
University of Alberta

Grapheme-to-phoneme conversion and its application to transliteration

by

Sittichai Jiampojamarn

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Sittichai Jiampojamarn
Spring 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor anysubstantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Examining Committee

Grzegorz Kondrak, Computing Science

Randy Goebel, Computing Science

Dale Schuurmans, Computing Science

Harald Baayen, Linguistics

Anoop Sarkar, School of Computing Science, Simon Fraser University

Abstract

Grapheme-to-phoneme conversion (G2P) is the task of converting a word, represented by a

sequence of graphemes, to its pronunciation, represented by a sequence of phonemes. The

G2P task plays a crucial role in speech synthesis systems, and is an important part of other

applications, including spelling correction and speech-to-speech machine translation. G2P

conversion is a complex task, for which a number of diverse solutions have been proposed.

In general, the problem is challenging because the source string does not unambiguously

specify the target representation. In addition, the training data include only example word

pairs without the structural information of subword alignments.

In this thesis, I introduce several novel approaches for G2Pconversion. My contri-

butions can be categorized into (1) new alignment models and(2) new output genera-

tion models. With respect to alignment models, I present techniques including many-to-

many alignment, phonetic-based alignment, alignment by integer linear programing and

alignment-by-aggregation. Many-to-many alignment is designed to replace the one-to-one

alignment that has been used almost exclusively in the past.The new many-to-many align-

ments are more precise and accurate in expressing grapheme-phoneme relationships. The

other proposed alignment approaches attempt to advance thetraining method beyond the

use of Expectation-Maximization (EM). With respect to generation models, I first describe

a framework for integrating many-to-many alignments and language models for grapheme

classification. I then propose joint processing for G2P using online discriminative training.

I integrate a generative jointn-gram model into the discriminative framework. Finally, I

apply the proposed G2P systems to name transliteration generation and mining tasks. Ex-

periments show that the proposed system achieves state-of-the-art performance in both the

G2P and name transliteration tasks.

Acknowledgements

It is my pleasure to thank those who made this thesis possible.

I am deeply grateful to my supervisor, Greg Kondrak, for excellent guidance throughout

my research and study at the University of Alberta. His inspiration and enthusiasm help me

to explore research in this thesis. Without his guidance, itwould not have been possible to

publish paper publications used in this thesis. Thank you tomy thesis committee members:

Randy Goebel, Dale Schuurmans, Harald Baayen and Anoop Sarkar for their contributions

to this thesis at the defense. Thank you to Dekang Lin for his comments and suggestions

during my candidacy exam. Thank you to Shane Bergsma and Aditya Bhargava for their

great work on proofreading this thesis.

Thank you to all NLP members at the University of Alberta and brilliant co-authors

contributing in my thesis publications: Tarek Sherif for the many-to-many alignment pa-

per, Colin Cherry for the discriminative training papers, Qing Dou and Shane for stress

prediction paper, and Kenneth Dwyer, Shane, Qing, Aditya and Mi-Young Kim for the

transliteration papers. Thank you to Ken for his contribution to the name “DirecTL”.

I would like to thank you to Nick Cercone and Vlado Keselj who advised me during

my master program at Dalhousie University and continually provided me recommendation

letters for scholarship applications and others.

I acknowledge supports from the Alberta Ingenuity Fund and the Alberta Informatics

Circle of Research Excellence which are now part of the Alberta Innovates organization.

Lastly but the most importantly, I would like to thank my wifeand family for their love,

encouragement, and understanding.

Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Outline . 6

2 Related Work 7
2.1 One-to-one EM alignment . 9

2.1.1 Discussion on one-to-one EM alignment 10
2.2 Grapheme-to-phoneme conversion 11

2.2.1 Classification-based approaches 12
2.2.2 Sequence-based approaches . 13

2.3 Learning for structured outputs 15

3 Grapheme-to-phoneme alignment 19
3.1 Many-to-many alignment .20
3.2 Phonetic alignment . 23
3.3 Constraint-based alignment 24

3.3.1 Integer linear programming alignment 25
3.3.2 Alignment by aggregation . 27

3.4 Evaluation . 28
3.5 Summary . 33

4 Grapheme-to-phoneme generation 35
4.1 Applying M-M alignments and a language model to G2P classifiers 36

4.1.1 Grapheme chunking model . 38
4.1.2 Applying a language model to G2P classifiers 39
4.1.3 Summary of evaluation and results 40

4.2 Joint processing and discriminative training 44
4.2.1 Joint processing . 44
4.2.2 Online discriminative training 46
4.2.3 Model . 46
4.2.4 Search . 47
4.2.5 Online updates . 48
4.2.6 MIRA implementation . 50
4.2.7 Summary of evaluation and results 50

4.3 Stress markers combination .. . 54
4.4 Training without alignments .. . 57
4.5 Integrating jointn-gram features into DirecTL 59
4.6 Summary . 63

5 Transliteration 65
5.1 Transliteration generation 66

5.1.1 Approaches to transliteration generation 71
5.1.2 Training with multiple answers 72
5.1.3 Language-specific approaches to name transliteration 74
5.1.4 Summary of evaluation and results 76

5.2 Transliteration mining .. . 79

5.2.1 Approaches to transliteration mining 80
5.2.2 Application of DirecTL+ to transliteration mining 82
5.2.3 Summary of evaluation and results 83

5.3 Summary . 86

6 Conclusion 89

Bibliography 93

List of Tables

3.1 Alignment quality, entropy, and G2P conversion accuracy on the Combilex
data set. 30

3.2 G2P word accuracy using the TiMBL-based generation system. 32
3.3 G2P word accuracy using the online discriminative system. 33

4.1 An example of grapheme chunking prediction. 38
4.2 Number of words in each data set. .. 41
4.3 Word accuracies based on 10-fold cross validation. 42
4.4 Feature template. 47
4.5 Comparison of word accuracy on the evaluation sets. 53
4.6 Combined phoneme and stress prediction word accuracy. 56
4.7 G2P word accuracy of DirecTL, bold and local updates. 59
4.8 G2P word accuracy of bold update approach. 59
4.9 Jointn-gram feature template. 60
4.10 Grapheme-to-phoneme conversion accuracy. 62

5.1 Evaluation data sets used in NEWS 2009. 68
5.2 Additional evaluation data sets used in NEWS 2010. 68
5.3 Top-1 word accuracy performance of different training strategies. 73
5.4 Evaluation results on NEWS 2009 transliteration generation. 78
5.5 DirecTL+ results on the NEWS 2010 transliteration generation tasks. 79
5.6 Transliteration mining results. 88
5.7 DirecTL+ with average cutting and other clustering methods. 88

List of Figures

2.1 Alignment example for the word“accuse” with its phoneme output. 8
2.2 One-to-one and many-to-many alignment examples for theword “accuse”. 11
2.3 Example pronunciation for the word longevity. 15

3.1 ALINE alignment example. .24
3.2 A network of possible links. .. 26
3.3 Alignment examples of“phrase” . 28
3.4 F1 score versus G2P word accuracy performance. 32
3.5 G2P word accuracy vs. alignment entropy. 33

4.1 The many-to-many alignment approach framework. 37
4.2 Example paths for the word“buried” . 40
4.3 System performance showing in word accuracies on the evaluated data sets

on grapheme-to-phoneme conversion task. 42
4.4 Collapsing the pipeline approach. 45
4.5 Separate segmentation versus phrasal decoding in termsof average word

accuracy and standard deviation. .. 51
4.6 The effect of sequence features on the joint system in terms of average word

accuracy and standard deviation. .. 52
4.7 Word accuracy on the development set showing the learning curve of the

system trained with different amounts of training data. 53
4.8 System accuracy as a function of the beam size. 61
4.9 System accuracy as a function ofn-gram size. 62

5.1 WM-EnAr histogram. 85

Chapter 1

Introduction

The objective of grapheme-to-phoneme conversion (G2P) is to generate phonemes that cor-

respond to a given written word. Phonemes are abstract psychological representations

of how words are pronounced in natural speech, while graphemes are representations of

words in written language. The G2P task plays a crucial role in speech synthesis sys-

tems [Schroeter et al., 2002], and is an important part of other applications, including

spelling correction [Toutanova and Moore, 2001], speech recognition [Goel et al., 2010]

and speech-to-speech machine translation [Engelbrecht and Schultz, 2005].

In general, G2P can be viewed as a string transduction problem where a system is

trained to transform input strings to output strings. Formally, the G2P task can be described

as follows: given an input words containingn graphemes,s1 . . . sn, the task is to find

the t1 . . . tm phoneme sequence that corresponds to the input words. For example, the

phonemes for the wordabodeare [@ b o d]. Generally, the G2P task requires an alignment

algorithm to generate alignments between graphemes and phonemes in the training data.

The aligned data provide more precise information to a phoneme generation model. For

instance, the alignments for the example above are:

a b o d e

| | | | |
@ b o d

The “ ” phoneme, called the“null phoneme”, is added to represent the silent sound pro-

duced by the grapheme “e” in the example. In many cases, the null phoneme is also added

for making one-to-one alignments possible.

Converting a word into its phoneme representation is a non-trivial task. Dictionary-

based approaches cannot achieve this goal reliably due to unseen words and proper names.

Furthermore, the construction of even a modestly-sized pronunciation dictionary requires

substantial human effort for each new language. Effective rule-based approaches can be de-

1

signed for some languages such as Spanish; however, Kominekand Black [2006] show that

in languages with a less transparent relationship between spelling and pronunciation, such

as English, Dutch, or German, the number of letter-to-soundrules grows almost linearly

with the lexicon size. Therefore, most recent work in this area has focused on machine

learning approaches.

Many data-driven techniques have been proposed for grapheme-to-phoneme conversion

systems, including neural networks [Sejnowski and Rosenberg, 1987], hidden Markov mod-

els [Taylor, 2005], instance-based learning [Bosch and Daelemans, 1998, Daelemans and

Bosch, 1997], constraint satisfaction [Bosch and Canisius, 2006], and decision trees [Black

et al., 1998]. Data-driven approaches to G2P generally require aligned training data of

graphemes and phonemes. A one-to-one alignment assumptionis typically assumed for

simplicity. Phoneme generation models are then trained using the alignments, viewing the

task as either a classification or a sequence prediction problem.

I aim to develop an automatic G2P system that learns from available word-phoneme ex-

amples and outperforms all other existing systems. Before applying any learning techniques

to this problem, there are three issues one should consider.First, input words and output

phonemes are embedded with some hidden structures among thetwo spaces. These hidden

structures are called“alignments” . Discovering these alignments is required in order to

train G2P systems using many learning techniques. Second, words and phonemes are natu-

rally structured sequences, so that classification-based techniques are not able to capture the

output structure information. However, they are good at representing grapheme contexts as

input features and generating each phoneme subsequence output. Third, each phoneme is

influenced by both the hypothetical grapheme(s) that generates it (as known by the links

in the alignment data) and the grapheme context surroundingthe grapheme. For example,

in the word-phoneme“abode” [@ b o d], the phoneme [o] is not only generated by the

grapheme “o” but is also influenced by other graphemes surrounding it, like the graphemes

“d” and “e”. With the possibility of long dependencies in thegrapheme sequence affecting

the generation of an output phoneme, sequence-based learning techniques such as genera-

tive hidden Markov models (HMMs) are a poor fit for this problem. Discovering a learning

technique that better fits this task is challenging.

The similar task of name transliteration is one in which, given a name written in a

source language, we seek a phonetically equivalent name written in a target language. The

transliteration task is another instance of a string transduction problem, and it is similar

to G2P in many aspects. In fact, the name transliteration system of Knight and Graehl

2

[1998] includes G2P components. The idea is to convert source language graphemes to their

corresponding phonemes. The system then learns mapping relationships between source

language phonemes and target language phonemes before converting the target language

phonemes to their corresponding graphemes, written in the target script. This approach

therefore consists of a G2P component in the source languageand the reverse process, P2G,

in the target language. The name transliteration system of Li et al. [2004] present a direct-

conversion-based approach that generates target languagenames from the source language

without intermediate phoneme representations. This approach is conceptually similar to the

well known G2P jointn-gram model proposed by Bisani and Ney [2002]. This suggestsa

strong relationship between G2P and name transliteration tasks in general.

The Named Entity Workshop (NEWS) shared tasks on name transliteration [Kumaran

et al., 2010, Li et al., 2009, 2010] are interested in the development of language-independent

name transliteration systems. In the transliteration generation tasks, the available training

data are similar similar to the available training data for G2P; the data consist of translit-

eration names written in source and target languages. Like G2P, there is no alignment

information in the training data indicating which substring of a target language name is a

production of which substring of a source language name. To train a system, we need the

training data to be aligned before starting the learning process. Unlike standard evaluation

of G2P, there are multiple correct or accepted transliteration targets. Training a system with

multiple correct answers in the training data is challenging.

Like in many other supervised natural language processing applications, the quality of

a transliteration system largely depends on the size and quality of transliteration example

pairs. Developing large corpora is both time consuming and expensive. Transliteration

mining in the NEWS shared tasks [Kumaran et al., 2010] is interested in extracting translit-

erated names from parallel text. I aim to develop a system that is trained on a small list of

transliterated names and is able to identify name transliteration pairs in the text, written in

source and target languages.

In this thesis, my overall research objective is to develop aG2P system that improves

over existing systems by employing novel advanced techniques in both alignment and gen-

eration. I apply such approaches to not only the G2P conversion tasks but also to name

transliteration generation and mining tasks.

3

1.1 Contributions

In this thesis, my research contributions are focused on G2Pconversion and name

transliteration. For G2P, I present a many-to-many alignment approach, known as the

“m2m-aligner” [Jiampojamarn et al., 2007]. As mentioned previously, machine learning

techniques require the training data to be aligned before starting the learning process. Pre-

vious work generally assumed one-to-one alignments for simplicity. This assumption limits

one grapheme to be aligned with one phoneme in the output. Although these alignments

make the original G2P problem simpler and more suitable to many multi-class classification

techniques, the alignments suffer from two fundamental problems: (1) double graphemes

and (2) double phonemes, which are discussed in detail in Section 2.1.1. My many-to-many

alignment approach is proposed to fix these problems. The alignment results are more ac-

curate from both human and machine learning perspectives. Ipropose alternative alignment

methods including phoneme-based, integer linear programming-based, and alignment-by-

aggregation approaches [Jiampojamarn and Kondrak, 2010].I conduct an in-depth study to

demonstrate the close relationship between alignment quality and G2P conversion perfor-

mance.

I first propose a pipeline framework for applying the many-to-many alignments and a

phonetic language model to G2P classifiers [Jiampojamarn etal., 2007]. This approach

combines the benefits of hidden Markov models (HMMs) with theflexibility of supervised

classification techniques. Naturally, classification techniques are unaware of sequential out-

put structures but they easily make use of wide grapheme context to individually predict

each sub-phoneme in the sequence. HMMs are sequence-based techniques that generate

output sequences based on the transition and emission probabilities. The output structure

information is encoded in the transition probability, and source-side information is encoded

in the emission probability. While the G2P systems based solely on HMMs tend to perform

poorly, I show that using an HMM-like model to correct the output phoneme sequence

generated by a local classifier yields an improvement in prediction accuracy.

Later, I collapse the pipeline framework and unify it with a joint processing framework

based on online discriminative training. This novel framework is known as DirecTL [Ji-

ampojamarn et al., 2008]. The discriminative training approach has the ability to incor-

porate a rich number of features. Phoneme sequence information is easily represented as

features in the learning method. A phrase-based decoder joins together the phoneme gen-

4

eration module and the grapheme segmentation module based on the many-to-many align-

ments. The joint processing framework optimizes the learning parameters for G2P as a

single model, solving the error propagation problem in the pipeline framework. I further

conduct a study to evaluate this system while incorporatinga state-of-the-art phonetic stress

assignment system [Dou et al., 2009]. The proposed system outperforms the well-known

speech synthesis system Festival1. One observation with the joint technique, however, is

that the model must commit to imperfect alignments producedby the m2m-aligner. I in-

vestigate this potential issue by applying a training approach without explicit alignments,

based on the method of Liang et al. [2006]. The training process is similar to a coordinate

descent algorithm that is applied to Latent Support Vector Machines (LSVMs) [Felzen-

szwalb et al., 2008]. Finally, I combine a jointn-gram model [Bisani and Ney, 2002, 2008]

with the DirecTL system; the combined system is called “DirecTL+” [Jiampojamarn et al.,

2010a]. I conduct experiments that evaluate the proposed system on the same data splits as

used in [Bisani and Ney, 2008]. DirecTL+ outperforms both the original DirecTL and the

joint n-gram approach, establishing a new standard in state-of-the-art performance for G2P

conversion.

Furthermore, I apply the DirecTL framework to name transliteration generation and

mining and evaluate using the data provided by the NEWS 2009 and 2010 Machine Translit-

eration Shared Tasks [Kumaran et al., 2010, Li et al., 2009, 2010]. I present a training ap-

proach that incorporates multiple outputs per input for thename transliteration generation

task. This approach enables the DirecTL framework to train with multiple valid correct an-

swers per input name. The results [Jiampojamarn et al., 2009, 2010b] illustrate DirecTL’s

proficiency for the name transliteration generation task. It does not require any specific

language knowledge in order to achieve state-of-the-art performance on several language

pairs. However, language-specific approaches for Chinese and Korean are also tested as

pre-processing steps to provide greater information for the corresponding writing systems.

The pre-processing steps for these languages help the system to generate better alignments

and better output sequences.

For name transliteration mining, I present classification-based and generation-based

approaches that are based on the m2m-aligner and DirecTL systems [Jiampojamarn et al.,

2010b]. To make a decision on whether a candidate pair is a transliteration pair, I present an

approach that uses the DirecTL system to generate transliteration words and I compare the

generated words with the words in the candidate list via a string similarity function. The

1http://www.cstr.ed.ac.uk/projects/festival

5

successful results achieved in the shared tasks confirm the effectiveness of this approach.

In summary, I present alignment and phoneme generation techniques for G2P conver-

sion tasks. The improvements achieved by the proposed methods are based on observations

made in existing systems. Then, I apply the proposed methodsto name transliteration gen-

eration and mining tasks. I illustrate that the proposed approaches are efficient for both the

G2P and the transliteration tasks. I establish the state-of-the-art in performance on both

tasks.

1.2 Outline

The structure of this thesis is as follows. First, in Chapter2, I describe grapheme-

to-phoneme work in the literature, including grapheme-to-phoneme one-to-one alignment

methods and phoneme generation models based on classification and sequence prediction

techniques. Then, in Chapter 3, I introduce the many-to-many alignment approach as well

as phonetic alignment, integer linear programming-based alignment, and alignment-by-

aggregation. In Chapter 4, I describe a grapheme chunking model and language model

for classification-based G2P approaches. Then, the joint processing framework and on-

line discriminative training methods (DirecTL and DirecTL+) are presented and evaluated.

I present the DirecTL framework for name transliteration generation and mining tasks in

Chapter 5. I provide the conclusion of this thesis in Chapter6.

6

Chapter 2

Related Work

Grapheme-to-phoneme (G2P) conversion1 has a long history in the speech synthesis area.

Inspired by Chomsky and Halle [1968], the conversion of graphemes to phonemes is possi-

ble if there is sufficient contextual information around thegraphemes [Damper et al., 1999].

The Chomsky and Halle [1968] work inspired the early rule-based system of [Elovitz et al.,

1976] which was proposed as an automatic rule-based system for English. It contains 329

phonological rules that are in the format of “A[B]C → D”; whereA andC are the left and

right context graphemes andD is the phoneme(s) corresponding to the graphemeB. Over

time, machine learning techniques have been developed; modern G2P systems do not rely

on handcrafted rules but rather use available word-phonemeexample pairs for training.

However, the inspiration of Chomsky and Halle [1968] still plays a crucial role as

grapheme context features in classification-based approaches [Black et al., 1998, Bosch and

Canisius, 2006, Bosch and Daelemans, 1998, Daelemans and Bosch, 1997, Kienappel and

Kneser, 2001, Sejnowski and Rosenberg, 1987, Suontausta and Tian, 2003], or grapheme

substrings in generative models [Bisani and Ney, 2002, 2008, Chen, 2003, Damper and

Eastmond, 1997, Marchand and Damper, 2000, Taylor, 2005].

There are two key components in both classification and generative systems that al-

low training from word-phoneme example pairs. The first component is to discover hidden

structures between graphemes and phonemes, calledalignments. Alignments essentially al-

low the G2P system to learn what phoneme to generate for each grapheme and its context,

allowing us to attack the problem sequentially grapheme by grapheme. The alignments

are provided to the phoneme generation models either explicitly, having a separate model

to generate the alignments, or implicitly, integrated within the phoneme generative mod-

els [Bisani and Ney, 2002, 2008, Chen, 2003, Taylor, 2005]. The second component is a

1also known as letter-to-phoneme (L2P) or letter-to-sound (L2S) conversion

7

learning mechanism to train a model to generate output phonemes given words. There are

two paradigms for training:

1. train as a classification problem where each grapheme in a word generates a phoneme

or phonemes without knowledge of previously generated phonemes in the same word.

2. train as a sequence modeling or tagging problem which takes previous decisions in

to consideration for the current decision.

The performance of G2P systems are reported in word accuracy, and phoneme accu-

racy. The word accuracy is calculated by counting the numberof fully correct phoneme

sequences given testing words. The phoneme accuracy is calculated using either the Ham-

ming distance or Levenshtein distance between the gold-standard outputs and the generated

sequences to find the number of correct phonemes.

Generally, training data for G2P conversion systems are available in the form of word-

phoneme pairs with no explicit information indicating individual grapheme-to-phoneme

relationships. While these relationships are“hidden” in the training data, humans naturally

have an intuition of grapheme-to-phoneme“alignments” given a word-phoneme pair. For

example, the word“accuse” [@ k j u z] has grapheme-to-phoneme alignments shown

in Figure 2.1. The“ ” represents a special null phoneme that indicates a silent sound for

grapheme“e” in the word.

Figure 2.1: Alignment example for the word“accuse” with its phoneme output.

To simplify the conversion task, these grapheme-phoneme alignments must be discov-

ered so that phoneme generation models can infer the relationship between each/substring

of graphemes in the input word and each substring of phonemesin the output phonemes.

In very early work, graphemes and phonemes were aligned by hand before a grapheme-

phoneme prediction model was trained [Sejnowski and Rosenberg, 1987]. In later work,

the alignment step was performed in an automatic fashion using an expectation maximiza-

tion (EM) based algorithm [Dempster et al., 1977] with no (orminimal) human interaction.

These methods are based on a one-to-one alignment assumption for simplicity [Black et al.,

1998, Daelemans and Bosch, 1997, Damper et al., 2005].

8

2.1 One-to-one EM alignment

The one-to-one assumption assumes that each grapheme can bealigned to one phoneme

or the null phoneme which represents a silent sound. A general framework is presented in

Algorithm 1. The process starts with the initial probability of mapping a graphemes to a

phonemet, P (s, t) in line 1 and iteratively re-computes the probability tablebased on the

new alignments found under the currentP (s, t), in line 4 and 5, until the probability table

converges. Finally, theP (s, t) is returned to produce the alignments in the training data.

Note that while Black et al. [1998] computeP (s, t) probabilistically, Daelemans and Bosch

[1997] and Damper et al. [2005] treatP (s, t) as raw counts or scores of mapping grapheme

s to phonemet. I now explain each of these steps in detail.

Black et al. [1998] proposed (1) the hand-seeded method and (2) the epsilon scattering

method to initializeP (s, t). The hand-seeded method starts with an explicit list of which

phonemes (or multiple phonemes) each grapheme can be mappedto, and finds the best pos-

sible alignments for each word-phoneme pair in the trainingdata. The initial probability

P (s, t) is calculated based on the mapping counts. While the hand-seeded method requires

human effort to produce the allowance list, the epsilon scattering method obtains the counts

without the list. The initial probability table in this casestarts by mapping all possible align-

ments in the one-to-one fashion between graphemes and phonemes by introducing possible

null phoneme positions. For example,abode[@ b o d] has five possible positions where a

null phoneme can make an alignment. Instead of scattering null phoneme positions, Daele-

mans and Bosch [1997] proposed the shifting method to count with different scores. The

shifting is repeated at most 3 times, so that the possible counting scores are 8, 4, 2 and 1.

For example,rookie [r u k i] has three possible alignments: (1) no shiftrookie [r u k i

], (2) one right shift [r u k i] and (3) two right shifts [r u k i]. Each mapping takes

8 counts for no shift, 4 counts for one right shift and 2 for tworight shifts cases. Damper

et al. [2005] proposed a simple way to obtain the initialP (s, t) by counting appearances

between a graphemes and phonemet in the same word regardless of positions.

The next step in the algorithm is to find new alignment paths based on the current

P (s, t) (line 4). The maximum likelihood path can be found by using standard dynamic

programming. LetC(i, j) be the score entry at grapheme positioni and phoneme position

j, with initially C(0, 0) = 0. The recursive equation for dynamic programming is shown in

Equation 2.1. The alignment path can be reconstructed by back-tracking from the maximum

scoreC(I, J); whereI andJ are the numbers of graphemes and phonemes in the word,

9

Algorithm 1 One-to-one EM alignment training.
Input: word-phoneme training examples
Output: mapping probability tableP (s, t)

1: Initialize probabilityP (s, t).
2: for K iterations over the training setdo
3: for all word-phoneme pair in the training setdo
4: find alignments path based onP (s, t).
5: re-computeP (s, t) based on the new alignments found.
6: return P (s, t)

respectively.

C(i, j) = max







Ci−1,j−1 + P (si, tj)
Ci−1,j + P (si,)
Ci,j−1 + P (, tj)

(2.1)

Allowing the mapping between a null grapheme and phoneme is problematic during the

phoneme generation phase in which the null grapheme does notexist in words. To disallow

the null grapheme mapping,P (, sj) can be set to a large negative number. This prevents

the decoder from mapping a phoneme with a null grapheme as in [Black et al., 1998, Daele-

mans and Bosch, 1997]. Similarly,P (si,) can be set to a constant cost for mapping null

phonemes [Damper et al., 2005].

Finally, for each training iteration the newP (s, t) is re-computed based on the new

alignment found as in line 5. The training process stops whenP (s, t) converges.

2.1.1 Discussion on one-to-one EM alignment

Although alignments obtained from one learning method are not always identical to the

human-generated alignments or to alignments from other aligners, they are sufficient to

provide useful information to a phoneme generation model. These aligners can be trained

in an unsupervised manner with no or minimal human supervision. In most cases, they

correctly capture those silent sound cases (e.g.abode[@ b o d]). The one-to-one mapping

assumption keeps the computation simple; however, there are two problems:

1. Double graphemes: when two graphemes map to one phoneme (e.g. sh→ [S], ph

→ [f])

2. Double phonemes: when one grapheme maps to two phonemes (e.g. x→ [k s], u

→ [j u])

First, the double grapheme problem occurs when two graphemes map to one phoneme re-

sulting in a shorter phoneme string. For example, in the wordking [k I N], the graphemes

10

ng intuitively produce the phoneme [N] together. To produce one-to-one alignments, the

null phoneme has to be aligned with either the graphemen or g, neither of which is intu-

itively the correct alignment. These incorrect alignmentscan potentially cause the phoneme

prediction model to produce null phonemes for eithern or g grapheme.

Second, the double phoneme problem arises in those cases where one grapheme pro-

duces two phonemes. For example, in the wordfume[f j u m], the vowel u generates

both [j] and [u] phonemes. One possible alignment path is to add a null grapheme in

the word string, and to align the null grapheme with either [j] or [u] phoneme. Adding

a null grapheme not only results in incorrect alignments, which confuse the phoneme gen-

eration model, but also lead to another problem: where should the null grapheme be added

in the word string during generation phase, since it does notexist in the orthographic side?

Another possible solution for the double phoneme problem isto create a new phoneme

by merging phonemes [j] and [u]. This solution requires an expert to construct a new

phoneme list (e.g. the handed-seed method [Black et al., 1998]). Figure 2.2 shows an one-

to-one alignment of the example wordaccuse[@ k u z]. The alignment is possible by

merging both [j] and [u] phonemes to a new phoneme [U] and aligning the second

graphemec with a null phoneme.

Figure 2.2: One-to-one and many-to-many alignment examples for the word“accuse”.

These two fundamental problems exist in the one-to-one alignments. The one-to-one

assumption thus makes the task simple but it limits the ability to train a phoneme generation

model from the alignments.

The many-to-many alignment method was proposed for the grapheme-to-phoneme con-

version task by Jiampojamarn et al. [2007]. It relaxes the one-to-one assumption allowing

multiple graphemes to align with multiple phonemes. The method requires no handcrafted

list and learns in an unsupervised manner without pre-aligned examples.

2.2 Grapheme-to-phoneme conversion

Once the alignments are discovered in the training data, we can use them to explicitly ex-

press grapheme-to-phoneme productions. G2P can then be viewed either as a multi-class

11

classification problem, where each sub-phoneme output is drawn directly from the focused

grapheme and its context (surrounding graphemes) without considering the phoneme se-

quence output, or as a sequence prediction problem, which takes into account the grapheme

sequence input and phoneme sequence output.

2.2.1 Classification-based approaches

In classification-based approaches, each phoneme is predicted independently using a clas-

sifier such as a neural network [Sejnowski and Rosenberg, 1987], instance-based learn-

ing [Bosch and Daelemans, 1998, Daelemans and Bosch, 1997] and decision tree [Black

et al., 1998, Kienappel and Kneser, 2001, Suontausta and Tian, 2003]. These classifiers pre-

dict a phoneme for each input grapheme using the grapheme, called the“focus grapheme”,

and its context graphemes as features. The focus grapheme isthe most important feature in

the prediction, while the farther the context grapheme is, the less information it contributes

to the classifiers. With the same distance, right context graphemes are slightly more impor-

tant than left context graphemes [Daelemans and Bosch, 1997]. In general, these methods

use 3 to 5 graphemes both before and after the focus grapheme as context features, depend-

ing on languages and data sets. For English, reported in NETtalk [Sejnowski and Rosen-

berg, 1987], a performance improvement was found with increasing the context window

size from 3 to 5. These classification-based methods leverage the structure of the input, en-

coded in the features, by using context grapheme information, but they ignore the phoneme

structure in the output.

NETtalk is one of the first grapheme-to-phoneme systems, anda well-known neural net

application. The method is based on the error back-propagation neural net training. The

focus grapheme and its context graphemes are encoded as binary nodes for predicting a

phoneme output. Each input grapheme is encoded with 29 nodes: 26 nodes for the English

alphabet and 3 nodes for punctuation marks. The network consists of one hidden layer

of 80 hidden units. The output phonemes are encoded with 26 binary nodes representing

21 articulatory features (voiced, velar, stop, and so on) and 5 stress and syllable boundary

features (strong, weak, left, and so on).

Daelemans and Bosch [1997] proposed to use IG-Tree, a variation of instance-based

learning, for the grapheme-to-phoneme problem. The IG-Tree method uses information

gain to grow the decision tree that stores grapheme-phonemeexamples. The IG-Tree and

decision tree methods are different in the sense that IG-Tree uses the information gain to

evaluate features once whereas the decision tree method re-evaluates features at each grow-

12

ing tree step. While the decision tree method usually includes pruning to avoid over-fitting,

the IG-tree is constructed until all the training phoneme set ambiguity is resolved, without

pruning the tree. Interestingly, Black et al. [1998] reported that growing the decision tree

with an early stop criteria actually decreases the performance.

A similar approach to the IG-tree was proposed by Bosch and Daelemans [1998]. It

is based on memory-based learning IB1-IG. Instead of walking in the IG-tree, the method

finds the most similar training instance to predict the new testing instance. The similarity

function is based on the Euclidean distance with each feature weighted by its information

gain value.

2.2.2 Sequence-based approaches

A natural way to view grapheme-to-phoneme conversion is to consider it as a sequence

modeling or tagging task. An input wordX consists of a sequence of graphemesx1 . . . xn

and its corresponding outputY is a sequence of phonemesy1 . . . ym. The major difference

between classification-based and sequence-based approaches is that the latter considers pre-

vious phoneme decisions in order to predict the current sub-output phoneme.

Taylor [2005] describes applying a hidden Markov model (HMM) to the G2P task. The

method formulates grapheme sequences as observation states and phoneme sequences as

hidden states. The phoneme sequence output is the most probable sequence based on the

transition and emission probabilities, using the following equation; whereX is a sequence

of graphemes (input word) andY is a sequence of phonemes:

Ŷ = argmax
Y

P (X|Y)P (Y) (2.2)

The HMM framework is based on Baum-Welch training. It allowsone phoneme state

to generate up to four graphemes. This allowance in the decoder avoids introducing the

null phoneme to the problem. The approach does not require the training data to be aligned

separately but optimizes both alignment process in the decoder and phoneme generation pa-

rameters within one HMM framework. However, the performance achieved by the HMM

framework is far worse than classification-based approaches, even with some ad-hoc pre-

processing fixes, which tune the framework to correct errors. These inferior results are

mainly caused by the fact that the HMM framework lacks the capability of using the

grapheme context information directly. These features have been shown to be important

in classification-based approaches.

13

Joint n-gram models [Bisani and Ney, 2002, 2008, Chen, 2003]achieve good G2P re-

sults by training the models on grapheme-phoneme substringpairs, so that sequence infor-

mation in both the grapheme and phoneme sides directly contribute to the models. Bisani

and Ney [2002] incrementally create grapheme-phoneme chunks of sizes ranging from 1

to 6. They reported an optimal size of 2 in both graphemes and phonemes for English

and German data sets. Given a wordX and its corresponding phonemeY , the method

then estimates the joint probabilityP (X,Y) from grapheme-phoneme segmentations called

“chunks” c1 . . . cL as in Equations 2.3 and 2.4; whereS(x, y) is the set of all possible joint

segmentations of wordX and phoneme sequenceY . The maximum likelihood training is

based on the EM algorithm. The most likely phoneme sequenceY t given a new test word

Xt can be found byargmaxY t P (Xt, Y t).

P (X,Y) =
∑

C∈S(x,y)

p(C = c1, . . . cL) (2.3)

P (C = c1 . . . cL) =

L
∏

i=1

P (ci|c1 . . . ci−1) (2.4)

Pronunciation by Analogy (PbA) [Damper and Eastmond, 1997,Marchand and Damper,

2000] also considers substring graphemes and phonemes for the G2P task. The method

produces a phoneme sequence output for an input wordX by finding the least number of

segmented grapheme sequences in the training examples thatcan form the wordX with

the highest score of the phoneme sequence path. The grapheme-phoneme chunks are based

on the longest common subsequence between each training example and a new word. It

requires alignments to be drawn in the training data which can be trained by using the one-

to-one aligners described in Section 2.1. To illustrate, consider Figure 2.3; each arc repre-

sents the phoneme substring corresponding to the input grapheme substring. The number

on the arc represents the number of occurrences of the grapheme-phoneme substrings in

the training example. For example, the substringlong [l a n J] appears twice, whilelon

[l a n] and lon [l o n] appear twice and once, respectively, in the training examples. PbA

is a lazy learning method that stores all training examples and creates the path during the

transcription step. It takes the shortest path as the output. Moving from one node to another

node in the graph is counted as a path with length 1. If there are more than one candidates

with the same length (e.g. there are 6 candidates with length3 in the example), PbA selects

the path which has the highest number of occurrences summed along the arcs [Damper and

Eastmond, 1997] or uses 5 scoring strategies to rank the candidates [Marchand and Damper,

14

Figure 2.3: Example pronunciation for the word longevity showing only the arcs contribut-
ing to the phoneme sequence output. The figure is taken directly from [Marchand and
Damper, 2000].

2000].

The constraint satisfaction inference (CSInf) approach [Bosch and Canisius, 2006] im-

proves the performance of the classification-based approach [Bosch and Daelemans, 1998]

by predicting, for each grapheme, a trigram of phonemes consisting of the previous, cur-

rent, and next phonemes. The core learning technique is based on instance-based learning; it

takes the same grapheme context features as in the standard classification-based approach.

By predicting a trigram output, CSInf increases the number of classes from the original

problem by polynomial order 3. The final output is based on theoverlapping output class

information by taking the output sequence that satisfies themost unigram, bigram, and tri-

gram agreement constraints. The overlapping predictions improve G2P performance mainly

by repairing imperfect one-to-one alignments.

2.3 Learning for structured outputs

Grapheme-to-phoneme learning is closely related to structured learning techniques in-

cluding hidden Markov models (HMMs) [Rabiner, 1989], averaged perceptron algorithm

[Collins, 2002], Support Vector Machines for structured outputs (SVMstruct) [Tsochan-

taridis et al., 2004], and conditional random fields (CRFs) [Lafferty et al., 2001]. As re-

ported in [Taylor, 2005] and discussed in Section 2.2.2, HMMs are a poor fit to the G2P

task because they lack the capability to utilize contextualinformation in the input grapheme

15

sequences. The HMM model assumes that each phoneme sub-output yi only depends on

its observationxi and its preceding phonemesyi−1 . . . yi−M , whereM is the Markov order

assumption. The model uses no direct information of contextual graphemesxi−C . . . xi+C ,

whereC is an allowing window context size.

Collins [2002] proposed a discriminative averaged perceptron algorithm that extends

the generative HMMs. As it is discriminative, the averaged perceptron model works with a

notion of “score” instead of probability as in HMMs. The phoneme sequence output is the

maximum linear combination of scores for each sub-outputyi given the grapheme sequence

input x shown in Equation 2.5; wherew represents feature weight parameters,Φ(x, yi) is

the feature vector indicating evidence found betweenx andyi, andI is the length of the

input sequence. TheGEN(x) function indicates all possible output sequencesy that can be

generated by the input stringx. If the model assumes the one-to-one constraint, theargmax

operation is the Viterbi algorithm. Otherwise, a segmentation process is required over the

input sequence to createI input units. Alternatively, a phrase-based decoder [Zens and Ney,

2004] can be applied instead of the Viterbi decoder to find themost likely grapheme units

as well as the output sequence.

Ŷ = arg max
y=y1...I∈GEN(x)

I
∑

i=1

w · Φ(x, yi) (2.5)

Since the model is based on the summed score, it provides the ability to observe evi-

dence more freely with no limitation on transition and emission probabilities as in HMMs.

In fact, the transitions and emissions can be a subset ofΦ(x, yi) expressing the focus

graphemexi and preceding phonemesyi−1 . . . yi−M . Unlike HMMs, Φ(x, yi) typically

uses indicator values that represent present or absent evidence. The weight vectorw as-

signs how much each component ofΦ contributes to the total score. The training process to

find the optimalw is an online learning method that iterates through the training data. For

each example, the model finds the most likely outputŷ based on the currentw. The weight

vector is then updated such that it prefers the correcty over the incorrect̂y, as shown in

Equation 2.6.

w ← w +Φ(x, y)− Φ(x, ŷ) (2.6)

The model trains untilw converges. The average of all weight vectors that are seen dur-

ing training is used in the final model instead of instead of the final weight vector, providing

a better generalized model [Freund and Schapire, 1999].

16

Support Vector Machines for structured outputs2 (SVMstruct) [Tsochantaridis et al.,

2004] find the optimal weight vectorw by formulating the problem as the following quadratic

program:

min
w,ξ

1

2
‖ w ‖ 2 +

C

n

n
∑

k=1

ξk, s.t. ∀k, ξk ≥ 0 (2.7a)

∀k,∀y ∈ Y − yk : w · [Φ(xk, yk)− Φ(xk, y)] ≥ 1− ξk (2.7b)

The objective function in Equation 2.7a ensures a unique solution where the norm of

the weight vector is minimized. The summation of slack variablesξk allows training errors,

called the “soft-margin SVM”;C controls the trade-off between training error minimization

and margin maximization. Equation 2.7b is a set of constraints to ensure that the score of

the correct output sequence for thekth training instance,yk, is larger than other incorrect

sequencesy by at least1−ξk. The right hand side of the inequality is based on the zero-one

loss function; the loss function describes how wrongly an incorrect output sequence to the

correct one (e.g. Hamming distance). To accompany the structured outputs, one can use an

arbitrary loss function∆(yk, y) instead of the zero-one loss function. The loss function can

be applied to re-scale either the slack variable [Tsochantaridis et al., 2004] by replacing the

right hand side of the equation with1 − ξk
∆(yk,y)

or the margin [Taskar et al., 2004] using

∆(yk, y)− ξk.

Equation 2.7 cannot be solved directly due to the set of constraints. Enumerating all

possible output sequencesy for each training example is infeasible with an extremely large

set of constraints. An iterative training process [Tsochantaridis et al., 2004] is applied to

find a small set of constraints that is sufficiently needed forthe optimization problem. The

algorithm iterates over the training examples until the setof constraints converges.

y′k = arg max
ŷk∈Y−yk

w · [Φ(xk, ŷk)− Φ(xk, yk)] + ∆(yk, ŷk) (2.8)

At each iteration, it finds the outputy′k that has the most violated constraint as shown in

Equation 2.8 (margin re-scaling) and it addsy′k to the working set only if the value in the

argmax is larger than the maximum value in the current working set. Then,w is optimized

using the current working set of constraints. Note that at each iteration, there will be only

one constraint added into the working set. Tsochantaridis et al. [2004] showed that the

proposed algorithm finishes within a polynomial number of iterations and finds a weight

vectorw that satisfies the constraints in Equation 2.7.

2http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html

17

Conditional random fields (CRFs) [Lafferty et al., 2001] area specific example of log-

linear models that find the optimal weight parameterŵ such that it maximizes the condi-

tional log likelihood log P (y|x; ŵ). The optimal weightŵ is found using the following

equation:

ŵ = argmax
w

∑

x,y

[

log

(

exp(w · Φ(x, y))
∑

y′∈Y exp(w · Φ(x, y′))

)]

(2.9)

Intuitively, the model ensures that the optimal weight parameterŵ provides a greater

conditional probability for the true output sequencey than other incorrect sequencesy′ for

a given input instancex. Solving theargmax in Equation 2.9 is usually performed via

numerical optimization. The simplest approach to this optimization problem is gradient as-

cent since the equation is strictly concave: any local optimum is guarantee to be the global

optimum. In practice, this optimization procedure requires many iterations before it con-

verges [Sutton and McCallum, 2006]. Faster optimization methods, such as BFGS [Bert-

sekas, 1999] and L-BFGS [Byrd et al., 1994], are generally used instead. Even with an

efficient optimization, training a CRF model can be expensive due to the marginal proba-

bility requirement for each training example per each gradient computation.

In this thesis, I propose an approach for G2P generation model that combines the ben-

efits of the hidden Markov model and classification techniques. Classification-based tech-

niques for G2P efficiently incorporate wide grapheme context information in order to pre-

dict phonemes, while sequence-based approaches take phoneme sequence information into

account when they predict each sub-output phoneme. The proposed method here uses a

classifier to produce phonemes with classifier confidence values. The confidence values are

normalized into values between 0 and 1, then an HMM-like model takes these confidence

values as emission probabilities instead of individual grapheme observations.

Later, I propose a sequence-based G2P system that naturallyincorporates both wide

grapheme context and output sequence information in the model. The proposed method

stands between the averaged perceptron model of Collins [2002] and more expensive mod-

els such as SVMstruct and CRFs in term of computational cost. An online large margin-

based update method [Crammer and Singer, 2003] is applied instead of using the simple

perceptron rules. Unlike SVMstruct, the proposed method requires only a small fixed num-

ber of constraints to optimize the weight parameterw instead of a number that is polynomial

in training size. Unlike CRFs, it requires only the computation of the posterior function

without requiring the marginal probability for each optimization step.

18

Chapter 3

Grapheme-to-phoneme alignment

In this chapter, I present and evaluate approaches to grapheme-to-phoneme alignments. As

discussed in Section 2.1, I emphasized the underlying problems of the traditional one-to-

one grapheme-phoneme alignments. The one-to-one assumption creates two fundamental

problems: (1) the double grapheme problem and (2) the doublephoneme problem. A di-

rect solution to these fundamental problems is to relax the one-to-one assumption to al-

low many-to-many alignments. A novel approach for many-to-many alignment, “m2m-

aligner”, is presented in Section 3.1. This research is joint work with Grzegorz Kon-

drak and Tarek Sheif, published in [Jiampojamarn et al., 2007]. An implementation of

m2m-aligner, written in C++, is publicly available online with source code at,http:

//code.google.com/p/m2m-aligner/, for research, commercial and other pur-

poses.

Most previous alignment methods, including traditional one-to-one alignment meth-

ods and the proposed m2m-aligner, are based on the Expectation Maximization (EM) al-

gorithm. To advance the grapheme-phoneme alignment technology, alternative methods

are presented in Sections 3.2 and 3.3. This is joint work withGrzegorz Kondrak pub-

lished, in [Jiampojamarn and Kondrak, 2010]. First, in Section 3.2, the phonetic alignment

(ALINE) approach is described. The key idea of this approachis to generate grapheme-

phoneme alignments using their phonetic similarity relationship via the International Pho-

netic Alphabet (IPA). Originally, the ALINE algorithm was proposed by Kondrak [2000].

It aims to create an alignment between two strings of phonemes. Next, the integer linear

programming alignment approach is described in Section 3.3.1. It is inspired by the min-

imal model approach of Ravi and Knight [2009]. The idea is to find the least complex

optimal set of possible grapheme-phoneme mappings that describe the word-phoneme ex-

amples in the training data set, and to restrict the EM training to draw from the optimal

19

Algorithm 2 Many-to-many EM alignment training.
Input: word-phoneme training examples,maxS,maxT

Output: δ

1: Initialize mapping probability tableδ
2: for K iterations over the training setdo
3: for all word-phoneme pair(sI1, t

J
1) in the training setdo

4: γ ← Expectation-many2many(sI1 , t
J
1 ,maxS,maxT, γ, δ)

5: δ ←Maximization-Step(γ)
6: γ ← 0
7: return γ

set. This approach prevents the EM training model from introducing rare and unnecessary

grapheme-phoneme mappings. Finally, the alignment-by-aggregation approach presented

in Section 3.3.2 limits the complexity of the alignment model in its search; it post-processes

n-best grapheme-phoneme alignments in order to create complete alignment coverage.

The proposed grapheme-phoneme alignment methods are evaluated and presented in

Section 3.4. Intrinsic evaluation is performed by comparing the generated alignments to a

manually created gold-standard set. The extrinsic evaluation uses two different generation

techniques to perform grapheme-to-phoneme conversion on several different data sets.

3.1 Many-to-many alignment

The many-to-many alignment algorithm (m2m-aligner) is based on the Many-to-Many

Extension to the forward-backward algorithm proposed by Sherif [2007]. The algorithm

is an extension of the forward-backward one-to-one stochastic transducer of Ristad and

Yianilos [1998] which extends the original algorithm by allowing multiple graphemes to

map to multiple phonemes.

The training process is based on the Expectation-Maximization (EM) algorithm pre-

sented in Algorithm 2. The training process starts with an initial mapping probability table

δ which can be uniformly or randomly distributed, or else based on some distribution de-

rived from a seed set. In the expectation step (Algorithm 2, line 4), expected counts of

possible grapheme-phoneme mappings,γ, are collected from word-phoneme pairs(sI1, t
J
1)

in the training set based on the current mapping probabilitytableδ. The variablesmaxS

andmaxT are parameters that control the maximum sizes of grapheme-phoneme substring

mappings; they can be set by using development sets. The maximization step (Algorithm 2,

line 5) simply re-normalizes the expected counts to create aprobability distribution. The

20

normalization can be perform over the whole table to create ajoint distribution or per

grapheme substring to create a conditional distribution. The choice of normalization can

be set by using development sets. In general, for the grapheme-to-phoneme end task in

the discriminative training system described in Chapter 4,the conditional distribution pro-

vides better word accuracy performance than the joint distribution. These results can be

explained as the EM process with the conditional distribution creates alignments that max-

imize the conditional probabilityP (t|s) of the data. These data are more suitable than the

joint distribution for the discriminative systems that arefinding outputs directly from the

conditional probability. In the maximization step,δ probability table can be re-estimated

from the expected counts,γ as shown in Equation 3.1.

δ(s, t) =
γ(s, t)

∑

t′ γ(s, t
′)

(3.1)

The Expectation-many2manyalgorithm is presented in Algorithm 3. It first calls the

two functions,Forward-m2mandBackward-m2m, to fill the α andβ tables. The forward

probability,α, is estimated by summing the probabilities from left to right while the back-

ward probabilityβ is estimated in the opposite direction. TheForward-m2malgorithm is

similar to lines 5 to 10 of Algorithm 3, except that it uses Equation 3.2 in line 7 and Equa-

tion 3.3 in line 10 of Algorithm 3. Similarly, theBackward-m2malgorithm is a symmetrical

process.

αi,j += γ(sii−i′+1,)αi−i′,j (3.2)

αi,j += γ(sii−i′+1, t
j
j−j′+1)αi−i′,j−j′ (3.3)

After collecting the forward and backward probabilities, the expected counts are estimated

by summing all possible grapheme-phoneme mappings in the sequence pair (sI1, t
J
1). The

expected count collected at positioni andj is the sum of all paths that generates the se-

quence pair and go through(i, j), divided by the sum of all paths that generate the entire

sequence pairαI+1,J+1.

The EM process iteratively trains over the training set until the probabilities converge.

The final many-to-many alignments are produced using the Viterbi algorithm. It finds the

most likely path based on the learned probabilities as in Equation 3.4.

Q(0, 0) = 1 (3.4a)

Q(i, j) = max
1≤i′≤maxS,
1≤j′≤maxT

{

δ(sii−i′+1,)αi−i′,j

δ(sti−i′+1, t
j
j−j′+1)αi−i′,j−j′

(3.4b)

21

Algorithm 3 Expectation many2many algorithm.

Input: sI1, t
J
1 ,maxS,maxT, γ, δ

Output: γ

1: α← Forward-m2m(sI1, t
J
1 ,maxS,maxT)

2: β ← Backward-m2m(sI1, t
J
1 ,maxS,maxT)

3: if αI+1,J+1 = 0 then
4: return γ

5: for i = 1 . . . I + 1 , j = 1 . . . J + 1 do
6: for all i′ = 1 . . . maxS such that i− i′ ≥ 0 do

7: γ(sii−i′+1,) +=
αi−i′ ,jδ(s

i
i−i′+1

,)βi,j

αI+1,J+1

8: for all i′ = 1 . . . maxS such that i− i′ ≥ 0 do
9: for all j′ = 1 . . . maxT such that j − j′ ≥ 0 do

10: γ(sii−i′+1, t
j
j−j′+1) +=

αi−i′,j−j′δ(s
i
i−i′+1

,t
j

j−j′+1
)βi,j

αI+1,J+1

11: return γ

For grapheme-phoneme conversion tasks, themaxS andmaxT are usually set to 2;

therefore, the aligner constructs 1-0, 1-1, 1-2, 2-0, and 2-1 grapheme-phoneme alignments.

The zero-size phoneme indicates the null phoneme and 2-2 alignments are decomposed into

two 1-1 alignments. Algorithm 3, line 7 allows 1-0 and 2-0 alignments while the zero-size-

of-grapheme case is excluded as an impossible mapping.

The many-to-many alignments overcome the limitation of theone-to-one assumption by

relaxing the constraint of grapheme-phoneme mapping sizes. The alignments create more

intuitive information, leading to better representation of training data with hidden variables.

For example, the wordphoenix[finIks] is aligned as:

ph oe n i x
| | | | |
f i n I ks

The substring graphemeph is an example of the double grapheme problem, while the

graphemex is an example of the double phoneme problem (Section 2.1.1).The many-

to-many alignments capture good evidence of these substring mappings and resolve such

problems that exist in one-to-one alignments.

In order to incorporate the many-to-many alignments into a generation model, we re-

quire an algorithm that considers various segmentations ofthe grapheme input string, in-

stead of the simple tokenization based on each grapheme as a separate unit. One possible

solution is to apply a grapheme segmentation model to pre-segment words, as described

in [Jiampojamarn et al., 2007]. This type of solution leads to propagation of errors due to

the nature of a pipeline process. Another possible solutionis to incorporate a phrase-based

decoder (e.g. Zens and Ney [2004]) into the generation model, as described in [Jiampo-

22

jamarn et al., 2008]. The approach simultaneously searchesfor the most likely phonemes

and grapheme segmentations avoiding the propagation of errors as in the pipeline process.

These two solutions are described in depth in Chapter 4.

3.2 Phonetic alignment

The phonetic alignment approach was proposed in [Jiampojamarn and Kondrak, 2010].

This approach takes a different view than the EM-based approaches to the grapheme-

phoneme alignment problem. Instead of aligning graphemes and phonemes as abstract

symbols, the alignments are created based on the phonetic similarity between phonemes

using the ALINE algorithm which was introduced to cognate identification problem [Kon-

drak, 2000]. ALINE was originally designed for aligning cognates, but it is sufficiently

general to be used for aligning any strings of phonemes. The key idea of using this ap-

proach to grapheme-to-phoneme alignment is to represent graphemes with the phonemes

that they are likely to represent. Then, the actual phonemeson the phoneme side can be

aligned with the phoneme representation on the grapheme side using pure phonetic similar-

ity.

Of course, the problem of finding the most likely phoneme for each grapheme in the

first place is highly complex. However, in practice these mappings are not required to be

precise. In fact, a simple method of treating every graphemeas it is used as a symbol

in the International Phonetic Alphabet (IPA) [International Phonetic Association, 1999] is

sufficient to approximate these mappings. The IPA is based onthe Latin alphabet, but

it also includes a number of other symbols. Intuitively, the26 IPA grapheme symbols

tend to correspond to the usual phonetic values that the graphemes represent in the Latin

script. For languages whose orthographic systems are not based on the Latin script, a

simple conversion can be performed to replace every grapheme with the IPA symbol that is

phonetically closest to it [Jiampojamarn et al., 2009, 2010b].

Figure 3.1 illustrates the ALINE alignment search algorithm for the Latin word“ken-

tum” and the Greek word“hekaton”. Each link has an associated score indicating the

similarity between the two phonemes. These scores are computed based on 12 phonetic

features used in ALINE. The search algorithm is based on a dynamic programming search

to find the maximum of the summed link scores while maintaining monotonic links from

left to right. ALINE was originally designed to create phoneme-phoneme alignments and

23

Figure 3.1: ALINE alignment example.

it does not prevent null graphemes in the source side. In order to avoid this problem in

the grapheme-phoneme alignments, the following steps are taken as a post-processing al-

gorithm. First, the algorithm attempts to remove 0-1 links by merging them with adjacent

1-0 links. If this is not possible, the algorithm then attempts to replace a pair of 0-1 and 1-1

links with a single 1-2 link where a list of allowable 1-2 links are provided as additional

input. Lastly, the algorithm removes any instance that cannot be aligned. In practice, these

removed instances are often annotation errors and compriseless than 1% of the entire data

set.

The phonetic alignment approach thus generates 1-0, 1-1, and 1-2 links. Although the

list of 1-2 links must be provided by an expert beforehand, the size of the provided list is

generally small, ranging from 1 for Spanish and German to 17 for English. The solution

to the double phoneme problem in this approach is more robustthan the merging solution

discussed in Section 2.1.1 since it only merges two phonemeswhen necessary.

3.3 Constraint-based alignment

The phonetic alignment approach incorporates phonetic features that prevent implausi-

ble links such as aligning vowels with consonants. A set of constraints is thus implicit in

the phonetic similarity function. However, as mentioned, an expert is required to provide

a list of possible 1-2 links in order to cover other possible links, such as the “j [ju]” and

“x [ks]” cases in English. For EM-based approaches, Black etal. [1998] reported that con-

24

structing lists of possible phonemes for each grapheme leads to better alignment quality,

resulting in an improvement in G2P conversion accuracy. Theseed sets used in both the

phonetic alignment and the EM-based approaches can be constructed either based purely

on linguistic knowledge or in an interactive manner. These provided seed sets are in fact

very important for the one-to-one alignment-based approaches because they have no ability

to discover non one-to-one alignments. The many-to-many alignment approach relies on

the EM algorithm to cover these links creating complex alignments.

Integer linear programming alignment and alignment by aggregation approaches were

proposed in [Jiampojamarn and Kondrak, 2010] to improve theEM-based alignment ap-

proaches. I will describe the integer linear programming alignment approach in Section 3.3.1

and the alignment by aggregation approach in Section 3.3.2.

3.3.1 Integer linear programming alignment

The integer linear programming alignment approach appliesan integer linear program-

ming (ILP) framework to discover an optimal set of possible grapheme-phoneme map-

pings without a human expert. The ILP formulation aims at identifying the smallest set of

grapheme-phoneme mappings that is sufficient to align all instances in the data set. The op-

timal set from ILP helps EM to focus on the small and sufficientset of mappings instead of

automatically discovering rare mappings and assigning flatdistributions [Ravi and Knight,

2009] over the grapheme-phoneme mapping probabilities. The ILP formulation employs

the following constraints during its search for the optimalmapping set:

• Monotonic alignment: grapheme-phoneme mappings are created from left to right

with no crossing links.

• No null grapheme: it is impossible to create a mapping of a null grapheme to a

phoneme.

• Phoneme coverage: it is required that a phoneme should be linked by at least one

grapheme.

• Grapheme coverage: it is required that a grapheme should be linked to at least one

phoneme or a null phoneme.

• Mapping constraint: only 1-0, 1-1 and 1-2 links are allowed in the alignments.

25

Figure 3.2: A network of possible links.

For convenience, letG(s, t) andG(s, t1t2) be the global lists of 1-1 and 1-2 grapheme-

phoneme mappings being minimized and let variablesX,Y, andZ be local variables that

correspond to 1-0, 1-1 and 1-2 grapheme-phoneme mappings. Both global and local vari-

ables hold binary values. The ILP formulation is stated in Equation 3.5, where 1-1 and 1-2

links are counted in the global list while there is no cost to introduce 1-0 links to allow any

grapheme mapping to a null phoneme.

minimize:
∑

s,t

G(s, t) +G(s, t1t2) (3.5a)

∀i,j,kY (i, j, k) ≤ G(si,k, tj,k) (3.5b)

∀i,j,kZ(i, j, k) ≤ G(si,k, tj,ktj+1,k) (3.5c)

∀i,j,k
X(i, j, k) + Y (i, j, k) + Z(i, j, k) =
X(i − 1, j − 1, k) + Y (i− 1, j − 1, k) + Z(i− 1, j − 2, k)

(3.5d)

In the lexicon entryk, si,k is a grapheme at positioni and tj,k is a phoneme at position

j. Inequalities 3.5b and 3.5c are two constraints that ensureany proposed links in local

variables are counted in the global list. Any active link in each instance is included in the

global list; however, active pairs in the global list do not necessarily activate local vari-

ables. Active and inactive links receive value 1 and 0 respectively so that the objective in

expression 3.5a is to obtain the smallest number of active grapheme-phoneme mapping in

the global variables. The constraint in Equation 3.5d forces local variable links to receive a

value of 1 from left to right by ensuring the sum of the links entering each node to be equal

to the sum of the links leaving each node. Figure 3.2 shows a network of possible links for

the lexicon entryk = 47, the word “wriggle [rIg@L]”. There are three 1-0 links (level),

three 1-1 links (diagonal), and one 1-2 link (steep) active links in the network. Their local

variables areX(1, 0, 47), Y (2, 1, 47), Y (3, 2, 47), Y (4, 3, 47),X(5, 3, 47), Z(6, 4, 47), and

X(7, 5, 47) corresponding to the global variables:G(r, r), G(i, I), G(g, g) andG(l,@L).

In practice, allowing a full search of possible grapheme-phoneme mappings creates

26

complex ILP problems and gives too much freedom to the model,leading to inferior results.

To reduce the number of possible grapheme-phoneme mappings, the system first trains on

a subset of training data that includes only the lexicon entries with more phonemes than

graphemes using the full set of variables. This model discovers a small number of possible

1-2 mappings. Then, the final ILP model limits the 1-2 links tothe set found in the first

pass. Finally, the model is trained on the full set of the training data to achieve the optimal

set of grapheme-phoneme mappings.

The set of allowable grapheme-phoneme mappings determinedby the ILP solver can

also be used as an input to the EM alignment algorithm. After inducing the minimal set

of grapheme-phoneme mappings, the EM model is constrained to use only those mappings

with the exclusion of all others. Initially, the probabilities of the minimal mappings are set

with a uniform distribution. The other mappings are forced to have zero probability. The

EM training process works in a similar fashion to the many-to-many alignment algorithm

presented in Section 3.1, except that the grapheme size is limited to be exactly one, and any

grapheme-phoneme mapping that is not in the minimal set is forced to receive zero count

during the expectation step. The Viterbi decoder performs theargmax operation to retrieve

the best alignments after the parameters converge.

3.3.2 Alignment by aggregation

The alignment by aggregation approach also constrains the grapheme-phoneme map-

ping possibilities used by its search model. The key idea is to train a one-to-many alignment

model using EM which is less complex that the many-to-many alignment one to avoid rare

mappings. Later, the trained model generatesn-best alignments together with their align-

ment probabilities. The final alignment for each instance iscreated by aggregation. The

aggregation process considers only the generated alignments that have a ratio between their

probability values and the probability of the best alignment higher than a certain threshold.

The many-to-many aligner in Section 3.1 has the ability to create precise links involving

more than one grapheme, such asph:f. However, it also tends to create non-intuitive links

such asse:z for the wordphrase[f r e z], wheree is clearly a case of a “silent” grapheme.

I propose an alternative EM-based alignment method that instead utilizes a list of different

high-quality one-to-manyalignments created with the algorithm described in Section3.1

and aggregates 1-M links into M-M links in cases when there isa disagreement between

alignments within the list. For example, if the list contains the two alignments shown in

27

Figure 3.3, the algorithm creates a single many-to-many alignment by merging the first two

1-1 links into a singleph:f link. However the two rightmost links arenot merged because

there is no disagreement between the two initial alignments. As a result, the aggregated

alignment approach createss:z ande: links which retain the generalities of alignments

more than creating a singlese:z link. That is required, ifse:z is used, other example words

to learn useful productions ofs:z ande: .

p h r a s e p h r a s e
| | | | | | | | | | | |
f _ r e z _ _ f r e z _

Figure 3.3: Alignment examples of“phrase” .

In order to generate the list of best alignments, instead of using a standard Viterbi decod-

ing algorithm, a modified one shown in Algorithm 4 is used to generaten-best alignments.

The algorithm maintainsn-best scores for each stageQi,j during the forward pass by ap-

pending scores to an array instead of keeping only the maximum score, as shown in lines 6

and 9. Line 7 is the relaxation part to introduce a possible mapping between graphemesi

and a substring of phonemest. ThemaxY variable is the maximum size of the substring

which controls the search space of outputt. The finaln-best alignments can be obtained

from the arrayQI+1,J+1.

The aggregation process only considers those alignments that have a ratio between their

probability and the probability of the best alignment larger than a certain thresholdR. The

closer this ratio parameter value is to 1, the higher the ambiguity among the alternative

alignments. An optimal ratio parameter is found by using a development set. In general,

when this value is set to 0.8, then-best list can be as small as the size of 10 best alignments

to guarantee it includes all alignments needed in the aggregation process.

3.4 Evaluation

There are two possible evaluation methods for assessing grapheme-to-phoneme alignment

performance. The first one is to directly evaluate alignmentquality by comparing gener-

ated alignments to the gold-standard alignments annotatedby experts. The second is to

evaluate via the G2P performance by applying the generated alignments to a standard G2P

system. For the first method, the gold-standard alignments were constructed from the core

vocabulary of the Combilex data set [Richmond et al., 2009].Combilex is a high-quality

pronunciation lexicon with an explicit manual alignment byexperts. The evaluated set con-

28

Algorithm 4 n-best alignments.

Input: word-phoneme string:sI1, t
J
1 and mapping probabilityδ

Output: n-best results ofQI+1,J+1

1: Initialize Q = ∅
2: for i = 1..I + 1 do
3: K = ∅
4: for j = 1..J + 1 do
5: for q ∈ Qi−1,j do
6: appendq · δ(si,) to K

7: for j′ = 1...maxY st j − j′ ≥ 0 do
8: for q ∈ Qi−1,j−j′ do
9: appendq · δ(si, t[j − j′ + 1, j]) to K

10: sortK
11: Qi,j = K[1 : N]
12: return QI+1,J+1

tains 18,145 word-phoneme pairs whose alignments contain 550 mappings, including some

complex 4-1 and 2-3 types.

Each alignment approach creates alignments from unalignedword-phoneme pairs in an

unsupervised fashion. The alignment quality is reported interms of precision, recall and F1

score (the harmonic mean of precision and recall). Since thegold standard contains many

M-M links, any alignment method that limits the number of graphemes in a link to one

cannot obtain recall higher than 90.02%. However, it is still theoretically possible to obtain

100% precision if all 1-1 links are consistent with the M-M links in the gold standard. The

F1 score corresponding to perfect precision and upper-bound recall is 94.75%.

It is also useful to compute the alignment entropy which was proposed by Pervouchine

et al. [2009] to evaluate the quality of alignments when the gold-standard alignments are

not available. The entropy indicates the uncertainty of a mapping between graphemes and

phonemet, using a generated corpus alignment. The formula is:

H = −
∑

s,t

P (s|t) log P (s|t) (3.6)

The second evaluation method is to evaluate alignments via grapheme-to-phoneme con-

version performance. A standard grapheme-to-phoneme conversion system is trained us-

ing the different alignments. The difference in grapheme-to-phoneme conversion perfor-

mance from different models is therefore directly due to thecontribution of the different

alignments. In our work, we use two different grapheme-to-phoneme conversion systems

as the standard systems trained with the different alignments. The first G2P system is a

29

Aligner Precision Recall F1 score Entropy G2P 1-1 G2P M-M
BaseEM 96.54 82.84 89.17 0.794 50.00 65.38
ALINE 99.90 89.54 94.44 0.672 54.85 68.74
1-M-EM 99.04 89.15 93.84 0.636 53.91 69.13
IP-align 98.30 88.49 93.14 0.706 52.66 68.25
IP-EM 99.31 89.40 94.09 0.651 53.86 68.91

M-M-EM 96.54 97.13 96.83 0.655 — 68.52
EM-Aggr 96.67 93.39 95.00 0.635 — 69.35
SeedMap 97.88 97.44 97.66 0.634 — 68.69
Oracle 100.0 100.0 100.0 0.640 — 69.35

Table 3.1: Alignment quality, entropy, and G2P conversion accuracy on the Combilex data
set.

classification-based learning system employing TiMBL [Daelemans et al., 2004], which

trains the phoneme generation model using either 1-1 or 1-M alignments. The second sys-

tem is the state-of-the-art online discriminative training system for grapheme-to-phoneme

conversion [Jiampojamarn et al., 2008], which accepts both1-1 and M-M types of align-

ments. The online discriminative training approach has shown superior results compared

to the jointn-gram [Demberg et al., 2007], constraint satisfaction inference [Bosch and

Canisius, 2006], Pronunciation-by-Analogy [Marchand andDamper, 2006], and decision

tree [Black et al., 1998] approaches in the grapheme-to-phoneme conversion task on several

data sets [Jiampojamarn et al., 2008]. As for training 1-1 and M-M alignments, the only

difference between these alignment types is in the search component. It uses a standard

Viterbi algorithm for the 1-1 case, and a phrasal decoder [Zens and Ney, 2004] for the M-M

case.

The G2P performance is reported in terms of word accuracy, which rewards only com-

pletely correct phoneme outputs given test words. For Combilex, the data is randomly split

into 90% for training, and 10% for testing. For all experiments, 5% of training data are held

out as development data to determine when the online processshould stop as well as to op-

timize other parameters in the system. To directly compare the results to the jointn-gram

system of Bisani and Ney [2008], the exact data split sets were obtained for English Celex,

CMUdict, NETTalk, OALD, and French Brulex. The training sizes of these data sets range

from 19k to 106k words.

Table 3.1 includes the results for alignment quality (precision, recall and F1 score) di-

rectly evaluated on the gold-standard alignments, as well as alignment entropy and G2P

word accuracy, all on the Combilex data set. The baselineBaseEMis an implementation

of the one-to-one alignment approach of Black et al. [1998] without a hand-built seed list.

30

ALINE is the phonetic method described in Section 3.2.1-M-EM is equivalent toM-M-

EM but with the restriction that each link contains exactly onegrapheme.M-M-EM is the

m2m-aligner approach described in Section 3.1.IP-align is the integer linear programming

alignment approach described in Section 3.3.1 without EM training. IP-EM is the ILP

alignment approach with EM training.SeedMapis a hand-seeded alignment method based

on a set of 377 grapheme-phoneme mappings [Jiampojamarn andKondrak, 2010]Oracle

is the gold-standard alignments annotated by experts in theCombilex data set.

Overall, the M-M models obtain lower precision but higher recall and F1 score than the

1-1 models, which is to be expected as the gold standard is defined in terms of M-M links.

ALINE produces the most accurate alignments among the 1-1 methods; its performance

is very close to the theoretical upper bounds. Its precisionis particularly impressive: on

average, only one link in a thousand is not consistent with the gold standard. In terms of

word accuracy, 98.97% of words have no incorrect links. Out of 18,145 words, only 112

words contain incorrect links, and a further 75 words could not be aligned. Among the

1-1 methods,ALINE is followed byIP-EM, 1-M-EM, IP-align, andBaseEM, in that order.

Among the M-M methods, EM-Aggr has slightly better precision than M-M-EM, but its

recall is much worse. This is probably caused by the aggregation strategy causing EM-

Aggr to “lose” a significant number of correct links. In general, the entropy measure does

not mirror the quality of the alignment.

The two rightmost columns correspond to the two test G2P systems. Although better

alignment quality does not always translate into better G2Paccuracy, there is nevertheless

a strong correlation between the two, especially for the weaker phoneme generation system

(G2P 1-1). Interestingly,EM-Aggrmatches the G2P accuracy obtained with the gold stan-

dard alignments. However, there is no reason to believe thatthe gold standard alignments

are optimal for the G2P generation task, so that result should not be considered an upper

bound but the best possible alignments obtained by human experts.

Figure 3.4 illustrates the correlation between F1 score and G2P word accuracy perfor-

mance in the online discriminative training system. In general, better alignment quality (i.e.

F1 score) leads to better G2P word accuracy. The exception is the peak in the middle of the

graph. It is interesting to note that these middle pack points which include1-M-EM, IP-

EM, andALINEare purely 1-M models, whileEM-Aggr is a M-M model that is constructed

from the 1-M model. It is clear in the figure that the 1-1 model (BaseEM) achieves the low-

est performance in terms of both alignment quality and G2P word accuracy. Relaxing the

1-1 constraint in the alignment model leads to statistically significant improvement.

31

Figure 3.4: F1 score versus G2P word accuracy performance.

Aligner Celex-En CMUDict NETtalk OALD Brulex
BaseEM 75.35 60.03 54.80 67.23 81.33
ALINE 81.50 66.46 54.90 72.12 89.37
1-M-EM 80.12 66.66 55.00 71.11 88.97
IP-align 78.88 62.34 53.10 70.46 83.72
IP-EM 80.95 67.19 54.70 71.24 87.81

Table 3.2: G2P word accuracy using the TiMBL-based generation system.

Tables 3.2 and 3.3 show the result of G2P word accuracy performance of the stan-

dard G2P systems trained with different alignment models onEnglish Celex, CMUDict,

NETTalk, OALD and French Brulex. The TiMBL G2P generation method (Table 3.2) is

applicable only to the 1-1 alignment models.ALINE produces the highest accuracy on four

out of six datasets. The performance ofIP-EM is comparable to1-M-EM, but not consis-

tently better.IP-align does not seem to measure up to the other algorithms. TheBaseEM

achieves significantly lower word accuracy than the other methods, except on the NETtalk

data set.

The discriminative approach (Table 3.3) is flexible enough to utilize all kinds of align-

ments. However, the M-M models clearly perform better than the 1-1 models. The only

exception is NETTalk, which can be attributed to the fact that NETTalk already includes

double-phonemes in its original formulation. In general, the1-M-EM method achieves the

best results among the 1-1 alignment methods. Overall,EM-Aggr achieves the best word

accuracy in comparison to other alignment methods. Except for the Brulex and CMUDict

data sets, the differences betweenEM-Aggr andM-M-EM are statistically significant ac-

32

Aligner Celex-En CMUDict NETTalk OALD Brulex
BaseEM 85.66 71.49 68.60 80.76 88.41
ALINE 87.96 75.05 69.52 81.57 94.56
1-M-EM 88.08 75.11 70.78 81.78 94.54
IP-EM 88.00 75.09 70.10 81.76 94.96

M-M-EM 88.54 75.41 70.18 82.43 95.03
EM-Aggr 89.11 75.52 71.10 83.32 95.07

joint n-gram 88.58 75.47 69.00 82.51 93.75

Table 3.3: G2P word accuracy using the online discriminative system.

Figure 3.5: G2P word accuracy vs. alignment entropy.

cording to McNemar’s test at a 90% confidence level. We also include results for thejoint

n-gram approach; word accuracies are taken directly from the original paper [Bisani and

Ney, 2008].EM-Aggr is consistently superior the jointn-gram approach on all sets.

Figure 3.5 contains a plot of entropy values vs. G2P word accuracy. Each point repre-

sents an application of a particular alignment method to a different data set. It appears that

there is only a weak correlation between alignment entropy and G2P accuracy. So far, there

is no evidence from either direct or indirect evaluations toindicate that alignment entropy

is a reliable measure of grapheme-phoneme alignment quality.

3.5 Summary

I presented the many-to-many alignment model for the grapheme-to-phoneme conversion

task. This many-to-many alignment solution advances the traditional one-to-one alignment

models that have been widely used for G2P systems. The improvement of the m2m-aligner

33

is demonstrated in both intrinsic evaluation on gold-standard alignments and extrinsic eval-

uation with standard G2P systems, including classification-based and state-of-the-art online

discriminative training approaches.

I also investigated several new methods for generating grapheme-to-phoneme align-

ments. The phonetic alignment algorithm,ALINE, is recommended for languages with little

or no training data. The constraint-based approach achieves excellent accuracy at the cost

of manual construction of seed mappings. TheILP-EM alignment requires no linguistic ex-

pertise and guarantees the minimal set of grapheme-phonememappings. The alignment by

aggregation approach,EM-Aggr, advances the state-of-the-art results in G2P conversion.I

thoroughly evaluated the resulting alignments on several data sets by feeding them into two

different G2P generation systems. Finally, I employed an independently-constructed lexi-

con to demonstrate the close relationship between alignment quality and G2P conversion

accuracy.

34

Chapter 4

Grapheme-to-phoneme generation

Chapter 3 describes methods for generating many-to-many alignments. This chapter

presents the G2P generation approaches that incorporate the alignments. First, Section 4.1

proposes an approach to apply the many-to-many alignments to an existing classifier, as

well as to improve the G2P performance with a language model as a post-processing step.

This research is joint work with Grzegorz Kondrak and Tarek Sheif published in [Jiampoja-

marn et al., 2007]. A grapheme chunking model is proposed to manage double graphemes

and phonemes as opposed to preprocessing with fixed lists. The language model helps the

classifier to overcome its lack of awareness of previous phonemes generated in the phoneme

sequence output. These approaches aim to demonstrate how many-to-many alignments can

be used in widespread, existing classifiers for G2P conversion, without requiring much

change in the current systems.

Later, a joint processing approach and online discriminative training framework for G2P

conversion is presented in Section 4.2.1. This research waspreviously published in [Ji-

ampojamarn et al., 2008]. It is a collaboration with Colin Cherry and Grzegorz Kondrak.

The proposed approach unifies into one model of all components that are included in the

pipeline process presented in [Jiampojamarn et al., 2007].Phrase-based decoding is applied

to replace the grapheme chunking and language models. A simple online perceptron update,

based on [Collins, 2002], and a max-margin update, based on [Crammer and Singer, 2003],

are applied to train the system with a large set of features, including source contextn-gram,

target transition, and linear-chain features. The experiments illustrate the state-of-the-art

performance of the system, comparing to other approaches inthe literature on different lan-

guages. The implementation of this system, so called “DirecTL”, is publicly available as an

open-source project athttp://code.google.com/p/directl-p/.

35

Section 4.3 discusses the stress assignment problem in the G2P task. Most G2P systems

take the stress assignment problem as a separate process andincorporate the stress assign-

ments after the phoneme generation process [Bagshaw, 1998,Coleman, 2000]. It is an inter-

esting research question whether stress information couldhelp improve the overall phoneme

and stress word accuracy performance. Promising results were suggested in [Black et al.,

1998, van den Bosch, 1997]. This research was previously published in [Dou et al., 2009]

and is joint work with Qing Dou, Shane Bergsma, and Grzegorz Kondrak. We propose sev-

eral approaches for incorporating stress information to the DirecTL system, either via the

output phonemes or via the input graphemes. The grapheme andphoneme stress makers

are obtained using the SVM re-ranking model for stress assignment [Dou, 2009].

Section 4.4 discusses and reports results for when the DirecTL system is trained without

fixed alignments from the m2m-aligner presented in Chapter 3. The system considers these

alignments as hidden structures and follows the end-to-endtraining process of Liang et al.

[2006]. This training process can be viewed as a coordinate descent algorithm that is applied

in the Latent Support Vector Machine framework (LSVMs) [Felzenszwalb et al., 2008]. The

algorithm alternates between finding the most likely alignments under the current feature

weights, and updating the weights using the online max-margin training approach.

Finally, an integration of the jointn-gram features into the DirecTL system, so called

“DirecTL+”, is presented in Section 4.5. In order to includethe joint n-gram features, a

beam search is used instead of the exact algorithm. This revised inference procedure is

adopted to accommodate the higher-order Markov features. The jointn-gram features cre-

ate precise grapheme-phoneme evidence to the model, and they allow previous joint deci-

sions to contribute to the current decision. This approach combines two successful methods

in grapheme-to-phoneme conversion: (1) the generative joint n-gram model of Bisani and

Ney [2008] and (2) the online discriminative training approach. The final system surpasses

the performance of both the jointn-gram and DirecTL systems evaluated on the data sets

of Bisani and Ney [2008]. This is joint work with Colin Cherryand Grzegorz Kondrak,

previously published in [Jiampojamarn et al., 2010a].

4.1 Applying M-M alignments and a language model to G2P
classifiers

One-to-one alignment approaches not only simplify the alignment training, but also create

straightforward training examples for grapheme-to-phoneme generation models. Since they

limit the grapheme size to be exactly one grapheme per link, the generation models can sim-

36

Figure 4.1: The many-to-many alignment approach framework.

ply treat each grapheme one-at-a-time during training. Forthese reasons, one-to-one align-

ments can be incorporated into an existing classifier for grapheme-to-phoneme conversion

without many complications. As discussed and evaluated in Chapter 3, the many-to-many

alignment approach demonstrates better alignment qualityand provides more precise align-

ments. However, incorporating the many-to-many alignments into an existing classifier

is not straightforward since the aligned grapheme is no longer a single unit. A grapheme

chunking approach is described in Section 4.1.1 to solve theincompatibility between many-

to-many alignments and classifiers.

In classification-based approaches, the structure of the graphemes in a word (the grapheme

sequence) is well expressed in the learning models in the form of grapheme context fea-

tures; however, the output pronunciation is generated without information regarding the

previously generated phonemes in the sequence. Sequence-based approaches capture this

phoneme sequence information well but usually treat the grapheme context as grapheme

substrings tied with phoneme substrings. Therefore, the sequence-based approaches lose

the ability to express the right and left context as individual graphemes.

A post-processing step to the classification-based approach described in Section 4.1.2

helps the system to capture phoneme sequence information, which is trained using phoneme

sequences in the training data. The aim of this approach is toimprove the existing classification-

based approaches to grapheme-to-phoneme conversion, allowing them to utilize the output

sequence information as well as the strong context featuresin the input sequence.

Figure 4.1 presents the overall framework that incorporates the many-to-many align-

ments described in Section 3.1 into a classifier with a language model component. Sec-

tion 4.1.3 presents the successful results of this approachcomparing, to standard one-to-one

alignment methods and the CSInf approach of Bosch and Canisius [2006].

37

si−2 si−1 si si+1 si+2 chunk

so n g 0
s on g s 0

s o ng s 1
o n gs 0

Table 4.1: An example of grapheme chunking prediction.

4.1.1 Grapheme chunking model

Since the many-to-many alignments are not restricted to a single grapheme token, the pos-

sible alignments for the word-phoneme sequencephoenix[f i n I k s] contain grapheme

substrings (chunks) aligning to phoneme substrings as:

ph oe n i x

| | | | |
f i n I ks

Although the double grapheme and double phoneme problems are intuitively solved by

the alignments, a problem appears during the phoneme generation phase. How do we set

grapheme boundaries in the words to generate? A simple solution of merging all graphemes

that appear as grapheme chunks in the alignments is not sufficient to train a good phoneme

generation model. For example, consider the words “gash[g ae S]” and “gasholder[g ae

s h o l d@ r]”. The graphemesshstay together as a grapheme chunk in the first word but

are separated in the later word.

The solution to this problem is to learn a model to decide whether graphemes should be

merged into grapheme chunks given only the orthographic context. By providing context

information, it is possible to learn a model to identify the grapheme chunk “sh” and the

individual graphemess and h in the above example. The context information provides

clues such as the fact the graphemessh in the wordgashstand at the end of the word, while

they are in between two vowels in the wordgasholder. Since the many-to-many alignments

are set up to align graphemes and phonemes within the maximumlength of 2, one can view

this problem as a binary classification problem. Each grapheme in a word is evaluated to

make a choice of merging with its neighbour to form a graphemechunk or standing alone

as a chunk itself. Alternatively, for alignments with a longer length, one can formulate the

problem into a binary classification problem to decide if each grapheme either does or does

not end a chunk [Bergsma and Wang, 2007].

Table 4.1 shows the input feature space (si−2 . . . si+2) and the binary outputchunk for

the wordsong[s 6 N z]. The binary output value 1 indicates that the bigram graphemesi

38

is a chunk. In the example, the word is decomposed ass|o|ng|s, which directly corresponds

to the correct phoneme sequence.

The grapheme chunking model trains on the many-to-many alignments found in the

training data using an instance-based learning method [Ahaet al., 1991]. If the model

happens to predict consecutive overlapping chunks, only the first of the two is accepted.

4.1.2 Applying a language model to G2P classifiers

In classification-based approaches, contextual grapheme information is immediately avail-

able, allowing it to play a crucial role in learning the phoneme generation models. This

information expresses the fact that an input word is in the form of a sequence of graphemes,

which generates the phoneme output. While the structure of the input is available to the

learning methods, the classifiers ignore the output structure and produce each phoneme in-

dependently. On the another hand, sequence-based models [Bisani and Ney, 2002, Chen,

2003] consider the output structure by producing each phoneme using previously predicted

phonemes in the same word. However, these models generally use the grapheme context

information indirectly by forming grapheme substrings tied with phoneme substrings.

The CSInf approach [Bosch and Canisius, 2006] considers theimportant of both di-

rectly expressing grapheme context in the classification approaches, and also of expressing

the phoneme sequence in the sequence-based approaches. Unfortunately, the trigram class

prediction tends to be more complex as it increases the number of target classes, while it

has access to the same number of local features on the grapheme side.

An HMM approach for G2P is a poor fit to the task as shown in Taylor [2005]. The

poor performance of the HMM approach is caused by its inability to condition the emission

probabilities by the grapheme context. Having the state (phoneme) transition probabilities

cannot recover from or compensate for the loss of the surrounding information on the or-

thographic side. These results suggest that phonemes depend more on graphemes than on

the neighbouring phonemes (although they are also important).

Conceptually, the approach proposed here is to use a classifier to predict each phoneme

given a grapheme chunk and its grapheme context. Each phoneme output from the classifier

is associated with a classifier confidence value which is normalized into values between 0

and 1. In this case, the approach uses an instance-based learning technique as a local clas-

sifier to generate a set of phoneme candidates. Then, the method uses a language model

to re-rank the candidate phoneme sequences. The language model serves the same purpose

as the transition probabilities, while the classification confidence values serve the same

39

Figure 4.2: Example paths for the word“buried” .

purpose as the emission probabilities in HMMs. The transition probabilities are derived di-

rectly from the phoneme sequences in the training data. The optimal phoneme sequence for

an input word is found with the Viterbi algorithm. It finds themost likely output sequence

considering both confidence values and transition probabilities.

Figure 4.2 shows phoneme candidate paths for the wordburied. Each node represents

the generation of graphemes and phonemes. The arcs’ values are first-order transition prob-

abilities from one phoneme to the next phoneme in the path. Inthe example, the classifier

predicts the grapheme chunk “i” generates phoneme [al] with a confidence value of 0.714

and generates phoneme [I] with a confidence value of 0.286. Ifthe model is based on only

the local classifier, it would produce the incorrect output of [b E r al d]. Fortunately, with

the language model, the phoneme sequence [b E r I d] has a higher Viterbi score than the

incorrect phoneme sequence.

4.1.3 Summary of evaluation and results

The proposed approaches were evaluated on CMUDict1, French Brulex [Content et al.,

1990], and German, Dutch and English CELEX corpora [Baayen et al., 1996]. Except for

the English CELEX data set, all data sets are available as part of the Letter-to-Phoneme

Conversion (PRONALSYL) Challenge2. Each data set provided by PRONALSYL is di-

vided into 10 folds for 10-fold cross validation. For the hold-out evaluation, the first fold is

designed to be the final test set, and the rest is designed to bethe training set. A development

set is taken from the training set. In most experiments, the second fold is designed to be the

development set; thus, systems are trained on the 3rd to 10th folds during development. In

other cases, the development set is randomly taken from 10% of the training set.

1WWW accessed 2008:http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2WWW accessed 2008:http://www.pascal-network.org/Challenges/PRONALSYL/

40

Language Data set Number of words
English CMUDict 112,102
English NETtalk 20,008
English CELEX 66,189
Dutch CELEX 116,252
German CELEX 49,421
French Brulex 27,473

Table 4.2: Number of words in each data set.

For English CELEX, The data is directly extracted from the database. After removing

duplicated words, phrases, and abbreviations, the data setcontains 66,189 word-phoneme

pairs. The data are randomly split into 10 folds and are used to evaluate the proposed

approaches in the same way as the other data sets obtained from PRONALSYL. Duplicated

words are defined as instances that have the same orthographic form regardless of other

information fields such as the phonemes, part-of-speech tags, stress markers, etc. Only one

word-phoneme instance is included in the data set. Phrases are instances that contain a non-

alphabetic character(s) on the orthographic side. Abbreviations are defined as instances

that (1) contain all capital letters, (2) begin with a capital letter and consist of less than 4

letters, and (3) have a number of phonemes larger than two times the numbers of graphemes.

Table 4.2 shows the number of words and language of each data set.

The local classifier for predicting phonemes is the instance-based learning implemented

in the TiMBL package [Daelemans et al., 2004]. The evaluation was based on 10-fold cross

validation. In the local classifier, each grapheme chunk uses context graphemes from 5

graphemes before to 5 graphemes after the focus chunk. The language model looks back 3

phonemes (3rd order Markov Model).

The performance comparisons are shown in Figure 4.3, reporting the average and stan-

dard deviation values of the correct word accuracy. The detailed results were published

in [Jiampojamarn et al., 2007]. The 1-1 alignment model usesthe same learning technique

as the others but trains the model on the 1-1 alignments produced by the 1-1 epsilon scat-

tering method [Black et al., 1998]. The HMM notation indicates the models that use the

language model approach (Section 4.1.2) while the M-M alignment indicates the models

that are trained on the many-to-many alignments via the bigram grapheme chunking model

(Section 3.1, 4.1.1).

Clearly, impressive word accuracy improvements are achieved when the many-to-many

alignments are applied as opposed to the standard approach of using 1-1 alignments. Over-

all, the improvements range from 2.7% to 7.6% absolute word accuracy compared to the

41

Figure 4.3: System performance showing in word accuracies on the evaluated data sets on
grapheme-to-phoneme conversion task.

1-1 alignment models. Using the language model as a postprocess consistently improves

performance over both 1-1 and M-M alignment models. These improvements illustrate

the benefit of re-ranking the phoneme sequence candidates generated by the local classifier

based on the natural sound sequences of the languages.

Table 4.3 shows results comparing to other methods on the evaluated data sets. PRONAL-

SYS indicates the results when the system trains on the alignments provided by the chal-

lenge organizers. Their method is based on an EM one-to-one alignment approach. It is

interesting to compare these results with the results of 1-1align, which is based on the ap-

Language Data set PRONALSYS 1-1 align CsInf M-M+HMM
English CMUDict 58.3 ± 0.49 60.3 ± 0.53 62.9 ± 0.45 65.6 ± 0.72
English Celex — 74.6 ± 0.80 77.8 ± 0.72 83.6 ± 0.63
Dutch Celex 84.3 ± 0.34 86.6 ± 0.36 87.5 ± 0.32 91.4 ± 0.24
German Celex 86.0 ± 0.40 86.6 ± 0.54 87.6 ± 0.47 89.8 ± 0.59
French Brulex 86.3 ± 0.67 87.0 ± 0.38 86.5 ± 0.68 90.9 ± 0.45

Table 4.3: Word accuracies based on 10-fold cross validation. PRONALSYS: Using the
one-to-one alignments provided by the PRONALSYL challenge. 1-1 align: Using the one-
to-one alignment method of Black et al. [1998].CsInf: Constraint satisfaction inference
system [Bosch and Canisius, 2006].M-M+HMM: Using the many-to-many alignment
method with HMM embedded with a local prediction.

.

42

proach of Black et al. [1998]. Overall, 1-1 align outperforms PRONALSYS by as much

as 2% in absolute word accuracies. The main difference between the PRONALSYS one-

to-one alignment approach and 1-1 align is that 1-1 align does not allow null graphemes

on the grapheme side. Consider the wordabomination[@ b 6 m I n e S @ n]: the first six

graphemes and phonemes are aligned the same way by both aligners (abomin-[@ b 6 m

I n]). However, the two aligners produce radically differentalignments for the last five

graphemes. The alignment provided by the PRONALSYS one-to-one alignments is:

a t i o n

| | | | | | |
e S @ n

while 1-1 align’s alignment is:

a t i o n

| | | | |
e S @ n

Clearly, the latter alignment provides more information onhow the graphemes map to the

phonemes. Further improvement can be achieved by the many-to-many alignment method

as it produces more precise alignments. For example, the m2m-aligner provides the correct

alignment for the second part of the wordabomination:

a ti o n

| | | |
e S @ n

Instead of adding a null phoneme in the phoneme sequence, themany-to-many aligner

maps the grapheme chunkti to a single phoneme.

Applying a language model as a post-processing step is basedon the same hypothesis

as the constraint satisfaction inference (CSInf) [Bosch and Canisius, 2006]. The results

in Table 4.3 (CSInf vs. M-M+HMM) show that the HMM approach consistently improves

performance over the baseline system (1-1 align), while theCSInf degrades performance

on the Brulex data set. For the CSInf method, most errors are caused by trigram confu-

sion in the prediction phase. For example, the French word “assignat [asiNa]” has possible

confusion between [Na] and [na] phonemes from the trigram class prediction. The CSInf

procedure produces [na] as it satisfies the most constraintson the trigram classes while the

HMM model suggests [Na] because the local prediction is highly confident in grapheme

“n” producing “N”. In this case, both the local prediction and HMM model plays a role in

the decision, while the CSInf approach over-emphasizes on the phonetic constraint satis-

factions.

43

4.2 Joint processing and discriminative training

While classification-based approaches effectively provide learning models with grapheme

context information, sequence-based generative approaches utilize phoneme sequence struc-

ture. For G2P, it is important to capture grapheme context when generating phoneme out-

puts for either single graphemes or grapheme substrings. Itis also crucial to find natural

phoneme sequences as output. The proposed approach to G2P isbased on an online dis-

criminative training algorithm that is capable of expressing an arbitrary number of features.

The discriminative training occurs in the context of a jointprocessing framework that col-

lapses the pipeline processes of grapheme chunking, phoneme generation, and sequence

modeling into a single unified framework. The learning process optimizes parameters for

all components simultaneously, and empirically achieves higher performance.

4.2.1 Joint processing

Recall that the approach described in Section 4.1 improves G2P performance by:

1. incorporating the many-to-many alignments via graphemechunking model which

allows single graphemes or grapheme substrings to generatephonemes.

2. capturing the contextual grapheme information directlyin the classifier when gener-

ating phoneme.

3. using a language model to finds the optimal phoneme sequence.

The previous approach adheres to the pipeline process shownin Figure 4.4a. In general,

pipeline processes are undesirable for two reasons: (1) error propagations, and (2) each

process is trained without consideration of the other processes.

First, when decisions are made in sequence, errors made early in the sequence can

propagate forward and throw off later processing. Second, each module is trained indepen-

dently, and the training methods are not aware of the tasks performed later in the pipeline.

For example, optimal parameters for a phoneme generation model may vary depending on

whether or not the module will be used in conjunction with a phoneme sequence model.

A joint approach to grapheme-to-phoneme conversion is proposed by first collapsing

the pipeline processes between the sequence model and the phoneme predictor illustrated

in Figure 4.4b. The model is trained using an online discriminative learning method, such

as an averaged perceptron HMM of Collins [2002]. The averaged perceptron HMM natu-

rally handles the sequence modeling while it retains the capability of representing arbitrary

44

Figure 4.4: Collapsing the pipeline approach.

features that are not limited to only source-side graphemes. With the ability of expressing

a rich number of features, the model can incorporate many overlappingn-gram features to

represent grapheme context in a manner similar to that of classification-based methods. In

addition, the method is free to conjoin grapheme context features with sequence phoneme

features to create long dependency features as the so-called linear-chain features [Sutton

and McCallum, 2006].

Next, the approach completely unifies the pipeline processes by folding the grapheme

segmenter into the decoder via a monotone phrasal decoder [Zens and Ney, 2004], as shown

in Figure 4.4c. The monotone phrasal decoder uses a monotonesearch constraint that pro-

cesses graphemes and generates phonemes from left to right.This framework trains the

model using the many-to-many alignments presented in Section 3.1 without committing to

any specific grapheme chunk. The training process optimizesthe parameters in such a way

that input structures, phoneme translations, and output phoneme sequences are taken into

account in a single process.

Optimizing the parameters with the perceptron update method is simple and efficient.

However, one can replace the perceptron update method with the more robust Margin In-

fused Relaxed Algorithm (MIRA) [Crammer and Singer, 2003],which adds an explicit

notion of margin to obtain better learning parameters that better separate the correct output

from the incorrect ones.

45

Algorithm 5 Online discriminative training.
Input: grapheme-phoneme example pairss andt.
Output: α

1: α = ~0
2: for K iterations over training setdo
3: for all grapheme-phoneme sequence pairs(s, t) in the training setdo
4: t̂ = argmaxt′∈T [α · Φ(s, t′)]
5: update weightsα according tôt andt
6: return α

4.2.2 Online discriminative training

An online discriminative training process is outlined in Algorithm 5. The training pro-

cess iteratively finds the best output(s) given the current weights (model parameters), and

then updates the weights in such a way that the model favors the correct answer over the

incorrect ones. There are three main components which will be described in detail in Sec-

tion 4.2.3, 4.2.4, and 4.2.5. The first component describes how the model handles input

words and output phoneme sequences, feature representations and the scoring function rep-

resenting a weighted linear combination of features,α·Φ(s, t′) in line 4. The second compo-

nent describes the decoders used to perform theargmax operation in the algorithm. The de-

coders are a Viterbi-based decoder for the system in Figure 4.4b and a phrase-based decoder

for the system in Figure 4.4c. The last component describes the weight update algorithms;

this is either the perceptron update [Collins, 2002] or the MIRA update method [Crammer

and Singer, 2003].

4.2.3 Model

Given an input words and an output phoneme sequencet, let Φ(s, t) be a feature vector

representing the evidence for the sequences found int, and letα be a feature weight vector

providing a weight for each component ofΦ(s, t). At training time, the input words and

output phoneme consist ofm substrings, such thatsi generatesti. These substrings are

taken from the many-to-many alignments. At testing time, these substrings are handled by

either the segmentation module or the phrase-based decoder.

Table 4.4 shows the feature template included inΦ(s, t). These features are binary

features indicating whether or not the feature is present inthe current(s, t). The context

features express grapheme evidence found in the input string s, centered around the gen-

eratorsi of eachti. The parameterc is the size of the context windows. These context

features include not only grapheme unigrams but all possible n-grams that fit within the

46

context si−c, ti
. . .
si, ti
. . .
si+c, ti
si−csi−c+1, ti
. . .
si+c−1si+c, ti
. . .
si−c . . . si . . . si+c, ti

transition ti−1 ti
. . .
ti−M . . . ti−1 ti

linear-chain si−c ti−1, ti
. . .
si ti−1, ti
. . .
si+c ti−1, ti
si−csi−c+1 ti−1, ti
. . .
si+c−1si+c ti−1, ti
. . .
si−c . . . si . . . si+c ti−1, ti

Table 4.4: Feature template.

context windows. The transition features are HMM-like transition features that express the

cohesion in the output side. The parameterM , called theMarkov order, limits the number

of phonemes the model can look back at. The linear-chain features [Sutton and McCallum,

2006] link phoneme transitions (e.g.ti−1 to ti) with context features.

4.2.4 Search

In Algorithm 5 line 4, the system must find the best possible output phoneme sequence

(argmax) given the current weight vectorα. In the pipeline approach (Figure 4.4b), the

input word is first segmented into grapheme substrings by thegrapheme chunking model

described in section 4.1.1. The search for the best possiblephoneme sequence can then be

performed effectively by the standard HMM Viterbi algorithm. In the joint approach 4.4c,

the grapheme segmentation and phoneme generation are simultaneously performed us-

ing a monotonic phrasal decoder [Zens and Ney, 2004]. The search enumerates possible

grapheme segmentations and their output phonemes together. This can be perform effi-

ciently via dynamic programming. The dynamic programming recurrence equations are

47

shown in Equation 4.1. The tableQ(g, p) keeps the maximum score of the phoneme se-

quence ending with the phonemep, generated by the grapheme sequences1 . . . si. Since the

grapheme chunk information is not provided to the model in this case, this framework views

s as a sequence ofG graphemes instead of substrings. The phonemet′ is the phoneme pro-

duced in the previous step. The expressionφ(sii′+1, t
′, t) is a convenient way to express the

subvector of our complete feature vectorΦ(s, t) that describes the substring pair(si, t
i
i−1),

wheresi = s
g
g′+1, ti−1 = p′ andti = p. The valueN limits the size of the dynamically

created substrings. The special symbol$ represents a starting phoneme or ending phoneme.

The value inQ(G+ 1, $) is the score of highest scoring phoneme sequence corresponding

to the input word. The actual sequence can be retrieved by backtracking through the table

Q.

Q(0, $) = 0

Q(g, p) = max
p′,p,

g−N≤g′<g

{α · φ(sgg′+1, t
′, t) +Q(g′, p′)} (4.1)

Q(G+ 1, $) = max
p′
{α · φ($, p′, $) +Q(G, p′)

4.2.5 Online updates

The update step in line 5 of the training algorithm can be performed by the perceptron

update [Collins, 2002]. The updates are relatively simple,invoking only adding and sub-

tracting vector operations. The weight vectorα is updated according to the best outputt̂

found under the currentα and the true answert found in the training data. If the outputt̂ is

correct, there is no update to the weight vectorα. Otherwise, the weight vector is updated

by subtracting the feature vector of the inputs and the wrong answer̂t,Φ(s, t̂), and adding

the feature vector of the inputs and the true answert,Φ(s, t), as shown in Equation 4.2.

α = α+Φ(s, t)− Φ(s, t̂) (4.2)

The training process is iteratively forK iterations, which is determined as the point

where a decline performance occurs on the held-out set. Conceptually, if the problem is

separable, the perceptron is guaranteed to find anα such that:

∀t̂ ∈ T − {t} : α · Φ(s, t) > α · Φ(s, t̂) (4.3)

48

However, most problems are not separable. The average of allα values throughout the

training process is used in place of theα from the final training iteration in order to obtain

better generalization to unseen data [Collins, 2002].

In the perceptron update, the model is trained by seeing errors made by the current

weight vectorα. There is no update to the model so long as the system predictsthe correct

phoneme sequence under the current model. Each update takespenalties of the wrong

answer(Φ(s, t̂)) and rewards the correct answer of(Φ(s, t)) from the current weight vector.

In other words, the perceptron has no notion of margin, measure of how well the vectorα

separates the true answer from incorrect ones.

To address this, the Margin Infused Relaxed Algorithm (MIRA) [Crammer and Singer,

2003] updates the model based on the system’sn-best outputs. It employs a margin update

so that the new weight vectorα separates the true answer from those incorrect answers by

at least as much as the structured loss. The loss function provides the cost of producing a

given wrong output. The update process can be described as anoptimization problem:

minαn ‖ αn − αo ‖
subject to∀t̂ ∈ Tn :
αn · (Φ(s, t)− Φ(s, t̂)) ≥ ℓ(t, t̂)

(4.4)

whereTn is a set ofn-best outputs found under the current model,t is the correct answer,

αo is the current weight vector,αn is the new weight vector, andℓ(t, t̂) is the loss function.

The loss function here can be described as the 0-1 loss function whereℓ(t, t̂) = 0 if t = t̂,

otherwiseℓ(t, t̂) = 1. The 0-1 loss function is appropriate because it has the sameobjective

function as the word accuracy evaluation metric. The outputphoneme is judged to be

wrong when the output phoneme sequence and the true answer are not identical. Other

possible loss functions could be based on the Levenshtein distance between̂t andt, called

the“phoneme loss”, and the combination of the 0-1 loss and the phoneme loss functions.

MIRA training is similar to averaged perceptron training, but instead of finding the sin-

gle best answer, it finds then-best answers (Tn) and updates weights according to Equation

4.4. To find then-best answers, the Viterbi decoding and monotone search algorithms are

modified to keep track of then-best phonemes at each cell in the dynamic programming.

The optimization in Equation 4.4 is a standard quadratic programming problem that can be

solved by using Hildreth’s algorithm [Censor and Zenios, 1997].

49

4.2.6 MIRA implementation

For convenience, the MIRA update algorithm shown in Equation 4.4 can be implemented

using the SVMlight framework [Joachims, 1999]. SVMlight provides the quadratic program

solver shown in Equation 4.5.

minw,ξ
1
2 ‖ w ‖

2 +C
∑

i ξi
subject to∀i,
w · zi ≥ rhsi − ξi

(4.5)

In order to approximate a hard margin using the soft-margin optimizer of SVMlight, a

very large penalty value is assigned to the parameterC, thus making the use of any slack

variables (ξi) prohibitively expensive. The vectorw is defined as the difference between

the new and previous weights:w = αn − αo, so that the minimization objective in both

equations, Eq. 4.5 and Eq. 4.4, are the same. Since eacht̂ in then-best list(Tn) needs a

constraint based on its feature difference vector,zi is defined as:

∀t̂ ∈ Tn : zi = Φ(s, t)− Φ(s, t̂)

Substituting that equation along with the inferred equation an = ao + w into the original

MIRA constraints yields:

(αo + w) · zi ≥ ℓ(t, t̂)

Movingαo to the right-hand-side of the equation to isolatew · zi on the left, the constraints

in both equations are now the same.

In summary, the MIRA update algorithm is implemented in SVMlight’s optimizer by

setting:

SVMlight MIRA
w αn − αo

zi Φ(s, t)− Φ(s, t̂)

rhsi ℓ(t, t̂)− αo · zi

The output of the SVMlight optimizer is an update vectorw to be added to the cur-

rentαo. The SVMlight optimizer is called per each training example in the update step in

Algorithm 5, line 5.

4.2.7 Summary of evaluation and results

Experiments were conducted to evaluate the proposed approaches using 9-fold cross vali-

dation on the training set of English CELEX [Baayen et al., 1996]. Note that 10% of the

corpus is reserved to be the final test set for comparison. More details of evaluation and

50

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

89.00

Separate segmentation Phrasal decoding

W
o

rd
 a

c
c

u
ra

c
y

 (
%

)

Perceptron

MIRA

Figure 4.5: Separate segmentation versus phrasal decodingin terms of average word accu-
racy and standard deviation.

results can be found in [Jiampojamarn et al., 2008]. From thepreliminary experiments on

the development set, increasing the context size has a dramatic effect on accuracy, but the

effect begins to level off for context sizes greater than 5. Henceforth, for all experiments

reported here, the context features have a context window size equal to 5. Similarly, for

MIRA updates, a large improvement of 2% absolute word accuracy is achieved by increas-

ing the size of then best list from 1 to 5. However, varying the size of then-best list from

5 to 50 has an insignificant effect on accuracy. Therefore, the MIRA models use ann-best

list of length 10 to update the feature weights, based on the loss function that combines 0-1

and phoneme error rate, due to this function’s marginal improvement over each individual

loss function.

Figure 4.5 shows the system performance in terms of word accuracy after adding the

option to conduct joint segmentation through phrasal decoding. The 15% relative error

deduction demonstrates the utility of folding the segmentation step into the search. It also

shows that the joint framework enables the system to reduce and compensate for errors that

occur in a pipeline. By replacing the perceptron update withthe MIRA update, the system

obtains the improvement of 7% relative improvement in word accuracy. This improvement

illustrates the more powerful update strategy of MIRA. MIRAupdates the feature weights

based on ann-best list rather than simple subtraction and addition operations as in the

perceptron.

Figure 4.6 shows the effect of the sequence features on the MIRA system. Adding the

51

86.00

86.50

87.00

87.50

88.00

88.50

89.00

89.50

90.00

Context features +first order +linear-chain All features

W
o

rd
 a

c
c

u
ra

c
y

 (
%

)

Figure 4.6: The effect of sequence features on the joint system in terms of average word
accuracy and standard deviation.

first order HMM features contribute little improvement by itself, but combined with the

more powerful linear-chain features achieve a relative error reduction of 12% in word accu-

racy. In general, the linear-chain features make a much larger difference than the relatively

simple transition features, which underscores the importance of using source-side context

when assessing sequences of phonemes.

Figure 4.7 shows the system’s learning curve when evaluatedon the development set

with different amounts of training data. The sizes of the training data range from 5K to

57K words (10% - 100% of the training data). Overall, the system performance improves

linearly, when the training size is increased exponentially. At the 50% training data point,

the system achieves 83.19% word accuracy for its top-1 output, while the oracle selector

from the 2-best answers achieves 90.85% word accuracy. Thisoracle word accuracy is

higher than the top-1 word accuracy of the system that trainson the full training data set

(89.72% vs. 90.85%). It suggests that the system requires approximately twice the training

data to optimally the 2-best outputs. Although the graph does not show the convergence

point for the system performance with respect to the training data size, it is interesting

to observe that the system obtains 98% word accuracy with theoracle 50-best answers in

systems that train with both 50% and with all of the training data.

Table 4.5 shows a comparison of different approaches on the evaluation sets including

Dutch CELEX (D.CELEX), German CELEX (G.CELEX), English CELEX (E.CELEX),

52

Figure 4.7: Word accuracy on the development set showing thelearning curve of the system
trained with different amounts of training data.

Corpus DirecTL M-M+HMM Joint n-gram∗ PbA∗ CART∗ SMT∗

E.CELEX 90.51% 84.81% 76.3% - - -
D.CELEX 95.32% 91.69% - - - 91.63%
G.CELEX 93.61% 90.31% 92.5% - 89.38% 90.20%
Nettalk 67.82% 59.32% 64.6% 65.35% - -
CMUDict 71.99% 65.38% - - 57.80% 63.81%
Brulex 94.51% 89.77% 89.1% - - 86.71%

Table 4.5: Comparison of word accuracy on the evaluation sets. DirecTL : Online dis-
criminative training framework.M-M+HMM : Many-to-Many HMM system (Section 4.1)
Joint n-gram: Joint n-gram model [Demberg et al., 2007].PbA: Pronunciation by Anal-
ogy [Marchand and Damper, 2006].CART : CART decision tree system [Black et al.,
1998]. SMT: Phrase Based Statistic Machine Translation approach for G2P [Rama et al.,
2009]. The columns marked with * contain results reported inthe literature. “-” indicates
no reported results.

Nettalk, CMUDict, and French Brulex data sets. DirecTL refers to the full system with the

discriminative training approach and MIRA updates, and thephrasal decoder with context,

transition and linear-chain features. All parameters, including the size of then-best list,

the amount of grapheme context, and the choice of loss functions, were established on the

English CELEX development set, as presented in the previousexperiments. Except for

the M-M+HMM results, all other results are taken directly from their original publications.

M-M+HMM refers to the system described in Section 4.1 and is evaluated directly on the

data sets. The jointn-gram, Pronunciation by Analogy and CART models are described and

discussed in Chapter 2. SMT refers to the results of Rama et al. [2009] who apply a standard

phrase-based statistical machine translation system to the task. They use GIZA++ [Och and

53

Ney, 2003] for aligning graphemes with phonemes in the training sets and train the models

using the minimum error rate training algorithm [Och, 2003]with the A* beam search

decoder [Koehn et al., 2003]. The implementation of the SMT model above is available as

part of the MOSES toolkit [Koehn et al., 2007].

Although these comparisons are necessarily indirect due todifferent experimental set-

tings, they strongly suggest that DirecTL outperforms all other results on all data sets, in

some case by large margins. The jointn-gram approach previously reported the best re-

sult for German CELEX of 92.5% and PbA showed the best result for English Nettalk of

65.35%. The best results on the other sets were previously achieved by the M-M+HMM

approach. DirecTL achieves from 3% to 8% absolute word accuracy improvement over

the M-M+HMM approach and advances the previously best results of German CELEX and

English Nettalk by as much as 2% in absolute word accuracy improvement. These experi-

mental results demonstrate the power of a joint approach andonline discriminative training

with a large set of features.

4.3 Stress markers combination

In many languages, for example, English, German and Dutch, word pronunciations include

“stress”.Stress helps humans recognize and differentiatespoken words, as stress empathizes

certain syllables in duration, pitch and loudness. Stress markers are usually associated

with word syllables. To make stress assignment an isolated task apart from syllabifica-

tion, stress makers can be placed on vowel phonemes without knowing the true syllable

boundaries [Webster, 2004]. Later, if the syllable boundaries are known, the mapping from

the stressed vowel to the corresponding syllable is straightforward. Although stress is a

prosodic feature and placed on the phoneme side, it may be useful to place stress mark-

ers on the orthographic form as well, the corresponding graphemes that produce the stress

vowel in the words. This information could help further improve G2P conversion accuracy.

A SVM ranking approach for stress assignment of Dou et al. [2009] is capable of plac-

ing stress markers on both orthographic and phonemic forms without requiring true syllable

boundaries. The approach first approximates syllables by splitting a word into a sequence of

substring units. The substring unit includes exactly one vowel and at least one neighbouring

consonant – e.g. “overdo→ ov-ver-do”. Since, in the phonetic form, the number of vowels

is equal to the number of syllables, this simple splitting method guarantees that the correct

number of syllables is generated, regardless of the true syllable boundaries. In the ortho-

54

graphic form, this method may result in a different number ofsyllables – e.g. “pronounce

→ ron-no-un-ce”; however, it is sufficient for the learning model. The substring units are

encoded with 0 for unstressed, 1 for primary stress and 2 for secondary stress. These en-

coded strings are called “stress patterns”. A prediction ofthe stress patterns is trained using

a SVM model [Joachims, 2002], which assigns stress markers to substring units (vowels)

given new words.

Various methods have previously been used for combining stress and phoneme genera-

tion. The simplest and most straightforward is to train a phoneme generation model without

regard to stress. Then, stress markers are assigned as a post-process [Bagshaw, 1998, Cole-

man, 2000]. However, both van den Bosch [1997] and Black et al. [1998] argued that stress

should be predicted at the same time as phonemes. They expandthe output set to distin-

guish between stressed and unstressed phonemes. Similarly, Demberg et al. [2007] produce

phonemes, stress, and syllable-boundaries within a singlejoint n-gram model and enforce

a phonological constraint — one primary stress per word. Pearson et al. [2000] generate

phonemes and stress together by jointly optimizing a decision-tree phoneme-generator and

a stress predictor based on stress pattern counts. The counts help the model to generate the

most common stress patterns avoiding unlikely stress patterns in the phoneme output. In

contrast, Webster [2004] first assigns stress to graphemes,creating an expanded input set,

and then predicts both phonemes and stress jointly. The system marks stress on grapheme

vowels by determining the correspondence between affixes and stress in written words.

Based on the above inspirations, DirecTL can incorporate stress makers in the following

ways:

• Joint: the system’s inputs are graphemes and the output sequencesare phonemes

with stress information. This can be accomplished by creating two sets of vowels

that are (1) stressed vowels and (2) unstressed vowels. Thisapproach is a baseline

system which does not incorporate an additional stress model nor does it incorporate

linguistic to the stress prediction model. It simply extends the output space and learns

the phoneme and stress generation based on the training data.

• Joint+Constr: the same asJoint, except that the system only outputs the stress pat-

terns that were observed in the training data. This constraint ensures that the final

outputs have valid stress patterns and avoids invalid output sequences, such as con-

taining more than one primary stress or introducing a secondary stress without a pri-

mary one. Ultimately, the training process of this system isthe same asJoint except

55

System Eng Ger Dut
P + S S P P

Joint 78.9 80.0 86.0 81.1
Joint+Constr 84.6 86.0 90.8 88.7
PostProcess 86.2 87.6 90.9 88.8
LexicalStress 86.5 87.2 90.1 86.6
OracleStress 91.4 91.4 92.6 94.5
Festival 61.2 62.5 71.8 65.1

Table 4.6: Combined phoneme and stress prediction word accuracy (%) for English, Ger-
man, and Dutch.P : predicting primary stress only.P + S: primary and secondary.

when it generatesn-best outputs, and when it now filters any sequence containing an

invalid stress pattern.

• PostProcess: the system is trained to generate only phonemes. It places stress makers

on the output phonemes as a post processing step using the SVMranking model [Dou,

2009]. This is a pipeline process which uses the phoneme generation of DirecTL and

the stress assignment of the SVM ranker.

• LexicalStress: the system’s inputs are graphemes with added stress on their orthog-

raphy. The orthographic stress is obtained by the SVM ranking model [Dou, 2009].

The output is phonemes with stress information. This approach shows the contribu-

tion of automatic lexical stress assignment to the full grapheme-phoneme conversion

task.

• OracleStress: the same asLexicalStress, except the system has the true stress marked

on the graphemes. The oracle stress markers are obtained by mapping the stressed

vowels back to their corresponding graphemes via alignments in the training.

Table 4.6 shows the results of integrating stress markers into the DirecTL system. Festi-

val’s results are obtained by using the popular Festival Speech Synthesis System3. Overall,

the Joint approach, which simply expands the output set, is 4%-8% worse than all other

comparison systems across the three languages. These results clearly indicate the draw-

backs of predicting stress using only local information. InEnglish, bothLexicalStressand

PostProcessperform best, whilePostProcessandJoint+Constrsystems are highest on Ger-

man and Dutch. Although it is inconclusive which approach isthe best way to incorporate

stress information into the G2P system, theOracleStress’s results suggest promising im-

provements when accurate lexical stress is provided to the generation system. Results using

3http://www.cstr.ed.ac.uk/projects/festival version 1.96, 2004

56

oracle lexical stress show that given perfect stress assignment on graphemes, phonemes and

stress can be predicted very accurately, in all cases above 91%. The accuracy of Festival

is much lower even than the baselineJoint approach. These results show that the DirecTL

system can outperform a widely-used speech synthesis system in the generation task, as

DirecTL exploits a much more powerful discriminative training model.

4.4 Training without alignments

Grapheme-phoneme alignments play a crucial role in the G2P training processes. The align-

ments between graphemes and phonemes in the training data allow phoneme generation

models to train on fixed structures. By constructing the fixedstructures in the training data,

the phoneme generation model has only one objective to learn: to produce phoneme se-

quences corresponding to the given input structures. In Section 4.2, the joint processing

framework illustrates the benefit of folding the grapheme segmentation process into the

phoneme generation model by using phrasal decoding. Thus, the joint processing frame-

work has two objectives: (1) to find the most likely phoneme sequences, and (2) to find the

most likely input structures. It learns these structures via the alignments in the training data.

The key issue here is that the alignments are automatically generated by the m2m-aligner.

Although these alignments are shown to be more accurate for training G2P systems than the

one-to-one alignments, the many-to-many alignments are not perfect. The learning model

accepts these imperfect alignments as gold-standard structures for training.

Liang et al. [2006] proposed three different update strategies to find both hidden and

output structures for machine translation. In the context of machine translation, the outputs

are translations (t) in a target language corresponding to input sentences (s) in a source

language. The hidden structures (h) are alignments between words in the source and target

languages. The first strategy, called“bold updating”, updates feature weights towards the

correct outputt and the highest-scoring option of all hidden structuresh, whereh is gen-

erated based on the current weight parameters, input,s, and correct output,t. The update

step is skipped if the current model cannot find any possible hidden structure that is a pro-

duction of the inputs and outputt. The second strategy, called“local updating” , updates

the feature weights towards the highest-scoring answer in then-best list. The third strat-

egy is a combination of the first two options. It uses the first strategy by default, and the

second strategy when the model cannot find the hidden structure. In machine translation,

many hidden structures are unreachable due mostly to the limits of the distortion allowed in

57

the alignment model. The bold updating is more problematic than other strategies when a

limited-distortion decoder is used in their system. With the flexibility of translation phrase

swaps, they found that the local updating performs best among the three approaches in their

phrase-based machine translation system.

Theargmax and update formulations in Algorithm 5 can be re-written to accommodate

hidden structure as in Equations 4.6 and 4.8. Here,h′ is the most probable alignment

between the input grapheme strings and the most probable output phoneme stringt̂.

(t̂, ĥ) = argmax
t′,h′

[α · Φ(s, t′, h′)] (4.6)

h∗ = argmax
h

[α · Φ(s, t, h)] (4.7)

minαn ‖ αn − αo ‖
subject to∀t̂ ∈ Tn :

αn · (Φ(s, t, h
∗)− Φ(s, t̂, ĥ)) ≥ ℓ(t, t̂)

(4.8)

The alignmentŝh are implicitly found by the phrasal decoder during its search for the

maximum score of the dot product between the feature weightsα and the feature indicators

Φ. These alignments are in fact the generation outputs,t̂, of each substring units1 . . . sI

that yields the maximum model score. When training with alignments using the m2m-

aligner, h∗ are the alignments discovered by the aligner. The are fixed throughout the

online training process. When training without pre-definedalignments,h∗ are the best

alignments found at each update based on the current featureweightsα given s and the

correct t in the training data. The alignments for an examples and t can be found by

ĥ = argmaxh′∈H [α · Φ(s, t, h′)]. Essentially, the model searches for the best substring

segmentation of grapheme strings → s1 . . . sI and phoneme stringt → t1 . . . tI . This

process can be performed by a similar dynamic program to the one used by the phrase-

based decoder presented in Section 4.2.4, except that the input strings and the output string

t are fixed in the search. Before each update step, new alignmentsh∗ for an examples and

t are found based on the current weight parametersαo and they are fixed during the process

of updating weightsαn. This alternate training process is similar to a coordinatedescent

algorithm applied in Latent Support Vector Machines (LSVMs) [Felzenszwalb et al., 2008].

Table 4.7 shows the results of bold and local updates for the DirecTL systems. The

possible alignments are initialized with a list of grapheme-phoneme mappings from the

m2m-aligner. DirecTL in the table refers to the model that trains on fixed structures as

presented in Section 4.2. Unlike in machine translation, the bold updating achieves bet-

ter performance than the local strategy due to the fact that grapheme-phoneme alignments

58

Method Word accuracy
DirecTL 87.85%
Bold update 86.54%
Local update 79.42%

Table 4.7: G2P word accuracy of DirecTL, bold and local updates on the English CELEX
development set.

Method Word accuracy
Full list of grapheme-phoneme mappings 86.54%
without the list of mappings 86.13%
without 1-m mappings 86.28%
without m-1 mappings 86.49%

Table 4.8: G2P word accuracy of bold update approach given different alignment initialized
mappings.

in G2P are monotonic and are not affected by alignment distortion. The bold update ex-

periments suggest that given the example pairs the model always finds alignments under

the current feature weights; therefore, there is no skipping case for G2P. In general, train-

ing without fixed alignments achieves lower performance than the DirecTL system with

fixed alignments found by m2m-aligner. One might observe that our method of training

without alignments is actually not as general as Liang et al.[2006]’s approach because the

possible grapheme-phoneme pairs are given in advance (restricted to the pairs returned by

m2m-aligner). Additional experiments were set up to demonstrate the effect of the pair-

list initialization. When the system does not use the list ofgrapheme-phoneme mappings

from the m2m-aligner, the word accuracy performance slightly decreases to 86.13%. The

differences between using a full list of grapheme-phoneme mappings and lists of partial

mappings are negligible (Table 4.8).

4.5 Integrating joint n-gram features into DirecTL

The online discriminative training framework presented inSection 4.2 improves grapheme-

to-phoneme conversion accuracies by using a phrase-based decoder, and an online max-

margin training regime over a large set of features. Then-gram context and linear-chain

features capture rich information over the source and target strings. With these features,

the model can use a first order Markov assumption without any significant decrease in per-

formance. In other words, increasing the Markov order does not significantly improve the

performance. This discovery at first seems to contradict results of the jointn-gram model

of Bisani and Ney [2008], who showed that the learning model for grapheme-to-phoneme

59

joint n-gram si+1−nti+1−nsiti
. . .
si−1ti−1siti
si+1−nti+1−nsi+2−nti+2−nsiti
. . .
si−2ti−2si−1ti−1siti
.
si+1−nti+1−n . . . si−1ti−1siti

Table 4.9: Jointn-gram feature template.

conversion requires at least afifth order Markov assumption. In fact, their best results were

with an eighth order Markov model. The jointn-gram approach takes information over

source and target substrings simultaneously, increasing the Markov order not only means

adding dependencies over the phonemic (target) substringsbut also over the orthographic

(source) substrings. Although the jointn-gram models are capable of capturing context

information on both the source and target side, they cannot selectively use only source or

target information, nor can they consider arbitrary sequences within their context window,

as they are limited by their back-off schedule.

In the DirecTL model, the set of indicator features (Table 4.4) include (1) context fea-

tures, (2) transition features, and (3) linear-chain features. The context features allow the

model to selectively use information from the source side. The transition features describe

the cohesion of the target string, while the linear-chain features allow the model to look at

both source and target information jointly; however, thesefeatures do not go beyond two

target phonemic substrings,ti−1, ti. By integrating jointn-gram features into the online

discriminative training framework, the system not only enjoys rich context features and

long-range linear-chain features, but also can now take advantage of wide joint information

between the source and target substring pairs. The jointn-gram feature template is shown

in Table 4.9.

An alternative method to incorporate a jointn-gram feature would be to compute the

generative jointn-gram scores, and supply them as real-valued features to themodel. As

all of the other features in the DirecTL framework are indicators, the training algorithm

may have trouble scaling an informative real-valued feature. Therefore, a binary feature

representation is used for these jointn-gram features, indicating whether the model has

seen particular strings of joint evidence in the previousn − 1 operations. In this case, the

system learns a distinct weight for each substring of the joint n-gram instead of a weight

for each generative jointn-gram probability.

60

Figure 4.8: System accuracy as a function of the beam size.

In order to accommodate higher-order jointn-grams, a beam search is used instead

of an exact phrase-based decoder presented in Section 4.2.4.A beam search decoder is a

heuristic search that limits its exploration space to its beam size. Unlike the phrase-based

decoder, it does not guarantee finding the optimal solution.It visits each state and keeps

only theK best states in a priority queue. Only theK best states in the queue are ex-

panded to subsequenceK best states (from left to right); therefore, not all possible states

are considered– only the promising ones. The computationalcomplexity of the beam search

does not grow with the value of the Markov order. For all cases, the complexity of decoding

isO(K∗P ∗n), whereK is the beam size,P is phoneme options, andn is grapheme length.

In the exact algorithm, the complexity becomesO(PM+1 ∗n), whereM is the value of the

Markov order. Using the beam search in the model can be considered a trade-off between

search accuracy and the capability of the model to explore ina higher-order Markov space.

The value ofK in the beam search controls the size of the search history; this impacts the

solution quality. This value is difficult to predict optimally. In practice, the value ofK is

set using a development set. Figure 4.8 shows the system performance in terms of the word

accuracy as a function of the beam size on a development set. The performance starts to

converge quickly and shows no further improvement for values grater than20. At a beam

size equal to 20, the system obtains69.07% word accuracy which is slightly lower than the

word accuracy achieved by the exact algorithm at69.13%.

Figure 4.9 shows the word accuracy with different values ofn in the online discrimina-

tive system that includesonly the jointn-gram features. The accuracy reaches a maximum

for n = 4, and actually falls off for larger values ofn. This is likely caused by the model

using its expanded expressive power to memorize sequences of operations, overfitting the

training data. Such overfitting is less likely to happen in the generative jointn-gram model,

61

Figure 4.9: System accuracy as a function ofn-gram size.

Data set Training size DirecTL+ DirecTL Jointn-gram
Celex 40K 89.23 88.54 88.58
CMUdict 106K 76.41 75.41 75.47
OALD 57K 85.54 82.43 82.51
NETtalk 19K 73.52 70.18 69.00
Brulex 25K 95.21 95.03 93.75

Table 4.10: Grapheme-to-phoneme conversion accuracy.

which smooths higher-order estimates very carefully.

To directly compare results with the generative jointn-gram model of Bisani and Ney

[2008], I follow exactly the same data splits as used in theirpublication. The data sets

include English Celex, NETtalk, OALD, CMUdict, and French Brulex. The training sizes

range from 19K to 106K words.

Table 4.10 shows the performance of the DirecTL and DirecTL+systems in comparison

with the jointn-gram approach. DirecTL refers to the system described in Section 4.2. It

includes only context, transition and linear-chain features as in Table 4.4. DirecTL+ is the

DirecTL system that includes the jointn-gram features as presented in Table 4.9, in addition

to the existing feature sets. The DirecTL+ model uses a beam search with a beam size of

50, joint 6-gram features (5th Markov order). Other parameters are set on the respective

development sets. The full DirecTL+ system outperforms both DirecTL and the jointn-

gram model on all data sets. DirecTL+ improves system performance over DirecTL by

adding the jointn-gram features. The relative error deductions ranged from 3.6% to 17.3%,

establishing a new state-of-the-art for the task.

62

4.6 Summary

I presented grapheme chunking model that incorporates many-to-many alignments into ex-

isting classification-based G2P conversion systems. The chunking model aims to dynam-

ically discover double graphemes in the testing words, so that they are pre-processed and

segmented in accordance with the alignments in the trainingdata. Applying the chunk-

ing model and many-to-many alignments to the instance-based learning classifier enables

improvements ranging from 2.7% to 7.6% over the baseline system in absolute word accu-

racies. To further improve the classification performance,a language model is applied as a

post-processing step to guide the model to natural output sequences. Improvements of 1%

to 2% in absolute word accuracies are achieved. These improvements illustrate the power

of models that consider G2P conversion as a sequence prediction problem.

Although the proposed approach shows improvement over classification-based approaches

in the literature, it suffers from disjointly modeling eachcomponent. Like other pipeline

systems, errors made in earlier components are forwarded tothe next stage. It is unlikely

that later processes can recover or even be aware of these earlier errors. The joint pro-

cessing approach, DirecTL, is proposed to collapse a pipeline process. By unifying all the

models in this pipeline process prevents propagation of errors. The chunking and language

models are collapsed into one single model via a phrase-based decoder. The decoder si-

multaneously searches for the best grapheme segments and the most likely sequence of

phonemes. The language model is implicitly included as features information. The fea-

tures include wide context sourcen-grams, output transition and linear-chain features. The

system trains feature weights using the max-margin online discriminative algorithm based

on MIRA [Crammer and Singer, 2003]. At the time, DirecTL surpassed all state-of-the-art

results on the CELEX, Nettalk, CMUDict and Brulex data sets.Its improvements ranged

from 2% to 8% in absolute word accuracies.

Lexical and phonemic stress markers were also incorporatedinto the DirecTL system

to further improve the grapheme generation performance andto generate more complete

outputs for text-to-speech systems. Adding lexical stressimproves overall performance by

directly providing extra stress information on the graphemes, so the system is aware of

stress information during generation. The experiments demonstrate better results for the

proposed system than the widely used speech synthesis system, Festival.

In addition, an algorithm for training without alignments in DirecTL is presented to ex-

plore an alternative paradigm. Grapheme-to-phoneme alignments can be viewed as latent

63

variables in the learning model. The training algorithm is composed of two state training

components: (1) finding the best hidden structure given the current feature weights, and

(2) updating the feature weights using the current best hidden structures. Unlike results re-

ported in other domains, here the latent alignment model does not improve over the DirecTL

system that trains with fixed hidden structures found by m2m-aligner.

Finally, DirecTL+ is proposed as an extension to DirecTL. DirecTL+ combines the

well-known jointn-gram model for G2P with the DirecTL system. The system incorporates

the jointn-gram information as new features and applies a beam search in place of the exact

algorithm. Empirical results show that the combined systemoutperforms both DirecTL and

the joint n-gram model of Bisani and Ney [2008], establishing a new state-of-the-art for

G2P conversion.

64

Chapter 5

Transliteration

Transliteration plays an important role in many natural language processing systems, es-

pecially in Machine Translation (MT) and Cross Language Information Retrieval (CLIR).

Unlike translation, transliteration is the task of converting a given name from one (source)

language to a phonetically equivalent name in another (target) language. An exact phonetic

equivalence between two languages may not be possible due todifferences in their phoneme

sets. Approximate phonetic equivalences are generally acceptable as transliterations. These

desired transliteration is usually based on human intuition as to the equivalent of a source

language name in the target language [Li et al., 2009]. It is achallenging task because the

input and output languages use different writing and sound systems. The problem requires

even more precision when one transliterates a language namewritten in another language

back to its original language, which is called “back-transliteration”. The evaluation of the

back-transliteration task is usually less forgiving because each input often refers to only one

exact spelling in the original language.

Many techniques have been proposed for transliteration andback-transliteration [Kle-

mentiev and Roth, 2006, Knight and Graehl, 1998, Li et al., 2004, Sproat et al., 2006, Ze-

lenko and Aone, 2006]. Recently, these problems have received a lot of attention in the NLP

community resulting in two consecutive years of shared tasks on name transliteration at the

Annual meeting of the association for Computational Linguistics (ACL) conferences [Ku-

maran et al., 2010, Li et al., 2009, 2010]. These shared taskscan be categorized into two

different tasks: (1) name transliteration generation, and(2) name transliteration mining.

Name transliteration generation task focuses on training asystem to generate a target lan-

guage names given a source language name, while a system in the mining task identifies a

list of transliteration pairs given parallel text written in both languages.

In this chapter, I apply the DirecTL approach (Chapter 4) to name transliteration, specif-

65

ically to the NEWS 2009 and 2010 shared tasks. DirecTL-basedapproaches for name

transliteration generation are described in Section 5.1. This is joint work with Aditya

Bhargava, Qing Dou, Kenneth Dwyer, Mi-Young Kim and Grzegorz Kondrak, published

in [Jiampojamarn et al., 2009, 2010b]. The language-specific approaches for name translit-

eration presented in Section 5.1.3 were mainly contributedby Aditya Bhargava, Qing Dou,

Mi-Young Kim and Grzegorz Kondrak. These approaches enhance the DirecTL frame-

work by incorporating language-specific knowledge. I present name transliteration mining

in Section 5.2. This is joint work with Shane Bergsma, Qing Dou, Kenneth Dwyer, and

Grzegorz Kondrak published in [Jiampojamarn et al., 2010b]. Five main systems partici-

pated to the shared task from the University of Alberta. The DirecTL systems were applied

as a generation-based approach to the mining task. The key idea is to mine transliteration

pairs based on how similar candidate words are to generated transliterations by DirecTL.

The NED, Bergsma and Kondrak [2007], StringKernel and StringMatch approaches were

contributed by Grzegorz Kondrak, Shane Bergsma, Kenneth Dwyer, and Qing Dou respec-

tively. StringMatch is an improved approach for extractingChinese candidate words when

using DirecTL+ as the transliteration generation model. I provide the summary of this

chapter in Section 5.3.

5.1 Transliteration generation

In principle, the task of name transliteration generation can be viewed as a similar task to

grapheme-phoneme conversion. A system learns from examples of source-target transliter-

ation pairs in training data and then generates target language names given source names at

the test time. Unlike G2P, both the inputs and outputs of nametransliteration systems are

represented in graphemes. The pronunciation of these graphemes, i.e. their corresponding

phonemes, are highly correlated. Previously, Knight and Graehl [1998] proposed a four-

stage cascade of finite-state transducers that connect graphemes of two languages with their

phoneme mappings. They developed an English-Japanese transliteration system consisting

of four models: (1) an English word model, (2) an English pronunciation model, (3) an

English-Japanese sound conversion model, and (4) a Japanese spelling model. This system

requires not only pronunciation dictionaries for both languages to train model 2 and model

4 but also, more importantly, example pairs of English and Japanese sounds to train model

3. A more attractive approach is to generate transliteration directly from graphemes with-

out converting to to phonemes at all. The joint source-channel model of [Li et al., 2004] is

66

trained to directly transduce graphemes of the source language to the target language. The

approach is similar to the jointn-gram model in G2P [Bisani and Ney, 2008]. Although the

joint source-channel model was originally proposed for English-Chinese name translitera-

tion, it is promising to apply the model to other language pairs due to the fact that it requires

only a set of transliteration examples without any other parallel data or dictionaries.

In the context of the Machine Transliteration Shared Tasks in the Named Entities Work-

shops, NEWS 2009 [Li et al., 2009] and NEWS 2010 [Li et al., 2010], the task is to develop

a machine transliteration system for one or more language pairs. A provided training set

consists of example pairs of transliteration names in source and target languages. In some

cases, there is more than one acceptable name given a source language name. These multi-

ple correct answers are due to spelling variations. Resultsthat are obtained from a system

that trains on only the provided data are referred to as “standard” results. These standard re-

sults ensure a meaningful performance comparison between the various proposed methods.

“Non-standard” results refer to results achieved by a system that uses other data, including

additional example pairs or linguistic resources.

Among the standard systems, in the transliteration generation task, phrase-based sta-

tistical machine translation [Koehn et al., 2003] was one ofthe most widely-used tech-

niques [Finch and Sumita, 2009, 2010, Noeman, 2009, Rama andGali, 2009, Song et al.,

2009, 2010]. Statistical machine translation is applied bysimply trading words in transla-

tion for characters in transliteration. Other systems [Aramaki and Abekawa, 2009, Shishtla

et al., 2009] adopted Conditional Random Fields (CRFs) [Lafferty et al., 2001], formulat-

ing the transliteration problem as a sequence labeling problem. Word alignment models

from machine translation, especially GIZA++ [Och and Ney, 2003] were commonly used

in these systems to find character alignments between the source and target training names.

The pairn-gram approach of Jansche and Sproat [2009] shares the same principle as the

joint n-gram model proposed in grapheme-to-phoneme conversion [Bisani and Ney, 2002,

2008] and the joint source-channel model of Li et al. [2004].As in other shared tasks,

combinations of several different models via re-ranking yield good performance [Das et al.,

2009, 2010, Finch and Sumita, 2010, Oh et al., 2009, Song et al., 2009].

Additional resources such as name dictionaries, pronunciation dictionaries, and addi-

tional training data from Linguistic Data Consortium, WWW search, and Wikipedia search

were applied in [Hong et al., 2009, Jansche and Sproat, 2009]. Among these resources, ad-

ditional lists of names extracted from WWW search and Wikipedia greatly improve translit-

eration performance to as much as 90% word accuracy over a standard system that achieves

67

Data set Data source Training Development Testing
EnHi Microsoft Research India 9,975 974 1,000
EnTa Microsoft Research India 7,974 987 1,000
EnKa Microsoft Research India 7,990 968 1,000
EnRu Microsoft Research India 5,977 943 1,000
EnCh Institute of Infocomm Research 31,961 2,896 2,896
EnKo CJK Institute 4,785 987 989
EnJa CJK Institute 23,225 1,492 1,489
JnJk CJK Institute 6,785 1,500 1,500

Table 5.1: Evaluation data sets used in NEWS 2009.

Data set Data source Training Development Testing
ArAe CJK Institute 25K 2.5K 2.5K
EnBa Microsoft Research India 10K 2K 2K
EnTh NECTEC 26K 2K 2K
ThEn NECTEC 24K 2K 2K
ChEn Institute of Infocomm Research 25K 5K 2K

Table 5.2: Additional evaluation data sets used in NEWS 2010.

60% word accuracy for English-Russian and English-Chineselanguage pairs [Jansche and

Sproat, 2009].

There were eight data sets used in the NEWS 2009 evaluation, from three different

sources: (1) Microsoft Research India, (2) Institute of Infocomm Research, and (3) CJK

Institute. The data sets are English-Hindi (EnHi), English-Tamil (EnTa), English-Kannada

(EnKa), English-Russian (EnRu), English-Chinese (EnCh),English-Korean (EnKo), English-

Japanese Katakana (EnJa) and Japanese Romaji to Japanese Kanji (JnJk). The training sets

consist of from 5K to 32K examples; the development and test sets consist of from 1K

to 3K names. Table 5.1 summarizes the data sets in the NEWS 2009 shared task. The

shared task makes no distinction between forward and backward transliteration; however, it

should be noted that the EnCh, EnKo, and EnJa data sets contain Western names (forward

transliteration), while the JnJk data set contains only native Japanese names (backward

transliteration). EnHi, EnTa and EnKa contain Indian and Western names of mixed origin.

In the NEWS 2010 shared task, there are 12 data sets including7 data sets (EnHi, EnTa,

EnKa, EnCh, EnKo, EnJa and JnJk) from NEWS 2009 and 5 new data sets: Arabic-English

(ArAe), English-Bangla (EnBa), English-Thai (EnTh), Thai-English (ThEn) and Chinese-

English (ChEn). Table 5.2 shows these additional five data sets. ChEn, EnTh and ThEn

contain Western names, while ArAe consists of Arabic originnames. Each of these sets

is thus exclusively either forward or backward transliteration. Like other Indian data sets

68

(EnHi, EnTa, EnKa), EnBa contains a mixed of Indian and Western names. For the data sets

from NEWS 2009, the training data contain both the training and development sets from

the previous year. The 2010 development sets are the 2009 test sets and the new test sets

are constructed from totally different sources. It is interesting to note that while all NEWS

2009 evaluation sets were randomly split to create training, development and testing sets,

the NEWS 2010 testing data are not necessarily from the same domain as the training and

development sets. The tasks have thus become more difficult but more realistic than the

previous year.

Each system is asked to provide a ranked list of up to 10 candidate answers for each

test name. Since a name may have multiple correct transliterations, especially in the for-

ward transliteration task, all reference answers are treated equally in the evaluation. The

transliteration results are evaluated using 6 different evaluation metrics including:

1. Word accuracy in top-1 (ACC) measures the correctness of the top-1 answer (the top

ranked answer in the list). The answer is considered to be correct if it completely

matches one of the transliteration names in the reference list. Equation 5.1 shows

the ACC calculation, whereN is the total number of names in the test set,ri,j is

the j-th reference transliteration for thei-th testing name,ci,k is thek-th candidate

transliteration for thei-th testing name.

ACC =
1

N

N
∑

i=i

{

1 if ∃ri,j : ri,j = ci,1
0 otherwise

(5.1)

2. Fuzziness in top-1 (Mean F-score) measures how different, on average, the top translit-

eration candidate is from its closest true transliterationin the reference list. The

F-score measurement is a function of precision and recall, calculated based on the

Longest Common Subsequence (LCS) between a candidate (c) and a reference (r):

LCS(c, r) =
1

2
(|c|+ |r| − ED(c, r)) (5.2)

where,ED(c, r) is the minimum edit distance betweenc andr, |c| and |r| are the

numbers of Unicode characters in stringc andr, respectively. The minimum edit

distance function uses an equal cost of adding, removing andreplacing a character.

The recall, precision and F-score for transliteration is evaluated using the following

69

equations:

R =
1

N

N
∑

i=1

LCS(ci,1, ri,m)

|ri,m|
(5.3)

P =
1

N

N
∑

i=1

LCS(ci,1, ri,m)

|ci,m|
(5.4)

F = 2
R ∗ P

R+ P
(5.5)

whereri,m is the reference thatci,i matches best in the reference list for thei-th test-

ing name. Since each transliteration name in the reference list is considered equally

correct, a candidate transliteration is evaluated based onthe reference answer that

gives the lowest minimum edit distance.

3. Mean Reciprocal Rank (MRR) measures the system’sn-best candidate answers.1
MRR

is roughly the average rank of the correct transliteration in then-best list. Like in

ACC, a candidate answer is correct if it matches any transliteration in the reference

list. An MRR close to 1 indicates that the correct answer is usually at the top of the

n-best list.

MRR =
1

N

N
∑

i=1

{

mink
1
k

∃ri,j, ci,k : ri,j = ci,k
0 otherwise

(5.6)

4. MAPref measures the precision of then-best candidate answers. If a system gener-

ates allni correct transliteration answers for thei-th source name in its topni-list,

then it receives a perfect MAP=1. The MAPref measurement is defined as:

MAPref =
1

N

N
∑

i=1

num(i, ni)

ni
(5.7)

wherenum(i, ni) is the number of correct transliterations for thei-the source name

in theni-best list, andni is the number of transliteration variations in the reference

list.

5. MAP10 is similar to MAPref but it is computed with respect to a fixed size (10-best)

list of candidates instead of using the number of correct transliteration names in the

reference (ni).

6. MAPsysis similar to MAPref but it is computed with respect to the size of candidate

list proposed by the system,Ki, instead of usingni or a fixed number.

70

5.1.1 Approaches to transliteration generation

Name transliteration generation is an example of a string transduction application. It is

closely related to grapheme-to-phoneme conversion by boththe structure of the problem

and the phonetic equivalence between source and target language names. In general, the

approaches proposed for transliteration generation are based on many-to-many alignments

(Chapter 3) and the generation models (Chapter 4). In the transliteration task, training data

consist of word pairs that map source language words to wordsin the target language. The

matching between character substrings in the source word and target word is not explicitly

provided. These hidden relationships are generally known as “transliteration alignments”.

It is the same situation as in the grapheme-phoneme alignment in G2P conversion. The

m2m-aligner can therefore be used to find the alignments in the training data.

Both DirecTL and DirecTL+ were applied to the NEWS 2009 and 2010 shared tasks [Ji-

ampojamarn et al., 2009, 2010b]. As in G2P, these systems train on many-to-many align-

ments via the online discriminative training framework using the margin-based method,

MIRA [Crammer and Singer, 2003]. A phrase-based decoder [Zens and Ney, 2004] is

applied to automatically find the best segmentations that generate the most likely output se-

quence. The transliteration models use the same feature templates as presented in Tables 4.4

and 4.9. Although most of the components of the G2P system canbe directly applied to

name transliteration, one major difference is how to efficiently train the model with multi-

ple target language names for each source name. This is equivalent to having pronunciation

variations in grapheme-to-phoneme conversion. Pronunciation variations were previously

ignored during training. The problem of multiple target language names is closely related to

multi-labeled classification problems [Elisseeff and Weston, 2001, Zhou and Zhang, 2006].

Section 5.1.2 describes the training method for DirecTL when there is more than one cor-

rect output in the training data. The proposed method is based on a loss function, over the

correct outputs and the predicted answers at each iteration.

Another key difference from G2P is the need for language-specific enhancements (Sec-

tion 5.1.3). These modifications are inspired by linguisticknowledge including an inter-

mediate phonetic representation for Chinese, Korean, and Japanese, and language origin

detection for Indian-related languages. Performance comparisons using these language-

specific approaches, as well as the official results of the NEWS shared tasks, are presented

in Section 5.1.4.

71

5.1.2 Training with multiple answers

One difficulty when DirecTL models are trained on the transliteration training data is

that each source language name may have multiple correct target language names. Unlike

the DirecTL models, the generative methods [Bisani and Ney,2008, Jansche and Sproat,

2009] have no difficulty to leverage multiple references in the probability models. In the

DirecTL, the complication is in the update stage. Equation 5.8 restates the update method,

whereαn is the updated weights,αo is the current weights,̂Tn is then-best system outputs,

Φ(s, t) is a set of features generated from the source language names and target language

namet, andℓ(t, t̂) is the loss function between the correct outputt and proposed output̂t.

minαn ‖ αn − αo ‖

subject to∀t̂ ∈ T̂n :

αn · (Φ(s, t)− Φ(s, t̂)) ≥ ℓ(t, t̂)

(5.8)

Previously, there was only one correct output sequencet for each inputs. The constraints

in the equation essentially consist of a list of features that differ between the correct and

incorrect outputs. Since it is possible in name transliteration to have more than one correct

target language name, one simple solution is to randomly choose a target language name

beforehand and ignore the rest. This solution simplifies thecomplexity of the problem but

sacrifices other potentially-useful ground truth information that the model could learn from.

Creating constraints for all pairs betweent̂ ∈ T̂n and t ∈ T ;whereT is the list of

correct transliterations, results in an unstable model that is unlikely to converge. Consider

an extreme case where the model produces an almost correct answert̂ which is close to one

target in the reference list,t1. The constraints consist of not only the differences between

Φ(s, t1) andΦ(s, t̂), but also other constraints for othert ∈ Tn, t 6= t1. Such essentially

unrelated constraints may be hard to satisfy simultaneously. In addition, the number of

constraints grows in the proportion to the Cartesian product |Tn|χ|T̂n|, instead of the size

of then-best list.

To incorporate all correct transliteration names into the learning model, I proposed a

loss-based selection method which dynamically choose an appropriate correct translitera-

tion name for each generated output. The model selects a correct transliterationt from the

reference listT such that it has the minimum loss to the candidatet̂. This loss criterion

is highly correlated to the evaluation matrices. When thereare multiple references, these

metrics reward a candidate that matches one of the transliteration names or has minimal

edit distance. The final update formulation is presented in Equation 5.9. The weights of

72

Strategy Top-1 word accuracy
Baseline 45.76
max score 45.87
min score 47.14
max loss 46.81
min loss 47.69

Table 5.3: Top-1 word accuracy performance of different training strategies on the EnJa
development set.

each proposed candidate in then-best list are updated toward the closest correct answert

for that candidate. The size of the constraints in the equation is in proportion to the size of

then-best list.
minαn ‖ αn − αo ‖

subject to∀t̂ ∈ T̂n : t = argmint′∈T ℓ(t′, t̂)

αn · (Φ(s, t)− Φ(s, t̂)) ≥ ℓ(t, t̂)

(5.9)

Alternatively, one can choose the correct answer,t, that provides the largest loss instead

of the minimum one, so that the training model can train on more difficult references in term

of the loss function. However, this training procedure is unstable as shown in the following

situation. Let’s assume that there are two correct answers,t1, t2 ∈ T , and, first, the training

model prefers the prediction output,t̂, which is close to the reference answert1 but the

training model updates the feature weightsα toward the referencet2 as it has a higher loss.

Later, after the update, the model would prefer to generate an outputt̂ that is close to the

reference answert2 and again it is forced to update the feature weights toward the reference

t1. These alternate updates between referencet1 andt2 lead to an unstable model during

training for each example.

Another possible solution is to choose references based on their model scores,α·Φ(s, t).

Selecting the reference that has the minimum model score guarantees to update the feature

weights to separate incorrect outputs,t̂ from the lowest bound of the correct outputs,t =

argmint′∈T α · Φ(s, t′). Similarly, this strategy can cause the alternate updates between

two references. For example, if a majority of training examples suggests the model to favor

the referencet1 in the example. At the update, the feature weights are forcedto update

toward the referencet2 since it has a lower model score than the referencet1. Therefore,

the alternate updates between two choices can occur over theoverall training examples

when the feature weights are updated in favor of the reference t1 on other examples in the

training set.

Table 5.3 shows top-1 word accuracies of the EnJa development set using different

training strategies discussed in this section. “Baseline”is a baseline system that selects

73

each target reference at random. The “max score” and “min score” strategies select each

target reference based on the maximum and minimum model scores respectively. Simi-

larly, the “max loss” and “min loss” strategies are based on the loss function. All train-

ing strategies which incorporate multiple references improve word accuracy performance

over the baseline system. Themin score strategy outperforms themax score criteria be-

cause it guarantees to update feature weights on the largestdifference of the feature values,

Φ(s, t) − Φ(s, t̂). Themin loss strategy obtains a better performance than themax loss

model because it avoids the alternate updates of multiple references. Themin loss model is

slightly better than themin score model since it updates the model toward the closest ref-

erence. It is less aggressive than themin score model that always updates with the largest

value of the feature differences.

5.1.3 Language-specific approaches to name transliteration

The DirecTL framework for name transliteration is a language independent approach.

The system learns to directly generate target language names without requiring specific lan-

guage knowledge. It transliterates substrings of characters from a source language to a tar-

get language regardless of whether the languages uses alphabetic, syllabic, or ideographic

scripts. Although the many-to-many alignment approach hasthe ability to find small units

of substrings that are sufficiently represent the scripts ofsource and target languages, it is

interesting to pre-process the non-alphabetic languages to be closer in form to an alphabetic

script. For the NEWS 2009 and NEWS 2010 shared tasks, we propose intermediate repre-

sentations for name transliteration in Chinese, Korean andJapanese. These three language

using non-alphabetic writing system.

Chinese Pinyin is the most common romanization system for Chinese Mandarin. It uses

the 26 letters of English alphabet to represent the sounds ofChinese Mandarin. Represent-

ing each Chinese character with Pinyin characters can help the model find better substring

alignments between Pinyin and English alphabets. Instead of finding English substrings

that align with individual Chinese characters, the model can generalize the mappings be-

tween Pinyin symbols and the English alphabet. This pre-processing approach significantly

reduces the number of distinct symbols in the target side: from 370 different Chinese char-

acters to 26 Pinyin symbols. The Chinese Pinyin pre-processing steps are only applied to the

alignment model for better generated alignments. The pre-processing steps for the English-

Chinese transliteration task are as follows: (1) Chinese characters are represented in their

74

corresponding Pinyin form via a standard conversion table,(2) Many-to-many alignments

are constructed on the English-Pinyin training data, (3) Pinyin characters are converted back

to their corresponding Chinese characters, (4) finally, thealigned English-Chinese data are

used to train the generation model.

Alternatively, one can use the Pinyin representation for both alignment and genera-

tion models. Such a system learns to generate sequences of Pinyin given English names.

Separate post-processing steps are required to transfer the Pinyin sequences back to the cor-

responding Chinese characters. However, converting back the imperfect sequences is not

a trivial task. One Chinese character usually corresponds to a combination of 3-4 Pinyin

symbols. To avoid further conversion errors, the Chinese Pinyin conversion is only applied

during the alignment process, during the training, where the reference Chinese names are

available.

Unlike Chinese, Korean characters can be decomposed into two or three components

called “Jaso”: an initial consonant, a middle vowel and optionally a final consonant. For

the English-Korean transliteration task, it is important to decompose the Korean symbols

into their corresponding Jaso. The conversion between Korean characters and their Jaso

components is a lossless process via a conversion table. Instead of training a transliteration

model on the original format, English-Jaso data are used to train the transliteration model.

After transliteration, the Jaso output is then converted back to Korean characters. It is

possible that a generated Jaso sequence can not be convertedback to Korean because of

system errors. However, simple correction rules are sufficient to convert the illegal Jaso

sequences to legal ones. The rules include (1) replacing twoconsecutive vowels with a

complex vowel, (2) inserting silent consonanto (i-eung) between two vowels, (3) inserting

a vowel - (eu) between two consonants or, for three consecutive consonants, placing the

vowel in the most probable position according to the training data. The system removes

any illegal Jaso sequence from itsn-best transliteration outputs that can not be recovered.

Although Japanese Katakana is often used for transcriptionof words from foreign lan-

guages, replacing each Katakana symbol with one or two English letters via a standard

romanization table helps in the alignments. The transliteration model is trained to generate

names written in romanized form. These forms are then converted back to their original

Japanese Katakana. Unlike Korean, most Katakana symbols are represented by single vow-

els or consonant-vowel pairs. The only apparent ambiguity involves the lettern, which can

either stand by itself or cluster with the following vowel letter. The system resolves this

ambiguity by always assuming the latter, unless the lettern occurs at the end of the word.

75

Only minority illegal sequences are generated by the transliteration system in itsn-best

outputs. The system takes a simple solution: it removes any sequence from the output list

that it is unable to convert back to Japanese Katakana.

Unlike Chinese, Korean and Japanese, Russian is an alphabetic writing system. It uses

a Cyrillic alphabet that is largely phonetic. It is relatively straightforward to convert the

Cyrillic script to the IPA representation. A conversion table is used for mapping between

Cyrillic and the IPA representation. There is no ambiguity in the backward or forward con-

version. This conversion is mostly for accommodating the ALINE algorithm that requires

both source and target names in the IPA representation (Section 3.2).

All transliteration data for Indian languages in the NEWS shared tasks consist of both

Western and Indian origin names. Therefore, the provided training data is a combination of

both forward and backward transliterations. This is a greatopportunity to explore whether

language-origin identification can result in better transliterations. The idea is to separate

the training data, and train one model for forward transliteration and another for back-

ward transliteration. We apply the language identificationmodel of Bhargava and Kondrak

[2010]. The system is based on support vector machines (SVMs); classification is trained

on a small number of examples manually tagged as being Indianor non-Indian in origin.

Instead of splitting the data into two disjoint sets, the identification model generate scores

for being a name of Indian or non-Indian origin. Then, a threshold value determines if the

given name should be excluded from the set. As a result, only the most likely Indian names

are excluded from the non-Indian set and vice versa. During testing, each transliteration

model generates a list of target transliterations given a source name. The two lists are com-

bined using a linear combination over the mean reciprocal ranks. The linear combination

weights are taken from the scores of the identification modelfor the source name, so that

the final results favor the corresponding model.

5.1.4 Summary of evaluation and results

The approaches are evaluated using the NEWS 2009 and NEWS 2010 name transliteration

generation tasks. The DirecTL system was mainly applied to the NEWS 2009 task and

the DirecTL+ system for the NEWS 2010 task the following year. The many-to-many

alignments were constructed by using two alignment approaches: (1) the m2m-aligner, and

(2) ALINE (Chapter 3). ALINE requires the IPA representations for both source and target

names. This limits the algorithm to some specific languages;for example, English, Russian,

Chinese Pinyin, and Japanese Katakana can be represented inthe Latin alphabet. Unlike

76

ALINE, the m2m-aligner produces alignments regardless of the written scripts used in the

languages.

For all the generation tasks, the provided data are preprocessed as follows:

1. converting all characters in the source word to lower case.

2. removing non-alphabetic characters unless they appear in both the source and target

words.

3. normalizing whitespace surrounding a comma, so that there are no spaces before the

comma and exactly one space following the comma.

4. separating multi-word name pairs into separate single-word name pair, using whites-

pace as the separator and assuming a monotonic matching. Anyexample that has a

different number of words in the source and target is discarded from the training set.

In the ArAe task, there are cases where an extra space is addedto the target names

when transliterating from Arabic to English; for example, “Al Riyard”, and “El Sayed”. In

order to prevent the pre-processing from removing too many examples, unequal matching

is allowed if the source name is a single word.

During testing, the pre-processing steps are applied in thesame manner. Transliteration

for multi-word names are generated from then-best answers of the single words by ranking

the combined scores that make up the test words.

Table 5.4 shows the results of the DirecTL system on the NEWS 2009 translitera-

tion generation tasks for English-Chinese (EnCh), English-Hindi (EnHi), English-Japanese

Katakana (EnJa), English-Korean (EnKo), English-Russian(EnRu), and Japanese Romaji-

Japanese Kanji (JnJk). “+INT(m2m)” refers to using the language-specific approaches pre-

sented in Section 5.1.3 with the m2m-aligner, while “+INT(ALINE)” refers to the same but

with the ALINE algorithm generating the alignments. “Combined” is a system combining

all available answers using a simple voting method. “+MC” inEnHi refers to using a man-

ual cleaning step performed by a Hindi speaker to fix about 43 transliteration pairs that have

a disagreement between the number of source and target words.

For all experiments, the system intentionally produces 10-best outputs without a mech-

anism to filter low-quality target names. Therefore, the MAP10 and MAPsys results are the

same. The language-specific approaches significantly improve the results for the EnCh task

but not for EnJa and EnRu. The results suggest that using an intermediate representation

77

Data set System ACC F-score MRR MAPref MAP10 MAPsys

EnCh DirecTL 0.717 0.890 0.785 0.717 0.237 0.237
+INT(m2m) 0.734 0.895 0.807 0.734 0.244 0.244
+INT(ALINE) 0.732 0.895 0.803 0.732 0.242 0.242
Combined 0.746 0.900 0.814 0.746 0.245 0.245

EnHi DirecTL 0.498 0.890 0.603 0.488 0.195 0.195
+MC 0.509 0.893 0.610 0.498 0.198 0.198

EnJa DirecTL 0.500 0.847 0.604 0.487 0.199 0.199
+INT(m2m) 0.492 0.843 0.597 0.478 0.198 0.198
+INT(ALINE) 0.510 0.848 0.614 0.496 0.202 0.202
Combined 0.505 0.850 0.616 0.493 0.204 0.204

EnKo DirecTL 0.387 0.693 0.469 0.387 0.146 0.146
EnRu DirecTL 0.613 0.928 0.696 0.613 0.212 0.212

+INT(m2m) 0.608 0.927 0.694 0.608 0.212 0.212
+INT(ALINE) 0.607 0.927 0.690 0.607 0.211 0.211
Combined 0.608 0.927 0.693 0.608 0.211 0.211

JnJk DirecTL 0.560 0.847 0.604 0.487 0.199 0.199

Table 5.4: Evaluation results on NEWS 2009 transliterationgeneration.

for Russian in fact degrades overall performance. EnJa results are improved from the base-

line DirecTL only when ALINE is used to generate alignments.The EnCh results illustrate

the advantage of using Pinyin representation. A large improvement of 3% absolute ACC is

achieved by representing Chinese symbols with Pinyin.

The EnHi results with manual cleaning method (EnHi+MC) givean indication of the

potential of DirecTL when it is trained on less-noisy data. The difference in ACC with

cleaning can be as much as 1% in absolute ACC.

Comparing the best results in the table to other systems reported in the NEWS 2009

transliteration shared task [Li et al., 2009], the DirecTL approach obtains the best results in

the EnCh, EnHi and EnRu tasks among 31 participating systems. Including the jointn-gram

features in DirecTL+ further improves performance to 0.742, 0.503 and 0.618 ACC on the

EnCh, EnHi and EnRu tasks, respectively, versus 0.717, 0.498 and 0.613 with DirecTL.

Table 5.5 shows the DirecTL+ results on the NEWS 2010 transliteration generation

task. The overall performance except for EnKo drops from theNEWS 2009 results. This

performance drop could be because the test sets in NEWS 2010 come from totally different

sources than the 2010 training and development sets. In NEWS2009, all training, develop-

ment, and test sets come from the same sources. Comparing to other systems participating

in the shared tasks, DirecTL+ is ranked either the first or second on all data sets.

Using the Pinyin representation for Chinese gives improvements over the baseline sys-

tem, but in smaller amounts compared to the NEWS 2009 results. “+LangID” refers to the

78

Data set ACC F-score MRR MAPref

EnCh 0.357 0.703 0.419 0.342
+INT(m2m) 0.360 0.707 0.429 0.345
+INT(ALINE) 0.362 0.704 0.429 0.348
Combine 0.363 0.707 0.430 0.348

ChEn 0.137 0.740 0.198 0.137
EnTh 0.378 0.867 0.467 0.378
ThEn 0.352 0.861 0.450 0.352
EnHi 0.456 0.884 0.559 0.456
+LangID 0.456 0.885 0.558 0.456

EnTa 0.390 0.891 0.512 0.390
EnKa 0.341 0.867 0.460 0.341
EnJa+INT(m2m) 0.398 0.791 0.507 0.398
EnKo+INT(m2m) 0.554 0.770 0.672 0.554
JnJk 0.126 0.426 0.201 0.127
ArAe 0.464 0.924 0.535 0.265
EnBa 0.395 0.877 0.512 0.395

Table 5.5: DirecTL+ results on the NEWS 2010 transliteration generation tasks.

system that applies the language identification model for the EnHi task. The system obtains

exactly the same ACC performance as the fully language-independent DirecTL+ approach.

On the other hand, the Korean Jaso approach greatly improvesoverall performance, by im-

proving as much as 17% in absolute ACC compared to the language independent approach.

5.2 Transliteration mining

Most of the data for the NEWS transliteration generation tasks ranges in size from 10-25K

pairs (Table 5.1 and Table 5.2). The coverage of languages islimited by the availability of

parallel names. Also the transliteration generation systems rely on parallel names in order to

develop and train the systems. The goal of the name transliteration mining task is to extract

name transliterations from parallel texts. In the NEWS 2010transliteration mining shared

task [Kumaran et al., 2010], a mining system is trained on a small list of transliterations for

a pair of source and target languages. The list is called “seed data”, typically contains about

1K name pairs. The trained system then identifies single wordtransliterations in standard

standard interlinked Wikipedia topics, called “WIL or Wikipedia Interlanguage Links”1.

The links connect articles on the same topic in multiple languages.

The task includes five language pairs: English-Chinese (WM-EnCh), English-Hindi

(WM-EnHi), English-Tamil (WM-EnTa), English-Russian (WM-EnRu), and English-Arabic

1http://en.wikipedia.org/wiki/Help:Interlanguage_links

79

(WM-EnAr). Each WIL data set consists of pairs of topic titles in the source and target lan-

guages. The task is to identify parts of the topics that are indeed transliterations. It is

possible that a WIL’s title may contain 0, 1 or more transliteration pairs. The number of

title pairs ranges between 10K and 200K titles. The task datado not include examples of

transliterations extracted from the WIL titles. The modelsmust be learned purely from the

seed sets. The seed sets are not necessarily from the Wikipedia domain. The test sets, how-

ever, are subsets of WIL data which have been hand labeled forevaluation. The test sets

comprise around 1K examples of WIL title pairs.

Precision (P), recall (R), and F-score (F1) are the evaluation matrices for the transliter-

ation mining task. These evaluation matrices are calculated from the numbers of true/false-

positive/negatives as follows:

P =
TP

TP + FP
(5.10)

R =
TP

TP + FN
(5.11)

F1 =
2 ∗ P ∗R

P +R
(5.12)

where,

• the true positives,TP , are the number of pairs that are identified by the system as

transliterations and which are also tagged in the gold standard transliteration pairs.

• the false positives,FP , are the number of pairs that are identified by the system as

transliterations but which are not tagged in the gold standard transliteration pairs.

• the false negative,FN , are the number of pairs that are not identified by the system

as transliterations but which are tagged in the gold standard as transliteration pairs.

5.2.1 Approaches to transliteration mining

For transliteration mining, approaches can be broadly categorized into (1) classification-

based and (2) generation-based methods. Classification-based approaches [Bergsma and

Kondrak, 2007, Klementiev and Roth, 2006] aim to build a binary classifier to identify

whether a candidate pair consisting of a source words and a target wordt is a translitera-

tion pair. Training binary classifiers requires positive and negative examples, i.e., pairs that

are transliterations and pairs that are not transliterations. For the NEWS 2010 task, the seed

data provide transliteration examples, and these examplescan be used as positive training

examples. For negative training examples, one possible approach is to randomly select un-

aligned target names in the seed data for each source name [Klementiev and Roth, 2006].

80

This random sampling method potentially generates “easy” negative examples which are

clearly not transliterations. To create “competitive” negative examples, Bergsma and Kon-

drak [2007] proposed selecting negatives based on a pair’s Longest Common Subsequence

Ratio (LCSR). Only negative examples that have an LCSR abovea threshold are included

as training examples.

Bergsma and Kondrak [2007] train a binary SVM classifier using substring alignment

features. The reported results are promising; however, thefeatures are limited to only those

substrings that are below a certain maximum size (three or four characters). This is because

the number of unique features increases exponentially as the substring size increases. To

extend this approach, one can use a string kernel function instead of an explicit feature

representation. One of the systems that the University of Alberta submitted to the NEWS

2010 transliteration mining shared task [Jiampojamarn et al., 2010b] is based on an SVM

model using a standardn-gram string kernel. The kernel function is defined as the total

number of commonn-grams that appear in both stringss and t. Eachn-gram count is

weighted by its length — a factor ofλn. The maximum length ofn-grams and the weight

factorλ are optimized using cross-validation.

A simple approach is to compute the string similarity between two strings via Nor-

malized Edit Distance (NED). NED is the edit distance function divided by the maximum

length of the two strings. NED is thus always between 0 and 1. Instead of expressing NED

as a distance function, a similarity expression can be achieved by subtracting the original

fraction from 1. In this way, NED is equal to 1 if the two strings are exactly identical; and 0

otherwise. Since the source and target languages may use different writing scripts, Roman-

ization is required for non-Latin scripts. A simple Romanization table can be obtained by

extracting the highest conditional probabilities from character alignments in seed data. The

character alignments can be generated with the m2m-aligner[Jiampojamarn et al., 2007] but

limiting the alignment size to be exactly one on both the source and target side. Essentially,

this alignment model is similar to the model of Ristad and Yianilos [1998]. Although the

simple Romanization table is not highly accurate, it requires no language-specific knowl-

edge. This approach can be viewed as a way to transliterate the target language name to

the source language name via a Romanization table. Then, thesystem’s decisions are based

on NED similarity. A transliteration is proposed if the NED value is above some threshold.

Without development sets, these thresholds are chosen according to the average word length

in the seed sets. The thresholds are higher for longer average word lengths and vice versa.

Generation-based approaches, on the other hand, generate transliterations for source or

81

target names and compares the generated names to the target or source names in the candi-

date list. Darwish [2010] proposed a generation-based transliteration mining system. The

system uses a generative Hidden Markov Model (HMM) to generate target language names

given source language names. The system identifies a candidate pair (s,t) as a translitera-

tion if the generation oft given s exactly matches the strings. This exact match criteria

provides high precision but low recall. To improve recall, amodified SOUNDEX scheme is

used when vowel mismatch is discarded and similar characters are conflated. The modified

SOUNDEX method thereby relaxes the constraint of exact match when the system makes

decisions. Recall is also further improved by using the transliteration pairs, found by the

original model, to re-train the HMM transliteration model.

Noeman and Madkour [2010] proposed a generation-based approach inspired by phrase-

based statistic machine translation [Koehn et al., 2003]. The system learns alignment model

from the seed data using GIZA++ [Och and Ney, 2003]. The list of character alignments

is represented as a finite state automaton. For a given sourcename, candidate translitera-

tions are generated within a certaink edits from the model output, and these candidates are

compared to the target language words.

5.2.2 Application of DirecTL+ to transliteration mining

A generation based approach for transliteration mining is to determine if the generated

transliterations of a source word̂t = F (s) and a target word̂s = B(t) are similar to

their corresponding words in a candidate pair(s, t). The state-of-the-art transliteration sys-

tem DirecTL+ can be applied to generate both forward and backward transliterations. The

system is trained on the seed sets which contain small lists,approximately 1K of parallel

names. This training creates theF (s) andB(t) models. To decide if the given candi-

date pair(s, t) is a transliteration pair, a score function (Equation 5.13)is calculated. The

candidate pair(s, t) is proposed as a transliteration ifSim(s, t) > τ .

Sim(s, t) =
w1 ·NED(t, t̂) + w2 ·NED(s, ŝ)

w1 +w2
(5.13)

NED(t, t̂) is the normalized edit distance between stringst and t̂. TheNED values

are expressed in a score function rather than a cost functionby subtracting the edit distance

values from 1.w1 andw2 are combination weights that favor the forward and backward

transliteration models. Ideally,τ, w1 , andw2 should be optimized on a development set.

Since the task provides no development set, one can optimizethese parameters by creating

negative examples [Klementiev and Roth, 2006] and taking positive examples from the seed

82

sets. However, this optimization is highly reliant on the seed sets whose data may not have

the same characteristics as the WIL’s titles. Alternatively, one can model the NED of word

pairs as a mixture model [Dinov, 2008] or consider the problem as clustering with two

clusters.

One important component in the generation-based approach is the extraction of source-

target candidate pairs from the WIL’s titles. Ultimately, the overall performance on the

end task depends on the quality of the candidate pairs extracted in the first place. For lan-

guages with explicit tokenization (e.g. English and Russian), word segmentation can be

performed using sequences of one or more spaces, as well as punctuation symbols includ-

ing hyphens, underscores, brackets, and other non-alphanumeric characters. The candidate

pairs are constructed by taking the cross product of the source and target language words

within the aligned WIL titles. However, for a language like Chinese when transliterated

names consist of multiple Chinese characters and when thesenames are not explicitly sep-

arated from other text, word segmentation becomes problematic. Fortunately, some WIL’s

titles include a separation symbol “·” on the target, Chinese side. In this case, word segmen-

tation can be based on the separation symbol. On other hand, when there is no indication of

word segmentation, Chinese candidate names can be constructed from all possiblen-grams

(2 ≤ n ≤ L), whereL is the length of the Chinese title under consideration. The highest

similarity score between thesen-grams and the source words, where the score is also above

a threshold value, is taken to indicate a transliteration pair. Like in the transliteration gener-

ation tasks, a Pinyin representation can be used as a source of additional information. Given

each English name, separate transliteration models generate Chinese characters and Pinyin.

The Chinese target names in the candidate list are also converted to Pinyin for comparison

with the generated outputs. For computing the similarity for non-pinyin output, Chinese

characters with similar sounds must be considered mismatches. The Pinyin representation

helps to identify similar sounds in the generated and candidate words.

5.2.3 Summary of evaluation and results

Table 5.6 reports the system performance evaluated on the NEWS 2010 transliteration min-

ing shared tasks [Kumaran et al., 2010]. These results were submitted to the shared tasks

as University of Alberta submissions. NED refers to the simple system that is based on

the Normalized Edit Distance between the romanization of the source and target candi-

date words. NED also incorporates sets of simple rules to identify non-transliteration pairs.

The rules include word lengths, capitalization, and numerical usage. Since there is no de-

83

velopment set provided, the threshold values are set based on the average word length in

the seed sets. The values are 0.38, 0.48, 0.52 and 0.58 for WM-EnHi, WM-EnAr, WM-

EnTa, and WM-EnRu. Bergsma and Kondrak [2007] is the SVM classifier with a linear

kernel function. The system uses features derived from alignments generated by the m2m-

aligner [Jiampojamarn et al., 2007]. StringKernel is an improved system that trains with

the string kernel function. DirecTL+ is a basic system that uses a fixed threshold value

(τ) of 0.58 and equally weights the forward and backward modelsin the linear combina-

tion (w1 = w2 = 1) for all data sets. “+ average cutting” indicates when the threshold

value τ is set at the point of average normalized edit distance plus astandard deviation

(τ = Avg. + SD). “+ oracle cutting” indicates that the threshold values isset at the peak

point of F-score performance. The “Oracle candidate” results are the upper bound of the

provided candidate list assuming the perfect precision performance. “StringMatch” indi-

cates the WM-EnCh system that utilizes then-gram matching method instead of the simple

tokenization used in the other language sets.

The NED system is simple but it achieves good performance across different language

pairs. It achieves the best result for the WM-EnRu task at 87.5% F-score. For all data

sets, StringKernel shows significant improvements over thesystem of Bergsma and Kon-

drak [2007]. These improvements indicate the power of usingthe string kernel function

instead of a linear representation for these tasks. The DirecTL+ performance depends on

the quality of the threshold value used to discriminate truetransliteration pairs from non-

transliterations. A threshold value of 0.58 is based on workmining cognates from word-

aligned bitexts, see [Bergsma and Kondrak, 2007, Melamed, 1999] This threshold provides

the best results on the WM-EnRu task compared to performanceat the “oracle cutting”

points. The average cutting method is a simple but efficient way to find the optimal thresh-

old for most language pairs. The difference in F-score between average cutting and oracle

cutting is less than 1% F-score for all language pair except WM-EnRu.

Figure 5.1 shows the histogram of NED values on the WM-EnAr candidate set. The

x-axis is the NED value and the y-axis is the number of occurrences in the set with 0.05

precision at each step. The 3rd degree polynomial approximation function suggests that

there are two distributions mixed in the data. The first vertical line from the left indicates

the cutting point at the average NED value. Each vertical line after the first is the cutting

point at the average NED value with an additional 0.5 standard deviations. Changing the

threshold value from left to right affects the trade-off between precision and recall. In

general, using the far left point as the threshold results inhigh recall but low precision. The

84

Figure 5.1: WM-EnAr histogram.

overall F-score results for each vertical line from left to right are 72.0%, 82.3%, 84.3%,

82.8% and 75.2% respectively.

Table 5.7 reports the results of using DirecTL+ with the average cutting method and

also alternative clustering methods on the WM-Ar task. The average cutting method simply

sets the cut-off threshold to the average of all similarity scores plus their standard deviation.

The alternative methods consider the separation task as a clustering problem. “1-d Beta

mixture model” divides the data into 2 clusters (transliterations and non-transliterations)

such that the clusters are best fit to two beta distributions.Similarly, “1-d Gaussian mixture

model” uses the Gaussian distribution as the base function.“Multivariate Gaussian mixture

model” uses the original NED scores of the forward and backward models as mixture di-

mensions instead of the combination score as given in Equation 5.13. “Simple K-means”

is a widely used algorithm for clustering problems. It creates two clusters such that the

summed Euclidean distances between each data point and its cluster centroid is minimized.

The simple average cutting method shows better overall performance than the other tech-

niques. The linear combination score yields better performance than modeling each score

in the multivariate mixture model. These results demonstrate the effectiveness of the av-

erage cutting point for separating true transliterations from non-transliterations. Although

the average cutting method achieves results that are close to the optimal results with respect

to the similarity function and threshold values, more sophisticated techniques and different

approaches that are not based on these threshold values are required to further improve the

clustering process.

85

The simple method for word segmentation is sufficient for creating candidate lists in

most languages, but not for WM-EnCh. The “oracle candidate”results for WM-EnRu,

WM-EnHi, and WM-EnTa are all above 99% F-score while the method achieves 95.5%

F-score on WM-EnAr. In general, for languages with words that can be tokenized by non-

alphabetic symbols, there is no difficulty in obtaining candidate word lists from the WIL

titles. On the other hand, the simple word tokenization method achieves only 22% oracle

F-score on the Chinese data. This low oracle performance prevents the baseline DirecTL+

system from obtaining a reasonable result, as the candidatepairs are so low-quality in the

first place. The generation model of the StringMatch method is based on the DirecTL+

system; however, it searches for the most likely transliteration pairs from the WIL titles

by greedily matching each source word to every possiblen-gram of Chinese target Pinyin,

from left to right. This method achieves clearly superior accuracy. StringMatch achieved

53% F-score which is substantially lower than other resultsobtained in other languages.

These performance gaps illustrate the complexity of a non-alphabetic language, and suggest

that the DirecTL+ generation and string similarity function are more suitable for alphabetic

languages than logosyllabic languages. Further research on non-alphabetic languages is

necessary to improve the overall performance.

Comparing to other reported results in the shared task [Kumaran et al., 2010], there is no

single approach that achieves the best results for all test sets. The NED system achieves the

best WM-EnRu result while StringKernel obtains the best WM-EnTa result. The DirecTL+

system with the average cutting method outperforms both NEDand StringKernel systems

on the WM-EnHi and WM-EnAr tasks; however, the best results reported on these sets

are from MINT for WM-EnHi [Udupa et al., 2008] (which trains on additional seed data

and achieves a 94.4% F-score) and from the system of Noeman and Madkour [2010] for

WM-EnAr (91.5% F-score).

5.3 Summary

I presented the DirecTL model for name transliteration, including applications to both

transliteration generation and mining. The transliteration generation task has the same ba-

sic principles as grapheme-to-phoneme conversion. The baseline idea of using DirecTL

is to replace the phoneme sequences in G2P with the target language symbols in translit-

eration. A method for multiple outputs is proposed to exploit examples where one source

language name may correspond to multiple correct target language names. The NEWS gen-

86

eration shared task results suggest that DirecTL is highly language-independent; it achieves

state-of-the-art performance without requiring additional resources nor language-specific

knowledge. However, making use of Chinese Pinyin and Jaso Korean are language-specific

modifications that improve performance over the baseline DirecTL systems. In both the

NEWS 2009 and NEWS 2010 transliteration shared tasks, DirecTL systems obtained either

the first or second best performance for most evaluated data sets. These successful results

confirm the power and generality of many-to-many alignmentsand the online discrimina-

tive training framework.

The DirecTL+ system for transliteration mining is a generation-based approach. The

key idea is to generate transliterations for both source andtarget language words. The iden-

tification of transliteration pairs is accomplished by seeing how similar the generated words

are to the candidates. The proposed approach achieves either comparable or better results

than a range of other systems including the NED, StringKernel and Bergsma and Kondrak

[2007] systems. The word segmentation problem in Chinese prevents simple tokenization-

based approaches from achieving acceptable quality in the extracted candidate word lists.

However, the greedy string-matching method obtains promising results, showing the ef-

fectiveness of a DirecTL system when a better quality set of extracted candidate words is

available.

87

Task System F-score Precision Recall

WM-EnRu NED 87.5 88.0 86.9
Bergsma and Kondrak [2007] 77.8 68.4 90.2
StringKernel 81.1 74.6 88.9
DirecTL+ 79.3 77.3 81.5

+ average cutting 78.0 68.3 91.0
+ oracle cutting 80.2 72.4 90.0

Oracle candidate 99.4 100 98.8
WM-EnHi NED 90.7 87.5 94.1

Bergsma and Kondrak [2007] 88.2 88.3 88.0
StringKernel 92.4 95.4 89.5
DirecTL+ 91.4 96.6 86.7

+ average cutting 93.6 94.0 93.1
+ oracle cutting 93.7 90.6 96.9

Oracle candidate 99.7 100 99.4
WM-EnTa NED 79.1 91.6 69.6

Bergsma and Kondrak [2007] 82.9 80.8 85.2
StringKernel 91.4 92.3 90.6
DirecTL+ 86.0 95.4 78.3

+ average cutting 91.2 89.7 92.6
+ oracle cutting 91.9 89.3 94.8

Oracle candidate 99.8 100 99.7
WM-EnAr NED 80.0 81.8 78.3

Bergsma and Kondrak [2007] 81.6 83.4 79.8
StringKernel 82.7 91.7 75.3
DirecTL+ 82.6 88.1 77.8

+ average cutting 84.3 81.8 87.0
+ oracle cutting 84.7 83.1 86.3

Oracle candidate 95.5 100 91.4
WM-EnCh StringMatch 53.0 69.8 42.7

DirecTL+ 0.09 0.45 0.05
Oracle candidate 22.0 100 12.2

Table 5.6: Transliteration mining results.

System F-score Precision Recall
Average cutting 84.3 81.8 87.0
1-d Beta mixture model 80.0 72.8 88.8
1-d Gaussian mixture model 78.2 69.8 88.9
Multivariate Gaussian mixture model 76.8 66.8 90.5
Simple K-means 83.2 79.4 87.4

Table 5.7: DirecTL+ with average cutting and other clustering methods on the WM-EnAr
task

88

Chapter 6

Conclusion

In this thesis, I presented approaches to the grapheme-to-phoneme conversion and name

transliteration tasks. My contributions can be directly applied in two main applications: (1)

text-to-speech and (2) machine translation. In text-to-speech application, pronunciation of

common words can be largely found in a lexicon inventory. Automatic phoneme generation

is required only when words to be synthesized are not listed in the inventory. The DirecTL

system plays an important role in synthesizing these words including proper names, mis-

spellings and uncommon words. In machine translation application, the DirecTL system

can be applied to transliterate proper names that are left from a translation model due to the

fact that these proper names cannot be translated by their meanings.

My research contributions are in both alignment and generation techniques. I first pro-

posed the many-to-many alignment algorithm to improve overthe one-to-one alignments

that have been widely used in G2P conversion. The many-to-many alignment algorithm

relaxes the one-to-one constraint that limits the size of grapheme and phoneme sequences

being aligned. I investigated several alternative alignment methods in attempting to improve

both alignment and generation performances. These alternative methods include phonetic

alignment, ALINE, based on [Kondrak, 2000], integer linearprogramming–inspired by the

minimal model of [Ravi and Knight, 2009], and alignment-by-aggregation approaches. I

conducted an in-depth study to evaluate these alignment techniques compared to the exist-

ing one-to-one alignment methods.

To incorporate the many-to-many alignments, I presented grapheme chunking and post-

processing language models that incorporate the many-to-many alignments into existing

classifiers. The proposed approach connects each componentin a pipeline framework. I

demonstrated that the proposed system outperforms existing systems based on one-to-one

alignments, although the proposed pipeline framework potentially allows a propagation

89

of errors. I collapsed the pipeline framework and proposed joint processing and online

discriminative training for G2P. The joint approach simultaneously finds the most likely

grapheme subsequences that generate the most likely phoneme sequence outputs via a

phrase-based decoder [Zens and Ney, 2004]. I presented the online discriminative train-

ing framework that is based on the online large margin training technique [Crammer and

Singer, 2003]. The online large margin technique significantly improves performance over

the simple averaged perceptron of Collins [2002]. I combined the proposed G2P approach

with a state-of-the-art stress assignment system and demonstrated several combination tech-

niques, including the joint, pre-processing and post-processing methods. I further investi-

gated a training paradigm that requires no alignments in thetraining data; this training

method is inspired by the end-to-end approach of Liang et al.[2006]. The experimental

results demonstrated that the end-to-end approach is no better than the joint approach that

incorporates the many-to-many alignments. I also integrated the generative jointn-gram

approach [Bisani and Ney, 2008] into the discriminative approach via a feature template.

Additionally, I proposed an approximate beam search in place of the exact phrase-based de-

coder and showed that the integrated system outperforms both the generative jointn-gram

and the original discriminative approaches.

I applied this successful G2P system to name transliteration tasks in the NEWS 2009

and 2010 Machine Transliteration Shared Tasks [Kumaran et al., 2010, Li et al., 2009,

2010]. I developed language-independent transliterationgeneration systems. I evaluated

the language-independent systems as well as ones with language-specific pre-processing.

The experimental results illustrated that the pre-processing does not always help in several

language pairs. The language-specific processes only help to better represent training data

for alignment and generation tasks for certain writing systems; e.g., Chinese, Korean and

Japanese. I proposed a transliteration mining system that is based on the generation sys-

tem in which similarity is measured between generated transliterations and transliteration

candidate words. The final system demonstrated state-of-the-art performance in the NEWS

shared tasks in both transliteration generation and transliteration mining.

Future Work

In Chapter 3, I proposed a many-to-many alignment method to improve on the existing

one-to-one alignment methods and later proposed alternative alignment methods to further

improve the EM-based alignment algorithm. One research direction is to investigate the use

of Bayesian inference [Chiang et al., 2010, Goldwater and Griffiths, 2007] for grapheme-

90

to-phoneme alignments as well as for name transliteration alignments. An ideal alignment

model should provide a compact model size, and good data likelihood. While the EM-

based alignment approaches optimize directly to obtain thehighest data likelihood, it suffers

from creating unnecessary alignment links and overfits the training data. Another research

direction is to investigate a discriminative training method for finding alignments and also

to extend it to a higher Markov model [McCallum et al., 2005].

The DirecTL systems proposed in Chapter 4 are based on character substring features

in both input and output spaces. The learning model obtains information from substring

evidence in the training data without linguistic information. For G2P, stress, syllabification

and morphological constraints can help to further improve the overall performance [Bartlett

et al., 2008, Demberg et al., 2007, Marchand and Damper, 2006]. It is an interesting re-

search direction to further investigate useful linguisticfeatures and incorporate them in the

generation model. One potential approach is to re-rank the current system output using full-

word linguistic information. The experimental results shown in Figure 4.7 indicate that 98%

of correct sequence outputs can be achieved in the top 50 answers. from a model trained on

only half of the training data. One difficulty in this future work is how to re-rank then-best

list output in a way that more correct answers appear at the top of the list. Among oth-

ers, linguistic information presents a promising set of features that can guide the re-ranking

model to obtain better performance. In addition to linguistic information, another possible

way to re-rank then-best outputs is to observe the similarity of each output sequence with

other sequences in then-best list, i.e., to apply Minimum Bayes-risk decoding [Goel and

Byrne, 2000]. This approach has helped automatic speech recognition [Goel and Byrne,

2000] and machine translation [Kumar and Byrne, 2004]. However, it showed no improve-

ment in dependency parser [Smith and Smith, 2007]. It is worth to investigate if Minimum

Bayes-risk decoding can help grapheme-to-phoneme conversion and name transliteration

tasks.

In Chapter 5, I presented a generation-based approach for the name transliteration min-

ing tasks. The system’s performance is largely dependent ontwo factors: (1) the quality

of extracted candidate lists, and (2) choosing an optimal threshold value. With regards

to the first factor, the simple tokenization-based approachprovides reasonable candidate

lists for several languages where the word segmentation problem does not exist in their

writing systems. However, simple methods provide ineffective results in Chinese. Word

segmentation [Jiang et al., 2008, Zhang and Clark, 2008] forthese languages will be re-

quired in order to obtain good quality in the extracted candidate lists. In addition, the best

91

performance achieved in WM-EnCh with the StringMatch method is significantly lower

than the other languages leaving opportunities in future works to improve not only the seg-

mentation but also the generation and string similarity functions. Regarding choosing an

optimal threshold, while the simple average cutting method(Section 5.2.3) provides near-

optimal solutions, it would be interesting to find the globaloptimal point that separates non-

transliteration pairs and true transliteration pairs without requiring training or development

sets. In this thesis, I illustrated how to extend the DirecTLframework for transliteration

mining. The proposed technique is simple but yet effective to achieve the state-of-the-art

performance. In future works, it is interesting to explore other sophisticated techniques that

directly aim for transliteration mining.

92

Bibliography

David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms.
Machine Learning, 6(1):37–66, 1991. ISSN 0885-6125.

Eiji Aramaki and Takeshi Abekawa. Fast decoding and easy implementation: Translitera-
tion as sequential labeling. InProceedings of the 2009 Named Entities Workshop: Shared
Task on Transliteration (NEWS 2009), pages 65–68. Association for Computational Lin-
guistics, 2009.

Harald Baayen, Richard Piepenbrock, and Leon Gulikers. TheCELEX2 lexical database.
LDC96L14, 1996.

Paul C. Bagshaw. Phonemic transcription by analogy in text-to-speech synthesis: Novel
word pronunciation and lexicon compression.Computer Speech and Language, 12(2):
119–142, 1998.

Susan Bartlett, Grzegorz Kondrak, and Colin Cherry. Automatic syllabification with struc-
tured SVMs for letter-to-phoneme conversion. InProceedings of ACL-08: HLT, pages
568–576. Association for Computational Linguistics, 2008.

Shane Bergsma and Grzegorz Kondrak. Alignment-based discriminative string similarity.
In Proceedings of the 45th Annual Meeting of the Association ofComputational Linguis-
tics, pages 656–663. Association for Computational Linguistics, 2007.

Shane Bergsma and Qin Iris Wang. Learning noun phrase query segmentation. InEMNLP-
CoNLL, pages 819–826. Association for Computational Linguistics, 2007.

Dimitri P. Bertsekas.Nonlinear Programming. Athena Scientific, 2 edition, 1999.

Aditya Bhargava and Grzegorz Kondrak. Language identification of names with SVMs.
In Human Language Technologies: The 2010 Annual Conference ofthe North American
Chapter of the Association for Computational Linguistics, pages 693–696. Association
for Computational Linguistics, 2010.

Maximilian Bisani and Hermann Ney. Investigations on joint-multigram models for
grapheme-to-phoneme conversion. InProceedings of the 7th International Conference
on Spoken Language Processing, pages 105–108, 2002.

Maximilian Bisani and Hermann Ney. Joint-sequence models for grapheme-to-phoneme
conversion.Speech Communication, 50(5):434–451, 2008. ISSN 0167-6393.

Alan W. Black, Kevin Lenzo, and Vincent Pagel. Issues in building general letter to sound
rules. InThe Third ESCA Workshop in Speech Synthesis, pages 77–80, 1998.

Antal Van Den Bosch and Sander Canisius. Improved morpho-phonological sequence pro-
cessing with constraint satisfaction inference.Proceedings of the Eighth Meeting of the
ACL Special Interest Group in Computational Phonology, SIGPHON ’06, pages 41–49,
2006.

93

Antal Van Den Bosch and Walter Daelemans. Do not forget: Fullmemory in memory-based
learning of word pronunciation. InProceedings of NeMLaP3/CoNLL98, pages 195–204,
Sydney, Australia, 1998.

Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel. Representations of quasi-newton
matrices and their use in limited memory methods.Math. Program., 63(2):129–156,
1994. ISSN 0025-5610.

Yair Censor and Stavros A. Zenios.Parallel Optimization: Theory, Algorithms, and Appli-
cations. Oxford University Press, 1997. ISBN 978-0195100624.

Stanley F. Chen. Conditional and joint models for grapheme-to-phoneme conversion. In
Proceedings of the Eurospeech 2003, 2003.

David Chiang, Jonathan Graehl, Kevin Knight, Adam Pauls, and Sujith Ravi. Bayesian
inference for finite-state transducers. InHuman Language Technologies: The 2010 An-
nual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 447–455. Association for Computational Linguistics, 2010.

N. Chomsky and M Halle. The sound pattern of English.Harper and Row, New York, 1968.

John Coleman. Improved prediction of stress in out-of-vocabulary words. InIEEE Seminar
on the State of the Art in Speech Synthesis, 2000.

Michael Collins. Discriminative training methods for Hidden Markov Models: theory and
experiments with perceptron algorithms. InEMNLP ’02: Proceedings of the ACL-02
conference on Empirical methods in natural language processing, pages 1–8, 2002.

A. Content, P. Mousty, and M. Radeau. Brulex. une base de données lexicales informatisée
pour le franais écrit et parlé (Brulex, a lexical databasefor written and spoken French).
L’ Année Psychologique, 90:551–566, 1990.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass prob-
lems.The Journal of Machine Learning Research, 3:951–991, 2003. ISSN 1533-7928.

Walter Daelemans and Antal Van Den Bosch. Language-independent data-oriented
grapheme-to-phoneme conversion. InProgress in Speech Synthesis, pages 77–89.
Springer-Verlag, New York, USA, 1997.

Walter Daelemans, Jakub Zavrel, Ko Van Der Sloot, and Antal Van Den Bosch. TiMBL:
Tilburg Memory Based Learner, version 5.1, reference guide. In ILK Technical Report
Series 04-02, 2004.

R. Damper and J. Eastmond. Pronunciation by analogy: impactof implementational choices
on performance.Language and Speech, 40(1):1–23, 1997.

R. I. Damper, Y. Marchand, M. J. Adamson, and K. Gustafson. Evaluating the pronunciation
component of text-to-speech systems for English: A performance comparison of different
approaches.Computer Speech and Language, 13(2):155–176, 1999.

Robert I. Damper, Yannick Marchand, John DS. Marsters, and Alexander I. Bazin. Align-
ing text and phonemes for speech technology applications using an EM-like algorithm.
International Journal of Speech Technology, 8(2):147–160, 2005.

Kareem Darwish. Transliteration mining with phonetic conflation and iterative training. In
Proceedings of the 2010 Named Entities Workshop, pages 53–56. Association for Com-
putational Linguistics, 2010.

Amitava Das, Asif Ekbal, Tapabrata Mondal, and Sivaji Bandyopadhyay. English to Hindi
machine transliteration system at NEWS 2009. InProceedings of the 2009 Named Enti-
ties Workshop: Shared Task on Transliteration (NEWS 2009), pages 80–83. Association
for Computational Linguistics, 2009.

94

Amitava Das, Tanik Saikh, Tapabrata Mondal, Asif Ekbal, andSivaji Bandyopadhyay. En-
glish to Indian languages machine transliteration system at NEWS 2010. InProceedings
of the 2010 Named Entities Workshop, pages 71–75. Association for Computational Lin-
guistics, 2010.

Vera Demberg, Helmut Schmid, and Gregor Möhler. Phonological constraints and morpho-
logical preprocessing for grapheme-to-phoneme conversion. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pages 96–103, 2007.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from incomplete
data via the EM algorithm. InJournal of the Royal Statistical Society, pages B:1–38,
1977.

Ivo Dinov. Expectation maximization and mixture modeling tutorial. In UC Los Angeles:
Statistics Online Computational Resource, 2008. URLhttp://escholarship.
org/uc/item/1rb70972.

Qing Dou. An SVM ranking approach to stress assignment. Master’s thesis, University of
Alberta, 2009.

Qing Dou, Shane Bergsma, Sittichai Jiampojamarn, and Grzegorz Kondrak. A ranking
approach to stress prediction for letter-to-phoneme conversion. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the4th International Joint
Conference on Natural Language Processing of the AFNLP, pages 118–126. Association
for Computational Linguistics, 2009.

Andre Elisseeff and Jason Weston. Kernel methods for multi-labelled classification and cat-
egorical regression problems. InIn Advances in Neural Information Processing Systems
14, pages 681–687, 2001.

H. Elovitz, R. Johnson, A. McHugh, and J. Shore. Letter-to-sound rules for automatic
translation of English text to phonetics.IEEE Transactions on Acoustics, Speech, and
Signal Processing, 24(6):446–459, 1976.

Herman Engelbrecht and Tanja Schultz. Rapid development ofan Afrikaans-English
speech-to-speech translator. InInternational Workshop of Spoken Language Translation
(IWSLT), Pittsburgh, PA, USA, 2005.

Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively trained,
multiscale, deformable part model. InProceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2008.

Andrew Finch and Eiichiro Sumita. Transliteration by bidirectional statistical machine
translation. InProceedings of the 2009 Named Entities Workshop: Shared Task on
Transliteration (NEWS 2009), pages 52–56. Association for Computational Linguistics,
2009.

Andrew Finch and Eiichiro Sumita. Transliteration using a phrase-based statistical machine
translation system to re-score the output of a joint multigram model. InProceedings of
the 2010 Named Entities Workshop, pages 48–52. Association for Computational Lin-
guistics, 2010.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron
algorithm.Machine Learning, 37:277–296, 1999.

Nagendra Goel, Samuel Thomas, Mohit Agarwal, Pinar Akyazi,Lukas Burget, Kai
Feng, Arnab Ghoshal, Ondrej Glembek, Martin Karafiat, Daniel Povey, Ariya Rastrow,
Richard C. Rose, and Petr Schwarz. Approaches to automatic lexicon learning with lim-
ited training examples. InThe 35th International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2010.

95

Vaibhava Goel and William J. Byrne. Minimum bayes risk automatic speech recognition.
In Computer Speech and Language, pages 115–135, 2000.

Sharon Goldwater and Tom Griffiths. A fully bayesian approach to unsupervised part-
of-speech tagging. InProceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 744–751. Association for Computational Linguistics,
2007.

Gumwon Hong, Min-Jeong Kim, Do-Gil Lee, and Hae-Chang Rim. Ahybrid approach to
English-Korean name transliteration. InProceedings of the 2009 Named Entities Work-
shop: Shared Task on Transliteration (NEWS 2009), pages 108–111, Suntec, Singapore,
August 2009. Association for Computational Linguistics.

International Phonetic Association.Handbook of the International Phonetic Association.
Cambridge University Press, 1999.

Martin Jansche and Richard Sproat. Named entity transcription with pair n-gram models.
In Proceedings of the 2009 Named Entities Workshop: Shared Task on Transliteration
(NEWS 2009), pages 32–35, Suntec, Singapore, August 2009. Associationfor Computa-
tional Linguistics.

Sittichai Jiampojamarn and Grzegorz Kondrak. Letter-phoneme alignment: An exploration.
In Proceedings of the 48th Annual Meeting of the Association for Computational Lin-
guistics, pages 780–788, Uppsala, Sweden, July 2010. Association for Computational
Linguistics.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek Sherif. Applying many-to-many
alignments and hidden markov models to letter-to-phoneme conversion. InHuman Lan-
guage Technologies 2007: The Conference of the North American Chapter of the As-
sociation for Computational Linguistics; Proceedings of the Main Conference, pages
372–379, Rochester, New York, USA, 2007.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz Kondrak. Joint processing and dis-
criminative training for letter-to-phoneme conversion. In The 46th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pages
905–913, Columbus, OH, USA, 2008.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou, Kenneth Dwyer, and Grzegorz Kon-
drak. DirecTL: a language independent approach to transliteration. InProceedings of
the 2009 Named Entities Workshop: Shared Task on Transliteration (NEWS 2009), pages
28–31. Association for Computational Linguistics, 2009.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz Kondrak. Integrating joint n-gram fea-
tures into a discriminative training framework. InHuman Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 697–700. Association for Computational Linguistics, 2010a.

Sittichai Jiampojamarn, Kenneth Dwyer, Shane Bergsma, Aditya Bhargava, Qing Dou, Mi-
Young Kim, and Grzegorz Kondrak. Transliteration generation and mining with limited
training resources. InProceedings of the 2010 Named Entities Workshop, pages 39–47.
Association for Computational Linguistics, 2010b.

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lü. A cascaded linear model for joint
Chinese word segmentation and part-of-speech tagging. InProceedings of ACL-08: HLT,
pages 897–904. Association for Computational Linguistics, 2008.

Thorsten Joachims. Making large-scale support vector machine learning practical. InAd-
vances in kernel methods: support vector learning, pages 169–184. MIT Press, 1999.

Thorsten Joachims. Optimizing search engines using clickthrough data. InKDD ’02: Pro-
ceedings of the eighth ACM SIGKDD international conferenceon Knowledge discovery
and data mining, pages 133–142. ACM, 2002.

96

Anne K. Kienappel and Reinhard Kneser. Designing very compact decision trees for
grapheme-to-phoneme transcription. InEUROSPEECH-2001, pages 1911–1914, 2001.

Alexandre Klementiev and Dan Roth. Named entity transliteration and discovery from
multilingual comparable corpora. InProceedings of the main conference on Human Lan-
guage Technology Conference of the North American Chapter of the Association of Com-
putational Linguistics, pages 82–88. Association for Computational Linguistics,2006.

Kevin Knight and Jonathan Graehl. Machine transliteration. Computational Linguistics, 24
(4):599–612, 1998.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation.
In NAACL ’03: Proceedings of the 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology, pages
48–54. Association for Computational Linguistics, 2003.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,Richard Zens, Chris Dyer,
Ondrej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit
for statistical machine translation. InProceedings of the 45th Annual Meeting of the
Association for Computational Linguistics Companion Volume Proceedings of the Demo
and Poster Sessions, pages 177–180. Association for Computational Linguistics, 2007.

John Kominek and Alan W Black. Learning pronunciation dictionaries: Language com-
plexity and word selection strategies. InProceedings of the Human Language Technology
Conference of the NAACL, Main Conference, pages 232–239, 2006.

Grzegorz Kondrak. A new algorithm for the alignment of phonetic sequence. InThe first
Meeting of the North American Chapter of the Association forComputational Liguistics,
pages 288–295. Association for Computational Linguistics, 2000.

Shankar Kumar and William Byrne. Minimum bayes-risk decoding for statistical machine
translation. InHLT-NAACL 2004: Main Proceedings, pages 169–176. Association for
Computational Linguistics, 2004.

A Kumaran, Mitesh M. Khapra, and Haizhou Li. Report of NEWS 2010 transliteration
mining shared task. InProceedings of the 2010 Named Entities Workshop, pages 21–28,
Uppsala, Sweden, 2010. Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. InICML ’01:
Proceedings of the Eighteenth International Conference onMachine Learning, pages
282–289. Morgan Kaufmann Publishers Inc., 2001.

Haizhou Li, Min Zhang, and Jian Su. A joint source-channel model for machine transliter-
ation. InProceedings of the 42nd Meeting of the Association for Computational Linguis-
tics (ACL’04), Main Volume, pages 159–166, 2004.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and Min Zhang.Report of NEWS 2009
machine transliteration shared task. InProceedings of the 2009 Named Entities Work-
shop: Shared Task on Transliteration (NEWS 2009), pages 1–18. Association for Com-
putational Linguistics, 2009.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir Pervouchine.Report of NEWS 2010
transliteration generation shared task. InProceedings of the 2010 Named Entities Work-
shop, pages 1–11. Association for Computational Linguistics, 2010.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and BenTaskar. An end-to-end dis-
criminative approach to machine translation. InProceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics, pages 761–768. Association for Computational Linguis-
tics, 2006.

97

Yannick Marchand and Robert I. Damper. A multistrategy approach to improving pronun-
ciation by analogy.Computational Linguistics, 26(2):195–219, 2000.

Yannick Marchand and Robert I. Damper. Can syllabification improve pronunciation by
analogy of English? Natural Language Engineering, 13(1):1–24, 2006. ISSN 1351-
3249.

Andrew McCallum, Kedar Bellare, and Fernando C. N. Pereira.A conditional random
field for discriminatively-trained finite-state string edit distance. InUAI, pages 388–395,
2005.

I. Dan Melamed. Bitext maps and alignment via pattern recognition. Computational Lin-
guistics, 25(1):107–130, 1999. ISSN 0891-2017.

Sara Noeman. Language independent transliteration systemusing phrase-based SMT ap-
proach on substrings. InProceedings of the 2009 Named Entities Workshop: Shared
Task on Transliteration (NEWS 2009), pages 112–115. Association for Computational
Linguistics, 2009.

Sara Noeman and Amgad Madkour. Language independent transliteration mining system
using finite state automata framework. InProceedings of the 2010 Named Entities Work-
shop, pages 57–61. Association for Computational Linguistics,2010.

Franz Josef Och. Minimum error rate training in statisticalmachine translation. In Erhard
Hinrichs and Dan Roth, editors,Proceedings of the 41st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 160–167, 2003.

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical align-
ment models.Computational Linguistics, 29(1):19–51, 2003.

Jong-Hoon Oh, Kiyotaka Uchimoto, and Kentaro Torisawa. Machine transliteration using
target-language grapheme and phoneme: Multi-engine transliteration approach. InPro-
ceedings of the 2009 Named Entities Workshop: Shared Task onTransliteration (NEWS
2009), pages 36–39. Association for Computational Linguistics,2009.

Steve Pearson, Roland Kuhn, Steven Fincke, and Nick Kibre. Automatic methods for lexical
stress assignment and syllabification. InICSLP, pages 423–426, 2000.

Vladimir Pervouchine, Haizhou Li, and Bo Lin. Transliteration alignment. InProceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, pages 136–144. Asso-
ciation for Computational Linguistics, 2009.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. InProceedings of the IEEE, pages 257–286, 1989.

Taraka Rama and Karthik Gali. Modeling machine transliteration as a phrase based statisti-
cal machine translation problem. InProceedings of the 2009 Named Entities Workshop:
Shared Task on Transliteration (NEWS 2009), pages 124–127. Association for Computa-
tional Linguistics, 2009.

Taraka Rama, Anil Kumar Singh, and Sudheer Kolachina. Modeling letter-to-phoneme
conversion as a phrase based statistical machine translation problem with Minimum Er-
ror Rate training. InProceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Associationfor Computational Lin-
guistics, Companion Volume: Student Research Workshop andDoctoral Consortium,
pages 90–95. Association for Computational Linguistics, 2009.

Sujith Ravi and Kevin Knight. Minimized models for unsupervised part-of-speech tagging.
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP, pages
504–512. Association for Computational Linguistics, 2009.

98

Korin Richmond, Robert A. J. Clark, and Sue Fitt. Robust LTS rules with the Combilex
speech technology lexicon. InProceedings of Interspeech, pages 1295–1298, 2009.

Eric Sven Ristad and Peter N. Yianilos. Learning string-edit distance.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(5):522–532, 1998.

Juergen Schroeter, Alistair Conkie, Ann Syrdal, Mark Beutnagel, Matthias Jilka, Volker
Strom, Yeon-Jun Kim, Hong-Goo Kang, and David Kapilow. A perspective on the next
challenges for TTS research. InIEEE 2002 Workshop on Speech Synthesis, 2002.

Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to pronounce
English text. InComplex Systems, pages 1:145–168, 1987.

Tarek Helmy Sherif. Substring-based transliteration. Master’s thesis, Department of Com-
puting Science, University of Alberta, 2007.

Praneeth Shishtla, Surya Ganesh V, Sethuramalingam Subramaniam, and Vasudeva Varma.
A language-independent transliteration schema using character aligned models at NEWS
2009. InProceedings of the 2009 Named Entities Workshop: Shared Task on Transliter-
ation (NEWS 2009), pages 40–43. Association for Computational Linguistics,2009.

David A. Smith and Noah A. Smith. Probabilistic models of nonprojective dependency
trees. InProceedings of the 2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pages 132–140. Association for Computational Linguistics, 2007.

Yan Song, Chunyu Kit, and Xiao Chen. Transliteration of nameentity via improved sta-
tistical translation on character sequences. InProceedings of the 2009 Named Entities
Workshop: Shared Task on Transliteration (NEWS 2009), pages 57–60. Association for
Computational Linguistics, 2009.

Yan Song, Chunyu Kit, and Hai Zhao. Reranking with multiple features for better translit-
eration. InProceedings of the 2010 Named Entities Workshop, pages 62–65, Uppsala,
Sweden, July 2010. Association for Computational Linguistics.

Richard Sproat, Tao Tao, and ChengXiang Zhai. Named entity transliteration with com-
parable corpora. InProceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,
pages 73–80. Association for Computational Linguistics, 2006.

J. Suontausta and J. Tian. Low memory decision tree method for text-to-phoneme mapping.
Automatic Speech Recognition and Understanding, 2003. ASRU ’03, pages 135–140,
2003.

Charles Sutton and Andrew McCallum. An introduction to conditional random fields for
relational learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical
Relational Learning. MIT Press, 2006.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-marginmarkov networks. InAd-
vances in Neural Information Processing Systems 16. MIT Press, 2004.

Paul Taylor. Hidden Markov Models for grapheme to phoneme conversion. InProceedings
of the 9th European Conference on Speech Communication and Technology, 2005.

Kristina Toutanova and Robert C. Moore. Pronunciation modeling for improved spelling
correction. InACL ’02: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pages 144–151, 2001.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structuredoutput spaces. InICML ’04:
Proceedings of the twenty-first international conference on Machine learning, page 104.
ACM, 2004. ISBN 1-58113-828-5.

99

Raghavendra Udupa, K. Saravanan, A. Kumaran, and JagadeeshJagarlamudi. Mining
named entity transliteration equivalents from comparablecorpora. InCIKM ’08: Pro-
ceeding of the 17th ACM conference on Information and knowledge management, pages
1423–1424. ACM, 2008. ISBN 978-1-59593-991-3.

Antal van den Bosch.Learning to pronounce written words: A study in inductive language
learning. PhD thesis, Universiteit Maastricht, 1997.

Gabriel Webster. Improving letter-to-pronunciation accuracy with automatic
morphologically-based stress prediction. InICSLP, pages 2573–2576, 2004.

Dmitry Zelenko and Chinatsu Aone. Discriminative methods for transliteration. InEMNLP,
pages 612–617, 2006.

Richard Zens and Hermann Ney. Improvements in phrase-basedstatistical machine trans-
lation. InHLT-NAACL 2004: Main Proceedings, pages 257–264, 2004.

Yue Zhang and Stephen Clark. Joint word segmentation and POStagging using a single
perceptron. InProceedings of ACL-08: HLT, pages 888–896. Association for Computa-
tional Linguistics, 2008.

Zhi-Hua Zhou and Min-Ling Zhang. Multi-instance multi-label learning with application
to scene classification. InNIPS, pages 1609–1616, 2006.

100

