
One of the strongest motives that lead men to art and science is escape from
everyday life with its painful crudity and hopeless dreariness, from the fetters of
one’s own ever-shifting desires. A finely tempered nature longs to escape from the

personal life into the world of objective perception and thought.
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Abstract

For successful correction of errors in a digital communication system, information

about the channel, such as timing, noise power, fading gain, etc., should normally

be available at the receiver. To this end, most receivers use channel parameter

estimation and timing recovery modules. However, these modules are costly in terms

of overhead, occupied chip area, power dissipation, and are usually imperfect. Thus,

the need for high-speed communication systems motivates finding other solutions.

In this thesis, we seek efficient coding solutions for reliable communication under

limited channel and timing information. We address the problem by considering

three important scenarios:

First, we consider Gaussian channels with unknown noise power at the receiver.

By using low-density parity-check (LDPC) codes, we propose a robust decoding

method which provides better performance compared to the existing methods.

Second, we consider decoding on wireless fading channels where the fading gain

and/or noise power are unknown at the receiver. Most modern error-correcting

codes require soft metrics, usually log-likelihood ratios (LLRs), to be calculated at

the receiver. This calculation is cumbersome on fading channels especially when

the fading gain is unknown. Thus, we first propose an LLR accuracy measure,

propose an efficient approximate LLR calculation technique, and then show that

the performance under approximate LLRs is extremely close to that of exact LLRs.

Third, we seek practical coding for channels with imperfect timing at the receiver.

In vast majority of the coding schemes invented, perfect synchronization is assumed

between the transmitter and receiver. In most communication systems, however,

achieving perfect synchronization is not possible. This leads to random symbol

insertions and deletions in the received signal and poses a great challenge for error

correction since conventional error-correcting codes fail at these situations. In this

thesis, we propose a practical coding strategy which allows recovering insertions,

deletions, and substitution errors without sacrificing the transmission resources.
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Ĉ
gives a

nearly perfect approximation when |y| is small. . . . . . . . . . . . . 45

4.4 Comparison of BER for a C104(x2, x5) LDPC code in different cases
on a normalized Rayleigh fading channel. The performance under α

Ĉ
remains almost the same regardless of whether σ is known or not and
is extremely close to the performance of true LLR calculation. . . . . 46

4.5 The 8-AM constellation points with Gray mapping. . . . . . . . . . . 47



4.5 True bit LLR values l(i) (i = 1, 2, 3) as functions of the channel output
y for the 8-AM at SNR= 7.88 dB. Also, the optimized piecewise linear
LLR approximations are depicted. . . . . . . . . . . . . . . . . . . . 49

4.6 Comparison between the capacity of BICM C and Ĉmax under op-
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C − Ĉmax is always very small. As K increases, ∆C = C − Ĉmax
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Chapter 1

Introduction and Motivation

In a modern society, exchange of information in an efficient, reliable, and secure

manner is of fundamental importance. Any communication is affected by noise,

interference, and other imperfections leading to communication errors. Physical

solutions for error-reduction are expensive and inefficient. Error-correction codes,

on the other hand, at a very small overhead cost, allow for detection and correction

of transmission errors. Therefore, error-correction codes are crucial parts of any

data communication system and the quality of these systems is totally dependent

on efficient error-correction coding.

Usually, for decoding of information and correction of errors, the receiver should

have knowledge of the communication channel parameters. For example, parame-

ters such as noise power, fading gain, timing and synchronization information, etc.,

should be known at the receiver. Without such information, perfect decoding is usu-

ally not possible. Therefore, most communication systems are equipped with chan-

nel estimation and timing recovery modules at the receiver side. Error-correction

codes are also designed based on the assumption that the receiver has perfect channel

knowledge and is perfectly synchronized with the transmitter. Channel estimation

and timing techniques, however, are themselves subject to imperfections. They also

increase the complexity of the system and can incur a great cost in terms of imple-

mentation complexities, required chip area, power dissipation, data overhead, and

decoding latency. In modern high-throughput communication systems, the receiver

may not be able to handle this extra complexity or overhead. Therefore, other

solutions are needed.

In this dissertation, we seek solutions for reliable communication under limited

knowledge of the channel parameters at the receiver. Various scenarios can be
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considered as different communication channels have different parameters. Also,

the lack of knowledge of each of these parameters at the receiver poses a different

challenge in the design of the system. In this dissertation, we consider three of the

most important scenarios.

1.1 Proposed research problems

The three scenarios considered in this dissertation are as follows:

1.1.1 Robust decoding on Gaussian channels with unknown noise
power

In the first scenario, we consider wired or wireless communication channels which

are modeled by the additive white Gaussian noise channel [5]. This can vary from

a simple twisted-pair wired link to block fading wireless links. The invention of

modern powerful error-correcting codes such as turbo codes [6] and low-density

parity-check (LDPC) codes [7, 8] has enabled reliable and efficient communication

on these channels. For successful decoding, however, usually the noise power should

be known at the receiver. Knowing that the noise power is usually time-varying as it

can also reflect the interference, this information may not be available at the receiver

at all times. Thus, using LDPC codes and assuming that the noise power is unknown

at the receiver, we propose a robust hybrid decoding method which provides better

performance compared to the existing decoding methods. This scenario is explained

in more detail in Chapter 31.

1.1.2 Practical decoding on wireless channels with unknown fading
gain

Wireless communications has been a fast-growing part of the communication indus-

try in the past decades and has enabled high-speed information exchange between

devices located virtually anywhere in the world. There exists an ever-growing list

of the existent and potential applications of wireless communications. Nevertheless,

due to the nature of the channel, many big technical challenges are still faced by the

system designer. The fading effect, which captures the time-varying nature of the

channel and is usually represented by the channel instantaneous fading gain, poses

one of the biggest challenges for reliable communication on wireless channels [10].

1Results of this chapter have been published in IEEE Communication Letters [9].
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If the instantaneous fading gain is known at the receiver, its effect can be compen-

sated. Nevertheless, as we stated, channel estimation techniques should be used

to estimate the fading gain which are not always feasible. As a result, in many

situations the receiver should deal with the receiver signal without knowledge of the

channel instantaneous fading gain. Also, the noise power may be unknown at the

receiver.

We pick this scenario as scenario 2 in this thesis. In particular, we consider un-

correlated flat-fading channels which are modeled by an instantaneous fading gain

and additive noise. We assume that the instantaneous fading gain and/or the addi-

tive noise power are unknown at the receiver. Modern error-correcting codes such

as LDPC codes require some soft metrics to be calculated at the receiver [11]. These

metrics are usually in terms of log-likelihood ratios (LLRs). The calculation of LLRs

is cumbersome and complex on fading channels especially when the fading gain is

unknown. Thus, approximate LLRs should be considered. To this end, by propos-

ing an LLR accuracy measure, we present an efficient approximate LLR calculation

method. We will show that the performance of the system under our approximate

LLRs is extremely close to that of the complex true LLRs. This scenario is explained

in more detail in Chapter 42.

1.1.3 Practical coding for channels with imperfect timing at the
receiver

Since the seminal work of Shannon [15], there have been huge advancements in

coding and information theory. The fundamental limits and efficient coding solutions

approaching these limits are now known for many communication channels.

In the vast majority of the coding schemes invented, it is assumed that the

receiver is perfectly synchronized with the transmitter, i.e., the symbol arrival times

are known at the receiver. In most communication systems, however, achieving

perfect synchronization is not possible even with the existence of timing recovery

systems. This problem is further intensified in modern communication systems

which have more stringent synchronization constraints. Asynchrony is also a great

problem in digital magnetic recording systems.

When perfect synchronization does not exist, random symbol insertions and

deletions occur in the received sequence and even the length of the resulting sym-

2Results of this chapter have been published in IEEE Transactions on Communications [12,13]
and presented in 2010 IEEE International Conference on Telecommunications [14].
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bol sequence at the receiver may not be equal to that of the transmitted symbol

sequence. This phenomenon poses a great challenge for error correction. Since the

positions of the inserted/deleted symbols are unknown at the receiver, even a single

uncorrected insertion/deletion can result in a catastrophic burst of errors. Thus,

conventional error-correcting codes fail at these situations.

Channels which suffer from random insertions and deletions (synchronization er-

rors) are called insertion/deletion (I/D) channels [1] and these channels are usually

used to model systems suffering from synchronization errors. For proper communi-

cation over these channels, error-correcting codes capable of dealing with insertions

and deletions, i.e., synchronization codes are needed. Synchronization codes have a

long history but their design and analysis have proved to be extremely challenging,

hence few practical results exist in the literature [16,17].

In this scenario, we consider communication channels with limited timing in-

formation at the receiver, i.e., I/D channels. We propose a coding strategy which

allows recovering insertions, deletions, and substitution errors without sacrificing

the transmission resources. This strategy is explained in more detail in Chapter 53.

1.2 Organization of the thesis

The rest of this thesis is organized as follows. Required background information

is reviewed in Chapter 2. In particular, since most of the results of this thesis

are shown through using LDPC codes, we provide preliminaries on LDPC codes

structure, analysis, and design methods. Chapters 3, 4, and 5 provide literature

survey, formal definition of the problems, and research results pertaining to the

three stated scenarios, respectively. Finally, the thesis is concluded in Chapter 6

where some future research directions are also stated.

3The results of this chapter are under second round of reviews for publication in IEEE Trans-
actions on Communications [18].
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Chapter 2

Preliminaries and Background

In this chapter, we review some background information necessary for the proposed

research scenarios. In particular, we first review the structure of a generic digital

communication system. We then provide a probabilistic definition of communication

channels and discuss their fundamental limits. Next, we briefly review the basics of

error-correcting codes. In particular, since most of our results are shown through

using LDPC codes, we review their structure, analysis, and design techniques. A

brief discussion on modulation and coding comes next and finally a brief review on

channel estimation and timing recovery techniques is provided at the end.

2.1 Overview of a communication system

A digital communication system consists of three main parts: the transmitter, chan-

nel, and the receiver. Fig. 2.1 depicts the block diagram of a generic communication

system from an information theoretic point of view. The transmitter generally con-

sists of a source encoder which compresses the source signal, an error-correction or

channel encoder which adds redundancy to the signal for error correction at the

receiver, and a modulator which maps the encoded signal to appropriate symbols

for the channel. The communication channel is the physical or logical path through

which information is sent and it ranges from copper wire pairs and optical fibers to

free air, network links, and even storage devices.

The goal at the receiver is to reconstruct the source signal based on the received

signal from the channel. The demodulator provides appropriate information for the

error-correction decoder by using the channel output and considering the mapping

used in the modulator. The error-correction decoder then uses this information to

decode the signal. Based on the channel output, information about the channel and
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symbol arrival times are provided for the demodulator and decoder by the channel

estimation and timing recovery modules. Finally, the source signal is recovered by

the source decoder.

Our focus in this dissertation is mainly on error-correction coding, modulator,

demodulator, and the channel.

2.2 Communication channels

In information theory, we are interested in a probabilistic modeling of the commu-

nication channel. To this end, the channel is viewed as a system with probabilistic

relation between its random input and output. Formally, the channel model is char-

acterized by its input alphabet X , its output alphabet Y, and a set of conditional

probability assignments pY |X(·|·) between the random input and output sequences

X and Y . This concept is depicted in Fig. 2.2. The random input and output

sequences could contain real or complex symbols. The alphabets could also be

continuous or discrete.

In general, the channel output sequence could depend on multiple input symbols,

giving rise to a channel with memory. However, if each output symbol depends only

on the input symbol at the same time instant then the channel is called memoryless.

On a memoryless channel we have:

pY |X(y|x) =
N∏

i=1

pY i|Xi
(yi|xi), (2.1)

where X and Y are sequences of length N , corresponding to N channel uses. In

this thesis, we deal with discrete-input continuous-output channels both memoryless

and with memory.

An example of a memoryless discrete-input continuous-output channel is the

additive white Gaussian noise channel which is of great theoretical and practical

importance in communications [5]. It is defined as

yi = xi + zi, (2.2)

where xi comes from an M -ary discrete alphabet X , zi ∼ CN (0, 2σ2) is the circu-

larly symmetric additive Gaussian noise with variance σ2 per dimension (real and

complex), and yi is the continuous output symbol at time instant i. In this case

channel conditional probabilities are defined as pY i|Xi
(yi|xi) =

1
2πσ2 exp (− |yi−xi|2

2σ2 ).

The subscript i is usually dropped for convenience.
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Figure 2.1: The block diagram of a generic communication system from an information theoretic point of view.
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pY |X(·|·)
X Y

channel

Figure 2.2: Probabilistic definition of a communication channel. Symbols in the input sequence
X are drawn from X , symbols in the output sequence Y from Y, and pY |X(·|·) denotes the
conditional probabilities assigned between them.

In this thesis, apart from the additive white Gaussian noise channel described

above, we also consider flat-fading and insertion/deletion channels. The definition

and details are given in Chapters 4 and 5.

2.2.1 Channel capacity

Assuming the probabilistic model of the communication channel, in a seminal work

[15], Shannon showed that there exists a fundamental maximum limit, called capac-

ity, on the amount of information that can be reliably transmitted over any discrete

memoryless channel.

Definition 2.1. The capacity of a discrete memoryless channel is defined as [15]

C = sup
p(X)

I(X ;Y ), (2.3)

where I(X;Y ) denotes the mutual information between the random variables X

and Y and the maximization is done over the marginal distribution of X.

The mutual information is a non-negative number measuring the mutual depen-

dency of two random variables and is formally defined as

I(X;Y ) =
∑

x∈X

∑

y∈Y
p(x,y) log2

(
p(x,y)

p(x)p(y)

)
, (2.4)

where p(x,y) is the joint probability distribution function of x and y. The mutual

information is zero if and only if X and Y are statistically independent.

The importance of channel capacity is due to Shannon’s noisy-channel coding

theorem [15]. This theorem states that for any ǫ > 0 and any amount of information

transmission rate Rt < C measured in bits per channel use, there exists an error-

correcting encoding and decoding scheme which ensures that the probability of error

is less than ǫ for sufficiently large code. Also if Rt > C, probability of error is larger

than a certain number no matter what encoding and decoding is used.
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In other words, he showed that for a given channel and any amount of noise

contamination on the channel, the communication error probability can be made

arbitrary close to zero if the information transmission rate is below the capacity.

Furthermore, he showed that reliable communication is not possible for rates beyond

the capacity.

The noisy-channel coding theorem has been later generalized for other channels

such as continuous, time-varying, and channels with memory [19,20]. For informa-

tion stable channels [19] the capacity is defined as

C = lim
N→∞

1

N
sup
p(X)

I(X ;Y ), (2.5)

where I(X ;Y ) denotes the mutual information between the random sequences X

and Y and the maximization is done over the distribution of X. The variable N

denotes the number of channel uses and is also equal to the length of X. On most

channels, the length of the output sequence Y is also equal to N . However on

insertion/deletion channels, as we will see later in Chapter 5, this is normally not

true.

Although the definition of capacity exists for many channels, finding the channel

capacity (evaluating (2.5)), is still an open problem for many channel models such

as insertion/deletion channels [16].

We finish this section with another useful definition:

Definition 2.2 (Achievable transmission rate). When I(X;Y ) is evaluated under a

certain input probability distribution p(X) or under a certain encoding and decoding

rule for which the converse part of the noisy-channel coding theorem cannot be

proved, the calculated rate is called an achievable transmission rate.

The channel capacity is the supremum of all achievable rates on the channel.

2.3 Error-correction coding

Shannon’s theorem proves the existence of optimal error-correcting codes but does

not show how such codes can be constructed which allow for practical encoding and

decoding. The theory of error-correction coding deals with finding practical codes

that can approach channel capacity.

The main idea in error-correcting coding is to provide protection against channel

noise and other sources of errors by adding redundancy to the transmitted infor-
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mation sequence. In an error-correcting code, the redundant symbols are computed

based on the information symbols using a pre-determined algorithm which both

the encoder and decoder know. A redundant symbol is usually formed from many

information symbols and information symbols themselves may or may not appear

in the final transmitted sequence. At the receiver, the decoder which knows the

pre-determined algorithm decodes the information symbols from the contaminated

received sequence without any retransmission.

The most basic form of an error-correcting code is a repetition code. In a binary

(N, 1)-repetition code, each information bit is repeated N times and sent on the

channel. For example, ‘0’ is sent as ‘0 . . . 0︸ ︷︷ ︸
N

’ and ‘1’ as ‘1 . . . 1︸ ︷︷ ︸
N

’. The decoder can then

do a majority vote and correct the errors. Though very simple, the repetition code

is normally not a very efficient code as n channel uses are sacrificed for transmitting

only one bit.

Definition 2.3 (Code rate). The code rate R is a dimension-less quantity which

measures the efficiency of a code (from the point of view of information transmission)

and is defined as R = K/N when each K information symbols are encoded into N

symbols.

For example, for the binary (N, 1)-repetition code, R = 1/N . In other words,

in each channel use, 1/N information bit is transmitted. Formally, error-correction

coding deals with finding practical codes which can reliably work on a given channel

with rates as close as possible to capacity.

Coding theory has a long history. The first class of efficient error-correcting codes

were invented by Hamming in 1950 [21]. Hamming codes, though simple, provide

achievable transmission rates very far from channel capacity [22]. Thus, they are

not desirable for many applications. Since Hamming codes, the coding theory has

been dealing with finding optimal codes that can approach capacity.

Block codes and convolutional codes

In general, error-correcting codes are classified into two categories: block codes and

convolutional codes. Generally, convolutional codes are distinguished from block

codes from the presence of memory in their encoding process.

Block codes are a very rich family of error-correcting codes which work with

data in blocks. In particular, a block code of length N , with rate R = K/N ,

10



Messages Codewords

(0 0 0 0) (0 0 0 0 0 0 0)
(0 0 0 1) (1 0 1 0 0 0 1)
(0 0 1 0) (1 1 1 0 0 1 0)
(0 0 1 1) (0 1 0 0 0 1 1)
(0 1 0 0) (0 1 1 0 1 0 0)
(0 1 0 1) (1 1 0 0 1 0 1)
(0 1 1 0) (1 0 0 0 1 1 0)
(0 1 1 1) (0 0 1 0 1 1 1)
(1 0 0 0) (1 1 0 1 0 0 0)
(1 0 0 1) (0 1 1 1 0 0 1)
(1 0 1 0) (0 0 1 1 0 1 0)
(1 0 1 1) (1 0 0 1 0 1 1)
(1 1 0 0) (1 0 1 1 1 0 0)
(1 1 0 1) (0 0 0 1 1 0 1)
(1 1 1 0) (0 1 0 1 1 1 0)
(1 1 1 1) (1 1 1 1 1 1 1)

Table 2.1: The message sequences and their corresponding codewords for a block code with
K = 4, N = 7, and R = 4/7.

and alphabet Σ, encodes a block of information symbols of length K (called a

message) into a block of symbols of length N (called a codeword) where all symbols

come from the alphabet Σ. The number of redundant symbols are then given by

N −K. As a result, there are |Σ|K number of distinct messages which are mapped

to |Σ|K distinct codewords, where |Σ| denotes the size of the alphabet Σ. A block

code is the collection of all the messages and their corresponding codewords. Since

each message is encoded independently and is mapped to a distinct codeword, the

encoding process is memoryless and can be implemented by a combinatorial logic

circuit. When |Σ| = 2, the code is called a binary block code. An example of a

binary block code with K = 4 and N = 7 is given in Table 2.1.

Given a noisy channel and a fixed code rate R, the main challenge in design-

ing block codes is how to choose K and N and an appropriate mapping from the

messages to the codewords which provide reliable error-correction performance on

the channel. Increasing K and N usually improves the decoding performance but

increases the encoding and decoding complexities. The literature pertaining to

block codes is very rich and there exist various codes designed for many different

channels. Some of the most famous block codes are Repetition, Hamming, Golay,

Reed-Solomon, Hadamard, and LDPC codes [22].
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As opposed to block codes, convolutional encoders work with serial data. The

information sequence is serially fed into the encoder and the encoded sequence is

produced. The encoder can still be seen as producing N -tuple coded symbols for

each K-tuple information symbols. However, the N -tuple coded symbols not only

depend on the correspondingK-tuple information symbols at the same time instance

but also on m previous K-tuple information symbols. This means that the encoder

has a memory order of m. This is the main difference between a convolutional code

and a block code. Convolutional codes can be implemented using sequential logic

circuits. Unlike block codes, the error-correction performance of convolutional codes

can be improved by increasing m rather than increasing K and N .

Modern codes

Until early 1990’s, no designed coding scheme was able to approach the channel

capacity without a prohibitive encoding or decoding complexity. The state of the art

was to concatenate a convolutional code with a block code (usually a Reed-Solomon

code) which was still far from the channel capacity. In light of the discovery of belief

propagation decoding which enabled low-complexity decoding for very large codes,

modern error-correcting codes emerged. Two important classes of modern codes

are turbo codes [6] and LDPC codes [7, 23]. The discovery of these codes enabled

approaching the capacity on many channels with practical encoding and decoding

complexity.

LDPC codes, due to their reliance on belief propagation decoding, are typically

presented on a graph. They also posses desirable properties such as having a flexible

structure and efficient analysis and design techniques and they outperform turbo

codes when the block length is large. In this dissertation, most of our results are

presented through using LDPC codes although some of our approaches are general.

Thus, we will review LDPC codes in the next section.

2.4 Low-density parity-check codes

Here, we review the necessary background on LDPC codes. Since they are a subclass

of linear block codes, we first briefly review linear block codes.
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2.4.1 Linear block codes

Error-correcting codes are also classified into linear and non-linear codes. The error-

correcting code is called linear if and only if any linear combination of the code’s

codewords is also a codeword. Otherwise, the code is called non-linear. Linear

error-correcting codes benefit from desirable properties and structure which greatly

reduce their encoding and decoding complexities. Their design and analysis are also

facilitated by using the rich literature of linear analysis.

An important class of linear codes is the class of linear block codes, where the

|Σ|K codewords form a K-dimensional subspace of the vector space |Σ|N . In a linear

block code, first K linearly independent vectors (g
0
, g

1
, . . . , g

K−1
) are chosen from

|Σ|N . The codewords are then formed by a linear combination of these K vectors.

The K linearly independent vectors are usually grouped together as the rows of a

K ×N matrix called the generator matrix G. The codewords are then given by

v = u ·G (2.6)

= (u0, u1, . . . , uK−1) ·




g
0

g
1
...

g
K−1




= u0g0 + u1g1 + · · ·+ uK−1gK−1
,

where u = (u0, u1, . . . , uK−1) is the message vector and v = (v0, v1, . . . , vN−1) is the

corresponding codeword.

There is also another matrix associated with linear block codes called the parity-

check matrix H which is mostly useful in their decoding. The parity-check matrix

is an (N −K)×N matrix whose rows generate the null space of G. Also a vector

v of length N is a codeword if and only if v ·HT = 0. The rows of the parity-check

matrix also give N −K even parity-check equations on the message symbols:

v0hi0 + v1hi1 + · · ·+ vn−1hi,(N−1) = 0, (2.7)

where hi = (hi0, hi1, . . . , hi,(N−1)) for i = 0, 1, . . . , N − K − 1 are the rows of H.

Parity-check equations are useful in decoding; if any of them is not satisfied, an

error is detected.
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As an example, consider the binary linear block code of Table 2.1. We have:

G =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1


 (2.8)

and

H =




1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


 , (2.9)

with parity-check equations

v0 + v3 + v5 + v6 = 0 (2.10)

v1 + v3 + v4 + v5 = 0 (2.11)

v2 + v4 + v5 + v6 = 0. (2.12)

2.4.2 LDPC codes: graphical representation

An LDPC code [7] is a linear block code with a sparse parity-check matrix. More

specifically, the sparsity of parity-check matrix H means that it has low density of

1’s, i.e., the number of 1’s in H grows linearly with the block length N . In this

thesis, we are interested in binary LDPC codes. Thus, when we refer to LDPC

codes, we mean binary LDPC codes unless otherwise stated.

As said, linear block codes are usually represented by their generator and parity-

check matrices1. However, for the purpose of analysis, LDPC codes are usually

represented graphically. This is because LDPC codes are usually decoded by itera-

tive message-passing decoding algorithms and this graphical representation provides

better insight in analyzing these algorithms. Before explaining the graphical repre-

sentation we give some definitions.

A bipartite graph is a graph whose nodes can be divided into two disjoint sets

such that the graph’s edges are only allowed to connect two nodes from different

sets. A factor graph [24], is a bipartite graph used to visualize the factorizations

of a multi-variate function into local functions with less number of variables. In a

factor graph, the nodes are divided into variable nodes which represent the variables

of the functions and check nodes which represent the functions. Factor graphs are

mainly used in conjunction with message-passing algorithms to efficiently compute

1All linear block codes can also be represented graphically.
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the marginal distributions of a multivariate distribution function. Thus, they are

also useful in analyzing linear block codes.

To see how a binary linear block code is represented by factor graphs, first recall

that a linear block code can be seen as a set of even parity-check equations imposed

on the codeword bits. Now, consider a bipartite graph G with N variable nodes and

M check nodes. Here, the variable nodes represent the codeword bits and are binary

variables. The check nodes represent the even parity-check equations imposed on

the variable nodes. For the i-th check node we have

⊕

j:vj∈n(ci)
vj = 0,

where vj is the j-th variable node, n(ci) denotes the set of all variable nodes

connected to the i-th check node ci and ⊕ represents the modulo-2 sum.

For example, consider the sample graph of Fig. 2.3. The variable nodes are shown

by circles and check nodes by squares. This graph has eight variable nodes and four

check nodes. Since each check node represents an even parity-check constraint, there

are four parity-check equations written as

c1 : v2 ⊕ v3 ⊕ v4 ⊕ v7 = 0

c2 : v1 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v8 = 0

c3 : v1 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v6 = 0

c4 : v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 = 0.

Now, if we define the M ×N matrix H as the adjacency matrix of G, then the

graph represents a linear code with length N and dimension K ≥ N − M . The

(i, j) entry in H will be 1 if and only if the i-th check node ci is connected to the

j-th variable node vj. Since in a linear code with dimension K, the K parity-check

equations should be linearly independent, the dimension of the code defined by G is

only equal to N −M if all the parity-check constrains defined by the check nodes

are linearly independent. This gives rise to H being full rank.

All linear block codes have factor graph representations. If the factor graph is

also sparse, i.e., the number of edges E grows linearly with the number of variable

nodes, then the graph represents an LDPC code.
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c1

v6v5 v7v4 v8v3v2v1

c4c3c2

Figure 2.3: A factor graph representing an LDPC code with 8 variable nodes v1, v2, . . . , v8
and 4 check nodes c1, . . . , c4.

2.4.3 Regular and irregular LDPC codes

Based on their graph structure, LDPC codes are classified as regular or irregular.

If all the variable nodes have the same fixed degree dv and also all the check nodes

have the same fixed degree dc, then the LDPC code is called regular. Otherwise, it

is called irregular. In a regular LDPC code we have

E = dv ·N = dc ·M. (2.13)

Also, in the parity-check matrix associated with a regular LDPC code, there are dc

number of 1’s in each row and dv number of 1’s in each column.

In an irregular LDPC code, since not all of the variable or check nodes have

the same degree then the variable and check nodes’s edges are defined by two edge

degree distributions {λ2, λ3, . . . , λdv} and {ρ2, ρ3, . . . , ρdc}, where λi (ρi) denotes

the fraction of all edges connected to degree i variable (check) nodes. Also, dv and

dc represent the maximum degree of variable and check nodes, respectively. For

computational purposes, it is also common to represent the degree distributions by

their polynomial generators λ(x) =
∑dv

i=2 λix
i−1 and ρ(x) =

∑dc
i=2 ρix

i−1 [25]. This

allows us to write

N = E
dv∑

i=2

λi

i
= E

∫ 1

0
λ(x)dx, (2.14)

and

M = E

dc∑

i=2

ρi
i
= E

∫ 1

0
ρ(x)dx. (2.15)

Regular codes are simpler than irregular LDPC codes in terms of their structure.

Nevertheless, it is shown in [25] that by using irregular graphs, the performance of
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LDPC codes can be extremely improved. The degree distributions together with

N define not only a single graph but an ensemble of graphs as the graphs (hence

parity-check matrices) which can be constructed from these distributions are not

unique. In this thesis, we denote an ensemble of LDPC codes with block length N

and degree distributions λ(x) and ρ(x) by CN (λ(x), ρ(x)). The rate of this ensemble

of codes is given by

R =
K

N
≥ N −M

N
= 1−

∑dc
i=2

ρi
i∑dv

i=2
λi

i

= 1−
∫ 1
0 ρ(x)dx
∫ 1
0 λ(x)dx

, (2.16)

where equality holds only if the corresponding parity-check equations are linearly

independent. In large graphs, the fraction of dependent equations is very small.

Thus, it is common to ignore these dependencies. An ensemble of regular LDPC

codes is usually denoted by the pair (dv, dc).

As stated, the degree distributions do not uniquely define an LDPC code. Never-

theless, the concentration theorems of [11] show that the performance of all instances

from code ensemble concentrates around an average performance for sufficiently

large code lengths. This average performance corresponds to the performance of an

infinite-length code with the same degree distributions. This means that the aver-

age performance of an ensemble of LDPC codes can be determined by its degree

distributions. As a result, it is usually sufficient to represent LDPC codes by their

degree distributions.

This section is concluded with an example. Consider the ensemble of irregular

LDPC codes C10000(λ(x), ρ(x)) with

λ(x) = 0.4x2 + 0.4x5 + 0.2x8

ρ(x) = x8.

Then E = 45000 and R = 0.5. The degree distribution shows that 40% of edges

(18000 edges) are connected to variable nodes of degree 3 (6000 nodes), another

40% of edges to variable nodes of degree 6 (3000 nodes) and 20% to variable nodes

of degree 9 (1000 nodes). Also, all 5000 check nodes have degree 9.

2.4.4 Decoding

The decoding of LDPC codes is usually done by means of a class of iterative decoding

algorithms called message-passing algorithms. These algorithms provide very good

and efficient decoding performance by exploiting the graphical structure of the code.
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In these algorithms, some messages in the form of probabilities or beliefs are passed

between the variable and check nodes of the graph along the edges connecting them.

The main advantage of these algorithm is their low complexity which scales linearly

with the block length N and thus is constant per information bit.

It is usually more advantageous to work with log-likelihood ratios (LLRs) as the

messages. LLRs make the message update rules simpler and also provide numerical

stability which is useful for implementation.

There are numerous message-passing algorithms available in the literature. Two

main message-passing algorithms used in the decoding of LDPC codes are the sum-

product (also known as belief propagation) [24] and min-sum (also known as max-

product) [26] algorithms.

The sum-product algorithm

Among other message-passing algorithms, the sum-product (SP) is the most power-

ful, and simultaneously the most complex algorithm for decoding LDPC codes. The

formulation of SP depends on the type of messages being passed in each iteration.

Here, we describe the SP algorithm assuming that messages are real valued LLRs.

At first, based on each channel output y, a channel LLR message (also called

intrinsic message) is calculated for each corresponding variable node v. This channel

LLR message is given by

m0v = log
pX|Y (0|y)
pX|Y (1|y)

, (2.17)

where x ∈ {0, 1} denotes the binary channel input. All variable nodes are then

initialized by these intrinsic messages and pass these messages to their connecting

check nodes c. These messages are denoted by m
(0)
v→c = m0v .

Next, the check nodes compute their outgoing messages based on the messages

received from the variable nodes. In particular, m
(1)
c→v is calculated by each check

node c and is sent to the connecting variable node v based on the messages previously

received from all the neighboring variable nodes except v. This check node message

update completes the first half of the first iteration. In the second half iteration, the

variable nodes update their messages based on the received messages from check

nodes in a similar manner and send them to the neighboring check nodes. This

process then continues iteratively.

There are two iterative message update rules used in this iterative process. One

for the variable nodes and one for the check nodes. The message update rule at
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m
(ℓ−1)
vdc→c
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(ℓ)
c→vi

vdc
viv3v2v1
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(ℓ−1)
v3→c

m
(ℓ−1)
v2→c

m
(ℓ−1)
v1→c

c

Figure 2.4: The message update process in a check node of degree dc > 4. The message
from c to the variable node vi is updated based on the messages received from the neighboring
variable nodes in the previous iteration.

check node c is as follows [24,26]:

m
(ℓ)
c→v = 2 tanh−1




∏

vi∈n(c)−{v}
tanh

(
m

(ℓ−1)
vi→c

2

)
, (2.18)

where m
(ℓ)
c→v denote the message sent from c to variable node v in the ℓ-th iteration,

n(c) is the set of all variable nodes connected to c, and m
(ℓ−1)
vi→c shows the message

sent from variable node vi to c in the previous iteration. This message updating

procedure has been illustrated in Fig. 2.4.

The variable node update rule is given by [24,26]

m
(ℓ)
v→c = m0v +

∑

cj∈n(v)−{c}
m

(ℓ)
cj→v, (2.19)

where n(v) denotes the set of all check nodes connected to v. This updating rule is

depicted in Fig. 2.5 for a variable node with degree dv. Notice that these messages

are initialized at the start of the decoding by m
(0)
c→v = 0. The messages passed

between variable nodes and check nodes are called extrinsic messages.

At each iteration, a decision can be made on the variable node v based on the

messages it has received. Since the messages are LLRs, the decision can be made

based on the sign on the messages. This is done using the following rule:

V =

{
0, m0v +

∑
cj∈n(v)m

(ℓ)
cj→v > 0

1, m0v +
∑

cj∈n(v)m
(ℓ)
cj→v < 0

, (2.20)
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(ℓ)
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Figure 2.5: The message update process in a variable node of degree dv > 4. The message
from v to the variable node ci is updated based on the messages received from the neighboring
check nodes in the previous half iteration and also the intrinsic messages from the channel m0v .

and if m0v +
∑

cj∈n(v)m
(ℓ)
cj→v = 0 either V = 1 or V = 0 can be declared randomly

with equal probability. As can be seen from (2.20), a positive LLR votes in favor of

V = 0 and a negative LLR votes in favor of V = 1.

It should be noted that SP is not as powerful as maximum likelihood (ML)

decoding in general. This is because SP is only exact in calculating marginal distri-

butions when the factor graph does not have any cycles, i.e., it is a tree. Noticing

that avoiding cycles in the factor graphs of finite-length LDPC codes is impossible

in practice, SP always gives a sub-optimum performance. Nevertheless, when the

block lengths are large, the effect of cycles become negligible under large number of

iterations. As a result, the performance of SP is very close to that of ML at large

block lengths. SP is more practical in terms of the decoding complexity than ML.

Thus, it is normally preferred over ML.

2.4.5 The min-sum algorithm

The min-sum (MS) algorithm is another widely used message-passing algorithm for

decoding LDPC codes. It can be viewed as a simplified version of SP [26]. As
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a result, its performance is not as good as that of SP. Nevertheless, it has some

practical benefits such as its low complexity and the fact that on some channels its

performance is independent of channel estimation errors. We will discuss this in

more detail in the next chapter.

In MS, the variable node message update rule is similar to SP and is given by

(2.19). The check node message update rule is given by [24,26]

m
(ℓ)
c→v = min

vi∈n(c)−{v}

∣∣∣m(ℓ−1)
vi→c

∣∣∣
∏

vi∈n(c)−{v}
sign

(
m

(ℓ−1)
vi→c

)
, (2.21)

which can be seen as an approximation to (2.18).

2.4.6 Analysis methods

As stated in Sec. 2.4.4, the SP algorithm correctly calculates the marginal distri-

butions only if the factor graph is cycle-free and avoiding cycles is impossible. In

randomly constructed LDPC codes with large block lengths, the neighborhood of

a fixed depth ℓ of a large fraction of the variable nodes is a tree. As a result, the

SP algorithm correctly calculates the LLRs on these variable nodes for ℓ iterations.

The fraction of variable nodes with cycles in their neighborhood of depth ℓ is also

small. This means that when the block lengths are large, graph cycles have small

effect in decoding performance. Thus for the asymptotic analysis of LDPC codes,

it can be assumed that the factor graph is a tree.

Given the linear property of the code and the symmetry of the message update

rules, the convergence behavior of the iterative decoding algorithm is independent

of the transmitted codeword on symmetric-output channels. This greatly simplifies

the analysis as it can be assumed that the all-zero codeword is transmitted.

Under output-symmetric channels, the LLR messages give sufficient statistics for

the analyzing the decoding. As a result, it is beneficial to study the statistics of the

LLR messages (extrinsic messages) for the purpose of analysis. This is done under

the tree assumption for the code’s graph and the all-zero codeword transmission

assumption. The exact asymptotic analysis method technique for LDPC codes is

called density evolution [11] which tracks the evolution of the pdf of the extrinsic

messages in each iteration.

Although density evolution is exact, it is computationally complex and its exact

formulation is not suitable for direct practical use. As a result, a discrete version

of density evolution is used for numerical analysis. This technique is called discrete
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density evolution [27] and is done by quantizing the LLR messages and tracking the

probability mass functions (pmfs) instead of pdfs. This method is quite accurate

if the quantization step sizes are small. Here, we omit the details of this method.

Interested reader can refer to [27].

Decoding threshold

One important asymptotic property of LDPC codes is their decoding threshold.

Definition 2.4 (Decoding threshold). The decoding threshold of an ensemble of

infinite-length LDPC codes is defined as the worst channel condition for which the

message error rate approaches zero as the number of decoding iterations approaches

infinity [11].

In other words, for LDPC codes of asymptotic length, for channel conditions

worse than the decoding threshold the decoding is unsuccessful while for channel

conditions better than the decoding threshold the decoding is successful. The decod-

ing threshold depends on the code’s degree distributions, the decoding algorithm,

and the channel type. Decoding threshold is normally found by density evolution.

As an example, on a binary-input additive white Gaussian noise channel, density

evolution calculates a threshold of σ = 0.8809 (equivalent to signal-to-noise ratio

(SNR)=1.1015 dB) for (3, 6)-regular LDPC codes under SP decoding. This means

that decoding is successful when σ ≤ 0.8809 (SNR≥ 1.1015 dB) and unsuccessful

when σ > 0.8809 (SNR< 1.1015 dB).

2.4.7 Design

As stated in Sec. 2.4.3, the average performance of an ensemble of LDPC codes

is specified by its degree distributions. Thus, modifying the degree distributions

affects the average performance of the ensemble. This hints that good ensemble of

codes with a desired performance can be found by optimizing the degree distribu-

tions. The optimization should normally be subjected to some constraints. In this

process, different measures of performance and different constraints could be con-

sidered such as having the highest rate given a fixed decoding threshold [28], having

the highest decoding threshold given a minimum code rate [8], or having the lowest

decoding complexity given fixed decoding threshold and code rate [28,29]. The de-

gree distribution optimization process is normally done by numerical optimization

methods.
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2.5 Modulation and coding

As stated, error-correcting codes add redundant data to the information symbols

to detect and correct the errors in the receiver. This advantage of error-correcting

codes, however, comes at a price: increased bandwidth. If the transmission symbol

rate is kept fixed, adding redundancy is equivalent to using more bandwidth for

transmission. This is not desirable in many applications especially in band-limited

communications.

In a landmark paper [30], Ungerboeck showed that bandwidth efficiency can

be achieved by combining modulation and coding in a single entity called coded

modulation. The idea in coded modulation was to first provide redundancy by in-

creasing the number of available symbols in the modulation and then limit the signal

transitions in a controlled manner using an error-correcting code. He showed that

improved performance can be achieved at minimum cost to the required bandwidth.

This was due to using an increased number of symbols in the modulation.

After the introduction of coded modulation by Ungerboeck, it was generally ac-

cepted that for improved performance and bandwidth efficiency, modulation and

coding should be combined. However, in a seminal paper [31], Caire et al. showed

that a performance very close to that of coded modulation can be achieved on fad-

ing and Gaussian channels by using a separate binary code, a bit-interleaver and

non-binary modulation. Their method is called bit-interleaved coded modulation

(BICM). The advantage of BICM is mostly due to using coding and modulation

in separate entities. Thus, the binary error-correcting code can be designed sepa-

rately by taking advantage of their rich literature and their modern coding methods.

Design, analysis, and implementation of the BICM scheme are also much simpler

than coded modulation. As a result, BICM provides a robust, bandwidth efficient,

and easy to design solution which is desirable in many applications especially for

communication on wireless fading channels.

In this thesis, we will use BICM for reliable and bandwidth efficient communi-

cation on wireless fading channels. The details are discussed in Chapter 4.

2.6 Channel estimation and timing recovery

As stated, modern error-correcting codes provide close to the Shannon limit per-

formance on many channels and this great performance is due to the existence of
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iterative message-passing algorithms. To gain benefit of the superior performance

of these algorithms, channel parameters such as noise power or channel fading gain

should be perfectly known at the receiver. Usually, this information is provided for

the decoder by the channel estimation modules at the receiver2. Fig. 2.1 shows a

communication system with a channel estimation module at the receiver.

Channel estimation techniques are usually classified as data-aided and non data-

aided. In data-aided methods, a training or pilot sequence is periodically inserted

into the transmitted blocks and sent to the receiver. The training sequence, known to

the receiver, helps the receiver to track the channel parameters. Channel estimation

is usually done by ML, minimum-mean squared error (MMSE), least squared error

(LSE), or iterative methods. For example in ML methods, a likelihood function

for the received signal is formed which is parameterized by the quantity which

is desired to be estimated. An estimate of the desired parameter is then found

by maximizing the likelihood function. Normally, channel estimation can also be

jointly done with decoding using iterative message-passing algorithms. The main

drawback of these data-aided methods, apart from the added complexity, is the

increased overhead required for transmitting the training sequences. They are also

imperfect, i.e., there is always an error in the estimation which degrades the decoding

performance especially on time-varying channels.

In non data-aided methods, no training sequence is used and the receiver exploits

the statistical properties of the channel and the transmitted signal to obtain infor-

mation about the channel parameters. These methods are usually more bandwidth

efficient compared to data-aided methods as they require less overhead. Neverthe-

less, they are usually imperfect and thus may not be desirable for many applications.

In Chapters 3 and 4, we provide solutions for dealing with imperfect or limited

knowledge of the channel parameters at the receiver on Gaussian and wireless fading

channels.

It is also critical to provide timing information for the decoder. Most of the error-

correcting codes are designed assuming perfect synchronization between the receiver

and the transmitter. In other words, the arrival time of the transmitted symbols

should be perfectly known at the receiver. To this end, timing recovery modules

are used at the receiver. Timing recovery techniques are usually classified as deduc-

2The performance improves if channel information is also provided for the transmitter through
a feedback path. In this thesis, we only deal with cases where such feedback path does not exist.
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tive and inductive [5]. The inductive methods which are more powerful are mostly

similar in essence to the channel estimation methods and they are also classified as

data-aided and non data-aided. Compared to other channel parameter estimation

methods, however, the decoding performance is much more sensitive to the inaccu-

racy of timing estimates. As we will discuss in Chapter 5, imperfect synchronization

leads to insertions and deletions of symbols in the received sequence. Even one unde-

tected insertion/deletion then leads to a catastrophic burst of errors. Conventional

error-correcting codes are not capable of dealing with such cases. Noticing that

timing recovery becomes even more difficult in channel conditions where powerful

error-correcting codes promise to work, motivates finding other solutions. We will

introduce codes capable of dealing with imperfect synchronization in Chapter 5.
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Chapter 3

Robust LDPC Decoding using
Irregular Decoders

For decoding LDPC codes many different message-passing iterative decoding algo-

rithms have been proposed in the literature. For example, sum-product (SP) decod-

ing has been shown to be the most powerful in terms of error performance when the

code’s graph is cycle free [24]. Another widely used soft-decoding message-passing

algorithm is the min-sum (MS) algorithm, which is an approximation to SP.

In [32], the idea of irregular decoding of LDPC codes is proposed where the

decoding algorithm that one variable node (check node) runs remains the same for

all iterations, but it may vary from one variable node (check node) to another in a

single iteration. As an example of a simple irregular decoder see Fig. 3.1. It has

been shown in [33] that irregular decoders can decrease the decoding complexity of

LDPC codes and in [34], it has been shown that by using irregular decoders which

combine SP and MS, the robustness of iterative decoders to channel estimation

errors can be improved. This is motivated from two facts. (1) On the binary-input

additive white Gaussian noise channel (BIAWGNC), MS decoder does not need to

know the power of the additive noise while SP decoder is quite sensitive to noise

power estimation errors. (2) With no channel estimation error, SP can significantly

outperform MS. As a result, depending on the amount of channel estimation error,

MS can outperform (or be outperformed by) SP. Thus, using an irregular decoder

which combines MS and SP can potentially provide the best performance. However,

no quantitative robustness measure is presented in [34] and no method is proposed

to design the irregular decoder parameters.

In this chapter, we first present a robustness measure for irregular decoders

which reflects a fundamental property of the decoder, i.e., its decoding threshold, in
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Figure 3.1: The concept of an irregular LDPC decoder. The highlighted check nodes perform
SP and the rest of the check nodes perform MS.

the presence of channel estimation errors. This measure is similar to the measure

used in [35, 36] to quantify the sensitivity of SP decoders to channel estimation

errors. Next, for a given LDPC code, we propose a method to design irregular

decoders that provide the best robustness to the channel estimation errors on the

BIAWGNC. As a first step, for a given code, we find the irregular decoder with

optimal mixture of SP and MS to obtain the best decoding threshold in the presence

of channel estimation errors. Next, to achieve the widest possible convergence region

we provide an iterative approach for a joint optimization of the irregular code’s

degree distributions and the irregular decoder. In particular, this approach combines

the conventional irregular LDPC codes optimization methods with the irregular

decoder design method presented in this chapter.

3.1 SP, MS, and channel estimation errors

Consider a BIAWGNC whose output y is defined by

y = x+ z, (3.1)

where x ∈ {−1, 1} is the channel input and z is the zero-mean Gaussian additive

noise with variance σ2
act. We also represent the channel estimation error with α

defined as

α =
σ2
est

σ2
act

, (3.2)

where σ2
est is the decoder’s estimate of the channel noise variance.

On this channel, assuming equiprobable inputs, the true channel LLRs are given

by

l = log
P (x = +1|y)
P (x = −1|y) = log

P (y|x = +1)

P (y|x = −1)
=

2

σ2
act

y. (3.3)

As described in Section 2.4.4, SP and MS use these channel LLRs as their intrinsic

messages m0v . When there is channel estimation error, channel LLRs calculated at
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the decoder are given by

l̂ = m0v =
2

σ2
est

y =
2

ασ2
act

y, (3.4)

which shows how channel estimation errors (quantified by α) affects the intrinsic

messages m0v .

The variable node message update rules for SP and MS are similar and are given

by (2.19). Noticing that the check node message update rule for MS is given by

(2.21), it can be seen that the term 2
ασ2

act
can be factored out from both variable

and check node update rules. Since the final decision on the variable nodes is made

based on the sign of the variable node messages as given in (2.20), α does not have

any affect on the final decisions. Thus, MS is robust to channel estimation errors.

Notice that the same discussion does not apply to SP since 2
ασ2

act
cannot be

factored out from the check node message update rule given by (2.18). As a result,

SP is vulnerable to channel estimation errors.

3.2 Robust irregular decoders

In this section, we define and design robust irregular decoders. As stated, the goal

is to mix the advantages of SP and MS in an irregular decoder design to obtain the

best performance in the presence of channel estimation errors.

Since the variable-node update rules are the same for both SP and MS, we define

an ensemble of irregular LDPC code-decoder pairs by (λ(x), ρ(x), β), where λ(x) and

ρ(x) are the code’s original degree distribution polynomials [8] and 0 ≤ β ≤ 1 is the

fraction of check nodes performing the MS algorithm.

Now, assume that due to channel estimation imperfections, α changes in the

range [αmin, αmax]
1. For a given code characterized by (λ(x), ρ(x)), our first goal

is to find the value of β which provides the best tolerance of channel mismatch.

This is equivalent to having the best decoding threshold measured in terms of the

required Eb
N0

for guaranteed convergence in the presence of channel mismatch. Here,

the definition of decoding threshold is rather different than its conventional meaning

since the effect of channel estimation error must be taken into account. To this end,

first notice that for a given β and a specific value of α, the minimum Eb
N0

required

for successful convergence of the given code-decoder pair (here denoted by Eb
N0

∗
) can

1Since α is usually a random variable in practice, this range can be more precisely defined as a
confidence interval which contains α with high probability.
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be found using density evolution [8]. Since α changes in the range [αmin, αmax], the

definition of the decoding threshold must be modified to

Eb

N0

thr

= max
αmin≤α≤αmax

Eb

N0

∗
. (3.5)

This is the smallest value of Eb
N0

required for guaranteed convergence of the code-

decoder in the presence of channel estimation error. In fact, Eb
N0

thr
acts as a ro-

bustness measure since it quantitatively reflects the ability of the code-decoder to

withstand channel estimation errors.

It should be noted that for computing Eb
N0

thr
, it is only necessary to find Eb

N0

∗
for

α = αmin and α = αmax and pick the larger one. In other words, the maximum

decoding threshold occurs at the boundaries of α. This can be argued as follows. It

is known that the MS algorithm, overestimates the amplitude of the LLR messages

compared to the SP [37]. When α > 1, since | l̂
l
| = 1

α
< 1, the amplitude of the

channel LLRs are underestimated by the receiver. As a result, the overestimation

in the output of the check nodes running MS is partially compensated when these

underestimated LLRs pass through them. Increasing α makes | l̂
l
| larger. This means

there exist a point α = α0 that
Eb
N0

∗
is a decreasing function of α when α ≤ α0 and is

an increasing function of α when α > α0 where α0 is where the effect of channel LLR

underestimation becomes stronger than the overestimation caused by MS. When

α < 1, since | l̂
l
| = 1

α
> 1, i.e., we only have overestimation, the performance gets

worse by decreasing α and as a result Eb
N0

∗
increases. Thus, over the whole range

of α we have only one local minimum for Eb
N0

∗
and thus over any range of α the

maximum value occurs at the boundaries of α. The significance of this observation

is that in (3.5), one only needs to run density evolution twice and not for all values

of α and we can write
Eb

N0

thr

= max
α=αmin,α=αmax

Eb

N0

∗
. (3.6)

To find the best tolerance of channel mismatch, we must solve the following

optimization problem:

βopt = argmin
β

(
Eb

N0

thr)
. (3.7)

To solve (3.7), by using density evolution, we obtain the modified decoding threshold

defined in (3.5) for a finite set of points in the range 0 ≤ β ≤ 1. Next, we choose the

β which gives the best decoding threshold and denote the resulting code-decoder

pair by (λ(x), ρ(x), βopt).
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Figure 3.2: The decoding threshold of various (x2, x5, β) code-decoder pairs as a function of
α = σ2

est/σ
2
act and β.

Example 3.1. Consider the ensemble of (x2, x5)-regular LDPC codes on the BI-

AWGNC. The decoding threshold of various (x2, x5, β) code-decoders is depicted

versus α in Fig. 3.2. For each β, the region above the corresponding curve is where

the decoder succeeds to converge to an error rate of 10−6 assuming a maximum

log-likelihood ratio (LLR) value of 25. The decoding threshold is 1.70 dB under

pure MS decoding (i.e., (x2, x5, 1)) and is 1.11 dB under pure SP decoding (i.e.,

(x2, x5, 0)) with perfect noise variance estimation (α = 1). It is clear from the fig-

ure that in some regions, an irregular decoder is more robust to channel estimation

errors and has a wider convergence region. For example, when Eb
N0

= 1.20 dB and

α = 1.25, (x2, x5, 0.2) succeeds to converge to small error rates while both pure MS

and pure SP decoders fail to converge. �

Example 3.2. Now consider that α ∈ [0.5, 2] which reflects ±3 dB error in esti-

mation of the variance of the additive noise. As can be seen from Fig. 3.2, a pure

min-sum decoder is guaranteed to converge for Eb
N0

≥ 1.70 dB and a pure sum-

product decoder is guaranteed to converge for Eb
N0

≥ 2.04 dB. However, by solving

30



(3.7), we get βopt = 0.39 (see Fig. 3.3) whose convergence region is Eb
N0

≥ 1.55 dB. �

It is worth mentioning that for lower rate codes, a larger improvement (e.g.,

around 0.3 dB for (x2, x3)-regular LDPC ensemble) can be obtained by using irreg-

ular decoders. We used the (x2, x5) code since most of its performance results exist

in the literature.
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Figure 3.3: The decoding threshold of various (x2, x5, β) code-decoder pairs (defined in
Eq. (3.5)) as a function of β when α ∈ [0.5, 2].

3.3 Irregular code-decoder design

The irregular decoder design method presented in the previous section provides the

widest convergence region and the best robustness for a fixed given LDPC code.

It should be noted that the convergence region of an LDPC code-decoder pair in

the presence of channel mismatch (obtained by solving (3.7)) depends on the code’s

degree distributions (λ(x) and ρ(x)). As a result, a joint optimization of the irregular

code’s degree distributions and the decoder seems reasonable. More specifically, we

are interested in the joint optimization of (λ(x), ρ(x), β) for a given code rate R,

and α range which gives the minimum Eb
N0

thr
on the BIAWGNC.
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Since the search space for this optimization is very large, we present an itera-

tive approach, described below, to solve this optimization. Although this iterative

approach may not provide the globally optimum solution, it converges to a near

optimum solution very fast (as discussed later and shown by numerical results).

1. Fix αmin, αmax, and R in all the steps and assume an initial λ(x) and ρ(x).

Let ℓ = 1 be the iteration number, βopt(0) = 0, and δ be a small positive

constant.

2. For the fixed code specified by (λ(x), ρ(x)), solve (3.7) and find βopt(ℓ) and its

corresponding threshold and denote it by Eb
N0

thr∗

(ℓ).

3. If |Eb
N0

thr∗

(ℓ)− Eb
N0

thr∗

(ℓ− 1)| < δ stop, otherwise go to the next step.

4. Let β = βopt(ℓ). Optimize λ(x) and ρ(x) by minimizing the code’s decoding

threshold (in terms of the required Eb
N0

) while guaranteeing convergence of the

code-decoder (λ(x), ρ(x), β) for α = αmin and α = αmax.

5. Let ℓ := ℓ+ 1 and go to step 2.

Step 4 of the algorithm can be done by the numerical optimization techniques used

in [8,27,36]. To guarantee the convergence of the code-decoder pair for α = αmin and

α = αmax, we can add their convergence conditions to the optimization constraints.

In each step of the algorithm, by optimizing β or (λ(x), ρ(x)), the minimum

decoding threshold is found. Since there exists a fundamental limit, i.e., the Shannon

limit, on the code’s decoding threshold, this iterative approach is guaranteed to

converge to a solution. It is worth mentioning that with proper initialization, this

approach usually converges very fast in a few iterations (normally less than 4).

Example 3.3. For R = 0.50 and α ∈ [0.5, 2], using 9-bit message quantization,

maximum LLR value of 30, maximum variable-node degree of 15, and the procedure

outlined above, an irregular code-decoder pair (λ(x), ρ(x), βopt) has been optimized.

The optimized parameters are

λ(x) = 0.2219x + 0.3035x2 + 0.0345x3 + 0.0006x13

+0.4398x14

ρ(x) = x7, (3.8)
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and βopt = 0.18. Using the designed code-decoder (λ(x), ρ(x), 0.18) it is possible

to guarantee convergence for Eb
N0

≥ 1.075 dB. We compare the designed code with

another code with the same rate optimized for the best performance under SP

without having channel mismatch [8]. The degree distribution of the code is as

follows:

λ(x) = 0.2382x + 0.2100x2 + 0.0349x3 + 0.1202x4

+0.0159x6 + 0.0045x13 + 0.3763x14

ρ(x) = x7. (3.9)

Although this code has been optimized for SP, in the presence of ±3 dB mismatch

(α ∈ [0.5, 2]) and without irregular decoding, the best decoding threshold for this

code is achieved with a pure MS decoder compared to a pure SP decoder. A pure

MS decoder gives a convergence region of Eb
N0

≥ 1.478 dB. It can be seen that by

using the irregular code-decoder optimization approach it is possible to obtain about

0.4 dB threshold improvement in the presence of ±3 dB channel mismatch.

Codes of length 104 have been constructed randomly using (3.8) and (3.9) which

we call code 1 and code 2, respectively. The simulated bit error rate (BER) curves

for both codes have been compared in Fig. 3.4. Code 1 is decoded with an irregular

decoder with β = 0.18 and the worst case corresponding to α = 0.5 has been plotted.

Code 1 is also decoded by a pure SP decoder and the worst case (α = 2) has been

plotted. Since the values of α corresponding to the worst cases are different, the

slopes of the two curves are also different. Code 2 is decoded with a pure MS

decoder. The BER curves also confirm the achieved performance improvement. �

3.4 Conclusion

We proposed a measure of robustness to channel estimation errors for irregular

decoders and proposed a method to design the most robust irregular decoder for

a pre-selected LDPC code. We then provided an iterative procedure to optimize

the irregular code-decoder pair jointly. Significant performance improvement can

be seen by using the presented approach compared to conventional irregular code

design methods.

As we stated in Chapter 1, our solution can be of interest in the cases that

perfect channel estimation is not available at the decoder or when the channel noise

power changes in time.
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Figure 3.4: Comparison of the BER performance of code 1 decoded by an irregular decoder
with β = 0.18 and a pure SP decoder and code 2 decoded by a pure MS decoder.
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Chapter 4

LLR Approximation for
Iterative Decoding on Wireless
Channels

It is well known that soft-decision decoding algorithms outperform hard-decision de-

coding algorithms. In hard-decision decoding, decisions on the transmitted sequence

are made without considering how reliable the channel output is. In soft-decision

decoding, however, reliability metrics are calculated at the receiver based on the

channel output. The decoder uses these reliability measures to gain knowledge of

the transmitted codewords. The superiority of soft decoding comes at the expense

of their higher complexity.

LLRs have been shown to be very efficient metrics for soft decoding of many

powerful codes such as the convolutional codes [22], turbo codes [6], and LDPC codes

[7]. LLRs offer practical advantages such as numerical stability and simplification

of many decoding algorithms. Moreover, due to some properties of the probability

density function (pdf) of the LLRs, such as symmetry and invariance [38], LLRs are

used as convenient tools for the performance analysis of binary linear codes [8, 38,

39]. Nevertheless, on many communication channels, even for binary modulations,

i.e., binary phase-shift keying (BPSK), channel LLRs are complicated functions of

the channel output [40]. This fact greatly increases the complexity of the LLR

calculation modules in the decoder causing decoding delays and power dissipation.

In high speed wireless transmissions, the decoder may not be able to handle this

complexity. Thus, for an efficient implementation of the decoder, approximate LLRs

should be considered.

Approximate LLRs have been previously used in the literature [40–43]. Piecewise
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linear LLRs have been suggested in [42] for soft Viterbi decoding of convolutional

codes in the HIPERLAN/2 standard [44]. The presented method uses the log-sum

approximation which is only accurate at high signal-to-noise ratio (SNR). More-

over, it assumes that perfect channel state information (CSI) is available at the

receiver. In [45], linear LLRs have been used for BPSK modulation on uncorrelated

fading channels without CSI and an empirical measure of LLR accuracy has been

introduced. Using that measure, linear LLR approximating functions have been

designed with almost no performance gap to that of true LLR calculation. The

proposed measure, however, is heuristic and is not analytically justified. Also, it is

only applicable to symmetric channels and BPSK. With non-binary modulations,

used in most practical systems, a linear approximation of bit LLRs is not always a

good choice. Moreover, the equivalent bit-channels are asymmetric.

In this chapter, we seek approximate LLRs for both binary and non-binary sig-

nalling over uncorrelated fading channels without CSI at the receiver. We first

analytically justify the measure introduced in [45] as an LLR accuracy measure.

Other measures of accuracy can also be considered. We discuss some of them and

show that approximate LLRs designed under the proposed measure outperforms

those of other measures. Next, to be able to apply the LLR approximation method

to non-binary modulations and asymmetric channels, we generalize the proposed

measure to asymmetric channels. Since the true LLR calculating functions are no

longer linear under non-binary modulations, we consider non-linear LLR approxi-

mating functions. We finally optimize the parameters of the LLR approximating

functions using the generalized LLR accuracy measure and evaluate the proposed

solution in terms of bit error rate (BER) and the maximum achievable rates on the

channel. To compute LLRs at bit levels independently, we consider bit-interleaved

coded modulation (BICM) introduced in Sec. 2.5 [31].

While our approaches are general, to demonstrate our methods, we focus on

piecewise linear approximations. Such approximations are easy to implement and

we observe that, when the parameters are optimized, they perform very close to true

LLRs. We prove that the optimization of these piecewise linear approximations is

convex. Due to the close-to-capacity performance of LDPC codes on many channels

[27,41,46], we employ LDPC-coded BICM [47] to show that even with the proposed

approximation, close-to-capacity performance is obtained.
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ENC π µ Channel DECπ−1
DEM

{0,1} x y l

Figure 4.1: The block diagram of the BICM scheme. ENC and DEC represent the binary
encoder and decoder, π and π−1 are the bit interleaver and de-interleaver, µ is the symbol
mapping in the modulation, and DEM is the demodulator which calculates the required LLRs.

4.1 Problem definition

Consider a flat-fading environment where the received signal is expressed as

y = r · x+ z, (4.1)

where x is the complex transmitted signal chosen from the signal set X ⊆ C of

size |X | = 2m, r ≥ 0 is the channel fading gain with arbitrary pdf fR(r) which

changes independently from one channel use to another, and z is the additive noise

which is a complex zero-mean white Gaussian random variable with variance 2σ2,

i.e., z ∼ CN (0, 2σ2). Notice that if the modulation is real (e.g., BPSK), then the

transmitted signal x, additive noise z, and the received signal y are real variables

and z ∼ N (0, σ2). Also notice that this channel model is equivalent to knowing and

compensating for the channel phase shifts at the receiver. Thus when we say no

CSI is available at the receiver, we mean the receiver does not know the amplitude

of the fading gain.

4.1.1 LLRs for equivalent bit-channels

Using the BICM scheme [31], the information sequence is first encoded by a binary

code. Next, the coded sequence is bit interleaved and is broken into m-bit sequences

which are then Gray labeled onto signals in X and transmitted on the channel.

Fig. 4.1 shows the block diagram of the BICM scheme. Assuming ideal interleaving,

the system can be seen equivalently as m parallel independent and memoryless

binary-input bit-channels (see Fig. 4.2). At the receiver, based on y, LLRs are

computed for each bit-channel independently from other bits. These LLRs are then

de-interleaved and passed to the decoder.

When the channel fading gain r is known at the receiver for each channel use, the

true LLR for the ith bit-channel, assuming uniform input distribution, is calculated
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l(i)(y)

Bit-channel m

Bit-channel 1

Bit-channel 2

ENC

Figure 4.2: Equivalent channel model for BICM. The switch models ideal interleaving and
each bit-channel refers to one position in the label of the signals in X . Also, l(i)(y) refers to
the LLR of the bit-channel i.

as

l(i) = log
P (y|b(i)(x) = 0, r)

P (y|b(i)(x) = 1, r)
= log

∑
x∈X (i)

0

fY |X,R(y|x, r)
∑

x∈X (i)
1

fY |X,R(y|x, r)
= g(i)r (y), (4.2)

where i ∈ {1, . . . ,m}, b(i)(x) is the ith bit of the label of x, X (i)
w is the sub-

set of signals in X where b(i)(x) = w, and the conditional pdfs are given by

fY |X,R(y|x, r) = 1
2πσ2 exp (− |y−rx|2

2σ2 ) or 1√
2πσ

exp (− (y−rx)2

2σ2 ) when the signal set

is real. Also, g
(i)
r (y) represents l(i) as a function of y when r is known. When r is

not known at the receiver, the true LLR is calculated as

l(i) = log
P (y|b(i)(x) = 0)

P (y|b(i)(x) = 1)
= log

∑
x∈X (i)

0

fY |X(y|x)
∑

x∈X (i)
1

fY |X(y|x) = g(i)(y), (4.3)

where fY |X(y|x) =
∫∞
0

1
2πσ2 exp (− |y−rx|2

2σ2 )fR(r)dr, and g(i)(y) represents l(i) as a

function of y.

As can be seen from (4.2) and (4.3), calculation of g
(i)
r (y) and g(i)(y) is com-

plicated. In particular, the calculation of g(i)(y) involves evaluating sums of inte-

grations which are usually not available in closed forms. Moreover, the number of

terms in each sum grows exponentially with the number of bits. This makes the

LLR calculation complex and as a result approximate LLRs (ĝ
(i)
r (y) and ĝ(i)(y)) are

of practical interest. One approximation which is useful at high SNR is obtained by

the log-sum approximation: log
∑

k uk ≈ maxk log uk. This approximation is good
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when the sum is dominated by a single large term. Thus,

ĝ(i)r (y) = log
max

x∈X (i)
0

fY |X,R(y|x, r)
max

x∈X (i)
1

fY |X,R(y|x, r)
, (4.4)

and

ĝ(i)(y) = log
max

x∈X (i)
0

fY |X(y|x)
max

x∈X (i)
1

fY |X(y|x) = log
max

x∈X (i)
0

∫∞
0 fY |X,R(y|x, r)fR(r)dr

max
x∈X (i)

1

∫∞
0 fY |X,R(y|x, r)fR(r)dr

.

The log-sum approximation is particularly useful when CSI is available at the re-

ceiver, in which (4.4) leads to piecewise linear LLRs which can be efficiently imple-

mented [42]. However, with no CSI, the log-sum approximation no longer leads to

piecewise linear functions and still involves complicated integrations1. The focus of

our work is on cases where CSI is not available. Nonetheless, we seek approximate

LLRs which are piecewise linear functions of y.

Now, consider general LLR approximation functions parameterized by sets of

parameters Ai

l̂(i) = ĝ
(i)
Ai
(y), for i = 1, . . . ,m. (4.5)

This function maps the complex received signal y to real-valued approximate LLR

for the ith bit-channel. Clearly, it is desired to choose Ai such that accurate LLR

estimates are obtained. To this end, we need an LLR accuracy measure.

4.2 Measures of LLR accuracy

To find good LLR approximating functions different methods can be applied. The

most trivial method is the direct exhaustive search using Monte Carlo simulation.

In the case of LDPC codes, instead of Monte Carlo simulation, one may use density

evolution [27]. Although these approaches are exact, they are too complex to be

practical even for a simple linear approximating function with only one design vari-

able. Therefore, indirect methods based on different measures of accuracy of LLRs

will be investigated.

One measure of accuracy can be the minimum-mean squared error (MMSE)

defined as

AMMSE
i = argmin

Ai

E
[
|l(i) − l̂(i)|2

]
,

for i = 1, . . . ,m. Alternatively, from the analysis of iterative decoders, we know

that the pdf of channel LLRs has a fundamental effect on the performance of the

1In fact in this case, the log-sum approximation only replaces sums with comparisons.
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decoder [8,11]. Thus, we can look for measures which make the pdf or the probability

mass function (pmf) of the approximate LLRs close to the pdf or the pmf of the true

LLRs. One way of doing this is to consider the relative entropy or the Kullback-

Leibler distance [20] between the pmfs of the true LLRs and approximate LLRs.

The relative entropy between two pmfs pL(l) and qL(l) is defined as

D(pL‖qL) =
∑

l∈L
pL(l) log

pL(l)

qL(l)
,

where L is the alphabet set of the random variable L. The relative entropy is non-

negative and is zero if and only if pL(l) = qL(l) for all l. Thus, the relative entropy

can be used as a measure of accuracy of the approximate LLRs. Therefore, we define

AD
i = argmin

Ai

D(pL‖pL̂),

where p
L̂
is the pmf of the approximate LLRs parameterized by Ai as in (4.5).

The main drawback of the MMSE and relative entropy methods is that they

require the pdf of true LLRs. Since the motivation for using approximate LLRs was

to avoid the complexity of finding true LLRs, a measure which does not rely on true

LLRs is preferred. In the next section, we use the method we proposed in [45] and

justify it as a measure. This measure gives very close to optimal BER results, yet

does not require the pdf of true LLRs.

4.2.1 LLR accuracy measure for symmetric binary-input channels

Symmetric LLR approximation

First assume that the modulation is BPSK, i.e., X = {−1, 1}. Thus, there is only

one bit-channel. Also, assume that the channel is output-symmetric, i.e., P (y|x =

+1) = P (−y|x = −1). From the definition of LLR and the symmetry of the channel

we have

g(−y) = log
P (x = +1| − y)

P (x = −1| − y)
= log

P (x = −1|y)
P (x = +1|y) = −g(y).

In order to keep the symmetry properties of the channel, we are most interested in

an approximate LLR function that satisfies an odd symmetry, i.e.,

ĝA(−y) = −ĝA(y) for ∀y. (4.6)

Definition 4.1 (Symmetric LLR approximation). Any LLR approximation which

satisfies (4.6) is a symmetric LLR approximation.
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Accuracy measure

Assuming equally likely inputs, the capacity of a memoryless binary-input symmetric

output (MBISO) channel can be given via the pdf fL(l) of the channel LLR by [48,49]

C = 1− EL[log2 (1 + e−L)] = 1−
∫ ∞

−∞
log2 (1 + e−l)fL(l)dl. (4.7)

The above equation is only valid for MBISO channels where the LLR pdf satisfies

the consistency condition (i.e., fL(−l) = e−lfL(l)) [8, 39]. This equation, however,

cannot be used with approximate LLRs, since they do not necessarily satisfy the

consistency condition.

We prove that if instead of the pdf of true LLRs, the pdf of some symmetric

LLR approximation is used in (4.7), the value of C is reduced. By defining f
L̂
(l) as

the pdf of approximate LLRs, and

Ĉ = 1− E
L̂
[log2 (1 + e−L̂)] = 1−

∫ ∞

−∞
log2 (1 + e−l)f

L̂
(l)dl, (4.8)

we have the following theorem.

Theorem 4.1. The maximum of Ĉ in (4.8) is equal to C which is achieved by true

LLRs (no symmetric LLR approximation can result in Ĉ > C).

The proof of this theorem is given in Appendix A. It is also shown that as the

approximate LLRs become less accurate, ∆C = C − Ĉ gets larger. Thus, Ĉ acts as

a measure of the accuracy of the approximate LLRs and the goal is to maximize Ĉ.

4.2.2 LLR accuracy measure for asymmetric binary-input channels

As previously stated, the equivalent bit-channels of the BICM scheme are normally

asymmetric. As a result, the LLR accuracy measure of (4.8) cannot be applied.

Here, we generalize this measure to asymmetric channels. To this end, we consider

the pdfs of the ith bit-channel LLR conditioned on the transmitted bit b ∈ {0, 1},
defined as f b

L(i)(l) = E
x∈X (i)

b

[fL(i)|X(l|x)]. Using these LLR pdfs, it is possible to

calculate the capacity of each asymmetric bit-channel and thus the BICM scheme.

By capacity, we mean the mutual information between the input and output of

each bit-channel when its input b is equally likely 0 or 1. The capacity of the ith

bit-channel is given by [50]

C(i) = 1− 1

2

∫
log2(1 + e−l)f0

L(i)(l)dl −
1

2

∫
log2(1 + el)f1

L(i)(l)dl. (4.9)
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Thus, the capacity of the BICM is found by C =
∑m

i=1C
(i).

When instead of the true LLRs, approximate LLRs l̂(i) are used, their pdf is given

by f b
L̂(i)(l) = E

x∈X (i)
b

[f
L̂(i)|X(l|x)]. Similar to (4.8), by inserting these approximate

LLR pdfs in (4.9) we get

Ĉ =

m∑

i=1

Ĉ(i) =

m∑

i=1

(
1− 1

2

∫
log2(1 + e−l)f0

L̂(i)(l)dl

− 1

2

∫
log2(1 + el)f1

L̂(i)(l)dl

)
. (4.10)

The following theorem, similar to Theorem 4.1, shows that Ĉ can be used as an

LLR accuracy measure for the BICM scheme.

Theorem 4.2. The maximum of Ĉ in (4.10) is equal to C which is achieved by

true LLRs (no LLR approximation can result in Ĉ > C).

The proof is given in Appendix B. Notice that for a symmetric channel (i.e.,

f1
L(i)(l) = e−lf0

L(i)(l)), (4.10) reduces to the (4.8). Again using similar arguments as

the previous theorem, it can be shown that as the approximate LLRs become less

accurate, ∆C = C − Ĉ gets larger. Thus, Ĉ is a measure of the accuracy of the

approximate bit LLRs. In other words, good approximate LLRs can be found by

maximizing Ĉ.

While Ĉ does not represent the capacity under the approximate LLR calculation,

a close connection exists between (4.10) and the generalized mutual information

(GMI) of BICM [51]. The GMI is proved to be an achievable rate under mismatched

decoding and the random coding regime [52]. The GMI of the BICM is given by [51]

Igmi =sup
s>0

Igmi(s)

= sup
s>0

m∑

i=1

E

[
log

q(i)(B(i),Y )s

1
2

(
q(i)(0,Y )s + q(i)(1,Y )s

)
]
,

where B(i) ∈ {0, 1} denotes the ith bit and q(i)(B(i),Y ) denotes the decoding metric

for the ith bit. Also, the expectation is taken with respect to the joint distribution

of B(i) and Y . Noticing that the approximate bit LLR can be written in terms

of mismatched decoding metrics as l̂(i) = log q(i)(b(i)=0,y)

q(i)(b(i)=1,y)
, it can be shown that

Igmi(s = 1) is equal to Ĉ in (4.10). In other words, Ĉ represents an achievable rate

of the BICM operating under the approximate LLRs l̂(i). As a result, maximizing

Ĉ is also meaningful with regard to increasing the achievable transmission rate.
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4.3 Finding approximate LLRs

The procedure of finding good approximate LLRs using Ĉ as the accuracy measure is

as follows. Since bit-channels are independent, we maximize each Ĉ(i) individually.

Thus, for each bit-channel i, assuming a class of approximating functions ĝ
(i)
Ai
(y),

we find:

Aopt
i = argmax

Ai

Ĉ(i), (4.11)

s.t. Φi(Ai)=0

where Φi(Ai) = 0 denotes some constraints imposed on Ai (e.g., to preserve conti-

nuity).

4.3.1 Choosing LLR approximating functions

It is evident from (4.2) and (4.3) that true LLR functions depend on the signal set

X and the labeling. Thus, choosing appropriate class of approximating functions

also depends on X and the labeling. Here, we consider non-binary amplitude mod-

ulation (AM) and rectangular quadrature AM (QAM) with Gray labeling2. Our

optimization approach, however, is general.

Moreover, we put our focus on piecewise linear approximate LLRs. Clearly, the

optimization problem (4.11) can be solved for any other approximating function.

Using piecewise linear approximations has benefits such as simplicity of demodulator

and (as will be shown) convexity of the optimization problem. Numerical results

verify that the obtained performance is also very close to true LLRs.

By viewing a complex variable as a two-dimensional vector denoted by y =

(Re{y}, Im{y}), a piecewise linear function of a complex variable is defined as

follows. First, the complex domain C is divided into a finite number of regions

C1,C2, . . . ,CN by a finite number of one-dimensional boundaries. Then the func-

tion is represented by f(y) = 〈αk,y〉+βk for any y ∈ Ck, where 〈, 〉 denotes the inner
product of two-dimensional vectors, i.e., 〈αk,y〉 = Re{ak}Re{y} + Im{αk}Im{y}.
Thus,

l̂(i) = ĝ
(i)
Ai
(y) =

N(i)∑

k=1

(
〈α(i)

k ,y〉+ β
(i)
k

)
1
(y∈C(i)

k
)
, (4.12)

2The Gray labeling is chosen since it leads to some symmetries in the LLR calculating functions
reducing the complexity of LLR calculation [14]. It also plays a key role in BICM by improving
both the capacity and BER [31].
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where N (i) is the number of segments of the piecewise linear function, Ai is the set

of all α
(i)
k , β

(i)
k , and 1(·) is the indicator function. The parameters are chosen to

preserve continuity over y.

The following theorem, proved in Appendix C, states that optimizing a piecewise

linear approximating function according to (4.11) is a convex optimization problem.

Theorem 4.3. Assuming that approximate bit LLRs are calculated by (4.12) for

i = 1, . . . ,m, and assuming fixed C
(i)
k for k = 1, . . . , N (i), Ĉ(i) is a concave function

of α
(i)
k and β

(i)
k for all k.

Using (4.12), (4.11) can be numerically solved as follows. For a given SNR, and

assuming fixed C
(i)
k ’s, Ĉ(i) can be computed by first computing f0

L̂(i)
(l) and f1

L̂(i)
(l)

for given α
(i)
k ’s and β

(i)
k ’s and inserting them in (4.10). Since Ĉ(i) is a concave

function of α
(i)
k ’s and β

(i)
k ’s and the constraints are linear, maximizing Ĉ(i) can be

done efficiently using numerical optimization techniques. The proper number of

regions N (i) is selected based on the affordable complexity and the curve of true

LLRs. Optimizing the regions can be done through search. As will be seen in the

next section, usually the size of the parameter sets is small and symmetry further

reduces the number of unknown parameters. It is also worth mentioning that this

optimization is performed off-line thus the complexity limitations may not be crucial.

4.4 Numerical results and examples

Now, we describe the proposed method through examples of binary, non-binary, real,

and complex signal constellations. We use LDPC codes decoded by the sum-product

algorithm.

Example 4.1. Consider half-rate C∞(x2, x5) LDPC codes with BPSK modulation

on an uncorrelated normalized Rayleigh fading channel (fR(r) = 2re−r2). Consid-

ering the shape of true LLRs and since there is only one bit, we propose a linear

LLR approximation of the form

l̂ = ĝA(y) = α · y, (4.13)

Here, we calculate different values for α and compare their corresponding decoding

threshold. The results are given in Table 4.1 where αexh corresponds to the exhaus-

tive search method using density evolution, αr = 2E[r]/σ2 is the method of [40,41]

which is given by the MMSE of r, and α
Ĉ
is calculated based on (4.11).
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αr = 4.513 α
Ĉ
= 2.957 αexh = 2.957

σ∗ 0.6266 0.6449 0.6449
Eb

N0

∗
(dB) 4.06 3.81 3.81

Table 4.1: Comparison between the achieved threshold for C∞(x2, x5) LDPC codes using
different linear LLR calculations.
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Ĉ
Linear LLR, αr

Figure 4.3: Comparison of exact LLRs and linear approximations for a normalized Rayleigh
fading channel with σ = 0.6449 and no CSI available at the receiver. It is seen that the linear
approximation with α

Ĉ
gives a nearly perfect approximation when |y| is small.

It can be seen that the best achieved threshold is 3.81 dB given by α = 2.957.

Interestingly, the optimum value of α which is calculated using exhaustive search

and density evolution is equal to the α
Ĉ
given by our method.

In Fig. 4.3, the exact LLR values obtained from (4.3) are compared to the linear

approximation (4.13) with α
Ĉ
and linear approximation with αr.

To show that our LLR approximation also improves the BER of the code, a

randomly constructed C104(x2, x5) LDPC code is simulated on an uncorrelated nor-

malized Rayleigh fading channel. Fig. 4.4 shows the BER of the code with and

without CSI at the receiver. When CSI is not available and σ is known, three cases

have been plotted. One under linear LLR approximation with α = αr, one with

α = α
Ĉ
, and one under true LLR calculation. The figure shows considerable BER
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Figure 4.4: Comparison of BER for a C104(x2, x5) LDPC code in different cases on a normalized
Rayleigh fading channel. The performance under α

Ĉ
remains almost the same regardless of

whether σ is known or not and is extremely close to the performance of true LLR calculation.

improvement under α
Ĉ
comparing to that of αr. This improvement is about 0.3 dB

at BER of 10−5. Furthermore, MCLA shows a minor extra gap (less than 0.02 dB)

compared to true LLR calculation. It is worth mentioning that BER improvement

increases when higher rate codes are used, e.g., about 0.75 dB improvement when

C104(x2, x15) LDPC of rate 0.75 is used. It should be further noted that the linear

approximation with α
Ĉ
also outperforms those of αMMSE and αD. These measures,

however, are not reported in here because they defy the purpose of avoiding true

LLR calculation. �

Example 4.2. Now consider 8-AM constellation with Gray labeling shown in Fig.

4.5 on the normalized Rician fading channel. On this channel,

fR(r) = 2r(K + 1)e−(K+(K+1)r2)I0(2r
√

K(K + 1)),

where K is the Rician K-factor, and I0(·) is the zero-order modified Bessel function

of the first kind. The Rician fading model is considered here because by changing
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Figure 4.5: The 8-AM constellation points with Gray mapping.

K it can easily be transformed to Rayleigh fading (K = 0) and Gaussian models

(K → ∞).

Using (4.2) and (4.3), true LLRs are calculated for i = 1, 2, 3, and they have been

plotted versus y for extreme values of K in Fig. 4.5. Considering the general model

of (4.12), and the symmetry in the true LLR functions, we propose the following

piecewise linear LLR approximations

l̂(1) = ĝ
(1)
A1

(y) =α
(1)
1 y, (4.14)

l̂(2) = ĝ
(2)
A2

(y) = (α
(2)
1 y + β

(2)
1 )1(y≤0) + (α

(2)
2 y + β

(2)
2 )1(0<y)

=− α
(2)
1 |y|+ β

(2)
1 , (4.15)

l̂(3) = ĝ
(3)
A3

(y) = (α
(3)
1 y + β

(3)
1 )1

(y≤γ
(3)
1 )

+ (α
(3)
2 y + β

(3)
2 )1

(γ
(3)
2 <y≤0)

+ (α
(3)
3 y + β

(3)
3 )1

(0<y≤γ
(3)
3 )

+ (α
(3)
4 y + β

(3)
4 )1

(γ
(3)
4 <y)

, (4.16)

where due to the symmetry of the LLRs, we have assumed in (4.15) that α
(2)
2 = −α

(2)
1

and β
(2)
2 = β

(2)
1 . Also, in (4.16), we have α

(3)
1 = −α

(3)
4 , α

(3)
2 = −α

(3)
3 , β

(3)
1 = β

(3)
4 ,

β
(3)
2 = β

(3)
3 , and γ

(3)
1 = γ

(3)
2 = −γ

(3)
3 = −γ

(3)
4 . Thus, A1 = {α(1)

1 }, A2 = {α(2)
1 , β

(2)
1 },

and A3 = {α(3)
1 , α

(3)
2 , β

(3)
1 , β

(3)
2 , γ

(3)
1 }. It is evident that symmetry reduces the num-

ber of unknown parameters. We also impose Φ3(A3) = γ
(3)
1 (α

(3)
1 −α

(3)
2 )+β

(3)
1 −β

(3)
2 =

0 to preserve continuity in (4.16).

For a given SNR, we optimize the parameter sets A1, A2, and A3, by solving

(4.11). Numerical results confirm that Ĉmax =
∑m

i=1maxAi
Ĉ(i) is always very

close to the capacity of BICM employing true LLRs, i.e., C. For example, for

K = 0, Ĉmax = 0.851 and C = 0.855 bits per channel use at SNR= 5.00 dB, and

Ĉmax = 1.544 and C = 1.553 bits per channel use at SNR= 30.00 dB. When K

increases, ∆C = C − Ĉmax becomes even smaller. Fig. 4.6 compares C and Ĉmax

for extreme values of K.

To evaluate the decoding performance of the LDPC-coded BICM system under

optimized piecewise linear approximations, we compare the decoding threshold of

LDPC codes and their BER under approximate and true LLRs. The decoding

threshold can be found by density evolution [8, 27] and by using the technique of
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Figure 4.5: True bit LLR values l(i) (i = 1, 2, 3) as functions of the channel output y for the
8-AM at SNR= 7.88 dB. Also, the optimized piecewise linear LLR approximations are depicted.
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8-AM
SNR bit 1 bit 2 bit 3

α
(3)
1 = 0.328

α
(2)
1 = 0.612 β

(3)
1 = 2.273

7.88 dB α
(1)
1 = 1.328 α

(3)
2 = −0.482

β
(2)
1 = 2.046 β

(3)
2 = −0.909

γ
(3)
1 = −3.928

α
(3)
1 = 0.384

α
(2)
1 = 0.825 β

(3)
1 = 2.513

21.02 dB α
(1)
1 = 8.538 α

(3)
2 = −1.528

β
(2)
1 = 3.098 β

(3)
2 = −2.357

γ
(3)
1 = −2.547

16-QAM
SNR bit 1 bit 2

5.02 dB α
(1)
1 = 1.262 α

(2)
1 = (0.868,−0.200)

β
(2)
1 = −1.257

Table 4.2: Optimized piecewise linear LLR parameters at different SNRs for 8-AM and 16-QAM
when K = 0.

i.i.d. channel adapters [47] which provides the required symmetry conditions.

As an example, consider (3, 4)-regular LDPC codes on the normalized Rayleigh

channel (equivalent to K = 0) with 8-AM signalling of Fig. 4.5. By using the

approximating functions of (4.14)–(4.16), we find the decoding threshold of the code

under optimized LLR parameters reported in Table 4.2. The decoding threshold

given by density evolution is 7.88 dB while under true LLR calculation of (4.3), the

decoding threshold is 7.85 dB showing only a 0.03 dB performance gap.

To see how the piecewise linear LLR calculation affects the BER performance, we

simulate a given LDPC code on the normalized Rayleigh fading channel. In Fig. 4.8,

the performance of a randomly constructed (3, 4)-regular LDPC code of length 15000

is depicted in two cases: once decoded using true LLRs of (4.3), and once with

the piecewise linear approximation of (4.14)–(4.16) and the optimized parameters

reported in Table 4.2. It should be noted that the parameters are optimized once

at the decoding threshold and are kept fixed at the receiver for other SNRs3. It is

seen that the performance of the optimized approximate LLRs is almost identical

to that of the more complex true LLRs although parameters are only optimized at

the decoding threshold.

3This suggests that the performance loss is negligible even when the noise variance σ
2 is also

unknown at the receiver. Our method can be easily extended to cases where noise power is also
unknown. Interested reader can refer to [12,14] for details.
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Also, to show that optimizing Ĉ is meaningful in terms of the maximum trans-

mission rate achievable by the piecewise linear LLRs, we optimize the degree dis-

tributions of LDPC codes under our approximate LLRs. At SNR = 21.02 dB, the

capacity of BICM under true LLRs is C = 1.500 in the absence of CSI when K = 0.

Since m = 3, then the maximum binary code rate achievable on this channel is

0.500. At this SNR, solving (4.11) gives Ĉmax = 1.493 and the parameters reported

in Table 4.2. Now, by using the designed piecewise linear approximation, assuming

a fixed check node degree of 8 and maximum variable node degree of 30, an irregular

LDPC code is optimized. The optimization process is done by linear programming

together with density evolution [53,54]. The variable node degree distribution of the

optimized code is λ(x) = 0.250x+0.217x2+0.221x6+0.048x7+0.119x22+0.145x29,

and the code rate is R = 0.490. Thus, the proposed approximate LLRs can achieve

rates very close to the capacity of BICM under true LLRs. �

Example 4.3. Now consider a 16-QAM constellation with Gray labeling as de-

picted in Fig. 4.7. Using the general piecewise linear model of (4.12), due to the

symmetry and the similarity of the bit LLR functions, we propose the following LLR

approximations:

l̂(1) = ĝ
(1)
A1

(y) = α
(1)
1 Re{y}, (4.17)

l̂(2) = ĝ
(2)
A2

(y) =

4∑

k=1

(
〈α(2)

k ,y〉+ β
(2)
k

)
1
(y∈C(2)

k
)

= Re{α(2)
1 }|Re{y}|+ Im{α(2)

1 }|Im{y}|+ β
(2)
1 , (4.18)

where C
(2)
1 , . . . ,C

(2)
4 are the four quadrants of the complex plane. It should be noted

that bit-channel LLR calculations are similar for bit 1 and 3, and for bit 2 and 4

except that the real and imaginary parts of y are swapped, i.e., l̂(3) = α
(1)
1 Im{y}

and l̂(4) = Re{α(2)
1 }|Im{y}|+Im{α(2)

1 }|Re{y}|+β
(2)
1 . Thus, it is enough to optimize

A1 = {α(1)
1 } and A2 = {α(2)

1 , β
(2)
1 }.

Again numerical results suggest that the gap between Ĉmax and the true BICM

capacity C is always small. For example, when K = 0, we have Ĉmax = 1.074 and

C = 1.097 bits per channel use at SNR= 3.00 dB. Fig. 4.6 depicts the comparison

of C and Ĉmax at various SNRs for extreme values of K.

For (3, 4)-regular LDPC codes, density evolution gives a decoding threshold of

5.02 dB under approximate LLRs with the optimized parameters of Table 4.2. Under

true LLR calculation, the decoding threshold is 4.83 dB. As a result, approximate
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Figure 4.7: The 16-QAM constellation points with Gray mapping.

LLRs show about 0.19 dB performance gap to true LLRs. The BER comparison is

depicted in Fig. 4.8. It is worth mentioning that this gap can be further reduced by

proposing piecewise linear LLRs with more segments. �

4.5 Conclusion

LLR computation is an important issue when soft iterative decoding is used. LLR

computation is generally complicated especially for equivalent bit-channels of a non-

binary modulation and on fading channels, when the channel gain is unknown. We

discussed designing good approximate LLR calculating functions by first justifying

the previously proposed LLR accuracy measure for MBISO channels. Next, noticing

that the equivalent bit channels were asymmetric, in order to find good approximate

LLRs, we generalized the proposed LLR accuracy measure to memoryless binary-

input asymmetric-output channels. This accuracy measure can be used to optimize

the parameters of any approximating function. We used our accuracy measure to

optimize piecewise linear LLR approximations. By using LDPC-coded BICM, we

showed that the performance loss under the optimized piecewise linear approxima-

tion was very small. We also showed that under approximate LLRs, asymptotic

irregular LDPC codes having rates very close to the capacity of BICM under true

LLRs could be obtained. Our solution can also be applied to other coding schemes
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Figure 4.8: Comparison between the BER of a randomly constructed (3, 4)-regular LDPC
code of length 15000 decoded by true and approximate LLRs on the Rayleigh fading channel
(K = 0). The approximate LLR parameters are reported in Table 4.2.

which use LLRs such as the convolutional and turbo codes.
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Chapter 5

Practical Coding for Channels
with Imperfect Timing at the
Receiver

5.1 Introduction

Since the seminal work of Shannon [15], there have been huge advancements in

coding and information theory. The fundamental limits and efficient coding solu-

tions approaching these limits are now known for many communication channels.

However, in the vast majority of coding schemes invented, it is assumed that the

receiver is perfectly synchronized with the transmitter, i.e., the symbol arrival times

are known at the receiver. In most communication systems, however, achieving

perfect synchronization is not possible even with the existence of timing recovery

systems.

When perfect synchronization does not exist, random symbol insertions and

deletions (synchronization errors) occur in the received sequence. This phenomenon

poses a great challenge for error correction. Since the positions of the inserted

and deleted symbols are unknown at the receiver, even a single uncorrected in-

sertion/deletion can result in a catastrophic burst of errors. Thus, conventional

error-correcting codes fail at these situations.

Error-correcting codes designed for dealing with such insertion/deletion (I/D)

channels are called synchronization codes. Synchronization codes have a long history

but their design and analysis have proven to be extremely challenging, hence few

practical results exist in the literature. Moreover, standard approaches do not lead

to finding the optimal codebooks or tight bounds on the capacity of I/D channels

and finding their capacity is still an open problem [16].
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The first synchronization code was proposed by Sellers in 1962 [55]. He inserted

marker sequences in the transmitted bitstream to achieve synchronization. Long

markers allowed the decoder to correct multiple insertion or deletion errors but

greatly increased the overhead. In 1966, using number-theoretic techniques, Leven-

shtein constructed binary codes capable of correcting a single insertion or deletion

assuming that the codeword boundaries were known at the decoder [56]. Most sub-

sequent work were inspired by the number-theoretic methods used by Levenshtein,

e.g., see [57–60]. Unfortunately, these constructions either cannot be generalized

to correct multiple synchronization errors without a significant loss in rate, do not

scale well for large block lengths, or lack practical and efficient encoding or decoding

algorithms.

Some authors also generalized these number-theoretic methods to non-binary al-

phabets and constructed non-binary synchronization codes [4,61–64]. Following [64],

perfect deletion-correcting codes were studied and constructed using combinatorial

approaches [65–67]. Most of these codes, however, are constructed using ad hoc tech-

niques and no practical encoding and decoding algorithm is provided. Non-binary

low-density parity-check (LDPC) codes decoded by a verification-based decoding

algorithm are designed for deletion channels in [68]. Unfortunately, the decoding

complexity of this construction is also far from being practical.

There are also some works in the literature on codes that can detect synchro-

nization misalignments. While these codes are able to regain synchronization, they

are not able to correct any insertion or deletion errors. The first type of these codes

are comma-free codes introduced in [69]. Some of the proposed comma-free codes,

e.g., see [70–72], can also correct substitution errors. However, none of these codes

are able to recover insertion and deletion errors.

In a more recent work [73], the authors proposed a class of prefix synchronized

codes—which are themselves a subclass of comma-free codes—able to correct a

single insertion or deletion assuming the decoder knows the beginning of the received

sequence.

The drawback of all the above-mentioned synchronization codes is that they

only work under very stringent synchronization and noise restrictions such as work-

ing only on deletion channels, or a single synchronization error per block. Coding

methods proposed for error-correction on the I/D channels working under more gen-

eral conditions are usually based on concatenated coding schemes with two layers
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of codes, i.e., an inner and an outer code [1, 2, 74–76]. The inner code identifies

the positions of the synchronization errors and the outer code is responsible for

correcting the insertions, deletions, and substitution errors as well as misidentified

synchronization errors.

In the seminal work of Davey and MacKay [1], a practical concatenated coding

method is presented for error-correction on general binary I/D channels. They have

called their inner code, a watermark code. The main idea is to provide a carrier

signal or watermark for the outer code. The synchronization errors are inferred by

the outer code via identifying discontinuities in the carrier signal. In more detail,

the data is first encoded by the outer code, i.e., an LDPC code. Then, the encoded

data is transformed into a sparse string, added to the watermark string (which is a

pseudo-random binary sequence known to both transmitter and receiver), and sent

on the channel. The inner decoder which receives a distorted and noisy version of

the watermark, provides soft information for the outer decoder by finding the correct

alignment of the received string with the watermark. Next, this soft information is

fed to the outer decoder and the original data is decoded.

One of the advantages of watermark codes is that the decoder does not need

to know the block boundaries of the received sequence. However, due to the use

of a sparsifier, rate loss is significant. The watermark is substituted by fixed and

pseudo-random markers in [2] and is shown that it allows better rates but is only

able to outperform the watermark codes at low synchronization error rates. Also, it

has recently been shown that the performance of both marker codes and watermark

codes can be improved by using symbol-level decoding instead of bit-level decoding

[3, 77].

In this chapter, we consider the problem of devising an efficient coding method

for reliable communication over non-binary I/D channels. On these channels, syn-

chronization errors occur at the symbol level, i.e., symbols are randomly inserted in

and deleted from the received sequence. We also assume that all symbols are cor-

rupted by additive white Gaussian noise (AWGN)1. The use of this channel model is

motivated by the fact that at the receiver the received continuous waveform is first

sampled at certain time instances to produce the discrete symbol sequence required

by the decoder. If the symbol arrival times are not perfectly known at the receiver,

1It should be noted that a binary I/D channel model with AWGN has been the subject of study
in the literature (e.g., see [78])
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Figure 5.1: A continuous waveform is sampled at the receiver. Due to timing mismatch, there
will be symbol deletions and insertions in the sampled sequence.

i.e., there is timing mismatch, some of the transmitted symbols are not sampled

at all (symbol deletions) or sampled multiple times (symbol insertions) [79]. As

a result, this channel model can be used to represent non-binary communications

over the AWGN channel suffering from timing mismatch. This concept is depicted

in Fig. 5.1. Most communication systems use non-binary signalling, where synchro-

nization errors can result in insertion/deletion at the symbol level.

For the proposed channel model, we utilize the inherent redundancy that can

be achieved in non-binary symbol sets by first expanding the symbol set and then

allocating part of the bits associated with each symbol to watermark symbols. As

a result, not all the available bits in the signal constellation are used for the trans-

mission of information bits. In its simplest form, our solution can be viewed as

a communication system using two different signal sets. The system switches be-

tween these two signal sets according to a binary watermark sequence. Since the

watermark sequence is known both at the transmitter and the receiver, probabilis-

tic decoding can be used to infer the insertions and deletions that occurred and

to remove the effect of additive noise. In particular, the system is modeled by a

hidden Markov model (HMM) [80] and the forward-backward algorithm [81] is used

for decoding.

Our proposed scheme resembles trellis coded modulation (TCM) [30]. The main

idea in both methods is to add redundancy by expanding the symbol set and limit

the symbol transitions in a controlled manner. The proposed method is also closely

related to the watermark codes of [1]. In both methods, decoding is done by the
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aid of a watermark sequence which both the transmitter and receiver agree on. The

difference is that the extra degree of freedom in non-binary sets allows us to separate

information from the watermark.

Our proposed solution leads to significant system ability to detect and correct

synchronization errors. For example, a rate 1/4 binary outer code is capable of

correcting about 2, 900 insertion/deletion errors per block of 10, 012 symbols even

when block boundaries are unknown at the receiver.

This chapter is organized as follows. In Sections 5.2 and 5.3, we state our

proposed approach and describe the system model. Section 5.4 demonstrates the

capabilities of the proposed solution by providing numerical results and discus-

sions. Section 5.5 describes ways to increase the achievable information rates on the

channel and Section 5.6 analyzes the system in terms of complexity, and practical

considerations. Finally, Section 5.7 concludes the chapter.

5.2 Channel model and the proposed approach

Throughout this chapter, scalar quantities are shown by lower case symbols, complex

quantities by boldface letters, and vectors by underlined symbols.

5.2.1 Channel model

The channel model we consider in this chapter is a non-binary I/D channel with

AWGN where insertions and deletions occur at the symbol level. Similar to [1], it

is assumed that the symbols from the input sequence x first enter a queue before

being transmitted. Then at each channel use, either a random symbol is inserted in

the symbol sequence x′ with probability pi, the next queued symbol is deleted with

probability pd, or the next queued symbol is transmitted (put as the next symbol in

x′) with probability pt = 1− pd − pi. For computational purposes, we assume that

the maximum number of insertions which can occur at each channel use is I. The

resulting symbol sequence x′ is finally affected by an independent and identically

distributed (i.i.d.) sequence of AWGN z where z ∼ CN (0, 2σ2) and y = x′ + z is

received at the receiver side2. The flow chart depicting the behavior of the channel

is shown in Fig. 5.2

2Throughout this chapter it is assumed that σ
2 is perfectly known at the receiver. Also note

that this general channel model can be easily transformed to insertion only, deletion only, or AWGN
channel only, or other hybrid models by adjusting the corresponding probability values.
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Figure 5.2: The flow chart showing our channel model. The channel insertion probability is
pi, deletion probability is pd, and transmission probability is pt. Also, z is the additive white
Gaussian noise.

Note that in this chapter, to show the capabilities of the proposed method,

we consider totally random and independent symbol insertions/deletions. When

symbol insertions result from imperfect synchronization, insertions or deletions tend

to be correlated. When this correlation information is used at the receiver, it can

lead to easier identification of insertions/deletions compared to random independent

insertions/deletions which we consider here. For example, when the insertions are

in terms of symbol duplications, detecting these duplications will be easier in the

receiver compared to random symbol insertions where all symbols are equally likely

to be inserted.

5.2.2 Proposed approach

Now, consider a communication system working on this channel by employing an

M -ary signalling (e.g., M -ary phase-shift keying (PSK)). In other words, the mem-

oryless modulator maps each m (where M = 2m) bits to a signal from a signal set of

size M by a one-to-one binary labeling map and sends it on the channel. We call this

the base system. Motivated by the idea of watermark codes [1], we are interested in

embedding a watermark in the transmitted sequence. The watermark, being known

at the receiver, allows the decoder to deduce the insertions and deletions and to
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recover the transmitted sequence.

The watermark can be embedded in the transmitted sequence in many ways. One

way of doing this is to add the watermark to the information sequence and treat

the information sequence as additive noise at the receiver. This is a direct extension

of the binary watermark codes of [1] to non-binary signalling. In particular, the

additive watermark w can be defined as a sequence ofM -ary symbols drawn from the

base system constellation. The binary information sequence is first passed through a

sparsifier; every k bits of the information sequence is converted to an n-tuple of M -

ary symbols. The rate of the sparsifier is then given by rs = k/n where 0 < rs < m

and M = 2m. The average density of the sparsifier f is defined as the average

Hamming distance of the n-tuples divided by n. The mapping used in the sparsifier

is chosen as to minimize f .

By defining addition as shifting over the constellation symbols, the watermark

sequence could be added to the sparsified messages (denote it by s) and w⊕s be sent

over the channel. At the receiver, similar to [1], an inner decoder which knows the

watermark sequence, uses the received sequence to deduce the insertions/deletions

and provides soft information for an outer code.

The main drawback of this method is that the decoder is not able to distinguish

between additive noise and the information symbols. This is because the informa-

tion is embedded into the watermark by adding s to w. Sequence s contains both

zeros and non-zero symbols. Non-zero symbols shift the watermark symbols over

the constellation, similar to what additive noise does. This greatly degrades the

performance of the decoder. To improve the decoding performance, s should con-

tain as many zeros as possible, i.e., be as sparse as possible, which is equivalent to

having a small f . A small f is achieved by decreasing rs which in turn decreases

the achievable rates on the channel directly. Also, notice that even in the absence

of additive noise, the decoder is still fooled by the shifts occurred over w and thus

misidentifies some of the insertions/deletions.

To aid error recovery at the receiver, we are interested in an embedding method

which makes the watermark as distinguishable as possible from the information

sequence. This necessitates using some extra resources (other than those used to

transmit the information sequence) for transmitting the watermark sequence. These

extra resources can be provided by enlarging the signal set. The extra available bits

per transmission can then be used to transmit the watermark. After embedding the
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watermark, we refer to the system as the watermarked system.

In this chapter, we are mostly interested in binary watermark sequences. As a

result, to accommodate the watermark bits in each symbol, we expand the signal set

size M by the factor of 2, giving rise to a 2M -ary signalling scheme. For example, if

the base system uses 4-PSK, in the watermarked system we use 8-PSK modulation.

To provide fair comparison, we put the symbol rate, information bits per symbol

(denoted by rc), and average energy of the signal constellation of the watermarked

system equal to those of the base system. As a result, the spectral efficiency and the

total transmitted power of the watermarked system are equal to those of the base

system. In other words, no bit rate, bandwidth, or power is sacrificed as a result of

embedding the watermark.

Notice that rc = m whereM = 2m for the base system and also the watermarked

system when a binary watermark sequence is used for each transmitted symbol.

This is because in an M -ary base system all the m available bits are dedicated to

information bits. Also, in each symbol of the 2M -ary watermarked system (with

m+1 available bits) m bits are assigned to information bits. Later, we will see that

sometimes it is more efficient to use non-binary watermark sequences or to assign less

than one bit per symbol on average to the watermark giving rise to 0 < rc < m+1.

These cases will be investigated in Section 5.5.

Expanding the signal set while fixing the average energy of the constellation leads

to reduction in the minimum distance of the constellation. Nevertheless, we show

that by using the mapping described in Section 5.3.1, the minimum distance dmin

between symbols corresponding to the same watermark value does not necessarily

reduce. In fact in some cases, e.g., in PSK modulation, the minimum distance does

not change compared to the base system. Thus, the noise immunity3 of the system

does not change after adding the watermark.

5.3 System model

The proposed system model is shown in Fig. 5.3. First, the binary information

sequence b is encoded by the outer code producing the coded binary sequence d which

is then broken into m-bit subsequences. The modulator then combines the binary

3Here, the noise immunity is measured in the absence of synchronization errors under the as-
sumption of minimum distance decoding. As a result, the minimum distance between the signal
constellation points can be used as the noise immunity measure.
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Figure 5.3: The proposed system model.

watermark w and the m-bit subsequences by a one-to-one mapping µ : {0, 1}m+1 →
X where X is the signal set of size |X | = 2M = 2m+1. Then x is sent over the

channel. The received sequence y is first decoded by the watermark decoder which

provides soft information for the outer decoder in terms of log-likelihood ratios

(LLRs). The LLR sequence l is then utilized to decode the information sequence b̂.

5.3.1 Modulator

The modulator plays a key role in the proposed system. It allows embedding en-

coded data and watermark bits while ensuring a good minimum distance. The most

important part of designing the modulator is to choose an appropriate mapping µ.

By viewing µ as {0, 1} × {0, 1}m → X , we first divide X into two disjoint subsets

X 0 and X 1 each having M signal points corresponding to watermark bit w = 0 and

w = 1, respectively. Thus, in the label of each signal point, one bit (can be any of

the m+ 1 bits) is dedicated to the watermark bit and the other m bits correspond

to the m-bit subsequences of d. Formally we have

Xw = {x|x ∈ X ; ℓw(x) = w} , for w = 0, 1,

where ℓw(x) denotes the value of the bit in the label of x dedicated to the watermark.

We also define ℓj(x) for j = 1, 2, . . . ,m as the j-th non-watermark bit of the label
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of x.

Now the question is how to choose the labeling. To maximize the noise im-

munity of the system, and since the watermark sequence is known at the receiver,

we maximize the minimum distance between the signal points in each of X 0 and

X 1. To do this, first we do a one-level set partitioning [30], i.e., we divide X into

two subsets with the largest minimum distance between the points in each subset.

These subsets are named X 0 and X 1 and the watermark bit of the label is assigned

accordingly. Next, by a Gray mapping [31] of the signals in each of X 0 and X 1,

the non-watermark bits of the label are assigned. This process is illustrated for two

different signal constellations in Figs. 5.4 and 5.5. The Gray mapping ensures the

least bit error rate in each subset [31].

The minimum distance of the constellation is now defined as

dmin = min
w

min
{xi,xj}⊂Xw,xi 6=xj

||xi − xj ||.

Notice that by assuming signal constellations of fixed energy, going from M -PSK

in the base system to 2M -PSK in the watermarked system does not change dmin

(see Fig. 5.4). For the QAM, as illustrated in Fig. 5.5, dmin does change because of

energy adjustments but always stays very close to that of the original constellation.

For example in Fig. 5.5, dmin is reduced by only 2.4%.

A definition which proves useful in the next sections is

Xj(wi, di,j) =
{
x|x ∈ X ; ℓw(x) = wi, ℓ

j(x) = di,j
}
,

where i denotes the index of both the watermark bit and the m-bit subsequences of

d and di,j = d(i−1)m+j denotes the j-th bit of the i-th subsequence. Considering a

watermark sequence of length N and an encoded data sequence of length mN , then

i = 1, 2, . . . , N . Thus, Xj(u, v) refers to the subset of X where the watermark bit

wi is equal to u and the j-th data bit in the i-th subsequence, i.e., di,j, is equal to

v. The size of this subset is M/2.

5.3.2 Watermark decoder

The goal of the watermark decoder is to produce LLRs for the outer decoder given

w and the received sequence y. As in [1], by ignoring the correlations in d, we can

use an HMM to model the received sequence and then use the forward-backward

algorithm [80] to calculate posterior probabilities or LLRs for the outer decoder.
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to the watermark bit. For both constellation dmin =
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corresponds to the watermark bit. Both constellation have unit average energy. Thus, dmin =
2/

√
10 = 0.633 for the base system and dmin = 4/
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Notice that due to the nature of the channel which introduces insertions and dele-

tions, there will be a synchronization drift between x and y. The synchronization

drift at position i, i.e., ti is defined as the (number of insertions) − (number of

deletions) occurred in the signal stream until the ith symbol, i.e., xi, is ready for

transmission4. The drifts {ti}Ni=1, form the hidden states of the HMM. Each state

ti takes values from

T = {. . . ,−2,−1, 0, 1, 2, . . . }. (5.1)

Thus, ti performs a random walk on T whose mean and variance depend on pi and

pd. To reduce the decoding complexity, as in [1], we limit the drift to |ti| ≤ tmax

where tmax is usually chosen large enough such that it accommodates all likely drifts

with high probability. For example, when pi = pd, tmax is chosen several times larger

than
√
Npd/(1− pd) which represents the standard deviation of the drifts over a

block of size N .

To further characterize the HMM [80], we need the state transition probabilities,

i.e., Pab = P (ti+1 = b|ti = a). Each symbol xi entering the channel can produce any

number of symbols between 0 and I+1 at the channel output. As a result, if ti = a,

then ti+1 ∈ {a − 1, . . . , a + I}. Notice that the transition from ti = a to ti+1 = b

can occur in two ways. One is when xi is deleted by the channel and (b − a + 1)

symbols are inserted by the channel. The other one is when xi is transmitted and

(b− a) symbols are inserted by the channel. In either case, (b− a+ 1) symbols are

produced at the channel output. As a result, the state transition probabilities are

given by

Pab =





pd b = a− 1
αIpipd + pt b = a

αI(p
b−a+1
i pd + pb−a

i pt) a < b < a+ I
αIp

I
i pt b = a+ I

0 otherwise.

(5.2)

where αI = 1/(1 − pIi ) is a constant normalizing the effects of maximum insertion

length I and ensuring that the sum of probabilities is 1.

We also need to calculate the conditional probability of producing the observa-

tion sequence ỹ = {yi+a, . . . ,yi+b} given the transition from ti = a to ti+1 = b. As

4This means that if xi−1 is not deleted by the channel it is received as yi−1+ti
.
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stated, this transition can occur in two ways. Thus,

Qi
ab(ỹ) = P (ỹ|ti = a, ti+1 = b, wi,H)

=

(
αIp

b−a+1
i pd

i+b∏

k=i+a

γk + αIp
b−a
i ptβi+b

i+b−1∏

k=i+a

γk

)
/Pab, (5.3)

where H denotes set of parameters of the HMM, i.e., H = {[Pab],T}, γk is the

probability of receiving yk given that yk is an inserted symbol, and βi+b is the

probability of receiving yi+b assuming that it is the result of transmitting xi ∈ Xwi .

Formally, we have

γk =
1

2M

∑

x∈X

1

2πσ2
exp

(
−|yk − x|2

2σ2

)
, (5.4)

and

βi+b = P (yi+b|ti = a, ti+1 = b, wi,H) =
1

M

∑

x∈Xwi

1

2πσ2
exp

(
−|yi+b − x|2

2σ2

)
. (5.5)

Now that the HMM is defined, we use the forward-backward algorithm to cal-

culate LLRs. By ignoring the correlations between the bits of d and assuming

P (di,j = 0) = P (di,j = 1), the bit by bit LLR is calculated as

li,j = log
P (di,j = 0|y, w,H)

P (di,j = 1|y, w,H)
(5.6)

= log
P (y|di,j = 0, w,H)

P (y|di,j = 1, w,H)
= log

∑
xi∈Xj(wi,0)

P (y|xi, w,H)
∑

xi∈Xj(wi,1)
P (y|xi, w,H)

. (5.7)

By using the forward-backward algorithm, the posterior probabilities are found by

[1, 80]

P (y|xi, w,H) =
∑

a,b

Fi(a)Q́
i
ab(ỹ|xi)Bi+1(b) (5.8)

where the forward quantity is defined as

Fi(a) = P (y1, . . . ,yi−1+a, ti = a|w,H), (5.9)

the backward quantity as

Bi(b) = P (yi+b, . . . |ti = b, w,H), (5.10)

and

Q́i
ab(ỹ|xi) = P (ỹ, ti+1 = b|ti = a,xi,H)

= αIp
b−a+1
i pd

i+b∏

k=i+a

γk + αIp
b−a
i ptβ́i+b

i+b−1∏

k=i+a

γk, (5.11)
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where

β́i+b = P (yi+b|ti = a, ti+1 = b,xi,H) =
1

2πσ2
exp

(
−|yi+b − xi|2

2σ2

)
.

The forward and backward quantities are recursively computed by the forward pass

Fi(a) =
∑

c∈{a−I,...,a+1}
Fi−1(c)PcaQ

i−1
ca (yi−1+c, . . . ,yi−1+a), (5.12)

and the backward pass

Bi(b) =
∑

c∈{b−1,...,b+I}
PbcQ

i
bc(yi+b, . . . ,yi+c)Bi+1(c). (5.13)

If the block boundaries are not known at the decoder, we can use the sliding

window decoding technique used in [1]. Assuming a continuous stream of transmit-

ted blocks and received symbols, the forward-backward algorithm is used to infer

the block boundaries. Then the decoding window is anchored at the most likely

start of the next block and next block is decoded. Most of the results of this chapter

are shown using this sliding window decoding technique. We will briefly explain the

methodology in Section 5.4.1. For the first transmitted block, we assume that the

initial drift is zero. Thus, we use

F1(a) =

{
1 a = 0
0 otherwise.

(5.14)

It is also possible to insert some markers which specify the block boundaries

into the transmitted sequence. By dedicating all the m + 1 bits in the symbols

at the boundaries to markers, they can be easily detected at the receiver. In this

case, the block boundaries can be inferred by detecting the markers. Notice that

as the block length becomes larger, recognizing the block boundaries requires less

overhead and becomes more efficient. To see this, first define the marker rate as the

number of marker symbols in each block divided by N . Given a fixed marker rate,

the number of marker symbols is increased as N grows. Increasing the number of

marker symbols leads to a better boundary detection at the decoder for a fixed pd

and pi because the probability of misidentifying larger block of markers is decreased.

Thus, for large block lengths one can assume that the block boundaries are known

at the decoder and use the following initial conditions for the backward pass of each

block:

BN (b) = PbcQ
N
bc(yN+b, . . . ) (5.15)
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where c = tN+1 is the final drift at the end of the block.

In the next stage of decoding, the LLRs, calculated by inserting (5.8) in (5.6),

are passed to the outer decoder.

5.3.3 Outer code

The outer code can almost be any binary error correcting code. Due to the ex-

emplary performance of LDPC codes on many communication channels and their

flexible structure, we choose LDPC codes in this chapter.

At the transmitter, a binary LDPC code of rate R is used to encode the binary

information sequence b of length mNR producing the binary coded sequence d of

length mN . At the receiver, the mN bit LLRs of (5.6) are used to recover b.

5.4 Error rates and fundamental limits

In this section, we demonstrate the capabilities of the proposed solution through

examples and discussions. In particular, we evaluate the watermarked system by

providing bit and word error rates (BER and WER), maximum achievable trans-

mission rates, and comparing them with two benchmark systems. We demonstrate

our results using the following two examples.

Example 1: Consider a base system with 4-PSK modulation depicted in Fig.

5.4a which gives rise to a watermarked system with 8-PSK modulation. The labeling

µ is chosen based on the method described in Section 5.3.1. The constellation and

labeling are depicted in Fig. 5.4b.

Example 2: In this example, we consider a 16-QAM base system and a 32-

QAM watermarked system. Notice that different constellations can be considered

for 32-ary modulation. We consider a 32-AM/PM constellation whose dmin is very

close to the base system (they differ by only 2.4%). The constellations and their

labelings are depicted in Fig. 5.5.

5.4.1 Error rates

First, consider Example 1. We use a (3, 6)-regular LDPC code (R = 0.5) of length

20, 024 constructed by the progressive edge growth (PEG) algorithm [82] as the

outer code. The LDPC code is decoded by the sum-product algorithm [8] allowing

a maximum of 400 iterations. The watermark sequence w is chosen to be a pseudo-

random binary sequence. Since m = 2, the block length is N = 10, 012. The
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maximum insertion length is chosen as I = 5, the channel insertion and deletion

probabilities are assumed equal, i.e., pi = pd = pid, and tmax = 5
√

Npid/(1− pid).

A continuous stream of blocks of b, d, and x is generated and sent over the

channel. A continuous sequence of y is then received at the decoder. We assume

that block boundaries are not known at the receiver. Thus, y is decoded by the

forward-backward algorithm using a sliding window decoding technique [1]. For

the first block, we assume that the receiver knows the starting position, i.e, we use

(5.14) to initialize the forward pass. For subsequent blocks, the watermark decoder

is responsible to infer the boundaries and calculate LLRs for the outer code. This is

done by first running the forward pass several multiples of tmax (here, six) beyond

the expected position of the block boundary and initializing the backward pass from

these last calculated forward quantities. Then the most likely drift at the end of

each block is found as t̂N+1 = argmaxa FN+1(a)BN+1(a) and is used to slide the

decoding window to the most likely start of the next block.

Occasionally, the watermark decoder makes errors in identifying the block bound-

aries. If these errors accumulate, synchronization is lost and successive blocks fail

to be successfully decoded. To protect against such gross synchronization loss, we

use the re-synchronization technique of [1] whose details are omitted in the interest

of space.

We simulate the system under different SNRs and insertion/deletion probabil-

ities. The BER and WER of the system are plotted in Fig. 5.6 versus different

values of pid under fixed SNRs. For example, at SNR= 10 dB, the system is able

to recover on average 1, 400 symbol insertions/deletions per block of 10, 012 sym-

bols with an average BER less than 10−5. This increases to recovering about 1, 920

insertions/deletions at SNR=20 dB. Fig. 5.7 shows the performance of the system

versus SNR under fixed pid.

We also simulate the system under a (3, 4)-regular LDPC code (R = 0.25) of

length 20, 024 with the same parameters. The system is now capable of recovering

on average 2, 700 insertions/deletions per block of 10, 012 symbols at SNR=20 dB

with an average BER< 10−5. This increases to 2, 900 insertions/deletions using an

optimized irregular LDPC code of the same rate and length with degree distributions

reported in Table 5.1 (Code 1). We will briefly describe the LDPC optimization

method in the next section.

We are not aware of any practical coding method in the literature that can
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code of length 20, 024 versus pid at fixed SNRs.
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Figure 5.7: BER and WER of the 8-PSK watermarked system employing a (3,6)-regular LDPC
code of length 20, 024 versus SNR at fixed values of pid.

be directly and fairly compared to our proposed system. However, we provide

comparisons with the best results of [1–3, 77]. It is worth mentioning that this

comparison is not completely fair as the I/D channel considered in these works is

binary whereas in our case is non-binary. All in all, we believe that this comparison

provides insight into what can be achieved by exploiting the extra degrees of freedom

provided by non-binary signalling. This comparison is depicted in Figs. 5.8, 5.9, and

5.10. To make the comparison as fair as possible, we have adjusted the block size and

the rate of our 8-PSK watermarked system according to the parameters of codes

considered in the comparison. It is evident from these figures that a significant

improvement in the error correction performance is achieved by using non-binary

signalling. There is also a significant performance improvement compared to the

method of [77] which considers marker codes with iterative exchange of information

between the inner and outer decoders. Marker codes concatenated with optimized

irregular LDPC outer codes with overall rates around 0.4 and block length 5, 000

have been reported in [77] which can reliably work under pid < 0.04. As Fig. 5.9
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Figure 5.8: WER comparison of the 8-PSK watermarked system with the best results of [1–3]
at R = 0.71. Code D is a binary watermark code from [1] with overall rate 0.71, overall block
length 4, 995, and outer LDPC code defined over GF(16). Code B is a binary marker code
from [2] with overall rates 0.71, overall block length 4, 995 with a binary LDPC code as outer
code. Codes D is also decoded by the symbol-level decoding method of [3]. All these codes are
decoded on the binary I/D channel with no substitution errors or additive noise. For the non-
binary I/D channel with 8-PSK signalling in Example 1, we have done sliding window decoding
at SNR= 20 dB for an LDPC code with variable node degree 3, rate 0.71, and block lengths
4, 996.

shows, a regular half-rate code with block length 4, 002 can do much better in our

case even without iterative exchange of information.

5.4.2 Achievable information rates

To obtain the capacity of the I/D channel, one is interested to calculate [19]

C = lim
N→∞

1

N
sup
p(x)

I(x;y), (5.16)

where x is the channel input sequence of length N , y is the received sequence of

random length, and p(x) denotes the joint distribution of the input sequence. Un-

fortunately, due to the presence of insertions/deletions, finding (5.16) or its bounds

has proven to be extremely challenging and the capacity is unknown. No single
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Figure 5.9: WER comparison of the 8-PSK watermarked system with the best results of [1–3]
at R = 0.50. Code F is a binary watermark code from [1] with overall rate 0.50, overall block
lengths 4, 002, and outer LDPC code defined over GF(16). Code E is a binary marker code
from [2] with overall rate 0.50 and overall block length 4, 000 with a binary LDPC code as
outer code. Codes F is also decoded by the symbol-level decoding method of [3]. All these
codes are decoded on the binary I/D channel with no substitution errors or additive noise. For
the non-binary I/D channel with 8-PSK signalling in Example 1, we have done sliding window
decoding at SNR=20 dB for an LDPC codes with variable node degree 3, rate 0.50, and block
length 4, 002.

75



0.01 0.1 0.2

10
−4

10
−3

10
−2

10
−1

10
0

p
i
=p

d

W
E

R

 

 

Code H
8−PSK, r

c
=2.0

Figure 5.10: WER comparison of the 8-PSK watermarked system with the best results of [1]
at R = 3/14. Code H is a binary watermark code from [1] with overall rate 3/14, overall block
length 4, 662, and outer LDPC code defined over GF(8). This code is decoded on the binary
I/D channel with no substitution errors or additive noise. For the non-binary I/D channel with
8-PSK signalling in Example 1, we have done sliding window decoding at SNR=20 dB for an
LDPC code with variable node degree 3, rate 3/14, and block length 4, 662.
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letter characterization of the mutual information also exists. Most of the results in

the literature focus on sub-optimal decoding or more constrained channel models

(such as deletion-only channel) and provide bounds on the capacity [83–86]. Most

of these bounds, however, are driven for binary I/D channels and binary synchro-

nization codes and either cannot be extended to non-binary I/D channel or become

computationally intensive such as the bounds in [87].

A trellis-based approach is developed in [78] to obtain achievable information

rates for binary I/D channels with AWGN and inter-symbol interference under i.i.d.

inputs (uniform p(x)). This approach which mainly uses the forward pass of the

forward-backward algorithm, can be extended to i.i.d. non-binary inputs and thus

our channel model. We will use this method to find lower bounds on the capacity

of the channel, i.e., Ci.u.d., and compare the achievable rates of our watermarked

system with this lower bound. There also exist bounds on the performance of q-ary

synchronization codes [4] which we will use in the comparisons.

To obtain the achievable rates of our watermarked system, we calculate the

maximum average per-symbol mutual information. In particular, we obtain an

estimate of the average mutual information between y and x given w. Assuming

that x is a sequence of i.i.d. symbols, the average per-symbol mutual information

is given by 1
N

∑N
i=1 I(xi;y|w) where

I(xi;y|w) = H(xi|wi)−H(xi|y, wi)

= rc − Ey

[
−
∑

xi∈Xwi

(
P (y|xi, wi)∑

xi∈Xwi P (y|xi, wi)

× log2

(
P (y|xi, wi)∑

xi∈Xwi P (y|xi, wi)

))]
,(5.17)

and the conditional probabilities are given by the watermark decoder. While it is

not possible to do an exact calculation of the expectation, it is possible to calculate

it numerically by Monte Carlo simulation. Then, (5.17) can be used to find an

estimate of the achievable rates of the watermarked system and a lower bound on

the capacity of the channel. It should be noted that under large block lengths N ,

the variance of (5.17) under Monte Carlo simulation is usually very small. Thus, it

converges to the average very fast. Here, our results are averaged over 100 blocks.

Using (5.17) and assuming known block boundaries, the achievable information

rates of the watermarked system of Example 1 is plotted versus SNR in Fig. 5.11.

We also compare the achievable rates with those of the two benchmark systems. One
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Figure 5.11: Maximum achievable information rates (bits per channel use) versus SNR under
different modulations assuming a 4-PSK base system (rc = 2.0). The 8-PSK watermarked
system mentioned in Section 5.3.1 has rc = 2.0. The maximum achievable rates given by (5.17)
under 8-PSK modulation with no watermark (rc = 3.0), and under two 8-PSK watermarked
system with partial watermarking (rc = 2.3 and 2.8) mentioned in Section 5.5 are plotted for
comparison. Also, Ci.u.d. is plotted for the 8-PSK modulation.

is the base system (4-PSK) which has the same dmin, and another one is the system

which has the same number of modulation points (8-PSK) as in the watermarked

system but is not watermarked, i.e., all the m+1 bits are dedicated to information

bits. Both of these systems use Gray mapping and are decoded by the forward-

backward algorithm described in Section 5.3.2 with the exception that there is no

watermark. The number of symbols per block is kept fixed at 10, 012 for all three

systems so that the average number of symbols corrupted by insertions/deletions

remains the same. Notice that rc = 2.0 for the base and the watermarked system

and rc = 3.0 for the 8-PSK system with no watermark.

The dashed curves in Fig. 5.11 correspond to the maximum achievable infor-

mation rates of the three systems when pid = 0. In this case, it is clear that the

watermarked and the base system achieve the same rates but the 8-PSK system

with no watermark achieves higher rates. At pid = 0.01, however, the watermarked
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system performs much better than the two benchmark systems in terms of the max-

imum achievable rates (by using (5.17)) on the channel. This is of course not very

surprising since no watermark is used in the benchmark systems and their only

source of protection against insertions/deletions comes from the fact that they are

decoded by the forward-backward algorithm.

The figure also depicts Ci.u.d. under 8-PSK signalling at pid = 0.01. Comparing

this curve with the results given by (5.17) shows how far the achievable rates of our

watermarked system are from the maximum achievable rates on the channel using

the same constellation under i.i.d. inputs. Although this gap is not small, we are

not aware of any results in the literature that can approach Ci.u.d.. This gap can be

made smaller by the method we show in Section 5.5.

We also provide a comparison with [1] in terms of comparing the achievable rates

of these two systems as viewed by the outer code. In particular, we calculate the

average I(di,j ; li,j) which is a number between 0 and 1 for both systems. This is done

by Monte Carlo simulation, using the LLRs produced by the watermark decoder,

i.e., using (5.6). This comparison is depicted in Fig. 5.12. The achievable rates seen

by the outer code from [1] are compared to those of the watermarked 8-PSK system

at SNR= 20 dB. The rates of [1] are given for three binary watermark codes with

sparsifier rates of 3/7, 4/6, and 4/5 and are calculated assuming no substitution

error on the channel which is similar to the high SNR case on our channel. As

depicted, the achievable rates of the proposed watermarked 8-PSK system are much

higher than those of [1].

Given the success of LDPC codes on many channels, we expect that the infor-

mation rates of Fig. 5.12 can be approached with carefully designed irregular LDPC

codes of large block lengths. To demonstrate this, we have optimized the degree

distributions of irregular LDPC codes of rates 0.25, 0.50, and 0.75, and constructed

codes of length 20, 024. The optimization process is done by the conventional numer-

ical LDPC optimization methods in the literature (e.g., see [53]). These optimization

techniques usually use the pdf of the LLRs. On most channels, this LLR pdf can be

calculated analytically. However, this cannot be done in our case due to nature of

the channel. Thus, Monte Carlo simulation is used to find estimates of the LLR pdf.

Given the channel parameters, this is done by simulating a large number of channel

realizations, calculating LLRs using (5.6), and finally computing the average LLR

pdf (probability mass function to be more precise). Next, the rate of the code is
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Figure 5.12: Maximum achievable information rates as viewed by the outer code I(di,j ; li,j)
for the 8-PSK watermarked system at high SNR are compared with the obtained rates of [1].
The rates of [1] are calculated assuming no substitution errors. Also, the maximum pid that
the 8-PSK watermarked system can tolerate with BER less than 10−5 is indicated for the three
optimized irregular LDPC codes of rates 0.25, 0.50, and 0.75 and three regular LDPC codes.
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Code 1 Code 2 Code 3
λ2 0.2793 0.1920 0.2562
λ3 0.2648 0.2480 0.3334
λ4 0.0064 0.0010
λ5 0.0022
λ6 0.0173 0.0171 0.3621
λ7 0.0575 0.0709 0.0434
λ8 0.0938 0.1223 0.0017
λ9 0.0279 0.0278
λ10 0.0528 0.0302
λ18 0.0413
λ26 0.0494 0.0302
λ27 0.0126 0.0137
λ28 0.0179 0.0199
λ29 0.0303 0.0358
λ30 0.0964 0.1507

ρ5 1.0000
ρ9 1.0000
ρ13 1.0000

Rate 0.25 0.50 0.75

Table 5.1: Variable and check node degree distributions for the optimized irregular LDPC
codes; All results achieved assuming maximum variable node degree of 30

maximized by optimizing its degree distributions using the computed LLR pdf. The

optimized degree distributions are given in Table. 5.1. After optimizing the degree

distributions, the parity-check matrices of the codes are constructed by the PEG

algorithm [82]. Finally, the codes are simulated on the channel at high SNR by

assuming known block boundaries with the rest of parameters being the same as in

Example 1. Fig. 5.12 shows the maximum pid under which the constructed irregular

LDPC codes perform with BER less than 10−5. It is seen that these practically

achievable rates are not far from the maximum achievable rates given by I(di,j ; li,j).

Also depicted in Fig. 5.12 are the results for three regular LDPC codes of the same

length, i.e., (3, 4)-regular, (3, 6)-regular, and (3, 12)-regular LDPC codes with rates

0.25, 0.50, and 0.75, respectively.

Now, consider Example 2. Using the same method, the maximum achievable

information rates of the watermarked system (by using (5.17)) are compared to

those of the two benchmark systems (Gray labeled 16-QAM in Fig. 5.5a and quasi

Gray 32-QAM) and Ci.u.d. in Fig. 5.13. The block size is again kept fixed at 10, 012

symbols. The same discussion as in Example 1 applies to this case as well.

We also compare the maximum achievable information rates with the bounds
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Figure 5.13: Maximum achievable information rates (bits per channel use) versus SNR under
different modulations assuming a 16-QAM base system (rc = 4.0). The 32-AM/PM water-
marked system mentioned in Section 5.3.1 has rc = 4.0. The maximum achievable rates given
by (5.17) under quasi-Gray 32-QAM modulation with no watermark (rc = 5.0), and under two
32-AM/PM watermarked system with partial watermarking (rc = 4.3 and 4.8) mentioned in
Section 5.5 are plotted for comparison. Also, Ci.u.d. is plotted for the 32-QAM modulation.
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available for q-ary synchronization codes. We use the asymptotic bounds for q-ary

codes of [4] to compare with our scheme. These bounds are achieved by consid-

ering the Levenshtein distance [56] between q-ary codewords and enumerating the

maximum size of codes capable of correcting insertions/deletions with zero error

probabilities. Since these bounds do not consider substitution errors or additive

noise, we compare them with the achievable rates of our scheme in the high SNR

region.

Figs. 5.14 and 5.15 compare the upper and lower bounds of q-ary codes for

q = 8, 32, with the achievable information rates of our 8-PSK and 32-AM/PM

schemes using (5.17), Ci.u.d.. Fig. 5.14 also includes the practical rates achievable

by the optimized irregular LDPC codes of Fig. 5.12. Notice that Ci.u.d. and our

achievable information rates in some regions exceed the upper bound of [4]. This is

due to the fact that the upper bounds are computed assuming zero error probabili-

ties whereas Ci.u.d. and our achievable rates given by (5.17) are computed assuming

asymptotically vanishing error probabilities and thus computed in different scenar-

ios. As seen on the figure, the achievable rates of our watermarked system is below

Ci.u.d. and in some regions below the q-ary upper bound. Nevertheless, no code ex-

ists in the literature which can approach these limits. At small pid, the q-ary codes

can theoretically achieve higher information rates than our scheme. This suggests

that it is not efficient to dedicate one whole bit to the watermark when the num-

ber of synchronization errors is small. We will show in the next section how the

information rates can be increased.

5.5 Increasing the achievable information rates

In this section, we show how the maximum achievable rates of the watermarked

system can be improved.

We defined rc to be the average number of bits assigned to the information bits

(more precisely coded bits) per each transmitted symbol. Until now, we considered

cases where one bit was assigned to the binary watermark in each of the transmitted

symbols. For example, for the 4-PSK base system and the 8-PSK watermarked

system discussed in Example 1, rc = 2.0 bits. It is also possible to embed watermark

bits into only some of the symbols but not all of them. For 8-PSK, this means

2.0 < rc < 3.0. We use Gray mapping for those symbols which are not watermarked

(see Fig. 5.16a). Also, we scatter those symbols which contain watermark uniformly
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Figure 5.14: Maximum achievable information rates of the 8-PSK watermarked system at
high SNR are compared to the upper and lower bounds of 8-ary insertion/deletion correcting
codes [4], the achievable rates Ci.u.d., and practical rates achievable by the optimized irregular
LDPC codes of Fig. 5.12. Achievable rates are plotted for the 8-PSK watermarked system in
two cases. First, using binary watermark and assigning one bit to the watermark in each symbol
(rc = 2.0). Second, the achievable rates are maximized by optimizing qw and rc in each point.
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Figure 5.15: Maximum achievable information rates of the 32-AM/PM watermarked system
at high SNR are compared to the upper and lower bounds of 32-ary insertion/deletion cor-
recting codes [4] and the achievable rates Ci.u.d.. These rates are plotted for the 32-AM/PM
watermarked system in two cases. First, using binary watermark and assigning one bit to the
watermark in each symbol (rc = 4.0). Second, the achievable rates are maximized by optimizing
qw and rc in each point.
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in the transmitted block.

It is evident that there is a trade-off between rc and the system ability to re-

cover synchronization errors. Increasing rc potentially lets more information to pass

through the channel but at the same time increases the system vulnerability to syn-

chronization errors since less bits are assigned to the watermark. As a result, for

a fixed signal set, there exists an optimum rc for each pid and SNR which provides

the largest transmission rate on the channel.

For example consider the system of Example 1. At high SNR and pid = 0.01,

the maximum achievable rate is 1.945 bits per channel use when rc = 2.0 bits

which increases to 2.528 bits per channel use when rc = 2.8 bits. This implies that

dedicating one bit in every symbol to the watermark, i.e., rc = 2.0 is wasteful in this

case. A better protection is provided against synchronization errors by assigning one

bit to the watermark in only 20% of the symbols. As examples, Fig. 5.11 also shows

the maximum achievable rates of the 8-PSK system under rc = 2.3 and rc = 2.8.

For pid = 0.01, when SNR<6.44 dB the system with rc = 2.0 achieves higher rates

compared to those of systems with rc = 2.3 and rc = 2.8. When 6.44<SNR<9.31,

rc = 2.3 provides the largest rates and when SNR> 9.31 dB, rc = 2.8 provides the

largest rates compared to the other two systems. Fig. 5.13 depicts the comparison

for the 16-QAM and 32-AM/PM systems.

Until now, we have only considered binary watermark sequences. When the

number of synchronization errors is large, a binary watermark may not be very

helpful in localizing these errors. Increasing the alphabet size of the watermark

qw increases the system ability to combat synchronization errors. Increasing qw,

however decreases rc, i.e., less number of bits are available in each symbol for infor-

mation bits. As a result, there is a trade-off between the qw, rc, and the maximum

achievable information rate on the channel. Fig. 5.16 illustrates the constellations

and their labeling for the 8-PSK watermarked system with both qw = 2 and qw = 4.

Figs. 5.14 and 5.15 depict the maximum achievable rates that 8-PSK and 32-

AM/PM watermarked systems can achieve by finding the optimum rc and qw at each

point. It is evident that the maximum achievable rates can be increased significantly

by this strategy. This is especially beneficial when pid is small where the achievable

rates gets closer to the lower bound on q-ary codes.
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Figure 5.16: Signal constellations and their labeling for the 8-PSK watermarked system and
the technique of Sec. 5.5.
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5.6 Complexity and the watermark sequence

5.6.1 Decoding complexity

The complexity of the forward-backward algorithm determines the complexity of

watermark decoding. This complexity scales as O ((1 + 2tmax)IMN), where 1 +

2tmax is the number of states in the HMM and N is equal to the number of symbols

on which the forward-backward algorithm is performed. It should be noted that it

is possible to reduce this complexity using arguments similar to those of [1].

5.6.2 Watermark sequence

The watermark sequences used in this chapter are pseudo-random sequences. Our

experiments confirm that these sequences perform well under different insertion and

deletion rates. Periodic sequences with small periods are usually not good choices.

First, they are vulnerable to successive insertios/deletions. As a simple example, if

the watermark is a periodic sequence with period 4, then the decoder cannot detect

4 successive deletions. Furthermore, certain patterns of insertions/deletions can fool

the decoder such that it fails to detect them. Randomness lowers the probability of

false detecting or missing insertions/deletions by the decoder.

Among other factors which affect the decoding performance is the number of

successive identical symbols (runs) in the watermark. One advantage of having runs

is that it provides the ability to detect successive deletions. The larger the run-

length, the larger successive deletions that can be detected. Nevertheless, larger

runs lead to a worse localization of insertions/deletions as the decoder is not able

to detect where exactly insertions/deletions have occurred. This gives rise to less

reliable LLRs in the vicinity of insertions/deletions. Thus, there should be a balance

between large and small runs in the watermark sequence. Pseudo-random sequences

usually have this property.

Among candidates for the watermark are the run-length limited (RLL) sequences.

RLL sequences with small maximum run-lengths (e.g., around 3 or 4) are good

choices particularly when pid is very small since the probability of having successive

insertions/deletions is small. The performance gain over pseudo-random watermarks

is only notable at small pid where high-rate outer codes are used.

The presence of additive noise can also affect the choice of watermark. All in

all, it is possible that sequences with structure could offer better performance than
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the above-mentioned sequences. This can be the subject of further investigation.

5.7 Conclusion

In this chapter, we proposed a concatenated coding scheme for reliable communi-

cation over non-binary I/D channels where symbols were randomly deleted from or

inserted in the received sequence and all symbols were corrupted by additive white

Gaussian noise. First, we provided redundancy by expanding the symbol set while

maintaining almost the same minimum distance. Then, we allocated part of the bits

associated with each symbol to watermark bits. The watermark sequence, known

at the receiver, was then used by the forward-backward algorithm to provide soft

information for the outer code. Finally, the received sequence was decoded by the

outer code.

We evaluated the performance of the watermarked system and through numerical

examples we showed that significant amount of insertions and deletions could be

corrected by the proposed method. The maximum information rates achievable by

this method on the I/D channel were provided and compared with existing results

and the available bounds on q-ary synchronization codes. Practical codes were also

designed that could approach these information rates.
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Chapter 6

Conclusion

In this chapter, we summarize our contributions and results and conclude this dis-

sertation. Some new questions and possible future research directions are also dis-

cussed.

6.1 Summary of contributions

In light of the discovery of modern error-correcting codes and their efficient soft-

decision decoding algorithms in the past two decades, close to the Shannon limit

communication has been promised on many channels. Nevertheless, there are still

numerous practical challenges facing the communication system designer. To gain

benefit of the effectiveness of modern soft-decision decoding algorithms, informa-

tion about the channel parameters should be perfectly known at the receiver. The

performance of these algorithms is greatly degraded when channel parameters esti-

mations are not perfect at the receiver. Noticing that these estimations are normally

imperfect and they are also disadvantageous in terms of overhead, complexity, and

power dissipation, other solutions should be sought. In this dissertation, we consid-

ered the problem of reliable communication under limited knowledge of the channel

parameters at the receiver. Since each communication channel demands a differ-

ent treatment and also the knowledge of each of channel parameters poses different

challenges to the design of the system, we divided the problem into three important

scenarios.
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6.1.1 Robust decoding on Gaussian channels with unknown noise
power

Many wired or wireless communication channels can be modeled by the additive

white Gaussian noise channel. It has been shown that modern error-correcting

codes such as turbo codes and LDPC codes work very close to the Shannon limit

on this channel. This is mainly due to the existence of efficient and powerful soft-

decoding algorithms such as iterative message-passing algorithms. For successful

decoding, normally the noise power should be perfectly known at the decoder. Usu-

ally, this information is not available at the receiver because it is time-varying and

the estimations are not perfect.

Considering LDPC codes and assuming an imperfect estimation of the noise

power at the receiver, we proposed a hybrid decoding algorithm combining the

sum-product and min-sum message-passing algorithms. The decoder was called an

irregular decoder. We showed that a robust performance can be achieved under

imperfect estimation of the noise power by using the proposed decoding method.

Since the parameters of the designed irregular decoder depended on the LDPC code

used on the channel, we also designed irregular code-decoder pairs with optimum

performance in the presence of channel estimation errors.

6.1.2 Practical decoding on wireless channels with unknown fading
gain

In the second scenario, we focused on wireless channels which were statistically

modeled by a fading gain and additive white Gaussian noise. We stated that the

instantaneous fading gain which captures the time-varying nature of the channel was

hard to be perfectly tracked at the receiver. As a result, the decoder should usually

deal with cases where the knowledge of the channel fading gain is not available.

For efficient decoding of modern error-correcting codes such as LDPC codes,

some soft metrics should be calculated at the receiver which are usually in the

form of LLRs. LLR computation is generally complicated on fading channels when

the channel fading gain is not perfectly known. This problem is further intensified

when non-binary modulations are used. In this scenario, we considered flat-fading

channels where the absolute value of the fading gain and/or the additive noise power

were unknown at the receiver.

We proposed an approximate LLR calculation technique by first justifying the
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previously proposed LLR accuracy measure for binary-input symmetric output chan-

nels. In the next step, we generalized the accuracy measure to binary-input asym-

metric output channels. Using BICM, we then applied the LLR accuracy measure

to non-binary signalling and proposed an optimization technique to optimize the

parameters of a general LLR approximating function. Optimized piecewise linear

LLR approximating functions were then presented and through using LDPC-coded

BICM it was shown that performance loss under the approximate LLRs was very

small. Furthermore, we showed that the capacity of BICM under true LLRs can be

approached by optimizing irregular LDPC codes under the proposed approximate

LLRs. Although we demonstrated our results through using LDPC codes, our ap-

proaches are more general and can also be applied to other coding schemes which

work with LLRs.

6.1.3 Practical coding for channels with imperfect timing

In the third scenario, we considered coding on channels with imperfect synchroniza-

tion between the transmitter and receiver. This was the most challenging scenario

since most of the error-correcting codes in the literature are designed assuming per-

fect synchronization. Imperfect timing information at the receiver leads to symbols

being inserted in or deleted from the received sequence. Since the positions of inser-

tions/deletions are not known at the receiver, even an uncorrected insertion/deletion

can lead to a catastrophic burst of errors. As a result, conventional error-correcting

codes fail at these situations. We showed that channels with imperfect synchroniza-

tion can be modeled by insertion/deletion channels with additive noise. Although

insertion/deletion channels have a long history, their analysis and finding suitable

error-correcting codes for them have proven to be extremely challenging. Finding

the capacity of these channels is also an open problem.

For this scenario, we considered non-binary insertion/deletion channels where

symbols were randomly inserted/deleted and all received symbols were corrupted

by additive white Gaussian noise. For this channel model, we proposed codes capa-

ble of correcting insertions, deletions and the effect of noise without sacrificing the

transmission resources. For this purpose, we first proposed to provide redundancy

by expanding the modulation signal set. We then used these redundancies to embed

a watermark sequence known both to the transmitter and receiver. Since the water-

mark sequence was separated from the information sequence by using the presented
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symbol mapping, the receiver was able to efficiently deduce insertions/deletions. We

presented a forward-backward algorithm for decoding at the receiver and evaluated

the performance of the system in terms of bit and block error rates and maximum

achievable rates on the channel. It was shown that significant amount of inser-

tions/deletions could be corrected using this method.

We also compared the achievable rates of our watermarked system with the avail-

able bounds in the literature and designed practical codes capable of approaching

these achievable rates. Furthermore, we showed how the achievable rates can be

increased by using partial watermarking and/or non-binary watermark sequences.

6.2 Possible future research

6.2.1 Estimating the insertion/deletion channel parameters

For the insertion/deletion channel discussed in Chapter 5, we characterized a hidden

Markov model (HMM) for the watermark decoder. Notice that by running the

forward-backward algorithm, quantities other than LLRs can also be found. Among

the most interesting quantities which can be found are the parameters of the HMM

which include insertion and deletion probabilities pi and pd. As a result, by running

the forward-backward algorithm the parameters of the insertion/deletion channel

can be estimated. This is particularly useful for cases where these parameters are not

perfectly known at the receiver or they change in time. The estimated parameters

can be then used by the forward-backward algorithm to compute refined LLRs. It

is also possible to use training symbols at the transmitter such that the receiver is

able to find accurate estimates of the channel parameters.

6.2.2 More realistic channel models for imperfect timing

The channel model described in Chapter 5 and other existing channel models which

represent lack of timing information are not always realistic. The model we used in

this dissertation considers random symbol insertions and deletions. However, when

the insertions and deletions are resulted from imperfect timing, they are highly

correlated. For example, it cannot be imagined that a 0 is randomly inserted between

two 1’s. Also, when one symbol is deleted it becomes less likely for the next symbol

to be deleted too.

Another issue which should be considered is the additive noise resulted from

imperfect timing. When no perfect timing information exists at the receiver, the
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samples are not taken at the best time instances and this leads to extra additive

noise. The existing channel models do not consider this effect. Thus, more realistic

channel models representing imperfect timing can be studied by considering the

existing correlations between symbol insertions and deletions and the extra additive

noise resulted from imperfect sampling instances.

After obtaining realistic channel models, the approaches presented in Chapter 5

can be modified to suit the new models. Usually this can be done by modifying the

structure of the HMM.

6.2.3 Improved codes for correlated insertions/deletions

Having obtained more realistic channel models for imperfect timing which captures

the correlations between insertions/deletions, it might be possible to find better

codes for dealing with these correlated insertions/deletions. It is worth mentioning

that the performance of the watermarked system of Chapter 5 already improves

under correlated insertions/deletions. Nevertheless, it is possible to find better codes

or better watermark sequences for these cases.

6.2.4 Watermark decoding as a timing recovery technique

After finding more realistic channel models and improved watermark codes, it is

possible to use the watermark decoding scheme as a timing recovery technique. This

is because the proposed watermark decoding system can deal with synchronization

errors and has the potential to provide timing information at the receiver. Thus,

watermark decoding can be used on a realistic system working with continuous-

time signals to obtain sampling instances, do the sampling, and find estimates of

the transmitted symbols.

94



Bibliography

[1] M. C. Davey and D. J. C. Mackay, “Reliable communication over channels
with insertions, deletions, and substitutions,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 687–698, Feb. 2001.

[2] E. A. Ratzer, “Marker codes for channels with insertions and deletions,” Annals
of telecommunications, vol. 60, no. 1-2, pp. 29–44, 2005.

[3] J. Briffa, H. Schaathun, and S. Wesemeyer, “An improved decoding algorithm
for the Davey-MacKay construction,” in Proc. of IEEE Intl. Conf. on Com-
mun., May 2010, pp. 1–5.

[4] V. Levenshtein, “Bounds for deletion/insertion correcting codes,” in Proc. 2002
IEEE Intl. Symp. on Inf. Theory, 2002, p. 370.

[5] J. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communications, 3rd ed.
Kluwer Academic Publishers, 2004.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo-codes (1),” in Proc. 1993 IEEE Int.
Conf. Commun., vol. 2, Geneva, Switzerland, May 1993, pp. 1064–1070.

[7] R. G. Gallager, “Low-Density Parity-Check codes,” Ph.D. dissertation, M.I.T
press, Cambridge, MA, 1963.

[8] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. Inf. The-
ory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[9] R. Yazdani and M. Ardakani, “Robust LDPC decoding using irregular de-
coders,” IEEE Commun. Lett., vol. 12, no. 12, pp. 888–890, Dec. 2008.

[10] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[11] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 599–618, Feb. 2001.

[12] R. Yazdani and M. Ardakani, “Linear LLR approximation for iterative decoding
on wireless channels,” IEEE Trans. Commun., vol. 57, no. 11, pp. 3278–3287,
Nov. 2009.

[13] ——, “Efficient LLR calculation for non-binary modulations over fading chan-
nels,” IEEE Trans. Commun., vol. 59, no. 5, May 2011.

[14] ——, “Piecewise linear LLR approximation for non-binary modulations over
Gaussian channels with unknown noise variance,” in Proc. 2010 IEEE Int.
Conf. on Telecommun. (ICT), Doha, Qatar, Apr. 2010, pp. 1–7.

[15] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-
nical Journal, vol. 27, pp. 379–423 and 623–656, Jul. and Oct. 1948.

95



[16] M. Mitzenmacher, “A survey of results for deletion channels and related syn-
chronization channels,” Probability Surveys, vol. 6, pp. 1–33, 2009.

[17] H. Mercier, V. Bhargava, and V. Tarokh, “A survey of error-correcting codes for
channels with symbol synchronization errors,” IEEE Communications Surveys
Tutorials, vol. 12, no. 1, pp. 87–96, 2010.

[18] R. Yazdani and M. Ardakani, “Reliable communication over non-binary inser-
tion/deletion channels,” IEEE Trans. Commun., Jul. 2012, accepted for publi-
cation.

[19] R. L. Dobrushin, “Shannon’s theorems for channels with synchronization er-
rors,” Probl. Inf. Transm., vol. 3, no. 4, pp. 11–26, 1967.

[20] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 2006.

[21] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell System
Technical Journal, vol. 26, no. 2, pp. 147–160, 1950.

[22] S. Lin and D. J. Costello, Error Control Coding, Second Edition. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2004.

[23] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of Low
Density Parity Check codes,” Electronics Lett., vol. 32, no. 18, pp. 1645–1646,
August 1996.

[24] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519, Feb.
2001.

[25] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Im-
proved low-density parity-check codes using irregular graphs,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

[26] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
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Appendix A

Proof of Theorem 4.1

Here, we prove that (4.8) is maximized with true LLRs and no symmetric LLR

approximation can result in a Ĉ > C. We first focus on the binary symmetric

channel. Extension to other channels is discussed afterwards.

A.1 Discrete symmetric-output channels

A.1.1 Binary symmetric channel

Consider a binary symmetric channel (BSC). We have x ∈ {0, 1}, y ∈ {0, 1} and

p(y = 0|x = 1) = p(y = 1|x = 0) = p. Therefore, assuming that x = 0, the true LLR

is

l = g(y) = (1− 2y) · log 1− p

p
.

Thus, the LLRs have the following pdf

fBSC(l) = (1− p) · δ
(
l − log(

1− p

p
)

)
+ p · δ

(
l + log(

1− p

p
)

)

where δ(l) is the Dirac delta function.

One can view g(y) as a function which maps y = 0 to log 1−p
p

and y = 1 to

− log 1−p
p

. Now, consider a symmetric LLR approximation ĝ(y), such that ĝ(y) maps

y = 0 to l̂ = a0 and y = 1 to l̂ = −a0. The approximated LLRs have the following

pdf

f̂BSC(l̂) = (1− p) · δ
(
l̂ − a0

)
+ p · δ

(
l̂ + a0

)
. (A.1)

From (4.8) and (A.1)

ĈBSC = 1− p · log2(1 + ea0)− (1− p) · log2(1 + e−a0).

By taking the first and the second derivatives of ĈBSC with respect to a0, it can be

seen that a0 = log 1−p
p

results in the maximum ĈBSC. Interestingly, this value of a0
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corresponds to true LLR calculation. Therefore,

max{ĈBSC} = CBSC = 1 + p log2(p) + (1− p) log2(1− p).

The second derivative of ĈBSC with respect to a0 is always negative. Therefore,

starting at a0 = log 1−p
p

(i.e., true LLRs), where ∆CBSC = CBSC − ĈBSC = 0,

if a0 changes (in one direction), the larger |a0 − log 1−p
p
| the larger ∆CBSC. In

other words, as the approximated LLRs become less accurate, the value of ∆CBSC

increases. This shows that the ĈBSC can be used as a measure of accuracy of the

approximated LLRs.

A.1.2 Other channels

The above discussion was limited to the BSC. Here we consider a symmetric chan-

nel whose input alphabet is binary and whose output alphabet is non-binary and

discrete. Thus we have x ∈ {0, 1}, y ∈ {±yi, 1 ≤ i ≤ M}, ∀i, 1 ≤ i ≤ M . Let

us define p(yi|x = 1) = p(−yi|x = 0) = pi, p(−yi|x = 1) = p(yi|x = 0) = p′i, and

qi = pi + p′i. Clearly
∑M

i=1 qi = 1.

When a channel output y = yi is observed, the true LLR value is

li = log
p′i
pi
. (A.2)

To obtain (A.2), we have used p(x = 0) = p(x = 1). Now, defining θi =
pi
qi
, we have

p′i
qi

= 1− θi and thus

g(yi) = li = log
1− θi
θi

.

The LLR distribution under the all-zero codeword assumption is therefore

fL(l) =

M∑

i=1

qi

[
(1− θi) · δ

(
l − log

1− θi
θi

)
+ θi · δ

(
l + log

1− θi
θi

)]
,

Also, considering ĝ(yi) = ai, the pdf of the approximated LLRs is

f
L̂
(l̂) =

M∑

i=1

qi

(
(1− θi) · δ(l̂ − ai) + θi · δ(l̂ + ai)

)
,

The discrete channel, therefore, can be viewed as M parallel BSCs. Each BSC

is selected with a probability of qi and has a crossover probability of θi. Assuming a

capacity of Ci for each BSC and a Ĉi under a symmetric LLR approximation, from

linearity of C and Ĉ in fL and f
L̂
respectively, it is evident that

C =
∑

i

qiCi
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and similarly

Ĉ =
∑

i

qiĈi.

Since all qi are positive and because each Ĉi achieves its unique maximum when

ai = log 1−θi
θi

, it becomes clear that the unique maximum of Ĉ under symmetric

LLR approximation is achieved by true LLRs.

Now, consider an M dimensional space, whose coordinates are a1, a2, · · · , aM .

True LLRs show one point of this space, where ∀i, 1 ≤ i ≤ M , ai = log 1−θi
θi

. Let us

call this point P . Any line which passes through P is given by

a1 − log 1−θ1
θ1

γ1
=

a2 − log 1−θ2
θ2

γ2
= · · · =

aM − log 1−θM
θM

γM
,

where γi, ∀i, 1 ≤ i ≤ M shows the arbitrary vector representing the direction of the

line. Starting from P and moving along any line which passes through P , getting

farther from P increases |ai − log 1−θi
θi

| for all i. As we showed for the BSC, ∆Ci =

Ci−Ĉi increases with increasing |ai− log 1−θi
θi

|. Thus, ∆C = C−Ĉ =
∑

i qi∆Ci also

increases. Notice that on any such line a direct comparison between the accuracy of

LLRs is possible. That is, as we get farther from P , the LLRs become less accurate.

Consistently, ∆C = C − Ĉ also increases. Thus, using Ĉ as a measure of accuracy

of LLRs sounds reasonable.

A.2 Continuous symmetric-output channels

Now consider a continuous-output MBISO channel defined by its conditional pdf

fY |X(y|x) where fY |X(−y|x = −1) = fY |X(y|x = +1) = f ′
Y (y) and fY |X(y|x =

−1) = fY |X(−y|x = +1) = fY (y). Similar to the discrete channel case, we define

qY (y) = fY (y) + f ′
Y (y) where

∫∞
0 qY (y)dy = 1. When the channel output y is

observed the true LLR value is

l = g(y) = log
f ′
Y (y)

fY (y)
= log

1− θY (y)

θY (y)
,

where θY (y) =
fY (y)
qY (y) . Thus, the true LLR pdf fL(l) is equal to

fL(l) =

∫ ∞

0
qY (y)

[
(1− θY (y))δ

(
l − log

1− θY (y)

θY (y)

)

+ θY (y)δ

(
l + log

1− θY (y)

θY (y)

)]
dy.

103



Now considering the approximate LLR calculation of l̂ = ĝ(y) and the fact that

probability of receiving y is independent of the LLR calculation, the pdf of the

approximate LLR is

f
L̂
(l̂) =

∫ ∞

0
qY (y)

[
(1− θY (y))δ

(
l̂ − ĝ(y)

)
+ θY (y)δ

(
l̂ + ĝ(y)

) ]
dy. (A.3)

By applying (A.3) in (4.8), we get

Ĉ =1−
∫ ∞

−∞
log2(1 + e−l̂)

∫ ∞

0
qY (y)

×
[
(1− θY (y))δ(l̂ − ĝ(y)) + θY (y)δ(l̂ + ĝ(y))

]
dydl̂

=1−
∫ ∞

0
qY (y)

[
(1− θY (y)) log2(1 + e−ĝ(y))

+ θY (y) log2(1 + eĝ(y))
]
dy, (A.4)

where we have exchanged the order of integrals and used the delta function sifting

property. Denoting cY (y) = 1− (1− θY (y)) log2(1 + e−ĝ(y))− θY (y) log2(1 + eĝ(y)),

we write (A.4) as

Ĉ =

∫ ∞

0
qY (y)cY (y)dy.

For each value of y, as we stated, cY (y) is maximized when ĝ(y) = log 1−θY (y)
θY (y) which

is equivalent to true LLR calculation. Since qY (y) is positive, it is clear that the

maximum of Ĉ is achieved by true LLRs.
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Appendix B

Proof of Theorem 4.2

Consider an arbitrary discrete binary-input memoryless channel whose output al-

phabet is non-binary. The channel input is x ∈ {0, 1}, and its output is y ∈
{yj |1 ≤ j ≤ M}. Let us define P (yj|x = 0) = pj and P (yj |x = 1) = qj where
∑M

j=1 pj =
∑M

j=1 qj = 1. The true LLR value, when y = yj is observed at the

channel output and the binary inputs are equiprobable, is

lj = g(yj) = log
pj
qj
. (B.1)

Thus, the true LLR pdf when x = 0 is sent is given by f0
L(l) =

∑M
j=1 pjδ

(
l − log

pj
qj

)

and by f1
L(l) =

∑M
j=1 qjδ

(
l − log

pj
qj

)
when x = 1 is sent over the channel, where

δ(·) denotes the Dirac delta function.

Now, assuming that approximate LLR is calculated by l̂j = ĝ(yj) = aj when yj

is observed at the channel output, the conditional pdfs of l̂ are:

f0
L̂
(l̂) =

M∑

j=1

pjδ
(
l̂ − aj

)
, (B.2)

f1
L̂
(l̂) =

M∑

j=1

qjδ
(
l̂ − aj

)
. (B.3)

Inserting (B.2) and (B.3) in (4.9) gives

Ĉ(i) = 1− 1

2

M∑

j=1

(
pj log2(1 + e−aj ) + qj log2(1 + eaj )

)
. (B.4)

Taking ∂Ĉ(i)

∂aj
reveals that aj = log

pj
qj

maximizes Ĉ(i) for all 1 ≤ j ≤ M since

∂2Ĉ(i)

∂a2j
< 0 for all 1 ≤ j ≤ M and ∂2Ĉ(i)

∂aj∂ak
= 0 for all 1 ≤ j ≤ M and 1 ≤ k ≤ M

and j 6= k. These values of aj ’s are equal to the true LLR of (B.1). Thus, the

maximizing point is only given by true LLRs. Noticing that these results are valid
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for each equivalent bit-channel i of the BICM and since max Ĉ =
∑m

i=1maxAi
Ĉ(i)

in (4.10), the theorem is proved.
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Appendix C

Proof of Theorem 4.3

Denote L̂
(i)
b = E

x∈X (i)
b

[L̂(i)|x] and Y
(i)
b = E

x∈X (i)
b

[Y |x] for b ∈ {0, 1}. Then Ĉ(i)

can be written as

Ĉ(i) = 1− 1

2
E

L̂
(i)
0

[
log2(1 + e−L̂

(i)
0 )
]
− 1

2
E

L̂
(i)
1

[
log2(1 + eL̂

(i)
1 )
]

= 1− 1

2
E

Y
(i)
0

[
log2

(
1 + e

−ĝ
(i)
Ai

(Y
(i)
0 )
)]

− 1

2
E

Y
(i)
1

[
log2

(
1 + e

ĝ
(i)
Ai

(Y
(i)
1 )
)]

.

By using (4.12) and with some abuse of notation we write

Ĉ(i) = 1− 1

2

1∑

b=0

N(i)∑

k=1

E
(Y b∈C(i)

k
)

[
log2

(
1 + e(−1)b+1(〈α(i)

k
,Y b〉+β

(i)
k

)
) ]

.

It is clear that ĝ is an affine function of α
(i)
k and β

(i)
k for each realization of Y b inside

C
(i)
k . Noticing that the function log2 (1 + exp(·)) is convex and twice differentiable,

it can be deduced that log2(1 + exp((−1)b+1(〈α(i)
k ,Y b〉 + β

(i)
k ))) is also a convex

function of α
(i)
k and β

(i)
k . The convexity is also preserved under expectation. Thus,

E
(Y b∈C(i)

k
)
[log2(1+exp ((−1)b+1(〈α(i)

k ,Y b〉+ β
(i)
k )))] is also convex which makes Ĉ(i)

concave with respect to α
(i)
k and β

(i)
k for all k = 1, . . . , N (i).
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