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Abstract

Electron transport through disubstituted benzenedithiol (BDT) molecules 

bridging two electrodes was modeled using a combination of density 

functional theory and a non-equilibrium Green's function technique. For 

Au electrodes of 3x3 atomic cross-section, the BDT's with the electron 

donating groups (EDG) had higher conductance than those with electron 

withdrawing groups (EWG). The highest occupied molecular orbital 

contributes to transmission and it gets shifted closer to the Fermi level of 

the electrodes by EDG's. The conductance showed an excellent linear 

correlation with the substituent parameter crP and displayed negative 

differential resistance (NDR). The correlation and NDR were not found for 

electrodes of 5x5 cross-section showing they were due to the small size of 

the 3x3 electrodes. When A1 electrodes of 3x3 cross-section were used, a 

qualitatively different behaviour was found, the highest conductance was 

calculated for the benzenedithiols containing weak EWG's. An 

unoccupied molecular orbital was responsible for the transmission in this 

case.
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Chapter 1

Introduction

As the size of electronics approaches the physical limits of CMOS 

technology, a clear understanding of their operating features at the 

nanoscale m ust be achieved. The size limits of electronic components will 

be reached because quantum  effects begin to play an important role in 

structures on the size scale of several tens of nanometers. This size scale is 

known as the mesoscopic regime where classical laws of electricity such as 

Ohm's law no longer hold. In this regime the size of the device is 

comparable to, or smaller than, the de Broglie wavelength of the electron.

It has been suggested that organic molecules can be used as 

replacements to or in conjunction with conventional CMOS technology [1, 

2], The pioneering work in this area was made by Aviram and Ratner who

1
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showed that, in principle, a single molecule can act as a rectifier [3]. This 

prediction was verified experimentally 25 years later by Metzger et al. [4, 

5] when a zwitterionic molecule sandwiched between two electrodes gave 

evidence for electrical rectification. With the use of scanning tunnelling 

microscopy (STM), Piva et al. [6] demonstrated the ability to regulate the 

conductivity of a single molecule bound to silicon with an electric field 

emanating from a nearby charged dangling bond on the surface. These are 

just two examples of the progress that has been made in the development 

of basic electronic devices from molecules. One of the reasons why 

organic molecules are the prime candidates in the development of 

molecular electronic devices is because their properties can be widely 

varied and specifically tuned in order to design a molecule with desired 

electronic properties. Additionally, the chemical reactions used to make 

them are well understood and can often be subjected to self-assembly so 

that the product yields can be well controlled.

Studies in this area predominantly use the model of a molecule (or 

nanoparticle) bridging two electrodes (Fig. 1.1). The application of an 

electrical bias to one of the electrodes in this model would result in an 

electrochemical potential drop across the molecule and an electrical 

current passing through it.

2
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Figure 1.1. Model of a molecule or nanoparticle bridging two metallic electrodes. As a 

bias is applied to the electrodes a resulting current will pass through the molecule or 

nanoparticle.

The experimental work in this area has been mainly dominated by 

two techniques of measuring an electrical current passing through a 

molecule bridging two electrodes under a finite bias. These are 

mechanically-controlled break junction experiments and STM.

Mechanically-controlled break junction experiments [7] involve a 

piece of conducting material being broken into two pieces as a result of a 

force applied by a piezoelectric crystal. The separation between the two 

pieces of the broken conductor can then be very precisely controlled with 

the application of a voltage to the piezoelectric crystal. Molecules of 

interest can be arranged to bridge the gap between the two pieces, and 

their electrical properties can be observed by running a current through 

them (for examples see ref. [8]). One shortcoming of this technique is that 

one lacks the knowledge of what is being measured in the gap, namely the

3
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identity and the number of molecules. Additionally, since the conductor 

was broken, the exact structure in the gap is not known and the geometry 

at the interfaces is not consistent from one experiment to the next.

In STM, a surface is imaged by measuring the tunneling current 

between it and a scanning tip. The tip can also be held in a particular 

position over the sample and the current-voltage (I-V) properties can be 

measured. Molecules attached to the surface via covalent bonds can also 

be studied in this manner (see, for example, ref. [9]). In this case the 

surface acts as one electrode while the tip acts as the other and the 

tunneling current through the molecule can be measured. The appeal of 

this technique is that the sample can be imaged before and after 

measurements so that one has a good idea of what is being measured. 

However, since the measurements are of a tunneling current, it is not 

straightforward to relate the results to a model where the molecule is 

covalently bonded to both electrodes, which is desirable for a molecular 

electronic device.

Another approach to experimental measurements of conductance 

through a single molecule is a combination of the two techniques 

mentioned above [10, 11]. A modified STM is used in which the tip is 

actually crashed into the surface in order to make a point contact. In the

4
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presence of a solution containing the molecules of interest, the tip is then 

pulled away from the surface, so the point contact is broken, and that one 

or more molecules can be trapped between the tip and the surface. A great 

advantage of this procedure is that it can be automated to be repeated 

several thousands of times in order to obtain detailed statistical analyses 

of the I-V characteristics from various possible binding arrangements 

between the molecules and the electrodes [10].

There have also been substantial developments in the first- 

principles treatment of molecules between two electrodes. For example, 

the Landauer-Biittiker [12] formalism has been very useful in the study of 

quantum transport [13]. In the Landauer-Biittiker picture, the electrode- 

molecule-electrode model is used in such a way that an electron passing 

from one electrode, through the molecule, to the other electrode can only 

experience reflections in the molecule itself (not in the electrodes). The 

current is then simply given by the probability that an electron will be 

transmitted through (not reflected by) the molecule.

Several theoretical approaches have made use of the Landauer- 

Biittiker formalism. They include semi-empirical methods, supercell 

methods and open jellium methods. The drawback of using the semi 

empirical methods [14, 15, 16, 17] is that they use parametrized

5
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Hamiltonians which are derived from isolated molecular calculations for 

the molecule part of the system, and bulk calculations for the electrode 

parts of the system. It has been shown that this approach is not always 

reliable for modeling the coupling of a molecular system to a bulk system 

since they received different treatments [18]. The supercell methods [19, 

20, 21, 22] use periodic boundary conditions to solve the Kohn-Sham 

equations [23]. However, because of the periodic boundary conditions 

necessary for the calculations, these methods are limited to periodic 

systems and calculations of systems with an external bias are not possible. 

The open jellium lead methods [24, 25, 26, 27, 28] use electrodes described 

as a uniformly charged compensating background. The drawback of this 

technique is that only low bias conditions can be treated with a reasonable 

degree of accuracy due to the electronic structure of the leads not being 

taken into account.

An approach has been developed [18, 29, 30] that accounts for the 

limitations of the treatments mentioned above. This method has been 

implemented as a MATLAB program which is called MATDCAL [30]. It 

uses a combination of density functional theory (DFT) and a non­

equilibrium Green's function (NEGF) technique to perform electron 

transport calculations. The system is divided into three regions: left and

6
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Figure 1.2. Model of a molecule bridging two electrodes. The system is divided into 

three regions: a left electrode, a scattering region and a right electrode.

right electrodes, and a scattering region (Fig. 1.2). The electrodes are not 

constrained to be the same and open systems (under an external bias) can 

also be treated. Separate periodic calculations are performed on each 

electrode, from which the self-energies of the electrodes can be obtained. 

The charge density can then be calculated inside the finite scattering 

region by including the effect of the electrodes as self-energies via a 

Green's function technique. This effectively reduces an infinite problem 

to one of finite size where the explicit structure of the leads is included as 

well as allowing for an external bias.

Although the results from early theoretical and experimental 

studies on these two probe systems differed by many orders of 

magnitude, recent advances in theoretical methods as well as a deeper 

understanding of experimental binding geometries of the molecule to the 

leads has closed the gap between the two substantially [31, 32, 33]. The

7
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Figure 1.3. A schematic representation of benzenedithiol (a), a molecular structure of 

benzenedithiol (b) and a molecular structure of benzenedithiol bonded to two Au 

electrodes (c).

conductance of a large number of systems between theory and experiment 

agrees to within one order of magnitude. However there remain some 

puzzling cases in which a large difference between the two persists [32], 

An example of such a molecule is benzenedithiol (BDT, Fig 1.3).

Electron transport through BDT has received much attention both 

experimentally and theoretically. Its popularity stems from its simplicity 

compared to other conducting molecules, the high binding affinity that 

the thiol group has for gold surfaces as well as its n  molecular orbitals 

(MO) that facilitate electron transport due to their delocalized nature. 

There remains a lack of consistent conductance data between experiment 

and theory (and even between separate experiments [34] or different 

calculations [32]) despite the popularity of this molecule in many studies. 

One explanation given for this is that the S atom can have many different

8
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favourable binding configurations to the Au electrode [32]. Slight changes 

in the configuration and even in the conformation of the molecule can 

result in a drastic change in conductance [35, 36, 37, 38]. Additionally, 

since the BDT molecule is so small, this makes experimental 

measurements on it relatively difficult. It is also not well understood how 

the structural distortion of the molecule due to a current passing through 

it and the presence of an electric field affects its electrical properties. 

However this aspect is not considered in this work and is assumed to play 

a relatively minor role at low bias and current.

In this thesis, electron transport through the BDT molecule 

bridging Au electrodes of finite cross section was studied in order to gain 

a better understanding of this system. The MATDCAL package was used 

for the calculations that employ DFT with the NEGF formalism. A variety 

of chemical groups were substituted onto BDT in order to assess how 

changes in the electronic structure of the molecule alter conductance. This 

will also give some insight into how current flow can be tuned by 

judiciously selecting the molecule that is used. Electrodes of differing 

cross-sectional area (3x3 vs. 5x5) and different elemental composition (Au 

vs. Al) were also compared.

9
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The organization of this thesis is as follows. In Chapter 2, a brief 

summary of the theory used for this work, including density functional 

theory (DFT) as well as Landauer-Biittiker theory and the non-equilibrium 

Green's function (NEGF) formalism, are presented. In Chapter 3, the 

computational methods that were used for the calculations are described. 

The Gaussian 03 [39] package was used for geometry optimizations while 

MATDCAL [30] was used for the electron transport calculations. In 

Chapter 4, the results for conductance of substituted BDT molecules are 

presented and discussed. Electrodes of differing cross-sectional area and 

different elements are also compared. A brief summary is given in 

Chapter 5.

10
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Chapter 2 

Theory

This chapter outlines the theoretical methods used in this work. It is 

divided into three sections: Schrodinger Equation and Density Functional 

Theory, Landauer-Bxittiker Theory, and Non-Equilibrium Green's 

Function formalism.

In the first section, the Schrodinger equation is introduced along 

with some of the difficulties involved in solving it. Some popular 

approximations are also discussed. The Hohenberg-Kohn theorem and 

Kohn-Sham equations used in density functional theory (DFT) are 

outlined as well as the local density approximation (LDA) which is used 

for the exchange-correlation energy functional. The second section 

outlines the Landauer-Biittiker theory for modeling electron transport at

11
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the nanoscale by obtaining the current from the probability of an electron 

transmitting through the molecule. The last section of this chapter 

presents the equations used in the non-equilibrium Green's function 

(NEGF) formalism which permit the calculation for the transmission 

function of a system. The self-consistent relationship between the NEGF 

approach and DFT is also discussed.

2.1 Schrodinger Equation and Density Functional Theory

More in-depth information on the following three sub-sections can be 

found in ref. [40], or in any other good Quantum Mechanics textbook.

2.1.1 The Schrodinger Equation

The Schrodinger equation (SE) describes the space- and time-dependence 

of quantum mechanical systems. Once defined for a particular system, it 

contains all of the information about that system that can be known. The 

treatment in this work deals with the non-relativistic time-independent 

SE,

iw fe ,R ,} )=  CTfe.fi,}) (2.1)
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with T/(jx(.,^ / }) being the wave function where xi =(ri,si) / rt are the spatial 

coordinates and si being the spin coordinate for electron i out of a total of 

N e  electrons, and R, being the spatial coordinates for nucleus I out of a

total of N n  nuclei. H , the Hamiltonian of the system, is the observable 

corresponding to the total energy E  of the system and it is given as a sum 

of the kinetic energy of the electrons, the Coulombic electron-nucleus 

attraction, the Coulombic electron-electron repulsion, the kinetic energy of 

the nuclei, and the Coulombic nucleus-nucleus repulsion,

H = T e +VeN+ U + f N +VNN. (2.2)

By using atomic units (e = me =ti = 1), the kinetic energy of the electrons is 

given as

£ = ~ I V? (2.3)
^  i

where the summation runs over all electrons i and V is the derivative in 

space. The Coulombic electron-nucleus attraction is given as

(Z4>

w h ere  the su m m a tio n  runs over  all e lectron s and  nuclei. Z j  and /?, are 

the atomic number and coordinates for nucleus I, and rt are the

13
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coordinates for electron i. The Coulombic electron-electron repulsion is 

given as

where the summation runs over all electron pairs (the factor V2 is added to 

compensate for each pair being included twice). rt and r. are the 

coordinates for electrons i and j. The kinetic energy of the nuclei is given

as

Tn = - Y — V2i (2 .6)
z 2Mj

where the summation runs over all nuclei and is the mass of nucleus I. 

The Coulombic nucleus-nucleus repulsion is given as

(2-7)

where the summation runs over all nucleus pairs. Z; , Z } are the charges 

and Rj , Rj are the coordinates for nuclei I  and /.

Equation (2.1) is a many-body problem which is impossible to solve 

exactly for more than one electron. For this reason, many approximations 

can be made to reduce this to a problem that can be solved 

computationally. Some of these approximations are outlined below.

14
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2.1.2 Bom-Oppenheimer Approximation

The Born-Oppenheimer approximation (or adiabatic approximation) 

simplifies the SE with the assumption that the nuclei can be treated as 

being stationary. This is valid in many cases because the mass of a nucleus 

is much greater than the mass of an electron and it is assumed that 

electrons will instantaneously relax with respect to the positions of the 

nuclei whose effect can be included as an external field Vext. Equation (2.1)

can be separated into an electronic and a nuclear part, and the latter is 

treated independently. The kinetic and potential energies of the nuclei can 

be added in after the electronic SE has been solved. The SE can now be 

written as

H elec% i e M )  = i t  +U+VextW eleM )  = Eelec% leM )  (2.8)

where the subscript elec is included to emphasize that this is not the full 

SE. f N and Vm  are removed and VeN is replaced with VeM to emphasize 

the fact that the electrons move under the influence of the nuclei as to an 

external field. From here on, the subscript elec will not be included, but the 

following discussion about the SE does refer to Eq. (2.8).

15
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2.1.3 Exchange and Correlation

The difficulty of solving the Schrodinger equation stems from the fact that 

it is a many-body problem when the system has more than one electron. 

The reason for this is because the motion of an electron is not independent 

of other electrons; that is, they are correlated. One aspect of this 

correlation is accounted for by the Pauli exclusion principle which states 

that no two electrons of the same spin can occupy the same space at the 

same time. More generally, this is known as the antisymmetry principle 

which states that the wave function must change sign when any two 

electrons are interchanged.

Using a Slater determinant for the wave function satisfies the 

antisymmetry principle and the exchange energy for like spins is easily 

accounted for. The difficult part of electron-electron interactions to deal 

with is the correlation of electrons with opposing spin. This is the central 

challenge in electronic structure calculations. DFT is one method that is 

commonly used in calculations that take these interactions into account.

2.1.4 DFT: Hohenberg-Kohn Theorem

The foundation for DFT is based on the Hohenberg-Kohn (HK) theorem 

[41]. This theorem states that: given a ground-state density n0(r) it is

16
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possible to calculate the ground state wave function, ^({i;}). This is a 

powerful relationship because it also means that all the information that 

can be known about the system is contained in the ground state density. 

In other words, the ground state wavefunction is a functional of the 

density

4'0({i;})='P[/l0(r)]. (2.9)

The original proof of this theorem that was offered by Hohenberg 

and Kohn [41] started out with the assumption that VF0 was not 

determined uniquely by n0 and proceeded to show that this resulted in a 

contradiction to the variational principle; therefore 4^ must be 

determined uniquely by n0.

2.1.5 DFT: Kohn-Sham Equations

DFT looks formally like a single-particle theory (e.g. Hartree-Fock), 

although the many-body effects are still included via the exchange- 

correlation functional. This is done by separating the kinetic and potential 

energy functionals into their single-particle and exchange-correlation 

components according to [42, 43]

E[n] = T[n] + U[n] + Vext[n]. (2.10)

17
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The kinetic energy functional T[n\ can be decomposed into one 

part that represents the kinetic energy of non-interacting particles of 

density n ,  Ts[n] and one part that represents the remainder Tc[n] ,

T[n] = Ts[n] + Tc[n]. (2.11)

The s and c represent single-particle and correlation, respectively. 

Ts[n]cannot be expressed as a functional of n ,  but it can be expressed in

terms of the single particle orbitals $ (r) of a non-interacting system with 

density n , as

= (2 -12)
^  i

since for non-interacting particles the total kinetic energy is just the sum of 

the individual kinetic energies. Because the orbitals are functionals of 

density, Ts[n] is an explicit orbital functional and an implicit density 

functional

Tsw  = u m n m .  (2.13)

A similar approach is employed for the potential energy functional 

U[n\, which is decomposed as,

U[n] = UH[n] + U J n \ .  (2.14)

18
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In this case the full interaction energy is approximated by the Hartree 

energy, UH[n], which is the electrostatic interaction energy of the charge 

distribution n (r ) ,

(2.15)
2 J J | r - r  |

The difference U [n]-U H[n\ = Uxc[n] is included in the exchange- 

correlation energy functional term. The energy functional Eq. (2.10) can 

now be written as,

E[n] = T M m ]  + UH[n] + Exc[n] + Vext[n] (2.16)

where, by definition, Exc = Tc +UXC.

Since Ts is written as an orbital functional in Eq. (2.12), it is not 

possible to directly minimize Eq. (2.16) with respect to n.  Instead, a 

scheme suggested by Kohn and Sham [23] is employed for performing the 

minimization indirectly. First, Eq. (2.16) is minimized with respect to the 

density,

2EM < g> ] t SV„ln] t 3U„ln] | S - J n ]
Sn(r) Sn(r) Sn(r) Sn{r) Sn{r)

(2.17)
<5Tv[n] _  _

= r 1 +  v(r) +  vff(r) + vIC(r)  
on(r)

where v(r) is the external potential (due to the nuclei) in which the

electrons move and — is the Hartree potential. can only be
Si on
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calculated explicitly once an approximation for EX( has been chosen (see 

Section 2.1.6). In fact, determining Exc[n] is the central problem in DFT.

Taking a step back and considering a system of non-interacting 

particles moving in the potential vs(r)

the density solving this Euler equation is ns(r) [43]. Comparing Eq. (2.18) 

with Eq. (2.17) it is found that both minimizations have the same solution 

ns{r) = n{r) if vx is chosen to be

The density of the interacting (many-body) system in potential v(r), 

described by a many-body SE in the form of Eq. (2.8), can then be 

calculated by solving the equations of a non-interacting (single-body) 

system in potential v j r ) .

The SE of this auxiliary system

yields orbitals that reproduce the density n(r ) of the original system. Note 

that these are the same p /s  of Eq. (2.12).

Sh(r) Sn(r) Sh(r) Sn(r)
(2.18)

vs(r) = v(r) + vH(r) + vxc(r). (2.19)

V2
—  + vs(r) p.(r) = f !.p.(r) (2 .20)
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The density can then be obtained from the occupation of the 

orbitals p('s

where f t is the occupation of the ith orbital.

Equations (2.19-2.21) are the Kohn-Sham equations. They 

effectively reduce the problem of minimizing E[n\ to that of solving a 

non-interacting SE.

2.1.6 Local-Density Approximation

The local-density approximation (LDA) is often used in solutions of the 

Kohn-Sham equations to approximate the exchange-correlation functional

These are small corrections to the Kohn-Sham non-interacting energy and 

can be calculated accurately for the high and low density limits of a 

homogeneous electron gas [44] and interpolated as a function of n0 [45].

One scheme for doing this is by using

n
n(r) = ns(r) = Y Jf i \^i(r)\2 (2.21)

Exc[n) = ( T - T s) + ( U - U H). (2 .22)

E x M  = ~n 0
a0 +alrs +a2r 2 + a 3r2

h rs + V v2 + b i rs + V /  '
(2.23)

\ 4 m

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where m and bj are empirically determined parameters such as the ones 

used in ref. [45].

Within LDA, the energy of an inhomogeneous electron gas is then 

calculated using the following local approximation

where the Exc(n0) is used from (2.23).

This is one simple approximation that is used for obtaining Exc. A 

more advanced approximation is the Generalized Gradient 

Approximation (GGA), which is like the LDA but the gradient of the 

density is also considered in the evaluation of Exc [46]. Yet another more 

sophisticated treatment of Exc is with the B3LYP hybrid functional that 

takes on the form

where a{), ax, and ac are semiempirical coefficients, E ^ DA is the exchance- 

correlation energy as determined by the local spin-density approximation 

(just like LDA but accounts for spin), Ex ac1 is the exact exchange energy,

and E'xm  and E(PW<n are gradient corrections for exchange and correlation, 

respectively [47].

Exc[n(r)] = jdrn (r )e^c (n(r)) 

pHo_ Exc(n0)JCC

(2.24)

Exc = E T A+a0( E r t - E ? m ) + axA E r  + acAEfc 'PW 91 (2.25)
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2.1.7 Basis Sets

In order to obtain numerical solutions to the Kohn-Sham equations, a set 

of basis functions m ust be employed to efficiently represent the electronic 

density/wavefunctions. For finite systems the basis is usually localized in 

real space. A common approach is to use basis functions that resemble 

atomic orbitals in order to construct wavefunctions for the system as a 

linear combination of atomic orbitals (LCAO). The wavefunctions can 

either be analytic or numerical.

For the analytic approach, Gaussian functions are very popular. 

The Gaussian function, centered at RA, has the form

r - R a) = ( l a l 7 t ) ^ e a][f~ ^  , (2.26)

where a  is the Gaussian orbital exponent. Gaussian functions are 

commonly used because they possess the property that the product of two 

Gaussians is a third Gaussian. Exploiting this property greatly reduces the 

time it takes to evaluate two-electron integrals, of which there is a large 

number in a calculation [40]. Since a Gaussian function is not an adequate

representation of an atomic orbital, a contraction (linear combination) of

Gaussian functions or "primitives" is used to represent the orbital

) = £  dpf pF (a p, r - R A), (2 .27)
p =i
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where L is the length of the contraction and d p is a contraction coefficient 

[40],

In the numerical representation, the orbitals used are similar to 

atomic orbitals with the exception that a potential is used to eliminate the 

long range tails of the orbital function [48]. This way the orbital is 

localized nearby the nucleus. The wavefunction is expanded on a mesh of 

points in real space. Although some information is lost by discretizing the 

wavefunction in this manner, reasonable results can be obtained by using 

a sufficiently fine grid [49]. However, this will always be at the expense of 

computational speed. The greatest advantage of the grid-based approach 

is that the molecular orbitals (MO's) that are represented on the grid have 

a higher flexibility to take on their proper values. The accuracy of the grid- 

based MO's is only limited by the grid spacing, while the analytic basis 

function method depends on the number and type of functions in a less 

straightforward way [50].

For infinite periodic systems, the above procedure is not feasible 

because an infinite number of atomic orbitals would be required. Instead, 

a supercell approach is used where only a single repeating cell of the 

periodic system is considered. Bloch's theorem states that in a periodic
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solid each electronic wavefunction can be written as the product of a 

wavelike part and a cell periodic part f t [51]:

yr,(r) = exp[/fc • r ] f t( r ) , (2.28)

where k  is a vector in fc-space (the reciprocal space of the periodic lattice) 

and r is a vector in real space. The cell-periodic part of the wave function 

can be expressed as an expansion of a set of plane waves whose wave 

vectors are reciprocal lattice vectors of the crystal [52],

U r > = Y , c, e ex PPG-r], (2.29)
G

where G is a reciprocal lattice vector defined by G l = 2 i t m  with I 

being a lattice vector of the crystal and m is an integer. So, with the use of 

Bloch's theorem, each wavefunction yri can be represented as a sum of 

plane waves [52],

¥, = X  ctMG exPW^ + G) r].  (2.30)
G

The number of plane waves is infinite but an energy cutoff is introduced 

to reduce their number to a finite value. The sampling is then done at the 

k-points that are in the Brillouin zone [52]. The accuracy can always be 

improved by increasing this cutoff energy.
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2.1.8 Pseudopotentials

As atoms come together to form a solid or a molecule, the core electrons 

will only interact weakly with other atoms. It is the valence electrons that 

strongly participate in bonding. In the pseudopotential (PS) 

approximation, the properties of a system are determined by the valence 

electrons while the core electrons do not participate.

The total external potential of the all-electron atom, including the 

nuclear core and the core electrons, is then replaced by a smooth, non­

singular potential (the PS) which acts only on the valence electrons [48]. 

This greatly reduces the number of electrons for which the K-S equations 

need to be solved and this is especially significant for metallic atoms lower 

on the periodic table which have a large number of core-electrons.

2.2 Landauer-Biittiker Theory

This section offers an overview of the Landauer-Biittiker theory [53, 54, 55, 

56] for electron transport in mesoscopic systems. The main idea behind 

this approach is that the current passing through a scatterer from one 

electrode to another is calculated as a probability that an electron can 

transmit through the scatterer without being reflected. This approach has
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been instrumental in understanding and modeling electron transport 

through systems at the nanoscale.

A common approach for measuring the conductance of material is 

by connecting it to two contacts to which a bias is applied thereby 

inducing a current to pass through the conductor. If the conductor is of 

macroscopic dimensions with length L  and cross sectional area A the 

conductance is given by

where o  is the conductivity of the material. If the length is reduced, the 

conductance in Eq. (2.31) should increase proportionally. However, 

experiments have found that the conductance approaches a limiting value

2e2(or a multiple of it) G0 = -----  [57, 58, 59] after the length is smaller than a
h

certain value (the reader is referred to Appendix A for a demonstration of 

the origin of G0). Conductors of such dimensions belong to the 

mesoscopic regime.

An object is considered to be in the mesoscopic regime if L is 

smaller than the following three characteristic length scales: the de Broglie 

wavelength A, which is related to the kinetic energy of the electrons; the 

(inelastic) mean free path Lm, the distance that an electron travels before its
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initial momentum is lost and the phase-relaxation length L<p, the distance 

that an electron travels before its initial phase is lost [13]. These length 

scales can vary widely for different materials and they are also dependent 

on factors such as temperature and magnetic field. For this reason 

mesoscopic transport phenomena have been observed for dimensions 

ranging from a few nanometers to hundreds of microns [60].

2.2.1 Reflectionless contacts

An important approximation that is used in the Landauer-Biittiker picture 

is that the contacts are treated as being reflectionless [13, 54]. This simply 

means that an electron entering the contact from the conductor will not be 

reflected back. However, an electron can certainly be reflected as it enters 

the conductor from a contact and reflection can actually be very large in 

this case.

In terms of the dispersion relation (Fig. 2.1) this makes for a 

simplified picture. The +k states (on the positive side of the k-axis) in the 

conductor are only occupied by the electrons that originated in the left 

contact, while the - k  states (on the negative side of the k-axis) are occupied 

by those that originated in the right contact. Supposing that both contacts 

are at the same potential , the Fermi level for the +k states (as well as the
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k
Figure 2.1. Dispersion relation for a single one-dimensional subband. The +k states are 

on the positive k-axis and filled up to pi while the -k states are on the negative k-axis and 

filled up to jU2. In terms of current, the +k and -k states below p2 essentially cancel out so 

that only the +k states between pi and p2 need to be considered (blue shaded region).

- k  states) is equal to the potential a . However, if the potential at the right 

contact is changed to A  ^ A then it becomes a non-equilibrium situation. 

It is no longer appropriate to refer to a Fermi level since this term is 

meaningless in non-equilibrium conditions. Instead, a local quasi-Fermi 

level is considered which can vary spatially. Since all of the +k states 

contain electrons originating frqm the left contact, and only the left 

contact, which still has its potential at jUy, then the quasi-Fermi level for 

the +k states is at A . The same argument can be used to show that the 

quasi-Fermi level for the - k  states is at //2.

The above argument about the quasi-Fermi levels of the +k and - k  

states leads to a convenient simplification: since the current resulting from
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the electrons below fi2 in the +k and - k  states essentially cancels out, only 

the +k states lying between //, and ju2 need to be considered for 

calculating the current. In terms of the MO's of the molecule, only those 

with energies between //, and jU2 need to be considered in the calculation 

of current. This is only the case at low temperatures, but this 

approximation is made to greatly simplify the problem.

2.2.2 Transmission and Reflection

As stated in Section 2.2.1, an electron can be reflected while moving from

the contact to the conductor [13, 54]. The probability of this occurring at a

given energy is expressed by the reflection coefficient R(E ) and the

transmission coefficient T(E) is the probability that an electron will

transmit through the conductor from one contact to the other, where

T{E) = l - R ( E ) .  If T(E) is known, the Landauer-Biittiker formula for

electron transport is given as,

2e 2e %/ + = — J f +(E)T(E)dE = r  = —  ]T(E)dE (2.32)
A  A

where it is assumed that f +(E ) = 1 in this energy range, which is only true 

at 0 K. The remaining challenge is to calculate T (E ) and the next section
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outlines a method for doing this involving a non-equilibrium Green's 

function technique.

2.3 Non-Equilibrium Green's Function

2.3.1 Model of the system

Before proceeding to obtain the transmission probability from the non­

equilibrium Green's function, the system being studied needs to be 

defined. For the model of one molecule bridging two electrodes, the 

system is divided into three regions as shown in Fig. 2.2. The left lead is 

semi-infinite: to the left it is repeated infinitely but to the right it connects 

to the scattering region. The right lead is semi-infinite as well, repeating 

infinitely to the right but connecting to the scattering region on the left. 

The molecule of interest is in the scattering region which is finite. Note 

that the scattering region also includes several layers from each lead, 

which is necessary for maintaining charge neutrality in this region since 

there is charge transfer b e tw e e n  the m o lecu le  and  the lea d s and  a lso  to  

screen the interaction between the molecule and the leads [61].
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Left lead Scattering Region Right lead

Figure 2.2. The system studied consists of a scattering region containing the molecule of 

interest as well as several layers of each lead and semi-infinite left and right leads.

2.3.2 Non-Equilibrium Green's Function

The non-equilibrium Green's function (NEGF) formalism is a useful tool 

in calculating the transmission probability T(E) for an electron passing 

through a molecule bridging two electrodes. Sometimes referred to as the 

Keldysh formalism [62], the NEGF allows for the calculation of the infinite 

system (Fig 2.2) to be performed on only the scattering region, where the 

effects of the semi-infinite leads are included via self-energies [13, 63], as 

described below.

The Green's function represents the orbital overlap across the entire 

system divided by the energy difference between the molecular 

eigenstates and the Fermi level [64]. Maximizing the coupling elements 

thereby maximizes the Green's function matrix elements which will, in 

turn, maximize the conductance. At energy E , the Green's function is 

given by
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G(E) = ((E+i7])S - H  -E j - S 2)“' (2.33)

where H  and S are the Hamiltonian and the overlap matrix for the 

scattering region (including the molecule as well as several layers of each 

lead) as derived by an ab initio method such as DFT (Section 2.1) [13, 63]. 

T] is a small positive infinitesimal whose purpose is to give rise to a finite 

broadening to the energy levels in the scattering region. During the 

calculation, its exact value is not significant but it should be on the order 

of, and slightly larger than the spacings between the energy levels in the 

leads [63]. X, and X2 are the self-energies that describe the left and right 

lead, respectively.

Each self-energy is a complex quantity that accounts for two 

significant effects experienced by the energy levels in the scattering region 

as it couples to the leads (Section 2.3.3 outlines the method for 

determining the self-energies). The real part of the self-energy represents 

the shift of the energy levels in the scattering region as it couples to the 

leads and the imaginary part represents the broadening of the energy 

levels [65]. This broadening can be represented with the broadening 

matrices Fj and F, which are defined as the anti-Hermitian parts of X,

and X2

(2.34)
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The spectral function is a useful quantity that can be obtained from 

Eq. (2.33). It is given by the anti-Hermitian part of the Green's function

A(E) = i ( G ( E ) - G +(E)),  (2.35)

and it leads to the density of states D(E)  in the scattering region by taking 

the trace [63]

D(E) = Tr(̂ S) • (2.36)

If the Green's function and the broadening matrices, Eqns. (2.33-2.34), are 

known, the density matrix [ n ] can be calculated from the relation [63]

n = - L  J [ /(£ ’,//1)GriG+ +f(E,{ i2)GT2G+] (2.37)
—CO

where f ( E , j u ) is the Fermi-Dirac function describing the population at 

energy E  with respect to a given electrochemical potential // given by

f  Ezm\  1 
\ - e k»T (2.38)

Equation (2.37) can be used to calculate the self-consistent potential matrix 

[ Usc ], which is added to the Hamiltonian of the isolated scattering region 

(not coupled to the leads) H 0 to yield the Hamiltonian of the scattering 

region that is coupled to leads

H  = H 0+ U sc . (2.39)
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DFT 
ft H

NEGF 
ft H, Si, la, pi, p.2

Figure 2.3. Self-consistent cycle between the DFT and NEGF calculations. The density is 

used to calculate the Hamiltonian in DFT. This Hamiltonian is then used along with the 

self-energies and the electrochemical potentials in order to calculate the density matrix in 

NEGF. This density matrix is used in the following DFT calculation and the cycle is 

repeated until self-consistency is achieved.

Generally, the density matrix [n] from Eq. (2.37) will be different 

than the one obtained with DFT for the isolated scattering region because, 

in the Green's function approach, the electrodes will have an effect 

through the self-energies. For this reason, the density matrix obtained 

from the Green's function m ust be used to construct the potential matrix 

in order to solve the DFT equations. The Hamiltonian obtained from DFT 

is used to solve the Green's function. This cycle is repeated until self- 

consistency is achieved between DFT and NEGF (Fig 2.3) [65].

With the above quantities in hand, the transmission function can be 

calculated as [13, 63, 65]

T{E) = Tr(XGT2G +) . (2.40)
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This shows that the transmission function is proportional to the 

broadening due to each lead, given by Eq. (2.34), as well as the Green's 

function, given by Eq. (2.33), and its adjoint. Equation (2.40) can then be 

included in the expression for current, Eq. (2.32), to get

r\ r\

1 = —  f r (E ) d E  = —  \Tr{TxGT2G+)d E . (2.41)
^  A ^  A

2.3.3 Determining the self-energy X

The self-energies include the presence of the leads in the Green's 

function so that the infinite problem can be treated with a finite matrix of 

the same size as the scattering region. The self-energy takes into account 

the effect that the lead has on the surface atoms (of the scattering region) 

at the boundary with the electrode. This is accomplished by setting up the 

Green's function for one of the isolated electrodes as [66]

G =
(E + i t f l S . - H , (E+ir,)Ssll- H '5 S O sb

^Sbs Sb J
(2.42)

S E  + in)Sbs- H bs (E + iJj)Sb —H bJ  

where the subscripts s and b are for surface and bulk, respectively. H s is a 

fin ite s iz e d  m atrix (d escrib in g  th e  surface a tom s in c lu d ed  in  the scattering  

region), while H b is infinite (describing the rest of the electrode). The goal
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is to discover a X of the same size as H s so that the surface Green's 

function gs is given by

^ ( ( E  + i ^ - ^ - X ) - 1. (2.43)

In practice, gs is computed by making use of the periodicity of the

infinite contact using techniques described elsewhere [66, 67] (one such 

technique is described in Appendix B) and X is determined by inverting 

(2.43)

X = (£ + i i 7 ) S , - ^ , - g ; 1. (2-44)

This procedure is used to obtain both Xt and X2. Note that the size of the 

matrices Xj and X2 will generally not be of the same size as the matrices 

for the scattering region. But this is simply solved by expanding Xj and 

X2 to the correct size by adding rows and columns of zeros appropriately

[66]. It should also be emphasized that since the self-energies for the

electrodes are calculated independently, it is possible to perform 

calculations on systems having two different electrodes.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

Computational methods

This chapter outlines the methods used for obtaining the results described 

in Chapter 4. The systems studied consist of a BDT molecule bridging two 

semi infinite metallic leads (composed of Au or Al), as shown in Fig. 2.2. 

Section 3.1 describes how the geometry optimizations were performed for 

the system and Section 3.2 outlines how the transport calculations were 

carried out.

3.1 Geometry optimizations

The geometry optimizations were carried out within the Gaussian 

program [39]. The model system of the scattering region consisted of a 

plane of 4 Au atoms constrained to their bulk Au (100) positions to

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10.79A

Figure 3.1. The 4Au-BDT-4Au structure used for the geometry optimization. The 

positions of the Au atoms are held fixed to their bulk positions with the exception that 

the plane-plane separation was allowed to relax. The entire BDT molecule was allowed to 

relax.

represent the electrodes next to each S atom in the BDT molecule (Fig 3.1). 

This model is referred to as the 4Au-BDT-4Au molecule. The geometry of 

the BDT molecule and the distance between the two Au planes of atoms 

were allowed to relax. The energy minimum was found for a separation 

between the two planes of Au atoms of 10.79 A (electrode-electrode 

separation). The same approach was employed for the optimizations of 

the systems with A1 electrodes, where the electrode-electrode separation 

was found to be 9.80 A. For the BDT molecules containing substituent 

groups, this distance was held so that the Au/Al atoms were completely
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frozen in this position and the substituted BDT molecule was allowed to 

relax between the electrodes.

The Gaussian calculations were performed on the 4Au-BDT-4Au 

system using the B3LYP hybrid functional [47, 68] with the 6-31G* basis 

set for all atoms (including Al) other than gold. This is a split valence shell 

basis set that also includes polarization functions. Essentially, there are 

two functions representing each valence orbital. One of these is a 

contraction of three Gaussians and the other is represented by one 

Gaussian. The core (non-valence) orbitals are represented by contractions 

of six Gaussians [40]. For gold atoms, a relativistic effective core potential 

with a valence basis set [69] was used. This basis set consists of a 

contraction of 5 Gaussians for the 5s, 5p, and 6s subshells and a 

contraction of 4 Gaussians for the 5d subshell. Diffuse functions were also 

added as a single Gaussian for the s-, p- and d-subshells.

Once the optimizations were complete, the electrodes were 

extended on either side of the 4Au-BDT-4Au structure by adding Au 

atoms to their bulk positions (FCC with a lattice constant of 4.08 A) to 

make the Au-BDT-Au system, as shown in Fig 3.2. Two systems were 

studied with differing cross sections (3x3 and 5x5). For the A1-BDT-A1
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Figure 3.2. The Au-BDT-Au systems used in the calculations. The BDT structure and the 

electrode-electrode separation were optimized. Au atoms were then added to their bulk 

crystal positions. The top left and right schematics show the 3x3 Au-BDT-Au system 

from side and end views, respectively; the bottom left and right schematics show the 5x5 

Au-BDT-Au system from side and end views, respectively.

system, the same approach was utilized (also FCC, but with a lattice 

constant of 4.05A) to build a system with 3x3 electrodes.

3.2 MATDCAL calculations

The MATDCAL [30] program calculates electron transport in systems like 

those illustrated in Fig. 3.2 using DFT with LDA (See Section 2.1). The 

system used consisted of a finite scattering region in between two semi­

infinite electrodes, as described in Section 2.3.1 (see Fig. 2.2). Typically, 

three calculations need to be carried out for a given system: one for each
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semi-infinite electrode, from which the self-energies are obtained and one 

for the finite scattering region which contains the molecule.

Before continuing to the two types of calculations, the basis sets 

that were used for the MATDCAL calculations are given.

3.2.1 Basis sets

The MATDCAL calculations were performed using norm-conserving 

pseudopotentials to describe the core electrons [70]. The valence electrons 

were treated with double zeta polarized (DZP) numerical orbitals for 

carbon, hydrogen, sulfur, oxygen, nitrogen, fluorine, and aluminum 

atoms. For the gold atoms, two basis functions were used for the s and d 

shells and one was used for the p shells. The radial cutoffs were: 5.67 a.u. 

for carbon, 5.63 a.u. for hydrogen, 5.78 a.u. for sulfur, 4.95 a.u. for oxygen, 

5.51 a.u. for nitrogen, 4.51 a.u. for fluorine, 7.10 a.u. for aluminum, and 

6.08 a.u. for gold.

3.2.2 Bulk calculations

Bulk systems are composed of a unit cell that is repeated in 3 dimensions 

as is usual for plane wave calculations of periodic systems (Fig. 3.3). Using 

a supercell approach, it is also possible to treat wires and isolated
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Figure 3.3. A supercell with 8 of its images which show the periodicity. This setup is used 

to model a nanowire; by including a vacuum region in the x and y-directions there is no 

interaction between the images in those directions. The cell is repeated infinitely in the x, 

y and z-directions.

molecules by including a sufficient amount of vacuum space in the unit 

cell. The unit cell is defined by specifying its dimensions along with the 

identities and positions of the atoms it contains. For these calculations, the 

number of grid points on which the basis functions are expanded is also 

specified along each axis as well as the number of k-points to be used in
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reciprocal space. The bulk calculations were used to treat the semi-infinite 

electrodes in the system.

Table 3.1 contains the values of the parameters that were used for 

the electrodes of the 3 systems studied. As can be seen from Fig. 3.3 and 

Table 3.1, the unit cell was bigger in the x and y directions so that the 

images of the electrode would far enough such that there would be no 

interaction between the neighbouring unit cells. For the 5x5 Au-BDT-Au 

system, the cell is much shorter in the z-direction simply because the 

larger number of atoms greatly increased the computation time. This way 

the bulk calculation was used to model a nanowire. At least 3 grid points 

per atomic unit (1 a.u. = 0.529 A) of length were used for expanding the 

basis functions along any axis. Notice that only one k-point was needed in 

the x and y directions since the number of k-points required is inversely 

proportional to the size of the system. Flowever, 10 k-points were used 

along the z direction to allow for good treatment of the interactions from 

image to image in this direction. By systematically increasing the number 

of k-points in the z direction, it was found that the density of states (DOS) 

and the bandstructure had converged at this number of k-points for all 

three systems considered.
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Table 3.1. The parameters used for the electrodes in the three systems studied. The 

dimensions of the cell in the x and y directions are made larger so that images do not 

interact. At least 3 grid points were used per a. u. along each direction. Only one k-point 

was needed along the x and y axes since images did not interact in those directions, but 

10 k-points were used in the z-direction since interactions in this direction are important 

to properly model a nanowire.

parameter direction 3x3 Au-BDT-Au
system 

5x5 Au-BDT-Au 3x3 A1-BDT-A1

atomic layers z 6 2 6

X 40 40 40
cell length

V 40 40 40(a.u.)
z 23.12 7.71 22.96
X 128 128 128

number of
V 128 128 128grid points
z 96 64 96
X 1 1 1

number of
k-points y 1 1 1

z 10 10 10

Once the system was defined, the DFT self-consistent calculation 

was carried out for each electrode. The results were used to obtain the 

DOS, bandstructure, eigenstates, and the charge on each atom with a 

population analysis. The result from the self-consistent calculation were 

also be used to calculate the self-energy for each electrode in the two- 

probe calculation of the entire system.
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3.2.3 Two-probe systems

The calculation for a two-probe system is more complicated than for a 

bulk system because it consists of two semi-infinite electrodes and a finite 

scattering region. However, the system is divided into three parts which 

can be dealt with individually. As mentioned above, a bulk calculation is 

carried out for each electrode. The results from these are used to obtain 

the self-energies that represent the influence on the scattering region 

coming from each electrode, as described in Section 2.3.3.

The scattering region is similar to a bulk system with the main 

difference being that it is not periodic in the z-direction, which is the 

direction in which the electrodes are semi-infinite (and also the direction 

of electron transport). A two probe system is shown in Fig. 3.4 with two of 

its images in the y direction. It should be emphasized that the left and 

right electrodes are shown for clarity but they are actually included in the 

calculation as self-energies.

Because the system represents semi-infinite electrodes connected to 

a finite scattering region, some atomic layers from each electrode need to 

be included in the scattering region. These layers are included so that they 

can screen off the effects that the molecule and the electrodes have on each 

other and are referred to as screening (or buffering) layers. One such effect
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Figure 3.4. A two-probe system and two of its images in the y-direction consisting of a 

scattering region between left and right electrodes. The electrodes are semi-infinite and 

the entire structure is repeated in the x and y-directions.

is charge transfer: as a molecule binds to an electrode, its energy levels 

will broaden and there can be a transfer of charge from one to the other 

due to the electronegativity differences between the atoms that are 

involved in the binding [37, 71, 72]. The inclusion of screening layers 

ensures that charge neutrality is preserved in the scattering region. The 

screening layers also ensure that there is a close match between other
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quantities such as the potential and electronic density at the interfaces 

between the scattering region and the semi-infinite electrodes [18].

The accuracy of the calculation increases asymptotically with the 

number of screening layers but this is at the expense of computation time. 

It was found that, for the 3x3 Au-BDT-Au and 3x3 A1-BDT-A1 systems, 

charge neutrality was sufficiently maintained (deviation from neutral was 

less than 0.08 electrons in the worst cases) when 9 and 8 screening layers 

were used between the molecule and the left and right electrodes, 

respectively (see Fig. 3.4). The reason for a different number of layers on 

each side is because of the nature of the Au (and Al) electrodes in the (100) 

direction which consist of two alternating atomic layers. The 5x5 Au-BDT- 

Au system maintained the same degree of charge neutrality with only 3 

and 4 screening layers between the molecule and the left and right 

electrodes, respectively. The reason why so comparatively few layers were 

needed for the 5x5 electrodes is because the screening is more effective 

with larger cross sections.

Table 3.2 contains the values of the parameters that were used for 

the scattering regions of the three systems studied. As for the bulk 

systems representing the electrodes, the cell is made large enough along 

the x and y axes so that there would be no interaction between
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Table 3.2. The parameters used for the scattering region in the three systems studied. The 

dimensions of the cell in the x and y directions are made larger so that images are too far 

apart to interact in these directions. At least 3 grid points were used per a. u. along each 

direction. Only one k-point was needed in the x and y-directions since images did not 

interact in those directions and there was no value for k-points in the z-direction since the 

scattering region is not periodic in this direction.

parameter direction 3x3 Au-BDT-Au
system 

5x5 Au-BDT-Au 3x3 A1-BDT-A1

screening layers 9 /8 3 /4 9 /8
(left / right)

X 40 40 40
cell length

V 40 40 40
a.u.)

z 82.04 43.51 79.74
X 128 128 128

number of grid
V 128 128 128points
z 256 160 256

number of X 1 1 1
k-points y 1 1 1

neighbouring unit cells. In fact, these dimensions need to be the same for 

the scattering region as they were for the electrodes. Once again, at least 3 

grid points were used per a.u. of length along each axis to numerically 

represent the basis functions. Since there is no periodicity along the z-axis 

for the scattering region, no value for k-points along this direction is 

needed.
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As mentioned above, the self-consistent calculation begins by 

determining the self-energies using the results of the bulk calculations 

performed on each electrode. The self-energies are then used in the NEGF 

part of the DFT/NEGF self-consistent procedure (see Fig. 2.3). After 

convergence, the DOS, scattering states, transmission spectra, and charges 

can be calculated. The application of a bias to each electrode can also be 

simulated. Fortunately, the self-energy calculations do not need to be 

repeated at different biases. The zero bias calculation serves as a reference 

and the energy levels along with the electrochemical potential are shifted 

appropriately in energy during the calculation for the self-energy. 

Therefore the bias is included directly into the self-energy. The current at 

each bias is calculated by integrating under the transmission function in 

the range between the electrochemical potentials of the two electrodes (see 

Eq. (2.41) in Section 2.3.2) and current-voltage plots can be obtained.
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Chapter 4

Results and Discussion

4.1 The Au-BDT-Au system

The Au-BDT-Au system has received much attention in both theoretical 

[35, 36, 37, 38, 73, 74, 75] and experimental [8, 76, 77] electron transport 

studies. The BDT molecule is a good candidate for such studies because of 

its relatively simple structure and since the thiol groups bind readily to 

gold surfaces because it has the possibility to form multiple bonds with 

the surface metal atoms [78]. BDT also has a conjugated n  ring that offers 

delocalized electronic states which are beneficial to electron transport 

because they can form a scattering state through which an electron can 

transmit from one electrode to the other [38].
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As BDT binds to a gold electrode, the thiol (-SH) group loses an H 

atom and the S atom forms strong covalent bonds to the gold surface [78], 

RS-H + Aun° -> RS- Au+-Aun-i° + V2H 2 . (4.1)

It is not completely understood what happens to the V2H2 in this reaction 

but it is believed that it ends up as a Hb® molecule [79]. Because there are 

two thiol groups on opposite ends of the BDT molecule, it can form a 

molecular bridge between two Au surfaces, thus forming the Au-BDT-Au 

system. These surfaces can act as electrodes that can be biased in order to 

run an electric current through the BDT molecule.

There has been a great effort to understand the binding of BDT on 

various Au surfaces, e.g. (100), (110), (111) [35, 36, 37, 38], because it has 

been found that even small variations in binding geometries can lead to 

significant differences in conductance [36, 37, 38]. For example, one study 

[37] showed that there was a difference in conductance of about a factor of 

5 between BDT bridging two Au (100) and (111) surfaces, where the (100) 

surface yielded the higher value. The same study also found that if the S 

atom in the BDT molecule is connected to the surface through a single Au 

atom that is itself on top of the Au surface, this would also affect the 

conductance dramatically, increasing it by over one order of magnitude. 

Another theoretical study [38] has shown that small variations in the Au-S
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bond distance could change the conductance significantly. This high 

sensitivity of conductance to geometry is one of the explanations given for 

the lack of agreement between different results, both experimental and 

theoretical, where there is still a discrepancy between the two by a factor 

of ca. 50 for the BDT molecule [32].

The present work concentrated on binding to the Au (100) surface 

on which the thiol group can bind favourably in several ways including 

binding to the hollow site, bridge site, and top site as shown in Fig. 4.1. 

Hollow site binding was investigated because it is the most energetically 

favourable of the three (binding energies: 3.41 eV for hollow site, 2.50 eV 

for bridge site, and 1.60 eV for top site [35]), and previous calculations on 

this system are also available in the literature [35, 37], to which the results 

from this work can be compared. In the case of hollow site binding of BDT 

to an Au (100) surface, the sulfur atom binds to four Au atoms. The 

geometry optimization was performed on the 4Au-BDT-4Au system and 

the 3x3 Au-BDT-Au system was then built around this structure as 

described in Section 3.1.

As a molecule binds to metallic electrodes, its discrete energy levels 

get broadened due to their coupling to the continuous levels of the 

electrode [63]. This contributes to the nature of the DOS, but it is difficult
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Figure 4.1. The atomic arrangement of the first two layers of an Au (100) surface along 

with the positions of the hollow site (A), top site (B) and bridge site (C) where a S atom 

can bind.

to discern the broadened molecular levels from the DOS of the electrodes 

since there are more of the latter and they tend to overwhelm the 

spectrum (see Fig. 4.2). Fortunately there are some circumstances under 

which the broadening of a single molecular level can be directly observed 

in the DOS, as is discussed in Sections 4.3 and 4.5. In those cases the DOS 

of systems with and without the molecular orbital (MO) are compared 

and the difference clearly stands out. One such broadened state is referred 

to as a scattering state which can be thought of as an eigenstate for the 

open system (the molecule bridging two semi-infinite electrodes). If the 

scattering state is coupled to both electrodes, it will provide a conduit 

through which an electron can pass from one electrode to the other. This
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type of scattering state leads to one mode of transport through the system 

and the transmission spectrum is a sum of the contributions coming from 

all of the scattering states. Note that not all of the scattering states allow 

for transmission, some result in reflection (see Fig. 4.8 for an example).

4.2 Transport through the 3x3 Au-BDT-Au system

The transmission function represents the probability that an electron with 

a given energy will transmit through a molecule from one electrode to the 

other. As described in Section 2.3.2, the integral of the transmission gives 

the current for a particular bias window. Figure 4.2 shows the 

transmission function and the DOS for the 3x3 Au-BDT-Au system. The 

positions of some of the o-type (o) and 7t-type (x) MO's of the 4Au-BDT- 

4Au system are also included for comparison. The energy axis of both 

plots is relative to the Fermi level of the electrodes which is at -3.84 eV, 

while the experimental value for bulk Au is -5.1 eV. The large discrepancy 

between the two is likely due to the fact that nanowires of finite cross 

section were modeled in this work as opposed to bulk Au.

As mentioned in Section 4.1, it is not trivial to relate the DOS to 

molecular eigenstates. In Fig. 4.2, there are two sharp peaks in the DOS at 

-0.38 and 0.48 eV that are near MO's. It is later revealed (see the discussion
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Figure 4.2. Transmission spectrum and DOS for the 3x3 Au-BDT-Au system at zero bias. 

The position of the eigenstates from the 4Au-BDT-4Au molecule are shown at the top: (o) 

for o-type MO's and (x) for Ti-type MO's. The energy scale is relative to the Fermi level of 

the electrodes (-3.84 eV).

on Fig. 4.6 in Section 4.3) that only the peak at -0.38 eV is due to a MO, 

while the peak at 0.48 eV is due to states originating in the electrodes.

It is not possible to predict the nature of the transmission spectrum 

based solely on the DOS spectrum. The only definitive connection 

between the two is that there will be no transmission where there is no 

DOS because states have to be present for an electron to transmit.
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However, just because there are states in an energy range, it does not 

guarantee that there will be transmission, a suitable MO m ust also be 

nearby. An example of this can be seen around -0.3 eV in Fig. 4.2 where 

the DOS shows that there are states but the transmission is essentially 

zero. The states m ust couple to both electrodes so that they spatially 

extend from one electrode to the other in order to contribute to 

transmission (this can be seen from the scattering state at that energy, vide 

infra). An interesting feature of the transmission spectrum shown in Fig.

4.2 is that it is fairly smooth with the exception of two sharp features 

located at -0.36 and 0.48 eV. These are artifacts in the calculated 

transmission at those values that are due to the intense sharp peaks in the 

DOS. For the purposes of these calculations, they will not play a 

significant role since they are too small to contribute a noticeable amount 

to the current of the system that is determined by integration of the 

transmission.

Comparing the MO's to transmission is more intuitive. This is 

because there is always a MO associated with every transmission peak. As 

will be discussed in Section 4.3, it is the rc-type MO's that contribute the 

most to transmission. With this knowledge, it is fairly straightforward to 

assign the 7i-type MO's to features in the transmission spectrum: the MO
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at -0.02 eV leads to the large peak near the Fermi level, the MO at -0.42 eV 

leads to the shoulder near that energy and this continues to the left 

towards the two MO's at -0.85 and -0.95 eV. The broadening of the MO's 

becomes apparent by looking at the width of the transmission peaks, and 

because the transmission is continuous in between MO's, as in the range 

[-0.85,-0.48] eV. It is interesting to note that the transmission coefficient 

(height of the transmission) near the Fermi level is close to unity, while to 

the left of -0.4 eV it is close to one half. This shows that different MO's can 

contribute different amounts to the transmission.

Figure 4.3 shows the DOS and transmission spectra for the 3x3 Au- 

BDT-Au system at different biases that are applied to the right electrode. 

The application of a bias to an electrode essentially shifts its energy levels 

as well as the electrostatic potential p by -q V  where q is the charge of an 

electron and V  is the bias. With the DOS (Fig 4.3, top), it is apparent that 

many of the features are shifted to the left with increasing bias. The sharp 

peak at -0.36 eV seems to broaden as it moves to the left. It is interesting to 

note that the very high and sharp peak at 0.48 eV seems to get split into 

two peaks for finite biases. The second peak that appears is located at 

about -  qV  in energy from the position of the original peak. This is an 

indication that this sharp peak is due to DOS that are localized in the
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Figure 4.3. DOS (top) and transmission spectra (bottom) for the 3x3 Au-BDT-Au system 

for different biases applied to the right electrode. The energy is relative to the Fermi level 

of the left electrode which was at -3.84 eV.
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electrodes since levels in the molecule would only shift by ca. -qV/2, as 

described below.

The entire transmission spectrum (Fig. 4.3, bottom) essentially gets 

shifted to the left as the bias on the right electrode is increased. The energy 

levels and p of the left electrode remain unchanged but the energy levels 

and p of the right electrode are shifted by -qV . This means that the entire 

voltage drop occurs in the molecule [80] and its energy levels shift by 

approximately -qV/2. It can be seen that the transmission spectrum is 

shifted to the left by -0.05 eV for each additional 0.1 V of bias applied to 

the right electrode. Of course this is only the most obvious change in 

transmission with respect to bias. Additionally, as the energy levels in the 

molecule move with respect to the states in the electrodes, the coupling 

between the molecule and the electrodes may improve or worsen and this 

will have a more subtle effect on transmission.

One part of the transmission spectrum remains essentially the same 

at all biases. The region of [-0.4, -0.2] eV has low transmission at any bias. 

This results in an interesting effect as described below. Note how the high 

transmission peak is shifted to the left into this region but reappears on 

the left side at higher biases, e.g. at -0.6 eV for the 0.5 V plot. This indicates
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that, for reasons explained below, the transmission is suppressed in the 

[-0.4, -0.2] eV region.

Since the current can be calculated by integrating under the 

transmission curve in the range between the electrochemical potentials of 

the left and right electrodes, it directly follows that at low bias the current 

is related to the transmission near the Fermi energy since this is where the 

integration would be carried out. Taking the value of the transmission at 

the Fermi level from Fig. 4.3 at zero bias gives a low bias conductance of 

66 pS for this system. For comparison, the quantum of conductance is 

Go = 77.5 pS, so this is a good indication that the BDT molecule in this 

system conducts well at low bias. Experimental measurements on the Au- 

BDT-Au system have shown conductance on the order of 0.8 pS [76], 

which is about two orders of magnitude lower than the value obtained in 

this work. Unfortunately, this kind of disagreement between theory and 

experiment for this system is common with most calculations yielding 

conductance that is one to two orders of magnitude higher than 

experiment [32]. As mentioned in Chapter 1, there are many possible 

sources for the disagreement between theory and experiment. In most 

experiments the binding arrangement of the molecule to the electrodes is 

not known, and neither is the structure of the electrodes. Since there is
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such a high sensitivity of the conductance to binding geometry, this can 

account for this discrepancy. Of course, the computational model also has 

its limitations such as the use of 3x3 nanowires as opposed to bulk 

electrodes, the assumption that the 4Au-BDT-4Au optimized structure 

would be adequate for this model, and that densities obtained using LDA 

are sufficiently accurate.

The current-voltage (I-V) curve for the appropriate integrations 

under the curves in Fig. 4.3 is shown in Fig. 4.4. An interesting feature of 

this plot is that, although the current mostly increases with higher bias, 

there is a region between 0.2 and 0.4 V where the current actually 

decreases as the bias increases. This kind of behaviour is referred to as 

negative differential resistance (NDR), which can be an attractive 

characteristic for molecular electronics. It is the defining behaviour in 

resonant tunneling diodes (RTD) [81, 82], which are two-terminal devices 

that offer great utility in switching and in performing logic operations. 

RTD's offer an advantage over conventional devices because they should 

be easier to integrate than three-terminal devices and can also outperform 

them. Flowever, the NDR predicted here is not significant enough to be of 

any real use in an actual molecular device.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18
16 -
14 -
12 -

% 1 0 -

-+■»C
01uuGU

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Bias (V)

Figure 4.4.1-V plot for the 3x3 Au-BDT-Au system shown in Fig 3.2.

The NDR can be explained by considering the region between -0.4 

and -0.2 eV of the transmission spectra (Fig. 4.3, bottom) where the 

transmission is nearly zero for all biases. This means that this region will 

not contribute to the current. At the same time, the high transmission peak 

near the Fermi level is shifted to the left and its presence in the [-0.2, 0.0] 

eV range decreases. Therefore, for biases between 0.2 and 0.4 V, the region 

o f lo w  tran sm ission  ge ts  in c lu d ed  in  the in tegration  w h ile  the  

transmission peak is diminishing. This results in a lowering of current 

even though the bias is increased. The NDR that is exhibited in this system
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is entirely due to the nature of the electrodes that have a finite cross 

section and do not behave as truly "metallic" leads (vide infra). More 

specifically, they do not have a continuous distribution of states that can 

couple in a manner that is beneficial to transport in the [-0.4, -0.2] eV 

range. Note that the NDR is not due to deficiencies in the computation 

method. This phenomenon has also been observed by others [37] in 

calculations on a similar system with the same 3x3 electrodes. In that 

work, the NDR occurs in the region between 0.2 V and lasted until 0.6 V. It 

is interesting to note that this feature can be seen for each of the two 

electrodes for higher biases since the energy levels of the right electrode 

are shifted with respect to those of the left electrode, e.g. the spectrum for 

0.5 V in Fig. 4.3 has two regions of low transmission: one between -0.4 and 

-0.2 eV due to the left electrode, and the other between -0.9 and -0.7 eV 

due to the right electrode which is shifted by -0.5 eV. The NDR effect is 

not present if electrodes with higher cross sections are used (Section 4.4) 

but the calculations are more costly. For the purposes of this work, the 

lower cross section electrodes are used in order to study effects that do not 

depend on this NDR feature, while keeping in mind that it is indeed an 

artifact of the electrodes and not a characteristic of the BDT molecule.
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4.3 The effect of substituent groups on transport through the 3x3 Au- 

BDT-Au system

Different substituent groups were added to the BDT molecule at the 2- 

and 5- positions (Fig. 4.5) in order to determine how changes in the 

electronic properties of the molecular system affect the conductance of the 

molecule. The substituents used span a range from electron donating 

groups (EDG) to electron withdrawing groups (EWG). The goal was to 

determine how substituent groups could be used to effectively tune the 

conductance of the BDT molecule. With this ability it would then be 

possible to design a molecule with desired electronic properties.

The geometry optimizations were carried out as described in 

Section 3.1. The DOS and transmission spectra were calculated for the 11 

systems containing different substituent groups. Figure 4.6 shows a 

sample of the DOS and transmission spectra at zero bias for three systems 

including the EDG NFh and EWG NO2 groups as well as the 

unsubstituted BDT molecule (R=H).

The DOS for the three systems are quite similar with just a few 

different features. One difference that stands out is the position of the 

sharp peaks at -0.25 and -0.38 eV for the molecules with the NH 2 and H 

substituents, respectively. These peaks seem to be spaced by about the
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Figure 4.5. Substituted BDT system used. The substituent groups span a range from the 

electron donating N(CH3)2 to the electron withdrawing NO2. For each system the two R 

groups would be the same.

same amount as the MO's for those systems at -0.35 and -0.45 eV, so this is 

a good indication that these peaks are due to molecular states. There is no 

such peak for the system containing the NO2 substituent although this 

system has a higher shoulder on the DOS at -0.5 eV. It can therefore be 

concluded that these features on the DOS are due to the molecular orbitals 

since they differ for each system. On the other hand, the sharp intense 

peak at 0.48 eV is present for all systems, at the same energy even though 

the MO's near it differ in energy. This is further evidence that this peak 

comes from states in the electrodes.
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Figure 4.6. DOS (top) and transmission spectra (bottom) relative to the Fermi level of the 

electrodes (-3.84 eV) for three different substituents at zero bias including the EDG NH 2 

and EWG NO2. The positions of the rc-type MO's of the 4Au-BDT-4Au molecule are 

shown at the top for each system.
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A nice demonstration of how a molecular level gets broadened can 

be seen in the DOS peak near 0.7 eV for the system containing NO2. Since 

this peak is absent for the other two systems, which can be thought of as 

control cases, this is evidence that this is indeed a broadened molecular 

state. There is a MO close to this energy for the NH2 substituted system 

that does not display this broadening. This is shows that not every 7T-type 

orbital will couple well with the states from the electrodes and broaden by 

doing so.

For the purposes of this work, the most important feature of the 

transmission spectrum is the value at and near the Fermi level (0 eV). The 

trend that is shown in Fig. 4.6 held for all 11 substituents, namely that 

BDT substituted with EDG's have a higher transmission near the Fermi 

level than unsubstituted BDT; while BDT substituted with EWG's have a 

lower transmission near the Fermi level than unsubstituted BDT. This can 

be explained by the positions of the highest occupied molecular orbitals 

(HOMO) for each system. The HOMO of the system containing NH 2 is the 

closest to the Fermi level, thus it has the highest transmission at the Fermi 

level, and the HOMO of the system containing NO2 is the farthest from 

the Fermi level so it has the lowest transmission at the Fermi level. The 

sharp peaks at 0.48 eV in the DOS have a small effect on the smoothness of
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the transmission at this energy. Once again, this feature is a result that 

comes out of the intense peak in the spectra. There is a high transmission 

peak near 0.7 eV for the NO2 substituted system which is not present for 

the other two systems. It likely corresponds to the broadened DOS peak 

for this system at the same energy that was mentioned above.

Another point to consider about the transmission spectra in Fig. 4.6 

is that, as for the unsubstituted BDT case (Section 4.2), there is a low 

transmission range from -0.4 to -0.2 eV that will lead to NDR. Since this is 

consistent for all 11 substituents, it gives further evidence that the NDR 

effect is due to the nature of the electrodes and not the BDT molecule. The 

three substituted systems have 71-states near the left side of this window 

of low transmission. The NO2 substituted system has a level just outside 

the window, near -0.6 eV that results in a high transmission peak. The H 

and NH 2 substituted systems have their levels inside the window and this 

only results in two small sharp peaks inside the [-0.4, -0.2] eV region. So it 

seems that in this window the transmission is suppressed by the lack of 

states in the electrodes for the molecule to couple with. However the effect 

from these MO's can also be seen in the transmission outside of the 

[-0.4, -0.2] eV region, near -0.5 eV, where the H substituted system has a

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



moderate transmission and the NH 2 substituted system has a lower 

transmission since its level is farther away.

Since the low transmission window was present on the spectra for 

all substituents, it will not affect the relative conductance values of the 

substituted BDT molecules. The main consequence is that the I-V curves 

for all systems would show NDR behaviour just like in the unsubstituted 

3x3 Au-BDT-Au system.

A scattering state of an open (two-electrode) system is analogous to 

an eigenstate in a molecule. In the same way that an eigenstate describes 

an electron in an isolated molecule, a scattering state describes an electron 

passing through the molecule from one electrode to the other (or reflecting 

back to the electrode it originated from). By looking at the scattering state 

it is possible to determine to which orbital of the molecule it corresponds, 

if any. The scattering state corresponding to the peak of the transmission 

spectrum near the Fermi level for R=H in Fig. 4.6 is shown in Fig. 4.7. A 

visual comparison shows that it corresponds to the FIOMO of the isolated 

molecule. This comparison was made for all substituted BDT systems and 

it was confirmed that the transmission near the Fermi level is mostly 

through the HOMO of the molecule. This agrees with the positioning of 

the MO's in Fig. 4.6. It also agrees with a previous theoretical study on a
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Figure 4.7. a) The scattering state for the unsubstituted (R=H) 3x3 Au-BDT-Au system in 

Fig. 4.6 at the peak of the transmission curve (-0.08 eV). b) The HOMO of the 4Au-BDT- 

4Au system shown in c). Note the resemblance between the scattering state and the 

HOMO which confirms that transmission peak is due to conductance through the 

HOMO level. The colours represent the phase.

similar system with a series of substituents [75], which also concluded that 

the HOMO plays the most significant role in transmission at low bias 

because of its proximity to the Fermi level and its delocalized nature.

Figure 4.8 shows an example of a reflection scattering state. It 

originates from -0.3 eV in the transmission spectrum for the H substituted 

Au-BDT-Au system in Fig. 4.6. Note how there is no amplitude on either 

the molecule or on the right electrode.
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Figure 4.8. A scattering state showing reflection for the unsubstituted (R=H) 3x3 Au- 

BDT-Au system in Fig. 4.6 at -0.3 eV, where the transmission is close to zero.

Generally, it is the delocalized 7t-type MO's that are beneficial to 

transmission and highly localized cr-type MO's play a much smaller role 

[38, 75, 83]. This is because 7i-type MO's can form scattering states that are 

delocalized from one electrode, through the molecule, to the other 

electrode thus providing a conduit through which an electron can 

transmit. For the unoccupied MO's, the lowest unoccupied molecular 

orbital (LUMO) and LUMO+1 were found, for all substituents, to be cr- 

type MO's and the closest delocalized unoccupied MO to the Fermi level 

was LUMO+2 which is relatively far from the Fermi level compared to the 

HOMO (Figs. 4.2 and 4.9). This result is in agreement with the previous 

theoretical study on a similar system with several substituents [75] that 

also found the LUMO and LUMO+1 to be localized and have a negligible 

contribution to transmission.
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Figure 4.9. Molecular orbitals of unsubstituted 4Au-BDT-4Au that are close to the Fermi 

level in the Au-BDT-Au system. The HOMO and LUMO+2 are 7i-type orbitals with a 

nodal plane along the benzene ring. The LUMO and LUMO+1 MO's are cr-type orbitals.

Substituent groups have an effect on the position of the energy 

levels in a molecule. In BDT, EDG's raise the energy of the HOMO level 

while EWG's lower it (Table 4.1). This phenomenon was explained in a 

theoretical study of ionization potentials for disubstituted benzenes [84] as 

follows: when an EDG binds to a benzene molecule, two filled MO's 

combine, thus forming a stabilized and a destabilized MO. The 

destabilized MO is the HOMO of the substituted benzene, which is higher
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Table 4.1. Position of the HOMO and LUMO+2 levels for the 11 substituted 4Au-BDT- 

4Au systems. The Hammett substituent constant o> [85] which is a measure of the 

strength of a group as an EDG/EWG is also included. The EDG's are at the top of the 

table and the EWG's are at the bottom.

substituent Op HOMO energy (eV) LUMO+2 energy (eV)
N(CH3)2 -0.83 -4.03 -3.50
NHa -0.66 -4.07 -3.46
OH -0.37 -4.28 -3.70
OCHs -0.27 -4.03 -3.49
CHs -0.17 -4.15 -3.65
H 0.00 -4.15 -3.67
COOH 0.45 -4.19 -3.78
CHO 0.42 -4.41 -3.99
CFs 0.54 -4.33 -3.88
CN 0.66 -4.45 -4.02
NO2 0.78 -4.47 -4.10

in energy than the HOMO of benzene. The amount by which this MO is 

destabilized is proportional to the electron donating strength of the 

substituent. For EWG's, the mechanism is different: even though the 

substituent would stabilize one of the degenerate HOMO's by combining 

it with its LUMO, this would still leave behind the other HOMO at the 

same energy. This level is stabilized by a a-inductive effect that causes 

contraction of the 7i-orbitals and a lowering of their energy, including the 

HOMO. In the Au-BDT-Au system this causes the HOMO level to be 

closer to the Fermi level for EDG's and farther away from the Fermi level
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for EWG's. The energy of the HOMO determines the position of the 

scattering state associated with it relative to the Fermi level. The position 

of the scattering state, in turn, determines the low bias conductance. 

Therefore, this is a demonstration of how adjusting the energy of a single 

MO in a molecule can have a direct effect on its conductance.

The resulting I-V curves are shown for all substituted BDT 

molecules in Fig. 4.10. As the transmission spectra predicted, a higher 

current can pass through the BDT molecules with EDG substituents than 

those with EWG substituents. Also, as predicted from the transmission 

spectra, NDR is predicted for all substituted BDT systems in the range 

between 0.2 and 0.4 V, just as for the unsubstituted BDT system.

The Hammett substituent constant crP is a commonly used 

parameter in deriving quantitative structure-activity relationships (QSAR) 

for a large number of chemical phenomena [85]. The Upvalues are defined 

from the ionization constants of benzoic acid as

Up = log KP -  log Kh, (4.2)

where Kh is the ionization constant for benzoic acid and KP is the 

corresponding constant for the para-substituted benzoic acid. By 

ionization, the reaction being referred to is the removal of a proton from 

the COOH group in benzoic acid thus leaving behind an anion. The oP
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Figure 4.10.1-V characteristics for the 3x3 Au-BDT-Au system with different substituents. 

BDT with ED substituents has a higher current at a given bias than BDT with EW 

substituents.

values are therefore a measure of the ability of a substituent group to 

stabilize the COO- anion from the para position on the ring. This quantity 

is essentially a measure of the strength of a substituent as an electron 

withdrawing or electron donating group [85] (see Table 4.1; EDG's are 

assigned negative oP values while EWG's are assigned positive oP values).
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Figure 4.11. Correlation between transmission at the Fermi level for zero bias and the 

Hammett substituent constant ctp [85] for the 3x3 Au-BDT-Au system.

The relation between the transmission at the Fermi level under zero bias 

and o P is shown in Fig. 4.11. The coefficient of determination (R2) was 

-0.88 suggesting a strong correlation between oP and the transmission. 

This relationship satisfies the requirement for a QSAR since it would make 

it possible to predetermine the transmission of a BDT molecule with a 

given substituent group whose oP value is known, for this particular 

system.
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4.4 Transport through the 5x5 Au-BDT-Au system

Similar calculations were performed on the system shown in Fig. 3.2 with 

the larger electrodes of 5x5 cross section. These calculations were much 

more computationally intensive so they were only performed for a small 

sample of substituted molecules to verify if the trend observed for the 3x3 

electrodes was the same with the 5x5 electrodes. The three molecules 

studied were BDT substituted with NH 2 (EDG), H, and NO2 (EWG). The 

optimized structures from Section 4.3 were used as well as the same 

electrode-electrode separation.

The transmission spectra for the three systems at zero bias are 

shown in Fig. 4.12. The energy is relative to the Fermi level for the 5x5 

electrodes which was calculated to be at -3.62 eV. Recall that the Fermi 

level for the 3x3 electrodes was at -3.82 eV and the value for bulk Au is ca. 

-5.1 eV. This is a surprising result because it was expected that with larger 

electrodes the Fermi level would approach the bulk value, not further 

deviate from it. This effect remains unexplained here. In any case, the 

results qualitatively agree for the 5x5 electrodes with those for the 3x3 

electrodes.
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Figure 4.12. Transmission spectra for the 5x5 Au-BDT-Au system shown in Fig 3.2 with 

different substituents. The energy scale is relative to the Fermi level (-3.62 eV).

Just as for the 3x3 Au-BDT-Au system, the transmission at the 

Fermi level is higher for the BDT molecule with the EDG substituent than 

the unsubstituted BDT which is itself higher than the BDT molecule with 

the EWG substituent. A clear difference between these spectra and those 

obtained with the 3x3 electrodes (Fig 4.7) is the non-zero transmission in 

the range from -0.4 to -0.2 eV. Since the lack of transmission in this range 

was the source of the NDR in the systems with the 3x3 electrodes, NDR 

should not be observed in the 5x5 Au-BDT-Au system. Another difference
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between these spectra and those obtained with the 3x3 electrodes is that in 

this case it is easier to see how the three systems (NH2, H, NO2) have 

similar transmission spectra with the main difference coming from the 

position of the large peak that is centered near 0.05 eV for NH 2, -0.15 eV 

for H, -0.5 eV for NO2. This peak in the transmission spectra is once again 

due to transmission through the HOMO level of the molecule, as 

determined from a comparison of the scattering states to the MO's of the 

molecule. The peaks in Fig. 4.12 give a clear demonstration of how this 

energy level is shifted for different substituent groups and the effect this 

has on conductance. Since the BDT substituted with NO 2 has its HOMO 

level farther from the Fermi energy, it has a relatively low transmission in 

the vicinity of the Fermi level. Integrating under the curve around the 

Fermi level will result in a low current. On the other hand, the 

transmission is high at the Fermi level for the BDT with the NH 2 

substituent so the integration under the curve will give a high current.

As for the 3x3 systems, features of the electrodes can be observed in 

the transmission spectra. For these systems, the transmission spectra 

display some sharp drops at 0 eV and at 0.25 eV. Since these coincide in 

energy for all three systems, they are likely due to the nature of the 5x5
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electrodes just as the 3x3 Au-BDT-Au systems had low transmission for 

the [-0.4, -0.2] eV window.

The I-V characteristics for the three systems considered in Fig. 4.12 

are shown in Fig. 4.13 along with the results of the 3x3 Au-BDT-Au 

systems with the same substituents for comparison. An obvious difference 

is the NDR for the 3x3 electrodes and lack of NDR for the 5x5 system. The 

ordering of the curves is the same for both the small and the large 

electrodes: the molecule with the NH 2 substituents has a slightly larger 

current than the unsubstituted BDT (H) at any given bias. The 

unsubstituted BDT has a relatively much higher current than the NO2 

substituted BDT at any given bias. Although the curves differ for the two 

types of electrodes both qualitatively (NDR) and quantitatively, they do 

agree in the ordering of the curves based on the substituent. An attempt to 

plot the three transmission values for the 5x5 systems at zero bias vs. o P 

yielded a poor linear relationship. Even though the order of the I-V plots 

and transmission peaks were the same, the 5x5 system does not appear to 

be useful as a predictive model. One reason for this may have to do with 

the structures used for the calculations. These were optimized as 4Au- 

BDT-4Au that might not fully take into account the interactions of the 

substituent groups (such as NO2) and the atoms on the surface of the
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Figure 4.13. I-V comparison of current as a function of bias for three representative 

substituents with the small (3x3) and large (5x5) electrodes. There is no manifestation of 

NDR for the systems with 5x5 electrodes. The ordering of the curves is the same for the 

systems with both the small and large electrodes: systems with the NH2 substituent have 

a slightly higher current than unsubstituted systems, which have a much higher current 

than systems substituted with NO2.

electrodes. The fact that the calculated Fermi level for the 5x5 electrodes 

was farther away from the bulk value than the one calculated for the 3x3 

electrodes may also have played a role. Another source for this 

discrepancy might be that the scaling of conductance with respect to the 

size of the electrodes may not be the same for all substituents. However,
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since this is a bigger model that should offer a better representation of a 

real system, it seems that the results for the 3x3 systems display a 

fortuitous correlation with cP.

4.5 The substituted 3x3 Al-BDT-Al system

A previous study has shown that a molecule would conduct much better 

when bridging electrodes of one element over electrodes of another 

element [86]. In that study a naphthalene molecule was bridging 

electrodes made of either Au or A1 by physisorbing onto the metal surface. 

It was found that the current in the Au-naphthalene-Au system was 

higher than in the Al-naphthalene-Al system. For this work, it was not 

only interesting to know if the current would be higher with one type of 

metal or another but also to see if the same trend for the current as a 

function of substituent group would hold. Conductance through 

substituted BDT molecules connected to A1 (100) electrodes was studied 

with the aim to keep the system similar to the 3x3 Au-BDT-Au system 

from Section 4.3.

Figure 4.14 shows the DOS for three representative Al-BDT-Al 

systems including molecules containing the EDG NH 2, H, and the EWG
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Figure 4.14. DOS for the Al-BDT-Al system for molecules with three different 

substituents: NH2, H, and COOH. The relative positioning of the o-type (o) and 71-type 

(x) MO's of the 4A1-BDT-4A1 molecule are shown at the top. The energy scale is relative 

to the Fermi level for A13x3 electrodes: -3.93 eV.

COOH substituents. The reason why the molecule with the COOH 

substituent was chosen for the EWG is because this molecule had the 

highest conductance for the Al-BDT-Al system (vide infra). The relative 

positions of the o-type (o) and 71-type (x) MO's that fall within the energy 

window for the corresponding 4A1-BDT-4A1 molecules are also shown. 

The DOS look nearly identical for the three systems. The DOS for the
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systems containing the NH 2 and H substituents are essentially 

indistinguishable. However, the DOS for the system containing the COOH 

substituent has a peak near 0.18 eV which is close to its 71-type MO 

(LUMO+1). This feature in the DOS effectively shows the broadening of 

the MO. The energy scale is relative to the Fermi level of the 3x3 A1 

electrodes which was at -3.93 eV and the value for bulk A1 is -4.3 eV. This 

compares much better for the A1 electrodes than they did for either the 3x3 

or 5x5 Au electrodes.

The resulting transmission spectra for the systems containing the 

EDG's and EWG's are shown in Fig 4.15. The relative positions of the 

MO's ('x' for 7T-type, 'o ' for o-type) from the isolated 4A1-BDT-4A1 

molecules corresponding to the systems shown in Fig. 4.14 are also 

included for comparison. Notice that the trend observed with Au 

electrodes is not present when A1 electrodes are used. The molecules 

containing EDG's have a very low transmission compared to the 

molecules containing EWG's. If the transmission spectra are considered 

more closely, it can also be seen that even the molecules with the highest 

transmission peak have relatively narrow peaks which are farther away 

from the Fermi level when compared to those of the Au-BDT-Au system. 

A more subtle point is that the systems with the highest transmission peak
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Figure 4.15. The tran sm ission  as a fun ction  o f  en ergy  relative to the Ferm i lev e l (-3.92 eV) 

for the 3x3 Al-BDT-Al systems with different substituents on the molecule. Top: 

substituents are EDG's; Bottom: substituents are EWG's. The relative positions of the 

MO's for the NEh, H and COOH substituted 4A1-BDT-4A1 molecules are also shown: (o) 

for o-type and (x) for 71-type.
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closest to the Fermi energy are not the systems with the strongest EWG's 

but systems with only weak EWG's (COOH, CHO). From the positions of 

the MO's and the scattering state analysis (see Fig.4.16), it was determined 

that the LUMO+1 contributes to the transmission peak that is observed for 

systems with the COOH, CHO and CN substituent groups. It is 

interesting to note that the LUMO+1 is a 7i-type MO with A1 electrodes, 

while it is a o-type MO with Au electrodes. This is because the MO's of the 

molecule will couple differently to the levels of different metals 

depending on their relative positions in energy. It is reasonable that the 

states contributing to the transmission are unoccupied MO's since the 

peaks are on the positive side of the Fermi level. This might explain why 

the EWG's have a higher transmission since they would bring the 

unoccupied MO's closer to the Fermi level. However it does not explain 

why only weakly EWG's have a relatively high conductance while strong 

EWG's have a low conductance. This goes to show that the way in which 

the MO's combine with the levels of the electrodes can result in drastic 

differences in the conductance behaviour from one element to another.

The current as a function of bias for the different substituents is 

shown in Fig. 4.17. Comparing the scales on the current axes for the 3x3 

Al-BDT-Al and 3x3 Au-BDT-Au systems (Figs. 4.10 and 4.16) it is seen that

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



b)

Figure 4.16. A comparison of a) the scattering state for the COOH substituted 3x3 Al- 

BDT-Al system in Fig. 4.15 at the peak of the transmission curve (0.16 eV) with b) the 

LUMO+1 of the COOH substituted 4A1-BDT-4A1 molecule shown in c).

the system with A1 electrodes carries about half the current at a given bias 

compared to the system with Au electrodes, which qualitatively agrees 

with another study [87], where a similar ratio was measured. As expected 

from the transmission spectra in Fig. 4.15, the molecules containing the 

EWG's COOF1 and CHO yield the highest current at a given bias. Based 

on these DFT calculations, this system also appears to have no direct 

relationship to the crP parameter and therefore could not be used as a 

predictive model in the same way the 3x3 Au-BDT-Au system can be.
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Chapter 5

Conclusions

The electrical transport properties of a BDT molecule bridging two 

electrodes were modeled using a combination of DFT and the NEGF 

formalism. EDG's and EWG's were added to the BDT molecule as 

substituent groups in order to investigate how their electronic properties 

are predicted to affect the conductance. The effect of using different 

electrodes to connect to the BDT molecule was also investigated by 

comparing systems binding to the (100) face of Au electrodes with 3x3 and 

5x5 cross sections as well as to the (100) face of A1 electrodes with 3x3 

cross section.

For the 3x3 Au-BDT-Au system, the zero bias conductance was 

calculated to be 66 pS which shows that the molecule in this system is a
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good conductor. However this value is still two orders of magnitude 

higher than experiment. This level of disagreement between theory and 

experiment for the Au-BDT-Au system is common. The I-V characteristics 

of this system displayed NDR, where the current decreased with 

increasing bias between 0.2 and 0.4 V. This is attributed to the nature of 

the electrodes which did not have a continuous distribution of states as 

bulk Au does. It was found that adding EDG's as substituents on the BDT 

molecule increases its conductivity while adding EWG's decreases it. This 

is explained by the mode of transport at low bias which is through the 

HOMO of the molecule. EDG's raise the energy of the HOMO, bringing it 

closer to the Fermi level, while EWG's lower it, moving it farther away 

from the Fermi level. It was found that low bias conductance for the 

different substituted BDT molecules had a linear correlation to the 

Hammett parameter oP for those substituents (R2 = 0.88). It is concluded 

that a QSAR exists which can be utilized to predict the conductance of a 

BDT molecule with a particular substituent based on its oP value.

Calculation on BDT connected to 5x5 Au electrodes showed the 

same qualitative trend for conductance relative to the substituent groups. 

However, there was no linear correlation with oP for this system. As for 

the above system, the HOMO of the BDT molecule was found responsible
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for transmission at low bias. The I-V curves for this system did not show 

NDR, giving evidence that the effect observed for the 3x3 electrodes is due 

to the nature of the electrodes in combination with that of the BDT 

molecule.

Changing the electrodes to 3x3 A1 yielded a lower conductance 

through the system. The same trend relating conductance to the 

substituents was not present for this case. The systems containing the 

weak EWG's gave the highest transmission. It was found that the 

LUMO+1 of the molecule was responsible for this transmission. Molecules 

with EWG's gave the highest transmission because the energy of their 

LUMO+1 level would be shifted closer to the Fermi level. However, the 

strongest EWG's have a lower transmission, and the reason for this is not 

known presently.

The electrical conductance behaviour through a molecule depends 

not only on the molecule but also on the electrodes to which it is 

connected. For a given molecule, if the size or composition of the 

electrodes is altered, the conductance can change drastically. Therefore the 

behaviour is not transferable from one combination of molecule and 

electrode to another.
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Appendix A

The quantum of conductance g 0

The following is adapted from [1] and it serves the purpose of showing 

the origin of the quantum of conductance G0.

A ballistic conductor with n electrons per unit of length in which 

the electrons move with average velocity v carries a current

I - e n v  (A.l)

where e is the charge of an electron. It is assumed that the + k states in a 

subband are occupied by electrons moving to the right while the - k  

states are occupied by electrons moving to the left (see Section 2.2.1). Only 

the +Jc states are considered and these are populated according to some 

distribution function f +(E) . Since the electron density associated with a
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single k  -state in a conductor of length L  is the current to the right

carried by a subband can be expressed as a sum over all of the populated 

+ k states as

r = z £ v r ( £ ) = z ^ H f / *<£)  (A2>

where the velocity can also be expressed as the first derivative of the

dispersion relation E{k) with respect to k ,  divided by f i . If periodic

conditions are assumed, the summation over k can be converted into an 

integral as

X  —> 2 x ~  jd k  (A.3)
k ^

where the factor of 2 is added for spin, and

V = ^ \ f \ E ) d E  (A.4)

is obtained. If this integration is carried out over a range of energies from 

to f i2 in which /  ' (£’) = 1, the current to the right becomes

r\ th  r\ 2 (  i t    H  \
J+ = ze_ j f+(E)dE = / L A  = G0V (A.5)

h M h v e

w hich  shows the origin of G0 (~ 77pS).
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Appendix B

Surface Green's function

Since a semi-infinite electrode is periodic in the z-direction, its 

Hamiltonian can be expressed as an infinitely large block-tridiagonal 

matrix

'K

H  =

h
/lg K
K K K

K K K
h2 K

(B.l)

where h0 is the Hamiltonian for an arbitrary repeating cell; and /?, and h2 

are overlap matrices between neighbouring cells. It is assumed that there 

is no direct coupling between second neighbouring cells, which is a fair 

assumption supposing the cells are chosen to be large enough (however

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



there might be indirect coupling). hs is taken to be the cell that will be 

connected to the central (scattering) region and it is the focus of attention. 

Letting G be the inverse of H , where G will generally not be block- 

tridiagonal, the first diagonal block of G is of interest,

gs =G00= ( H - %  (B.2)

because it represents the surface Green's function gs that is sought after

from H  (see Section 2.3.3). Note that the indices start from 0.

Two approaches that are used to solve this problem include a Bloch 

wave method [1] and an iteration method [2], The latter is presented here 

since it is the one implemented in the MATDCAL package [3].

By starting out with only the first column of G , where g t = Gi0 is 

defined, and multiplying it by H

% K
\

' g  oN
h2 K K gl 0

\

K K

■)

g 2 

v • /

0

w

is obtained from the inverse relationship. The equation for the first row 

yields the relationship

K 8 o = l ~ hi8i (B.4)

and for all other rows

K g n - l + K g n + K S n *  = 0  ( n  *  *) (B -5 )
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Rearranging Eq. (B.5),

8n  = t 0g n-l + t 0g„+l ( n >  1)/

t0 — — h.Q h2,

to ~ ~̂h> \  ■

Applying this relation to g n_x and g n+1, the recursive relation can be 

derived for next nearest neighbours

S n  = h S n - 2  + l g n +2 &  > 2 )  , 

t1 = — (1 — t0t0 — t0t0) t0, (h.7)

 ̂ _ _(i — t0t0 — t0t0) t0 .

Repeating the above step will give

8 n = h 8 n_2l+t lg n+2l ( n > 2 1)

h  ~  (1 — 6-1C1 ~  t i - i h - i )  h - \  (®-8)

h  =  —(1 — h - ih - i  ~  C-16-1) h -1 

on the Ith iteration. From Eq. (B.8),

8l  =  *0<?0 0̂&2 '

8 2 = h8o + h8n>
(B.9)

82‘ = h8o h82M'

can be obtained. Consecutive substitutions into Eq. (B.9) will yield
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§1 ~ ^ l §  0 ^1§2m '

(B.10)

For sufficiently large I , the term g 2,+1 becomes very small and can be 

neglected [2] so that

into which Eq. (B.4) can be substituted in order to get the relation for the 

surface Green's function
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(B.ll)

gs = g o = ( hs +hiT y l - (B.12)
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