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Abstract

In recent years machine learning (ML) models have begun to be deployed at enormous

scales, but too often without adequate concern for whether or not an ML model

will make fair decisions. Fairness in ML is a burgeoning research area, but work

to define formal fairness criteria has some serious limitations. This thesis aims to

combine and explore two recent areas of research in ML – distributionally robust

optimization (DRO) and performative prediction – in an attempt to resolve some

of these limitations. Performative prediction is a recent framework developed to

understand the effects of when deploying model influences the distribution on which

it is making predictions, an important concern for fairness. Research on performative

prediction has thus far only examined risk minimization, however, which has the

potential to result in discriminatory models when working with heterogeneous data

composed of majority and minority subgroups. We examine performative prediction

with a distributionally robust objective and prove an analogous convergence result for

what we call repeated distributionally robust optimization (RDRO). We then verify

our results empirically and develop experiments to demonstrate the impact of using

RDRO on learning fair ML models.
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Chapter 1

Introduction

In the past two decades, machine learning (ML) has moved from the confines of

research institutes and university laboratories into the mainstream. Artificial intelli-

gence (AI) is no longer merely the subject of science fiction films, but is now a crucial

piece of technology that underpins some of the world’s largest corporations and has

become integral to people’s everyday existence. At the time of writing, 10 of the top

11 world’s most valuable publicly traded corporations had business models in which

machine learning was a core component (Apple, Microsoft, Amazon, Alphabet, Meta,

Tesla, Tencent, Alibaba Group, TSMC, Nvidia). Far from being fringe, AI has been

woven into the very fabric of our society and economy and this trend will likely only

accelerate in the coming years.

This move from the laboratory to the real world was spurred by the incredible suc-

cesses of ML on practical problems. Deep learning, in particular, has demonstrated

its spectacular ability to solve problems that were once thought too challenging for

machines. While machine learning and deep learning have seen stunning successes

and show the promise of helping to solve extremely important problems, the rapid

rise of AI has far outpaced concern for questions of fairness, ethics, and governance

of machine learning systems and algorithms. AI has already reshaped our world in

remarkable ways and has made a select group of people incredibly wealthy, but the

optimism and promise of AI has slowly begun to be replaced with pessimism and fear
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of what unconstrained AI will do to our society. Many ML based companies operate

in a regulatory Wild West and have thus far not demonstrated a willingness or ability

to act responsibly, choosing instead to maximize profit at potentially great cost to

society. Meta (formerly Facebook) has been the poster boy for this reckless behaviour

based on profit maximization, and internal files leaked by former employee Frances

Haugen to the Wall Street Journal revealed that Meta was aware of their platforms

contributing to spreading misinformation prior to elections, fuelling hate connected

to genocide in Myanmar, contributing to mental health issues in young women, and

spreading misinformation regarding Covid vaccines that resulted in thousands of pre-

ventable deaths. The spread of information on Meta’s platforms, and the extreme

societal harm associated with it, is directly connected to their deployment of machine

learning algorithms that recommend content to users [1].

Disturbingly, this lack of concern for the consequences of deploying AI algorithms

at scale exists not just at the regulatory level, but also among many ML researchers

and practitioners. The notion of making the consideration of potential harmful effects

of AI models a central piece of the research process has yet to be accepted by the

mainstream community. The relative lack of interest in questions of fairness and

ethics among AI researchers is exacerbated by the inability of researchers in adjacent

fields to effectively and adequately understand AI algorithms due to their technical

complexity.

Significant interest in research into questions of fairness and ethics in machine

learning only began several years ago and the field is still in its infancy. This research

currently lags far behind the reality of how AI models are being deployed, with the

result that we lack the tools to understand and predict the consequences of deploying

AI algorithms. We all interact with AI on a daily basis and many of these interactions

have fairness and ethical concerns associated with them, yet as a field we still have

little understanding of these issues.

Deployment of ML models comes with ethical risks, but automated decision making
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also offers an opportunity to make progress on ethical and fairness issues, as ML

algorithms have the potential to uncover complex relationships that are essential to

decision making that humans would otherwise overlook [2]. Machine learning also

offers us the opportunity to provide transparency and consistency in decision making

that is otherwise impossible to achieve with human decision makers. If this promise

is to be fulfilled however, significant investment in fairness research is required.

The incentives within the field and market have thus far driven investment into

areas that are financially profitable, which has not necessarily aligned with what

benefits humanity. Algorithms are being deployed at enormous scales with shockingly

little concern for the ramifications. According to its own data, Meta, for instance,

reaches 3.6 billion people each month. With this many people affected in intimate

ways by AI algorithms, it is essential that we develop a better understanding of ethics

and governance of AI.

Ethics and governance of AI algorithms is a diverse and complex field, but one small

part in which some progress has been made is in the area of fairness. Fairness in this

context means ensuring that an AI model does not discriminate against particular

subsets of people in its decision making. The subsets considered are usually legally

protected classes such as race or gender, but fairness does not necessarily have to

be restricted to characteristics that receive protection from discrimination under the

law. At first glance it may seem like training a fair ML model is a simple task, but it

turns out there are many subtle questions that complicate the matter and complex

interactions between mathematical and ethical principles.

This thesis will present an introduction to research on fairness in machine learning,

discuss two recent research areas with implications for fairness in ML, and extend the

results of these areas both through theoretical and empirical studies. The goal of this

work is to deepen our understanding of fairness in machine learning and to present a

compelling alternative method for ensuring fairness in ML models.

More specifically, this thesis will proceed as follows. First, we will provide back-
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ground on established definitions of what it means for an algorithm to be considered

fair. As we explain, although this is fundamentally a contested notion, the field has

largely coalesced around several formal fairness criteria, which are generally conceptu-

ally and mathematically straightforward, but have some serious limitations. We will

then discuss two potential objectives for optimization, empirical risk minimization

and distributionally robust optimization, and how they have implications for fairness

in machine learning. Next, we cover an emerging area of research known as performa-

tive prediction, which attempts to provide a framework to capture the complexities of

fairness dynamics over time, where feedback loops that occur as a result of a model

affecting the population on which it makes predictions are a concern. After covering

this background we discuss some related work that has inspired the research in this

thesis by attempting to answer similar questions to those which we address here.

In Chapters 3 and 4 we introduce our novel theoretical and empirical contributions.

We extend performative prediction to consider the distributionally robust objective

by modifying the appropriate definitions and theorems. Replacing risk minimization

with distributionally robust optimization results in additional technical complexity

which we discuss. In Chapter 4, we investigate performative prediction with a dis-

tributionally robust objective through a series of experiments. We first reproduce

an experiment from Perdomo et al. [3] to demonstrate the convergence properties

of repeated risk minimization and repeated distributionally robust optimization. We

then conduct a series of experiments on simple synthetic datasets to develop intu-

ition for how risk minimization and distributionally robust optimization differ in the

performative prediction context. Finally, we design an experiment to explore how dis-

tributionally robust optimization intersects with fairness concerns in machine learning

and demonstrate that it has the potential for helping to ensure we train models that

are non-discriminatory.
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Chapter 2

Background

Fairness in ML is a diverse and multi-faceted topic that can mean many things. Kate

Crawford in her Neurips 2017 keynote titled The Trouble With Bias gave a rough

taxonomy of fairness concerns as falling into one of two categories: allocative harms

or representative harms. Allocative harms refers to algorithms that make decisions

about allocating resources whereas representational harms refers to algorithms that

reinforce or amplify subordination of a group. These categories do not necessarily

capture all scenarios in which fairness concerns arise, but they at least represent an

attempt at creating a conceptual framework through which to view fairness concerns

in ML. For instance, diffuse societal harms that can result from recommender systems

deployed at scale are not easily captured by these categories.

2.1 Formal Fairness Criteria

Research into fairness in ML has thus far largely centred around questions of discrim-

ination against certain protected demographic groups in classification tasks. These

protected groups or classes are often based on characteristics that receive legal pro-

tection from discrimination, such as gender or race. This type of research tends to

apply more to allocative harms, as classification algorithms are often making deci-

sions about allocating resources among individuals, although this is not always the

case depending on the application (e.g. facial recognition). The discussion of fairness
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in this thesis will apply to questions of allocative harms, although there is potential

for the techniques we discuss to be useful in combating discrimination in a wider

variety of contexts.

There is no single, universal definition of what it means for an algorithm, even

a classification algorithm, to be fair. Fairness is fundamentally a philosophical and

political concept and, as such, depends heavily on context. That being said, there

are a variety of mathematical definitions for fairness that have been proposed. While

there are literally dozens of proposed definitions, many of these have been shown to

be equivalent, or relaxations of each other.

The Fairness and Machine Learning textbook, authored by pioneers of ML fair-

ness research [2], states that there are three central definitions of what constitutes

a fair classifier. These definitions are known, respectively, as independence, separa-

tion, and sufficiency, and most other definitions for fair classifiers can be shown to

be equivalent to, or a relaxed form of, one of these three definitions. These formal

non-discrimination criteria have been developed by a number of researchers, often

independently [4–11]. These three definitions are conceptually and mathematically

straightforward and we will state them below after introducing some necessary nota-

tion and terminology. Some concepts relating to learning theory will be imprecise in

what follows to facilitate ease of exposition, but concepts and notation will be made

precise where necessary later in this work.

Assume we have variables X and targets Y . Our goal is to learn a function,

f : X → Y , that maps inputs to labels. We often denote the predictions from our

model as ŷ = f(x). We assume that our data is drawn from an underlying distribution

(X, Y ) and we can interpret our classifier as a random variable at the population level

Ŷ = f(X). This allows us to reason about the joint distribution (X, Y, Ŷ ).

Classification problems can be binary or multi-class, but we restrict our treatment

to the binary case here. In the case of binary classification we can summarize the

results of our predictions in a confusion matrix, which contains the information in
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Table 2.1 below. For binary classification the target variable, Y , takes on values in

{0, 1}, with Y = 1 considered the positive class and Y = 0 the negative class.

Predicted Actual P (Predicted | Actual) Calculation

Ŷ = 1 Y = 1 True positive rate TP
TP+FN

Ŷ = 0 Y = 1 False negative rate FN
FN+TP

Ŷ = 1 Y = 0 False positive rate FP
FP+TN

Ŷ = 0 Y = 0 True negative rate TN
TN+FP

Table 2.1: Information contained in a confusion matrix.

Fairness definitions for classification assume that we have we have “protected at-

tributes” or “sensitive characteristics” which we represent with a discrete random

variable A. The features, X, will often implicitly encode information that is highly

correlated with these sensitive characteristics, so the naive notion of achieving fairness

by merely not passing A to the ML model fails in practice. For instance, web traffic

to certain websites is often highly correlated with gender and in many American cities

zip codes are highly correlated with race.

Classifiers often work by generating a “score” and then thresholding this score to

produce a prediction of the target label. A natural score function is the expected value

of Y given X, i.e. R = E[Y | X = x]. The majority of proposed fairness criteria are

properties of the joint distribution of A, Y , and R. The three fairness definitions given

above are defined in Table 2.2, with ⊥ denoting independence of random variables.

Separation, or a relaxation of it known as equalized opportunity, is arguably the most

commonly used definition of fairness. For binary classification, separation is satisfied

if protected groups have the same false positive and false negative rates. That is, for

Y = {0, 1} and A = {a, b} separation is equivalent to

P (R = 1 | Y = 1, A = a) = P (R = 1 | Y = 1, A = b)

P (R = 1 | Y = 0, A = a) = P (R = 1 | Y = 0, A = b).
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Fairness Name Definition

Independence R ⊥ A

Separation R ⊥ A | Y

Sufficiency Y ⊥ A | R

Table 2.2: Most common fairness criteria.

Due to the novelty of research into fairness, there are a large number of fairness

criteria developed by researchers that are either equivalent, or relaxations of these

three criteria. For instance, independence is also known as statistical parity, group

fairness, and demographic parity. The mathematical definitions do not necessarily

make clear the motivation for the fairness definitions, so we provide the intuitive

explanation for what these definitions mean below.

• Independence: A classifier is fair if the risk scores generated by the classifier

are independent of the sensitive characteristic. That is, the classifier’s output

must not be correlated with the sensitive characteristic.

• Separation: A classifier is fair if the risk scores generated by the classifier

are independent of the sensitive characteristic, conditioned on the true labels.

That is, the classifier’s output can be correlated with the sensitive characteristic

only to the extent that is justified by the true labels. If a classifier’s output is

correlated with the sensitive characteristic after conditioning on the true label,

then that classifier is unfair.

• Sufficiency: The least intuitive of the three definitions, sufficiency is related to

the notion of calibration. A classifier is fair if the probability of being assigned

to the positive class is the same across groups given a risk score R = r.

It is not hard to come up with examples of contexts in which each of these three

definitions, or their many related relaxations, do not provide an adequate definition
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of fairness. For instance, an example borrowed from Davies et al. [5] regarding

recidivism and gender reveals a scenario in which satisfying independence actually

results in an unfair classifier. Female inmates tend to recidivate at a lower rate than

males and an algorithm that decides whether or not to grant parole to inmates that

satisfies independence thus discriminates unfairly against female inmates. In fact, any

scenario in which there is legitimate correlation between the sensitive characteristic

and the target variable is inappropriate for the independence definition of fairness.

Conversely, there are many scenarios where data will have illegitimate correlation

between sensitive attributes and target variables due to historical injustices. In these

scenarios, training a classifier that adheres to the separation definition would likely

result in an unfair model.

These definitions are problematic in a variety of ways, but represent an attempt

to formally define the notion of fairness in ML. The question of which definition is

appropriate depends on the context and a variety of non-mathematical issues. The

definitions are also not equivalent. In fact, it is relatively trivial to show that they

are incompatible. In almost all realistic scenarios it is impossible to satisfy any two

of these fairness criteria simultaneously [2].

2.1.1 Issues With Fairness Definitions

We briefly outline four issues with the kinds of fairness definitions we discussed above.

Attempts to address and better understand issues 2, 3, and 4 will be the subject of

this thesis.

1. Which definition should we use? As discussed, this depends on context and

often corresponds to specific political or world views.

2. The definitions apply to static supervised learning problems. The world, how-

ever, is not static. Distributions upon which we train and deploy models shift,

often in response to the very model that is deployed. Static supervised learning
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with independent and identically distributed data is a dangerous simplification

of the world in which we deploy high stakes ML models.

3. We often do not have access to demographic information. All of these definitions

require having access to the sensitive characteristic, A. We cannot use these

definitions to ensure we have a non-discriminatory model if we do not have

access to this sensitive group data.

4. They ignore intersectionality. Preventing discrimination against protected sub-

groups does not prevent discrimination against vulnerable populations that lie

at the intersection of these subgroups, but do not have additional protected

status.

If, given a specific context and machine learning problem, we are able to agree on

what the appropriate definition of fairness is, we can potentially use our formal non-

discrimination criteria, or fairness definitions, to train a model that we consider to

be fair. Even when we can do this though, we need to be able to identify exactly

which characteristics we consider to be sensitive and those characteristics must be

reliably present in the data. If all of these things are true, then there are a variety of

methods to ensure we train a fair algorithm including data pre-processing, constrained

optimization at training time, or post-processing after an algorithm has been trained.

There are of course many scenarios where those assumptions are not satisfied and

we are unable to ensure that our classifier is fair with regards to a formal definition.

All of these approaches rely on having information about the sensitive attribute

or characteristic contained in the data, however, and there are many scenarios where

we simply do not have sensitive demographic information. There are in fact many

scenarios where collection of sensitive demographic information is explicitly forbidden

in order to attempt to prevent discrimination based on these characteristics. In these

scenarios our formal non-discrimination criteria do not offer us a method to ensure

we train fair classifiers and alternative methods for achieving fairness are required.
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2.2 Empirical Risk Minimization

In supervised learning problems we make an assumption that our data is generated

from a data generating process. This data generating process can be characterized by

a probability distribution, allowing us to use the tools of probability theory to reason

about the learning problem. Any finite dataset is (generally) assumed to be sampled

independently and identically distributed (i.i.d.) from this data distribution and the

goal is to learn a model that can approximate this data generating distribution. We

only ever have access to finite data (i.e. samples from our data generating distribu-

tion), however, and we use these samples to learn a model. In order to reason about

how a model will work in practice we want a measure of “risk”1.

In the supervised learning problem we have two spaces of objects X and Y and

we want to learn a function h : X → Y known as a “hypothesis”. We assume a joint

distribution P (x, y) over X and Y and assume training samples, (xi, yi) are drawn

i.i.d. from P (x, y). We model y as a random variable with conditional distribution

P (y|x) for a fixed x. We are given a non-negative loss function ℓ(ŷ, y) which gives a

measure of difference of prediction ŷ from a hypothesis and the true outcome y. The

risk associated with h(x) is defined as:

R(h) = E[ℓ(h(x), y)] =
∫︂

ℓ(h(x), y)dP (x, y)

The goal of the learning algorithm is to find a hypothesis h∗ ∈ H such that

h∗ = argmin
h∈H

R(h).

As mentioned above, however, we don’t have access to P (x, y) so we can’t compute

R(h). Instead, we can compute an approximation which we call empirical risk

Remp(h) =
1

n

n∑︂
i=1

ℓ(h(xi), yi).

1Note that our description of risk minimization in what follows is arguably a limited perspective
that more recent works such as Bartlett and Anthony [12] expand upon, but we sacrifice some level
of generality and rigor here in favour of ease of exposition.
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Hence, the learning algorithm should choose a hypothesis ĥ such that

ĥ = argmin
h∈H

Remp(h).

This process is known as empirical risk minimization (ERM) and is the de facto train-

ing process used in most supervised learning scenarios. ERM is intuitively appealing

and has important theoretical guarantees associated with it [13]. It can, however, be

problematic when it comes to fairness concerns.

Since we are averaging the loss over our data points, in general, ERM causes an

algorithm to focus on majority cases while ignoring minority cases or rare events.

For instance, consider a population composed of two sub-populations characterized

by differing probability distributions. Assume 80% of the population comes from

sub-population 1 and 20% from sub-population 2. This means that for ERM, 80% of

the potential loss lies with sub-population 1, and if a learning algorithm is forced to

trade-off performance over the two sub-populations, a model trained through ERM

will likely learn to fit sub-population 1 better than sub-population 2. A concrete

example of this is facial recognition.

For instance, work by Joy Buolamwini and Timnit Gebru [14] showed that com-

mercially available facial recognition software exhibited high performance for white

male faces while it performed very poorly for black female faces. In 2020, a Twitter

conflict over Duke University’s PULSE AI photo recreation tool that turned non-

white faces into generic white faces resulted in Yann LeCun temporarily quitting the

platform. Both of these notable controversies of bias related to skin colour were the

result of not taking necessary measures to prevent bias when training a model from

a biased dataset that contained far more white than non-white faces.

While ERM has desirable mathematical properties and is intuitively appealing, it

is discordant with notions of equality and fairness in democratic societies. A gen-

eral principle of democratic societies is that individuals must receive non-disparate

treatment, that is, everyone should be treated equally. For instance, individuals have
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equal rights under the law, we invest large sums of money to ensure equal access to

spaces for people of different abilities, and it is generally illegal to discriminate against

individuals on the basis of particular characteristics.

Relying on ERM as an objective to train ML models does not adhere to this notion

of non-disparate treatment. When we use ERM to train algorithms that will make

predictions about human beings, we are implicitly deciding to favour whichever group

composes the majority sub-probability distribution within the training data. In some

contexts, the sub-probability distributions will not be correlated to characteristics

or demographics in ways that we feel are undesirable, but in many cases sub-groups

within populations are likely to have differing probability distributions on the basis

of race, gender, class, sexual orientation, religious beliefs, or many other criteria

that are unacceptable to discriminate against in a pluralistic, democratic society.

When we see this kind of correlation between probability distributions and sensitive

characteristics, we risk training algorithms that perform poorly on minority groups,

potentially further entrenching systems of inequality.

The fairness definitions outlined above were developed to combat this, but, as

we explained, these definitions are limited in their utility. Due to their incredible

efficiency and effectiveness, AI algorithms are likely to continue to be deployed and

integrated into our lives and economies at an ever greater pace. In order to ensure

that these algorithms make decisions in ways that align with our notions of fairness

and non-discrimination we will require objectives that can provide some assurance

that we will train non-discriminatory models.

2.3 Distributionally Robust Optimization

The problems with ERM and the fairness definitions outlined above are concerning

and there is not an obvious solution to the problems. An alternative approach to

ERM, known as distributionally robust optimization (DRO), offers an elegant option

that addresses many of these concerns. There are a wide variety of formulations for
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DRO, but we follow the approach outlined in Duchi and Namkoong [15].

As opposed to minimizing the average loss, distributionally robust optimization

considers the distributionally robust problem:

minimize
θ∈Θ

{︃
Rf (θ, P0) := sup

Q≪P0

{EQ[ℓ(θ;X)] : Df (Q||P0) ≤ ρ}
}︃
,

where Θ ⊂ Rd is the parameter (model) space, P0 is the data generating distribution

on the measure space (X ,A), X is a random element of X and ℓ : Θ × X → R is a

loss function.

In this formulation of DRO, Df (Q||P0) is an f -divergence between Q and P0 and

{EQ[ℓ(θ;X)] : Df (Q||P0) ≤ ρ} is the set of all expected losses over the f -divergence

ball of radius ρ. Alternative DRO formulations utilizing different measures of distance

between probability distributions such as Wasserstein balls have also been explored

[16–19]. The notation Q≪ P0 means that Q is absolutely continuous with respect to

P0
2. An f -divergence, Df (Q||P ), is a function that measures the difference between

two probability distributions Q and P , although it is not a metric. There are a variety

of different f -divergences, but their general definition is as follows [20–22].

Df (Q||P ) :=
∫︁
f(dQ

dP
)dP where f is a convex function such that f(1) = 0. If Q

and P are absolutely continuous with respect to a reference distribution µ, then their

probability densities q and p satisfy dP = p and dQ = q and the f -divergence can be

written as

Df (Q||P ) =

∫︂
f(

q(x)

p(x)
)dµ(x).

Some examples of f -divergences are KL-divergence (f(t) = t log t), Pearson χ2-

divergence (f(t) = (t−1)2, t2−1, t2−t), and total variation distance (f(t) = 1
2
|t−1|).

An f -divergence ball centred at P of radius ρ is a set that contains all probability

distributions whose f -divergence is within ρ of P . For example, {Q : Df (Q||P0) ≤ ρ}

is an f -divergence ball that contains all probability distributions Q that are within ρ

2If two measures, µ and ν, are on the same measure space (X ,A), µ is said to be absolutely
continuous with respect to ν if µ(A) = 0 for every set A for which ν(A) = 0.
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f -divergence distance from P0. This is analogous to the notion of an ϵ-ball surrounding

a vector in a vector space.

The distributionally robust problem therefore, is to find a set of parameters, θ ∈ Θ,

that minimize the worst case expected loss of all probability distributions Q that are

within the f -divergence ball of radius ρ of our data generating distribution. This

differs from ERM in that we do not seek to minimize the expected loss over our data

generating distribution, but instead seek to minimize the worst case expected loss

over a set of probability distributions nearby our data generating distribution.

As the name suggests, learning parameters that minimize the distributionally ro-

bust risk gives us a model that is robust to changes in the data generating distribu-

tion. Traditional risk minimization will return a model that minimizes risk for the

data generating distribution, but offers no performance guarantees when that distri-

bution changes, and can result in models that are brittle and do not perform well on

out of distribution (OOD) examples. DRO, on the other hand, is a more conservative

procedure that minimizes worst-case risk and should thus be robust to changes to the

probability generating distribution that lie within the f -divergence ball of radius ρ.

As with traditional risk minimization, we do not have access to the theoretical data

generating distribution. Instead, we solve the distributionally robust problem via the

plug-in estimator

θ̂n ∈ argmin
θ∈Θ

{︄
Rf (θ, P̂ n) := sup

Q≪P̂n

{EQ[ℓ(θ;X)] : Df (Q||P̂ n) ≤ ρ}

}︄

where P̂ n is the empirical measure on Xi ∼iid P0. Duchi and Namkoong prove con-

vergence guarantees and rates for the plug-in estimator along with some asymptotic

results such as showing consistency of the estimator [15].

It is not necessarily clear from the discussion so far what DRO has to do with

fairness concerns in machine learning, but DRO in fact has characteristics that are

very desirable for addressing issues of fairness and discrimination in learning algo-

rithms. We will explain this shortly, but first we introduce dual reformulations of
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the distributionally robust problem as it provides some intuition as to the connection

with fairness concerns.

The following theorem comes from Shapiro [23]. Let f ∗(s) := supt{st − f(t)} be

the Fenchel conjugate.

Theorem 1 (Shapiro [[23], Section 3.2]). Let P be a probability measure on (X ,A)

and ρ > 0. Then

Rf (θ;P ) = inf
λ≥0,η∈R

{︃
EP

[︃
λf ∗

(︃
ℓ(θ;X)− η

λ

)︃]︃
+ λρ+ η

}︃
for all θ. Moreover, if the supremum on the left hand side is finite, there are finite

λ(θ) ≥ 0 and η(θ) ∈ R attaining the infimum on the right hand side.

Additionally, Duchi and Namkoong [15] provide a simplified version of this dual for-

mulation for the Cressie-Read family of f -divergences, obtained by minimizing out

λ > 0 from Theorem 1.

Theorem 2 (Duchi and Namkoong [[15], Section 2]). For any probability P on

(X ,A), k ∈ (1,∞), k∗ = k/(k − 1), any ρ > 0, and ck(ρ) = (1 + k(k − 1)ρ)1/k,

we have for all θ ∈ Θ

Rf (θ;P ) = inf
η∈R

{︂
ck(ρ)EP

[︁
(ℓ(θ;X)− η)k∗+

]︁1/k∗
+ η

}︂
The above formulations are jointly convex in (θ, λ, η) and (θ, η), respectively, for

convex losses, ℓ(θ;X), making them amenable to techniques from convex optimization

such as interior point methods [24].

The Cressie-Read family of f -divergences are parameterized by k ∈ (−∞,∞) \

{0, 1}, k∗ = k
k−1

, with

fk(t) :=
tk − kt+ k − 1

k(k − 1)
and f ∗

k (s) :=
1

k

[︁
((k − 1)s+ 1)k∗+ − 1

]︁
.

Issues of fairness arise in machine learning when an algorithm treats different de-

mographic groups in a disparate fashion. As outlined above, this often means that
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algorithmic performance varies across different demographic groups. If this occurs,

it is almost certainly the case that there exist distinct probability distributions over

the demographic groups because if all demographic groups were characterized the

the same probability distribution, classification algorithms should exhibit uniform

performance across demographic groups.

This realization makes it easy to see why ERM is likely to discriminate, particularly

against minority groups. ERM treats the loss on each data point equally, thus, if

there is a majority and minority probability distribution and a learning algorithm

must balance performance on these groups, an ERM objective is likely to result in a

model that performs better on the majority group and worse on the minority group.

It is exactly this type of problem that DRO is designed to resolve.

Unlike ERM, DRO does not equally weight each data point, but instead up-weights

data points on which the model is achieving high loss. This means that the model

should achieve somewhat uniform performance on individuals across demographic

groups. This can be seen by looking at the dual formulation in Theorem 2. The

DRO objective only considers losses above the optimal dual variable η∗(θ) and these

losses are up-weighted by the Lk∗(P )-norm. Losses that are less than the optimal

dual variable are set to zero in the objective. Another way of saying this is that the

DRO objective is equivalent to optimizing the tail-performance of a model [15].

If DRO performs poorly on a subset of the data that is correlated with a distinct

demographic group, these losses will be up-weighted by the dual formulation of the

distributionally robust objective, pushing the model to improve performance on this

subset. DRO does not offer any guarantees of uniform performance across demo-

graphic groups, but as we increase the value of ρ we will increase the loss incurred on

“hard” regions of the data where the model performs poorly. This often comes with

a trade-off with performance on the dataset as a whole and we discuss this further in

Chapter 4.

DRO has the potential to solve some of the issues with formal fairness criteria
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that we outlined earlier. First, and most importantly, DRO does not require any

demographic information in order to protect against poor performance on subsets

of the data. The distributionally robust objective optimizes tail-performance of a

model and does not require any information about sensitive characteristics to do this.

Second, and for the same reason, DRO naturally takes into account intersectional-

ity. It minimizes loss on the worst case distribution within the f -divergence ball,

hence it naturally achieves somewhat uniform performance across most subsets of the

data. Third, as DRO optimizes for adversarial distributions, it should generally be

more robust to distribution drift than ERM. Also, as DRO is merely an optimization

technique rather than a formal definition of fairness, it is more amenable to use in

scenarios that capture more complexity of real world fairness scenarios.

All of these points come with caveats, however. DRO is not explicitly attempting to

learn a model that is fair according to the protected attributes for which we believe the

model should not discriminate. The worst case distribution for which DRO optimizes

may not be correlated with protected attributes at all, and instead may be some other

distribution that exists within our data for which we do not believe fairness concerns

apply. An example of when this might occur is in the presence of a large number of

outliers. DRO may train a model that attempts to minimize loss on these outliers

while not achieving uniform performance across demographic groups. We will discuss

more of the practical considerations and issues with training a model using DRO in

Chapter 4.

A model trained using DRO is also not guaranteed to adhere to any of the defini-

tions of fairness we discussed in Section 2.1. DRO attempts to minimize the worst-case

loss over all probability distributions contained in the f -divergence ball surrounding

the data generating distribution. This minimax style optimization procedure is re-

lated to the philosopher John Rawls’ notion of distributive justice [25], but is not

likely to adhere to any of the formal fairness criteria discussed above. We avoid en-

tering into the debate of correct notions or definitions of fairness, largely because we
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feel that fairness is inherently contextual and as such, no single definition can suffice.

We will instead focus on the more general and intuitive fairness properties that DRO

exhibits as compared to ERM.

DRO also does not address the issue of static supervised learning likely being an

inadequate conceptual framework to capture the complexity of fairness concerns in

machine learning. DRO offers an alternative objective for which to optimize, but

if we wish to capture the important dynamics of fairness over time, an alternative

formalism will be required. A recently developed concept known as performative

prediction, as we explain in the next section, attempts to do exactly this.

2.4 Performative Prediction

In supervised learning we assume that our data is sampled i.i.d. from an unknown

data generating distribution and that our model is then deployed to make predictions

on data that follows this same distribution. In many scenarios, however, the very act

of making predictions influences the data on which we wish to make these predictions.

That is to say, our models are performative and instead of passively describing the

world and making predictions about it, they actually induce change in the world.

A simple example of this is predictive policing. In predictive policing we train a

model to predict where crimes are likely to occur based on historical data and then

deploy more resources to areas where the model predicts crimes are more likely to

occur. The increased police patrols and surveillance results in more crimes being

detected which might further increase the perceived crime rate in those areas. If

this data is then used for future predictions it will result in a shifted distribution of

the data as a result of the predictions of the previous model. Another example of

performativity is an algorithm that weights different elements of a student’s CV such

as SAT scores and GPA in order to make college admissions decisions. If the algorithm

heavily weights SAT scores, over time it will become apparent to applicants that SAT

scores are very important and they will dedicate more resources to improving SAT
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scores, thus changing the distribution of the data on which the algorithm is making

predictions as a result of those very predictions.

Performative prediction is closely related to many other fields in machine learning

including bandits, reinforcement learning, strategic classification, causal inference,

convex optimization, and game theory, but the precise notion and formalism for

performative prediction was only developed very recently in Perdomo et al. [3]. We

formally specify the performative prediction problem now and contrast it with the

supervised learning problem.

Assume we have a measure space (Z,A) with Z a random element of Z and D the

data generating distribution on this space. Let Θ ⊂ Rd be the parameter (model)

space and ℓ : Θ × Z → R be a loss function. The supervised learning problem is to

minimize the the objective over this distribution. In the case of risk minimization the

objective is the expected loss, ℓ(Z; θ) with respect to D.

R(θ) = EZ∼D[ℓ(Z; θ)].

In contrast to this, performative prediction involves making predictions on a distri-

bution that has been shifted as a result of deploying the model, D(θ). We refer to

D(θ) as the distribution map. The concept that captures this notion of risk is known

as performative risk and is formalized as follows:

PR(θ) = EZ∼D(θ)[ℓ(Z; θ)].

The difference between this and the supervised learning problem is that expected loss

is now taken with respect to the induced distribution rather than the data generating

distribution.

The notion of what constitutes a good model is different in supervised learning

and performative prediction. In supervised learning the task is simpler - minimize

the risk on the data generating distribution. In performative prediction however, we

now need to consider how to minimize risk on a distribution that is different from that
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which generated our training data, and is in fact a function of whatever model we

deploy. To capture these notions, Perdomo et al. [3] define performative optimality

and performative stability.

Definition 3 (performative optimality) A model fθPO
is performatively optimal if the

following relationship holds:

θPO = argmin
θ∈Θ

EZ∼D(θ)[ℓ(Z; θ)].

Equivalently, θPO = argminθ∈Θ PR(θ) where PR(θ) is the performative risk as defined

above.

A performatively optimal point is a minimizer of the performative risk. An alternative

solution concept is referred to as performative stability.

Definition 4 (performative stability) A model fθPS
is performatively stable if the

following relationship holds:

θPS = argmin
θ∈Θ

EZ∼D(θPS)[ℓ(Z; θ)].

Define DPR(θ, θ′) := EZ∼D(θ)[ℓ(Z; θ
′)] as the decoupled performative risk; then θPS =

argminθ∈ΘDPR(θPS, θ).

A performatively stable model is not necessarily a minimizer of the performative

risk, but it is optimal on the distribution it induces. Hence, if you have performative

stability there is no need to retrain a model to cope with the induced distribution

drift. Performative optimality and performative stability are distinct concepts and a

performatively optimal point is not necessarily performatively stable, and vice versa.

As explained in Perdomo et al. [3], performatively stable models are fixed points of

risk minimization.

In game theoretic terms, we can consider performative prediction as a game in

which one player deploys a model, θ, and the environment responds with some dis-

tribution map, D(θ). If D(θ) is a best response, then a performatively optimal point
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corresponds to a Stackelberg equilibrium, whereas a performatively stable point cor-

responds to a Nash equilibrium. From game theory we know that except in special

cases (e.g. finite zero-sum games), Nash equilibria and Stackelberg equilibria do not

necessarily coincide [26].

Performative prediction presents a special case of learning under distribution drift,

where the distribution drift is a function of the model deployed. A common approach

in supervised learning under distribution drift is to retrain a model on newly collected

data. While this does not directly minimize performative risk, it is a potentially

reasonable solution in a variety of scenarios. Perdomo et al. [3] prove theorems

under which repeated risk minimization and repeated gradient descent converge to

performatively stable models. We present these findings in detail here as they are

relevant for our work.

Definition 5 (ϵ-sensitivity) We say that a distribution map D(·) is ϵ-sensitive if for

all θ, θ′ ∈ Θ:

W1 (D(θ),D(θ′)) ≤ ϵ||θ − θ′||2,

where W1 denotes the Wasserstein-1 distance.

We also make assumptions on the loss function ℓ(z; θ). Let Z := ∪θ∈Θsupp(D(θ)).

Definition 6 (joint smoothness) We say that a loss function ℓ(z; θ) is β-jointly

smooth if the gradient ∇θ is β-Lipschitz in θ and z, that is

||∇θℓ(z; θ)−∇θℓ(z; θ
′)||2 ≤ β||θ − θ′||2, ||∇θℓ(z; θ)−∇θℓ(z

′; θ)||2 ≤ β||z − z′||2,

for all θ, θ′ ∈ Θ and z, z′ ∈ Z

Definition 7 (strong convexity) We say that a loss function ℓ(z; θ) is γ-strongly con-

vex if

ℓ(z; θ) ≥ ℓ(z; θ′) +∇θℓ(z; θ
′)T (θ − θ′) +

γ

2
||θ − θ′||22,

for all θ, θ′ ∈ Θ and z ∈ Z. If γ = 0 this condition is equivalent to convexity.
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Definition 8 (repeated risk minimization) Repeated risk minimization (RRM) refers

to the procedure where, starting from an initial model fθ0, we perform the following

sequence of updates for every t ≥ 0:

θt+1 = G(θt) := argmin
θ∈Θ

EZ∼D(θt)[ℓ(Z; θ)].

Definitions 5, 6, and 7 are assumptions on the loss and distribution map that are

required for Theorem 3.5 in Perdomo et al. [3]. We state that theorem now.

Theorem 9 (Perdomo et al. [[3], Theorem 3.5]) Suppose that the loss ℓ(z; θ) is β-

jointly smooth and γ-strongly convex. If the distribution map D(·) is ϵ-sensitive, then

the following statements are true:

1. ||G(θ)−G(θ′)||2 ≤ ϵβ
γ
||θ − θ′||2, for all θ, θ′ ∈ Θ

2. If ϵ < γ
β
, the iterates θt of RRM converge to a uniquely performatively stable

point θPS at a linear rate: ||θt − θPS||2 ≤ δ for t ≥
(︂
1− ϵβ

γ

)︂−1

log
(︂

||θ0−θPS ||2
δ

)︂
This theorem says that with the appropriate smoothness and convexity conditions

satisfied on the loss and distribution map, repeatedly retraining a model by mini-

mizing risk will converge to a unique performatively stable model at a linear rate.

The proof proceeds by demonstrating that under the assumptions stated in Theo-

rem 9, the RRM operator is a contraction mapping. Perdomo et al. [3] also show

that without any of ϵ-sensitivty, β-joint smoothness, or γ-strong convexity one can

produce examples that do not converge to a fixed point. Hence these assumptions

are necessary conditions to guarantee convergence of RRM to a performatively stable

model in the general case.

In addition to Theorem 3.5, Perdomo et al. show that repeated gradient descent

(RGD) also converges to a performatively stable model. We define RGD and state

that theorem here.
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Definition 10 (repeated gradient descent) Repeated gradient descent (RGD) is the

procedure where, starting from an initial model fθ0, we perform the following sequence

of updates for every t ≥ 0:

θt+1 = Ggd(θt) := ΠΘ

(︁
θt − ηEZ∼D(θt)[∇θℓ(Z; θt)]

)︁
,

where η > 0 is a fixed step size and ΠΘ denotes the Euclidean projection operator

onto Θ.

Theorem 11 (Perdomo et al. [10, Theorem 3.8]) Suppose that the loss ℓ(z; θ) is

β-jointly smooth and γ-strongly convex. If the distribution map D(·) is ϵ-sensitive

with ϵ < γ
(β+γ)(1+1.5ηβ)

, then RGD with step size η ≤ 2
β+γ

satisfies the following:

1. ||Ggd(θ)−Ggd(θ
′)||2 ≤

(︂
1− η

(︂
βγ
β+γ
− ϵ(1.5ηβ2 + β)

)︂)︂
||θ − θ′||2 < ||θ − θ′||

2. The iterates θt of RGD converge to a uniquely performatively stable point θPS at

a linear rate: ||θt−θPS||2 ≤ δ for t ≥ 1
η

(︂
βγ
β+γ
− ϵ(1.5ηβ2 + β)

)︂−1

log
(︂

||θ0−θPS ||2
δ

)︂
Unlike for Theorem 9, Perdomo et al. [3] do not show that assumptions 5, 6, and 7

are necessary conditions for Theorem 11 to hold.

Interestingly, while strong convexity often results in faster convergence rates for

supervised learning problems, it is not usually a necessary property for convergence.

In the performative prediction framework, however, strong convexity, rather than

merely convexity, is required to guarantee convergence. A series of papers following

Perdomo et al. [3] have further expanded upon the theory of performative prediction

[27–30].

2.5 Related Work

Despite the relative recency of the development of the formal fairness criteria de-

scribed in Section 2.1, there have been attempts to address some of the shortcomings

of these static supervised learning fairness definitions in the past couple of years.
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Many of these works provided the inspiration for this thesis, so we briefly highlight

some of this related work.

The two most influential areas of work are performative prediction and distribution-

ally robust optimization, and the papers most important for this work are Perdomo

et al. [3] and Duchi and Namkoong [15]. Perdomo et al. develop the performa-

tive prediction framework, while Duchi and Namkoong give a thorough summary of

distributionally robust optimization and explain its potential application to fairness

concerns in machine learning.

Following the publication of Performative Prediction [3], there have been a number

of papers which have further explored performative prediction and extended some

of the results from the original paper. For instance, Mendler-Dunner et al. [27]

prove results for stochastic optimization in performative prediction, Miller et al. [28]

prove new results relating performatively stable points to performatively optimal

points, Brown et al. [29] attempt to move toward sequential games for performative

prediction by adding a notion of state to the performative prediction problem, and

Dong and Ratliff [30] approach performative prediction from a dynamical systems

perspective allowing a move away from strict contraction mappings when examining

convergence to performatively stable models.

Distributionally robust optimization is an older area of research as compared to

performative prediction, but it has only recently received more attention within the

machine learning community, largely due to work by Hongseook Namkoong and John

Duchi [31–33]. Areas such as finance, where robust optimization is important as rare

events have the potential to be catastrophic for a portfolio, have seen research on

robust optimization for decades. See Ben-Tal et al. [34] for a survey. Ben-Tal et

al. [35] and Shapiro [23] provide rigorous mathematical treatments of DRO with

f -divergence balls.

A number of recent papers have also attempted to better understand fairness in

machine learning over time, albeit not within the performative prediction framework.
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Closely related to performative prediction, strategic classification [36] models the pre-

diction problem as an adversarial game where individuals manipulate their features

in response to deployed models. Recent work [37, 38] has examined how strategic

classification interacts with fairness concerns. Strategic classification is an interesting

problem setting, but is not as general as performative prediction and only captures

scenarios that can rightly be modelled as adversarial games. D’Amour et al. [39]

on the other hand, approach long-term fairness questions from a purely empirical

perspective and use simulation studies to understand the long-term dynamics of algo-

rithmic choices on populations in a variety of scenarios designed to reflect real-world

applications. This approach is interesting, but the lack of theoretical framework limits

their ability to generalize beyond specific simulations.

Finally, the work most closely related to this thesis, Hashimoto et al. [40], examines

the impact of repeatedly minimizing loss and deploying a model using empirical risk

minimization and distributionally robust optimization on a population that changes as

a function of the loss incurred. This work, however, does not fit into the performative

prediction framework and applies only to a specific scenario in which individuals

arrive according to a Poisson process and depart as a function of the loss. This thesis

aims to extend this work by combining DRO and performative prediction in order to

leverage the known results in both areas to provide a more general understanding of

how DRO can impact long-term fairness.
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Chapter 3

Performative Prediction and
Distributionally Robust
Optimization: Performative DRO

Up to this point it is not necessarily immediately clear how fairness criteria, empirical

risk minimization, distributionally robust optimization, and performative prediction

are related, but we will explain the connection now.

As discussed earlier, the formal non-discrimination criteria that have been the

focus of much research of fairness in ML are really only well-defined for a static

supervised learning scenario. Many, if not most, real world scenarios involving fairness

concerns cannot be characterized as static supervised learning problems. The world

is in a constant state of flux, and many distribution changes are in fact the result

of deploying models to make predictions about the world. Performative prediction

therefore presents a framework in which we can reason about the fairness properties of

algorithms that is closer to our real world concerns than the static supervised learning

framework.

The two examples given above, predictive policing and college admissions, clearly

have serious fairness concerns associated with them. Some other common examples of

fairness scenarios which involve performativity are parole decisions, credit extension

decisions, and hiring decisions. Given the importance of performativity for fairness,

our fairness definitions for static distributions seem even more unsatisfying and prob-
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lematic.

Research on performative prediction, however, has thus far focused on risk mini-

mization (i.e. expected losses). As we noted in Section 2.3, training models with a

risk minimization objective in the presence heterogeneous populations characterized

by distinct probability distributions has the potential to result in algorithms that

discriminate against minority groups. The result is that performatively stable and

performatively optimal models are likely to be unfair models.

Understanding the dynamics of performative prediction under alternative objec-

tives that prioritize fairness is an important, and as yet unexplored, area of research

for fairness in ML. If we believe that many real-world scenarios with fairness consid-

erations involve performative prediction, it is essential that we have a better under-

standing what fairness looks like in the presence of performative prediction.

In Section 2.2 we introduced risk minimization and empirical risk minimization and

in Section 2.4 we discussed performative prediction. In this chapter we now consider

replacing the risk minimization objective in performative prediction with a distribu-

tionally robust objective. We will proceed by adapting definitions, assumptions, and

theorems from Perdomo et al. [3] to a distributionally robust objective.

3.1 Definitions for Performative DRO

We begin by redefining performative risk and performatively optimal and stable mod-

els in terms of a robust objective. In the following D(θ) is a distribution map and

Df (Q||D(θ)) is an f -divergence ball of radius ρ.

Definition 12 (robust performative risk) The robust performative risk of a model, θ,

is

RPR(θ) = sup
Q≪D(θ)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θ)) ≤ ρ}.

Robust performative risk differs from performative risk in that the induced distribu-

tion, D(θ), is now the centre of an f -divergence ball over which a supremum of the
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expected loss is taken.

Definition 13 (robust performative optimality) A model fθPO
is robustly performa-

tively optimal if the following relationship holds:

θPO = argmin
θ∈Θ

sup
Q≪D(θ)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θ)) ≤ ρ}.

Equivalently, θPO = argminθ∈ΘRPR(θ) where RPR(θ) is the robust performative

risk as defined above.

Definition 14 (robust performative stability) A model fθPS
is robustly performatively

stable if the following relationship holds:

θPS = argmin
θ∈Θ

sup
Q≪D(θPS)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θPS)) ≤ ρ}.

Define RDPR(θ, θ′) := supQ≪D(θ){EZ∼Q[ℓ(Z; θ
′)] : Df (Q||D(θ)) ≤ ρ} as the robust

decoupled performative risk; then θPS = argminθ∈Θ RDPR(θPS, θ).

We discussed earlier that previous work has shown that repeated risk minimization

converges to a performatively stable model under certain assumptions on the loss

and distribution map [3]. We can analogously define repeated distributionally robust

optimization as follows.

Definition 15 (repeated distributionally robust optimization) Repeated distribution-

ally robust optimization (RDRO) refers to the procedure where, starting from an initial

model fθ0, we perform the following sequence of updates for every t ≥ 0:

θt+1 = G(θt) := argmin
θ∈Θ

sup
Q≪D(θt)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θt)) ≤ ρ}.

As with RRM, this is an iterative procedure where we optimize the distributionally

robust objective at each time step t. While it is only a small departure from RRM

conceptually, the DRO objective has fundamentally different mathematical properties

than risk minimization making it unclear whether RDRO and RRM should exhibit

similar behaviour.
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We show that by modifying the assumptions required for convergence of RRM, we

can use the proof technique from Perdomo et al. [3] to show that RDRO converges

to a robustly performatively stable model. We now state and discuss these modified

assumptions.

Definition 16 (robust β-joint smoothness) We say the the distributionally robust

objective is robustly β-jointly smooth if for all θ, θ′ ∈ Θ and z, z′ ∈ Z the gradient,

∇θ sup
Q≪D(θ)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θ)) ≤ ρ},

exists and is β-Lipschitz in z and θ.

Definition 17 (robust γ-strong convexity) We say the the distributionally robust ob-

jective is robustly γ-strongly convex if for all θ, θ′ ∈ Θ and z ∈ Z

sup
Q≪D(θ)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θ)) ≤ ρ}

is γ-strongly convex.

Definition 18 (robust ϵ-sensitivity)

Let D∗(θ) = argmaxQ:Df (Q||D(θ))≤ρ EZ∼Q[ℓ(Z; θ)]. Assume that a distribution map,

D(·), is ϵ-sensitive. We say that this distribution map is robustly ϵ-sensitive if there

exists ω > 0 such that for any θ, θ′ ∈ Θ

W1 (D∗(θ),D∗(θ′)) ≤ ωW1 (D(θ),D(θ′)) ≤ ωϵ||θ − θ′||2,

These definitions are straightforward extensions of β-joint smoothness, γ-strong con-

vexity, and ϵ-sensitivity to the distributionally robust objective. With risk mini-

mization it is enough to make the assumptions of β-joint smoothness and γ-strong

convexity on the loss function, since taking an expectation over the loss preserves

smoothness and convexity. This is not the case with DRO, however. When we take

the supremum of the expected loss over the f -divergence ball, there is no guarantee

that β-joint smoothness will be preserved. In fact, we are not even guaranteed to get
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a function that is differentiable everywhere on its domain. A simple example that

illustrates this is taking the supremum over two quadratic functions that intersect at

a point. The resulting function will not be differentiable at the point of intersection.

Similarly, a supremum over a set of strongly convex functions does not necessarily

preserve strong convexity. It is true that the supremum over a set of convex functions

preserves convexity, but this does not necessarily extend to strong convexity. Finally,

a distribution map that is ϵ-sensitive is not necessarily ϵ-sensitive for worst case

distributions, or what we call robustly ϵ-sensitive. These complexities make the proof

of convergence of repeated DRO significantly more challenging than repeated risk

minimization. We do not address these complexities in our proof, but rather we

show that if the distributionally robust objective satisfies these properties we get

convergence of RDRO analogous to the convergence of RRM. We provide further

discussion of these issues after the statement and proof of our theorem.

3.2 A Convergence Theorem for Performative DRO

We will now state and prove a theorem which adapts Theorem 9 from Perdomo et

al. [3] to RDRO in place of RRM. The proof of this theorem is a straightforward

adaptation of the proof in Perdomo et al. We first introduce two lemmas used in the

proof of Theorem 9 in Perdomo et al. [3] which we will make use of in our proof.

Lemma 19 (First-order optimality condition) Let f be convex and let Ω be a closed

convex set on which f is differentiable, then

x∗ ∈ argmin
x∈Ω

f(x)

if and only if

∇f(x∗)
T (y − x∗) ≥ 0, ∀y ∈ Ω.

Lemma 20 (Kantorovich-Rubinstein) A distribution map D(·) is robustly ϵ-sensitive
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if and only if for all θ, θ′ ∈ Θ:

sup
{︁⃓⃓
EZ∼D∗(θ)[g(Z)]− EZ∼D∗(θ′)[g(Z)]

⃓⃓
: g : RP → R, g 1-Lipschitz

}︁
≤ ωϵ||θ − θ′||2

where D∗(θ) = argmax
Q:Df (Q||D(θ))≤ρ

EZ∼Q[ℓ(Z; θ)].

We now state our theorem.

Theorem 21 Suppose that the distributionally robust objective satisfies definitions

16 and 17, and that the distribution map satisfies definition 18. Then the following

statements are true:

1. ||G(θ)−G(θ′)||2 ≤ ωϵβ
γ
||θ − θ′||2, for all θ, θ′ ∈ Θ

2. If ωϵ < γ
β
, the iterates θt of RDRO converge to a unique robustly performatively

stable point θPS at a linear rate: ||θt−θPS||2 ≤ δ for t ≥
(︂
1− ωϵβ

γ

)︂−1

log
(︂

||θ0−θPS ||2
δ

)︂
.

Note that G(θ) := argminθ∈Θ supQ≪D(θ){EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θ)) ≤ ρ}.

Proof. Fix θ, θ′ ∈ Θ. Let

D∗(θ) = argmax
Q:Df (Q||D(θ))≤ρ

EZ∼Q[ℓ(Z; θ)].

That is, D∗(θ) is the distribution within the f -divergence ball centred at D(θ) with

radius ρ that maximizes the expected loss. Further, let

f(ξ) = EZ∼D∗(θ)[ℓ(Z; ξ)] and f ′(ξ) = EZ∼D∗(θ′)[ℓ(Z; ξ)].

That is, f(ξ) and f ′(ξ) are the worst case losses for f -divergence balls centred at θ

and θ′ respectively with radius ρ.

We now use Definition 17 and Definition 16 to ensure that f is γ-strongly convex

and that the gradient of f exists and is β-jointly smooth. With our assumption of γ-

strong convexity of f , G(θ) is the unique minimizer of f(x) and we have the following

two inequalities

f(G(θ))− f(G(θ′)) ≥ (G(θ)−G(θ′))T∇f(G(θ′)) +
γ

2
||G(θ)−G(θ′)||22 (3.1)

f(G(θ′))− f(G(θ)) ≥ γ

2
||G(θ)−G(θ′)||22 (3.2)
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Inequality (3.1) comes from the definition of γ-strong convexity and inequality (3.2)

comes from γ-strong convexity and the first-order optimality condition since Lemma

19 tells us (G(θ′)−G(θ))T∇f(G(θ)) ≥ 0 because G(θ) is the minimizer of f(x).

Using these two inequalities we can derive the following

−γ||G(θ)−G(θ′)||22 ≥ f(G(θ))− f(G(θ′))− γ

2
||G(θ)−G(θ′)||22

≥ (G(θ)−G(θ′))T∇f(G(θ′))

where we get the first inequality from (3.2) and the second from (3.1).

Now, using β-joint smoothness in z and Cauchy-Schwarz we get

||(G(θ)−G(θ′))T∇θℓ(z;G(θ′))− (G(θ)−G(θ′))T∇θℓ(z
′;G(θ′))||2

≤ ||G(θ)−G(θ′)||2β||z − z′||2

That is, (G(θ)−G(θ′))T∇θℓ(z;G(θ′) is ||G(θ)−G(θ′)||2β-Lipschitz in z. We will now

use this and Kantorovich-Rubinstein (Lemma 20). Let

g(z) =
(G(θ)−G(θ′))T∇θℓ(z;G(θ′))

||G(θ)−G(θ′)||2β

The function g(z) is 1-Lipschitz in z because we have just divided (G(θ)−G(θ′))T∇θℓ(z;G(θ′))

by its Lipschitz constant. From Lemma 20 and Definition 18 we have the following,

with g(Z) as defined above

EZ∼D∗(θ)[g(Z)]− EZ∼D∗(θ′)[g(Z)] ≤ ωϵ||θ − θ′||2

Using linearity of expectation and multiplying by ||G(θ) − G(θ′)||2β we get the fol-

lowing

(G(θ)−G(θ′))T∇f(G(θ′))− (G(θ)−G(θ′))T∇f ′(G(θ′))

≥ −ωϵβ||G(θ)−G(θ′)||2||θ − θ′||2

Now again using Lemma 19, we have (G(θ)−G(θ′))T∇f ′(G(θ′)) ≥ 0, hence (G(θ)−

G(θ′))T∇f(G(θ′)) ≥ ωϵβ||G(θ)−G(θ′)||2||θ − θ′||2. From our work above we showed
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that −γ||G(θ) − G(θ′)||22 ≥ (G(θ) − G(θ′))T∇f(G(θ′)). Putting this all together we

get

−γ||G(θ)−G(θ′)||22 ≥ −ωϵβ||G(θ)−G(θ′)||2||θ − θ′||2

We rearrange the above to get

||G(θ)−G(θ′)||2 ≤ ωϵ
β

γ
||θ − θ′||2

which proves claim (1) of the theorem.

Claim (2) follows easily. We note that θt = G(θt−1) from the definition of RDRO

and G(θPS) = θPS by the definition of robust performative stability. Using the result

of claim (1) we get

||θt − θPS||2 ≤ ωϵ
β

γ
||θt−1 − θPS||2 ≤

(︃
ωϵ

β

γ

)︃t

||θ0 − θPS||2

Now we set (︃
ωϵ

β

γ

)︃t

||θ0 − θPS||2 ≤ δ

and solve for t.(︃
ωϵ

β

γ

)︃t

||θ0 − θPS||2 ≤ δ

t log

(︃
ωϵ

β

γ

)︃
+ log(||θ0 − θPS||2) ≤ log(δ)

t log

(︃
ωϵ

β

γ

)︃
≤ log(δ)− log(||θ0 − θPS||2)

t log

(︃
ωϵ

β

γ

)︃
≤ t

(︃
ωϵ

β

γ
− 1

)︃
≤ log(δ)− log(||θ0 − θPS||2)

t ≥ (log(δ)− log(||θ0 − θPS||2))
(︃
ωϵ

β

γ
− 1

)︃−1

t ≥
(︃
1− ωϵ

β

γ

)︃−1

log

(︃
||θ0 − θPS||2

δ

)︃
Note that this theorem is essentially just an application of the Banach fixed point

theorem as ωϵ < γ
β

=⇒ ωϵβ
γ
< 1.
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While this proof provides us with conditions under which RDRO converges, it is

somewhat unsatisfying as it leaves as an open question what is required for Definitions

16, 17, and 18 to be true. Unlike for performative prediction with risk minimization,

making assumptions on our loss function does not guarantee that the distributionally

robust objective will share those properties. In order to have smoothness of our

objective and also robust ϵ-sensitivity of the distribution map we require some sort of

stability or regularity of the worst case distributions as the centre of the f -divergence

ball moves as a function of θ.

The robust ϵ-sensitivity condition could possibly be equivalently expressed as a

smoothness condition for the f -divergence ball surrounding the data generating dis-

tribution. Further exploration of these questions would likely yield further under-

standing of the distributionally objective, even outside of the context of performative

prediction. While intriguing, this work is beyond the scope of this thesis.

It could also be possible that robust β-joint smoothness is not a necessary condition

for convergence of RDRO and that a convergence proof may be possible working with

subgradients or directional derivatives, but if this is the case it would necessitate

a different, and likely more involved, proof technique than the one used here. An

alternative approach would also be to work with the dual reformulation of the DRO

problem given in Theorem 2 or to use an alternative probability distance measure

rather than f -divergence balls that may be more amenable to this type of analysis.

These approaches come with their own complications, however, and likely require

answering similar questions. We believe these are interesting questions worthy of

further research, but their investigation is beyond the scope of this work. Instead, we

present empirical work which demonstrates the convergence of RDRO in a variety of

scenarios.
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Chapter 4

Experiments

In this chapter we present several experiments comparing ERM and DRO as well as

RRM and RDRO. RRM and RDRO refer to repeatedly optimizing an ERM or DRO

objective, respectively, and are defined in Sections 2.4 and 3.1. For simplicity, we will

abuse our terminology and avoid the use of RRM and RDRO. Instead, we use ERM

to apply to both empirical risk minimization in the supervised learning scenario, as

well as at repeated risk minimization (RRM) in the performative prediction scenario.

Similarly, we will use DRO to refer to distributionally robust optimization in the

supervised learning scenario, as well as repeated distributionally robust optimization

(RDRO) in the performative prediction scenario. It will be clear from context which

scenario we are discussing.

Our experiments are intended as a proof of concept for the use of DRO in a per-

formative prediction setting, rather than an attempt to demonstrate state-of-the-art

performance on a particular task. To this end, we begin in Section 4.2 with an exper-

iment from Perdomo et al. [3] which satisfies the assumptions of γ-strong convexity,

β-joint smoothness, and ϵ-sensitivity and examine the convergence of ERM and DRO

under these conditions. This first experiment is intended as an empirical confirmation

of the theory developed in Sections 3.1 and 3.2.

We then move away from strict adherence to these assumptions and explore the

convergence behaviour of ERM and DRO with distribution maps that are not neces-
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sarily ϵ-sensitive. In Section 4.3 we use simple synthetic datasets to provide intuition

for the differing behaviour of ERM and DRO in both the regression and classification

settings. The simple regression experiments allow us to build some understanding

of important differences between ERM and DRO in a performative context. We re-

strict the classification experiment in this section to the supervised learning setting

to demonstrate properties of ERM and DRO with implications for fairness before

introducing the additional complexity of performative prediction.

Finally, in Section 4.4 we explore an example designed to reflect scenarios in which

fairness concerns are relevant in order to analyze the behaviour of ERM and DRO from

a fairness perspective. We examine ERM and DRO in the performative prediction

setting with data composed of majority and minority subgroups. While the data

used is still relatively simple, this experiment is intended to capture some of the

essential characteristics of machine learning applications in which fairness concerns

are relevant, as the potential for discrimination against certain demographic groups

is high.

4.1 Implementation

We provide a brief explanation of the implementation details for ERM and DRO

before discussing our experiments and their results. Both risk minimization and dis-

tributionally robust optimization require access to the data generating distribution,

i.e. infinite data, which is obviously impossible, so we perform empirical risk min-

imization and utilize the plug-in estimator for distributionally robust optimization

instead. Further, for DRO we make use of the dual formulation (Theorem 2) and

perform optimization on this objective rather than working with the primal form.

Following Duchi and Namkoong [15] and Hashimoto et al. [40], we use χ2-divergence

balls in our implementation, although investigating different choices of f -divergence

balls is an interesting future direction.

In all of our experiments we use linear models trained with gradient descent. For

37



the small datasets we use backtracking line search [41] to adaptively select a step-size

and for the larger datasets we use a fixed step-size and a fixed number of epochs for

training. The linear regression experiments are ordinary least squares regression, and

the logistic regression utilizes an L2-regularized cross-entropy loss function.

The loss functions for an individual data point are specified below. The regression

experiments are simply a mean prediction task, so we use x to represent the value of

the data and θ to represent the predicted value. The loss for the regression models

is:

ℓ(X; θ) = (θ − x)2.

The classification experiments involve trying to predict the true label, Y ∈ {0, 1},

from the given covariates, X ∈ Rn, for each data point. Our data can thus be

represented by the random variables Z = (X, Y ), and ŷ represents the predicted

value from a logistic regression model. The loss function is:

ℓ(Z; θ) = −y log(ŷ)− (1− y) log(1− ŷ) +
λ

2
||θ||22

The dual formulation of the distributionally robust objective allows for a simple

training procedure where we treat the dual variable η as a hyperparameter. Re-

call that for convex losses, ℓ(θ;Z), the dual formulation is jointly convex in (θ, η).

The training procedure is thus as follows, for a given η, compute the approximate

mnimimizer ˆ︁θη
minimize

θ∈Θ
E(ℓ(θ;Z)− η)2+.

Because the dual is convex in η we can use binary search to find the optimal dual

variable η∗. The loss (ℓ(θ;Z)− η)2+ is merely the ReLu function applied to the usual

loss with η subtracted and then squared which allows us to train models using gradient

descent methods. Hence, using binary search we train models with different values of

η until we find the optimal η∗. The optimal value, η∗, depends on the data and also
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the radius of our f -divergence ball, ρ. The value of ρ is a hyperparameter that we

must specify before training our model.

Selecting the value of ρ is a challenging decision in the implementation of DRO.

Different values of ρ will result in very different models and it is difficult to know a

priori which value of ρ should be selected. There are some theoretical considerations

that can be used to inform the decision, but these do not necessarily provide the best

guidance. Duchi and Namkoong [15] discuss the choice of ρ and give some practical

suggestions for how to select the hyperparameter. Different choices of ρ can result in

models whose performance varies significantly, both on the data as a whole, and on

distinct subsets of the data.

4.2 Convergence of ERM and DRO for Credit Dataset

Our first experiment reproduces the experimental work from Perdomo et al. [3]. We

use a dataset from a Kaggle competition titled Give Me Some Credit. The dataset

contains relevant information for predicting credit scores. The target variable is a

binary variable indicating whether or not an individual has experienced financial

distress in the past two years. The original dataset contains historical information

for 250,000 borrowers.

Following Perdomo et al. [3] we balance the dataset to contain an equal number of

positive and negative cases for the target variable and normalize predictor variables

to have a mean of zero and variance of one. The reduced dataset contains 18,358

entries.

We train L2-regularized logistic regression models on the data for both ERM and

DRO. Both models are trained with stochastic gradient descent with a fixed step-

size of α = 0.03 for 5000 epochs. The step-size and number of epochs were chosen

empirically to approximately replicate performance from Perdomo et al. [3] on the

base distribution. Additionally, a fixed value of ρ was chosen as a radius of the χ2-

divergence ball for DRO. The value of ρ was chosen so that the accuracy of the DRO
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model on the full dataset was significantly, but not drastically, different than that of

the ERM model.

In order to add a performative element to the prediction problem, we identify 3

of the 10 features as strategic features which will be altered as a function of the

parameters of our model. Strategic classification is a particular instance of performa-

tive prediction in which individuals adversarially adjust their features to maximize

the likelihood of classification to the positive class. Strategic classification has been

explored in relation to fairness concerns in previous work [36–39, 42, 43].

As described in Perdomo et al. and Hardt [3, 36], we assume individuals have

linear utilities u(θ, x) = −⟨θ, x⟩ and quadratic costs c(x′, x) = 1
2ϵ
||x′ − x||22. The

constant ϵ controls the cost individuals incur by altering their features. Individuals

thus pay a cost to manipulate their features in order to minimize the likelihood of

the model predicting that they will default on their loan, but are unable to change

the true outcome, y ∈ {0, 1}, of whether or not they default. Given linear utilities

and quadratic costs as described here, the individuals’ best response is to manipulate

their features as

x′
S = xS − ϵθS,

where xS, x
′
S R|S| and |S| is the number of strategic features. The explanation of why

this distribution map is ϵ-sensitive can be found in Perdomo et al. [3].

The procedure for updating the data according to the distribution map for strate-

gic classification is explained in the box below.

Input: Base distribution P , a classifier fθ, a cost function c, a utility function u.
Sampling procedure for D(θ):

1. Sample (x, y) ∼ P

2. Compute best response xBR ← argmaxx′ u(x′, θ)− c(x′, x)

3. Output sample (xBR, y)
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(a) ERM (b) DRO

Figure 4.1: Plots of the normalized distance between successive values of θ for ERM
and DRO.

Using a logistic regression classifier and the strategic classification distribution map

sampling procedure outlined above, we run ERM and DRO for 30 iterations on our

dataset with values of ϵ ∈ {0.1, 1, 10, 100}. We observe similar convergence behaviour

for both ERM and DRO. As the value of ϵ grows, the inequality ϵ < γ
β
no longer

holds, meaning that the conditions of Theorems 9 and 21 are not satisfied and we do

not necessarily have a contraction mapping. We plot the normalized distance between

values of θ for successive iterations of ERM and DRO in Figures 4.1a and 4.1b. The

distance between iterates is calculated as

1

||θS||2
· ||θt+1 − θt||2,

where θS is the value of θ0 on the strategic features.

In Figures 4.1a and 4.1b we observe that both ERM and DRO converge for ϵ = 0.1

and fail to converge for ϵ ∈ {10, 100} over 30 iterations of repeated training and

deployment. Interestingly, DRO converges for ϵ = 1 while ERM does not appear to

converge, but instead appears to cycle between values of θ very close to one another.

It is important to note, however, that this behaviour could be due to numerical issues

as the gaps between successive iterates are on the order of 10−7. Also, it is worth

noting that because we have a fixed step-size and fixed number of epochs, we are

not performing exact empirical risk minimization, nor exact distributionally robust
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optimization, although the approximate solutions should be very close to the optimal

solutions.

This experiment suggests that although we are unable to confirm the assumptions

required for the proof of convergence of DRO, it appears that DRO behaves similarly

to ERM in terms of convergence. The average accuracy for DRO was approximately

5 percentage points lower than for ERM (approximately 67% vs 73%) throughout

the training and testing iterations for the models which converged to performatively

stable points. The Give Me Some Credit dataset does not contain any demographic

information, so we are unable to make any conclusions regarding the fairness prop-

erties of either ERM or DRO, but we explore performance on subgroups within data

in the upcoming Sections (4.3 and 4.4).

4.3 Building Intuition Through Simple Examples

We now investigate the convergence of ERM and DRO on simple synthetic datasets

to build intuition for the behaviour of the two algorithms. We move away from the

assumptions required for our general theoretical guarantees for convergence to a fixed

point and experiment with distribution maps that are not necessarily ϵ-sensitive. We

begin with a regression problem and then investigate a classification problem.

4.3.1 Regression

We start with a simple mean prediction task with data sampled from a mixture of

two univariate Gaussians, XA ∼ N (µA, σ
2) and XB ∼ N (µB, σ

2). 80% of the data

is sampled from XA and 20% from XB, i.e. X = 0.2XA + 0.8XB. We train a linear

regression model using gradient descent with backtracking line search to predict the

mean of the data. We initialize our data with values µA = 4, µB = 4, and σ2 = 0.01.

We choose a small value of σ2 so that the variance and finite samples have only a small

impact on the convergence behaviour of ERM and DRO. We select an f -divergence

ball radius of ρ = 4 for DRO. The value of ρ is somewhat inconsequential for this
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experiment, but we provide further discussion of values of ρ in section 4.4.

We use θ to denote the learned parameter of the model, µ to denote the true mean

of the data generating distribution, and µA and µB to denote the true means of the

XA and XB. In other words, θ = µ̂ is the estimated mean from the model. Where

necessary, we indicate with subscripts ERM and DRO to indicate which model we

are referring to.

We investigate three different distribution maps which we call D0, D1, and D2. For

each map the means of the normal distributions from which we sample are adjusted

as a function of θ. Hence, the induced distribution is

Di(θ) = 0.2N (DA
i (θ), σ

2) + 0.8N (DB
i (θ), σ

2).

These distribution maps were chosen because they are simple to understand, but

reveal important differences in the way ERM and DRO behave when their predictions

alter the distribution on which they are learning. The distribution maps are specified

in Table 4.1.

D0(·) D1(·) D2(·)

DA
0 (θ) = N (θ, σ2) DA

1 (θ) = N (µA, σ
2) DA

2 (θ) = N (2θ, σ2)

DB
0 (θ) = N ( θ

2
, σ2) DB

1 (θ) = N ( θ
2
, σ2) DB

2 (θ) = N ( θ
2
, σ2)

Table 4.1: Distribution maps for mean-prediction experiment.

The distribution map determines the evolution of the distribution over the data at

each iteration of deploying and learning our model, which in turn changes the learned

θt = µt̂. Despite starting from the same initial distribution in each case, the induced

distributions vary widely. This demonstrates the importance of performativity and

illustrates why a static supervised learning framework fails to adequately capture the

complex dynamics of prediction problems which involve performativity.

We run the experiment for 50 iterations, where one iteration involves training a

model on data sampled from the current distribution and then updating the distribu-

43



Figure 4.2: Learned values of θ for
ERM.

Figure 4.3: Learned values of θ for
DRO.

tion via the distribution map. We summarize the evolution of the learned parameter

θt over time for both ERM and DRO in Figures 4.2 and 4.3. Given the simplicity of

the learning problem, the learned values of θ closely approximate true mean of the

distribution, µ, over time. The approximate values to which ERM and DRO converge

are given in Table 4.2.

It is interesting to note that even with this simple mean prediction task we observe

significant differences in the behaviour of ERM and DRO over time. For all three

distribution maps we observe ERM’s tendency to focus on the majority group over

the minority group. Recall that 20% of the data is sampled from XA and 80% from

XB so we refer to group A as the minority group and group B as the majority group.

For D0, ERM quickly converges toward zero as group B’s mean evolves as µB = θ
2
.

Interestingly, however, it does not converge to zero, but instead remains fixed at

approximately θ = 0.004 even though θ = 0 is the performatively optimal value.

DRO displays similar behaviour for this distribution map, but does not converge

as close to zero. As noted in Section 2.4, performative stability and performative

optimality are distinct solution concepts, and performatively optimal points only

coincide with performatively stable points in specific settings.

The second distribution map, D1, reveals differences in ERM and DRO that are

relevant for fairness. For D1, the mean of the majority group again evolves as µB = θ
2
,
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Method D0(·) D1(·) D2(·)

ERM θERM = 0.004 θERM = 1.33 θERM = 0.008

DRO θDRO = 0.128 θDRO = 2.66 θDRO =∞

Table 4.2: Values to which θ converges for ERM and DRO.

but this time the minority group’s mean remains unchanged with µA = 4. As ERM

averages the loss over all data points, it converges to a predicted mean much closer

to µB than to µA. DRO, on the other hand, converges to a value that balances

performance on prediction of the means of both minority and majority groups. In

fact the distance from the true means of group A and group B is almost identical.

|θDRO − µA| = |2.66− 4| = 1.34

|θDRO − µB| = |2.66− 1.33| = 1.33

ERM, however, is a much better predictor of the global mean of the data. This

simple example illustrates a trade-off we can expect between ERM and DRO in terms

of fairness versus global performance.

µERM = 0.2µA + 0.8µB = (0.2)(4) + (0.8)(0.665) = 1.332

µDRO = 0.2µA + 0.8µB = (0.2)(4) + (0.8)(0.1.33) = 1.864

The final distribution map, D2, demonstrates that ERM and DRO can behave

entirely differently under some circumstances. For this distribution map ERM con-

verges to a similar value to that under D0, that is θERM = 0.008. This makes some

sense intuitively as µA = 2θ whereas for D0 we had µA = θ. DRO, on the other hand,

diverges with θDRO going to infinity. The reason for this is that for the first itera-

tion DRO learns a value of θDRO that is larger than 4. Similarly, for each successive

iteration the learned value of θDRO gets larger which in turn causes the true means

of the data to grow as a function of the learned θDRO. Interestingly, if you swap the

majority and minority groups the behaviour of DRO remains nearly identical, while
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Figure 4.4: Learned values of θ for
ERM with D2.

Figure 4.5: Learned values of θ for
DRO with D2.

ERM diverges at a faster rate than DRO. This again demonstrates how DRO treats

minority and majority groups similarly, while ERM learns a function that prioritizes

performance on majority groups. We illustrate this in Figures 4.4 and 4.5

4.3.2 Classification

We now move to a classification task and analyze the behaviour of logistic regression

classifiers trained using ERM and DRO. The classification task is more complex than

the simple mean prediction task, so for this experiment we analyze only the static

supervised learning setting in order to reduce complexity and elucidate the relevant

differences between ERM and DRO. Section 4.4 explores a classification task in the

performative prediction setting.

Our data is generated from bivariate Gaussian distributions and the label, y, of a

given data point is 1 if the sum of its features are greater than the sum of the means

of the two Gaussian distributions from which we draw samples and 0 otherwise. As

with the regression experiments, we have two subgroups within our data, A and B.

We vary the proportion of samples from each subgroup in the experiments. Precisely,
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the data generating process is as follows:

XA ∼ N (µµµA,ΣΣΣA)

XB ∼ N (µµµB,ΣΣΣB)

X = cAXA + cBXB cA, cB ∈ (0, 1), and cA + cB = 1

where

µµµA =

⎡⎣µ1
A

µ2
A

⎤⎦ , µµµB =

⎡⎣µ1
B

µ2
B

⎤⎦ , ΣΣΣA =

⎡⎣σ1
A 0

0 σ2
A

⎤⎦ , ΣΣΣB =

⎡⎣σ1
B 0

0 σ2
B

⎤⎦ .

And for a data point, x = [x1
i , x

2
i ]

T , with i ∈ {A,B},

y =

{︄
0 if x1

i + x2
i ≤ µ1

i + µ2
i

1 if x1
i + x2

i > µ1
i + µ2

i

.

Hence, if µµµA ̸= µµµB, the data is not linearly separable and the logistic regression model

must trade off performance across the two subgroups. We provide scatter plots of

samples from the data generating distribution below with µi
A = 1 and µi

B = 0.7,

σi
A = σi

B = 0.1 for i ∈ {0, 1}, and cA = 0.8, cB = 0.2. Figure 4.6 contains a sample of

360 data points coloured by the value of their target variable, with crosses representing

data points belonging to group B and circles representing data points belonging to

group A. Figure 4.7 contains a sample of 500 and 100 data points respectively from

group A and group B coloured by the value of their target variable.

In Figure 4.6 we can see that the data is not linearly separable, as some members

of group B who belong to the positive class have features that place them lower

than the threshold for positive classification for group A. Although this dataset is

extremely simple, it is characterized by a feature that represents a central concern for

fairness in machine learning, namely that the conditional probability distributions,

P (y|x), are significantly different for distinct subsets of the data. This example is

intended to represent a simplified abstract instance of a population with majority

and minority subgroups in order to see how the behaviour of ERM and DRO differ

in this circumstance.
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Figure 4.6: Sample of 360 data points from the data generating distribution with
cA = 0.8 and cB = 0.2.

Figure 4.7: Sample of 600 data points from the data generating distribution with
cA = 0.8 and cB = 0.2.
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We generate three distinct datasets on which to train our algorithms, each made

up of differing proportions of the two subgroups A and B. Each dataset contains a

sample of 10,000 data points, with samples distributed according the values of cA

and cB. The accuracy of the models on the three datasets is summarized in Tables

4.3 and 4.4 below. For both ERM and DRO we use L2-regularized logistic regression

trained with stochastic gradient descent. The step-size for all algorithms is fixed at

0.05 and we train for 15,000 epochs.

Models trained with the distributionally robust objective have the additional com-

plication that we must specify a value for the radius of the χ2-divergence ball, i.e. ρ.

The larger the value of ρ, the more we can expect a DRO model to differ from an

ERM model because as the χ2-divergence ball grows, the worst case distribution can

be further and further from the data generating distribution. Conversely, in the limit

as ρ→ 0, we recover ERM as the χ2-divergence ball shrinks to contain only the data

generating distribution.

Choosing the value of ρ is a challenging decision, as the performance of a model

varies significantly as ρ changes. If one has access to demographic information, it is

possible to conduct a grid search over possible ρ values in order to find a value that

results in a model with the desirable fairness properties. Doing this, however, largely

defeats the purpose of DRO. As explained earlier, a central advantage to using DRO

rather than some fairness constrained optimization technique is that DRO does not

require access to demographic information. In this experiment we work directly with

the dual formulation of DRO and set η = 0.56. This value was chosen empirically to

achieve relatively uniform accuracy across group A and group B for an 80/20 split

between the two subgroups. As the values of cA and cB change, we can see that the

performance of DRO changes for a given value of η and hence ρ, as η∗ depends on ρ.

We first examine the performance of ERM (Table 4.3). As the data is not linearly

separable, ERM must learn a decision boundary that trades off performance between

the two subgroups. Because the ERM objective treats the loss on each data point
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Group [cA = 0.6, cB = 0.4] [cA = 0.8, cB = 0.2] [cA = 0.95, cB = 0.05]

A 0.797 0.907 0.966

B 0.701 0.652 0.592

All Data 0.759 0.856 0.948

Table 4.3: Accuracy by Group for ERM.

Group [cA = 0.6, cB = 0.4] [cA = 0.8, cB = 0.2] [cA = 0.95, cB = 0.05]

A 0.665 0.751 0.780

B 0.869 0.744 0.766

All Data 0.747 0.750 0.780

Table 4.4: Accuracy by Group for DRO.

equally, the model learns a decision boundary that is more accurate for the major-

ity group than for the minority group. This discrepancy in accuracy of predictions

worsens the smaller the majority group is. For instance, when 95% of the data comes

from group A, the logistic regression model trained with an ERM objective achieves

96% accuracy on group A members, but only 59.2% accuracy on group B members.

Models trained with a DRO objective behave much differently. For the 80/20 split

and 95/5 split, the DRO models learn relatively fair decision boundaries, effectively

balancing performance on both subgroups A and B. For the 60/40 split, however, DRO

actually learns a model that performs significantly better on the minority group than

the majority group. This model is in a sense discriminatory against the majority

group. This is the result of the radius of the χ2-divergence ball being too large and

the model thus overly focusing on a worst case distribution.

As mentioned above, the correct choice of ρ is not necessarily obvious, but it greatly

impacts the performance of the model. Duchi et al. provide some recommendations

and heuristics for choosing values of ρ in Duchi and Namkoong [15]. Along with
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(a) Group A, DRO. (b) Group B, DRO.

(c) Group A, ERM. (d) Group B, ERM.

Figure 4.8: Decision boundaries for ERM and DRO classifiers with samples from
groups A and B with cA = 0.95 and cB = 0.05. Shading indicates predicted label and
data point colour indicates true label.

altering the value of ρ, one can change the f -divergence ball by varying the the value

of k for f -divergences in the Cressie-Read family. This has a similar effect to changing

the value of ρ.

In Figures 4.8a, 4.8b, 4.8c, and 4.8d we plot data from groups A and B for data

generated with cA = 0.95, cB = 0.05 with the learned decision boundary from a

DRO and ERM model, respectively, overlaid. The background shading indicates the

predicted label with blue representing ŷ = 0 and red representing ŷ = 1, while the

colour of the data points indicate their true label.

Neither the regression nor the classification experiments in this section are designed

to be realistic representations of real-world applications, but rather are intended to

provide a simple setting in which to investigate important differences in the behaviour
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of models trained with ERM versus DRO objectives. In the next section we investigate

a slightly more complex classification task in the performative prediction setting and

examine how DRO and ERM may impact fairness considerations when deploying a

model influences the distribution on which it is making predictions.

4.4 Fairness and DRO vs ERM

We now examine ERM and DRO from a fairness perspective. We generate synthetic

data in the same manner as the previous static classification experiment, except with

10 dimensional multivariate Gaussians as opposed to 2 dimensions. Unlike the clas-

sification experiment in Section 4.3, however, we examine a performative prediction

task rather than a static classification task. To be precise, the data generating process

is as follows:

XA ∼ N (µµµA,ΣΣΣA)

XB ∼ N (µµµB,ΣΣΣB)

X = cAXA + cBXB cA, cB ∈ (0, 1), and cA + cB = 1

where

µµµA =

⎡⎢⎢⎢⎣
µ1
A

...

µ10
A

⎤⎥⎥⎥⎦ , µµµB =

⎡⎢⎢⎢⎣
µ1
B

...

µ10
B

⎤⎥⎥⎥⎦ , ΣΣΣA =

⎡⎢⎢⎢⎣
σ1
A · · · 0
...

. . .
...

0 · · · σ10
A

⎤⎥⎥⎥⎦ , ΣΣΣB =

⎡⎢⎢⎢⎣
σ1
B · · · 0
...

. . .
...

0 · · · σ10
B

⎤⎥⎥⎥⎦ .

And for a data point, x = [x1
i , . . . , x

10
i ]T , with i ∈ {A,B},

y =

{︄
0 if x1

i + · · ·+ x10
i ≤ µ1

i + · · ·+ µ10
i

1 if x1
i + · · ·+ x10

i > µ1
i + · · ·+ µ10

i

.

For our experiment we set the parameters of the data generating process as

µi
A = 1 σi

A = 0.1 cA = 0.8

µi
B = 0.8, σi

B = 0.1, cB = 0.2.
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These parameters were selected as an attempt to capture the notion that an un-

derprivileged minority group may have features that make them appear to be less

qualified, despite having the same proportion of qualified individuals as a dominant

majority group. The data generating process obviously represents this at a high level

of abstraction and is much less complex than most real-world applications. With that

said, we believe the data generating process effectively encapsulates this abstracted

characteristic that is central to concerns for learning fair models. Examples of the

type of situation that this experiment is intended to represent are college admissions

or hiring, where an underprivileged minority group may not, on average, have CVs

that appear as impressive as their peers from the majority group due to a lack of

opportunity, but are nevertheless equally qualified for the school or job.

We once again examine a strategic classification scenario, as in Section 4.2, but our

data now contains subgroups, allowing us to analyze the impact of ERM and DRO

on fairness and model performance in the performative setting. The explanation

of the distribution map induced by strategic classification can be found in Section

4.2. We examine four different distribution maps by varying the parameter ϵ ∈

{0.01, 0.25, 0.5, 10} and set 5 of the 10 features to be strategic (i.e. manipulable).

For both ERM and DRO we train L2-regularized logistic regression models with

λ = 0.0001. We use stochastic gradient descent with a fixed step-size of α = 0.2 and

train for 8000 epochs on samples of 1,200 data points. We use a fixed radius ρ of

the χ2-divergence ball for DRO. All parameters were chosen empirically to give good

performance on the base distribution.

First, we examine the convergence behaviour of both algorithms by plotting the

normalized distance between successive iterates of the learned parameters, θt, in Fig-

ures 4.9a and 4.9b. We observe that ERM does not converge for any value of ϵ, while

DRO converges for only ϵ = 0.01. It is unclear why the algorithms do not converge

for other values of ϵ. The failure to converge could be related to using a fixed, rather

than decaying step-size, or because the conditions for the contraction mapping are not
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(a) ERM (b) DRO

Figure 4.9: Plots of the normalized distance between successive values of θ for ERM
and DRO.

met (recall that the conditions are sufficient, but not necessary for convergence of a

particular instance). For the three smaller values of ϵ, both ERM and DRO converge

to a small neighbourhood, whereas for ϵ = 10, neither ERM nor DRO exhibit any

convergence.

To demonstrate the effect of the convergence, or lack thereof, of θ on the model’s

performance, we plot the average supervised and performative L2-regularized binary

cross-entropy loss for ERM and DRO for ϵ = 0.5 and ϵ = 10 in Figure 4.10. The

blue lines indicate the optimization phase and the green lines indicate the effect of

the distribution shift after the classifier deployment. That is, the dots at the end of a

green dotted line represent performative loss, while the dots at the end of a blue line

represent supervised loss. In the plots we can see that even though ERM and DRO

do not converge for ϵ = 0.5, the models quickly achieve relatively stable loss on the

classification task. Note that the average L2-regularized binary cross-entropy loss is

the objective for which ERM is optimizing, but not the objective for which DRO is

optimizing.

Given that this experiment is a balanced binary classification task, the metric in

which we are principally interested is accuracy. Furthermore, as we are interested in

comparing the fairness properties of DRO and ERM, it is important to analyze the

performance of the models on the subgroups within the population, as well as the
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Figure 4.10: Plots of the average L2-regularized binary cross-entropy supervised and
performative loss.
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population as a whole. In Figures 4.11a and 4.11b we plot the the accuracy of the two

models for ϵ = 0.5. We see that the performative accuracy of ERM initially degrades

significantly, before quickly converging to approximately 84% on the full population.

Conversely, the performative accuracy for DRO is actually initially higher than the

accuracy on the distribution on which the model was trained, but it also converges

relatively quickly to an accuracy of approximately 72.5% on the full population. This

is once again due to DRO having a different optimization objective than ERM. The

average cross-entropy loss acts as a surrogate loss for the 0-1 loss and hence aims

to maximize accuracy on the full dataset. The objective used for DRO focuses on

the tails of the distribution and therefore does not maximize accuracy across the

full dataset. The improvement of the DRO model’s accuracy after the distribution

shift is not an inherent property of DRO, but rather is specific to this particular

dataset and distribution map. We see in Figure 4.11a at iteration t = 2 that ERM

also occasionally achieves better performance after distribution shift. In general, the

improvement or degradation of accuracy depends on the learned parameters of the

model, the distribution map, the data, and the loss function.

We saw in the static classification experiment in Section 4.3 that ERM achieved

higher global accuracy than DRO on data composed of minority and majority sub-

groups, but did so because it focused on learning a good model for the majority group

at the expense of the minority group. DRO, on the other hand, balanced performance

on both subgroups. The natural question to ask is if these dynamics carry over to

the performative prediction setting with higher dimensional data. In Figure 4.12 we

plot the accuracy of ERM and DRO for the subgroups A and B for ϵ = 0.5. We can

see from these plots that the fairness properties of ERM and DRO are preserved in

the performative prediction setting.

ERM converges to an accuracy of approximately 90% on group A and only ap-

proximately 54% on group B. This discrepancy is even worse than what we saw in

the 2-dimensional static classification experiment in Section 4.3. DRO, on the other

56



(a) ERM

(b) DRO

Figure 4.11: ERM and DRO accuracy on the full population across successive itera-
tions.

hand, converges to much more equal accuracy across the two subgroups, achieving an

accuracy of approximately 74% for group A and approximately 66% for group B. We

summarize the accuracies to which ERM and DRO converge in Tables 4.5 and 4.6.

We do not include the accuracy for ϵ = 10 because neither ERM nor DRO converged

to a small enough neighbourhood, and therefore did not converge in accuracy. We

see that the algorithms converge to similar accuracy values for all the values of ϵ.

This result, while perhaps not that surprising, is extremely important, as it demon-

strates that not only does DRO exhibit similar convergence behaviour to ERM, but

DRO converges to fair fixed points, whereas ERM converges to discriminatory fixed

points in the presence of heterogeneous data composed of minority and majority sub-

groups. Recall also that DRO is not given access to group information, but still
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Figure 4.12: ERM and DRO accuracy on subgroups A and B across successive itera-
tions.
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learns to achieve more uniform performance across subgroups, as it is attempting to

minimize the worst case loss across all probability distributions within the χ2-diverge

ball surrounding the data generating distribution.

ERM Performative Accuracy

Group ϵ = 0.01 ϵ = 0.25 ϵ = 0.5

A 0.893 0.896 0.898

B 0.540 0.540 0.540

All Data 0.834 0.837 0.838

Table 4.5: Accuracy by Group for ERM after 30 iterations.

DRO Performative Accuracy

Group ϵ = 0.01 ϵ = 0.25 ϵ = 0.5

A 0.687 0.710 0.738

B 0.670 0.660 0.660

All Data 0.684 0.701 0.725

Table 4.6: Accuracy by Group for DRO after 30 iterations.

As we discussed at the beginning of this thesis in Section 2.1, fairness in machine

learning is a contested notion, with competing formal definitions of what it means for

a machine learning algorithm to be fair. We have avoided explicitly weighing in on

this debate in this research, but in arguing that DRO results in less discriminatory

or more fair models than ERM we are implicitly endorsing a particular notion of

fairness. We believe, however, that fairness fundamentally depends on context and

that there is thus no universal definition of fairness.

This experiment is intended as an abstraction of a fairness-relevant machine learn-

ing scenario and we make several underlying assumptions about what the data is

intended to represent. In this example, we assume that the labels for the data points
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are in fact the correct labels. That is, if a data point has a label y = 1, that data

point should indeed be labelled in the positive class. This assumption allows us to

reasonably argue that a “fair” classifier is one which achieves uniform performance

across subgroups. Of course, there is more subtlety to the issue. For instance, the

model learned by the algorithm with a DRO objective results in more false positives

for data points in group A and more false negatives for data points in group B because

the classifier learns a decision boundary in between the hyperplanes which separate

positive and negative classes for group A and group B.

Given that we feel none of the current formal fairness criteria are adequate for

capturing the complex notion of fairness in machine learning, we are not concerned

that our notion of “fairness” in this work does not necessarily adhere to any of these

criteria. We instead intend to make a more general case for the fairness properties

of DRO as compared to ERM when dealing with heterogeneous data composed of

majority and minority subgroups.

Additional plots for the experiment in this section can be found in Appendix A.
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Chapter 5

Conclusion

5.1 Discussion

This thesis has explored, and attempted to contribute to, three new and emerging

areas of research in machine learning: fairness, distributionally robust optimization,

and performative prediction. Fairness research in machine learning has thus far largely

focused on developing formal fairness definitions for static supervised classification

problems. In recent years, however, there has been a realization of the limitations of

this work and attempts to understand fairness beyond the static supervised learning

scenario, as well as to address some of the shortcomings of the mainstream formal

fairness criteria.

Performative prediction [3] represents an attempt to lay a theoretical foundation

and create a framework for fairness researchers to build on. Early work in the perfor-

mative prediction space has exclusively explored optimization objectives that mini-

mize average loss, such as empirical risk minimization. As we discuss in this work,

techniques that focus on average loss are susceptible to learning discriminatory mod-

els when the data generating process is composed of minority and majority subgroups

characterized by different conditional probability distributions. In this thesis we build

on this research by replacing ERM with a distributionally robust objective [15].

We extend definitions from Perdomo et al. [3] to show that under analogous as-

sumptions to those proposed there, repeated distributionally robust optimization ex-
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hibits similar convergence behaviour to that of repeated risk minimization. We then

empirically verify this result, before moving away from strict adherence to the as-

sumptions required for Theorems 9 and 21. Finally, we design an experiment to

demonstrate that using a distributionally robust objective has the potential to train

fair machine learning models without access to demographic information and over the

long-term in the presence of changing distributions.

The experiments in Chapter 4 are not intended as a comprehensive demonstration

that DRO is superior to ERM for achieving fairer models when making predictions

about heterogeneous data, rather their goal is a proof of concept of DRO as method

for achieving fairness in a dynamic world characterized by changing distributions.

If DRO failed to converge to performatively stable points under any circumstance,

or was unable to learn models that successfully balance uniform performance across

subgroups with overall model performance on even simple datasets it would be an

indication that DRO is not a good candidate for designing fair algorithms. Our ex-

periments, however, showed that DRO does indeed converge to performatively stable

fixed points and that models trained with DRO objectives can very successfully learn

models that achieve relatively uniform performance across subgroups, even in the

presence of changing distributions. There is much more work to be done to further

explore these ideas, but we have attempted to demonstrate that this is indeed a

promising line of research with the potential to resolve some of the current issues of

fairness research in machine learning.

In Section 2.1.1, we discussed important shortcomings of the current formal fairness

criteria which we briefly recall here:

1. It is unclear which definition should be used.

2. The definitions apply to static supervised classification problems only.

3. We often do not have access to demographic information.
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4. The definitions ignore intersectionality.

We have attempted to address these shortcomings in this work and we hope that it

acts as a building block towards a more complete notion of fairness in machine learn-

ing and the development of techniques to ensure we are not training discriminatory

algorithms.

5.2 Future Work

This work represents a preliminary investigation into the combination of DRO and

performative prediction as a method to understand and learn fair algorithms, and, as

such, leaves many important avenues for future work open.

On the theoretical side, there is much more work to be done in understanding the

convergence properties of DRO. The result in this work eschewed answering important

questions of stability of worst case distributions as well as questions of smoothness

and strong convexity of distributionally robust objectives. There are also a number

of other results in the performative prediction literature that have been shown for

risk minimization but not for other optimization objectives. Attempting to extend

these results to DRO is an interesting area of future work.

Another interesting direction is the exploration of alternative robust objectives

other than DRO. DRO represents only one of many robust optimization techniques

and it could well be that other robust objectives are more appropriate for the perfor-

mative prediction framework and for addressing fairness concerns in machine learning.

Similarly, it is not necessarily clear that performative prediction is the correct

framework for understanding fairness in machine learning. While it offers a much

richer and more complex setting than static supervised learning, performative predic-

tion is still limited in that distribution maps must be functions of the parameters of

a model, θ, rather than the loss incurred by a model, ℓ(θ, Z). Many scenarios where

one would expect to encounter undesirable feedback loops from deploying ML mod-
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els are those in which the model’s performance on the data directly effects the data

distribution. This effectively adds a notion of “state” to the performative prediction

problem which adds a significant degree of complexity. This complexity complicates

the mathematics, but also allows for richer models of real-world scenarios.

There is also much more work to be done on the empirical side of things. The ex-

periments in this thesis are intended as a proof of concept rather than a demonstration

on real-world problems. Many areas where fairness is a concern involve complex data

and complex moral, legal, and philosophical questions regarding what fairness means

in that particular context. Examining the effectiveness of DRO in these scenarios, and

developing methodology for selecting important hyperparameters such as the type of

f -divergence to use and choosing a value of ρ is an important area of research if the

use of DRO is to be adopted by ML practitioners.

Finally, performative prediction and distributionally robust optimization have con-

nections and similarities to many other well established areas of research in machine

learning, and it is likely that existing results in areas such as bandits, reinforcement

learning, online learning, stochastic optimization, and out of distribution generaliza-

tion could greatly contribute to our understanding of DRO and performative predic-

tion.

5.3 Final Thoughts

We began this work with a discussion of why research into fairness in machine learning

is such an urgent issue and we would like to reemphasize this point. Machine learning

is no longer a niche research area. It has become a fundamental driving force of

the global economy and now attracts billions of dollars in investment around the

world [44, 45]. This change has resulted in enormous opportunity for individuals

with expertise in machine learning and it appears that this trend will only increase

in the coming years.

The reality, however, is that this emergence of AI as an economic powerhouse has
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not occurred in a particularly responsible manner. Machine learning researchers and

engineers have benefited greatly from the investment in AI and the community has

a responsibility to ensure that the future development of the field aligns with and

supports universal rights, freedoms, and values. Chief among these responsibilities is

ensuring that the development and deployment of machine learning models do not

harm the most vulnerable among us. We hope that this work contributes to this

endeavor.
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Appendix A: Additional Figures

Included below are figures for all values of ϵ for the experiment in Section 4.4. We

include the plots for the distance between θt over successive iterations, performative

accuracy on the full population, performative accuracy on subgroup A, performative

accuracy on subgroup B, and the average L2-regularized cross-entropy loss on the full

population.

Figure A.1: Plots of the normalized distance between successive values of θ for ERM
and DRO.
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Figure A.2: ERM and DRO accuracy on full population across successive iterations.
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Figure A.3: ERM and DRO accuracy on group A across successive iterations.
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Figure A.4: ERM and DRO accuracy on group B across successive iterations.
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Figure A.5: Plots of the average L2-regularized binary cross-entropy supervised and
performative loss for ERM and DRO.
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