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ABSTRACT. This paper surveys the various techniques for shape recognition and analysis
with emphasis on robustness. Specifically, a review of boundary shape analysis methods
and techniques is presented followed by description and experimental results of a new
technique, based on Markov Shape Theory, that may alleviate the problems experienced by
classical methods for shape analysis and boundary extraction in the presence of various
kinds of noise.
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1. INTRODUCTION

An important aspect of artificial perception deals shape recognition in static scenes.
Having a close relationship with biological recognition paradigms, shape recognition in
artificial systems has been approached in several ways. Originally proposed by [Marr76]
recognition of shapes can be performed in several ways characterized by Shape from x
research as:

e Shape from contours

e Shape from shading

e Shape from texture

e Shape from stereo

e Shape from fractal geometry

This paper takes a close look at a subset of “shape from contours” family of techniques,
namely boundary scalar and boundary space-domain techniques. After surveying the
most representative techniques within each category the paper proceeds to outline a new
method for shape boundary extraction and analysis based on Markov Shape Theory. The
new technique, currently dubbed Viterbi-Max-Max or VMM for short, presents a novel
approach to handling shape analysis within static images containing noise, occlusions
and various other perturbations presenting problems for classical methods of shape anal-
ysis. Some initial experimental results will be presented followed by a brief discussion of
future work geared towards further development of Markov Shape Theory approaches
as robust contour extraction and analysis tools.

1.1. Classical Shape Analysis Techniques. In order to assert whether a shape of interest
is present in an image, typically one must have a notion of a shape template to match with
the shape present in an image. Over the last 3 decades various methods and techniques
have been developed to enable comparison of shapes. Traditionally “shape from con-
tours” analysis has been approached in two ways, through shape description techniques
and shape representation techniques. Shape description techniques typically transform the
original shape into a numeric representation of key shape characteristics, while repre-
sentational techniques use non-numeric approaches to capture important shape charac-
teristics. In addition to the aforementioned technique division a different split in shape
description/analysis techniques is possible. Initially proposed by [Pavilidis78], shapes
can be analyzed at the boundary level or interior/global level. Boundary level analysis
techniques focus on the contour points of an object, while global level techniques capture
global information of a given shape by analyzing not only the boundary points but the
interior shape content as well. By combining the shape analysis categorizations (scalar
description vs. non-scalar representation and boundary vs. global) most of the current
shape description and analysis techniques fall into the following four classes:

Boundary Scalar Techniques: Describe the boundary of a shape by numerically en-
coding the contour of shape.

Boundary Space-Domain Techniques: Also describe the contour of a shape but use
non-numeric descriptors.
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Global Scalar Techniques: Use global shape properties, encoded numerically, to de-
scribe the given shape.

Global Space-Domain Techniques: Use non-numeric description of the global
shape properties to encode a shape description.

The rest of this section provides a brief summary of the most popular and effective meth-
ods within the boundary representation class of shape descriptors.

2. BOUNDARY SCALAR TECHNIQUES

Boundary Scalar techniques provide a numerical description of a shape’s boundary
region. The encoding of a shape is performed by creating 1-D function describing the
shape’s 2-D contour. The 1-D function is then used to describe the 2-D boundary by either
a) applying a Fourier Transform to the 1-D descriptor or b) modelling the 1-D characteristic
function as a stochastic process.

2.1. 1-D characteristic functions. Several methods of describing the contour of a shape
are commonly used. Perhaps the easiest method is the centroid-to-boundary distance ap-
proach depicted in Figures 1 and 2. The 1-D function encodes the distance r from the
centroid of the shape to its boundary with respect to angle 6, f(¢) = r. Several flavors
of this method have been used in the past with the main difference being how sample
boundary points are selected. For instance boundary points can be selected equidistant
from each other or they can be selected such that the central angle between points is a
constant value (6,11 — 0; = a). Regardless of technique variations, most of the centroid-to-
boundary distance encodings have problems correctly encoding non-convex shapes, as
shown in Figure 2.

FIGURE 1. Centroid-to-boundary distance approach. [Loncaric98]

Other popular methods of encoding the 2-D shape boundary rely on either computing
boundary points curvature (representing boundary tangent angular changes) or comput-
ing a complex function based on either boundary coordinates or the arc length parameters
(the approaches are formally outlined in the appendix). Conveniently, all the outlined
functions are automatically translation invariant.
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FIGURE 2. Another example of a centroid-to-boundary distance approach
with the resulting 1-D characteristic function shown on the right. A limi-
tation of this approach to encoding the boundary can be seen by noticing
that several of the rays cross the boundary of the airplane in more than one
place. [Kauppinen et al.95]
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FIGURE 3. Curvature function calculation. ¢i = t; — t;_;, where ¢; and t;,_;
are two successive tangent values of a boundary segment.
[Kauppinen et al.95]

2.2. Fourier Descriptors. Once a characteristic function is obtained, a Fourier transform
can be used to convert the function from space domain to frequency domain, with the
derived sine wave coefficients describing a given 1-D function. While scale invariance is
automatically achieved via the transform, a change in rotation angle of the shape results
in a phase shift of the sine coefficients. Therefore rotation invariance can also be achieved
by looking only at the magnitude of the frequency coefficients. Despite its robustness to
scale and rotation variance, the Fourier transform method(s) do not perform well under
noisy conditions. To combat noise several solutions have been outlined in [VeltkampO01]
and [Kauppinen et al.95]. Because global shape description is encoded by the low fre-
quency components, one successful approach to creating a noise free shape description
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is to filter out the noise bearing high frequencies. Another approach is to perform con-
tour smoothing prior to inscribing the shape into the 1-D function as shown in Figure 4.
Both methods reduce noise and enable shape generalization but may also merge several
distinct shapes together as a side effect.

FIGURE 4. Contour smoothing to reduce high curvature changes [Veltkamp01]

2.3. Stochastic Descriptors. Methods in this class use the 1-D characteristic shape func-
tion as a model of a stochastic process. The goal here is to determine/estimate model pa-
rameters which can be used as shape descriptors. Commonly autoregressive techniques
(AR) are used in modelling and estimation. A linear autoregressive model estimates the
value of a function using m number of preceding values in a linear combination. The
general form of the closed! AR model [Kashya et al.81] is as follows:

(1) ry= o+ Zajrt,j = \/ﬁwt
j=1

where {«, 3,01, ...,0,,} are the model coefficients to be estimated with \/fw; modelling
random noise (residual error) and a being proportional to the mean of the function value.
Studies done by [Kartikeyan et al.89] indicate that linear AR models are not always suf-
ticient to encode non-convex shapes and model over fitting may also lead to poor recog-
nition performance. Accuracy may, however, be improved by using higher order models
(ie a larger m) or using non-linear stochastic models (eg. quadratic Volterra model). An-
other remedy to AR model’s inabilities to represent complex shapes, generally due to
a small number of parameters, is to combine AR model with a hidden Markov model
[He et al. 91]. He’s and Kundu’s approach was to partition the shape boundary into seg-
ments and characterize each segment with an AR model parameters to produce a vector
sequence for each shape. The final step in the procedure applies an HMM [Rabiner89] to

lthe AR model is closed since the boundary of a shape is closed making the function periodic
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classify the vector sequence. This approach is not only robust with respect to scale, ro-
tation and translation, but also exhibits good performance in the face of noise, occlusion
and shape distortion.

2.4. Fourier based Vs. AR based Methods. [Kauppinen et al.95] have conducted a com-
parison study of AR methods pitted against Fourier Transform methods, with both meth-
ods using contour, curvature and complex 1-D functions. The experiments tested for sen-
sitivity to noise, scale invariance, rotation invariance, as well as robustness in the presence
of perspective distortion around (z, y, z) axis.

Surprisingly, the stochastic based AR methods specifically designed to handle noise
were actually outperformed by Fourier based techniques. The authors speculated that
the notable superiority of Fourier based methods (on average) was due to the accuracy of
low band frequencies at encoding general shape description. In general it was observed
that AR models are superior in discriminating objects within a single class due to their
abilities to encode local shape characteristics. On the other hand, Fourier descriptors
were better at distinguishing objects belonging to different classes due to their ability to
accurately encode global shape information.

3. BOUNDARY SPACE-DOMAIN TECHNIQUES

The aim of boundary Space-Domain approaches is to produce a pictoral, graphical or
other non-scalar representations of a shape boundary. The most representative of the
boundary space-domain methods are chain codes, syntactic techniques, boundary ap-
proximations, and scale-space techniques, which are briefly outlined in the following
subsections.

3.1. Chain Codes. Initially proposed by [Freeman61] the chain code method encodes the
shape boundary as a sequence of connected line segments of specified length and direc-
tion [Gonzalez et al.92]. The direction of a segment is coded using the schema depicted
in figure 5. An example of a boundary encoded by a chain code is shown in figure 6.
To remove the fixed distance dependency the code can be generalized (figure 7) to enable
contour discontinuities. In general chain codes suffer from several problems, (1) they tend
to be quite long and (2) they are very sensitive to local perturbations in the form of noise,
distortion and/or imperfect segmentation. Furthermore chain codes are not scale and
rotation invariant. However, some of these problems can be alleviated. First off chain
code length can be reduced by using a coarser sample grid (ie larger pixels) at the ex-
pense of precision of course. In addition the use of a coarser sample grid has been found
to compensate for the scale changes as well. To remove rotational dependencies one can
use the first difference of the chain code instead of the code itself. This is accomplished
by simply taking the difference of the adjacent elements. In figure 6 the original code
0f0,0,3,0,0,3,3,3,2,1,2,2, ... would have a difference of 0,3, —-3,0,3,0,0,—1,—1,1,0, ....
Finally the novel approach based on Markov Shape Theory (presented in section 4 may
have cure all effect for all the problems exhibited by chain code.
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FIGURE 6. An example of a boundary encoded by chain coding. Start-
ing from the top-left boundary point the chain code produced is
0,0,3,0,0,3,3,3,2,1,2,2.3.2.2.1,1,0, 1, 1.
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FIGURE 7. Generalized chain code. [Loncaric98]

3.2. Syntactic Techniques. Syntactic approach to shape encoding attempts to break the
shape boundary into atomic components, which are then subsequently encoded as a
string describing the relationship between these constituent components. Formally, the
goal of a syntactic techniques then is to create a language that can describe a shape by
a sentence (string) composed of an alphabet of legal symbols (atomic components) using
a set of logical rules or grammar. Originally formalized by Noam Chomsky, the theory



SHAPE DETECTION, ANALYSIS AND RECOGNITION 9

of formal languages has gained popularity in many fields. As a result one of the main
advantages to using syntactic representations is that the field has been extensively devel-
oped throughout the years. The main disadvantage is that the shape boundary has to be
effectively parsed and encoded by the syntax of the language. This means that the curves,
corners and other contour components must all be extracted piece by piece and correctly
encoded, a challenge present to the current day.

3.3. Boundary Approximations. Typically boundary approximations are accomplished
by polygon and spline approximations. The usual procedures within this class of shape
descriptors tries to minimize the approximation error while maximizing internal poly-
gon/spline area by using the split and merge approach. The curve segment is split re-
cursively into smaller segments until each segment is approximated within an acceptable
error range as shown in figure 8, where a polygon approximation is used. In parallel
split segments may also be merged together if the resulting segment does not exceed a
maximal error threshold and increases the overall area of the shape approximation.

FIGURE 8. A boundary approximation using polygons

3.4. Scale-Space Techniques. The underlying principle guiding scale space techniques
deals with the notion that points critical the that shapes description are not effected
by low-band filtering. Thus, once several Gaussian filters of various widths have been
passed over the shape boundary, the remaining contour points are deemed critical to the
shape characterization and are stored as shape descriptors.

4. MARKOV SHAPE THEORY

The previous sections have outlined the most common methods for shape description
and analysis used in the vision community. Clearly no one method is able to successfully
preform shape recognition in the face of noise, distortion, occlusion and various other
imperfections present in images and the underlying preprocessing technologies (namely
segmentation). The following method is a tentative first look into the use of Markov
Shape Theory (MST) to create a robust shape descriptors resistant to the aforementioned
image inaccuracies.

The basic premise of Markov Shape Theory deals with the notion that shape informa-
tion can be directly stored in a Hidden Markov Model. Consider a noiseless boundary of
a shape represented by a chain code. Each “link” in that chain can correspond to a state
within a Markov Model and by traversing the chain of states, the state transitions can be
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recorded. Thus by using simple frequency counts we can obtain a state transition model
from a shape boundary (Eg. the left circle in figure 9). Note that the state transition ma-
trix did not preserve the full shape information. I.e. Shape reconstruction is not possible
from just the state transition model. All one is able to do is obtain a similar model from a
boundary of the target shape and compare the two models (state transition matrices) for
similarities. However, as can be seen in the left image of figure 9, images are not always
perfect or complete. Although the reader can make out a circle in the aforementioned
figure, the current shape recognition techniques in general cannot effectively handle such
broken shape boundaries. In order to successfully recognize a "noisy” or “broken” shape
one must rely on both the observations and previously learned notion of a circle, which
is precisely what the HMM does. Recall that an HMM defined by A = (7, A, B) consists
of the following [Rabiner89]:

m: The probability distribution vector of the starting states.
A: The state transition matrix.
B: The probability distribution of observations given state.

The A matrix, therefore, stores the model corresponding to a shape, while the B matrix
is used as support to link together the model and the observations one acquires from the
target image. The overall effect is that a shape is drawn according to both the model and
observations. (Note: We still are unable to reconstruct the shape learned by the HMM. A
topic saved for the discussion part at the end of the paper)

FIGURE 9. Left - a noiseless circle. Right - a circle with noise added to it.
Clearly typical boundary encoding algorithms would have problems with
the noisy circle due to breaks in the shape boundary

The next sections present the Viterbi-Max-Max (VMM) approach based on encoding a
shape within an HMM and the experiments conducted using this technique.

4.1. Viterbi-Max-Max. The VMM approach is grounded in the boundary domain and
uses the chain code to encode state transitions within a closed boundary region. Initially
a boundary following algorithm? is used to parametrize the contour of a shape in the
following way:

) C(t) = (C(](t), y(t))vt S [Ov T]

ZRefer to appendix B.1 for pseudo code of the boundary following algorithm
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FIGURE 10. The A matrix (left) obtained by simple frequency counts and
B matrix (right) obtained by a sliding window method. Both matricies ob-
tained from training on the right circle in figure 9

where ¢ can be thought of as a temporal parameter. The contour function starts at an
arbitrary position on the (closed) contour and traverses the boundary from start to fin-
ish. At each step (¢ = i) the (x, y) coordinates are recorded creating the contour function
described by Eq. 2. 8-directional Chain code is then used to encode a function of co-
ordinate changes. The A matrix of an HMM is then populated (and normalized) using
frequency counts for state transitions. After training on the chain code obtained from a
clean circle shown in figure 9 the resulting A matrix can be seen on the left side of figure
10. To train the B matrix the chain code is converted into a series of observations con-
sisting of —, |, \,/, 9, %, where — is a horizontal state transition or horizontal edge, | is a
vertical edge, \,/ are oblique edges, ¢ indicates no edge present and finally * indicating
and edge without a specific direction (Note: last two observations will not happen in a
closed boundary, but may occur in test phase on noisy shapes) . A sliding window ap-
proach is then used to populate the B matrix. The sliding window approach effectively
diffuses the probability distribution curve, thereby allowing for error in the observations
(I.e. an observation of a vertical edge may still result in a horizontal state translation given
a strong enough model probability of a horizontal state transition). The 7 vector, plays
a small role in our implementation of VMM and can be obtained in a variety of ways,
the simplest one being a uniform distribution of starting states. Frequency counts may
also be used in determining 7 as well as the first eigenvector of the A matrix will produce
valid results.

Once training has been completed the HMM is used in conjunction with lookahead within
the VMM to determine the most probable state transition at each state of the shape tra-
versal. The lookahead uses a Max-Max approach (vaguely) represented in figure 11.

At first ply all possible state transitions are considered (in case of figure 11, 4 possible
directions may be chosen) in subsequent plies only the maximally likely state transition
supported by the observation is chosen. Thus the search greedily selects the best state to
expand per trail, given the observation at that position. Formally we use

3) max a;;b;p,
J

to select the maximally likely state transition for each trail at each ply. Once maximum
search depth is reached the path with the highest probability is chosen and the first en-
visioned state transition is realized (ie. we take a step according to the trail sequence,
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FIGURE 11. Viterbi Max-Max trellis expansion using a 4-directional state
transitions. A 4-ply deep expansion is done starting at state 1, at which
point the trail with the highest MAP value is chosen. The VMM algorithm
then takes one step in the chosen direction state 2 in this case. The procedure
then repeats with state 2 as the root node.

in case of figure 11 a state transition from state 1 to state 2 is performed. The procedure
repeats it self again until the contour is closed or the trellis expansion steps outside image
boundaries.

Once the VMM has stopped, the contour traced by the procedure can be compared
to the model. This can be done is several ways. One way is to simply compute the
probability of state transitions given observations. If this probability is higher than some
pre-specified threshold the target shape is deemed matched to model. Another way of
evaluating the closeness of the extracted contour to the model contour is to use the Viterbi
algorithm on the sequence of observations collected during the contour traversal and
obtain the most likely state sequence. One can then compare, using Hamming distance,
the most likely sequence to the actual observed/performed sequence of moves to obtain
a measure of how close the contour fits the model.

4.2. Experiments. Thus far only rudimentary experiments have been performed. The
system was trained on the most primitive of shapes and then tested on either noisy ver-
sions of target shapes or shapes belonging to a different class all together. Figures 12 - 18
show the various experiments together with the corresponding results. The first section
of experiments deals with using a circle as a training shape and passing in a noisy version
of a circle. The VMM is then allowed to run at several ply depths (1-8). The results clearly
demonstrate several important properties of the VMM algorithm.

e There does not seem to be any single lookahead ply depth consistently success-
ful at shape recognition. As noise conditions are varied different search depths
perform differently and as shown in figure 14, the VMM shape detector can fail
at every search depth tested. It is of course conceivable that at higher ply depth
recognition could have succeeded. However the point is quite valid. VMM is not
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a perfect shape detector/contour extractor, but nonetheless the algorithm shows
to be robust to noise in most situations tested.

e Continuing on the previous point, not only no single ply depth is appropriate for
all situations, but performance does not necessarily increase with deeper looka-
head as demonstrated in figure 16.

e VMM has the ability to perform shape discrimination. Figure 17 demonstrates the
results of trying to recognize a (noise free) circle by a model trained to recognize
squares. In contrast figure 18 shows that a model trained on a circle will respond
to a square and, speculatively to any other shape as well.

The experimental results show that although not perfect, the VMM algorithm is indeed
quite robust to noise and is able to partially perform shape discrimination. More Ex-
periments will, of course by need to determine effectiveness of the VMM algorithm as
compared to classical approaches outlined in sections 2 and 3.

20 40 60 80

20 40 60 80 20 40 60 80 20 40 60 80

20 40 60 80 20 40 60 80 20 40 60 80

20 40 60 80 20 40 60 80

FIGURE 12. Top Left - a noiseless circle used for training. Top Middle - a
test circle with noise added to it by using the canny edge detector. Results
obtained using the VMM tracker. Second Row Ply depth 1-3, third Row ply
depth 4-6, bottom row ply depth 7 and 8 used to track the test shape.

5. DISCUSSION

In the previous section we discussed the inability of HMM at original shape reconstruc-
tion. We now present some of the possible solutions to this problem.
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5.1. Model Priming. A low order Fourier descriptor has been shown to effectively store
global shape characteristics. We could draw the course shape outline and then apply the
HMM model to fill in the details Figure 16 demostrates a result where a partial square
was completed by the VMM. Much like the discussion on AR vs Fourier based methods,
where it was shown that the AR models are more effective at storing local shape infor-
mation effectively whereas the Fourier descriptors are effective at storing global shape
properties, so too can the HMM be used to fill in local shape characteristics with the
Fourier descriptor providing the primer or global information to start the detailed tracing
process. Conceptually the Fourier descriptor (or any other coarse boundary descriptor)
can be thought of as the catalyst needed to start the recall process that will extract the
memory locked with the HMM.

5.2. Acknowledgements. Deepest thanks to Dr. Caelli and Dr. Bischoff for their patience
and insightful suggestions, without whom this project would not be possible.

5.3. Conclusion. This paper presented an overview of current boundary encoding tech-
niques together with a novel approach at model based shape encoding and recognition.
While Markov Shape Theory in general and VMM specifically do not provide a cure all
method for shape recognition in the presence of noise, occlusion, distortion. These new
techniques offer an initial glimpse into possible uses of Hidden Markov Models as robust
boundary extraction algorithms.

20 40 60 80

0
20 40 60 80 20 40 60 80

0 80
20 40 60 80 20 40 60 80 20 40 60 80

0
20 40 60 80 20 40 60 80

FIGURE 13. Top Left - a noiseless circle used for training. Top Middle - a
test circle with noise added to it by using a sobel edge detector. Results
obtained using the VMM tracker. Second Row Ply depth 1-3, third Row ply
depth 4-6, bottom row ply depth 7 and 8 used to track the test shape.
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APPENDIX A. MATHEMATICAL FORMULATIONS USED

A.1. Contour smoothing. From [Veltkamp(1]

If contour C is parameterized by arc-length s : C'(s) = (z(s), y(s)) then we can perform
contour smoothing by convolving the contour C with a Gaussian filter ¢, of width o as
follows:

2
exp 202

2

@) Zo(s) = / S(2)bo(t — s)dt, go(t) =

A.2. Moments. From [Loncaric98]
The two-dimensional Cartesian moment m,, , of order p + ¢ for a function f(z,y) is
defined as:

(5) / / 2Py f(x,y)dxdy

A.3. Curvature. From [Kauppinen et al.95]
The curvature of a boundary point i can be computed as follows:

2ro

1Y —Yicw tan~ Yi-1 — Yi—1—w e [1’ N — 1]

(6) c; = tan _—
Ty — Ti—w Ti—1 — Ti—1—w
where N is the number of boundary points and w is the window size. Figure 3 shows the

approach with a window size of 9 pixels.

A.4. Complex Coordinate Function. From [Kauppinen et al.95]
This is simply the coordinates of boundary points w.r.t. objects center.

7) zi = (2 — xe) + (Vi — Ye)
where (z., y.) are the coordinates of the object’s centroid and j = /—1.

A.5. Complex Arc Length Function.

APPENDIX B. VARIOUS PSEUDO CODE
This appendix presents some of the algorithmic details used to create the VMM code.

B.1. Boundary Following Algorithm. The following boundary following algorithms
was used to extract the boundary of a given shape.

(1) Find starting pixel s € S for the region using a systematic scan (from left to right, top to bottom).

(2) Let the current pixel in boundary tracking be denoted by c. Set ¢ = s and let the 4-neighbour to the west of s

bebe S

(3) Let the 8-neighbors of ¢ starting with b in clockwise order be n1, no, ..., bs. Find n; for the first ¢ thatisin S.

(4) Setc=n;and b=n;_1

(5) Repeat steps 3 and 4 until ¢ = s.
NOTE: Here 4/8 neighbor refers to the 4/8 directions for a chain code as depicted in Figure 5

E-mail address: ilya@cs.ualberta.ca
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FIGURE 14. Top Left - a noiseless circle used for training. Top Middle - a
test circle with noise added to it by using a roberts edge detector. Results
obtained using the VMM tracker. Second Row Ply depth 1-3, third Row ply
depth 4-6, bottom row ply depth 7 and 8 used to track the test shape.
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FIGURE 15. Top Left - a noiseless circle used for training. Top Middle - a
test circle with noise added to it by using a prewitt edge detector. Results
obtained using the VMM tracker. Second Row Ply depth 1-3, third Row ply
depth 4-6, bottom row ply depth 7 and 8 used to track the test shape.
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FIGURE 16. Top Left - a noiseless square used for training. Top Middle - a
test square with noise added to it. Results obtained using the VMM tracker.
Second Row Ply depth 1-3, third Row ply depth 4-6, bottom row ply depth
7 and 8 used to track the test shape. Clearly deeper lookahead is not always
beneficial as demonstrated by the results obtained using VMM with a ply
depth of 5 and 6
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FIGURE 17. Top Left - a noiseless square used for training. Top Middle - a
test circle. Results obtained using the VMM tracker. Second Row Ply depth
1-3, third Row ply depth 4-6, bottom row ply depth 7 and 8 used to track
the test shape. As can be seen a model trained on a square shape does not
respond to a circular test shape.
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FIGURE 18. Top Left - a noiseless circle used for training. Top Middle - a test
square. Results obtained using the VMM tracker. Second Row Ply depth 1-
3, third Row ply depth 4-6, bottom row ply depth 7 - 9 used to track the test
shape. As can be seen a model trained on a circle shape respond to a square
test shape due the fact that a circle is the most general shape. Speculatively,
an HMM trained on a circle should be able to represent any given shape.



