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ABSTRACT

The dc and small-signal characteristics of MSM Baritt diodes _
are investigated Lheoxetica]ly. he physical processes affecting
the charge transport in MoM structures are studied from the
diffusion»theory point of view. The boundary conditjons used for
this study are derived from thermionic emission theory. A numerical
model of MSM structures, which takes into account a realistic
dependcnce of carrier drift velocity upon electric field and doping
concentration, is applied to PtSi-nSi-PtSi Baritt diodes. The
computed results are found tc be 1nlc1ose agreenment with the
available experimental data.

For current densities_excéeding 10 A cm_2,,the physical
conditions of tﬁé injecting contuct, and carrier diffusion in the
injection and fow-field regions of the structurc are shown to affect
significantly the electrical behavior of MSM Barift diodes. At
microwave frequencies, Baritt diodés are found to 2vhibit negative
conductance over nearly an octave frequency range. The necgative
quality factor is shown to be relatively large in comparison‘with
that of fmpatt énd Gunn diodes. The electronic susceptance is a
small fraction of the tofa] device sﬁéceptance‘and changes from
inductive to capacitative over the negative conductance region.

It is shown thg% MSM Baritf structures with a semiconductor
width between 4 and 10 um, with doping concentration between
4 x 1014 and 4 X 1015 cm—3, exhibit maximum negative conductance in
the frequency range from 2 to 15 GHz and require a bias voltage from

4 to 100 Volts. The microwave behavior of Baritt diodes is affected

v



significantly by reducing the semiconductor width and only stightly
by changing the doping concentration. Above room temperatur the
microwave performance of MSM structures is greatly degraded; the
maximum negative conductance reduces in magnitude and shifts to
lower frequencies, and the active frequency‘interval becomes

narrower. Based on these\resu1ts, design data for Baritt oscillators

is given.
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CHAPTER 1

INTRODUCTION
1.1 Historical Background

In recent years, the use of'semjconductOf devices in
microwave communicatiqns has )ncreaséd significantly. Two
important devices used for tile generation and amplification of
microwave signals are Gugg/ééransferred Electrons) and Avalanche
Transit Time (IMPATT) d%odes. These‘dévices have demonstrated
economic and/ér_performance advantaées over microwave tubes and
as a,resuT% are being incorporated into microwave systems [1,2].
IMPATT diodes, at the presentvtime, are the most powerful, but
inherently noisy, solid-state sources of microwave energy for
continuous wave (cw) applications. |

The use of barrier-injection tovgenefate tarriers at the
edge of a drift region in a punched-through transistor (e.g. pnp)
structure has been proéosed in one form or another for many years
as a possible transit-time negative resistance mic;Zwave device
[3-7]. The .impetus for proposing such a device has been the need
for a low-noise solid-state oscillator or amplifier. .n 1971,
low-noise cw oscillations were obtéined from a punct !-throug-
metal-semiconductor-metal (MSM) Si structure [8]. Soon aficr,
microwave energy was generated with.PtSi—n~p+ 91, p+np+ [10-12]
and p+nvp+ [11,12] Si strucfures. These devices have been termed
CBARITT (BARrier Injection and Transit Time) diodes [8].

The small-signal properties of a punched-through semiconductor

-~



structure operating under high—fie]d conditions have been considered
by Wright [5]. He has shown that the diode can exhibit negative
resistance in the range of microwave frequencies due to the combined
effects of charge injection and transit-time de]ay'of charge
transport. Wright has also concluded that, under high-field
conditions, properly designed and operated stfucturos can be used
for generation of microwave energy. He pointed out that the charge
injection in such structures takes place smoothly (the space-charge
at the injecting contact acts as, a buffer that partially smoothes
out the fluctuations) and that operation should, therefore, occur

at lTow-noise levels. Various-alternatives of the hiéh?field
punched-through semiconducfor structﬁres have also been investigated
by Ruegg [6] and Sheorey et al. [7]. These authors concluded that
‘the small-signal negative resistance would not occur, but that
useful power generation can be anticipated under Targe ac signal
conditions. The fact that punched-through structures are self-
starting implies that the small-signal negative resistance must
exist, consequently the possibility.of small-signal activity of

- BARITT devices as discussed by Wright is of fundamental importance.
The power capability and conversion efficiency (dc to rf)
“are relatively sma]] because of the necessity of a nearly %1
transft angle to create negative resistance [8]; thus these
devices are not expected to compete with other solid-state sources
(e.g. Gunn and IMPATT diodes) in power applications. However,

RARITT diodes have the following advantages over existing solid-

state devices:



(1) Their noisc-measure is about 20 db lower than that of
a Si IMPATT diode and comparable with_br lower than a GaAs Gunn
diode [13].

(2) BARITT diodes are chcapvénd easy to construct using
available microelectronic techniques [13]; "a typica] BARITT S,
wafer costs about $3.00 compared with a GaAs wafer which runs up to
>$90.00 per slice" [13]. |

(3) 'They are found to be mechanically and electrically

rugged in use and have proved to be reliable and consistent in

operation £10,12]. -

(4) They are fqﬁgé to be totally immune to the parametric
effects of harmonic dis%gijigg commonly observed with: Gunn and
IMPATT diodes [12]. Present indications are that BARITT devices
will find wlde practical applications in micrOWave‘systems where -
moderate powers and low-noise levels are required at low cost,

Following the establishment of the sma11—signa] activity
of BARITT diodes, a number of both analytical and numerical ac
studies have since been reported [14-22]. A small-signal
analytical model which considers the injection of minority
carriers over the potential barrier of a forward biased junction and
a éubsequent %E-transit angle due to the carrier drift across a
high-field regibn appears to qualitatively describe the basic ¢
small-signal operation [14-17]. Such models provide relatively
simple analytical expressions of the small-signal admittance (or
impedance) of the device.

" In order to obtain these simple analytical expressions the

following assumptions needed to bevmadékin the ana1ytiéa1 models:



(1) The carrier drift velocity is saturated in the entire
structure.

(2) The diffusion current is neglected.

(3) Simplified boundary conditions are introduced in the-
_interior of the structure instead of properly formulated boundary
conditions at the contacts.

A mofe accurate, but still not exact, model for punched-
through semiconductor structures has since been described by
Wright and Sultan [10]. In this model, a rea]iskic velocity-
field relation has been considered. An analytical model esgentia11y
simi]af to that described in ref. 10, but directly relevant to MSHM
structures has been described by Weller [14] and by Haus et al. [15]."
Weller restricts his analysis to bias voltages greater than the
Schottky barrier flat pand voltage [23] to ensure that the carrier
velocity is saturated at the injecting contact as well as everywhere
in thé entire n-region of the'structure.

Further improvement in the analytical model has been
obtained'by Sjolund [22] for p+np+ structures and by Coleman [16]
for MSM structures. In these studies, the injection'region of the
sgructures has been %nc]uded.

. Although these simple analytical models are éf fundamental
importance in providing an understanding of the negative resistance
mechanism in punched-through structures, they cannot accurately
predict the experimental small-signal response of real devices.

This failure results.mainly from the neglect of the actual

dependence of the carrier velocity upon the electric field and/of
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carrier diffusion in the injection and low-field regionsof the
structure. ~\ ‘ \ ‘

Small-signal numerical calculations have been carried out
for MSM structures [20,21] and p*nb+ structures [19,22]: A1 of
thesé studies consider carrier diffusion and_incorporate a velocity-
field dependence relation. The simall-signgl study described in
ref. 19, is basically the same as that adopted for the ac studies
of IMPATT diodes [25]. The unipolar charge~traﬁsport in p*nb*
structures has been numerically studied by Siojund [22]. The
boundary .conditions adopted by this author are vaguely defined,

In addition, his numerical solution is nOf clearly presented and,
therefpre, cannot be used as é’general method to déscribe the
behavior of the structure. Re1evant to tpe small-signal study on
"MSM structures is the study described in ref. 20 which considers é/
fictitious velocity-field dependénce relation and thermal-
equilibrium boundary concentrations for a non-realizable MS contact.’
Anfimprovement-in the small-signal analysis of MSM structures is
given in ref. 21. In this study a humerica1 small-signal model,
which considers a realistic velocity-electric field relation has
ﬁeen used to study the temperature dependence of the small-signal
/gdmittahce of the structure.

| The numerical approachés cited above do not have the
guantitative character requived to describe the general behavior
of DU”ChfthTOU@WdGViCES.-‘FQrbexaﬁD1e, the numerical study adopted

for MSM structures {207, which uses thermal-~equilibrium boundary

conditions, cannot accurately describe the actual behavior of the



Sstructure operating under high current conditions. At current
Tevels approaching the saturation current of the MS contact, the
boundary concentration reduces significantly from its thermal
equilibrium value and the response of the MSM structure can be
greatly affected. The numerical model of ref. i9 considers an
unrealistic velocity-electric field relation and includes
additional yet unimportant physical prbéessg§{wh%ch need not be

considered, even for an accurate description,of DU”CbQETYOUQh

diodes. ‘ ~

1.2 Objective of the Present Study

The purpose of the present work was to accurate1y describe
the dc and small-signal ac behavior of punch- throug% MSM structures.
The dc properties.are of interest since they are an important
pre-requisite to the small-signal ac investigation. DC‘current :
transport in an MSM structure [23] and in a p+np+ structure [24]
1@ . been reported, the emphasis in these studies being on the

‘ion of the charge transport'at low-current densities.
»sént work, the high current region, which is very
“rom the stru-*ure application point of view, has been
cons de 9T,
ssessme” % of the available small~signal ac
stuc es . e nand fo "exact" study that would have the
generai ~ha~c-: ticc veguired for describing the actual

behavior ¢’ punc. - “hroug devices. In the present work ‘it has
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been attempted to deve]op'a small-signal ¢ ana1ysis which
consistently takes into account a]i important'physica1 processes
affecting the device performance. A more specific aim is to
derive.a theoretical model of the MSM structure which considers
carrier diffusion, a‘rea]istic dependence of thé carrier velocity
upon the electric field, and properly formulated boundar} conditions.
" This model permits a clear and precise formulation of the
mathematical problem, and provides a tool for an accurate calculation
of structure pé?fbrmance‘ Moreover, the exact.solution ' lows
quantifative comparison with available theorigs and henne the
validity of eacn simplifying assumption can-be investigated.

The theoretical model is applied to PtSi-nSi-PtSi pnnchv}
through structures and the computed results are compared with the
avai]aB]e experimental data of Snapp and Weissglas [12].

At the'prééent time, the power capability and conversion
eFficiency of .BARITT diodes akequite low.. However, the microwave
~activity of these devices can,be improved significantly by proper
cnqiée of the physical parameters of the structure. So far Tittle
is known ébout optimum désign procedures of BARITT diode§. To
~ bridge this gap, the effects of various physica1 parameters bn the
dc and sha]1—sign§1 ac behavior of !SM structures are numerically
investig}‘ated F1'na11y, the electrical properties of BARITT diodes
,w1th Schottky barr1er injecting contacts are found, exper1menta11y,
to exhibit an apprecfable temperature dependence. To br1ng more
insight into this phenomenon, the temperature dependence of the

~electrical properties of the structure are also investigated in the
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1.3 Qrganization of this Thests

The ma#n‘part 6? the original material iy contained in -
Chapters 111 to X and same aux111ary work i3 presented in Appendix
AL Chapter 11 d1seusses the cyrrént traﬂsbart in Schottky barr1ers
madg\on Tightly doped semiconductors, Chabter 111 §s devoted oo
the ynvastigation of stationary charge transport in MSM structures.
In CHprer IV, the flux 1ntQPChahuu b%tweeh tne meta] and adjacent
sem1chdUCt0r is described, and expressions for the current—
qapghiant boundary concentraﬁions of injectad holes arg derived.
'Thé mathematical A%de]s.pkoposedin vhisspudy, togethér with the
numerieal. méthods of/so1a£ﬁon used to 307ve thgbmathématicql problem-
‘ﬂ"@ D*Q56nt6d in Chapter V, +The QOMputad static characteristics |
and ths de propert1es of var1ou5 MSM structureg are graph1ca11y
~presentad and d1Scu559d in Chapteh VI, Chabters VIl and VIII
Dreéent the Smél] signal charge thﬁﬂbePt phOPert1es and the
tanminal beha/1our of the MSh 9tructures, Qhapter IX‘provwdes a
'cﬁmpaviaon;bétween various theoretical models aﬁd available

maasyred data. A Eummary and'coﬁQ1UsiQn gYe given\in Chapter X.



CHAPTER 11 " N
METAEZSEMICONDUCTOR (SCHOTTKY BARRIER) CONTACTS R

Two different modeé"of current transport 1n.méta1—sem%conductor
(MS) contacts are bossible, depehding on_tﬁe width of the barrier.
In the case of thick barriers (MS contacts with 1ight1yﬁdoped semi-
conductors), thermionic-emission of electrons (h01és) over-the top
of the'bé}rier is expected to be the dominant current.tranﬁport
‘mechanism. In the cése of highly doped semiconductors, thewthinner
b&%riér présénts1a finite transparency to e]ectfons»(hoTes),.with
~energies lower than the barrier height; conéequent1y electron
éunne]iné is expected to dominate Current transport.

The—MSM structures 1nvestigéted in thi; thesis aré . Jde of

lightly doped semiconductors (N < 1016 cm;3);

thus, only t
current—transport in lightly doped MS contacts will be considered.
In this chapter the existing theories are briefly/%éviewed and the

resulting features of their J-V characteristics are discussed.

7

2.1 Energy Band Relations at an Ideal MS Contact

When a metal is brought into an\:ntimate contact with an

n-typé semiconductor material (e.g. by a deposition of a metal film
//éLtween the two materials

on a semiconductor slice), equilibrium
A _ y

is established and the Fermi- levels in both sides line up.
t

Relative to the Fermi level in\the metal, the Fermi level in the

semiconductor has been lowered by an amount equal to the difference
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between the twd work functions. Figure 2.1 shows the energy band
diagram and the charge distribution for an MS contact at thermal
equilibrium. The difference, Yo - (% +’¢n), is the contact’
potentia]! Wﬁ is the thénnionic work function.of the metal, ¥

and ¢n are the electron affinity and the intgrnal potential of the
semicoﬁductor, respectively. The concentration of mobile electrons,

n(x), and holes, p(x), in the conduction-and valence bands are

E_(x)-E ¢ (x)
n{x) = NC exp - (-< kT‘ F) =N axp - —ET-
| (2.1a)
Ee-E (x) b (x)
p(x) ="N, exp - ( i k¥ ) = N, exp - o7
(2.1b)

where Nc(Nv) is the effective density of states in the conduction
(valence) band, EC and EV are the lower and upper edges in

the conduction and valence bands respectively; k is Boltzmann's

-

constant and T is the absolute temperature [26]. The
thermal equilibrium boundary concentrations at the MS interfaces

are

)
B
n = N _exp - e
BO c ZT (2.2)
= Nv exp - ._P_B_

PBo kT

where *ng and ¢ . are -the barrier heights for electrons and holes

nB
measured from the position of Fermi level [27].



OB Wiy
T E
C c
— Y A7 7 A -_— _— -_— — —— —_— —_E
> PpB 4 ] F
(@] 1
“
<
E
< 5 (%) )
2 po ‘
4
Q
) E
L I W v
- - g B
Depletion region = Neutral region Distance
Fig. 2.1a: Energy Band Diagram of an'MS Contact at

P, exp (=4 ,/KT)

(cm™>)

ng=N_ exp(~¢ g

Fig. 2.1b:

= Concentration
3

Thermal Equilibrium,,

Wpistance (um)

Corresponding Charge Distribution

11



The energy band relation in the barrier region can be
obtained from the solution of Poisson's equation. For « one
dimensional mode? where the charge density varies only along the
x direction, Poisson's equation 1s

2

.z.;g = -3 (p(x) - nlx) ") ©(2.3)

where V‘is the electrostatic potential, (~q)v1% the el ctronic
charge,‘e is the pérmittivity of the Semiconductor and ND+
islthe'density of jonized donors. Equation (2.3) needs to be solved
in comb{nation with appropriate boundary conditidns. At thermal
equilibrium, the boundary concentrationsof electrons and holes are
given by Eq. (2.2) and the energy band diagram is then obtained

from the so]ution)o% Eq. (2 V. ' \

If an exterqal volte A is applied to the MS coﬁtact, a
net curvent flows through the structure and the charge distribution
is altered from its the?ma] equitibrium profile. The electron and -
hole concentrationsare no longer giveh by Eq:\(z.l) and hence a
numerical solution for Eq. (2.3) is necessary. To s.mplify the
ané]ysfé, the abrupt junction approxjmétion is usually used to
describe the barrier region of MS contacts  [27]. Using this
approximation, i.e. p = qND+ fof X < W ang 0 = 0, %¥- = 0 for x > w,
where w is the depletion widgp, the solution of Poisson's equation

is given by

Qg 2. ¢ '
V) = = (k- 3 - EE (2.4)




where VA’ the applied voltage, is positive (negative) for forward
(& =b )
(reverse) bias and Vy; --«l‘%ﬂd—-f i the built-in potential (271

The maximum field strength which occurs at the Ms interface (v 0)

is \.

The thermal equi]ibrium values can be obtained by setting VA = ()
in Eqs. 2.4 - 2.6. The di§torti0n of the barrier profile under
the applied forward (reverse) bias is shown in Fig. 2.7

The above analysis ignores the mobile carriers
in the barrier region. Goodma: [28] and others have shown th-t a
correction of magﬁitude %I- is neccssary to take into account the
contribution of mobile carriers to the electric field. To include
the image force and the electric field effects or the potential
energy, a correction of magnitudé v: should be subtracted from
the_barrier potential “ng "1owering in the metal work‘

function by an amount 24 (vefrived to as image force lowering)

is niven by
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where E is the maximum field strength at the MS interface [26].

2.2 Current Transpdrt in Schottky Barriers made on Lightly
Doped Materials

2.2.1 Basic theories

Thermidnic emission of electrons over . potential barrier
of an MS contact is similar in many aspects to the thermionic
emission of electrons in a metal-vacuum system. The major
difference, however, is the location of the- potential maximum.

In tHe case of metal-vacuum system 1tlis located in the vacuum
while for a MS contact it is located in the semiconductor. The
activation of electrons (holes) in £he MS contact can proceed

in two different ways depending on the width of the dep tion
region with respect to the electron (hole) mean free path. If
the barrier thickness is small compared to the mean free path,
electron collision can be neglected for all nractical purposes.
fhis <ituation was first considered by Beth 3], and is usually
referred to as the "diode" theory. If the barrier thickness is
Iarge compared to the electron mean free path, an electron
experiences many collisions in the barrier before reaching the
top of the barrier. This latter case was studied by Wagner [30]
and Schottky and Spenke [31] and is.usua11y referred to as the 4
'“diffusionf theory. A detailed presentation of both of these
fheories can be found»in Hehish t26]. - A more detailed treatment

of the diffusion theory can be found in Spenke's book [271].
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The J-V characteristic of an MS contact, as given by the

diode theory is described by

qVA |
- ' 4
with o= AT exp - ) | (2.9)
x4 qk?
pos (2.10)
h

The constant A*,lthe Richardson constant, contains the effective
mass of electrons, m*, which is assumed to be a scalar quantity
in Bethe's theory. Since the effective mass in semiconductors
is generally a tensor quantity, A* may therefore depend on the
orientation of the emitting surface.

For a semiconductor having aﬁ energy band with e]]ip;oida]

constant energy surfaces in momentum space, Crowell [32] has shown

x \
that A is given by ‘ -
/'\
*
A" ——5l~—— 7 ( lzm m. mzmzm +nlmm ) (2.11)
h
In Eq. (2.11), 2, m, n are the direction cosines of the n~irmal

to the emitting plane relative to the principal axis of the ellipsoid;

* . * * .
m my and m, are the components of the effective mass tensor, and

the summation has to include all energy surfaces participating in

the emission process. For semiconductors with isotropic effective

mass in the lowest minimum of the conduction band (such as n-type



GaAs), Eq. (2.11) reduces to

>
At - 91‘-(3U<~m* (2.12)
h

where m* is the effective mass associated with the energy surface
considered.

The J-V characteristic described by Eq. (2.8) shows that

at forward bias voltages greater than a few 513 a plot of log J
versus voltage should yield a straight line with a slope %T'

. The reverse characteristic as described by Eq. (2.8) appears to
present an ideal saturation. This is only true if the barrier
height is independent of the external bias, which is never the case.
Effects such as image force, duantuh'mechanica1 tunneling and
reflection and optical phonon scattering will lead to a dependence

. of tHe baérier height on applied voltage and no real saturation

“under reverse bias will take place. The change in the barg%er
height will in turn’resu1t in chanes in the shape of the forward
characteristic, and the semilog slope instead of being equal to

ET“ will be equal to 5%73 where n is a dimensionless parameter

greater than unity and is given by [33]

39
o Bn
n = ] + ————av (2.13)‘
For well fabricated MS contacts (e.g. free from interfacial layers),
the values of n obtained by the diode theory are usually less than

1.03 [33].
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The charge transport properties of MS contacts as described
by the isothermal diffusion theory are based on the Boltzman current

density equation

3, = aln()u €+ 0 %’% (2.14)
where M and Dn are the electron mobility and diffusion cons;ant
respectively [27]. The first térm on the righthand side of
Eq. (2.14) is the drift current density component és given by
Ohm's law, while the second term is thes diffusion cufrent component
which is due to the concentratioﬁ gradient.

To obtain the J-V characteristic, Eg. (2.14) and Poisson's
ec ztion should be integrated subject to appropriate boundary
conditions. Assuming thermal equilibrium boundary concentrations at
the depletion layer edges, using the junction abrupt approximation>
and adopting the Einstein relation, Wagner has arrived at the
" following J-V characteristic.

qVp '
J # JSD[eXD(ﬁ“) - ]] ‘ (2]5)

. 2q(V, . -V)_1/2 o .
Jgp = NI e - g (2.16)

where JSD is.the reverse saturatiop current density as giveﬁ by the
diffusion theory [34]. In the derivétion of Eq. (2.15), Mo (the
electron mobility) is assumed to be constant.

The reQerse characteristic as shown by Eq. (2.15) does not

present perfect satukation as in the case of the diode theory.
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Rather, for large applied bias, Eq. (2.15) shows that the current
density shou1d~increase/in the reverse direction as: (Vbi\VA) . To
this current density variation the contribution of the image force
correction and tunnel penetration and reflection must be jnc]uded, '
More accurate treatment of the diffusion problem using.aigit@l
computers [35,36] results in a J-V charécteristic which can be
accurately described by the equation

aVp
J = JSD[exp(ﬁETJ - 1] _ (2.17)

with a value of n approximately equal to 1.06, appropriate for all

practical values of barrier heights of clean MS contacts [33].

2.2.2 Thermionic emission-diffusion theory

A theory vhich incorporates thermionic emission (T) and
diffusion (D) theories into a single T-D emiséion theory has been
presented by Schultz .[37], who assumed simplified electron
effective mass and neg]ected all image forbe effects. Recently,
Crowell and Sze [38] have,pefformed a similar calculation aséuming_
the correct value of electron effective mass and including image‘
force effecté, phbnén scattering and tunnel penetration. This
apprdach is based on the boundary condition of a thermionic
+ recombination velocity vp,-near the MS interface.

The energy band diagram considered by Crbwe]] and Sze is

shdwn in Fig. 2.3. Effects of mobile charges on the electric field
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are neglected. They have assumed that the region between the
potential maximum (x = xm) and the depletion 1ayer.edge (x = W)

is isothermal and the electron temperature 1s equal to the lattice
temperature. The current density in this region is specified‘in
terms of an imref ¢n: by

do

‘_ n ’ -
J = - qun ax : (2]8)

wher n is the electron densﬁty given by Eq. (2.1)u In the inter-

facial layer [O,xm] the potential energy varies very rapidly in a

distance comparable to the mean free path, and hence Eqs. (2.1) and

(2.17) do not apply in this region. Instead, if this Payé? acts as

a sink for electrons, the current density at the potential maximum

could be described in terms of an effective recombination velocity

Voo as’
J = q(n_-n )VR - } : (2.19)

where N is the electron density at X when the current is flowing,

n, is the quasi-equilibrium electron density at X (the density
which would occur if it were possible to reach'equi11brium without
altering the magnitude and'position of thé potential energy
haximum [271).

The J-V characteristic as described by .the T-D theory is

given by

3= R ep(- glexn(i - 1] (2.20)

21
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. , "
~- A __Bn_°
where, vy [Ixm{ukT exp T {]' (2.21)

is an effective velocity éssociated with the transport of electrons

from the edge of the depletion layer w to the potential energy

maximum X .
If no electrons other than those associ: ' with the current
density N,V return, the semiconductor acts as it ‘ionic emitter,
. then
*.2
AT »
= PR 7 D
VR ch . | (2.72)

If Vg > Vp, the pre-exponential term in Eq. (2.20) is dominated
by -vp and the/thermionic emission theory most ﬁear]y applies. If,
on the other hand, Vp << Vpo the diffusion'process is dominant. If
the image force effects -are neg]ecfed and the e]ectron‘mobﬁfity were
independent of the electric fie]d, vy would be equal to uE, where E
is the electric field in the semiconductor near the boundary. The
standard Schottky result would then be obtained (Eq. (2.15)).

In the derivation of Eq. (2.20), a recombination velocity,
Vg associated wjth thermionic emission was introduced as a boundary
condition to describe the collecting actioq*ofbthe metal in a
Schottky barrier. In many cases there is an appreciable probability
that an electron which érqsses the potential energy maximum will be

backscattered with a subsequent reduction in the net current over

the barrier. The probability of electron emission over the potential

barrier is given by



X . .
’ (2.23)

where A is the optical phonon mean free path [39,40]. In expression

(2.23), the values of X aqé A are given by
(2.28)

E \ '
anh k—? ~ (2.25)

where EO is the optical phonon energy and Xo'i§ the high energy- Tow-
temperature asymptotic value of the mean free péth [39,40]. In‘the
derivation ofAEq‘ (2.22) it is assumed, that E6 > kT and Hence the
above treatment/is not.expected to be valid in the low field limit,
especially when kT '~ EO.

In ad ftiqn to the effects of phonon'scattering, the energy
distributioh of electrons is furfher distorted from the Maxwellian
distributfén because of quantum mechanical tunﬁe]ing and ref1ection.

Crowell and Sze [41] have outlined an approach whereby the quantum-

mechanical transmission (QMT) of carriers incident on Schottky

" barriers may be calculated as a function of the carrier energy and

effective mass, the barrier height, the electric field at the MS

interface and the shape of ‘the potential barrier in the vicinity

f the fnterface. The ratio, fQ, of the total current flow
considerihg tunneling and quantum-mechanical reflection to the

thermionic ‘current flow neglecting these effects; is

-4
11

; P e - (B A (2.26)

-0
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where £ is the electron energy measured from the position of the
energy maximum and PQ is the quan;um—mechanica] transmission
coefficient [41]. The field at which fQ starts to rise rapidly
“marks the trensition between thermionic (T) and thermionic-field
(T-F) emission, since at this point the field-enhanced tunneling
process becomes the dominant mechanism. For Si, this transition

5

occurs at field strength of about 4 x 10 vem™! [417.

The complete expression for the J-V characteristic as given

. by T-D model and taking into account fp and_fQ is
vy | |
J = Js[exp(W) - ]] _ . (2.27)
L2 ®8n S
JS = exp ~ ‘ . (2.28)
. *
f f A R
where A= —-E—Q—V- - (2.29)
. R . .
1+fprVE’

is the effective Richardson cdnstaﬁt. Eq. (2.28) is similar to
| Eq. (2.9) with A §omewhat smaller thén'A*..'

| Andrew§ and'Lepse]ter [42], have shown that the expérimenta]n
results, made on metal si]icidé Schottky bérriers, are in good
agreement with those obtained from Eq. (2.27).' However, the féyerse
J-V characteriétic does not show actual saturafion. They have ghown
that the soft,Behav‘ in the reverse chéfacteristic,is due tdméﬁé»”.

slight variation of the effective Richardson constant with the



\ ,

\ . 25
maximum value of the electric field at the MS interface. They have
.a1so pojnted out, that the effective barrier height,¢8n, can vary
more rapfd1y with the electric field than.the usual image force
model would predict. The additional barrier lowering due to the

dipolar effect at the MS interface is

a(an
aEm

the J-V characteristic of the real MS contact can be well described

where o = is an adjustable numerical constant [42]. Consequently

by

: (¢, -0¢~aE ) qV
Fk
J = A T2 exp - ——EQET-f«m-[exp(ETA) - 1]

(2.31)
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CHAPTER 111

CHARGE TRANSPORT IN HMSM STRUCTURES

Stationary charge fransport in'a MSM structure has been
studied by'Sze 9£~§l: [23] and a similar study on a p+np+
structure has been reported by Chu et al. [24]. In their
studies, which are bhased on thérmfonic emission theory, charge
transport at 1éw current densities was main1} investigated, while
the high~current veqion was discussed only briefly. The
predicted eprnentia1’cLﬁ?ent~vo1tage dependence in the 1dw-
current region vias then verified”Fxperimenta11y-[23].“The high-
current region, whicn is very important from an applicatton
point of view, has not yet been adequately described in the
literature for purposes of an accurate investigation of the ac
properties of these structures.

In this chapter, all iﬁportant physical processes which can
affect charge transport in MSM structures at technically important
current densities are investigated from the point of view of

diffusion theary.

3.1 Energy Band Diagram and Charge Distribution

An MSM stryc*ire 15 a two terminal device, having a semi-
conductor slice sandviched between two metallic contacts as shown
in Fig. 3.la. The tnermal equilibrium energy band diagram of a

PtSi-nSi1-PtS1 structyre is shown in Fig. 3.1b. At thermal
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equilibrium. the sum of the two depletion regions at the contacts

is a smali .raction of the total semiconductor width L. The

charge distribution of the mobile carriers is shown in Fig. 3.1c.
According to Spenke [27], the thermal equilibrium boundary

concentration at an ideal MS 1nterfébe is

(3.1)

Pawasl
—

CO = Neff exp -
where Neff is the effective density of states in the conduétion
(valence) band and * is the barrier height for the electrons
(holes). Since-the electron barrier height of the PtSi-n-Si
contact is in the rangé 0.85 - 0.87 eV, the interface concentration
of electrons and holes is approximately 7°x 10 and 7 x 10M

respectively [43]. Consequently there is a high concentration of

———

injacted hofes C]B:f to the MS interface and thus the semiconductor
region in/éhe immediate vicinity of the interface cannot be treated

thsulator when ca1cu1ating the image force effect on

- the Fier shape [26]. If the charge transport in close prox1m1ty

to the 1nterface 1s descr1bed from the thermionic emission theory
point of view, the actua1rshape of the potential barrier in this
region, whihh gan‘be significantly affected by any modified version
‘of the image force, is unimportant. Farther from the interfacia]
1ayer§ formed at the contact, where the diffusion theory 1is
épb]icabTe, the image force becomes Tess important and the energy
band profile is primarily determined by ionized donor density.

[f an external voftage is applied to the MSM structure of

C"A ‘ “
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Fig. 3.1a, the M1 and M2 contacts become forward and reverse biased
respectively. As the applied voltage increase§ the sum of the two
depletion region widths, W and Wo s also increases. Eventually

at the'reach-through'voltage (also called the"punch-through"voltage)
Vp, the two depletion regions touch each other, and their width is
exactly equal to L. At the punch-through condition, the semi-
conductor material is completely depleted of majority carriers
(electrons). The energy band diagram and the mobile charge
distribution of MSM structures biased below Vp are shown in

Figs. 3.2a and 3.2b respectively. As the voltage increases, a
point is reached at which the potential energy becomes flat; the
corresponding voltage is called fiat band voltage VFB' The flat
band energy band pggfi]e is shown in Fig. 3.3. For applied
voltages in excess of VFB’ the energy band profile is bent even

further, and the maximum voltage that can be applied to the

structure is limited by the avalanche breakdown [23].

3.2 Stationary Charge Transport

" (a) Small voltage range (V < Vpl

The charge transport in an MSM structure, biased below or at

Vp, has been described by Sze et al. [23]. In their study, the

J-V characteristic of the structure has been obtained from
thermionic emission theory. It was shown that the thermionic

injection of electrons (holes) over the reverse (forward) bias

contact contributesto the total conduction current density. The
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Fig., 3.3:

Energy Band Diagram of an MSM Structure Under
Flat Band Condition.
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electron and hole current density components for MSM structures

are.given by [23]

qV

$nB2 Ad +usE ’
** 2 nB2 2m 2
Jn = An T° exp - -Rfr"‘ OXP(”*—-va—“'“IL)D - exp - T
(3.2)
qD (L~(vrsus)) | av
_ no 1772 ?
Iy * —% tanh[— 100 - exp(= 7))
p p
A 12exp-| +qV KT v
. exP'L((:)sz q b12)/ ] [ex i,l N 1]
: L—(w]+w2) PiT
cosh( i
P (3.3)

where Lp is the di ffusion length for holes, V] and V2 are the fonvard
and reverse bias voltages respectively; other quantities have been
defined pfevious]y. Equation (3.2) has been considered in Chapter II
n conjunction withvthe current transport in Schottky barriers.
Equation (3.3) is derived from the solution of the stéﬁﬁy state
continuity equation for holes-in the quasineutral region [w],(L~w2)],
subject to the,therma1 equilibrium boundary conditions at the
.depletion Tayer edges w, and (L-wz). Since the injection ratio v

of the M1 contact, which controls the hole injection, is very small
(e.q. v < 0.1 in a forward biased Au-nSi diode with JT <5 Acm_z)
[44], the hole current can be neglected and the total current
density approaches the electron saturation current density of the
M2 contact. For PtSi-nSi contacts, the room temperature value of

the electron saturation current density is v 3-10 x 1078 Acn 2.

&
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Depending upon the concentration and the properties of the
semiconductor trapping centers, the current due to electron-hole
pairs thermally generated in the reverse biased barrier can
significantly exceed the electron thermionic emission current of
the barrier. Thus, thermal generation of electron-hole pairs in
the barvier region of the M2 contact can affect the current
tfansport to the same extent as in the case of a reverse biased

MS contact [42].

(b) Applied voltages above V

At voltagesahove Vp, the concentration of majority carriers
in the whole semiconductor bulk is effectively reduced to the very

3).

Tow boundary concentration (v 104 cm” However, the I-V

characteristic shows a sharp increase of t%e current with slight
increase in voltage [23]-/ Since the flux of electrons thermionically
emitted from the M2 contact remains essentially unchanged, the

steep rise of the curvent can on1ykbe accounted for by a sharp
increase of the hole currenf component theﬁmionica11y‘injected at

the M1 contact. It can be shown that; at current density of about
10’6 Acmxz, the voom temperature concentrat{;n of electrons is at
least ten times Jess than the concentration of injected holes
anywhere in the semiconductor bulk [43]; At current densities

27 the electron current component is only about

exceading 107% Aen™
0.1% of the total current. As a consequence, the cnarge transport
through the semiconductor becomes practically a unipolar flow of -

injected holes fhrough the bulk of the semiconductor.



For an MSM structure biased above Vp’ only the continuity.
equation for injected holes given by [34] needs to be considered:
2p (Xt =GUQ—UUU-lLJUﬂ.
at- pr? pr’ q ox p’
(3.4)

In Eq. 3.4, Gp is the hole generation rate, Up is the hole
recombination rate, p is the density of injected holes ahd Jp
is the hole conduction cur?ent density. At the steady state dc

conditions, %%—= 0 and kq. 3.4 can be integrated to give

] ,
J(0) = 3 =) +.IX[GD(X') - Up (") Jax! ‘
- (3.5)

where JT is the total current density and Jn is the é]ectron‘
thermionic-emission current density of the M2 contact. Ih‘
proper]y‘designed and 6perated'MSM structures, the electric field
is below the critical value for:ava1§nche breakdown,'and the 7

semiconductor temperature sis such that insignificant thermal

generation of mobile carriers takes place; hence:

p 3

L o o
Ip + L Le (%) = U () ]dx! << 0.1 Acn™? . (3.6)

Eq. 3.5 now simplifies to

34
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for current densities exceeding O.]l\cm\a.

The qnipo]ar charge transp:rt in Q Semiconductor’With
nonuni form electric field and mopile electron distribution has been
considered by Stratton [36]. Under non\equi1ibrium conditions,
he has shown that the total conduction current density 13‘91Ven‘by:

J

Iy o= au(T) n()E(x) + an(T)) )

T e dx (
dT_ (x)
D e
+ gn(x) gﬁf‘~”fg;A“ : (3.8)
e . A
S

£q. 3.8 is the Boltzman current equation and it contains terms
arising from drift, diffusion and thermal diffusion. The electron
temperature, To» s not’a uniqﬁ% function of the Tocal field; it
depends on JT.(if must tend to TC when JT tends to zero and the
barrier region approécheé thermal equilibrium) and can be determined
from the simultaneous solution of the equations for the current flow
and the'conservation of energy} Stratton [36] hqs also shown that

v and.D are related by the Einstein relation:

T kT
0(T) = iﬁlﬁ (3.9)

e q
if the spherically symmetrical part of the electron distribution
function in momentum space retains its Maxwellian shape under the
applied field céﬁditions. |
Assuming a-Maxwe]]ian'e1ectron~enekgy distribution-function,‘
electron scattering by acoustic phonons, adopting thermal
equilibrium boundary conditions and negiecting both the mobile

space charde and image force corrections, Stratton has evaluated
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the electron temperature in the barrier region of a forward and
reverse biasgd MS structures. For a small forward and reverse

current, the electron temperature is very close to the crystal

lTattice temperature, TC, everywhere. in the barrier region. For
a large reverse bias, Te peaks close to the MS interface and its
maximum value significantly excegds TC, while for large forward
bias Te becomes up to 30% ]essfthan Tc’ Interpreting Stratton's
results for the case of MSM structures, it can be expected that,
in the injecting contact region, the injected hole temperature,
T ., is cjose to TC, independent of the value of the local field,

P
and, in the collecting pbntact barrier, Tp is expected to be

significantly above Tc‘ ' /

The hole temperature directly affects the ther fusion
current, but'it only 1nd1rect1y affects the diffusion and drift

currents. Since the maximum .gradients of Tp are most likely to

occur close to the MS-interfaces [36], thermal diffusion is
expected to be negligibly small in comparison with drift and/or

diffusion through the whole semiconductor bulk. Consequently, if
. C

p) and D(Tp) can be found the

complex calculations of hole-temperature distributjon becomes

suitable approximations for (T

unnecessary, even for accurate charge transport studies. On

the 6fher hand, since"hot"holes have been shown to be a major
source of noise in MSM structures [46], and since the temperature
very strongly affects noise properties of"hot holes, Stratton's
approach, involving écatterinéiof injécted holes by acoustical

and optical phonohs, appears to be necessary for carrying out
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detailed noiselstudies.
In the barrier region of the injecting contact, the low-
field mobility, Mg and diffusion constant, DO, are thé best
approximations for “(Tp) and Q(Tp), respectively. In the low and
medium field fegiohs of the co]]ecting contact barrier, the following
approximation for the diffusion const%nt is given by ~ A
kT 1,552 34

D(TD) = HO("629[1 + E(‘E”J §Eﬂ ". (3.10)

where c is the velocity of longitudinal acoustic waves [47]. Eq.
(3.10) 1is derived by substituting the following expressions for
the field-dependent hole temperature and mobility [47] into the

Einstein relation:

g2, _.
T, o= T +(%) > (3.11)
"ot 2 31 o (3.12)

- 1lo”
poo= uo[] - 2( c ) 32

In the high field region near the collecting contact, the

" hole scattaring by optical phonons Qlows.down the growth of Tp and
the diffusion constént decreases with increasing electric field.
At field strengths of 40 - 60 kV/cm, Sigman and Gibbons [48] have
shown experimentally that the diffusidn constant of holes in
silicon is reduced by about 307 from its Tow-field value. In

view of small deviations from the . -field v/lue, it is felt that

NT.) = U ' (3.13)



is a satisfactory approximation for D(Tp), which in the low field

region reduces the éerror assoc1ated with neglecting thermal

diffusion (note that the diffusion and thermal diffusion current

components have opposite signs through most of the semiconductor).

In the highAfie1d régibn,.wherg carrier drift is the dominant
charge transport mechanism, Eq. (3.13) results in a negligible
error.

In most of the collecting contact barrier region the hole
temperature is an unambiguous function of the»e]éctric field and,
in analogy with the high field region of IMPATT diodes [25], the
temperéture dependent drift velocity of holes, v(Tp), can be

approximated b§ the measured field-dependent drift velocity
) . (3.14)

In the close vicinity of the M2 contact, the hole temperature
decreases Eapidly fo the metal temperature, <hile the electric
field still increases. Accordingly Eq. 3.14 becomes a poor
approximatioh for v(Tp) in this region. However, the resu]t%ng
error will be negligible since the region occupies, at most, a
few percent of the total semiconductor width. |

In view of the previous discussions, the total conduction
current in the semiconductor of the M¢ structure biased above

Vp can be described by:

LA
>
LA
>

Jp = qup(E(X) - kKT, Qgéél-; 0
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J = qp(x)v(E,TC) - uOkT

T C

(3.15)

where X is the position of the poteniial energy maximum separating
the barrier region; of the injecting and collecting contacts.

In real semiconductors, some of the injected holes are
effectively immobilized in trapping centers; thus, they only

affect the electric field strength. For a single set of traps,

+ \
L) = Gl v p(x) + py(0)] (3.16)
where‘NB is the density of ionized effective impurities, and ﬁt(x)

is the concentration of trapped holes [49] given by:

'p(x)Ht

Pt(X) = W ' ' (3.17)

In Eq. (3.17), N, is the concentration of traps and

t

3

k = gNVexp(wv~wt)/kTc (3.18)

vihere wt is fhe trap energy level, g is its degeneracy factor, and
Wy, is the upper-most energy level in the valence band. If the

. concentration of trapping centers (Au,Cu,Fe and Zn atoms are
effective trapping centers in Si) is comparable to or larger than

the concentration of injected holes, then not onlty will higher

~
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voltages (f{e]ds) be needed to reach the same stationary currents,
But also the dynamical behavior of the MSM structures will be
affected [50]. If the trap concentration.is less than the
concentration of injected ho]eé, which is usually true for the
MSM structures at current densi@y levels exceeding 0.1 Acm'z,

the structure can be regarded as trap free, and then Poisson's

equation simplifies to
X +
= g+ p(0) (3.19)

3.3 Basic Dynamic Equations

The dynamic behavior of MSH structures biased above Vp is
described by Poissdh's‘equation and the contipyity equation for
b <. When én ac voltage is impressed on-a steady-state dc bias
vo.tage the physical quantities described in the previous section
(e.g. p,E,Jp,etc.) become position and time dependent. Heglecting
thermal and avalanche: generation, recombination and trapping

processes, the above mentioned equations take the form

ELGEL = iy + p(x,t)) (3.20)
{' 3d_(x,t)
: 'a)é’t) - _'E]q— ax (3.21)

To describe the small-signal operation, Egs. 3.20 and 3.21

can be simplified by using the method of small perturbation of the

4



dc components [51]. According to this method, the physical
quantities in Eqs. 3.20 and 3.21 can be expressed as the sum of
a time independent terw (dc component) and a small oscillating
(ac) component, of the form 1

v
1

Cix,t) = CO(X) + Ef(x)ej“‘t {3.22)

where C 1s the physical quantity (e.qg. p,E,Jp), the zevo subscripts
indicate the dc components and tilde denotes the small-signal
perturbation of the steady-state value. The quantities with the
tilde are, in general, complex functions of positions. OBy
substituting from Eq. (3.22) into Eqs; (3.20" and (3.21), obtain
two sets of equations for the dc quantities and the small-signal

ac quantities.

The resulting small-signal equations a-e

S T L) (3.23)
33 (x)
jup(x) = %wg;w . ‘ (3.24)

&

From Eqs. (3.23) and (3.24), it follows that,

N\, N
Jp(x) + Jue E(x) =

e

(3.25)

41

Equation (3.25) states the sum of the conduction and the displacement
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currents, BT (the total current) is constant, independent of position.
Applying the small-signal perturbation method to the Boltzman current.
equation (Eq. (3.15), under time varying conditions) yields, the

following expression for jp:

Ty = av (0BG + apy (0 (E(x) - qp k)

p 0 p dx
(3.26)
where - vo(x) = ugEo(x) 3 0 s x < X
Volx) = (X)E(x) s Xo s % s L (3.27)

is the dc drift velocity for holes, and iy is the differential

mobility, given by:

dv_(x)

\
Eo;rx-)- E (3.28)

o

Ud(x) =

(o

) . 9
Substituting from Eq. (3.27) into Eq. (3.25), yields

N
¥4

Bp= avg(IB0 - v, B ¢ (ap ()i () + sur)E(x)

(3.2u)
A\

In summary, the charge transport properties of MSH strqptures
biased beyond punchéthroth yo1tage§} are described.by Poisson's
équafjon and the total current equatjon of the form (Egs. (3.17)
and (3.19)) for the dc case and (Egs. (3.23) and (3.29)) for the

small signal ac case. i o &
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CHAPTER 1V

BOUNDARY CONDITIONS

4.1 Simplified Boundary Conditions

The charge transport in MSM structures has been investigated
in the preceding chapter and it has, been shown that the total

current equation together with Poisson's eﬁuation describe the

t x‘f}.

physical properties of the stru;ture. Regarding the total
current density as a parameter, Egs. (3.17) and (3.19) form a
system of two non-linear differential equations for-the electric
field £ and the hole concentration p. Two boundary conditions
are, therefore, needed to determine uniquely the solution of the
above mentioned equations.

In the metal, the concentration of mobile carriers is
extremely large (n 1022 cm_3) and hence the physical conditions
of the mobile carrier system\(e,g. the carrier concentration,
energy distribution , carrier fluxes and emissioq processes) are
not affected by any current flow. Therefore, any physical
condftion of the metal which can be analytically related to the
physical conditions of the neighbouring semiconductor can serve

a boundary condition.

The mobile carriers in the metal form a highly degenerate

/< m which cannot be analytically described. Howeber, only a
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small fraction of mobile carriers from the metal can overcome the
interface potential barrier (formed at the metallurgical junction
of the MS contact). As a consequence, the mobile carriers in the
semiconductor side form a non-degenerate system which obeys
Maxwell-Boltzmann statistics. Under therma]iequilibrium
conditions, when the carrier flux emitted from the metal into the
semiconductor is equal to the carrier flux emitfed from tﬁe
semiconductor, both the flux and the concentration of mobile
carriers, at the semjconductor boundary layer, are simply related
to the physical conditions of mobile carriers in the semiconductor
bulk. '

. The equilibrium conditions of the ideal gas at the MS
interface have been considered by'Spcnke [27] who adopted the
thermal equilibrium interface concentration aé a boundary condition
for che MS structure. In a study on ohmic contacts, Stockmann [49]
has pointed out that the thermal-equilibrium boundary concentration
is a satisfactory approximation for the boundary condition 6h1y
if the net current crossing the MS interface is sufficient]yﬁémal1
compared to the thermal emission‘current of the contact. Fan [52],
discussed the conditions of £he MS contact under farge current

densities. He arrived at the following boundary concentration

\ 0| -
Pay = Pgg t = 4.1
B © WV

where PBo is the thermal equilibrium boundary concentration, JC is

the net conduction current crossing the interface, and Vth = (—EI;Q]/Z
A
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-is the thermal velocity of injected holes; the minus (plus) sign
holds if the net current flows into (out of) the semiconductor.
bulk. Equation (4.1) is obtained from the assumption that the
emission current from the metal surface is not affected by the
physical conditions of the adjacent semiconductor. The boundary
concentration as given by Eq. (4.1) reduces to zero at contact
saturation current which does not seem to be physically justifiab]e.'

At the present time, the boundary conditions have n;E been
adequately described for purposes of an accurate investigation

of the electrical behavior of MSM structures. In an attempt to
arrive at’a proper formulation of the bdundary conditions at
both‘MS contacts, the flux interchange between the metal and
neighboring semiconductor has been theoretically investigated and
is presented in the next section. |

/

4.2 Current Dependent Boundary Concentration

[y

The effect of surface recombinatinn and Earrier scattering
on the charge distribution in the “atev . or -f the semiconductor
may be investigated by considering -he f1 { interchange between
the metal and the semiconductor bulk via anfintervenfﬁglinterface
transition layer. The transition of the physical parqmetefs
between those of the semiconductor bulk and those of the metal
is assumed to occur within a thin interfacial layer formed around
the metallurgical junction of the MS contact as illustrated in

Fig. 4.1. The width of the interfacial layer is assumed to be of
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- the order of one mean free path of injected holes (~ 50 E). In
Fig. 4.1, MM' and SS' are the metal and semiconductor 1nterfacé
boundaries, respectively. The reflection coefficient r, at the
metal surface, is defined as the probability that a single hole
in a single collision with the metal atoms will be sent back to
‘the semiconductor rather than entering the metal. Likewise, the
-reflection coefficient b, is defined as the probability that a
'sing1e‘hole upon entering thé semiconductor bulk from the metal
side is back scattered and reappears at the metal surface. A and
G are the net fluxes entering the interfacial layer from the
semiconductor and'the metal sides. The total flux F] flowing from

the metal boundary MM' towards the semiconductor boundary SS',

M S
b
r F]
e .
_6 -
Metal — Semiconductor
2
M X

k- Interfacial layer e

Fig. 4.1 Flux interchange at the interfacial
boundary layer

and the total flux F2 flowing in the opposite direction can be
obtained by noting that F] is made up of a transmitted part of
the incident flux G, plus that part of F2 which is reflected by

the metal suface, whereby
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Fyo= (3 - r)G+ rF, (4.2)
A
Similarly
Fo = (1~ b)A + bF, (4.3)
, . N
Solving Eqs. (4.2) and (4.3) for F] and F2, gives
_ 1-r 1-b)r
IR gy R g p oy (4.4)
_ {1-r)b (1-b

The total flux, Ase , flowing from the semiconductor boundary SS'

m
into the interior of the semiconductor is made up of the transmitted

part of F] pfus the reflected part of A, i.e.

= (1-b)F

Asem 1 + bA . (4.6)

Similarly, the total flux, Gm,«1eaving the- metal surface to the
interior of the metal is given by

G, = (]~r)F2 + rG : ‘ (4.7)

The total conduction current, JC, in the interfacial Tayer is made
up of the difference between the total fluxes flowing in both

directions, i.e.,
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According to the current continuity requirement, the total

conduction current at any particular boundary is constant, i.e.,

In terms of the total incident fluxes A and G, and from Eqs. (4.4),

(4.5) and (4.8), the total conduction current can be expressed as

1-b)(1-r

o= A0IEn) g (4.10)

In thermal-equilibrium, when no ne’ rrent- flows, the total
flux crossing the interfacial layer in one direction must be equal

to the flux in the opposite direction, i.a.

Flo = Fogs By = Bp» A = A (4.11a)
aad from Eq. (4.10),
AO = GO (4.11b)

For an MS contact with a barrier height of a few kT, the thermal
equilibrium boundary concentration at the SS' boundary is given by

Eq. (2.1) as
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Py = NV exp - (@p(kT) (4.12)
Since Pg, << Nv’ the Maxwell-Boltzmann distribution function
describes well the properties of the ideal gés of injected holes .
[53]. According to the equilibrium theory of an ideal gas, one
half of the injected holes moves in thg,positive X direction,
while the other half moves in the oppésite direction (one dimensional
ﬁode] only is considered), and the average velocity of injected

- holes which is the same in both directions is given by

o= C
Vih = 3 (4.13)
where C = (%%;J]/Z is the mean thermal velocity [53]. Consequently

the ;herma]-equi]ibrium fluxes AO and GO are given by

A = G 5 A | (4.14)

If a net currer® flows ‘across the MS contacts of the MSM
structure (as a result of an applied voltage), the thermal
equilibrium is diéturbed‘and the two fluxes crossing the boundary
layer are no longer equal. | Since there is a huge reservoir of
free carriers in the metal side, fhe bhysica] conditions (e.q.
carrier concentration, electric field and potential energy.
distribution) are unaffected by any curfént flow and, therefore,
the total flux G remains practically unchanged from its thermal-

equilibrium value, i.e.



p
G = 6 = -B° (4.15)

In general, the distribution function of injected holes, in the
semiconductor side, deviates from the Maxwellian form due to the
current flow. On average, there will be pJ holes at the
semiconductor surface S$SS' moving with average velocity VJ in the
positive x direction and pj holes moving with average velocity |

Vj in the opposite direction. Thus,

Asem RALR ;0 A= AR (4.16a)

and

! = M - = —-9—- '

where Ppg? is the interface boundary concentration of injected

holes at a given current level. According to Egs. (4.16a) and

(4.16b), the interface concentration Pgg> 18

(4.17)

%
0]
3

<i|I=

Solving Eqgs. (4.4), (4.5), (4.6),-(4.8) and (4:15) for A and A_ .,

one obtains

o Py C
1-rb - | C Bo
A EDICE) BRI (4.18)
pg C i 13|

Acem = 74 " (T-1)(1-b) SN /



Substituting Eqs.(4.17) and (4.18) into Eq. (4.15) yields

1 Pae o (17a) (=rb) (reb-orb) 1]
pBJ . {“‘[1*'" (]+a') ¢ }
Vg (1-r)(1-b) |

5 (4.20)
vj :
where o = T is a numerical factor of the order of unity, and minus .
J -
(plus) sign holds if the net carrier fTux flows into (out of) the
semiconductor bulk.
Expression (4.20), is a general current dependent boundary
~concentration at both forward and reverse biased contacts. However.
if the net current density is small compared to the contact emission

apyC
current EO , the hole concentration at the semiconductor surface

SS' is scarcely changed by the current flow and the distribution
function of injected holes deviates only slightly from Maxwellian

form. Therefore,
vV, = v, = g— ;oo = ] (4.21)

while pj will be less than Py to satisfy the equation

J .
(py - p)) = (4.22)

q()

O

S et

At cugrent densities of the order of the confact emission
gp X
current go , the distribution function of injected holes is

highly disturbed from Maxwellian and the system is far from the

thermal-equilibrium one. The distribution function describing
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such a system is dependent on the particular Schottky barrier.
For Schottky barriers with thin interfacial layers, Stratton [36],
"~ has shown that the distribution function of electrons deviates

only slightly from Maxwellian if elastic phonon interactions

dominatgatheselectron scattering mechanism. In a study on the

R e ¢ -;Ifk‘,\. I‘

pt - apd cold electrons in Schottky barriers, with
¥

' =}bfayer} Stratton has shown that foh small forward
}7g~e1ectrsy temperature, Te,»is close to'%he crystal
1a£ti;é'¥%ﬁborature, T . averywhere in the barrier region. For
“large ceverse bias, the electron temperature peaks close to the
MS interface and its maximu: .alue significantly gxcéeds the
crystal temperature. For large forward bias, on the dther hand,
T, becomes slightly less than TC (not more than 30%). :Interpreting
Stratton's results for the MSM structyres, one might expect that in
the injecting contact region the temperature of injected holes, Tp,
is close to TC independent of the amplitude of the conduction
current, and, in the collecting contact barrier region, Tp is
expected to be significantly above T;; Assuming that a single,
é]astic, electron-phonon. scattering mechanism takes place at the MS

interface layer, the distribution function of injected holes can

be assumed to remain Maxweilian even at high currents and hence

¢
v = v' = NB. . >
v, V] 5 yooa 1 ( (4.23)
_ 8kT
where Cp = —;ag~is the mean thermal velocity of injected holes
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and Tp is the hole temperature which can be difte. nt at the
two MS interfaces. Applying the preceding argument to Eq. (4.20),

the interfacé boundary concentration becomes

C _ch 1+r+b-3rb

= el . 4,24
N PBo ¢, g, (77 (1-D) (4.24)
Equation (4.18) shows that the flux A entering the interfacial

layer from the semiconductor bulk decreases as the net conduction
curvent JC increases. If the physical conditions in the semiconductor

are such that no flux from the semiconductor bulk enters the inter-

facial Tayer, i.e., A = 0, the saturation criirnt

- PgoC (1-b
1

r
Jeat 5 . (4.25)

{(1-
~-br
will be reached. Combining Egs. (4.24) and (4.25), the boundary

concentration may be written as

J 2J

C c C -
Ppy = P (1 ) = - (3728)

wheré the upper (lower) signs hold for the injecting (collecting)

contact.
) “

Substituting from Eqs. (4.12) and (4.13) for Pg, @nd C into

Eq. (4.25), the saturation current density takes the form

. _a* (1-r)(1-b) -2 L
, Jsat = A K*TTjéijv-T exp - = | (4.27)

* 4ﬂqk£m* ‘
where A = 5 is the Richardson constant given by Crowell [32].
h

H
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- - *
The expression Ll»f%Nlbbl»A closely resembles the effective

Richardson constant, A** discussed in Chapter II.

Accordinq‘to Fq. (4.26), the boundary concentration PRy’
depends on the physical properties of the ideal MS contact (which.
determine the equilibrium contact concentration pBo)’ the
temperature of injected carriers (which determfnes the carrier
thermal velocity Cp), the properties of thq interfacial layer (which
determines the saturation current), and the COhduction current. As
will be shown in the numerical study (to be described in the next
chapter), the physical properties of the MSM structure are dominated
by the physical conditions of the forward biased 1nJOLt1P9 contact.
At this contact, the temperature of 1nJectgd holes dev1atu only

slightly from the crysta1 tempefature, hence Cp can be well

. approximated by C. Thus, Eq. 4.26 reduces to

JC 2JC
t) * 7 ] (4.28)
sa

Pgy = Pgoll ¥ 3

,'To obtain the boundary concentration at various current densities,
the saturation current density must be determined first.

The saturation current can be theoretically evaluated by
investigating the charge transport‘iﬁ the interfacial layer. For
accurate transport studies, the scattering ptocessés of injected
holes by optical and acoustical phonons fcaused by the vibration
of'tﬁgﬁéﬁysta1 1attice) and the quantum mechanical reflection
process must be taken into considerafion. On the other ha~d, the

saturation current density may be obtained from the measured J-V



characteristic of a particular structurc. It is. not the aim of

this thesis to describékthé transport properties in the interface
layer, hence the measured saturation current density will be used
here to determine the boundary concentration. For PtSi-nSi contacts,
the measured saturation current density of injected holes, Jst = 200 A
On~2, has been reported by Andrews and Lepse]ter [42]. The boundary
concéntrations for PEST-nSi-Ptsi, (with Jg, = 200 A en™?), as given

by Fq. 4~27 are thus reduced to

r ]
Pay = Pgo ° M. (4.29)
Poo 1 12,-1" -1
where X = ('J—f" - ";‘) = 0.2334 x 10 “A " cm
sat At

The above relations have been derived for the case of steady
state dc charge transport, under the assumption that, for currents
uégto saturation level, the mean thermal velocity of holes crossing
the MS interface layer and the reflection probability for holes’
incident on the semiconductor boundary, b, and the metaT boundary,
r, remain unchanged.

If an ac voltage is superimposed upon the dc bias, an
alternating current will flow through the structure, and the boundary
concentration becomes time dependent. The time dependent boundary
concentratiéns at e two MS interfaces of the PtSi-nSi-PtS
structure , may be obtaingg from Eq. (4.28) as

/

p((t)) = by T A I lxgot) (4.30)

2y

~
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Under small signal conditinns, the ac boundary concentration

/reduces to ~
Pe(d) = T ad (xg) o (4.31)

In Eqs. (4.29)"and (%.30), xg 1s the pos1t1on coordinate of the
MS interface and tilde denotes small signal quantities. |

P In most of the small signal studies of punch-~through transit
6f?m structures, it is assuméd that the boundary conceni ~1tion is
not affected Ly the ac conduction current 10,11,16 17 20,21). To
investigate this assumpt1or humerical factor k has been
1ntroduced‘4n Eq (4.3 ;. wnio takes the values betwéen zero and
unity. K - 1, implies that ¢} carrier conce?tratioh is fully R
affected by the conductic.i current as in dc case. k = 0, a;sumes
that the boundary concentration is not changed by the ac coﬁduction
cqrreht. The microwave activity of the MSM‘structureE?;ifSQnd
to_be affeéted by the variation of the ac boundary concentration

at the injecting contact. The detailed results of*sych an effect

Will be presented in Chapter IX.

s
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CHAPTER v
MATHEMATICAL MODEL At M "ICAL SOLUTION

Al

5.1 Mathenatical Model
T S <

(ed Charge transport equations

The one dimensional MSM structure is shown in Fig. 5.1,

i which the coordinates 0 and L represent the injecting and

collecting Contacts, respectively. The distribution of mobile
holes and the electric field profile within the MSM structures
can be obtained by solving two hasic equations, namely the

contfnuity equatioh for hb1es and. the Poisson equaf?on. For

_punched-thrbugh MSM structures, these equations (kgs. 3.21 and

3.7 ke the_form
N 3 _(x,t) ’
ot q 93X ’
BE ,t * (o | :
~"§§*’l- =.‘§(ND + p{x,t)) (5.2)
where,
- 'U‘?\
N9 00t) F quEd (G HRGGE) - 9D bl (5.3)
\

7/

Boundary conditioné are imposed at the ¢ontacts and are given in

terms”of the current-dependent boundary concentrations, as

_y

4:?9



J 2J

J) = (17 +52) + == 5.4
Pg! PBo AR (5.4)

where the t per  ower) signs hold for the injecting (c01iecting)

contact. | ce s
' S M2 [ ) "..\
w3 ﬂ.

n=-Si PtSi

L -V Y
DISTANCE (pm) '

Fig. 5.1 One dimensional MSM Structure
Ay -

(b) Mobility expression ] PR

4 !/

The carrier mobility is one of the fundamené&] parametérs
that can directly affect the electrical Lehavior of the MSM
structure. It is necessary, }herefore, to include in the analysis, ’
the variation of the hole mdbf]ity with the electric field E and
the¢doping concentration ND' According <0 the physical mode 1
described in Chapter 1il. the caFfTer mob11ity‘is>assumed to be
constant in the injection region, while in the rest of the semi-

conductor region the carrier mbbiTity is app%oximated by the

following expression E25]

My 2 Ny £/A)° 2
(T) = 1 + (m) + F&é/‘/)_\“)"* (E/B) (5.5)

¥

The room temperature values of the above quantities are:
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Uon=ax10% 3, 5= a.

4 ch—].

. (Tow field mobility) = 480 anéyTsec”

A=6.1x10

n

3 ch'], F=16andB=2.5x10 As the

temperature increases, iy decreases , the region of constant mobility
extends to higher eleclric fiélﬁs, the drift velocity saturates at
higher electric fields (saturation drift velocity is also referred
to as scattering limited velocity)and the scattering Timited

velocity seems to be $1ight?y reduced [66]. Assuming that holes

6

reach a scattering limited velocity of 7 x 10° cm sec~1 at an

Y 1

electric tield strength of 2 x ]OSJch— and taking into account the

previously mentioned features (by extrapolating the available
measured data),another set of values in expression"(s.s) is obtained
for T = 423 °K as u, = 200 cmZV_]sec"; N =4 x 1016, S = 81,

1 1

A=09x 105 Ve~ ,F=1.1and B =6.2 x 10" Vem!. Equation 5.5

i

with the sef of vaiues obtained at T = 423 °K is uged in the analysis

to investigate the temperature effects on the electrical behavior

of the MSM structures.
To obtain the J-V characteristic and the structure ac impedance

(admittance), the relation between the electrostatic potential and

’
.

the electric field strength

BV(xyt) . . ‘ L e
3 = - E(x,t) (5.6) | q%?
is used in the analysis.

The ‘analytical formilatigm and the numerical method of

solution of the mathematic: mpodel will_beudescribed'in the remainder

\

p
of this chapter. The analysis bg' discussed here is restricted
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‘to the steady state dc and small-signal ac conditions.

5.2 Limitation qf Analyt<cal Solutions

N\
-

The fundamental equations mentioned in the preceding section
are generally non-linear differential cquations and analytical
solutions in c]osed form cannot be found [n order to obtain

.‘4 ;' 1.“.
analytical so]ut1ons the following 51mp11fy1ng assumptions were

adopted in various studies: .

(1) The dependence of the carrier mobi]it; upon the
electric field and doping concentration %s simplified by assuming
constant drift velocity throughout the whole semiconductor region
[14,16]. 'F

(2) The diffusion component of the conduction current qs
neglected [5,10,16,17].

(3) Simplified boundary conditions are introduced in the '
interior of the structure instead of properly formulated
boundary conditions at the contacts [5,10].

| The above asumptions are usually unsatisfactory and can
Tead to serious errcrs in describing the actual behavior of the.
aevice. Perhabs the most unsatisfactory assumption'ﬁf a]] is
the first, since the MSM structures are usually made on lightly
dgbeQASem1conductors, and hence a low-field’ reg1on (where the
drift ¥elotity 1s f1e1d—dependent)a1ways existsa Other assumptions

become unsqt1sfuctory when descr1b1ng high current operation

\\TWh1ch is usua]]y the case for high frequency structures).
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Computer aided numerical solutions represent an alternative
'approach to the problem; the final aim is to achieve an “egéct”
solution of the most general character without any of the
conventional assumptions being {ntroduced. ‘The "exact" solution
allows the quantitative comparison with the analytical first
order theories and hence the validity of each simplifying
assumption can be investigated.

Serious difficulties are also encountered in numerical
investigations and have rendered the available numerical techniques
unsuitable for obtaining the desired "exact" solution. These
difficulties, which are éncountered even in the sfmp]e MS junction
case treated by Macdonald [35], are responsible for {ﬁ; acceptance
of some of the conventional dssumptions in the PN junction theory
[54~56]. Although mo#e %Sgprq1 and complete formulation of the
problem may be devised,;é%fﬂtion of the simplified set of
equations that takes into account carrier diffusion, the |
~dependence of carrier mobility upon electric field and doping
concentration together with properﬁy defined boundary conditions

at the contact will here be referred to as the "exact" solution.

5.3 DC and Small-Signal Boundary-Value Problems

Under dc conditions the fundamental equations (Eqs. (5.1
- (5.3)) simplify to the following forms A

8

" (x) (E)E_(X) 3 (x)
i A (5.7)



: ~— = Hly +op,(x) 4 (5.6)
anhd '
Jolx) =, (5.9)

Equation (5.7) has been rearranged in a form more convenient for

numerical computations. The dc boundary condition is

pg(dy) = (17 3520 o (5.10)
where upper (lower) signs hold for the injecting (collecting)
contact. Regar%jpg the conduction currgnt JC as a parameter Eqgs.
(5.7) - (S.ngf%é;m a fwo;pOint bounda%} value pr6b1em; its
solution yields the dc beHav?gr of the structure., The dc solution
is required in this work for two reasons:

(1) To study the dc properties and to describe th% static
characteristic of the MS sé%ictures.
(2) To furnish the initial va]ues/pecessary for performing
the small~signal solution. |
" In sma11—signa1 operation, the fundamental eqguations
together with the boundary cdnditions, may be writtgn in the

following form (more convenient: for numerical studies):

" v (x)p(x) p_(x)u,(x) J
dgix} . _0 . v (2 . d + jwe)% T
p p Py
. (5.11)
n,



P y
and o= g (-Bg—v g«)J (5.13)

Regarding the total current as a paraweter Egs. (5.11) and (5.13)
form a two-point boundary value problem, which is similar in many
respects to the dc problem. Consequently the same numerical
technique can be used for both the dc and small~signal cases.

The numerical method of solution used to solve the boundary value

problems cited above will be described in the next sec’ion.

5.4 Numerical Techniques for the Solution of Boundary-Value

ProbTems

The usual algorithms for the solution of boundary -value
problems fall into two general classes: the finite-dit ‘ence
methods and the shooting method. -

The finite-difference methods 1ﬂvo1vg¥abproximation of the
differential equations at finite number of base points in the
total interval; each derivative is replaced by a difference
oﬁgrator. The system of differential equations is transformed
to a system of simu]taneoq; algebraic equations. If the system
of differential equationsis linear, then'the set of equations
generated is also linear. .The solution of the linear systém of
algebraic equations is simp]e'and can easily be obtained:
Unfortunately, when the differential equations are non-linear,

the system of finite difference eguations is also non-linear. The
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generation of any solution of non-Tinear cquations may be very
difficult, especially when many base points are used. In some
cases [57], one can Tlinearize the equations, solve the equations
iteratively, then relinearize about the new solution, find a new
solution iteratively, etc. In effect, a éomp]ex problem has been
replaced by another problem which is somewhat Tess complex.

The shooting methods reduce the solution of a boundary
value problem to the iterative solution of an initial-value
problem [58]. The usual approach involves a trial-and~error
procedure. That boundary point having the most known conditions
is selected as the initial point. Any other mic 5 initial
conditions are assumed and the initial-value problem is solved
using one of the step-by-step proceaures (e.g. Runge Kutta
algorithm, Euler method, Hamming Predict or corrector method
etc.,}. Unless the computed solution agrees with the known
boundary condition (unlikely on the first try), the initial
conditions are adjusted and the problem is solved agaihmg=The
process is repeated until the assumed initia] conditions yield,
within the specified tolerances, a solution that agrees with the
known boundary conditions,

To use the shooting methods for solving boundary value
problems, thé solution of the initial value problems must be
obtained with sufficient accuracy such thét the subsequent decisions
basea on them can be justified. Such a requirement is not always
warranted. It can happen that a sma]T variation in the initial

conditions results in large variations in the values obtained by

7
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the so]utioh. Thercfore; even a small error (e.g. round off) at
oﬁe point can make the subsequently computed values at another
point meaningless. The initial value problems for a particular
set of differential equations can bo "unstable" even thougﬁ
boundary value problems for the same set of equations may be

perfectly stable. It is not advisable, in these cases, to attempt

s~

the solution of the boundaﬁy problem via a sequence of initial
value problems, but it would be ; referable to use a method that
approximates the boundary value problem (e.g. finite-difference
methods) .

The solution of two-point boundary value problems (discusse in.
the previous section) by means of the initial value method (if stable
and accurate solutions can be found) may be carried out in either
direction (i.e. from 0 to L or from L to 6) since the conditions at
both contacts are symmetrical. For unipolar charge transport
devices (e.g -vunched-through MSM structures and their semiconductor
alternatives), a stable solution for the two-boundary value problem
can always be i d by initial-value methods. Ih the case of
bipolar transport devices (géne%a1 PN junctions) where e]ectroné
ana holes contribute to the charge transpOﬁt, the forward Soﬁution
(from 0 to L) or the backward solution (from L to 0), using the
initial-value approach is usually unstable. In these devices, the
holes are responsible for the instabi]jty of the forward solution,

‘Ezsde the electrons are responsible for the instability of the
_backward solution.

.
In this study, a one-step method using a Runge-Kutta fourth
. Y
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\

order a]gorithnhas been used to solve the dc and small-signal two-
point boundary value problems. An accurate and stabTe solution

has béen obtained by performing backward integration (i.e. from

the reverse-biased contact towards the forward-biased contact).

A detailed analysis of the accurdacy ind stability of tﬁe obtained

solution is described in Appendix A, In the next scction, the

outline of the numerical method being used will be described.

5.5 Qutline of the Mumerical Method

The complete iteration o....ie of the numeo]ution

e

fgi the dc two-point boundary value problem i shSWn in Fig. 5.2.
The structure's physical parameters (c.qg. ND and L) together with
the total conduction current density, JC, are first specified

and the applied terminal voltage is determined at the completion
of the integration proc;d&ref.'To begin the computatibn, an
initial guess for the electric field, EO, at the reverse biased
contact is assigned. The hole mobility, . (E), and the drift
velocity v, are computed as a function of positjon by using

Eq. (5.5). Knowing these values Egs. (5.7) and (5.8) are solved
simultaneously by using RKGfourth order method. The integration
of Eqs. (5.7) and (5.8) is continued until the desired semi-
conductor width has Seen reached, where it is checked whether or
not the specified boundary condition (Eq. 5.4) is met. If the
boundary condition requirement has not been closely met (within a

specified tolerance) another guess value for EO at the contact is



L, ND and JO are specified

The boundary concentrations are calculated
from Lq. 5-10

An initial value for EQ is gues ~d ‘

The mobility u(E) and the drift velecity v(E)
are calculated from Egs. 5.5 and 3.27 _

Eqs. 5-~7 and 5-8 are numerically integrated by
RXG fourth order method

Initial better starting

value is obtained by Bisection
method

v

Compute the electrostatic potential V(x) from
Eq. 5.6 and print p(x), E{x) and V(x)

Fig. 5.2: Overall Iterative Scheme for DC Calculations.
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assigned and the numerical integration is repeated until the
solution p(x), satisfies the proper boundary condition.’

Al though the initial value FV(L) Vit s tisfies the desired
boundary condition Ppy at x = L for » given choicé of J and'L can

often be estimated quite closely, obldining accurate results
) ¥

usually requires several itevations. In order to hasten the
iterapion procedure, the bisection iteration method is used here
[61].

The complete iteration scheme of the numerical method of
solution for the small-signal boundary value problem is shown.in
Fig. L.3. The numerical method described for the dc case can be
applied to the small-signal case with slight modification. First,
the d¢ solution for a soecific structure parameter and dc conduction
current density is obtained, then the dc guantities, po(x) and
Eo(x), needed in the small-signal computation, are'approximated by
natural cubic spline pp]ynomié]s [59]. To obtain such polynomials,
the total semiconductor width is divided intn (N;1) subintervals
'by N points (abgcissai). The set of N functionaj values F1, FE’

) FN‘(for b(x) and E(x)) and the* corresponding coordinates

-----

X1 Xp) ses Xy are then fed to a natural~cubic spline -subroutine

1

and an output array C of dimension (3,(H-1)) corresponding to Py -
and Eo is obtained. In the ith interval [xi,'x1+]], e spline:

interpolate, F(x) is given by:

3 2

F(x) = C3’%fX~X1) + 0y 1 0ex)T O L (exy)

2 4i

+ F(x;) [5.14)

\
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PO x)

and [)
natural cubic spline

x) are interpolated by
suhroutine

2

]

v

JT is specified |

~ T 2 1
e N E(L) is guessed '

v | :

“

]

uO(E) and

J_and p[J are calculated from fas. 5,15
and 5.13
(E) are computed from Egs. 5.5

and 3.28

v

Egs.

[

5.117 and 5

L2 are 0 ~arically integrated
by. RKG me \

p

av)
J_and pBJ at x

= O wre compufr1 from Egs. 5.15
and 5

as iBBJ - plo)l<é
been reached

for E(L) ic obtained from
Bisevtion nethod

/
Initjal better starting valuei
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) frop Eq. 5.28 and print p(x)

and V(x)

Fig. 5.3:

Overall Iterative Procedure for Small-Signal
AC Calculations.

Wi

2



This routine was tested using data from natural cubic splines over
the in‘~rval [0.1] and from these tests, near machine accuracy was’
obtained for all problems [GO]. For‘our data, the 1ntcrpo1ated

40 ' ,\,
values have bonn tompdred wWith the exact]y calculated resulgs for 4

number of points within each suhintorv$1,_and an agréom3%t up to
the,sixth_digit was obta1ned Fof all tpsted funct10na] values.

. Hav;ng obtained the dc coeff1c1ents For p (x )~and Eo(x) thiroughout
the total specified interval, the small-signal solution can be
obtqinet by specifying the toté1 ac current dgn;ity JT‘and the
terminal ac Qo]tage 1s determined at the end otwthénintegratton

procedure. Also the device imped ‘admittance) can then be

-

obtainedfl S1nco the ac quant1t1< netally Comp1ex funrtl

[§

of position, SF is taken as a referente phasor lying in* the -

S \ - v
4pos1t1ve real ax1s i Q R JT ])ﬂf To beg he ac computdt10n, an
1n1t1a1 guess for E(L) is- ﬁssumed and ‘the a ”éonduct10n curreht
vdens1ty JC at the contact 1s. computed from the equat1on
: e %\10 A :
; "\J “k‘;;\}‘ :;b . a, ‘_‘ .
&.}]C = JT“L;—- Juwek A ,v | - | “(5~]5)\
6 ! 0 , C ' ~

_and the ac boundary concentrat1on 1s. then obta1ned from Eq (5.13)..

The carrier u: and d1fferent1al bilities p and-ud necessary '
By 0 A
for the ac ca]cu]at1ons are obta1ned from Egs. (5.5) and (3.28)

respect1ve1y Knowing the aBove«ment1oned qyantities Fas. (5.11)

and (5.12)-are simultaneously solved using a RK fourth order method.
The integration of (5.11) and (5.12) is cgntinued until the end of
. . . /\/ .
the interval is reached where the ac conduction current JC is computed
. 5 i ) - .
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from £q. (5.15). The ac boundury concentration at the forward

=

biaged‘contact is then obtained from Eq. (5.13). The calcuTated

.f,‘

boundary concentrat10n is chocked w1th the pert1nenr value

‘\\,'

L ,
wbnmned frem the soTution of Eq. (5.11). If the two values agree
within certain specified tolerances, then the boundary condition

H»
is met and Eq. (5.6) can.be intedrated to obtain the terminal ac

voltage. If the boundary condition is not closely het, another
ay
guess for E(L)\1s assigried and the pyocedure is repeated until the

qundavy cond1t1on is Gigﬁe]y met. T, - | ;

A

Usua]]y a large numbé%iof ﬂterht1ons must be tried before K
the proper value 15 reached. Ths 1te¥at1on proccdure for the acg

case 1s~more dwff1cu4z’than that for thc dc case. " In the dc casea‘
P !.-, ‘ W
the quant1t1es are raal and\hence & quess of. ane value only is

/

réquired For the ac é%%e, onAthe oth€%~hand;‘the ac field is a

phaqor quantity and afgaar.of va1ues must be. gues%ed s1mu1tane0u51v\

- u\ngh
‘ Un]fss -8 fa1r1y:c]056 guess is used, the 1t9rat10n prOCedure may
/~

'gnot’converge or may~r99u1re an excesswve]y long: tine for L¥

convergence. To overcome this d1ff1&;(ty, af lose initfal va]ue

- s

. V]
for E(L) is obta1ned by perform1ng an. approx1mate small- sWQna1

solution where the ac d1ffus1on cunr;ntxcomponent is neg]ected

LT 1
* R

4
vHav1ng obtained a reasOnab]e guess (the OutCOne of the approx1mate

‘solut19n) to start the f1rst 1terat1on, 1mproVed va]UES for E(L)
)

are then obta1ned by . app]y1nq the bwsett1on iteration method [61]

In the next section, a smmpl:fled small-signal approximate
i / N .

so]ution~wi11:be described. - i ‘

30

o
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5.6 Qﬂgfoximatelémall:Sjjpn] Humerical Solution

An approximate small-signal solution is needed to obtain
a fa1\1v good dpprox1ratioh for the ac electric field E(L) which
then can serve as an initial guess of the num§i1Cd1 so]ut1on The
-approx1mate éO]ut1on also helps investigation of the simplifying
assumption of neglen{ing ac'diffusioh.

e,

. If the dc diskdusion current ic neglected, Eqs. (5.11) and

/
(/"l . 4. .f
\UR() (po(xVig(x) ~ FIECDT ™ (5.76)
E TR
- Clapgo) + RG] 8 (57)
5 v S TR
. ALL ;;X AT N » , ' U‘ ~ ﬂ‘ 4 o o v e

which is an ord1?ary 11near dwfferent1a1 equat1on W143 non- aonstant

¢ »\ R K
coefficients. The so]utL%P of Eq. (5.17) is given by: .
.\,(\‘/( ) ' : IZ ) : JT f)([ J‘( Qb)d ] dx ! }
E(x) = exp ~ [ (atjb)dx'{C + — expf (atjb)dx" ——(-vy .
- 51 O . € 0 ; Vo X . \\«1‘;
i . : A ‘ ) - . . \
. oo e (5.18) 2 A\
- LY ‘ N
where ) . .
ap (x)u gy (x) ; o
a(x) % (5.19) . *
- v 0 »
L ] | ; '=l
b(x) = W . (5.20).

- and C is the constant of integration to be determined from the initial

-



. Y d
have numerically integrated the dc conduction current equation

‘0r1g1n (x fO)-and Bj using E = 0 and e GET—at‘mhe-barrlsr

73
‘ , N .
conditions. To obtain the solution E(x) (of Eq. 5.18), suitable
initial condif?ons must be .properly féund. :
An ana1ytica]:‘ o T ignal study- of a punch- thvough p np
Structure haé“beé;'réb$?  by lr1ght and Su;;an [YO] In this )

study thc 1njcct1on rcgwon-1s ncc]ected and the barrijer maximum

is regarded as an effective source plane. Thesc authors have
further assumed that the ac electric field at the effective source
plane modulates only the charge velocity and nof the charge density.

Cohsequent]y,tha conduction current injected at the barrier maximuim

V)

is in pHase with the Tocal ag electric field E(o), i.e. o
= ‘ _ A

vihere

5 = ;9'0 o0 (5.22)

v

is an effectiveismall-signal anduc?fvity of the source.plane. In

os 15 the dc injection vel8City of mobile holes at the

(5.22) v
barrier maximum positiog. To obtain'vos, Wright and Sultahi[loj

and Poisson's equat1on by considéring the barrier max1mum as
dp -J
-0

maX1mum as 1n1t1a1 conditions.. By %electing the va1ue of p (o) at-

-~

fhe barr1er maximum 'so as to give se1f cons1stent Jo1ut1one for\"Lm
( SRR 4
botb cquations, they have obtained v os @S S .

D, dp . - -
Rl | o (5.23)

|
0 X x=0
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The ac electric field at the effective source plane is then given

by
o ‘ JT ”
E(o) = -t ' (5.24)
00 + ju)f/
VOS

Having obtained the initial vaiue of the alternating small-signal
electric f{e1d, right and Sultan have numerically integrated
Poisson's equét@on (Eq. (5.17)) by assum{ng that mobile holes are
injected through ;Hé barrier maximum with the velocity Voo and,

[y

thereafter, are considered to be transported to the opposite cosfitact.

by drift alone (;’? vo(x)‘: V111ft’ x > 0), B

By aQP]Y1”G the 9rev1ous analysis of Wright and Sultan, we

have faghd thawhe leﬂermd] integration of Eq. (5.17). Wﬂ

" great uncert inties. it bhe nf’]ghuourhood of the ban%unum

pOSitfon\ The reason for the discrepancies in the ca]cd]ated

results is due to the nealect of the dc carrier diffusion in tne

Tow~field regifi/of the structure. In the vicinity of the barrier
B -

Maximun position, ﬁhe drift velocity is small and mobile carriers

are m0v§ng through”this region main]y by diffusﬁon If the carrier |

Q ( od
31ffu910n 1s neg]ected the magnitude of the a ‘concéntrat1on of

‘1nJthed ho]es, p(x), as well as the "ac electpic fweld E(x)'is . too |

. - x>
considered, | \

. : o
The. aboye dis ru&%lon 1nd1cates that the carr1er ve1oc1ty

is one of the fundamewLa1 parameters which can d1rect1y affect the
o~
e]ectr1ca] behavior of the structure. Ana]yt1ca1 models wh1ch

-
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consider drift velocity and ncglect the diffusion transport

mechanism yield results which differ considerably from the actua)

. ' o S
behavior of the structure. An improvement in analytical small-- s :
.-‘\‘ Lo

signal modafs can be obtained 1f the effects of carr}cr d1ffu%1oh Ty

L3

upon the dc velocity of injected holes is considered. In the

Copw

present work, the small-signal ana]yt1uac study désceribed” by‘d‘“
Wright and Sultan has been modified to 1nc1ude thelinjection regw&n )
and the dc diffusion procesy es “in the entire sem#conductov bu1kw§

v

The modified model 19,5 based on. thc exact]y cal Luﬂated dc solut1on

déﬁtr1bed in, Sect1on 5 3 In this' medel; the total semwconductor -

-
\— N’

width is d1v1ded 1nt0 two reg10n5 The f1rst 1nc]ud05 the fnject30n

and. low- f1§1d regions and is referred to as the d\ffus1on affected

reg1Qp (;”"reg1on where. dc dwffusc(n current is more than 16?v p
‘the total conductwon cuﬁ*hnt The secoffd is the dr1ft (high-field)

‘“reg1on yhere carriers are being transported by drift a.ono (the

drift current is more than 9% of the total conduction current)f

Iﬁ the diffusion affected region, the tarrier effective‘Ve1pc1fy

. P
e

is defined as ' o | .
4 J i .
= — 0 ) ; ‘
Veff(x) qp‘;’(}‘y B - ‘ (524)

. . . A ! . { 1 ' .
which depends or both drift and diffusion. Follojiing the phystcal

assumption of lright and Sultan, that no carrier-modulation by the &
. M Y\ /" -

ac electric field'fagfgoglace in the injection Yegion, w& thus have
. et R

(x) =0 for0 <x < xﬁ ; (5.25)

-
35
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where 0 and x, are the position coordinates of the forward biased

r
From £q. (5.10)

MS interface and the barrier maximum respectively.
the ac electric field, in the injection region, is given by

* m

[*‘;;}I”)p (_7 R (5.26)

it

The initial value required to carrykéup the integration of £q. (5.17)

, can be obtéfﬁéq from £q (5.26) as

‘E (Ow) ‘-v‘:\““‘ e . B ..“.. - Tk (5 :27 )

where o( ) qvef{( )b (o), s tﬁe.effeétivéismall—ﬁignal.é%nductivity

of the forward MS contact, The total acJVthage is obtainedffrom the

’

1ntegrat1on of Eq. (5.17) as

o) = - E(X)dx' S (5.28)

A Runge Kutta, fourth order method has been used to obta1n
u

E(x) and V( ). The value of E( ) can then serve as the first initial

guess Yor the exact numerical sma]l-signal gp]ution.
R
3 ’ -
£

e
2
-

5.7 Summary | ' ) (\k/ ' .

» ' K

A mathematical model for'punch—tﬁrough MSM structures -has been

described. Carrier diffusion, velocity dependence on electric field

and doping. concentration, and properly defined boundary conditions



at theqS contacts are included in the model” Under.steady—state

de and‘&ﬂn]]—signa] conditions, the fundamental equations reduce

to a two-point boundary value problem. A numerical method of
solution for the two-point boq&ﬂary value problem has been

outlined. The ohtéined solution of this problem is referred to

as the "exact" solution. To carry out the exact sma]} signal
“solution a fairly clewe initial guess obtained from an approximdte )

model has to.be used.
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CHAPTLR VI
STATIC CHARACTERISTICS

A

] ;‘..a.*.
3

Bascd on the mathematics& model described in the previous chapter, |

i &.w

the dc¢ properties of a \ew MSM QtFUCtU)OC have been evaluated and Qijg
are described in this chapter The distribution of deqswty of
mobi]e holes, electric fie1dvand e1eetrostdt1e poten%&éﬁ are
useful in explaining the J-V characteristic of the structure. In
addition the distributjon of mebi]e hb1es and electric field are
required for the initial values of the small-signal solution.

The compﬂted results of the a'ove mentioned quantitiee
are graphiéa11y presented and discussed fer various PtSi-nSi-PtSi
structures. Symmetrical structures are assumed (i.e., having the
same cross-sectional area at both cg%lacts) and all resufts are
displayed with respect to unit cross-sectional area of the
contacts. Table (6.1) is a summary of the structute parameters
used in this 1nvestigation:

% The room temperature dc properties of ¢ “icture A

( = 4, 4 X 1014 cm -3 and L = 10 um) are deserip Cin therfb1low1ng

sectiony The effects of the physical parameteFS'are presented in
te A

Sect1on 2 th]e‘the temperature effects“on ‘the dc behavior of the

%

structure_are shown in Sect1on 3
N

- : :
6.1 DC Properties and J-V Characteristic of a Typical MSM Structure

F-4

The distribution of the density of injected holes inside
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SUMMARY OF STRUCTURL PARAMZTERS USED FOR THE UC STUDY

Structure Semiconductor wicl‘th, L(um) Doping Concentration
' ND(cm—3)
£y
A 10 ” 4. x 10t
-
B 1n 1.2 x 10"
c 7.9 - 1.2 x 10"
D 1.8 . L 2.5 x 10"
‘B 4 & 4.4 x 10"
oo “'1 .4 ' ' 1.2 X 1015
. :{‘ER;‘" lr:\:l Y )
\.tg‘ ',‘t; ’
y
M N - | - .
,\\\ SN T B o
\.\ — -
5, ~ ".
J S v ‘
N ! —
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the bulk of the semiconductor, at different current density levels,

is shown in Fig. 6.1(a). The density of holes varies by several

orders of maanitude through the semiconductor. Close to the MS

contacts, a steep concentration gradient occurs within a few

tenths of a micron from both contacts.Farther from the contacts,

the ‘concentration is a slowly varying function of position and

becomes nearly constant. According to Fig. 6.1(5), the bulk

concentration C1qn1f1cant1y ancreases Hlth increasing the current

density, e.g., if the current donJ1tv changes from 1 tq 10A cm 2,

12 -3

the bulk concentrat1on 1ncrease8‘fr%¥ 10 to 101J cm Since

the density of trapping ﬁtates in 4 pure uncompenqated silicon is
@

of the order of E@&? cm 7, the comﬁu?§d“o°u1t( ¢hould accuratt]y
. i I

characterize the real MSM structures fﬁ* rurrenﬁ’dens1t1es of

about 1 /\cm_2 ahd greater. In c]ose.prox1m1ty of the MS 1nterfaces,

.. the ho1e concentration changes on]y &, the current dens1t1es approach

’

the contact saturation value (the room’ temﬁé?%:uro saturation:
current density of PtSi-nSi-PtSi iqjapproximate]y 200;‘/\‘cm'2 [42]f.
This is c1e?r1y demonstrated by the J = 100 Acm_2 curve of Fig.
6.1(a). At the forward b1ased,contact hole concentrat1on 3ecreases
. with increasing-currént dens1ty, whide at the reversed- b1ased

; =

'contact this concentrat]on increases with 1n§reas1ng current \
s .

The decrease of the hole concentrat1on at the 1n3ect1ng contact

will be shown to have a s1gn1f1cant~effect on the resu1t1ng J—V

Gharacteristic, : o
. ’ N -t »;}

3

The electric field distribution inside the semiconductor

bulk of the-MSM structure, for different current density levels,-
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is illustrated in {19; 6.7(b). At low current density levels, the
electric field increases Iﬁnoar]y in st of the semiconducdor N\
bulk, the slope heing determined by the density of ionized donors.
Close to both contacts, the iniccted holes significantly affect

the e]ecttic fie]d'proft]c “which isihigh1y non-linear. At hfgd
currents, the non-1linear reqgion of the etqctric field extends

fariher from the COntdcts, and in the remainder of tne semiconductor
thgﬁs&opo of the Tinearly increasing ft@td% incréases with turront
Théfs}ope of tho e1ectr1c field is detorn1nod by tqe background

déﬁoy concentration “and the”density of mohile holes which is nearly
constant within:thgwrég}on. As. the current density incredses, tne '
point of zéro é]ectric fié]d (potCnt1a1 naxwmum) shifts towards

the forward biased contact (i e, tno 1nJectwon rogwon s reduced by
1ncreas1ng tﬁé current denstty) It w111 be shown that the _f T P‘
reduct1on of the 1n3ect10n regton “by 1ncreas1ng tHe curront denswty K
affects the micrownye act1v1ty of the structure' | ‘

12
F1gure 6.2/11lustrates in nore det(11 the physical conditions

1n the 1n3ect1ng contact reg1on. Tho variation of the ditrusion
and dr1ft cu;r;nt dens1ty components in the vicinity of the forqard
bias contact i shown in F1g 6 2( ) C]ose to thc contact, tho

o

dwffus1on current s, Targe, and weduces vcry raptd]y as the d1stance

from the contact 1ncrease> 1ht tne forward ‘contact, the drift

“ 1’ -
current cOmponent is negatf@e because carr1er§ dr1ft toward the

Iy

contact duo to the retardwng 11e1d in the 1nJect1on reg1on As the

~

distance increases the retarding foroéfon 1njected holes decreases

; and” a point 1is reached where the dntft current becomes exactly

BN
-

Co ~
*
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equal to zero. At the point of zero drift cu. vent (duc to 7ero -
elect ic ield) the mobile holes move only by di1fusidn mechanism
and the diffusion current is equal to the total conduction current.,
Beyond the zero field position <Jdrift = 0), the drif. current
increases until a point is reached where it becomes practically
equal to the total current (i.e., the diffusion current becomes
negligible). The éemiconductor region bounded by the forward biased
contact (x = 0) and the point X = X where the diffusion current
conﬁonentiis abproximate]y 107 of the total conduction curreht, s
here referred to as ‘the diffusion affected region. It is the
region where carrier tfansport is due to both the.diffusion and
drift mechanisms and 1t includes the injectioh region and part of
the low-field region Qherevthe carrier dr%ft veiotity'is
broportibna] to the electric field. It will be showﬁ later that
most of the power dissipation inside the MSM structure dccurs
within this region, and hence-it significantly affects theve1ectrica1
behavior of the devfce.'AAs the.current density increases, the width
of the dif%usion affected region varies from approximately 0.2 um
up t0 0.8 um depending on the physica]Aparameters (e.g., L and ND)
of the structure. In most MSM structures, this region can become
comparable to the total semiconductor width, especially for high-
frequency structures (with thin semiconductor width). It will also
be shown Tater that negjecting_diffusion effects in this regjon
can lead to serious errors. h

The potential energy distribution in the 'diffusion affected
region described above is shown in Fig. 6.2(5);f0r thfee current

/
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density levels. Above punch—thrbugh voltage, a pronounced
potential energy maximum is formed « lose to the contact. "In a
manner ana1ogous to vacuun tub s, the presence of the potential
maximum controls the niobile car_ier injection and will, therefore,

result in the spacé charge reduction of the shot noise component

of the conduction current. By 1ncr\asing current density, thoe

potential, maximum becomes more narroh, shifts towards the injecting
contact and decreases in magnitude.

The terminal voltage at d1fferen¥ current density levels
1s computed numerically and the resu1t1ng features of the J-V
character1st1c of the MSH structure is shown in Fig. 6.3. The
exponéntia] dependence of the structure current on the applied
» voltage, which has been predicted and Verified experimentally for
Tow cur}ent levels [23],vis clearly exhibited by the J-V
characteristic of Fig. 6.3. The actual characteristic, however,
begins to deviate from the exponential dependence at a certain
current dénsity level (30 Acm™2 for this case) due to the space
charge effécfs of injected holes. As the current density increases
further, the space charge effects become more pronounced as is
clearly showh by comparison of curves (a; and (b) of Fig. 6.3.
As the current densﬁty approaches thé contact saturation current,
the J-V charaéteristic levels of very rap1d1y due to the finite
number of 1n3ected ho]es that can be present at the MS injecting
contact.  Any further increase of the terminal vo1tage wiTl result
in very Tittle change of'current. The maximum allowable voltage
that can be applied to the MSM structure isv1imited by the

avalanche breakdown voltage as will be explained later in this

1
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6,2 Effects of Physical Parameters ,

3

To study the eoffects of the physical parameteré, a variety
of MSM structures differing in semiconductor width and doping
vconcentration have been numerically investigated. The structures
were chosen in such a way that operation at differént microwave
fréquenciés'and under different biasing conditions could be
examined.

The distributioﬁ of injected holes inside the semicondgctdr
bulk, for two'd{fferent deping concent}ations,is showﬁ in Fig.
6.1(a). for a given;current,'the density of holes is slightly
reduced by intreasing the doping concentration. This Dhenémenon
is a difect'consequénce of the increase‘of the carrier drift
velocity brought abou% Ey increasiné the doping concentration.

Fig. 6.1(b) show§ the electric field vs distance (measured

' from'the injecting contact) for two-doping.concentrations at
different:cgrrent densitx levels. It is‘;1ear1y‘shown that a
significant inc?éase of the slope resultsd frqm'incfeasing the

doping concentration. The maximum electric field occuré at the.
é;Tiébting;cohtact and can become so Targe that appreciable
avalanche mu]tib]ication of freé carriers takes p]éce. For

‘ 16" =3

n-type Si with doping concentration belqw 10 , the avalaache

breakdown field EB is about 250. kV cmT]. Consequently, for MSM
structures made with fixedisemiconductor width, the doping

concentration is Mmited by that value at which the maximum
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“electric field at the collecting contact exceeds EB‘ At a
particular current density 1éve1,;thé electric field in the highly
doped structure is everywherc 1argervtxan that in the 11ght1y

doped structure. . Consequently,the terminal voltage necessary for.
obtaintug the same current density increases as the doping
concentration increases,. The resulting q~V characteristics of the
two structures are shown in Fig. 6.3b. While a bias voltage of
-about 35 volts is necessary to obtain 50 Acm” -2 through the structure
14 —3)

with 1qw doping (4. 4 x 10 » a bias voltage of about 85 volts

is necessary to drive the same current density through the highly
dqpsd structure (1 2 x 10" cm 3)ﬂ

.Anothef impartant parameter that can significant1y affect
the terminat J-v charatteristic of the MSM structure’is the
semicpnductgr width. For fixed.doping, the applied tias increases
‘with the increése of semiconductor width.v This is a direct
~ tonsequénce of the electric field distribution inside the sttucture.
Assuming a iinear relation for the electric field vs distance, a
quadratic reletion between the electrostatic potential and the
semiconductor width is obtained. Such a relation-between V (electro-
static potential) .and L (semiconductor width) can closely approximate
that thajned for actua] devices opefating at normal current levels,
provided‘tuut the effect of the space charge on the slope of the
electric field is 1nt]uded‘ The resulting J-V character1st1cs for
two structures, each hav1ng the same dop1ng concentration but
differing in semiconductor‘width, are shown by curves (B) and (C) of

Fig. 6.4. A wide variation of applied voltage is also obtained by

varying the width of the semiconductor slice.
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The combined effoctq of both doping (oncentrat10n\shfi%
semiconductor wwdth are very important 1n~Lho des\gn considerations
of the structure. The computed J-V charqo&gr1ot1cg gq&ja1fferent
" structures A, B, C and D.(as given iﬁ!Tablewﬁgl) aré showﬁ in Fig.
6.4. A comparison of curves A and B is informative since it
illustrates che effect of changing the doping concentration while
the width of the semiconductor is held constant. Likewisé a
comparison of curves B and C shows the effect of changing the
semiconductor width while the doping cdncentration-is kept constant.
Curves B and D are the characteristics of two structures which
have equal NDL products. A compérison between these two curves
shows that the applied voltage is larger for the structure B which
has a larger semiconductor width. According to Fig. 6.4, structures
with lower doping and/or smaller semiconductof wid;h result in
lower dc Lias voltages. It can_a]so be seen from the sameffigu}e
that the space charge effect is very small for structure D, having
-2 highly doped sehiconductor, while'sfgnificant space ;harge is
apparent ig structure A, having a lightly doped semiconductor.

Since the slope of the J-V characteristics of Fig. 6.4
is very steep up toa cu' 2»nt density of about 50 ?Xcm—2 (which is
nearly the optimum operating current density raﬁge of most devices)
the dc bias vo1tagé of the structurgs deviates only slightly from
the pun;h-through voltage Vp. Consequently, Vp acqurate]y
approximates the actual operating voltage of the structure.
Neglecting the space chérge effect of injected holes, Poisson's

equation can be integrated and the following expression for Vp
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may bhe obtained

2¢V, . . .
where Xy = —~~bl-, is the position of the potential energy

gN
max inium (méasureg from the injecting contact) and Vbi is the built-
in potential. The ca];u]ated values of Vp as a function of ND
are shown in Fig. 6.5 for various values of L. The curves in this
figure were‘obtained,by*assuming Vbi = 0.8 volts jn the case}of
Si [34]. ‘

Goad agreement between these curves and exactly calculated
values 1s obtained if Vp'is defined as the Lias voltage
corresponding to a curFent density of 0.1 Acm—z. From Fig. 6.5, \
a wide range of applied voltage can be obtained by varying Na and/or
L as aescribed above. In properly designed and operated structures,
the maximum electric fiel' .u é be well below the critical va]ue;
EB’ necessary for-avalan - i akdown. The maximum applied voltage
of the MSM structure is, therefore, limited by the breakdown

voltage VB and is represented by the constant electric field line
EB (EB = 250 kV/cm is assumed). The curve EB = 250 chm']

determines the upper Timits of the structure's physical paraﬁeters.

Dashed lines in Fig. 6.5 1ndicdté the parameters for which the

\

maximum electric field at punch through voltage reach 50 énd

100 kVem™!.
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6.3 Temperature [ffects<9n‘ﬁh0,Dﬂ}qugyjjigijﬁljigljtf1'j13531013i
/

The results described fn the preceding sections were
cdmputed at room tcmgpraturofby assuming isothermal conditions.
It will be shown. in t%c next chapter that, under dc cgnditions,
all MSM structures dissipate power inside their semiconductor
bulk. The dissipated power is then converted to thermal energy
that heats the structure. MSM structures are usually oberdteﬂ ;t
current densities of 10 - 100 A cm—2 and at bias vo]tageslin fhe
range 10 - 80 volts. Depending qp‘the contact area of the structure,
the dc power dissipation may vary in the range 0.5 - 8W. Assuming
é co11ectfng contact thermal resistance of about 20°C/W, the crystal
temperature may thus be more than 100°C above room température at

high current densities. Snapp and Weissglas [12] have shown

Ye

the microwave activity of the structure (the peak ofé}bﬁ/ﬁggative

conductance shifts towards lower frequencies and reddces in magnitude

experimentally that the crystal témperature significantly affect

with increasing TC)' Clearly, information on charge transport at

TC > 27°C is of great practical importance. To include high
temperature effects on the static behavior of the structure, the
mobility expression (Eq. 5.5) is used and a new set of cqnstanté

in this expression is obtained from the consideration of fhe velocitx—
field dependence'as previously ‘discussed in Chapter 5. The boundary'
concentrations are also temperature dependent and the corresponding'
values at T = 150°C are considered: To simplify the numerical “

_calculation, isothermal conditions are assumed.
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The injection of minority carriers from MS contacts
decreases with a decrease in temperature. At re]attye]y Tow
temperatures (~ 100°K) the oc bias voltage must be signtficant]y
increased (aboVe VB) in order to obtain the normal operating
current density Tevel. Snapp and Weissglas [12] experimeutally
showed that punched-through structures‘with MS injecting contacts
operating at 100°K fail to exhibit any negative conductance.
Furthermore, the dc bias voltage necessary to obtafn 10A cm~2
exceeds the avalanche breakdown voltage. Therefore, this study
will be restricted to higher temperature ranges (i.e. above room
temperature).

The concentration profile of the injected holes in the
semiconductor region for two different crystal temperatures, T , com-
puted at thrée current dens1ty levels, is shown in Fig. 6.6(a).

It is shown in Chapter 4 that the boundary concentration at the

MS contacts exponent | tncreases with increase of temperature.
According to Fig. 6.7(a). a a given current the concent ~atirn

of mobile holes in tr-  ull of the semiconductor (far from both-
contacts) increases only slightly with the increase of the lattice
temperature The high temperature bulk concentration is not

only a direct cShsequence of the exponent1a11y 1ncreased 1nterface
concentration with temperature but it also compensates for the
reduced high-temperature carrier mobility. The electric field
distribution inside the structure at two d1fferent operating

temperatures is shown in Fig. 6.6(b). In most of the semiconductor
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bulk, the electric field is 1iﬁear, the slope being determined
by the donor concéntration for low-current levels (almost the
same slope for both temperatures), while at high current levels,
the slope of the electric field incregses fPr higher temperature
due to the pronounced space—chafge effects of mobile holes. Near
the MS confacts, a large number of mobile carriers exist and
they significantly affeét the slope of the electric field in the
vicinity of both contacts. Fig. 6;6(b) also shows, for the
particular MSM structure described in this section (dévice A),
that at any current density 1e9e1 exceeding 1A cm_z, the.e1ectr1¢
field ¥s larger for higher temperatures everywhere in the seﬁi—
conductor bulk. Hence the applied voltage necessary to obtain
the same current density increases with increasing temperature.
The drift and diffusion Eurrent components (normalized to
the total conduction current density) in the diffusion affected
region, at two different temperatures (for structure A) is shown
in Fig. 6.2(a). As the temperature 1ncfe$ses, the drift
component decreases due to the reduction of the Tow field
mobility. Since the total conduction current is constant
throughout the structure, the diffusion current component
increases with increase of temperature to compensate for the
rbdgg}ion'of.tﬁe drift current component. Furthermore, with
inc;easing temperature, the region of constant mobility extends
~to a region of higher electric field and the drift velocity
saturates at increasingly higher electric field strengths. As
a result, the diffusion affected region increases with “

—
$



101

1ncreasing the crystal temperature, as is clearly shown in Fig.
6.2(a).

The effect of increasing the semiconductor temper;&ure
on the distribution of the electrostatic potential is shown in
Fig. 6.2(b). The potential energy maximum becomes wider, shifts
farther from the injecting contact, and increases in magnitude .
with an increase of crystal temperature.

The J-V characteristics of structures A, B, E and F are
Vshown ianig. 6.3 for two temperatures (TC = 300 and 423°K). The
simplified J-V characteristic which is obtained by neglecting
the space charge effect of, injected holes on the electric field
(for structures £ and F, at T = 300°K) is also shown in Fig. -

6.3(a). In comparison with the:}oom temperature J-V characteristics,
the high-temperature J-V characteristics at small currents are
shifted towards lower voltages; the higher the’doping concentration,
the Targer the shift. Since the space charge effect of injected
holes is negligible at low current‘1eve1s, the lower applied

voltage for the higher temperature characteristic is due.to the

large negative amp]%;ude of the electric field thch occurs in

~the injection regionx(the barrier region of the forward biased
contact). In the Tightly doped structures (A'and~E5, the roém and
higher temperature characteristics intersect twice. In thesé
structures, the space charge effect of injécted ho]eé, at high
temperatures and large current densities, is strong enough to

cause the first fntersectiohiof the two characteristjcs; The

saturation levelling of the room temperature characteristics is
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responsible fof the second intérsection. In highly doped
structures (B and F) on the other hand, the separation of ‘the

room and high temperature characteristics is relatively large,

and the space charge Effect of injected holes cqmmences af
relatively high current densities. This allows the room
temperature characteristic to saturate before it can be intersected

by the high temperature characteristics.
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CHAPTER VII

SMALL-SIGNAL PROPERTIES OF MSM STRUCTURLS

" 7.1 Small Signal Impedaﬁce

The sma]]—signa1 impedance Z and admittance Y of MSM

structures is defined as

n
v
— 1 - J__ = —--—‘—L = T
Z = R+ jXx = Y G+iB - Kj— (7.1)

LV Ny
where VT and JT

density; A is the contact area of the structure. According to the.

are the terminal ac voltage and the total ac current

numerical calculations (hased on the mathematica1(mgde1 described in
Chapter V) the structure impedance, at microwave frequencies, can be
represented hv a parallel combination of a resistance and a capacitance,

both dependei t on ‘requency. Since the microwave behavior of the

structure cepends on a number of physical processes, the structure

jmpedance is expocts 0~ a complicated function of frequency. In
a certain frequencv a. Conioce conductance can become negat%ve
while the capacitanc ‘ound the geometrical capacitance CO
of the stfucture (C = B

It is rather di“fic “pr  the m .rowave response of
the MSM structure L a sv.° o ac - of th structure immittance
defined by Eq. 7.1. Ffor e.amp ~ooomnoloexple 1 directly why the
Tow frequency dynamic capacit,nce : 5 tho CO, while the
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'

Q

stationary capacitance Cst = —V—-(Q is the total charge stored in
a

the structure and Va is the applied dc voltage) exceeds Lo because

[}

of the space charge.

In order to gain an understanding of the behavior of the
structure, we investigate a "detailed" equivalent circuit obtained
by splitting the structure admittance into two admittances correspond-
v

. Y .
ing to the conduction cqrrent‘dc and the displacement current Jd.

u
At any cross-section the total current JT is constant and is given

by
v \ v
Jp = Jc(x) + Jd(x) (7.2)
Y N

where Jd = juwekE (7.3)

Integrating Eq. 7.2 over the semiconductor width yields:

L
3o 1L [y Juwe ¥
D AR ROLEE (7.4)
where Vp o= [ E(x)dx - (7.5)
0 o

According to Eqgs. (7.1) and (7.4), the small-signal admittance (per

unit contact area) is
N
JC _ ‘
Y = v}' + JwCO = YC + JwCO ' (7.6)

whékg‘dc = %qf J_(x)dx is the average ac conduction current



of the structure.

The equivalent circuit representation of the MSM structure is

) .

shown in Fig. 7.1. Such an eaquivalent circuit has been used by many
authors to describe thg small-signal behavior of various devices
[51, 62-64]. The admittance is composed of ajg@ra1]e] combination
of the geometrical capacitance of the structure and the ”e]egtronic
admittance" VC which depgnds on the charge transport properties of
the structure. At relatively low frequencies, the electronic
capacitance is negative (CCY<'O) showing the inductive : {fect of
injected carriers,‘wh%1e at high frequencies (in the range of
negative conductance) CC may vary from negative to pqsitive ya]ues.

Since the total conductance of the structure is du; to the
electronic proce;ses occuring inside the device, the equivalent
circuit described above cannot explain the mechanism of negative
conductance. Therefore, to gain hetter understanding of the
microwave performance of the MSM structure, the electronic proéesses
inside the device must be investigated. A represehtatiVé PtSi-nSi-PtSi

+15 —3)

structure (L = 4.8 pm and ND = 1.2 x 10 cm has been numerically

studied,.and will be described in the next section.

7.2 Small-Signal Charge Transport Properties

t

It has been shown in Chapter III that the total ac current

density may be written as

i y

ST = (qvo(x)B(x) - qu %gillﬁ + QPO(X)V(X)_+ JuweE(x)

(7.7)
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Y
According to this equation, JT consists of the following components:

u
the space-charge current Jsc defined as

v " dﬁ
Isclx) = avp(x) - ap &F (7.8)

the velocity modulation current

3, = ey (00¥(x) (7.9)

and the displacement current. The above current components are
associated, respectively, with the time variation of the density of
injected holes, their velocity and electric field.

We are particuiar]y interésted in the variation of the

v N v

"]
components of the conduction current JC defined as JC = Jsc + Jv,

which determines the charge transport inside the structure. The
phasor representation of various components of Sc (through-the
semiconductor region of the structure) fé shown in Fig. 7.2. In this
figure, the total ac current density lies on the positive real axis
and various components are normalized with respect to ST’ Parameters
were chosen as J, = 80 Acm™? and f = 10 GHz wﬁich corresponds to the
maximum negative conductance obtained for this>particu1ar structure.
The numbers in the figure represent the distance x in microns |
mgasurgd from the injecting contact.

The interesting feature of this diagram is the rapid decay
of 3v and. the rapid increase of SSC on moving away from the injecting

N

"~

1 ;/
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contact. At this Eontact, thé dc concentration of injected holes,

Py @nd the differential mobility, wd,Of mobile holes (“d'z ;gQQ

are large. Both of these effects re t in a large Sv‘ As thg

digtance X increases, po(x) and ud(x) decrease rapidly; thus Bv

falls off very quickly. The spgce—charge current, on the other hand,

is large at the injecting contact because of éc carriér diffusion.

In the vicinity of the contact, the ac concentration rises rapidly -

to an almost constant émp]itude. Consequent]y, the diffusion current

decreases while the drift component {ﬁcreases.' On moving away from

the injectioh region, the dc velocity of mobile holes increases

rapidly resulting in a rapid increase of Ssc which becomes nearly

equal to 3C‘upon entering the high field space (x 320.8 um). Since

the amplitude of Scldecays through the injection -and low field

regions, the phasors of 3C for x < 0.8 um take a " lucing vortex

format. In the high field region, the dc electric .1e1d_is 1ar§e

and the conduction current wave travels throﬁgh most of this fegion

.with nearly constant ve]ocify. Since the conduction current amplitude

scarcely decays within this region, the phésors of Hc fo]1ow a

circular path. ' | : .
The propagatibn of space-charge and conduction current waves‘y

i, Shown iﬁ Figs. 7.3 and 7.4, respectively. Figure 7.3 shows the

spaée—chakge distribution at various time instants during one cycle

.of operation. The carresponding transport of the cofduction current

wave is shown-in Fig.\7.4. These figures have been obtained f;om

the real and imaginafy componenfs of B and SC, respectivé]y. The

phase of the total current,ST, has been taken as reference.
According to Fig. 7.3, at t =0 carriers injected in_the -

-
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previous cycle are disappearing at the collecting contact. As time
progresses,’ the ac space chakge bunch, formed close to the injecting
contact, moves through the semiconductor bulk and reaches the edge
of the diffusion affected region after one quarter of a cycle. In
this regibn, the dc electric fiedd is small, and hence the motion of
injected ac holes is slow. At later time instants (e.g. at t = T/2)
the bunch moves faster towards the c011ect{ng contact because of the
rapid increase in the carrier drift velocity, {the shift of the
bunch maximum is larger between T/2 and %I-than between T/4 and T/2).
It is further apparent that as this bunch enters the high-field
region, the space-charge forces combined with non-constant velocity
result in bunch spread and thus réduction of the amplitude of
the bunch.

According to Fig. 7.4, the maximum amplitude of the conduction
current wave is delayed behind the total current maximum by about
T/¢ This delay is due to the fact that the structure acts in the
first place as an insulator whose physical propérties are slightly
affected by injected mobile holes. It is further noticed that the
amplitude of the Hc wave decays in the injection and low-field
regions while itlis'on1y s]igﬁt]y affgcted in the high-field region.

v ! .
The decay of the JC amplitude in the low-field region is a direct

.

c Y]
consequence of the rapid reduction of Jv as previously discussed.

Bunch‘formatiOn o% 1pjected holes close to the injecting
contact can be described if an applied vo]tége step is considered.
If such a'step AV is superimposed on the dc bias voltage, the .
electric field is uniformly increased by AB throughout the semi—

conductor bulk (the injected charges cannot be rearranged

i
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instantaneously). The immediate consequenceof this variation in the
electric field is to increase the Velocity of injected-holes by an

amount

AV = g .
dEO 8

where EO and v, are the steady-state dc values for the electric field
and the carrier drift velocity. In the vicinity of the injecting
cbntact, the additional velocity av of injected carriers is large and
decreases as the distance from the injecting contact increases. As

a result, injected carriers at the contact move faster than those
inside the bulk and a bunch of charged carriers is generated in the
vicinity of the contact where the density of injected holes is

Targe. The bunch of injected holes moves towards the collecting
contact with a velocity determined by the dc bias. On moving away
from the injectioh region, the dc carrier velocity rises rapidly
resulting in a spread and hence reduction of the bunch amp1itude

(as shown in Fig. 7.3). Dascalu [51]'h§s shown that tW& Spreading
out of.the bunch, as described above, is maih]y due to the
dependence of carrier velocity on position; a constant velocity’
throughout the semiconductor bulk would result in a constant bunch
‘amp11tude.

Referring to Fig. 7.3, it is apparent that the formation of
the bunch of ac holes is associated with a steep concentration
gradient which results in a diffusion current opposing the velocity
modulation current. Since the net conduction current injected 'into

the semiconductor bulk is reduced, the charge diffusion lowers the
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incremental concentration in the whole semiconductor. This effect
is clearly indicated in Fig. 7.5 which shows the distribution of the
amplitude of the ac hole concentration inside the MSM structure. in
this figure, the exactly calculated results (based on the "exact"
mode described‘in Chapter V) are represented by k = 1 curves.
Curves k = 0 correspond to the boundary condition B =0 (i.e. the injected
holes are not affected by the ac current flow). The dashed curve shows
fhe dc diffusion current (normalized with respect to the total dc
current) and is drawn to identify the diffusion affected region.
Negative amplitudes of the exactly calculated ac concentrations of
~injected holes correspond to 180° phase difference between B and Hc
which is a direct consequence of the boundary conditions being used
(as discussed in Chapter IV).

According to this figure, the ac concentration rises rapidly
in the vicinity of the injectina contact, giving rise to a ;teep
concentration gradient. Such behavior occurs in all cases.(even for
the case neglecting diffus}on). For the exactly calculated
dependences (curves k = 1), a point Xo at which no ac carrier
modulation takes place is reached very close to the injecting

contact (v~ 0.06 wm in this particular structure). This point is

almost unpffected by dc current density and signal frequency.
Therefore,\jt can be assumed that Xq is an effective source plane at
which no ac modulation of the amplitude ofvinjécted holes takes place.
If a proper effective(value for the dc concentration at Xs is found,
the boundary concentration p(o) = 0 (closely resembles the equilibrium

boundary concentration) can be used as a proper boundary condition.
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Y

Using the current independent boundary concentration (p = 0) at

the injecting contact, without ;dopt1ng the effective dc concentrat1on,
significantly affects the maximum amplitude of the ac hole concentrat1on,
as clearly indicated in Fig. 7.5. It is further apparent that as the
frequency increases, the amplitude of the ac bunch decregses. This

is due to the reduction of the ac electric field at the injectihg

contact with increasing signal frequency.

The effect of neg]ectfng'ac diffusion on the amplitudes of the
conduction current UC and the ac electric field E can be‘seen in
Fig. 7.6. This figure shows tﬁe phasor variation of 3c and E inside
the semiconductor bulk. 'If ac carrier diffusion is neglected, the
amplitude of the ac bunch of injected holes as well as that of the
conduction current is too large, as compared with that obtained when
ac diffusion is considered.

‘ The transport properties described above were qualitatively
discussed by Wright and Sultan [10]. 1t should be noted, however,
that this study yields results which differ considerably from the
present work in a quantitative sense. For instance, the maximum
peak of the conduction current wave in Fig. 7.4 has a va]ue
approx1mate]y one half that obtained in the small- -signal analysis
due to Wright and Sultan [10].

The most significant difference between the study quoted above
land the present analysis is the fact that the carrier diffusion in
the vicintty of the injecting contact has previously been ignored.

This is obviously a very important factor from a quantitative point

of view.
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7.3 Power Dissipation Inside the MSM Structure

Positive resistance corresponds to power dissipation while
negative resistance réf1ects the ability of solid matter to generate
electric energy. Since the slope of the J-V characteristic of the
MSM structure is always positive (Fig. 6.3), the structure dissipates
dc electric energy. Thejtherma] energy, 1nt6 which the dissipated
energy is converted, then heats the structufe. Under ac conditions,
the finite transit time ¢ injected carriers through the semi-
conductor can result in a phase delay between the conduction current
and the Tocal ac electric field ranging from %—- %ﬂ-. At frequencies
at which such delay occurs, the structure can presenf negative
conductance (resistance) to the external circuitry. If included in
proper rf circuitry, the structure can cohvert part of the supplied

dc energy into rf energy. In this section, the dc and small-signal

ac power dissipation insjde an MSM structure will be described.

~

\‘\

(a) DC Power Dissipation .

The dc power dissipation inside the semiconductor bulk of an

AN
MSM structure {per unit contact area) is given by N
L
P, = jo JEo(x)dx (7.12)

where JO'T§”EHE dc conduction current density (consists of drift
and diffusion components), Eo is the dc electric field, and o and L

are the position coordinates of the injecting and collecting MS
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contacts, respectively. The conduction current JO is given by

dp

Jo 7 WE(XIpg(x) - b ot (7.13)

f 1

The Tocal power dissipation due to the drift component of the

conduction cUrrent (per unit contact area) is
2
Pdm'ftl = QU(E)pO(X)EO(X)dX (7]4)

Since all the physical quantities in Eq. 7.14 are positive, Pdrift
is positive. The local power dissipation due to the diffusion

current component is

= ( -gp %
Paer = (=00, g, (x)dx

In the injection region (x = 0 to x = X where X is the potential

n
maximum position), the electric field takes non-positive values and
the injected holes are moving against the electric field mainly by
diffusion. Since (g%) is negative,ﬁdiff is negative in the injection
region (where EO < 0) and dc power generation instead of dissipation
occurs within this region. This phénomenoncou]d be exp}ainednas
follows: when a car#ier moves in the direction that the electric
field tends to push it, the field doeslwork‘on the carrier and
consequently the field loses energy (whith is co?lgrted into thermal
energy of the particle). UWhen a carrier moves against the electric

field, the opposite occurs, and the carrier pumps energy to the field
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(i.c., part of the particle therma]_energy is convefted to field energy).
The Tast situation occurs iﬁ the injection region and the carviers givé
up energy. Apart from the injection region (i.e., x » xm), the
electric field takes positive values and the carriers diffuse in the
direction of the clectric field; thus the Tocal Pdiff becomes
positive and the diffusion current contributes to power dissipation.
Since the injection region is only.~a small fraction of the i
total semiconductor width (usually Tess than 10% for all devices),
the net power dissipation inside the MSM structure i§ positive and
the structure, therefore, dissipates dc power. The dissipated power
inside the Tow and high field renions (x > xm) is converted to
thermal energy of‘part1c1es which then heatsthe semiconductor bulk
(via scattering mechanisms). In the injection region, on the other
hand, the mobile carriers lose energy to the electric field, and
their temperature reduces slightly below the crystal temperature as
discussed in Chapter II1.
The spatial variation of the dc power dissipation inside the,
MSM structure is Shown in Fig. 7.7. In the injection region very |
Tittle power is generated while large power dissipation occurs in

the major part of the structure.

(b) High Frequency Power Dissipation Inside the MSM Structure

High frequency negative resistance reflects the ability of
the active device to convert part of the dc power intQ high frequency
power: The conversion mechanism can be explained by investigating
power dissipation inside the structure, namely the diésipation

corresponding to each component of the total ac current,
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The net ac power dissipation inside the MSM structure (per
unit contact area) is given by [517,

L gy

= o O - Lo
Pret ~ 2 e(fO E(x)dy) = >(J7 7) (7.15)

N " '
~ where JT and VT are the external ac total current density and voltage

v
respectively. Substituting for JT from Eq. 7.7, the net ac power

dissipation can be written as

net )E(X)dx (7.16)

v v v
which consists of three components corresponding to Jsc’ JV and Jd

respectively.

The active ac power associated with the disp]acement current

’\J 0
Jd is
_ ‘I L’\a* Y] L j 2 _
Py = R, i Jd(x)E(x)dx = 3R {;Jmle(x)] dx = 0

(7.17)

Therefore, the displacement current neither dissipates nor generates

N
active power inside the structure. This is expected since'Jd

always leads the local ac field by %—ané]e throughout the whole

semiconductor bulk.

r\" -.
The local active power associated .with JV is

v

P = %R (J (%)E(x)) = %RQ(QDO(X)Ud(X)WE(X)IZ)
(. 18)



According to Eq. (7.18); PV can become negative (;orfesponds to
power generation) if My 1s‘negative. The differential mobility
u;, however, is a property of the semiconductor material. For some
semiconductor materials (e.qg., GaAs),'thé differential mobility of
electrons is negative in a certain rangefof the electric field.
However, for silicon (which s investigated here), My for holes or
electrons is a}@ays posifive at all values for the electric field.
Cbhéequent]y, Pv for silicon devices is positive and power
diséipation always.occurs due to the.ve1ocity modulation component.
Therefore, power generation which takes place in ﬁhe MSM
structure ~ is due to the sgace cbarge curkeﬁt component. The

V)
power dissipation associated with JSC (per unit contact area) is
A"}
(x)E(x)) (7.19)

It has been shown in the. previous section that 35; becomes nearly
equal to BC in most of thelsemiﬁonductor bulk (see Fig. 7.2$; in
addition the phase angle, 8, between the space charge current and
the Tocal ac electric field can exceed g-in some regions of the
semiconductor (see Fig. 7.6). Generally, if the signal frequenéy
w is sufficiently high (15‘comparison with the reciprocal of the
’cgrrier-transit time) the phase angle 6 can lie in the range

%—f 8 < %ﬂ_ in most of the Semiconduétdrmhulk. Consequently, the
net power dissipation due to jsc can be negative (i.e. power
genefation.

Figure 7.8 shows the spatial variation of'fhe local power

123
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dissipation Pv and PSC at th. requency which correspbnds to optimum
microwave activity of the structure. The power dissipation Pv is
large near ihe contact and decays rapidly when moving towards the

high field region. The reduction of PV is a direct consequence of

the rapid decay of Bv (as shown in Fig. 7.2). Near the contact, Ssc
contributes to power dissipation. The contribution of the diffusion
and drift cdrrent components to PSC is also shown in the figure.

The diffusion current contributes to power generation because of

the diffusion of the ac holes against the loccl ac electric field;
this power generation; however, 1is insignificant (as in the dc

case). The drift current contributes to powér diss%pation‘in the
region x < 1.8 um, because it lags @ehind the ac_eTéctric field by

an angle less than %uvaor thié pafticu]ar structure, the phase angle
6 becomes more than %-at a distance x exceeding 1.8 um and, tRerefore,
Tocal power generation instead of power dissipation takes place.

The Tocal power dissipafion P. due to the total conduction current

,{5 = P + P '

c V' SC)

that the net ac power To$s’ (the total area under the P_ cutve) is

is also shown in Fig. 7.8. It can be clearly seeh.

negative and the semiconductor presentsﬁﬁegative conductance in the

.

external circuitry.
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CHAPTER VITI
SMALL -SIGNAL ADMITTANCE OF MSM STRUCTURES

In this chapter, the compUted small~signal admittance of
various PtSi-nSi~PtSi structures {s graphically presentéd and
discussed. The equivalent circuit described in Chapter VII has
been used to identify the é]ectronic admittanCe\of the strﬁcture.
Physical parameters (e.g. doping concent%afidn and semiconductor
width)of the investigated structures are given in Table 8.1 and
the results are displayed per un%t‘cross~sectiona1}area of the
contacts. 1In obtaining these results, the total ac current
density is assumed constant independent of the signal frequency w.
The small-signal admittance of a typical structure is presented

ﬁ‘ﬁin section 8.1. In the following sections fhe teﬁpérature—
dependenéesqf‘the small-signal admittance and the effects of the

physical parameters of -the -structure arebdescribed.

3

8.1 Small-Signal Admittance of an MSM Structure

N

A typical admittance chart of the structure ¢ (L = 7.9 um
and Ny = 1.2 x 10"5 en™3) is shown in Fig. 8.1, for different dc
current densities. Dashed curves in the figure are the constant
frequency contours. According to this figure, negative conductance
is displayed over a wide frequenc} range (f = 4.5 GHz - 8.5 GHz).
At low current-densities, the maximum negative conductance is small

and increases siightly with an increase of current density.
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TABLE 8.1
- T

SUMMARY OF SfRUCTURE PARAMETERS USED FOR THE SMALL-SIGHNAL STUDY

Structure vSemiconductor width, L{um) Doping Concentration
ND(cm‘3)
A ~ 10 4.4 % 10
B 10 1.2 x 1010
c 7.9 1.2 x 101°

D ' 4.3 2.5 x101°
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Optimum negative conductance for this particular structure occurs
at a current density somewhat greater than 35 A dn"z, As the
current density increases furt@er, the negative conductance
decreases. It is also apparent in the figure that the structure
susceptance is frequency dependent. For a given frequency the
structure susceptance decreases with an increase of dc current
density. |

At Tow currents, insignificant carrier modulation takes
place because of the small dc concentration of injJected holes in
the entire semiconductor. Conduction current is thus a small
fraction of total current and the charge transport processes will
have only a small effect on the overall behavior of the structure,
Consequently, the negative conductance is small., As the.dc current
density increases, moré carriers are modulated by the ac signal
resulting in an increase in the 'ac conduction current as well as
in the negative conductance. If the curfent density is sufficiently
large, the density of dc injected Ho]és in the semiconductor bulk A
becomes high enough to give rise to a large.velocity modulation
current. Therefore, the power loss associated with Sv increases
and hence the negative conductance reduces. In addition, a large
dc density of,injected holes reduces the phase-delay between the
conduction current wave and the ac electric field in the entire
semiconductor bylk. This effect results in an additional reduction
of the negative conductance at high current levels. ‘

The frequency dependence of the structure conductance G and

susceptance B is shown in Fig. 8.2 for-different current densities.
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For a given current density, the active frequency interval (defined
as the interval in which the device exhihifs a negative conductance)
extends over about an octave; and it slightly deéreases with an
increase of the current density. As the current density increases,
the peak of the negative conductance shifts to higher frequencies.

The electronic tuning coefficient defined by

o ¢ o (8.1)
is of the order of 10—3/A cm\z. In addition to the‘optimum negative
conductance near the optinmum frequency of 6.75 GHz, the structure
exhibits a second conductance minimum at about 15 GHz. At such a
high frequency, the power generation due to the space charge current
is éompensated by the power Tloss due to the velocity modulation
component and hence no negative conductance. is disp]ayed by this
structurgﬁ__IhemseCOnd'ﬁfomuh in G is seen to occur at a
fréddency about 2.22 times the fundamental oné. From transit t{me
considerations, the second minimum should occur at 7/3 of the
fundamental frequency; hence an additional but insignificant phase
delay is also present. |

The. susceptance B (dashed curvesin Fig. 8.2) has been
normalized to the geometrical susceptance Bo of the structure

'(BO = wCO). For a given current density, B is less than BO in most
of the freqguency interval of negative conductance. The structure
susceptance does, however, cxceed Bo at frequencies stightly higher

_than the optimum frequency. This transition of the electronic
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[}

susceptance from jnductive to capacitive, which was experimentally
reported, cannot bewpredicted Ry simple theories [e.g., 5,10]. In
these theories, the electronic susceptance is always inductive for
tkénsit angles in the range = - 2w. The capacitive nature of the
electronic susceptance is due to an additional phase delay mechanism
associated with the charge-transport in the injection and Jow-field
regions of the structure.

According tg Fig. 8.3 the predicted negative conductance of
the MSM structure is relatively small. Therefore, it can be easily
masked by the Eg§it%5é’conductance of the MS cont@cts and the
inactive réﬁ?gﬁ of real structures. Perhaps ome of the most

/imp6rtant physical parameters which determines the microwave
activity of active devices is the quality factor Q gffined [65]

as the time average of the stored ac field energy, <E>, divided by

the ac power dissipation, <dE/dt>, per radian, i.e.

. owsEr LB -
Q = 3 (8.2)

If the conductance is negative, then Q is negative. The Q factor
gives information about the threshold and the bdi]d-up rate of
oscillation when the negative conductance device is operated as an

oscillator. The growth factor of oscillations, g, is related to

Q as [65] )

(8.3)

=]
)
’
N —
S|

Thus a smaller magnitude of negative Q is preferred for proper and



efficient operation of active structures. For a given Structure,
the negative Q depends on the dc current density, operating
frequency and temperature. Sinc¢ the structure susceptance varies
only slightly from its geometrical value BO, the negative Q is
primarily determined by the negative conductance of the structure.
Curves C of Figs. 8.6 and 8.8 show the variation of the negative
Q with dc bias current and operating frequency, respectively. The
frequency-dependence of negative ) is plotted for Jo = 35 l\t:nf2

at which~optimum microwave activity is obtained. The minimum Q

of this structure,>Qmin, is about 17 and occurs at f = 6.5 GHz.

8.2 Temperature-Dependence of the Small-Signal Admittance
RN

It has been shown in the previous chapter that the MSM
structure always dissipates dc electric energy. The thermal energy,
into which the dissipated energy is converted, then neats the
structure. The MSM structures are usually operated at current
densities in the range of 10 - 100A cm“z and at bia, voltages of
about 15 -~ 100 V. Depending on the contact area of the structure,
the dc power dissipation may vary in the range of 0% - § .
Assuming a collecting contact thermal resistance of about Zégé/W,
the semiconductor temperature may thus be more than 100°C azbove
room temperature at high éurrent levels. Snapp and Weissglas [12] -
have shown experimentally that the semiconductor temperature
significantly affects the microwave activity of punched~through

structures (the peak of the negative conductance shifts towards

133
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Tower fyequencies and reduces in amplitude with increasin§ temperature).
They have also reported that structures with Schottky barrier
injecting contacts are more sensitive to temperature variation. The
most important differences between p+np+ structures and the
structure with 1S injecting contact reported in ref. 12 are as
follows:

(1) Optimum microwave activity of p+np+ siructures occurs
at a temperature Qé]] below 300K (e.g. 100°K), while structures
with a Schottky barrier injecting contact fail to exhibit any
negative conductance ét 100°K.

(2) At room tempgrature, the negative conductance of MSM
structures is significantly less than the negative conductance of
p+np+ Structures.

(3) At higher temperatures (above 300°K) the microwave
behavior of both structures is aluost identical.

Because of the importance of temperature effects on the
microwave behavior of MSM structures, the temperature-dependence of
the small-signal admittance of the structure has been numerically
investigated. In this section, the results of a numerical study
on two representative PtSi-nSi-PtSi sfructures (structures A and B
of Table 8.1) are graphically presented and discussed for two
different crystal temperatures (TC'= 300°K and 423°K).

The frequency-dependence of the small-signal conducfance
and susceptance of the structure B is shown in Fig. 8.3 for
JO = 50 Acm*z, at which optimum negative conductance . fhtained;

and for two different temperatures. For a given currer . ansity,

-
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the active frequency interval decreases with increasing temperature.
It is alsg seen that the peak of the negative conductance decreases
and shifts to lower frequencies; the temperature tuning coefficient,

defined asg

g

2

=

o= o+ M (8.4)

g
—

is of the order of ~1O—3/°C. If the crystal temperature is increased
sufficiently, the width of the diffusion affected region increases
and the carrier velocity in the high field region is greatly reduced.
Both of these effects increase the cafrier »«nsit-time and heﬁée
reduce the kaimum operating frequency. A reduction in the peak of
nedative conductance will also result from the above effects. At
higher temperatures, mobile carriers do not attain scattering
Timited velocity in most of the semiconductor bulk. The carrier
velocity 15 then a function of electric field throughout the entire
semiconductor and thus, under ac conditions, allows more velocity
modulation to occur. The power dissipation associated with velocity
modulation cyrrent results in large ohmic losses which significantly
reduce the neqative conductance.

The small-signal susceptance of the structure B is shown by
the dashed curves_in Fig. 8.3. At the higher temperature, the
- structure susceptance shifts to lower frequencies because of the
intrease of thg transit time of injected holes. For a given
frequency, the structure susceptance increases with an increase of

temperatyre. Yhe capacitive nature of the electionic susceptance
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becomes more pronounced at the higher temperatures which clearly

indicates an additional phase delay associateq with the carrier

“transport in the injection and low—fié1d'regiohs of the structure.
It is known that the width of the injection and low field

regibn increases with a decrease of semiconductor doping concentration

and/or an increase of temperature [43]. Since most of the pover

dissipation occurs within these regions the microwave activity of

a structure with a 1jght1y doped semitonductbr can be significantly

reduced at high temperatures. To show the effect of the crystal

temperature on the negative'conductance of Tightly doped structures;

the computations were repeated for the structure A. Fig. 8.4

shows the frequency-dependence of the structure éonductance for

J, = 30 Agm‘z, at which maximum microwave activity is obtained, and

for the same temperature as described in the previous figure.

According to Fig. 8.4, the magnitude of the negative conductance ™

1s greatly reduced by asing temperature. Further, the active

frequency interval becomes narrower than thaﬁAof Structure B. If

the crystal temperature of lightly doped MSM styuctures (ND ~ 1014 cm'3)

s increased considerably, conditions can occur in which the velocity
of charged carriers does not saturate anywhere in the semiconductor

*
bulk. Consequently, large ohmic Tosses will occur, and the

microwave activity of the étructﬁre is degraded significantly.

8.3 Effects of the Physical Parameters on the Small-Signal Behavior

To design an MSM oscillator or amplifier, there are many
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parameters that can be adjusted to obtain optimum performance. THe
semiconductor wjdth, the doping conceﬁtration, the harrier heights
of tﬁe MS contacts and the device area ark the mostkfmportant
initial design parameters. "The semiconductor width‘w511, of
course, be of prime importance in deterMinjng the frequency of 1
operation. The Tow~frequency resistance of the ihjection and 16w~
field regions will not only be influenced by the doping concentration
and its profile, but also by the barrier height of thc'MS contacts.
High.injection of minority carriers is required for efficient ; |
operation and hence contacts with Tow barrier heights for minority
carriers are preferred, The barrier height, hovever, depends
mainly on the type of metal and semiconductor being used. PtSi-nSi-
PtSi structures (investigated in the present study) have the‘Towest
barrier height for injected holes and there fore they ére most
commonly used. Consequently, the sem1conductor width L and the
doping concentratwon ND are the adJustable phys1ca1 parameters

The choice of optimizing the negat1v§.conductance G or the
nggat1Ve resis!%DSﬁ\R of the structure wWill depend on the dev1ce
app]lcatlo The parallel admittance is more appropriate for most
applications; thus the optimization of the negative conductance G
is mainly considerad here. To establish design"critéria for a
punch-through structure, the dependence of the small signal
behavibr of the deyice upon ND and L have been investigated. The
results afe graphically presenféd-and discussed in this section.

The compited negative conductance,G, as a function of the

dc current dengity, is shown in Fig. 8.5 for structures A, B, C
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and D. The curves are evaluated at the optimum frequency of a given
structure. In most structures, the negative conductance increases
rapidly with curvent density and reaches a broad maximum at
relatively low c{%rent densities (less than 50 Acm’z). The optimum
current density increases with an increase of frequency, from

30 Acin™? at 4 GHz for the strJéture A to 80 Acn™® at 12 GHz for
structure D. Figure 8.5 also shows that the optimum negative
conductance is larger for higher frequency structures. This might
imply that the-micrOWaVQ activity of high frequency devices is
better than those operating at relatively lower frequencies. This
conclusion 1s not always true, since an increase of the operating
frequenc’su]’tg in an increase of the device Susceptance as well
as the negatjve quality factor. Structures with higher quality
factors are greatly affected by the conductive losses occurring

in the semiconductor substrate, contacts, etc, These losses can

be represented by a smatl resistance convected in serjes with

the equivalent civeuit of the structurev[12]. The effects of thé
series 1oSses upon the computed microwave behavior of various
structures, as described above, are shown in Figs. 8.6, 8.7 and 8.8.

2

In these figures, a series resistance of 0.15 m2-cm® independent of

frequency is assumed for all structures [12].
Figure 8.6 shows the minimum yuality factor as a function of
the dc current density for the structures A, B, C and D. The

minimum quality facior, Q . , for a particular structure occurs

min
at a current density very close to the value at which optimum

negative conductance occurs (see Fig. 8.5). Figure 8.6 also
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indicates that Qmin increases appreciably for the higher frequency
structures (e.g. structure D).

The effect of the series 1osses upon the structyre performance
can be clearly seen in Fig. 8.7. This figure shows the frequency
dependence of negative conductance of the same structures described
in Fig. 8.6. Dashed curves in the figure show the acgual behavior

2 s ipcluded) while solid curves correspond to jdeal

(where RS = 0.15 mﬂlcm

behavibr (where the effect of RS is disregarded). These curves are

evaluated at the optimum dc current density of argiven structure.
‘\According to this figure, the investigated structures show a negative

conductance throughout almost an octave frequency range. The active

frequency interval as well as the peak of the negative conductance are

greatly reduced in the case of high frequency structures (structure

D), while the behavior of low-frequency structures (stbucture A) s

s1fghtly affected.

The pronounced effect  of the series loss resistance R5

upon the microwave capability of high frequency structures is

directly related to the small négative resistance which can be

obtained from those structures. To clarify this point we have

calculated the negative resistance of the previously described

structures and the results are graphically presented in Fig. 8.8.

This figure shows the frequency d.;ondence of the negative

resistance calculated at the optimum current density of the

particular structure. The figure also shows. the negative quality

of each structure as a function of frequency. The negative

resistance curves are more indicative in describing the power

capability of the structure. The figure clearly indicates thqt the
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structure negative resistance is greatly reduced in structures
operating at higher frequencies. The effect also results in larger

Q

N for high frequency structures.

The frequency dependence of the susceptance of the structures
A, B, C, and D is shown in Fig. 8.9. The capacitive effects in
Tightly doped structures (e.g. structure A) are more pronounced
than in the case of highly doped sﬁructures (e.g. structure D).
Compared to other solid-~state devices (e.g. IMPATT diodes), the
electronic contribution to the susceptance of punchjthrough
structures, near the optimum operating frequency 1is insignificant,
As a result, the device susceptance deviates only slightly from its
geometyical value, which is a great advantage of these devices.

In addition to the characteristic features described above,

a comparison between various structures (which differ in semi-
conductor width and/or dbping concentration) shows that the pgak of
the negative conductance as well as the operating frequency are
functions of the physical parameters L and HD' For example,
- comparison of curves A and B in Fig. 8.t 1dicates that the peak
of the negative conductance and the corresponding frequency increases
with increasing doping concentration. Curves B and C in the same
figure show that a reduction in the semiconductor widthAyie1ds a
higher operating frequency and a larger negative conductance. To
help establish a design criterionfor the punch-through structures,
the effect of each parameter has been numerically studied and the

computed results are graphically presented in Figs. 8.10 and 8.11.

Figure 8.10 shows the frequency dependence of the negative
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conductance G for the four structures having the same doping
concentration, ND = 1.2 x 10%° can”3 (most commonly used in actual
devices), and differing in the sem%conductor width L. Figure 8.11
shows the sane dependence as in Fig. 8.10, for three structures
which differ in the semiconductor doping but have the same
semiconductor width, L = 4.8 um. The solid curvés in these

figures représedt the idealized structures (RS = 0 me cm2) while the
real structurgs (RS = (.15 mm~cm2) s described by the dashed
curves,

According to Fig. 8.10, the negative conductance of idealized
structures increases as the width of the semiconductor decreases.
However, the negative conductance of real structures is greatly
reduced as the semiconductor width i§ sufficiently decreased. The
reduction of the negative conductance at excessively smaller
widths s due to the sma]i negative series resistance that can be
obtained from the structure as pre&ious]y described in Fig. 8.8.

Figure 8.11 indicates that the peak.of the negative
conductance initially increases with an increase of doping
concentration and reaches a maximum at a doping concentration
somewhat greater than 2.5.x 10'° em™3, ‘further increase in fhe
doping concentration results in a s1igﬁt reduction of the peak of
the negative conductance. The reduction.of the negative conductance
at lower doping concentrations is expected to occur because of the
increase of the injection and low field regions of the structure
(~ described in Chapter VI).

To %id the optimization of the microwave activity of MSM
structures, the results of extensive calculations are summari zed

in Figs. 8.12 and 8.13. According to Fig. 8.12 the semiconductor

4
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Fig. 8.12:  Smal1-~Signal Conductance Versus the Structure
Nidth, L, with Fixed Doping Concentration
Np = 1.2 x 101 Sep=3
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width becomes a very critical parameger at higher frequencies
while at relatively lower frequencies a wide range of semikbdductor
widths can equally well be employed. It is seen in ng 8:13 that
for doping concentyations exceed1ng 1015 cm 3, the microwave 'T -

bghxyior 1S not very sens 1t1ve to Tariation of doping concentrat1on

If the structuxe will be Opotated at re]at1ve1y high frequency

and in a narrow frequency ‘fange the optimum doping concentlat1on

can be determined from Fig. §.13. Strugtures vhich are expected to
c:Zperate at Tow frequencies (less than 4 GHz) will permit a very ~*

1imitedﬁchoice of both L and ND. Since the opc ‘ng frequency
pfiméri]y/detormines the semiconductor wid. i, very Tow-frequency
devicey”ﬁequire a large semiconductor widt . Con>-quently, a
re1ative1yv]ower doping cqncehtration (v 10" K J‘) must be ‘ ¥
eme o /e in‘order to/mainfain the bjas vo1tage well below avaianche

14’ the c s

brea. awn.  For doping concentration of the.order of 10
ohmic lbsses in the injection’and Tow-field regions become
. excessively large and the microwave activity of the structure is

_greatly degraded. Thégé lTosses set the lower frequency 1imit'at,

which punch-through MSM strictures can be efficiently used for:"

BN
i

- \~f\:“ ' . .

" microwave applications.
. 4 _

A

In suﬁhary, the MS structure can be employed for energy

A,
.
e

fzgenerat1on %nd amp11f1cat1on in the frequency range 1A~ 15 GHz.

v

\ w<Near the 1qwer freqﬁbncy 11m1t “the cho1§e of both L and N

S requ1red for opt1m1zat1on purposes is very 11m1ted the former is
determ1ned from the operating freguency while the 1atter is

= Y
: o determ1ned from the biasing requ1remcnt In the frequency rangeg' ‘ ‘i/>
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(v 3 -8 GHz), where both the semiconductor width and doping
concentration are no longer‘critica1 parameters, the MSM structure
can be constructed for a wide vange of bias voltagas by | nper
choice of these parameters (as described in Chapter V1

higher freQUenri{R,~thé semiconduitur width is determined byvthe
operating freqqp?ci 1nd4tbé}semiconductor dopid@?and hias Current

density are left for various optimization procedures ,
.\ %" N : X N
X, N



CHAPTLR TIX

COMPARISON OF VARIC'  tODEL. AND MEASURED DATA

TheAstudy undertaken in chesis has been carried out
with the intent of substantiating the validity of various
theoretical models in describing the actual behavior of punch-
through MSM devices. Detailed 1nvesﬁigation of the injection and
Tow-field regions (Chapter VII) indicates that the diffusion of
injected holes as well as the physical conditions of the 1njccting(
contact can significantly affect the small-signal properties of
the ¢ icture. In part1cu1ar, 1t is shown in Figs. 7.3 and 7.6
that neglecting carr;;f diffusion arnd/or assuming current-
independent boundqry concentration yields results which overestimate
the microwave capability of the MSM structure. This is mor
pronounced in devices operating at high current densities.

arder to verify the validity of variou%f%ode]s the computed
results are compared with the experimental results of Snapp and |
we1ssglas [12] which are the only published data on structures w1th
a Schottky barrier injecting contact. In addition, comparison of the
exact numerical model (which includes all thé significant physicaT
processes) with other models has also been made to -show the effects
of the’two simplifying assumptions made abbve upon the terminai
smaj]—signa? behavior,

The frequency’dependence of the computed small-signal

conductance (resistance) of an MSM structure (semiconductor wid:h

P

[@a]

o

7.
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15 an”3 and contact

L = 7.9 um, doping concentration ND = 1.2 x 10
area A 553 X ]0_4 cmz) is compared. with the measured data of Snapp
‘and WNeissglas [12] in Fig. 9.1. The results are displayed for a dc
current density of 35 A cm'2 at which optimum microwaye activity
occurs. The figure shows the actual behavior of the structure as
predicted by varioﬁs models: by including a sewmies loss resistance

RS = 0.59 measured by Snapp and Heiség]as (12]. The solid curve in
the figure corresponds to the exact numerical model; dashed-dot
curve is thg computed results of a simplified numerical mode which
assumes current-independent boundary concentration § = 0 at both .
contacts. The dashed curve represents the analytical model which
neglects the effect of carrier diffusion and also assumes that B =0
in the entire injection region.

. Accofdihg to this figure, the compufed frequency raé@é is in
close agreement with the measured data of Snapp and Weissg13§%f12].
The optimum operating frequency, fopt’ of the egperimenta] results
is seen to be higher by less than 109 as compared to fopt given by
various models. Since an 1ncrggse in the semiconductor temperature
results in lowering fopt [12,43], it is clear that this discrepanby
is.not due to thermal effects. There appear to be”twd reasons for
this difference. Firstly, there is uncertainty in the measurement
.of the structural parameters, for'examp1e, the semiconductor width
L and the contact area A: The error in the determin tion~of L
results in an error of the same order of magnitdg;i;j calculating
carrier transit time and hence operéting %reque Cy.AQIEF contact
area determines the doping density; an error in A wi]]falso cause

a proportionate error in ND as well as the current density JO.
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ND and JO affect the electric field profile and hence the carrier
drift velocity; the Tatter primarily determines the transit time
and also the operating frequency. Secondly, Eq. 5.5, the mobiTity
€X} sion used in the theoretical resfits, is an empirical -
relationship based upon measured data; an error in carrier mobility
will Tead to an error in the computed value of F opt

It is also seen in Fig. 9.1 that the exact as well as the
simplified theoretical models proposed in the present viork predict
identical active frequency ranoes that s, thevranges over which
the conductance is negative. Since alj the models are based on the
exact charge transport properties of the structure (Chapter III)
the agreement betneen var1ous mode1sunn4pred1ct1ng the act1ve
frequency range clearly indicates that the operat1n; frequency 15
predominantly determined by the dc conditions of the structure.
Therefgre, ana]yt1ca1 small-signal studies which consider the effect
of dc diffusion Processes upon the carrier velocity in the injection
and Tow- f1e1d regions describe accurately the operating frequency.
range of punch-through devices. '

In Fig. 9.1, the optimum dc current density, J (35 Acm‘z), is
small compared with the satiration current dens1ty J at- Under th1s
cond1tlon, the exact and simpTified numerical models give resylts
which are in close aqyeement According to Eq. 4.28, the boundery
concentration of injected holes decreases s1gn1f1cant]y as J
becomes cemparable to J £ Thjs operating condition is usually
encountered in high frequency structures. The reduction of the

Concentration‘of injected holes at the forward biased contact can

cause a significant deqradation of the microwave performance . the



Structure. Therefore, simplified boundary conditions become rather
too restrictive in describing the high current operation of puhch -
through MSM = *ryctures . This fact i+ further emphasized in Fig.
a2

[tids also seen in Fig. 9,1 that heglecting carrier diffusion
results in overestimating tin nagnitude of the negatjve conductance
that can be exhibited by the structure. The diffusion processes
affect the formation of the bunch of ac holes and hence the small-
Signal properties of the structure (Chapter VIT)., 1t ig showﬁwih
Fig. 7.6, that the carrier diffusion reduces the magnitude of the
ac conduction current as well as the ac electric field. As a
result, neglecting carrier diffusion will result in a negative
conductance which is too large as compared to the value obtained
when ac diffusion is taken into account. The above effects become
progressively more pronounced at higher current densities where the
space charge is significantly large. At véry Tow dc current
densities, on the other hand, the ac conduction current is a small
fract10n of the total ac current and the structure acts essentially
as an insulator. Thus the Charg; transport processes (including
diffusion) have only a sma11 effect on the overall behavior of the
structure, ‘

The,effects of the injecting.contact boundary condition and
the diffusion processes of mobiTe holes upon the calculated negative
' conductance peak at various Operating current- densities discussed
above is shown in Fig. 9,2, AGD 15 the difference between the

negative conductance computad from the exact model, Gp’ and that

160
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obtained by employing the simplified boundary condition (sy)id
curve) or by neglecting diffusion processes (dashed curve). As an

example, if 10% deviation is considered adequate in describing the

“device behavior accurately, numerical models employing simplified

boundary conditions are valid up tod,= 304 en?, whereas neglecting

- . \’)
ac carrier diffusion restricts this value of J, to 15A cm™*.

fal
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CHAPTER ¥
SUMMARY AND COHCLUSIOHNS

The dc and small-signal ac behavior of punch—throughaMSM
structures have been investigated. A numerical model oi Lhe
structube which takes into account carrier diffusion, a realistic
dependence of the carrier velocity upon electric field and
properly defined boundary conditions has been formulated. The

model has Bb?n applied to the calculation of both dc and small-

signal ac characteristics of various PtSi-nSi—PtSi L ctures. .
The dc prop‘erti”es of the MSM structures are the following: '
(1) The curre?% increases exponentially with an increase ’

of the applied voltage for current densities less than about

2

10 Acm™©. At higher current densities, the J-V characteristics -

deviate from the exponential dependence because of the space
charge effects of injecged hoTes.

(2) Close to fhe saturation current, the J-V characteristic
lTevels off very rapidly due to finite carrier injection at the

forward-biased MS contact.

(3) The maximum attainable (saturation) current is limited

o

by the semiconductor temperatyre énd the injecting contact barrier
height for mobile holes. |

(4) At technica11y-important.current-density levels
(10 - 80 Acm'z) and in the temperature range 300 ~ 423°K, the J-V
characteristics are re]étive]y insensitive to temperature

variation, However, the physica) conditions in.the injection and

. _1:,‘:‘}"-7
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Tow-field regions (which determine the ac properties of the structure)
exhibit an appreciable temperature dependence,

The spall-signal properties of punch¥through MSM structures
are sumnarized as follows:

(1) The MSM structure possesses ﬁegative conductance'/
(resistance) in the microwave frequency range because of thé
combined effects of the barrier control of charge injectijon and
finite transit time of charge carriers. Most of the phase ‘.lay
occurs in the high-field drift region and arises from tI ans it
time, of injected holes which move with near1y\constant velociL, .
Additional phase delay associated with the charge traiusport in the
1njéction and low- 1°1d regions is also present.

(2) The negative conductance (resistance) is relatively
small and the electronic susceptance which is a small percentage .,
of the device Suscéptance varies from inductive to capacitive
Within the active frequency interval.

(3) At high temperatures, the microwave activity of the

structufe is greatly degraded; the negative conductance reduces
in maghitude, shifts to lower freguency, and the active frequency

range becomes very narrow. d
‘(ﬁ) The isothermal calculations indicate that the negative

condﬁctanﬁe increases in magnitude and shifts to higher frequencies

with an increase of the dc current density and reacﬁes a maximum

at relatively Tow current densities (less than 50 Acm~2 for most

of the investigated devices). At higher cu%reng densities the

magnitude of the negative conductance decreases because of the
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Space charge effects.

(5) The negative quality factor of the structure is
relatively large (in the range 15 - 30 and more) which indicat -
that the small negative conductance of the Structure can be
easily offset by positive conductance due to losses as wei
as external circuitry.

The computed small-signal-negative conductance and
resistance‘are found to beb%n_close agreement with the available
experimental data of Snapp and Weissglas [12]. Comparison
between the computed results of the exact model and other
s1mp]1f1ed mode]s described in this thesis indicated that carrier
d1ffu3§%§3 §nd the reduction of the 1n3ect1ng contact boundary
concentration of mob11e ho]eS‘great1y reduce the microwave activity
of the structure. Detailed investigation of the injection and
Tow field regions revealed that neglecting carrier diffusion in
these regions, especially at high current levels, would yield
results which are considerably different from the éctua1 behavior.

The computed results of various structures investigated in
this study, subb]emented by the available experimental data,
suggest that MSM structures can be emp]oyed for energy generation
and amplification in the ‘frequency range 1 - 15 GHz. The negative
conductance (resistance) of each structure is relatively small
and hence the power capabilities of these devices are much smaller.
than those of other microwave devices (e.g. IMPATT and Gunn diodes).
However, the inherent 10Q—noise properties of BARITT diodes [9],

combined with their structural simplicity and less strenuous
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pﬁerating conditions make these devices ideally suited for Tow
powar applications such as Jocal osci]]ators(nmlref]ection type
amplifiers. The microwave performance of BARITT diodes can be
optimized if the physical parameters (ND and L) of the strdcture
are properly sé]ected. At low frequencies (1 -2 GHz) a ]imiteng
choice of semiconductor~ﬁidtﬁénd doping concentration can be
made; they are determined by the operating fre&uency and applied
bias voltage. At frequencies approaching the upper Hmit, the
semiconductor width is a very critical parameter and is primarily
determined by the operating frequency whi]? doping concentration
and bias voltage are left for various optimization pbrocedures. .
In general, BARITT diodes made of Si ‘semiconductors are )
simple to construct using existing technology and thus are of
great practica} importance. They arc found to be extremeily stable
and have praved to pe reliable and consistent in Operation [8-12).
Present indications are that they will find wide practical b
app]ication.in systems where moderate power and 1oy noise als
are required at’ low cost. Thus, the exact nume}ical mgdé],‘
described in thfs thesis is of prime importance. The ;odsl,liﬁh
1ts general characteristic; is useful for the design ofcbﬂéiTT |
diodes specially in the situation vihere many aspects o%:performance
must be explored as functions of the diode structure and operating
conditions [45]r//1t can be used for further investigation of ‘
the noise propertiés, large signal analysis and dynamic behavior
of punch-through, MSt structures. With a slight modificatian, the
model can be used for a detailed study of other punch—through/

. + 4+ o+
semiconductor structures such as p'np', P nup , etc.

-
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APPENDIX A
R
ACCURACY AND STABILITY OF THE NUMERICAL SOLUTION
(USING THE INITIAL-VALUE METHOD )

o

e,

One of the most important questions about any numerical

-method is itg accuracy. Different numerical schemes have been

devised for solving the transport equations’ in semiconductors

_éﬁ.d. 67, 68, 25, 35]. Moét of these nethods are based on
finité~difference techniques which involve the approximatton of -
boundary value problems. Using the finite-difference method,

we replace thelboundary value prqhﬁem (the dc prob1én‘discussed \

; %@Qn p(x ) [E(x )] of the

in section 5.3) for the unknowge
$LA 4
contlnuoug variable x by a "corr sﬁgnd1ng” prob]em for an unknown

function Pi (og E.) of the discrete var1ab]e J in the fo110w1ng way

N t
Replace x in Eqs. 5.1 and 5.2 by X5 p(x) by Pj(Ej) and the

k differential operator (g~0 by.the difference operator 4. Thus the

dx

“continuous problem (Egs. 5.7 and 5.8) is replaced by a d1screte

one. The discrete problem is s1mp]y a set of gy 1) albegraic

equations in (N-1) unknowns Jwhere N is- the numbef of po1nts dividing

the total win L. If the boundahy va]ue prob1em is 11near then

~ é};@. e

the system of a]gebra1c equat1ons is a]so 11near, and its so]ut1on

can be easily found If the or1g1na1 prob]em 1s non- ]1n@ér, then
r

the correspond1ng d1screte problem (the system of a]gebra1c
\

equat1ons)1s alsa non-linear, andaits solution is more d1ff1cu1t
than the linear case. The charge- transport equat1ons in sem1conductors

are generally non-linear d1fferent1a1 equat1ons therefore, the

VN

Y
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~(which are eas1er to use) are usually unstable while finito- T 5

- machines th'  Mifficulty does not exist fh-our case. More

_corresponding system of algebraic equations 1is non-linear. The

solution of the non~1inear'chargq transport problem by finite

. LY
difference technique way be very difficult especially when many
base points (required for accurate solutign) €9b used.

In bipolar charqc transport devices, Tn1t1a1 va]ue methods

difference methods have proven to be extremely stable and hence
' W

are ugually used. In umipolar gharge transport devices on the
- . . i :
other hand, stable solutions can be found by using thitial-value

ﬁethods. “Initial-value techniques (Lxg Runge Vutta, Euler method,
'ﬂ etc) haVP the advantage over the f1n1te difference approach,

-

that no special procedure is requ1red in the programming arnd hence

;itﬂjé easier to use. The accuracy of any numerical mgthoqﬁdepends

ma1n1yldn the step-size interval of integration. Step-size can
be easily- changed dur1nq the course of 1nteorat1on procedure 1n

the case of one- step rethods while it is a d1ff1cu]t task and

' requ1res spec1a1 treatment 1n finite d1fferenﬁo methods.

The ma%n disadvantaae in the ‘REK-fourth order method (used
in this study) is thét the time of computation invo]ved 1n'the
frequgnﬂtcompu}ation‘of the de?ivatives\mdy pe ]ehgthy; hoWng;, -
for‘Ehevtype’éf_QQUationsused-heﬁe andi&y the use of ,fast compﬁtiﬁgx
fundame zal s th- difffculﬁy of estimating the Tocal truncation
error at ac' .o, since 1té formal expression (for RK fourth order
algorithm) 15 cngessfve1y complicated. ASéoc%ated with the érkor

is the. p robleii of determining a suitable step size 1nterva1 and of

chang1no it in the course of the computation in such 3 wax‘imat



&
\

flf o

.tﬁe wg(cot1m1c1101rema1nsrwg11qnﬂy small atﬁgweconmmc

inte}va1,

o Yo ensure that the main source of errors is the truncation
error, the round-off error is a]mostueliminated by usiné double
precision and by excluding the round-off error made in the

preceﬁing Step in the calculations of the next step (this is

obtained by using the RX algorithm modified by Gill [69]). The. :

step size control, is obtained By assuming that the Tocal truncation

. errors have the form k h5 with k being constant and h the

step size. Furthermore, the local truncation error, committed in
traversing one step dominates the chanqe in the total error for

¢the step. . Then an estimate of the chV al trunca& errar tan be

Rt
found by integratingabetween two po.uFﬁ 9@y Xy and’ Xn+1’ using
RSP Td

" two different step sizes h1 and hz'to eva]uate Yn+]. Let the
v . el * -
corresponding solutions bevYnHJ and Y_+] 5 then {l Y o4 is
the true solution, -and by using Richardson extrapoiation technique

(707, 'we nave

(x x ) @ o
\ * 5 n+l "n
{ A I &kh1 SR \ (A.1T)
SR \;> : _E\ 5 (X417
N T T e TR T (A-2)
i " -
3 67

In Egs. A and A 2, the ri#ghthand s1des are the total error
estimafﬁ f@r the integration between xn and xn+1. The totaJ erﬁor

is equal.to the error ber stepf(lota1 error) multipTied by the

number of steps, i.e.

n+1—Xn)

h

- 5 i (x
Eﬂ] ‘— kh ﬂ] i kh

-— N
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‘;,'\v Sk ‘f ) t
: (X -%)
= = gpd It
) and En2 = khzn2 Lh2 h2

Dividing Lq. A1 by [q. A2 and'sokving for Y:+] yields

/

Q‘k\/ Y - * 4 'i

J ;
0 I T e 2 (0h)) |
n+1 o 1 (A.3)
1 - (h]/hE)
. L h] .
=i If we choose h, = 5~ » Eq. .3 becones v
. 5 R
* ~ Yn+~|,] = 2 Yn“_],?‘ ’ e .
ey = e ntleg - Y{A.4)
. (] - 2 ) . lf'_(*
®
and an estimate of “the 1oca1 truncatldﬁﬁerror for the soﬂ;@1¢? R
SRR
o ‘1: RO
Yn+1 ! assum1ng Xo41 = %, = Ny is giyvén by Eqs A1 and A73° f .
5
o . : 4 ~ _
3\;:' e. = k‘h5 = iﬁ[]ill,a;;v&jl’«l.)‘ = l@ (Y - -
o ; t 1 ' 4 15 ntl,?2
. A AL
dn.5)
. ) .

Equation A.5 may. be used 1n the numerical mefhod fér
F automat]c s;§3?51ze cont”o] by sett1ng an“upper 11m1t to Sthe

4w

L maximum perm1551b1e truncat1on error as 1nput lnfOttunate1y,'by} )}'
us1ng E& A5 as a mon1tor1ng procedure for the 1nteqrat1on step //
~S1ze on everj 1nt@grat1on 1nterva1 and for each 1terat1on process,
™ the total nunber of ca]cu]at1ons 15 approx1mate]y treb1ed for each

1terat1on over the number: required for i: tegrat1on us1ng Just one

step s1ze. As 5 compromise, the monitoring procedure can then

N5
N
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gualifying adjectives (inherent, partial, relative, weak, strong,

.

be modified by checking the error Joss frequently, for instance,

th

for every kstep.

.
Another criterion for adjusting the step-size, is to

integrate hackwards, i.e., from Xp4q O X, With h replaced by -h
after having inteqrated across the step in the forward direction.
The truncation error is esfimated as half the difference between
Y and Y:, where Y: is the solution found as a result of the

n
reverse inteqration. Unfortunate]y the method fails for the

\

~ fourth orde~ method used here, since the truncation errovs 1n one

v

direction ekact]y cancel those in the other directioqﬁ,aside from
. ¢
the round-off errors, Yn = Yn' Finally, it 1s.shown [71] that all

RK methods ,are convergent to the trye so]ution,ﬁ1. L]r( i - ‘(Xi))
v u ho ,
where Y(xi) is the true'v%1ue x; and Yf is the numerically est1mated

Kt o)
~

value at the same point [71].

Another important cr1ter1on for'se]ect1ng an algorithm for

the so]ut1on of a d1fferent1a1 equation or’ s ystem of equat1@n5 with

-

g1ven initial conditions is its stab1]1ty St?blﬂwty is a somewhat

ambiauous tehm and it appears in the 1iteratqre with a variety of

- .

)

absolute, ete.). In genera], a, So1ut1on\~§5a1d to be unstab]e 1f .
.errors 1ntroduc&d at Some stage in the caTcu]at10ns (e.q. from

erroneous 1n1t1a1 conditisens or 1oca1 truncatlon error or round-

off errors) are propagabed wlthou? bound through subsequent
4
calculations, '

The general solution of a system of linear or non-linear

o ew

differential eqiations is always of exponential nature. Certain

i

\



then the analytical soT@tfbnl@f‘Eq: A3 reduces to

179

equations with specified initial conditions cannot bc-solvcd by
any step-by-step integration procedure without exhibiting -
instability, and are said to be inherently unstable, For example,

consider Eq. 4.7,

t

i L -
W C v p(X) - J 1'} - (A.6)
e ‘ )

Fdr‘s1mv}1c1ty we ha®e aqsunod that v 15 constant (which is nearly -

true 1n thq h1gh f1e]d req1on, whnte the ve10c1ty approaches

)

scatte%@nq 1fm1tecive1oc1ty) The andlyt1ca1 so1ut1on of £9.°A 5, e
Ui;“ )
has t1e form o o ¥ ij’ : a

(A.7)

“ 0 - R B 0
where ¢ ¢ the con@tant of 1ntegrdtlan Bith the initia]-condftion

at x = .x Eq A7 betomes ' R
v» . | . Q}.}/‘
S “ a0 (x “Xq) . d »
p(x) = Q%): ;) . 0T+, Xo oS X <,E (A.8)
=
. s A9y

Cy

o \X‘Q\fm‘)’ |
e L T

COnseouentIy the exponent1a1 term’ 1n the general so]dtjpn”(Eq. A.8)

p(X)' = 5—

vanished because of the particular choice of the 1n1tia1zﬁﬁmdition

[ERV I

T 4
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(nate that the initial cond1t1on as aivin by La. A9 is a typica)
condition in the h1qh f1@ﬂd region uhcre the drift current s
 ¢~ . approximately equal to the total conduction current). fven a

very t1ny change in the 1n1t1a1 condition. will cvontud]]y cause

<

Q drast1c change in the magn1tudo of the so]ut1on for Targe values

of «x. Therefove, even though thoe multiple of the exponential term 8

is quite smail, the contribution of “the cxponential tern w111

eventu111y Qdep the con@wghut1on of the constant tevin in the g
: Q)
N So]ut10n When such an gadé%1on is so]ved by’ us1ng step- -by-step

s met1od5 each new sten é€%?be regardnd as the SO]UL]OH of a now

1n1t1a] va]u problem. Even if the 1n1t1a1 cqnd1t1on is, error

'

’ free in the f1rst Step, the 1n1t1a1 cond1tlons for the subsequent

' steps will 1nev1tdbLy contain crrors 1ntroducod by t)uﬂCat10n and

4, ‘round- off 1n thie preced1ng stops, the ca]cu1oted so]utwon for
. e \v

]arge % w111 bear ng resemh1ance o the truo <o1ut10n JAf the o
initial. condht1ons are chosen at x = L, con the other hand, the
5

solution of Ea. A.7 is now given by

"
/e
~

o 9. -

: Frdm Lg. A.|1,1f uny ervor is 1ntroduceo atrthe initial or Subseouent

steps,- *he so1ut1on p(x) beco:es extrene]y stab]e under ﬁﬂj cho1ce

/
of initial: condlt]on aecaugs of the exponent1a11y decay1ng term

In other words; the total éxrors 1ncurred dur1ng the 1ntegrat1on
proeedure will bo limited to those made at. gach step-end no - __
propagat1onnof_eyrors from Qne step to another wi]l'take plese.

.
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Hence, inherent instabi1ity}15 associa’ ! with the equations

being solvad and the initial conditions speciticd, but does not
N ° .

depond Bn tncpartiCUTQr algorithm beiny used. Depending on the .
equationsbheing solved, their ihi£1a1 conditjons and the particular
S ~>~6v~step nethod beina used, another form of instability,
“partial instability" [72],\may be observed, even when the solution
s not inherently unstable. This phenoumena is related to the
step size chosen and 1;,porhap5 seen most easily by examining the,
Euler a]@orithm [63]. The total error € (Euler's method) at P

’

X;,7 1S related to the total error, e5 at x; by

.

Y41 = 53 + h[f(x].,yi) - f()(i:v).’()(]-)]
h2 ' : .
-7 Fayle)) - (A02)

(o34 .
-+

-~ < Vs .d,l- = 4' T —— 7 %
where x. < ¢ Xis10 d f{x,y) and f' = X From the differential

" mean~value theorem [70], we have

(V]
—h

[

1 1

[S9)
<

Pl i) = Tl = (Y (i)

WTth a in (yi,y(xi). Since [Vi - y(xi)] is just éi’ Eq. A.12 may

be written as

= e 1+ h 2 12 fleyl(e))  (h.13
eigy = g (0 -gylxi,a) - 5 file,y(g)) (‘- )
with 5E(x1’xi+]) and aa(yi,y(xi)).



The first term on the right handside ot £q.A.13 is £h0 contribution
of the propagated error to the crroy at Xig]? while the ccond tor
is the local truncation error. Clearly, if %;~is1nega; ve

a value of positive h can always be found which will make

1+ h(%é)] < I, and the error éénds to diminish or die out, and
hence thé solution will be stable. If [T + H(%;Q] > 1, i.e. for
ot and h are positive, the error at X will be amplified in

Ay .
th

traversina the 177 step and the solution will tend towards

instability. Even in this case, however, it may be possible to

keep the propagation error under control, by keeping the propagation

factor [1 +,h(aﬁ)} close to unity.
dy : y

Apnlying the preceding argument on Eq. 4.7, we have

af
9y

and the propagation factor is (1 + hv). In the 1njéct10n region, v
is non-positive quantity, hence a positive h makes the propagation

© © r less than unity and no propagation- of errors takes place
resulting Hn a stable solution under forward {ntegfation in this
region. Beyond the injection region X; < X the velocity v becomes
posiffve, hence the propégation factor exceeds unity. Consequently,
theAerfor at subsequent integration steps wilil be amplified °
resulting 16 an unstable solution. For&backWard " tegration on

the other Hand, h is negative which makes the propagation factor
1955 than'unity and theléropagation error tends to diminish ‘and

the solution will be stable. In the injection region, the carrier
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velocity is negative and the propayation facilor (14 ) s Larger
than wiily, C NS region, the Crroy will have the terdency to
grow exponenc .y, Howmv@?,'it IS possible to heep the propagation
error under contyrod by choosing Gufficiuntly small h o that keeps
(T + hv) close to 1. Since the solution is ap exponentially
increasing function of position, .in the dnjection region, -the
important crito;ﬁon s not the asolute orror =5 Lo be bounded
but that the réiativo erroy §§/ not to grow appreciably. The erroyr
can be made e*frcme]y smd1ﬁ In the injection region by reducing h
which is always possible since tHQ injection region is only a small
“fraction of the tota] semicondyctor width,

Similar, thoudii mora complicated propag;tion factors can be
developed for higher order Mrie~step methods (c.g9. Runge Kutta
fourth order algorithm [73j), The quahtity (h :;), sometimes called
the step factor, coﬁtributes to these propagation factors in.a
manner comparable to that of Luler's yethod. Collatz [74] suggests
that the étep factor be kept essentia]}y constant during the course
of integration, leading to another method of controlling the step
size. « ﬁ

In view of the above~&iSCUS$iOﬂs, backward integratfon of
the system of ¢quations (5.7) ~ (5.3) far %he‘dc and small-signal
cases has been used here. The solytions have proven to be extremely
stable. The accuracy is checled lasg Frcquent1y by us1ng Eq. A. 5,
and the solution in the 1nJeCt1on region has been extensively
examined to obtain an estimate for the relative, rather than absolute

error. The presenf author would dike tg point out that forward

intégration procedure might be possible, by keeping the step factor

SN
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A f ' .
(}llaxj) very small through the total int
hoin this case wil) pe exeessivoly smal)

extremely larqge computing time,

IrAtion intervat,

and vill result

However,

n



