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Abstract

Grapheme-to-phoneme conversion (G2P) is the task of comyex word, represented by a
sequence of graphemes, to its pronunciation, represegtadgéquence of phonemes. The
G2P task plays a crucial role in speech synthesis systerdss am important part of other
applications, including spelling correction and speeaxisfieech machine translation. G2P
conversion is a complex task, for which a number of diver$atiems have been proposed.
In general, the problem is challenging because the souricg stoes not unambiguously
specify the target representation. In addition, the trejrdata include only example word
pairs without the structural information of subword aligemts.

In this thesis, | introduce several novel approaches for G@&®ersion. My contri-
butions can be categorized into (1) new alignment models (2hchew output genera-
tion models. With respect to alignment models, | presertrigies including many-to-
many alignment, phonetic-based alignment, alignment bggar linear programing and
alignment-by-aggregation. Many-to-many alignment iSgiesd to replace the one-to-one
alignment that has been used almost exclusively in the pastnew many-to-many align-
ments are more precise and accurate in expressing grapbtemneme relationships. The
other proposed alignment approaches attempt to advandeathimg method beyond the
use of Expectation-Maximization (EM). With respect to gettien models, | first describe
a framework for integrating many-to-many alignments amdjieage models for grapheme
classification. | then propose joint processing for G2Pgisinline discriminative training.
| integrate a generative joint-gram model into the discriminative framework. Finally, |
apply the proposed G2P systems to name transliteratiorrag@meand mining tasks. Ex-
periments show that the proposed system achieves stéte-afit performance in both the

G2P and name transliteration tasks.



Acknowledgements

It is my pleasure to thank those who made this thesis possible

| am deeply grateful to my supervisor, Greg Kondrak, for édro¢ guidance throughout
my research and study at the University of Alberta. His iratjmn and enthusiasm help me
to explore research in this thesis. Without his guidancepitld not have been possible to
publish paper publications used in this thesis. Thank youytdhesis committee members:
Randy Goebel, Dale Schuurmans, Harald Baayen and AnoopiSarkheir contributions
to this thesis at the defense. Thank you to Dekang Lin for dimroents and suggestions
during my candidacy exam. Thank you to Shane Bergsma angaBihargava for their
great work on proofreading this thesis.

Thank you to all NLP members at the University of Alberta amilignt co-authors
contributing in my thesis publications: Tarek Sherif foe tihany-to-many alignment pa-
per, Colin Cherry for the discriminative training paperin@Dou and Shane for stress
prediction paper, and Kenneth Dwyer, Shane, Qing, Adityé lsin-Young Kim for the
transliteration papers. Thank you to Ken for his contrimtio the name “DirecTL”.

| would like to thank you to Nick Cercone and Vlado Keselj widvised me during
my master program at Dalhousie University and continualbwigled me recommendation
letters for scholarship applications and others.

| acknowledge supports from the Alberta Ingenuity Fund drelAlberta Informatics
Circle of Research Excellence which are now part of the Atbkmovates organization.

Lastly but the most importantly, | would like to thank my wied family for their love,

encouragement, and understanding.



Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . e e 4
1.2 Outline . .. .. . . e 6

2 Related Work 7
2.1 One-to-one EMalignment . . . . ... ... ... ... ... ... ..., 9

2.1.1 Discussion on one-to-one EM alignment. . . . ... ... ..... 10
2.2 Grapheme-to-phoneme conversion . . . . . ... ... ... .. ... 11
2.2.1 Classification-based approaches . .. ... ... .. ...... 12
2.2.2 Sequence-based approaches . . .. ... ..... ... .... 3.1
2.3 Learning for structured outputs . . . . . .. ... e 15

3 Grapheme-to-phoneme alignment 19
3.1 Many-to-many alignment . . . . ... ... ... ... .. .. .. ... 20
3.2 Phoneticalignment . . . .. ... 32
3.3 Constraint-based alignment . . . . . .. .. ... ... ... ... .. 24

3.3.1 Integer linear programming alignment . . . . . ... .. ...... 25

3.3.2 Alignment by aggregation . . . ... .. .. ............ 27
3.4 Evaluation . . . . . . .. ... e 28
3.5 Summary ... e e e e 33

4 Grapheme-to-phoneme generation 35

4.1 Applying M-M alignments and a language model to G2P dlass . ... 36
4.1.1 Grapheme chunkingmodel . . . . ... ... ... ......... 38
4.1.2 Applying a language model to G2P classifiers . . . . .. ...... 39
4.1.3 Summary of evaluationandresults . . . . . ... ... ... .. 40

4.2 Joint processing and discriminative training < v
421 JOINtProceSSING . . .« o v v v i 44
4.2.2 Online discriminative training . . . . ... ... ...... .. 46
423 Model . ... .. .. . 46
424 Search. . . .. ... a7
425 Onlineupdates . . . ... . ... ... .. 48
4.2.6 MIRAimplementation . . . . ... ... ... ... .. ..... 50
4.2.7 Summary of evaluationandresults . . . . ... ...... ... 50

4.3 Stress markers combination . . . ... ... ... L 54

4.4 Training without alignments . . . . .. .. ... ... ... ...... 57

4.5 |Integrating jointa-gram features into DirecTL . . . . . . .. ... ... .. 59

4.6 SUMMANY . . . . . o e e e e e e e e 63

5 Transliteration 65

5.1 Transliteration generation . . . . . . . . .. ... ... . e 66
5.1.1 Approaches to transliteration generation . . . . . . ...... ... 71
5.1.2 Training with multipleanswers . . . . . .. ... ... ... ... 72
5.1.3 Language-specific approaches to name transliteratio. . . . . . 74
5.1.4 Summary of evaluationandresults . . . . ... ....... .. 76

5.2 Transliterationmining. . . . . . . . . ... . . 79



5.2.1 Approaches to transliteration mining . . e iw... 80

5.2.2 Application of DirecTL+ to transliteration mlnlng S - ¥4
5.2.3 Summary of evaluationandresults . . . . . ... ..... ... 83
53 Summary . ... 86
6 Conclusion 89

Bibliography 93



List of Tables

agoooaoiaor hAABAABMABADLAE WL W

NOORARWNE, POONOUOIRARWNE WHN =

o

Alignment quality, entropy, and G2P conversion acouactthe Combilex

dataset. . . . . . . . . 30
G2P word accuracy using the TiIMBL-based generatioresyst . . . . 32
G2P word accuracy using the online discriminative sgste . . . . . . 33
An example of grapheme chunking prediction. . . . . ... ...... ... 38
Number of wordsineachdataset. . .. ... .............. 41
Word accuracies based on 10-fold cross validation. . . . . . . . .. 42
Featuretemplate. . . . . . ... ... .. ... ... .. ...... 7 4
Comparison of word accuracy on the evaluationsets. . .. ... .. 53
Combined phoneme and stress prediction word accuracy. ... . . . . . 56
G2P word accuracy of DirecTL, bold and local updates. ...... . . . .. 59
G2P word accuracy of bold update approach. . . ... ... .. .. 59
Jointn-gram feature template. . . . . . . . ... oo L 60
Grapheme-to-phoneme conversion accuracy. . . . . . v ww..... 62
Evaluation data sets used in NEWS 2009. . . .. ... ... .. .. 68
Additional evaluation data sets used in NEWS 2010. ww.... 68
Top-1 word accuracy performance of different trainitrgtegies. . . . . 73
Evaluation results on NEWS 2009 transliteration geiera . . . . . . 78
DirecTL+ results on the NEWS 2010 transliteration gatien tasks. . . . . 79
Transliteration mining results. . . . . . . . ... ... ... ..., 88
DirecTL+ with average cutting and other clustering rodth . . . . . . 88



List of Figures

GORR B A AR RAAD WOWWW NNN
= [(eNee] ~ (o)) a b~ WN P~ ORrWNE WN P~

Alignment example for the worthccuse” with its phoneme output. . . . . 8
One-to-one and many-to-many alignment examples fowtrd “accuse”. 11
Example pronunciation for the word longevity. . . ... ........ 15
ALINE alignmentexample. . . . . . . ... ... .. ... L. 24
Anetwork of possible links. . . . ... ... .. ... .. .. .. ..., 26
Alignment examples dphrase”. . . . . .. ... ... ... ... ..., 28
F score versus G2P word accuracy performance. . . . . .. ... ... 32
G2P word accuracy vs. alignmententropy. . . . . ... ... ... .. 33
The many-to-many alignment approach framework. . . . ... . ... 37
Example paths for the wotburied” . . . . . .. ... ... ... ..... 40
System performance showing in word accuracies on tHeated data sets

on grapheme-to-phoneme conversiontask. . . . . ... ... ..... 42
Collapsing the pipeline approach. . 45
Separate segmentation versus phrasal decodlng in tffrmﬂerage word
accuracy and standard deviation. . . . . .. ... ... ... ... .. 51
The effect of sequence features on the joint systemrimstef average word
accuracy and standard deviation. . . . . .. .. ... ... .. ... .. 52
Word accuracy on the development set showing the leaminve of the
system trained with different amounts of training data. ...... ... .. 53
System accuracy as a function of the beamsize. . . ... .. ... .. 61
System accuracy as a functioneframsize. . . . . . ... ... 62

WM-EnAr histogram. . . . . . . ... 85



Chapter 1

Introduction

The objective of grapheme-to-phoneme conversion (G2B)demnerate phonemes that cor-
respond to a given written word. Phonemes are abstract plgibal representations
of how words are pronounced in natural speech, while grapbesine representations of
words in written language. The G2P task plays a crucial nelspeech synthesis sys-
tems [Schroeter et al., 2002], and is an important part oérottpplications, including
spelling correction [Toutanova and Moore, 2001], speeciogrition [Goel et al., 2010]
and speech-to-speech machine translation [EngelbredrBelmultz, 2005].

In general, G2P can be viewed as a string transduction proklbere a system is
trained to transform input strings to output strings. Fdiynthe G2P task can be described
as follows: given an input word containingn graphemess; ... s,, the task is to find
thet;...t, phoneme sequence that corresponds to the input worgor example, the
phonemes for the wordbodeare p b o d]. Generally, the G2P task requires an alignment
algorithm to generate alignments between graphemes amteptes in the training data.
The aligned data provide more precise information to a pimengeneration model. For

instance, the alignments for the example above are:

a d e

b o
I
o b o d _
The “_" phoneme, called thénull phoneme”, is added to represent the silent sound pro-
duced by the grapheme “e” in the example. In many cases, thphmaneme is also added
for making one-to-one alignments possible.

Converting a word into its phoneme representation is a rnvialttask. Dictionary-
based approaches cannot achieve this goal reliably dueseenrwords and proper hames.
Furthermore, the construction of even a modestly-sizedpraation dictionary requires

substantial human effort for each new language. Effectilelbased approaches can be de-



signed for some languages such as Spanish; however, KoauirieRlack [2006] show that

in languages with a less transparent relationship betweeltirsy and pronunciation, such
as English, Dutch, or German, the number of letter-to-sauels grows almost linearly

with the lexicon size. Therefore, most recent work in thisaahas focused on machine
learning approaches.

Many data-driven techniques have been proposed for gragieqmphoneme conversion
systems, including neural networks [Sejnowski and Rosgnli®87], hidden Markov mod-
els [Taylor, 2005], instance-based learning [Bosch andddaans, 1998, Daelemans and
Bosch, 1997], constraint satisfaction [Bosch and Canig066], and decision trees [Black
et al., 1998]. Data-driven approaches to G2P generallyinealigned training data of
graphemes and phonemes. A one-to-one alignment assuniptigpically assumed for
simplicity. Phoneme generation models are then trainaausie alignments, viewing the
task as either a classification or a sequence predictiorigmmob

| aim to develop an automatic G2P system that learns frontadolaiword-phoneme ex-
amples and outperforms all other existing systems. Befgplyang any learning techniques
to this problem, there are three issues one should condtitest, input words and output
phonemes are embedded with some hidden structures amotwgptbpaces. These hidden
structures are callethlignments”. Discovering these alignments is required in order to
train G2P systems using many learning techniques. Secandsvand phonemes are natu-
rally structured sequences, so that classification-basduhiques are not able to capture the
output structure information. However, they are good atesgnting grapheme contexts as
input features and generating each phoneme subsequemes. othird, each phoneme is
influenced by both the hypothetical grapheme(s) that géeeia(as known by the links
in the alignment data) and the grapheme context surrourilimgrapheme. For example,
in the word-phoneméabode” [o b o d], the phoneme [0] is not only generated by the
grapheme “0” but is also influenced by other graphemes sudiaog it, like the graphemes
“d” and “e”. With the possibility of long dependencies in theapheme sequence affecting
the generation of an output phoneme, sequence-basednigaechniques such as genera-
tive hidden Markov models (HMMs) are a poor fit for this prableDiscovering a learning
technique that better fits this task is challenging.

The similar task of name transliteration is one in which,egiva name written in a
source language, we seek a phonetically equivalent nantiewin a target language. The
transliteration task is another instance of a string traogdn problem, and it is similar

to G2P in many aspects. In fact, the name transliteratiotesy®f Knight and Graehl



[1998] includes G2P components. The idea is to convert edarguage graphemes to their
corresponding phonemes. The system then learns mappatgnships between source
language phonemes and target language phonemes befoertounthe target language
phonemes to their corresponding graphemes, written indtget script. This approach
therefore consists of a G2P component in the source languabthe reverse process, P2G,
in the target language. The name transliteration system eff &l. [2004] present a direct-
conversion-based approach that generates target langaages from the source language
without intermediate phoneme representations. This &gbrs conceptually similar to the
well known G2P jointn-gram model proposed by Bisani and Ney [2002]. This suggests
strong relationship between G2P and name transliteradiskstin general.

The Named Entity Workshop (NEWS) shared tasks on name itienagion [Kumaran
etal., 2010, Lietal., 2009, 2010] are interested in the kdgraent of language-independent
name transliteration systems. In the transliteration gaiua tasks, the available training
data are similar similar to the available training data f@PGthe data consist of translit-
eration names written in source and target languages. L@ @ere is no alignment
information in the training data indicating which subsfriof a target language name is a
production of which substring of a source language namerdio & system, we need the
training data to be aligned before starting the learninggse. Unlike standard evaluation
of G2P, there are multiple correct or accepted translimrdargets. Training a system with
multiple correct answers in the training data is challeggin

Like in many other supervised natural language procesgiptications, the quality of
a transliteration system largely depends on the size aniitygoatransliteration example
pairs. Developing large corpora is both time consuming armbesive. Transliteration
mining in the NEWS shared tasks [Kumaran et al., 2010] igésted in extracting translit-
erated names from parallel text. | aim to develop a systemigheained on a small list of
transliterated names and is able to identify name translite pairs in the text, written in
source and target languages.

In this thesis, my overall research objective is to devel@2® system that improves
over existing systems by employing novel advanced teclesiduboth alignment and gen-
eration. | apply such approaches to not only the G2P comreitsisks but also to name

transliteration generation and mining tasks.



1.1 Contributions

In this thesis, my research contributions are focused on G#ersion and name
transliteration. For G2P, | present a many-to-many aligmnaoproach, known as the
“m2me-aligner” [Jiampojamarn et al., 2007]. As mentioned previously, nreekearning
techniques require the training data to be aligned befamtirsg) the learning process. Pre-
vious work generally assumed one-to-one alignments foplgiity. This assumption limits
one grapheme to be aligned with one phoneme in the outpuhoédih these alignments
make the original G2P problem simpler and more suitable toymaulti-class classification
techniques, the alignments suffer from two fundamentableras: (1) double graphemes
and (2) double phonemes, which are discussed in detail itioBet:1.1. My many-to-many
alignment approach is proposed to fix these problems. Tharaknt results are more ac-
curate from both human and machine learning perspectiy@spbse alternative alignment
methods including phoneme-based, integer linear progiagirased, and alignment-by-
aggregation approaches [Jiampojamarn and Kondrak, 20&6hduct an in-depth study to
demonstrate the close relationship between alignmentty@edd G2P conversion perfor-
mance.

| first propose a pipeline framework for applying the mamystany alignments and a
phonetic language model to G2P classifiers [Jiampojamagt.,e2007]. This approach
combines the benefits of hidden Markov models (HMMs) withftagibility of supervised
classification techniques. Naturally, classification teghes are unaware of sequential out-
put structures but they easily make use of wide graphemeexbta individually predict
each sub-phoneme in the sequence. HMMs are sequence-leabedjties that generate
output sequences based on the transition and emissionfiités. The output structure
information is encoded in the transition probability, andise-side information is encoded
in the emission probability. While the G2P systems baseslysoh HMMs tend to perform
poorly, | show that using an HMM-like model to correct the mutt phoneme sequence
generated by a local classifier yields an improvement iniptied accuracy.

Later, | collapse the pipeline framework and unify it withoént processing framework
based on online discriminative training. This novel framdwis known as DirecTL [Ji-
ampojamarn et al., 2008]. The discriminative training aggh has the ability to incor-
porate a rich number of features. Phoneme sequence infomiateasily represented as

features in the learning method. A phrase-based decoder fogether the phoneme gen-



eration module and the grapheme segmentation module bagbd many-to-many align-
ments. The joint processing framework optimizes the legrmparameters for G2P as a
single model, solving the error propagation problem in theelne framework. | further
conduct a study to evaluate this system while incorporaiatate-of-the-art phonetic stress
assignment system [Dou et al., 2009]. The proposed syst¢perdorms the well-known
speech synthesis system FestivaDne observation with the joint technique, however, is
that the model must commit to imperfect alignments produmgethe m2m-aligner. | in-
vestigate this potential issue by applying a training apphowithout explicit alignments,
based on the method of Liang et al. [2006]. The training mede similar to a coordinate
descent algorithm that is applied to Latent Support VectachMnes (LSVMs) [Felzen-
szwalb et al., 2008]. Finally, | combine a jointgram model [Bisani and Ney, 2002, 2008]
with the DirecTL system; the combined system is called “Diiet+” [Jiampojamarn et al.,
2010a]. | conduct experiments that evaluate the propossdrsyon the same data splits as
used in [Bisani and Ney, 2008]. DirecTL+ outperforms boté dniginal DirecTL and the
joint n-gram approach, establishing a new standard in stateeeftthperformance for G2P
conversion.

Furthermore, | apply the DirecTL framework to name tramsdition generation and
mining and evaluate using the data provided by the NEWS 2002@10 Machine Translit-
eration Shared Tasks [Kumaran et al., 2010, Li et al., 20020P | present a training ap-
proach that incorporates multiple outputs per input forrthme transliteration generation
task. This approach enables the DirecTL framework to traih multiple valid correct an-
swers per input name. The results [Jiampojamarn et al.,,ZIb] illustrate DirecTL's
proficiency for the name transliteration generation tagkdoks not require any specific
language knowledge in order to achieve state-of-the-afoppeance on several language
pairs. However, language-specific approaches for ChinedeKarean are also tested as
pre-processing steps to provide greater information ferctbrresponding writing systems.
The pre-processing steps for these languages help thersistenerate better alignments
and better output sequences.

For name transliteration mining, | present classificatiased and generation-based
approaches that are based on the m2m-aligner and DirecTénsygJiampojamarn et al.,
2010b]. To make a decision on whether a candidate pair imaliteration pair, | present an
approach that uses the DirecTL system to generate traasiite words and | compare the

generated words with the words in the candidate list viaiagsimilarity function. The

*http://ww. cstr. ed. ac. uk/ proj ects/ festival



successful results achieved in the shared tasks confirnffdwiveness of this approach.

In summary, | present alignment and phoneme generatiomitpeds for G2P conver-
sion tasks. The improvements achieved by the proposed oetlie based on observations
made in existing systems. Then, | apply the proposed metioaasme transliteration gen-
eration and mining tasks. | illustrate that the proposedagaghes are efficient for both the
G2P and the transliteration tasks. | establish the stathesfirt in performance on both

tasks.

1.2 Outline

The structure of this thesis is as follows. First, in Chafet describe grapheme-
to-phoneme work in the literature, including graphemefoneme one-to-one alignment
methods and phoneme generation models based on classifieaiil sequence prediction
techniques. Then, in Chapter 3, | introduce the many-toynadignment approach as well
as phonetic alignment, integer linear programming-badeghraent, and alignment-by-
aggregation. In Chapter 4, | describe a grapheme chunkindehand language model
for classification-based G2P approaches. Then, the jootessing framework and on-
line discriminative training methods (DirecTL and Direc)Lare presented and evaluated.
| present the DirecTL framework for name transliteratiomeyation and mining tasks in

Chapter 5. | provide the conclusion of this thesis in Chafter



Chapter 2

Related Work

Grapheme-to-phoneme (G2P) conversibas a long history in the speech synthesis area.
Inspired by Chomsky and Halle [1968], the conversion of geapes to phonemes is possi-
ble if there is sufficient contextual information around ¢gnaphemes [Damper et al., 1999].
The Chomsky and Halle [1968] work inspired the early ruleduhsystem of [Elovitz et al.,
1976] which was proposed as an automatic rule-based sysieEnglish. It contains 329
phonological rules that are in the format of[B|C' — D”; where A andC are the left and
right context graphemes ard is the phoneme(s) corresponding to the graphém@ver
time, machine learning techniques have been developedemmdslP systems do not rely
on handcrafted rules but rather use available word-phore@ample pairs for training.

However, the inspiration of Chomsky and Halle [1968] stlhys a crucial role as
grapheme context features in classification-based appesdBlack et al., 1998, Bosch and
Canisius, 2006, Bosch and Daelemans, 1998, Daelemans aoth,Bi®97, Kienappel and
Kneser, 2001, Sejnowski and Rosenberg, 1987, Suontaudtaiam, 2003], or grapheme
substrings in generative models [Bisani and Ney, 2002, 2Qbf&n, 2003, Damper and
Eastmond, 1997, Marchand and Damper, 2000, Taylor, 2005].

There are two key components in both classification and géwersystems that al-
low training from word-phoneme example pairs. The first conmgnt is to discover hidden
structures between graphemes and phonemes, &diligunents Alignments essentially al-
low the G2P system to learn what phoneme to generate for gaphgme and its context,
allowing us to attack the problem sequentially grapheme faplieme. The alignments
are provided to the phoneme generation models either ékplitaving a separate model
to generate the alignments, or implicitly, integrated witthe phoneme generative mod-
els [Bisani and Ney, 2002, 2008, Chen, 2003, Taylor, 2005je $econd component is a

talso known as letter-to-phoneme (L2P) or letter-to-solr®$j conversion



learning mechanism to train a model to generate output pheaajiven words. There are

two paradigms for training:

1. train as a classification problem where each grapheme orégenerates a phoneme

or phonemes without knowledge of previously generated @mas in the same word.

2. train as a sequence modeling or tagging problem whichstpkevious decisions in

to consideration for the current decision.

The performance of G2P systems are reported in word acguaadyphoneme accu-
racy. The word accuracy is calculated by counting the nurobéully correct phoneme
sequences given testing words. The phoneme accuracy igatelt using either the Ham-
ming distance or Levenshtein distance between the golatatd outputs and the generated
sequences to find the number of correct phonemes.

Generally, training data for G2P conversion systems aritad@ in the form of word-
phoneme pairs with no explicit information indicating idiual grapheme-to-phoneme
relationships. While these relationships driglden” in the training data, humans naturally
have an intuition of grapheme-to-phonefiadignments” given a word-phoneme pair. For
example, the wordaccuse” [ @ k j u z ] has grapheme-to-phoneme alignments shown
in Figure 2.1. The' " represents a special null phoneme that indicates a silemidsimr

graphemée” in the word.

a c c u s e
| VA
@ k j u z _

Figure 2.1: Alignment example for the wotdccuse” with its phoneme output.

To simplify the conversion task, these grapheme-phoneigaménts must be discov-
ered so that phoneme generation models can infer the redaijp between each/substring
of graphemes in the input word and each substring of phonémibe output phonemes.
In very early work, graphemes and phonemes were aligned g bafore a grapheme-
phoneme prediction model was trained [Sejnowski and Rasgnli987]. In later work,
the alignment step was performed in an automatic fashiorguen expectation maximiza-
tion (EM) based algorithm [Dempster et al., 1977] with norfenimal) human interaction.
These methods are based on a one-to-one alignment assarfigptsimplicity [Black et al.,
1998, Daelemans and Bosch, 1997, Damper et al., 2005].

8



2.1 One-to-one EM alignment

The one-to-one assumption assumes that each grapheme edignasl to one phoneme
or the null phoneme which represents a silent sound. A gefraraework is presented in
Algorithm 1. The process starts with the initial probakildf mapping a graphemeto a
phonemet, P(s,t) in line 1 and iteratively re-computes the probability tabsed on the
new alignments found under the currdngs, ¢), in line 4 and 5, until the probability table
converges. Finally, thé(s,t) is returned to produce the alignments in the training data.
Note that while Black et al. [1998] comput®(s, t) probabilistically, Daelemans and Bosch
[1997] and Damper et al. [2005] treR( s, t) as raw counts or scores of mapping grapheme
s to phoneme. | now explain each of these steps in detalil.

Black et al. [1998] proposed (1) the hand-seeded method2)riti€ epsilon scattering

method to initializeP(s,t). The hand-seeded method starts with an explicit list of tvhic
phonemes (or multiple phonemes) each grapheme can be mapped finds the best pos-
sible alignments for each word-phoneme pair in the traidatp. The initial probability
P(s,t) is calculated based on the mapping counts. While the haedksemethod requires
human effort to produce the allowance list, the epsilontedag method obtains the counts
without the list. The initial probability table in this castrts by mapping all possible align-
ments in the one-to-one fashion between graphemes andmksri®y introducing possible
null phoneme positions. For exampéhode[ o b o d ] has five possible positions where a
null phoneme can make an alignment. Instead of scatteritigpmoneme positions, Daele-
mans and Bosch [1997] proposed the shifting method to coithtdifferent scores. The
shifting is repeated at most 3 times, so that the possiblatcwuscores are 8, 4, 2 and 1.
For examplerookie[ r u k i ] has three possible alignments: (1) no shibkie[ ru ki _ _
], (2) one right shift [_ru ki _]and (3) two right shifts [ _r u ki]. Each mapping takes
8 counts for no shift, 4 counts for one right shift and 2 for tight shifts cases. Damper
et al. [2005] proposed a simple way to obtain the inifdls, ¢) by counting appearances
between a graphemeand phoneme in the same word regardless of positions.

The next step in the algorithm is to find new alignment pathsetieon the current
P(s,t) (line 4). The maximum likelihood path can be found by usirendeard dynamic
programming. LetC (i, j) be the score entry at grapheme positiand phoneme position
J, with initially C'(0,0) = 0. The recursive equation for dynamic programming is shown in
Equation 2.1. The alignment path can be reconstructed by tbacking from the maximum

scoreC(1,J); wherel and.J are the numbers of graphemes and phonemes in the word,



Algorithm 1 One-to-one EM alignment training.
Input: word-phoneme training examples
Output: mapping probability table’(s, t)

1: Initialize probability P(s,t).

2: for K iterations over the training sdb

3. for all word-phoneme pair in the training e
4 find alignments path based @#(s, ¢).
5
6

re-computeP (s, t) based on the new alignments found.
: return P(s,t)

respectively.
Ci-1j-1+ P(si, 1)
C(’L,j) = max Ci*l,j + P(SZ', _) (21)
Cij—1+ P(- 1)

Allowing the mapping between a null grapheme and phonemeoislgmatic during the
phoneme generation phase in which the null grapheme doexisbin words. To disallow
the null grapheme mapping(-, s;) can be set to a large negative number. This prevents
the decoder from mapping a phoneme with a null grapheme &idol et al., 1998, Daele-
mans and Bosch, 1997]. Similarl(s;,-) can be set to a constant cost for mapping null
phonemes [Damper et al., 2005].

Finally, for each training iteration the neW(s,t) is re-computed based on the new

alignment found as in line 5. The training process stops whent) converges.

2.1.1 Discussion on one-to-one EM alignment

Although alignments obtained from one learning method ateaiways identical to the

human-generated alignments or to alignments from othgnels, they are sufficient to
provide useful information to a phoneme generation modbBEsE aligners can be trained
in an unsupervised manner with no or minimal human supervisin most cases, they
correctly capture those silent sound cases @gde[ o b o d ]). The one-to-one mapping

assumption keeps the computation simple; however, therenarproblems:

1. Double graphemes: when two graphemes map to one phonemetie [ [ ], ph
—[f])

2. Double phonemes: when one grapheme maps to two phonemgeg (e [ks ], u

—[ju))

First, the double grapheme problem occurs when two graph@nag to one phoneme re-

sulting in a shorter phoneme string. For example, in the ward[ k 1 1 ], the graphemes
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ng intuitively produce the phonemey[] together. To produce one-to-one alignments, the
null phoneme has to be aligned with either the grapharoeg, neither of which is intu-
itively the correct alignment. These incorrect alignmerats potentially cause the phoneme
prediction model to produce null phonemes for either g grapheme.

Second, the double phoneme problem arises in those cases re grapheme pro-
duces two phonemes. For example, in the wiomde[ f j u m ], the vowelu generates
both [j] and [ u ] phonemes. One possible alignment path isdtbanull grapheme in
the word string, and to align the null grapheme with eithet ¢§ [ u ] phoneme. Adding
a null grapheme not only results in incorrect alignmentsictvisonfuse the phoneme gen-
eration model, but also lead to another problem: where shibel null grapheme be added
in the word string during generation phase, since it doegxist in the orthographic side?
Another possible solution for the double phoneme problerto isreate a new phoneme
by merging phonemes [ j ] and [ u]. This solution requires apegito construct a new
phoneme list (e.g. the handed-seed method [Black et alg]L9igure 2.2 shows an one-
to-one alignment of the example woagtcuse] @ k u z ]. The alignment is possible by
merging both [ j ] and [ u ] phonemes to a new phoneme [ U ] andhalg the second

grapheme with a null phoneme.

a ccuse a ccuse
A EEEE
@k juz _ @ k _ Uz _

Figure 2.2: One-to-one and many-to-many alignment exasrfplethe word‘accuse”.

These two fundamental problems exist in the one-to-onenalénts. The one-to-one
assumption thus makes the task simple but it limits thetgitditrain a phoneme generation
model from the alignments.

The many-to-many alignment method was proposed for thengrap-to-phoneme con-
version task by Jiampojamarn et al. [2007]. It relaxes the-torone assumption allowing
multiple graphemes to align with multiple phonemes. Thehmétrequires no handcrafted

list and learns in an unsupervised manner without pre-atiggxamples.

2.2 Grapheme-to-phoneme conversion

Once the alignments are discovered in the training data,ameuse them to explicitly ex-

press grapheme-to-phoneme productions. G2P can thenwedv/igther as a multi-class
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classification problem, where each sub-phoneme outputigrddirectly from the focused
grapheme and its context (surrounding graphemes) withongidering the phoneme se-
guence output, or as a sequence prediction problem, whiel tato account the grapheme

sequence input and phoneme sequence output.

2.2.1 Classification-based approaches

In classification-based approaches, each phoneme is @ dlependently using a clas-
sifier such as a neural network [Sejnowski and Rosenberg?],1@8&tance-based learn-
ing [Bosch and Daelemans, 1998, Daelemans and Bosch, 18874exision tree [Black
etal., 1998, Kienappel and Kneser, 2001, Suontausta and2083]. These classifiers pre-
dict a phoneme for each input grapheme using the graphetttes] tae“focus grapheme;
and its context graphemes as features. The focus graphehgenwst important feature in
the prediction, while the farther the context graphemeéhis Jéss information it contributes
to the classifiers. With the same distance, right contexglggmes are slightly more impor-
tant than left context graphemes [Daelemans and Bosch].1BB@eneral, these methods
use 3 to 5 graphemes both before and after the focus graprecoai@xt features, depend-
ing on languages and data sets. For English, reported in NIE[Rejnowski and Rosen-
berg, 1987], a performance improvement was found with asirey the context window
size from 3 to 5. These classification-based methods legdhagstructure of the input, en-
coded in the features, by using context grapheme informaltiot they ignore the phoneme
structure in the output.

NETtalk is one of the first grapheme-to-phoneme systemsaavell-known neural net
application. The method is based on the error back-projmegatural net training. The
focus grapheme and its context graphemes are encoded ag bodes for predicting a
phoneme output. Each input grapheme is encoded with 29 ngfewdes for the English
alphabet and 3 nodes for punctuation marks. The networkistensf one hidden layer
of 80 hidden units. The output phonemes are encoded withr2é\binodes representing
21 articulatory features (voiced, velar, stop, and so od)&stress and syllable boundary
features (strong, weak, left, and so on).

Daelemans and Bosch [1997] proposed to use IG-Tree, aieariat instance-based
learning, for the grapheme-to-phoneme problem. The I@& Trethod uses information
gain to grow the decision tree that stores grapheme-phomsiaraples. The IG-Tree and
decision tree methods are different in the sense that 1@-Tises the information gain to

evaluate features once whereas the decision tree metlev@ieates features at each grow-
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ing tree step. While the decision tree method usually iretuygluning to avoid over-fitting,
the IG-tree is constructed until all the training phonenteasabiguity is resolved, without
pruning the tree. Interestingly, Black et al. [1998] repdrthat growing the decision tree
with an early stop criteria actually decreases the perfaoea

A similar approach to the 1G-tree was proposed by Bosch areldb@ans [1998]. It
is based on memory-based learning IB1-IG. Instead of waglkirthe 1G-tree, the method
finds the most similar training instance to predict the nesting instance. The similarity
function is based on the Euclidean distance with each featighted by its information

gain value.

2.2.2 Sequence-based approaches

A natural way to view grapheme-to-phoneme conversion isottsicler it as a sequence
modeling or tagging task. An input world consists of a sequence of graphemes. . z,,
and its corresponding outpiit is a sequence of phonemgs. . . y,,,. The major difference
between classification-based and sequence-based appsasitihat the latter considers pre-
vious phoneme decisions in order to predict the currentauput phoneme.

Taylor [2005] describes applying a hidden Markov model (HMbithe G2P task. The
method formulates grapheme sequences as observatios atatgphoneme sequences as
hidden states. The phoneme sequence output is the mosbfralemuence based on the
transition and emission probabilities, using the follogveguation; whereéX is a sequence
of graphemes (input word) arid is a sequence of phonemes:

Y = argm}f}xP(X\Y)P(Y) (2.2)

The HMM framework is based on Baum-Welch training. It allosv®e phoneme state
to generate up to four graphemes. This allowance in the @éecnaids introducing the
null phoneme to the problem. The approach does not requériedaiming data to be aligned
separately but optimizes both alignment process in theddg@nd phoneme generation pa-
rameters within one HMM framework. However, the performaachieved by the HMM
framework is far worse than classification-based appraaahesn with some ad-hoc pre-
processing fixes, which tune the framework to correct errdrsese inferior results are
mainly caused by the fact that the HMM framework lacks theabdjty of using the
grapheme context information directly. These featuregHsmen shown to be important

in classification-based approaches.
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Joint n-gram models [Bisani and Ney, 2002, 2008, Chen, 2868ijeve good G2P re-
sults by training the models on grapheme-phoneme subgising, so that sequence infor-
mation in both the grapheme and phoneme sides directlyibatdrto the models. Bisani
and Ney [2002] incrementally create grapheme-phonemekshahsizes ranging from 1
to 6. They reported an optimal size of 2 in both graphemes #&hgmes for English
and German data sets. Given a wo¥dand its corresponding phonemég& the method
then estimates the joint probabilify( X, Y) from grapheme-phoneme segmentations called
“chunks”¢; ... ¢z, as in Equations 2.3 and 2.4; whef¥ér, y) is the set of all possible joint
segmentations of word and phoneme sequenge The maximum likelihood training is
based on the EM algorithm. The most likely phoneme sequ&iagven a new test word
X' can be found byirg maxy+ P(X! Y?).

PX,Y)= > plC=c,...cp) (2.3)
CeS(z,y)
L
P(Czcl---cL):HP(Cilcl---ci—l) (24)

=1

Pronunciation by Analogy (PbA) [Damper and Eastmond, 18%fchand and Damper,
2000] also considers substring graphemes and phonemelsef@2P task. The method
produces a phoneme sequence output for an input Wohly finding the least number of
segmented grapheme sequences in the training examplesath&rm the wordX with
the highest score of the phoneme sequence path. The grajptememe chunks are based
on the longest common subsequence between each trainingplexand a new word. It
requires alignments to be drawn in the training data whichlmatrained by using the one-
to-one aligners described in Section 2.1. To illustratesater Figure 2.3; each arc repre-
sents the phoneme substring corresponding to the inpuhgnag substring. The number
on the arc represents the number of occurrences of the gregpgpboneme substrings in
the training example. For example, the substiimgg [| a n J] appears twice, whilon
[l a n] andlon [l o n] appear twice and once, respectively, in the trainirgneples. PbA
is a lazy learning method that stores all training examplebsaeates the path during the
transcription step. It takes the shortest path as the autfparing from one node to another
node in the graph is counted as a path with length 1. If thexereore than one candidates
with the same length (e.g. there are 6 candidates with leéhgtlthe example), PbA selects
the path which has the highest number of occurrences sumiorgl the arcs [Damper and

Eastmond, 1997] or uses 5 scoring strategies to rank thédzaad [Marchand and Damper,
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Figure 2.3: Example pronunciation for the word longevitgwing only the arcs contribut-
ing to the phoneme sequence output. The figure is taken lgireotn [Marchand and
Damper, 2000].

2000].

The constraint satisfaction inference (CSinf) approaabsf and Canisius, 2006] im-
proves the performance of the classification-based appi@msch and Daelemans, 1998]
by predicting, for each grapheme, a trigram of phonemesistims of the previous, cur-
rent, and next phonemes. The core learning technique il loasastance-based learning; it
takes the same grapheme context features as in the stanassification-based approach.
By predicting a trigram output, CSInf increases the numbeslasses from the original
problem by polynomial order 3. The final output is based onoWerlapping output class
information by taking the output sequence that satisfiesrtbst unigram, bigram, and tri-
gram agreement constraints. The overlapping predictiopsdave G2P performance mainly

by repairing imperfect one-to-one alignments.

2.3 Learning for structured outputs

Grapheme-to-phoneme learning is closely related to stredtlearning techniques in-
cluding hidden Markov models (HMMs) [Rabiner, 1989], awgrd perceptron algorithm
[Collins, 2002], Support Vector Machines for structuredputs (SVM!"“) [Tsochan-
taridis et al., 2004], and conditional random fields (CRREsfflerty et al., 2001]. As re-
ported in [Taylor, 2005] and discussed in Section 2.2.2, Hiviie a poor fit to the G2P

task because they lack the capability to utilize contexnfarmation in the input grapheme
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sequences. The HMM model assumes that each phoneme sul-gutmly depends on
its observationz; and its preceding phonemes ; ... y;_ 7, WhereM is the Markov order
assumption. The model uses no direct information of consdxjraphemes; ¢ ...z,
where(C' is an allowing window context size.

Collins [2002] proposed a discriminative averaged peroapalgorithm that extends
the generative HMMs. As it is discriminative, the averagedcpptron model works with a
notion of “score” instead of probability as in HMMs. The plone sequence output is the
maximum linear combination of scores for each sub-ougpgtven the grapheme sequence
input z shown in Equation 2.5; where represents feature weight parametdréz, y; ) is
the feature vector indicating evidence found betweendy;, and! is the length of the
input sequence. THEE N (x) function indicates all possible output sequengésat can be
generated by the input string If the model assumes the one-to-one constraintatfenax
operation is the Viterbi algorithm. Otherwise, a segmaénmaprocess is required over the
input sequence to creafénput units. Alternatively, a phrase-based decoder [Zedd\Ney,
2004] can be applied instead of the Viterbi decoder to findlest likely grapheme units

as well as the output sequence.

N

I
Y =ar max w- D(z,y; .
& y=y1..1€EGEN (x) Zzl ( yz) (2.5)

Since the model is based on the summed score, it providedility &0 observe evi-
dence more freely with no limitation on transition and engisgprobabilities as in HMMs.
In fact, the transitions and emissions can be a subsd(ofy;) expressing the focus
graphemer; and preceding phonemes_; ...y;—as. Unlike HMMs, ®(x,y;) typically
uses indicator values that represent present or absergnedd The weight vectar as-
signs how much each componentdotontributes to the total score. The training process to
find the optimakw is an online learning method that iterates through theitrgidata. For
each example, the model finds the most likely outpbaised on the curremt. The weight
vector is then updated such that it prefers the corgeavter the incorrecyj, as shown in

Equation 2.6.

w4+ w+ P(z,y) — P(z,9) (2.6)

The model trains untilv converges. The average of all weight vectors that are seen du
ing training is used in the final model instead of instead effthal weight vector, providing

a better generalized model [Freund and Schapire, 1999].
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Support Vector Machines for structured outgu(SVM*"“<!) [Tsochantaridis et al.,
2004] find the optimal weight vectas by formulating the problem as the following quadratic

program:

1 , O
min — || w + — , S.LVE & >0 2.7a
nin 5 Fw =+ — I;Ek 13 (2.7a)

VEVy €Y —yp i w - [®(xp, yp) — Plak,y)] > 1 - & (2.7b)

The objective function in Equation 2.7a ensures a uniguetisol where the norm of
the weight vector is minimized. The summation of slack J@ga¢;, allows training errors,
called the “soft-margin SVM"(' controls the trade-off between training error minimizatio
and margin maximization. Equation 2.7b is a set of congsdmensure that the score of
the correct output sequence for thé training instancey,, is larger than other incorrect
sequencesg by at leastl — &;,. The right hand side of the inequality is based on the zem-on
loss function; the loss function describes how wrongly amirect output sequence to the
correct one (e.g. Hamming distance). To accompany thetstactoutputs, one can use an
arbitrary loss functiom\ (yy, y) instead of the zero-one loss function. The loss function can
be applied to re-scale either the slack variable [Tsochiggaet al., 2004] by replacing the
right hand side of the equation with— % or the margin [Taskar et al., 2004] using
Ay, y) — &k

Equation 2.7 cannot be solved directly due to the set of cainss. Enumerating all
possible output sequencggor each training example is infeasible with an extremetgda
set of constraints. An iterative training process [Tsothiadis et al., 2004] is applied to
find a small set of constraints that is sufficiently neededHeroptimization problem. The

algorithm iterates over the training examples until theo$ebnstraints converges.

yp = arg max  w - [®(zk, ¥r) — P(zk, )] + AYk, Uk) (2.8)
YEY Yk

At each iteration, it finds the Outp% that has the most violated constraint as shown in
Equation 2.8 (margin re-scaling) and it adgsto the working set only if the value in the
arg max is larger than the maximum value in the current working sbenfw is optimized
using the current working set of constraints. Note that ahégration, there will be only
one constraint added into the working set. Tsochantaride.§2004] showed that the
proposed algorithm finishes within a polynomial number efdtions and finds a weight

vectorw that satisfies the constraints in Equation 2.7.

2http: //www. cs. cornel | . edu/ Peopl e/ tj/svm |ight/svm struct.htn
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Conditional random fields (CRFs) [Lafferty et al., 2001] argpecific example of log-
linear models that find the optimal weight parametesuch that it maximizes the condi-
tional log likelihoodlog P(y|z;w). The optimal weighto is found using the following

equation:

b = arg max 0 expw - (. y))
= argmge ) [1 : (zy/ey Xl @(x,y'»)] 29)

Intuitively, the model ensures that the optimal weight pagter«w provides a greater
conditional probability for the true output sequencthan other incorrect sequencggor
a given input instance. Solving thearg max in Equation 2.9 is usually performed via
numerical optimization. The simplest approach to thisrojation problem is gradient as-
cent since the equation is strictly concave: any local optinis guarantee to be the global
optimum. In practice, this optimization procedure regaiineany iterations before it con-
verges [Sutton and McCallum, 2006]. Faster optimizationhods, such as BFGS [Bert-
sekas, 1999] and L-BFGS [Byrd et al., 1994], are generalgduastead. Even with an
efficient optimization, training a CRF model can be expemsive to the marginal proba-
bility requirement for each training example per each gmadcomputation.

In this thesis, | propose an approach for G2P generation htlogiecombines the ben-
efits of the hidden Markov model and classification techrégu@assification-based tech-
niques for G2P efficiently incorporate wide grapheme cdnitéermation in order to pre-
dict phonemes, while sequence-based approaches takenphi@eguence information into
account when they predict each sub-output phoneme. Thegedpmethod here uses a
classifier to produce phonemes with classifier confidenagesgalThe confidence values are
normalized into values between 0 and 1, then an HMM-like rhtales these confidence
values as emission probabilities instead of individuapeane observations.

Later, | propose a sequence-based G2P system that natimadiyporates both wide
grapheme context and output sequence information in theeindthe proposed method
stands between the averaged perceptron model of Collifi2[20hd more expensive mod-
els such as SVK"™“* and CRFs in term of computational cost. An online large nmargi
based update method [Crammer and Singer, 2003] is applieaith of using the simple
perceptron rules. Unlike SVM““!, the proposed method requires only a small fixed num-
ber of constraints to optimize the weight parameténstead of a number that is polynomial
in training size. Unlike CRFs, it requires only the compiatatof the posterior function

without requiring the marginal probability for each optiraiion step.
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Chapter 3

Grapheme-to-phoneme alignment

In this chapter, | present and evaluate approaches to graptephoneme alignments. As
discussed in Section 2.1, | emphasized the underlying @noblof the traditional one-to-
one grapheme-phoneme alignments. The one-to-one assanepdiates two fundamental
problems: (1) the double grapheme problem and (2) the dqtideeme problem. A di-
rect solution to these fundamental problems is to relax theto-one assumption to al-
low many-to-many alignments. A novel approach for manya@ny alignment, “m2m-
aligner”, is presented in Section 3.1. This research ist joiark with Grzegorz Kon-
drak and Tarek Sheif, published in [Jiampojamarn et al.,7ROA\n implementation of
m2me-aligner, written in C++, is publicly available onlineitiv source code atht t p:

/| code. googl e. coni p/ n2m al i gner/, for research, commercial and other pur-
poses.

Most previous alignment methods, including traditionakda-one alignment meth-
ods and the proposed m2me-aligner, are based on the Expechdtiximization (EM) al-
gorithm. To advance the grapheme-phoneme alignment tehnaalternative methods
are presented in Sections 3.2 and 3.3. This is joint work Withegorz Kondrak pub-
lished, in [Jiampojamarn and Kondrak, 2010]. First, in #&c8.2, the phonetic alignment
(ALINE) approach is described. The key idea of this appraado generate grapheme-
phoneme alignments using their phonetic similarity refahip via the International Pho-
netic Alphabet (IPA). Originally, the ALINE algorithm wasgposed by Kondrak [2000].
It aims to create an alignment between two strings of phosemkext, the integer linear
programming alignment approach is described in Sectiori 318is inspired by the min-
imal model approach of Ravi and Knight [2009]. The idea is tml fihe least complex
optimal set of possible grapheme-phoneme mappings thetildeshe word-phoneme ex-

amples in the training data set, and to restrict the EM tngirio draw from the optimal
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Algorithm 2 Many-to-many EM alignment training.
Input: word-phoneme training examplesaxS, maxT
Output: o
1: Initialize mapping probability tablé
2: for K iterations over the training sdb
for all word-phoneme paifs{, ¢{) in the training setio
4 7 + Expectation-many2may} , t{, mazS, maxT,, §)
5. § < Maximization-Stefy)
6
7

v+ 0
return ~y

set. This approach prevents the EM training model from dhioing rare and unnecessary
grapheme-phoneme mappings. Finally, the alignment-lgyeggtion approach presented
in Section 3.3.2 limits the complexity of the alignment middets search; it post-processes
n-best grapheme-phoneme alignments in order to create eterglignment coverage.

The proposed grapheme-phoneme alignment methods areaedgland presented in
Section 3.4. Intrinsic evaluation is performed by compatime generated alignments to a
manually created gold-standard set. The extrinsic evaluaises two different generation

techniques to perform grapheme-to-phoneme conversiorvard different data sets.

3.1 Many-to-many alignment

The many-to-many alignment algorithm (m2m-aligner) isdubgn the Many-to-Many
Extension to the forward-backward algorithm proposed bgriBi2007]. The algorithm
is an extension of the forward-backward one-to-one stdith&mnsducer of Ristad and
Yianilos [1998] which extends the original algorithm byaaling multiple graphemes to
map to multiple phonemes.

The training process is based on the Expectation-MaximizatEM) algorithm pre-
sented in Algorithm 2. The training process starts with disinrmapping probability table
0 which can be uniformly or randomly distributed, or else ldhea some distribution de-
rived from a seed set. In the expectation step (Algorithmirz #), expected counts of
possible grapheme-phoneme mappingsare collected from word-phoneme paied, ¢{)
in the training set based on the current mapping probaliditye 5. The variablesnaxS
andmaxT are parameters that control the maximum sizes of graphdmeeme substring
mappings; they can be set by using development sets. Themizaxion step (Algorithm 2,

line 5) simply re-normalizes the expected counts to cregimhbability distribution. The
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normalization can be perform over the whole table to creajmira distribution or per
grapheme substring to create a conditional distributiohe §hoice of normalization can
be set by using development sets. In general, for the graptiemhoneme end task in
the discriminative training system described in Chaptehd conditional distribution pro-
vides better word accuracy performance than the jointibigion. These results can be
explained as the EM process with the conditional distributireates alignments that max-
imize the conditional probability?(¢|s) of the data. These data are more suitable than the
joint distribution for the discriminative systems that direling outputs directly from the
conditional probability. In the maximization step probability table can be re-estimated

from the expected counts,as shown in Equation 3.1.

_ (i)
d(s,t) = m (3.1)

The Expectation-many2mangigorithm is presented in Algorithm 3. It first calls the
two functions,Forward-m2mand Backward-m2mto fill the « and 5 tables. The forward
probability, o, is estimated by summing the probabilities from left to tigihile the back-
ward probability 5 is estimated in the opposite direction. ThRarward-m2malgorithm is
similar to lines 5 to 10 of Algorithm 3, except that it uses Bfjon 3.2 in line 7 and Equa-
tion 3.3 in line 10 of Algorithm 3. Similarly, thBackward-m2nalgorithm is a symmetrical

process.
g +=Y(st_y i1, )i 3.2)
ij =Sty )inir j (3.3)
After collecting the forward and backward probabilitidse £xpected counts are estimated
by summing all possible grapheme-phoneme mappings in theesee pair{!,t{). The
expected count collected at positiomnd ; is the sum of all paths that generates the se-
quence pair and go throudh, j), divided by the sum of all paths that generate the entire
sequence pattriq 1.
The EM process iteratively trains over the training setluh& probabilities converge.
The final many-to-many alignments are produced using theriitalgorithm. It finds the

most likely path based on the learned probabilities as ireEgu 3.4.

Q(0,0) =1 (3.4a)
(5(8Z ~/ ,_)Oéi,i/ j
Q(i,j) = max D T (3.4b)
Eﬁ%ﬁ 05410 ) jr 1) Vimityj—gt
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Algorithm 3 Expectation many2many algorithm.
Input: si ¢/ maxS, mazT,~,o
Output: ~
o + Forward-m2m(s!, ¢, maxS, mazT)
© B « Backward-m2n{s!, t{, mazS, mazxT)
if Or41,J+1 = 0 then
return -y
cfori=1...1+1,j=1...J+1do

forall ¢/ =1...mazS suchthat i — ¢ > 0do
; a; i 0(st ., )Big
7(32—1'/—1—17 —) += — 7]015:1_7;_-:11 )B :
forall i/ =1...mazS suchthat i —3 > 0do
forall j/=1...maxT suchthatj — ;' > 0do
ifi’,jfj"s(szfi/ﬂ’tiej/ﬂ)ﬂi’j
Qr41,J+1

© O N Ooa R wdNR

87

) j J —
10: V(Si—o1 i) +=
11: return -y

For grapheme-phoneme conversion tasks,nfaeS andmaxT are usually set to 2;
therefore, the aligner constructs 1-0, 1-1, 1-2, 2-0, addytapheme-phoneme alignments.
The zero-size phoneme indicates the null phoneme and 2Zpthadints are decomposed into
two 1-1 alignments. Algorithm 3, line 7 allows 1-0 and 2-@alnents while the zero-size-
of-grapheme case is excluded as an impossible mapping.

The many-to-many alignments overcome the limitation oftthe-to-one assumption by
relaxing the constraint of grapheme-phoneme mapping.sides alignments create more
intuitive information, leading to better representatidiraining data with hidden variables.
For example, the worghoenix| finiks ] is aligned as:

ph oe n i x

f i n 1 ks
The substring graphemeh is an example of the double grapheme problem, while the
graphemex is an example of the double phoneme problem (Section 2.I'he many-
to-many alignments capture good evidence of these supstrappings and resolve such
problems that exist in one-to-one alignments.

In order to incorporate the many-to-many alignments int@maegation model, we re-
quire an algorithm that considers various segmentationtheofjrapheme input string, in-
stead of the simple tokenization based on each graphemeegmeate unit. One possible
solution is to apply a grapheme segmentation model to gymset words, as described
in [Jiampojamarn et al., 2007]. This type of solution leamiptopagation of errors due to
the nature of a pipeline process. Another possible solusion incorporate a phrase-based

decoder (e.g. Zens and Ney [2004]) into the generation madetiescribed in [Jiampo-
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jamarn et al., 2008]. The approach simultaneously seafdndke most likely phonemes
and grapheme segmentations avoiding the propagationafeas in the pipeline process.

These two solutions are described in depth in Chapter 4.

3.2 Phonetic alignment

The phonetic alignment approach was proposed in [Jiam@sjaend Kondrak, 2010].
This approach takes a different view than the EM-based appes to the grapheme-
phoneme alignment problem. Instead of aligning graphemeésphonemes as abstract
symbols, the alignments are created based on the phonetilariiy between phonemes
using the ALINE algorithm which was introduced to cognatenification problem [Kon-
drak, 2000]. ALINE was originally designed for aligning cw@des, but it is sufficiently
general to be used for aligning any strings of phonemes. Egedea of using this ap-
proach to grapheme-to-phoneme alignment is to represaphgmes with the phonemes
that they are likely to represent. Then, the actual phonemmethe phoneme side can be
aligned with the phoneme representation on the grapheraaisidg pure phonetic similar-
ity.

Of course, the problem of finding the most likely phoneme facregrapheme in the
first place is highly complex. However, in practice these piags are not required to be
precise. In fact, a simple method of treating every graphemd is used as a symbol
in the International Phonetic Alphabet (IPA) [Internatd®honetic Association, 1999] is
sufficient to approximate these mappings. The IPA is basetheriatin alphabet, but
it also includes a number of other symbols. Intuitively, && IPA grapheme symbols
tend to correspond to the usual phonetic values that thehgrags represent in the Latin
script.  For languages whose orthographic systems are metdban the Latin script, a
simple conversion can be performed to replace every graphdth the IPA symbol that is
phonetically closest to it [Jiampojamarn et al., 2009, 2010

Figure 3.1 illustrates the ALINE alignment search algaritfor the Latin wordken-
tum” and the Greek wordhekaton”. Each link has an associated score indicating the
similarity between the two phonemes. These scores are dehjpased on 12 phonetic
features used in ALINE. The search algorithm is based on amimprogramming search
to find the maximum of the summed link scores while maintgmmonotonic links from

left to right. ALINE was originally designed to create phamephoneme alignments and

23



consonant
nasal
voiced
bilabial

consonant
nasal
voiced
alveolar

Figure 3.1: ALINE alignment example.

it does not prevent null graphemes in the source side. Inrdodavoid this problem in
the grapheme-phoneme alignments, the following stepsaftantas a post-processing al-
gorithm. First, the algorithm attempts to remove 0-1 linkgsniierging them with adjacent
1-0 links. If this is not possible, the algorithm then attesp replace a pair of 0-1 and 1-1
links with a single 1-2 link where a list of allowable 1-2 limlare provided as additional
input. Lastly, the algorithm removes any instance that oaibe aligned. In practice, these
removed instances are often annotation errors and conipsse¢han 1% of the entire data
set.

The phonetic alignment approach thus generates 1-0, 1d11-@nlinks. Although the
list of 1-2 links must be provided by an expert beforehand,dize of the provided list is
generally small, ranging from 1 for Spanish and German toot Ehglish. The solution
to the double phoneme problem in this approach is more rdgbhastthe merging solution

discussed in Section 2.1.1 since it only merges two phonevhes necessary.

3.3 Constraint-based alignment

The phonetic alignment approach incorporates phonettariesthat prevent implausi-
ble links such as aligning vowels with consonants. A set ofst@ints is thus implicit in
the phonetic similarity function. However, as mentionel ,eapert is required to provide
a list of possible 1-2 links in order to cover other possilitkd, such as the “j [ju]” and

“x [ks]” cases in English. For EM-based approaches, Blacd.€§t1998] reported that con-
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structing lists of possible phonemes for each graphemes leabetter alignment quality,
resulting in an improvement in G2P conversion accuracy. 3¢es sets used in both the
phonetic alignment and the EM-based approaches can bewtest either based purely
on linguistic knowledge or in an interactive manner. Theswipled seed sets are in fact
very important for the one-to-one alignment-based apprembecause they have no ability
to discover non one-to-one alignments. The many-to-maigymlent approach relies on
the EM algorithm to cover these links creating complex atignts.

Integer linear programming alignment and alignment by egation approaches were
proposed in [Jiampojamarn and Kondrak, 2010] to improveBENebased alignment ap-
proaches. | will describe the integer linear programmingyahent approach in Section 3.3.1

and the alignment by aggregation approach in Section 3.3.2.

3.3.1 Integer linear programming alignment

The integer linear programming alignment approach applesiteger linear program-
ming (ILP) framework to discover an optimal set of possibtappeme-phoneme map-
pings without a human expert. The ILP formulation aims aniifging the smallest set of
grapheme-phoneme mappings that is sufficient to align sthirces in the data set. The op-
timal set from ILP helps EM to focus on the small and sufficeattof mappings instead of
automatically discovering rare mappings and assigninglitatibutions [Ravi and Knight,
2009] over the grapheme-phoneme mapping probabilitiee ITR formulation employs

the following constraints during its search for the optimlpping set:

e Monotonic alignment: grapheme-phoneme mappings areedtdedm left to right

with no crossing links.

e No null grapheme: it is impossible to create a mapping of & grapheme to a

phoneme.

e Phoneme coverage: it is required that a phoneme should kedliby at least one

grapheme.

e Grapheme coverage: it is required that a grapheme shouldiezlito at least one

phoneme or a null phoneme.

e Mapping constraint: only 1-0, 1-1 and 1-2 links are allomedhie alignments.
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Figure 3.2: A network of possible links.

For convenience, lef(s,t) and G(s,t1t2) be the global lists of 1-1 and 1-2 grapheme-
phoneme mappings being minimized and let variaie§”, and Z be local variables that
correspond to 1-0, 1-1 and 1-2 grapheme-phoneme mappiraih.gbbal and local vari-
ables hold binary values. The ILP formulation is stated in&pn 3.5, where 1-1 and 1-2
links are counted in the global list while there is no costntodduce 1-0 links to allow any

grapheme mapping to a null phoneme.

minimize: »  G(s,t) + G(s, t1t2) (3.5a)
s,t

VijkY (6,5, k) < G(sik, tjk) (3.5b)

ViikZ (4,5, k) < G(Sik, tirtjtik) (3.5¢)

Viigk X(i—-1,j-1L,k)+Y(i—-1,j—1,k +2ZG—1,j—2,k) (3.5d)

In the lexicon entryk, s; ;, is a grapheme at positiohandt;;, is a phoneme at position
j. Inequalities 3.5b and 3.5c are two constraints that enanyeproposed links in local
variables are counted in the global list. Any active link aclk instance is included in the
global list; however, active pairs in the global list do netcassarily activate local vari-
ables. Active and inactive links receive value 1 and O respdg so that the objective in
expression 3.5a is to obtain the smallest number of acti@phggme-phoneme mapping in
the global variables. The constraint in Equation 3.5d fetoeal variable links to receive a
value of 1 from left to right by ensuring the sum of the linkséezing each node to be equal
to the sum of the links leaving each node. Figure 3.2 showsveonie of possible links for
the lexicon entryk = 47, the word “wriggle [riIg@L]". There are three 1-0 links (ldy¥e
three 1-1 links (diagonal), and one 1-2 link (steep) actinks in the network. Their local
variables areX (1,0,47),Y (2,1,47),Y (3,2,47),Y (4, 3,47), X (5, 3,47), Z(6,4,47), and
X(7,5,47) corresponding to the global variables(r,r), G(i,I),G(g,g) andG(l,QL).

In practice, allowing a full search of possible graphemerng@me mappings creates
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complex ILP problems and gives too much freedom to the mdekadjng to inferior results.
To reduce the number of possible grapheme-phoneme mapfigsystem first trains on
a subset of training data that includes only the lexiconiemtwith more phonemes than
graphemes using the full set of variables. This model disa small number of possible
1-2 mappings. Then, the final ILP model limits the 1-2 linkghe set found in the first
pass. Finally, the model is trained on the full set of thenirj data to achieve the optimal
set of grapheme-phoneme mappings.

The set of allowable grapheme-phoneme mappings deterrinéige ILP solver can
also be used as an input to the EM alignment algorithm. Afiducing the minimal set
of grapheme-phoneme mappings, the EM model is constraieset only those mappings
with the exclusion of all others. Initially, the probabiis of the minimal mappings are set
with a uniform distribution. The other mappings are forcedave zero probability. The
EM training process works in a similar fashion to the manydany alignment algorithm
presented in Section 3.1, except that the grapheme siznitsdi to be exactly one, and any
grapheme-phoneme mapping that is not in the minimal set¢gébto receive zero count
during the expectation step. The Viterbi decoder perfolmaig max operation to retrieve

the best alignments after the parameters converge.

3.3.2 Alignment by aggregation

The alignment by aggregation approach also constrainsrdphgme-phoneme map-
ping possibilities used by its search model. The key ideafisain a one-to-many alignment
model using EM which is less complex that the many-to-maignaient one to avoid rare
mappings. Later, the trained model generatdsest alignments together with their align-
ment probabilities. The final alignment for each instanceréated by aggregation. The
aggregation process considers only the generated aligarter have a ratio between their
probability values and the probability of the best aligni@gher than a certain threshold.

The many-to-many aligner in Section 3.1 has the ability éate precise links involving
more than one grapheme, suchp@id. However, it also tends to create non-intuitive links
such assez for the wordphrase]f r e z], wheree is clearly a case of a “silent” grapheme.
| propose an alternative EM-based alignment method thegadsutilizes a list of different
high-quality one-to-manyalignments created with the algorithm described in Sec3idn
and aggregates 1-M links into M-M links in cases when thera disagreement between

alignments within the list. For example, if the list conitie two alignments shown in
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Figure 3.3, the algorithm creates a single many-to-mamgyaient by merging the first two
1-1 links into a singlgoh:f link. However the two rightmost links amot merged because
there is no disagreement between the two initial alignmeAss a result, the aggregated
alignment approach createz ande:_ links which retain the generalities of alignments
more than creating a singtez link. That is required, ibez is used, other example words
to learn useful productions afz ande:_.

phras

N

f r ez

- @
- ©
-~ =
- — =
®© — o
N — 0w
- @

Figure 3.3: Alignment examples gbhrase”.

In order to generate the list of best alignments, insteagiofya standard Viterbi decod-
ing algorithm, a modified one shown in Algorithm 4 is used tograten-best alignments.
The algorithm maintains-best scores for each stagk ; during the forward pass by ap-
pending scores to an array instead of keeping only the mawisuore, as shown in lines 6
and 9. Line 7 is the relaxation part to introduce a possiblppimg between graphemseg
and a substring of phonemesThemaxY variable is the maximum size of the substring
which controls the search space of outpufThe finaln-best alignments can be obtained
from the arrayQr11,+1-

The aggregation process only considers those alignmeatithdkie a ratio between their
probability and the probability of the best alignment larfen a certain threshol@. The
closer this ratio parameter value is to 1, the higher the guilyi among the alternative
alignments. An optimal ratio parameter is found by using eetipment set. In general,
when this value is set to 0.8, thebest list can be as small as the size of 10 best alignments

to guarantee it includes all alignments needed in the agtjcegprocess.

3.4 Evaluation

There are two possible evaluation methods for assessimpg@nse-to-phoneme alignment
performance. The first one is to directly evaluate alignnugrality by comparing gener-
ated alignments to the gold-standard alignments annotatezkperts. The second is to
evaluate via the G2P performance by applying the generditpthgents to a standard G2P
system. For the first method, the gold-standard alignmeats wonstructed from the core
vocabulary of the Combilex data set [Richmond et al., 20@)mbilex is a high-quality

pronunciation lexicon with an explicit manual alignmentdxperts. The evaluated set con-
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Algorithm 4 n-best alignments.
Input: word-phoneme strings!, ¢/ and mapping probability
Output: n-best results of) 71,711

1: Initialize Q = ()

2. fori=1.I1+1 do

33 K=10

4. forj=1.J+1 do

5: for g € Q;—1,; do

6: append; - §(s;,-) to K

7: for i/ =1..maxY stj —j > 0do

8: forg e Q;_1;_j do

o: append; - §(s;,t[j —j +1,j]) to K

10: sort K
11: Qi,j = K[l : N]
12: return Q[+17J+1

tains 18,145 word-phoneme pairs whose alignments consimf&ppings, including some
complex 4-1 and 2-3 types.

Each alignment approach creates alignments from unaligioed-phoneme pairs in an
unsupervised fashion. The alignment quality is reportadrims of precision, recall and F
score (the harmonic mean of precision and recall). Sincgadkek standard contains many
M-M links, any alignment method that limits the number of gtames in a link to one
cannot obtain recall higher than 90.02%. However, it i$ htdoretically possible to obtain
100% precision if all 1-1 links are consistent with the M-MKs in the gold standard. The
F1 score corresponding to perfect precision and upper-boecalliis 94.75%.

It is also useful to compute the alignment entropy which wapased by Pervouchine
et al. [2009] to evaluate the quality of alignments when tbllgtandard alignments are
not available. The entropy indicates the uncertainty of ppiray between graphemeand

phoneme, using a generated corpus alignment. The formula is:

H=— Z P(s|t)log P(st) (3.6)

st

The second evaluation method is to evaluate alignmentsagEhgme-to-phoneme con-
version performance. A standard grapheme-to-phonemesrgion system is trained us-
ing the different alignments. The difference in graphem@tioneme conversion perfor-
mance from different models is therefore directly due todbetribution of the different
alignments. In our work, we use two different graphemetioreme conversion systems

as the standard systems trained with the different aligtenenhe first G2P system is a
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Aligner Precision Recall Fscore Entropy G2P1-1 G2P M-M
BaseEM 96.54 82.84  89.17 0.794 50.00 65.38
ALINE 99.90 89.54 94.44 0.672 54.85 68.74
1-M-EM 99.04 89.15 93.84 0.636 53.91 69.13
IP-align 98.30 88.49 93.14 0.706 52.66 68.25

IP-EM 99.31 89.40 94.09 0.651 53.86 68.91
M-M-EM 96.54 97.13 96.83 0.655 — 68.52
EM-Aggr  96.67 93.39 95.00 0.635 — 69.35
SeedMap 97.88 97.44 97.66 0.634 — 68.69
Oracle 100.0 100.0 100.0 0.640 — 69.35

Table 3.1: Alignment quality, entropy, and G2P conversiocugacy on the Combilex data
set.

classification-based learning system employing TiMBL [Ba®ans et al., 2004], which
trains the phoneme generation model using either 1-1 or ligviraents. The second sys-
tem is the state-of-the-art online discriminative tragnsystem for grapheme-to-phoneme
conversion [Jiampojamarn et al., 2008], which accepts hethand M-M types of align-
ments. The online discriminative training approach hasvshsuperior results compared
to the jointn-gram [Demberg et al., 2007], constraint satisfactionrigriee [Bosch and
Canisius, 2006], Pronunciation-by-Analogy [Marchand &amper, 2006], and decision
tree [Black et al., 1998] approaches in the grapheme-tow@ine@ conversion task on several
data sets [Jiampojamarn et al., 2008]. As for training 1-d siaM alignments, the only
difference between these alignment types is in the seanttpaoent. It uses a standard
Viterbi algorithm for the 1-1 case, and a phrasal decoden$zand Ney, 2004] for the M-M
case.

The G2P performance is reported in terms of word accuracighaewards only com-
pletely correct phoneme outputs given test words. For Clextihe data is randomly split
into 90% for training, and 10% for testing. For all experirts®% of training data are held
out as development data to determine when the online prebessd stop as well as to op-
timize other parameters in the system. To directly compgagedsults to the joint-gram
system of Bisani and Ney [2008], the exact data split setgwbtained for English Celex,
CMuUdict, NETTalk, OALD, and French Brulex. The training e&zof these data sets range
from 19k to 106k words.

Table 3.1 includes the results for alignment quality (psieei, recall and Fscore) di-
rectly evaluated on the gold-standard alignments, as vgedllignment entropy and G2P
word accuracy, all on the Combilex data set. The bas@imseEMis an implementation

of the one-to-one alignment approach of Black et al. [1998hout a hand-built seed list.
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ALINE is the phonetic method described in Section 3l2M-EM is equivalent toM-M-

EM but with the restriction that each link contains exactly gn@gohemeM-M-EM is the
m2m-aligner approach described in Section 8talign is the integer linear programming
alignment approach described in Section 3.3.1 without Edhing. IP-EM is the ILP
alignment approach with EM traininggeedMaps a hand-seeded alignment method based
on a set of 377 grapheme-phoneme mappings [JiampojamarKanuiak, 2010]Oracle

is the gold-standard alignments annotated by experts i€ timebilex data set.

Overall, the M-M models obtain lower precision but higherakkand i score than the
1-1 models, which is to be expected as the gold standard isedkifn terms of M-M links.
ALINE produces the most accurate alignments among the 1-1 meth®gserformance
is very close to the theoretical upper bounds. Its precigquarticularly impressive: on
average, only one link in a thousand is not consistent wighgibld standard. In terms of
word accuracy, 98.97% of words have no incorrect links. Qut8145 words, only 112
words contain incorrect links, and a further 75 words couwd lve aligned. Among the
1-1 methodsALINE is followed byIP-EM, 1-M-EM, IP-aligh, andBaseEM in that order.
Among the M-M methods, EM-Aggr has slightly better preasiban M-M-EM, but its
recall is much worse. This is probably caused by the aggmyatrategy causing EM-
Aggr to “lose” a significant number of correct links. In gealethe entropy measure does
not mirror the quality of the alignment.

The two rightmost columns correspond to the two test G2ReByst Although better
alignment quality does not always translate into better @&guracy, there is nevertheless
a strong correlation between the two, especially for thekeephoneme generation system
(G2P 1-1). Interestingly=EM-Aggr matches the G2P accuracy obtained with the gold stan-
dard alignments. However, there is no reason to believettieagold standard alignments
are optimal for the G2P generation task, so that result shoot be considered an upper
bound but the best possible alignments obtained by humaartsxp

Figure 3.4 illustrates the correlation betwegns€ore and G2P word accuracy perfor-
mance in the online discriminative training system. In gahdetter alignment quality (i.e.
F; score) leads to better G2P word accuracy. The exceptior igahk in the middle of the
graph. It is interesting to note that these middle pack goivhich includel-M-EM, IP-
EM, andALINE are purely 1-M models, whilEM-Aggris a M-M model that is constructed
from the 1-M model. Itis clear in the figure that the 1-1 modéageEM achieves the low-
est performance in terms of both alignment quality and G2Rlvaccuracy. Relaxing the

1-1 constraint in the alignment model leads to statistjcsilijnificant improvement.
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Figure 3.4: F score versus G2P word accuracy performance.

Aligner Celex-En CMUDict NETtalk OALD Brulex
BaseEM  75.35 60.03 54.80 67.23 81.33
ALINE 81.50 66.46 54,90 72.12 89.37
1-M-EM  80.12 66.66 55.00 71.11 88.97
IP-align 78.88 62.34 53.10 70.46  83.72
IP-EM 80.95 67.19 54.70 7124 8781

Table 3.2: G2P word accuracy using the TiMBL-based germratystem.

Tables 3.2 and 3.3 show the result of G2P word accuracy pegfioce of the stan-
dard G2P systems trained with different alignment model€nglish Celex, CMUDict,
NETTalk, OALD and French Brulex. The TiMBL G2P generationthual (Table 3.2) is
applicable only to the 1-1 alignment modedd.INE produces the highest accuracy on four
out of six datasets. The performancelBfEM is comparable td-M-EM, but not consis-
tently better.IP-align does not seem to measure up to the other algorithms.BeseEM
achieves significantly lower word accuracy than the othethous, except on the NETtalk
data set.

The discriminative approach (Table 3.3) is flexible enoughtilize all kinds of align-
ments. However, the M-M models clearly perform better tHa 1-1 models. The only
exception is NETTalk, which can be attributed to the fact tiBTTalk already includes
double-phonemes in its original formulation. In generat 1-M-EM method achieves the
best results among the 1-1 alignment methods. OvdEdMEAggr achieves the best word
accuracy in comparison to other alignment methods. Exaephé Brulex and CMUDict

data sets, the differences betwdeM-Aggr and M-M-EM are statistically significant ac-
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Aligner Celex-En CMUDict NETTalk OALD Brulex

BaseEM 85.66 71.49 68.60 80.76  88.41
ALINE 87.96 75.05 69.52 81.57 94.56
1-M-EM 88.08 75.11 70.78 81.78 94.54
IP-EM 88.00 75.09 70.10 81.76  94.96
M-M-EM 88.54 75.41 70.18 82.43 95.03
EM-Aggr 89.11 75.52 71.10 83.32 95.07
joint n-gram  88.58 75.47 69.00 82.51 93.75

Table 3.3: G2P word accuracy using the online discrimieasiystem.

B Celex-en-Mira @ Celex-en-TIMBL V CMUDict-Mira A CMUDict-TIMBL » NETTalk-Mira
X OALD-TIMBL ¥ Brulex-Mira
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Figure 3.5: G2P word accuracy vs. alignment entropy.

cording to McNemar’s test at a 90% confidence level. We alsludte results for thgint
n-gram approach; word accuracies are taken directly from the raigbaper [Bisani and
Ney, 2008].EM-Aggris consistently superior the jointgram approach on all sets.
Figure 3.5 contains a plot of entropy values vs. G2P wordracyu Each point repre-
sents an application of a particular alignment method tdfardint data set. It appears that
there is only a weak correlation between alignment entrowly@2P accuracy. So far, there

is no evidence from either direct or indirect evaluationintticate that alignment entropy

is a reliable measure of grapheme-phoneme alignment ygualit

3.5 Summary

| presented the many-to-many alignment model for the gnayeht®-phoneme conversion
task. This many-to-many alignment solution advances #uitional one-to-one alignment

models that have been widely used for G2P systems. The iraprent of the m2m-aligner
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is demonstrated in both intrinsic evaluation on gold-staiddlignments and extrinsic eval-
uation with standard G2P systems, including classificabased and state-of-the-art online
discriminative training approaches.

| also investigated several new methods for generatinghgrage-to-phoneme align-
ments. The phonetic alignment algorithALINE, is recommended for languages with little
or no training data. The constraint-based approach achiexeellent accuracy at the cost
of manual construction of seed mappings. TitRR-EM alignment requires no linguistic ex-
pertise and guarantees the minimal set of grapheme-phom&ppgings. The alignment by
aggregation approackM-Aggr, advances the state-of-the-art results in G2P conversion.
thoroughly evaluated the resulting alignments on sevexia sets by feeding them into two
different G2P generation systems. Finally, | employed alejendently-constructed lexi-
con to demonstrate the close relationship between alighoeadity and G2P conversion

accuracy.
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Chapter 4

Grapheme-to-phoneme generation

Chapter 3 describes methods for generating many-to-magignaénts. This chapter
presents the G2P generation approaches that incorpoeatdighments. First, Section 4.1
proposes an approach to apply the many-to-many alignmerds existing classifier, as
well as to improve the G2P performance with a language malal @ost-processing step.
This research is joint work with Grzegorz Kondrak and TarkkiSpublished in [Jiampoja-
marn et al., 2007]. A grapheme chunking model is proposedaicage double graphemes
and phonemes as opposed to preprocessing with fixed liseslahuage model helps the
classifier to overcome its lack of awareness of previous pim@s generated in the phoneme
sequence output. These approaches aim to demonstrate hgwtoraany alignments can
be used in widespread, existing classifiers for G2P corarsiithout requiring much
change in the current systems.

Later, ajoint processing approach and online discrimieatiaining framework for G2P
conversion is presented in Section 4.2.1. This researchpweagously published in [Ji-
ampojamarn et al., 2008]. It is a collaboration with Coline®y and Grzegorz Kondrak.
The proposed approach unifies into one model of all compsrtbat are included in the
pipeline process presented in [Jiampojamarn et al., 20hthase-based decoding is applied
to replace the grapheme chunking and language models. Aesomfine perceptron update,
based on [Collins, 2002], and a max-margin update, base@m@mimer and Singer, 2003],
are applied to train the system with a large set of featunetjding source context-gram,
target transition, and linear-chain features. The expamisillustrate the state-of-the-art
performance of the system, comparing to other approachbs iiterature on different lan-
guages. The implementation of this system, so called “Dit&ds publicly available as an

open-source project &t t p: / / code. googl e. com p/ direct!| - p/.
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Section 4.3 discusses the stress assignment problem ir2teaSk. Most G2P systems
take the stress assignment problem as a separate processa@prate the stress assign-
ments after the phoneme generation process [Bagshaw, @é@&8nan, 2000]. Itis an inter-
esting research question whether stress information ¢mlfdimprove the overall phoneme
and stress word accuracy performance. Promising resuls suggested in [Black et al.,
1998, van den Bosch, 1997]. This research was previouslijspebl in [Dou et al., 2009]
and is joint work with Qing Dou, Shane Bergsma, and Grzegamdfak. We propose sev-
eral approaches for incorporating stress information ¢éoDirecTL system, either via the
output phonemes or via the input graphemes. The graphemphamime stress makers
are obtained using the SVM re-ranking model for stress asséqgt [Dou, 2009].

Section 4.4 discusses and reports results for when the irggstem is trained without
fixed alignments from the m2m-aligner presented in Chapt&ha system considers these
alignments as hidden structures and follows the end-tot@iming process of Liang et al.
[2006]. This training process can be viewed as a coordiregeaht algorithm that is applied
in the Latent Support Vector Machine framework (LSVMs) feiszwalb et al., 2008]. The
algorithm alternates between finding the most likely alignts under the current feature
weights, and updating the weights using the online max-margining approach.

Finally, an integration of the joint-gram features into the DirecTL system, so called
“DirecTL+", is presented in Section 4.5. In order to incluthe joint n-gram features, a
beam search is used instead of the exact algorithm. Thise@vnference procedure is
adopted to accommodate the higher-order Markov features.jdintn-gram features cre-
ate precise grapheme-phoneme evidence to the model, andltbw previous joint deci-
sions to contribute to the current decision. This approachlines two successful methods
in grapheme-to-phoneme conversion: (1) the generativie jogram model of Bisani and
Ney [2008] and (2) the online discriminative training apgeb. The final system surpasses
the performance of both the jointgram and DirecTL systems evaluated on the data sets
of Bisani and Ney [2008]. This is joint work with Colin Chergnd Grzegorz Kondrak,

previously published in [Jiampojamarn et al., 2010a].

4.1 Applying M-M alignments and a language model to G2P
classifiers

One-to-one alignment approaches not only simplify thenatignt training, but also create
straightforward training examples for grapheme-to-phoageneration models. Since they

limit the grapheme size to be exactly one grapheme per lrgkgéneration models can sim-
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Figure 4.1: The many-to-many alignment approach framework

ply treat each grapheme one-at-a-time during training tit@se reasons, one-to-one align-
ments can be incorporated into an existing classifier foplggane-to-phoneme conversion
without many complications. As discussed and evaluatechmp@r 3, the many-to-many
alignment approach demonstrates better alignment quaddyprovides more precise align-
ments. However, incorporating the many-to-many alignsmento an existing classifier
is not straightforward since the aligned grapheme is nodomgsingle unit. A grapheme
chunking approach is described in Section 4.1.1 to solvanttmpatibility between many-
to-many alignments and classifiers.

In classification-based approaches, the structure of thgmes in a word (the grapheme
sequence) is well expressed in the learning models in the @drgrapheme context fea-
tures; however, the output pronunciation is generatedowttiinformation regarding the
previously generated phonemes in the sequence. Sequased-bpproaches capture this
phoneme sequence information well but usually treat thptgrmae context as grapheme
substrings tied with phoneme substrings. Therefore, thaesee-based approaches lose
the ability to express the right and left context as indigldgraphemes.

A post-processing step to the classification-based apprdescribed in Section 4.1.2
helps the system to capture phoneme sequence informatiict) is trained using phoneme
sequences in the training data. The aim of this approachrigtmve the existing classification-
based approaches to grapheme-to-phoneme conversiomingllthem to utilize the output
sequence information as well as the strong context feaitd® input sequence.

Figure 4.1 presents the overall framework that incorpsréte many-to-many align-
ments described in Section 3.1 into a classifier with a lagguaodel component. Sec-
tion 4.1.3 presents the successful results of this approatiparing, to standard one-to-one

alignment methods and the CSInf approach of Bosch and @arjd06].
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Si—2 | Si—1 | Si | Si+1 | Sit2 | chunk
_ _ so| n g 0
_ s |on| @ S 0
S o |ng| s - 1
o] n gs| - _ 0

Table 4.1: An example of grapheme chunking prediction.

4.1.1 Grapheme chunking model

Since the many-to-many alignments are not restricted taglesgrapheme token, the pos-
sible alignments for the word-phoneme sequepiseenix[ fi n 1 k s ] contain grapheme

substrings (chunks) aligning to phoneme substrings as:

ph oe n 1 =x
[N A B
f i n 1 ks

Although the double grapheme and double phoneme problesristaitively solved by
the alignments, a problem appears during the phoneme giemephase. How do we set
grapheme boundaries in the words to generate? A simplé@ohftmerging all graphemes
that appear as grapheme chunks in the alignments is notisaffio train a good phoneme
generation model. For example, consider the wogdsh[ g ae [ ]” and “gasholder g ae
sholdor]" The graphemeshstay together as a grapheme chunk in the first word but
are separated in the later word.

The solution to this problem is to learn a model to decide tegraphemes should be
merged into grapheme chunks given only the orthographitezénBy providing context
information, it is possible to learn a model to identify theygheme chunksht’ and the
individual graphemes and h in the above example. The context information provides
clues such as the fact the graphersiei the wordgashstand at the end of the word, while
they are in between two vowels in the wagdsholder Since the many-to-many alignments
are set up to align graphemes and phonemes within the maxlemgth of 2, one can view
this problem as a binary classification problem. Each gnaghim a word is evaluated to
make a choice of merging with its neighbour to form a graphemenk or standing alone
as a chunk itself. Alternatively, for alignments with a lendength, one can formulate the
problem into a binary classification problem to decide ifregapheme either does or does
not end a chunk [Bergsma and Wang, 2007].

Table 4.1 shows the input feature spage{ . . . s;12) and the binary outputhunk for
the wordsong[ s o 1 z ]. The binary output value 1 indicates that the bigram geapéds;
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is a chunk. In the example, the word is decomposesicisg|s, which directly corresponds
to the correct phoneme sequence.

The grapheme chunking model trains on the many-to-manyraknts found in the
training data using an instance-based learning method giha., 1991]. If the model

happens to predict consecutive overlapping chunks, orlyitst of the two is accepted.

4.1.2 Applying a language model to G2P classifiers

In classification-based approaches, contextual graphefoeriation is immediately avail-
able, allowing it to play a crucial role in learning the phoreegeneration models. This
information expresses the fact that an input word is in thmfof a sequence of graphemes,
which generates the phoneme output. While the structurbeofriput is available to the
learning methods, the classifiers ignore the output stre@nd produce each phoneme in-
dependently. On the another hand, sequence-based modssi[Bnd Ney, 2002, Chen,
2003] consider the output structure by producing each phengsing previously predicted
phonemes in the same word. However, these models genesalltha grapheme context
information indirectly by forming grapheme substringsitigith phoneme substrings.

The CSInf approach [Bosch and Canisius, 2006] consideréntpertant of both di-
rectly expressing grapheme context in the classificatigmagehes, and also of expressing
the phoneme sequence in the sequence-based approachegut#iély, the trigram class
prediction tends to be more complex as it increases the nuofliarget classes, while it
has access to the same number of local features on the graseen

An HMM approach for G2P is a poor fit to the task as shown in Taj@005]. The
poor performance of the HMM approach is caused by its irtghi condition the emission
probabilities by the grapheme context. Having the staterfpme) transition probabilities
cannot recover from or compensate for the loss of the sudiognnformation on the or-
thographic side. These results suggest that phonemesdiepme on graphemes than on
the neighbouring phonemes (although they are also impprtan

Conceptually, the approach proposed here is to use a atagsifiredict each phoneme
given a grapheme chunk and its grapheme context. Each pleomatput from the classifier
is associated with a classifier confidence value which is atized into values between 0
and 1. In this case, the approach uses an instance-baspihdetchnique as a local clas-
sifier to generate a set of phoneme candidates. Then, theodhaties a language model
to re-rank the candidate phoneme sequences. The languatp seoves the same purpose

as the transition probabilities, while the classificatiamfidence values serve the same
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Conf(i/al)=0.714

0.048 0.067 0.003 0.008 0.433
b/b = el
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Conf(i/l)=0.286

Figure 4.2: Example paths for the wdttolried” .

purpose as the emission probabilities in HMMs. The tramsigirobabilities are derived di-
rectly from the phoneme sequences in the training data. ptieal phoneme sequence for
an input word is found with the Viterbi algorithm. It finds theost likely output sequence
considering both confidence values and transition prottiabil

Figure 4.2 shows phoneme candidate paths for the Wworiéd Each node represents
the generation of graphemes and phonemes. The arcs’ vatuéisseorder transition prob-
abilities from one phoneme to the next phoneme in the patthdrexample, the classifier
predicts the grapheme chunk §enerates phoneme [al] with a confidence value of 0.714
and generates phoneme [I] with a confidence value of 0.286elmodel is based on only
the local classifier, it would produce the incorrect outpiuiooE r al d]. Fortunately, with
the language model, the phoneme sequence [b E r | d] has a hghebi score than the

incorrect phoneme sequence.

4.1.3 Summary of evaluation and results

The proposed approaches were evaluated on CMUDiEtench Brulex [Content et al.,
1990], and German, Dutch and English CELEX corpora [Baayeh.£1996]. Except for
the English CELEX data set, all data sets are available d@sopdne Letter-to-Phoneme
Conversion (PRONALSYL) Challende Each data set provided by PRONALSYL is di-
vided into 10 folds for 10-fold cross validation. For thedhaut evaluation, the first fold is
designed to be the final test set, and the rest is designedhie baining set. A development
set is taken from the training set. In most experiments, ¢eersd fold is designed to be the
development set; thus, systems are trained onthéo3L0" folds during development. In

other cases, the development set is randomly taken from I@Be d¢raining set.

TWWW accessed 20081t t p: / / www. speech. cs. cnu. edu/ cgi - bi n/ crrudi ct
2WWW accessed 2008t t p: / / www. pascal - net wor k. or g/ Chal | enges/ PRONALSYL/
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Language| Data set | Number of words
English CMUDict 112,102
English NETtalk 20,008
English | CELEX 66,189
Dutch CELEX 116,252
German | CELEX 49,421
French Brulex 27,473

Table 4.2: Number of words in each data set.

For English CELEX, The data is directly extracted from théabbase. After removing
duplicated words, phrases, and abbreviations, the datzoe&ins 66,189 word-phoneme
pairs. The data are randomly split into 10 folds and are useglvaluate the proposed
approaches in the same way as the other data sets obtaineBRONALSYL. Duplicated
words are defined as instances that have the same orthagifapimi regardless of other
information fields such as the phonemes, part-of-speech sagss markers, etc. Only one
word-phoneme instance is included in the data set. Phrasé@sstances that contain a non-
alphabetic character(s) on the orthographic side. Abhatevis are defined as instances
that (1) contain all capital letters, (2) begin with a calpi¢dter and consist of less than 4
letters, and (3) have a number of phonemes larger than tvestine numbers of graphemes.
Table 4.2 shows the number of words and language of eachetata s

The local classifier for predicting phonemes is the instdvased learning implemented
in the TIMBL package [Daelemans et al., 2004]. The evaluatias based on 10-fold cross
validation. In the local classifier, each grapheme chunis esmtext graphemes from 5
graphemes before to 5 graphemes after the focus chunk. fiedge model looks back 3
phonemesy"® order Markov Model).

The performance comparisons are shown in Figure 4.3, iagdHe average and stan-
dard deviation values of the correct word accuracy. Theilddtaesults were published
in [Jiampojamarn et al., 2007]. The 1-1 alignment model tisesame learning technique
as the others but trains the model on the 1-1 alignments peadhy the 1-1 epsilon scat-
tering method [Black et al., 1998]. The HMM notation indiesithe models that use the
language model approach (Section 4.1.2) while the M-M atignt indicates the models
that are trained on the many-to-many alignments via thebiggrapheme chunking model
(Section 3.1, 4.1.1).

Clearly, impressive word accuracy improvements are aedighen the many-to-many
alignments are applied as opposed to the standard apprbasimg 1-1 alignments. Over-

all, the improvements range from 2.7% to 7.6% absolute wootli@cy compared to the
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Figure 4.3: System performance showing in word accuracieh® evaluated data sets on
grapheme-to-phoneme conversion task.

1-1 alignment models. Using the language model as a pogigsamnsistently improves
performance over both 1-1 and M-M alignment models. Thegaamements illustrate
the benefit of re-ranking the phoneme sequence candidatesaged by the local classifier
based on the natural sound sequences of the languages.

Table 4.3 shows results comparing to other methods on tteeted data sets. PRONAL-
SYS indicates the results when the system trains on thenaégts provided by the chal-
lenge organizers. Their method is based on an EM one-to-aarent approach. It is

interesting to compare these results with the results ofligh, which is based on the ap-

Language| Data set | PRONALSYS| 1-1 align Csinf M-M+HMM
English CMUDict | 58.3+0.49 | 60.3+0.53 | 62.9+0.45 | 65.6 =0.72
English Celex — 74.6 +0.80 | 77.8 +0.72 | 83.6 +0.63
Dutch Celex 84.3+0.34 | 86.6 +0.36 | 87.5+0.32 | 91.44+0.24
German | Celex 86.0£0.40 | 86.6 +0.54 | 87.6 £0.47 | 89.8 +0.59
French Brulex 86.3 +0.67 | 87.0+0.38 | 86.5 +0.68 | 90.9 +0.45

Table 4.3: Word accuracies based on 10-fold cross validatRiRONALSYS: Using the
one-to-one alignments provided by the PRONALSYL challerigé align: Using the one-
to-one alignment method of Black et al. [199&]sInf: Constraint satisfaction inference
system [Bosch and Canisius, 2006J-M+HMM: Using the many-to-many alignment
method with HMM embedded with a local prediction.
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proach of Black et al. [1998]. Overall, 1-1 align outperfarfARONALSYS by as much
as 2% in absolute word accuracies. The main difference leetwlee PRONALSYS one-
to-one alignment approach and 1-1 align is that 1-1 aligrsdes allow null graphemes
on the grapheme side. Consider the waldminationf s bo m1nefon]: the first six
graphemes and phonemes are aligned the same way by botaralgbomin-[ o bo m
1 n]). However, the two aligners produce radically differatignments for the last five
graphemes. The alignment provided by the PRONALSYS oretalignments is:

a t © o n
I

o - - _ n

while 1-1 align’s alignment is:

a t i o n

e _ [ o n

Clearly, the latter alignment provides more informationhanv the graphemes map to the
phonemes. Further improvement can be achieved by the noamgty alignment method
as it produces more precise alignments. For example, the-atigmer provides the correct
alignment for the second part of the waldlomination
a ti o n
o
e [ o n

Instead of adding a null phoneme in the phoneme sequencmahsg-to-many aligner
maps the grapheme chutiko a single phoneme.

Applying a language model as a post-processing step is lmastite same hypothesis
as the constraint satisfaction inference (CSinf) [Boscthi @anisius, 2006]. The results
in Table 4.3 (CSInf vs. M-M+HMM) show that the HMM approachnsistently improves
performance over the baseline system (1-1 align), whileQB8&nf degrades performance
on the Brulex data set. For the CSInf method, most errors @aused by trigram confu-
sion in the prediction phase. For example, the French wassigaat [asiNa]” has possible
confusion between [Na] and [na] phonemes from the trigraasscprediction. The CSinf
procedure produces [na] as it satisfies the most constraintise trigram classes while the
HMM model suggests [Na] because the local prediction is liighnfident in grapheme
“n” producing “N”. In this case, both the local predictioncahlMM model plays a role in
the decision, while the CSInf approach over-emphasizehemplonetic constraint satis-

factions.
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4.2 Joint processing and discriminative training

While classification-based approaches effectively pmv@@hrning models with grapheme
context information, sequence-based generative appesathize phoneme sequence struc-
ture. For G2P, it is important to capture grapheme contexdnndenerating phoneme out-
puts for either single graphemes or grapheme substrings.also crucial to find natural
phoneme sequences as output. The proposed approach to G&sedson an online dis-
criminative training algorithm that is capable of expragsan arbitrary number of features.
The discriminative training occurs in the context of a jginbcessing framework that col-
lapses the pipeline processes of grapheme chunking, plogeneration, and sequence
modeling into a single unified framework. The learning pssceptimizes parameters for

all components simultaneously, and empirically achievgkdr performance.

4.2.1 Joint processing

Recall that the approach described in Section 4.1 improa# ggrformance by:

1. incorporating the many-to-many alignments via grapheimaking model which

allows single graphemes or grapheme substrings to germrateemes.

2. capturing the contextual grapheme information direictlhe classifier when gener-

ating phoneme.
3. using a language model to finds the optimal phoneme segquenc

The previous approach adheres to the pipeline process shdvigure 4.4a. In general,
pipeline processes are undesirable for two reasons: (&) propagations, and (2) each
process is trained without consideration of the other pees.

First, when decisions are made in sequence, errors madeieahe sequence can
propagate forward and throw off later processing. Secaamch enodule is trained indepen-
dently, and the training methods are not aware of the tasisrpeed later in the pipeline.
For example, optimal parameters for a phoneme generatiaielnoay vary depending on
whether or not the module will be used in conjunction with aqdgme sequence model.

A joint approach to grapheme-to-phoneme conversion isqaeg by first collapsing
the pipeline processes between the sequence model andahempé predictor illustrated
in Figure 4.4b. The model is trained using an online disarative learning method, such
as an averaged perceptron HMM of Collins [2002]. The avatggaceptron HMM natu-

rally handles the sequence modeling while it retains thelgaidity of representing arbitrary
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Figure 4.4: Collapsing the pipeline approach.

features that are not limited to only source-side grapheMéth the ability of expressing
a rich number of features, the model can incorporate manglapmngn-gram features to
represent grapheme context in a manner similar to that e$ifleation-based methods. In
addition, the method is free to conjoin grapheme contextifea with sequence phoneme
features to create long dependency features as the sd-tialbar-chain features [Sutton
and McCallum, 2006].

Next, the approach completely unifies the pipeline prosebgeolding the grapheme
segmenter into the decoder via a monotone phrasal decoeles fhd Ney, 2004], as shown
in Figure 4.4c. The monotone phrasal decoder uses a monsg¢aineh constraint that pro-
cesses graphemes and generates phonemes from left to Tigistframework trains the
model using the many-to-many alignments presented in@e8til without committing to
any specific grapheme chunk. The training process optinti|eparameters in such a way
that input structures, phoneme translations, and outpomgrne sequences are taken into
account in a single process.

Optimizing the parameters with the perceptron update ndethgimple and efficient.
However, one can replace the perceptron update method hdtmore robust Margin In-
fused Relaxed Algorithm (MIRA) [Crammer and Singer, 2008hich adds an explicit
notion of margin to obtain better learning parameters tb#teb separate the correct output

from the incorrect ones.
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Algorithm 5 Online discriminative training.

Input: grapheme-phoneme example pairndi.

Output: «
a=0

. for K iterations over training seto

for all grapheme-phoneme sequence pégirg) in the training setio

t = argmaxyper [o - ®(s,1)]
update weightsr according ta andt

return «

o gk wdhkE

4.2.2 Online discriminative training

An online discriminative training process is outlined irgatithm 5. The training pro-
cess iteratively finds the best output(s) given the currezigits (model parameters), and
then updates the weights in such a way that the model faversdirect answer over the
incorrect ones. There are three main components which eidldscribed in detail in Sec-
tion 4.2.3, 4.2.4, and 4.2.5. The first component descrilogs the model handles input
words and output phoneme sequences, feature represastatid the scoring function rep-
resenting a weighted linear combination of feature(s, ¢') in line 4. The second compo-
nent describes the decoders used to performitheax operation in the algorithm. The de-
coders are a Viterbi-based decoder for the system in Figdleahd a phrase-based decoder
for the system in Figure 4.4c. The last component descrimsveight update algorithms;
this is either the perceptron update [Collins, 2002] or tH&Mupdate method [Crammer
and Singer, 2003].

4.2.3 Model

Given an input worcs and an output phoneme sequeticéet ®(s,t) be a feature vector
representing the evidence for the sequenfmrind int¢, and leto be a feature weight vector
providing a weight for each component ®fs, ¢). At training time, the input word and
output phoneme consist @f substrings, such that generates;. These substrings are
taken from the many-to-many alignments. At testing timesghsubstrings are handled by
either the segmentation module or the phrase-based decoder

Table 4.4 shows the feature template includedbis,t). These features are binary
features indicating whether or not the feature is presetttencurrent(s, ¢). The context
features express grapheme evidence found in the inpug stricentered around the gen-
erators; of eacht;. The parametee is the size of the context windows. These context

features include not only grapheme unigrams but all passikgrams that fit within the
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context Si—cy by
Siy ti

Siter b
Si—cSi—ct1s by

Sitc—1Siter bi

Si—c+++Si.--Siter tl'
transition ti_1t;

tifM “ o tifl tl
linear-chain| s;_. t;—1, t;

Siti—1, 4

Site ti—1,1;
Si—cSi—et1 tic1y b

Site—1Site tim1s b

Si—c+++Si.-:Site tl',l, tl'

Table 4.4: Feature template.

context windows. The transition features are HMM-like gition features that express the
cohesion in the output side. The parametércalled theMarkov order limits the number
of phonemes the model can look back at. The linear-chainfea{Sutton and McCallum,

2006] link phoneme transitions (e.._1 to ¢;) with context features.

4.2.4 Search

In Algorithm 5 line 4, the system must find the best possiblgpauphoneme sequence
(arg max) given the current weight vectar. In the pipeline approach (Figure 4.4b), the
input word is first segmented into grapheme substrings bygtapheme chunking model
described in section 4.1.1. The search for the best pogdillereme sequence can then be
performed effectively by the standard HMM Viterbi algoriih In the joint approach 4.4c,
the grapheme segmentation and phoneme generation ardasieausly performed us-
ing a monotonic phrasal decoder [Zens and Ney, 2004]. Thelsemumerates possible
grapheme segmentations and their output phonemes together can be perform effi-

ciently via dynamic programming. The dynamic programmiagurrence equations are
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shown in Equation 4.1. The tabl@(g, p) keeps the maximum score of the phoneme se-
guence ending with the phonemggenerated by the grapheme sequetice. s;. Since the
grapheme chunk information is not provided to the modelimdhse, this framework views

s as a sequence 6f graphemes instead of substrings. The phongrisehe phoneme pro-

duced in the previous step. The expressigs, , ,,t',t) is a convenient way to express the

/+17
subvector of our complete feature vectiefs, t) that describes the substring péif, t_,),

wheres; = s t;_1 = p’ andt; = p. The valueN limits the size of the dynamically

g
g/+1!
created substrings. The special symbatpresents a starting phoneme or ending phoneme.
The value inQ(G + 1, $) is the score of highest scoring phoneme sequence corréagond

to the input word. The actual sequence can be retrieved itrbaking through the table

Q.

Q0,%) = 0
Qlg,p) = max {a-¢(s), .t 1)+ Qg p)} (4.1)
gfﬁéps;%g

QG +13) = Il})%X{a-¢($,p',$)+Q(G,p’)

4.2.5 Online updates

The update step in line 5 of the training algorithm can begraréd by the perceptron
update [Collins, 2002]. The updates are relatively simiegking only adding and sub-
tracting vector operations. The weight vectois updated according to the best output
found under the current and the true answerfound in the training data. If the outptiis
correct, there is no update to the weight vectoiOtherwise, the weight vector is updated
by subtracting the feature vector of the inpuind the wrong answeér ® (s, #), and adding
the feature vector of the inputand the true answer ®(s, t), as shown in Equation 4.2.

a=a+ P(s,t) — P(s,t) 4.2

The training process is iteratively fdg iterations, which is determined as the point
where a decline performance occurs on the held-out set. eéptunaly, if the problem is

separable, the perceptron is guaranteed to find sunch that:

VieT —{t}:a-®(s,t) > a- d(s,i) 4.3)
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However, most problems are not separable. The average @fvalues throughout the
training process is used in place of thdrom the final training iteration in order to obtain
better generalization to unseen data [Collins, 2002].

In the perceptron update, the model is trained by seeingsemade by the current
weight vectora. There is no update to the model so long as the system préléctorrect
phoneme sequence under the current model. Each updatepakekies of the wrong
answer(®(s, 1)) and rewards the correct answer(®s, t)) from the current weight vector.
In other words, the perceptron has no notion of margin, nreasuhow well the vectory
separates the true answer from incorrect ones.

To address this, the Margin Infused Relaxed Algorithm (M)R8rammer and Singer,
2003] updates the model based on the systentiest outputs. It employs a margin update
so that the new weight vecter separates the true answer from those incorrect answers by
at least as much as the structured loss. The loss functiafidesothe cost of producing a

given wrong output. The update process can be described@siarization problem:

ming,, || an — o ||
subject tovt € T, : (4.4)
o (D(s,1) — q)(5>£)) > E(taf)

whereT,, is a set ofn-best outputs found under the current modes the correct answer,
a, is the current weight vectory,, is the new weight vector, andft, t) is the loss function.
The loss function here can be described as the 0-1 loss dmnefere/(t, ) = 0 if t = {,
otherwisef(t,#) = 1. The 0-1 loss function is appropriate because it has the shjaetive
function as the word accuracy evaluation metric. The ouphwdneme is judged to be
wrong when the output phoneme sequence and the true anssvaptaidentical. Other
possible loss functions could be based on the Levenshtsiandie betweehandt, called
the“phoneme loss; and the combination of the 0-1 loss and the phoneme los$idusc
MIRA training is similar to averaged perceptron trainingf mstead of finding the sin-
gle best answer, it finds thebest answersi{,) and updates weights according to Equation
4.4. To find then-best answers, the Viterbi decoding and monotone searohithlgis are
modified to keep track of the-best phonemes at each cell in the dynamic programming.
The optimization in Equation 4.4 is a standard quadratigamming problem that can be

solved by using Hildreth’s algorithm [Censor and Zenio97]9
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4.2.6 MIRA implementation

For convenience, the MIRA update algorithm shown in Equedigt can be implemented
using the SVMi9"* framework [Joachims, 1999]. SVIM"* provides the quadratic program
solver shown in Equation 4.5.

ming¢ 5 || w > +C 3, &

subject tovi, (4.5)

w-z; >rhs; —§&

In order to approximate a hard margin using the soft-margtmuozer of SVM9"¢ a
very large penalty value is assigned to the param@tehus making the use of any slack
variables ;) prohibitively expensive. The vectar is defined as the difference between
the new and previous weight& = «, — a,, SO that the minimization objective in both
equations, Eq. 4.5 and Eq. 4.4, are the same. Sinceilgade n-best list(7;,) needs a

constraint based on its feature difference vecipis defined as:

Vi€ T, : z = ®(s,t) — O(s,1)

Substituting that equation along with the inferred equatiQ = a, + w into the original
MIRA constraints yields:

(o +w) - z; > L(t, 1)

Moving a, to the right-hand-side of the equation to isolatez; on the left, the constraints
in both equations are now the same.

In summary, the MIRA update algorithm is implemented in S¥ff’s optimizer by

setting:
SVMlight MIRA
w Ay — Qg
2 ®(s,t) — B(s, 1)
rhs; 0t t) — - 2

The output of the SVNi9" optimizer is an update vectar to be added to the cur-
renta,. The SVM¥" optimizer is called per each training example in the updagp &

Algorithm 5, line 5.

4.2.7 Summary of evaluation and results

Experiments were conducted to evaluate the proposed ap@eaising 9-fold cross vali-
dation on the training set of English CELEX [Baayen et al9@]9 Note that 10% of the

corpus is reserved to be the final test set for comparison.eMetails of evaluation and
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Figure 4.5: Separate segmentation versus phrasal deciodiegns of average word accu-
racy and standard deviation.

results can be found in [Jiampojamarn et al., 2008]. Fronpteéminary experiments on
the development set, increasing the context size has a ticagffect on accuracy, but the
effect begins to level off for context sizes greater than &né€forth, for all experiments
reported here, the context features have a context windosvesjual to 5. Similarly, for
MIRA updates, a large improvement of 2% absolute word acyuisaachieved by increas-
ing the size of the best list from 1 to 5. However, varying the size of thoest list from
5 to 50 has an insignificant effect on accuracy. TherefoeMIRA models use an-best
list of length 10 to update the feature weights, based onogegefunction that combines 0-1
and phoneme error rate, due to this function’s marginal amgment over each individual
loss function.

Figure 4.5 shows the system performance in terms of wordracguafter adding the
option to conduct joint segmentation through phrasal decpdThe 15% relative error
deduction demonstrates the utility of folding the segmigamiastep into the search. It also
shows that the joint framework enables the system to redute@mpensate for errors that
occur in a pipeline. By replacing the perceptron update WiehMIRA update, the system
obtains the improvement of 7% relative improvement in warcbaacy. This improvement
illustrates the more powerful update strategy of MIRA. MIRpdates the feature weights
based on am-best list rather than simple subtraction and addition at@ns as in the
perceptron.

Figure 4.6 shows the effect of the sequence features on tRAMYstem. Adding the
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Figure 4.6: The effect of sequence features on the joinesysh terms of average word
accuracy and standard deviation.

first order HMM features contribute little improvement bgetf, but combined with the

more powerful linear-chain features achieve a relativereaduction of 12% in word accu-

racy. In general, the linear-chain features make a mucledafifference than the relatively

simple transition features, which underscores the impogaf using source-side context
when assessing sequences of phonemes.

Figure 4.7 shows the system'’s learning curve when evaluatettie development set
with different amounts of training data. The sizes of thénirey data range from 5K to
57K words (10% - 100% of the training data). Overall, the sysperformance improves
linearly, when the training size is increased exponengtidt the 50% training data point,
the system achieves 83.19% word accuracy for its top-1 tutghile the oracle selector
from the 2-best answers achieves 90.85% word accuracy. oraie word accuracy is
higher than the top-1 word accuracy of the system that tramthe full training data set
(89.72% vs. 90.85%). It suggests that the system requirg®xmately twice the training
data to optimally the 2-best outputs. Although the graphsdua show the convergence
point for the system performance with respect to the trgirdata size, it is interesting
to observe that the system obtains 98% word accuracy witlrdee 50-best answers in
systems that train with both 50% and with all of the trainiraged

Table 4.5 shows a comparison of different approaches onviidaagion sets including
Dutch CELEX (D.CELEX), German CELEX (G.CELEX), English CEX (E.CELEX),
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Figure 4.7: Word accuracy on the development set showinkpéraing curve of the system
trained with different amounts of training data.

Corpus DirecTL | M-M+HMM | Joint n-gram | PbA* | CART* | SMT*
E.CELEX || 90.51% 84.81% 76.3% - - -
D.CELEX || 95.32% 91.69% - - - 91.63%
G.CELEX || 93.61% 90.31% 92.5% - 89.38%/| 90.20%
Nettalk 67.82% 59.32% 64.6% 65.35% - -
CMUDict || 71.99% 65.38% - - 57.80% | 63.81%
Brulex 94.51% 89.77% 89.1% - - 86.71%

Table 4.5: Comparison of word accuracy on the evaluatios. detrecTL : Online dis-
criminative training frameworkM-M+HMM : Many-to-Many HMM system (Section 4.1)
Joint n-gram: Joint n-gram model [Demberg et al., 200PbA: Pronunciation by Anal-
ogy [Marchand and Damper, 2006]CART: CART decision tree system [Black et al.,
1998]. SMT: Phrase Based Statistic Machine Translation approach 2& [Rama et al.,
2009]. The columns marked with * contain results reportethaliterature. “-” indicates
no reported results.

Nettalk, CMUDict, and French Brulex data sets. DirecTL ref the full system with the
discriminative training approach and MIRA updates, andpiwasal decoder with context,
transition and linear-chain features. All parametersluitiog the size of thex-best list,
the amount of grapheme context, and the choice of loss g tiwere established on the
English CELEX development set, as presented in the preveapsriments. Except for
the M-M+HMM results, all other results are taken directlgrfr their original publications.
M-M+HMM refers to the system described in Section 4.1 andvauated directly on the
data sets. The joint-gram, Pronunciation by Analogy and CART models are deedrdnd
discussed in Chapter 2. SMT refers to the results of Rama[@0#19] who apply a standard

phrase-based statistical machine translation systene taslk. They use GIZA++ [Och and
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Ney, 2003] for aligning graphemes with phonemes in the iingisets and train the models
using the minimum error rate training algorithm [Och, 2008th the A* beam search
decoder [Koehn et al., 2003]. The implementation of the SMieh above is available as
part of the MOSES toolkit [Koehn et al., 2007].

Although these comparisons are necessarily indirect dadferent experimental set-
tings, they strongly suggest that DirecTL outperforms #hleo results on all data sets, in
some case by large margins. The joirgram approach previously reported the best re-
sult for German CELEX of 92.5% and PbA showed the best resulEhglish Nettalk of
65.35%. The best results on the other sets were previoubigwed by the M-M+HMM
approach. DirecTL achieves from 3% to 8% absolute word aoguimprovement over
the M-M+HMM approach and advances the previously bestiestiiGerman CELEX and
English Nettalk by as much as 2% in absolute word accuracydw@ment. These experi-
mental results demonstrate the power of a joint approactoalik discriminative training

with a large set of features.

4.3 Stress markers combination

In many languages, for example, English, German and Dutohd wronunciations include
“stress”.Stress helps humans recognize and differergjaiken words, as stress empathizes
certain syllables in duration, pitch and loudness. Streaskens are usually associated
with word syllables. To make stress assignment an isolaiskl apart from syllabifica-
tion, stress makers can be placed on vowel phonemes witmmutikg the true syllable
boundaries [Webster, 2004]. Later, if the syllable bouiegaare known, the mapping from
the stressed vowel to the corresponding syllable is stifaigtard. Although stress is a
prosodic feature and placed on the phoneme side, it may el uiseplace stress mark-
ers on the orthographic form as well, the correspondinghgraqes that produce the stress
vowel in the words. This information could help further impe G2P conversion accuracy.
A SVM ranking approach for stress assignment of Dou et aD$2@ capable of plac-
ing stress markers on both orthographic and phonemic forithew requiring true syllable
boundaries. The approach first approximates syllablesltgiragpa word into a sequence of
substring units. The substring unit includes exactly ongal@nd at least one neighbouring
consonant — e.g. “overde> ov-ver-do”. Since, in the phonetic form, the number of vawel
is equal to the number of syllables, this simple splittinghmd guarantees that the correct

number of syllables is generated, regardless of the truabdglboundaries. In the ortho-
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graphic form, this method may result in a different numbesyfables — e.g. “pronounce
— ron-no-un-ce”; however, it is sufficient for the learning ded The substring units are
encoded with O for unstressed, 1 for primary stress and 2efmorglary stress. These en-
coded strings are called “stress patterns”. A predictiothefstress patterns is trained using
a SVM model [Joachims, 2002], which assigns stress markesalistring units (vowels)
given new words.

Various methods have previously been used for combinimgs@nd phoneme genera-
tion. The simplest and most straightforward is to train argme generation model without
regard to stress. Then, stress markers are assigned aspquess [Bagshaw, 1998, Cole-
man, 2000]. However, both van den Bosch [1997] and Black ¢1898] argued that stress
should be predicted at the same time as phonemes. They elpandtput set to distin-
guish between stressed and unstressed phonemes. Sinamyperg et al. [2007] produce
phonemes, stress, and syllable-boundaries within a sjogien-gram model and enforce
a phonological constraint — one primary stress per word.rd@eaet al. [2000] generate
phonemes and stress together by jointly optimizing a datisiee phoneme-generator and
a stress predictor based on stress pattern counts. Thesdmlptthe model to generate the
most common stress patterns avoiding unlikely stressrpatia the phoneme output. In
contrast, Webster [2004] first assigns stress to graphesmeting an expanded input set,
and then predicts both phonemes and stress jointly. Theraystarks stress on grapheme
vowels by determining the correspondence between affix@staess in written words.

Based on the above inspirations, DirecTL can incorporagssimakers in the following

ways:

e Joint the system’s inputs are graphemes and the output sequaregtonemes
with stress information. This can be accomplished by angatiivo sets of vowels
that are (1) stressed vowels and (2) unstressed vowels.aphiwach is a baseline
system which does not incorporate an additional stress hmode&loes it incorporate
linguistic to the stress prediction model. It simply extsiige output space and learns

the phoneme and stress generation based on the training data

¢ Joint+Constr the same adoint, except that the system only outputs the stress pat-
terns that were observed in the training data. This comstemisures that the final
outputs have valid stress patterns and avoids invalid ospguences, such as con-
taining more than one primary stress or introducing a seaxgnstress without a pri-

mary one. Ultimately, the training process of this systethéssame agoint except
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System Eng Ger | Dut
P+S S P P
Joint 78.9 80.0| 86.0| 81.1
Joint+Constr| 84.6 86.0| 90.8 | 88.7
PostProcess | 86.2 87.6| 90.9 | 88.8
LexicalStress| 86.5 87.2| 90.1| 86.6
OracleStress| 91.4 91.4| 92.6| 94.5
Festival 61.2 625 71.8]| 65.1

Table 4.6: Combined phoneme and stress prediction wordaoye(%) for English, Ger-
man, and DutchP: predicting primary stress only? + S: primary and secondary.

when it generates-best outputs, and when it now filters any sequence contaamin

invalid stress pattern.

e PostProcessthe system is trained to generate only phonemes. It placesssnakers
on the output phonemes as a post processing step using theg¥iig model [Dou,
2009]. This is a pipeline process which uses the phonemeaéreof DirecTL and

the stress assignment of the SVM ranker.

e LexicalStressthe system’s inputs are graphemes with added stress arotitieng-
raphy. The orthographic stress is obtained by the SVM rankiodel [Dou, 2009].
The output is phonemes with stress information. This appra@ows the contribu-
tion of automatic lexical stress assignment to the full geape-phoneme conversion

task.

e OracleStressthe same akexicalStressexcept the system has the true stress marked
on the graphemes. The oracle stress markers are obtaineadgping the stressed

vowels back to their corresponding graphemes via alignsniarthe training.

Table 4.6 shows the results of integrating stress markarshe DirecTL system. Festi-
val’s results are obtained by using the popular Festivab8p&ynthesis SystemOverall,
the Joint approach, which simply expands the output set, is 4%-8% evthran all other
comparison systems across the three languages. Theses iieally indicate the draw-
backs of predicting stress using only local informationEhrglish, bothLexicalStressand
PostProcesgerform best, whildostProcesandJoint+Constrsystems are highest on Ger-
man and Dutch. Although it is inconclusive which approacthébest way to incorporate
stress information into the G2P system, thecleStress results suggest promising im-

provements when accurate lexical stress is provided toghergtion system. Results using

Shttp://wwwv. cstr. ed. ac. uk/ proj ect s/ festi val version 1.96, 2004
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oracle lexical stress show that given perfect stress assighon graphemes, phonemes and
stress can be predicted very accurately, in all cases aldde Fhe accuracy of Festival
is much lower even than the baselid@int approach. These results show that the DirecTL
system can outperform a widely-used speech synthesisnsystéhe generation task, as

DirecTL exploits a much more powerful discriminative triaig model.

4.4 Training without alignments

Grapheme-phoneme alignments play a crucial role in the @Gi#frig processes. The align-
ments between graphemes and phonemes in the training ttatapdloneme generation

models to train on fixed structures. By constructing the fistedctures in the training data,
the phoneme generation model has only one objective to:l¢arproduce phoneme se-
guences corresponding to the given input structures. Itidded.2, the joint processing

framework illustrates the benefit of folding the graphemgnsentation process into the
phoneme generation model by using phrasal decoding. Thegoint processing frame-

work has two objectives: (1) to find the most likely phonemgussces, and (2) to find the
most likely input structures. It learns these structuregive alignments in the training data.
The key issue here is that the alignments are automaticatigrgted by the m2m-aligner.
Although these alignments are shown to be more accurateafoirtg G2P systems than the
one-to-one alignments, the many-to-many alignments arperfect. The learning model

accepts these imperfect alignments as gold-standardigtegdor training.

Liang et al. [2006] proposed three different update stiagetp find both hidden and
output structures for machine translation. In the contéxbtachine translation, the outputs
are translationst] in a target language corresponding to input sentengem (@ source
language. The hidden structurdg are alignments between words in the source and target
languages. The first strategy, calfdabld updating”, updates feature weights towards the
correct outputt and the highest-scoring option of all hidden structutesvhereh is gen-
erated based on the current weight parameters, ispand correct output,, The update
step is skipped if the current model cannot find any possildlddm structure that is a pro-
duction of the inputs and outputt. The second strategy, calléidcal updating”, updates
the feature weights towards the highest-scoring answdrambest list. The third strat-
egy is a combination of the first two options. It uses the finsttegy by default, and the
second strategy when the model cannot find the hidden steucta machine translation,

many hidden structures are unreachable due mostly to tlits liithe distortion allowed in
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the alignment model. The bold updating is more problemétn tother strategies when a
limited-distortion decoder is used in their system. Wit flexibility of translation phrase
swaps, they found that the local updating performs best grttanthree approaches in their
phrase-based machine translation system.

Thearg max and update formulations in Algorithm 5 can be re-writtendo@nmodate
hidden structure as in Equations 4.6 and 4.8. Heéfds the most probable alignment

between the input grapheme stringnd the most probable output phoneme stfing
(£, h) = arg rtr/lzig[a - ®(s, ', 0] (4.6)

h* = arg mﬁmx[a - ®D(s,t, h)] 4.7)

ming,, || an — o |

subject tovt € T,, : (4.8)

- (D(s,t,h*) — D(s,1,h)) > £(t,1)
The alignments: are implicitly found by the phrasal decoder during its skafar the
maximum score of the dot product between the feature weightsd the feature indicators
®. These alignments are in fact the generation outgutsf each substring uni; ... s;
that yields the maximum model score. When training with rafignts using the m2m-
aligner, h* are the alignments discovered by the aligner. The are fixagughout the
online training process. When training without pre-defirsdidnments,h* are the best
alignments found at each update based on the current featights« given s and the
correctt in the training data. The alignments for an exampland¢ can be found by
h = argmaxycpla - ®(s,t, h')]. Essentially, the model searches for the best substring
segmentation of grapheme string— s; ...s; and phoneme stringg — ¢1...¢; . This
process can be performed by a similar dynamic program to tieeuged by the phrase-
based decoder presented in Section 4.2.4, except thajhiesinings and the output string
t are fixed in the search. Before each update step, new aligamefor an examples and
t are found based on the current weight parametgi@nd they are fixed during the process
of updating weightsy,,. This alternate training process is similar to a coordirtscent
algorithm applied in Latent Support Vector Machines (LSVJfielzenszwalb et al., 2008].

Table 4.7 shows the results of bold and local updates for ihecDL systems. The

possible alignments are initialized with a list of grapheph@neme mappings from the
m2me-aligner. DirecTL in the table refers to the model thains on fixed structures as
presented in Section 4.2. Unlike in machine translatior, libld updating achieves bet-

ter performance than the local strategy due to the fact ttagahgme-phoneme alignments
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Method Word accuracy
DirecTL 87.85%
Bold update 86.54%
Local update 79.42%

Table 4.7: G2P word accuracy of DirecTL, bold and local updain the English CELEX
development set.

Method Word accuracy|
Full list of grapheme-phoneme mappings 86.54%
without the list of mappings 86.13%
without 1-m mappings 86.28%
without m-1 mappings 86.49%

Table 4.8: G2P word accuracy of bold update approach givfearelnt alignment initialized
mappings.

in G2P are monotonic and are not affected by alignment distor The bold update ex-
periments suggest that given the example pairs the modelyalfinds alignments under
the current feature weights; therefore, there is no skippise for G2P. In general, train-
ing without fixed alignments achieves lower performancen ttiee DirecTL system with
fixed alignments found by m2m-aligner. One might observe ¢l method of training
without alignments is actually not as general as Liang §R8D6]'s approach because the
possible grapheme-phoneme pairs are given in advancediedtto the pairs returned by
m2m-aligner). Additional experiments were set up to dertrates the effect of the pair-
list initialization. When the system does not use the listj@pheme-phoneme mappings
from the m2m-aligner, the word accuracy performance diigitcreases to 86.13%. The
differences between using a full list of grapheme-phonena@pimgs and lists of partial

mappings are negligible (Table 4.8).

4.5 Integrating joint n-gram features into DirecTL

The online discriminative training framework presente&étction 4.2 improves grapheme-
to-phoneme conversion accuracies by using a phrase-basedeat, and an online max-
margin training regime over a large set of features. @&fgram context and linear-chain
features capture rich information over the source and targmgs. With these features,
the model can use a first order Markov assumption without mmjficant decrease in per-
formance. In other words, increasing the Markov order dadssignificantly improve the

performance. This discovery at first seems to contradictitesf the jointn-gram model

of Bisani and Ney [2008], who showed that the learning modebfapheme-to-phoneme
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joint n-gram| s;4+1—nti+1—nSit;

Si—1ti—18it;
Sit1—ntit1-nSit2—nlita—nSit;

Si—ot;_98;_1t;—18;t;

Sit1-nlit1—n---Si—1ti—1St;

Table 4.9: Joint-gram feature template.

conversion requires at leasfitth order Markov assumption. In fact, their best results were
with an eighth order Markov model. The joink-gram approach takes information over
source and target substrings simultaneously, increabimd/tarkov order not only means
adding dependencies over the phonemic (target) substbimgalso over the orthographic
(source) substrings. Although the jointgram models are capable of capturing context
information on both the source and target side, they carglettively use only source or
target information, nor can they consider arbitrary seqasiwithin their context window,
as they are limited by their back-off schedule.

In the DirecTL model, the set of indicator features (TabW) dnclude (1) context fea-
tures, (2) transition features, and (3) linear-chain fiesstu The context features allow the
model to selectively use information from the source sidee ransition features describe
the cohesion of the target string, while the linear-chaatuees allow the model to look at
both source and target information jointly; however, thissgures do not go beyond two
target phonemic substrings, 1,t;. By integrating jointn-gram features into the online
discriminative training framework, the system not onlyastsj rich context features and
long-range linear-chain features, but also can now takaradge of wide joint information
between the source and target substring pairs. Thesjegram feature template is shown
in Table 4.9.

An alternative method to incorporate a joimtgram feature would be to compute the
generative joint,-gram scores, and supply them as real-valued features tmaodel. As
all of the other features in the DirecTL framework are intlicg, the training algorithm
may have trouble scaling an informative real-valued featurherefore, a binary feature
representation is used for these joinrgram features, indicating whether the model has
seen particular strings of joint evidence in the previaus 1 operations. In this case, the
system learns a distinct weight for each substring of thet jeigram instead of a weight

for each generative joint-gram probability.
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Figure 4.8: System accuracy as a function of the beam size.

In order to accommodate higher-order joivgrams, a beam search is used instead
of an exact phrase-based decoder presented in SectionAtzdm search decoder is a
heuristic search that limits its exploration space to itamesize. Unlike the phrase-based
decoder, it does not guarantee finding the optimal solutlowisits each state and keeps
only the K best states in a priority queue. Only tfé best states in the queue are ex-
panded to subsequenég best states (from left to right); therefore, not all possiblates
are considered— only the promising ones. The computatemmplexity of the beam search
does not grow with the value of the Markov order. For all cagescomplexity of decoding
isO(K xPxn), whereK is the beam size? is phoneme options, andis grapheme length.
In the exact algorithm, the complexity becon@&P ! x n), whereM is the value of the
Markov order. Using the beam search in the model can be cenesich trade-off between
search accuracy and the capability of the model to exploaehigher-order Markov space.
The value ofK in the beam search controls the size of the search histasyintipacts the
solution quality. This value is difficult to predict optinhal In practice, the value ok is
set using a development set. Figure 4.8 shows the systeoriperice in terms of the word
accuracy as a function of the beam size on a development ketpdrformance starts to
converge quickly and shows no further improvement for valgiater thar0. At a beam
size equal to 20, the system obtaéi®s07% word accuracy which is slightly lower than the
word accuracy achieved by the exact algorithri%at 3%.

Figure 4.9 shows the word accuracy with different values wof the online discrimina-
tive system that includesnly the jointn-gram features. The accuracy reaches a maximum
for n = 4, and actually falls off for larger values ef This is likely caused by the model
using its expanded expressive power to memarize sequehopei@tions, overfitting the

training data. Such overfitting is less likely to happen i generative joink-gram model,
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Figure 4.9: System accuracy as a functiomegram size.

Data set | Training size| DirecTL+ | DirecTL | Jointn-gram
Celex 40K 89.23 88.54 88.58
CMUdict 106K 76.41 75.41 75.47
OALD 57K 85.54 82.43 82.51
NETtalk 19K 73.52 70.18 69.00
Brulex 25K 95.21 95.03 93.75

Table 4.10: Grapheme-to-phoneme conversion accuracy.

which smooths higher-order estimates very carefully.

To directly compare results with the generative joingram model of Bisani and Ney
[2008], | follow exactly the same data splits as used in tipeiplication. The data sets
include English Celex, NETtalk, OALD, CMUdict, and Frenchulex. The training sizes
range from 19K to 106K words.

Table 4.10 shows the performance of the DirecTL and Direc3ystems in comparison
with the jointn-gram approach. DirecTL refers to the system described atic3e4.2. It
includes only context, transition and linear-chain feasuas in Table 4.4. DirecTL+ is the
DirecTL system that includes the jointgram features as presented in Table 4.9, in addition
to the existing feature sets. The DirecTL+ model uses a beamtis with a beam size of
50, joint 6-gram featuress{* Markov order). Other parameters are set on the respective
development sets. The full DirecTL+ system outperformdtidirecTL and the joint-
gram model on all data sets. DirecTL+ improves system perdioce over DirecTL by
adding the joint:-gram features. The relative error deductions ranged fr@¥%30 17.3%,
establishing a new state-of-the-art for the task.
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4.6 Summary

| presented grapheme chunking model that incorporates #tmamany alignments into ex-
isting classification-based G2P conversion systems. Thekihg model aims to dynam-
ically discover double graphemes in the testing words, abttiey are pre-processed and
segmented in accordance with the alignments in the traidatg. Applying the chunk-
ing model and many-to-many alignments to the instanceebbesning classifier enables
improvements ranging from 2.7% to 7.6% over the baselineesy# absolute word accu-
racies. To further improve the classification performarckanguage model is applied as a
post-processing step to guide the model to natural outputeseces. Improvements of 1%
to 2% in absolute word accuracies are achieved. These imprents illustrate the power
of models that consider G2P conversion as a sequence fwedicoblem.

Although the proposed approach shows improvement ovesifitation-based approaches
in the literature, it suffers from disjointly modeling eacbmponent. Like other pipeline
systems, errors made in earlier components are forward#éte toext stage. It is unlikely
that later processes can recover or even be aware of thdsr earors. The joint pro-
cessing approach, DirecTL, is proposed to collapse a pipgiiocess. By unifying all the
models in this pipeline process prevents propagation ofriThe chunking and language
models are collapsed into one single model via a phrasaetbdessoder. The decoder si-
multaneously searches for the best grapheme segments emdost likely sequence of
phonemes. The language model is implicitly included asufeatinformation. The fea-
tures include wide context soureegrams, output transition and linear-chain features. The
system trains feature weights using the max-margin onliserichinative algorithm based
on MIRA [Crammer and Singer, 2003]. At the time, DirecTL sasped all state-of-the-art
results on the CELEX, Nettalk, CMUDict and Brulex data séts.improvements ranged
from 2% to 8% in absolute word accuracies.

Lexical and phonemic stress markers were also incorpoiatedhe DirecTL system
to further improve the grapheme generation performancet@mggnerate more complete
outputs for text-to-speech systems. Adding lexical sti@ggoves overall performance by
directly providing extra stress information on the grapkemso the system is aware of
stress information during generation. The experimentsaestnate better results for the
proposed system than the widely used speech synthesisnsyatstival.

In addition, an algorithm for training without alignmenisDirecTL is presented to ex-

plore an alternative paradigm. Grapheme-to-phonemerabgis can be viewed as latent

63



variables in the learning model. The training algorithm asnposed of two state training
components: (1) finding the best hidden structure given thigent feature weights, and
(2) updating the feature weights using the current bestemddructures. Unlike results re-
ported in other domains, here the latent alignment moded doeimprove over the DirecTL
system that trains with fixed hidden structures found by nadigrer.

Finally, DirecTL+ is proposed as an extension to DirecTLtddTL+ combines the
well-known jointn-gram model for G2P with the DirecTL system. The system ipomates
the jointn-gram information as new features and applies a beam saaptécie of the exact
algorithm. Empirical results show that the combined systeitperforms both DirecTL and
the joint n-gram model of Bisani and Ney [2008], establishing a newestdithe-art for

G2P conversion.
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Chapter 5

Transliteration

Transliteration plays an important role in many naturalglaage processing systems, es-
pecially in Machine Translation (MT) and Cross Languag®imfation Retrieval (CLIR).
Unlike translation, transliteration is the task of conirggta given name from one (source)
language to a phonetically equivalent name in anothergtptgnguage. An exact phonetic
equivalence between two languages may not be possible difestences in their phoneme
sets. Approximate phonetic equivalences are generallpaable as transliterations. These
desired transliteration is usually based on human intuiéis to the equivalent of a source
language name in the target language [Li et al., 2009]. Itasalenging task because the
input and output languages use different writing and soystems. The problem requires
even more precision when one transliterates a language waitten in another language
back to its original language, which is called “back-tritesation”. The evaluation of the
back-transliteration task is usually less forgiving bessaeach input often refers to only one
exact spelling in the original language.

Many techniques have been proposed for transliterationbank-transliteration [Kle-
mentiev and Roth, 2006, Knight and Graehl, 1998, Li et alQ4&2®proat et al., 2006, Ze-
lenko and Aone, 2006]. Recently, these problems have reg@ilot of attention in the NLP
community resulting in two consecutive years of sharedstaskname transliteration at the
Annual meeting of the association for Computational Lisgjas (ACL) conferences [Ku-
maran et al., 2010, Li et al., 2009, 2010]. These shared ke categorized into two
different tasks: (1) name transliteration generation, &)dname transliteration mining.
Name transliteration generation task focuses on trainisgstem to generate a target lan-
guage names given a source language name, while a systemrnmiring task identifies a
list of transliteration pairs given parallel text writtemthoth languages.

In this chapter, | apply the DirecTL approach (Chapter 4)ama transliteration, specif-
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ically to the NEWS 2009 and 2010 shared tasks. DirecTL-baggmoaches for name
transliteration generation are described in Section 5.his T joint work with Aditya
Bhargava, Qing Dou, Kenneth Dwyer, Mi-Young Kim and Grzegkondrak, published
in [Jiampojamarn et al., 2009, 2010b]. The language-spe&ifproaches for name translit-
eration presented in Section 5.1.3 were mainly contribbtedditya Bhargava, Qing Dou,
Mi-Young Kim and Grzegorz Kondrak. These approaches erthdéme DirecTL frame-
work by incorporating language-specific knowledge. | pnésame transliteration mining
in Section 5.2. This is joint work with Shane Bergsma, QinguPKenneth Dwyer, and
Grzegorz Kondrak published in [Jiampojamarn et al., 201®}e main systems partici-
pated to the shared task from the University of Alberta. Thed&I'L systems were applied
as a generation-based approach to the mining task. The &ayisdo mine transliteration
pairs based on how similar candidate words are to generatedliterations by DirecTL.
The NED, Bergsma and Kondrak [2007], StringKernel and §Watch approaches were
contributed by Grzegorz Kondrak, Shane Bergsma, KennetpeRwnd Qing Dou respec-
tively. StringMatch is an improved approach for extract@ginese candidate words when
using DirecTL+ as the transliteration generation model.rdvjge the summary of this

chapter in Section 5.3.

5.1 Transliteration generation

In principle, the task of name transliteration generatian be viewed as a similar task to
grapheme-phoneme conversion. A system learns from exaropturce-target transliter-
ation pairs in training data and then generates target ggnames given source names at
the test time. Unlike G2P, both the inputs and outputs of naaresliteration systems are
represented in graphemes. The pronunciation of these gregs) i.e. their corresponding
phonemes, are highly correlated. Previously, Knight anaeBir[1998] proposed a four-
stage cascade of finite-state transducers that connedtegregs of two languages with their
phoneme mappings. They developed an English-Japanesététion system consisting
of four models: (1) an English word model, (2) an English pmciation model, (3) an
English-Japanese sound conversion model, and (4) a Japspeding model. This system
requires not only pronunciation dictionaries for both laages to train model 2 and model
4 but also, more importantly, example pairs of English anmhdase sounds to train model
3. A more attractive approach is to generate translitaradicectly from graphemes with-

out converting to to phonemes at all. The joint source-chhrmodel of [Li et al., 2004] is
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trained to directly transduce graphemes of the source &geyto the target language. The
approach is similar to the joimt-gram model in G2P [Bisani and Ney, 2008]. Although the
joint source-channel model was originally proposed forlEhgChinese name translitera-
tion, it is promising to apply the model to other languagegdue to the fact that it requires
only a set of transliteration examples without any otheajp@rdata or dictionaries.

In the context of the Machine Transliteration Shared Tasltsé Named Entities Work-
shops, NEWS 2009 [Li et al., 2009] and NEWS 2010 [Li et al.,@0the task is to develop
a machine transliteration system for one or more languags. pA provided training set
consists of example pairs of transliteration names in soaral target languages. In some
cases, there is more than one acceptable name given a saugoage name. These multi-
ple correct answers are due to spelling variations. Rethdtsare obtained from a system
that trains on only the provided data are referred to as tstati results. These standard re-
sults ensure a meaningful performance comparison betveeratious proposed methods.
“Non-standard” results refer to results achieved by a systet uses other data, including
additional example pairs or linguistic resources.

Among the standard systems, in the transliteration geiparsask, phrase-based sta-
tistical machine translation [Koehn et al., 2003] was onehef most widely-used tech-
nigues [Finch and Sumita, 2009, 2010, Noeman, 2009, Ram&ahgd2009, Song et al.,
2009, 2010]. Statistical machine translation is applieainyply trading words in transla-
tion for characters in transliteration. Other systems fAaii and Abekawa, 2009, Shishtla
et al., 2009] adopted Conditional Random Fields (CRFs)ffiraf et al., 2001], formulat-
ing the transliteration problem as a sequence labelingl@mb Word alignment models
from machine translation, especially GIZA++ [Och and Ne§QZ] were commonly used
in these systems to find character alignments between theesand target training names.
The pairn-gram approach of Jansche and Sproat [2009] shares the samiplp as the
joint n-gram model proposed in grapheme-to-phoneme conversigarjBand Ney, 2002,
2008] and the joint source-channel model of Li et al. [200AE in other shared tasks,
combinations of several different models via re-rankirgjd/good performance [Das et al.,
2009, 2010, Finch and Sumita, 2010, Oh et al., 2009, Song, &0419].

Additional resources such as name dictionaries, prontiogidictionaries, and addi-
tional training data from Linguistic Data Consortium, WW\absch, and Wikipedia search
were applied in [Hong et al., 2009, Jansche and Sproat, 2@808ng these resources, ad-
ditional lists of names extracted from WWW search and Wittipgyreatly improve transilit-

eration performance to as much as 90% word accuracy ovendesthsystem that achieves
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Data set Data source Training | Development| Testing
EnHi Microsoft Research India 9,975 974 1,000
EnTa Microsoft Research India 7,974 987 1,000
EnKa Microsoft Research India 7,990 968 1,000
EnRu Microsoft Research India 5,977 943 1,000
EnCh | Institute of Infocomm Research 31,961 2,896 2,896
EnKo CJK Institute 4,785 987 989
EnJa CJK Institute 23,225 1,492 1,489
JnJk CJK Institute 6,785 1,500 1,500

Table 5.1: Evaluation data sets used in NEWS 2009.

Data set Data source Training | Development| Testing
ArAe CJK Institute 25K 2.5K 2.5K
EnBa Microsoft Research India 10K 2K 2K
EnTh NECTEC 26K 2K 2K
ThEn NECTEC 24K 2K 2K
ChEn | Institute of Infocomm Research 25K 5K 2K

Table 5.2: Additional evaluation data sets used in NEWS 2010

60% word accuracy for English-Russian and English-Chifesguage pairs [Jansche and
Sproat, 2009].

There were eight data sets used in the NEWS 2009 evaluatiom, three different
sources: (1) Microsoft Research India, (2) Institute obbdmm Research, and (3) CJK
Institute. The data sets are English-Hindi (EnHi), Engllsimil (EnTa), English-Kannada
(EnKa), English-Russian (EnRu), English-Chinese (EnEhylish-Korean (EnKo), English-
Japanese Katakana (EnJa) and Japanese Romaji to Japang¢drid&). The training sets
consist of from 5K to 32K examples; the development and tetst sonsist of from 1K
to 3K names. Table 5.1 summarizes the data sets in the NEWS sttdyed task. The
shared task makes no distinction between forward and badkwamnsliteration; however, it
should be noted that the EnCh, EnKo, and EnJa data setsrcaléstern names (forward
transliteration), while the JnJk data set contains onlyvaalapanese names (backward
transliteration). EnHi, EnTa and EnKa contain Indian andsi®e names of mixed origin.

In the NEWS 2010 shared task, there are 12 data sets inclddiatp sets (EnHi, EnTa,
EnKa, EnCh, EnKo, EnJa and JnJk) from NEWS 2009 and 5 new dtgtaArabic-English
(ArAe), English-Bangla (EnBa), English-Thai (EnTh), THaiglish (ThEn) and Chinese-
English (ChEn). Table 5.2 shows these additional five dats s€hEn, EnTh and ThEn
contain Western names, while ArAe consists of Arabic origgmes. Each of these sets

is thus exclusively either forward or backward translitera Like other Indian data sets
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(EnHi, EnTa, EnKa), EnBa contains a mixed of Indian and Westames. For the data sets
from NEWS 2009, the training data contain both the trainind development sets from
the previous year. The 2010 development sets are the 2008etssand the new test sets
are constructed from totally different sources. It is iating to note that while all NEWS
2009 evaluation sets were randomly split to create trajnilegelopment and testing sets,
the NEWS 2010 testing data are not necessarily from the samaid as the training and
development sets. The tasks have thus become more diffisuthbre realistic than the
previous year.

Each system is asked to provide a ranked list of up to 10 cateli@nswers for each
test name. Since a name may have multiple correct traradlites, especially in the for-
ward transliteration task, all reference answers areddeatjually in the evaluation. The

transliteration results are evaluated using 6 differeatu@tion metrics including:

1. Word accuracy in top-1 (ACC) measures the correctnedsedbp-1 answer (the top
ranked answer in the list). The answer is considered to bectoif it completely
matches one of the transliteration names in the refereste Hiquation 5.1 shows
the ACC calculation, wheréV is the total number of names in the test set; is
the j-th reference transliteration for thieh testing nameg; . is the k-th candidate

transliteration for theé-th testing name.

Tn (1 if 3y er c
_ = 4,5 - T'i,j = Ci,1
ACC=75 Z{ 0 otherwise (5-1)

1=
2. Fuzzinessintop-1 (Mean F-score) measures how diffevaraverage, the top transilit-
eration candidate is from its closest true transliterafiorthe reference list. The
F-score measurement is a function of precision and recaltuated based on the

Longest Common Subsequence (LCS) between a candijaad a referencey:
1
LCS(e,r) = 5(\0\ + |r| = ED(e,r)) (5.2)

where, ED(c,r) is the minimum edit distance betweerandr, |c¢| and|r| are the
numbers of Unicode characters in stringndr, respectively. The minimum edit
distance function uses an equal cost of adding, removingepidcing a character.

The recall, precision and F-score for transliteration isleated using the following
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equations:

N
1 LCS(Cil,’I“im)
= —y ==\mbem/ 5.3

NS 2)
1 & LCS(¢in,rim)

p - = 1,1, Ti,m 5.4
N o 54
RxP

= 2 5.5
R+ P (53)

wherer; ,,, is the reference that ; matches best in the reference list for thid test-
ing name. Since each transliteration name in the referésicis considered equally
correct, a candidate transliteration is evaluated basethe@meference answer that

gives the lowest minimum edit distance.

3. Mean Reciprocal Rank (MRR) measures the systeniest candidate answer%
is roughly the average rank of the correct transliteratiomhie n-best list. Like in
ACC, a candidate answer is correct if it matches any trammaliion in the reference
list. An MRR close to 1 indicates that the correct answer isallg at the top of the

n-best list.

N
1 mink% Arij,cik i Tij = Cik
MRR =+ 21 { 0 otherwise .6)
1=

4. MAPof measures the precision of thebest candidate answers. If a system gener-
ates alln; correct transliteration answers for théh source name in its top;-list,

then it receives a perfect MAP=1. The Mp measurement is defined as:

1 & num(i,n;)
MAPref =~ > — (5.7)

i=1 i
wherenum(i, n;) is the number of correct transliterations for théhe source name

in the n;-best list, andh; is the number of transliteration variations in the refeeenc

list.

5. MAPqis similar to MARs but it is computed with respect to a fixed size (10-best)
list of candidates instead of using the number of correcistieration names in the

reference ;).

6. MAPsysis similar to MARgf but it is computed with respect to the size of candidate

list proposed by the systerk;;, instead of using; or a fixed number.
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5.1.1 Approaches to transliteration generation

Name transliteration generation is an example of a striagsttuction application. It is
closely related to grapheme-to-phoneme conversion by thettstructure of the problem
and the phonetic equivalence between source and targetdgagrames. In general, the
approaches proposed for transliteration generation aedban many-to-many alignments
(Chapter 3) and the generation models (Chapter 4). In thelitaration task, training data
consist of word pairs that map source language words to worle target language. The
matching between character substrings in the source wardsaget word is not explicitly
provided. These hidden relationships are generally knaw/itransliteration alignments”.
It is the same situation as in the grapheme-phoneme alighmeB2P conversion. The
m2m-aligner can therefore be used to find the alignmentseitrétining data.

Both DirecTL and DirecTL+ were applied to the NEWS 2009 anti®éhared tasks [Ji-
ampojamarn et al., 2009, 2010b]. As in G2P, these systenmsanamany-to-many align-
ments via the online discriminative training frameworkngsithe margin-based method,
MIRA [Crammer and Singer, 2003]. A phrase-based decodendzmd Ney, 2004] is
applied to automatically find the best segmentations thagigde the most likely output se-
guence. The transliteration models use the same featupatm as presented in Tables 4.4
and 4.9. Although most of the components of the G2P systenbeatirectly applied to
name transliteration, one major difference is how to effitietrain the model with multi-
ple target language names for each source name. This isaéEqniito having pronunciation
variations in grapheme-to-phoneme conversion. Prontiagigariations were previously
ignored during training. The problem of multiple targetdange names is closely related to
multi-labeled classification problems [Elisseeff and Was2001, Zhou and Zhang, 2006].
Section 5.1.2 describes the training method for DirecTL mtiere is more than one cor-
rect output in the training data. The proposed method ischase loss function, over the
correct outputs and the predicted answers at each iteration

Another key difference from G2P is the need for languageifipeenhancements (Sec-
tion 5.1.3). These modifications are inspired by linguigtowledge including an inter-
mediate phonetic representation for Chinese, Korean, apdng&se, and language origin
detection for Indian-related languages. Performance egisums using these language-
specific approaches, as well as the official results of the [SEWared tasks, are presented
in Section 5.1.4.
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5.1.2 Training with multiple answers

One difficulty when DirecTL models are trained on the traesdition training data is
that each source language name may have multiple corrget tanguage names. Unlike
the DirecTL models, the generative methods [Bisani and 12698, Jansche and Sproat,
2009] have no difficulty to leverage multiple referenceshia probability models. In the
DirecTL, the complication is in the update stage. Equati@réstates the update method,
whereq,, is the updated weights,, is the current weight<l}, is then-best system outputs,
(s, t) is a set of features generated from the source language sanektarget language
namet, and/(t, t) is the loss function between the correct outpahd proposed outpit

ming,, || an — Qo I

subject tovt € T, : A A (5.8)

ap - (P(s,t) — P(s,t)) > L(t,t)
Previously, there was only one correct output sequerioeeach inputs. The constraints
in the equation essentially consist of a list of features ¢liifer between the correct and
incorrect outputs. Since it is possible in name translitenato have more than one correct
target language name, one simple solution is to randomlgsaha target language name
beforehand and ignore the rest. This solution simplifiesctraplexity of the problem but
sacrifices other potentially-useful ground truth inforimatthat the model could learn from.

Creating constraints for all pairs betweére 7), andt € T;whereT is the list of
correct transliterations, results in an unstable modelithanlikely to converge. Consider
an extreme case where the model produces an almost corseerwhich is close to one
target in the reference list;. The constraints consist of not only the differences betwee
®(s,t;) and®(s, 1), but also other constraints for other T,,,t # t;. Such essentially
unrelated constraints may be hard to satisfy simultangousl addition, the number of
constraints grows in the proportion to the Cartesian prbﬁD,qX\Tn\, instead of the size
of then-best list.

To incorporate all correct transliteration names into #rhing model, | proposed a
loss-based selection method which dynamically choose proppate correct translitera-
tion name for each generated output. The model selects ectdransliteratiors from the
reference listl" such that it has the minimum loss to the candidatd his loss criterion
is highly correlated to the evaluation matrices. When ttageemultiple references, these
metrics reward a candidate that matches one of the tramaside names or has minimal

edit distance. The final update formulation is presentedguaton 5.9. The weights of
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Strategy | Top-1 word accuracy
Baseline 45,76
max Score 45.87
min Score 47.14
max loss 46.81
min loss 47.69

Table 5.3: Top-1 word accuracy performance of differenining strategies on the EnJa
development set.

each proposed candidate in thébest list are updated toward the closest correct answer
for that candidate. The size of the constraints in the egnasiin proportion to the size of

then-best list.
ming, || an — a, ||

subject tov € T}, : t = arg minyer ot 1) (5.9
- (B(s,t) — B(s,1)) > L(t,1)

Alternatively, one can choose the correct answehat provides the largest loss instead
of the minimum one, so that the training model can train onendlifficult references in term
of the loss function. However, this training procedure istable as shown in the following
situation. Let’s assume that there are two correct answers, € T', and, first, the training
model prefers the prediction output, which is close to the reference answerbut the
training model updates the feature weight®ward the referenck as it has a higher loss.
Later, after the update, the model would prefer to genenateugputi that is close to the
reference answep and again it is forced to update the feature weights towarddference
t1. These alternate updates between referépeadi, lead to an unstable model during
training for each example.

Another possible solution is to choose references basdweimmbodel scoresy- (s, t).
Selecting the reference that has the minimum model scoraugiees to update the feature
weights to separate incorrect outputrom the lowest bound of the correct outputs;
argmingcr o - D(s,t'). Similarly, this strategy can cause the alternate updatesden
two references. For example, if a majority of training exéssuggests the model to favor
the reference; in the example. At the update, the feature weights are forcagpbdate
toward the referencg, since it has a lower model score than the refergncel herefore,
the alternate updates between two choices can occur ovavérall training examples
when the feature weights are updated in favor of the referénon other examples in the
training set.

Table 5.3 shows top-1 word accuracies of the EnJa develdpsatrusing different

training strategies discussed in this section. “Baselised baseline system that selects
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each target reference at random. Theak score” and tnin score” strategies select each
target reference based on the maximum and minimum modetscespectively. Simi-
larly, the “max loss” and ‘min loss” strategies are based on the loss function. All train-
ing strategies which incorporate multiple references owerword accuracy performance
over the baseline system. The&n score strategy outperforms theax score criteria be-
cause it guarantees to update feature weights on the laliffesénce of the feature values,
®(s,t) — ®(s,1). Themin loss strategy obtains a better performance thamthe loss
model because it avoids the alternate updates of multifdeereces. Thenin loss model is
slightly better than thenin score model since it updates the model toward the closest ref
erence. ltis less aggressive than thia score model that always updates with the largest

value of the feature differences.

5.1.3 Language-specific approaches to name transliteratio

The DirecTL framework for name transliteration is a langaiamgdependent approach.
The system learns to directly generate target languageswaitteout requiring specific lan-
guage knowledge. It transliterates substrings of charmftem a source language to a tar-
get language regardless of whether the languages use®elighayllabic, or ideographic
scripts. Although the many-to-many alignment approachthesbility to find small units
of substrings that are sufficiently represent the scriptsoofce and target languages, it is
interesting to pre-process the non-alphabetic languagas ¢loser in form to an alphabetic
script. For the NEWS 2009 and NEWS 2010 shared tasks, we gedptermediate repre-
sentations for name transliteration in Chinese, KoreanJapdnese. These three language
using non-alphabetic writing system.

Chinese Pinyin is the most common romanization system faré3le Mandarin. It uses
the 26 letters of English alphabet to represent the soun@siokese Mandarin. Represent-
ing each Chinese character with Pinyin characters can helmbdel find better substring
alignments between Pinyin and English alphabets. Instédithding English substrings
that align with individual Chinese characters, the model ganeralize the mappings be-
tween Pinyin symbols and the English alphabet. This pregssing approach significantly
reduces the number of distinct symbols in the target siaen 870 different Chinese char-
acters to 26 Pinyin symbols. The Chinese Pinyin pre-prangsseps are only applied to the
alignment model for better generated alignments. The pegssing steps for the English-

Chinese transliteration task are as follows: (1) Chineseatdters are represented in their
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corresponding Pinyin form via a standard conversion tg@eMany-to-many alignments
are constructed on the English-Pinyin training data, (ByiRicharacters are converted back
to their corresponding Chinese characters, (4) finallyattgmned English-Chinese data are
used to train the generation model.

Alternatively, one can use the Pinyin representation fahkamignment and genera-
tion models. Such a system learns to generate sequencesyof Biven English names.
Separate post-processing steps are required to transfBirtpin sequences back to the cor-
responding Chinese characters. However, converting ecknperfect sequences is not
a trivial task. One Chinese character usually correspom@sdombination of 3-4 Pinyin
symbols. To avoid further conversion errors, the ChinesgiRiconversion is only applied
during the alignment process, during the training, wheeerdéierence Chinese names are
available.

Unlike Chinese, Korean characters can be decomposed iotomthree components
called “Jaso”: an initial consonant, a middle vowel and amily a final consonant. For
the English-Korean transliteration task, it is importamidecompose the Korean symbols
into their corresponding Jaso. The conversion betweenafooharacters and their Jaso
components is a lossless process via a conversion tabteathsf training a transliteration
model on the original format, English-Jaso data are usedhto the transliteration model.
After transliteration, the Jaso output is then converteckita Korean characters. It is
possible that a generated Jaso sequence can not be corvactetb Korean because of
system errors. However, simple correction rules are safftcio convert the illegal Jaso
sequences to legal ones. The rules include (1) replacingcomsecutive vowels with a
complex vowel, (2) inserting silent consonanfi-eung) between two vowels, (3) inserting
a vowel- (eu) between two consonants or, for three consecutive cans®, placing the
vowel in the most probable position according to the trajnilata. The system removes
any illegal Jaso sequence fromitsbest transliteration outputs that can not be recovered.

Although Japanese Katakana is often used for transcriptiovords from foreign lan-
guages, replacing each Katakana symbol with one or two &mdditters via a standard
romanization table helps in the alignments. The transliten model is trained to generate
names written in romanized form. These forms are then ctewdrack to their original
Japanese Katakana. Unlike Korean, most Katakana symlmiepresented by single vow-
els or consonant-vowel pairs. The only apparent ambignitglves the letten, which can
either stand by itself or cluster with the following vowettlr. The system resolves this

ambiguity by always assuming the latter, unless the leti@ccurs at the end of the word.
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Only minority illegal sequences are generated by the fiteration system in it3:-best
outputs. The system takes a simple solution: it removes egyesice from the output list
that it is unable to convert back to Japanese Katakana.

Unlike Chinese, Korean and Japanese, Russian is an alphaliing system. It uses
a Cyrillic alphabet that is largely phonetic. It is relativestraightforward to convert the
Cyrillic script to the IPA representation. A conversionl&als used for mapping between
Cyrillic and the IPA representation. There is no ambiguitytie backward or forward con-
version. This conversion is mostly for accommodating theM{E algorithm that requires
both source and target names in the IPA representationig8exp).

All transliteration data for Indian languages in the NEW@&rsil tasks consist of both
Western and Indian origin names. Therefore, the providsditrg data is a combination of
both forward and backward transliterations. This is a gogaiortunity to explore whether
language-origin identification can result in better traeshtions. The idea is to separate
the training data, and train one model for forward transliien and another for back-
ward transliteration. We apply the language identificativodel of Bhargava and Kondrak
[2010]. The system is based on support vector machines ($\léssification is trained
on a small number of examples manually tagged as being Iration-Indian in origin.
Instead of splitting the data into two disjoint sets, thenttfecation model generate scores
for being a name of Indian or non-Indian origin. Then, a thodd value determines if the
given name should be excluded from the set. As a result, belynost likely Indian names
are excluded from the non-Indian set and vice versa. Dusstrny, each transliteration
model generates a list of target transliterations giveruacgoname. The two lists are com-
bined using a linear combination over the mean reciprogétsaThe linear combination
weights are taken from the scores of the identification méatethe source name, so that

the final results favor the corresponding model.

5.1.4 Summary of evaluation and results

The approaches are evaluated using the NEWS 2009 and NEV@Sh2@ie transliteration
generation tasks. The DirecTL system was mainly appliecdhéoNEWS 2009 task and
the DirecTL+ system for the NEWS 2010 task the following yeaihe many-to-many
alignments were constructed by using two alignment appesc(1) the m2m-aligner, and
(2) ALINE (Chapter 3). ALINE requires the IPA representasdor both source and target
names. This limits the algorithm to some specific languagesxample, English, Russian,

Chinese Pinyin, and Japanese Katakana can be represerteglliatin alphabet. Unlike
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ALINE, the m2m-aligner produces alignments regardleshefwritten scripts used in the
languages.

For all the generation tasks, the provided data are pregsedeas follows:
1. converting all characters in the source word to lower .case

2. removing non-alphabetic characters unless they appdzoth the source and target

words.

3. normalizing whitespace surrounding a comma, so thag thex no spaces before the

comma and exactly one space following the comma.

4. separating multi-word name pairs into separate singlehwame pair, using whites-
pace as the separator and assuming a monotonic matchingexamyple that has a

different number of words in the source and target is disafcom the training set.

In the ArAe task, there are cases where an extra space is &oldled target names
when transliterating from Arabic to English; for exampla) Riyard”, and “El Sayed”. In
order to prevent the pre-processing from removing too maayngles, unequal matching
is allowed if the source name is a single word.

During testing, the pre-processing steps are applied isdhee manner. Transliteration
for multi-word names are generated from théest answers of the single words by ranking
the combined scores that make up the test words.

Table 5.4 shows the results of the DirecTL system on the NEWW® Zranslitera-
tion generation tasks for English-Chinese (EnCh), Engigidi (EnHi), English-Japanese
Katakana (EnJa), English-Korean (EnKo), English-RuséiarRu), and Japanese Romaiji-
Japanese Kaniji (JnJK). “+INT(m2m)” refers to using the leage-specific approaches pre-
sented in Section 5.1.3 with the m2m-aligner, while “+INT(NE)" refers to the same but
with the ALINE algorithm generating the alignments. “Comddl” is a system combining
all available answers using a simple voting method. “+MCEimHi refers to using a man-
ual cleaning step performed by a Hindi speaker to fix aboutat$titeration pairs that have
a disagreement between the number of source and target.words

For all experiments, the system intentionally producedégt-outputs without a mech-
anism to filter low-quality target names. Therefore, the MABnd MAP,, results are the
same. The language-specific approaches significantly weghe results for the EnCh task

but not for EnJa and EnRu. The results suggest that usingtammediate representation
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Data set| System ACC | F-score| MRR | MAP,..; | MAPyy | MAP,,,
EnCh DirecTL 0.717| 0.890 | 0.785| 0.717 0.237 0.237
+INT(m2m) 0.734| 0.895 | 0.807| 0.734 0.244 | 0.244
+INT(ALINE) | 0.732| 0.895 | 0.803| 0.732 0.242 0.242
Combined 0.746| 0.900 | 0.814| 0.746 0.245 0.245

EnHi DirecTL 0.498| 0.890 | 0.603| 0.488 0.195 | 0.195
+MC 0.509| 0.893 | 0.610| 0.498 0.198 | 0.198
EnJa DirecTL 0.500| 0.847 | 0.604| 0.487 0.199 | 0.199

+INT(m2m) 0.492| 0.843 | 0.597| 0.478 0.198 | 0.198
+INT(ALINE) | 0.510| 0.848 | 0.614| 0.496 0.202 | 0.202
Combined 0.505| 0.850 | 0.616| 0.493 0.204 | 0.204
EnKo DirecTL 0.387| 0.693 | 0.469| 0.387 0.146 | 0.146
EnRu DirecTL 0.613| 0.928 | 0.696| 0.613 0.212 | 0.212
+INT(m2m) 0.608| 0.927 | 0.694| 0.608 0.212 | 0.212
+INT(ALINE) | 0.607| 0.927 | 0.690| 0.607 0.211 | 0.211
Combined 0.608| 0.927 | 0.693| 0.608 0.211 | 0.211
JnJk DirecTL 0.560| 0.847 | 0.604| 0.487 0.199 | 0.199

Table 5.4: Evaluation results on NEWS 2009 transliteragjeneration.

for Russian in fact degrades overall performance. EnJdtsese improved from the base-
line DirecTL only when ALINE is used to generate alignmenritke EnCh results illustrate
the advantage of using Pinyin representation. A large ingrent of 3% absolute ACC is
achieved by representing Chinese symbols with Pinyin.

The EnHi results with manual cleaning method (EnHi+MC) gaveindication of the
potential of DirecTL when it is trained on less-noisy dateheTdifference in ACC with
cleaning can be as much as 1% in absolute ACC.

Comparing the best results in the table to other systemgtezpmn the NEWS 2009
transliteration shared task [Li et al., 2009], the Direcipeoach obtains the best results in
the EnCh, EnHi and EnRu tasks among 31 participating systersiding the joint.-gram
features in DirecTL+ further improves performance to 0,303 and 0.618 ACC on the
EnCh, EnHi and EnRu tasks, respectively, versus 0.71780#A€6 0.613 with DirecTL.

Table 5.5 shows the DirecTL+ results on the NEWS 2010 tremalion generation
task. The overall performance except for EnKo drops fromNE&VS 2009 results. This
performance drop could be because the test sets in NEWS 20i® fcom totally different
sources than the 2010 training and development sets. In NEW$, all training, develop-
ment, and test sets come from the same sources. Comparittgetosystems participating
in the shared tasks, DirecTL+ is ranked either the first ooisd®n all data sets.

Using the Pinyin representation for Chinese gives impramsiover the baseline sys-

tem, but in smaller amounts compared to the NEWS 2009 resultsingID” refers to the
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Data set ACC | F-score| MRR | MAP,..;
EnCh 0.357| 0.703 | 0.419| 0.342
+INT(m2m) 0.360| 0.707 | 0.429| 0.345
+INT(ALINE) 0.362| 0.704 | 0.429| 0.348
Combine 0.363| 0.707 | 0.430| 0.348
ChEn 0.137| 0.740 | 0.198| 0.137
EnTh 0.378| 0.867 | 0.467| 0.378
ThEn 0.352| 0.861 | 0.450| 0.352
EnHi 0.456| 0.884 | 0.559| 0.456
+LangID 0.456| 0.885 | 0.558| 0.456
EnTa 0.390| 0.891 | 0.512| 0.390
EnKa 0.341| 0.867 | 0.460| 0.341
EnJa+INT(m2m) | 0.398| 0.791 | 0.507| 0.398
EnKo+INT(m2m)| 0.554| 0.770 | 0.672| 0.554
JnJk 0.126| 0.426 | 0.201| 0.127
ArAe 0.464| 0.924 | 0.535| 0.265
EnBa 0.395| 0.877 | 0.512| 0.395

Table 5.5: DirecTL+ results on the NEWS 2010 transliteratieneration tasks.

system that applies the language identification model fEthHi task. The system obtains
exactly the same ACC performance as the fully languagepimident DirecTL+ approach.
On the other hand, the Korean Jaso approach greatly impowegall performance, by im-

proving as much as 17% in absolute ACC compared to the laegndgpendent approach.

5.2 Transliteration mining

Most of the data for the NEWS transliteration generatiokgaanges in size from 10-25K
pairs (Table 5.1 and Table 5.2). The coverage of languadesiied by the availability of
parallel names. Also the transliteration generation systeely on parallel names in order to
develop and train the systems. The goal of the name tramadide mining task is to extract
name transliterations from parallel texts. In the NEWS 20&@sliteration mining shared
task [Kumaran et al., 2010], a mining system is trained on alldist of transliterations for
a pair of source and target languages. The list is calledl“da&”, typically contains about
1K name pairs. The trained system then identifies single wartsliterations in standard
standard interlinked Wikipedia topics, called “WIL or Wjdia Interlanguage Links!
The links connect articles on the same topic in multiple leayges.

The task includes five language pairs: English-Chinese (BA@h), English-Hindi
(WM-EnHi), English-Tamil (WM-EnTa), English-Russian (WEnRu), and English-Arabic

*http://en.w ki pedi a. or g/ wi ki / Hel p: I nt erl anguage_| i nks
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(WM-EnAr). Each WIL data set consists of pairs of topic stla the source and target lan-
guages. The task is to identify parts of the topics that agdeed transliterations. It is
possible that a WIL's title may contain 0, 1 or more transéiteon pairs. The number of
title pairs ranges between 10K and 200K titles. The task dataot include examples of
transliterations extracted from the WIL titles. The modulsst be learned purely from the
seed sets. The seed sets are not necessarily from the Wikigg@uhain. The test sets, how-
ever, are subsets of WIL data which have been hand labelesv&uation. The test sets
comprise around 1K examples of WIL title pairs.

Precision (P), recall (R), and F-scorg JRre the evaluation matrices for the transliter-
ation mining task. These evaluation matrices are calaiaten the numbers of true/false-

positive/negatives as follows:

TP
P_iTP—kFP (5.10)

TP
= 5.11
R TP+ FN ( )

2x P+ R

Fl=— 5.12
1 PR (5.12)

where,

¢ the true positivesT' P, are the number of pairs that are identified by the system as

transliterations and which are also tagged in the gold stahtiansliteration pairs.

o the false positivesF'P, are the number of pairs that are identified by the system as

transliterations but which are not tagged in the gold stethtfansliteration pairs.

o the false negativel’ N, are the number of pairs that are not identified by the system

as transliterations but which are tagged in the gold stahdsitransliteration pairs.

5.2.1 Approaches to transliteration mining

For transliteration mining, approaches can be broadlygcaieed into (1) classification-
based and (2) generation-based methods. Classificatgetdba@pproaches [Bergsma and
Kondrak, 2007, Klementiev and Roth, 2006] aim to build a binaassifier to identify
whether a candidate pair consisting of a source woadd a target word is a translitera-
tion pair. Training binary classifiers requires positivel egative examples, i.e., pairs that
are transliterations and pairs that are not translitematié-or the NEWS 2010 task, the seed
data provide transliteration examples, and these exaroplede used as positive training
examples. For negative training examples, one possibl®agpip is to randomly select un-

aligned target names in the seed data for each source naemélitiev and Roth, 2006].
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This random sampling method potentially generates “eaggative examples which are
clearly not transliterations. To create “competitive” aige examples, Bergsma and Kon-
drak [2007] proposed selecting negatives based on a pairigest Common Subsequence
Ratio (LCSR). Only negative examples that have an LCSR ahdheeshold are included
as training examples.

Bergsma and Kondrak [2007] train a binary SVM classifier gsinbstring alignment
features. The reported results are promising; howevefgttares are limited to only those
substrings that are below a certain maximum size (threeuwsrdisaracters). This is because
the number of unique features increases exponentiallyeasuhstring size increases. To
extend this approach, one can use a string kernel functistead of an explicit feature
representation. One of the systems that the University béAa submitted to the NEWS
2010 transliteration mining shared task [Jiampojamarn.eP@10b] is based on an SVM
model using a standarad-gram string kernel. The kernel function is defined as thal tot
number of commom-grams that appear in both stringsand¢. Eachn-gram count is
weighted by its length — a factor of*. The maximum length ofi-grams and the weight
factor \ are optimized using cross-validation.

A simple approach is to compute the string similarity betwé®o strings via Nor-
malized Edit Distance (NED). NED is the edit distance fumetdivided by the maximum
length of the two strings. NED is thus always between 0 andstehd of expressing NED
as a distance function, a similarity expression can be aetliby subtracting the original
fraction from 1. In this way, NED is equal to 1 if the two stringre exactly identical; and O
otherwise. Since the source and target languages may sesdifwriting scripts, Roman-
ization is required for non-Latin scripts. A simple Romaatian table can be obtained by
extracting the highest conditional probabilities from icdwder alignments in seed data. The
character alignments can be generated with the m2m-aljdia@npojamarn et al., 2007] but
limiting the alignment size to be exactly one on both the seand target side. Essentially,
this alignment model is similar to the model of Ristad andn¥@s [1998]. Although the
simple Romanization table is not highly accurate, it regglino language-specific knowl-
edge. This approach can be viewed as a way to transliterat&tpet language name to
the source language name via a Romanization table. Thesystem’s decisions are based
on NED similarity. A transliteration is proposed if the NEBIue is above some threshold.
Without development sets, these thresholds are choserdaugto the average word length
in the seed sets. The thresholds are higher for longer ax@vard lengths and vice versa.

Generation-based approaches, on the other hand, genmaratktérations for source or
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target names and compares the generated names to the tasgatae names in the candi-
date list. Darwish [2010] proposed a generation-basedlttaration mining system. The
system uses a generative Hidden Markov Model (HMM) to gereeaget language names
given source language names. The system identifies a cémgidia (s,¢) as a translitera-
tion if the generation ot given s exactly matches the string This exact match criteria
provides high precision but low recall. To improve recalinadified SOUNDEX scheme is
used when vowel mismatch is discarded and similar chasaaterconflated. The modified
SOUNDEX method thereby relaxes the constraint of exact imateen the system makes
decisions. Recall is also further improved by using thedligaration pairs, found by the
original model, to re-train the HMM transliteration model.

Noeman and Madkour [2010] proposed a generation-basedagipinspired by phrase-
based statistic machine translation [Koehn et al., 2008& dystem learns alignment model
from the seed data using GIZA++ [Och and Ney, 2003]. The listh@racter alignments
is represented as a finite state automaton. For a given snaroe, candidate translitera-
tions are generated within a certdiredits from the model output, and these candidates are

compared to the target language words.

5.2.2 Application of DirecTL+ to transliteration mining

A generation based approach for transliteration miningislétermine if the generated
transliterations of a source word= F(s) and a target word = B(t) are similar to
their corresponding words in a candidate gairt). The state-of-the-art transliteration sys-
tem DirecTL+ can be applied to generate both forward andwank transliterations. The
system is trained on the seed sets which contain small éipfsoximately 1K of parallel
names. This training creates ti#&s) and B(t) models. To decide if the given candi-
date pair(s, t) is a transliteration pair, a score function (Equation 5i$3)alculated. The

candidate paits, t) is proposed as a transliterationSfm (s, t) > 7.

wy - NED(t,t) + wa - NED(s, 3)
w1 + w2

Sim(s,t) = (5.13)

NED(t,t) is the normalized edit distance between stringsdt. The N ED values
are expressed in a score function rather than a cost funoyisubtracting the edit distance
values from 1.w; andw, are combination weights that favor the forward and backward
transliteration models. Ideally;,, w; , andws should be optimized on a development set.
Since the task provides no development set, one can opttirése parameters by creating

negative examples [Klementiev and Roth, 2006] and takirsitige examples from the seed
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sets. However, this optimization is highly reliant on thedsets whose data may not have
the same characteristics as the WIL's titles. Alternagivehe can model the NED of word
pairs as a mixture model [Dinov, 2008] or consider the prnobkes clustering with two
clusters.

One important component in the generation-based appredhb extraction of source-
target candidate pairs from the WIL's titles. Ultimatelfzetoverall performance on the
end task depends on the quality of the candidate pairs ¢atrat the first place. For lan-
guages with explicit tokenization (e.g. English and Russiavord segmentation can be
performed using sequences of one or more spaces, as welhesiation symbols includ-
ing hyphens, underscores, brackets, and other non-alpteiwcharacters. The candidate
pairs are constructed by taking the cross product of thecsoamd target language words
within the aligned WIL titles. However, for a language likdni@ese when transliterated
names consist of multiple Chinese characters and when tlaases are not explicitly sep-
arated from other text, word segmentation becomes probienteortunately, some WIL's
titles include a separation symba! 6n the target, Chinese side. In this case, word segmen-
tation can be based on the separation symbol. On other hdueh, tlvere is no indication of
word segmentation, Chinese candidate names can be cdadtftam all possible:-grams
(2 < n < L), whereL is the length of the Chinese title under consideration. Tibbdst
similarity score between thesegrams and the source words, where the score is also above
a threshold value, is taken to indicate a transliteratidn pé&e in the transliteration gener-
ation tasks, a Pinyin representation can be used as a sdwadditional information. Given
each English name, separate transliteration models gernéhinese characters and Pinyin.
The Chinese target names in the candidate list are also tedve Pinyin for comparison
with the generated outputs. For computing the similarityrfon-pinyin output, Chinese
characters with similar sounds must be considered mismatchhe Pinyin representation

helps to identify similar sounds in the generated and catelidiords.

5.2.3 Summary of evaluation and results

Table 5.6 reports the system performance evaluated on tRéNED10 transliteration min-
ing shared tasks [Kumaran et al., 2010]. These results wimmitted to the shared tasks
as University of Alberta submissions. NED refers to the $argystem that is based on
the Normalized Edit Distance between the romanization efgburce and target candi-
date words. NED also incorporates sets of simple rules ttifgenon-transliteration pairs.

The rules include word lengths, capitalization, and nuoa¢nisage. Since there is no de-
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velopment set provided, the threshold values are set bas#tecaverage word length in
the seed sets. The values are 0.38, 0.48, 0.52 and 0.58 folEV\Hl- WM-EnAr, WM-
EnTa, and WM-EnRu. Bergsma and Kondrak [2007] is the SVMstifi@s with a linear
kernel function. The system uses features derived fronrm@dénts generated by the m2m-
aligner [Jiampojamarn et al., 2007]. StringKernel is anriovgd system that trains with
the string kernel function. DirecTL+ is a basic system thed¢sua fixed threshold value
(m) of 0.58 and equally weights the forward and backward moutethe linear combina-
tion (wy = wo = 1) for all data sets. “+ average cutting” indicates when theghold
value T is set at the point of average normalized edit distance plsiamadard deviation
(r = Avg. + SD). “+ oracle cutting” indicates that the threshold valueses at the peak
point of F-score performance. The “Oracle candidate” tssale the upper bound of the
provided candidate list assuming the perfect precisiofopmance. “StringMatch” indi-
cates the WM-EnCh system that utilizes thgram matching method instead of the simple
tokenization used in the other language sets.

The NED system is simple but it achieves good performanaesaatifferent language
pairs. It achieves the best result for the WM-EnRu task a5%7F-score. For all data
sets, StringKernel shows significant improvements oversttstemn of Bergsma and Kon-
drak [2007]. These improvements indicate the power of ugegstring kernel function
instead of a linear representation for these tasks. ThecDire performance depends on
the quality of the threshold value used to discriminate traasliteration pairs from non-
transliterations. A threshold value of 0.58 is based on woiking cognates from word-
aligned bitexts, see [Bergsma and Kondrak, 2007, Melan@@D]1This threshold provides
the best results on the WM-EnRu task compared to performanhdee “oracle cutting”
points. The average cutting method is a simple but efficieayt to find the optimal thresh-
old for most language pairs. The difference in F-score betwaverage cutting and oracle
cutting is less than 1% F-score for all language pair excejg-BhRu.

Figure 5.1 shows the histogram of NED values on the WM-EnAdadate set. The
x-axis is the NED value and the y-axis is the number of ocomes in the set with 0.05
precision at each step. The 3rd degree polynomial apprakiméunction suggests that
there are two distributions mixed in the data. The first eattline from the left indicates
the cutting point at the average NED value. Each vertica #fter the first is the cutting
point at the average NED value with an additional 0.5 stahdawviations. Changing the
threshold value from left to right affects the trade-off weeén precision and recall. In

general, using the far left point as the threshold resulksgh recall but low precision. The
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Figure 5.1: WM-EnAr histogram.

overall F-score results for each vertical line from left ight are 72.0%, 82.3%, 84.3%,
82.8% and 75.2% respectively.

Table 5.7 reports the results of using DirecTL+ with the ager cutting method and
also alternative clustering methods on the WM-Ar task. Negage cutting method simply
sets the cut-off threshold to the average of all similarityres plus their standard deviation.
The alternative methods consider the separation task asseeghg problem. “1-d Beta
mixture model” divides the data into 2 clusters (transditems and non-transliterations)
such that the clusters are best fit to two beta distributi@msilarly, “1-d Gaussian mixture
model” uses the Gaussian distribution as the base funcfidultivariate Gaussian mixture
model” uses the original NED scores of the forward and bacwaodels as mixture di-
mensions instead of the combination score as given in Eaquétil3. “Simple K-means”
is a widely used algorithm for clustering problems. It cesatwo clusters such that the
summed Euclidean distances between each data point atakitisrccentroid is minimized.
The simple average cutting method shows better overalbpaence than the other tech-
nigues. The linear combination score yields better perémee than modeling each score
in the multivariate mixture model. These results demotestilae effectiveness of the av-
erage cutting point for separating true transliterationsnf non-transliterations. Although
the average cutting method achieves results that are ddbke bptimal results with respect
to the similarity function and threshold values, more ssfitéted techniques and different
approaches that are not based on these threshold valuesjane=d to further improve the

clustering process.
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The simple method for word segmentation is sufficient fomtingg candidate lists in
most languages, but not for WM-EnCh. The “oracle candida¢sults for WM-EnRu,
WM-EnHi, and WM-EnTa are all above 99% F-score while the rmdthchieves 95.5%
F-score on WM-EnAr. In general, for languages with words ttzen be tokenized by non-
alphabetic symbols, there is no difficulty in obtaining caate word lists from the WIL
titles. On the other hand, the simple word tokenization methchieves only 22% oracle
F-score on the Chinese data. This low oracle performancepigthe baseline DirecTL+
system from obtaining a reasonable result, as the candidéte are so low-quality in the
first place. The generation model of the StringMatch methodased on the DirecTL+
system; however, it searches for the most likely transliten pairs from the WIL titles
by greedily matching each source word to every possibigam of Chinese target Pinyin,
from left to right. This method achieves clearly superiocuacy. StringMatch achieved
53% F-score which is substantially lower than other resoiftsined in other languages.
These performance gaps illustrate the complexity of a phadetic language, and suggest
that the DirecTL+ generation and string similarity funatiare more suitable for alphabetic
languages than logosyllabic languages. Further researaiow-alphabetic languages is
necessary to improve the overall performance.

Comparing to other reported results in the shared task [Kamet al., 2010], there is no
single approach that achieves the best results for allé¢ést §he NED system achieves the
best WM-EnRu result while StringKernel obtains the best \ERfFa result. The DirecTL+
system with the average cutting method outperforms both dE®DStringKernel systems
on the WM-EnHi and WM-EnAr tasks; however, the best resudfsorted on these sets
are from MINT for WM-EnHi [Udupa et al., 2008] (which trainsi@dditional seed data
and achieves a 94.4% F-score) and from the system of Noenthmadkour [2010] for
WM-EnAr (91.5% F-score).

5.3 Summary

| presented the DirecTL model for name transliteration ludimg applications to both
transliteration generation and mining. The transliteragjeneration task has the same ba-
sic principles as grapheme-to-phoneme conversion. Thelibaddea of using DirecTL

is to replace the phoneme sequences in G2P with the targpidga symbols in translit-
eration. A method for multiple outputs is proposed to expdgiamples where one source

language name may correspond to multiple correct targgukege names. The NEWS gen-
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eration shared task results suggest that DirecTL is higiiguiage-independent; it achieves
state-of-the-art performance without requiring addiiioresources nor language-specific
knowledge. However, making use of Chinese Pinyin and Jasedftcare language-specific
modifications that improve performance over the baselinreddiL systems. In both the
NEWS 2009 and NEWS 2010 transliteration shared tasks, Diregstems obtained either
the first or second best performance for most evaluated dégta Ehese successful results
confirm the power and generality of many-to-many alignmamid the online discrimina-
tive training framework.

The DirecTL+ system for transliteration mining is a generabased approach. The
key idea is to generate transliterations for both sourcea@nget language words. The iden-
tification of transliteration pairs is accomplished by segdiow similar the generated words
are to the candidates. The proposed approach achieves @th@arable or better results
than a range of other systems including the NED, Stringkeand Bergsma and Kondrak
[2007] systems. The word segmentation problem in Chineseepis simple tokenization-
based approaches from achieving acceptable quality inxinected candidate word lists.
However, the greedy string-matching method obtains priogrisesults, showing the ef-
fectiveness of a DirecTL system when a better quality setheted candidate words is

available.
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| Task | System | F-score| Precision| Recall |

WM-EnRu | NED 87.5 88.0 86.9
Bergsma and Kondrak [2007] 77.8 68.4 90.2
StringKernel 81.1 74.6 88.9
DirecTL+ 79.3 77.3 81.5

+ average cutting 78.0 68.3 91.0
+ oracle cutting 80.2 72.4 90.0
Oracle candidate 99.4 100 98.8

WM-EnHi | NED 90.7 87.5 94.1
Bergsma and Kondrak [2007] 88.2 88.3 88.0
StringKernel 92.4 95.4 89.5
DirecTL+ 91.4 96.6 86.7

+ average cutting 93.6 94.0 93.1
+ oracle cutting 93.7 90.6 96.9
Oracle candidate 99.7 100 99.4

WM-EnTa | NED 79.1 91.6 69.6
Bergsma and Kondrak [2007] 82.9 80.8 85.2
StringKernel 91.4 92.3 90.6
DirecTL+ 86.0 95.4 78.3

+ average cutting 91.2 89.7 92.6
+ oracle cutting 91.9 89.3 94.8
Oracle candidate 99.8 100 99.7

WM-EnAr | NED 80.0 81.8 78.3
Bergsma and Kondrak [2007] 81.6 83.4 79.8
StringKernel 82.7 91.7 75.3
DirecTL+ 82.6 88.1 77.8

+ average cutting 84.3 81.8 87.0
+ oracle cutting 84.7 83.1 86.3
Oracle candidate 95.5 100 91.4

WM-EnCh | StringMatch 53.0 69.8 42.7
DirecTL+ 0.09 0.45 0.05
Oracle candidate 22.0 100 12.2

Table 5.6: Transliteration mining results.

System F-score| Precision| Recall
Average cutting 84.3 81.8 87.0
1-d Beta mixture model 80.0 72.8 88.8
1-d Gaussian mixture model 78.2 69.8 88.9
Multivariate Gaussian mixture model 76.8 66.8 90.5
Simple K-means 83.2 79.4 87.4

Table 5.7: DirecTL+ with average cutting and other clusignnethods on the WM-EnAr
task
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Chapter 6

Conclusion

In this thesis, | presented approaches to the graphembeioeme conversion and name
transliteration tasks. My contributions can be directlplaan in two main applications: (1)
text-to-speech and (2) machine translation. In text-eesp application, pronunciation of
common words can be largely found in a lexicon inventory.ofugtic phoneme generation
is required only when words to be synthesized are not listedd inventory. The DirecTL
system plays an important role in synthesizing these wardsiding proper names, mis-
spellings and uncommon words. In machine translation eaptin, the DirecTL system
can be applied to transliterate proper names that are ¢eft & translation model due to the
fact that these proper names cannot be translated by thaimings.

My research contributions are in both alignment and geimgraéchniques. | first pro-
posed the many-to-many alignment algorithm to improve olerone-to-one alignments
that have been widely used in G2P conversion. The many-tosraignment algorithm
relaxes the one-to-one constraint that limits the size apgeme and phoneme sequences
being aligned. | investigated several alternative alignihneethods in attempting to improve
both alignment and generation performances. These ditesmaethods include phonetic
alignment, ALINE, based on [Kondrak, 2000], integer linpemgramming—inspired by the
minimal model of [Ravi and Knight, 2009], and alignment-&ggregation approaches. |
conducted an in-depth study to evaluate these alignmembitpees compared to the exist-
ing one-to-one alignment methods.

To incorporate the many-to-many alignments, | presentagrggme chunking and post-
processing language models that incorporate the manyatoralignments into existing
classifiers. The proposed approach connects each compionemtipeline framework. |
demonstrated that the proposed system outperforms exisgstems based on one-to-one

alignments, although the proposed pipeline framework i@ty allows a propagation
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of errors. | collapsed the pipeline framework and proposedt jprocessing and online
discriminative training for G2P. The joint approach simankously finds the most likely
grapheme subsequences that generate the most likely pboseguence outputs via a
phrase-based decoder [Zens and Ney, 2004]. | presentechline discriminative train-
ing framework that is based on the online large margin tnginechnique [Crammer and
Singer, 2003]. The online large margin technique signitigamproves performance over
the simple averaged perceptron of Collins [2002]. | comdbitiee proposed G2P approach
with a state-of-the-art stress assignment system and deratad several combination tech-
nigues, including the joint, pre-processing and postgseing methods. | further investi-
gated a training paradigm that requires no alignments intrthiaing data; this training
method is inspired by the end-to-end approach of Liang €280D6]. The experimental
results demonstrated that the end-to-end approach is ter bighn the joint approach that
incorporates the many-to-many alignments. | also integréthe generative joint-gram
approach [Bisani and Ney, 2008] into the discriminativerapph via a feature template.
Additionally, | proposed an approximate beam search ingotddhe exact phrase-based de-
coder and showed that the integrated system outperforrhstietgenerative joint-gram
and the original discriminative approaches.

| applied this successful G2P system to name transliterdéieks in the NEWS 2009
and 2010 Machine Transliteration Shared Tasks [Kumaran.,eR@L0, Li et al., 2009,
2010]. | developed language-independent transliteragiemeration systems. | evaluated
the language-independent systems as well as ones withdgagpecific pre-processing.
The experimental results illustrated that the pre-prdngsgoes not always help in several
language pairs. The language-specific processes onlydekgtter represent training data
for alignment and generation tasks for certain writing eys; e.g., Chinese, Korean and
Japanese. | proposed a transliteration mining system ghzdded on the generation sys-
tem in which similarity is measured between generated litaretions and transliteration
candidate words. The final system demonstrated statesedithperformance in the NEWS

shared tasks in both transliteration generation and itaration mining.

Future Work

In Chapter 3, | proposed a many-to-many alignment methoanfrave on the existing
one-to-one alignment methods and later proposed alteenalignment methods to further
improve the EM-based alignment algorithm. One researdttiin is to investigate the use

of Bayesian inference [Chiang et al., 2010, Goldwater aritfitas, 2007] for grapheme-
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to-phoneme alignments as well as for name transliteratignraents. An ideal alignment
model should provide a compact model size, and good datéhtikel. While the EM-
based alignment approaches optimize directly to obtaihitjteest data likelihood, it suffers
from creating unnecessary alignment links and overfitsriiaihg data. Another research
direction is to investigate a discriminative training naatfor finding alignments and also
to extend it to a higher Markov model [McCallum et al., 2005].

The DirecTL systems proposed in Chapter 4 are based on ¢thasaubstring features
in both input and output spaces. The learning model obtaiftsrhation from substring
evidence in the training data without linguistic infornuetti For G2P, stress, syllabification
and morphological constraints can help to further imprinveaverall performance [Bartlett
et al., 2008, Demberg et al., 2007, Marchand and Damper,]2008 an interesting re-
search direction to further investigate useful linguistiatures and incorporate them in the
generation model. One potential approach is to re-rankufrewt system output using full-
word linguistic information. The experimental resultssian Figure 4.7 indicate that 98%
of correct sequence outputs can be achieved in the top 5Gasisirom a model trained on
only half of the training data. One difficulty in this futureovk is how to re-rank the-best
list output in a way that more correct answers appear at thetdhe list. Among oth-
ers, linguistic information presents a promising set ofifess that can guide the re-ranking
model to obtain better performance. In addition to lingaigiformation, another possible
way to re-rank the:-best outputs is to observe the similarity of each outputisege with
other sequences in thebest list, i.e., to apply Minimum Bayes-risk decoding [Gard
Byrne, 2000]. This approach has helped automatic speedgmion [Goel and Byrne,
2000] and machine translation [Kumar and Byrne, 2004]. Harédt showed no improve-
ment in dependency parser [Smith and Smith, 2007]. It ismarinvestigate if Minimum
Bayes-risk decoding can help grapheme-to-phoneme coomeasd name transliteration
tasks.

In Chapter 5, | presented a generation-based approachefoiatine transliteration min-
ing tasks. The system’s performance is largely dependemvoriactors: (1) the quality
of extracted candidate lists, and (2) choosing an optimastiold value. With regards
to the first factor, the simple tokenization-based apprgarcivides reasonable candidate
lists for several languages where the word segmentatioblggrodoes not exist in their
writing systems. However, simple methods provide ineffectesults in Chinese. Word
segmentation [Jiang et al., 2008, Zhang and Clark, 2008{hiese languages will be re-

quired in order to obtain good quality in the extracted cdat# lists. In addition, the best
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performance achieved in WM-EnCh with the StringMatch mdtisignificantly lower
than the other languages leaving opportunities in futurekgvto improve not only the seg-
mentation but also the generation and string similaritycfioms. Regarding choosing an
optimal threshold, while the simple average cutting metfettion 5.2.3) provides near-
optimal solutions, it would be interesting to find the globptimal point that separates non-
transliteration pairs and true transliteration pairs withrequiring training or development
sets. In this thesis, | illustrated how to extend the Diredfidmework for transliteration
mining. The proposed technique is simple but yet effectivadhieve the state-of-the-art
performance. In future works, it is interesting to explotiees sophisticated techniques that

directly aim for transliteration mining.
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