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Abstract: This paper presents ANN based model for predicting
stability margin for a power system prone to voltage instability.
Such a, model may be employed either for direct prediction of the
stability margin based on the existing loading conditions or for fore-
casting the loading conditions for a future time period and then
providing an estimate of the stability margin. The neural networks
employed are the Multi Layer Perception (MLP) with a second or-
der learning rule and the Radial Basis Function (RBF) network.
The simulation results for an sample 5-bus system indicate that the
ANN models provide a fairly accurate and fast prediction of the
stability margin making them suitable for application in an on-line
energy management system.
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I. INTRODUCTION

Problems related to voltage stability have recently been
considered as the major concerns in the planning and op-
eration of power systems. Voltage stability is concerned
with the ability of a power systems to maintain acceptable
~roltages at all buses in the system uncier normal condi-

tions and after being subjected to a disturbance. A system

enters a state of voltage instability when a disturbance,
increase in load demand, or change in system condition
causes a progressive and uncontrollable decline in voltage
and the process may result in voltage collapse. Voltage
instability has been attributed to the lack of adequate re-
active support and the difficulty in the flow of required
reactive power on the transmission network.
.Analysis of voltage instability [1] for a given system state
involves the examination of the static and dynamic as-
pects of the problem. The static approach is concerned
with the determination of the proximity of the system

state to the voltage instability boundary while the dy-
namic approach examines the actual mechanism that
leads to a state of voltage instability.
.4 knowledge of the voltage stability margin is of vital imp-
ortance to utilities in order to operate their system with
maximum security and reliability. The system operator
must be provided with an accurate and fast method to
predict the voltage stability margin so as to initiate the
necessary control actions.
Several methods have been reported in the literature [2],

[3], [4], [5] to determine the proximity to voltage instabil-
ity. These methods, although fairly accurate, are not coln-

putationally effective for real-time application in the em
ergy rua,nagcrnent system. Hence, for omline application,

there is a need to develop a method which can quicldy
predict the voltage stabihty margin.
Recently there has been considerable interest in Artificial
Neural Networks (ANN) to power system problems [’i’],
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[8], [9], [10], [11] because of various advantages offered by
them including their high computational rates.
This paper presents an ANN based model for voltage
stability margin prediction. Section II presents deriva-
tion of a voltage stability proximity indicator based on
an energy function that reflects the system loading con-
ditions. Section III describes an algorithm to calculate
low-voltage load-flow solutions necessary to determine the
energy margin. Section IV presents the ANN based model
for margin prediction. The margin may be predicted us-
ing existing loading conditions on a network or loading
conditions that have been forecasted by a different ANN.
Section V presents the results obtained by applying the
ANN based models to an sample 5-bus system and section
VI gives the main conclusions.

II. ENERCV MARGIN AS A PROXIMITY INDICATOR TO

VOLTAGE INSTABILITY

In this section the energy function based voltage sta-
bility indicator is discussed. The expression of energy
margin as a function of the system state is derived first
for a simple radial system. This expression is generalized
for an n bus system.

Conside~ a two-bus system shown in Fig. 1 with a single
series transmission line connecting Buses 1 and 2. Bus 1
is assumed to be a slack bus with voltage magnitude fixed
at 1.0 p.u., ;vhile a constant P-Q type of load is delivered
at Bus 2. The governing algebraic equations for the real
and reactive power flows on the line are given as

j(cx,l’) = Pi-,+ B12Vsinc2 = O (1)

(J(a, 1-) = QL - B,,V2 - BI,VCOSQ = O (2)

where V= voltage magnitude at Bus 2 and a = Jj — dl is

the phase angle difference from Bus 2 to Bus 1. hlultiply-
ing both sides of (2) by V–l we get,

g(a, l’) = ~ – B22V –Blzcosa = O (3)

The energy based stability margin to indicate vuhlera-

bility to voltage instability is obtained by integrating the

Bus 1
I

“+
P+jQ

Fig. 1. Sample two bus sytem
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function composed of ~(a, V) and g(a, V) from a lower
limit corresponding to a Stable Operating Point(SEP)
.xs = (o?, V’) to an upper limit corresponding to a par-
ticular low-voltage power flow solution ZU = (a”, V“) as

/-zu=(a’’, v”)
IE(x”, zs) = [.f(~>v 9(%v)]_ [da C@

Z“=(cr, v”)

‘/
cl”

(PL + B12V sins) do
a’

‘“ QL

/(
+~ )– B22V – B12 COSO! dV

v.

= j322(v”)2 + $322(V’)2 – B12v’L(;os cl”

()+ BIZVS coscts + QL in ~ +PL(a”–ct’s)

(4)

As the loading on the system increases the two solutions
Xs and XU approach each other and the energy margin E
steadily decreases. The threshold loading level at which
Xs and XU coalesce and the energy margin reduces to zero
represents the Voltage Instability point.

For a general n bus system, (1) and (2) at the it” bus can

be written as

L ,j=l

[
- (l<s)-’ ~G,jlI(sll~s

j=l

The constant terms in (55) and (6) a

J

sin(a; – a;) 1
(6)

e included so that f
and g are identically zero at the SEP even when network
transfer conductance are included. The energy function
&(xs, x“) is defined as in (7) given below. This is a scalar
quantity dependent on system state (bus voltage magr~i-
tudes and phase angles) with the property that the cur-
rent operating state defines a local minimum of this en-
ergy. iNormally, the small random variations in the sys-

tem which disturb its state from the SEP and add a small
amount of energy are compensated by the system damp
ing. .\t a secure operating point, where the energy well
is deep, these random effects are negligible. But as the
systenl moves t,owards a state vlllnerable to voltage COl-

lapse, the depth of the energy well decreases and the sys-
tem states (particularly the volta~e magnitudes) becomes
highly sensitive to load changes. Under such conditions

there is a possibility that these random ~-ariatious could
push the state out of the potential well that defines its

stable equilibrium point. A necessary condition for the
state to escape this well is that it receives energy greater
than the energy value of the closest Unstable Equilibrium
Point (UEP) on the boundary of the well. The UEPS or

the saddle points correspond to alternative solutions of
the load flow equations, referred to as the low-voltage so-
lutions,

&(xs, xu) =

——

+

—

—

(a’’, v”)

Jav) [fT(a, V) gT(a, V)]T [da dV]T
‘3 s

-;HWW’IIW+: -q)
i=lj=l

yf-%lw’lcos(a’ -+t
i=lj==l

n

[z/

l? Qi(x)

1
--#:c –PT(a” – as)

~=~ v,’

sin(a: – 0$)) (Viu – 1~) 1
(7)

Therefore, the energy function ,5 shows the height of the
Potential Barrier between the operable solution and a
low-~-oltage solution. As the system parameters ( loads
and generation) move towards the point of voltage insta-
bility. the low-voltage solutions decrease in number. Im-
mediately before collapse, only the operable solution and
a single low voltage solution exist, These two solutions
eventually coalesce and the steady-state equilibrium point
is lost. In [6] Dobson et al., have shown that a system
always loses the steady state stability by a saddle node
bifurcation between the operable solution ancf a Type-1

low-voltage solution. A Type-1 solution has the property

that the linearized system about that equilibrium point

has a single positive eigen value Therefore, for the calcu-

lation of energy based voltage stability margin the set of

low voltage solutions to be determined may be restricted

to Type-1 solutions, thus reducing the computational re-

quirements.

111. .\ LGORITI;M ~ori CALCULATION OF TYPE-1 Low
VOLTAGE SOLUTIOXS

In order to calculate the energy based stability mea-
sure, it is important to first find the appropriate unstable
equilibrium (or low-voltage) solutions of a system.
For an n bus system, there can be upto 2“-1 load flow
solutions. In [2], Tamura et al. presented an algorithm
which determines all the low voltage solutions using all the
2“- 1 combinations of initial guess vectors. This method
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was not computationally efficient. A simplified method
was also presented by the same authors where only (n – 1)
combinations of initial voltage guess vectors are used to
run the load flow. Furthermore, the solutions obtained
by the simplified method correspond to the Type-1 SOlu-
tions [5]. Based on this the main steps in the algorithm
to calculate Type-1 low-voltage solutions and their asso-
ciated energy measures are given below :
1. Obtain the stable operating solution Vi’ for the system
from the flat start.
2. For each bus i (except slack) in the system calculate an

initial low voltage guess ViU using a closed form equation
(18).

3. Form the initial voltage guesses with V; for j # i and
Vju for j = i.
4. Perform the load flow solution for ‘Bus i’ using the
Newton-Raphson method in rectangular coordinates.
5. If a solution exists, calculate the associated energy
measure.
This energy measure is an indication of the voltage secu-
rity in the area of Bus i.

A. Calculation of Viu

The load flow equations at bus i in an n bus system can
be expressed in rectangular coordinates as follows:

71

pi == ~ {ei (ej(l’ij + fjB;j) + fi (.fjGij – ejlij)} (8)
j=l

Qi = fi {fi (ejGtj + .fj%) - ei (fjGij - ej%)} (9)
)=1

\{rherey%]= (Gij – ~l?zj ) is the i~’]’ element of Y~c.s,

Sa = (P, + j~i) is the complex power at Bus z and ~< =
(e, + j~,) is the complex voltage at Bus i. (8) and (9) can
be rewritten as

where,

From (10) and (11), ji can be derived as

fz=aei+~ (14)

where

(

Ai Bii + l?i Gii
a=

A2Gi2 – BaBik )
(15)

(PiBii – QiGia
p=

B%Bii – GiiA1 )
(16)

Substituting (14) into (10) and. eliminating fi we get,

ae~+k~+-c=O (17)

where a = (1 + a2)Gii , b = (2~~Gii + AZ + ~~i) and
c = (Giif12 + ~z~ – F’i). The solutions of (17) are given as

(18)

Thereon, ~i can be obtained by substituting ei into (10).

Thus, we have two solutions V: = (ej, jf) and ~“ =

(e!, f?).

IV. ANN BASED h40D~L FOR VOLTAGE STABILITY
NIARGIN l? REDACTION

The proposed ANhT based model for the determination
of the energy margin is shown in Fig. 2. The input to
the neural network consists of real and reactive power in-
jections at all load buses in the system for a particular
loading condition. The output of the network is the en-

ergy margin.
For implementing this model the Multi Layer Perceptrou
(MLP) structure with a second-order learning rule and the

Radial Basis Network (RBF) were used. The network was
trained with different, sets of loading conditions and en-
ergy margins. The range of energy margins should cover
the entire range of its variation. After training the net-
work will be able to determine the energy margin which
serves as an indicator of the systems proximity to the volt-
age instability boundary. The complete block diagram for
the ANN based voltage stability margin predictor is given
in Fig. 3. It contains the ANN models for load forecast-
ing at each node utilizing the load history of the previous

hTtime period and that for the energy margin determina-
tion described above. The load power factor at each node
(I)jl, . . . . pf,l) is assumed to remain constant.

V. Sysmm STUDIES AND RESULTS

The effectiveness of the energy based voltage stability
margin and the proposed ANN model was studied using
the Stagg and E1-Abiad five bus system given in the ap-
pendix. The results are given below.

A. Co,lcrdation of energy ‘marqin

For the 5-bus system, all the real and reactive loads
were assumed to be a linear function of the parameter A
(A = O for base case loading). As the value of ~ is varied,
the number of type-one low-voltage solutions changes.

P,
c

—

QI

-% -F-

Energy
ANN Margin E

P,,
Q,,

Fig. 2. Erlock diagram for ANN based voltage stability margin
determination
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. . . . . . . . . . . . . . . .
ANN ;
Bastxi ;

: Load Forecas@r :

TABLE II

TYI’B-1 1.OW-VOLTA~X50LOTIONSAND ENERGY MARGINS (~ = ().0)

P

P
(:

P, (t)
J 1

@-5T-----.-..-.----
4
Ql(t)=pfl * p I (I)

P“ (t)
ANN
Based

Energy Margin
Qn(O=r%*Pn(0 Predictor

--E

Fig. 3. Block diagram for ANN based load forecasting and voltage
stability margin prediction

Table I shows the base case (A = O ) solution V’ of the
system and the initial low voltage vector Vu calculated

using 17. These two solutions were combined to produce
4 initial low voltage guess vectors. The Newton-Raphson

load flow in rectangular coordinates was run using each
of these initial low voltage guess vectors. Two load flows

‘2) d VJ4) converged giving the twocorresponding to l~o an
low voltage solutions V(2) and V(4) shown in Table II.
The energy margins calculated, using (7) corresponding

to these two solutions are 6.79 and 6.74.
.4s the loading parameter A was increased the number of
type-one low voltage solutions decreased and so did the
energy margin. For a point close to voltage instability
(A = ‘2.3) there was only one low voltage solution shown
in Table III corresponding to an initial low voltage guess

l~~s) at BUS 5 and the energy margin was 1.7341 at this
loading condition. .4t J = 2.366 no low-voltage solution
exists.
The parameter A was varied in the range of O to 2.37. For

each loading case, the lowest energy margin at a particular
load bus is denoted as the “system energy margin”. The
variation of the system energy margin as a function of
A is shc)wn in Fig. 4. As this figure shows, the system
energy margin remains fairly constant up to a threshold
of A = 1.5 beyond which it goes down rapidly indicating
a vulnerability to voltage collapse.

TABI.E I

B.4sH CASE SOLUTION AND INITIALLOW-VOLTAGE VECTOR V“

[

33US Vs v“

no. e f e f

2 1.0461 \ -0.0512 -0.0069 ! 0.0039

1
!—

3 1.0202 I -0.0892 0.0062 -0.0095

4 1.0191 I -0.095 0.0035 -0.009
t-5 I 1.012 \ .0.109 \ 0.0227 \ -0.04521

Bus Initial Converged Energy

no.
(2)

value VO value V(2J Margin
e f e f

2

= 6.79

-0.0069 0.0039 0.567

3 1.02 -0.089 0.107

Bus Initial Converged Energy

no.
(4)

value V. value V(4J Margin
e f f

2 1.046 -0.051 0:7 -0.05
3 1.02 -0.089 0.107 -0.078 6.74
4 0.0035 -0.009 0.1.88 -0.059
5 1.012 -0.019 0.204 -0.145

TABLE [11

TYPE-1 LOW-\JOLTAGE SOLUTIONS AND ENERGY MARGIN (~ = 2.3)

EilB#R!?a’734
B. Prediction of energy margin for forecasted loading co Tz-

dztions of the system

A RBF network was employed for forecasting the real
power loads of the 5-bus system for the first day (Mon-
day) of the week. For energy margin calculation for the

forecasted real loading, it was assumed that all the loads
in the system have constant power factor. Furthermore,
the generation in the system was varied in proportion to
the load variation.
A MLP network with 30 hidden log sigmoid neurons was

trained for a sum squared error goal of 0.001. The inputs
to the network consisted of the real and reactive power in-
jections (Fig 3) at all the load buses, the generation and
output of the network was the energy margin.

s
J

f >j

05 ,5 2 2s

Lo*d,ng P=r:mnetec

Fig, 4, \Tariation of system energy margin & will] loading
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(A) Forecasted Loading

‘~’ A I

(B) Predicted Energy Margin using ANN

72~ I

Time (Hr.)

Fig. 5. Loading and Predicted Energy Margin

During the training phase, about 200 loading conditions
were generated randomly varying between 50~0 and 200~0

of the base case loading and for each the corresponding
energy margin was calculated as described above. This
data consisting of power system loading conditions and
energy margin was used to train the neural network.
The predicted and calculated energy margins for the 23
hourly loading conditions forecasted were found to be in

close agreement. The maximum error between the pre-
dicted and the calculated values was 0.8728 p.u.
Fig. 5(A) shows the forecasted loading while Fig. 5(B)

shows the variation of energy margin predicted for the
23 hours forecasted data. The energy margin prediction
was consistent with the loading conditions on the system.
Comparing two curves it can be seen that the predicted
margin is lowest at peak loading conditions (e. g., at hour
10 and 20) and high at the valley load condition (e.g., at
hour 4).

VI. CONCLUSIONS

In this paper, a fast method for predicting the volt-

age stability margin using ANN has been proposed. An
energy function based indicator was rrsed to define the
proximity of a system to voltage instability. The pro-
posed .4hVNmodel was used to predict the voltage sta-
bility margin for forecasted loading conditions of a 5-Bus
system. The results reveal the following :
1. The variation of the energy function based stability in-
dicator with respect to changes in system load is smooth.

so that the system security can bc checked by periodically
calculating the type-one solutions and their associated em
ergy measures.
2. The results of energy margin predicted with the pro-
posed .4NiN model are close to the actual value calculated.
The model can provide fairly accurate estimate of system
margin to the operat,or.
3. The response of the ANN model was extremely fast.
The testing time for the prediction of energy margin fol
a given loading condition was less than 5ms.
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APPENDIX

(’-a

oG

Fig. 6. Stagg and f3-Abiad System

TABLE IV

C, HNERATOR Bus DATA

[

Bus PG V.pec. Load
no. (Mw) (11.11.) P (MW) Q (.MVAR)

1(slack) - 1.06 0.0 0.0
y 40.0 1.0 20.0 10.0
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TA13LE v

LOAD Bus DATA

TABLE VI

LINE DATA

From To Series Impedance Shunt Susceptance
Bus Bus R P.U. x p.u. +Bp. u.

1 2 0.02 0.06 0.06
1 3 0.08 0.24 0.05
2 3 0.06 0.18 0.04
2 4 0.06 0.18 0.04
2 5 0.04 0.12 0.03
3 4 0.01 0.03 0.02
4 5 0.08 0.24 0.05
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