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© Grégoire Bongrand, 2018



Abstract

This thesis work concerns the viscous fingering instability occurring during immiscible fluid-

fluid displacement experiments using a novel radially-tapered fluidic cell. We use modified

Hele-Shaw cells where a negative depth gradient is introduced by tapering the upper plate,

so that the gap thickness linearly decreases in the flow direction. We experimentally show

that when a less viscous fluid displaces a more viscous one in a converging cell, the classic

Saffman-Taylor instabilities can be suppressed and surprisingly the possibility of achieving

a full sweep.

Inspired by these observations, we study the feasibility of controlling such instabilities

in non-uniform narrow passages with Newtonian fluids. In particular, we investigate the

impact of gap gradient, α, on the stability, for different flow configurations. The injection

flow rate, Q, has revealed to be a critical parameter manipulating the viscous fingering

instability. For a fixed cell gradient (α), our experimental results show that a full sweep

is achieved at low Q, whereas a partial displacement with fingering is obtained when Q

overcomes a threshold. By using various cells of different α, we observe the variation of

the critical threshold between stable and unstable displacements in terms of flow rate, Q,

and the capillary number, Ca, characterizing the effects of viscous forces to surface tension.

The comparison of our experimental results of critical Ca∗ with the theoretical predictions

by a recent linear stability analysis showed good agreement.

Numerous applications of the viscous fingering problem take place in rock formations,

such as groundwater hydrology, soil remedy, and enhanced oil recovery. In such porous

formations, there is a high chance of finding solid grains, mineral or debris in the fluid flows.
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Hence, we extended our study on the viscous fingering instability in inhomogeneous passages

by considering the displacement of a suspension. The interplay between the destabilizing

effect of the particles and the stabilizing effect of the depth gradient is investigated for

different particle concentrations, cp. For a fixed α and cp, surprisingly, it is still possible

to achieve stable displacements when the injection pressure of gas, p, is smaller than a

critical value. Finally, by systematically varying the particle concentration and/or the

depth gradient, we characterize the variation of that critical threshold, in terms of critical

gas pressure and interface velocity, delineating the full and partial sweep. By considering

the influence of the micro-particles and the particle concentration, the establishment of a

more complete and multi-dimensional viscous fingering stability diagram is revealed for the

first time.
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Chapter 1

Introduction

1.1 Porous Media Flow

The flow of fluids through porous media has attracted much interest due to various im-

portant applications such as groundwater hydrology, petroleum engineering, and industrial

purification, etc. [1]. The fundamentals of the theory for porous media flow are complex

because the flow takes place inside the pores, at a microscopic scale, and the extension

of the fluid domain to the full porous medium by establishment of some length and time

scales has been revealed to be difficult [2]. The complexity of the theory combined to the

growing industry demand have led to the derivation of several empirical observations and

simplified theoretical models that helped with the understanding, which will be discussed

briefly below.

A porous medium is a material or domain containing voids that can be filled by a

fluid (liquid or gas), such as rocks or soils. It is generally characterized by its porosity,

ϕ, a measure of the pore space defined by the ratio of the volume of voids to the total

volume. This definition is also known as the ‘total’ porosity, while the ‘effective’ porosity

is restricted and does not include the space occupied by rock debris and an eventual thin

layer of water surrounding the mineral surfaces in the volume of voids [1, 3]. In addition

to the porosity, the size of the pores and the distribution of the pore size are also relevant

1
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parameters to characterize a porous medium. Another important parameter characterizing

a porous medium is the permeability. The absolute permeability�an intrinsic property of

the medium, independent of the fluid properties�describes the capacity of one single-phase

fluid to flow through it, when subjected to a pressure difference. In this thesis, the fluids

considered are incompressible, Newtonian and immiscible unless precised. For a single-phase

fluid flowing through a porous medium at a constant elevation, the absolute permeability,

k, is linked to the discharge of fluid, Q, (volume of fluid flow per unit time) and the pressure

difference, ∆p, according to the Darcy’s law expressed as [2]:

Q = −kA
µL

∆p (1.1)

where µ is the fluid viscosity, L the length over which the pressure drop applies, and A

the cross-sectional area of the flow. Hence, by setting a flow of a known-viscosity fluid at a

controlled flow rate, Q, and pressure difference, ∆p, inside the porous structure, its absolute

permeability can be derived from Eq. 1.1 [3]. In addition, there were several attempts at

finding empirical relations to measure the absolute permeability of the medium, based

on geometrical properties such as the porosity. However, they were not very successful

as the multiplicative constants found were never unique [1]. One common mathematical

technique to estimate the absolute permeability of a porous medium considers using simple

assumptions of modelling, such as modelling the porous medium by a pack of beads or a

network of capillaries [1]. We recall these observations are valid for single-phase flow only.

Moreover, on many occasions, multiphase porous media flows are of particular interest.

It was first thought that the absolute permeability of the medium in Eq. 1.1 could be valid

for any fluid and mixture of fluids, but some experiments revealed that the presence of the

second phase decreases significantly the permeability of the first phase [1]. Hence, Muskat

[3] suggested that Darcy’s law can be extended to multiple phase flow and introduced the

concept of relative permeability, ki, of a phase indexed i. Therefore, for a steady, Stokes

flow of multiple phases through a horizontal porous medium (i.e., gravity is neglected), the

phase velocity, V⃗i, is expressed as:

V⃗i = −k ki
µi
∇⃗P (1.2)
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where µi is the phase viscosity, and ki is the relative permeability, expressed as a fraction

of the absolute permeability, k, and is generally a tensor quantity. One can define also the

mobility of the phase i, Mi, in the fluid domain, taking into account both the fluid and

medium properties, as the ratio Mi = kki/µi. This mobility parameter is most commonly

used to characterize porous media flows.

When a fluid phase displaces another immiscible one in a porous medium, the fluid-

fluid interface advances at a speed V described by Eq. 1.2. The motion of the interface

is driven by the forces exerted on it, such as the interfacial and surface tensions as well

as the hydrodynamic forces [4]. The influence of these forces can be characterized by the

dimensionless Capillary (ratio of the viscous forces to the surface tension), Weber (ratio of

the inertia effects to the surface tension), and Bond (ratio of the gravitational effects to the

surface tension) numbers, defined as [5]:

Ca = µV
γ
, We = ρV

2l

γ
, Bo = ∆ρgl2

γ
, (1.3)

respectively, where ρ is the density of the appropriate fluid, γ is the interfacial tension,

and l is the characteristic length. The importance of one force compared to another and

the approximations to neglect some contributions in specific cases are discussed in [5].

For horizontal flows in porous media applications, l is usually small enough so that the

Weber and Bond numbers can be neglected, and the capillary number then becomes the

most predominant factor [4]. However, this assumption is not true for some applications in

vertical porous media such as packed towers [6], where the contributions of the characteristic

length and gravity cannot be neglected.

1.2 Applications

Porous materials are widely present around us and play a crucial role in various aspects of

our daily lives. Sand, sandstone, soil, fissured rock, wood, sponge, plant leaves, bones, and

lungs, are just a few examples of porous materials that can be encountered in nature [7].

Artificial porous materials such as wicks, textile, ceramic, foam rubber, industrial filters,
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catalysts, etc. are also prevalent and commonly used in the industry [8]. Natural and

artificial porous structures are found in a great variety of fields such as energy management,

vibration suppression, heat insulation, sound absorption, and fluid filtration [8].

Multiphase flows in porous media are common in both nature and industry and find a

wide range of applications. The most important areas of technology where porous media

flows play an important role are hydrology, which consists of the motion of water in the

earth and sand structures, and petroleum engineering, which studies oil and natural gas

production, exploration, well drilling, etc. [2]. Furthermore, flows through porous materials

are encountered in many other sciences such as in chemical engineering with chromatog-

raphy, filtering processes etc., in biomedical engineering with the flow of blood, biological

membranes, etc., or also sintering of granular materials such as the manufacture of ceramic,

paper, leather, textile, rubber, etc. [2].

Due to the abundance of applications, the mechanisms and interactions between two

fluid flowing through (reconstructed) porous structures have been studied intensively. The

interest in such fluid-fluid displacements also gained even more attention since the develop-

ment of some instabilities at the interface has been observed in some cases. In some specific

situations, the formation of such patterns can be beneficial, and it helps us understand the

mechanisms that lead to the occurrence of similar patterns found in nature [9, 10]. How-

ever, in many other applications, the instabilities disrupt the conduct of the process and

reduce the efficiency. A few examples of applications where interfacial instabilities have

been observed in fluid-fluid displacements are sugar refining operations [11], coating flows

and printing devices [12, 13, 14, 15, 16, 17], CO2 geological sequestration [18, 19, 20, 21, 22],

and enhanced oil recovery [23, 24, 25]. Coating flows and enhanced oil recovery are two

examples we will discuss where instabilities are not desired.

A coating flow is a fluid flow where a thin, uniform layer is deposited on a surface

called a substrate, often used to protect or decorate the surface [16]. For instance, the

application of paint by a roller [13] or a brush and printing devices [26] are classic examples

of coating flows. Once applied for an industrial purpose, some constraints of productivity
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Figure 1.1: Fluid-fluid displacement applications. The left panel is a schematic side view of
enhanced oil recovery process. The right panel, extracted from [14], shows the development
of air fingers when confined oil flows between a roller and a diverging plate

may rise such as using a high velocity or a multiple layer deposition. However, under such

restrictions, the deposited layer may not be uniform, and some interfacial instabilities in

the form of waves or streaks may appear [12, 13, 14] (see Fig. 1.1). Opposite to the purpose

of a coating of having a uniform fluid layer, the formation of these patterns is therefore not

desired and disrupt the operation.

Enhanced oil recovery (EOR) consists in injecting gas or chemicals into an underground

reservoir so that the surrounding oil can be pushed away from the injection source and

extracted from another well for recovery [23, 24] (see Fig. 1.1). This operation can also

be associated with CO2 geological sequestration where the CO2 is stored underground via

trapping under a cap rock, sinking plumes, and formation of carbonate minerals [22]. In

enhanced oil recovery applications, the development of instabilities at the interface would

result in significant amounts of oil left behind, which is dramatic for the purpose of such

a process. What’s more, during oil extraction, it was observed that water or CO2 may

break through and reach the extracting well after only a small amount of the predicted

oil volume has been recovered [4]. For instance, in some laboratory experiments [27], only

13% of the initial oil volume was extracted for a specific configuration, while it should

have been over 40% according to [28]. Consequently, excessive quantities of water and CO2

must be injected to expel greater oil proportions, and sometimes several fluid injections are

performed. Hence, this surplus of injected fluid directly impacts both the economic and
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environmental aspects of the process and makes it less efficient [24]. Besides the extrac-

tion efficiency, the mechanisms describing the pattern formation and growth were not well

understood. Therefore, the subject of unfavorable fluid-fluid displacement in porous media

has been extensively studied since the 1950s.

1.3 Viscous fingering in Hele−Shaw cells

When a less mobile fluid is displaced by another more mobile, immiscible one in a porous

medium, instabilities may arise at the interface and propagate in the shape of fingers: this

phenomenon is called viscous fingering [11]. Those perturbations will grow and evolve

throughout the process, leading to complex, non-linear pattern formations that alter the

flow considerably (see Fig. 1.2). The magnitude and morphology of these instabilities are

greatly dependent on various parameters which we discuss in the next sections.

Since most porous materials are opaque, the direct visualization of the flow is obstructed

and qualitative observations on the pattern formation cannot be easily realized. Therefore,

viscous fingering has been mostly observed and studied in a convenient, transparent anal-

ogy: a Hele−Shaw cell. A Hele−Shaw cell consists of two parallel plates separated by a small

gap h0 that recreates a quasi two-dimensional (2D), homogeneous porous medium [29]. The

fluid mobility inside a Hele−Shaw cell is defined by the gap thickness and the fluid viscosity,

giving rise to an equivalent permeability k that is constant and defined as: k = h20/12. This

latter expression is derived from the derivation of the average velocity as a function of the

pressure gradient for a plane Poiseuille flow . The porosity of a Hele−Shaw cell is one since

only void is present. Some essential features of a porous medium, such as the heterogeneous

pore structure and distribution, are not captured for a homogeneous Hele−Shaw flow. Nev-

ertheless, this simple geometry turns out to be convenient to understand quasi-2D pattern

morphology and reflect on more complex problems.
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Figure 1.2: Viscous fingering pattern when air displaces glycerine in a radial Hele−Shaw
cell [30]. (Figure is extracted from [30]).

1.3.1 With Newtonian fluids

The first viscous fingering studies were reported using Newtonian fluids, due to their simple

rheological properties. Saffman & Taylor conducted the first viscous fingering experiment in

Hele−Shaw cells [31] and observed systematically the emergence of instabilities. Since then,

this so-called Saffman-Taylor instabilities have been extensively investigated in Hele−Shaw

cells. In the following discussions, the fluid-fluid interaction is immiscible unless stated.

In a rectangular Hele−Shaw cell, after an initial wavy front, one dominating, displacing

finger forms and evolves nearly steadily in the centre of the cell throughout the process

[4, 31, 32, 33, 34, 35, 36]. The width of the finger decreases with increasing velocity and, at

high velocities, reaches a plateau of a constant value which is about half the channel width

[31, 32, 34]. With an increasing gap thickness, the finger grows wider, but the plateau value

remains the same [34]. It has been observed that the relative width of the finger (ratio

of the finger to channel widths) follows a unique curve when scaled with the parameter

1/B = Caδ2 [34, 35], with δ the ratio of the channel width to gap thickness. When the
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displaced fluid perfectly wets the cell, a thin liquid film is left behind, and its thickness

increases with an increasing Ca [35]. Saffman & Taylor theoretically predicted that the

finger should be unstable at finite and infinite Ca but observed only stable fingers in their

experiments [31]. While some works later revealed the occurrence of tip-splitting at higher

values of Ca, experimentally [35, 37] and numerically [36].

Rectangular Hele−Shaw cells have long been an excellent platform to study homoge-

neous viscous fingering, while radial injections are also relevant to study the EOR process.

The stability studies of radial Hele−Shaw flows have been considered first theoretically by

Bataille [38] and experimentally by Paterson [30]. When the displacing less-viscous fluid is

injected at a constant rate, an early circular interface forms and then becomes wavy before

several fingers eventually appear and develop symmetrically. Paterson theoretically charac-

terized the destabilization of the circular interface when its circumference exceeds a critical

wavelength, which depends on its radius, the injection flow rate, the surface tension, and

the outer fluid mobility [30]. By considering a quasi-infinite, symmetric radially propagat-

ing finger, a linear stability analysis [30] showed that the fingering morphology obtained in

the experiments is well predicted by the theory. The formation of similar symmetric finger

shapes have also been well described by numerical calculations [39]. However, experimental

observations revealed that it is also possible to obtain asymmetric fingers. At later times,

experimental observations and theoretical predictions showed that the finger grows wider

throughout the displacement until it eventually splits at the tip, resulting in two “sub-

fingers” [30, 39, 40]. By combining the formation of symmetric and asymmetric fingers

with repetitions of tip-splitting mechanism, a complex, branch-like structure can emerge

during the radial Saffman-Taylor problem. The fingering morphology varies depending on

the flow rate and goes from compact to narrower fingers with side-branches as the flow rate

increases [40].

Contrary to viscous fingering in rectangular channels [41], the number of fingers in-

creases as the interface radially advances [30, 39, 40]. Chen [40] investigated the effect of

plate roughness and showed that dendritic or needle-like fingers can develop at sufficiently
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high values of flow rate and roughness. Chen characterized the finger pattern “age” based

on the tip-splitting generation, i.e., the number of tip-splitting that occurred for one branch

[42]. Two identical experiments may result in different patterns but, at the same gener-

ation of splitting or same dimensionless time, the fingers have similar morphologies [42].

Surprisingly, the fractal behaviour of the patterns is revealed only after a few generations

of splitting, and the fractal dimension varies from 1.82 to 1.9 in [42] and 1.69 to 1.92 in

[43]. As the Saffman-Taylor instability is dominated mostly by the viscosity difference of

the pair of the fluids, an experimental study focused on the impact of the viscosity ratio on

the pattern morphology [44]. In radial Hele−Shaw cells, the interface always gets unstable

as long as the viscosity ratio µout/µin > 1 (i.e., the viscosity ratio between the outer and

inner fluids), but the inner stable region increases with a decreasing viscosity ratio. The

length of the fingers was revealed to depend on the viscosity ratio and radius of the inner

circular region [44].

1.3.2 With complex fluids

The use of Newtonian fluids was essential to understand the mechanism of pattern forma-

tion in viscous fingering problems. However, the increasing use of complex fluids, such as

polymers or surfactants, in industrial applications has led to a recent increasing interest

in viscous fingering problems with complex fluids. Additionally, suspensions and granular

mixtures have also been investigated because of the frequent presence of solid grains and

debris when performing fluid-fluid displacements in porous geological structures and rock

fractures [45].

Generally, complex fluids are made of two or more distinct phases: liquid-gas such as

foams, liquid-liquid such as emulsions, solid-liquid such as suspensions or polymers and

solid-gas such as granular mixtures [46]. The coexistence of multiple phases can lead to

complex and nonlinear mechanical responses to applied stress or strain, and these fluids

are denoted as non-Newtonian and/or elastic fluids. A non-Newtonian fluid is a liquid or

a gas whose viscosity does not follow the linear Newtonian viscosity law. The viscosity
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of Newtonian fluids is constant and given as the slope of the curve of the shear stress

along the shear strain. The viscosity of non-Newtonian fluids can be constant if the fluids

require a finite yield stress to start to flow, in which case they are called Bingham fluids

[46]. Otherwise, the viscosity of non-Newtonian fluids which are not Bingham fluids is not

constant and can either increase (shear-thickening fluids) or decrease (shear-thinning fluids)

with an increasing shear strain [46]. Some complex fluids are elastic too and they deform

when a stress is applied before coming back to their original state upon release of the stress.

When the fluids exhibit both elastic and viscous effects, they are characterized as visco-

elastic fluids [46]. Here, we present some complex fluids that have been often studied in

the viscous fingering problems to show how the viscosity, surface tension, and elasticity can

alter the interface stability.

A. Surfactants

One type of complex fluids used in viscous fingering problems is surfactant solutions, which

lead to displacements where the interfacial tension is significantly reduced (i.e., increase

in Ca). For the Saffman-Taylor problem in linear cells, the finger width decreases with

increasing surfactant concentration [47, 48]. Similarly to the classic problem, the relative

finger width with surfactants decreases with an increasing velocity before reaching a plateau

of higher value than the classical limit 1/2. However, at low surfactant concentration, the

finger width decreases with an increasing velocity, until reaching a minimum, before slightly

increasing and reaching a plateau of value even bigger [47]. The addition of surfactant in

the inverse Saffman-Taylor problem, when an aqueous surfactant solution displaces air in a

pre-wetted rectangular Hele−Shaw cell, has also revealed to destabilize the interface when

its velocity overcomes a critical velocity [49]. This velocity threshold slowly decreases with

an increasing surfactant concentration and increases with an increasing gap thickness [49].
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B. Polymers

Other studies with complex fluids that attracted much attention are the viscously-unfavorable

experiments using polymers, which sometimes offer the possibility of presenting viscous and

elastic effects at once. It has been shown that, for polymers exhibiting only elastic effects

such as polyethylene oxide (PEO), the finger width in rectangular cells decreases with in-

creasing interfacial velocity before reaching a plateau at a higher value than the classical

limit 1/2 [47, 48]. For higher polymer concentrations, the width surprisingly reaches a

minimum before increasing and reaching a plateau of even higher value. For non-elastic,

shear-thinning polymers, such as Xanthan, the finger width decreases with an increasing

polymer concentration, and fingers are narrower than those for Newtonian case [48, 50]. The

relative width of the finger follows the universal curve over 1/B if the viscosity µ is replaced

by the shear-rate dependent of µ(γ̇) for weak shear-thinning effects. For stronger shear-

thinning effects, the relative width of the finger follows the unique curve over 1/B(µ(γ̇))
only at small values of 1/B [48, 50]. For strong shear-thinning, an expression of the velocity

derived from the power-law model is shown to describe better the flow behaviour than the

effective Darcy’s law, where µ is replaced by µ(γ̇) [50].

Experiments with yield stress fluids which present shear-thinning behaviour revealed

that at low velocities the structure is ramified (with more than one finger) and has a width

that is independent of the velocity or the channel width but increases with an increasing

gap thickness [51, 52, 53]. On the other hand, at higher velocities, only one single, stable

finger is present and gets narrower with an increasing velocity before reaching a plateau

value smaller than half the channel width. The relative finger width is found to follow a

unique curve not proportional to Caδ2 but to Caδ according to [51], and to Caδn+1 for [53].

The transition between yield stress and viscous regimes is found to be at fixed parameter

of Caδn+1/Bn [53], with Bn the Bingham number being the ratio of the yield stress over

viscous stress. At even higher velocities and lower yield stresses, there is a formation of

side-branches along the finger but no tip-splitting occurrence [52, 53]. Similar qualitative

observations were also seen in radial injections [52].
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Some studies using shear-thinning, associating polymers revealed the formation of side-

branches with angles around 90° when the injection rate is bigger than a critical threshold

(but not valid for homopolymers) [54, 55]. The transition between viscous and fracture-like

regimes is characterized by a constant Deborah number, De, and a dramatic decrease in

the fractal dimension [54]. For polymers with low molecular weights, the pattern goes from

a viscous finger shape to a crack pattern, and an abrupt increase of the velocity is observed.

For high molecular weights, the transition leads to a meandering structure with some slight

side-branches, and is characterized by a gradual increase of the velocity [55].

C. Colloids

Several investigations have dealt with viscous fingering using suspensions or colloidal so-

lutions. Sometimes, solutions of suspensions associated with some polymers can be shear-

thinning, and similar results as for single-phase shear-thinning polymers were found [56].

Most of the time, suspensions in a liquid mixture are shear-thickening, and new char-

acteristics of viscous fingering are observed. With an increasing particle concentration or

flow rate, the pattern morphology in a radial injection goes from viscous fingering to visco-

elastic fracturing manifested by cracks, as observed in [57, 58], or to side-branching [59]. It

was shown that the denser is the suspension, the smaller is the critical flow rate separating

the two regimes of viscous fingering and visco-elastic fracturing. In rectangular channels,

a transition to tip-splitting and side-branching was observed during the process [56, 60].

The latter study showed that the onset of instabilities decreases with an increase in the

particle concentration, in the injection pressure, or with a decrease in the gap thickness.

The onset of instabilities is quantitatively characterized by a critical shear rate, 2V /h0,
which is independent of the injection pressure or the gap thickness but decreases with an

increasing particle concentration [56, 60]. The finger width increases with a denser solu-

tion, whereas an increase in the injection pressure narrows the fingers and enhances the

tip-splitting occurrence. The effective Darcy’s law, using the shear-rate dependent viscos-

ity, µ(γ̇), was shown to be valid for weak shear-thickening effects. However, for stronger
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shear-thickening effects, the correlation between the experimental velocity and the effective

Darcy’s law velocity is valid only for small values of the experimental velocity.

Introducing particles in the more-viscous fluid for the inverse Saffman-Taylor problem

can destabilize a normally-stable interface as shown in [61, 62, 63, 64]. It has been observed

that the onset of instabilities depends strongly on the particle concentration, cp, and aspect

ratio gap thickness (h) over particle size (d), hd . In [63, 64], a stability diagram depending on

cp and h
d was established experimentally, the researchers showed that a necessary condition

to obtain fingering is that the mean particle velocity is greater than the bulk mean velocity

far upstream of the interface. However, the magnitude of fingering depends mostly on the

total amount of accumulated particles at the interface [63]. An increase in the particle

concentration or aspect ratio leads to a decreasing onset of instabilities [62, 63, 64]. The

inverse Saffman-Taylor problem where particles are captured by an advancing front [62]

revealed that the symmetry of the pattern and the sweep efficiency depend greatly on

Ca. When Ca is bigger than a critical threshold, the interface extends symmetrically

and compact fingers are propagating together, whereas for values of Ca smaller than the

threshold, a few fingers form in some preferential directions and the amount of displaced

fluid extracted is much smaller.

In short, viscous fingering problems with complex fluids have been widely investigated

and revealed eventual non-linear patterns, such as cracks or side-branches. Similar observa-

tions as for the classical Saffman-Taylor problem with simple fluids were derived, with the

finger width that decreases with an increasing velocity. While the presence of surfactants at

the interface seems to increase the relative width of the finger compared to pure, Newtonian

systems, the rheological behaviours of polymer or colloidal solutions must be investigated

first to predict the pattern morphology. Generally, for the displacement of suspensions,

the fingers are wider than pure fluids, and the onset of instabilities is decreased with an

increasing particle concentration and increasing injection pressure. For the displacement of

polymer solutions, the results are highly dependent on the fact the polymer is purely viscous,

purely elastic, or visco-elastic. The fingers emerging when displacing purely elastic polymer
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solutions are wider than those of the classical Newtonian case, whereas narrower fingers

are obtained when pushing purely viscous polymers presenting shear-thinning effects. Fi-

nally, for visco-elastic polymers presenting for example both yield stress and shear-thinning

effects, a distinction of the different regimes is necessary to predict the pattern morphology.

1.4 Control of viscous fingering

Since the pattern formation of viscous fingering can be either beneficial or detrimental de-

pending on the particular goals of the applications, the feasibility of controlling the patterns

for a well-known configuration is extremely helpful. Nevertheless, no study had shown good

solutions to suppress viscous fingering and make the interface (almost) stable. Recently,

the control of viscous fingering has been examined even more thoroughly using modified

flow cells, with different fluid properties, or using new techniques of injection.

For instance, for a pair of miscible fluids, the interfacial tension between the two fluids

almost vanishes. For viscous fingering problems with miscible fluids, the length of the fingers

become zero when the viscosity ratio decreases, and a stable interface can be obtained [65].

The effect of surface tension on the immiscible finger morphology has been investigated

by perturbation theory approach where the surface tension is assumed to be depending on

the interface curvature [66]. Exploring theoretically the viscous fingering problem assuming

the surface tension increases with an increasing curvature (i.e., as the interface grows) has

been shown to suppress the classic viscous fingers [66]. The researchers also revealed the

possibility of destabilizing a normally-stable interface in the inverse Saffman-Taylor problem

(more-viscous fluid displacing less-viscous one) by adopting the same assumption [66].

Another property that alters the pattern formation is the wettability of the porous

medium. Some experimental work has been performed in Hele−Shaw cells where glass

beads or pattern networks were introduced to control better the wettability, with contact

angles varying from 5° to 150° [67, 68]. For a fixed Ca, as the contact angle of the displaced

fluid increases (i.e., the invading fluid becomes more wetting), the pattern becomes more

compact, and the fractal dimension increases.
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1.4.1 Using a time-dependent injection process

Most of Hele−Shaw experiments mentioned previously have been performed with a con-

stant flow rate of injection. A recent strategy presented to control the pattern evolution

is adopting a varying injection rate during the process (see Fig. 1.3). Derived from a lin-

ear stability analysis [38, 69], varying the pumping flow rate over the time as 1/R ∼ t−1/3,
with R the interfacial radius, results in an unchanged pattern shape (i.e., number of fingers

constant) throughout the process. Controlling the final shape of the interface adopting this

time-dependent strategy on the flow rate was confirmed numerically and experimentally

[70, 71, 72]. In addition, a theory based on harmonic moments of Laplacian growth studied

the possibility of controlling the number of fingers during the radial spreading and showed a

quite good agreement with experiments [71]. Instead of varying the injection rate, varying

the cell gap thickness correspondingly with time with a constant flow rate resulted in a

theoretically similar control for both immiscible [73] and miscible cases [72]. Similarly, an

experimental study has been carried out for the case of a lifting plate with a gap thickness,

h(t), evolving as t1/7 to show the possibility of hindering viscous fingering [74]. It has been

showed that the number of fingers of the interface could be controlled by a theoretical,

dimensionless parameter, J = 6µQR(t)
πγh(t)3 , with Q the injection rate, γ the interfacial tension,

and R(t) the radius of the interface. When h(t) ∼ t1/7, the parameter J becomes time-

independent and the validity of the model was verified via experiments [74]. However, even

though this strategy can enhance the sweep efficiency, viscous fingering was still present in

both experiments [74] and numerical simulations [72, 73], and some oil is left behind.

Finally, the possibility of suppressing viscous fingering was revealed by some theoretical

studies, using a simple piecewise-constant pumping flow rate [77], and an injection rate that

varies linearly with time [76]. The numerical simulations adopting a two-stage piecewise-

constant injection flow rate show almost full sweep of the displaced fluid where viscous

fingering is observed for a flow rate equivalent on average [77]. Remarkably, the suppression

of viscous fingering using a linearly time-dependent, optimal flow rate, which is independent

of the fluid properties or other factor such as plate lifting, is shown using linear stability
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Figure 1.3: Suppression of viscous fingering manifested by stable displacements via different
techniques. The left panel shows the control of the classic Saffman-Taylor instabilities when
air displaces oil under an elastic membrane [75]. The right panel reveals the minimization
of fingering by adopting a time-dependent flow rate of injection when water displaces oil in
a Hele−Shaw cell [76]. (Figures are extracted from [75] (left), and [76] (right), respectively).

analysis predictions and experiments [76].

1.4.2 Changing the cell geometry

When we choose a pair of “simple” (as opposed to complex) fluids and a straightforward,

constant injection process, one means of modifying the flow and eventually hinder the

Saffman-Taylor instabilities relies on the fluidic cell geometry (see Fig. 1.3). Adopting a

varying cell geometry would result in a non-constant permeability, as the permeability is

directly proportional to the gap thickness, h, as k = h2/12 as mentioned in §1.3.

A. Using an elastic membrane

Replacing one of the plates of the cell by an elastic sheet has been proven to delay, and

even sometimes inhibit, viscous fingering via deformation of the elastic boundary [78]. For

a fixed cell configuration, the interface goes from stable to unstable when the injection

rate overcomes a critical threshold. The critical flow rate at which the interface destabilizes
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increases with increasing initial gap thickness and decreases with increasing bending stiffness

of the membrane [78]. In addition, it has been shown that the fingers grow faster with an

increasing membrane thickness (i.e., lower deformability). Several studies of the same topic

focused on the mechanisms of the stabilization under elastic membrane with theoretical and

numerical considerations [75, 79, 80, 81]. The consideration of a theoretical model coupling

the Föppl-von Kármán equations, which describe the elastic wall deformation, with Navier-

Stokes equations or the lubrication theory showed good agreement and described well the

experimental observations [81]. The axisymmetric inflation of the elastic sheet decreases

the growth rate of the displacing fluid and the interface propagates into a narrower gap,

which affects the classic destabilization mechanisms and enables stable displacements [75].

B. Using a tapered plate

Introducing a depth gradient in the flow cell can significantly modify the stability of the

displacing interface and the ”printer’s instability” [12, 13, 16] is a good example. The

printer’s instability is manifested in coating flows when a viscous liquid is confined between

a roller and a plane or between two rollers, and displaces air. The interface can present

ribbing lines and be uneven when the pressure gradient over the meniscus is negative and

large enough due to the rollers divergence [16]. A stability diagram revealed that the critical

capillary number at which the flow becomes unstable increases with an increasing diverging

angle [12, 13, 16].

These observations inspired numerous studies, and the impact of depth gradients in

modified Hele−Shaw cells has since been investigated to a further extent [82, 83, 84, 85, 86,

87, 88, 89, 90]. An early experimental work coupled to a linear stability analysis [84] inves-

tigated the motion of immiscible, viscous fingers through a rectangular, tapered channel.

When the viscous fingering problem takes place in a rectangular, tapered channel which has

an increasing gap thickness in the flow direction (i.e., the cell is said to be diverging), the fin-

ger obtained presents a flatter tip than those found in flat cells, and will more likely become

unstable [84]. On the other hand, when a finger propagates in a cell which is converging in
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the flow direction (i.e., negative gap gradient), the tip of the finger is sharper than the ones

observed in flat cells and the finger is more stable. These results of the pattern morphol-

ogy can also be predicted by perturbative-theory models [82, 85]. The theoretical model

for a semi-infinite bubble advancing into a converging channel revealed that the thickness

of the film of the displacing fluid deposited on the walls increases with an increasing Ca

and increasing α [82]. More recently, an experimental study coupled to a linear stability

analysis [86] revealed for the first time the possible, total suppression of viscous fingering in

rectangular tapered cells, using a negative gap gradient [86]. Remarkably, in a converging

channel, the researchers observed the interface front goes from flat for a range of low values

of Ca to finger-like for values of Ca bigger than a critical threshold. The theoretical model

predicted the criterion for the stability transition to occur and showed pretty good agree-

ment with the experiments for the range of depth gradient explored [86]. A linear stability

analysis [87] and some numerical simulations [88, 89] also revealed the existence of the two

distinct regimes in radial flows, with a transition that depends on the gap gradient, α, and

the capillary number, Ca. Numerical simulations of the viscous fingering problem using

a tilted, converging channel where gravitation is present, showed the transition between

stable and unstable displacements [90]. Their results revealed that the onset of instabilities

decreases with an increasing capillary number, Ca, and increasing Bond number, Bo.

1.5 Overview of the thesis

The primary objective of this thesis work is to give a better insight and understanding

of the viscous fingering phenomenon in simplified heterogeneous porous media of modified

Hele−Shaw cells, using both Newtonian and suspension fluids. Our work focused on experi-

mental approach since there are relatively few experimental investigations regarding viscous

fingering problems in tapered cells. The first study investigates the control and mechanism

of viscously-unfavorable fluid-fluid displacements of immiscible fluids in novel radially ta-

pered Hele−Shaw cells with Newtonian fluids. We analyze the flow stability diagram of the

viscous fingering instability depending on the flow rate, depth gradient, and gap thickness.
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Then, we investigated the displacement of suspensions in tapered flow cells to understand

the impact of the particles on the pattern formation of viscous fingering. The combination

of both stabilizing and destabilizing effects via the depth gradient and the particles, respec-

tively, was studied. An interfacial stability analysis including the particle concentration was

reported.



Chapter 2

Manipulation of viscous fingering

in a radially-tapered cell geometry1

2.1 Introduction

Viscous fingering instabilities can be beneficial or detrimental depending upon the appli-

cation. However, the control of viscous fingering has been a great challenge and hence

investigated to a less extent since the mobility or viscosity contrast is often predetermined

by the fluids chosen for the applications. Recently, such control has been achieved by

controlling the injection rate of the displacing fluid [70, 76, 83], or using an upper elastic

membrane forming a Hele-Shaw cell [75, 78, 79, 80]. In addition, a study has experimentally

demonstrated the feasibility of suppressing fingering via a capillary effect using a rectangu-

lar Hele-Shaw cell with a converging gap [86], which has attracted renewed interest in the

topic [64, 88, 89, 91, 92, 93, 94]. Subsequently, several potential strategies for controlling

viscous fingering instability have been explored, for instance, via wettability control of the

1The material presented in this chapter is based on Bongrand, G. and Tsai, P.A., ”Manipulation of
viscous fingering in a radially tapered cell geometry.” Physical Review E, Rapid Communications, 97(6),
061101, 2018.

20
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fluids [67, 68], by experimentally lifting a plate with a time-dependent strategy at fixed

flow rates [74] and numerically exploiting a gravitational (Rayleigh-Taylor) instability [90].

Nonetheless, systematic and thorough experimental investigation has yet to be carried out

on the effect of depth gradients in a radial injection. In this chapter, we experimentally

investigate viscous fingering problem in radial tapered Hele−Shaw cells (see Fig. 2.1) and

examine the impacts of depth gradients, radial propagation, and flow rates.

Figure 2.1: (a) Schematic diagram of the side view of the experimental setup of immiscible
fluid-fluid displacement in a radially converging passage, with a viscosity ratio λ = µ2/µ1 =
8.8 × 103. (b) Snapshot of a classical viscous-fingering pattern obtained when air pushes
oil in a flat radial Hele−Shaw cell with h0 = 1.2 mm and Q = 40 mL/min. (c) In contrast,
snapshot of a stable interface with a complete sweep of oil by air in a radially tapered cell
with α = −6.67 × 10−2, h0 = 150 µm, and Q = 40 mL/min. For the experiments in (b) and
(c), h0 are chosen so that both configurations have equal fluid volumes. The scale bars in
(b) and (c) are 2 cm.
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2.2 Experimental setup and procedure

In our experiments, a variant of a Hele−Shaw cell with a converging gap is used to control

the fingering instability with a radial injection (shown in Fig. 2.1(a)). The bottom plate is

made of plexiglass and strengthened by another, thicker plate to avoid any bending. The

upper plate is tapered over a radius r0 = 7cm, with a negative gap gradient, α = dh(r)/dr,
i.e., the ratio of the height to length of the tapered area. We manufactured the tapered

plate made of clear photopolymer resin using a 3D printer with an accuracy of 25 µm,

and use some fine sand paper to remove the eventual small roughnesses. The accuracy of

the gap gradients has been checked for each plate along four different radial directions by

measuring the decrease in height every centimeter, and the value of α reported in our study

was the average of the four measurements. We control the height of the outer flat edge

h0, using translation stages with an accuracy of 10 µm. The gap thickness inside the cell

evolves linearly along the radius h(r) = h0 + α(r − r0), i.e., α = h0−h(0)
r0

< 0. The defending

fluid is heavy mineral oil (viscosity µ2 =158 cP, Fisher Scientific), which initially is injected

into and fully saturates the cell. We then inject air (viscosity µ1 = 1.8 × 10−5 Pa.s = 0.018

cP) via a syringe pump at a constant flow rate Q, ranging from 10 mL/min to 300 mL/min

with an accuracy of 0.05%. The contact angles of the heavy mineral oil on the plexiglass

and on the 3D printed plate have been measured to be 21.6 ° and 14.2 °, respectively.

The observations are captured with a camera (Canon EOS 70D) at 30 fps (frames per

second), and we use backlighting to enhance the contrast of visualization. We use ImageJ

and Matlab to analyze the images and track the evolution of the interface. The local veloc-

ity, V , is calculated by tracking the interface position (R(t)) varying in time (over a short

period of time) and estimated with the slope of R(t), i.e., dR(t)/dt. The velocity measure-

ments reported for experiments showing transitional behaviours have been performed on

symmetric displacements and checked for at least two different radial directions. The way of

defining the stability of the interface is based on whether the interface perturbation grows

in time, i.e., the growth rate of the perturbation is larger than zero. The corresponding

experimental evidence of a viscous fingering instability is manifested in a growing wavy
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Figure 2.2: The dependence of sweep efficiency on flow rate Q: snapshots of two represen-
tative experiments of air displacing oil for the same geometrical configuration with the gap
gradient α = −4.75×10−2 and h0 = 500 µm, but different flow rates: (a) stable displacement
at Q = 40 mL/min, whereas (b) viscous fingering at Q = 110 mL/min.

profile of the fluid-fluid interface.

We characterize the importance of the viscous forces relative to capillary forces using

the capillary number, Ca = 12µ2V /γ, where the surface tension of the oil, γ = 30 mN/m,

was measured using a tensiometer. The fluid combination in our experiments has a viscosity

ratio of λ = µ2/µ1 = 8.8 × 103. The values of the Reynolds number in our experiments were

in the range 10−2 − 10−1, and the values of the Bond number were in the range 10−1 − 100.

2.3 Results and discussions

We first performed control experiments in flat and tapered cells, set with respective gap

thicknesses so that both geometries have equivalent fluid volumes. As in the case of the clas-

sical Saffman-Taylor instability, when we conducted experiments with unfavorable viscosity-

ratio displacement (µ1 < µ2) in a uniform cell, we observed unstable interfacial propagation

with fingering, as shown in Fig. 2.1(b). However, remarkably, when we carry out a similar

experiment with µ1 < µ2 in a converging cell, the interface can be stabilized, as illustrated

in Fig. 2.1(c). The results obtained for a uniform Hele–Shaw cell here are qualitatively con-

sistent (in spite of different tip-splitting patterns) with the results shown in [30] performed

for h0 = 1.5 mm, Q ≈ 80 ml/min, and γ = 63 mN/m.

Through our experiments, we aim to understand the variation of the onset of instabilities
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for various flow configurations with different α. By systematically varying the flow rate, Q

(for a fixed α and h0), we observed a stable interface at low Q throughout the experiment

(see Fig. 2.2(a)). However, above a certain flow rate, the interface becomes wavy, and

the instability grows as air displaces the oil, as shown in Fig. 2.2(b). Physically, in the

case of λ > 1, the viscous pressure gradient gained is ∆Pν ∼ µ
kV and further destabilizes

the interface as fluid travels radially outwards. For the radial injection, the interfacial

velocity can significantly change due to mass conservation via a radially increasing cross-

sectional area and a decreasing gap thickness, and hence alters ∆Pν . On the other hand,

the converging gap introduces a varying capillary pressure, ∆Pγ ∼ 2γ
h(r) , which increases and

plays a crucial role in stabilizing the interface when fluids travel in a passage of decreasing

depth.

By varying Q gradually for different α, we characterize the critical threshold of flow rate,

Qc, between stable (Fig. 2.3(b)) and unstable (Fig. 2.3(c)) displacements. Figure 2.3(a)

illustrates the phase diagram of stable vs. unstable interfacial propagation for different α

and Q. This stability diagram reveals a general trend of increasing Qc with an increasing

depth gradient, ∣α∣.
Based on linear stability analysis, a theoretical model to characterize the interface be-

haviour has been carried out for a rectangular [86] or radial fluid cell [87]. The stability of

a radially tapered viscous fingering interface is expressed in terms of its growth rate, σ [87]:

rσ

V
= −(1 + αr

h
) + (1 + 2α + (h/r)2

Ca
)N − (h/r)

2

Ca
N3, (2.1)

where N is the number of fingers, and r is the radial position of the interface. σ < 0

characterizes a stable interface, while the critical transition occurs when σ = 0. We extract

the values of r, N and V from the experiments showing the transitional behaviour from

a stable to an unstable interface to analyze the growth rates. Under a constant flow rate,

Q, as the fluid interface advances radially, r = r(t), the interfacial speed V changes due

to mass conservation, i.e., V = V (r(t)). Consequently, the capillary number varies greatly

with r. For a gas displacing a wetting viscous liquid in a rectangular cell, the stability of

the interface depends only on Ca and α, with a stable interface when 1+2α/Ca < 0 [86]. On
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Figure 2.3: (a) Stability diagram of stable vs. unstable propagation front by varying the
flow rate Q, for different gap gradients α (while h0 = 250 µm). The general trend shows
that for each α, stable and complete sweep occurs at a relatively small Q (denoted by ●),
whereas unstable fingering propagation emerges at large Q (○). Each data point here has
been reproduced 3 − 5 times. For a radially-tapered cell of α = −4.75 × 10−2, h0 = 250 µm,
time-evolution of top-view, stable interfaces with Q = 20 mL/min in (b) (corresponding to
◻ in (a)), while unstable interfaces in (c) for Q = 70 mL/min (◇ in (a)). The time steps are
∆t = 9 s and 1 s between each contours for (b) and (c), respectively.

the other hand, the linear stability problem and the resulting growth rate, σ, for a radial

variant Hele−Shaw cell are more complex than those in a rectangular configuration, due to

the interplay between geometric and capillary parameters (e.g. r, Ca, and N).

To further compare our experimental results with the analytical prediction, we analyze

in Fig. 2.4 the influence of r and N at the transition on the growth rate of viscous fingering

for our experimental conditions. To do so, we measured the parameters r, N and V at the

transition point, when the wavy and fingering interface starts to set in, by directly analyzing

from our captured videos (for each α and h0). Figure 2.4(a) shows the variation of the

theoretical growth rate σ with respect to r (depicted by the open symbols), using Eq. 2.1,



26

Figure 2.4: (a) The dependence of the growth rate σ on the radial position r, based on
a linear stability analysis [87], while V and N are extracted from our experiments when
unstable fingering and transition occur for h0 = 250 µm for different α. (b) Similarly,
the change of σ with the number of fingers, N , while V and r are extracted from our
experimental results. The open circles in both (a) and (b) represent the theoretical values
of the growth rate estimated using experimental r, N and V observed at the transition for
different α. The filled markers (∎, ⧫,  , ▲) correspond to the experimental critical values
of r and N for (a) and (b) when σ = 0, respectively.

with N and V as input using our experimental values observed at the critical transition.

For different α, we observed a strong dependence of growth rate on r for a certain critical

fingering number N observed. As revealed in Fig. 2.4(a), within 1 cm, a stable interface can

become unstable. For different α, our corresponding experimental data of critical transition

observed are depicted with filled symbols, showing the empirical critical r at the transition,

with σ = 0. For small ∣α∣, the experimental data agree well with the theoretical prediction.
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For a relatively large ∣α∣, the experimental data show an earlier critical transition (i.e., a

smaller critical radial position when σ ≈ 0), while the theoretical analysis would predict a

negative σ. Nevertheless, these comparisons show consistent results because the difference

in critical r is within 0.5 cm.

Using a similar approach, Figure 2.4(b) reveals the impact of N on σ, predicted by the

analytical linear stability analysis with r and V fixed using the experimental critical values.

Overall, our experimental results are consistent with the analysis of the influences of r and

N . We observe that the results for α = −6.67 × 10−2, and α = −8.66 × 10−2, agree well with

the theoretical transition when σ = 0, while a deviation is observed for α = −4.75 × 10−2,

and α = −10.1 × 10−2. Nevertheless, the theoretical prediction of growth rate can vary

significantly over a small range of r and N . The theoretical model Eq. 2.1 [87] assumes a

symmetric displacement, a constant static contact angle, and a small dimensionless depth

variation, i.e., ∣∣ αrNh ∣∣<< 1. In contrast, our experiments have this dimensionless parameter

ranging from 5×10−2 to 10−1 and may have some surface roughness (due to the polish using

fine sand papers) leading to inhomogeneous wetting and front propagation. These factors

are likely the reasons for the deviation observed. Since multiple experimental parameters

(e.g. Q, α, N and r) influence the growth rate of radial viscous fingering, we further analyze

the critical Capillary number, Ca∗.

Figure 2.5(a) shows the comparison of experimentally observed Ca∗ with the theoretical

prediction Ca∗th based on Eq. 2.1 at the transition (i.e, by setting σ = 0), where:

Ca∗th =
[2α + (h/r)2]N − (h/r)2N3

1 + (αr/h) −N . (2.2)

The comparison, shown in Fig 2.5(a), reveal consistent results between the experimental

and theoretical critical capillary numbers. The experimental capillary number values, Ca∗,

are determined via Ca = 12µ2V /γ for each α and h0, where the local velocity, V , is measured

with the videos showing a transitional displacement from a stable to an unstable interface.

The theoretical predictions of Ca∗th are estimated using Eq. 2.2, with the inputs of N and

average r analyzed from the same experimental videos.

Our experimental results show the small effect of h0 on Ca∗ ( , ∎, ⧫ in Fig. 2.5), while
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the theoretical critical Ca∗th from Eq. 2.2 depends on h(r) = h0 +α(r − r0). Overall, a good

agreement is found for smaller gap gradient. More importantly, the general trend of both

theoretical Ca∗th and experimental Ca∗ increases with an increasing magnitude of the gap

gradient. In other words, a larger interfacial velocity is required to trigger viscous fingering

instability in a steeply convergent gap, where large capillary pressure is present and acts to

stabilize the interface. For relatively larger ∣α∣, the slight deviation may be explained with

the experimental difficulty of meeting the theoretical assumptions mentioned before such

Figure 2.5: (a) Variation of the critical Capillary number Ca∗ separating stable vs unstable
displacements for different depth gradients α and h0. We compare the experimental values
( , ∎, ⧫) to the theoretical Ca∗th (#, ◻, ◊) derived from Eq. (2.2) with α, r and N from our
experimental results and parameters. The error bars shown represent the standard deviation
obtained from 4 − 6 different measurements (based on the results of radially symmetric
displacement). (b) Surface plot of theoretical Ca∗th greatly depends on r and N using
Eq. (2.2), for α = −8.66 × 10−2 and h0 = 250 µm, showing a stable displacement when
Ca < Ca∗ whereas unstable one when Ca > Ca∗.
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as symmetric displacement with constant static contact angle, no wetting film adhesive to

the wall, and a small dimensionless depth variation. In addition, the strong dependence of

theoretical Ca∗th based on Eq. 2.2 on r and N is shown in Fig. 2.5(b). For instance, within

a range of 0.5 cm in r and N ±1, Ca∗th varies from 0.67 to 1.54 for the specific configuration

presented in Fig. 2.5(b). This drastic change within such a small radial position, r, and/or

number of fingers, N , may explain the slight and moderate deviations observed for relatively

moderate ∣α∣ in Fig. 2.5(a).

2.4 Conclusions

In summary, we have experimentally demonstrated that the presence of a radial depth

gradient (i.e., permeability variation), can alter significantly the viscous fingering instability

and pattern. Using a converging passage, the classic viscous fingering commonly observed

in a flat Hele−Shaw cell can be completely suppressed with a suitable flow rate. For each

converging gradient, α, we can tune the viscous-fingering instability from a stable to an

unstable displacement by increasing the flow rate Q injected. This critical flow rate is

increased for a steeper gap gradient. We further compare our experimental results with a

theoretical linear stability analysis, showing consistent dependence of the instability growth

rate on radial location r and N . From the experimental results with different α, we further

showed that the critical threshold Ca∗ increases with an increasing gap gradient ∣α∣, in good

agreement with a recent theoretical prediction considering the effect of capillary pressure

[87]. Our experimental results reveal for the first time the possibility of controlling interfacial

instabilities with a radial injection in an inhomogeneous passage. The results of critical Ca∗

depending on α, r, h0 and N are beneficial for the design and prediction of flow settings

where the process of fluid-fluid displacement in a porous medium is crucial.



Chapter 3

Control of viscous fingering of

suspensions using a tapered cell

3.1 Introduction

Complex fluids differ significantly from Newtonian fluids in their rheological features, with

varying viscosity effects such as shear-thickening/thinning, yield stress and elastic be-

haviours [46]. Due to the increasing use of complex fluids in various applications, interfacial

instabilities occurring in those have been recently attracting more and more attention.

The problem of viscous fingering of complex fluids in Hele−Shaw cells have been inves-

tigated to an extent with fluids such as polymers [47, 48, 50, 54, 55], gels [51, 52, 53],

surfactants [47, 49], foams [51, 95], emulsions [58, 96], liquid crystals [97] or suspensions

[56, 57, 59, 60, 98, 99]. The complexity of such fluid systems induces a wider variety of

morphological pattern formations, such as side-branching, fracture-like or snowflake-like

patterns.

Suspensions with solid grains, crystal particles or materials are often encountered when

fluids flow through rock fractures or other high-permeability media. The presence of parti-

cles provides a means to modify fluid-fluid interfaces. The additional minute particles can

either stabilize or destabilize the interfaces depending on the applications. For instance,

30
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particles can accumulate onto the interface and strengthen it against instabilities by form-

ing dense monolayers [100, 101, 102], which can be used to stabilize emulsions [103]. In

other systems, particles entrained in a fluid flow can also alter the dynamics of the interface

with the example of the accelerated droplet pinch-off once immersed in a viscous suspen-

sion [104, 105]. Hence, tuning interfacial instabilities in viscous fingering applications with

particles is possible. The inverse Saffman-Taylor problem of a less viscous fluid displaced

by another more viscous one, where particles are suspended, can destabilize the particle

band and form fingering patterns [61, 62, 63, 64]. Nevertheless, the displacement of a more

viscous suspension or a granular mixture by a less viscous Newtonian fluid in Hele−Shaw

cells often leads to more unstable and complex interfaces with possible occurrence of side-

branched [59] and crack-like patterns [57], or frictional fingers [98, 99]. Also, some studies

about the Saffman-Taylor problem pushing a suspension revealed that the onset of viscous

fingering instabilities decreases with an increasing particle concentration [56, 60].

An efficient technique to control the viscous fingering instabilities has been shown to

be the modification of the cell geometry by the introduction of an elastic membrane [75,

78, 79, 81] or a converging tapered plate [86, 87, 89, 106]. Inspired by these observations,

we study the stability of fluid-fluid displacements combining the stabilizing effect of the

radial converging depth gradient with the destabilizing effect due to the particles suspended

in the more viscous, displaced fluid. In this study, we experimentally examine for the

first time the impacts of the injection pressure of displacing gas, depth gradients, and

particle concentrations on the stability of the interface during a classical viscous fingering

displacement.

3.2 Experimental setup and procedure

In our experiments, a converging cell geometry�similar to a Hele−Shaw cell of two parallel

plates but with an upper plate tapered�is used to control the fingering instability in a radial

injection (see in Fig. 3.1(a)). The tapered top-plate is made of PMMA while the bottom

of a glass, and both plates are thick to avoid any bending. The upper plate is tapered over
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a radius range of r0 = 14 cm, with a varying gap thickness h(r). The latter evolves linearly

along the cell radius, i.e., h(r) = h0 + α(r − r0), and the outer flat edge height h0 is set via

threaded studs and fixed to be 500 µm, with an accuracy of 25 µm. Hence, a critical control

parameter is the gap gradient, α = dh(r)/dr, i.e., the ratio of the height to length of the

tapered area; here, α is negative for the converging cells used in the experiments.

The suspension is prepared by mixing a solution of glycerol with 15.3 vol% of water

(of viscosity µ2 = 146 cP and density ρ ≈ 1.23 g/cm3) with neutrally-buoyant polyethylene

particles (density ρ = 1.20 g/cm3, Cospheric) of a particle diameter range D = 106−125

µm. The amount of particle present in the suspension is characterized by the particle con-

centration, cp, expressed in weight percent (wt%) of the total solution. Instead of injecting

the suspension, the defending fluid is present in a liquid bath confined by the bottom, reser-

voir container. Then, the upper plate is lowered into the liquid bath, and the suspension

saturates the cell. This technique is used to obtain a random particle distribution. Once

the suspension fluid is set, we then inject the nitrogen N2 (of viscosity µ1 = 1.76× 10−5 Pa.s

= 0.0176 cP) at a constant injection pressure, p, ranging from about 0.08 psi to 3.3 psi by

a pressure gauge with an accuracy of 0.05 psi.

The corresponding flow rates using a pressure regulator have been estimated to be in

the order of 1 L/min. For instance, a gas injection at 1.1 psi has been estimated to be

equivalent to a flow rate Q ≈ 5 L/min.

The experiments are recorded using a camera (Canon EOS 70D) at a frame rate of 60 fps

(frames per second) with backlighting to enhance the contrast of visualization. We perform

post-processing and analysis on the images to track the interface profiles using ImageJ and

Figure 3.1: Schematic diagram of the side view of the experimental setup of displacement
of a suspension by nitrogen (N2) in a radially converging passage with r0 = 14 cm.



33

Table 3.1: Table of the change of the viscosity µ2 with the particle concentration cp. The
viscosity was measured via a rheometer, right after mixing the suspension solutions.

Particle concentration cp (wt%) Viscosity (cP)

0 146

1 157

2.5 160

5 170

Matlab. The local velocity, V , is measured by capturing the evolution of the interfacial posi-

tion over a short period and calculated with the slope, dR(t)/dt. The surface tension of the

water-glycerol mixture is about γ = 64.8 mN/m [107] and is assumed constant for different

cp. The contact angles of the water-glycerol solution on the PMMA and glass surfaces have

been measured to be 68.6 ° and 62.2 °, respectively. Some rheological measurements with a

concentric cylinder cell have been performed to know how the viscosity µ2 of the displaced

fluid varies depending on cp (see Fig. 3.1(b)). Surprisingly, the measurement results of the

suspensions used showed no shear-thickening effects but closely follow Newton’s linear re-

lation between µ and the shear stress. However, a surprising decrease in µ2 was measured

after the viscous fingering experiments. A more-detailed description of these observations,

measurements and comments, is given in Appendix A. The values of the Reynolds number

in our experiments were of the order of magnitude 10−1 − 100, and the values of the Bond

number were in the order of magnitude 10−1 − 100.

3.3 Results and discussions

Through our experiments, we aim to understand the impact of the suspended particles in

the displaced fluid on the onset of instabilities, for various depth gradients, α, and particle

concentrations, cp (wt%). We first performed a set of control experiments with N2 pushing

the pure water-glycerol solution (i.e., cp = 0 wt%) as a reference to compare with the results

in suspensions. For the flat Hele−Shaw cell (α = 0), we set h0 = 2.7 mm so that the fluid

volume is similar to the cell geometry for α = −5.36 × 10−2, the most stable situation. As
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10 cm

Figure 3.2: The dependence of sweep efficiency on injection pressure, p, for different depth
gradient, α, and particle concentration, cp. Snapshots of representative patterns obtained
when N2 pushes water-glycerol solutions with or without micro-particles. Globally, the
extraction of the displaced fluid was increased with an increasing ∣α∣ but decreased with the
presence of particles. For the tapered cells h0 = 500 µm, whereas h0 = 2.7 mm for the flat
cell so that the cells would have the same fluid volume as for α = −5.36 × 10−2. The length
bar is 10 cm.
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shown in Fig. 3.2, we observed the destabilization of the interface in a flat Hele−Shaw

cell, as expected for the case of classical viscous fingering. For a Newtonian system of

fluids, Figure 3.2 reveals that the sweep efficiency increases with a steeper gap gradient

and decreases with an increasing injection pressure. For example, for cp = 0 wt%, the late

interface profile for α = −1.6 × 10−2 and p = 0.50 psi presents well-developed viscous fingers,

whereas an almost-rounded interface is captured for α = −5.36 × 10−2 and p = 0.68 psi.

The same general trend was found for a displaced suspension of concentration cp = 5 wt%.

Nevertheless, the presence of particles seems to decrease the sweep efficiency. Remarkably,

experiments that led to a full sweep with Newtonian fluids now present unstable interface

profiles when particles are introduced in the displacing fluid (see Fig. 3.2). In addition, for

the same cell geometry, smaller extraction efficiency is obtained for cp = 5 wt% at a certain

p than when cp = 0 wt% at a higher p.

Although the mechanism of particles on the viscous fingering pattern formation is not

fully well-understood, it seems that the suspensions have a destabilizing effect on the viscous

fingering interfaces, when they get displaced. According to Tab. 3.1 and other studies using

particles [56, 60], it seems the effective viscosity may be increased with an increase in cp,

which would lead to an increased viscosity ratio λ and could be an explanation for the

destabilizing effect by the particles. Moreover, as the interface advances, the meniscus

captures some particles that accumulate on it [108]. Hence, cp is increased locally close to

the interface, so is the local viscosity ratio, which could lead to interfacial destabilization

at lower p.

For a fixed α and cp, we increase systematically the injection pressure, p, and observe

stable interfaces at low p whereas viscous fingering occurs at higher p, as illustrated in

Fig. 3.2. We systematically vary α and cp and establish a stability diagram to quantify this

critical pressure threshold between stable vs. unstable displacement (see Fig. 3.3).

The stability diagram of Fig. 3.3 reveals a global trend of increasing critical injection

pressure, p∗, with an increasing depth gradient, ∣α∣, but decreasing p∗ with an increasing

cp. Some similar results were found for Newtonian fluids in [106], with an increasing critical
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Figure 3.3: Stability diagram of stable vs. unstable displacements by varying the injection
pressure p, for different gap gradients, α, and particle concentrations cp (while h0 = 500
µm). The general trend shows that for each α, stable and complete sweep occurs at a
relatively small p (denoted by ●), whereas unstable fingering propagation emerges at larger
p (○). The threshold (highlighted by the dashed lines) moves towards lower p as cp increases
or ∣α∣ decreases. Each data point has been checked with reproduced results using at least
three different experiments.

flow rate threshold for steeper gradients. For α = −1.60 × 10−2 and α = −3.32 × 10−2, the

drop in the critical pressure from the Newtonian case (i.e., cp = 0 wt%) to the slightly

concentrated suspensions is quite significant, whereas a gradual decrease is observed while

moving towards higher particle concentrations. For α = −5.36 × 10−2, the variation of p∗

seems more linear with an increasing cp.

Figure 3.4 shows the time-elapsed interface profiles between the low and high pressures

used, for different α and cp. We observe the evolution of more rounded and symmetric

interfaces at low p, leading to a full sweep of the displaced fluid. On the other hand, as
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(a)

(b)

(c)

α = −1.6× 10−2 α = −5.36× 10−2

Figure 3.4: Top-view time-evolution of stable vs. unstable interface profiles illustrating the
difference in stability depending on the injection pressure, p, for different configurations (α,
wt%) at h0 = 500 µm. The time steps between two consecutive interfaces are specified for
each situation, and the scale bars are 2 cm.

p is increased a manifestation of viscous fingering with partial sweep, and secondary non-

linear instabilities, e.g., tip-splitting (mainly) and sometimes side-branching, are obtained.

Remarkably, we notice that the number of fingers remains constant after the destabiliza-

tion of the interface, except the tip-splitting phenomena. For α = −1.6 × 10−2 and for a

similar magnitude of p, from analyzing videos where viscous fingering instabilities are well

developed, the number of fingers when instabilities start to appear seems to remain almost

constant with a varying cp. For instance, for α = −1.6 × 10−2 and p ∼ 0.5 psi, we found

the number of fingers, N , to be almost constant at a value of N ∼ 8 for different cp (see

Fig.3.4). In addition, the results in Fig. 3.4 indicate the difficulty of obtaining highly sym-
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metric displacements since the process is sensitive to different factors such as the outer gap

thickness, h0, the cell’s leveling, the surface roughness, and the uniformity of the particle

distribution. By repeating the same procedure for the runs showing transitional behaviour

when fingering starts to set in, we can extract the local interfacial velocity, V , and then

define a critical velocity, V ∗, for each different configurations of α and cp.

Figure 3.5(a) shows the variation of the critical pressure p∗, separating stable displace-

ments from unstable ones (cf Fig. 3.3) depending on α and cp. For a fixed particle con-

centration, cp, the critical pressure increases with a steeper gap gradient. When the fluids

travel radially outwards, the converging gap gradient results in a capillary pressure gradi-

ent, ∆pγ , which increases and helps towards stabilizing the interface. On the other hand,

the injection pressure of the gas, p, acts against the capillary pressure and destabilizes the

interface. As a result, as ∆pγ increases with an increasing ∣α∣, the trend of increasing p∗

for a steeper gradient seems coherent. For a fixed α, we show that p∗ decreases with an

increasing cp. One possible explanation for the decreasing trend of p∗ with cp could be

an increase in the local viscosity ratio. As the interface propagates radially, particles are

captured by the interface and the particle concentration is locally increased. The viscosity

of the suspension solutions is thought to increase with an increasing cp, which would result

in a local increase of the viscosity ratio close to the interface. For low values of α, we

observe an offset in the values of critical pressure between experiments with suspensions

(cp ≥ 1 wt%) and Newtonian solutions (cp = 0 wt%). However, for α = −5.36 × 10−2, the

gap in p∗ happens between cp ≥ 2.5 wt% and cp ≤ 1 wt%, as shown in Fig. 3.5(a). The

significant differences in p∗ between the displacements of solutions and suspensions reveal

the destabilizing effect of the particles on the propagation front. Furthermore, we notice

the values of p∗ are closer for the lower value of α than those for steeper gradients. In other

words, the slope of p∗(α, cp) for a fixed cp (i.e.,
dp∗(cp)
dα ) increases with an increasing parti-

cle concentration, cp (see Fig. 3.5(a)). Therefore, our experimental results imply that the

denser is the suspension, the more important is the destabilizing effect of the particles or,

the more reduced is the stabilizing effect of the gap gradient. The presence of the particles
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Figure 3.5: Variation of the experimental results of critical injection pressure (p∗) in (a)
and interfacial velocity (V ∗) in (b), separating stable vs unstable displacements for different
depth gradients α and cp. Each data represents the average values obtained from 3–4
different measurements, and the error bars show the corresponding standard deviation.
The dashed, black lines separate stable from unstable displacements for the Newtonian
cases (i.e., cp = 0 wt%) whereas the full, red lines highlight the transition for suspension
solutions (i.e., cp ≥ 1 wt%). For cp = 0 wt%, as a reference, the dashed line represents a
quadratic fitting based on the 3 data points. Ideally, more data points would be required
to understand the detailed trends and dependence of p∗ and V ∗ on ∣α∣ for different cp.

was also shown to decrease the onset of secondary viscous fingering instabilities, such as

tip-splitting or side-branching, in the displacements of suspensions in rectangular channels

in [56, 60].

The dependence of the critical interfacial velocity, V ∗, on the depth gradient, α, and the

particle concentration, cp, is shown in Fig. 3.5(b). For a fixed cp, similar to the dependence

on p∗, the general trend of V ∗ increases with an increasing gradient, ∣α∣. Also, for a fixed

cell geometry, the critical velocity, V ∗, decreases with an increasing cp. The trend of V ∗

on cp is particularly true for cp ≥ 1 wt% where the values of V ∗ increases gradually with

an increasing cp. However, for some α, we notice an interplay between the values of p∗

for Newtonian solutions and suspensions of cp = 1 wt%. Besides, Figure 3.5(b) reveals a

tendency to have a significant difference between the values of V ∗ for cp ≤ 1 wt% and cp ≥ 2.5

wt%, which shows the destabilizing impact of the particles on the interface. We observe the

values of V ∗ for cp ≥ 2.5 wt% are quite comparable and follow the same trend of a slight
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increase from α = −1.6×10−2 to α = −3.32×10−2 before rising up more sharply. However, for

cp = 1 wt%, the increase of V ∗ with α is nearly linear. We notice p∗ and V ∗ both increase

with an increasing α and decrease with an increasing cp. In fact, according to single-phase

Darcy’s law:

V = k
µ

∆p

∆r
= k
µ

p − p0
r0 − r (3.1)

with p0 the pressure at the outlet of the cell. Therefore, for a constant viscosity, p∗ and

V ∗ are directly proportional to each other and so, it is not surprising to obtain similar

results in their dependence on α and cp. As µ2 likely increases with an increasing cp (see

Tab. 3.1), we would expect from Fig. 3.5(a) to obtain an increasing V ∗ with an increasing

cp for each specific value of α. However, we notice that, for some α, the values of V ∗ for

cp = 1 wt% are slightly bigger than the ones obtained for Newtonian solutions. The slight

deviation between the results for p∗ and V ∗ could be due to the time-changing viscosity,

µ2, as discussed in Appendix A.

3.4 Conclusions

In summary, we have experimentally demonstrated the suppression of viscous fingering in-

stabilities when a gas displaces a suspension when the process takes place using a converging

passage. For each gap gradient, α, and particle concentration, cp, we can control the stabil-

ity of the displacement by setting the injection pressure to a lower (p < p∗, stable) or higher

(p > p∗, unstable) value than the critical pressure p∗. p∗ was found to decrease with an

increasing particle concentration but increase for a steeper gradient. Therefore, it implies

that, for a fixed cp, the stabilizing effect of the gradient on viscous fingering instabilities is

more pronounced as α increases. On the other hand, the destabilizing effect by the particles

becomes more critical as the concentration of particles in the displaced fluid increases. The

critical interfacial velocity, V ∗, has also been revealed to increase with an increasing ∣α∣ and

decrease with an increasing cp. Furthermore, the destabilizing effect of viscous fingering by

the particles seems more important for cp ≥ 2.5 wt% than for cp = 1 wt%. A qualitative

comparison between our current experimental results and previous ones in [106] or theo-
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retical predictions by [80] revealed a good agreement in the dependence on α. However, a

theoretical study of the displacement of a more viscous suspension by a less viscous fluid in

a converging cell geometry is currently missing in the literature and would help us under-

stand the mechanisms that control the interfacial stability and quantify the impact of the

particles. Our experimental study reveals the possibility of tuning radial viscous fingering

instabilities of complex suspensions by using inhomogeneous passages. The results of the

dependence of p∗ and V ∗ can be beneficial to design structures or predict the flow stability

for processes where viscous fingering instabilities occur commonly.



Chapter 4

Conclusions and perspectives

In this work, the viscous fingering instability of radial immiscible displacements of New-

tonian and suspension fluids in inhomogeneously confined passages has been experimen-

tally investigated. For the first time, our experimental results show the control and, more

specifically, inhibit viscous fingering of Newtonian and suspension fluids in radially tapered

Hele-Shaw cells.

The experiments of viscous fingering of Newtonian fluids in tapered cell geometries

revealed two distinct regimes of stable and unstable displacements. More specifically, the

propagation of a stable front in a circular shape resulting in a full sweep of the displaced fluid

was achieved at low injection flow rates, Q. On the other hand, at sufficient injection rate,

classic Saffman-Taylor instabilities with the propagation of fingers have been commonly

observed. By systematically repeating the process for different depth gradients, α, we were

able to characterize the variation of the critical threshold depending on α. The critical

flow rate, Qc, has been found to increase with a steeper gap gradient, ∣α∣. By performing

image analysis and tracking the position of the interface, we measured the critical interfacial

velocity separating stable and unstable front propagation, and therefore the critical capillary

number, Ca∗. For a fixed outer gap thickness, h0, the critical Ca∗ was revealed to increase

with an increasing ∣α∣. In addition, the impact of h0 on Ca∗ was analyzed and showed no

notable dependence of Ca∗ for the range of h0 explored. Our experimental results showed

42
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good agreement with theoretical predictions by a linear stability analysis [80] and numerical

simulations [89]. Therefore, for a fixed system of fluids, one can tune the design of a narrow

passage and the injection process to control the fluid-fluid displacements.

Based on the experiments of radial viscous fingering with suspension fluids in inhomo-

geneous structures, surprisingly a full sweep of a suspension by gas injection is achieved

despite the presence of micro-particles. The stability of the interface does not rely anymore

only on the gap gradient α and the injection process, but also on the fluid properties with

the particle concentration, cp. We showed that, for a fixed α and cp, the front propagation

goes from stable to unstable when the injection pressure, p, overcomes a critical threshold.

For a fixed cp, the critical pressure, p∗, increases with a steeper gradient, ∣α∣. However, for

a fixed α, p∗ was found to decrease for a denser suspension. The stability diagram on p∗

reveals the competition between the stabilizing effect of the converging gap gradient and the

destabilizing one by the particles. The dependence of the critical velocity V ∗, separating

stable and unstable front propagation, on the gap gradient, α, and the particle concen-

tration, cp, was also analyzed. For a fixed cp, V
∗ has been revealed to increase with an

increasing ∣α∣ whereas, for a fixed α, V ∗ decreases with an increase in cp. These experimen-

tal results of the viscous fingering problem with particles in tapered cells reveal the possible

manipulation of the interfacial instabilities of suspension fluids using converging passages.

For the future investigation, it would be very interesting to develop a theoretical model

explaining the behaviour of viscous fingering interfaces in tapered cells when pushing a

suspension. The theoretical model would enable a quantitative comparison with the exper-

imental results reported in Chapter 3 and a better understanding of the impact of particles

on such moving interfaces.

Additionally, a possible extension of this work could be investigating the displacements

of other complex fluids showing different rheological properties, such as a shear-dependent

viscosity for instance, in converging cells. For the Saffman-Taylor problem, the displacement

of a shear-thinning fluid by a Newtonian one could lead to interfaces more stable than those

in the purely Newtonian case. However, the viscous fingering problem pushing a shear-
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thickening fluid could result in a reduced stabilizing effect of the gradient. Furthermore,

the destabilizing effect of the particles on the advancing interface is thought to be stabilizing

when the particles are introduced in the displacing fluid instead [61]. Therefore, it could be

of great interest for applications such as EOR to study the combination of both stabilizing

effects of the gap gradient and particles on viscous fingering interfaces.
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Appendix A

Time-varying viscosity of the

water-glycerol solutions used

Here, we report the measurements and observations made about the changes of the viscosity

µ2 of the water-glycerol solutions (used in the experiments of suspension fluid, described

in Ch.3) in time. After performing a set of experiments, we noticed a qualitative change

in the viscosity of a water-glycerol suspension of cp = 1 wt%. Therefore, we decided to

perform rheological measurements of the solution which was used in the experiments using

a concentric cylinder. The rheological data obtained confirmed the time variation of the

viscosity: µ2 decreased from 157 cP before the experiments to µ2 = 69 cP afterwards (see

▲ in Fig. A.1). We repeated the measurements for the suspension solution of cp = 2.5 wt%

(∎) and observed the same trend: right after mixing particles with the solution, µ2 = 160

cP whereas µ2 = 50 cP after being used for the experiments (corresponding to the elapsed

time of 10 days). Hence, this likely implies µ2 may not be constant throughout all the set of

experiments. An empirical model of the viscosity of water-glycerol solutions based on their

composition was derived in [109]. For a mixture of water-glycerol with 12.5 wt% of water,

the viscosity of the mixture is 144 cP [109], which is close to the value of 146 cP found for

cp = 0 wt% (see  in Fig. A.1). In comparison, our experimental values obtained before the

experiments (i.e., t = 0 days) are in good agreement.
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Therefore, after completing the viscous fingering experiments, we conducted system-

atically rheological measurements of a unused sample of cp = 2.5 wt% to assess how the

viscosity evolves with time. A sample was extracted from the main solution before per-

forming the experiments and kept in a closed beaker. Figure A.1 shows the time-varying

viscosity µ2 of the unused sample, for cp = 2.5 wt% (◻). The data show a dramatic reduc-

tion in the suspension viscosity of the water-glycerol suspension, decreasing from 160 cP

to 60 cP. After 10 days, we can see that the viscosity obtained from the unused sample,

µ2 = 134 cP, is significantly bigger than µ2 obtained for the solution used in the experi-

ments. The solution viscosity seems to decay faster once being used in the experiments, but

a significant decrease is still observed for a solution at rest, and later during the rheological

measurements (after t = 10 days, see Fig. A.1).

An explanation for the decrease in viscosity could be the dissolution of gas into the solu-

Figure A.1: Time-evolution of the viscosity of the water-glycerol suspensions used in the
experiments ( , ▲, ∎, ⧫), and the unused sample of cp = 2.5 wt% (◻). Measurements were
performed via a rheometer, and 2-5 times for each point.
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tions and, in the literature, we found evidence that air and nitrogen dissolve in water-glycerol

mixtures [110, 111, 112]. Globally, the solubility of air and nitrogen in glycerol is smaller

than in pure water and decreases with an increasing glycerol weight concentration[112]. The

Ostwald coefficients�the ratio of the volume of gas absorbed to the volume of the absorbing

liquid�for a mixture with a similar water concentration as the experimental solutions, at

standard conditions of temperature and pressure, are about 10−3−10−2 [110, 111]. Since gas

is much less viscous compared to the aqueous mixtures of glycerol, even if a tiny quantity

would dissolve, likely the viscosity of the overall mixture would decrease significantly. In-

deed, the impact of gas dissolution on the viscosity of crude oil was investigated in [113]

and revealed percentages of reduction in the viscosity up to 70 % when the gas saturates

the solution. Furthermore, the reason why after ten days the viscosity of the unused sample

decayed to “only” 134 cP whereas the one of the experimental solution decreased to 50

cP could find an explanation. Indeed, the experimental solution was present in a shallow

container (with a large surface area), directly exposed to the ambient air, and regularly

mixed whereas the unused sample was remain untouched in a closed beaker.

The nonlinearity of the time-variation of the sample viscosity for cp = 2.5 wt%, combined

to the fact the time taken to perform experiments varied from a concentration to another,

makes it too complex to know the exact viscosity value for each specific configuration of

α and cp. Moreover, we have not found any literature dealing with the impact of gas

dissolution on the viscosity of water-glycerol mixtures. As a consequence, without detailed

data of µ2(t), we could not accurately characterize the stability of the interface in terms of

the capillary number Ca since the value of the viscosity at t = 0 is not physically relevant

for the problem. Therefore, we analyzed the flow instabilities using critical gauge pressure

imposed, p∗, and critical flow velocity, V ∗, at the interface.


