-Pam)

3'7 In future research, it would be interesting to consider extending the relationship between long term
bonds and changes In the yield curve in general. However, this work would be better served by a data set

of returns on bonds with differing terms to maturity at all points in time.
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G ( Pia- PimPem)

Og( 1-Pawm)

(Cm =), Plus a price of bond risk, Bg = , multiplied by an expected bond

risk premium, (g — 1t ).
To gain further insight into the equation, suppose for simplicity that the bond and market
portfolio are independent, then;

O _ GiPim et 4 CiPig et
(Ga=M1)= g, (OM~f1) + "~ (%71)

Oim Oig
=" (Ou-Nh) + “2(0s—T)
Om Og

Bm(am=T) + Pis(®s-")
where Bi,- is the familiar simple regression slope coefficient. Now notice that the simplification of
independence above is unnecessary if 3,y and B;g are treated as multiple regression coefficients.

Given the derived utility function of wealth for the kth investor, Jk(w.t.r,). we can write

agent k's coefficient of relative risk aversion with respect to wealth as,
o e
1 ==

WK, (A11)
Ju
Now the harmonic mean of all agents' coefficients of relative risk aversion weighted by their share

of aggregate wealth, say v,, is defined according to,

K K K
1 w1 1 wk A
—_ _— e L == —_ - — (A12)
Y § : WK w w
kal

ka1
LA/ . - A
Thus we have, ¥, = 5", is the harmonic mean of all agents' coefficients of relative risk

aversion where each agent's coefficient is weighted by his/her share of aggregate wealth as

desired. Notice this relation is based upon the derived utility function of wealth8. Given the

38 The equivalant relation with respect to utility of consumption can be derived using the implicit function
theorem upon equation (A6),
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above relation, y, can be treated as a constant if power utility is assumed. It is further assumed
Ho

, is constant??,
AGg

that the second coefficient term which multiplies g,

585 (Uie) -g% = aiw (W],

or using the inplied notation for partials,

ULt - S (WLLE).

ow
Then using the above and equation (A6) we have,
- . - U
Jo 0 [ _Qg]
[ aw

Ho w
39 To be more precise, the term [A—o'] can be considered similarly to ['K] . Recall that the long term
B,

bond portfolio return is perfectly negatively correlated with changes in the instantaneously riskless rate in

o, H
the Merton paper. Thus, the ratio [;’] . Is necessarily constant. However, in this case, the ratio [K] ,
8

cannot be simplified to a constant as in the case of ¥, In fact, even in the simpler case of a representative
investor, constancy ofy, is not reasonable. For the representative investor we have, by the implicit

function theorem,
15 0 e
_ __i'z'_. _ 2
E

Therefore even in the relatively simple representative agent case there is no theorstical support for
constancy of v,, as it is proportional to the coefficient of absolute risk aversion, not relative risk aversion,

Ho,

To resolve this issue one could assume that [XG—J =Y, is given by the form,

Ya =Y, + AyWhereA,ls a mean zero iid normal random variable.
The model could then be written as,

Ye="Om * 1.0 + (lzc.e« + un)

G, =0,0,p, forallij, andt

where

o pi
0': =X + Z(xmaﬂi + z ‘,G:, foralli=1.2,..,N,M, and B,
ket ot
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Now assuming rational expectations hold, equation (A8) can be relaxed to examine the

actual excess returns, Yy .as

OOt + Uit (A13)

PiM- PisPaMm Pis- PimPam
GiOm + O2 1

= 9
. 1 { 1'ng

where p; is the correlation between asset i and j assumed constant by construction?C.

€lo.,- N(0,COV), for COV,=( ©,),and

€, =1,0,+U,

Notice that under this formulation the new error term, €,, Is heteroscedastic regardless of whether or not

the original error U,, Is heteroscedastic. Thus without loss of generality we can assume v, Is constant

within this GARCH paradigm. Moreover, the development also provides a motivation for the GARCH
process if u, Is heteroscedastic, even if u,is homoscedastic. One drawback with this approach s an

efficlency loss i in fact the original errors, u,, are GARCH processes. This latter approach is not explicitly
followed due to the ad hoc nature of the random specification for y, above. Instead, v, is treated as a

constant with the understanding that this specification is somewhat robust to misspecification due to the
GARCH variance processes.
40 Tho constancy assumptions for y; and yp allow us to write the mean relation in (A13) with 8¢ =

g Oy — My ! Og = My ,
7 and &y = e constant using the assumption of constant correlations. This is done to

M B
:simplify the interpretation of the estimation results.
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APPENDIX TWO
DATA SOURCES

The data series employed are from two primary sources. Raw nominal stock retums are
extracted from the CRSP daily data tapes, while the weekly nominal long term bond returns and
the weekly riskless rates are from Reuters Canada Limited.

Nominal security weekly returns are computed from Thursday close to Thursday close for
the period July 14, 1983 until December 15, 1989. If the exchange is closed on Thursday, then
Wednesday's return is used. Similarly, if the exchange is closed on Wednesday, Friday's return
is used A stock with a missing weekly return is a stock with no daily returns for any of
Thursday, Wednesday, or Friday in at least one of tha 337 weeks. Weekly returns for the CRSP
value weighted index are computed similarly.

For each of the 1419 stocks selected at the outset, a weight is constructed as the
number of shares outstanding times the price per share divided by the same quantity across all
securities, for each week. Then for each week all stocks are size sorted into descending order
according to the previous period's weights. Three size portfolios are subsequently formed. The
first portfolio contains the largest third of all firms, the second contains the mid-third of all size
sorted stocks, and the third portfolio contains the smallest third of all firms. The weekly retums
for each of these portfolios is the value weighted return of all included securities.

All 1419 stocks are sorted for each week of the sample period. This procedure does not
ensure that any given stock will remain in the same portfolio over time. For example, a rapidly
expanding conglomerate would be expected to shift into larger size portfolios over time. Thus,
although this procedure maintains the desired size rankings of firms over time, it also implicitly
requires some portfolio revision. The alternative method of sorting every year, or at some other
prespecified interval may be appealing because it requires less portfolio revision. However, the
procedure of sorting all stocks every period ‘is important in at least two respects. First, the
intertemporal asset pricing model allows agents to continually revise portfolios, thus the data

:should reflect any possible portfolio changes each period. Second, this specific study considers
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the behaviour of size portfolios over time, the selected sorting procedure does not mask any
important size portfolio behaviour.

The short term riskless rate and long term U.S. Government bond return are computed
using information obtained from Reuters Canada Limited. Specifically, Reuters provided the
high, low, and closing prices on Treasury Bills with one week until maturity for each of the sample
dates. To compute the 1 week nominal riskless rate, Treasury Bills with 1 week to maturity are
selected for each sample ciate. Thursday closing prices are then used to compute the return on
the bill as 100.00 less the 1 week prior closing price divided by the closing price. The data for
each of the long term U.S. Treasury Bonds selected includes a cusip number, starting date,
maturity date, coupon raie, and maturity date. For each bond, high, low, and closing prices are
reported. To compute the return on the long term U.S. Government bond portfolio, a bond with a
maturity as close to twenty years is selected for each sample date. The total return of each bond
is then computed as the percentage change in flat price. The flat price is defined as the average
of the bond's bid and ask prices plus accrued coupon. Accrued coupon is computed as,

. | to - [ number of days since the last coupon payment ] 4
semiannual coupon rate + | jya umber of days between consecutive coupon payments) *

41 This methodology is the same as that employed by Ibbotson Associates (1968, pp.18-19) in the
construction of thelr monthly long term U.S. Government bond portfolio, but it is an approximation to the

‘true weekly return.
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