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Abstract

Consumers respond differently to external nutrient changes than producers,
resulting in a mismatch in elemental composition between them and potentially
having a significant impact on their interactions. To explore the responses of
herbivores and omnivores to changes in elemental composition in producers, we
develop a novel stoichiometric model with an intraguild predation structure. The
model is validated using experimental data, and the results show that our model
can well capture the growth dynamics of these three species. Theoretical and
numerical analyses reveal that the model exhibits complex dynamics, including
chaotic-like oscillations and multiple types of bifurcations, and undergoes long
transients and regime shifts. Under moderate light intensity and phosphate con-
centration, these three species can coexist. However, when the light intensity
is high or the phosphate concentration is low, the energy enrichment paradox
occurs, leading to the extinction of ciliate and Daphnia. Furthermore, if phos-
phate is sufficient, the competitive effect of ciliate and Daphnia on algae will be
dominant, leading to competitive exclusion. Notably, when the phosphorus-to-
carbon ratio of ciliate is in a suitable range, the energy enrichment paradox can
be avoided, thus promoting the coexistence of species. These findings contribute
to a deeper understanding of species coexistence and biodiversity.
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1 Introduction1

Alterations in nutrient supply, driven by eutrophication and climate warming, can2

modify the elemental composition of primary producers and have effects on higher3

trophic levels through energy and material transfer in the food web (De Sener-4

pont Domis et al, 2014; Tong et al, 2020). In general, the elemental composition of5

primary producers is flexible and very sensitive to changes in the nutritional sta-6

tus of the external environment (Paul et al, 2016). In contrast, most consumers can7

regulate and maintain their elemental ratios and have more stable cell quotas than8

primary producers (Sterner and Elser, 2017). This stoichiometric mismatch may bear9

significant consequences for interactions between consumers and their food resources,10

further impacting material and energy cycling in ecosystems (Sterner and Elser, 2017).11

For instance, some studies illustrated that poor-quality producers, characterized by12

a lower phosphorus-to-carbon ratio, may lead to the extinction of consumers (Diehl13

et al, 2022; Liu et al, 2023). Therefore, it is necessary and interesting to explore the14

effects of changes in element ratios in producers on predators or higher trophic lev-15

els, which can deepen our understanding of the coexistence mechanism of species and16

ecosystem stability.17

Ecological stoichiometry serves as a powerful tool for describing the balance of18

nutrients (phosphorus and nitrogen) and energy (light and carbon) in ecosystems and19

can help us understand the impact of environmental changes on food webs (Sterner20

and Elser, 2017). In the field of mathematical modeling, the stoichiometry model21

has garnered widespread interest, with a growing number of researchers integrating22

stoichiometry into ecological models to elucidate various ecological phenomena and23

existing paradoxes (Peace et al, 2013; Yan et al, 2022; Loladze et al, 2000; Chen et al,24

2017). One notable example is the Lotka-Volterra type producer-grazer stoichiometry25

model, originally proposed by Loladze et al (2000), which tracks the quantity and26

quality of producers. This model revealed the presence of energy enrichment paradox,27

i.e., eating large amounts of low-quality food can lead to the extinction of predators.28

Then, Li et al (2011) and Xie et al (2018) conducted a comprehensive global analysis29

and bifurcation analysis of the LKE model by considering Holling type I and Holling30

type II functional response functions, respectively. Building upon the work of Xie31

et al (2018), Yuan et al (2020) further explored the impact of environmental noise by32

developing a stochastically producer-grazer model. They investigated the phenomenon33

of regime shift between two stochastic attractors induced by noise in a bistable region.34

Furthermore, Peace et al (2014) extended the LKE model to study the growth response35

of Daphnia to algae with varying quality by tracking phosphate (Pi) levels in producers36

and the environment.37

Most of the aforementioned models introduce stoichiometry into predation and38

competition models to study these two basic community relationships. Besides pre-39

dation and competition, another basic community relationship, known as intraguild40

predation (IGP), has garnered substantial attention from both theoretical and empir-41

ical ecologists (Polis and Holt, 1992; Arim and Marquet, 2004; Hall, 2011; Lonsinger42

et al, 2017; Pringle et al, 2019; Diehl et al, 2022). It is a mixture of competition43

and predation, i.e., two species that compete for shared resources, and also involves a44

predator-prey relationship (Holt and Polis, 1997). Usually, three species are included45
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in the community relationship of IGP: intraguild (IG) predator, IG prey, and their46

shared prey species. There are numerous examples of IGP in both aquatic and terres-47

trial food web ecosystems. For instance, in aquatic ecosystems, ciliate and Daphnia48

both consume algae, but Daphnia also preys on ciliate (Diehl et al, 2022). Based on this49

community relationship, a large number of mathematical models have been developed.50

Holt and Polis (1997), to study the mechanism of species coexistence, first constructed51

a three-species food web model with IGP structure, revealing the challenges faced in52

achieving stable three-species coexistence. Subsequently, a large number of researchers53

conducted modeling and dynamics analysis of IGP from different perspectives (Ji et al,54

2022; Hsu et al, 2015; Shu et al, 2015; Kang and Wedekin, 2013; Diehl, 2003). In55

addition, to consider the impact of nutrients on food webs with IGP structures, some56

researchers have introduced stoichiometry into the IGP models. For instance, Diehl57

(2003) established a model consisting of one plant species with a flexible nutrient sto-58

ichiometry and two herbivorous consumers with fixed stoichiometry, delving into the59

mechanism for the coexistence of these three species. Ji et al (2023) formulated a60

stoichiometric IGP model that incorporates environmental fluctuations. Their results61

showed that the model can exhibit intricate dynamics, encompassing various forms of62

bifurcation and numerous types of bistability, especially cycle-cycle bistability, which63

does not appear in the non-stoichiometric IGP model. Taking into account changes in64

time scales, Chen et al (2023) constructed a discrete-time stoichiometric IGP model.65

Their investigation illuminated the differences in multistability characteristics and the66

existence interval of chaos between discrete-time and continuous-time models under67

moderate and high light intensities.68

These stoichiometric IGP models assume that all phosphate (Pi) in the system is69

within the bodies of the three species while ignoring free Pi in the environment. This70

assumption gives rise to a problem for the stoichiometric IGP model. Assuming that71

all available Pi is in the producer, then if its biomass is low, the Pi cell quota Q of72

the producer will become unrealistically large. To tackle this issue, a feasible way is to73

introduce the maximum value of Q. Consequently, two supplementary equations must74

be incorporated to trace variations in intracellular Pi of producer and free Pi in the75

environment. In this paper, we develop a novel stoichiometric IGP model by explic-76

itly tracking the Pi cell quota of producer and free Pi. Moreover, the effect of light on77

producer growth is explicitly considered in our model by utilizing the product of the78

Droop equation and the Monod equation. Our primary aim in developing this compre-79

hensive model was to more precisely capture the growth responses of IG prey and IG80

predator to varying quality producers, thereby enhancing our comprehension of the81

influence of nutrient levels in the aquatic environment on IGP population dynamics.82

The remainder of this paper is organized as follows. In section 2, we develop a novel83

stoichiometric IGP model by explicitly tracking the Pi cell quota of producer and free84

Pi. In section 3, we validate the model using experimental data of algae, ciliate, and85

Daphnia from the mesocosm experiment of Diehl et al (2022). The data fitting results86

demonstrate that our model adeptly replicates the behavior of these three species. In87

section 4, the well-posedness and dynamics of our model are studied. In section 5, we88

present the results of numerical simulations, exploring the influence of light intensity,89
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nutrient concentration, and the phosphorus-to-carbon ratio of IG prey on IGP model90

dynamics. Our findings are succinctly summarized in the last section.91

2 Model derivation92

In this section, we develop a stoichiometric algae-ciliate-Daphnia model with an93

intraguild predation structure by explicitly tracking free Pi in the environment and94

intracellular Pi in algae. Our model comprises five nonlinear differential equations95

that track variations in algal carbon density (A), ciliate carbon density (C), Daphnia96

carbon density (D), Pi cell quota of algae (Q), and Pi concentration in the aquatic97

environment (Pf ). This model simulates a well-mixed system open only to light and98

air. A schematic diagram of the model is shown in Fig. 1.99

Fig. 1 Schematic diagram for our mathematical modeling.

Let Pa, Pc, and Pd describe the intracellular Pi of algae, ciliate, and Daph-100

nia, respectively. Then Q = Pa/A represents the Pi cell quota of algae. Since the101

phosphorus-to-carbon ratio of predators changes very little, here we assume that cili-102

ate and Daphnia have fixed phosphorus to carbon ratio θ1 and θ2, respectively. Then103

one can obtain that Pc = Cθ1 and Pd = Dθ2. The following equation tracks the104

intracellular Pi of algae105

dPa
dt

= u(Pf , Q)A︸ ︷︷ ︸
Uptake by algae

− Pa
A
f(A)C︸ ︷︷ ︸

Loss due to ciliate grazing

− Pa
A
g(A)D︸ ︷︷ ︸

Loss due to Daphnia grazing

− d1Pa︸ ︷︷ ︸
Loss due to death

,

(1)
where u(Pf , Q) is the Pi uptake rate of algae, which is regulated by both free Pi (Pf )106

and algal cell quota (Q). As Pf increases, the Pi uptake rate increases, and finally107

tends to a saturated value. On the contrary, as cell quota Q increases, the uptake108

rate gradually diminishes, reaching zero when it reaches the maximum cell quota QM .109

Therefore, the following equation can be used to describe the algal Pi uptake rate110
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(Diehl et al, 2005),111

u(Pf , Q) =
γPf

(Pf +Kp)

(QM −Q)

(QM −Qm)
,

where γ is the maximum Pi uptake rate of algae, Kp is the half-saturation constant112

for Pi uptake of algae, QM is the maximum Pi cell quota of algae, and Qm is the113

minimum Pi cell quota of algae. The second and third items of (1) represent the loss114

of Pi in algal cells due to the graze of ciliate and Daphnia, respectively. The last item115

is the Pi loss due to algal death.116

In the natural environment, the restriction of multiple nutrients and light on the117

algal growth is referred to as co-limitation (Arrigo, 2005). Previous studies have pro-118

posed two different forms of algal growth models that consider co-limitation: threshold119

model and multiplicative model (Lee et al, 2015). The threshold model, also known120

as Liebig’s minimum law, assumes that the growth rate of algae is determined by121

the most limited resource among all the required resources for growth. This model122

is commonly used to describe the joint effects of multiple nutrients on the specific123

growth rate of algae, particularly the co-limitation of nitrogen and phosphorus (Guest124

et al, 2013). The multiplicative model assumes that all major resources can simul-125

taneously affect algal growth rate, which is often employed to describe the collective126

constraints imposed by nutrients, temperature, pH, CO2, and light intensity on algal127

growth (Wang et al, 2007; Yan et al, 2022; Chen et al, 2015).128

When light enters the water, a portion of it is absorbed by suspended matter and129

phytoplankton in the water. The light intensity at the water depth d can be expressed130

by the classical Lambert-Beer law (Huisman and Weissing, 1994) as131

I(d,A) = Iin exp(−(kA+Kbg)d), 0 < d < L,

where d = 0 means the water surface, d = L represents the bottom of the mixed132

layer, Iin is the light intensity on the water surface, k is the specific light attenuation133

coefficient of phytoplankton biomass, and Kbg is the background light attenuation134

coefficient.135

Based on these considerations, we employ the multiplicative form of the Droop and136

Monod equations to describe the co-limitation of the Pi concentration and the intensity137

of light on algal growth. Thus, the specific algal growth rate µ can be represented as138

µ = µmax

(
1− Qm

Q

)
Ī(A),

where Ī(A) = 1
L

∫ L
0

I(x,A)
I(x,A)+hdx = 1

L(kA+Kbg) ln
(

h+Iin
h+I(L,A)

)
is the average light inten-139

sity in the water column (López Muñoz and Bernard, 2021; Guedes et al, 2023; Wang140

et al, 2007), µmax is the maximum growth rate of algae, and h is the half-saturation141

constant of light-dependent algal production. Note that Ī(A) is decreasing with respect142

to A. The loss of algal biomass is caused by cell death and graze, in which both ciliate143

and Daphnia are able to prey on algae. Therefore, the change rate of algal biomass144
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can be expressed as145

dA

dt
= µmax

(
1− Qm

Q

)
Ī(A)A− f(A)C − g(A)D − d1A, (2)

where d1 is the loss rate of algae, f(A) and g(A) are functional response functions,146

which describe the rate at which ciliate and Daphnia ingest algae, respectively.147

Therefore, from equations (1) and (2) we can get the following equation to track148

changes in algae cell quota,149

dQ

dt
= u(Pf , Q)− µmax

(
1− Qm

Q

)
Ī(A)Q. (3)

We then obtain the following stoichiometric algae-ciliate-Daphnia model with150

intraguild predation structure:151 

dA

dt
=µmax

(
1− Qm

Q

)
Ī(A)A︸ ︷︷ ︸

Algae growth

− f(A)C︸ ︷︷ ︸
Ciliate graze

− g(A)D︸ ︷︷ ︸
Daphnia graze

− d1A,︸︷︷︸
Algae death

dC

dt
= e1 min

{
1,
Q

θ1

}
f(A)C︸ ︷︷ ︸

Growth limited by algae quality and quantity

− h(C)D︸ ︷︷ ︸
Daphnia graze

− d2C,︸︷︷︸
Ciliate death

dD

dt
= e2 min

{
1,
Q

θ2

}
g(A)D︸ ︷︷ ︸

Growth limited by algae quality and quantity

+ e3 min

{
1,
θ1

θ2

}
h(C)D︸ ︷︷ ︸

Growth limited by ciliate quality and quantity

− d3D,︸ ︷︷ ︸
Daphnia death

dQ

dt
= u(Pf , Q)︸ ︷︷ ︸

Phosphate uptake

− µmax

(
1− Qm

Q

)
Ī(A)Q,︸ ︷︷ ︸

Phosphate dilution due to algae growth

dPf
dt

= −u(Pf , Q)A︸ ︷︷ ︸
Pi consumption by algae

+ (Q− e2 min {θ2, Q}) g(A)D + (θ1 − e3 min{θ1, θ2})h(C)D︸ ︷︷ ︸
Pi recycling from Daphnia feces

+ (Q− e1 min {θ1, Q})f(A)C︸ ︷︷ ︸
Phosphate recycling from ciliate feces

+ d1AQ︸ ︷︷ ︸
Phosphate recycling from dead algae

+ d2Cθ1︸ ︷︷ ︸
Phosphate recycling from dead ciliate

+ d3Dθ2.︸ ︷︷ ︸
Phosphate recycling from dead Daphnia

(4)
The units and biological meaning of all state variables and parameters of model (4)152

are shown in Tables 1 and 2. Given the biological significance of model (4), we assume153

that all parameter values are positive. The first term of the second equation of model154

(4), e1 min{1, Q/θ1}, is the growth efficiency of ciliate, which depends on the algal155

quality Q. If Q > θ1, then the ciliate converts the consumed algae with the maximum156
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Table 1 Model variables.

Variables Meaning Units

A Algae carbon density mg C/m3

C Ciliate carbon density mg C/m3

D Daphnia carbon density mg C/m3

Q Pi cell quota of algae mg Pi/mg C
Pf Pi concentration in the environment mg Pi/m

3

Table 2 Model parameters.

Parameters Meaning Values Units Source

QM Maximum Pi cell quota of algae 0.0398 mg Pi/mg C (Diehl et al, 2022)
θ1 phosphorus to carbon ratio of ciliate 0.0245 mg Pi/mg C (Diehl et al, 2022)
θ2 phosphorus to carbon ratio of Daphnia 0.0323 mg Pi/mg C (Diehl et al, 2022)
L Depth of the water column 1.5 m (Diehl et al, 2022)

k Specific light attenuation coefficient of algae 0.00036 m2/mg C (Diehl et al, 2022)

Kbg Background light attenuation coefficient 1 m−1 (Diehl et al, 2022)

Iin Light intensity at water surface 240 µmol photons/(m2 · s) (Diehl et al, 2022)

h Half-saturation constant of 120 µmol photons/(m2 · s) (Diehl et al, 2022)
light-dependent algal production

µmax Maximum growth rate of algae 0.56 day−1 Fitting
Qm Minimum Pi cell quota of algae 0.0001 mg Pi/mg C Fitting

a1 Half saturation constant of ciliate 725 mg C/m3 Fitting
ingestion response to algae

a2 Half saturation constant of Daphnia 858 mg C/m3 Fitting
ingestion response to algae

a3 Half saturation constant of Daphnia 212 mg C/m3 Fitting
ingestion response to ciliate

Kp Half saturation constant for Pi 15.6 mg Pi/m
3 Fitting

uptake of algae

σ1 Maximal ingestion rate of ciliate 0.76 day−1 Fitting
on algae

σ2 Maximal ingestion rate of Daphnia on algae 0.82 day−1 Fitting

σ3 Maximal ingestion rate of Daphnia on ciliate 0.75 day−1 Fitting

γ Maximum specific Pi uptake rate of algae 0.012 day−1 Fitting

d1 Algae death rate 0.18 day−1 Fitting

d2 Ciliate death rate 0.01 day−1 Fitting

d3 Daphnia death rate 0.105 day−1 Fitting
e1 Maximal production efficiency of ciliate 0.85 Fitting

from consuming algae
e2 Maximal production efficiency of Daphnia 0.68 Fitting

from consuming algae
e3 Maximal production efficiency of Daphnia 0.74 Fitting

from consuming ciliate
r Decomposition ratio of dead cells 0.5 Fitting

by microorganisms
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efficiency e1 and egests the excessively ingested Pi. If Q < θ1, it implies that ciliate157

is limited by Pi, the efficiency is e1Q/θ1. Similarly, we utilize the minimum functions158

e2 min {1, Q/θ2} and e3 min {1, θ1/θ2} to describe the growth efficiency of Daphnia by159

consuming algae and ciliate, respectively. Notice that ei < 1, i = 1, 2, 3 due to the160

second law of thermodynamics. In the last equation of model (4), u(Pf , Q)A is the Pi161

uptake by algae, d1AQ, d2Cθ1, and d3Dθ2 are the Pi recycling from the dead cells of162

algae, ciliate, and Daphnia, respectively. (Q − e1 min {θ1, Q})f(A)C describes the Pi163

received by ciliate preying on algae minus the actual Pi retained due to growth and164

maintenance needs, this gives the amount of Pi recovered from ciliate manure and165

other losses. Similarly, (Q− e2 min {θ2, Q}) g(A)D and (θ1 − e3 min{θ1, θ2})h(C)D166

are the amount of Pi recovered from Daphnia manure and other losses. Here, h(C) is167

the functional response function, which describes the rate of Daphnia ingest ciliate. In168

this paper, we use the following Holling type II functional response functions (Holling,169

1965):170

f(A) =
σ1A

a1 +A
, g(A) =

σ2A

a2 +A
, h(C) =

σ3C

a3 + C
,

where σ1 is the maximal ingestion rate of the ciliate on algae, σ2 is the maximal171

ingestion rate of the Daphnia on algae, σ3 is the maximal ingestion rate of the Daphnia172

on ciliate, a1 is the half-saturation constant of the ciliate ingestion response to algae,173

a2 is the half-saturation constant of the Daphnia ingestion response to algae, a3 is the174

half-saturation constant of the Daphnia ingestion response to ciliate.175

Let P = AQ+Cθ1 +Dθ2 + Pf be the total Pi of the system. We can easily check176

that dP
dt = 0. Thus, the total Pi of model (4) is kept at a constant level, and then we177

can formulate an expression for the free Pi, Pf = P − AQ − Cθ1 − Dθ2. Therefore,178

model (4) can be reduced to the following four equations:179 

dA

dt
=µmax

(
1− Qm

Q

)
Ī(A)A︸ ︷︷ ︸

Algae growth

− f(A)C︸ ︷︷ ︸
Ciliate graze

− g(A)D︸ ︷︷ ︸
Daphnia graze

− d1A,︸︷︷︸
Algae death

dC

dt
= e1 min

{
1,
Q

θ1

}
f(A)C︸ ︷︷ ︸

Growth limited by algae quality and quantity

− h(C)D︸ ︷︷ ︸
Daphnia graze

− d2C,︸︷︷︸
Ciliate death

dD

dt
= e2 min

{
1,
Q

θ2

}
g(A)D︸ ︷︷ ︸

Growth limited by algae quality and quantity

+ e3 min

{
1,
θ1

θ2

}
h(C)D︸ ︷︷ ︸

Growth limited by ciliate quality and quantity

− d3D,︸ ︷︷ ︸
Daphnia death

dQ

dt
=u(P −AQ− θ1C − θ2D,Q)︸ ︷︷ ︸

Phosphate uptake

− µmax

(
1− Qm

Q

)
Ī(A)Q.︸ ︷︷ ︸

Phosphate dilution due to algae growth

(5)
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3 Model validation180

In this section, we validate model (4) using experimental data of algae, ciliate, and
Daphnia from the mesocosm experiment conducted by Diehl et al (2022). Their exper-
imental results showed a decreasing trend in the total Pi of the system during the
experiment. This decline could be attributed to the low activity of microorganisms,
leading to a slow decomposition rate of dead cells (algae, ciliate, and Daphnia). To
account for the incomplete decomposition of these dead cells during the experiment,
we introduce a decomposition ratio, denoted as r, when fitting the experimental data.
Consequently, the last equation of model (4) can be modified as

dPf
dt

=− u(Pf , Q)A+ (Q− e1 min {θ1, Q})f(A)C + (Q− e2 min {θ2, Q}) g(A)D

+ (θ1 − e3 min{θ1, θ2})h(C)D + r (d1AQ+ d2Cθ1 + d3Dθ2) .
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Fig. 2 Comparison of the fitted curves of model (4) with experimental data. (a) Algal carbon density
(A); (b) Ciliate carbon density (C); (c) Daphnia carbon density (D); (d) Pi cell quota of algae (Q);
(e) Pi concentration in the environment (Pf ). The parameter values of model (4) can be estimated
by fitting the five state variables simultaneously, and the parameter values are shown in Table 2.

181

Some parameter values of model (4) are determined according to the experimental182

conditions. The remaining parameter values are obtained by fitting the five variables of183

model (4) with the experimental data simultaneously using the least squares method,184

which is implemented with the “fmincon” function in MATLAB (R2020b). The esti-185

mated parameter values are given in Table 2. In addition, the model cost of all state186
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variables is calculated to assess the fitting accuracy of model (4), following the method187

described by Gao et al (2022). The fitting results show that the solution of model (4)188

can well capture the changes in experimental data, especially A and Pf have better189

fitting effects, and the model costs are 4.0854 and 5.1811 respectively (Fig. 2). The190

remaining variables, C, D, and Q, also capture the changing trend of the experimental191

data, with model costs of 80.8821, 67.5164, and 11.9871, respectively. The model vali-192

dation results show that under appropriate parameter values, our model can accurately193

track the dynamics of the three populations of algae, ciliate, and Daphnia.194

4 Qualitative analysis195

In this section, we conduct a basic analysis of model (5), confirming the boundedness196

and positivity of the solution, establishing the existence of boundary equilibria, and197

investigating their stability. Furthermore, we demonstrate the existence of the positive198

equilibrium using the persistence theory (Zhao, 2003).199

4.1 Well-posedness200

The boundedness and positive invariance of the solution of model (5) can be201

guaranteed by the following theorem, which shows that model (5) is biologically202

well-defined.203

Theorem 1. Solutions of model (5) with initial conditions in the set

∆ =
{

(A,C,D,Q)
∣∣0 < A, 0 < C, 0 < D, Qm < Q < QM , AQ+ θ1C + θ2D < P

}
will remain there for all forward time.204

Proof. Let S(t) = (A(t), C(t), D(t), Q(t)) be a solution of model (5) with S(0) ∈205

∆. Notice that A = 0, C = 0, and D = 0 are all solutions of model (5). Thus, by the206

theorem of existence and uniqueness of solutions, S(t) cannot leave the region ∆ by207

touching or crossing these boundary planes. Suppose that there exists a positive t1208

such that S(t) touches or crosses the boundary of ∆ for the first time. Then there must209

have three cases: Q(t1) = Qm or Q(t1) = QM or A(t1)Q(t1) + θ1C(t1) + θ2D(t1) = P .210

In the following, we will show all these three cases are impossible using proof by211

contradiction.212

Case 1. Assume that A(t1)Q(t1) + θ1C(t1) + θ2D(t1) = P . Denote213

V = A(t)Q(t) + θ1C(t) + θ2D(t).
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Then V (t) < P for t ∈ [0, t1) and V (t1) = P , which implies that dV
dt

∣∣
t=t1
≥ 0. On the214

other hand, along the solution of model (5) we can compute that215

dV

dt

∣∣∣
t=t1

=A′(t1)Q(t1) +A(t1)Q′(t1) + θ1C
′(t1) + θ2D

′(t1)

≤σ1A(t1)C(t1)Q(t1)

a1 +A(t1)
(e1 − 1) +

σ2A(t1)D(t1)Q(t1)

a2 +A(t1)
(e2 − 1)

+
θ1σ3C(t1)D(t1)

a3 + C(t1)
(e3 − 1)− d1A(t1)Q(t1)− θ1d2C(t1)− θ2d3D(t1)

<0.

A contradiction. Thus we can confirm that A(t)Q(t) + θ1C(t) + θ2D(t) < P for all216

t ≥ 0.217

Case 2. Assume that Q(t1) = Qm. In this case, Qm < Q(t) < QM for t ∈ [0, t1),218

and therefore dQ
dt

∣∣
t=t1
≤ 0. On the other hand, by noticing from case 1 that A(t1)Qm+219

θ1C(t1) + θ2D(t1) < P , we have220

dQ

dt

∣∣∣
t=t1

= u(P −A(t1)Qm − θ1C(t1)− θ2D(t1), Qm) > 0,

which, again, leads to a contradiction. Therefore Q(t) > Qm for all t ≥ 0.221

Case 3. If Q(t1) = QM . Similar logic as that for case 2 we can prove Q(t) < QM222

for all t ≥ 0.223

Summarizing above, we obtain that ∆ is a positive invariant set of model (5). �224

For the convenience of mathematical analysis, we rewrite model (5) as the following225

form:226

dA

dt
= AF (A,C,D,Q),

dC

dt
= CG(A,C,D,Q),

dD

dt
= DH(A,C,Q),

dQ

dt
= W (A,C,D,Q),

(6)
where227

F (A,C,D,Q) =µmax

(
1− Qm

Q

)
Ī(A)− σ1C

a1 +A
− σ2D

a2 +A
− d1,

G(A,C,D,Q) =e1 min

{
1,
Q

θ1

}
σ1A

a1 +A
− σ3D

a3 + C
− d2,

H(A,C,Q) =e2 min

{
1,
Q

θ2

}
σ2A

a2 +A
+ e3 min

{
1,
θ1

θ2

}
σ3C

a3 + C
− d3,

W (A,C,D,Q) =
γ(P −AQ− θ1C − θ2D)(QM −Q)

(P −AQ− θ1C − θ2D +Kp)(QM −Qm)
− µmax

(
1− Qm

Q

)
Ī(A)Q.

4.2 Boundary equilibria228

Model (5) may exist the following four types of boundary equilibria:229
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(i) Total extinction equilibrium E0 = (0, 0, 0, Q̂), where230

Q̂ =
γPQM + µmaxQmĪ(0)(P +Kp)(QM −Qm)

γP + µmaxĪ(0)(P +Kp)(QM −Qm)
. (7)

(ii) Algae-only equilibrium E1 = (A1, 0, 0, Q1), where Q1 = µmaxĪ(A1)Qm

µmaxĪ(A1)−d1
and A1 is the231

positive root of the equation232

γ(P −AQ1)(QM −Q1)

(P −AQ1 +Kp)(QM −Qm)
− d1

µmaxĪ(A)Qm
µmaxĪ(A)− d1

= 0. (8)

(iii) Daphnia-absent equilibrium E2 = (A2, C2, 0, Q2), where

A2 =
a1d2

e1 min
{

1, Q2

θ1

}
σ1 − d2

, C2 =

(
µmax

(
1− Qm

Q2

)
Ī(A2)− d1

)
a1 +A2

σ1
,

and Q2 is the positive root of the equation233

γ(P −A2Q− C2θ1)

P −A2Q− C2θ1 +Kp

QM −Q
QM −Qm

−
(
d1 +

σ1C2

a1 +A2

)
Q = 0. (9)

(iv) Ciliate-absent equilibrium E3 = (A3, 0, D3, Q3), where

A3 =
a2d3

e2 min
{

1, Q3

θ2

}
σ2 − d3

, D3 =

(
µmax

(
1− Qm

Q3

)
Ī(A3)− d1

)
a2 +A3

σ2
,

and Q3 is the positive root of the equation234

γ(P −A3Q−D3θ2)

P −A3Q−D3θ2 +Kp

QM −Q
QM −Qm

−
(
d1 +

σ2D3

a2 +A3

)
Q = 0. (10)

Define235

R0 =
µmax

(
1− Qm

Q̂

)
Ī(0)

d1
, RC1 =

e1 min
{

1, Q1

θ1

}
σ1A1

a1+A1

d2
, RD1 =

e2 min
{

1, Q1

θ2

}
σ2A1

a2+A1

d3
,

RD2 =
e2 min

{
1, Q2

θ2

}
σ2A2

a2+A2
+ e3 min{1, θ1θ2 }

σ3C2

a3+C2

d3
, RC3 =

e1 min
{

1, Q3

θ1

}
σ1A3

a1+A3
− σ3D3

a3

d2
.

Biologically, R0 is called the ecological reproductive index of algae, which determines236

the invasion of the aquatic ecosystem by algae; RC1 and RC3 are two critical values237

determining respectively the invasion of the system by ciliate in the absence and238

presence of Daphnia; RD1 and RD2 are critical values determining respectively the239

invasion of the system by Daphnia in the absence and presence of ciliate.240

The following theorems establish the existence of four-type boundary equilibria.241
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Theorem 2. Model (5) always exists the total extinction equilibrium E0 = (0, 0, 0, Q̂),242

which is the only equilibrium if R0 < 1. When R0 > 1, model (5) exists a unique243

algae-only equilibrium E1 = (A1, 0, 0, Q1).244

Proof. Obviously, model (5) always exists the total extinction equilibrium E0 =245

(0, 0, 0, Q̂), where Q̂ is defined in (7). Any algae-only equilibrium of model (5), if246

exists, must simultaneously satisfy F (A, 0, 0, Q) = 0 and W (A, 0, 0, Q) = 0, i.e., Q =247

µmaxĪ(A)Qm

µmaxĪ(A)−d1
and γ(P−AQ)(QM−Q)

(P−AQ+Kp)(QM−Qm) − d1Q = 0. Define248

f1(A) =
µmaxĪ(A)Qm
µmaxĪ(A)− d1

and f2(A) =
γ(P −Af1(A))(QM − f1(A))

(P −Af1(A) +Kp)(QM −Qm)
.

By simple calculations, one can obtain that249

df1(A)

dA
=− d1µmaxĪ

′(A)Qm
(µmaxĪ(A)− d1)2

> 0,

df2(A)

dA
=−

γKp

(
f1(A) +Adf1(A)

dA

)
(QM − f1(A))

(P −Af1(A) +Kp)2(QM −Qm)
−

γ(P −Af1(A))df1(A)
dA

(P −Af1(A) +Kp)(QM −Qm)
< 0.

(11)
Thus, f1(A) and f2(A) are respectively monotonically increasing and decreasing with250

respect to A.251

If R0 < 1, then one can obtain that µmax

(
1− Qm

Q̂

)
Ī(0) < d1, and thus Q̂ <252

µmaxĪ(0)Qm

µmaxĪ(0)−d1
= f1(0). Moreover, we can compute that253

f2(0) =
γP

P +Kp

QM − f1(0)

QM −Qm
<

γP

P +Kp

QM − Q̂
QM −Qm

= µmax

(
1− Qm

Q̂

)
Ī(0)Q̂ < d1f1(0).

Therefore f2(A) = d1f1(A) has no positive root, which implies that model (5) does254

not exist the algae-only equilibrium.255

If R0 > 1, we have µmax

(
1− Qm

Q̂

)
Ī(0) > d1 and Q̂ > µmaxĪ(0)Qm

µmaxĪ(0)−d1
= f1(0). Then,256

one can obtain257

f2(0) =
γP

P +Kp

QM − f1(0)

QM −Qm
>

γP

P +Kp

QM − Q̂
QM −Qm

= µmax

(
1− Qm

Q̂

)
Ī(0)Q̂ > d1f1(0).

Notice that any equilibrium of model (5) must lie in ∆, the closure of ∆. Define258

Ã1 = min{A|P −Af1(A) = 0 or QM − f1(A) = 0}.

Then f2(Ã1) = 0. Noticing also the monotonicity of f1(A) and f2(A), we must have259

d1f1(Ã1) > f2(Ã1) = 0. Therefore there must exist one unique positive A1 ∈ (0, Ã1)260

such that f2(A1) = d1f1(A1). This means that model (5) exists a unique algae-only261

equilibrium E1 = (A1, 0, 0, Q1) if R0 > 1, where Q1 = µmaxĪ(A1)Qm

µmaxĪ(A1)−d1
. �262
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Theorem 3. If min{R0, R
C
1 } > 1, then model (5) has at least one Daphnia-absent263

equilibrium E2 = (A2, C2, 0, Q2). Moreover, if θ1 < Qm, E2 is unique.264

Proof. By solving F (A,C, 0, Q) = 0, G(A,C, 0, Q) = 0, and W (A,C, 0, Q) = 0,265

we obtain that266

A =
a1d2

e1 min
{

1, Qθ1

}
σ1 − d2

:= g1(Q), (12)

267

C =

(
µmax

(
1− Qm

Q

)
Ī(A)− d1

)
a1 +A

σ1
:= g2(Q) (13)

and268

γ(P −AQ− θ1C)(QM −Q)

(P −AQ− θ1C +Kp)(QM −Qm)
−
(
d1 +

σ1C

a1 +A

)
Q = 0.

Notice from G(A,C, 0, Q) = 0 that e1 min
{

1, Qθ1

}
σ1 − d2 > 0, and therefore A =269

g1(Q) > 0. Define270

G1(Q) =
γ(P − g1(Q)Q− g2(Q)θ1)(QM −Q)

(P − g1(Q)Q− g2(Q)θ1 +Kp)(QM −Qm)
, G2(Q) =

(
d1 +

σ1g2(Q)

a1 + g1(Q)

)
Q.

Let Q̃2 be the solution of g2(Q) = 0, then we have271

µmax

(
1− Qm

Q̃2

)
Ī(g1(Q̃2)) = d1. (14)

Obviously, Q̃2 > Qm. Notice that A = g1(Q) and Ī(A) are decreasing with respect to272

Q and A, respectively. Thus Ī(g1(Q)) is increasing with Q, and hence g2(Q) > 0 for273

Q > Q̃2.274

If RC1 > 1, we assert that Q̃2 < Q1. In fact, from RC1 > 1 we have that275

A1 >
a1d2

e1 min
{

1, Q1

θ1

}
σ1 − d2

= g1(Q1).

Assume that Q̃2 ≥ Q1, then one can obtain that g1(Q̃2) ≤ g1(Q1) < A1 and therefore276

Ī(g1(Q̃2)) > Ī(A1). Thus, we have277

µmax

(
1− Qm

Q̃2

)
Ī(g1(Q̃2)) > µmax

(
1− Qm

Q1

)
Ī(A1) = d1,

which contradicts with equation (14).278

Notice that G1(QM ) = 0 < G2(QM ). Therefore, if G1(Q̃2) > G2(Q̃2), then279

G1(Q) = G2(Q) has at least one positive root in (Q̃2, QM ). From Theorem 2 we know280

that if R0 > 1, E1 exists and satisfies the following equations:281

µmax

(
1− Qm

Q1

)
Ī(A1) = d1 and

γ(P −A1Q1)(QM −Q1)

(P −A1Q1 +Kp)(QM −Qm)
= µmax

(
1− Qm

Q1

)
Ī(A1)Q1.

(15)
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From equations (14) and (15) we have Ī(A1) < Ī(g1(Q̃2)), which implies that g1(Q̃2) <282

A1. Therefore, one can obtain that283

G1(Q̃2) =
γ(P − g1(Q̃2)Q̃2)(QM − Q̃2)

(P − g1(Q̃2)Q̃2 +Kp)(QM −Qm)
>

γ(P −A1Q1)(QM −Q1)

(P −A1Q1 +Kp)(QM −Qm)
> d1Q̃2 = G2(Q̃2),

where we have used equation (15) in the last inequality. Thus, G1(Q) = G2(Q) has284

at least one positive root Q2 ∈ (Q̃2, QM ), which implies that model (5) has at least285

one equilibrium E2 = (A2, C2, 0, Q2) if min{R0, R
C
1 } > 1, where A2 and C2 can be286

calculated from (12) and (13), respectively.287

Moreover, if θ1 < Qm, then A2 = a1d2
e1σ1−d2 and288

C2 =

(
µmax(1− Qm

Q2
)Ī(A2)− d1

)
a1 +A2

σ1
.

By simple calculations, one can obtain that G1(Q) and G2(Q) are monotonically289

decreasing and increasing with respect to Q, respectively. Therefore, in combination290

with the above analyses, we can conclude that G1(Q) = G2(Q) has a unique positive291

root Q2 ∈ (Q̃2, QM ). That is to say, model (5) exists one unique equilibrium E2 if292

min{R0, R
C
1 } > 1 and θ1 < Qm hold. �293

Theorem 4. If min{R0, R
D
1 } > 1, then model (5) has at least one ciliate-absent294

equilibrium E3 = (A3, 0, D3, Q3). Moreover, if θ2 < Qm, E3 is unique.295

The proof of Theorem 4 is similar to that of Theorem 3, we omit it.296

4.3 Stability of boundary equilibria297

The following theorems give the local and global asymptotic stability properties of the298

four-type boundary equilibria.299

Theorem 5. The total extinction equilibrium E0 is locally asymptotically stable if300

R0 < 1, while it is unstable if R0 > 1. Moreover, E0 is globally asymptotically stable301

if R̂0 =
µmax

(
1−Qm

QM

)
Ī(0)

d1
< 1.302

The proof can be found in Appendix A.303

Theorem 6. Assume that R0 > 1. If max
{
RC1 , R

D
1

}
< 1, the algae-only equilibrium304

E1 is locally asymptotically stable, while it is unstable if max
{
RC1 , R

D
1

}
> 1. Moreover,305

if306

R̂C1 =
e1σ1 min

{
1, QM

θ1

}
d2

< 1 and R̂D1 =
e2σ2 min

{
1, QM

θ2

}
d3

< 1,

then E1 is globally asymptotically stable.307

The proof can be found in Appendix B.308

Theorem 7. Assume that min{R0, R
C
1 } > 1. If RD2 > 1, the Daphnia-absent equilib-309

rium E2 is unstable. When RD2 < 1, E2 is locally asymptotically stable if one of the310

following conditions hold:311

(i) Q2 > θ1 and d1 > d∗1 := µmax

(
1− Qm

Q2

)(
Ī ′(A2)

(
1− Qm

Q2

)
(a1 +A2) + Ī(A2)

)
;312
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(ii) Q2 < θ1, d1 > d∗∗1 := µmax

(
1 − Qm

Q2

)(
Ī ′(A2)

(
a1 +A2 − e1Q2σ1

θ1

)
+ Ī(A2)

)
, and313

a21a44 < a24a41, where a21 = C2GA(A2, C2, 0, Q2), a24 = C2GQ(A2, C2, 0, Q2), a41 =314

WA(A2, C2, 0, Q2) and a44 = WQ(A2, C2, 0, Q2).315

The proof can be found in Appendix C.316

Theorem 8. Assume that min{R0, R
D
1 } > 1. If RC3 > 1, then the ciliate-absent317

equilibrium E3 is unstable. When RC3 < 1, then E3 is locally asymptotically stable if318

one of the following conditions hold.319

(i) Q3 > θ2 and d1 > µmax

(
1− Qm

Q3

)(
Ī ′(A3)

(
1− Qm

Q3

)
(a1 +A3) + Ī(A3)

)
;320

(ii) Q3 < θ2, d1 > µmax

(
1 − Qm

Q3

)(
Ī ′(A3)

(
a2 +A3 − e2Q3σ2

θ2

)
+ Ī(A3)

)
, and321

a31a44 < a41a34;322

where a31 = D3HA(A3, 0, D3, Q3), a34 = D3HQ(A3, 0, D3, Q3), a41 =323

WA(A3, 0, D3, Q3), and a44 = WQ(A3, 0, D3, Q3).324

The proof of Theorem 8 is similar to that of Theorem 7, we omit it.325

Based on the above analyses, the existence and local stability of boundary326

equilibrium of model (5) can be summarized in Table 3.

Table 3 Existence and local stability of boundary equilibria of model (5)

Equilibria Existence Local stability

E0 always exists R0 < 1

E1 R0 > 1 RC1 < 1, RD1 < 1

E2 R0 > 1, RC1 > 1 RD2 < 1, condition (i) or (ii) of Theorem 7 holds

E3 R0 > 1, RD1 > 1 RC3 < 1, condition (i) or (ii) of Theorem 8 holds

327

Remark 1. It can be seen from the results of Theorems 5 to 8 that when the ecological328

reproduction index (R0) of algae is less than 1, the algae cannot survive, and thus the329

ciliate and Daphnia will also become extinct. When R0 > 1, algae can successfully330

invade the system, and if max{RC1 , RD1 } < 1, then only algae exist in the system,331

otherwise ciliate or Daphnia can invade the system. If RC1 > 1, then ciliate can332

invade the system containing only algae, and if RD2 < 1, algae and ciliate can coexist333

but Daphnia become extinct. Similarly, if RD1 < 1, Daphnia can invade the system334

containing only algae, and if RC3 < 1, Daphnia and algae can coexist, and ciliate will335

become extinct.336

4.4 Interior equilibria337

In this subsection, we explore the existence of interior equilibrium E∗ =338

(A∗, C∗, D∗, Q∗) by utilizing the persistence method (Zhao, 2003).339
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We first consider the following two subsystems: algae-ciliate subsystem340

dA

dt
=µmax

(
1− Qm

Q

)
Ī(A)A− σ1AC

a1 +A
− d1A,

dC

dt
=e1 min

{
1,
Q

θ1

}
σ1AC

a1 +A
− d2C,

dQ

dt
=

γ(P −AQ− θ1C)(QM −Q)

(P −AQ− θ1C +Kp)(QM −Qm)
− µmax

(
1− Qm

Q

)
Ī(A)Q,

(16)

and algae-Daphnia subsystem341

dA

dt
=µmax

(
1− Qm

Q

)
Ī(A)A− σ2AD

a2 +A
− d1A,

dD

dt
=e2 min

{
1,
Q

θ2

}
σ2AD

a2 +A
− d3D,

dQ

dt
=

γ(P −AQ− θ2D)(QM −Q)

(P −AQ− θ2D +Kp)(QM −Qm)
− µmax

(
1− Qm

Q

)
Ī(A)Q.

(17)

From Theorem 1, one can obtain that342

∆2 ={(A,C,Q)|0 < A, 0 < C, Qm < Q < QM , AQ+ θ1C < P},
∆3 ={(A,D,Q)|0 < A, 0 < D, Qm < Q < QM , AQ+ θ2D < P}

are the global attracting region and positive invariant set of model (16) and model343

(17), respectively.344

To study the existence of E∗, we assume that Φ(t) : ∆→ ∆ is the solution semiflow
of model (5). Let

∂∆ = {(A,C,D,Q) ∈ ∆|A = 0 or C = 0 or D = 0, and Qm < Q < QM}.

From Theorem 1, Φ(t) is point dissipative and compact and has a global attractor.345

We introduce projections Xi : R3
+ → R+, i = 1, 2, 3 and Yj : R3

+ → R+, j = 1, 2, 3346

by347

X1(A,C,Q) = A, X2(A,C,Q) = C, X3(A,C,Q) = Q,

Y1(A,D,Q) = A, Y2(A,D,Q) = D, Y3(A,D,Q) = Q.

Let348

χ1 = X1(∆2), χ2 = X2(∆2), χ3 = X3(∆2), ψ1 = Y1(∆3), ψ2 = Y2(∆3), ψ3 = Y3(∆3),

and349

Ã = inf χ1, C̃ = inf χ2, Q̃ = inf χ3, Ā = inf ψ1, Ď = supψ2, Q̄ = inf ψ3.

17



Define350

R̂D2 =
e2 min

{
1, Q̃θ2

}
σ2Ã
a2+Ã

+ e3 min
{

1, θ1θ2

}
σ3C̃
a3+C̃

d3
and R̂C3 =

e1 min
{

1, Q̄θ1

}
σ1Ā
a1+Ā

− σ3Ď
a3

d2
.

Denote M1 = {(A,C, 0, Q)|(A,C,Q) ∈ ∆2} and M2 = {(A, 0, D,Q)|(A,D,Q) ∈ ∆3}.351

Now we prove E0, E1, M1, and M2 are uniformly weak repellers with respect to ∆,352

i.e., there exists δi, i = 1, 2, 3, 4 such that353

lim sup
t→∞

dist(Φ(t)q0, E0) ≥ δ1, lim sup
t→∞

dist(Φ(t)q0, E1) ≥ δ2,

lim sup
t→∞

dist(Φ(t)q0,M1) ≥ δ3, lim sup
t→∞

dist(Φ(t)q0,M2) ≥ δ4,

for all q0 = (A0, C0, D0, Q0) ∈ ∆.354

Lemma 9. (i) If R0 > 1, then E0 is a uniform weak repeller for ∆;355

(ii) If R0 > 1 and max{RC1 , RD1 } > 1, then E1 is a uniform weak repeller for ∆;356

(iii) If R0 > 1 and R̂D2 > 1, then M1 is a uniform weak repeller for ∆;357

(iv) If R0 > 1 and R̂C3 > 1, then M2 is a uniform weak repeller for ∆;358

Proof. If R0 > 1, max{RC1 , RD1 } > 1, R̂D2 > 1, and R̂C3 > 1, then one can obtain
that

µmax

(
1− Qm

Q̂−ε

)
Ī(ε)− σ1ε

a1
− σ2ε

a2

d1
> 1, (18a)

max

e1 min
{

1, Q1−ε
θ1

}
σ1(A1−ε)
a1+A1−ε −

σ3ε
a3

d2
,
e2 min

{
1, Q1−ε

θ2

}
σ2(A1−ε)
a2+A1−ε

d3

 > 1, (18b)

e2 min
{

1, Q̃−εθ2

}
σ2(Ã−ε)
a2+Ã−ε + e3 min{1, θ1θ2 }

σ3(C̃−ε)
a3+C̃−ε

d3
> 1, (18c)

e1 min
{

1, Q̄−εθ1

}
σ1(Ā−ε)
a1+Ā−ε −

σ3(Ď+ε)
a3

d2
> 1, (18d)

for a sufficiently small ε > 0.359

Now we use the proof by contradiction to prove this Lemma. If the Lemma does360

not hold, then there are qi ∈ ∆, i = 1, 2, 3, 4 such that361

lim sup
t→∞

dist(Φ(t)q1, E0) < ε, lim sup
t→∞

dist(Φ(t)q2, E1) < ε,

lim sup
t→∞

dist(Φ(t)q3,M1) < ε, lim sup
t→∞

dist(Φ(t)q4,M2) < ε,

here ε > 0 is defined as above. Thus, we can find Ti, i = 1, 2, 3, 4, such that

|A(t, q1)| < ε, |C(t, q1)| < ε, |D(t, q1)| < ε, |Q(t, q1)− Q̂| < ε, t > T1, (19a)
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|A(t, q2)−A1| < ε, |C(t, q2)| < ε, |D(t, q2)| < ε, |Q(t, q2)−Q1| < ε, t > T2, (19b)

dist(A(t, q3), χ1) < ε, dist(C(t, q3), χ2) < ε, |D(t, q3)| < ε, dist(Q(t, q3), χ3) < ε, t > T3,
(19c)

dist(A(t, q4), ψ1) < ε, |C(t, q4)| < ε, dist(D(t, q4), ψ3) < ε, dist(Q(t, q3), ψ3) < ε, t > T4.
(19d)

From the first equation of model (5), we have362

dA(t, q1)

dt
≥
(
µmax

(
1− Qm

Q̂− ε

)
Ī(ε)− σ1ε

a1
− σ2ε

a2
− d1

)
A, t > T1,

if (19a) holds. This means that lim supt→∞A(t, q1) = ∞ since (18a) holds, which363

contradicts with (19a). Thus, (i) holds.364

If (19b) holds, then one can obtain that365

dC(t, q2)

dt
≥
(
e1 min

{
1,
Q1 − ε
θ1

}
σ1(A1 − ε)
a1 +A1 − ε

− σ3ε

a3
− d2

)
C, t > T2,

dD(t, q2)

dt
≥
(
e2 min

{
1,
Q1 − ε
θ2

}
σ2(A1 − ε)
a2 +A1 − ε

− d3

)
D, t > T2,

which implies that lim supt→∞ C(t, q2) = ∞ or lim supt→∞D(t, q2) = ∞ since (18b)366

holds. A contradiction with (19b), and then (ii) holds.367

If (19c) holds, then368

dD(t, q3)

dt
≥

(
e2 min

{
1,
Q̃− ε
θ2

}
σ2(Ã− ε)
a2 + Ã− ε

+ e3 min
{

1,
θ1

θ2

} σ3(C̃ − ε)
a3 + C̃ − ε

− d3

)
D, t > T3,

which implies that lim supt→∞D(t, q3) = ∞ since (18c) holds. A contradiction with369

(19c), and then (iii) holds.370

If (19d) holds, then371

dC(t, q4)

dt
≥
(
e1 min

{
1,
Q̄− ε
θ1

}
σ1(Ā− ε)
a1 + Ā− ε

− σ3(Ď + ε)

a3
− d2

)
C, t > T4,

which implies that lim supt→∞ C(t, q4) = ∞ since (18d) holds. A contradiction with372

(19d), and then (iv) holds. �373

Theorem 10. If R0 > 1, max{RC1 , RD1 } > 1, R̂D2 > 1, and R̂C3 > 1, then model (5)374

is uniformly persistent with respect to (∆, ∂∆), i.e., there exists a positive constant η375

such that376

min
{

lim inf
t→∞

A(t, q0), lim inf
t→∞

C(t, q0), lim inf
t→∞

D(t, q0), lim inf
t→∞

Q(t, q0)
}
≥ η

for any q0 = (A0, C0, D0, Q0) ∈ ∆. Furthermore, model (5) admits at least one377

coexistence equilibrium E∗.378
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Proof. Let ω(q̄0) be the omega limit set of the orbit O+(q̄0) := {Φ(t)q̄0|t ≥ 0} for379

any q̄0 ∈ ∂∆. Obviously, Φ(t)q̄0 ∈ ∂∆. We claim that ω(q̄0) ⊂ E0∪E1∪M1∪M2,∀ q̄0 ∈380

∂∆. We prove it in the following four cases:381

(i) If A0 = 0, C0 = 0, D0 = 0, Q0 6= 0, then we have A(t, q̄0) = 0, C(t, q̄0) = 0, and382

D(t, q̄0) = 0 for all t ≥ 0. From Theorem 5, lim
t→∞

(A(t, q̄0), C(t, q̄0), D(t, q̄0), Q(t, q̄0)) =383

(0, 0, 0, Q̂).384

(ii) If A0 6= 0, C0 = 0, D0 = 0, Q0 6= 0, then one can obtain385

that C(t, q̄0) = 0 and D(t, q̄0) = 0 for all t ≥ 0. From Theorem 6,386

limt→∞(A(t, q̄0), C(t, q̄0), D(t, q̄0), Q(t, q̄0)) = (A1, 0, 0, Q1).387

(iii) If A0 6= 0, C0 6= 0, D0 = 0, Q0 6= 0, then D(t, q̄0) = 0 for all t ≥ 0. From388

Theorem 1, (A(t, q̄0), C(t, q̄0), Q(t, q̄0)) eventually enters ∆2.389

(iv) If A0 6= 0, C0 = 0, D0 6= 0, Q0 6= 0, then C(t, q̄0) = 0 for all t ≥ 0. From390

Theorem 1, (A(t, q̄0), D(t, q̄0), Q(t, q̄0)) eventually enters ∆3.391

This shows that the claim holds.392

Based on the above discussion and Lemma 9, one can obtain the following conclu-393

sions: (1) {E0, E1,M1,M2} is disjoint, compact, isolated invariant set in ∂∆; (2) E0,394

E1, M1, and M2 are isolated in ∆; (3) no subset of E0, E1,M1,M2 forms a cycle in395

∂∆. By Lemma 9, Ei and Mj , i = 0, 1, j = 1, 2, are uniformly weak repellers for ∆.396

Therefore, W s(Ei) ∩∆ = ∅, i = 0, 1 and W s(Mj) ∩∆ = ∅, j = 1, 2, where W s(Ei)397

and W s(Mj) are the stable sets of Ei and Mj , respectively. By Theorem 1.3.1 in Zhao398

(2003), Φ(t) is uniformly persistence for (∆, ∂∆). Furthermore, from Theorem 1.3.6399

in Zhao (2003), Φ(t) admits a global attractor in ∆, and model (5) has at least one400

coexistence equilibrium E∗ ∈ ∆. �401

Remark 2. The condition of Theorem 10 is only a sufficient condition for the coex-402

istence of algae, ciliate and Daphnia. They may also coexist if this condition does not403

hold. In addition, if ∆2 = {(A2, C2, Q2)}, then R̂D2 can be replaced by RD2 . Similarly,404

if ∆3 = {(A3, D3, Q3)}, then R̂C3 can be replaced by RC3 .405

5 Numerical simulations406

In this section, we conduct some numerical simulations to illustrate the impact of407

environmental factors such as light intensity and nutrient concentration, as well as408

the phosphorus to carbon ratio of ciliate on the interactions among the three species:409

algae, ciliate, and Daphnia. The parameter values are presented in Table 2.410

5.1 Effects of light intensity411

Algae, through photosynthesis, transform solar energy into organic matter, thereby412

providing energy for aquatic food webs and playing a crucial role in sustaining the413

stability and biodiversity of aquatic ecosystems. Variations in light intensity can sig-414

nificantly impact algae quality, i.e., the cell quota Q, which can profoundly affect the415

dynamics of populations in food webs. Bifurcation diagrams provide a clear and visual416

means to investigate how system dynamics are influenced by specific parameters. Here417

we present the bifurcation diagram for model (5) concerning surface light intensity418

(Iin) in seawater under both Pi-deficient (Fig. 3) and Pi-sufficient conditions (Fig. 4).419
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Fig. 3 Bifurcation diagram of model (5) with varying Iin. Here P = 5, d2 = 0.035, and the resting
parameter values are from in Table 2. Initial condition: (A(0), C(0), D(0), Q(0))=(50, 4, 2, 0.001).

Fig. 3 shows that when Iin is low (0 < Iin < 118), the photosynthetic activity of algae420

is limited, and the energy generated through photosynthesis falls short of sustaining421

algae growth, leading to the extinction of all three species. With a gradual increase422

in Iin (118 < Iin < 121), the photosynthesis of algae will be enhanced, resulting in a423

higher cell growth rate, thereby allowing the algae to survive. However, the light inten-424

sity at this stage cannot support the persistence of ciliate and Daphnia. As Iin further425

increases (121 < Iin < 180), algae can capture more energy, facilitating the survival426

of ciliate, but it is not adequate to sustain Daphnia. When Iin continues to increase427

(180 < Iin < 221), all species can coexist at a stable interior equilibrium E∗. Never-428

theless, if the light intensity continues to increase, the quantity of algae will increase429

greatly but its quality will become extremely poor, which will lead to the extinction430

of ciliate and Daphnia due to lack of Pi. Specifically, if 221 < Iin < 247, the quality of431

algae diminishes, and the intracellular Pi of algae and ciliate becomes insufficient to432

support the growth of Daphnia. In this case, Daphnia becomes extinct and the equi-433

librium E2 is the attractor. If Iin > 247, the quality of algae further deteriorates, and434

the intracellular Pi of algae becomes inadequate to sustain ciliate, ultimately leading435

to ciliate extinction.436

Fig. 4 shows the bifurcation results of model (5) with respect to Iin under Pi-437

sufficient condition. When light intensity is low (Iin < 117.3), none of the three species438
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Fig. 4 Bifurcation diagram of model (5) with varying Iin (Blue dots: local maxima; Red dots: local
minima). Here P = 12, d = 0.035 and the rest parameter values are from Table 2. The initial condition
is the same as Fig. 3.

can persist. However, as Iin increases, algae, and ciliate can invade the system one439

after another. In the range of 117.3 < Iin < 119.4, algae can survive, and the boundary440

equilibrium E1 is the attractor. Subsequently, with Iin increases (119.4 < Iin < 168),441

ciliate can invade the aquatic ecosystem, allowing algae and ciliate to coexist at442

the stable boundary equilibrium E2. As Iin increases through the threshold value of443

Iin = 168, a Hopf bifurcation appears and E2 loses its stability. Therefore, a limit444

cycle emerges, and its amplitude grows with the increase of Iin within a reasonable445

interval (168 < Iin < 189.6). When Iin increases past the threshold value of 189.6, the446

dynamics of model (5) changes abruptly, the boundary limit cycle disappears, and an447

interior limit cycle will appear, i.e., all species coexist in the form of periodic oscil-448

lations. Then as Iin further increases, model (5) exhibits chaotic behavior through449

the period-doubling bifurcation. As Iin continues to increase, the irregular oscillation450

behavior of model (5) is replaced by periodic oscillation, ultimately stabilizing at an451

interior equilibrium E∗. When the light intensity is relatively high, the growth rate of452

algae increases and a large amount of low-quality algae are produced, causing ciliate453

and Daphnia to die out one after another due to the lack of Pi. This aligns with the454

findings of experiments, where higher algae abundance corresponds to lower ciliate455

and Daphnia abundance (Diehl et al, 2022). It is worth noting that, compared to the456
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case of Pi deficiency, under Pi sufficient conditions, the dynamics of model (5) become457

more intricate, and the three species may coexist in the form of periodic oscillations458

or irregular oscillations.459
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Fig. 5 Model (5) undergoes regime shifts with the change of Iin. (a)–(d) P = 5 and d2 = 0.035;
(e)–(h) P = 12 and d2 = 0.035; The rest parameter values are from in Table 2. The initial condition
is same as Fig. 3.

We also note that in Fig. 3, there is a discontinuous jump in the dynamics of model460

(5) from the boundary equilibrium E2 to the positive equilibrium E∗. Specifically,461

when the light intensity Iin increases from 180.2 to 180.3, the biomass of Daphnia462

suddenly increases, and the biomass of algae and ciliate also experiences mutations463

(see the first row of Fig. 5). This phenomenon is widely recognized as the regime shift.464

A similar regime shift also occurs under Pi-sufficient (Fig. 4). With minor changes in465

Iin, the system dynamics can change from the boundary limit cycle to the interior466

limit cycle where three species coexist (see the second row of Fig. 5). Furthermore,467

Fig. 5 shows that model (5) displays long transient behavior, i.e. the duration of the468

transient can span tens or even hundreds of generations and then suddenly transitions469

to another regime (as shown in the red line in Fig. 5).470

5.2 Effects of phosphate level471

The concentration of Pi in the water directly affects the growth of algae, thereby472

affecting the interaction of species in the food web. In this subsection, we select P473

(total Pi) as the bifurcation parameter to simulate the impact of Pi level on the system474

dynamics. The bifurcation diagrams are shown in Fig. 6 (θ1 = 0.0245) and Fig. 7475

(θ1 = 0.03).476

Fig. 6 shows that when Pi concentration is deficient, algae will consume a large477

amount of intracellular Pi to maintain their growth, resulting in a decline in their478

quality (cell quota Q of algae is low). In this scenario, the energy enrichment paradox479

arises, ciliate and Daphnia cannot survive due to the poor food quality. As P increases,480
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Fig. 6 Bifurcation diagram of model (5) with varying P (Blue dots: local maxima; Red dots: local
minima). Here θ1 = 0.0245 and the rest parameter values are from in Table 2. The initial condition
is same as Fig. 3.

algae can luxuriously absorb Pi from the environment and store it in their cells, and481

then the cell quota gradually increases. At this time, ciliate can rely on the intracellular482

Pi of algae to maintain growth, but the intracellular Pi of algae and ciliate cannot483

yet sustain the survival of Daphnia since it has higher Pi requirements. As P further484

increases, the intracellular Pi of algae becomes more abundant, allowing Daphnia to485

maintain their growth by preying on algae and ciliate. When P = 6.93, model (5)486

experiences a Hopf bifurcation. As P exceeds 6.93, the positive equilibrium E∗ loses487

its stability, giving rise to a stable limit cycle where all species coexist in a regular488

oscillatory pattern. As P continues to increase, the system enters a phase of chaotic489

oscillations, with all species exhibiting irregular oscillations. However, with further490

increases in P , Daphnia becomes extinct, and algae and ciliate will coexist in a regular491

oscillation. This is because when Pi is sufficient, the competitive effect of ciliates and492

Daphnia on algae exceeds the predation effect of Daphnia on ciliate, and the principle493

of competitive exclusion is established. The phosphorus-to-carbon ratio of ciliate is494

closer to that of algae, so it has an advantage when competing with Daphnia for food,495

which eventually leads to the extinction of Daphnia due to starvation.496

Fig. 7 depicts the impact of changes in Pi concentration in the environment on the497

model dynamics when the phosphorus to carbon ratio of ciliate is large. Comparing498
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Fig. 7 Bifurcation diagram of model (5) with varying P (Blue dots: local maxima; Red dots: local
minima). Here θ1 = 0.03 and the rest parameter values are from in Table 2. The initial condition is
same as Fig. 3.

Figs. 6 and 7, we can see that as P increases, the dynamics of model (5) are similar499

to Fig. 6 at first, but when P is large enough, the system shows different dynamic500

behaviors. Specifically, when Pi concentration is high, ciliate is extinct, algae and501

Daphnia coexist first at a constant density and finally in a regular oscillation. This is502

because when the phosphorus-to-carbon ratio of the ciliate is close to that of Daphnia,503

the ciliate loses its competitive advantage under the predation pressure of Daphnia,504

which ultimately leads to the extinction of the ciliate. As can be seen from Figs. 6 and505

7, the moderate Pi concentration is conducive to the coexistence of the three species,506

which is consistent with previous research results (Diehl, 2003; Loladze et al, 2004).507

Note that model (5) will also undergo regime shifts as P changes small. When508

θ1 = 0.0245, the increase of P from 17.3 to 17.4 will destroy the chaotic coexistence509

state of all species, causing the dynamics of the system to tend to a boundary limit510

cycle (see the first row of Fig. 8). In addition, when θ1 = 0.03, the increase of P from511

22.2 to 22.3 will lead to the transition of dynamics of model (5) from the interior limit512

cycle to boundary equilibrium E3 (see the second row of Fig. 8).513
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Fig. 8 Model (5) undergoes regime shifts with the change of P . (a)–(d) θ1 = 0.0245; (e)–(h) θ1 =
0.03; The rest parameter values are from in Table 2. The initial condition is same as Fig. 3.

5.3 Effects of the phosphorus to carbon ratio of ciliate514

The IG prey (ciliate), which feeds on producers (algae) and is preyed by IG predator515

(Daphnia), plays an important role in the IGP system. Consequently, alterations in516

its phosphorus-to-carbon ratio can significantly influence the system dynamics. To517

investigate the impact of the quality of ciliate on system dynamics, we conduct a518

bifurcation analysis using θ1 as the bifurcation parameter under the conditions of519

Pi-deficient (P = 5) and Pi-sufficient (P = 15), respectively.520

It can be seen from Fig. 9 that when θ1 ∈ (0.0003, 0.00766), algae and ciliate coex-521

ist in a form of periodic oscillation, while Daphnia becomes extinct. This is due to the522

phosphorus-to-carbon ratio of ciliate being close to that of algae, and the intracellular523

Pi in algae is sufficient to maintain the growth of ciliate. Despite the abundance of524

algae and ciliate, their Pi content is too low and constitutes poor-quality food for Daph-525

nia, leading to the extinction of Daphnia. As θ1 increases and surpasses the threshold526

value of 0.00766, the boundary limit cycle vanishes, and the boundary equilibrium E2527

becomes stable, which means that algae and ciliate can coexist with constant densities.528

With further increases in θ1, the quality of ciliate improves, enabling sufficient intracel-529

lular Pi of algae and ciliate to sustain the growth of Daphnia. Thus, a scenario emerges530

where the three species coexist with constant densities for θ1 ∈ (0.0177, 0.02546). Con-531

tinuing the increase in θ1, the demand for Pi by ciliate steadily increases, resulting in a532

gradual decline in the ciliate population due to Pi limitation. The reduction of ciliate533

alleviates the predation pressure on algae, leading to a rapid increase in algae quantity534

and a decrease in algae quality. Ultimately, both ciliate and Daphnia face extinction as535

they are unable to acquire sufficient Pi from algal cells. When θ1 > 0.02546, Daphnia536

becomes extinct, and then when θ1 > 0.0293, ciliate becomes extinct. The time series537

graph of model (5) under different θ1 values in Fig. 10 reveals that as θ1 increases, the538

dynamics of model (5) first stabilizes from the boundary limit cycle to the boundary539

equilibrium E2, then transitions to positive equilibrium E∗ where the three species540
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Fig. 9 Bifurcation diagram of model (5) with varying phosphorus to carbon ratio θ1 of ciliate (Blue
dots: local maxima; Red dots: local minima). Here P = 5, d2 = 0.03 and the rest parameter values
are from in Table 2. The initial condition is same as Fig. 3.

coexist with constant densities, and finally stabilizes at the only-algae exist equilib-541

rium E1. These results align with the bifurcation diagram of θ1 (Fig. 9). Fig. 11 depicts542

the bifurcation results of model (5) with respect θ1 under Pi-sufficient condition. It is543

evident that when Pi is sufficient, the impact of changes in θ1 on system dynamics is544

similar to that observed under Pi-deficient. Notably, sufficient Pi augments the com-545

plexity of the dynamics of model (5). The system may exhibit chaotic behavior, where546

the three species coexist in the form of irregular oscillations. Furthermore, sufficient547

Pi expands the range of θ1 that allows three species to coexist (Figs. 9 and 11). The548

above results show that the quality of ciliate has a significant impact on the dynamics549

of the IGP model. When the phosphorus-to-carbon ratio of ciliate is at an intermediate550

value, it is beneficial for the coexistence of species in the IGP food web. Conversely,551

a larger or smaller phosphorus-to-carbon ratio is not conducive to the coexistence of552

three species. Excessively large phosphorus-to-carbon ratio leads to the extinction of553

ciliate and Daphnia due to poor-quality algae, while smaller phosphorus-to-carbon554

ratio results in the extinction of Daphnia due to the poor quality of ciliate.555

Obviously, a regime shift appears as θ1 changes from 0.0177 to 0.01771 under Pi-556

deficient, resulting in a sudden increase in the biomass of algae and Daphnia (the557

first row of Fig. 12). This shift means a dynamics transition in model (5) from a558
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Fig. 10 Time series diagrams of model (5) for different values of phosphorus to carbon ratio θ1 of
ciliate. (a)–(d) θ1 = 0.005; (e)–(h) θ1 = 0.015; (i)–(l) θ1 = 0.0245; (m)–(p) θ1 = 0.03; Here P = 5,
d2 = 0.03, and the rest parameter values are from in Table 2. The initial condition is same as Fig. 3.

stable boundary equilibrium E2 to a stable interior equilibrium E∗ occurs. A similar559

regime shift occurs under Pi sufficient (second row of Fig. 12). Minor alterations in560

the phosphorus-to-carbon ratio of ciliate can trigger the transition of Daphnia from561

an extinct state to an irregular oscillation state. The dynamics of model (5) changes562

from a boundary limit cycle to a chaotic state where all species coexist. Note that the563

long transients are also observed in Fig. 12.564

6 Discussion565

In this study, we developed a novel stoichiometric IGP model by explicitly tracking the566

intracellular phosphate (Pi) of algae and free Pi in the environment. Furthermore, the567

effect of light intensity on algal growth was explicitly characterized in our model by568
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Fig. 11 Bifurcation diagram of model (5) with varying phosphorus to carbon ratio θ1 of ciliate (Blue
dots: local maxima; Red dots: local minima). Here P = 15, d2 = 0.03, and the rest parameter values
are from in Table 2. The initial condition is same as Fig. 3.

using the classical Droop and Monod equations, which help directly explore the impact569

of light intensity on system dynamics. This model was validated by the mesocosm570

experimental data of algae, ciliate, and Daphnia from Diehl et al (2022). The fitting571

results illustrated that our model can well capture the dynamics of the three species in572

the experiment. Theoretical and numerical analyses illustrated that the model exhibits573

complex dynamics, including chaos and multiple types of bifurcations, and undergoes574

long transients and regime shifts.575

A comprehensive numerical analysis of the model was performed using the parame-576

ter values obtained from data fitting. The bifurcation analysis results of light intensity577

and total Pi revealed that they have an important influence on the growth and coex-578

istence of the three species. Under extremely low light intensity, the photosynthesis of579

algae is too low to maintain species survival, leading to the extinction of all species580

(Fig. 3). With increasing light intensity, algae, ciliate, and Daphnia can successfully581

invade the system one after another. At moderate light levels, the three species can582

coexist with constant densities, periodic oscillations, or irregular oscillations. In the583

high-light environment, the system will be limited by Pi, producing a large amount584

of low-quality algae, leading to the extinction of ciliate and Daphnia due to Pi defi-585

ciency (Fig. 3). Notably, Daphnia has a higher demand for Pi than ciliate (θ1 < θ2), so586
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Fig. 12 Model (5) undergoes regime shifts with the change of phosphorus to carbon ratio θ1 of
ciliate. (a)–(d) P = 5 and d2 = 0.03; (e)–(h) P = 15 and d2 = 0.03; The rest parameter values are
from in Table 2. The initial condition is same as Fig. 3.

Daphnia usually dies out before ciliate due to Pi deficiency (Figs. 3 and 4). Further-587

more, our numerical results indicated that under Pi-insufficient conditions, no matter588

how the light intensity changes, it will not cause the coexistence of populations in589

the form of periodic or irregular oscillations (Fig. 3). This showed that the lower Pi590

concentration in the environment is not enough to maintain the complex dynamics of591

the system. Conversely, in a high-Pi environment, the three species are more prone592

to exhibiting complex coexistence patterns, such as periodic oscillations and irregular593

oscillations (Fig. 4).594

At a constant light intensity, an increase in the available Pi concentration within595

the system leads to progressively intricate dynamics, including the emergence of a596

limit cycle, period-doubling bifurcation, and even chaotic phenomena. Similar to the597

results observed in light intensity simulations, the coexistence of the three species598

occurs at an intermediate level of available Pi, with both lower and higher concentra-599

tions leading to the extinction of ciliate or Daphnia (Figs. 6 and 7). Specifically, at600

low Pi concentration, ciliate and Daphnia will become extinct by eating poor-quality601

algae, which is known as the energy enrichment paradox. If the concentration of Pi is602

high, the quality of the algae will be improved, which will intensify the competition603

between ciliate and Daphnia for algae, leading to the competitive exclusion (Diehl,604

2003; Loladze et al, 2004). When the phosphorus to carbon ratio of ciliate is close to605

that of algae, ciliate has a competitive advantage, and with the increase of concentra-606

tion of Pi, Daphnia eventually becomes extinct (Fig. 6). If the phosphorus to carbon607

ratio of ciliate is close to that of Daphnia, then Daphnia will gain a competitive advan-608

tage, eventually leading to the extinction of ciliate (Fig. 7). This is consistent with the609

existing findings that stable coexistence of consumers and omnivores is not possible610

when the quality of shared prey is high (Diehl, 2003; Loladze et al, 2004; Elser et al,611

2012). Furthermore, our simulations revealed that small adjustments in light intensity612

and Pi concentration near critical values result in abrupt shifts in the system (Figs. 3613
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and 12). The regime shift may lead to the extinction of the population and harm the614

biodiversity of the ecosystem. This phenomenon is common in ecosystems, for exam-615

ple, during the initial stages of harmful algal blooms, where changes in light intensity616

or Pi concentration can trigger rapid algae proliferation. Similarly, during the later617

stages of a harmful algal bloom, alterations in the environment may lead to a sudden618

decline in algae density.619

In our model, as with many stoichiometric models, we assume a constant phos-620

phorus to carbon ratio for ciliate and Daphnia. This hypothesis is based on the621

understanding that while predator phosphorus-to-carbon ratio may vary, the extent622

of this variation is relatively small compared to changes in producers. Nonetheless,623

recent research challenged this assumption of strict homeostasis, demonstrating that624

phosphorus to carbon ratio in consumers can exhibit considerable flexibility (Prater625

et al, 2017; Teurlincx et al, 2017). To explore the reliability and availability of strict626

hypothesis assumptions, Wang et al (2012) established one-nutrient and two-nutrient627

stoichiometry models by tracking the phosphorus-to-carbon ratio of herbivores. They628

defined a hard dynamic threshold for herbivore stoichiometric variability, and when629

herbivore stoichiometric variability is smaller than this threshold, the strict homeosta-630

sis assumption can be applied. Building on this work, Wang et al (2018) extended the631

model to include light/energy dynamics, establishing a weak dynamic threshold. Under632

the weak dynamic threshold definition, the strict homeostasis assumption is more633

likely to hold, which further supports the conclusion that strict herbivore homeostasis634

can be assumed for most herbivores.635

To investigate the influence of the phosphorus-to-carbon ratio of ciliate on the636

dynamics of the IGP model, a bifurcation analysis of θ1 was performed. The637

results illustrated that variations in θ1 significantly impact system dynamics. A low638

phosphorus-to-carbon ratio of ciliate will lead to the extinction of Daphnia, whereas a639

high phosphorus to carbon ratio of ciliate will cause algae to lose control and produce640

a large amount of low-quality algae, causing ciliate and Daphnia to become extinct641

due to Pi deficiency. Our simulation results indicated that if the ciliate maintains an642

appropriate phosphorus-to-carbon ratio, the coexistence of the three species is feasible,643

and the energy enrichment paradox can be avoided (Figs. 9 and 12). Because ciliate644

has a higher phosphorus-to-carbon ratio than algae, they can trophically upgrade poor645

quality algae, which can alleviate the degree of the stoichiometric mismatch between646

algae and Daphnia, mitigating Daphnia extinction risk (Golz et al, 2015; Declerck and647

de Senerpont Domis, 2023).648

Therefore, it is necessary to consider the variations in consumer phosphorus to649

carbon ratio in future studies, which could help deepen the understanding of species650

coexistence and ecological diversity. In addition, the coexistence mechanism of the651

three species is intricate and can appear as positive equilibrium, regular oscillations,652

or irregular oscillations. In the theoretical analysis, we only proved the existence of653

positive equilibrium. The remaining two coexistence forms are given in numerical654

simulations. Rigorous proof of these two coexistence mechanisms is a challenging open655

problem.656
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Appendix670

To analyze the stability of the boundary equilibria, we first compute the Jacobian671

matrix of model (5), which is shown below672

J =


F +AFA AFC AFD AFQ
CGA G+ CGC CGD CGQ
DHA DHC H DHQ

WA WC WD WQ

 ,

where673

FA =µmax

(
1− Qm

Q

)
Ī ′(A) +

σ1C

(a1 +A)2
+

σ2D

(a2 +A)2
,

FC =− σ1

a1 +A
, FD = − σ2

a2 +A
, FQ =

µmax Ī(A)Qm

Q2
,

GA =

{
e1σ1a1

(a1+A)2 , Q > θ1,
Qe1σ1a1
θ1(a1+A)2 , Q < θ1,

GQ =

{
0, Q > θ1,
e1σ1A

θ1(a1+A) , Q < θ1,
GC =

σ3D

(a3 + C)2
, GD = − σ3

a3 + C
,

HA =

{
e2σ2a2

(a2+A)2 , Q > θ2,
Qe2σ2a2
θ2(a2+A)2 , Q < θ2,

HC =

{
e3σ3a3

(a3+C)2 , θ1 > θ2,
θ1e3σ3a3
θ2(a3+C)2 , θ1 < θ2,

HQ =

{
0, Q > θ2,
e2σ2A

θ2(a2+A) , Q < θ2,
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WA =− γKpQ(QM −Q)

(P −AQ− θ1C − θ2D +Kp)2(QM −Qm)
− µmax

(
1− Qm

Q

)
Ī ′(A)Q,

WC =− γθ1Kp(QM −Q)

(P −AQ− θ1C − θ2D +Kp)2(QM −Qm)
,

WD =− γθ2Kp(QM −Q)

(P −AQ− θ1C − θ2D +Kp)2(QM −Qm)
,

WQ =
−γAKp(QM −Q)− γ(P −AQ− θ1C − θ2D)

(P −AQ− θ1C − θ2D +Kp)2(QM −Qm)
− µmaxĪ(A).

A Proof of Theorem 5674

The Jacobian matrix at E0 is675

J(E0) =


a11 0 0 0
0 −d2 0 0
0 0 −d3 0
a41 a42 a43 a44

 .

Obviously, a11, −d2, −d3, and a44 are the four eigenvalues of the character-676

istic equation of J(E0), where a11 = µmax

(
1− Qm

Q̂
Ī(0)

)
− d1 and a44 =677

− γP
(P+Kp)(QM−Qm) − µmaxĪ(0) < 0. If R0 < 1, then a11 < 0, and hence all eigenvalues678

of the characteristic equation of J(E0) have negative real parts, which indicates that679

E0 is locally asymptotically stable. If R0 > 1, then a11 > 0, which means that E0 is680

unstable.681

Now we prove E0 is a global attractor when R̂0 < 1. By the first equation of model682

(5), we have683

dA

dt
= µmax

(
1− Qm

Q

)
Ī(A)A− σ1AC

a1 +A
− σ2AD

a2 +A
−d1A <

(
µmax

(
1− Qm

QM

)
Ī(0)− d1

)
A,

which illustrates that lim supt→∞A(t) = 0 if R̂0 < 1. Then the second equation of684

model (5) becomes685

dC

dt
= − σ3CD

a3 + C
− d2C,

which implies that lim supt→∞ C(t) = 0. Similarly, we can obtain that686

lim supt→∞D(t) = 0. The last equation of model (5) can be rewritten as687

dQ

dt
=

γP (QM −Q)

(P +Kp)(QM −Qm)
+ µmaxĪ(0)(Qm −Q).

This means that lim supt→∞Q(t) = Q̂. Therefore, in summary, E0 is a globally attrac-688

tor. Note that R0 < R̂0, then R̂0 < 1 implies that E0 is locally asymptotically stable.689

Thus E0 is globally asymptotically stable if R̂0 < 1. �690
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B Proof of Theorem 6691

The Jacobian matrix at E1 is692

J(E1) =


a11 a12 a13 a14

0 a22 0 0
0 0 a33 0
a41 a42 a43 a44

 ,

where693

a11 =µmax

(
1− Qm

Q1

)
Ī ′(A1)A1 < 0, a22 = e1 min

{
1,
Q1

θ1

}
σ1A1

a1 +A1
− d2,

a33 =e2 min

{
1,
Q1

θ2

}
σ2A1

a2 +A1
− d3, a14 =

µmaxQmA1Ī(A1)

Q2
1

> 0,

a41 =− γKpQ1(QM −Q1)

(P −A1Q1 +Kp)2(QM −Qm)
− µmax

(
1− Qm

Q1

)
Ī ′(A1)Q1,

a44 =− γKpA1(QM −Q1)

(P −A1Q1 +Kp)2(QM −Qm)
− γ(P −A1Q1)

(P −A1Q1 +Kp)(QM −Qm)
− µmaxĪ(A1) < 0.

Note that a22 and a33 are two eigenvalues of characteristic equation of J(E1), and the694

rest two eigenvalues satisfy the equation695

λ2 − (a11 + a44)λ+ a11a44 − a14a41 = 0. (20)

By simple calculations, one can check that a11a44−a14a41 > 0. Note that a11+a44 < 0,696

then all roots of equation (20) have negative real parts. If max
{
RC1 , R

D
1

}
< 1, then697

a22 < 0 and a33 < 0, and hence all eigenvalues of characteristic equation of J(E1) have698

negative real parts, which means that E1 is locally asymptotically stable. Conversely,699

if max
{
RC1 , R

D
1

}
> 1, E1 is unstable.700

Now we prove that E1 is globally asymptotically stable. The second equation of
model (5) can be expressed as

dC

dt
= e1 min

{
1,
Q

θ1

}
σ1AC

a1 +A
− σ3CD

a3 + C
− d2C <

(
e1σ1 min

{
1,
QM
θ1

}
− d2

)
C,

which implies that lim supt→∞ C(t) = 0 if R̂C1 < 1. Then the third equation of model
(5) can be rewritten as

dD

dt
= e2 min

{
1,
Q

θ2

}
σ2AD

a2 +A
− d3D <

(
e2σ2 min

{
1,
QM
θ2

}
− d3

)
D,

which means that lim supt→∞D(t) = 0 if R̂D1 < 1. In autonomous system (5), both701

C(t) and D(t) converge to 0. Therefore, we can use the following limit system to702
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consider the behavior of the solution of system (5) when D = 0 and C = 0,703

dA

dt
=µmax

(
1− Qm

Q

)
Ī(A)A− d1A,

dQ

dt
=

γ(P −AQ)(QM −Q)

(P −AQ+Kp)(QM −Qm)
− µmax

(
1− Qm

Q

)
Ī(A)Q.

(21)

Define ∆1 = {(A,Q)|0 < A, Qm < Q < QM , AQ < P}. From Theorem 1, ∆1 is the704

positive invariant set of system (21). System (21) is the limit system of asymptotically705

autonomous system (5) under the constraint max{RC1 , RD1 } < 1. The results of Markus706

(1956) and Thieme (1992) allow us to compare the solutions of autonomous system707

with those of asymptotically autonomous limit systems. Obviously, model (21) has708

two equilibria Ẽ0 = (0, Q̂) and Ẽ1 = (A1, Q1) when R0 > 1. It is easy to know from709

Theorems 5 and 6 Ẽ0 is unstable and Ẽ1 is locally asymptotically stable if R0 > 1.710

Note that711

∂A′

∂A
+
∂Q′

∂Q
= µmax

(
1− Qm

Q

)
Ī ′(A)A−d1−

γAKp(QM −Q) + γ(P −AQ)

(P −AQ+Kp)2(QM −Qm)
−µmaxQmĪ(A)

Q
< 0.

Therefore, model (21) has no periodic orbit in ∆1 by using the Dulac-Bendixson712

theorem. Note also that ∆1 is simply connected and a positive invariant set of system713

(21). Therefore, according to Poincaré-Bendixson theorem, all solutions of system (21)714

starting in ∆1 will converge to Ẽ1 when R0 > 1. Thus, Ẽ1 is globally asymptotically715

stable. The omega limit set of the forward bounded solution of the autonomous system716

(5) consists of the equilibrium of its limit autonomous system (21) (Thieme, 1992).717

Hence, the omega limit set of system (5) is {E1} when R0 > 1 and max{R̂C1 , R̂D1 } <718

1. The algae-only equilibrium E1 is globally asymptotically stable if R0 > 1 and719

max{R̂C1 , R̂D1 } < 1. �720

C Proof of Theorem 7721

The Jacobian matrix at E2 is722

J(E2) =


a11 a12 a13 a14

a21 0 a23 a24

0 0 a33 0
a41 a42 a43 a44

 ,
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where723

a11 =µmax

(
1− Qm

Q2

)
Ī ′(A2)A2 +

σ1C2A2

(a1 +A2)2
, a12 = − σ1A2

a1 +A2
< 0,

a21 =

{
e1σ1a1C2

(a1+A2)2 > 0, Q2 > θ1,
e1σ1a1C2Q2

θ1(a1+A2)2 > 0, Q2 < θ1,
a24 =

{
0, Q2 > θ1,
e1σ1A2C2

θ1(a1+A2) > 0, Q2 < θ1,

a33 =e2 min

{
1,
Q2

θ2

}
σ2A2

a2 +A2
+ e3 min{1, θ1

θ2
} σ3C2

a3 + C2
− d3,

a41 =− γKpQ2(QM −Q2)

(P −AQ2 − θ1C2 +Kp)2(QM −Qm)
− µmax

(
1− Qm

Q2

)
Ī ′(A2)Q2,

a42 =
−γθ1Kp(QM −Q2)

(P −A2Q2 − θ1C2 +Kp)2(QM −Qm)
< 0, a14 =

µmaxĪ(A2)QmA2

Q2
2

> 0,

a44 =
−γA2Kp(QM −Q2)− γ(P −A2Q2 − θ1C2)

(P −A2Q2 − θ1C2 +Kp)2(QM −Qm)
− µmaxĪ(A2) < 0.

Note that a33 is one eigenvalue of characteristic equation of J(E2), and the rest724

three eigenvalues satisfy the equation725

λ3 + b1λ
2 + b2λ+ b3 = 0, (22)

where b1 = −(a11 + a44), b2 = a11a44 − a14a41 − a24a42 − a12a21, b3 = −a12a24a41 −726

a21a14a42 + a11a24a42 + a12a21a44. If RD2 > 1, then a33 > 0, which means that E2 is727

unstable. When RD2 < 1, we prove the stability of E2 in the following two cases.728

Case 1. Suppose that Q2 > θ1, then a21 = e1σ1a1
(a1+A2)2 > 0 and a24 = 0. Hence729

b2 = a11a44 − a14a41 − a12a21 and b3 = −a21a14a42 + a12a21a44 > 0. If730

d1 > d∗1 = µmax

(
1− Qm

Q2

)(
Ī ′(A2)

(
1− Qm

Q2

)
(a1 +A2) + Ī(A2)

)
,

then a11 = µmax

(
1− Qm

Q2

)(
Ī ′(A2)A2 + A2

a1+A2
Ī(A2)

)
− d1A2

a1+A2
< 0. By simple calcu-731

lations, one can obtain that b1 > 0 and b1b2 − b3 > 0 if d1 > d∗1. Therefore, according732

to the Routh-Hurwitz criterion, all roots of equation (22) have negative real parts.733

Case 2. Assume that Q2 < θ1, then a21 = e1σ1a1C2Q2

θ1(a1+A2)2 > 0 and a24 = e1σ1A2C2

θ1(a1+A2) > 0.734

By simple calculations, we can obtain that b1 > 0, b3 > 0 and b1b2 − b3 > 0, if735

d1 > d∗∗1 = µmax

(
1− Qm

Q2

)(
Ī ′(A2)

(
a1 +A2 −

e1Q2σ1

θ1

)
+ Ī(A2)

)
and a21a44 < a41a24 hold. Hence all roots of equation (22) have negative real parts.736

Note that if RD2 < 1, then a33 < 0. Therefore, all eigenvalues of J(E2) have negative737

real parts if case (1) or case (2) hold, which means that E2 is locally asymptotically738

stable. �739
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