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ABSTRACT 
Cab warning systems and train control technologies provide alarms to inform train operators of dangerous situations and 
enforce speed and movement restrictions to avoid or mitigate negative consequences. While these systems can enhance 
safety as the last resort of safety control, they may have adverse cognitive impacts on train operators. This article reviews 
publicly published articles and reports that analyzed human factors issues of in-cab technologies. The reviewed 
technologies include, but are not limited to, cab signaling systems, automatic train control systems, anti-collision devices, 
train operators’ vigilance systems, and train operators’ reminder devices. The findings demonstrate that these 
technologies can cause a variety of human factors issues, including over-load or under-load, over-reliance on the system, 
complacency, loss of situation awareness, mode confusion, distraction, and automatic responding. To reduce the potential 
negative impacts related to the design and usability of in-cab technologies on train operators, the authors recommend 
employing the human reliability analysis and the human-in-the-loop processes to better understand the impacts of in-cab 
warning systems on train operators, identify the contextual factors influencing the train operators’ performance, and 
develop strategies to mitigate such human-induced risks.   
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1 INTRODUCTION 
 
Automated control systems are increasingly being 
adopted in various industries to improve safety and 
optimize operations. They are changing the nature of 
work and transitioning the role of human operators from 
manually operating to passively monitoring. It is 
assumed that such technologies prevent or reduce 
known human errors and improve safety, however, past 
experience in various domains shows that they may 
cause unexpected impacts on human performance and 
introduce new sources of human risks. The reported 
incidents and accidents from high reliability organizations 
(HRO) such as nuclear power plants and the aviation 
industry are strong evidence for this claim. Statistics 
illustrate that that human factors account for over 75% of 
major railway accidents, marine causalities, or aviation 
accidents (Cullen & Smith 2004, Evans 2014, Tao et al. 
2020). This number reaches over 90% for failures in 
nuclear plants (French et al. 2011). 

                                                           
* Corresponding author’s email: ahmadira@ualberta.ca 

Due to the significant role of human operators in the 
safety aspect of the social-technical systems and the 
importance of employing strategies to reduce human-
caused risks, a large number of studies in diverse 
industries have been conducted to develop and deploy 
human reliability analysis (HRA) and identify human 
factors issues associated with automation. The 
performed HRA studies differ in their scope, the types 
and levels of decomposition of the tasks addressed, and 
the factors considered to influence the human error 
probability (Mkrtchyan et al. 2015). While some 
contributions focus on the identification, measurement, 
and reduction of human-induced risks at the design 
stage, some others aim at evaluating the effects of 
performance shaping factors (PSFs) on human 
performance (Patriarca et al. 2020).  

The bibliometric analyses conducted by Tao et al. 
(2020) and Hou et al. (2021) highlighted the main 
research areas of the HRA publications including human 
performance in human-machine systems. Papadimitriou 
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et al. (2020) presented a systematic literature review of 
the effects of human factors on transport automation 
safety. They reviewed the role of misaligned trust in 
automation (i.e. mistrust vs overreliance), situation 
awareness in automated driving, the transition of control 
between human and machine, and operators’ experience 
and training in the effectiveness of the automated 
systems in the road, aviation, maritime and rail domains. 
The literature review studies disclosed that much less 
research about the influence of automation on human 
operators’ performance has been carried out in the 
railway domain as compared to the aviation and road 
sectors. This was a reason that Papadimitriou et al. 
(2020) recommended transferring some experiences 
and lessons learned in relation to human-automation 
interaction from road and air transport to the railway 
industry. 

One of the limited exploratory reviews in the railway 
sector about the influence of automation on train 
operators is Bearman & McCusker (2008), which has 
been later reorganized and updated by Zimmermann 
(2015). These review studies were respectively 
performed under the auspices of the Australian and 
Canadian governments and were published in non-
scientific indexed databases. Bearman & McCusker 
(2008) categorized the potential human factors issues of 
new in-cab and train control technologies into “fixation on 
and distraction by the technology”, “disregard or 
attenuation to warnings”, “errors inputting data into the 
system Increased attention and knowledge demands 
Lack of insight into how the technology is functioning”, 
“poor communication by the technology about its current 
functioning”, “misplaced trust in the automation”, 
“mismatches between the driver’s understanding of a 
task and the way this task is performed by the 
technology”, “changes to the nature of train driving, 
particularly relating to change in driving technique 
required by some new technologies”, “difficulties for 
drivers transitioning in and out of the technology”, “shifts 
in workload”, “changes to work-roles and coordination 
requirements for train personnel other than drivers”. 
Then, Zimmermann (2015) recategorized the factors into 
design and usability (involving distraction and workload, 
human-machine communication, ergonomic display 
design, and assigning final authority), skill retention, the 
transformation of work, training and mental models, 
operator expectation and trust, and unanticipated effects 
and interactions. In 2021, the authors of the current 
paper prepared a report on the cognitive impacts of in-
cab warning systems for Transport Canada (TC) (see 
Rad et al. (2021)) and this paper is the extension of the 
report to fill in the research gap. 

This paper reviews the relevant publications in both 
scientific and non-scientific indexed databases and 
summarizes the main human factors challenges in 
relation to using diverse train cab warning systems 
including cab signaling devices (e.g., Automatic Warning 
System (AWS)), automatic train control technologies 
(e.g., Positive Train Control (PTC) and European Train 
Control System (ETCS)), train-to-train anti-collision 
systems (e.g., Train Collision Early Warning System 
(TCEWS)), train operator reminder devices (e.g., Driver’s 

Reminder Appliance (DRA) and In-Cab Signal Reminder 
Device (ICSRD)), and train operators’ vigilance devices 
(e.g., Driver Vigilance Systems (DVS) and Monitoring 
Engineer Fatigue (MEFA)). The remainder of our paper 
is organized as follows: Section 2 summarizes our 
bibliometric search methodology, and Section 3 provides 
descriptive analysis. Results and discussion are 
presented in Section 4. Finally, our conclusions of this 
review are summarized in Section 5. 
 
2  BIBLIOMETRIC SEARCH METHODOLOGY 
 
We searched academic research databases (i.e., 
ScienceDirect, Scopus, Web of Science, SpringerLink, 
and IEEE Xplore), along with non-citation research 
databases such as FRA, RSSB, and Volpe center 
libraries for published research in English, up to the date 
1 August 2021. We selected several keywords related to 
human reliability analysis (HRA) in combination with in-
cab warning systems and automated train control (ATC) 
technologies to maximize the number of documents to 
be analyzed. We also considered references cited by the 
obtained research as a source for discovering more 
related scholarly research. This yielded 46 original 
publications after removing duplicates. 

 
3 DESCRIPTIVE ANALYSIS 

 
This section represents the statistical analysis of the 46 
original research publications that have investigated the 
impacts of railway automation on train operators.  

The distribution of the published papers and reports 
per continent in the years between 2002 and 2020 is 
illustrated in Figure 1. The year 2017 with the highest 
share for the European countries, is the most significant 
period for this research topic.  
 

 
Figure 1. Yearly distribution of the reviewed publications 
per continent 

 
Detailed analysis discloses that the UK and the US  are 
the leading countries in research on human factors 
issues of railway automation, with an aggregate share 
of 65% (see Figure 2).  
As shown in Figure 3, the majority of the publicly 
available studies in the field of research are reports 
published in non-scientific indexed databases (37%). 
Among scientific-indexed publications, Journal articles 
(28%), followed by conference papers (22%) have the 
main proportions. This result confirms Patriarca et al. 
(2020)’s claim that some human reliability analysis 
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(HRA) research and development contributions are 
publicly available but not recorded in citation databases, 
and some others are proprietary research.  

 

 
Figure 2. Countries’ contributions in the human factors’ 
studies related to railway automation.  

 
 

 
 
Figure 3. Type of publications 

The existing literature is also classified according to the 
type of data sources (see Figure 4). Like what was 
reported by Mkrtchyan et al. (2015), three main sources 
of data, i.e., theoretical data, empirical data, and expert 
judgment data, were used in the reviewed publications. 
The theoretical data is excluded from Figure 4 since it 
was utilized in almost all papers.  Moreover, the empirical 
data is categorized into real-world data (i.e., data 
obtained through in-cab observations, 
on‑train‑data‑recorder (OTDR), or occurrence 
databases) and simulator/simulation tests data.  
 

 
 
Figure 4. Type of data sources 

According to Figure 4, 33% of the researchers combined 
diverse sources of data to get a better understanding of 
the ironies of automation. For example, in situations that 
were a lack of empirical information, they used expert 
knowledge along with the empirical and/or theoretical 
information (see e.g., Wreathall et al. (2007a), Rose & 
Bearman (2012), Nneji et al. (2019)). 
 
 

4 RESULTS AND DISCUSSION 
In this section, we review human factors challenges 
associated with the introduction and use of a wide range 
of in-cab warning systems and automated train control 
technologies.  

4.1 Workload 

Workload may be characterized as the reaction to 
demand or stress, with either positive or negative 
consequences (Oppenheim et al. 2010b). It can be 
physical (e.g., pressing a button), visual (e.g., scanning 
the light on the display), and cognitive (e.g., interpreting 
a signal) (Halliday et al. 2005).  

The workload to performance relationship is 
illustrated in Figure 5. The ideal workload situation 
happens when “homeostasis” is achieved, which can be 
described as a balance where coping and adaptation to 
task demands are optimal. Any deviations from the 
optimal workload level, either an increase or a 
decrease, can contribute to lower performance 
(Oppenheim et al. 2010b, FRA 2014). Under-load can 
result in loss of situational awareness, boredom, fatigue, 
frustration, over-confidence, and increased reaction 
times while over-load causes irrational problem solving, 
loss of situational awareness, exhaustion, and low self-
esteem (FRA 2014, Robinson et al. 2015).      

 
Figure 5. Workload versus performance (FRA 2014) 

It is argued in the literature that the integration of any 
new technology into a system can, on the one hand, 
cause an overload of mental workload but can, on the 
other hand, lead to underload because of the increased 
automation (Robinson et al. 2015). Therefore, several 
research studies have been conducted to investigate 
the impacts of a new device on the workload levels of 
train operators. For example, the RSSB assessed the 
effectiveness of an In-cab Signal Reminder Device 
(ICSRD) and concluded it has the potential to increase 
workload by requiring additional cognitive and physical 
tasks. This can increase train operator stress and thus 
response time (Halliday et al. 2005).  

The RSSB (2002) compared the imposed workload 
level of the two types of Driver’s Reminder Appliance 
(DRA)  systems on train operators and concluded that 
the Automatic Warning System  (AWS) activated DRA, 
in which the system is automatically set with regards to 
the tasks related to AWS, poses a lower workload to the 
train operator compared to the train operator set DRA.  
Crick et al. (2004a)’s research demonstrated that the 
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visual information provided by the automatic train 
protection (ATP) system is too much for some train 
operators to handle, causing increased workload and 
distractions. Verstappen et al. (2017) found that 
monitoring innovative devices in train cabs during 
driving requires multiple resources (e.g., visual and 
cognitive resources), which can conflict with the primary 
driving task. This can cause an increase in workload 
and influence driving performance.  Van Der Weide et 
al. (2017) realized that train operators experienced 
notably lower workload when driving with European Rail 
Traffic Management System (ERTMS) compared to 
driving with ATB (i.e., the legacy system in Netherland), 
and very experienced train operators even reported 
boredom. Spring et al. (2009) also reported a reduction 
in the mental workload of train operators, even to a sub-
optimal level, because of an increase in the levels of 
automation (LOAs). Historical data related to head-up 
displays revealed a substantial decrease in train 
operator workload (Davies et al. 2012). 

Analyses performed by Foulkes (2004) and Buksh 
et al. (2013) showed the Level 2 ERTMS, in which all 
signaling indications are shown in the cab and there are 
no lineside signals, contributes to a lower workload than 
the current train driving task. However, according to 
studies conducted, a variety of factors including the 
level of ERTMS implemented, train operator strategy, 
type of traction, and transitions into and out of ERTMS 
could impact workload under ERTMS (Robinson et al. 
2015). An increase in workload because of transition 
in/out of a train protection system, particularly in 
complex areas such as stations and level crossings was 
also reported by Foulkes (2004) and Monk et al. (2017). 
A series of studies about the workload level of the 
Positive Train Control (PTC) system revealed that 
frequent, often non-informative audio alarms of the PTC 
systems and the required data entry during initialization 
and/or operation are sources of workload (Wreathall et 
al. 2007a, Roth & Multer 2009, Roth et al. 2013). 
Wreathall et al. (2003) emphasized that train automation 
systems usually automate the easy parts of a task, 
reducing workload during times when the workload is 
already minimal while requiring extensive human 
involvement in challenging situations when the 
workload is high. Therefore, during high-paced high-risk 
situations where the workload is already very high, there 
is an increase in workload demands (Wreathall et al. 
2003). 

During Wreathall et al. (2007a)’s interviews with 
train operators who have had experience driving with 
the PTC system, they expressed concerns regarding 
high numbers of audio warnings that require to be 
acknowledged. These can create distractions and high 
workloads for the train operators. The train operators 
recommended that audible alarms should be restricted 
to alert them to potential issues (e.g., an upcoming 
speed restriction that might be missed) and should be 
avoided for positive circumstances (e.g., when a speed 
restriction is no longer in effect) (Wreathall et al. 2007a).   
Brandenburger and their colleagues performed a series 
of studies and experiments at the German Aerospace 
Centre about the effects of railway automation on the 

train operators (Brandenburger et al. 2017a, 
Brandenburger & Jipp 2017, Brandenburger et al. 
2017b, Brandenburger et al. 2018, Brandenburger & 
Naumann 2019, Brandenburger et al. 2019). Their 
experiments illustrated that the higher grades of 
automation (GOAs) do not always mean a lower 
workload level. While the transition from GOA-1 to 
GOA-2 reduced the workload level and kept it at the 
sub-optimal level (Brandenburger et al. 2018, 
Brandenburger & Naumann 2019), the transition from 
GOA-2 to GOA-3 increased workload and made it closer 
to an intermediate, optimal level of workload 
(Brandenburger et al. 2019).    

In summary, the effect of automation on workload is 
mixed and automation may increase or decrease the 
workload level. Nneji et al. (2019), at Duke University, 
developed the Simulator of Human Operator Workload 
(SHOW) based on the empirical data from the U.S. 
railroad industry to quantitatively model freight rail 
operator workload.  

4.2 Distraction 

Verstappen et al. (2017) conducted a study about the 
effects of innovative devices in Dutch train cabs on train 
operators and highlighted that conflicts between the use 
of these devices (e.g., communication devices or 
information devices) and train driving tasks, particularly 
in critical situations, can be a source of distraction for 
the train operator. Safar et al. (2020)’s interviews with 
the US train operators revealed that non-integrated in-
cab displays and alarms can be a contributory factor for 
distraction. The train operators indicated that there are 
often non-safety/ non-critical 
alarms that may be distracting. These alarms may 
sound continuously when activated despite being 
acknowledged, causing annoyance and distraction to 
the train operator. Furthermore, a frequent false alarm 
also raises the risk of ignoring safety-critical alarms by 
the train operator (Safar et al. 2015, Safar et al. 2020). 
Frequent, often non-informative audio alarms created 
by PTC systems can also be a source of distraction 
(Wreathall et al. 2007a, Roth & Multer 2009, Roth et al. 
2013). Using devices such as ICSRD and DRA, which 
need to be used on the move, may distract train 
operators’ attention away from signals ahead while 
using the device (Halliday et al. 2005). 

The impact of vigilance devices on distraction is 
different. Vigilance devices, on the one hand, are 
argued to reduce distraction through an increase in 
levels of vigilance, arousal, and attention (Halliday et al. 
2005). However, on the other hand, they can divert the 
train operator’s attention away from the primary task of 
driving (Wilde & Stinson 1983, Rose & Bearman 2012).  

4.3 Loss of Situation Awareness 

Endsley (1996) defined situation awareness (SA) as 
“the perception of the elements in the environment 
within a volume of time and space, the comprehension 
of their meaning, and the projection of their status in the 
near future”. They categorized SA into three levels: level 
1 (perception), level 2 (integration and comprehension), 
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and level 3 (projection).  
SA is reflected in a train operator’s actions and 

response time (Halliday et al. 2005, Park et al. 2020). 
According to the conscious thinking processes that are 
needed to attain SA, longer response times are 
expected in decision making with good SA. When the 
levels of train operator vigilance or arousal decrease, 
their attention may deviate from the task of checking 
signals and thus increase the risks of making skill-based 
errors. An operator may automatically respond during 
low arousal despite the loss of SA (Halliday et al. 2005).  
SA is commonly assumed to be improved with 
experience; thus, novices have low SA and are more 
dependent on displays of information (Halliday et al. 
2005). Crick et al. (2004a) found that more experienced 
train operators had considerably longer response times 
to the AWS, possibly reflecting the greater 
understanding by these individuals of the need to be 
aware of the signal before responding. According to 
information available, expert judgment, and the 
simulator experiment, Thomas & Davies (2008) and 
Davies et al. (2012) proposed that head-up display of 
speed and brake information can help the train operator 
to maintain situational awareness. In-cab Signal 
Reminder Device (ICSRD) and a moving map display 
are other recommendations for enhancing situation 
awareness of train operators (Halliday et al. 2005, Liu et 
al. 2017). 

4.4 Mode Confusion 

Mode confusion (mode error) happens when the user is 
confused about the system's current mode (i.e., errors in 
SA) or is unable to recall how the system reacts in the 
current mode (i.e., slips of action) (Wreathall et al. 
2007b). There is a risk that the train operator does not 
understand or forgets that the mode change has 
occurred due to distraction and workload, which can 
result in mode errors (Sebok et al. 2015, Sebok et al. 
2017). Safar et al. (2020) clarified that train operators 
accustomed to driving within cab signal territory may 
forget they are within no cab signal territory and wait for 
the speed reduction alarm to adjust the speed. 
Two types of mode transitions and their related mode 
confusion are considered for the PTC system. One type 
of mode transition is when a train is equipped with a 
PTC system, but depending on the circumstances, the 
system could be operating or not. For example, on a 
PTC-equipped train, the system may not be operational 
because the train is outside of PTC territory or because 
the PTC system is malfunctioning. The second type of 
mode transition is related to the situation in which a train 
operator works on both PTC territory and non-PTC 
territory. The potential issue allied with the first type of 
mode transition is that the train operator may not 
recognize that the PTC system is not operating or may 
notice but fail to adequately enhance vigilance to 
compensate for the lack of PTC protection. When a train 
is moving between PTC equipped and unequipped 
areas, i.e., the second type of mode transition, factors 
including complacency and skill loss could contribute to 
the train operator errors. If the train operator has 
become over-reliant on the PTC system and, due to 

temporary workload or distraction, fails to notice or 
forgets protection provided by PTC is not available at 
the moment, it can result in complacency and therefore 
human errors. (Wreathall et al. 2007a, Wreathall et al. 
2007b, Roth et al. 2013). 
Changes in operating conditions can be the main cause 
of mode confusion. These kinds of problems may be 
triggered by frequent switching between trains that have 
the DRA and those that do not, or switching between 
trains with train operator set DRA and AWS activated 
DRA (RSSB 2002). This means that the increase in the 
number of transitions in a route/work shift can raise the 
probability of error (Monk et al. 2017). Hence, an inkblot 
strategy for rolling out ERTMS imposes less workload 
on train operators than a patchwork strategy when there 
are fewer transitions. Notably, in an inkblot strategy, 
ERTMS is rolled out from one starting track towards 
adjacent areas, while in a patchwork strategy, the 
development of ERTMS is distributed across the 
network, e.g., based on technical urgency (Van Der 
Weide 2017).   

4.5 Complacency and Over-reliance 
Roth & Multer (2009) referred to complacency as a 
general term that reflects the incapability of a train 
operator to act as well without a system as they could 
before the system was installed. Complacency can have 
various negative consequences, such as train operators 
not detecting the system failure (or it being off), 
experiencing delays in identifying and reacting to a 
system failure, and losing their driving skills and 
therefore not being able to perform the driving task as 
well when the system is not available as they previously 
could have (Roth & Multer 2009, Roth et al. 2013). 
Complacency tends to criticize the operator for 
unreasonably depending on a system and is closely 
connected to the principles of overreliance and 
excessive trust (Wreathall et al. 2007a, Roth & Multer 
2009, Roth et al. 2013). 

The more operators trusted the automation, the 
more they left it in control without supervision. When 
train operators are passive and observant, they are 
more prone to perform a task based on system 
feedback rather than anticipatory, self-identified 
strategies. This could be crucial because anticipation is 
a required factor for higher-level situation awareness 
and a lack thereof could detrimentally impact the error 
management process when the system fails 
(Giesemann 2013). Over-reliance on the system can 
highly increase the risk to accept the displayed 
information even when it is incorrect (Halliday et al. 
2005). Abe et al. (2002) reported that over-trust in 
warning systems can cause substantial delays in 
responding to hazards when there is a mismatch 
between what the train operator expects and the actual 
state of the system.  

McBride et al. (2014) highlighted that the reliability 
of a system can play a role in excessive trust and 
complacency and is a double-edged sword. On the one 
hand, the greater the reliability of an automated system, 
the better the performance when the system is perfectly 
operating. On the other hand, the reliable automated 
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system increases the tendency to get complacent, 
which makes the operator less vigilant and less capable 
of reacting to system errors or failures. With a highly 
reliable PTC system, train operator performance may 
decline if the information provided becomes unavailable 
(Wreathall et al. 2007a). A degree of complacency in 
checking all alarms was reported by Carey (2015) for 
cases containing an excess of non-critical alarm 
messages. Furthermore, the results of Brandenburger 
& Jipp (2017)’s study showed that train operators 
perform worse in degraded operations for the higher 
levels of automation, which can partly be compensated 
by train operators’ experience.    

4.6 Visual Attention Allocation  

Naweed (2014)’s study disclosed that, in spite of the 
existence of in-cab devices and signaling systems, the 
outside area still needs to be searched for danger. It 
takes time for the eyes to refocus from one viewing 
distance to another one (i.e., visual 
accommodation)(Halliday et al. 2005). Hence, the 
transfer of primary information from outside the cab to 
inside the cab could negatively affect safety due to the 
shift in attention and visual accommodation increasing 
the risk of missing out of cab important events 
(Wreathall et al. 2007a).  

An exploratory eye-tracking field study carried out by 
Naghiyev et al. (2014a) and Naghiyev et al. (2014b) 
illustrated that some train operators are more 
dependent on the system and reactively respond to 
situations, while others rely less on the alerts and 
alarms and are more proactive. Overall, when train 
operators used the ERTMS system, they spent 
considerably more time monitoring the speedometer 
rather than seeing the out-of-cab environment in 
comparison to conventional systems. The results of 
studies conducted by Brandenburger et al. (2017a), Van 
Der Weide et al. (2017), and Hely et al. (2015) also 
confirmed that train operators direct considerably less 
attention to out of cab than in-cab devices when driving 
trains equipped with ATP systems (e.g., ERTMS) 
compared to those with conventional systems. The 
operators of trains equipped with a PTC system also 
reported a greater need for focusing on in-cab displays, 
at least initially, thus limiting their ability to check outside 
the cab (Roth & Multer 2009, Roth et al. 2013). During 
an examination of PTC systems, the train operators 
pointed out that they needed to closely track the in-cab 
display to remain within the braking curve and prevent 
a penalty brake application. The train operators 
emphasized that when the train traveled within a time 
window that allowed no flexibility in schedule variation 
or approached territories with speed restrictions, 
attention allocation emerged as an issue (Wreathall et 
al. 2007a). 

Monk et al. (2017) found that when new signaling 
systems were first introduced, train operators were 
more focused on the in-cab signaling display and were 
distracted by it, reducing the amount of attention paid to 
monitoring outside of the cab. However, after a while, 
they could better balance their attention between inside 
and outside of the cab. Some Incremental Train Control 

System (ITCS)’s train operators also mentioned that, 
after 3 weeks to 1 month of working with the system, 
they spent less time monitoring the in-cab display. 
However, some train operators indicated no noticeable 
change in their attention distribution even after they had 
sufficient experience in running a PTC-equipped train 
and a remaining inability to have a head-up driving style 
(Wreathall et al. 2007a).  

Operating ICRSD also means a train operator needs 
to devote more attention to in-cab displays, which can 
cause head-down driving and constant changes in 
visual distribution (Halliday et al. 2005). Despite some 
detrimental effects of in-cab systems on train operators’ 
visual attention distribution, Merat et al. (2002) 
discovered that AWS can considerably increase the 
number of looks at signals as great numbers of the first 
looks at signals of the train operators studied were taken 
after AWS had sounded. 

4.7 Automatic Responding  

A train operator may read or hear an alarm without 
understanding its importance and meaning and show a 
skill-based, reactive response to it, called automatic 
responding (Oppenheim et al. 2010a, 2010b, Carey 
2015). In some cases, the train operator is mentally 
fatigued but physically awake enough to press the push 
button or enter data into the train control system 
because motor reflex actions generally need a lower 
level of cognitive endeavor. Therefore, the train 
operator may trigger automatic responses (Stein et al. 
2019). The automatic responding shows the warning 
system has failed in its primary purpose to alert the train 
operators and attract their attention to threads (Halliday 
et al. 2005). 

The results of a questionnaire survey of 277 UK train 
operators illustrated that a considerable number (i.e., 
56%) have automatically acknowledged an Extended 
AWS alarm at least once during their driving experience, 
although only 2% did it on a daily basis(McLeod et al. 
2005). McLeod et al. (2005) also analyzed On-Train 
Monitoring Recorder (OTMR) data and found that some 
train operators started pushing the cancellation button 
before the alarm had started to sound or they responded 
to the alarm very quickly. These anticipatory and quick 
responding behaviors may indicate unconscious alarm 
canceling, with only a physical response and no 
interpretation (Halliday et al. 2005, Balfe 2020). 
Because the AWS neither differentiates between 
caution and stop signal aspects nor has a mechanism 
to prevent misperceptions, train operators who are 
confronted with successive cautionary signals (yellow or 
double yellow) likely respond to the AWS horn without 
conscious interpretation about the signal aspect 
(Lawton & Ward 2005).  

The existence of warnings related to situations that 
are less important than restrictive signals (e.g., 
Temporary Speed Restriction (TSR)), personal factors, 
the high number of alarms, and signaling issues were 
reported as the main reasons for automatic responding 
(McLeod et al. 2005). More analysis revealed that poor 
alarm management (e.g., excessive, uninformative 
audible alarms) reinforces a tendency to an automatic 
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response without completely perceiving the alarm’s 
meaning (Wreathall et al. 2007a). To address this 
problem, a variety of ideas for effective alarm 
management were recommended. First and foremost, 
the warnings must be accurate and informative to 
reduce the risk of automatic responding. Second, if an 
audible warning is adopted in a situation that the 
operator requires to monitor somewhere other than the 
display screen (in this example, they need to check out 
the window), it is useful to make distinctions between 
sounds relating to auditory alarms of different conditions 
(e.g., a different tone for approach versus stop). Third, 
using different actions (e.g., a different button push for 
approach versus stop alerts) for acknowledging 
different alarms is a good method to mitigate the risk of 
automatic responding (McLeod et al. 2005, Wreathall et 
al. 2007a). 

4.8 Memory Failures 

Short-term memory, also known as “working memory”, 
is volatile and easily lost or distorted. Not only the 
passage of time but also interference between the 
current contents of working memory and newly arriving 
information can be a reason for information loss 
(McLeod et al. 2003). Thus, McLeod et al. (2003) 
recommended that a train operator should never rely on 
working memory to maintain vital safety data and 
suggested that external assistance is necessary. 

Crick et al. (2004b) reported that 77.1% of their 
focus group train operators had at least occasionally 
forgotten the signal aspect after acknowledging the 
AWS. The evidence showed a possible risk of the train 
operator being uncertain about what an active alert 
corresponds to after around 7 seconds (Moray et al. 
1983). A memory failure related to the DRA system may 
include forgetting to set the DRA, pressing a different 
button (e.g., AWS alarm reset or door release button) 
instead of the DRA button, resetting the DRA, and 
starting the trip based on the platform guard's signal 
without checking whether the signal aspect is clear 
(RSSB 2002). Davies et al. (2012) proposed that 
repeating the AWS warning on the head-up display can 
reduce the risk of train operators forgetting a cautionary 
signal was shown on the previous signal. 

4.9 Skill Loss  

Skill loss (skill degradation) is a probable but unpleasant 
feature of automation (Bainbridge 1983). As supervisory 
train control technology increases, train operators have 
a reduced opportunity to carry out tasks themselves, 
thus contributing to skill loss. The skill loss issue 
becomes apparent in a situation that requires the 
operator to take charge of the train (Wreathall et al. 
2003). Therefore, maintaining the required skills of train 
driving is important and can be achieved either through 
a frequent application or structured training (Balfe 
2010). Giesemann (2013)’s study highlighted the effects 
of the train protection system on task-related 
competence and control expectations which can result 
in poor automation failure management. They believed 
that the system is not a problem itself, but the reasons 

for concerns are the lacking feasibility of anticipation 
and a proactive driving style which might push train 
operators into passivity, causing loss of situation 
awareness and thus errors in the event of an automation 
failure. 

4.10  Summary of Automation and Human Factors  

A summary of the main human factors issues 
associated with the use of in-cab warning systems and 
automated train control technologies is provided in 
Table 1. 
 
Table 1. Key human factors issues of in-cab warning 
systems 
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Balfe (2020)       ♦   

Safar et al. (2020)  ♦        

Oppenheim et al. 
(2010b) 

      ♦   

Brandenburger and 
Naumann (2019) 

♦  ♦       

Brandenburger et al. 
(2019) 

♦         

Nneji et al. (2019) ♦  ♦       

Stein et al. (2019)   ♦       

Brandenburger et al. 
(2018) 

♦         

Brandenburger et al. 
(2017a) 

  ♦   ♦    

Brandenburger & Jipp 
(2017) 

    ♦     

Sebok et al. (2017) ♦ ♦ ♦ ♦      

Van der Weide et al. 
(2017) 

♦     ♦    

Van der Weide (2017) ♦     ♦    

Monk et al. (2017) ♦   ♦  ♦    

Verstappen et al. 
(2017) 

♦ ♦        

Liu et al. (2017)   ♦       

Hely et al. (2015) ♦     ♦    

Robinson et al. (2015) ♦         

Safar et al. (2015)  ♦        

Naghiyev et al. 
(2014a) 

     ♦    

Naghiyev et al. 
(2014b) 

 ♦    ♦    

Naweed (2014)      ♦    

Smith et al. (2013)          

Roth et al. (2013) ♦ ♦ ♦   ♦    
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Giesemann (2013)   ♦  ♦     

Buksh et al. (2013) ♦         

Rose and Bearman 
(2012) 

 ♦        

Davies et al. (2012) ♦  ♦     ♦  

Scott & Gibson (2012) ♦         

Oppenheim et al. 
(2010a) 

♦  ♦       

Oppenheim et al. 
(2010b) 

      ♦   

Roth & Multer (2009) ♦ ♦  ♦ ♦ ♦    

Spring et al. (2009a) ♦         

Thomas & Davies 
(2008) 

♦  ♦     ♦  

Wreathall et al. 
(2007a) 

 ♦   ♦ ♦ ♦   

Wreathall et al. 
(2007b) 

  ♦ ♦ ♦ ♦   ♦ 

Halliday et al. (2005) ♦ ♦ ♦  ♦ ♦ ♦   

Crick et al. (2004b)    ♦   ♦   

McLeod et al. (2005a)    ♦   ♦   

McLeod et al. (2005b)    ♦      

Lawton & Ward 
(2005) 

 ♦ ♦    ♦   

Foulkes (2004) ♦  ♦   ♦    

Crick et al. (2004a) ♦ ♦  ♦      

Wreathall et al.(2003) ♦ ♦ ♦  ♦    ♦ 

RSSB (2002)    ♦    ♦  

Abe et al. (2002)     ♦     

Merat et al. (2002)      ♦    

 
 
5 CONCLUSIONS 

 
This paper summarizes the potential negative impacts 
of in-cab warning devices and automated train 
protection systems on train crews. Through this review, 
we have found that most of the publicly published 
human-automation interaction research has been 
performed, or at least sponsored, by governments and 
regulatory bodies. Furthermore, depending on the 
technology development stage and available facilities, 
human factors researchers have collected and utilized 
real-world data, simulator experiments data, and/or 
expert judgment data in addition to theoretical data. 

This literature review reveals that workload (i.e., 
under-load or over-load), distraction, loss of situation 
awareness, mode confusion, complacency, off-balance 
trust in automation (i.e., over-trust or mistrust), head-

down driving, automatic responding, and skill loss are 
the key human-automation challenges. 
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