University of Alberta Department of Civil Engineering

Structural Engineering Report No. 26

Buckling Strength of Hot Rolled Hat Shaped Sections

by

THESITY OF

ALBER!

D. A. Heaton

and

P. F. Adams

July, 1970

BUCKLING STRENGTH OF

HOT ROLLED HAT SHAPED SECTIONS

BY

D.A. HEATON P.F. ADAMS

JULY, 1970

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF ALBERTA EDMONTON, CANADA

ABSTRACT

Hot rolled hat shaped sections are commonly used as chord members in open web steel joists. It is normally assumed that the ultimate strength of the compression chord is given by its flexural buckling strength. However, as the hat shaped sections have only one axis of symmetry, buckling can occur in either a flexural, or a lateral torsional mode. In this investigation, the flexural and lateral torsional buckling strengths of hot rolled hat shaped sections were investigated over a wide range of slenderness ratios.

Residual strain and yield stress distributions were determined for the member and a uniform axial strain applied. Section properties of the elastic core and the load corresponding to the applied strain level were evaluated. The differential equations expressing equilibrium of the member in the deformed shape were entered with this load and the appropriate section properties, and the critical lengths corresponding to flexural and lateral torsional buckling were computed. This procedure was repeated for different values of the applied strain until the complete column curve for the member had been determined.

The effects of different yield stress distributions on the buckling strength were examined. However, even with the most severe distribution, lateral-torsional buckling was not critical. A comparison was made between the critical buckling stresses and those permitted by the allowable stress sections of C.S.A. S16 1969. These provisions result in adequate factors of safety.

i

TABLE OF CONTENTS

	Page
Abstract	i
Table of Contents	ii
CHAPTER I INTRODUCTION	1
CHAPTER II PREVIOUS INVESTIGATION	9
CHAPTER III MATERIAL AND SECTION PROPERTIES	19
CHAPTER IV ANALYTICAL INVESTIGATION	31
CHAPTER V RESULTS	37
CHAPTER VI SUMMARY AND CONCLUSIONS	51
LIST OF REFERENCES	53
ACKNOWLEDGEMENTS	55
APPENDIX A LISTING OF COMPUTER PROGRAM	Al

CHAPTER I

INTRODUCTION

Open web steel joists are widely used as simply supported flexural members to support roofs and lightly loaded floors. A typical joist is shown in FIG. 1.1. The arrangement of the web members permits easy passage of heating ducts and other services through the joist. Joists also offer savings in weight over comparable members having solid webs.

Various sections are used for the chord members of open web steel joists. These include circular bars, tees and double angles. However, perhaps the most popular chord member is the hat-shaped section. A typical hat-shaped section is shown in FIG. 1.2. In this figure the principal axes, designated x and y, are shown passing through the centroid, C. The section is symmetrical about the y axis and the shear centre, S, is located on the y axis, a distance y_0 below the centroid.

Hat shaped sections have normally been fabricated from light gauge steel strip by a cold forming process.⁽¹⁾ However, more recently, much heavier hat shaped sections have been produced by hot rolling.

The forces acting on a typical compression chord segment of length, L, are shown in FIG. 1.3. The chord is subjected to a transverse load, w, which may be concentrated or uniformly distributed, depending on how the floor or roof system bears on the chord. As the joist is loaded, bending moments M_1 and M_2 are induced in the chord as well as shears, V_1 and V_2 , and axial compressive forces P_1 and P_2 . The web members develop primarily axial forces, F_1 , F_2 , F_3 and F_4 . The transverse load, bending moment, and accompanying shears are usually small and it is assumed that the primary force is the axial thrust induced by the truss action of the joist.

Due to the close spacing between web-chord connections, or panel points, the axial loads in adjacent chord segments will vary only slightly. Thus, when a critically loaded segment of the chord is on the verge of buckling between panel points, the adjacent chord segments are also near failure and can offer little restraint to the critical segment. Hence each chord segment may be assumed to be pin connected. The simplified chord segment model is shown in FIG. 1.3b.

The idealized chord segment is subjected to an axial thrust and if premature local buckling does not occur, the ultimate strength of the segment is conservatively predicted by the buckling strength. ^(2,3) The buckling strength can be shown schematically on a "column curve". FIGURE 1.4 is a typical column curve which relates the slenderness ratio, KL/r, to the average applied stress at the instant of buckling, σ . The buckling stress is non-dimensionalized as σ/σ_y , where σ_y is the yield stress of the material. The effective length is represented by KL and r denotes the radius of gyration of the cross section.

The dashed line in FIG. 1.4 represents the behavior of a member composed of an elastic material. The behaviour of very slender

steel columns is predicted by this curve. These slender columns buckle with the complete cross section subjected to strains within the elastic range. A column composed of an elastic perfectly plastic material deviates abruptly from the elastic curve when the applied axial stress equals the yield stress.

Structural steel members contain residual strains and, in addition, may have variations in yield stress over the cross section. These properties cause premature yielding in parts of the cross section at an average applied stress considerably below the yield stress. The local yielding causes the member behavior to deviate from that depicted by the elastic curve as buckling of the member occurs after portions of the cross section have yielded. This is termed inelastic buckling.

Monosymmetric sections can buckle in either a pure flexural mode or a lateral torsional mode.⁽⁴⁾ The two possible positions are shown in FIG. 1.5. A flexural buckling motion is resisted by the bending strength of the member while lateral torsional buckling involves both the flexural and torsional resistances of the member.

In the absence of more complete information, hat shaped sections have been designed on the basis of their flexural buckling strengths. The purpose of this investigation is to compute the flexural and lateral-torsional buckling strengths for a variety of hot rolled shaped members commonly used in open web steel joists. The variations in material properties and residual strains will be examined and their effects incorporated into the analysis. For the purposes of this investigation, the model of the joist segment is considered to be that shown in FIG. 1.3b.

FIG. 1.2 TYPICAL HAT SHAPED SECTION

FIG. 1.4 COLUMN CURVE

FIG. 1.5 BUCKLING MODES OF HAT SHAPED SECTIONS

CHAPTER II

PREVIOUS INVESTIGATIONS

The equations expressing the equilibrium of a monosymmetric column section in the deformed position are given below⁽⁵⁾

$$EI_{X}v'' + Pv' = 0$$
 2.1

$$EI_{y}u'' + Pu' + Py_{0}\phi' = 0$$
 2.2

$$EI_{W}\phi'' - (GK_{T} + \overline{K})\phi' + Py_{0}u' = 0$$
 2.3

FIGURE 2.1 shows the column and the deformed positions of the cross section.

In the above equations, E represents the modulus of elasticity, G, the torsional modulus of the material and P, the axial load. I_x and I_y denote the moments of inertia about the x and y axes respectively. The distance between the centroid and the shear centre is represented by y_0 . K_T denotes the St. Venant torsional stiffness while I_w represents the warping moment of inertia of the cross section. $\overline{K} = \int_A \sigma a^2 dA$ where A is the area of the cross section, σ the total stress on the fibre and a is the distance from the fibre to the shear centre. The quantities, u, v and ϕ represent displacements of the shear centre as shown in FIG. 2.1, and the primed quantities denote differentiation with respect to z.

For simply supported flexural and torsional boundary conditions, the solutions to the equations take the form:

$$v = C_1 \sin \frac{\pi Z}{L}$$
 2.4

$$u = C_2 \sin \frac{\pi Z}{L}$$
 2.5

$$\phi = C_3 \sin \frac{\pi Z}{L}$$
 2.6

Substituting for the deflections and their derivatives into equations 2.1, 2.2 and 2.3 results in three homogeneous linear equations in terms of the constants C_1 , C_2 and C_3 . The equation resulting from Eqn. 2.1 is independent of the other two, and its solution is the critical load for flexural buckling about the x-axis;

$$(P_x)_{cr} = \pi^2 E I_x / L^2$$
 2.7

The equations resulting from Eqns. 2.2 and 2.3 are coupled and combine to give a quadratic solution for the critical lateral torsional buckling load, $(P_{yT})_{cr}$.

$$(P_y - (P_{yT})_{cr})(P_z + \overline{K}) - (P_{yT})_{cr}^2 y_0^2 = 0$$
 2.8

where

$$P_y = \pi^2 E I_y / L^2$$
 2.9

$$P_z = \pi^2 E I_w / L^2 + G K_T$$
 2.10

If the section properties of the member are known, the solution of equations 2.7 and 2.8 is routine and the lower critical load represents the buckling strength. However, for members of practical proportions, portions of the cross-section yield before buckling occurs due to variations in yield stress and the presence of residual strains. This partial yielding means that the elastic buckling equations no longer apply directly, since the section properties of the elastic core change as shown in FIG. 2.2.

The buckling strength of the member is therefore profoundly affected by the residual strain distribution and by the variations in yield stress across the section.

For WF shapes the standard technique used to determine the residual strain distribution is to remove a selected length from the member. Longitudinal strips are then marked on this section, and the residual strain in each strip is determined by noting the change in length of the strip after it is cut from the section. The measurements are performed on both sides of each strip using a Whitemore Strain Gauge. This method could not be used for tubular members as only one side of the strips was accessible prior to cutting⁽⁶⁾. An alternative method, devised for these members, was to measure the change in length and the change in curvature on one side of the strip only, when the strips were cut free. During the course of this investigation, the subsequent bowing of the strips when cut free influenced the apparent residual strain⁽⁶⁾. The bowing action was accounted for in the curvature measurements so the computed residual strains were correct.

The effect of bowing is shown in FIG. 2.3. Corrections for the bowing action should still be applied even where changes in length are measured on both sides of the strip. The change in mid-thickness length, due to residual strains, should be computed as the difference between the original lengths, OL_1 , OL_2 , and final arc lengths AL_1 , AL_2 . In the presence of significant bowing, the standard method computes the change in length inaccurately as the differences between the original lengths and the chord lengths CL_1 , CL_2 . These differences measured for both sides are averaged to obtain the change in mid-thickness length. This process only removes the error due to the offset, e, of the points of the Whitemore Strain Gauge from the centreline of the gauge holes.

The tangent modulus approach to buckling assumes yielded portions of the cross section to be ineffective in resisting the buckling motion. This approach also makes no allowance for the increase in strength caused by the elastic unloading of previously yielded fibres. The concept is conservative, and is recommended as a basis for design by the Column Research Council⁽⁷⁾. It is implied in this concept that only the elastic core of the cross section is effective in resisting the buck-

ling motion.

Buckling strength of WF shapes, using the tangent modulus approach have been established for many different cross sections, materials, and residual strain distributions.⁽⁸⁾ In assessing the torsional buck-ling strengths⁽⁸⁾, it has been assumed that the residual stress distribution must satisfy the relationship

$$\int_{A} \sigma_{r} \cdot a^{2} dA = 0 \qquad 2.11$$

where $\sigma_{\textbf{r}}$ denotes the residual stress on a fibre. Thus \overline{K} is given by:

$$\overline{K} = -P(x_0^2 + y_0^2 + \frac{I_x + I_y}{A})$$
 2.12

However, since both the shearing and normal residual stresses on any section can be in equilibrium without satisfying equation 2.11, the relationship is not a necessary one.⁽⁸⁾

Buckling strengths for cold rolled hat shaped sections,⁽¹³⁾ have been established in the elastic range ignoring the effects of residual strains.⁽⁹⁾ This study was extended to allow for eccentric loads and inelastic action but residual strain effects were again neglected.⁽¹⁰⁾ Cold rolled sections have such a large variation in yield stress across the section that residual strain effects are masked. The magnitude of this variation can be seen in FIG. 2.4. This variation in yield stress was accounted for in an investigation into the flexural buckling strength

of cold rolled hat shaped sections.⁽¹⁾

An indirect approach to the determination of the tangent modulus for hot shaped column sections has also been described in the literature.⁽¹¹⁾ The complete flexural buckling curve was determined by using the results of stub column tests to establish an effective bending stiffness.

The present investigation is aimed at evaluating the flexural and lateral-torsional buckling strengths of hot rolled hat shaped column sections. The effects of the residual strains and yield stress variation will be accounted for and the investigation will cover the complete practical range of column slenderness.

FIG. 2.4 VARIATIONS IN YIELD STRESS - COLD FORMED HAT SHAPED SECTIONS

CHAPTER III

MATERIAL AND SECTION PROPERTIES

The steel used in the chords is produced especially for the manufacturer of the open web joists and is not covered by a C.S.A. specification. However, a specified chemical composition as well as a minimum yield stress of 55 k.s.i. are required. A typical chemical analysis for this steel is shown in Table 3.3. Tension coupons cut from the web of the hat section are used in the mill tests to determine the yield stress.

The complete range of hot rolled hat shaped sections which were available for this investigation is shown in FIG. 3.1. Sections were chosen from this group which should exhibit the most severe distribution of residual strains as well as significant variations in yield stress over the cross section.

The residual strain distribution is produced by differential cooling and plastic flow of the cross section during its manufacture. The pattern of differential cooling is affected primarily by the length and thickness of the flanges. Sections E, F and L, shown in FIG. 3.3, were chosen to investigate the possible different residual strain distributions. The difference in the residual strain results obtained from E and F should be caused primarily by the difference in flange length while the difference in results between sections F and L would be caused by the

variation in flange thickness.

The yield stress is affected by the differences in the grain structures of the steel produced by different rates of cooling. Section L was accordingly chosen to investigate variations in yield stress as portions of this section should have experienced the widest variation in cooling rates compared to other sections. Dimensions of section L are given in FIG. 3.2.

Table 3.1 lists the material properties obtained from tension tests on specimens cut from section L. A length of this section was cut into eight strips as shown in FIG. 3.2. The strips were then machined to tension coupons and tested in a hydraulic testing machine. The static yield stress, σ_y , was obtained by holding the specimen at a constant strain for five minutes. A modulus of elasticity, E, equal to 29,600 kips/ins² was used to compute the yield strain, ε_y , as σ_y/E . The strain hardening modulus, E_{st} , was taken as the slope of the tangent to the initial part of the strain hardening portion of the curve. The strain at the onset of strain hardening is denoted by ε_{st} and the ultimate stress as σ_{ult} . The initial portion of a typical stress strain obtained for the test coupon is depicted in FIG. 3.4.

The variation between the highest and lowest values of the yield stress measured for section L amounted to approximately 15% of the lowest value. This variation is less than that for WF shapes where corresponding variations of 20% have been noted.

Residual strain distributions for sections E, F and L are shown

in FIG. 3.5 and FIG. 3.6. The distributions were determined for one specimen of each of sections F and L and for three specimens of section E, as this gave the most severe distribution and the largest magnitude of strain. The measurements used to obtain the residual strains account for the curvature produced by the bowing action when the strips were cut free. Locations of the strips are shown in FIG. 3.3.

All sections showed the same general distribution of residual strain, with the exception of section F. In section F the strain values were relatively low and the resulting distribution may not be reliable.

The residual stress distribution must satisfy the three equations of equilibrium. These may be expressed as

$$\int \sigma_r dA = 0 \qquad 3.1$$

$$\int \sigma_r y dA = 0 \qquad 3.2$$

$$\int \sigma_{\gamma} x dA = 0 \qquad 3.3$$

Equation 3.1 states that the net axial force on the section must be zero, while Equations 3.2 and 3.3 state that the moments due to the residual stresses about the x and y axes must be zero. The residual stress distributions computed from the measured residual strain distributions did not satisfy these equations exactly. The measured residual strain distributions were therefore adjusted before being used in computations.

The residual stress distribution obtained for section E was chosen as being the most severe expected for hot rolled hat shaped sections. This residual stress distribution was idealized as shown in FIG. 3.7. In FIG. 3.7, L1 represents the length of the flange, L2 the length of the web and L3 the length of the top of the hat. The lengths were measured on the center line of the section. The magnitude of the compressive stress in the flange tips, C, was selected on the basis of the measured values. With the specified value of C, and the known section geometry, the idealized distribution can be adjusted to comply with equations 3.1 and 3.2 by adjusting T and F. Equation 3.3 is satisfied by symmetry. T is the tensile stress in the flange and F the compressive stress in the top of the hat. The necessary computations were programmed for computer solution. Results obtained for sections E, F and L are given in Table 3.2.

Strip Number	σy k.s.i.	$\varepsilon_{y} = \frac{\sigma_{y}}{E}$	^ɛ st ins/ins	E _{st} k.s.i.	ult k.s.i.	% elongation
۱	56.4	0.00191	0.0128	646	84.1	22.5
2	53.2	0.00180	0.0107	603	83.4	20.5
3	53.5	0.00181	0.0163	540	81.5	19.7
4	50.6	0.00171	0.0067	700	81.7	15.2
5	49.2	0.00166	0.0068	681	83.4	17.3
6	53.0	0.00179	0.0152	500	80.7	18.0
7	52.1	0.00176	0.0083	760	82.5	21.3
8	54.1	0.00183	0.0156	740	84.3	19.2

TABLE 3.1 MATERIAL PROPERTIES FROM TESTS ON SECTION L

Note E = 29,600 k.s.i.

1

r

TABLE 3.2VALUES FOR BALANCED, IDEALIZEDRESIDUAL STRESS DISTRIBUTION

Section	C k.s.i.	T k.s.i.	F k.s.i.
E	7.5	7.8	1.8
F	7.5	7.7	1.9
L	7.5	7.6	1.1

Dimension (ins)	Area	W	F	н	Т	с
MIN MAX	0.45 2.237	21/2 41/8			0.162 0.481	

RANGE OF DIMENSIONS FOR ELEVEN SHALLOW HAT SECTIONS FROM MANUFACTURERS CATALOGUE

Dimension (ins)	Area	w	F	н	Т	с
1	2.505 3.795	43/4 43/4	1 1/16 1 1/16		0.319 0.565	0.259 0.302

RANGE OF DIMENSIONS FOR FIVE DEEP HAT SECTIONS FROM MANUFACTURERS CATALOGUE

FIG. 3.1 DIMENSIONS OF HOT ROLLED HAT SHAPED SECTIONS

FIG. 3.3 SECTIONS E, F AND L - DIMENSIONS TAKEN FROM MANUFACTURERS CATALOGUE

FIG. 3.5 RESIDUAL STRAINS - SECTION E

FIG. 3.6 RESIDUAL STRAINS - SECTIONS F AND L

FIG. 3.7 IDEALIZED RESIDUAL STRESS DISTRIBUTION

CHAPTER IV

ANALYTICAL INVESTIGATION

The analytical investigation used Equations 2.7 and 2.8 to establish the critical lengths corresponding to flexural and lateraltorsional buckling. These equations are in terms of three unknowns; the load, the section properties and the critical length. Hence, any two of these quantities must be known before the equations can be solved. However, the section properties are influenced by the load, as the load level determines the extent of yielding in the section. The equations cannot, therefore, be solved directly.

Equations 2.7 and 2.8 were solved by first applying a uniform strain, ε_a , to the cross section as depicted in FIG. 4.1. The cross section was sub-divided into finite areas ΔA . Then, for any fibre, the total strain ε_+ , is the sum of the residual and applied strains:

$$\varepsilon_t = \varepsilon_r + \varepsilon_a$$
 4.1

The stress-strain relationship, FIG. 3.4, was entered with the total strain and the corresponding stress, σ , obtained. The stress in the fibre times the sub-area, summed over the cross section is equal to the applied load, P:

$$P = \sum_{A} \sigma \cdot \Delta A \qquad 4.2$$

The elastic core is defined by the total strain in each individual fibre. In the instant before buckling, the sub-areas are either elastic or plastic under the axial load. If the sub-area has yielded, it is assigned a zero thickness, if elastic, the actual thickness. For sub-areas strained into the strain-hardening region, the thickness t_i is given by:

$$t_i = t \frac{E_{st}}{E}$$
 4.3

where t is the actual plate thickness. Section properties are then evaluated for the elastic core. However, K_{T} is based on the original area.⁽⁸⁾

With the section properties and axial load known, equations 2.7 and 2.8 can be solved for the lengths corresponding to flexural and lateral torsional buckling. The process was repeated with increasing values of the applied strain to trace the complete column curves. FIGURE 4.2 is a flow chart of the process, a listing of the computer program is included in Appendix A.

Three shallow hat sections, E, F and L were investigated. The residual strain distribution assumed was as shown in FIG. 3.7, however, three different assumptions were made for the yield stress distribution on the section. For one analysis, the yield stress was assumed to be constant at 55 k.s.i. over the cross section. In the second analysis the measured yield stresses for section L (Table 3.1) are used for the appropriate fibres. Finally a yield stress of 55 k.s.i. is used for the web plates and the yield stresses in the remaining plates, F_{YB} , are given by:

$$F_{\gamma B} = 55 \times \frac{B}{W}$$
 4.4

where B corresponds to the yield stress measured in the appropriate plate of Section L and W, to the yield stress measured in the web of Section L. This process is conservative as it implies that further reductions would be proportional to the changes in plate thickness; section L has the greatest variation in plate thickness.

The heaviest and highest deep hat sections, designated R and M in the manufacturers catalogue, and shown in FIG. 4.3 were also investigated. Deep hat sections showed a progressive increase in thickness from the lighter to the heavier sections. Therefore, the behaviour of R and M would represent limits on the range of behaviour for deep hat sections. The residual stress distributions were assumed to be as shown in FIG. 3.7. The yield stress distribution was assumed to be the same as that measured for the shallow hat sections. Section M was also analysed with an artifically higher yield stress in the web than in the remainder of the section.

FIG. 4.1 CHANGE IN SECTION GEOMETRY UNDER APPLIED LOAD

FIG. 4.2 FLOW CHART OF PROGRAM LOGIC

SECTION M

SECTION R

FIG. 4.3 SECTIONS M AND R DIMENSIONS TAKEN FROM MANUFACTURERS CATALOGUE

CHAPTER V

RESULTS

Column curves for the different sections analysed are given in FIGS. 5.1 to 5.5. These curves plot the relationships between the slenderness ratio, L/r_x , and the average applied stress at the instant of buckling, σ . The buckling stress has been non-dimensionalized as σ/σ_y , where σ_y is the weighted yield stress for the section and is given by:

$$\sigma_{y} = \frac{\int_{A} \sigma_{\overline{y}} dA}{A} \qquad 5.1$$

where $\sigma_{\overline{y}}$ is the yield stress on element dA, of the cross section, and A, is the area of the cross section.

The curves have the same general shape for all sections analysed. For a long, slender column, the maximum total strain at buckling is below the yield strain. More stocky columns buckle only after portions of the cross section have yielded and very short, or stub columns, unload only after complete yielding of the section.

FIGURE 5.1 plots the column curves for section E. The relationships for flexural buckling and for lateral-torsional buckling are plotted through the full range of column lengths (long, intermediate and short). For each mode of buckling, three different yield stress

distributions were assumed as discussed above. The results for the longer columns, which buckled elastically, are independent of the yield stress distributions. In the inelastic range, the column curves were fairly similar under the assumption of a constant yield stress over the cross section and the assumption that the yield stress distribution was adjusted to produce a value of 55 k.s.i. in the web. The section having the measured yield stress distribution, however, had a reduced flexural buckling strength, as compared with the other two. The average of the measured yield stresses for this section was less than the average yield stress for the sections having the two assumed distributions; thus this section deteriorated more rapidly once yielding was initiated since the residual strains represented a higher proportion of the yield strain. In each figure the separation caused by the different yield stress distributions is emphasised by shading. FIGURES 5.2 and 5.3 show similar trends for sections F and L. For each section, the lowest buckling strengths were obtained for the measured yield stress distribution. The separation between the flexural and lateral-torsional buckling curves increased for the heavier sections, since the larger flanges increased the torsional resistance more than the flexural resistance.

All curves show a marked discontinuity due to the shape of the assumed residual strain distribution. The residual strains were assumed to be constant over the flanges and top of the hat section. Consequently, large areas of the cross-section yield simultaneously, producing a drastic

reduction in flexural and torsional stiffness. The true residual strain distribution would be similar in shape to that assumed, but would probably vary somewhat over the plate length. Hence, under increasing axial load, progressive yielding of the section would occur, causing a gradual reduction in the buckling strength. The assumed residual strain distribution is probably more severe than the actual distribution, and the predicted buckling strengths are thus conservative.

For all sections analysed, the ultimate strength of the member was associated with the flexural buckling strength, regardless of the yield stress distribution assumed. The results obtained for the section having the measured distribution of yield stress and the adjusted distribution of yield stress, showed the least amount of spread between the flexural and lateral torsional buckling curves. For these distributions the yield stresses in most of the flange plate areas were lower than in the webs. Hence the flanges yielded at a relatively early stage of loading and, at this stage, the member acted as a narrow beam with a high flexural but a low torsional resistance.

The tendency for failure through lateral torsional buckling is increased for deep hat sections. FIGURES 5.4 and 5.5 plot column curves for sections M and R respectively. For these sections, the lateral torsional buckling strength is slightly lower than the flexural buckling strength over a small range of slenderness ratios. The tendency towards failure by inelastic lateral torsional buckling was further increased by assuming an artifically higher yield stress in the web of

section M(60 k.s.i.) than in the rest of the section. FIGURE 5.4 plots the column curve for this case. The lateral torsional buckling strength is now slightly lower than the flexural buckling strength over a larger range of slenderness ratios. However, even in this extreme case, the ultimate strength of the member is very close to that associated with the flexural buckling strength. For the cases considered, the ultimate strength of hot rolled hat shaped column sections can be taken as the flexural buckling strength.

This conclusion implies that the allowable stress provisions of C.S.A. S16 1969 will provide the customary factors of safety against buckling. TABLE 5.1 lists the minimum factors of safety computed for the different sections.

The slenderness ratios listed in TABLE 5.1 represent the boundaries of the various provisions of C.S.A. S16 (0, C_0 , C_p) and one intermediate point, which corresponds to the elastic limit $L/r_x = 78$. The location of these slenderness ratios is indicated in FIG. 5.7. In the elastic buckling range as defined by C.S.A. S16 ($L/r_x \ge C_p$) the factor of safety is 1.92 and once the section is completely yielded at $L/r_x = 78$ is greater than 1.92 since the residual strain distribution assumed by C.S.A. S16 is more severe than the measured distribution used in this investigation.

In each case considered, the factors of safety provide an adequate margin against buckling and justify the use of C.S.A. S16

1969 as a basis for design.

The analysis used to obtain the column curves assumes that the load is applied concentrically. However, the investigation showed that yielding of a portion of the cross-section is accompanied by a slight shift in the centroid of the elastic core. This process is depicted in FIG. 5.6 for one load increment. The axial load is applied through the original centroid C, until a limiting value of the axial load, P_{el}, is reached. Under a subsequent increment of axial load, ΔP , the section yields and the new centroid, C['], is situated a distance e from the original centroid. The member is now subjected to an axial load of P + Δ P and a moment of e x Δ P. The magnitude of this moment, however, is small. TABLE 5.2 lists the values of e for section E. For this section P_{p1} is 49.5 kips and, as the load is increased above this value, the centroid of the elastic core moves from its original position. Each increment of load therefore, induces a moment, as the load increments are no longer applied through the original centroid. Under the last increment of load the section is completely plastic. The total moment acting on the section at this stage is obtained by summing the moments induced by the individual **load increments.** For section E this total moment is 0.62 in. kips. This moment compares with the plastic moment capacity for the section of 16 in. kips, that is, the total moment is 2.5% of the plastic moment. The error caused by neglecting the effect of the shift of the centroid should be small.⁽¹²⁾ Buckling strengths obtained from tests on 'T'

sections compare closely with the theoretically predicted strengths under similar conditions.⁽¹²⁾ The comparison showed that for practical purposes, the shift of the centroid could be neglected.

Section	S ⁻	lenderness C ₀ = 19	Ratio 78	C _p = 82
Ε	1.67	1.67	2.1	1.92
F	1.67	1.67	2.1	1.92
L	1.67	1.67	2.1	1.92
Μ	1.67	1.67	2.1	1.92
R	1.67	1.67	2.1	1.92

TABLE 5.1 FACTORS OF SAFETY PROVIDED BY

C.S.A. S16 1969 AGAINST BUCKLING

Total Load kips	Load Increment ∆P (kips)	Distance from top of hat to centroid	Shift in centroid e (ins)	Applied Moment e x ∆P
49.5		0.69		
52.4	3.9	0.75	0.06	0.23
53.9	1.5	0.76	0.07	0.10
55.2	1.3	0.76	0.08	0.10
56.4	1.2	0.85	0.16	0.19

Total Moment = 0.62 ins. kips

TABLE 5.2 SHIFT OF CENTROID SECTION F

FIG. 5.1 COLUMN CURVE - SECTION E

COLUMN CURVE - SECTION F 5.2

FIG. 5.6 SHIFT OF CENTROID ON YIELDING

CHAPTER VI

SUMMARY AND CONCLUSIONS

Hot rolled hat shaped sections are commonly used as chord members for open web steel joists. The chord member may be idealized as a series of pin ended axially loaded segments. The ultimate strength of a segment is assumed to be given by its buckling strength. As the section has only one axis of symmetry, buckling may occur in either a flexural or a lateral torsional mode.

Residual strains were measured for the hat shaped sections using the method of sectioning, but allowing for the bowing action of the strips on release. With the residual strains known, a step by step procedure, based on the tangent modulus approach, was used to obtain column curves for the different sections. The column curves covered the practical range of slenderness ratios and considered the effect of variations in the yield stress distribution on the buckling strength.

The measured residual strains were small, with maximum compression values of approximately 0.00025 inches per inch. The idealized residual strain distribution assumed constant compressive strains over the flange tips, which caused discontinuities in the column curves as these areas yielded. However, the idealized distribution furnishes conservative results as it envelopes the actual distribution.

A lower bound on the buckling strength resulted from the con-

sideration of the actual (measured) yield stress distribution. The residual strains represented a greater proportion of the average yield strain for this distribution and so deterioration of the section in the inelastic range was more rapid than for the other idealized distributions.

The column curves were based on the tangent modulus concept recommended by the Column Research Council. Column curves obtained using this concept showed that the flexural buckling strength was generally less than the lateral torsional buckling strength. Exceptions to this rule were found to exist over very small ranges of slenderness ratio and only under extreme conditions. The allowable stress provisions contained in C.S.A. S16 1969 resulted in adequate factors of safety against buckling; the use of these provisions for design of hot rolled hat shaped sections is justified.

The investigation assumed that the ultimate strength of the member corresponds to its buckling strength and did not consider the effects of the lateral loads and end restraints on the ultimate strength of the member.

LIST OF REFERENCES

- Winter, G. and Uribe, J. "Effects of Cold Work on Cold Formed Steel Members" Symposium on Thin Walled Steel Structures -Their Design and Use, University College of Swansea, September 1967.
- Timoshenko, S. "Strength of Materials Part II" Van Nostrand
 Co., New York, 2nd Edition, 1956.
- Beedle, L.S. et al "Structural Steel Design", Ronald Press Co., New York, 1964.
- Bleich, F. "Buckling Strength of Metal Structures", McGraw-Hill Book Co., New York, 1952.
- 5. Galambos, T.V. "Structural Members and Frames", Prentice-Hall International Series in Theoretical and Applied Mechanics, Englewood Cliffs, N.J., 1968.
- Sherman, D. "Measurement of Residual Stresses in Tubular Members", Proc. ASCE, Vol. 95, ST4, April 1969.
- 7. "Guide to Design Criteria for Metal Compression Members", Edited by B.G. Johnson, 2nd Edition, John Wiley & Sons Inc., New York, 1966.
- Lee, G.C., Fine, D.S. and Hastreiter, W.R. "Inelastic Torsional Buckling of H Columns", Proc. ASCE, Vol. 93, ST5, October 1967.
- 9. Chajes, A. and Winter, G. "Torsional Flexural Buckling of Thin Walled Members", Proc. ASCE, Vol. 91, ST4, August 1965.

- 10. Pekoz, T.B. and Winter, G. "Torsional Flexural Buckling of Thin Walled Sections Under Eccentric Loading", Proc. ASCE, Vol. 95, ST5, May 1969.
- 11. McDonald, W.S. and Lenzen, K.H. "Inelastic Behaviour of the Compression Chord of Open Web Steel Joists", Studies in Engineering Mechanics, Report No. 24, University of Kansas, Lawrence, Kansas, 1966.
- 12. Nishino, F. "Buckling Strength of Columns and Their Component Plates", Fritz Engineering Laboratory Report No. 290.10, Lehigh University, Bethlehem, PA., 1964.

ACKNOWLEDGEMENTS

This study is an extension of a project initiated to investigate the load carrying capacity of double angle columns, in progress at the Department of Civil Engineering, University of Alberta. P.F. Adams is the Project Director. The project is sponsored financially by the Canadian Steel Industries Construction Council, with technical assistance from the Canadian Institute of Steel Construction.

The assistance of H.A. Krentz, Director of Research and Development, C.I.S.C. and A.J.M. Aikman, Alberta Regional Engineer, C.I.S.C., is particularly acknowledged. The cooperation and interest of A. Turnbull, and other staff members of Great West Steel Industries Ltd., is also acknowledged. Great West Steel Industries Ltd., also supplied the specimens used for the determination of the material properties.

The assistance of J. McLean and members of the Civil Engineering Staff in the performance of the testing program, and Miss H. Wozniuk who typed the report, is acknowledged. B. Constant assisted in writing the computer program.

LEVEL 17 (1 NOV	05/360 FORTRAN H	DATE 70.190/12.03.43
ISN 0C02	COMPILER OPTIONS - NAME = MAIN.OPT=02.LINECNT=59.SOURCE.EBCDIC.NNLIST.NODECK.LMAD.NMMAP.NNFDIT.ID.NXPFF DIMENSION T(5).ST(50.50).SR(50.50).A(50.50).XC(100).YC(100).M(100) J.ROE(50.50).FE(50.50).RDE0(50.50).WUG(50).STRESY(50.50).WN(50).SS(5	10, N0 MAP, N0 ED IT, ID, N0 XP FF
ISN 0004		
ISN 0C05 ISN 0C06	REAL LL(3) Real LX.LLL.KIR	
ISN 0007 ISN 0008	C. DEFINE INPUT AND OUTPUT UNIT NUMBERS INPUT = 5 Output = 6	
	C READ ALL MATERIAL PROPERTIES	-
15N 0CC9 15N 0010	READTINPUT,1) E . ES I FORMAT (2FI0.2)	
	C READ MEMBER SIZES IN INCHES AND DIVISIONS REQUIRED	
1100	READ(INPUT.2) T	
ISN 0013 ISN 0013	<pre>2 FORMAT (6FI0.5,315,F5.2) C LELENGTH 0F SECTION, TE THICKNESS 0F SECTION, D= ND. 0F DIVISIONS THETA = ANGLE / 57.2953</pre>	
	ALPHA = 3.14159/2 THETA DD 5 1=1.3 D 4 Offi	
1		
	C READ IN RESIDUAL STRAINS FOR FACH DIVISION, COMPRESSION POSITIVE	
ISN 0020	00 2C01 [=1,3	
0026		
	Č BEAD DNE VALUE DE APPLIED STRAIN C	
ISN 0C27 ISN 0028	3 READ ([NPUT,6,END≖999)SA 6 FORMAT (F10_8)	
ISN 0029	AIXT = 0.0 AVRAPT = 0.0	
00	Ш.	
15N 0033		
1	7 FORMAT ("11",51X,"CIVIL ENGINEERING DEPARTMENT'/ 54X , 1 'UNIVERSITY OF ALBERTA'// 40X,"ANALYSIS OF RESIDUAL STRAINS IN HA	
ISN 0036 ISN 0037	T+8) E+ES • MATERIAL PROPERTIES• / 9X, MODULUS OF FLASTI	
	LEFURX: KSIT / 9X. ISTRAIN HARDENING MODULUS = "FIO.2.4 KSI")	

ISN 0038 ISN 0039	WRITF (DUTPUT,9) {!,L(!),T(!),D(!), !=!,3), ANGLE 9 FORMAT (20X,'DIMENSIONS AND GFOMETRY OF SECTION' //9X,'SECTION', 110X,'LENGTH',10X,'THICKNESS',10X,'NUMBFR OF DIVISIONS'// 3(9X,15, 29X.F10.5.6X,F10.55.17X.15/J/, 9X,'MALF = '55.2.'DFGREFS'//L		
ISN 0040 ISN 0041	WRITE (OUTPUT,10) SA 10 FORMAT('1',45x,'APPLIFN STRAIN = ',FIJ.R,' IN/IN' //20x,'TOTAL ST 1RAIN IN SECTION DUE TJ APPLIED AND RESIDUAL STRAIN' // 2x'SECTION 2',5x,'PIVISION'5X,'IX PF',8x,'TY DF',8x,'TTAL',10x,'ARFA',11X,'A 3YBAR',9X,'VIELD STRESS',4x'STRAIN AT'/2X,'NUMBRR',7X,'DIVISION'.6 4'DIVISION'.5x'DIVISION'.5X'STRAIN 49X',DIVISION'.7X',DIVISION'.6		
•	. S HARDENING /)		
ISN 0042 ISN 0043	$D(1 \ge 0.01 = 1, 3)$ D = D(1)		
		•	
15N 0045	DUMI = T(T)*L(T)/DD		
	C A(I,K) = AREA OF DIVISION K SECTION I		
	$SY(I_{+}K) = STRES$		
15N 0048	ST(I+K) = SA + SR(I+K) TE (ST/I-K) T-SV(I-K)) GC TO 40		
	(ST(1,K).GT.SS(1,K)) GC TD		
)=0.0		
ISN 0055	LUAU = LUAU + 2.**3!KE3T11:N/*UUAL A(I.K) = 0.00		
	~ ~		
ISN 0056	= 0°00 = 0°00		
	GO TO 75		
	40 XQ([,K) = 1.0		
	C AIXT = TOTAL AREA - FOR USE IN CALCULATION OF CENTROLD		
	AIXT + A(I,K)		
	LUAD = LUAD + 2**E*SI(1*K)*DUML GD TA 55	•	
0,0	50 XQ(1,K)=ES/E		
15N 0C65			
	LOAD = LOAD + 2		
ISN 0068	55 [F (1.FG.2) 60 TO 70 TVIT_K1 = LTIJADA#TTIJ##31/12 #YOTT_K1		
	TV([,K) = T([,(L(1)/00)**3/I2**XQ(1,K)		
15N 0C72	GOTO 60 20 TV/T VI - TV/TAL/TV/PDAL/T/TI++204/STW/TUETAV) ++2 4 (1/1//DD) ++24/50		
7	IS(THETA))**21/1		-
	TY(T_K) = T{[]*L(T}/DD*(T{[]**2*(SIN(ALPHA))**2 + [L([]/DD]**2*(CD 		
ISN 0C75 ISN 0C76			
	ATDAK = ALLIALTIDAKU Aybart = Aybart + Aybar		
	GO TO 75		
ISN DC80 ISN DC82			
	AV BAR = A/1 . K) + 1 > + C N (T HFT A)		

			- - - - - -	1 - - - - -					
JAR, STRESY (2. 5x 51 n. 8.				0.5))**2)* dR]**2]*2.	3) **2) *2.	FRTIA ABAU IN. TO TH T = ', ESPECT TO	•		
= AYBART + AYBAR (DUTPUT,76) [+K,IX([+K),IY([+K),4ST([+K),A([+K),AYBAR,STRESY(S([-K) 	(7) (7)		110 4(1,K)*YBAR**2)*2. 4(1,K)*(L(1)/DD*(DD-F+0.5))**2)*2. 4(1.K)*(L2*CDS(THETA)-YBAR)**2)*2.	L3 = L(3) L9 = L(1) 60 T1 115 L1 3 = L(1) IXBAR = L1X11.K1+AL1_K1+L1/DD*CDD-E+0.5)*CD5(THFTA)-YBAR)**2)*2	({[*K]*(L{{]}/DD*(DD-F+0.5)*SIN(THETA)+L3)**2)*2. IXBAR IYBAR IYBAR IADA-IXBARI.IYBARI.AIXI.AYBARI	<pre>> * FI0.4; KIPS'//9X, MDMFNT OF INFRIA ABOU \$ = *FI0.4; IN. TO THE FORTH'//9X, A ABOUT Y CENTROIDAL AXIS = 'FI0.4; IN. TO TH IXT = 'FI0.4; SQUARE IN'//9X, AYAART = ', IXT = 'FI0.4; SQUARE IN'//9X, AYAART = ', S OF NODE POINTS- XC(1), YC(1) - WITH RESPECT TO S OF NODE POINTS- XC(1), YC(1) - WITH RESPECT TO</pre>		1	
	Fl0.8//) T/AIXT T/111) YBAR YBAR = ".Fl0.4," IN.'//)		IF (1.453-2) GO TO 110 IXBAR = (IX(1,K)+A(1,K)+YBAR+*2)+2. IXBAR = (IX(1,K)+A(1,K)*(L(1)/DD*(DD-F+0.5))+*2)+2. GO TO 115 L2 = L(2) IXBAR = (IX(1,K)+A(1,K)*(L2*COS(THETA)-YBAR)**2)+2.	1,k)+A(1,k)*(L3+L2*S1 	[+K)+A([+K)*(L([])/DD*(DD-F+O.5)*SIN(487 + IXBAR 48T + IYBAR 48T + IYBAR 48T + IYBAR 4951 LDAD.IXBARI.IYBARI.AIXT.AYBARI	"LOAD = ', FIO.4,' K AL AXIS = ', FIO.4,' T AL AXIS = ', FIO.4, T CENTRI A AIXT = ', FIO.4, IN.') IMATES OF NODE POINT (IS			SECTION 1
AYBART = AYBART + 75 WRITE (NUTPUT,76) 11,K),5S(1,K) 76 FORMAT (2X,15,7X,	14X,F10.2,6X,F10.8/ 100 CONTINUE 200 CONTINUE YBAR = AYBART/AIXT WRITE (TUTPUT,111) URITE (TUTPUT,111) 111 EDRMAT (9X,YBAR =	DU 400 1=1,3 P = D(1) DO 300 K=1,P F = K DD = D(1) IF (1.E2.1) GO TD	IF (1.E.2.2) GO TO IF (1.E.2.2) GO TO IYEAR = (1X(1,K)+) IYEAR = (1X(1,K)+) GO TO 115 105 L2 = L(2) ISEAR = (IX(1,K)+)	L3 = L(3) IYBAR = (IY(1) L2 GO TO 115 L10 L3 = L(3) I10 L3 = L(3) IXBAR = (IX(1)	IYBAR = {IY(I,K)+A IJ5 IXBART = IXBART + IYBART = IYBART + 300 CONTINUE 400 CONTINUE 400 CONTINUE	95 FORMAT (°X, 'LCAD 1 X CENTROIDAL AXI 2 MOHENT OF INERTI 3E FORTH'// 9X, ' A 4F10.4,'CUBIC IN.') C COMPUTE CUMRDINATE C CFNTROIDAL AXIS		* * * * * *	D11 = D(1) D22 = D(2) D33 = D(3) C NODF POINTS -
ISN 0084 ISN 0085 ISN 0086		1				SN 0117		N N N N N N N	ISN 0127 ISN 0128 ISN 0129

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIVI = 01 + 1 COLUST = 12+0.0VI COLUST = 12+0.0VI COLUST = 12+0.0VI COLUST = 12+0.0VI COLUST = 1-12+12*51WITHETA) COLUST = 1-1-12+12*51WITHETA) COLUST = 1-1-12+12*51WITHETA) COLUST = 1-1-12+12*51WITHETA) COLUST = 1-1-12+12*51WITHETA) NODE POINTS = 5ECTION 2 NODE POINTS = 5ECTION 2 NODE POINTS = 5ECTION 2 COVAL = 01+02 + 1 DIVAS = 01+02 + 1
1 1	DO 170 I=1,DI J = I + 1 RDE(I_J) = -(L2+COS(THETA)-YBAR) 170 CONTINUE
C ISN 0166 ISN 0167 ISN 0167 ISN 0168 ISN 0169	RDE(1,J) - SECTION 2 RDE2= (L3+YBAR*TAN(THETA))*COS(THETA) DD1 = D1 + 1 DD2 = D1 + D2 D0 175 T=DD1,DDD2 D0 175 T=DD1,DDD2

		8 7 1 2				-		- 1940-10-19 - 2010-2010 - 2010-2010 - 2010-2010																
		, ,		annan - maana a sana a gura a su una mananananan sana a sana ana				стания и политики и пол			(∿. 7)		с.			n							and the second	
				•••			ENCF	*******											A serie and representation of the series of the series of the series of the series of the					
				FOR SECTIONS 4,5,6),APPLIES TO SEQUE			n anna 1860 an an an Anna Anna Anna Anna Anna Anna			and a second										na ar an	
·				AND DETERMINE RDE(I,J) BY SYMMETRY FOR		11 () , 20 - 700 () 100 () 100 () 100 () 100 () 100 () 100 () 100 () 100 () 100 () 100 () 100 () 1	SO THAT TOTAL STRAIN FACTOR, FF(I, J), APPLIES TO SEQUENCE	an a																
	E	3		AND DETERMINE ROE		K)	SO THAT TOTAL STR	n na halanna anala a su		The second s		(1. THERMOSTIC COMMANDALISM IN I. THE PROPERTY STRENGTH AND A DESCRIPTION OF A DESCRIPTIO						a se				+ 2*03	.15%.11.15%.11%
J = I + 1 ROE(I,J) = ROE2 5 CONTINUE	ROE(1,J) - SECTION	002 = 001 + 02 0003 = 01 + 02 + 03 00 180 1=002,0003	RDE(I, CONTIN	REARRANGE INDICES	KK = K + 1 I = 2*0003 - (K-1)	RDE(1,J) = RDE(K,K) 5 CONTINUE	REARRANGE INDICES OF NODE POINTS	DO 190 [=1,0] 11 = 1 1 - 1	FF(1,J) CONTINUE			FF(I,J		II = 3 I = IJ + DI + D2 I = I + J		DO 210 K=1,IK KK = K + 1	I = 2 * IK - (K-1)	J = I.+ I FF(I.J) = FF(K.KK)	CONTINUE	+ 100 =	004 = 003 + 03 004 = 003 + 03	. 10	WRITE (OUTPUT, 306)	
175 L		0173 0174 0175 0175			0180	0184 185		0185 0186 0187	0189 190		0192	0194 105	0196	0198	0 201 205 0 202	0203 0204	0.205	0206	0208. 210	0210	0212	0213	0215	16 306

	0 240 1
15N 0213 15N 0219 15N 0220	J = I + I M(I) = 0.0 F [1.67, D05] GO TO 235
	J.6T.004) G0 T0 J.6T.003) G0 T0 J.6T.003) G0 T0 J.6T.002) G0 T0
	COMPUTE VALUES OF
	C W(J) = W(I) + RDE([,J)*L1/D11 307 Edrmat (9x,15,10x,15,10x,10,4//l Gn tn 240
I SN 0233	215 W(J) = W(I) + ROE(I,J) # 2/D22 60 TO 240
	W(J) = W(I) + GO TO 240
ISN 0237 ISN 0238 ISN 0239	225_W(J) = M(I) + ROE(I,J)*L3/D33 60 T0 240 230 M(J) = M(I) + ROE(I,J)*L2/D22
	GO TO 240 W(J) = W(I) + T
ISN 0243	$C = I \mathbf{M} \mathbf{X} = 0_{0} 0 0$
	= /
ISN 0245 ISN 0246	$D0 \ 270 \ 1=1, DD5$
	(J.GT.DD5) G (J.GT.DD4) G
	IF (1.61.0D3) GO TO 255 IF (3.67.0D2) GO TO 250
ISN 0255 ISN 0257	(J.GT.DD1) G (= IWX + 1./
ISN 0258	l*(W(1)*XC(J)+W(J)*XC(I))*TI#L1/D11*FF(I,J) IW = IWY + 1./3.*(W(I)*YC(I)+W(J)*YC(J))*YC(J)1*FF(I,J)+ 1.//6. /+///1.//2///1.//2/2/2/2/2/2/2/2/2/2/2/2/2
I SN 0259	-
ISN 0262	I**WELL*XC(J)**(J)**(L)**(Z)*(Z)/DZZ*FF(L;J)) IWY = IWY + I.*/3.*(M(I)*YC(L))*Y(Z))*T2*L2/DZ2*FF(I;J)+ 1.*/6. I*(M(I)*YC(L))*Y(C(I)*Y?*L?/D?2*FF(L;J)
ISN 0263 ISN 0264	GO TO 270 250 [WX = 1./3.*(WT)*XC(T)+WT)*XC(T))*T3*(3/D33*EE/T.1)+ 1./6
ISN 0265	1*(1)*XC(1)*H(1)*1*(1)*1*(1)*/
z	GD_TD_270
I SN 0267 I SN 0268	
1 CN 0360	14(W(I)+YC(J)+W(J)*YC(I))*T3*L3/D33*FF(I,J) CO TO 270

11 11 11 140 11 140 11 140 11 140 11 140 11 155 11 160 11 17 12 17 13 17 14 17 15	(J.GT.DD3) 60 TO
2222 IF (1.4.6.*.002) G0 T0 345 2223 ARG = ARG + L/D0116.0110.0116.011 2233 ARG = ARG + L/D0116.0110.011 2233 ARG = ARG + L/D0116.0110.011 2233 ARG = ARG + L/D0116.0110.011 2233 ARG = ARG + L/D0114.011 2233 ARG = ARG + L/D0119.4.9/D33 2233 ARG = ARG + L/D0119.4.9/D33 2333 ARG = ARG + L/D0119.4.9/D33 2334 G010 36G 2335 AGG 10 36G 2464 L2/D0224FF[1,J]+T2 2335 AGG 10 36G 2464 L2/D0224FF[1,J]+T2 2335 AGG 10 36G 2464 L2/D0224FF[1,J]+T2 2335 AGG 10 36G 2464 L1/D114FF[1,J]+T2 2335 AGG 10 36G 2464 L3.67.0045 2560 AGG 10 36G 2544 AGG 10 36G 2545 AGG 10 36G 2545 AGG 10 36G 2545	CT CC 200 10 10
0326 MO(J) = WO(I) = WO(I) + RCI 0327 $AREA = AREA + L1/D$ 0333 $AREA = AREA + L2/D$ 0333 $AREA = AREA + L2/D$ 0333 $AREA = AREA + L2/D$ 0334 $BO(I) = WO(I) = WO(I) + RDI$ 0334 $BO(I) = WO(I) + RDI$ 0335 $BO(I) = WO(I) + RDI$ 0334 $BO(I) = BO(I) + RDI$ 0335 $BO(I) = BO(I) + RDI$ 0334 $BREA = AREA + L2/D$ 0335 $BO(I) = BO(I) + RDI$ 0342 $BREA = AREA + L2/D$ 0343 $BREA = AREA + L2/D$ 0344 $BREA = AREA + L2/D$ 0345 $BREA = AREA + L2/D$ 0345 $BREA + L2/D$ 0345 $BREA + L2/D$ 0345 $BREA + L2/D$ 0347 $BREA + L2/D$ 0347 $BREA + L2/D$ 0347 $BREA + L2/D$ 0344 $BREA + L2/D$ 0345 $BREA + RA + L1/D$ 0347	(1.61.002) 60 10 (1.61.001) 60 TO
0222 0.01 To 0.05 To 0.01 To 0.05 To 0.01 To	(J) = WO(I) + ROE
0329 340 WO(J) = WO(I) = WO(I) + RO 0331 AREA = AREA + L2/D 0333 45 WO(J) = WO(I) + RO 0333 55 WO(J) = WO(I) + RO 0334 50 WO(J) = WO(I) + RO 0335 50 WO(J) = WO(I) + RO 0334 50 WO(J) = WO(I) + RO 0335 50 WO(J) = WO(I) + RO 0336 55 WO(J) = WO(I) + RO 0331 355 WO(J) = WO(I) + RO 0332 355 WO(J) = WO(I) + RO 0340 360 WO(J) = WO(I) + RO 0341 360 WO(J) = WO(I) + RO 0342 365 WO(J) = WO(I) + RO 0343 355 WO(J) = WO(I) + RO 0344 360 WO(J) = WO(I) + RO 0345 AREA = AREA + L2/D 0345 AREA = AREA + L1/D 0345 AREA = AREA + L1/D 0347 1 L L L L 0345 1 L L L L 0346 00 395 F - L NOD5 0347 1 L L L L L L 0347 1 L L L L L 0348 370 WWN = WWN + WO(I) 0349 370 WWN = WWN + WO(I) 0355 370 WWN = WWN + WO(I) 0366<	CA + L1/U1
0.331 0.45 MCL MC<	+ (1)0N = (1)0N
0332 345 MO(J) = WO(I) = WO(I) + RD 0335 355 MO(J) = WO(I) + RD 0336 355 MO(J) = WO(I) + RD 0336 355 MO(J) = WO(I) + RD 0339 355 MO(J) = WO(I) + RD 0339 355 MO(J) = WO(I) + RD 0339 368 A + L2/D 0340 365 MO(J) = WO(I) + RD 0341 360 MO(J) = WO(I) + RD 0342 360 MO(J) = WO(I) + RD 0341 360 MO(J) = WO(I) + RD 0342 365 MO(J) = WO(I) + RD 0343 360 MO(J) = WO(I) + RD 0344 360 MO(J) = WO(I) + RD 0345 360 MO(J) = WO(I) + RD 0345 360 MO(J) = WO(I) + RD 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0346 375 MMN = MMN + (MO(I) 0355 370 MMN = MMN + (MO(I) 0361 395 0365 370 MMN = MMN + (MO(I) 0366 395 MNN = MMN + (MO(I) 0361 395 0362 395	= AKEA + L2 1 365
0335 ANCE = ANCA + L3/U2 0335 ANCE = ANCA + L3/U2 0335 ANCA = ANCA + L3/U2 0336 ANCA = ANCA + L3/U2 0337 355 W0(J) = W0(I) + R01 0341 360 M0(J) = W0(I) + R01 0342 365 W0(J) = W0(I) + R01 0342 ANCA = ANCA + L2/U2 0343 365 W0(J) = W0(I) + R01 0344 WUN = 0.00 0345 I = I + 1. 0346 I = 1.61 0347 IF (J.67, D05) G0 T 0348 IF (J.67, D05) G0 T 0349 IF (J.67, D05) G0 T 0359 370 WN = WN + (W0(I) 0359 370 WN = WN + (W0(I) 0361 395 G0 TO 0364 395 G0 TO 0365 395 G0 TO 0366 395 GO TO 0367 395 GO TO 0368 396 GO TO 0369 395 GO TO 0366 395 HNN = WN + (W0(I)	MO(J) = MO(J)
0335 350 MO(J) = MO(I) + RD 0234 $ARFA = AREA + L2/D$ 0340 $GRTA = AREA + L2/D$ 0341 360 MO(J) = WO(I) + RD 0342 366 MO(J) = WO(I) + RD 0342 360 MO(J) = WO(I) + RD 0342 360 MO(J) = WO(I) + RD 0342 360 MO(J) = WO(I) + RD 0343 360 MO(J) = WO(I) + RD 0344 $MN = 0.00$ 0345 $1 = 1.4$ 0345 $1 = 1.4$ 0345 $1 = 1.4$ 0345 $1 = 1.4$ 0345 $1 = 1.67$ 0345 $1 = 1.67$ 0345 $1 = 1.4$ 0345 $1 = 1.4$ 0345 $1 = 1.4$ 0345 $1 = 1.4$ 0345 $1 = 1.4$ 0345 $1 = 1.4$ 0346 370 0355 370 0356 395 0361 395 0362 395 0364 395 0365 396 0366 10395	= AKEA + L3/U3] 365
02336 ARFA AREA L2/D 02337 355 MO(J) $=$ WC(I) + RO 02341 $=$ MC(I) $=$ WC(I) + RO 0344 $=$ MO(I) $=$ WO(I) $=$ WO(I) 0342 $=$ CONTINUE $=$ MC(I) $=$ WO(I) 0342 $=$ CONTINUE $=$ MC(I) $=$ WO(I) 0344 $=$ MMN $=$ 0.00 $=$ 0.00 0345 $=$ I $=$ 1 $=$ 1 0347 $=$ 1 $=$ 1 $=$ 1 0345 $=$ I $=$ 1 $=$ 1 0345 $=$ 1 $=$ 1 $=$ 1 0345 $=$ 1 $=$ 1 $=$ 1 0345 $=$ 1 $=$ 1 $=$ 1 0347 $=$ 1 $=$ 1 $=$ 1 0345 $=$ 1 $=$ 1 $=$ 1 0355	(1) OM = (1) OM
0338 355 MO(J) = WC(I) + KO 0340 360 HO(J) = WC(I) + RO 0341 360 HO(J) = WC(I) + RO 0342 365 CONTINUE 0343 365 CONTINUE 0344 MMN = 0.00 0345 JL - 1 1 JL - 1 0345 JL - 1 0345 JL - 1 1 JL - 1 0345 JL - 1 1 JL - 1 0345 JL - 1 0346 GO TO 395 0357 JMN = MMN + (MO(I) 0366 395 0366 395 0366 395 0366 395 0366	ARFA = AREA +
0339 AREA = AREA + L2/D0 0341 360 H01 J) = H011 + R01 0342 365 CONTINUE 0344 MWN = 0.00 0345 C 0345 Jacs 0345 Jacs 0345 C 0345 Jacs 0345 Jacs 0345 Jacs 0345 Jacs 1 Jacs 0345 Jacs 1 Jacs 0345 Jacs 1 Jacs 1 Jacs 0345 Jacs 1 Jacs 1 Jacs 0345 Jacs 1 Jacs 0347 Jacs 1	WO(J) = WC(I) + RO
0340 360 MOI U = WOI H + RU 0341 365 GONTINLE $+ (LI/D)$ 0343 365 CONTINLE $+ (LI/D)$ 0343 C C COMPUTE WN(J) $+ (LI/D)$ 0344 WMN = 0.00 0345 $-1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$	AREA = AREA + L2/D
0342 365 CONTINUE 4N(J) 0344 UNN = 0.00 UNI = 0.00 0345 I = 1 + 1 D0 395 I = 1, 20D5 0345 I = 1 + 1 J = 1 + 1 D0 395 I = 1, 20D5 0346 I = 1 + 1 J = 1 + 1 D0 395 I = 1, 20D5 0347 I E (J, GT, DD3) GO T I = 1 + 1 D0 360 I = 1 + 1 0347 I E (J, GT, DD3) GO T I = 1 + 1 D0 I = 1 + 1 D0 0353 I F (J, GT, DD3) GO T I = 1 + 1 D0 I = 1 + 1 D0 I = 1 + 1 D1	GO IO 365. WN(.)) = WN(I) + RO
0.343 365 CONFLINUE 0344 NUN = 0.00 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0345 1 = 1 ± 1 0351 1 F (J.67.DD5) GO T 0353 1 F (J.67.DD2) GO T 0353 1 F (J.67.DD2) GO T 0355 370 WUN = IWOLII 0355 370 WUN = WUN + (WOLI) 0356 370 WUN = WUN + (WOLI) 0361 395 0362 380 WUN = WUN + (WOLI) 0364 395 0365 395 0361 395 0365 395 0366 395 0366 395 0366 395 0367 395 0366 395 0366 395 0367 395 0366 395	AREA = AREA + LI/D
C COMPUTE MNL = 0.00 0345 D0 395 I=1,7Db5 0345 D0 395 I=1,7Db5 0345 IF (J.6T,Db5) G0 T 0351 IF (J.6T,Db3) G0 T 0353 JT (MN = 10011)+00111 0353 JT (MN = 10011)+0011 0353 JT (MN = 10011)+0011 0354 G0 T0 395 0351 JT (J.1,97,02,001) 0361 JT (J.1,97,02,001) 0361 JT (J.1,92,004) 0365 JT (J.1,92,004) 0365 JT (J.1,92,004) 0365 JT (J.1,92,004) 0366 JT (J.1,92,004) 0367 JT (J.1,92,004) 0368 JT (J.1,92,014) 0366 JT JT (J.1,92,014) 0367 JT (J.1,92,014) 0366 JT JT JT (J.1,92,014) 0367 JT JT JT (J.1,92,014) 0366 JT JT JT J	365
0344 WM N = 0.00 0345 L = 1 + 1.005 GO T 0345 J = 1.61.005 GO T 395 F1 1.61.005 GO T 0346 IF 1.61.005 GO T 1035 GO T 1035 GO T 1035 GO T 1035 GO T 10111+MOL(1) 101111 10111 10111	
0345 00 395 1 = 1 + 1 1 = 0 395 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 + 1 1 = 0 1 = 1 <td></td>	
0347 IF (J.GT.DD5) G0 0347 IF (J.GT.DD3) G0 0351 IF (J.GT.DD3) G0 0353 IF (J.GT.DD3) G0 0357 IF (J.GT.DD3) G0 0357 IF (J.GT.DD3) G0 0357 IF (J.GT.DD3) G0 0357 MN = MN (MO(I)) 0361 370 WN = MN (MO(I)) 0361 370 WN = MN (MO(I)) 0361 370 WN = MN (MO(I)) 0362 380 WN = WN (MO(I)) 0365 385 WN = MN (MO(I)) 0366 395 G0 70 395 0367 395 G0 70 395 0366 395 G0 71 92 0367 395 MN = MN (MO(I)) 0367 395 G0 71 92	00 395 I=1,0005
0349 IF (J.6.T.DD4) GD TD 0351 IF (J.6.T.DD3) GO TD	(J.GT.DD5) GO TO
0353 IF 1.4.57_DU21 0.01 0355 IF (J.67_DU21) 60 1 0357 GO 70 395 60 1 0359 370 WMN # WMN (MOLI) 60 1 0350 375 WMN # WMN (WOLI) 60 1 3 0361 375 WMN # WMN (MOLI) 60 1 3 60 1 3 60 1 3 6 1	(J.CT.DD4) GO TO
TF I.J. GT COT	LIGT.DD21 GO TO
0.357 MAN = (M0(1)+M0(1)) 0358 370 WN = WN + (W0(1)) 0361 375 WN = WN + (W0(1)) 0361 375 WN = WN + (W0(1)) 0362 380 WN = WN + (W0(1)) 0362 380 WN = WN + (W0(1)) 0365 380 WN = WN + (W0(1)) 0365 385 WN = WN + (W0(1)) 0366 395 CONTOUE 0368 324 EDRMAT (11+92, WM 0370 327 FORMAT (11+92, WM 0371 XK = DDD5 + 1 0372 WN 10 AG5 TELLAK 0374 405 CONTINUE 0374 405 CONTINUE 0374 405 CONTINUE 0374 405 CONTINUE	(J.6T.DD1) 60 T
0358 370 WN WN + (WO(1) 0359 370 WN WN + (WO(1) 0361 375 WN WN + (WO(1) 0362 305 305 400 0362 305 305 400 0362 305 WN + (WO(1) 0364 50 TO 395 + (WO(1) 0365 385 WN = WN + (WO(1) 0365 385 GO TO 395 + (WO(1) 0366 395 CONTINUE - (WO(1) - (MO(1) 0370 327 FORMAT (Y, 15, 9X, F - (MO(1) 0371 XK BDD5 + 1 - (MO(1)	[WOLT]+WOLL]]#I]#[]/D]]#FF[].
0.360 0.70 395 0.011 0.361 375 WNN = WNN + (WO(I) 0.362 360 TO 395 360 0.364 60 TO 395 360 0.365 380 WNN = WNN + (WO(I) 0.365 385 WNN = WNN + (WO(I) 0.365 385 WNN = WNN + (WO(I) 0.365 389 GO TO 395 0.367 399 WNN = WNN + (WO(I) 0.368 395 CONTINUE 0.370 327 FORMAT (97,15,9%,F 0.371 XK = DDD5 + 1 D037 0.373 405 CONTINUE 0.374 405 CONTINUE 0.373 405 CONTINUE	GO TO 395
0361 375 WMN = WMN + (WO(I) 0362 380 CMN = WMN + (WO(I) 0365 380 GMN = WMN + (WO(I) 0365 385 WMN = WMN + (WO(I) 0365 390 WMN = WMN + (WO(I) 0368 395 CONTINUE 0368 395 CONTINUE 0370 227 FORMAT (91,9%,F 0371 27 FORMAT (91,1,9%,F 0371 27 FORMAT (11,9%,F 0371 27 FORMAT (11,9%,F 07 FORMAT (11,9%	GO TO 395
0362 00 T0 395 0365 380 GMN = NMN + (MO(1) 0365 385 WNN = NMN + (MO(1) 0365 385 GG T0 395 0366 395 GG T0 395 0367 390 WNN = MNN + (MO(1) 0367 390 WNN = MNN + (MO(1) 0367 395 GNTINUE 0368 395 CONTINUE 0368 395 CONTINUE 0378 WN(1) = WNN(2,0%A 0378 405 CONTINUE 0378 405 CONTINUE 0378 405 CONTINUE	(I)OM) + NMM = NMM
0364 60 T0 395 0365 385 WAN = WAN + (WO(I) 0365 395 GD TD 395 0368 395 CONTINUE + WAN + (WO(I) 0368 395 CONTINUE + WAN + (WO(I) 0368 395 CONTINUE + WAN + (WO(I) 0378 375 CONTINUE + WAN + (2.0*A 0371 27 FORMAT (11:492, FW 0372 00 405 I=1,KK 0373 405 CONTINUE + WAN (2.0*A 0374 405 CONTINUE + WAN + (2.0*A 0375 C COMPUTE IN AND KT	GO TO 395 WWN = WWN + (WO(T)
0365 385 WAN = WAN + (WO(I) 0365 390 WAN = WAN + (WO(I) 0367 390 WAN = WAN + (WO(I) 0368 395 CONTINUE 0369 325 FORMAT (11:924, WAN 0370 327 FORMAT (11:924, F 0371 22 DD 405 I=1.4K 0372 405 CONTINUE 0373 405 CONTINUE 0374 605 CONTINUE	GO TO 395
0367 390 WWN = WWN + (WO(I) 0368 395 CONTINUE 0369 324 EDRMAT [11:9X, FWN 0370 327 FORMAT [11:9X, FWN 0371 227 FORMAT [11:9X, FWN 0371 227 FORMAT [11:9X, FWN 0372 405 GONTINUE 0374 405 CONTINUE 0374 405 CONTINUE	AWN = WWN + (WO(I)
0368 395 CONTINUE 0369 324 EDRMAT [11,9 X,1W 0310 327 FORMAT [9,15,9X,F 0371 KK = DDD5 + 1 0372 DD 405 [=1,KK 0373 WN(1) = WWN/[2,00*A 0374 f 405 CONTINUE C COMPUTE IN AND KT C	(I)ON) + NMM = NMM
03710 327 03710 327 03712 03713 03774 f 405	CONTINUE
0371 KK = DDD5 + 1 0372 DD 405 I=1,KK 0373 WN(1) = WWN/(2,0*AREA) - 0374 405 CONTINUE C COMPUTE IW AND KT C	
0372 D0 405 I=LKK 0373 WN(I) = WWN/(2.0*AREA) - 0374 405 CONTINUE C COMPUTE IM AND KT C	KK = DDD5 + 1
405 CONTINUE C COMPUTE IN AND KT	- 14 20 40
C COMPUTE IN AND C	MNIL) = MMN/IZ+UFAREAJ = 05 CONTINUE
ر	COMPUTE IN AND
$15N \ 0.375 \qquad EW = 0.0$. HI
ISN 0376 KT = 0.0 ISN 0377 D0 435 f=1.0DD5	= 0. 435

J = [+] IF (J.GT.ON5) GO TO 430 IF (J.GT.ON54) GO TO 425 IF [(J.GT.ON34) GO TO 425	IF (J.6T.DD2) (IF (J.6T.DD1) (IW = IW + 1./3	329 FC	60 + 0 = 1 + 0	I(I,J) KT = K	GO TO 435 415 TW = TW + 1./3.*fWN(I)*WN(I)*WN(L)*WN(L)+WN(L)*WN(L))*T3*L3/D33*EF	1(1,J) KT = KT + 1./3.*((T3*#3)*L3/D33) Co TD 435	420 IW = I	2	425	L(1:J) KT = KT + 1./3.*((T2**3)*L2/D22) CT = KT + 1./3.	430 IM = IN		+35 CUNITIVE WITE (ΟΠΡΟΓ331)[XBART,IYBAPT,XO,YO,IM,KT 33] FORMAT (11.9X.1X = '.FIO.4.' ΙΝ. ΤΟ THE FORTH'//9X.'IY = '.FIO.4	1, IN. ID THE FORTH'//9X, XD = ', FID.4,' IN.'//9X,'YD = ', F 21N 1//0V/114 - 1 EID 2//9X, 1XT = ', EID 2//1	D0 1201 1=1,3		DO 1202 K=1,P	TRES=STRESY(I,) Gn Tn 1205 1204 TRES=STRESY(I.K)+(ST(I.K)-SS(I.K))*ES	GO TO 1205	3 1203 TRES=E≭ST(1,sK)	IF(1.EQ.3)G0 T	I/n=K	
SN 0378 SN 0379 1850 NS 1850 NS		16E0 NS			I SN 0395 I SN 0396	ISN 0397		LSN 0400	ISN 0401 ISN 0402	ISN 0403		15N 0406	15N 0409			I SN 0412		150 0419 150 0419	ISN 0420		ISN 0423		I SN 0429 I SN 0430	1 SN 0431

· · • · · · · · · · · · · · · · · · · ·	γ		:				
	T						
						v	
						-	
			= 1 F6. 1 F7.2,				N .
		CONTINUE CONTINUE PROGRAM LCRIT.COMPUTES CRIT LENGTH FOR DIFFERENT BUCKLING MODES MRITE(6.501) FORRAT(1H1.20X,'CRITICAL LENGTHS ARE AS BELOW'////) FF(SS.EQ.100.) GO TO 10C0 PRINT DUT THE AND THEN FURCH DATA		<u>م</u>			BL=SQRT((-BBZ-SQRT(BBZ*BBZ-4.*AAZ*CC))/(2.*AAZ)) 60 TO 507 Harte(6,504)AL,BL Write(6,504)AL,BL Write(6,504)AL,BL Write(6,504)AL,BL Write(6,504)AL,BL Write(6,504)AL,BL Write(6,504)AL,BL Write(6,504)AL,BL Mrite(6
		SN S	- L0/	XX AX IS			UG MC
	*) JCKL	AX I AI 7 • 2 • 1	XX ===			-2, 1 GKLTI BE (
		NT B	• L • • • •	ABT UCKL		-)) = • F 7 T BU CAN
	(Û,	FERE	н+ 1 • •	CIS B		* 447	*AAZ CKLF CKLF FREN THAT
	(JJN))/2. (JJN))/2. (XEL-X0)+(YEL-Y0)*(YYEL-Y0) RES#DUM])+(-1.)+BARK	MPUTES CRIT LENGTH FOR DIFFERENT BU Critical Lengths are as below'////) GO TO 1000 And Then Echin Cherk Data	,LOAD .LENGTHS FOR SECTION'F3.1,4H ,'AXIAL LOAD BART,IYBART,IW,KT,AREA,F,6,YO .PROPS.IX='F7.2,'IY='F7.2,'IW='F7.2,'KT=' B.1.1 G='F8.1,'YOT='F5.2)	COMPUTE CRIT LENGTH CORREOSPONDING TO AUCKLING ART XX AX PIE=3.14159 LX=SQRT(LPIE*PIE*E*IXDART)/LOAD) LX=SQRT(LPIE*PIE*E*IXDART)/LOAD) FX=SGR1(LPIE*CRIT.LENGTH W.R. TO X/X AXIS BUCKLE='F7.2 FORMATILH .10X,CRIT.LENGTH W.R. TO X/X AXIS BUCKLE='F7.2 SOLVE CRIT LENGTH LAT.TORSIONAL BUCKLE AZ=PIE*PIE*E*IYDART		MZ*CC TO 1301 ZAZ))/(2.*AAZ) 1 TO 1301 RT(BBZ*BBZ <u>-4.*AAZ*CC)]/(2.*AAZ)</u> RT 1303 TO 1303 TO 1303 TO 1303	RT(BB2*BB2-4.*AAZ*CC))/(2.*AAZ)) H L .Length W.R.TD Lat/Tors.Bucklf='f7.2,'INS Or'F .Critical lengths for different Buckling Modes Utes allowable axial load that Can be carried Computed is
	0) *(-	ARE	10N'1 , ARE 1 Y= 1 Y= 1 Y=	G T0 T0 X UCKL		ייטי	(TIBBZ*BBZ-4.*AAZ*CC))/ LENGTH W.R.TO LAT/TORS CRITICAL LENGTHS FOR D CRITICAL LENGTHS FOR D ITES ALLOWABLE AXIAL LO PROVINTED IN FIRST DART
	(JJN)/2. (JNN)/2. (XEL-Y0)+(YYEL-Y0)* RES#DUM1)*(1.)+BARK	MPUTES CRIT LENGTH FOR D CRITICAL LENGTHS ARE AS 60 TO 1000 AND THEN FCHD CHECK DATA	WRITE (6,502)SSS,LOAD FORMAT(1H ,'CRIT.LENGTHS FOR SFCTION'F3.1 11 WRITE (6,503) IXBART,IYBART,1W,KT,AREA,F FORMAT(1H0,'SECT.PROPS.IX='FT.2,' IY='F7 11.A='F8.2,' E='F8.1,' G='F8.1,' YD='F5.2)	COMPUTE CRIT LENGTH CORREOSPONDING TO PIE=3.14159 LX=SQRT(LETE*PIE*E*IXDART)/LOAD) MITE(6,555)LX MATT(1H ,10X,°CTT.LENGTH W.R. TO X/ SOLVE CRIT LENGTH LAT.TORSIONAL BUCKLE AZ=PIE*PIE*E*IYDART		* <u>* AA</u> Z	*AAZ 0 LA 16THS 16THS
	-1 +[√ +[√	LENG LENG LENG FCHD	FOR 147.1 (=177 158.1	(GTH CORREOSPONDI #E#IXBART)/LOAD) Crit-Length W.R. Art		CC==1.4 K (2 * CZ) CZ==1.4 K (2 * CZ) Z Z Z PBZ * B R Z - 4. * A Z * CC Z Z Z PBZ - 5 B R Z - 4. 0 1 30 1 Z Z Z Z - 1 - B R Z - 5 O R T 0 1 30 1 I F (Z Z Z L T - 0.) G 0 T 0 1 30 1 A I = 5 O R T (2 + B R Z - 5 O R T 0 B R Z = 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	3 Z-4.
	(JJN))/2. (JJN))/2. (XXEL-X0) RES*DUM1)	MPUTES CRIT CRITICAL LI GO TO 1000 AND THEN FO	0 6THS , IYB/ PS.I)	CORRI XBARI LENC	rY0)*8ARK+DZ 3 ARK−AZ* 82	C 301 1/(2) 1/201 1301 303 303 1/(2)	BL=SQRT((-BBZ-SQRT(BBZ*BBZ-4. 60 T0 507 HBL=0. WRITE(6,504)AL,BL WRITE(6,504)AL,BL FORMAT(1H0,'CRIT.LENGTH W.R.T TINS') COMPUTES CRITICAL LEN TINS') COMPUTES CRITICAL LEN SECOND PART COMPUTES ALLOWABL SECOND PART-DATA COMPUTES UNS.
	NLL) REL	MPUT CRIT GO T	WRITE (5,502)SSS,LOAD FORMAT(1H ,'CRIT.LENG 1 WRITE (5,503) IXBART, FORMAT(1H0,'SECT.PROP FARMAT(1H0,'SECT.PROP	NGTH E*E*I *CRIT TH LA BART	BZ=G*KT CZ=P[E*P]E*E*IN 72=LOAD*YO*LOAD*YO AAZ=LOAD*RZ+LOAD*YO BBZ=LOAD*RZ+LOAD*RARK+DZ BBZ=LOAD*CZ-AZ*BARK-AZ*A	CC=-1.*(AZ*C2) CC=-1.*(AZ*C4.*AAZ*CC TFLZ2.L.0.660 T0 1301 ZZAZ=RBZ*SQRT(ZAZ)//2 TFLZ2.LT.0.560 T0 1301 TF(ZZAZ.LT.0.560 T0 1301 AI=SQRT(L-BRZ*SQRT(BRZ*R) G0 T0 1302 G0 T0 1302 TF(ZAZ.LT.0.560 T0 1303 TF(ZAZ.LT.0.560 T0 1302 TF(ZAZ.LT.0.560 T0 1302 TF(ZAZ.LT.0.560 T0 1302 TF(ZAZ.LT.0.560 T0 1302 TC(ZAZ.LT.0.560 T0 1302 TC(ZAZ.LT.	RT (B - LEN - LEN - LEN - LEN - LEN - LEN - LEN - LEN
(2)	LJJJJ1111414 CONTINUE XXEL= (VC (IIN) +XC YYEL= (VC (IIN) +YC AAAAK= (XXEL-XD) # BARK= (2,*AAAAK*T) CONTINUE	T,CD	WRITE (6,502)SSS FORMAT(1H ,'CRIT) NRITE (6,503) IX FORMAT(1H0,'SECT A='F8.? = ='F	COMPUTE CRIT LEN PIE=3.14159 LX=SORT((DIE #PIE MRITE(6,505)LX MRITE(1H,10X,10X, SOLVE CRIT LENGT AZ=PIE#PIE*E*IYB		2) -4.*A -4.*A -4.*A -160 -160 -160 -160 -160	BL=SQRT((-BBZ-SQR BL=0
JJN=IIN+1 GO TO 1208 IIN=K+D(1)+D(2)	CTIN CTIN CTIN CTIN CTIN	CONTINUE PROGRAM LCRIT,C WRITE(6,501) FFORMAT(1H1,20X, FFORMAT(1H1,20X, PRINT OUT TTTTE	WRITE (6,502)SSS FORMAT(1H ,'CRIT A NITE (6,503) 1X FORMAT(1H0,'SECT • A='F8.? + E='F	COMPUTE CRIT LE PIE=3,14159 LX=5014159 LX=50141616,5051LX WRITE(6,5051LX SOLVE_CRIT 1ENG AZ=PIE*PIE*E*IY	BZ=G*KT CZ=PIE*PIE*E*IW DZ=LOAD*YO*LOAD* AAZ=LOAD*BZ+LOAD* AAZ=LOAD*BZ+LOAD* BBZ=LOAD*CZ-AZ*E	CC=-1.4 * (A2*C2) ZAZ=PB2*BB2*4.4 * (A2*C2) ZAZ=PB2*8.8 R7-4.4 * (A2*C2) ZAZ=A2-(-BB2*5.8 RT (1) F (ZZAZ-1.T-0.) GC AL=2.8 PA2*1.1 (-BB2*5.2 GC AL=0.0 C CONTINUE F (ZZ2.4 T.0.) GO F (ZZ2.4 T.0.) GO F (ZZ2.4 T.0.) GO F (ZZ2.4 T.0.) GO F (ZZ2.4 T.0.) GO	BL=SQRT((-BBZ-S) G0 T0 507 BL=0 WRITE(6,504)AL, FORMAT(1H0, CKI) INS.) FORMAT CMPUTE PROGRAM COMPUTE PROGRAM COMPUTE SECTIND PART COM
JJN=11N+1 60 TO 1208 11N=K+D(1)	LUNELLNE CONTINUE XXEL={XC YYEL={YC AAAAK={XC BARK={2.	CONTINUE CONTINUE PROGRAM WRITE(6, FORMAT(1 IF(SSS.E PRINT OU	TE ((MAT() MAT() MAT() MAT()	COMPUTE CRT PIE=3.14159 LX=SQRT(LPIE WRITE(6,505) FORMAT(1H ,1 SOLVE CRIT ,1 AZ=PIE*PIE*E	BZ=6*KT CZ=PIE*F DZ=LOAD AZ=LOAD AZ=LOAD BBZ=LOAD	CC=-1.*(AZ IZ(Z=H2/HBZ IZ(Z=H2/HBZ ZAZ=HBZ ZAZ=(-BBZ IF(ZAZ-LT H=SABI(I AL=SABI(I AL=0.0 AL=0.0 AL=0.0 CONTINUE IF(ZAZ-LT IF(BZZE(-BBZ) IF(BZZZ)	BL=SQRT((-BBZ-SQ G0 TD 507 BL=0 WRITE(6,504)AL,B FORMAT(1H0,'CRIT FORMAT(1H0,'CRIT FORGRAM COMPUTES FOCORD PART COMP SECTION PART COMP
	1		WRI FORI MRI FORI				
1207	1208	1201	502 1 503 1	505	1. Anno 1. Ann	1301	1303 507 504
				o u			0000
	0430 0438 0439 0440 0440 0441	0443 0444 0445 0445	0448 0449 0450 0451	0452 0453 0454 0455 0455	0457 0458 0459 0460 0461	0462 0464 0466 0466 0466 0471 0471 0473 0475 0475	0478 0479 0480 0481 0481 0482
0435					*****	************	

530 540 540 550 570 570 570 570 570 570 570 570 57	520	JSS=SSS IF(JSS-2)520,530,540 IF(JSS-2)IS -VE ,SECTION E ;2ER0,SECTION F;TVE,SECTION L	
30 KXX=877 30 KXX=0.895 AA=3.795 AA=3.795 AA=2.237 40 KXX=0.446 AA=2.237 60 TD 550 VUES DF C0.0FP. K=1 HAVE 3 POSS CRIT.LENGTHSAL,BL 50 C0=19. C0=10.550 VALUES DF C0.0BL IS NOT APPLICABLE 11 BL-81. 11 BL-81. 11 C12)=AL 00 553 JJ=1,NN </td <td></td> <td></td> <td></td>			
30 RXX=0.498 60 T0 555 60 T0 555 60 T0 555 60 T0 555 60 T0 555 50 C0=19. 50 C0=19. 50 C0=19. 50 C0=19. 50 C0=19. 51 Have 3 POSS CRIT.LENGTHSAL.BL FILE10.0.150 T0 551 11 (11=1X 11 (11=1X) 11 (11=1			· · · · · · · · · · · · · · · · · · ·
40 RX = 0.446 40 RX = 0.446 50 TO 550 50 TO 550 70 VALUES OF CO.CP.M GIVEN IN 1970 CODE FOR FY- 50 CP=82.5 51 CP=82.4 52 SHP-SUPP. K=1 HAVE 3 POSS CRIT.LENGTHSAL.BL 11 LIC3)=BL 11 LIC3)=AL 11 LIC3)=AL 11 LIC3)=AL 11 LIC3)=AL 11 LIC3)=AL NN=3 S 0 D 0 D 0 S 0 D 0 CC </td <td>062</td> <td></td> <td></td>	062		
A= 2.237 A= 2.237 G0 T0 550 G0 T0 550 F0 10 550 COLP9. Kal HAVE 3 POSS CRIT.LENGTHSALABL CP=82.5 ZH=0.175 CP=82.5 ZH=0.175 CP=82.5 ZH=0.175 CP=82.4 3 POSS CRIT.LENGTHSALABL F10.00.0.BL IS NOT. APPLICABLE LL(3)=BL L1(2)=AL LL(12)=AL L1(12)=AL LL(12)=AL L1(12)=AL LL(12)=AL L1(12)=AL S1 L1(12)=AL S1 L1(12)=AL NN=3 L1(12)=AL NN=2 NN=3 S2 G0 T0 550 FECCTIVE LENGTH=*F6.1,4H NN=2 S3 C0 T0 580 FECCTIVE LENGTH=*F6.1,4H D1 FKLE.6.6001.11.4PE FEOCTIVE LENGTH=*F6.1,4H D1 FKLE.6.6001.11.1.PE S3 MEITEL6.6.6001.11.1.PE FEOCTIVE LENGTH=*F6.1,4H D1 FRIE	540		
VALUES OF CO.CP.M GIVEN IN 1970 CODE FOR FY= 50 CD=19. ZM=0.175 SIMP.SUPP. K=1 HAVE 3 POSS CRIT.LENGTHSAL,BL If B1=E0.0.,BL IS NOT.APPLICABLE LIGGELE LIG3=BL 69.0.)GO TO 551 II(1)=LX II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=L(1) II(1)=LX II(1)=L(1) II(1)=LX II(1)=L(1) II(1)=LX II(• •
50 CD=19. CF_82.5 ZM=0.175 ZM=0.175 SIMP.SUPP. K=1 HAVE 3 POSS CRIT.LENGTHSAL,BL If BLE0.0.BL IS NOT.APPLICABLE L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL L1(2)=AL D10 553 JJ=1,NN KIR=LL(1)LI/RXX KIR=LL(1)LI/RXX CO 553 JJ=1,NN KIR=LL(1)LI/RXX CO 553 JJ=1,NN KIR=LL(1)LI/RXX CO 50 553 JJ=1,NN KIR=LL(1)LI/RXX CO 70 590 CA = 1490000/(KLR#KLR] D1 F(KLR.GT)CO A = 1490000/(KLR#KLR] D1 F(KLR.GT)//10X, EFFECTIVE LENGTH= F6.1,4H D1 F(KLR.GT)//10X, EFFECTIVE LENGTH= F7.1,4H D1 F(KLR.GT)//10X, EFFECTIVE LENGTH= F7	C VALUES OF CO.CP.M	1970 CODE FOR FY=55KSI	
ZM=0.175 ZM=0.175 SIMP.SUPP. K=1 HAVE 3 POSS CRIT.LENGTHSAL,BL If BLEQ.0.,BL IS NOT.APPLICABLE LL(2)=AL LL(2)=AL LL(2)=AL LL(2)=AL LL(2)=AL LL(2)=AL LL(1)=LX If GL EQ.0.)GO TO 551 MN=3 GD TO 553 S2 DO 553 JJ=1,NN KIR=LL(JJ)KXX KIR=LL(JJ)KXX CO 70 530 FF(KLR.GT.C0)GO TO 570 FF(KLR.GT.C0)GO TO 590 FF(KLR.GT.C0)GO TO 590 F	550 CO=19. rb-b3 F		
SIMP.SUPP. K-1 HAVE 3 POSS CRIT.LENGTHSAL,BL If BLE0.0.BL IS NOT.APPLICABLE.LENGTHSAL,BL L1(2)=LA L1(2)=LA L1(2)=LA L1(2)=LA IF(BL-EQ.0.)GO TO 551 NN=3 SI ND=2 SI ND=2 S2 DO 553 JJ=1,NN KIR=L1(1,1)/RXX KIR=L1(1,1)/RXX CO 553 JJ=1,NN KIR=L1(1,1)/RXX CO 70 580 CO 70 580 CO 70 580 S2 CO 580 S2 CO 580 S3 CO 580 S4 SAFFA S3 CONTINUE S3 CONTINUE S3 CONTINUE S3 CONTINUE S3 CONTINUE S4 CONTINUE S4 CONTINUE S4 CONTINUE S4 CONTINUE S4 CONTINUE S4 CONTINUE S4 CONTINUE S5 CONTINUE S5 CONTINUE S4 CONTINUE S5 CONTINUE S6 CO 70 S5 CONTINUE S6 CO 70 S6 CO 70 S4 CONTINUE S4 CONTINUE S6 CO 70 S5 CONTINUE S6 CO 70 S6 CO 70 S7 CO			
LI (3)=BL LI (2)=AL LI (2)=AL LI (2)=AL LI (2)=AL LI (2)=AL NN=3 GD TD 553 JJ=1,NN NN=3 GD TD 553 JJ=1,NN KIRLI (111)/RXX TFKLR, GT - C01GD TD 570 FA=0.6455 CD 553 JJ=1,NN KIRLI (111)/RXX TFKLR, GT - C01GD TD 570 FA=0.6455 CD 560 FA=0.6455 CD 560 FA=0.6455 CD 560 FA=0.6455 CD 560 FA=0.605114 FA=0.6001111.0P FA=0.1) S1 CD 500 FA=1,1) S1 CD 500 FA=1,1) S		CRIT-LENGTHSAL,BL,LX	
LL (2) = AL LL (2) = AL I (11) = LX NN = 3 GD TD 552 S1 NN = 2 S2 DD 553 JJ = 1, NN KIRRIL (11)/RXX T (KLR, GT, C01GD TD 570 FA = 0.6*55 CD 550 FA = 0.6*55 CD 550 FA = 0.6*55 CD 570 FA = 0.6*55 CD 570 FA = 0.6*55 CD 570 FA = 0.6*55 CD 7 580 CD 580 FA = 1, 1, 10, 4, EFECTIVE LENGTH = F6.1, 4H D1 FICLA, 6001111, PP D1 FICLA, 10, 4, EFFECTIVE LENGTH = F6.1, 4H D1 FICLA, 10, 4, 20 CD FICLA, 11 D1 FICLA, 10 CD FICLA, 11 D1 FICL		201 E	a second a second se
IFIEL-EC.0.160 TO 551 IFIEL-EC.0.160 TO 551 NN=3 GD 253 JJ=1,NN KIRALIJI/RXX KIRALIJI/RXX KIRALIJI/RXX FIRALGT C0160 TO 570 FA=0.6455 CO 560 FA=0.6455 CO 70 590 FA=0.6455 CO 560 FIRALGT CP160 TO 590 FA=0.6455 CO 70 590 FA=0.6005 FIRALGT FA=0.6455 CO 560 FIRALGT FA=0.6455 CO 560 FIRALGT FIRALG			
NN=3 61 TD 552 51 N=52 51 N=52 52 DD 553 JJ=1,NN KIRALIJI/RXX FIRALGT.C01GD TD 570 FA=0.6455 67 A5FA 67 D 590 67 A5FA 67 D 590 68 TA 587 69 TA 587 60 TO 590 68 TA 587 60 TO 590 69 EA=1457 70 FEKELRI 70 FEKELLELUJ 80 LLLELUJ 10 STUL 60 TO 3 60 TO	IF(BL.EQ.0.)GO TO		
51 N=2 52 DG 553 JJ=1,NN KIR=LI(1,11/RXX FF(KIK-GT-CG16G TO 570 FF=(KIK-GT-CG16G TO 570 FF=(KIK-GT-CG16G TO 590 FF=(KIK-GT-CP16G TO 590 CG TO 590 CG TO 590 FF=(LI-C12) 01 F(KIR-GT) PP=AAFA 02 F=149000./(KLR+KLR] PP=AAFA 01 F(LL-LL1) 01 F(LL-LL1) 02 F=11 02 F=11 03 CG TO 590 CG TO 500 CG TO 590 CG TO 500 CG	NN= 3		Þ.
52 JJ=1,NN KIR=LIL JJJRXX KIR=LIL JJJRXX FF(k18-G1) 570 FF(k18-G1) 590 PP=AA*FA 500 060 70 510 590 FE 60 60 70 510 590 61 70 62 70 63 70 70 FKLN-G7 70 FC 71 10 71 10 71 10 71 10 71 10 71 10 71 1 71 1	551		
KIR=II(1JJ)RXX FF(kL>.c0)G0 T0 570 FF(kL>.c0)G0 T0 590 PP=AA*FA G0 T0 590 G0 T0 590 G0 T0 590 F1(kL>.cP)G0 T0 590 F1(kL>.cP)G0 T0 590 F1(kL>.cP)G0 T0 590 F1(kL>.cP)G0 T0 590 P2AA*FA P2AA*FA P3000./(KLR*KLR] P2AA*FA B0 LL=L(JJ) B1L=L(JJ) B1 LL=L(JJ) B1 LL=L(JJ) B1 LL=L(JJ) B1 F1L(A.GOD)./(IOX,*EFECTIVE LENGTH=*F6.1,4H D10 F0RMAT(///IOX,*EFECTIVE LENGTH=*F6.1,4H D10 F0RMAT(///IOX,*EFECTIVE LENGTH=*F6.1,4H D10 F0R T1///IOX,*EFECTIVE LENGTH=*F6.1,4H </td <td>552 DO 553</td> <td></td> <td></td>	552 DO 553		
TF(KLR.GT.CO)GO TO 570 FE(KLR.GT.CO)GO TO 570 PE=A.655. PE=A.655. PE=A.655. CG TO 580 GG TO 580 CILEL(JJ) FP=A.6001.11.2P FEETIVE LENGTH='F6.1,4H IDE='F6.1) 53.CONTINUE GG TO 3 CG	KI R=LL (J.J) / RXX		
PF=AAFT PF=AAFT GO TO 590 TO IF (KLR.GT.CP)GG TO 590 FF (KLR.GT.CP)GG TO 590 PF=AAFF PF=AAFF GO TO 580 GO TO 580 GO TO 580 ARITE(A:600)111.PP PF=AAFA WITE(A:600)111.PP VALUEL(JJ) S1 CLULL(JJ) S1 CLULL 10E=F6.1) S1 CLULEXIT 00 FORMT(///10X,'EFFECTIVE LENGTH='F6.1,4H 10E=F6.1) S1 CLULEXIT 00 STOP END CO TO 3 CO T	IF (KLR.GT.CO) GO TO		
CG TD 590 10 IF (KLR.GT.CP)GD TD 590 PF=AA*FA PF=AA*FA GD TD 580 20 EA=L49000./(KLR*KLR1) PF=AA*FA B0 LL=LL(JJ) 20 FORMI(///10X,'EFECTIVE LENGTH='F6.1,4H 10 E 0 MMI(///10X,'EFECTIVE LENGTH='F6.1,4H 10 E 0 MMI(///10X,'EFECTIVE LENGTH='F6.1,4H 10 C 0 TD 3 20 CONTINUE 10 C TD 3 20 C TD 2 20 C TD			:
70 IF (KLR.GT.CP)GG TO 590 EA=0.64 FY-ZHMEKIR-CD) P=AAFA GG TO 580 90 EA=149000./(KLR*KLR] P=AAFA B0 LL=LL(JJ) WRITE(6.6001)11.PP MRITE(6.6001)11.PP 00 FORMAT(//10X,*EFECTIVE LENGTH=*F6.1,4H 1DE=*F6.1) 1DE=*F6.1) 1DE=*F6.1) 1DE=*F6.1) 1DE=*F6.1) 1DE=*F6.1 1DE			and a summary of the second
PF=AA*FA PF=AA*FA GO TO 580 9 F=A4*F000./(KLR*KLR1 PF=A4*F000./(KLR*KLR1 PF=A4*F000./(KLR*KLR1 B0 LL=LL(JJ) MRITE(6.6001111.PP MRITE(6.6001111.PP 10 EV0 10 E *F6.1) 10 FFECTIVE LENGTH=*F6.1,4H 10 EV0 10 STOP END .1	570		
GG TO 590 DE Ea=149000./(KLR#KLR] PP=LAT=1/J) WRITE(A.6001111.PP URITE(A.6001111.PP DE RAT(//)OX,*EFFECTIVE LENGTH=*F6.1,4H DE FROT(//)OX,*EFFECTIVE LENGTH=*F6.1,4H DE CONTINUE S3 CONTINUE 60 TO 3 60 TO 3 60 TO 3 60 TO 3 60 TO 3 60 TO 3 60 TO 3 61 CONTINUE 60 C			
90 E4=149000./(KLR#KLR] PP=AAFA B0 LLELL(J) WRIFL6.6001L1.PP 00 FERMAT///10X, EFFECTIVE LENGTH="F6.1,4H 00 FERMAT///10X, "EFFECTIVE LENGTH="F6.1,4H 53 CONTINUE 53 CONTINUE 60 TO 3 60 TO 3 60 TO 3 60 TO 3 61 A 61 A			
PP=AA*FA B0 LLL=LL(JJ) 00 FORMAT(//JOX;"EFFECTIVE LENGTH="F6.1,4H 1DE="F6.1] 30 CNTULE 60 TTNUE 60 TTN	590 EA=149000./[KLR*KL		
W LLL=LL\JJ) W LLL=LL\JJ) D0 FORMAT(///JOX,°EFFECTIVE LENGTH=°F6.1,4H JDE=F6.1) 30 CONTINUE 60 TO TO END FND END			₹ 1
D0 FORMAT(///JOX,'EFFECTIVE LENGTH='F6.1,4H 1DE='F6.1) 53 CONTINE 60 TOTNE 60 TOTNE 99 CALL EXIT 90 STOP END .1	084		
1DE=F6.1) 53 CONTINUE 6 ON 0 3 5 CALL EXIT 99 CALL EXIT 00 STOP END	900		
	10534 553 CONTINUE		
sa 🗍			· · · · · · · · · · · · · · · · · · ·
	666		
	1000		
	N DELETED. 1		
			A TANK OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION