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[1] Ecosystem models are important tools for diagnosing the carbon cycle and
projecting its behavior across space and time. Despite the fact that ecosystems respond
to drivers at multiple time scales, most assessments of model performance do not
discriminate different time scales. Spectral methods, such as wavelet analyses, present
an alternative approach that enables the identification of the dominant time scales
contributing to model performance in the frequency domain. In this study we used
wavelet analyses to synthesize the performance of 21 ecosystem models at 9 eddy
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covariance towers as part of the North American Carbon Program’s site-level
intercomparison. This study expands upon previous single-site and single-model
analyses to determine what patterns of model error are consistent across a diverse range
of models and sites. To assess the significance of model error at different time scales, a
novel Monte Carlo approach was developed to incorporate flux observation error.
Failing to account for observation error leads to a misidentification of the time scales
that dominate model error. These analyses show that model error (1) is largest at the
annual and 20–120 day scales, (2) has a clear peak at the diurnal scale, and (3) shows
large variability among models in the 2–20 day scales. Errors at the annual scale were
consistent across time, diurnal errors were predominantly during the growing season,
and intermediate-scale errors were largely event driven. Breaking spectra into discrete
temporal bands revealed a significant model-by-band effect but also a nonsignificant
model-by-site effect, which together suggest that individual models show consistency in
their error patterns. Differences among models were related to model time step, soil
hydrology, and the representation of photosynthesis and phenology but not the soil
carbon or nitrogen cycles. These factors had the greatest impact on diurnal errors, were
less important at annual scales, and had the least impact at intermediate time scales.

Citation: Dietze, M. C., et al. (2011), Characterizing the performance of ecosystem models across time scales:
A spectral analysis of the North American Carbon Program site-level synthesis, J. Geophys. Res., 116, G04029,
doi:10.1029/2011JG001661.

1. Introduction

[2] Ecosystem models remain our most important tool for
diagnosing and forecasting carbon cycle dynamics across
space and time. These models also play a critical role in
understanding the potential responses of ecosystems to
global change [VEMAP Members, 1995]. There are a large
number of ecosystem models currently in use, but each
makes different assumptions and was developed using dif-
ferent study sites and data sets. Observational and experi-
mental data sets that provide detailed information about
carbon cycle dynamics are increasingly available for almost
every biome [Baldocchi, 2008] and represent an important
source of data to test for ecosystem models. Despite numer-
ous efforts to test multiple models at single sites [e.g.,
Hanson et al., 2004] or single models at multiple sites [e.g.,
Krinner et al., 2005; Poulter et al., 2009], there has not been
a major synthesis effort to evaluate the performance of the
community of ecosystem models at multiple sites using a
standardized protocol.
[3] In order to address these discrepancies, the North

American Carbon Program (NACP) has initiated an inter-
comparison between ecosystem models and eddy covariance
flux observations from multiple study sites. Recent NACP
analyses have demonstrated that, across many models, the
error in monthly NEE was lowest in the summer and for
temperate evergreen forests, and was highest in the spring,
fall, and during dry periods [Schwalm et al., 2010a]. These
analyses also suggest that skill is higher in (1) models where
canopy phenology is prescribed by remote sensing rather
than prognostic, (2) models where NEE is driven by a cal-
culation of GPP-Re rather than NPP-Rh, and (3) models
with a subdaily rather than a daily time step [Schwalm et al.,
2010a]. These same analyses have also demonstrated that
regardless of model structure there is substantial room for
improvement in the performance of all models, which sug-
gests that parameter error is at least as important to model
performance as structural errors [Schwalm et al., 2010a].

[4] It is difficult to diagnose the mechanisms responsible
for the lack of agreement between model and measurement
using conventional model fitting statistics alone. Summary
statistics or even residual analyses may not sufficiently
explain the model failure that results if one or more carbon
cycle processes are not correctly formulated. Model errors
are challenging to resolve because ecosystem processes
respond to climatic trends at multiple temporal scales. For
example, GPP responds not just to the diurnal and annual
course of solar radiation, but also to the seasonality in leaf
area, short- and long-term drought effects, canopy develop-
ment and nutrient availability over years to decades, and
disturbance and migration at decadal to centennial time
scales [Falge et al., 2002; Arnone et al., 2008; Beer et al.,
2010; Schwalm et al., 2010b]. In general, models are
broadly similar in how they respond to solar radiation, vari-
able in how they represent leaf area index and phenology,
and quite diverse in the ways they represent stand develop-
ment and drought responses. Conventional metrics of model
performance, such as root mean squared error, are typically
calculated at a single time scale, which for eddy covariance
data is often either 30 min or monthly. Such metrics cannot
easily separate processes operating at different time scales,
and most implicitly emphasize model performance at the fast
time scales that dominate model variance at the cost of
neglecting performance at longer time scales (e.g., annual-to-
decadal variability and trends). An alternative step for model
evaluation and improvement is to understand when a model
output fails at multiple temporal scales by assessing error in
the frequency domain rather than in the time domain
[Braswell et al., 2005; Siqueira et al., 2006; Williams et al.,
2009; Vargas et al., 2010; Mahecha et al., 2010].
[5] The goal of this study is to evaluate the performance of

ecosystem models at multiple time scales at select NACP
sites using wavelet decomposition [Torrence and Compo,
1998; Katul et al., 2001]. A multimodel analysis using
wavelet decomposition has not been performed to date and
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introduces new challenges in interpretation, especially given
the NACP goal of explicitly considering uncertainty in
observations and model output. Rather than attempting to
identify “winners” and “losers,” we direct our analysis to
provide information useful for model improvements by iden-
tifying the time scales at which models fail, thus giving insight
into the processes responsible for model/measurement mis-
match. Previous research has identified diurnal and annual
time scales as being disproportionately responsible for
the variance in surface atmosphere CO2 flux observations
[Baldocchi et al., 2001; Katul et al., 2001; Richardson et al.,
2007; Stoy et al., 2009]. Model-data comparisons conducted
using individual models at small numbers of sites have
identified both intermediate time scales (weeks to months)
and interannual time scales as those in which models tend to
fail [Braswell et al., 2005; Stoy et al., 2005; Siqueira et al.,
2006; Vargas et al., 2011]. However, it is unclear whether
these patterns would be expected to hold over a much wider
range of biomes and against the breadth of different model
structures considered in the NACP, which range from simple
flux-and-pool matrix models to next generation terrestrial
biosphere models [Schwalm et al., 2010a]. Based on these
previous findings, we test two interrelated hypotheses:
[6] 1. Models will accurately replicate flux variability at

the daily and annual time scales, as important biological
processes are regulated by diel and seasonal variation (e.g.,
the photosynthetic response to solar radiation) that is thought
to be correctly formulated in the models.
[7] 2. Models will have difficulty in representing variation

at intermediate time scales (weeks to months) because
synoptic weather events and lagged responses in plant
physiology and ecosystem biogeochemistry regulate varia-
tion in fluxes at these intermediate temporal scales.
[8] To evaluate these hypotheses we focus on an analysis

of NEE model-data residuals to highlight where there is still
room for improvement rather than on where models and data
agree. We also develop a novel method for assessing the
contribution of flux-tower observation error via a Monte
Carlo approach and demonstrate that a failure to account for
flux observation error leads to a qualitative misidentification
of the modes of model failure.

2. Methods

2.1. Models and Data

[9] The NACP site-level model-data intercomparison
encompasses 21 ecosystem models and 32 North American
eddy covariance flux tower sites. Not all models were run at
all sites; in total there are 463 out of 672 possible model-site
combinations. What is statistically problematic is that the
missing model-site combinations are not randomly distrib-
uted, but rather reflect the choices of individual modeling
groups, which are undoubtedly influenced by model skill.
For example, tundra and wetland model runs are strongly
underrepresented suggesting that the models not run at these
sites are likely to perform worse than those which were run.
The fact that runs are not statistically “missing at random”
has the potentially introducing biases in a statistical inter-
pretation. Therefore, since most models were run for nine
high-priority sites that had been identified a priori in the
original model protocol, we restricted our analyses to these
sites (Table 1). T
ab
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[10] Model runs at each site followed a prescribed proto-
col to facilitate intercomparison. Each model used a stan-
dardized meteorological forcing data based primarily on the
observed meteorology at each flux tower. Meteorological
data were gap-filled using a combination of nearby met
station data and the DAYMET reanalysis as documented by
Ricciuto et al. [2009]. Ancillary data such as soil texture and
management history were available via NACP Biological-
Ancillary-Disturbance-Methodology (BADM) templates
[Law et al., 2008] to ensure that all models were making the
same assumptions about the local environment at each site.
In addition a standard subset of GIMMS Normalized Dif-
ference Vegetation Index data set [Tucker et al., 2005] data
were provided for the subset of models that are diagnostic
rather than prognostic. Models were expected to be run to
steady state using their standard parameter set; site-specific
model tuning was prohibited. The exception to this was the
LoTEC model, which was run using a data assimilation
scheme. The performance of LoTEC relative to other models
thus highlights the contribution of parameter error, rather
than models structural errors, to model performance. The full
modeling protocol can be found online (http://nacp.ornl.gov/
docs/Site_Synthesis_Protocol_v7.pdf).
[11] This analysis focuses on the comparison of observed

and simulated net ecosystem exchange (NEE) of CO2. All
analyses were conducted on the finest temporal resolution
available, which was 60 min at US-Ha1, US-Ne3, and
US-UMB and 30 min for all other sites (Table 1). Models
with a daily time step used the daily mean value for all values
within a 24 h period and thus we refrain from interpreting the
results from these models at time scales less than 2 days. For
each model at each site we calculated the normalized residual
error (ɛs,m,t) in NEE between models and data as

ɛs;m;t ¼ Models;m;t ��Models;m
ss;m

� �
� Datas;t ��Datas

ss

� �
ð1Þ

with subscripts s = site, m = model, and t = time and a bar
indicating an average over the full length of the time series.
This error metric was designed to highlight the synchrony of
the model with the data rather than identify persistent model
biases, which are generally a reflection of errors in model
parameterization not model structure and are reported on in
detail elsewhere [Schwalm et al., 2010a]. Data and model
output were mean-centered to eliminate biases in the cumu-
lative flux and divided by the standard deviation (s) across
the entire record to normalize the amplitude of variability.
[12] As the continuous wavelet transform does not

accommodate missing data, flux data were gap-filled using
Marginal Distribution Sampling (MDS) [Reichstein et al.,
2005], which is a standard FLUXNET data product [Moffat
et al., 2007]. An estimate of NEE observation error at every
time point was generated by Barr et al. [2009], accounting
for uncertainties associated with U* filtering and random
measurement error [Richardson et al., 2006; Richardson and
Hollinger, 2007]. These uncertainties are incorporated in the
spectral null model, rather than in the error metric, as
described below.

2.2. Spectral Analysis

[13] Spectral analyses are based on the premise that a time
series can be decomposed into an additive series of wave

functions that have different time scales in a way directly
analogous to how a Taylor series decomposes a function into
a series of polynomials. These analyses allow one to identify
the time scales that dominate a signal because wave functions
that match the fluctuations in the data will explain the most
variance (i.e., power). In contrast to traditional methods such
as Fourier spectra, which are based on using sinusoidal
waves, wavelet analyses are based on using wave functions
that are finite in length but moved over the time series in a
way conceptually similar to a moving window. In this way
wavelet analyses are able to identify not only the time scales
that dominate a signal but also when in time those time scales
are strongest. Wavelet analyses are typically plotted on what
is referred to as the wavelet halfplane, where time is along the
x axis, time scale is along the y, and spectral power is indi-
cated by color, for example with hot (red) colors indicating
high power and cool (blue) colors indicating low power.
Wavelet analysis has been widely applied in the geosciences
[Torrence and Compo, 1998] for quantifying the spectral
characteristics of time series that may be nonstationary and
heteroscedastic, thereby offering an improvement over tra-
ditional Fourier decomposition (e.g., see the demonstration
by Scanlon and Albertson [2001]). A continuous wavelet
transform was computed in R using the dplR library [Bunn,
2008] using the Morlet wavelet basis function and setting
the wave number (k0) to six and calculating four suboctaves
per octave (four voices per power of two). The Morlet
wavelet looks like a sine wave centered on zero that decays
rapidly to extinction in both directions. Wavelet power was
corrected for biases following Liu et al. [2007] to ensure a
consistent definition of power in order to enable comparisons
across spectral peaks.
[14] The challenge when interpreting the spectral char-

acteristics of model error is to determine when model-data
mismatch is statistically significant. For this to be useful it is
important that the spectra be compared to the appropriate null
model, which for eddy covariance data requires that the null
spectra account for the errors in the flux observations. Thus,
conventional significance tests using, for example, Monte
Carlo analyses on colored noise spectra, are inadequate
[Torrence and Compo, 1998; Grinsted et al., 2004; Stoy
et al., 2009]. Determining appropriate null spectra is fur-
ther complicated because flux measurement error is non-
normally distributed; NEEmeasurement errors have a double
exponential distribution, which is more fat-tailed than the
normal, and is highly heteroscedastic, with error increasing
linearly with the absolute magnitude of the flux [Hollinger
and Richardson, 2005; Richardson et al., 2006, 2008;
Lasslop et al., 2008]. Because of this error distribution, even
a perfect model that exactly predicted the true flux would
have a strong diurnal and seasonal error spectrum when
compared to data because the magnitude of observation error
in the data increases systematically during the day and during
the growing season when NEE tends to be larger.
[15] To account for this observation uncertainty we

developed a novel Monte Carlo approach to generating the
null wavelet spectrum. A stack of 1000 wavelet spectra were
calculated using 1000 Monte Carlo replicate “pseudo-data”
time series for each site. Replicate data sets were generated
using the methods of Barr et al. [2009] that account for both
uncertainty in the gap-filling algorithm and measurement
uncertainty, and sample over the distribution of both
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simultaneously. The relative error between the pseudo-data
and the original data, and the wavelet spectra of this error,
were both calculated in the exact same way as model error.
From the 1000 replicate spectra, the mean, median, and a
quantile-based confidence interval were calculated and the
distribution of these replicate spectra was used as the null
model for the model spectra.
[16] Rather than present all wavelet half plane diagrams

for all model-site combinations, results are summarized in
three ways. First, the global power spectra were calculated
for all model-site combinations. To account for the data
uncertainty, the peaks in the global spectrum for each model
at each site were tested for significance by comparison to the
distribution of the global spectra of the 1000 Monte Carlo
pseudo-data sets for that site. To simplify presentation, the
model spectrum at each site was divided by the one-sided
95% confidence bound generated from the 1000 Monte
Carlo replicates. In this approach, any part of the spectrum
that is greater than one is interpreted as the model error
falling outside the range of data uncertainty. To enable
comparisons among models, the global spectrum for each
model averaged across sites was calculated as the median of
these null-corrected spectra. The spectrum for the multi-
model mean was calculated by first calculating the ensemble
average time series in the time domain, and then treating this
like any other model, rather than averaging spectra across
models in the wavelet domain.
[17] Second, to synthesize the proportion of variance in

the error metric that was attributable to different time scales,
we extracted power from five spectral bands for each site by
model combination. These bands and their time scales were
the following: subdaily (<0.5 day), daily (0.5–2 days),
synoptic (2–180 days), annual (180–700 days), and inter-
annual (>700 days). Bandwidths were determined by
examining the wavelet spectra of sinusoidal waves with a
“pure” diurnal and annual signal. The analysis of this simple
synthetic time series also served to verify that the analytical
methods were functioning as expected. The five bands were
then summarized on both a by-site and by-model basis in
terms of the relative contribution of each band to the overall
spectra. As before, all spectra were normalized by the upper
confidence interval of the null spectra, which in addition to
providing a metric to determine significance, also allows
spectra from different sites to be compared despite differ-
ences in time series length and total variance. The proportion
of spectral energy in each band was compared using three-
way ANOVA with site, model, and spectral band as cov-
ariates and including all pairwise interactions. Within the
ANOVA the interannual time scale was dropped as a
response variable because of edge effects within the cone of
influence and because its proportional energy is linearly
determined by the other four bands. Because this analysis
was unbalanced, a second ANOVA was performed on just
the 15 models that have completed all runs at the three
deciduous forest sites and three conifer forest sites (Table 1).
Within this analysis we also included biome as a covariate to
test for differences among the conifer and deciduous sites.
[18] The third way model performance was summarized

was to examine the across-model composite wavelet spectra
for each site. Each model-site spectrum was first normalized
so that total power sums to one before calculating the across-
model average of the full wavelet spectra for each site (i.e.,

averaging was performed in the spectral domain). This
analysis was done in order to discern the presence or absence
of consistent temporal patterns in model performance within
a site in order to quantify when models consistently fail
when challenged by data from each site. Errors that are
common across models are expected to have higher spectral
energy than errors that are unique to a single model because
random errors will cancel in the resulting power spectra.
[19] In order to identify phenological errors in the wavelet

spectrum the beginning and end of the growing season was
marked on the wavelet half plane for each site. Phenological
boundaries were estimated based on a 10 day moving aver-
age of tower-based GPP. We used a threshold of 20%
maximum GPP, which gives very similar results as the more
common zero NEE threshold at most sites, but was less
sensitive to noise for the few sites were the zero NEE
threshold gave unrealistic results.

3. Results

[20] Below we demonstrate the wavelet-based uncertainty
analysis using the output from one model, the Ecosystem
Demography (ED2) model [Moorcroft et al., 2001; Medvigy
et al., 2009], at one site, Howland forest (US-Ho1)
[Hollinger et al., 2004]. We use this example to explain the
Monte Carlo analysis with pseudo-data and discuss one
model-site comparison in more detail. We then analyze the
spectra from all sites and models and partition the relative
error for each site and model among the different time scales
(hourly to interannual) that the length of the data records
permit us to interpret.

3.1. Wavelet Decomposition of Eddy Covariance
and Ecosystem Model Time Series With Explicit Error
Accounting

[21] Figure 1 displays the wavelet half plane spectra for
one site (US-Ho1, Figure 1a), one model (ED2, Figure 1b)
run at this site, and the normalized residual error between the
model and the observations (Figure 1c) using data from 1996
to 2003. It is important to note that this analysis focuses on
the normalized residual error spectra (Figure 1c), not the
spectra of the data (Figure 1a) or the model (Figure 1b) itself,
and that this residual (equation (1)) is calculated in the time
domain (i.e., it is not the difference between the wavelet
coefficients displayed in Figures 1a and 1b). In Figure 1, time
is along the x axis, time scale is along the y, and spectral
power is indicated the intensity of color on a logarithmic
scale with warm colors (dark red) indicating the highest
spectral power, which can be interpreted as the strongest
match between a Morlet wavelet and the time series. Impor-
tantly, the warm colors in Figure 1c indicate regions in the
frequency domain of substantial data-model disagreement.
[22] From Figure 1, the dynamics of both the model and the

data are dominated by a diurnal signal (1 day) and an annual
signal (365 days). We also observe that while the annual
signal is present and relatively constant across time, the
spectral power for time scales between �1 h and �2 weeks
is considerably stronger (colors toward red) during the
growing season and weaker (blue) during the winter, espe-
cially at the 1 day time scale. More subtlety, comparing the
data and model spectra suggests that the model may have
less variability (visualized as less red) than the observed
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NEE at both the subdaily time scale and at the time scales
between daily and annual (henceforth called the intermediate
time scales). The lower variability in models at subdaily time
scales is a reflection of the fact that the models do not
include measurement noise, which arises from instrument
error, the stochastic nature of turbulent eddies, and variation
in the flux tower footprint. In addition, many of the models
can only predict NEP, which is less variable than NEE
due to the absence of canopy CO2 storage, though in all
cases we are only considering ecosystem atmosphere CO2

fluxes not dissolved carbon or organic trace gases. When we
look at the residual error spectra (Figure 1c), we should be

encouraged by the fact that the wavelet coefficients have a
smaller magnitude, suggesting a degree of correspondence
between the model and the data. However, clear signals of
model-data mismatch at the annual and diurnal time scales
remain.
[23] These mismatches between model and measurement

in Figure 1c can be further interpreted by accounting for the
uncertainties in the observations as in Figure 2. Figure 2a
(black line) provides an example of the global power spectrum

Figure 1. Wavelet coefficients displayed in the wavelet
half plane for (a) observed net ecosystem exchange at How-
land Forest (US-Ho1), (b) the predictions of the ED2 model,
and (c) model-data normalized residual error. Areas of high
spectral power are indicated by hot colors, with dark red
representing the highest power, while low power is indicated
by cool colors, with violet representing the lowest power.

Figure 2. (a) Global power spectra of the normalized resid-
ual error for the ED2 model at Howland Forest (US-Ho1)
(black line) as compared to the null spectra (mean, solid
red line; 95% confidence interval, dashed red line). (b) The
ED2/US-Ho1 global power spectra divided by the upper
confidence interval of the null spectra. When the model-data
error spectrum is greater than one (dashed line), this indi-
cates that the model error has significantly more spectral
power at these time scales than would be expected based
on observation error.
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for the error of the ED2 model at Howland, which is simply
the marginal distribution of the full error spectrum in
Figure 1c, in comparison to the Monte Carlo estimate of the
spectra of the observation error (red line: solid line = mean,
dashed lines = 95% CI). In order to facilitate the comparison
of these spectra we divided the model-data error spectra by
the upper 95% CI of the observation error spectra for each
time scale (Figure 2b). In this context any time scale that
falls above the horizontal line (>1) indicates a model
residual error that is “significantly” higher than the uncer-
tainty in the observed data. This shows, for example, that
while the error in the model is greatest at the diurnal time
scale, the data uncertainties are also very high at this time
scale. By contrast, the absolute error at the annual scale is
lower, but the random uncertainty in the net carbon flux at

this time scale is also considerably lower, such that the
normalized peak at the annual time scale dominates the
overall spectra.

3.2. Global Model Spectra

[24] Prior to correcting for the null spectra, the global
power spectra, averaging each model across all sites
(Figure 3a), suggest that the error in all of the models con-
sidered is dominated by errors in the diurnal cycle. The large
majority of models also show a second peak at the annual
time scale that is almost the same magnitude as the diurnal
peak. Based on these overall spectra, there appears to be
little consistent structure to model error at the subdaily or
intermediate time scales. Power in the error spectra declines
at interannual time scales, but this likely reflects the limited
length of the time series at these time scales rather than a
confirmation of model performance at capturing long-term
trends. This interpretation is supported by the large error
bounds in the null spectra at this time scale (Figure 2a,
dashed red line).
[25] When compared to the null model spectra, which

corrects for the observation error in the flux data, there are
substantial changes in the overall pattern of model perfor-
mance (Figure 3b). While models continue to have signifi-
cant error at the diurnal time scale, this is no longer the
dominant peak of the spectra because there is significant
structure to the observation error at this time scale. This
implies that much, but by no means all, of the dominant
diurnal peak in the nonnormalized spectral results from the
noise in the data (Figure 3a). Once corrected for observation
error, the overall error for most models is dominated by error
at the annual time scale and the greatest variability in model
performance comes at the intermediate time scales. For a
subset of models (AgroIBIS, LoTEC, SIBcrop, SiBCASA),
as well as for the ensemble mean, model performance at the
daily to monthly time scales falls at or within the uncertainty
bounds of the data. Of these, AgroIBIS and SIBcrop are crop
models that were only run at the crop site, LoTEC was run
using a data assimilation routine, and thus would be expec-
ted to have a lower error rate, and SiBCASA is driven in part
using remote-sensing products and thus has more informa-
tion than prognostic models. For another set of models
(BEPS, BIOME-BGC, DLEM, LPJ-wsl) model error shows
a dip immediately after the diurnal peak but then rises rap-
idly during the first part of the intermediate scale (daily to
monthly) to reach levels that are comparable to error in the
daily time scale. The common feature of this group of
models is that it consists of all of the noncrop models with a
daily time step. The remaining models also show a dip after
the diurnal peak but then error stays lower throughout these
time scales, with errors slightly larger than would be
expected by chance between the daily and monthly scale. All
models show substantial increase in error in the second half
of the intermediate scale (monthly to seasonal).
[26] In order to further diagnose the drivers of the vari-

ability among models within specific time scales, we tested
for the effects of model structure on the integrated power
within the diurnal, intermediate, and annual bands using
ANOVA (Table 2). This analysis was restricted to the group
of models that operate at a subdaily time step, as we already
identified a distinct pattern for daily models, and repeated
both for all models and sites and for just the set of complete

Figure 3. (a) Global power spectra for all models where
each line is the median spectra for one model averaged over
the nine high-priority sites. (b) Comparison of the global
spectra to the null spectra. The blue line indicates the multi-
model ensemble mean and the red line indicates the LoTEC
data assimilation model, which were the top performing
models. The pink lines designate other models that were
within the observation error for at least part of the synoptic
time scale (AgroIBIS, SiB-crop, SiBCASA0), while models
that operate at a daily time step (BEPS, BIOME-BGC,
DLEM, LPJ-wsl) are in green.
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forest runs. We also excluded LoTEC because it employed a
data assimilation scheme. The inclusion of multiple soil
layers in the soil moisture model had a significant effect of
increasing error at the diurnal time scale for both all sites and
the forest sites. Within the forest sites this effect was also
significant at the annual scale and marginally significant at
the intermediate time scale. The representation of soil car-
bon pools was in general not significant across scales and
sites with the exception of the diurnal scale when consid-
ering all sites, in which case models with multiple pools
performed worse than models with one carbon pool or no
explicit representation of soil carbon. Canopy phenology
(prognostic versus prescribed or semiprognostic) had a
significant effect at the diurnal time scale at both all sites
and forest sites, with fully prognostic models showing
larger error than those which used some amount of external
information to control phenology. The choice of photosyn-
thesis scheme (enzyme kinetic versus stomatal conductance)
was highly significant at the diurnal time scale, with
enzyme kinetic models [e.g., Farquhar et al., 1980] having
lower error. For both phenology and photosynthesis these
effects were also seen at the annual scale when looking
across all models, but not at the forest sites nor at the
intermediate scale for either set of sites. Finally, the inclu-
sion of an explicit nitrogen cycle did not have a significance
effect on the spectral power at any time scale regardless of
whether one considers all sites or just the forest sites. Error
spectra on a model-by-model basis (Figure S1) and model
structural characteristics (Table S1) are provided in the
auxiliary material.1

3.3. The Proportion of Model Error at Different Time
Scales

[27] Model error was binned into temporal bands repre-
senting subdaily, daily, intermediate, annual, and interannual
time scales (Figure 4). The full ANOVA suggests that the
differences among sites (p < 0.001, F = 5.34, df = 8) and the
site by band interactions (p < 0.001, F = 4.82, df = 24) were
significant. These results were also significant within the
forest-only ANOVA (site: p < 0.001, F = 5.16, df = 5; site-
by-band: p < 0.001, F = 4.70, df = 15). Figure 4a, which

shows the overall relative error partitioning by site and band,
shows that the error at most sites was dominated by the
intermediate and annual time scales. There is a comparatively
large amount of spectral power in the interannual band at the
CA-Oas site but almost none at US-Ne3, the latter of which is
a reflection of the fact that the crop site was only a 3 year time
series and thus almost all of the interannual band falls outside
the cone of influence. Differences among sites do not show
any obvious pattern between the three deciduous sites
(Figure 4a, left), the three conifer sites (Figure 4a, middle),
and the three nonforested sites (Figure 4a, right). This was
consistent with both the forest-only ANOVA, which did
not find a significant biome effect, and with a subsequent
post hoc analysis that did not find interactions between
biome and any other term.
[28] The full ANOVA also suggests that there were

significant differences among the spectral bands (p < 0.001,
F = 943.43, df = 3) and in the band by model interaction
(p < 0.001, F = 6.06, df = 57). These results were likewise
consistent with the forest-only analysis (band: p < 0.001,
F = 531.80, df = 3; band-by-model: p < 0.001, F = 6.02,
df = 42). Figure 4b shows the overall relative error parti-
tioning by model and band. The agroecosystem models
(AgroIBIS, EPIC, SiBcrop, TRIPLEX) stand out because of
their lack of interannual variability, but as noted above this is
a characteristic of the crop site not the crop models per se.
Among the remaining models, EDCM and SSiB2 were
dominated by errors in the annual cycle while BEPS, ED2,
and LPJ had the largest fraction of error at the interannual
time scale and the smallest fraction at the annual time scale
compared to other models. Interestingly LoTEC-DA, the
one model to employ data assimilation, was not unusual in
terms of the relative contributions among the different bands.
Finally, the ANOVA found the model and the model-by-site
interactions were significant in neither the full ANOVA, nor
the forest-only analysis. Because of a lack of a model effect,
no model structural variables were tested.

3.4. The Mean Normalized Spectra of Multiple Models

[29] The across-model error spectra for each site can help
ascertain consistent temporal patterns of the model failures
on a site-by-site basis (Figure 5). Strong diurnal and annual
error spectral signals appear at all sites. Diurnal error is
highest during the growing season at all sites (delineated by
vertical black lines) and is lowest during the winter, but can
also be nontrivial outside the growing season suggesting that
these errors cannot be isolated to the GPP calculations within
the model. The fact that this seasonal variation appears
stronger at the deciduous and nonforested sites (Figures 5
(top) and 5 (bottom), respectively) but is not absent at
coniferous sites (Figure 5, middle) suggests that phenology/
LAI may contribute to the error. The elevated error during
the growing season is not isolated to the diurnal cycle, but is
also present but of lower magnitude across the intermediate
time scale at all sites as well.
[30] The magnitude of the annual error tends to be large

and consistent across seasons, with some variability within
and among sites. For example, a large annual and seasonal
signal is apparent for the agricultural site (US-Ne3) for
2003. This corresponds to the year maize was planted in a
maize-soy rotation and is a reflection of the fact that the
majority of the models consistently underpredicted maize

Table 2. The p Values for ANOVAs Assessing the Impact of
Model Structural Covariates on the Spectral Power Within Each
of the Three Time Scalesa

Allb Forestc

Diurnal Intermediate Annual Diurnal Intermediate Annual

Site <0.001 <0.001 <0.001 0.006 <0.001 0.021
Soil H2O layers 0.064 ns ns 0.049 0.065 0.031
Soil C pools 0.030 ns ns ns ns ns
Phenology 0.015 ns 0.088 0.018 ns ns
Photosynthesis <0.001 ns 0.015 <0.001 ns ns
Nitrogen ns ns ns ns ns ns

aStructural covariates are all categorical and take on the following
states: soil water layers (0,1, >1), multiple soil carbon pools (yes/no),
phenology (prognostic, prescribed), photosynthesis (enzyme kinetic,
stomatal conductance), and soil nitrogen cycle (yes/no).

bAll study sites and models were used.
cRestricted to the six forest study sites and the models that were run at all

sites.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JG001661.
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Figure 4. The proportion of model error at different time scales for (a) the nine high-priority NACP
study sites and (b) the 20 ecosystem models investigated.
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GPP and NEE (E. Lokupitiya et al., Evaluation of model-
predicted carbon and energy fluxes from cropland ecosys-
tems, submitted to Global Change Biology, 2011). Similarly,
the strong seasonal to annual signal at the grassland site
(CA-Let) for 2002–2006 corresponds to a series of years
that had appreciably greater NEE [Flanagan et al., 2002].
[31] Within the intermediate time scale there are also clear

indications of brief periods of elevated model error during
the growing season across all sites. These error “events”
show up as patches or vertical plumes of red and orange in
Figure 5. Because these periods tend to be brief and irregu-
lar, their contribution to overall error is smaller than domi-
nant annual and diurnal cycle errors, but they do point to
systematic errors that are shared across models. These events
were investigated further on a model-by-model basis by
plotting the wavelet power for individual time scales and
comparing this to model and data smoothed to the same time
scales. As an example, we return to our previous case of the
ED2 model at Howland Forest and investigate the dynamics
at two intermediate time scales, 10 days and 70 days
(Figure 6). We see that in all cases the intermediate time
scale “events” identified by the wavelet analysis correspond
to times when there was greater variability in the data than in
the model. Examples of other models and other sites gen-
erally confirmed this trend (data not shown) that most
models were noticeably smoother than the data. As a
reminder, these are discrepancies in variability on the order
of weeks to months and are thus unlikely to arise from ran-
dom measurement error in the data, though this does not rule
out the possibility of systematic errors in instrumentation.
We have not diagnosed the environmental and biotic drivers
of these many small events, as this is beyond the scope of
this study, but useful examples of this approach can be found
in the literature [Mahecha et al., 2010]. Finally, it is worth

noting that there does not appear to be any correspondence
between error “events” in the intermediate period and the
phenological boundaries identified from the tower flux data.

4. Discussion and Conclusions

[32] Our first hypothesis was that models would perform
well at the daily and annual time scales because biological
processes at both these scales are driven by a solar radiation
cycle and corresponding changes in temperature. In contrast
to our expectations, model error was overwhelmingly dom-
inated by the annual cycles and also showed a clear diurnal
signal. Models captured a significant amount of variability at
these time scales (Figure 1b), but these time scales are
nonetheless responsible for such a large fraction of the
overall variability in NEE (Figure 1a) that errors in their
representation dominate the error spectrum and drive overall
model performance. Our analysis further reveals that model
error on the diurnal cycle predominantly occurs during the
growing season regardless of biome, which is not surprising
given the larger magnitude of summertime fluxes. These
results suggest that further model development focus first
and foremost on correctly replicating flux variability and
magnitude on the annual and diurnal time scales. This rec-
ommendation runs counter to recommendations from site-
specific model wavelet analyses where, for example, flux
variability was correctly replicated at most time scales but
interannual variability was captured for the wrong reasons
[Siqueira et al., 2006]. This discrepancy arises because at a
single site models can often be calibrated to match obser-
vations, but these calibrations may not hold when applied to
other sites. It should also be noted that the spectra in this
previous analysis [Siqueira et al., 2006] were not corrected

Figure 6. Model errors in ED2 at Howland diagnosed by using wavelet spectra. (a) The spectral power is
shown at two time scales, 10 days and 70 days, with a threshold of 10 set to identify peaks in the spectra.
The model and flux data are shown with a moving average at a (b) 10 day and (c) 70 day window with
times that fall above the threshold highlighted. At both time scales, the model-data discrepancies result
from the model being overly smooth and unable to capture the variability present in the data. Full spectra
for this site and model are shown in Figures 1 and 2.
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for observation error and on visual inspection appear very
similar to the uncorrected spectra in this analysis (Figure 3a).
[33] Probing deeper into the contribution of model struc-

ture to diurnal and annual error (Table 2) reveals that model
structure is particularly important at the diurnal scale. Within
the diurnal scale, the choice of photosynthetic scheme had
the greatest impact, with enzyme kinetic models performing
best. Counterintuitively, the choice of phenology scheme
also had a strong impact at the diurnal scale, though not
surprisingly models which predict their own phenology
performed worse than those with relied fully or in part on
external phenological information. The representation of soil
moisture also had a modest, though significant, effect on
diurnal errors, though with the somewhat surprising result
that the inclusion of multiple soil moisture layers increased
error. This may result either from uncertainties in the soil
texture causing errors in the predicted depth distribution of
moisture itself, or in errors associated with rooting depth
distributions and the ability of plants to take up moisture
from different layers, neither of which is an issue within a
simple single-bucket approach. Finally, the effects of soil
carbon representation were modest and inconsistent, while
soil nitrogen representation was nonsignificant. At the
annual scale both soil C and N representation remain non-
significant, while the importance of other structural factors
were consistent with the diurnal patterns, but the effects
were generally weaker and significance varied the between
the complete set of forest models and sites and all sites.
[34] Our second hypothesis, that models would have dif-

ficulty capturing intermediate time scale processes, was
supported by the analysis. The intermediate time scale is
difficult for models to capture due to the stochastic nature of
weather events and the presence of within season biotic
feedbacks. Once data uncertainties were accounted for, error
at the intermediate time scale constituted a nontrival contri-
bution to overall error (Figure 4). What was not predicted a
priori was that there are actually two different domains
within the intermediate time scales, split at a time scale of
approximately 20 days (Figure 3b). This 20 day time scale is
only slightly longer than the time scale at which the influ-
ence of radiation variability was found to decline and vapor
pressure deficit variability became more important for
modeling carbon flux variability in a coniferous stand in the
Duke Forest [Stoy et al., 2005]. Likewise, variability in leaf
area index in a deciduous stand became disproportionately
important for describing NEE variability at approximately
a 20 day time scale [Stoy et al., 2005]. More generally,
this split in time scales also corresponds to the approxi-
mately 3 week duration of synoptic weather patterns. Unlike
the predictable error structure in the annual and diurnal
cycles, the error at intermediate time scales was much more
variable, with periods of large error appearing within stret-
ches where models performed well (Figure 5). Investigations
into model dynamics during these error “events” suggest that
in general models are not variable enough and tend to
smooth over within-season variability. These intermediate
scale failures are more important than their overall contri-
bution to model error would suggest because it is the cli-
matic variability at this scale that gives us insight into a
model’s capacity to capture stress responses, which are
critical for forecasting global change.

[35] The composite full spectra (Figure 5) indicate that
these discrete intermediate-scale error “events” appear to be
shared among many of the models, suggesting shared
structural errors. Such structural errors may arise due to both
the sharing of mathematical formulations among models and
due to shared false assumptions arising from our incomplete
understanding of ecosystem dynamics. That said, there were
no significant correlations between model structure and the
performance at the intermediate time scale. The hints of
structural effects are related to soil processes, specifically the
number of soil layers, which is consistent with our expec-
tation that soil moisture plays an important role in synoptic
scale responses. However, the fact that models with multiple
soil layers performed worse suggests that additional model
complexity does not guarantee superior model performance.
Further diagnosis of the environmental drivers of these
intermediate-scale errors and the structural characteristics of
models that avoid them is clearly warranted, as are empirical
analyses of these systems at the scales relevant to resolving
ubiquitous model uncertainties. Interestingly, the mean of
the ensemble of models had lower error in the spectral
domain than almost all of the individual models, suggesting
that while there may be shared model errors, there are also
many errors across models that average out in the ensemble.
This result reiterates the common finding in the time domain
that a multimodel ensemble frequently has the best predic-
tive skill [Bates and Granger, 1969; Schwalm et al., 2010a].
[36] Also noteworthy at the intermediate time scales is an

absence of error peaks at the beginning and end of the
growing season. The representation of phenological cycles is
a known challenge for models [Richardson et al., 2011], but
on average this error was not found to dominate on inter-
mediate time scales and instead error is consistently elevated
across the growing season. The absence of a clear pheno-
logical signal may be due to the lack of synchrony in phe-
nological errors among models or because phenological
errors are showing up as part of the larger annual error.
[37] By observing the error contribution across temporal

bands, the strong model � band effect combined with the
nonsignificant model � site effect suggests that individual
models are consistent in their error patterns. This is encour-
aging because it suggests that model failures are not idio-
syncratic and site specific. This implies that model
improvements are likely to translate to many sites, as
opposed to improvements at some sites coming at the
expense of reduced performance at others. The significant
effects of site and band � site suggest that, as expected, the
models taken as a group are performing differently at dif-
ferent sites. A previous analysis of model error in the time
domain showed that absolute error varies with biome
[Schwalm et al., 2010a], with the smallest errors in well
studied biomes such as deciduous and evergreen forests, and
the largest errors in less intensively studies systems, such as
tundra and shrublands. The current frequency domain anal-
ysis suggests that the relative impacts of different time scales
do show consistency among models for a given site. The
current pattern of site-to-site differences appears a bit idio-
syncratic at this point and the forest-only analysis failed to
show a significant difference between deciduous and ever-
green sites (Figure 4a). At one deciduous forest site, CA-Oas,
models demonstrated an unusually large fraction of error at
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the interannual time scale. Further investigation showed that
the interannual error was over five times greater than average
at this site, while the annual error was less than 18% below
average, suggesting that high interannual error rather than
low annual error drove the pattern at this site. Future work
with a larger number of sites may be able to clarify site-to-site
differences but within the NACP analysis this requires
addressing the nontrivial statistical problem that missing
model/tower combinations are not random. However, the
dominance of error in the annual time scale across sites and
models is so clear that increasing the sample size would not
provide much additional guidance on how to improve
models.
[38] One of the most novel and important aspects of this

analysis was the inclusion of observation error estimates in
the evaluation of model-data mismatch across time scales.
Observation error is not randomly distributed (Figure 2a),
but has a strong spectral signature that follows flux magni-
tude [Richardson et al., 2008]. Failing to include the mag-
nitude of observation errors would have resulted in
qualitatively different conclusions about the significance and
relative importance of the different spectral bands. Specifi-
cally it would have resulted in an overestimation of the
importance of the diurnal cycle and an underestimation of
the importance of both the annual cycle and the longer half
of the intermediate time scale.
[39] One time scale that has received little attention in this

analysis is the role of interannual to decadal time scales in
model error [Stoy et al., 2009]. We are only beginning to
have tower data records long enough to assess the ability of
models to capture decadal variability and longer term
dynamics [Urbanski et al., 2007]. For spectral methods this
is particularly problematic at long time scales because the
edge effects on the amount of usable data, a region known as
the “cone of influence,” means that a valid inference about
interannual variability can only be made for a fraction of the
time series. Given that the applications of most models are
focused on longer scales, an intercomparison of model per-
formance at longer time scales is critical but largely beyond
the length of most existing eddy covariance data records and
the protocol of the NACP site-level intercomparison. This
indicates a critical data need for long-term records at single
sites. Also of large value for assessing long-term dynamics
are multitower chronosequence studies [Bond-Lamberty
et al., 2004; Stoy et al., 2008], though such sequences
cannot be explicitly combined in a spectral analysis along
the temporal domain of the chronosequence as there is a
substitution of time for space.
[40] It is difficult to generalize about why certain classes

of models fail. Coarse classifications of model structure
provided insight into the variation in the diurnal cycle but
proved to be largely uninformative about the annual and
intermediate-scale errors that dominate the current analysis.
Details of model function and parameterization are model
specific and a model-by-model diagnosis is beyond the
scope of this study. While it is possible that the NACP
intercomparison simply failed to identify the model struc-
tural characteristics that drive model performance, especially
at longer time scales, it is also important that efforts to
diagnose model structural errors account for model param-
eter uncertainties. The current intercomparison protocol
makes it difficult to distinguish models that failed due to

misparameterization versus inherent structural limitations.
The intercomparison did include one model (LoTEC-DA)
that made use of data assimilation methods, and not sur-
prisingly this model had the lowest absolute error [Schwalm
et al., 2010a]. Likewise, results from previously published
spectral analyses of single models optimized to a single site
resulted in models with very little diurnal or annual error
[Braswell et al., 2005], in contrast with the dominant pattern
across models in the current analysis. Both these observa-
tions suggest that model parameter error may currently be
dominating structural error or that many structural errors can
be overcome with sufficient parameter flexibility.
[41] In conclusion, spectral analysis helps clarify when

and where models fail, and provides guidelines for priori-
tizing efforts to improve our collective modeling capacity.
Annual errors dominate model error and thus should be the
first diagnostic upon which modelers should focus. After-
ward, modelers should aim to capture the growing season
diurnal cycles. Finally, models should focus on identifica-
tion and attribution of synoptic error events.
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