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ABSTRACT

Hot rolled hat shaped sections are commonly used as chord
members in open web steel joists. It is normally assumed that the ulti-
mate strength of the compression chord is given by its flexural buck-
ling strength. However, as the hat shaped sections have only one axis
of symmetry, buckling can occur in either a flexural, or a lateral torsion-
al mode. In this investigation, the flexural and lateral torsional buck-
ling strengths of hot rolled hat shaped sections were investigated over
a wide range of slenderness ratios.

Residual strain and yield stress distributions were determined
for the member and a uniform axial strain applied. Section properties
of the elastic core and the load corresponding to the applied strain
level were evaluated. The differential equations expressing equilibrium
of the member in the deformed shape were entered with this load and the
appropriate section properties, and the critical lengths corresponding
to flexural and lateral torsional buckling were computed. This pro-
cedure was repeated for different values of the applied strain until
the complete column curve for the member had been determined.

The effects of different yield stress distributions on the
buckling strength were examined. However, even with the most severe
distribution, lateral-torsional buckling was not critical. A comparison
was made between the critical buckling stresses and those permitted by
the allowable stress sections of C.S.A. S16 1969. These provisions re-

sult in adequate factors of safety.
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CHAPTER I
INTRODUCTION

Open web steel joists are widely used as simply supported
flexural members to support roofs and lightly loaded floors. A typical
joist is shown in FIG. 1.1. The arrangement of the web members permits
easy passage of heating ducts and other services through the joist.
Joists also offer savings in weight over comparable members having solid
webs.

Various sections are used for the chord members of open web
steel joists. These include circular bars, tees and double angles. How-
ever, perhaps the most popular chord member is the hat-shaped section.

A typical hat-shaped section is shown in FIG. 1.2. In this figure the
principal axes, designated x and y, are shown passing through the cen-
troid, C. The section is symmetrical about the y axis and the shear

centre, S, is located on the y axis, a distance Yo below the centroid.

Hat shaped sections have normally been fabricated from light
gauge steel strip by a cold forming process.(]) However, more recently,
much heavier hat shaped sections have been produced by hot rolling.

The forces acting on a typical compression chord segment
of length, L, are shown in FIG. 1.3. The chord is subjected to a trans-
verse load, w, which may be concentrated or uniformly distributed, de-

pending on how the floor or roof system bears on the chord. As the joist



is loaded, bending moments M] and M2 are induced in the chord as well as
shears, V] and V2, and axial compressive forces P] and P2. The web
members develop primarily axial forces, F], F2, F3 and F4. The trans-
verse load, bending moment, and accompanying shears are usually small
and it is assumed that the primary force is the axial thrust induced by
the truss action of the joist.

Due to the close spacing between web-chord connections, or
panel points, the axial loads in adjacent chord segments will vary only
slightly. Thus, when a critically loaded segment of the chord is on the
verge of buckling between panel points, the adjacent chord segments are
also near failure and can offer 1ittle restraint to the critical segment.
Hence each chord segment may be assumed to be pin connected. The simpli-
fied chord segment model is shown in FIG. 1.3b.

The- idealized chord segment is subjected to an axial thrust
and if premature local buckling does not occur, the ultimate strength of
the segment is conservatively predicted by the buckling strength.(2’3)
The buckling strength can be shown schematically on a “column curve".
FIGURE 1.4 is a typical column curve which relates the slenderness
ratio, KL/r, te the average applied stress at the instant of buckling,
o. The buckling stress is non-dimensionalized as o/oy, where Uy is the
yield stress of the material. The effective length is represented by
KL and r denotes the radius of gyration of the cross section.

The dashed 1ine in FIG. 1.4 represents the behavior of a

member composed of an elastic material. The behaviour of very slender



steel columns is predicted by this curve. These slender columns buckle
with the complete cross section subjected to strains within the elastic
range. A column composed of an elastic perfectly plastic material de-
viates abruptly from the elastic curve when the applied axial stress
equals the yield stress.

Structural steel members contain residual strains and, in
addition, may have variations in yield stress over the cross section.
These properties cause premature yielding in parts of the cross section
at an average applied stress considerably below the yield stress. The
local yielding causes the member behavior to deviate from that depicted
by the elastic curve as buckling of the member occurs after portions of
the cross section have yielded. This is termed inelastic buckling.

Monosymmetric sections can buckle in either a pure flexural
mode or a lateral torsional mode.(4) The two possible positions are
shown in FIG. 1.5. A flexural buckling motion is resisted by the bend-
ing strength of the member while lateral torsional buckling involves
both the flexural and torsional resistances of the member.

In the absence of more complete information, hat shaped
sections have been designed on the basis of their flexural buckling
strengths. The purpose of this investigation is to compute the flexural
and lateral-torsional buckling strengths for a variety of hot rolled
shaped members commonly used in open web steel joists. The variations
in-material properties and residual strains will be examined and their
effects incorporated into the analysis. For the purposes of this in-
vestigation, the model of the joist segment is considered to be that shown

in FIG. 1.3b.
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CHAPTER II
PREVIOUS INVESTIGATIONS

The equations expressing the equilibrium of a monosymmetric

column section in the deformed position are given be1ow(5)

EIXv +Pv =20 2.1
titv [ ] 11
EIyu + Pu  + Py0¢ = 0 2.2
[ | i i
EIW¢ - (GKT + K¢ + Pyou =0 2.3

FIGURE 2.1 shows the column and the deformed positions of the cross
section.

In the above equations, E represents the modulus of elasti-
city, G, the torsional modulus of the material and P, the axial load.
Ix and Iy denote the moments of inertia about the x and y axes respec-
tively. The distance between the centroid and the shear centre is re-
presented by Yo KT denotes the St. Venant torsional stiffness while
Iw represents the warping moment of inertia of the cross section.
K=/J oa’

A
on the fibre and a is the distance from the fibre to the shear centre.

dA where A is the area of the cross section, o the total stress

The quantities, u, v and ¢ represent displacements of the shear centre
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as shown in FIG. 2.1, and the primed quantities denote differentiation
with respect to z.
For simply supported flexural and torsional boundary conditions,

the selutions to the equations take the form:

- VA

vV = C] sin T 2.4
_ .ol

u = C2 sin T 2.5
_ VA

o = C3 sin T 2.6

Substituting for the deflections and their derivatives into equations
2.1, 2.2 and 2.3 results in three homogeneous linear equations in terms
of the constants C], C2 and C3. The equation resulting from Eqn. 2.1 is
independent of the other two, and its solution is the critical load for
flexural buckling about the x-axis;
_ .2 2

(P e, = TEL/L 2.7

The equations resulting from Eqns. 2.2 and 2.3 are coupled and combine

to give a quadratic solution for the critical lateral torsional buckling

load, (PyT)cr .

)2 2

cor Yo ° 0 2.8

(Py = (PyT)CY‘)(PZ + -IZ) - (PyT
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where

2 2
P = .
y T EIy/L 2.9

and P, = mEL /LZ + Gk 2.10

If the section properties of the member are known, the solution of
equations 2.7 and 2.8 is routine and the lower critical load represents
the buckling strength. However, for members of practical proportions,
portions of the cross-section yield before buckling occurs due to vari-
ations in yield stress and the presence of residual strains. This partial
yielding means that the elastic buckling equations no longer apply di-
rectly, since the section properties of the elastic core change as shown
in FIG. 2.2.

The buckling strength of the member is therefore profoundly af-
fected by the residual strain distribution and by the variations.in yield
stress across the section.

For WF shapes the standard technique used to determine the re-
sidual strain distribution is to remove a selected length from the member.
Longitudinal strips are then marked on this section, and the residual
strain in each strip is determined by noting the change in length of the
strip after it is cut from the section. The measurements are performed
on both sides of each strip using a Whitemore Strain Gauge. This method
could not be used for tubular members as only one side of the strips was
6)

accessible prior to cutting( An alternative method, devised for these
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members, was to measure the change in length and the change in curva-
ture on one side of the strip only, when the strips were cut free.
During the course of this investigation, the subsequent bowing of the
strips when cut free influenced the apparent residual strain(ﬁ). The
bowing action was accounted for in the curvature measurements so the
computed residual strains were correct.

The effect of bowing is shown in FIG. 2.3. Corrections for
the bowing action should still be applied even where changes in length
are measured on both sides of the strip. The change in mid-thickness
length, due to residual strains, should be computed as the difference
between the original lengths, OL1, OL2, and final arc lengths AL], AL2.
In the presence of significant bowing, the standard method computes the
change in Tength inaccurately as the differences between the original
lengths and the chord lengths CL], CL2. These differences measured
for both sides are averaged to obtain the change in mid-thickness length.
This process only removes the error due to the offset, e, of the points
of the Whitemore Strain Gauge from the centreline of the gauge holes.

The tangent modulus approach to buckling assumes yielded
portions of the cross section to be ineffective in resisting the buck-
ling motion. This approach also makes no allowance for the increase in
strength caused by the elastic unloading of previously yielded fibres.
The concept is conservative, and is recommended as a basis for design by
the Column Research Counci1(7). It is implied in this concept that only

the elastic core of the cross section is effective in resisting the buck-
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1ing motion.

Buckling strength of WF shapes, using the tangent modulus ap-
proach have been established for many different cross sections, materials,
and residual strain distributions.<8) In assessing the torsional buck-
ling strengths(g), it has been assumed that the residual stress distri-

bution must satisfy the relationship

where g, denotes the residual stress on a fibre. Thus K is given by:

" 2 2 Ix+I
K=-P(x%+y%+2Y 2.12

0 A
However, since both the shearing and normal residual stresses on any
section can be in equilibrium without satisfying equation 2.11, the re-

(8)

lationship is not a necessary one.
Buckling strengths for cold roiled hat shaped sections,(]3)
have been established in the elastic range ignoring the effects of re-
sidual strains.(g) This study was extended to allow for eccentric loads
and inelastic action but residual strain effects were again neg]ected.(]o)
Cold rolled sections have such a large variation in yield stress across
the section that residual strain effects are masked. The magnitude of
this variation can be seen in FIG. 2.4. This variation in yield stress

was accounted for in an investigation into the flexural buckling strength
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of cold rolled hat shaped sections.(])

An indirect approach to the determination of the tangent
modulus for hot shaped column sections has also been described in the
1iterature.(]]) The complete flexural buckling curve was determined
by using the results of stub column tests to establish an effective
bending stiffness.

The present investigation is aimed at evaluating the flexural
and Tateral-torsional buckling strengths of hot rolled hat shaped column
sections. The effects of the residual strains and yield stress vari-
ation will be accounted for and the investigation will cover the com-

plete practical range of column slenderness.
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CHAPTER III
MATERIAL AND SECTION PROPERTIES

The steel used in the chords is produced especially for the
manufacturer of the open web joists and is not covered by a C.S.A. speci-
fication. However, a specified chemical composition as well as a mini-
mum yield stress of 55 k.s.i. are required. A typical chemical analysis
for this steel is shown in Table 3.3. Tension coupons cut from the web
of the hat section are used in the mill tests to determine the yield
stress.

The complete range of hot rolled hat shaped sections which
were available for this investigation is shown in FIG. 3.71. Sections
were chosen from this group which should exhibit the most severe dis-
tribution of residual strains as well as significant variations in yield
stress over the cross section.

The residual strain distribution is produced by differential
cooling and plastic flow of the cross section during its manufacture.

The pattern of differential cooling is affected primarily by the length
and thickness of the flanges. Sections E, F and L, shown in FIG. 3.3,
were chosen to investigate the possible different residual strain distri-
butions. The difference in the residual strain results obtained from E
and F should be caused primarily by the difference in flange length while

the difference in results between sections F and L would be caused by the
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varfation in flange thickness.

The yield stress is affected by the differences in the grain
structures of the steel produced by different rates of cooling. Section
L was accordingly chosen to investigate variations in yield stress as
portions of this section should have experienced the widest variation
in cooling rates compared to other sections. Dimensions of section L
are given in FIG. 3.2.

Table 3.1 lists the material properties obtained from tension
tests on specimens cut from section L. A length of this section was cut
into eight strips as shown in FIG. 3.2. The strips were then machined
to tension coupons and tested in a hydraulic testing machine. The static
yield stress, qy’ was obtained by holding the specimen at a constant
strain for five minutes. A modulus of elasticity, E, equal to 29,600
k'ips/ins2 was used to compute the yield strain, Ey’ as cy/E. The strain
hardening modulus, Est’ was taken as the slope of the tangent to the
initial part of the strain hardening portion of the curve. The strain
at the onset of strain hardening is denoted éy €t and the ultimate
stress as Ou1t The initial portion of a typical stress strain obtained
for the test coupon is depicted in FIG. 3.4.

The variation between the highest and lowest values of the
yield stress measured for section L amounted to approximately 15% of the
Towest value. This variation is less than that for WF shapes where cor-
responding variations of 20% have been noted.

Residual strain distributions for sections E, F and L are shown
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in FIG. 3.5 and FIG. 3.6. The distributions were determined for one
specimen of each of sections F and L and for three specimens of section
E, as this gave the most severe distribution and the largest magnitude
of strain. The measurements used to obtain the residual strains account
for the curvature produced by the bowing action when the strips were
cut free. Locations of the strips are shown in FIG. 3.3.

A11 sections showed the same general distribution of residual
strain, with the exception of section F. In section F the strain values
were relatively Tow and the resulting distribution may not be reljable.

The residual stress distribution must satisfy the three equations

of equilibrium. These may be expressed as

f OrdA = 0 3.1
J oydA =0 3.2
f erdA = ( 3.3

Equation 3.1 states that the net axial force on the section
must be zero, while Equations 3.2 and 3.3 state that the moments due to
the residual stresses about the x and y axes must be zero. The residual
stress distributions computed from the measured residual strain distribu-
tions did not satisfy these equations exactly. The measured residual

strain distributions were therefore adjusted before being used in com-
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putations.

The residual stress distribution obtained for section E was
chosen as being the most severe expected for hot rolled hat shaped
sections. This residual stress distribution was idealized as shown in
FIG. 3.7. In FIG. 3.7, L1 represents the length of the flange, L2 the
length of the web and L3 the length of the top of the hat. The lengths
were measured on the center line of the section. The magnitude of the
compressive stress in the flange tips, C, was selected on the basis of
the measured values. With the specified value of C, and the known
section geometry, the idealized distribution can be adjusted to comply
with equations 3.1 and 3.2 by adjusting T and F. Equation 3.3 is sat-
isfied by symmetry. T is the tensile stress in the flange and F the
compressive stress in the top of the hat. The necessary computations
were programmed for computer solution. Results obtained for sections

E, F and L are given in Table 3.2.
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TABLE 3.1 MATERIAL PROPERTIES FROM TESTS ON SECTION L

o 9
Strip cy € = 1¥- st Est utt #
Number k.s.i. y ins/ins k.s.i. k.s.i. elongation
1 56.4 0.00191 0.0128 646 84.1 22.5
2 53.2 0.00180 0.0107 603 83.4 20.5
3 53.5 0.00181 0.0163 540 81.5 19.7
4 50.6 0.00171 0.0067 700 81.7 15.2
5 49.2 0.00166 0.0068 681 83.4 17.3
6 53.0 0.00179 0.0152 500 80.7 18.0
7 52.1 0.00176 0.0083 760 82.5 21.3
8 54.1 0.00183 0.0156 740 84.3 19.2

Note E = 29,600 k.s.i.

TABLE 3.2 VALUES FOR BALANCED, IDEALIZED
RESIDUAL STRESS DISTRIBUTION

C T F
Section k.s.i. k.s.q. k.s.i.
E 7.5 7.8 1.8
F 7.5 7.7 1.9
L 7.5 7.6 1.1
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FIG. 3.4 INITIAL PORTION OF TYPICAL STRESS-STRAIN CURVE - SECTION L
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CHAPTER IV
ANALYTICAL INVESTIGATION

The analytical investigation used Equations 2.7 and 2.8 to
establish the critical lengths corresponding to flexural and lateral-
torsional buckling. These equations are in terms of three unknowns; the
load, the section properties and the critical length. Hence, any two of
these quantities must be known before the equations can be solved. How-
ever, the section properties are influenced by the load, as the Toad
level determines the extent of yielding in the section. The equations
cannot, therefore, be solved directly.

Equations 2.7 and 2.8 were solved by first applying a uniform
strain, €, to the cross section as depicted in FIG. 4.1. The cross
section was sub-divided into finite areas AA. Then, for any fibre, the

total strain €t is the sum of the residual and applied strains:

€ = €, + ¢ 4.1

. The stress-strain relationship, FIG. 3.4, was entered with the total
strain and the corresponding stress, o, obtained. The stress in the
fibre times the sub-area, summed over the cross section is equal to the

applied load, P:

P=Jo. A 4.2



The elastic core is defined by the total strain in each in-
dividual fibre. In the instant before buckling, the sub-areas are
either elastic or plastic under the axial load. If the sub-area has
yielded, it is assigned a zero thickness, if elastic, the actual
thickness. For sub-areas strained into the strain-hardening region,
the thickness ti is given by:

E
_ st
t. = t T 4.3

;
where t is the actual plate thickness. Section properties are then
evaluated for the elastic core. However, KT is based on the original

(8)

area.

With the section properties and axial Toad known, equations
2.7 and 2.8 can be solved for the lengths corresponding to flexural
and lateral torsional buckling. The process was repeated with in-
creasing values of the applied strain to trace the complete column
curves. FIGURE 4.2 is a flow chart of the process, a listing of the
computer program is included in Appendix A.

Three shallow hat sections, E, F and L were investigated.
The residual strain distribution assumed was as shown in FIG. 3.7,
however, three different assumptions were made for the yield stress
distribution on the section. For one analysis, the yield stress was
assumed to be constant at 55 k.s.i. over the cross section. In the

second analysis the measured yield stresses for section L (Table 3.1)

32
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are used for the appropriate fibres. Finally a yield stress of 55
k.s.i. is used for the web plates and the yield stresses in the re-

maining plates, FYB’ are given by:
55 4 B
= 55 x ¥ 4.4

where B corresponds to the yield stress measured in the appropriate
plate of Section L and W, to the yield stress measured in the web of
Section L. This process is conservative as it implies that further
reductions would be proportional to the changes in plate thickness;
section L has the greatest variation in plate thickness.

The heaviest and highest deep hat sections, designated R and
M in the manufacturers catalogue, and shown in FIG. 4.3 were also in-
vestigated. Deep hat sections showed a progressive increase in thick-
ness from the Tighter to the heavier sections. Therefore, the behaviour
of R and M would represent T1imits on the range of behaviour for deep
hat sections. The residual stress distributions were assumed to be as
shown in FIG. 3.7. The yield stress distribution was assumed to be
the same as that measured for the shallow hat sections. Section M was
also analysed with an artifically higher yield stress in the web than

in the remainder of the section.



RESIDUAL
STRAIN (€,)

+

UNIFORM
APPLIED

STRAIN (€,)

EQUALS

l

TOTAL
STRAIN (€,)

ACTING
ON

|

+/'

NOMINAL
CROSS
SECTION

RESULTS
IN

|

ELASTIC
CORE

FIG. 4

.

/2
—F
17 + COMPRESSION
- “TENSION
K
Z
/
/ +
v
+ +
__________ ~- YIELD
L. /STRAIN
"'/I/" +/
/ /S S
t (CONST)
oA T
tA

CHANGE IN SECTION GEOMETRY UNDER APPLIED LOAD

34



INPUT (1) DISTRIBUTION 35
OF RESIDUAL STRAIN
YIELD STRESS AND

STRAIN HARDENING

STRAIN.
(2) SECTION GEOMETRY
(3)E, & G
APPLY UNIFORM l
> STRAIN TO
SECTION COMPUTE WARPING
Y MOMENT OF
COMPUTE STRESS INERTIA
DISTRIBUTION l
Y EVALUATE K
3 STRESSES X AREA
= APPLIED FORCE l

!

DEFINE ELASTIC
CORE

COMPUTE AREA OF ELASTIC
CORE AND LOCATION OF
ITS CENTROID

ENTER BUCKLING EQUATIONS
WITH LOAD AND SECTION
PROPERTIES.

SOLVE CRITICAL BUCKLING
LENGTHS FOR FLEXURAL
AND LAT. TORSIONAL

COMPUTE MOMENTS
OF INERTIA ABOUT

X &Y AXES THROUGH
CENTROID

Y

EVALUATE WARPING
PRODUCT OF INERTIA
ABOUT x AXIS

{

COMPUTE y CO-ORD

BUCKLING.
Y

ENTER ALLOWABLE STRESS
CLAUSES IN C.S5.A. S16
1969 WITH BUCKLING
LENGTHS. COMPUTE
ALLOWABLE LOAD

Y

PRINT OUT ;

LOAD, BUCKLING LENGTHS
AND ALLOWABLE LOAD
BY CODE

OF SHEAR CENTRE

FIG. 4.2 FLOW CHART OF PROGRAM LOGIC




36

o
{

2II l

0.259"
O
=
~
0.319"
A
i [
«—1'1/16 —>| 1.937 e—11/16—
- 4 3/4" >
SECTION M
’TF"' '
Ky
0 .
'~
N
—1'1/16 —! —_1.937" le—1'1/16 —»]
> 4 3/4" —
SECTION R

FIG. 4.3 SECTIONS M AND R DIMENSIONS TAKEN FROM MANUFACTURERS CATALOGUE



37

CHAPTER V
RESULTS

Column curves for the different sections analysed are given
in FIGS. 5.1 to 5.5. These curves plot the relationships between the
slenderness ratio, L/rx, and the average applied stress at the instant
of buckling, o. The buckling stress has been non-dimensionalized as
o/o, where oy is the weighted yield stress for the section and is

y
given by:

y
A - 5.1

where qy is the yield stress on element dA, of the cross section,
and A, is the area of the cross section.

The curves have the same general shape for all sections analysed.
For a long, slender column, the maximum total strain at buckling is
below the yield strain. More stocky columns buckle only after portions
of the cross section have yielded and very short, or stub columns, un-
load only after complete yielding of the section.

FIGURE 5.1 plots the column curves for section E. The relation-
ships for flexural buckling and for lateral-torsional buckling are
plotted through the full range of column lengths (Tong, intermediate

and short). For each mode of buckling, three different yield stress
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distributions were assumed as discussed above. The results for the
longer columns, which buckled elastically, are independent of the yield
stress distributions. In the inelastic range, the column curves were
fairly similar under the assumption of a constant yield stress over
the cross section and the assumption that the yield stress distribu-
tion was adjusted to produce a value of 55 k.s.i. in the web. The
section having the measured yield stress distribution, however, had a
reduced flexural buckling strength, as compared with the other two.
The average of the measured yield stresses for this section was less
than the average yield stress for the sections having the two assumed
distributions; thus this section deteriorated more rapidly once yield-
ing was initiated since the residual strains represented a higher
proportion of the yield strain. In each figure the separation caused
by the different yield stress distributions is emphasised by shading.
FIGURES 5.2 and 5.3 show similar trends for sections F and L. For
each section, the lowest buckling strengths were obtained for the
measured yield stress distribution. The separation between the flexural
and lateral-torsional buckling curves increased for the heavier sections,
since the larger flanges increased the torsional resistance more than
the flexural resistance,

A1l curves show a marked discontinuity due to the shape of the
assumed residual strain distribution. The residual strains were assumed
to be constant over the flanges and top of the hat section. Consequently,

large areas of the cross-section yield simultaneously, producing a drastic
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reduction in flexural and torsional stiffness. The true residual strain
distribution would be similar in shape to that assumed, but would pro-
bably vary somewhat over the plate length. Hence, under increasing
axial load, progressive yielding of the section would occur, causing

a gradual reduction in the buckling strength. The assumed residual
strain distribution is probably more severe than the actual distribu-
tion, and the predicted buckling strengths are thus conservative.

For all sections analysed, the ultimate strength of the member
was associated with the flexural buckling strength, regardless of the
yield stress distribution assumed. The results obtained for the section
having the measured distribution of yield stress and the adjusted dis-
tribution of yield stress, showed the least amount of spread between
the flexural and lateral torsional buckling curves. For these distri-
butions the yield stresses in most of the flange plate areas weré;lower
than in the webs. Hence the flanges yielded at a relatively early
stage of loading and, at this stage, the member acted as a narrow beam
with a high flexural but a low torsional resistance.

The tendency for failure through lateral torsional buckling is
increased for deep hat sections. FIGURES 5.4 and 5.5 plot column
curves for sections M and R respectively. For these sections, the
lateral torsional buckling strength is slightly lower than the flexural
buckling strength over a small range of slenderness ratios. The tendency
towards failure by inelastic lateral torsional buckling was further in-

creased by assuming an artifically higher yield stress in the web of
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section M(60 k.s.i.) than in the rest of the section. FIGURE 5.4
plots.the column curve for this case. The lateral torsional buckling
strength is now slightly lower than the flexural buckling strength
over a larger range of slenderness ratios. However, even in this
extreme case, the ultimate strength of the member is very close to
that associated with the flexural buckling strength. For the cases
considered, the ultimate strength of hot rolled hat shaped column
sections can be taken as the flexural buckling strength.

This conclusion implies that the allowable stress provisions
of C.S.A. S16 1969 will provide the customary factors of safety against
buckling. TABLE 5.1 lists the minimum factors of safety computed for
the different sections.

The slenderness ratios listed in TABLE 5.1 represent the bounda-
ries of the various provisions of C.S.A. S16 (0, Co’ Cp) and one in-

/8.

termediate point, which corresponds to the elastic Tlimit L/rx
The location of these slenderness ratios is indicated in FIG. 5.7.

In the elastic buckling range as defined by C.S.A. S16 (L/r, z_Cp)

the factor of safety is 1.92 and once the section is completely yield-
ed at L/rx = 0, the factor of safety is 1.67. The factor of safety

at L/rx = 78 is greater than 1.92 since the residual strain distri-
bution assumed by C.S.A. S16 is more severe than the measured distri-
bution used in this investigation.

In each case considered, the factors of safety provide an

adequate margin against buckling and justify the use of C.S.A. S16
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1969 as a basis for design.

The analysis used to obtain the column curves assumes that
the load is applied concentrically. However, the investigation showed
that yielding of a portion of the cross-section is accompanied by a
slight shift in the centroid of the elastic core. This process is
depicted in FIG. 5.6 for one load increment. The axial load is ap-
plied through the original centroid C, until a Timiting value of the
axial load, Pe]’ is reached. Under a subsequent increment of axial
load, AP, the section yields and the new centroid, CI, is situated
a distance e from the original centroid. The member is now sub-
jected to an axial load of P + AP and a moment of e x AP. The magni-
tude of this moment, however, is small. TABLE 5.2 1ists the values
of e for section E. For this section Pe] is 49.5 kips and, as the
load is increased above this value, the centroid of the elastic core
moves from its original position. Each increment of load therefore,
induces a moment, as the load increments are no longer applied through
the original centroid. Under the last increment of load the section
is completely plastic. The total moment acting on the section at this
stage is obtained by summing the moments induced by the individual
load increments. For section E this total moment is 0.62 in. kips.
This moment compares with the plastic moment capacity for the section
of 16 in. kips, that is, the total moment is 2.5% of the plastic moment.
The error caused by neglecting the effect of the shift of the centroid

should be sma]].(]z) Buckling strengths obtained from tests on 'T'
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sections compare closely with the theoretically predicted strengths

(12)

under similar conditions. The comparison showed that for practical

purposes, the shift of the centroid could be neglected.



Section Slenderness Ratio
0 Cp =19 78 C97= 82
E 1.67 1.67 2.1 1.92
F 1.67 1.67 2.1 1.92
L 1.67 1.67 2.1 1.92
M 1.67 1.67 2.1 1.92
R 1.67 1.67 2.1 1.92
TABLE 5.1 FACTORS OF SAFETY PROVIDED BY
C.S.A. S16 1969 AGAINST BUCKLING
Total Load Distance from Shift in Applied
Load Increment top of hat centroid Moment
kips AP (kips) to centroid e (ins) e x AP
49.5 0.69
52.4 3.9 0.75 0.06 0.23
53.9 1.5 0.76 0.07 0.10
55.2 1.3 0.76 0.08 0.10
56.4 1.2 0.85 0.16 0.19

Total Moment = 0.62 ins. kips

TABLE 5.2 SHIFT OF CENTROID SECTION F

43
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FIG. 5.6 SHIFT OF CENTROID ON YIELDING
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CHAPTER VI
SUMMARY AND CONCLUSIONS

Hot rolled hat shaped sections are commonly used as chord
members for open web steel joists. The chord member may be idealized
as a series of pin ended axially loaded segments. The ultimate strength
of a segment is assumed to be given by its buckling strength. As the
section has only one axis of symmetry, buckling may occur in either a
flexural or a lateral torsional mode.

Residual strains were measured for the hat shaped sections
using the method of sectioning, but allowing for the bowing action of
the strips on release. With the residual strains known, a step by step
procedure, based on the tangent modulus approach, was used to obtain
column curves for the different sections. The column curves covered
the practical range of slenderness ratios and considered the effect of
variations in the yield stress distribution on the buckling strength.

The measured residual strains were small, with maximum com-
pression values of approximately 0.00025 inches per inch. The idealized
residual strain distribution assumed constant compressive strains over
the flange tips, which caused discontinuities in the column curves as
these areas yielded. However, the idealized distribution furnishes con-
servative results as it envelopes the actual distribution.

A lower bound on the buckling strength resulted from the con-
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sideration of the actual (measured) yield stress distribution. The
residual strains represented a greater proportion of the average yield
strain for this distribution and so deterioration of the section in the
inelastic range was more rapid than for the other idealized distribu-
tions.

The column curves were based on the tangent modulus concept
recommended by the Column Research Council. Column curves obtained using
this concept showed that the flexural buckling strength was generally
less than the Tateral torsional buckling strength. Exceptions to this
rule were found to exist over very small ranges of slenderness ratio
and only under extreme conditions. The allowable stress provisions con-
tained in C.S.A. S16 1969 resulted in adequate factors of safety against
buckling; the use of these provisions for design of hot rolled hat
shaped sections is justified.

The investigation assumed that the ultimate strength of the
member corresponds to its buckling strength and did not consider the
effects of the lateral loads and end restraints on the ultimate strength

of - the member.
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