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Abstract 

The importance of sampling methods in machine learning is growing due to an ever-increasing 

number of datasets containing millions of records of biological, medical, or other types of 

data. Such datasets are often beyond the reach of many standard machine learning tech

niques because of high computational or space complexity of the algorithms. When mak

ing even a single pass through the data is prohibitive, sampling may offer a good solution. 

However, whenever sampling is employed, it is necessary to determine when to stop sam

pling in a principled manner. Taking too few samples may result in an algorithm that is not 

theoretically sound, while taking too many may waste valuable computational resources. 

We use the problem of estimating the mean of a bounded random variable up to a given 

relative error to show how the recently introduced empirical Bernstein bounds can be used 

to develop efficient stopping rules. We propose several new stopping rules, prove bounds on 

their expected stopping times, and demonstrate experimentally that the new rules can stop 

much earlier than the best competitors while offering the same probabilistic guarantees. 
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Chapter 1 

Introduction 

Consider the problem of deciding which of two poker players is better and by how much. It 

would not be unreasonable to define the better player as the one that would on average win 

more money per hand if the two players were to play an infinite number of hands. Since we 

cannot make the players play an infinite number of hands, an obvious approach is to make 

them play some finite number and declare the one who has won more money as the better 

player. 

The problem becomes one of deciding how many hands need to be played. Clearly we 

want this number to be as small as possible. However, the fewer hands are played, the higher 

the probability that the weaker player wins more money through pure luck. These two 

competing objectives can be balanced by requiring that the number of hands to be played 

is as small as possible to guarantee that the wrong player is declared as being stronger with 

probability not exceeding some small threshold. 

To define the problem more precisely, let X\, X2, -X3,... be independent, identically 

distributed (iid) random variables with mean fi. We will refer to an algorithm as a stopping 

rule if at time t it observes Xt and based on past observations decides whether to stop or 

continue sampling. If a stopping rule S returns fi that satisfies 

P[|£-A*|<«:M] >!-<*, (LI) 

then S is a (e, <5)-stopping rule and p, is an (e, 5)-approximation of fi. If we let X\ be the 

random payoff for the first player for the ith hand, we recall that, by our earlier definition, 

the first player is better if fi is greater than 0, the second player is better when fi is less 

than 0, and the magnitude of fx is the margin by which one of the players is stronger. By 

choosing e = 1/2, given any 0 < 6 < 1, if fi is an (e, 5) -approximation to fi then jj, and 

fj. will assume the same sign. Hence, an (e, <5)-stopping rule can be used to solve the poker 
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problem. 

In general, estimating the expected value of a random variable through sampling, or 

Monte Carlo estimation, is a fundamental tool in many areas of science. In a clinical trial, 

one may be interested in estimating the probability that a new treatment succeeds, which 

can be seen as the expected value of an indicator random variable. A mathematician may 

be interested in approximating the permanent of a 0 — 1 matrix through sampling because 

exact computation of this quantity is NP-hard. 

In machine learning, the importance of sampling methods is growing due to an ever 

increasing number of datasets containing millions of records of biological, medical, or other 

types of data. Such datasets are often beyond the reach of many standard machine learning 

techniques because of poor computational or space complexity of the algorithms. In these 

cases, when even a single pass through a dataset can be prohibitive, sampling has emerged 

as a promising tool for scaling up machine learning algorithms [3, 8, 11]. 

As in the poker problem, whenever sampling is employed, a way of determining when 

enough samples have been taken is necessary, leading to the above described stopping prob

lem. Taking too few samples may lead to a high-variance unreliable estimate. Taking too 

many samples, on the other hand, will produce an accurate estimate, but may be costly in 

terms of computational or laboratory resources. 

Motivated by the above examples, this thesis examines the problem of finding an effi

cient (e, 5)-stopping rule for bounded random variables. We consider the case of bounded 

random variables because it is possible to use finite sample tail bounds to obtain stopping 

rules with strict probabilistic guarantees for this setting. Although it would be possible to 

extend the results to the unbounded case when the random variables satisfy certain moment 

conditions (e.g., if they are sub-Gaussian) for the sake of simplicity we will not deal with 

this case here. We use the recently-introduced empirical Bernstein bounds to develop a new 

algorithm, EBGStop, that requires on the order of 

/ a2 R \ / , R , 3 \ 
max -o-o,-j--r log log-—- + log - I (1.2) 

samples to find an (e, ̂ -approximation of a random variable with range R (Theorem 4). 

Since, as it follows from a lower bound by Dagum et al. [4], any algorithm must take at 

least on the order of 
[a2 R \ , 2 

maH^v'^J g5' (L3) 

'in the poker problem assuming that the payoffs are iid rules out players who adapt their strategy between 
games. Poker programs will often meet this condition. 
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samples (cf. Theorems 1 & 3), EBGStop is close to achieving the optimal bound. We also 

show that EBGStop often stops much earlier than the best known stopping rule for bounded 

random variables in practice. Most of our results on (e, S)-approximations have appeared 

in [12], but the treatment provided by this thesis is more complete. 

We then apply our techniques to the problem of estimating the mean of a bounded 

random variable up to e absolute error with probability at least 1 — 5. We present a simple 

algorithm that requires on the order of 

V Rs 

max , 
ez e 

R 3 
log l o g - + log -

e o 
(1.4) 

samples. While our algorithm often requires much fewer samples than the standard ap

proach of taking 
R2 2 

samples, our approach often stops later when the variance is large. We then introduce a 

stopping rule that uses a mixture of two stopping rules and show that it often stops much 

earlier than the standard approach while never exceeding its stopping time by more than a 

constant. 
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Chapter 2 

Related Work 

In this chapter, we present the relevant work on (e, <5)-stopping rules. We start by examining 

sound (e, <5)-stopping rules and then consider some approximate approaches based on the 

central limit theorem. 

2.1 Algorithm AA 

Dagum et al. [4] present an algorithm for finding an (e, (^-approximation of the mean of 

a random variable distributed in [0,1]. Their approximation algorithm, referred to as AA 

for short, is optimal in the sense that the expected number of samples it takes is within a 

universal multiplicative constant of any other algorithm for finding an (e, 8)-approximation. 

The next theorem proved by Dagum et al. [4] about (e, 8)-approximations is the key to 

understanding how AA works. But before the theorem let us introduce formally introduce 

the concept of universal (e, c))-stopping rules: 

Definition 1. Consider a stopping rule S. Let a distribution D be supported on [0,1], 

(j, > 0 be its expected value, pug) be the approximation to p returned by S when run with 

parameters (e, 8) on iid samples drawn from the distribution D, and let Nrej\ be the time 

when the rule stops. If for any such distribution D and any (e, 8) G (0, l ) 2 it holds that 

1. E[JV(£i<5)] < oo, and 

2. P [p,(l - e) < A(£i5) < M(l + e)}>\-8, 

then S is called a universal (e, 8)-stopping rule. 

Theorem 1. Let S be a universal (e, 8)-stopping rule. Pick any (e, 8) € (0, l ) 2 and any 

distribution D supported on [0,1] whose mean is positive. Let N^g) be the time when S 
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stops on this problem with parameters (e, 8). Then 

1 2 
E[iV(e><J)] > c-max(o2,ep) • ^ - ^ l o g - , (2.1) 

where p is the mean ofD and a2 is its variance, and c > 0 is a constant that is independent 

ofS, D, e, and 8. 

Theorem 1 gives the minimum number of samples an algorithm needs to take on the 

average in order to always produce an (e, 5)-approximation of p. The AA algorithm can be 

seen as an attempt to reverse-engineer an optimal stopping rule through Theorem 1. 

First, Dagum et al. found a constant d that guarantees that if n = d • max (a2, ep) • 

^ l o g f a n d £ = i £ r = i ^ > t h e n 

P[\p- p\ <ep)>l-8. 

If p and o2 were known, one could compute n and simply average n samples to obtain 

an (e, (^-approximation of p. However, p is the quantity of interest in the first place, so 

Dagum et al. instead compute an upper bound on n using approximations of p and a2 that 

are within a constant factor of the true values with high probability. 

To obtain approximations of p and a2 that are used to compute N, Dagum et al. use the 

Stopping Rule Algorithm (SR), pseudocode for which appears as Algorithm 1. Like AA, 

given e > 0 and 8 € (0,1) the SR algorithm returns an (e, 5)-approximation of p. However, 

the expected number of samples taken by SR is on the order of -4- log | , suggesting that 

there may be a more efficient algorithm that, in some cases, would take 1/e times fewer 

samples. 

Algorithm 1 Stopping Rule Algorithm 
t < - 0 

T <- 4(e - 2) log(2/5)/e2 

Ti <-1 + (1 + e)T 
while S < Ti do 

ti-t + 1 
Obtain Xt 

s <-s + xt 
end while 
return Ti/t 

Pseudocode for the AA algorithm is presented as Algorithm 2, where, for clarity, 

Xi,X2, • • • and X^X^, • • • denote two groups of iid random variables distributed with 
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mean /x and a2. There are three steps to the algorithm. In the first step, the SR algorithm 

is used to obtain a (min (1/2, y/e), 5/3)-approximation of \i. In the second step, a high-

probability estimate of a2 is found by using the estimate of /x to determine the necessary 

number of samples. Finally, the estimates of /x and a2 are combined into an estimate of 

max (a2, e/x), which in turn is used to determine the number of samples necessary to obtain 

an (e, S)-approximation of /x. Note that the third step reuses the samples used in the first 

step before obtaining new ones. 

Algorithm 2 Algorithm AA 

~ T 1 ^ 2 ( l + v ^) ( l + 2 v^)( l + l o g | / l o g | ) T 

/* Use the Stopping Rule Algorithm on Xi, Xi-, • •. to find approximation of/x */ 
/x' <—- (min (1/2, ^/e), 5/2)-approximation of/x 

/* Find approximation of max (<r2, e/x) using X[, X'2,... 
N <- T2 • e//x' 

for i = 1 , . . . , N do 
S^S + {X'2i^-X'2l)

2/2 
end for 
p <— max (S/N, e/x') 

/* Find final approximation of /x using Xi, X2 , . . . */ 
N +- Ti • p//x/2 

for x = 1 , . . . , N do 
5 <- S + Xi 

end for 
flir-S/N 

return jl 

Finally, Dagum et al. prove that for any random variable X distributed in [0,1], e > 0, 

and 8 € (0,1), if jx is the estimate produced by AA and Af is the stopping time of AA, then 

AA satisfies the conditions of Theorem 1 and there exists a universal constant c such that 

1 2 
E[AT] < c . m a x ( a 2 , e / x ) - ^ - T l o g T . (2.2) 

/xzez 0 

It seems that extending the AA algorithm to the more general setting of bounded ran

dom variables should be trivial, but this is not the case. The main technique used by the 

AA algorithm relies heavily on the fact that the sum of n samples from a nonnegative ran

dom variable is non-decreasing as a function of n. This is not true for a sum of n bounded 
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random variables, hence AA cannot be extended to this case. Nevertheless, the results of 

Dagum et al. provide important insights into our problem. 

2.2 Nonmonotonic Adaptive Sampling 

Domingo et al. [6] propose the Nonmonotonic Adaptive Sampling (NAS) algorithm for 

finding an (e, ̂ -approximation of the mean of a bounded random variable. Pseudocode for 

the NAS algorithm is shown as Algorithm 3. 

Algorithm 3 Algorithm NAS 
a <— oo 

i + - 0 
while \u\ < a(l + 1/e) do 

t<r-t+l 
Obtain Xt 

u<~Xt 

a^- y/(l/2n)\og(n(n + l)/6) 
end while 
return Xt 

The idea behind the NAS algorithm is simple. After observing t samples, a 1 - dt 

confidence interval for //, where dt — 8/(t(t + 1)), is constructed around Xt using Ho-

effding's inequality. Setting a to be half the width of this confidence interval, the algorithm 

terminates if \Xt\ < a(l + 1/e) and returns Xt. To see why Xt is an (e, 8) approximation 

when NAS terminates, suppose that the NAS algorithm stopped after t samples and that all 

confidence intervals contain JJL. It follows that 

\Xt - n\ < a < e(\Xt\ - a) < e\n\. (2.3) 

The first and third inequalities follow from the fact that all the confidence intervals hold, 

while the second inequality can be obtained by rearranging the stopping condition. Finally, 

it follows by the union bound that Equation (2.3) holds with probability at least 1 — 8 since 

OO r 

Hence, upon termination of the NAS algorithm, Xt is an (e, 8)-approximation of ji. 

Domingo et al. argue that given any e > 0, 8 > 0, and if X\,X2,... are iid bounded 

random variables with mean j u / 0 , then there exists a universal constant c such that 

E[W]<c.-^-( l oS-T7 + l og!V (2.5) 
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Unlike the equivalent bound for the AA algorithm, Equation (2.5) contains an additional 

log(l/ej/i|) term. This term comes from the use of a union bound. Domingo et al. also 

show that it can be reduced to loglog(l/e|^|) through the use of "geometric sampling".1 

Concentrating on non-negative valued random variables, it is also interesting to note that 

the bound for the NAS algorithm does not contain the max(cr2, e/i) term that is present in 

Equation (2.2), suggesting that NAS will perform poorly when max(er2, e/i) <C 1. 

2.3 Asymptotic Approaches 

The AA and NAS algorithms rely, directly or indirectly, on finite sample tail bounds, such 

as Hoeffding's inequality. An alternative approach is to use deviation bounds based on the 

Central Limit Theorem [15]. While such an approach can only offer asymptotic guaran

tees, it can result in earlier stopping times. In this section, we discuss several asymptotic 

approaches to finding (e, 8) -approximations and provide some insight into how they can 

fail. 

Let Xi,X2,.... are iid random variables with finite mean \x and finite variance a2 > 0, 

and let <I> = 1 — $, where $ denotes the standard normal cumulative density function. Let 

Xt be the average of X\, X2,.. •, Xt, Vt be the empirical variance: 

1 8 = 1 * 8 - i 

7 (2-6) 

t 

Then Vt converges to a2 in distribution and hence according to the Central Limit Theorem 

(Theorem 1.13 in [5]) and Slutsky's Theorem (Theorem 1.5 in [5]), 

'y/i(Xt - fi) 

!%. 
> u §{u) 

If we define 
^-\6/2)y/Vt ct = 7 r — , (2.7) 

then Hindoo P [\Xt — /x| < ct] = 1 — 6, hence, in the limit, (Xt — ct, Xt + ct) is a 1 — 5 

confidence interval for fi. Such approximate confidence intervals are generally much tighter 

than confidence intervals obtained from Hoeffding's inequality or the empirical Bernstein 

bound. 

Geometric sampling will be explained in Chapter 4. 



Domingo et al. analyze a version of the NAS algorithm that uses CLT-based confidence 

intervals [6]. They argue that the expected number of samples required by this variant of 

NAS still scales with l/e2/i2, but the constants are significantly reduced, resulting in earlier 

stopping times. However, Domingo et al. do not consider the effect of the variance in their 

analysis, which suggests that it may be possible to prove a tighter bound. 

A similar approach was taken by Holmes et al., who developed an asymptotic (e, 8)-

stopping rule for the purpose of approximating intractable statistical summations [11]. 

Their Monte Carlo approximation algorithm, which we will refer to as MCA, is shown 

as Algorithm 4. The MCA algorithm is representative of asymptotic approaches to stop

ping in that it makes use of CLT-based confidence intervals and it does not make use of a 

union bound [14]. 

Algorithm 4 Algorithm MCA 

''needed i ''rain 

while t < tneeded do 
while t < tneeded do 

t <- t + 1 
Obtain Xt 

end while 
/ , J <_ 7 2 (1+c)2 VI 
''needed r 5/2 e2 IT2" 

end while 
return Xt 

Holmes et al. derive MCA from the observation that if c is half the width of a 1 — 8 

confidence interval for \i as defined by Equation 2.7, then (x is an (e, (^-approximation of /i 

whenever c < e(/t — c). This is in fact the stopping condition used by the CLT-based NAS 

algorithm, but unlike the NAS algorithm, MCA does not check the stopping condition after 

each sample. Instead, the MCA algorithm begins by taking some predetermined number 

of samples tmin before checking the stopping condition for the first time. Holmes et al. 

observe that if the stopping condition is not satisfied, one can rewrite it as 

f - Z5/2 ~2 = 2 > ^ - ^ 
X t 

where z$ is a 1 — 8 quantile of a standard normal distribution, to obtain a lower bound on the 

number of required samples. In MCA, Equation 2.8 is used to determine when the stopping 

condition should be checked next if it is not already satisfied. 

The MCA algorithm is closely related to Stein's two-stage method for finding fixed 

width confidence intervals (see Chapter 13 of [13]), a problem we will consider in Chap-
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tmin 
Laplace(0.1,1) 

Gaussian(0.1,1) 

30 100 500 

0.355 0.222 0.131 

0.251 0.159 0.103 

Table 2.1: Probability of MCA failing for different values of tmin, e = 0.1, and 5 = 0.1. 

ter 6. Given a sequence of iid random variables Xi, X2, . . . with mean fx and variance a2, 

both unknown, the goal is to find a confidence interval of width 2e that contains \i with 

probability at least 1 — 5. Stein's two-stage procedure begins by taking some fixed number 

m samples in the first stage. Using these samples, a stopping time T is computed as 

T = max \rn,t\m_im)-^- + 1] 

t(m,s) ' s m e 1 — 5 quantile of Student's ^-distribution with m degrees of freedom. In the 

second stage, Stein's procedure takes a further T — m samples. When JQ are normally 

distributed, this procedure has been shown to take roughly twice as many samples as a 

stopping rule that knows the true variance. Nevertheless, the rule gives the desired coverage 

in this case. 

One important question is what effect does the use of approximate confidence intervals 

have on the properties of such two-stage procedures? If statistical folklore is to be believed, 

setting tmin to 30 should ensure that the normal approximation holds. Hence, the probabil

ity that MCA produces an approximation with relative error less than e, also known as the 

coverage of a stopping rule, should not be smaller than 1 — 5. 

We explored the validity of this claim by estimating the coverage of MCA for dif

ferent values of £mjn in two different scenarios. If p is the probability that MCA pro

duces an estimate with relative error greater than e for some random variable, then p — 

E[I {|/i — fi\ > £/«}], where I {A} denotes the indicator random variable for event A. We 

will refer to p as the failure probability of a stopping rule. Since we are primarily interested 

in determining whether p < 5 or p > 5, we used a stopping rule to find a (0.1,0.1)-

approximation of the mean of the random variable I{ | / / — fi\ > ept} — 5. 

We estimated the failure probability of MCA on Laplace{ii = 0.1, b = 1) and Normal(ij, 

0.1, a2 = 1) random variables for tmin = 30,100, 500. The Laplace distribution has high 

kurtosis so we can expect MCA to fail with probability greater than 5 on it. However, when 

sampling from a Normal distribution MCA should fail with probability close to 5 since in 

that case the only approximate step is that the variance and the mean are both estimated 

based on data. 

The results are shown as Table 2.3. It is clear that when tmin is too low, MCA can fail 

10 



with probability much larger than S. In particular, the claim that CLT-based approximations 

are accurate when the number of samples is greater than 30 seems far from true. On both 

random variables, when tmin was set to 30 the probability of MCA failing was between 

2.5 and 3.5 higher than the desired value of 8 = 0.1. While MCA was much closer to 

achieving the desired failure probability of 0.1 when tm{n was set to 500, this is not a 

guarantee that this will be the case for other random variables. Some attempts to make two-

stage procedures such as Stein's more robust have been made, for example by employing 

the bootstrap [9], however the resulting guarantees are still asymptotic. 

While the earlier stopping times provided by asymptotic approaches are appealing, they 

should not be applied blindly because if they are not properly tuned they can significantly 

exceed the desired failure probability of 8. Note that there are two sources of the error: 

First, instead of using the true variance we use an empirical estimate. Second, the CLT 

is asymptotic. Since the convergence in the CLT is of order Q(l/y/n) as it follows from 

Cramer's theorem (Theorem 13.1 in [5]), correcting for the error committed when using $ 

would introduce an intolerably large cost (the sample size would be 0,(1/52)). In the rest of 

this thesis we will only consider stopping rules that can offer strict probabilistic guarantees, 

yet avoid this pitfall. 
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Chapter 3 

Empirical Bernstein Stopping 

In this chapter, we develop a near-optimal stopping rule for finding an (e, ^-approximation 

of the mean of a bounded random variable. 

3.1 General Approach 

We begin by describing the general approach taken in the design of our algorithm. To 

reiterate, the goal is to construct a stopping rule with the following two properties: 

1. For any ix ^ 0, the stopping rule should stop with probability one. 

2. The estimate ft, returned by the stopping rule should satisfy 

P [ | A - / i | < e H > l - < J 

To gain some insight into how a stopping rule can be made to satisfy the second property, 

let T be the event that the stopping rule fails, i.e. returns an estimate jx that is not an e-

approximation of//, and let T be the random time at which the stopping rule terminates. By 

the law of total probability, it follows that 

oo 

P[^] = ^ P [ J r n { T = i}]. (3.1) 

The key idea behind our stopping rule is to define a nonnegative sequence {dt} satis-

fying J2tli dt < 5, and construct the stopping rule such that P [F n {T = £}] < dt. To 

facilitate this we define a new sequence {ct} where ct is half the width of a 1 — dt confi

dence interval for // given t samples. The stopping criterion is then constructed so that if it 

is satisfied after t samples and if the confidence interval for LI computed using the sample 

and ct does not fail then the returned estimate jl is an e-approximation of /J,. This ensures 
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that F [F C\ {T = t}} < dt, and when combined with Equation (3.1) guarantees that the 

stopping rule will fail with probability at most S. 

The same general approach was followed by Domingo et al. [6] in the design of their 

NAS algorithm, but since we construct the sequence ct using empirical Bernstein bounds 

(see below) instead of Hoeffding bounds, our stopping rules are able to take advantage of 

variance like the AA algorithm. However, our approach works with absolute values of the 

sample means Xt, and, unlike the AA algorithm, our stopping rules do not require the 

samples to be almost surely nonnegative. 

3.2 The EBStop Algorithm 

In this section, we present the basic version of our stopping rule, EBStop. 

3.2.1 Stopping criterion 

First, let dt = c/tp where c = 5-{p—l)/p andp > 1. This merely ensures that Y^S=i dt < $, 

but we will discuss this particular choice of {dt} in Section 3.2.2. Also let ct be half the 

width of a 1 — dt confidence interval for /J, as defined by the empirical Bernstein bound 

given t samples (see Section 8.1.2) 

l2Vtlog(3/dt) , 3Rlog(3/dt) 
Ci = V 1 + 1 ' (3-2) 

and define the event £ as 

£ = f]{\Xt - fi\ < d}. (3.3) 

t>i 

Here Xt is the same mean of the first t samples and Vt is the sample variance (cf. Equa

tion (2.6)). By construction, event £ holds with probability at least 1 — 5. We now construct 

a stopping criterion that is guaranteed to return an (e, 8)-approximation of n given that event 

£ holds. 

From Equation (3.3) we know that \Xt — fj\ < Ct for all t € N+ . Since a confidence 

interval for the absolute value of the mean of a random variable is no wider than the equiva

lent confidence interval for the mean itself, it follows that \\Xt\ — |/x|| < c4, which implies 

\Xt\ — ct < \/J,\. It is then easy to see that if 

ct<e(\Xt\-ct), (3.4) 

then 

| | ^ t | - H | < <k < e(\Xt\ - <H) < e\fi\. 
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Hence, if we stop when Inequality (3.4) holds, \Xt\ is within e relative error of |/x|. We 

rearrange Inequality (3.4) as 

ct < T ^ - \*t\ (3.5) 
1 + e ' ' 

for convenience to obtain the stopping condition of our first (e, <5)-stopping rule, EBStop-

Simple. Pseudocode for EBStopSimple is shown as Algorithm 5. 

Algorithm 5 Algorithm EBStopSimple 
ct <- oo 
t*-0 
Obtain Xi 
while ct > e/(l + e) \Xt\ do 

t<r-t+\ 
Obtain Xt 

Compute Q according to (3.2) 
end while 
return Xt 

While it can be shown that EBStopSimple comes close to achieving the lower bound of 

Dagum et al. from Theorem 1, we make two simple improvements to EBStopSimple before 

providing a theoretical analysis of stopping times. 

First, we show that the (1 + e) term in Inequality (3.5) can be discarded. Let l(t) — 

\Xt\ - ct and u(t) = \Xt\ + ct. We have seen that P [nt>i{l(t) < \fi\ < u(t)}} > 1 - S. 

Now, consider an algorithm that stops at the first time T when 

(1 + e)Z(T) > (1 - e)u(T) (3.6) 

and returns the estimate 

fi = 1/2 • sgn(XT) [(1 + e)Z(T) + (1 - e)u(T)}. (3.7) 

It is easy to show that for our choice of l(t) and u(t), Inequality (3.6) is equivalent to 

CT < e|Xy|. To show that the estimate defined in Equation (3.7) is an (e, (^-approximation 

consider the event £ when for any t, Xt — ct < /x < Xt + ct. On this event, 

|A| - l / 2 . [ ( l + e)*(T) + ( l - € M r ) ] 

> (l-e)u(T) 

> ( l -e )N-

Here the first inequality follows from the stopping condition (3.6) and the second follows 
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by the definition of £. Similarly, 

|A! = l/2.[(l + e)Z(r) + ( l - eKT) ] 

< (l + e)/(T) 

< (1 + 6)H-

Further, since CT < \XT\, the signs of Xt and /i must agree on £. Thus, on £, ft is an 

e-approximation to fi. Since by construction F[£] > 1 — 8, we get that the stopping rule 

returns an e-estimate with probability at least 1 — 5. 

The second improvement is based on the observation that when conditioning on event 

£, one can use the smallest of the confidence intervals constructed at any time 1 < s < t 

as the confidence interval at time t instead of Q. When ct is constructed from the empirical 

Bernstein bound, this construction can result in tighter confidence intervals, which in turn 

lead to earlier stopping times. Based on this, we can refine our definitions of l(t) and u(t) 

by setting l(t) to maxs<( (|XS| — cs) and u(t) to mins<i {\XS\ + cs). 

We incorporate the above improvements into EBStopSimple to obtain a new algorithm, 

EBStop. The pseudocode for EBStop is shown as Algorithm 6. 

Algorithm 6 Algorithm EBStop 
t<-l 
l(t) <- 0 
u(t) <— oo 
Obtain Xy 
while (1 + e)l(t) < (1 - e)u{t) do 

t < - i + l 
Obtain Xf 

Compute ct according to (3.2) 
l{t) <- max(/(i - 1), \Xt\ - ct) 
u{t) ^mm(u(t-l),\Xt\ + ct) 

end while 
return sgn(X t) • 1/2 • [(1 + e)l{t) + (1 - e)u{t)} 

3.2.2 Choosing dt 

While we have already stated that {dt} should be nonnegative and should sum to 5, another 

restriction on the sequence is necessary to guarantee that EBStop will stop with probability 

one. While the reason will become clear in the next section, {dt} must satisfy 

t—>oo t 
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Hence, dt should not decay too quickly, or EBStop will never terminate. Our particular 

choice of {dt} satisfies all of the above criteria and is both efficient in practice and mathe

matically convenient. The exact form of this sequence is a parameter of our algorithm and 

offers a way of incorporating prior knowledge. 

3.3 Analysis of EBStop 

In this section we prove that EBStop is an (e, <5)-stopping rule and provide an analysis of its 

stopping times. We show that EBStop comes close to achieving the theoretical lower bound 

given in Theorem 1. We begin by stating a key technical result due to Audibert et al. [1]. 

Lemma 1. Let U be a real-valued random variable such that almost surely U < bfor some 

b € KL Let b' = b — K[U], and b+ — max(6,0). Let U\,... ,Un be i.i.d. copies ofU and 

Ut = 1A ]Cs=i Us- Then for any x > 0 the fallowings hold: 

• with probability at least 1 — e~x, simultaneously for 1 < i < t, 

i(Ui - E[U}) < ^/2tE[U2]x + b+x/3; (3.8) 

• with probability at least 1 — e~~x, simultaneously far 1 < i < t, 

i(Ui - E[U]) < ^2tV[U}x + b'x/Z. (3.9) 

Proof See[l]. • 

Lemma 1 can be used to derive a high probability upper bound on the sample variance, 

which is needed in order to show that the expected number of samples taken by EBStop 

depends on the true variance. 

Lemma 2. Let X\,...,Xt be iid random variables such that for all 1 < i < t, almost 

surely 0 < X{ < 1. Let Vt = \ Yli=i(Xi — Xt)2. Then, for any x > 0, with probability at 

least 1 — 3e_ x , 

Vt < a2 + y/2o2x/t + x/M. (3.10) 

Proof. The application of Inequality (3.8) with the choice Uj — (Xj — E[Xi])2, i = t, 

yields that with probability at least 1 — e~x, 

Ut<o-2 + y/2Vx/t + x/3t, (3.11) 
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where V = E[(A"i - E[A"i])4]. Now, Ut = Vt + (Xt - nf > Vt, hence from (3.11) it also 

follows that 

Vt < a2 + v
/2Vx/t + x/3t. 

Using V < a2, which holds since X2- G [0,1], we arrive at the desired result. • 

Before proceeding to the main result, we prove a technical lemma that provides an upper 

bound on the solution of a type of equation that arises in the analysis of stopping times. 

Lemma 3. Let a, k be positive real numbers, lft! is a solution to 

l^f = K (3-12) 

then 
. 2 , 2a 

t' < ^ log —. (3.13) 

Further, ift' is as above and t > t' then \og(at)/t < k. 

Proof. The solution of Equation (3.12) can be seen as the intersection point between a line 

and a logarithmic curve when we rewrite the equation as 

logat = kt. (3.14) 

First, note that at t = 1/k, the slope of the line equals the slope of the tangent to the 

logarithmic curve. Because log is concave, for t° > 1/k the intersection of the line tangent 

to log at at t° with the line kt is an upper bound on if. Substituting log t° + l/t° • (t — t°) 

with the choice of t° = 2/k for log at in Equation (3.14) and solving for t yields 

?. 

k 

, 2a 
log —-& k 

(3.15) 

We obtain the Lemma by dropping the — 2/k term for convenience. • 

Finally, we present a theorem that summarizes the main properties of EBStop. In order 

to simplify the analysis, we restrict it to the case of random variables with range [0,1]. 

Theorem 2. Let X be a random variable distributed with range [0,1]. Let /i = E[X] and 

a2 — V[X] and assume n ^ 0. Let T be the stopping time of Algorithm EBStop on X, 

where ct is defined by Equation (3.2) with df — S(p — l)/(ptp), where p > 1. Then the 

following properties hold: 

1. There exists a constant C = Cp such that for any 0 < 5 < 1/2, 

!T > <7 • max ( ^ , ^ ) (log - L + log f > l < 25. 
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2. If p > 2, there exists a constant C • = C' such that 

E[T] < C • max [-£-^, -j-) (log - * - + log - j . 

3. 77ze estimate fi as returned by the EBStop algorithm is an (e, 6)-approximation of p.. 

Proof of Part I. When Algorithm EBStop stops at time T, the stopping condition implies 

that 

(1 + e)max(\Xs\ - cs) > (1 - e)min (|XS| + cs) , and 
_ S^T S<T (3.16) 

Since analyzing the stopping criterion directly is cumbersome, we will state a sequence of 

stopping conditions, each more conservative and easier to analyze than the previous until 

we arrive at a condition that can be solved for the stopping time. First, consider dropping 

the max and min from the first half of Inequality (3.16) and rearranging the terms, resulting 

in 

e|XT | > cT. (3.17) 

Since Inequality (3.16) holds only when Inequality (3.17) holds, it suffices to upper bound 

the stopping time of algorithm EBStop with Inequality (3.17) as its stopping criterion.Thus 

if we redefine T to be the first time when (3.17) holds then it suffices to upper bound T. 

Now, consider the event £ when none of the confidence intervals fail: 

£=C\{\Xt-p\<ct}. (3.18) 
t>\ 

In what follows, unless told otherwise, we will always assume that this event holds. Since, 

on £, \Xt\ > \p\ — ct holds for any t, if T' is the first time when e(\p\ — CT>) > CT' 

holds then T < T'. Redefining T to be T", our aim now is to bound T'. The new stopping 

criterion then becomes 

e|/x| 2VTlog(l/ST) 31og(l/fr) 
> cT = \ — 1 — , (3.19) 1 + e V T T 

where we used the definition of ct (cf. Equation (3.2)) and we define 1/St = 3tp/(c5). Now, 

the idea is that by the time when both terms on the right-hand side are small compared to 

the left-hand side (say, they are both less than half of the left-hand side), the algorithm 

would have stopped. Further, for large T, Vp can be upper bounded by a constant times 

the larger of a2 and e\/j,\ (with high probability). These two constraints then give us the 

required bound on T. 
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By applying Lemma 2 with the choice x = \og{\/St), it follows that for any t > 1, with 

probability at least St, 

V t ot 

An application of Lemma 3 to 31og(l/<^)/£ = a2 gives that if t > ^-[plog -^ + log ^ ] = 

ta2 then 31og(l/<5f)/i < a2. Another application of Lemma 3 to 31og(l/5t)/t = e\p\ gives 

that if* > i p b l o g ^ y + log^] = ttM then 31og(l/<5t)/t < e\p\. We now define £' to be 

the event that (3.20) holds for all t > 1. Defining p — max(cr2, e|/x|), we get that for any 

t > mm(ta2, ie|M|), on 5', Vt < 3p. 

Thus, on £ D £' it holds that 

2Vt\og(l/St) + 31og(l/fr) < jGplog(l/8t) + . /3p\og(l/St) 

Now, consider the first time t* > ram(ta2,t£\^) satisfying 

(3.21) 

^ ( ^ ) \ / ^ (3.22) 

Note that t* is non-random. Further, on £ D £', t* > max(T, min(iCT2, t^)) = T'. This is 

trivial if T' — m i n ^ ^ , ^ ^ ) . On the other hand, if T' = T > m i n ^ ^ i ^ ) then notice 

that Inequality (3.21) holds for time T on £ n £' and hence the stopping criterion (3.19) 

will be satisfied whenever (3.22) is satisfied. This means that the algorithm stops the latest 

at time t*. Since T > T, t* > T on £ n £'. 

Now, another application of Lemma 3 to Inequality (3.22) gives the bound that Inequal

ity (3.22) is satisfied when 

t > 6p(l + e)2(V6 + V3)2p 
9 9 €Ap^ 

1 3 6p(l + e)2(V6 + \/3)2p 
- log — + log 2"^ 
P CO €zpz 

Since the quantity on the right-hand side is at least as large as te\^, it is an upper bound on 

t*. The desired form of the bound is obtained by absorbing the additive constants into the 

multiplicative constant. Noticing that P [£ H £') > 1 — 25 finishes the proof of Part 1. • 

Proof of Part 2. First, let 

t - C m a x ^ . ^ ^ g j i j + l o g ? ) . (3.23) 
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where C is as defined in Part 1. Then using the definition of expectation 

oo 

E[T] = J ^ * . p [ T = t] (3.24) 
t=i 
t'+l oo 

= ^2t-P(T = t)+ Y^ t-F[T = t] (3.25) 
t=l t=t'+2 

oo 

< 2t'+ Yl t-¥[T = t], (3.26) 
t=t'+2 

where we used Y?t=i l' P(T = <) < (*' + 1) E ^ i * p ( r = t)<t' + l< 2t', where we 

assumed, without the loss of generality, that t' > 1. 

To bound the second term in (3.26), we recall that for t > t' whenever the confidence 

intervals at time t hold, the algorithm is guaranteed to stop after t samples. Hence, if the 

algorithm has not stopped after t > t' samples, all confidence intervals between time t' and 

t — \ must have failed. Since we can bound this probability by the probability of at least 

one of the confidence intervals at time t — \ failing, it follows that P [T = t] < 1dt-\. Since 

dt-\ — c6(t - iyp, it follows that 

CO 

E[T] < 2t'+ ] T t-¥[T = t] (3.27) 
t=t'+2 

oo 

< 2t'+ Y 2c'5(t-l)~p+1 (3.28) 
t=t'+2 

< 2t' + C (3.29) 

< C"t' (3.30) 

when p > 2. Note that the same result can be obtained for p > 1, but we have chosen this 

argument for simplicity. 

• 

Proof of Part 3. Let T be the event that the stopping rule fails to produce an estimate with 

relative error e, 

F= {l£-Ml > e H) 

and let £ be the event that the confidence intervals ct do not fail as before (cf. (3.18)). 

First, we decompose the failure probability as P [J7] = P [F\£] P [£] + P [T\£] P [£]. By 

construction, P [£] < 5. Then using the trivial bounds F[£] < 1 and P [F\£] < 1 we 

obtain P [F\ < P [f\£] + 5. We now argue that P [F\£] = 0. 
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It remains to be shown that ft is an (e, 5)-approximation of \x. So assume that the 

algorithm has terminated after T samples. (Notice that he algorithm stops with probability 

one since by Part 2, E[T] < +00.) Combining the definition of event £ with the first part 

of Inequality (3.16) and the definition of ft leads to 

m = 1/2 (1 + e) max(|XJ - cs) + (1 - e) min(|X s | + cs) 
s<T s<T 

> (l-e)mm(\Xa\ + ca) 

> ( l - e ) H (3-31) 

and 

IAI = 1/2 (1 + e)max(|X s | - cs) + (1 - e)min(|X s | + cs) 
s<T s<T 

< (l + e ) m i n ( | X s | - c s ) 

< (l + e)H- (3-32) 

Inequalities (3.31) and (3.32) hold due to the fact that a confidence interval on Xs is also 

a confidence interval on \XS\ with equal or greater confidence. Finally, the definition of 

£ and the second part of Inequality (3.16) together imply sgn(Xr) = sgn(yu). Hence, 

IA - A*I < e|H and therefore, P [F\£] = 0 and hence P [F\ = P [\fi -fj,\> e\fi\] < 8. O 

3.4 Effect of Range 

While our analysis of EBStop is limited to the case of Xi with range 1, extending this result 

to random variables with range R is straightforward. 

3.4.1 The reduction approach 

We begin by showing how an (e, 5) -stopping rule for random variables with range 1 and a 

matching upper bound on its expected stopping time can be extended to random variables 

with range R. Let S be an (e, <5)-stopping rule for random variables with range 1, let X be 

distributed with range R, and let X' — X/R. Now, suppose stopping rule S' takes X as 

input, runs stopping rule S on X' to obtain fi, and returns Rfi. Then it is straightforward to 

show that Rfi is an (e, ̂ -approximation of X. Hence, S' is an (e, 5)-stopping rule. 

To see how an upper bound on the expected stopping time of S' can be obtained from 

an upper bound on the expected stopping time of S, let T(e, 5, X) be the stopping time of 

S on X and let n be a function that satisfies 

E[T(e,6,X)} <n{e,S,^a2). 
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Then it follows that if T'(e, 8, X) is the stopping time of S' on X, where E[X] = ji and 

V[X] = a2, then 

E[T'(e,8,X)} < n(e,5,n/R,a2/R2). 

We will refer to this method of extending a stopping rule to random variables with range R 

as the reduction approach. 

3.4.2 Upper bounds 

We now give upper bounds on the expected number of samples required by the EBStop and 

NAS algorithms required to find an (e, (^-approximation of a random variable with range R 

using the reduction approach. It should be noted that both algorithms can be run directly on 

random variables with range R, i.e. without resorting to a reduction. It should be clear that 

any run of any of these unmodified algorithms stops at the same time and returns the same 

value than running the algorithms obtained with the reduction approach described above. 

Hence, it follows from Theorem 2 that EBStop can be used to find an (e, 8)-approximation 

of a random variable with range R using an expected number of samples no greater than 

( °2 R \ f, R i 3 
C • max - ^ , - — log — - + log -

for some universal constant C. Similarly, the NAS algorithm can be used to find and (e, 8)-

approximation of a random variable with range R using an expected number of samples no 

greater than 

C" • -2"2 • log -j-r + log -
/ i z e z \ e\fj,\ o 

for some universal constant C. 

3.4.3 Lower bound 

Since the lower bound of Dagum et al. does not take the range into account we extend 

their result to the case of random variables distributed in [0, R]. The definition of universal 

stopping rules to random variables with range [0, R] is trivial and hence the formal definition 

is omitted. 

Theorem 3. Let S be a universal (e, 8)-stopping rule for distributions supported on [0, R]. 

Pick any (e, 5) 6 (0, l ) 2 and any distribution D supported on [0, R] whose mean is positive. 

Let ^V(e,5) be the time when S stops on this problem with parameters (e, 8). Then 

/a2 R\ 2 
HN(e,6)] > c • m a x ( ^2~~2> _ ) l0S 7» ( 3 3 3 ) 
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where fi is the mean ofD and a is its variance, and c > 0 is a constant that is independent 

ofS, D, e, and 8. 

Note that constant c can be chosen to be the same as in Equation (1). 

Proof. For a random variable X with finite variance let nx be its mean and ox be its 

variance. 

Let S be a universal (e, 5)-stopping rule for distributions supported on [0, R]. Consider 

a stopping rule S' constructed from S as follows: <S' works for distributions supported 

on [0,1]. When S' works with Z supported on [0,1], it runs S on X = ZR to obtain 

an estimate p,(e,8,X). Clearly, p,(e,6,X)/R is an (e, ̂ -approximation of \iz- Hence, 

S' is a universal (e, <5)-stopping rule for distributions supported on [0,1]. Let N'(e, 5, Z) 

be the number of samples consumed by S' on X. Then N'(e,5,Z) — N(e,6,ZR) by 

construction, where iV(e, 8, X) is the time when S stops when it is run with parameters e, 

8 on iid copies of X. 

Now, let us fix (e, 8) e (0, l ) 2 and X ~ D, where X is a distribution supported on 

[0, R]. Define Z = X/R. Hence N(e, 8, X) = N'(e, 8, Z). By Theorem 1, 

E[iV'(e,5,Z)]>Cmaxf4^'—) log|-
Ve2/4 enz) 8 

Using \iz = fi-x/R and a\ — crx/R
2 we get the desired lower bound. • 

Theorem 3 applies only to random variables distributed in [0, R], however, it follows 

trivially that the same lower bound applies to stopping rules that work on random variables 

with range R. Hence, EBStop is at most a logarithmic term away from achieving the optimal 

expected stopping time. 
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Chapter 4 

Batch Sampling 

In this chapter, we present a version of the EBStop algorithm that performs batch sampling 

and show that with a geometric sampling schedule the log -4-^ term in the expected number 

of samples taken by EBStop is reduced to log log ^r-r. Furthermore, we introduce a new 

technique that allows us to test the stopping condition after each sample while maintaining 

the benefits of batch sampling. 

4.1 Batch Sampling 

The motivation behind batch sampling comes from the fact that checking the stopping cri

terion after each sample is wasteful when EBStop is far from stopping. To see why this is 

true, consider what happens when EBStop checks the stopping criterion after t samples, but 

cannot stop. The algorithm must construct a 1 — dt confidence interval for /i, and in order 

to guarantee that all confidence intervals hold with probability at least S, we require that 

S S i dt < S. Due to this constraint, checking the stopping condition at time t reduces the 

mass given to ds for s > t, which in turn makes the confidence intervals cs for s > t wider, 

and from Equation (3.17) it is clear that making the confidence intervals wider will push the 

stopping time back. Hence, EBStop can be made more efficient by reducing the number of 

times it checks the stopping criterion while it is far from stopping. 

Pseudocode for a variant of EBStop that performs batch sampling is shown as Algo

rithm 7. The key change from EBStop is the addition of a sampling schedule in the form of 

a sequence of positive integers {£&}• The sampling schedule represents the times at which 

the stopping condition is checked. After drawing t^ samples, Algorithm 7 constructs a 

1 — dk confidence interval for \i and checks the stopping criterion. 

Whenever, k <C t^, it should be possible for Algorithm 7 to stop much earlier than 

EBStop. One possible sampling schedule, known as arithmetic sampling, is given by £& = 
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Algorithm 7 EBStop with batch sampling 

l(t) <- 0 
u(t) *— oo 
fc<-0 
Obtain Xi 
while (1 4- e)Z(t) < (1 - e)u(t) do 

while t < tk+i do 
t ^ t + l 
Obtain X t 

end while 
fc<- fc + 1 

_ /2yflog(3A4)" , 3fllog(3/rffc) 
ck — y t "^ t 

Z(i) <- max(Z(f - 1), |X*| - cfc) 
ti(i) <— mm{u(t - 1), |X t | + Cfc) 

end while 
return sgn(X4) • 1/2- [(1 + e)Z(t) + (1 - e)u(t)] 

m • k for some m > 1. To see how such a strategy will impact the stopping time, consider 

checking the stopping condition after having taken t samples using arithmetic sampling. 

Since after t samples at most t/m confidence intervals have been constructed, the algorithm 

will construct a 1 — d confidence interval where 

c8 cmpS c'5 
d< , , x = = —• 

~ (t/m)P tP tP 

Hence, an arithmetic sampling strategy only results in a change to the normalizing constant 

in dt, and from Equation (3.19) it is clear that the form of the upper bound on the expected 

number of samples will not change. 

Now, consider a geometric sampling schedule, where tk = \Pk~\ for some (3 > 1. Since 

under this schedule the stopping condition is checked at most log^ t times by the time t 

samples have been taken, it follows that 
cS 

d< - . 

~ (log/?*)* 

It is straightforward to show that with this value of d, an analysis of stopping times leads to 

equations of the form (loglog£)/£ = c instead of (log t)/t = c, as in the case of arithmetic 

sampling. While we delay the proof until Section 4.3, we will show that if T is the stopping 

time of Algorithm 7 employing a geometric sampling schedule, then there exists a universal 

constant C, such that 

E[T] < Cmax (-^, -^~) flog log ~ + log \) . (4.1) 
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4.2 Mid-interval Stopping 

While batch sampling can significantly reduce the number of samples required by EBStop, 

it restricts the algorithm to the sequence {tk} as the set of possible stopping times. When tk 

grows quickly with k, batch sampling leads to many unnecessary samples being taken. For 

example, when employing a geometric sampling schedule with (3 = 1.1, it is possible that 

the stopping criterion could be satisfied after [/3fc] + 1 samples, but the algorithm will not 

stop until it has taken [/3fc+1] samples. This can lead to as much as (5 times more samples 

than necessary being taken, and while this is only a constant, multiplicative increase, a 

stopping rule that is able to stop at any point is desirable. 

To illustrate the efficiency of the approach we are about to propose, consider modifying 

a batch sampling algorithm to stop at any point through another application of the union 

bound. Instead of taking samples £& + 1, ifc + 2 , . . . , tk+i and then checking the stopping 

condition with failure probability dk, one can check the stopping condition after each sam

ple between tf. + 1 and tk+i with failure probability dk/(tk+i — tk)- While this approach 

leads to earlier stopping times for very small \i and e, the benefits of batch sampling become 

much smaller. Pseudocode for this approach is shown as Algorithm 8. 

Algorithm 8 Batch EBStop with union bound anytime stopping 

TM 
l{t) *- 0 
u(t) <— oo 

Obtain X\ 
while (1 + e)l(t) < (1 - e)u(t) do 

i < - t + l 
Obtain Xt 

if t > ifc+i then 
k±-k + l 

df *— dk/(tk+l — tk) 
end if 
Cf = /2Vtlog(3/dt)" + 3filog(3/dQ 

Z(t) * - m a x ( Z ( t - l ) , | X t | - c t ) 
u{t) <- min(«(t - 1), \Xt\ + <h) 

end while 
return sgn(X t) • 1/2- [(1 + e)Z(i) + (1 - e)u(t)] 

Nevertheless, it is possible to achieve anytime stopping without the use of the union 

bound. The key result, due to Audibert et al., is the following variant of the empirical 

Bernstein bound that holds simultaneously over an interval [1]: If t\ < t-i for t\,ti € N 
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and a > £2/^1 (> 1), then with probability at least 1 — 3e xla, for all £ G {£1, . . . , £2} we 

have 

\Xt -fi\< y/2Vtx/t + 3x/£. (4.2) 

To apply this result to batch sampling, we first solve 1 — 3e~x'a = 1 — d^ for x, resulting 

in x = a log 3/dfc. If w e then use this value of x and Equation (4.2) to construct confidence 

intervals for /J, after each sample from £& + 1 through tk+i, the confidence intervals will 

simultaneously hold fi with probability at least 1 — dk- The confidence intervals can in turn 

be used to check the stopping condition after each sample. Algorithm 9 incorporates this 

idea into our batch sampling algorithm. 

Algorithm 9 Batch EBStop with martingale-based anytime stopping 
t*-\ 
l{t) <- 0 
u{t) <— 00 

Obtain Xx 

while (1 + e)l(t) < (1 - e)u(t) do 
£ ^ £ + 1 
Obtain Xt 

if £ > £fc+i then 
k^k + 1 
ot <— £fc+i/£fc 
x <— a log 3/dk 

end if 
ct <- y/2Vtx/t + 3Rx/t 
l(t) i- max(/(£ - 1), \Xt\ - ct) 
u(t) <— min(w(£ - 1), \Xt\ + ct) 

end while 
return s g n p Q • 1/2- [(1 + e)l(t) + (1 - e)u(t)] 

To see how EBStop compares to Algorithm 8 and to Algorithm 9 we compare the failure 

probability used when evaluating the stopping criterion after \f3k~\ = £ samples by each of 

the algorithms, denoting this probability by ft. The results are presented in Table 4.2. 

A geometric sampling schedule was assumed for the batch algorithms. Disregarding the 

constants, Algorithm 8 uses ft — l/(£log£) which, depending on the value of p, can be 

a very minor improvement on ft = l/£p as used by EBStop. Algorithm 9, roughly uses 

ft = l/(\ogtf, which is a clear improvement over both EBStop and Algorithm 8. 
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EBStop Algorithm 8 Algorithm 9 

tf \\o&f)t\P t-\t/(3] V nog, Rog/3 t\ 

Table 4.1: Failure probability used to evaluate the stopping criterion after t samples by each 
algorithm. 

4.3 Analysis of Batch Sampling 

In this section we provide an analysis of stopping times for Algorithm 9 when following 

a geometric sampling schedule, which we will refer to as EBGStop. We begin by proving 

the equivalent of Lemma 3 for the type of equations that arise under a geometric sampling 

schedule. 

Lemma 4. Let a, k be positive real numbers. Ift' is a solution to 

log(alogi) 
k (4.3) 

in terms oft, then 

where to — max(l/fc, e). 

t ' < log (a log t0) 

k l 
to log t0 

(4.4) 

Proof. The proof is analogous to the proof of Lemma 3. The solution of equation (4.3) can 

be seen as the intersection point between a line and a log log curve when we rewrite it as 

log(alogt) — kt. (4.5) 

First, note that the slope of the line equals the slope of the tangent to the logarithmic 

curve at t when t logt = 1/k. The solution to this equation is bounded from above by to = 

max(l/fc, e). As in the proof of Lemma 4, the intersection of the line tangent tolog(alogt) 

at t > to with the line kt is an upper bound on t'. Since the line tangent to log(a log t) at to 

is given by log(alogt0) + j ^ ^ • (t - t0), solving log(alogt0) + ^ ^ • (t - t0) = kt 

yields 

t, < kg (a log *o) - tok ^ log(Qlog*o) _ ( 4 6 ) 

k- l 
t0 log t0 

k 
t0 log t0 

• 
Theorem 4. Let X be a random variable distributed with range 1. Let [i = ~E[X] and 

a2 — Y[X] and assume [i ^ 0. Let T be the stopping time of Algorithm 9 on X while 
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following a geometric sampling schedule (i.e. dk = c5/kp.) Then here exists a constant C 

such that 

^ 1 
T > C • max a , , ! i 3 

l o g l O g - r - r + l o g - < 25. 

Proof. The proof is analogous to the proof of Theorem 2, but with the application of 

Lemma 4 in place of Lemma 3. Since Algorithm 9 differs from EBStop only in the form 

of ct, following the proof of Theorem 2 until Equation (3.19), EBGStop will stop with 

probability at least 1 — 5 when 

l + e 
> CT-

Substituting ct with the value used in Algorithm 9, Inequality (4.7) becomes 

em ^ l2VTlog(l/5K) r Zlog(l/5K) 
> + 

(4.7) 

(4.8) 
l + e - V T T 

where 1/4 = Zkp/(c5) and K = \\og0T\ < \ogpT. 

As before, we seek a high-probability upper bound on Vt. By applying Lemma 2 with 

the choice x — a log ^(log^j t)p to Vt, it follows that for all t > 1, with probability at least 

1-5, 

Vt < a2 + a 
12a\ogU\og0t)P _ 4alog-|(log / 3 i)p 

+ 3t 
(4.9) 

Now let p = max(cr2, e\/i\), then if t is a solution to 

3^1og((!Pg) 
t P, (4.10) 

then by Lemma 4 (using Zap/ p > e), 

t < 
1 3a£> 

l o g ( ^ ) / ~P 

Zap 1, 3 ^ 
log log 1- - log — - log log /? 

p p co 

< Cx 
Zap , . 3ap 1 . 3 

log log h - l o g — 
p p co 

(4.11) 

(4.12) 

We now define £' to be the event that (4.9) holds for all t > 1. It then follows that if the 

algorithm has taken at least tp samples and event £' holds, then Vt < 3p = 3 max(u2, e\p\)-

Hence, it follows that on £ and £', ift>tp then 

12VtalogMlog0t)P _ 3alogMlog0t)P 
+ < 

6pa log ^(log/3t)P , JSpalog^logptp 
+ 

< (VE+Vs 
lpa\og^(\ogpt)P 
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Now consider the smallest t* > tp that satisfies 

^L>(^+^)yp a i o sy°g^ ) p . 
As in the proof of Theorem 2, when £ and £' hold, t* > T. One final application of 

Lemma 4 gives 

e < pq + eWe + y ^ V 
€2fJ,2 

p{\ + e)2(v/6 + y /3)ap 1 _3_ 
n o "T" lOg r 

e^/iz p co 
log log ^ - j + - log 

Again, we can obtain the desired form of the bound by absorbing the additive constant into 

the multiplicative constant. Noticing that £ and £' hold simultaneously with probability at 

least 1 — 25 finishes the proof. • 

While we do not state them here, a bound on the expected stopping time and a proof of 

the (e, 5)-approximation property can be obtained with arguments nearly identical to those 

of Theorem 2. It then follows from Theorem 4 that if T is the stopping time of EBGStop 

when it is used to find an (e, 8)-approximation of a random variable with range R using the 

reduction approach of Section 3.4, then there exists a universal constant C such that 

E[T] < C • max (-^, ^ - \ flog log A + log -

As with the rest of our upper bounds, the same result can be proved about EBGStop directly, 

but we use the reduction approach for simplicity. 
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Chapter 5 

Experimental Results 

In this chapter we explore the properties of the stopping rules we have presented through a 

number of simulated experiments. 

5.1 Experimental Setup 

In addition to EBStop and EBGStop, we evaluate AA, NAS, and geometric NAS. In order 

to make the comparisons fair we set equivalent parameters in different algorithms to the 

same value. In the case of EBGStop and the geometric version of NAS, we set f3, the 

factor by which both algorithms grow intervals, to 1.5 for both algorithms. Domingo et 

al. reported this value to work best for the NAS algorithm in their experiments [7]. Since 

with the exception of AA, all of the algorithms in our comparison defined a sequence of 

confidence intervals {ct}, we fixed the underlying dt sequence to 

for all algorithms. This value is the default choice used by the NAS algorithm. Since we 

have found that EBGStop generally performs better for other settings of these parameters, 

we also include results for EBGStop with our default choices dk = c/kp, p = 1.1, and 

p = 1.1. We denote EBGStop with these parameter choice by EBGStop*. 

5.2 Effect of Variance 

The primary reason for developing EBStop was the need for an algorithm that is able to take 

advantage of variance like AA without the restriction to nonnegative random variables. In 

this section we compare how well the various stopping rules are able to exploit variance. 

Let U(a, b, m) denote the average of m Uniform(a, b) random variables. Then the 

expected value and variance of U(a, b,m) are (a + b)/2 and (6 — a)2/(12m) respectively. 
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Since the aim of this experiment is to study the effect of the variance on stopping times, 

we fix a to 0 and b to 1, and vary m to obtain a number of random variables with a fixed 

mean but different variances. We ran each stopping rule 100 times on £/(0,1, TO) random 

variables for m = 1,5,10,50,100,1000, e = 0.01 and 8 = 0.1. Figure 5.1 shows the 

average number of samples taken by each algorithm for each value of TO. Logarithmic scale 

was used on the y-axis for clarity. 
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Figure 5.1: Average number of samples required to find (0.01,0.^-approximations of 
f/(0, l ,m) random variables for m = 1,5,10,50,100,1000. The results are averaged 
over 100 runs. 

Figure 5.1 suggests that variance has no effect on the expected stopping time of NAS 

and geometric NAS algorithms. This is not surprising as the sample variance does not 

appear in the stopping condition for either algorithm. 

Unlike the NAS algorithms, all variants of EBStop along with the AA algorithm are 

able to take advantage of variance information, but the exact effect of the variance differs 

between AA and EBStop. The behaviour of the AA algorithm seems to fall into two modes. 

Form = 1,5,10, the algorithm requires fewer samples as the variance decreases with larger 
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m. However, for m = 50,100,100, the AA algorithm seems to require the same number 

of samples for all three random variables, even though the variance of [7(0,1,1000) is 

20 times smaller than the variance [7(0,1, 50). On the other hand, all variants of EBStop 

require fewer and fewer samples as the variance decreases, at least for the distributions that 

we tested EBStop on. 

However, the theory predicts that both algorithms have two modes: When a2 decreases 

and it is above cefj, for some constant c, then the number of samples decreases with a2. 

However, when a2 decreases below ce/i, no further decrease of the required number of 

samples will be experienced. Here c is a constant that depends on the algorithm. For AA it 

seems that this constant is fairly large, while for EBStop and its variants it is much smaller. 

(The fact that in the bounds a2 is compared directly to e/x, i.e., that the bound depends on 

max((j2, e/x) instead of max(<72, cefi) is a side-effect of the way the analysis is done.) 

In the case of the AA algorithm, the constant's value is determined by the desired 

accuracy of the presampling step. In the case of EBStop and its variants the constant c is 

determined by how the two terms in the empirical Bernstein bound interact with each other. 

In order to understand this, recall that these algorithms can be expected to stop when 

(cf. Equation (3.19)), assuming that this stopping time t* is large enough so that Vj* ma2. 

When a —> 0 the second term becomes dominating and the dependence of t* on a will be 

negligible. In particular, log(l/8t)/t ;$ e/_i/(3R) must be satisfied before Inequality (5.1) 

will be satisfied and this puts a lower bound on t*. This lower bound is independent of a. 

Further, for small values of a the actual cutoff point will be arbitrarily close to this lower 

bound. Hence, lowering the value of a does not change lead to an improvement in the 

performance. This mode of behaviour is seen in Figure 5.1 for m = 50,100,1000. Even 

though the differences in variance for these values of m are huge, the stopping times are 

similar. However, when a has a large enough value, the first term dominates. This mode 

of behaviour can be seen in Figure 5.1 for m = 1,5,10. While the differences in variances 

are much smaller than between m = 50,100,1000, when m = 10, almost an order of 

magnitude fewer samples are required to stop than when m = 1. 

•W 
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5.3 General Efficiency 

5.3.1 Low Variance 

We again test the stopping rules on U(a, b, m) random variables. However, instead of 

keeping the mean fixed and studying the effect of the variance, we fix the variance and vary 

the mean. We fix m at 10 and vary a and b to obtain the values /J = 0.9,0.7,0.5,0.3,0.1 

while b — a is 0.2. We used the values e = 0.1 and 8 — 0.1 in this set of experiments. 

The variance is small enough that EBStop, its variants, and AA should take a number of 

samples in the order of l/(e/i). We also expect both variants of the NAS algorithm to take a 

number of samples on the order of 1/e2^2. Figure 5.2 shows the average number of samples 

taken by each algorithm for each value of /j,. We again use logarithmic scale on the y-axis 

for clarity. 
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Figure 5.2: Average number of samples required to find (0.1,0.^-approximations of 
U(a, b, 10) random variables with varying means. The results are averaged over 100 runs. 

Figure 5.2 shows that both variants of the NAS algorithm quickly fall behind the other 

algorithms as \x decreases. It seems that, as the theory suggests, the AA algorithm and 
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all variants of EBStop require l//i times fewer samples than NAS. While the comparison 

has been done on nonnegative random variables in order to include AA, it should be em

phasized that on signed random variables EBStop can be drastically more efficient than the 

NAS algorithm. 

5.3.2 High Variance 

While the previous experiment showed that both EBStop and the A A algorithm can exploit 

low-variance situations to require on the order of l/e|/i| samples to stop, how well do they 

perform when the variance is large? To examine this scenario, we include a comparison on 

Bernoulli random variables. Since Bernoulli random variables have maximal variance of 

all bounded random variables, the advantage of variance estimation should be diminished. 

Nevertheless, if fi and a2 are the mean and variance of a Bernoulli random variable, then 

a2 = /i(l — /i). Hence, when ji is small, EBStop and AA should require on the order of 

/ / i ( l - j z ) 1 \ ( \ - n 1\ 1 /c^ 
max —5—5—, — = max —=—, — w -̂ — (5.2) 

\ eznz ejjij \ eAn ejjij e^fj, 

samples to stop. 

Figure 5.3 shows the average number of samples required by each algorithm to find 

a (0.1,0.1)-approximation of a number of Bernoulli random variables. As predicted by 

Equation (5.2), when /x is small, AA and all variants of EBStop seem to require 1/fi times 

fewer samples than NAS. Somewhat surprisingly, the geometric version of NAS required 

fewer samples than even the tuned version of EBGStop for \i = 0.9 and \i — 0.5, but 

not for fi = 0.99. This is likely happening because for intermediate values of /j,, such as 

0.9 and 0.5, the square root and the linear terms in the empirical Bernstein bound are of 

approximately equal magnitude when EBStop is close to stopping. This has the effect of 

roughly doubling the magnitude of the constants associated with the bound and slightly 

increasing the required number of samples. 

It is also interesting to note that all variants of EBStop outperformed the AA algorithm 

in both experiments where we varied the mean, even though the bounds on the expected 

number of samples taken by EBStop possess an extra logarithmic term. This term grows 

without bound as e or /x approach 0, hence, on nonnegative random variables, the AA can 

be expected to outperform EBStop when this is the case. However, we have not seen this in 

our experiments. 
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M=0.99 /z=0.9 /i=0.5 A*=0.1 ^=0.05 ^=0.01 

Figure 5.3: Average number of samples required to find (0.1,0.^-approximations of 
Bernoulli random variables with varying means. The results are averaged over 100 runs. 

5.4 Coverage 

In Chapter 2, we estimated the coverage of a stopping rule that uses the Central Limit 

Theorem in order to determine whether it is smaller or lager than 1 — 5. While all of the 

stopping rules we evaluated in this chapter guarantee that their coverage is at least 1 — 5, we 

calculated the sample coverage achieved by the stopping rules evaluated in this chapter on 

each of the three experiments described above. Perhaps somewhat surprisingly, there was 

not a single occurrence of a stopping rule returning an estimate with relative error greater 

than e. Since each stopping rule was run 100 times on 17 different random variables, this 

suggests that these stopping rules are extremely conservative. 

Depending on the motivation behind using a stopping rule, the overly conservative na

ture of such stopping rules can be seen as both an advantage and a disadvantage. If it is 

important to guarantee that the approximations are within e relative error with probability 

at least 1 — 5, the stopping rules in this chapter are a good choice. If, on the other hand, one 
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is willing to tolerate coverage smaller than 1 — 5, stopping rules based on asymptotic results 

will be much more efficient, though it is clear that efficiency alone cannot be the goal. 
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Chapter 6 

Absolute Error 

In this chapter we consider the simpler but related problem of estimating the mean of a 

random variable up to a given absolute error. As before, let X\, X2, X3,... be iid random 

variables with mean /i. If a stopping rale returns an estimate p that satisfies 

F [|A - A*| < c] > 1 - *, (6-1) 

then we refer to p as an absolute (e, ̂ -approximation. We use the techniques used in the de

velopment of EBStop to derive a novel algorithm for finding absolute (e, (^-approximations 

and provide both a theoretical and an empirical analysis of its properties. 

6.1 Non-adaptive approach 

The problem of finding an absolute (e, 5)-approximation is inherently easier than the prob

lem of finding an (e, 6)-approximation. Since the number of samples necessary to find 

an (e, 8)-approximation depends on the mean ft, any stopping rule that finds an (e, 5)-

approximation must be adaptive in the sense that its stopping condition must depend on 

the samples. On the other hand, stopping rules for finding absolute (e, S)-approximations 

do not have to make use of the samples in the stopping condition. 

To give an example of a non-adaptive approach, we recall that if Xi are bounded with 

range R, then from Hoeffding's inequality 

P [\~Xn -n\>e]< 2e~2ne2/R2. (6.2) 

By solving for the smallest n for which the right-hand side of Inequality (6.2) is greater 

than 8 we get that if 
R2 log § 

n > 2e*
6 = ne, (6.3) 
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then P [\Xn — /x| > e] < 8. Hence, it is enough to take the average of ne samples in order 

to find an absolute (e, 8) -approximation. 

While this simple, non-adaptive approach works, it is not difficult to see that it can 

be improved upon by an adaptive one that makes use of variance information. In particu

lar, it should be possible to reduce the dependence of the number of samples on R? to a 

dependence on R and a2. This is indeed our goal here. 

6.2 Empirical Bernstein Stopping for Absolute Error 

In this section we use the methods developed in Chapters 3 and 4 to obtain an efficient 

stopping rule for finding absolute (e, 8)-approximations of bounded random variables. 

6.2.1 The Algorithm 

Following the development of EBStop, we rely on a sequence {ct} such that the event 

£ = {\Xt-Li\<ct,\/teN+} 

occurs with probability at least 1 — 8. In particular, we make the choice of using cj based 

on batch sampling with a geometric sampling schedule as defined in Section 4.2. Having 

defined ct, it is trivial to construct a stopping rule for finding absolute (e, ^-approximations. 

One can simply stop as soon as ct < e and return Xt as the estimate. We will refer to this 

algorithm as EBAStop and present pseudocode for it as Algorithm 10. 

Algorithm 10 Algorithm EBAStop. 
C\ <— OO 

t<r- 1 
fc«-0 
Obtain X\ 
while ct > e do 

i < - i + l 
Obtain Xt 

if t > tk+i then 
k^k + 1 

a <— tfc/tfc+i 
x <— a log 3/dfe 

end if 
ct <- y/2Vtx/t + 3Rx/t 

end while 
return Xt 

We need to show that EBAStop terminates with probability 1 and returns an abso

lute (e, 8)-approximation upon termination. The verify the first property, we recall that 
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lim^oo ct = 0. Since the algorithm terminates when ct < e, we see that the stopping 

condition will be satisfied for large-enough t. Now suppose that the stopping condition is 

satisfied and event £ holds. Then \Xt — //[ < ct and ct < e, hence Xt is an absolute 

(e, ^-approximation of p. 

6.2.2 Analysis 

As we have done with the other algorithms we have proposed, we derive a high-probability 

upper bound on the stopping time of EBAStop. 

Theorem 5. Let X be a random variable distributed with range 1. Let p = ~&[X] and 

a2 = Y[X] and assume p > 0. Let T be the stopping time of EBAStop on X while 

following a geometric sampling schedule. Then here exists a constant C such that 

T>C • max 
e 2 ' e 

, . 1 . 3 ' 
log l o g - + log -

e o 
<2S. 

Proof. The proof is analogous to the proof of Theorem 4. EBAStop stops when CT < e, or 

if we substitute the full expression for ct, when 

2aVTlog(l/5K) 3alog(l/5K) 

T 
< e , (6.4) 

where 1/5^ = 3kp/(c5) and K = |_l°g,3 ̂ J — ^°&p T. Now, as we have done in the proof 

of Theorem 4, we seek a a high-probability upper bound on Vt. By applying Lemma 2 with 

the choice x — a log ^(log^ t)p to Vt we obtain that for all t > 1, with probability at least 

1-5, 

Vt<a2 + N/^2 
\ 

2ap log \\c5J log/3,/ 

+ "i 
Aaplog^y^ 

l og / ? ; 

3t 
(6.5) 

Let p — max(cr2, e), then if t is a solution to 

by Lemma 4 

t< 

3«Plog((^)'gj) 
t ^ 

3ap 

P 

' Zap 1 3" 
log log + log 

p p co = v 

(6.6) 

(6.7) 

We now define £' to be the event that (6.8) holds for al i i > 1. It then follows that if 

EBAStop has taken at least tp samples and event £' holds, then Vt < 3p = 3 max (a2, e). 
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It then follows that when £ and £' hold, and t > tp, then 

1 2 ° W ° s ( ( a ) ' i 5 ) , 3°P'°g((3)"S) 

5 \ 

6paplog((^)p logt 
log/3 

+ \ 
3p^log((^)^S) 

< (Vei+>/3)\ 
W l ° 6 ( ( ^ S 

(6.8) 

(6.9) 

(6.10) 

Now consider the smallest t* > tp that satisfies 

Ve + ^f^f^". 
As in the proof of Theorem 2, when £ and 5 ' hold, t* > T. We can apply Lemma 4 one 

more time to obtain 

t* < 
ap . . p(\/6 + V3)2ap 1 3 

log log - i ^ + - log — 
eA p co 

(6.11) 

The desired form of the bound can be obtained by absorbing the additive constant into 

the multiplicative constant when e and 8 are small. Finally, noticing that £ and £' hold 

simultaneously with probability at least 1 — 28 finishes the proof. • 

We can then use Theorem 5 and part b of Theorem 2 to obtain that there exists a uni

versal constant C such that 

E [T]<C-max( - i i 1 i 3 

log log - + log — 
€ CO 

Hence, if we disregard the logarithmic terms, the adaptive approach used in EBAStop re

quires on the order of max \^T,~) samples, while the non-adaptive approach requires on 

the order of ^ samples. This implies that when the variance is small, the adaptive approach 

should be able to stop substantially earlier. 

Nevertheless, the log log ^ term can be made arbitrarily large by using a sufficiently 

small value of e. We can get a general idea of how small e has to be for this term to become 

non-negligible by considering the case of a Bernoulli random variable with mean \i. This 

random variable has variance \i(\ — //) and it is the largest variance achievable by a random 

variable with mean /x and range 1. If we consider the logarithmic term to be non-negligible 

when 

-5-log l o g - > -x, 
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or equivalently when 

l o g l o g - > ^ , (6.12) 

we can solve for the smallest e for which this is true. In the Bernoulli case, Inequality (6.12) 

is satisfied when 

e < * (6.13) 

By plugging in values of /i into Inequality (6.13) we get that the logarithmic term becomes 

non-negligible when e < 10 - 1 2 for \x = 0.5 and when e < 10~113 for [i = 0.2. Hence, e 

would have to be really small for the logarithmic term to be sufficiently large. 

As in the case of relative error, we can use the reduction approach of Section 3.4 to 

obtain an upper bound on the expected stopping time of EBAStop when used on random 

variables with range R. It is easy to show that if T is the stopping time of EBAStop in this 

case, then 

log log — + log -
e o 

/ 2 r> 

E[T] < C - m a x ( - y , -

for some universal constant C. 

6.2.3 Mixture of Stopping Rules 

Based on our analysis it is clear that the Hoeffding-based stopping rule and our adaptive ap

proach each have their own merits. When the variance is small compared to e, the adaptive 

approach should only require on the order of - samples. On the other hand, when e is really 

small, the Hoeffding-based approach should be able to stop earlier than EBAstop because 

the log log term in the bound on the expected stopping time of EBAStop will be large. 

How can we decide which algorithm to use in practice? Instead of trying to decide 

which stopping rule is likely to stop first when faced with a particular scenario we can 

combine both stopping rules into a single stopping rule. Let Tfjoeff(5), and TEB(8) be the 

number of samples required to find an absolute (e, 5)-approximation of a random variable 

X by the Hoeffding-based and adaptive methods respectively. The mixture stopping rule 

stops after xam{THoeff{5I2),TEB{&/^)) samples. The stopping time of this rule should 

be a constant worse than min(T^oejj(5), TEB{5)). 

6.3 Experimental Results 

Theorem 5 suggests that our adaptive approach should require significantly fewer samples 

than the non-adaptive approach when the variance is small and that the two approaches 

42 



should perform comparably when the variance is large. We compared the average number 

of samples required by each method to find an absolute (e, ̂ -approximations of random 

variables with a fixed mean but different variances. We ran each stopping rule 100 times 

on [7(0,1, m) random variables for m = 1,5,10, 50,100,1000, e = 0.01 and 5 = 0.01. 

Figure 6.1 shows the average number of samples taken by each algorithm for each value of 

m. Hoeffding denotes the non-adaptive approach, EBAStop denotes our adaptive approach, 

while Mixture denotes the combination of the two approaches. Logarithmic scale was used 

on the y-axis for clarity. 

! • Hoeffding 
IZZ1 Mixture 
I B EBAStop 

Figure 6.1: Comparison of absolute (e, <5)-stopping rules on averages of m Uniform(0,l) 
random variables for m = 1,5,10,50,100,1000. 

As expected, the adaptive approach requires fewer samples to stop as the variance 

decreases. The variance of [7(0,1,1) is the largest of the 6 random variables, and the 

Hoeffding-based approach actually manages to stop earlier than the adaptive approach. 

However, the adaptive approach stops much earlier on U(0,1, 5) and [7(0,1,10). The 

reduction in the stopping times is much smaller for m = 50,100,1000, but this is not sur

prising because for these random variables our algorithm should require on the order of 1/e 
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samples, reducing the benefit of variance estimation. The mixture of the two stopping rules 

performs almost as well as the better of the two rules in all cases. 

In the second experiment, we compared the stopping times of the stopping rules when 

finding an absolute (e, 5)-approximation of a [7(0,1,3) random variable for different values 

of e. The results are resented in Figure 6.2. For large values of e, the Hoeffding-based 

approach stops much earlier than our adaptive rule because the overhead of being adaptive 

is too high when a small number of samples is sufficient. When e is small, our adaptive 

rule stops earlier by exploiting the small variance of the [7(0,1,3) random variable. As 

expected, in both cases, the mixture of the two stopping rules requires only a few more 

samples than the best stopping rule. 
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Figure 6.2: Comparison of absolute (e, 5)-stopping rules on a [7(0,1, 3) random variable 
for different values of e. 

6.4 Conclusions 

We have presented an adaptive algorithm for finding absolute (e, (^-approximations of 

bounded random variables. While the algorithm is able to stop much earlier than a non-
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adaptive approach when the variance is small, its expected stopping time as e goes to 0 

becomes larger than that of the non-adaptive approach. We showed that a mixture of the 

two approaches may be a good alternative to the Hoeffding-based approach in practice as it 

will never stop much later than the Hoeffding-based stopping rule but can, in some settings, 

stop much earlier. 

45 



Chapter 7 

Conclusion 

7.1 Summary of Contributions 

The main contribution of this thesis is the introduction of the EBStop algorithm - a near-

optimal stopping rule for finding (e, (^-approximations of bounded random variables. The 

key advantage over previous approaches is the use of empirical Bernstein bounds, which 

allow our algorithm to stop much earlier than its competitors when the variance is small. 

We also show how a version of the empirical Bernstein bound that holds over an interval 

can be used to make our algorithm much more efficient by grouping deviation bounds. The 

resulting algorithm achieves a better bound on expected stopping time and performs well in 

practice. 

Finally, we applied our techniques to obtain a novel algorithm for finding absolute 

(e, 8)-approximations. While our new algorithm required much fewer samples than the 

standard approach based on Hoeffding's inequality when the variance is small, it performed 

poorly in other settings. We then showed that a combination of these two approaches into a 

mixture stopping rule yields an algorithm that performs almost as well as the better of the 

two approaches in all situations. 

7.2 Future Work 

While EBGStop is currently the most efficient stopping rule for finding (e, S) -approximations 

of bounded random variables there is considerable room for improvement. 

The first interesting question is whether the lower bound due to Dagum et al. is achiev

able in the case of bounded random variables. EBGStop comes to within a log log term 

involving e and \fi\ of achieving this lower bound. This term is the result of applying a 

union bound over time, and one possibility for eliminating it is by assigning the failure 
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probability given to the confidence interval after t samples adaptively. Since knowing [i 

and a2 in advance would allow us to determine the optimal stopping time, the hope is that 

using estimates of fi and a2 to adaptively construct the sequence of confidence intervals 

would allow us to come close to achieving the optimal stopping time. 

Another important direction for future research is improving the coverage of nonpara-

metric stopping rules. As we have already noted in Section 2.3, all of the existing (e, 5)-

stopping rules are extremely conservative and come nowhere near achieving coverage of 

1 — 5. Some of the inefficiency stems from the use of the union bound. When EBStop 

is close to stopping, the confidence interval used in evaluating the stopping condition is 

much more conservative than 1 — 8. Constructing the sequence of failure probabilities {dt} 

adaptively or avoiding the use of the union bound over time all together are two promising 

approaches. Further improvements of the coverage could be obtained by developing better 

bounds to be used in place of the empirical Bernstein bound. 
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Chapter 8 

Appendix 

8.1 Probability Inequalities 

Inequalities that bound the probability that a sample mean will deviate from its expected 

value by more than some value e are an important tool for developing efficient stopping 

algorithms. This appendix reviews the two bounds used in this thesis. 

8.1.1 Hoeffding's Inequality 

Let X\,. ..,Xt real-valued i.i.d. random variables with range R and, mean /x, and let 

Xt = 1/t Yll=i Xi- Hoeffding's inequality [10] states that for any e > 0 

F[Xt-n>e]<e-2u2/R2. (8.1) 

One can use Hoeffding's inequality to obtain that for any 5 e (0,1), with probability at 

least 1 — 8 

H , ^ l < ^ . (8.2) 

8.1.2 Empirical Bernstein Bounds 

The empirical Bernstein bound [2] states that with probability at least 1 — S 

\X,-»\<fV<[°fm
 +

 m[°f/S}, (8.3, 

where Vt is the empirical variance of Xi,..., Xt: Vt = \ Y^i=i(Xi — Xt)
2. Note that 

the square root term in Inequality (8.3) is very similar to square root term in Hoeffding's 

bound, except in that the empirical standard deviation appears in Inequality (8.3) instead 

of the range R. The additional linear term appearing in the empirical Bernstein bound is 

necessary because the empirical standard deviation can be 0. 
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