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Abstract 

Lung transplant is a critical treatment that remains the only option for patients with end-state 

pulmonary illness. This treatment is underutilized because of a shortage of suitable donor lungs, 

leading to patients succumbing to illness while on the waitlist. Supply is limited by overly 

conservative rejections of possible donors. Also, transplantation is limited by hypothermic 

storage, the conventional preservation method, which is restricted to transplant windows of six 

hours. Shorter preservation periods ensure rates of primary graft dysfunction do not rise 

exponentially, possibly leading to recipient fatality. However, this limits transplant services to 

regional operations and can lead to last minute rejections as the donor lung degrade over time.  

Ex-vivo lung perfusion (EVLP) preserves and monitors donor lungs at a near physiological state 

through mechanical ventilation, blood perfusion, and pharmaceutical treatment. The technique 

has the potential to improve donor lung utilization. Its measurements can accurately determine 

transplant viability to prevent conservative rejections. In studies, it has been shown to revitalize 

previously rejected donor lungs into a transplant viable condition. Also, maintaining the donor 

lung with mechanical ventilation and blood perfusion prevents ischemia and increases 

preservation periods. However, EVLP could be improved as it could host additional diagnostic 

sensors.  

EVLP introduces the risk of ventilation induced lung injury (VILI) that could injury the lung and 

jeopardize transplant viability. Also, conventional EVLP diagnostic system measurements are 

scalar, thus are unable to differentiate the individual performance of the left and right lung, or 

measure asynchrony. Also, these systems would be unable to measure localized over-inflation 

due to heterogeneity in the donor lung’s compliance.  



iii 

A non-invasive camera-based processing scheme was developed to evaluate donor lung 

performance during EVLP treatment. The camera sensor methodology was evaluated by 

comparing its measurements to clinical diagnostic systems. A commercial active stereo vision 

system was used to measure the surface deformation of three donor lung surrogates during 

positive pressure mechanical ventilation at different tidal volumes. The camera system’s depth 

measurements were used to reconstruct the lung surfaces to calculate plethysmography metrics, 

such as tidal volume through surface integration. Also, these metrics were derived from 

measurements that were simultaneously captured with a combined MEMS, or a Venturi flow rate 

and pressure sensor that are integrated into the clinical ventilation units. These paired 

measurements were used to compare the two methods, which were found to have high 

correlation, but poor agreement with significant systematic and proportional error relative to 

ventilation tidal volume. The camera-based system performed other calculations. 

The camera-based system measured the left and right lung separately using image segmentation. 

Also, the surface deformation was scanned for peaks or troughs that would correlate with 

localized over-inflation and under-inflation. Peak detection was performed on surface 

measurements analogous to tidal volume and dynamic compliance. Lastly, the surface shape of 

the donor lung surrogates was characterized over one respiratory cycle by averaging all sampled 

cycles. 

These results suggest that the camera-based method is measuring changes in donor lung surface 

shape with respects to respiratory cycles, however, it is currently unsuitable for plethysmography 

measurement. Also, a limitation of the study was that the surface deformation measurements and 

detected peaks were not directly validated, since the reference method did not measure regional 
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performance. However, the left and right lung measurements matched observations that the left 

lung failed to distend. Furthermore, in several cases the plethysmography systematic and 

proportional error of the camera method was linearly modelled with high coefficient of 

determination. With improvements, the method could be utilized as an additional evaluation tool 

to assess donor lung surface condition and health.  

  



v 

Acknowledgements 

I am indebted to my family for their unconditional love and support. Without them, I would not 

have been able to accept this opportunity or persist through its challenges.  

I would like to acknowledge Tevosol for co-funding this research through the Mitacs Accelerate 

program. Also, I will be forever grateful to their engineering team: Katie, Steve, and Calvin, for 

their technical guidance, mentorship, and arranging all key project experiments.  

I would like to acknowledge my supervisor Dr. David Nobes for his continuous support 

throughout this project. Also, I would like to recognize my co-supervisor Dr. Reza Sabbagh.  

Lastly, I would like to thank my fellow graduate students and the post doctorates in my lab for 

their camaraderie.  

  



vi 

Table of Contents 

Abstract ........................................................................................................................................... ii 

Acknowledgements ......................................................................................................................... v 

Table of Contents ........................................................................................................................... vi 

List of Tables ................................................................................................................................. xi 

List of Figures .............................................................................................................................. xiv 

List of Symbols ........................................................................................................................... xxv 

1 Introduction ............................................................................................................................. 1 

 Motivation ........................................................................................................................ 1 

 Hypothesis ........................................................................................................................ 2 

 Objectives ......................................................................................................................... 5 

2 Plethysmography Fundamentals ............................................................................................. 6 

3 Fundamentals of Active Stereo Vision ................................................................................... 9 

 ASV Modelling .............................................................................................................. 10 

 ASV Calibration ............................................................................................................. 17 

 Image Pair Rectification ................................................................................................. 19 

 Digital Image Matching ................................................................................................. 20 

 Projected Light Pattern ................................................................................................... 23 

 Depth Estimation Triangulation ..................................................................................... 24 

 Stereo Vision Limitations............................................................................................... 25 

 Fundamentals of Active Stereo Vision Conclusion ....................................................... 27 

4 Intel RealSense D435 Active Stereo Vision Platform .......................................................... 29 

 Calibration and Depth Evaluation .................................................................................. 31 

 Data Acquisition ............................................................................................................. 33 



vii 

 Intel RealSense D435 Conclusion .................................................................................. 34 

5 Deformation and Plethysmography Processing Scheme ...................................................... 35 

 Image Segmentation ....................................................................................................... 36 

 Edge-Based Segmentation ...................................................................................... 37 

 Region-Based Segmentation ................................................................................... 38 

 Deprojection ................................................................................................................... 39 

 Surface Reconstruction .................................................................................................. 41 

 Reconstructed Surface Measurement ............................................................................. 45 

 Surface Integration ......................................................................................................... 46 

 Surface Deformation and Regional Measurement ......................................................... 49 

 Processing Scheme Conclusion ...................................................................................... 52 

6 Validation of Displacement Measurement............................................................................ 53 

 Experiment Equipment ................................................................................................... 54 

 Calibration and Data Acquisition ................................................................................... 57 

 Experiment Cases.................................................................................................... 57 

 Description of the EVLP ......................................................................................... 58 

 Data Acquisition using the Intel RealSense D435 .................................................. 59 

 Processing Scheme for Active Stereo Vision Plethysmography of the Ventilator Test 

Lung 60 

 Depth Map Segmentation ....................................................................................... 61 

 Point Cloud Processing ........................................................................................... 74 

 Plethysmography Measurements ............................................................................ 80 

 Surface Measurements ............................................................................................ 86 

 Comparison of Measurements ........................................................................................ 88 

 Reference and Competing Measurements .............................................................. 88 



viii 

 Measurement Distribution ...................................................................................... 92 

 Correlation of the Ventilator Test Lung ASV and EVLP Measurements .............. 99 

 ASV and EVLP Measurement Agreement of the Ventilator Test Lung .............. 109 

 Discussion .................................................................................................................... 116 

 Sources of Error .................................................................................................... 116 

 ASV Method Limitations ...................................................................................... 118 

 Conclusion .................................................................................................................... 121 

7 Active Stereo Vision Method in a Clinical Setting ............................................................. 122 

 Experiment Equipment ................................................................................................. 123 

 Calibration and Data Acquisition ................................................................................. 127 

 Image Processing Scheme for Clinical Cases .............................................................. 131 

 Color Image and Depth Map Segmentation .......................................................... 131 

 Point Cloud Processing ......................................................................................... 136 

 Surface Reconstruction of the Porcine Lung ........................................................ 138 

 Plethysmography Measurements of a Porcine Lung ............................................ 140 

 Regional Measurements of a Porcine Lung .......................................................... 143 

 Comparison of Measurements ...................................................................................... 146 

 Preparation of Measurements for Comparison ..................................................... 146 

 Measurement Distribution of the ASV and Ventilator Systems ........................... 146 

 Correlation and Linearity of the ASV and Ventilator System .............................. 152 

 Agreement of the ASV and Ventilator System ..................................................... 162 

 Porcine Lung Discussion .............................................................................................. 171 

 Porcine Lung Conclusion ............................................................................................. 172 

8 Clinical Validation and Region Measurement .................................................................... 173 

 Experiment Equipment ................................................................................................. 173 



ix 

 Calibration and Data Acquisition ................................................................................. 174 

 Processing Scheme ....................................................................................................... 177 

 Human Lung Segmentation .................................................................................. 178 

 Left and Right Human Lung Segmentation .......................................................... 178 

 Human Lung Point Cloud Processing ................................................................... 186 

 Surface Reconstruction of the Rejected Human Lung .......................................... 187 

 Plethysmography Measurements of a Rejected Human Lung .............................. 190 

 Regional Measurements of a Rejected Human Lung ........................................... 191 

 Rejected Human Lung Discussion ............................................................................... 193 

 Rejected Human Lung Conclusion .............................................................................. 194 

9 Conclusion and Future Work .............................................................................................. 195 

 Conclusion .................................................................................................................... 195 

 Future Work ................................................................................................................. 196 

Works Cited ................................................................................................................................ 197 

Appendix A Mechanical Drawings ........................................................................................ 208 

Appendix B MATLAB Code................................................................................................. 209 

B1 Data Acquisition ........................................................................................................... 209 

B1.1 rs2ReadRosbag ..................................................................................................... 209 

B1.2 countRosbagFrames .............................................................................................. 212 

B2 Image Segmentation ..................................................................................................... 220 

B2.1 segmentLungs ....................................................................................................... 220 

B2.2 Point Cloud Processing ......................................................................................... 232 

B3 Surface Reconstruction ................................................................................................ 238 

B3.1 interpolateSurface ................................................................................................. 238 

B3.2 interpolateSurfaceColor ........................................................................................ 240 



x 

B3.3 interpolateSurfaceRegion ...................................................................................... 241 

B4 Measurement ................................................................................................................ 242 

B4.1 measurePorcineLung............................................................................................. 242 

B4.2 estimateSurfaceParams ......................................................................................... 253 

B4.3 create_avg_cycle ................................................................................................... 256 

B4.4 compare_to_avg_cycle ......................................................................................... 257 

B4.5 estimateRegionAsychrony .................................................................................... 259 

Appendix C Ventilator Test Lung Data Acquisition Settings ............................................... 262 

Appendix D Porcine Lung Data Acquisition Settings ........................................................... 263 

  



xi 

List of Tables 

Table 5.1 Measurement Method Feature Comparison .................................................................. 52 

Table 6.1 Ventilation test lung experiment cases ......................................................................... 57 

Table 6.2 Mean and standard deviation of the ventilator test lung ASV and EVLP measurements 

of case 1 ........................................................................................................................................ 93 

Table 6.3 Kurtosis and skewness of the case 1 ASV and EVLP measurement of the ventilator test 

lung ............................................................................................................................................... 94 

Table 6.4 Kurtosis and skewness of the case 1 ASV and EVLP measurement of the ventilator test 

lung ............................................................................................................................................... 95 

Table 6.5 Shapiro Wilk test of the case 1 ASV and EVLP measurements of the ventilator test 

lung ............................................................................................................................................... 96 

Table 6.6 Linearity of all experiment case ASV and EVLP measurements of the ventilator test 

lung ............................................................................................................................................. 102 

Table 6.7 Correlation of all experiment cases ASV and EVLP measurements of the ventilator test 

lung ............................................................................................................................................. 103 

Table 6.8 Passing-Bablok regression parameters of the ASV and EVLP measurements from all 

experiment cases combined of the ventilator test lung ............................................................... 104 

Table 6.9 Residual mean of Passing-Bablok regression for all valid cases of the ventilator test 

lung ............................................................................................................................................. 107 

Table 6.10 Intra-Class Correlation of the ventilator test lung ASV and EVLP measurements of 

all valid cases .............................................................................................................................. 110 

Table 6.11 Shapiro-Wilk normality of the ventilator test lung ASV and EVLP measurement 

differences of all valid cases ....................................................................................................... 110 



xii 

Table 6.12 Bland-Altman analysis mean, confidence interval, and limits of agreement of the 

ASV and EVLP measurements from all valid cases for the ventilator test lung ........................ 114 

Table 6.13 Bland-Altman analysis normalized mean and limits of agreement of the ASV and 

EVLP measurements from all valid cases of the ventilator test lung ......................................... 115 

Table 7.1 Porcine lung experiment cases .................................................................................... 130 

Table 7.2 Porcine lung ventilator settings................................................................................... 131 

Table 7.3 Measurement distribution mean error of the ASV and ventilator systems for the 

porcine lung ................................................................................................................................ 147 

Table 7.4 Mean and standard deviation of the porcine lung tidal volume and dynamic compliance 

measurements from the ASV and ventilator for all experiment cases ........................................ 148 

Table 7.5 Shapiro Wilk hypothesis test for normality and p-value for the measurement 

distribution of inspiratory tidal volume and dynamic compliance of the porcine lung .............. 149 

Table 7.6 Kurtosis and skewness of the porcine lung tidal volume and dynamic compliance 

measurements from the ASV and ventilator for all experiment cases ........................................ 149 

Table 7.7 Tailedness and symmetry of the porcine lung tidal volume and dynamic compliance 

measurements from the ASV and ventilator for all experiment cases ........................................ 150 

Table 7.8 Pearson correlation coefficient, correlation and linearity statistical significance of the 

porcine lung tidal volume and dynamic compliance measurements from the ASV and ventilator 

systems ........................................................................................................................................ 153 

Table 7.9 Passing-Bablok regression slope and intercept, and coefficient of determination, for 

steady and transient state cases for inspiratory tidal volume and dynamic compliance of the 

porcine lung ................................................................................................................................ 154 

Table 7.10 Passing-Bablok regression residual means of the porcine lung tidal volume and 

dynamic compliance ................................................................................................................... 160 



xiii 

Table 7.11 Intra-Class Correlation of the ASV and ventilator system measurements of the 

porcine lung ................................................................................................................................ 162 

Table 7.12 Shapiro-Wilk normality test of ASV and ventilator error ........................................ 163 

Table 7.13 Bland Altman of the tidal volume and dynamic compliance measurements from the 

ASV and ventilator system for the porcine lung ......................................................................... 163 

Table 7.14 Normalized Bland Altman analysis mean and limits of agreement of the tidal volume 

and dynamic compliance from the ASV and ventilator of the porcine lung .............................. 169 

Table 8.1 Human lung constant ventilation settings ................................................................... 176 

Table 8.2 Human lung experiment case tidal volume levels and change ................................... 177 

  



xiv 

List of Figures 

Figure 2.1. Schematic of volume signal segmentation and metrics ................................................ 6 

Figure 2.2. Schematic of flow rate signal segmentation and metrics ............................................. 7 

Figure 2.3. Schematic of a respiratory cycle Lissajous curve flow-loop of volume and flow rate 8 

Figure 3.1. Schematic of the components for active stereo vision ................................................. 9 

Figure 3.2. Schematic of a simplified camera............................................................................... 10 

Figure 3.3 Schematic of the pinhole model and relationship between coordinate systems. ......... 11 

Figure 3.4. Schematic of the optical center intrinsic camera parameter ....................................... 12 

Figure 3.5. Schematic of the skew coefficient intrinsic camera parameter .................................. 13 

Figure 3.6. Schematic of (a) negative radial distortion or barrel distortion and (b) positive radial 

distortion or pin cushion distortion ............................................................................................... 15 

Figure 3.7. Schematic of tangential distortion .............................................................................. 16 

Figure 3.8. Schematic of checkerboard pattern calibration .......................................................... 17 

Figure 3.9 Schematic of epipolar geometry .................................................................................. 19 

Figure 3.10. Schematic of image rectification .............................................................................. 20 

Figure 3.11. Schematic of digital image matching correspondence search .................................. 21 

Figure 3.12. Image of active stereo vision with projected light pattern in the scene.................... 23 

Figure 3.13. Schematic of stereo vision triangulation .................................................................. 24 

Figure 3.14. Schematic of the false boundary problem from curved surface ............................... 25 

Figure 3.15. Schematic of depth resolution .................................................................................. 27 



xv 

Figure 4.1. Annotated image of the Intel RealSense D435........................................................... 29 

Figure 4.2. Screenshot of the Intel RealSense Dynamic Calibration application ......................... 31 

Figure 4.3. Screenshot of the Intel RealSense Depth Quality Tool .............................................. 32 

Figure 4.4. Screenshot of the Intel RealSense Viewer application ............................................... 33 

Figure 5.1. Flow chart of the processing scheme.......................................................................... 36 

Figure 5.2. Schematic of deprojection geometry .......................................................................... 40 

Figure 5.3. Schematic of box grid filter ........................................................................................ 42 

Figure 5.4. Schematic of Delaunay criterion ................................................................................ 43 

Figure 5.5. Schematic of scattered point interpolation ................................................................. 44 

Figure 5.6. Schematic of scattered point interpolation at uniform grid points ............................. 45 

Figure 5.7. Schematic of parameterized triangular surface mesh for volume integration using the 

Divergence Theorem. .................................................................................................................... 46 

Figure 5.8. Schematic of respiratory cycle average volume ......................................................... 48 

Figure 5.9. Schematic for tidal displacement map calculation ..................................................... 50 

Figure 5.10. Schematic of peak detection of a surface annotated for peak and trough detection. 51 

Figure 6.1 Annotated image of the ventilator test lung ................................................................ 54 

Figure 6.2 Annotated image of the ventilation test lung inside a development EVLP ................. 55 

Figure 6.3 Annotated image of the Intel RealSense D435 mounted above the ventilator test lung

....................................................................................................................................................... 56 

Figure 6.4 Plots of EVLP flow rate, pressure, tidal volume, and dynamic compliance 

measurements ................................................................................................................................ 58 



xvi 

Figure 6.5 Screenshot of the ventilation test lung (a) color, (b) left and (c) right infrared, and (d) 

colorized depth map video stream using the Intel RealSense Viewer .......................................... 59 

Figure 6.6 Annotated depth map, which has been spatial and temporal smoothed, of the 

ventilator test lung inside the EVLP chamber .............................................................................. 61 

Figure 6.7 Annotated edge map of the ventilator test lung inside the EVLP chamber ................. 62 

Figure 6.8 Image of the edge map of the ventilator test lung (a) before and (b) after pre-linking 

morphological operations.............................................................................................................. 63 

Figure 6.9 Annotated image of the edge map of the ventilator test lung after edge-linking ........ 64 

Figure 6.10 Annotated image of the edge map of the ventilator test lung after a 45 rotation and 

edge-linking .................................................................................................................................. 65 

Figure 6.11 Image of the ventilator test lung edge map after edge thinning skeletonization, with 

removed edges in red and the remainder in white ........................................................................ 66 

Figure 6.12 Annotated image of the ventilator test lung edge map after removing small 

connected components with an areal filter, with removed edges in red and the remainder in white

....................................................................................................................................................... 67 

Figure 6.13 Annotated image of the ventilator test lung edge map with an interactively drawn 

vertical line to enclose the lung region ......................................................................................... 68 

Figure 6.14 Annotated image of the ventilator test lung edge map with the interactively drawn 

cropping rectangle centered around the lung ................................................................................ 69 

Figure 6.15 Annotated image of the complement of the edge map within the interactively 

cropped region .............................................................................................................................. 70 

Figure 6.16 Image of the ventilator test lung binary map after hole filling post-processing ........ 71 

Figure 6.17 Plot of the area of each ventilator test lung region map for outlier detection ........... 72 



xvii 

Figure 6.18 Annotated mage of the depth map of the ventilator test lung and EVLP chamber with 

the lung segmented ....................................................................................................................... 73 

Figure 6.19 3D plot of the ventilator test lung point cloud ........................................................... 74 

Figure 6.20 3D plot of the ventilator test lung and EVLP chamber point cloud in the Intel 

RealSense Viewer ......................................................................................................................... 75 

Figure 6.21 3D plot of the ventilator test lung point cloud before and after transformation ........ 76 

Figure 6.22 Annotated 3D plot of the ventilator test lung point cloud, with outliers annotated .. 77 

Figure 6.23 3D plot of the ventilator test lung point cloud after 3D box averaging filtering ....... 78 

Figure 6.24 3D plot of the ventilator test lung Delaunay triangulation surface mesh .................. 79 

Figure 6.25 Plot of the ventilator test lung displacement before and after signal filtering ........... 80 

Figure 6.26 Plot of the ventilator test lung displacement and displacement rate ......................... 81 

Figure 6.27 Plot of the ventilator test lung ASV displacement segmented for the inhale and 

exhale points from case 1 for the first three breaths ..................................................................... 82 

Figure 6.28 Plots of the ventilator test lung ASV displacement and tidal volume from case 1 ... 83 

Figure 6.29 Plot of the EVLP airway pressure, PIP, and PEEP ................................................... 84 

Figure 6.30 Plot of the cyclic average displacement of the porcine lung ..................................... 85 

Figure 6.31. 3D plot of surface map of the ventilator test lung .................................................... 86 

Figure 6.32. Plot of the surface tidal displacement of the ventilator test lung ............................. 87 

Figure 6.33 Plot of the ASV and EVLP dynamic compliance of the ventilator test lung from case 

6..................................................................................................................................................... 89 



xviii 

Figure 6.34 Plot of the ASV and EVLP dynamic compliance of the ventilator test lung from case 

1..................................................................................................................................................... 90 

Figure 6.35 Plots of the ventilator test lung tidal volume from case 3 ......................................... 91 

Figure 6.36 Plots of the ventilator test lung tidal volume from case 9 ......................................... 92 

Figure 6.37 Plots of the ventilator test lung EVLP inspiratory tidal volume measurements from 

case 1, (a) normal probability and (b) histogram annotated with the mean = 136.52 and 95% 

confidence intervals [88.52,184.52] .............................................................................................. 97 

Figure 6.38 Plots of the ventilator test lung ASV inspiratory tidal volume measurements from 

case 1, (a) probability and (b) histogram annotated with the mean = 226.05, red line, and 95% 

confidence interval [155.67,296.43], blue dashed lines ................................................................ 98 

Figure 6.39 Plot of Passing-Bablok regression of the case 1 ASV and EVLP inspiratory tidal 

volume of the ventilator test lung ............................................................................................... 100 

Figure 6.40 Plot of Passing-Bablok regression of the EVLP test lung inspiratory tidal volume 

from cases 1, 4, and 7.................................................................................................................. 101 

Figure 6.41 Plot of Passing-Bablok regression of the ASV and EVLP inspiratory tidal volume 

measurements of the ventilator test lung .................................................................................... 105 

Figure 6.42 Plot of Passing-Bablok regression of the ASV and EVLP inspiratory time 

measurements from all cases of the ventilator test lung ............................................................. 106 

Figure 6.43 Plot of Passing-Bablok regression residuals versus predicted ventilator test lung 

inspiratory tidal volume from all experiment cases .................................................................... 108 

Figure 6.44 Plots of the difference of the ASV and EVLP inspiratory tidal volume measurements 

from all experiment cases as (a) probability and as (b) histogram annotated with the mean and 

confidence intervals .................................................................................................................... 111 



xix 

Figure 6.45 Plot of the Bland-Altman analysis of the ASV and EVLP measurements of 

inspiratory tidal volume of the ventilator test lung ..................................................................... 112 

Figure 6.46 Plot of the Bland-Altman analysis of the ASV and EVLP normalized measurements 

of inspiratory tidal volume of the ventilator test lung................................................................. 113 

Figure 6.47 Schematic of the ventilator test lung distending in all directions, lifting the entire 

lung ............................................................................................................................................. 116 

Figure 6.48. Schematic of the effect of ASV angle on surface integration ................................ 117 

Figure 6.49 Image of the depth map of the ventilator test lung with depth holes that outline the 

lung ............................................................................................................................................. 118 

Figure 6.50 Image of the ventilator test lung edge map with circles from small regions of 

occlusion in the depth map ......................................................................................................... 119 

Figure 6.51 Image of the edge map of the ventilator test lung with erroneous spurs and sub-

regions ......................................................................................................................................... 120 

Figure 7.1 Annotated image of a porcine lung inside an open EVLP ........................................ 123 

Figure 7.2 Annotated image of the porcine lung inside an EVLP with the Intel RealSense D435

..................................................................................................................................................... 124 

Figure 7.3 Annotated image of the Draeger Evita XL ventilator and laptop for Vital Signs 

Capture ........................................................................................................................................ 125 

Figure 7.4 Annotated image of the Draeger Evita XL touchscreen GUI .................................... 126 

Figure 7.5 Annotated image of the porcine lung experimental setup ......................................... 127 

Figure 7.6 Images of the porcine lung from the Intel RealSense D435 (a) color and (b) depth map 

streams ........................................................................................................................................ 128 



xx 

Figure 7.7 Plot of the tidal volume and dynamic compliance of the porcine lung during 

ventilation from the Draeger Evita XL obtained using Vital Signs Capture .............................. 129 

Figure 7.8 Annotated color image from the Intel RealSense D435 of the porcine lung with 

interactively marked foreground and background for segmentation .......................................... 133 

Figure 7.9 Color image of the porcine lung oversegmented into super pixels ........................... 134 

Figure 7.10 Image of a binary map segmented from the porcine lung color images (a) before and 

(b) after morphological closing ................................................................................................... 134 

Figure 7.11 Image of a binary map segmented from the porcine lung color images (a) after 

temporal filtering and (b) the original color image segmented by the binary map ..................... 135 

Figure 7.12 Images of (a) the depth thresholded binary map of the porcine lung and (b) the depth 

map masked by the threshold binary map ................................................................................... 136 

Figure 7.13 3D plot of the reconstructed surface of the porcine lung as (a) point cloud and (b) the 

point cloud colorized using the color images ............................................................................. 137 

Figure 7.14 3D plots of the downsampled and transformed porcine lung (a) point cloud and (b) 

colored point cloud ..................................................................................................................... 137 

Figure 7.15 Plot of the surface map of the porcine lung ............................................................. 138 

Figure 7.16 3D Plot of the Delaunay triangulation meshed surface map of the porcine lung .... 139 

Figure 7.17 Plots of (a) the colored surface map of the porcine lung as a 2D plot and (b) 3D plot

..................................................................................................................................................... 139 

Figure 7.18 Plot of the ASV displacement of the porcine lung sampled from case 1 ................ 140 

Figure 7.19 Plot of the ASV and ventilator porcine lung tidal volume and dynamic compliance of 

case 1 ........................................................................................................................................... 141 

Figure 7.20 Plot of the cyclic average displacement of the porcine lung of case 1 .................... 142 



xxi 

Figure 7.21 Plot of the displacement and cyclic average deviation of the porcine lung from case 1

..................................................................................................................................................... 143 

Figure 7.22 3D plot of surface tidal displacement of the porcine lung from case 1 ................... 144 

Figure 7.23 Plots of (a) the surface deviation from cyclic average displacement of the porcine 

lung from case 1 for peak detection (a) as an image and (b) as a surface mesh ......................... 145 

Figure 7.24 Probability plots and histograms of the inspiratory tidal volume measurement 

distribution from the ventilator(a) and b) and ASV (c) and (d) system from experiment case 1 151 

Figure 7.25 Plot of Passing-Bablok regression between the ventilator and ASV systems 

measurements of inspiratory tidal volume of the porcine lung during experiment case 1 ......... 155 

Figure 7.26 Plot of Passing-Bablok regression between the ventilator and ASV systems’ 

measurements of inspiratory tidal volume of the porcine lung from experiment case 1, 2, and 3

..................................................................................................................................................... 156 

Figure 7.27 Plot of Passing-Bablok regression between ventilator and ASV inspiratory dynamic 

compliance of the porcine lung from experiment cases 1, 2, and 3 ............................................ 157 

Figure 7.28. Plot of Passing-Bablok regression between the ventilator and ASV inspiratory tidal 

volume of the porcine lung from experiment cases 4, 5, and 6 .................................................. 158 

Figure 7.29 Plot of Passing-Bablok regression between the ventilator and ASV inspiratory 

dynamic compliance of the porcine lung from experiment case 4, 5, and 6 ............................... 159 

Figure 7.30 Plot of the inspiratory tidal volume Passing-Bablok regression residuals versus 

model predictions of the porcine lung for experiment case 4, 5, and 6 ...................................... 161 

Figure 7.31 Plot of the Bland-Altman analysis of inspiratory tidal volume difference of the ASV 

and ventilator measurements from cases 1, 2, and 3 of the porcine lung ................................... 165 

Figure 7.32 Plot of the Bland-Altman analysis of inspiratory dynamic compliance error of the 

ASV and ventilator system paired measurements from cases 1, 2, and 3 of the porcine lung ... 166 



xxii 

Figure 7.33 Plot of the Bland-Altman analysis of inspiratory tidal volume error of the ASV and 

ventilator system paired measurements from cases 4, 5, and 6 of the porcine lung ................... 167 

Figure 7.34 Plot of the Bland-Altman analysis of inspiratory dynamic compliance error of the 

ASV and ventilator system paired measurements from cases 4, 5, and 6 of the porcine lung ... 168 

Figure 7.35 Plot of the normalized Bland-Altman analysis of the porcine lung inspiratory tidal 

volume of the porcine lung from the ASV and ventilator system for cases 4, 5, and 6 ............. 170 

Figure 7.36 Plot of the normalized Bland-Altman analysis of the porcine lung inspiratory tidal 

volume of the porcine lung from the ASV and ventilator system for cases 1, 2, and 3 ............. 171 

Figure 8.1 Annotated image of a human lung in an EVLP ......................................................... 173 

Figure 8.2 Annotated image of the human lung experimental setup .......................................... 175 

Figure 8.3 Images of the human lung from the Intel RealSense D435 (a) color and (b) depth map 

streams ........................................................................................................................................ 176 

Figure 8.4 Image of a depth map segmented for the rejected human lung ................................. 178 

Figure 8.5 Images of (a) the segmented and (b) the quantized depth map of the rejected human 

lung ............................................................................................................................................. 179 

Figure 8.6 Image of the quantized and segmented depth map of the rejected human lung with the 

left and right lung seed regions in magenta ................................................................................ 180 

Figure 8.7 Image of the gradient magnitude of the segmented depth map of the rejected human 

lung ............................................................................................................................................. 181 

Figure 8.8 Images of the labeled (a) depth map and (b) color image of the rejected human lung 

segmented for the left and right lung, and the background region ............................................. 181 

Figure 8.9 Annotated label maps of the left and right human lung segmentation with switching 

labels ........................................................................................................................................... 182 



xxiii 

Figure 8.10 Annotated image of the label map of the left and right human lung segmentation 

with (a) segmentation errors and with (b) the left lung oversegmented ..................................... 182 

Figure 8.11 Line plot of the area of the label map regions of the human lung clustered using K-

means, where K = 3 clusters ....................................................................................................... 183 

Figure 8.12 Annotated image of the label map of the left and right human lung segmentation 

after region merging and watershed line removal ....................................................................... 183 

Figure 8.13 Image of the label map for left and right human lung segmentation without 

watershed lines ............................................................................................................................ 184 

Figure 8.14. Plot of the region size of the whole lung in the label maps before and after temporal 

filtering ........................................................................................................................................ 185 

Figure 8.15 3D plot of the porcine lung point cloud (a) colorized by depth, (b) the point cloud 

colorized by left and right lung label, and (c) the point cloud colorized by the color image ..... 186 

Figure 8.16 Plots of an alpha shape of the human lung (a) from a top-down view and (b) a close-

up view showing which query points are within the alphas ....................................................... 187 

Figure 8.17 Images of the human lung (a) alpha shape binary map, (b) the surface map colorized 

by depth, (c) the surface label map, and (d) the human lung colored surface map .................... 188 

Figure 8.18. 3D plot of the human lung (a) surface map depth, (b) surface map colorized by left 

and right lung labels, and (c) the surface map colorized by the appearance of the human lung 189 

Figure 8.19. Plot of the displacement of the whole, left, and right lung of the human lung over 

three cycles.................................................................................................................................. 190 

Figure 8.20. 3D plot of the surface tidal displacement of the whole human lung ...................... 191 

Figure 8.21. Plots of (a) the deviation from the surface cyclic average displacement of the human 

lung from case 1 for peak detection (b) as an image and (c) as a surface mesh where red indicates 



xxiv 

a local maxima and blue indicates a local minima outside of the deviation 95% confidence 

interval ........................................................................................................................................ 192 

Figure 8.22 Schematic of the volume difference from surface integration with a compliant 

surface versus a steady state, flat plane datum ........................................................................... 193 

  



xxv 

List of Symbols 

Term Symbol Unit 

Active Stereo Vision ASV  

Airway Pressure P [cmH20] 

Depth Error Δz [m] 

Disparity Error ΔD [pixels] 

Displacement d [mL] 

Displacement Cycle Average dcycle [mL] 

Displacement Rate �̇� [mL/s] 

Dynamic Compliance Cdyn [mL/cmH20] 

Expiratory Dynamic Compliance Cdyne [mL/cmH20] 

Expiratory Tidal Flow at 50% of Tidal Volume TEF50 [mL/s] or [LPM] 

Expiratory Tidal Volume VTe [mL] 

Expiratory Time tE [s] 

Ex-Vivo Lung Perfusion EVLP  

Focal Length f [m] 

Inspiratory Dynamic Compliance Cdyni [mL/cmH20] 

Inspiratory Expiratory Time Ratio tIE  

Inspiratory Tidal Flow at 50% of Tidal Volume TIF50 [mL/s] or [LPM] 

Inspiratory Tidal Volume VTi [mL] 

Inspiratory Time tI [s] 

Inspiratory to Expiratory Flow Ratio IE50  

Inspiratory Total Time Ratio tITot  

Negative Pressure Ventilation NPV  

Peak Tidal Expiratory Flow PTEF [mL/s] or [LPM] 

Peak Inspiratory Pressure PIP [cmH20] 

Peak Tidal Inspiratory Flow PTIF [mL/s] or [LPM] 

Peak Tidal Flow PTF [mL/s] or [LPM] 

Positive End-Expiratory Pressure PEEP [cmH20] 

Positive Pressure Ventilation PPV  

Region of Interest ROI  

Respiratory Rate, RR [bpm] 

Software Development Kit SDK  

Stereo Baseline b [m] 

Stereo Depth z [m] 

Stereo Disparity d [pixels] 

Stereo Vision SV  

Surface Displacement D [mL] 

Surface Displacement Cycle Average Dcycle [mL] 

Surface Displacement Cycle Average Deviation DDeviation [mL] 

Tidal Volume VT [mL] 

Time to Peak Tidal Expiratory Flow tPTEF [s] 

Time to Peak Tidal Inspiratory Flow tPTIF [s] 

Total Time tTot [s] 

Ventilation Induced Lung Injury VILI  



1 

1 Introduction  

 Motivation 

Lung transplant is a critical treatment that remains the only option for patients with end-stage 

pulmonary illness [1]. In 2019, the U.S. performed 2759 lung transplants with a 7.6% yearly 

increase in operations [2]. Although donation rates have increased, demand outstrips supply as in 

the same year, there were 3243 new candidates [2]. This supply-demand mismatch has led to 316 

candidates succumbing to illness while on the waitlist [2]. The gap in supply and demand is 

partly due to the underutilization of the existing donor pool [3].  

In 2019, 6.4% of procured lungs were not utilized [2] which could have saved the life of a 

waitlist candidate recipient. Also, 85% of potential donors are rejected, despite 41%, in a sample 

group, being found suitable for transplant [4]. These viable donors were erroneously rejected 

using a historically based evaluation method that mainly checks for contraindication such as 

presence of infections, donor age, and history of smoking [3],[5]. These transplant criteria have 

been questioned [4], and do not consider qualitative measurements of donor lung performance, 

which would be difficult to obtain for a donation after circulatory death (DCD). Also, donor 

lungs utilization is restricted by conventional hypothermic storage preservation, in which the 

donor lung is maintained below 4 ⁰C to reduce cell metabolism [6]. The donor lung is ischemic 

during this time which exponentially increases rates of primary graft dysfunction (PGD) past six 

hours [7], which could lead to transplant recipient fatality. Also, the limited preservation time 

causes regional heterogeneity in transplant services. To address these issues, many techniques 

have been explored to extend the donor pool such as using ex-vivo lung perfusion (EVLP) [6]. 

EVLP is a preservation technique that maintains donor lungs at a near physiological state using 

mechanical ventilation, blood perfusion, and pharmaceutical treatment [8]–[10]. This technique 

prevents ischemia, reducing the risk of PGD, and has been shown to have longer preservation 

times than hypothermic storage. During preservation, lung performance is monitored [11]–[13] 

allowing more accurate transplant viability evaluations that could prevent conservative 

rejections. Also, EVLP has been shown to revitalize previously rejected lungs [14]–[16], 

improving their health into a transplant viable condition. Therefore, EVLP could expand the 
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existing donor pool and improving patient outcomes. However, the system could be improved, as 

it has been predicted to be a treatment platform that could host additional diagnostic sensors [8]. 

One limitation of EVLP is that it introduces the risk of ventilation induced lung injury (VILI) 

[17], jeopardizing transplant viability and patient well-being. Conventional plethysmography and 

pressure measurements such as tidal volume and positive expiratory-end pressure (PEEP) are 

used to predict VILI [18], [19]. However, VILI can be caused by excessive stretching or tearing 

from improper ventilation and exposure to high concentrations of oxygen [20]. Ultimately these 

method are not capable of measuring the real mechanism of VILI, lung stress and strain [17], 

[18], [21]–[23]. Another limitation of conventional EVLP diagnostic systems is that 

measurements are scalar. Therefore, they are unable to differentiate the individual performance 

of the left and right lung, thus are unable to measure asynchrony. Also, these systems would be 

unable to identify the location of localized over-inflation due to heterogeneity in the donor lung’s 

compliance. To address these issues, an additional diagnostic sensor could be added to the EVLP 

device to measure full field physical distension, strain, or stress of the donor lung.  

 Hypothesis 

A diagnostic sensor for measuring full field performance of a donor lung inside an EVLP device 

would have several design constraints. For example, the system can not interfere with the EVLP 

device or invasively contact the donor lung which would jeopardize transplant viability. Also, an 

ideal system would provide real-time measurements with accuracy and repeatability equal or 

greater than the existing EVLP plethysmography system. Lastly, it would be beneficial if the 

technological basis was well established so it could be more easily approved by the FDA.  

There are several existing plethysmography techniques that could be implemented for this 

application. Optical reflectance (OR) motion analysis [24], [25] and respiratory inductive 

plethysmography [26] could provide full field stress and strain of the donor lung. However, they 

are entirely invasive, as reflective markers or sensors would be attached directly to the donor 

lung. Non-contact alternatives such as MRI and MDCT [27], [28] could interfere with the EVLP 

device, and is computationally and financially expensive, even when disregarding feasibility of 

the size of the system. Lastly, respirometers such as spirometers and pneumotachograph [29] are 
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essentially already implemented in the EVLP device. The methods so far are either invasive or 

would interfere with the EVLP device. However, there have been imaging techniques that have 

been successfully tested on in-vivo patients. For example, digital image correlation (DIC) was 

used to non-invasively measure the full field stress and strain of an in-vivo heart, during an open-

heart surgery [30], [31]. Also, structured light plethysmography (SLP) was used to measure chest 

wall deformation of a patient to calculate tidal parameters [32]–[34], which was found to be 

comparable to clinical measurement techniques [35]. These are some examples of 

photogrammetry techniques that could be used to monitor the donor lung during EVLP [36].  

Photogrammetry, the measurement of physical objects from images [37], is a good candidate for 

improving EVLP diagnostics. Imaging techniques require few pieces of equipment, often they 

use one or multiple cameras, optionally with either a light projector or surface markers. They can 

measure the shape of an environment non-invasively such as stereo vision (SV)  and structured 

light 3D scanning (SL) [38], [39]. Also, shape measurements can be used to derive other metrics 

such as strain and stress when using DIC, plethysmography with SLP, and volume measurement 

[40], [41] . These measurements can be obtained in real-time for certain approaches such as SV 

and SLP [38], [42]. However, other techniques must post-process images for measurements like 

DIC. Other limitations are mainly imposed by their processing scheme and available 

computational processing power, rather than hardware. For example, cheap commercial 

webcams can be used for SV [43] and do-it-yourself SL when used with a laser pointer [44]. 

However, camera quality and resolution still directly impact accurate and precision. Lastly, a 

camera-based systems are software flexible since multiple photogrammetry processing schemes 

can utilize the same type of images. For example, color images could be processed using 

Eulerian video magnification to measure blood flow [45]–[47], while simultaneously using scene 

flow to measure a 3D displacement field [48]. Therefore, photogrammetry offers several 

development benefits and non-invasive options to measure donor lung performance during 

EVLP.  

Photogrammetry techniques were reviewed to select a technique for this research project. Several 

techniques were considered, mainly DIC, SLP, and SV. DIC is ideal for this application because 

it provides full-field deformation, strain, and stress measurements. The technique requires 

multiple high-resolution cameras and a speckle pattern on the object of interest to track its 
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surface position and deformation. However, these requirements are not ideal in this application. 

DIC is practically limited to small FOV scales, and its measurement require a computationally 

intensive post-processing method, making real-time results difficult to achieve [49]. Lastly, 

while the surface markers were acceptable in the study for open heart surgery [30], [31], 

obtaining FDA approval to apply markers on a donor lung may still prove difficult.  

Initially, SLP seemed promising for this application. The technique non-invasively provides real-

time plethysmography and a surface model that could be used to identify localized performance. 

However, the EVLP optically transparent chamber cover would interfere with the SLP calibrated 

structured light pattern, deviating the light pattern in the image from its calibrated state. As a 

result, SLP would render invalid measurements of the donor lung when imaging through the 

EVLP cover.  

Lastly, SV was considered and selected for this application. The method has been proven reliable 

in various fields, including medicine for radiotherapy targeting [50], anthropometry [51], [52], 

and laparoscopy in-vivo measurement [53]. It only requires two cameras, provides real-time 

depth or shape measurement, and several commercial research and development platforms are 

available for a reasonable price. Also, the plethysmography processing techniques used in SLP 

and OEP could be adapted for SV measurements. Also, the optical distortions caused by the 

EVLP cover could be corrected for using existing methods [54], [55]. The only drawback is that 

it is not capable of strain and stress measurement or tracking surface stretching or shear.  

Hypothesis Statement: 

It is hypothesized that a stereo vision system could be used as an additional diagnostic 

sensor for monitoring a donor lung during EVLP.  

Ideally, the system would provide real-time surface shape measurements of the donor lung for 

whole lung and regional plethysmography, and to detect localized over-inflation. This research 

project will evaluate the potential benefits and identify possible obstacles of implementing this 

SV based diagnostic system.  
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 Objectives  

The objective of this research project is to develop an SV based diagnostic system to measure 

surface deformation of a donor lung during EVLP treatment. The development process will 

include technique and hardware selection, design of a data acquisition protocol, and outline a 

data processing scheme. Also, the research project should evaluate the accuracy and repeatability 

of the developed system. Lastly, experiments with donor lungs or surrogates should be 

performed to quantify the system’s measurement behavior. In summary, the scope of the 

research project is as follows: 

1. Review the fundamentals of plethysmography of the EVLP. 

2. Review the fundamentals and limitations of stereo vision. 

3. Select and review a commerically available imaging system as the diagnostic sensor. 

4. Develop a processing scheme for plethysmography and regional surface deformation 

measurement. 

5. Evaluate the stereo vision diagnostic system experimentally with donor lung surrogates 

using method comparison analysis with a clinical ventilation measurement system.  

6. Summarize findings from experiment results and provide recommendations. 

Notably, some practical issues such as obtaining valid measurements through the EVLP 

transparent cover are not included in the scope of this research. The research project will focus 

on identifying the potential benefits and obstacles of an SV based diagnostic system, rather than 

developing a system ready for implementation. Also, the project scope will focus on the EVLP 

device configuration developed by the company Tevosol, since they co-funded and technically 

supported this research. 
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2 Plethysmography Fundamentals 

Plethysmography is the measurement of volume change in the body. In this case, an objective of 

this research is to perform pulmonary plethsymosgraphy, or measure lung volume change during 

a respiratory cycle or breath, which is measured during EVLP. Conventionally, pulmonary 

plethysmography is performed using respirometry that uses airflow rate and pressure sensors. 

This technique is used to calculate metrics such as tidal volume and dynamic compliance to 

evaluate the performance of the donor lung. In this chapter, plethysmography metrics are 

reviewed to define measurements obtained during EVLP, which the ASV method should be able 

to measure. The following approach is most applicable to ASV since it is based on SLP. 

 
Figure 2.1. Schematic of volume signal segmentation and metrics   

Local maxima and minina points in the volume signal are used to identify the beginning and end 

of each respiratory cycle, inhale, and exhale phase, as seen in Figure 2.1. Tidal volumes were 

found using these local extrema points. Tidal volume is the change in volume of the lung, 

measured as the volume of air inhaled or exhaled during a breath. Also, the timing characteristics 

of each respiratory cycle [35], [56], or breath, can be measured such as inspiratory time, tI, 

Time, t [s]
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V [mL]
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Tidal 
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VT
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expiratory time, tE, and total respiratory cycle time, tTot. Typically, these metrics are used to 

obtain respiratory rate, RR, as the inverse of the tTot, and the ratios tI / tTot and tI / tE [35].  

 𝐶𝑑𝑦𝑛 =  
∆𝑉

∆𝑃
=

𝑉𝑇

𝑃𝐼𝑃 − 𝑃𝐸𝐸𝑃
 (2-1) 

If given pressure measurements, tidal volume could be used to find dynamic compliance, which 

is the dynamic elasticity of the lung. In (3-7), PIP and PEEP are the peak inspiratory and end-

expiratory pressures within a respiratory cycle [19]. They can be found at the local extrema 

points of the pressure signal. 

 
Figure 2.2. Schematic of flow rate signal segmentation and metrics   

Similar metrics can be taken from the flow rate signal, as seen in Figure 2.2. The peak tidal 

inspiratory and expiratory flow, PTIF and PTEF, are found as the peak flow values within the 

inhale and exhale phases. The time to these points, tPTIF and tPTEF, are taken with respects to 

the start of the inhale and exhale phases [35]. 
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Figure 2.3. Schematic of a respiratory cycle Lissajous curve flow-loop of volume and flow rate   

The performance of a patient, or donor lung, can be visually characterized by a respiratory cycle 

flow-loop, or Lissajous curve, that plots volume versus flow rate, as seen in Figure 2.3 [35]. 

Also, defining metrics are measured such as inspiratory and expiratory tidal flow at 50% of tidal 

volume, TIF50 and TEF50, and the inspiratory to expiratory flow ratio, IE50 = TIF50 / TEF50 

[35]. 
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3 Fundamentals of Active Stereo Vision 

In 1960, Larry Roberts first discussed the extraction of 3D measurements from images, a 

technique now known as photogrammetry [37]. Since then, photogrammetry has been an active 

field of research, as many techniques have been developed using an assortment of camera 

configurations and algorithms [57]. Stereo vision is one of the more established techniques in 

this fields.  

 
Figure 3.1. Schematic of the components for active stereo vision   

Stereo vision is a depth estimation technique that uses two cameras to imitate stereopsis, as seen 

in Figure 3.1 [58]. There are four fundamental steps: calibration, rectification, digital image 

matching, and triangulation. Calibration finds the parameters needed to model the relationship 

between an image and the physical world. Rectification and digital image matching simplify and 

solves the correspondence problem, which is finding matching pixels in both camera images that 

correspond to the same point in the real world. Triangulation uses the difference in matching 

pixel positions, or disparity, to calculate the distance of the object. This process generates a 2D 

image that encodes the distance of a scene, called a depth map. Approaches to improve stereo 

Camera 2

Camera 1

Object in Scene
Light Projector

Field of 

View

Projected Light Rays
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vision performance have been investigated, which includes using a light projector to enhance the 

digital image matching step, called active stereo vision [59]. In this chapter, the fundamentals of 

active stereo vision are reviewed to better understand the limitations and strengths of the 

technique.  

 ASV Modelling 

Image Sensor

Focal Length, f

Focal PointLens

 
Figure 3.2. Schematic of a simplified camera   

A camera has two main components: a lens, or series of lenses that forms an optical system, and 

an image sensor, often a CCD or CMOS, as seen in Figure 3.2. The optical system focuses light 

reflected from the environment to the image sensor, converting the light into a discrete digital 

signal to form an image. Light is focused through a single point, called the focal point, a known 

distance from the image sensor, the focal length, f. To perform photogrammetry, this camera 

system must be modelled to relate the pixels in an image and the physical world, commonly 

achieved using the pinhole model [60].  
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Figure 3.3 Schematic of the pinhole model and relationship between coordinate systems. 

The pinhole model simplifies a camera into an image plane for the CCD sensor, and an optical 

center for the focal point, as seen in Figure 3.3. Light reflecting off a point in physical space is 

modelled as a ray that intersects the optical center and image plane. This relationship projects the 

point in the physical global system onto the image plane [61], [62]. The pinhole model is defined 

by intrinsic and extrinsic parameters that allow a 3D point to be represented in different 

coordinate systems, which is defined as: 

 [

𝑥
𝑦
𝑧
1

] = 𝐾𝑅𝑇 [

𝑋
𝑌
𝑍
1

] (3-1) 

where  

x, y, z are the coordinates of the pixel in the image coordinate system 

X, Y, Z are the coordinates of the point in the physical coordinate system 

In the pinhole model (3-1), K is the intrinsic matrix, and the rotation matrix, R, and the 

translation matrix, T, are the extrinsic parameters that give position and orientation. The vectors 

on both sides of equation (3-1) are augmented to perform a homogenous matrix transformation. 
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Notably, all points lie on the image plane, so z is equal to one. The five intrinsic parameters 

define the position of the image plane relative to the optical center [63].  

 
Figure 3.4. Schematic of the optical center intrinsic camera parameter   

The position of the optical center, cx and cy, are two of the intrinsic parameters as seen in Figure 

3.4. Both parameters are measured in pixels and are typically half the image resolution [64].  

Optical Center

(cx,cy)

Image Plane Origin

(x0,y0)

Projection of Optical Center onto Image Plane
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Figure 3.5. Schematic of the skew coefficient intrinsic camera parameter   

The skew coefficient, s, measures the angle of skew when the pixels are not perfectly 

perpendicular, as seen in Figure 3.5. Typically, the pixels are perfect rectangles where s is zero 

[64].  

The K matrix is defined as: 

 𝐾 =  [
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] (3-2) 

where 

fx is the focal length in the x direction 

fy is the focal length in the y direction 

Five intrinsic parameters, seen in (3-2), define the relationship between the image coordinate 

system and the focal point. In an ideal pinhole model, the fx and fy are equal [64]..  

α

Skew coefficient, 𝑠 = 𝑓𝑥      α 

Pixel Size in World Units, Px

Py Skewed Pixel 
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 𝑅𝑇 = [

𝑟  𝑟  𝑟 3 𝑡𝑥
𝑟  𝑟  𝑟 3 𝑡𝑦
𝑟3 𝑟3 𝑟33 𝑡𝑧
0 0 0 1

] (3-3) 

The 12 extrinsic parameters in (3-3) describe the physical orientation and position of the focal 

point relative to the global coordinate system. In a stereo vision configuration, the extrinsic 

parameters will define the position and orientation of one camera relative to the other camera, 

which will be the origin for depth measurements [64]. 

The 17 intrinsic and extrinsic parameters do not account for optical, alignment, and 

manufacturing imperfections, which cause distortions and modelling errors. There are four 

common types of distortion: radial, tangential, thin prism, and total distortion [64], [65],[61].  
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(a) (b)   

Figure 3.6. Schematic of (a) negative radial distortion or barrel distortion and (b) positive radial 

distortion or pin cushion distortion 

  

Radial distortion is image magnification that depends on radial distance from the optical center. 

Pincushion and barrel distortion, as seen in Figure 3.6, are respectively caused by positive and 

negative radial distortion [61], [66]. 
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Figure 3.7. Schematic of tangential distortion   

Tangential distortion is cause by the lens and image plane not being parallel, as seen in Figure 

3.7. Thin prism distortion is caused by manufacturing imperfections of the lens. Total distortion 

is the summation of the three previously listed types of distortion [61], [66]. 
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 ASV Calibration 

 
Figure 3.8. Schematic of checkerboard pattern calibration   

Calibration is the process of solving for camera intrinsic and extrinsic parameters, along with the 

distortion coefficients. Typically, photogrammetric calibration is performed, in which images are 

taken of an object with a geometric pattern and known dimensions, in various positions and 

orientations. Commonly the object is a rectangular checkerboard pattern of black and white 

squares, as seen in Figure 3.8. The calibration images are used to solve for the camera 

parameters, by fitting the position of the checkerboard corners, acting as feature points, in the 

image to the real world using the known geometry of the pattern [57], [67], [68]. 

There are several calibration algorithms that commonly use the error between the projected 2D 

images and the known 3D calibration feature points. There are three main types of calibration 

algorithm [64], [65], [68], [69]: 

1. Iterative non-linear optimization  

2. Closed form linear 

3. Hybrid, two-stage 
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Iterative non-linear calibration methods iteratively minimize a cost function to solve for the 

camera parameters and distortions. Typically, the cost function depends on the error between the 

model’s current prediction and the known 3D location of feature points identified in the 

calibration scene. This approach requires a good initial guess and sufficient iterations to reach 

convergence, but usually provide a good result [65].  

Closed form calibration methods directly solve the camera matrix. For example, the Hall and 

Faugeras-Toscani methods [65] compute the camera parameters based on the least-squares 

between the projected 2D image points and known 3D points. This approach is simple and fast to 

implement. However, it is less accurate than iterative methods and does not consider lens 

distortion [65]. 

Two-stage calibration methods use both the iterative and closed form approaches to solve 

different camera parameters. Typically, the closed form method is used to obtain a good initial 

guess for the iterative non-linear which almost guarantees convergence [65].  

These methods can be used to calibrate any camera configuration, including stereo vision 

systems, in which the extrinsic parameters relate the position of the two cameras. 
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 Image Pair Rectification 

 
Figure 3.9 Schematic of epipolar geometry 

Image rectification projects images from two cameras onto the same plane to improve the speed 

of digital image matching. This step is not required for stereo vision, however, it is common 

because it is impractical to have a camera configuration with perfect co-planarity [67], [70]–[74]. 

The method is derived from epipolar geometry, as seen in Figure 3.9.  

Epipolar geometry describes a situation where two cameras see the same 3D point, P. A plane 

forms between the optical centers of the left, OL, and right, OR, cameras and the 3D point, which 

is called the epipolar plane. The projections of the optical centers and the 3D point onto the left 

and right image planes lie on this epipolar plane. These points include the epipoles, eL and eR are 

the projections of the optical centers onto the other camera’s image plane. Also, the projections 

of the 3D point onto the left, PL, and right, PR, image planes lie on the projected line of the 

epipolar plane. This projected line, called the epipolar line, intersects the epipolar plane, image 

plane, and the projected points. This is true for all points along the epipolar plane such as PRi.  
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Figure 3.10. Schematic of image rectification   

Rectification uses the epipolar geometry relationship to define a linear algebra transformation 

that can be solved to vertically align the epipolar lines of the images by projecting the images 

onto the same plane, as seen in Figure 3.10. The rectified images allow the digital image 

matching step to find matching pixels only by horizontally scanning the same image row, instead 

of the original skewed epipolar lines [67], [70], [75]. 

 Digital Image Matching 

Digital image matching solves where parts of an image correspond to another image, which is 

the correspondence problem. It is arguably the most important step of stereo vision, as it is the 

most non-trivial problem, and directly influences the depth estimation accuracy [76].  
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Figure 3.11. Schematic of digital image matching correspondence search   

Ideally, digital image matching would find the correspondence between individual pixels. 

However, this is nearly impossible because they do not provide enough robust information. 

Instead, matching is performed between sub-regions, or search windows, to include the 

information of neighboring pixels, as seen in Figure 3.11. The corresponding match can be found 

by either searching the entire image, or only searching near the original’s location [77]–[79]. A 

match can be found using a line search, along the epipolar line, if the image pair has been 

rectified [75], [80]. 
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A match is determined by measuring the similarity between the original and candidate windows, 

using metrics such as sum of squared differences using: 

 𝑠 = ∑  𝐼 [𝑥, 𝑦] − 𝐼 [𝑥, 𝑦] 
 

 𝑥,𝑦 𝜖𝐼

 (3-4) 

where I1 and I2 are the pixel intensity of the left and right image of the windows. Correspondence 

is decided by the highest similarity. Since similarity depends on absolute pixel intensity, the 

method is sensitive to distortions, noise, and illumination. Also, featureless, and low contrast 

scenes lead to poor or failed matches.  

Alternative matching algorithms perform cost function minimization on the similarity metrics 

[81], or feature detection such as least squares matching, which are more robust to distortions 

and feature orientation.  

Regardless of the matching algorithm, they all calculate the difference in pixel position between 

corresponding matches, to generate a disparity map. The disparity map is used as an input for 

depth estimation using triangulation.  
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 Projected Light Pattern 

 
Figure 3.12. Image of active stereo vision with projected light pattern in the scene   

Active stereo vision uses a projected light pattern to create features and increase contrast in the 

scene to improve image matching, as seen in Figure 3.12. The projection can either be a speckle 

pattern, or a calibrated structured light. This allows active stereo vision to overcome common 

problems such as curved or smoothed surfaces, called the false boundary problem [80]. Stereo 

vision without the projector, is also known as passive stereo vision.  
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 Depth Estimation Triangulation  

 
Figure 3.13. Schematic of stereo vision triangulation   

Triangulation calculates the distance, Z, of 3D points, P, using trivial geometry and the pixel 

disparity found using digital image matching, as seen in Figure 3.13 [70]. The 3D point intersects 

the left and right image planes at PL and PR, which respectively have pixel x coordinates xL and 

xR in their own coordinate system. The optical centers of the left, OL, and right, OR, are 

horizontally spaced by a baseline, b, distance, and their camera axis align. In the simplest cases, 

the cameras have the same focal length, f.  

 
𝑍 − 𝑓

𝑍
=

𝑏 −  𝑥𝐿 − 𝑥𝑅 

𝑏
 (3-5) 

The triangulation equation is derived using similar triangles. The denominators of (3-5) are from 

the triangle formed by OL, OR, and P, while the nominators are from the triangle formed by PL, 

PR, and P. Notably, xR is negative because of the sign convention of the right camera’s 

coordinate system for x’. 
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 𝑍 = 
𝑓𝑏

 𝑥𝐿 − 𝑥𝑅 
=

𝑓𝑏

𝑑
 (3-6) 

Equation (3-6) is obtained from (3-5) after solving for the depth, Z, in the left camera relative to 

the optical center of the left camera, OL. The focal length, f, and baseline, b, are found from 

calibration, while the disparity, d, is found from digital image matching.  

While stereo vision is a powerful technique for depth estimation, it has limitations as it requires 

non-trivial modelling of the camera system, calibration, and matching. Also, the technique 

dependents on having a direct line of sight by both cameras, and various lighting phenomena can 

trick the matching algorithm.  

 Stereo Vision Limitations 

 
Figure 3.14. Schematic of the false boundary problem from curved surface   

There are several well-known limitations with passive and active stereo vision that cause invalid 

depth measurement. Since the technique is dependent on pixel intensity to determine matches, it 

is sensitive to the reflectivity of surfaces, environmental illumination, and any image distortion 
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such as noise [82]. For example, a smooth reflective surface with uniform lighting will have no 

global or local features for the matching algorithm to solve the correspondence problem, called 

matching ambiguity [83]. Another example is when an edge in light intensity is created by 

lighting conditions instead of a physical edge. This situation causes a false edge to be detected, 

called the false boundary problem [77], [82]. Also, a false can be detected when the edge of an 

object can be obscured around a curved surface, for one camera as seen in Figure 3.13. ASV 

position and orientation can cause other issues, such as occlusion, which is when a surface is not 

visible to both cameras [83]. In this case, the depth map will have a hole at this location, which is 

a pixel without a depth measurement [83]. 

 ∆𝑧 =  
𝑧 

𝑏 ∗ 𝑓
∆𝐷 (3-7) 

where 

z is depth 

Δz is depth error 

b is baseline 

f is focal length 

ΔD is disparity error 

Depth estimation error is derived from (3-6). Equation (3-7), shows that depth error increases 

quadratically with distance and linearly with disparity error [84], [85]. Therefore, depth error is 

reduced when measurements are taken at a close range, and the matching algorithm disparity 

error directly contributes to depth error.  
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Figure 3.15. Schematic of depth resolution   

The depth resolution is determined by distance, sensor resolution, and baseline as seen in Figure 

3.15 [52]. Depth uncertainty, like depth resolution, is non-trivial to model, thus is typically 

obtained experimentally [86]–[89], [90]. Thus, depth resolution is finer at closer ranges, with a 

larger baseline and focal length, and a higher sensor resolution.  

 Fundamentals of Active Stereo Vision Conclusion 

This chapter reviewed the components, mechanics, and limitations of stereo vision. Stereo vision 

is a photogrammetry technique for depth estimation. In its simplest form, passive stereo vision 

uses two aligned cameras, with the same focal length, that are horizontally separated by a 

baseline distance. Active stereo vision improves this system configuration with a light projector 

to add a non-invasive speckle pattern or calibrated structured pattern to the scene. The pinhole 

model is used to relate images to the physical world, which requires calibration to obtain intrinsic 

and extrinsic parameters. The correspondence problem is solved using a global or local area 

based matching algorithm, simplified to a line search by rectification, to find the disparity 

between matching pixels. Triangulation uses the camera parameters and disparity to estimate the 
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distance of objects in a scene. Depth error quadratically increases with distance, and linearly with 

disparity error. Depth resolution is dependent on the camera configuration baseline, focal length, 

sensor resolution, and distance.  
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4 Intel RealSense D435 Active Stereo Vision Platform 

The Intel RealSense D435 active stereo-vision system was selected for this project, after 

surveying commercially available vision systems. It was qualitatively determined to be the best 

development platform for this application, because it fit the technical requirements of the project. 

The depth accuracy, field of view, and effective range were suitable to measure a donor lung 

inside an EVLP device. Also, the Intel RealSense D435 was the only surveyed system with 

software tools and usability features supported by the manufacturer [91], [92].  

 
Figure 4.1. Annotated image of the Intel RealSense D435   

The Intel RealSense D435 performs ASV using a depth sensor, composed of two infrared 

imagers and projector and has an auxiliary color camera, as seen in Figure 4.1. Notably, it has a 

USB 3.0 port and threaded mounting holes for a tripod and machine screws, shown in the 

mechanical drawing in Appendix A. An onboard depth processing unit provides real-time depth 
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maps at the same frame rate as the imagers. The infrared, color and depth images can be 

accessed at different resolutions and frame rates, up to 1920 × 1080 and 90 fps, limited by the 

transfer rate of the selected USB cable. The generated depth maps provide measurements in a 

87° × 58° × 95° field of view with a depth error below 2% within two meters [93]. All data and 

configurations can be accessed programmatically using provided Intel Realsense software tools.  

The entire Intel Realsense camera series has access to a software development kit (SDK) with 

MATLAB compatibility using a C++ wrapper that provides access to low level device functions. 

The SDK is documented on several sources such as GitHub, whitepapers, and its own dedicated 

website [92]. Also, the documentation provides example scripts that were used as templates to 

programmatically access images and set camera configurations using MATLAB. Notably, there 

is an active forum community of developers and customers that supports troubleshooting.  

The SDK can be used to develop a custom application for the Intel RealSense D435. The 

manufacturer provides functional example applications to interface with the Intel RealSense 

D435. They were used throughout this research project to calibrate the device camera 

parameters, evaluate its depth accuracy [94], [95], and perform data acquisition.  
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 Calibration and Depth Evaluation 

 
Figure 4.2. Screenshot of the Intel RealSense Dynamic Calibration application   

The Intel RealSense D435 intrinsic camera parameters are calibrated by the manufacturer using a 

high precision calibration target. As a safety feature, the intrinsic properties are typically not 

configurable since they are assumed non-mutable. However, the extrinsic parameters are 

expected to change when the individual cameras shift position and orientation inside the case. 

Therefore, the Intel Realsense Dynamic Calibration application [96] calibrates for the infrared 

and color cameras’ extrinsic parameters using images of a calibration pattern, as seen in Figure 

4.2. In this project, the pattern was printed onto a standard paper page and glued to a sheet of 

acrylic. Alternatively, Intel offers a mobile phone application that displays a calibration target 

[96].  
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Figure 4.3. Screenshot of the Intel RealSense Depth Quality Tool   

The calibrated extrinsic parameters were evaluated by measuring the overall depth quality of the 

Intel RealSense D435 using the Intel Realsense Depth Quality Tool. The depth map 

measurements of a flat wall, at a known distance and within a region of interest (ROI), as seen in 

Figure 4.3, were used to calculate five depth quality metrics. If they do not fall within 

recommended values, then the manufacturer suggests re-calibrating the device. The five depth 

quality metrics are: 

1. Z-Accuracy 

2. Fill Rate 

3. RMS Error 

4. Temporal Noise 

5. Sub-Pixel Error 

Before calculating the metrics, the ROI depth measurements are rotated to align with a fitted 

plane, to correct for the relative orientation of the camera to the flat surface. The z-accuracy is 

the percentage error between the median of the aligned ROI depth measurements and the ground 

truth. The fill rate is a percentage of pixels with a valid depth measurement, non-zero and not an 

outlier. The root mean square (RMS) error is calculated between the rotated depth measurements 
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and the nearest point on the fitted plane. The temporal noise is the variance in depth 

measurement between frames. Lastly, the sub-pixel error is estimated based on the RMS error 

[94]. Notably, the depth measurements are relative to the depth origin of the Intel RealSense 

D435 that is located at the front of the left infrared camera [93]. 

 Data Acquisition 

 
Figure 4.4. Screenshot of the Intel RealSense Viewer application 

The Intel Realsense Viewer application, as seen in Figure 4.4, was used to interface with the 

Intel RealSense D435 through a laptop and USB 3.0 cable. The top two images in Figure 4.4 are 

from the left and right infrared cameras, from left to right. The bottom left image is the depth 

map generated from active stereo vision. The bottom right image is the color image from the 

Intel RealSense D435 auxiliary color camera. The application uses the SDK to configure the 

device, including resolution and fps, and save data to a ROS bag file that is accessed in 

MATLAB [97].  

The MATLAB ROS toolbox was used to read the Intel Realsense Viewer files for images and 

metadata such as timestamps. The images are post-processed using the SDK to synthetically 

replay the videos and apply fundamental image filters for temporal and spatial smoothing [97], 

[98]. Also, the SDK can perform projective transformation on the depth maps to align them with 
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the color images [97], [98]. These steps are performed using the custom function 

rs2ReadRosbag() that can be found in Appendix B. The post-processed images and metadata are 

saved to mat files for future processing.  

 Intel RealSense D435 Conclusion 

The Intel RealSense D435 active stereo vision system was selected for this research project 

because it met all technical and financial requirements. Also, it comes with software tools such 

as a software development kit (SDK) and pre-made applications for camera calibration, depth 

evaluation, and data acquisition. The SDK was used to read videos recorded from the Intel 

RealSense D435 into MATLAB for future post-processing to measure donor lung performance.  
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5 Deformation and Plethysmography Processing Scheme 

A processing scheme was developed to measure whole lung plethysmography and regional 

surface deformation of a donor lung using depth maps from active stereo vision. In this research 

project, the method was implemented using MATLAB toolboxes for image and point cloud 

processing. Also, it was improved over a series of experiments. However, the fundamental steps 

remained the same and should be applicable to other photogrammetry techniques. The general 

approach has five steps: 

1. Stereo Vision to Acquire Depth Maps 

2. Image Segmentation to find the Lungs from Depth Maps 

3. Deprojection of Segmented Lung from Depth Maps 

4. Surface Reconstruction from the Point Clouds to create Surface Maps 

5. Measure Surface Maps for Global and Regional Plethysmography Metrics 
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Figure 5.1. Flow chart of the processing scheme   

These steps are summarized by the flow chart in Figure 5.1. This chapter explains the problems 

and possible solutions of each step. In this research project, the depth maps were acquired using 

the method described in Chapter 4.2 .  

 Image Segmentation  

Image segmentation is the process of identifying region(s) of interest inside an image. Regions 

must be homogeneous, continuous, and do not overlap, but their union covers the entire image. 

These regions are defined in a labelling image, or binary map, with the same dimensions as the 

segmented image [99]. The pixels belonging to a given region are labelled a logical true, while 

outside the region are logical false. These conditions are summarized in five rules [99], [100]: 

1. Union of all partitions is the entire region of the image 

2. Regions are continuous  

3. Regions are disjoint 

4. Similar pixels are of the same region 

5. Pixels that are not similar must not be of the same region 
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In this project, image segmentation was used to select only the depth measurements of the donor 

lung in the depth maps. This was achieved by segmenting any of the aligned images such as the 

depth, left infrared, or color images since their binary maps are interchangeable. Several 

established segmentation methods were explored, which are broadly categorized into edge-based 

and region-based methods [101].  

 Edge-Based Segmentation 

The edge-based methods identify the edges of objects, as borders of regions, to partition an 

image. Often, these methods are sensitive to noise and need to find an appropriate edge 

threshold, which is a non-trivial problem, however, they are computationally simple and fast. 

Typically, these methods have three main steps [100]:  

1. Edge Detection 

2. Edge Linking 

3. Edge Localization / Thinning 

Edge detection is the process of finding edges as abrupt changes in pixel intensity using first or 

second derivative operators, called edge detectors, creating gradient images [100], [102]. For 

digital functions, such as images, derivatives are approximated using finite Taylor’s Series 

expansions [100]. Edges are detected by binarizing the gradient images through thresholding.  

An example of edge detection is the Canny edge detection method that uses a first derivative of 

Gaussian operator to find the gradient of an image. This is followed by a step called non-

maximal suppression that smooths the gradient image to remove noise. Finally, two thresholds 

are used to identify “strong” and “weak” edges in the gradient image, which is called hysteresis 

thresholding [100], [101], [103].  

Edge linking ensures edges are continuous by linking neighboring edges in a binary map. Most 

methods only link edges that have similar gradient magnitude and or direction [100], [104].  

Edge localization or thinning ensures the edges are one pixel thick [100]. This can be achieved 

using morphological operations such as skeletonization or erosion [100], [105].  
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Edges could be found in depth maps based on differences in height. Alternatively, edges could 

be found by distinguishing the lung from the background by differences in color.  

 Region-Based Segmentation 

Region-based segmentation methods identify and grow regions, and eventually define region 

boundaries once dissimilar regions meet [101]. In most methods, some pixels are assigned to 

continuous regions, while many pixels are left unlabeled. Pixels neighboring labelled regions are 

measured for similarity [106] to determine if they similar enough to belong with that region, or if 

a region border should be formed when they are dissimilar. Also, two regions may merge if their 

region similarity is above a threshold. These methods are robust to noise but cost more time and 

memory since they often involve iterative steps [95]. 

Lazy snapping is an example of a region-based segmentation method developed by Microsoft 

Research Asia [107]. It is an interactive graph cut method intended for color images, similar in 

function to Photoshop’s Magnetic Lasso tool. The method has four interactive and automatic 

steps [107]. 

1. Automatic pre-segmentation to improve computational efficiency  

2. Interactive foreground and background seed region labelling 

3. Automatic region growing through Gibbs Energy minimization 

4. Interactive boundary editing for pixel accurate boundaries 

In the first step, the image is segmented into many regions. In this state the image is unsuitable 

for depth map segmentation. However, it allows the lazy snapping method to merge these groups 

instead of growing regions from pixels. In the second step, the user interactive draws roughly 

where the foreground and background are in the image, labelling these pixels as seed regions. 

The third step is uses Gibbs Energy to measure similarity between neighboring pixels, grow 

regions, and define region borders. Lastly, the user is prompted to add or remove pixels along the 

region boundaries to manually refine the results [107]. This last step is not implemented by the 

MATLAB function. 
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The watershed method is another region-based segmentation method that requires seed locations 

and iteratively grows from the seed regions. The method is likened to the topographical concept 

of a watershed and basin, where all the water in a region flows towards a regional minima. The 

segmentation method identifies a watershed region for each seed location that is defined, which 

includes the background. The boundaries between the watershed regions are called watershed 

lines. The metric of similarity is based on the geodesic distance that measures the relative 

intensity of the segmented image, similar to the height in topographic maps [108]–[110]. 

 Deprojection 

Deprojection is the process of transforming an image into 3D points [89], [111], which was used 

to obtain a collection of 3D points, called a point cloud, of the surface of the lung from a 

segmented depth map. Since each depth map pixel and 3D point are paired, information such as 

color and region label can be inherited by the point. After some processing, the point clouds can 

be used to measure displacement of the lung. 
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Figure 5.2. Schematic of deprojection geometry   

Deprojection is derived from the pinhole model, as seen in Figure 5.2, using similar triangles. A 

triangle is formed from points P, O, and Pca, and the second one is from points O, c, and Pi [89], 

[111]. The depth, Z, and pixel coordinate, x, is taken from the depth map, while the optical center 

pixel coordinate, cx, is from calibration.  

 𝑋 = 
𝑥 − 𝑐𝑥

𝑓𝑥
𝑍 (5-1) 

The x coordinate, X, of the point, P is solved from the similar triangles for (5-1). 

𝑌 = 
𝑦 − 𝑐𝑦

𝑓𝑦
𝑍 (5-2) 

The same approach used for (5-1), can be used to derive the y coordinate of the 3D point as 

shown in (5-2). Equations (5-1) and (5-2) are derived from an ideal case, without imperfections 

such as radial and tangential distortions [89], [111]. The inverse Brown-Conrady distortion 
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model [112] can be used to correct for these errors in the pixel coordinates, x and y, before using 

(5-1) and (5-2). 

 𝑟 = 𝑥𝑑
 + 𝑦𝑑

  (5-3) 

 𝑛 = 1 + 𝑘 𝑟
 + 𝑘 𝑟

4 + 𝑘3𝑟
6 (5-4) 

Radial distortion is modelled using (5-3) to model the radial distance, r, using the distorted pixel 

coordinates, xd and yd, and (5-4) as the high order distortion model with three distortion 

coefficients, k1, k2, and k3 [112].  

 𝑥𝑢 = 𝑥𝑑𝑛 + 2𝑝 𝑥𝑑𝑦𝑑 + 𝑝  𝑟
 + 2𝑥𝑑

   (5-5) 

 𝑦𝑢 = 𝑦𝑑𝑛 + 2𝑝 𝑥𝑑𝑦𝑑 + 𝑝  𝑟
 + 2𝑦𝑑

   (5-6) 

The tangential distortion is modelled by the second and third terms in (5-5) and (3-7), with 

distortion coefficients p1 and p2. The radial distortion are accounted for in (5-5) and (3-7) with 

the terms, xdf and ydf, to find the undistorted coordinates, xu and yu [112]. However, all the 

distortion coefficients were set to zero because Intel found this to improve the accuracy of the 

Intel RealSense D435 [113]. 

 Surface Reconstruction 

The deprojected depth map provides a point cloud of 3D points along the surface of the donor 

lung. However, the point cloud cannot be used for measurements because it does not have 

surfaces. To reconstruct the surface of the donor lung, and obtain measurements, the point clouds 

are meshed to define linear triangular element surfaces [57].  

Before surface meshing, the point clouds must be down sampled, because they are needlessly 

dense for this application. A standard point cloud will have over 9000 points when the depth map 

is at its lowest depth map resolution, 240 × 480, on the Intel RealSense D435. Therefore, the 
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point clouds are down sampled to about 800 points to improve the speed and reduce memory 

requirements for future processing steps, while smoothing the extracted surface like a low pass 

filter.  

 
Figure 5.3. Schematic of box grid filter   

The point clouds are down sampled using a box grid filter [114], as seen in Figure 5.3. The point 

cloud domain is segmented into 3D grids where each unit is a cube, or voxel. Each voxel returns 

a single averaged point with coordinates that are the average of all points inside the voxel. Box 

filtering has the same effects as a low pass filter, mitigating noise and smoothing the results. The 

effect of the box filtering is defined by the size of the voxels, density of points, and size of the 

domain. 
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Figure 5.4. Schematic of Delaunay criterion   

After down sampling, the point clouds are used to create 2D surface meshes using Delaunay 

triangulation. The surface mesh should be “well-shaped” because the linear triangular elements 

satisfy the Delaunay criterion, where no vertices are inside the circumcircle of an element, as 

shown in Figure 5.4 [115].  

Several Delaunay triangulation algorithms exist [116], however, the MATLAB implementation 

is unknown because it is not stated in their public documentation. 2D surface meshes were 

formed using the x and y coordinates of a point cloud, then using the resultant triangulation on 

the 3D points.  
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Figure 5.5. Schematic of scattered point interpolation   

The point cloud data inherits limitations from active stereo vision such as not being able to track 

the surface of the donor lung. As a result, the number of 3D points and their x and y coordinates 

will be different between frames, making it difficult to compare the surface between frames. 

Also, some areas of the lung may be occluded creating low-resolution regions in the point cloud. 

To mitigate these problems, the surface mesh is refined using scattered point interpolation [117], 

[118]. MATLAB interpolates scattered data for height by finding the intersection of the query 

point and the Delaunay triangulation surface, as seen in Figure 5.5 [117]. The color and labelling 

data are interpolated separately using different methods but using the same neighboring points.  
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Figure 5.6. Schematic of scattered point interpolation at uniform grid points   

New surfaces were interpolated from the down sampled point at query points on a uniform grid 

in the XY plane, as seen in Figure 5.6. As a result, the interpolated z coordinates have the same 

data structure as an image. This allows all interpolated images, or surface maps, to reuse of the 

same Delaunay triangulation. Also, their data structure allows arithmetic operations between 

surface maps, which allows the method to find the change in the donor lung’s shape over time. 

Lastly, the interpolated surface maps can be enhanced using image processing methods such as a 

low pass filter for smoothing.  

 Reconstructed Surface Measurement 

The reconstructed surface of the donor lung can be used to measure whole lung plethysmography 

metrics and to measure regional surface deformation. For instance, the lung’s volume with 

respects to time can be estimated using the Divergence Theorem [32]. Although, this volume 

signal may be inaccurate, it can be used to track global surface displacement and derive standard 

plethysmography metrics such as tidal volume and inspiratory time. These methods provide 

similar measurements as the airway sensors used by EVLP devices.  

Scattered Data PointInterpolation Grid Point Delaunay Triangulation Mesh
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Donor lung measurement can be extended by identifying areas of under and over inflation as 

peaks in the lung’s reconstructed surface map. Also, the same approach can be used with surface 

maps analogous to tidal volume and dynamic compliance. Lastly, this method allows for the 

measurement of a typical breath for the donor lung, giving another option to track changes over 

EVLP treatment.  

 Surface Integration 

Whole lung plethysmography metrics can be derived from the estimated volume of the donor 

lung using the reconstructed surface. De Boer et al proposed the Divergence Theorem to 

estimate the lung volume of patients by integrating the volume between the patient’s anterior and 

posterior chest walls [32].  

 
Figure 5.7. Schematic of parameterized triangular surface mesh for volume integration using the 

Divergence Theorem. 

  

This problem can be modelled with two triangular surfaces, which is like the mesh elements of 

the reconstructed surface, as seen in Figure 5.7. De Boer et al. assumed that the posterior chest 

wall was flat, modelled by a plane, because they measured patients with their backs against a 

wall. The bottom element is assumed to be on the XY plane, or base plane in Figure 5.7. This 

implies its three points have the same x and y coordinates as the points directly above them, p0, 
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p1 and p2, that define the top element, Ti. The surface vectors u and v are found as the difference 

between points, p1-p0 and p2-p0. The element’s normal vector, �̂�, is the cross product of these two 

parameters. Volume integration is performed for each triangular element of the surface mesh, 

and the sum is taken as the lung volume.  

 ∫  �⃑� ∙ �̂� 𝑑𝑆
𝑇

=  �⃑⃑� 𝑥 �⃑� ∙ [ 
𝑝0

2
+

�⃑⃑� + �⃑�

6
 ∙ �̂�] �̂� (5-7) 

De Boer et al [32] proposed the closed-form solution to the volume integration of this problem 

(5-7), where k is the basis vector for z cartesian coordinates. 

 𝑉 =
1

6
∑ [ 𝑢𝑖⃑⃑⃑⃑  𝑥 𝑣𝑖⃑⃑⃑ ⃑  ∙  𝑇𝑖0𝑧 + 𝑇𝑖 𝑧 + 𝑇𝑖 𝑧 ]

𝑁𝑇

𝑖= 
 (5-8) 

Equation (3-7) is the discretized form of (5-7) implemented to calculate total lung volume, V, 

where Ti0z, Ti1z, and Ti2z are the z coordinates of points p0, p1, and p2 that form the mesh element 

Ti, and 𝑁𝑇 is the number of elements.  

The volume signal is not expected to be equal to the total lung volume because, in this 

application, the method has several limitations. Only the top surface of the donor lung is 

reconstructed because it is the only surface visible to the stereo vision system. Therefore, the 

method ignores the side and bottom surfaces of the lung. Donor lungs are expected to have a 

complex and asymmetric shape that requires accurate reconstruction to obtain a reasonable 

volume estimate. Also, any lung movement will change the volume signal, including any 

horizontal and vertical displacement not caused by inflation. Lasty, the integration base plane is 

assumed to be static, which is likely not true because the donor lungs are suspended on a 

compliant surface. Therefore, the volume signal should be referred to instead as a scalar or 

global displacement signal of the lung since it tracks the displacement of the lung. 

The displacement signal is expected to track the changes in the donor lung with respects to time 

and have a proportional change in magnitude with the actual lung volume. Therefore, the 

displacement signal was treated as a volume signal for plethysmography measurements.  
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The displacement signal was filtered to improve the signal quality. A low pass filter [119] was 

used to remove noise above the frequency of the breathing rate of the lung. Also, outliers were 

removed using the Hampel filter [120], followed by Savitzky-Golay [121] filtering to smooth the 

signal.  

The derivative of the displacement, or displacement rate, found from this method, was found to be 

an estimate of the airway flowrate when normalized [35]. A differentiator filter was selected for 

this task to introduce minimal noise [122]. The flowrate signal was processed with the same filters 

as the volume signal. The displacement and displacement rate signals were used to measure 

plethysmography metrics described in Chapter 2. 

 
Figure 5.8. Schematic of respiratory cycle average volume   

The performance of the donor lung can be characterized as an average respiratory cycle found 

from the displacement signal. The average respiratory cycle is found by sampling the displacement 

of each cycle at normalized points in time, as seen in Figure 5.8. Average cycles were found using 

create_avg_cycle() in Appendix B.  
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Also, the average respiratory cycle can be used to measure any changes in the donor lung’s cycle 

by finding the difference between the sampled points and the average cycle. Furthermore, 

measuring this deviation from the average respiratory cycle can be used to track the long-term 

performance of the donor lung, as an alternative to tidal volume and dynamic compliance. This 

deviation was found using compare_to_avg_cycle() in Appendix B. 

The surface map can be used to measure plethysmography, as described above, and changes across 

the surface of the lung by taking advantage of its data structure.  

 Surface Deformation and Regional Measurement 

The surface map can be used to measure regional performance of the donor lung and identify 

localized over-inflation. Its data structure is like an image, with an intensity value at a point on a 

uniform grid, or matrix. This coincidence allows the surface map to be enhanced using digital 

image processing methods such as digital filters for smoothing [123] and noise removal. Also, 

other algorithms could be used for pre-processing such as non-maximal suppression from Canny 

edge detection. These processes prepare the surface map for peak detection and regional 

displacement measurement.  
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Figure 5.9. Schematic for tidal displacement map calculation    

Regional measurements can be obtained from the surface maps through arithmetic operations 

between images. For example, the pixel-wise difference of two surface maps measures the 

regional displacement in that time frame, treated as an estimate of regional inflation. Therefore, 

the difference of surface maps taken at the start of inhale and exhale gives regional inflation akin 

to tidal volume, as seen in Figure 5.9. This surface tidal displacement can be used to identify 

where and how much the donor lung distends. Also, surface dynamic compliance can be found 

by scaling the surface tidal displacement by the peak pressure change in the respiratory cycle, 

just like scalar tidal volume.  

The surface maps can be used to characterize the donor lung by its average surface shape during 

a respiratory cycle. This method is like the average respiratory cycle displacement described in 

Chapter 5.5  except applied to all the query points of the surface map. Any differences from this 

average respiratory cycle surface map would indicate changes to the donor lung’s performance. 

The respiratory cyclic average could be calculated by sampling the height of each point in the 

reconstructed surface at normalized time intervals within each respiratory cycle. These samples 
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would be averaged at each point, and each point in the respiratory cycle to get the averaged 

surface. 

 
Figure 5.10. Schematic of peak detection of a surface annotated for peak and trough detection   

In an ideal case, surface tidal displacement will be a flat surface, indicating the donor lung has 

homogeneous performance. However, if regions with different displacement form, then this 

indicates the donor lung has heterogenic performance. If a peak in performance forms, then it 

may indicate localized over-inflation, or the onset of ventilation induced lung injury (VILI). 

Also, these regions will exist in the surface dynamic compliance. These regions, peaks, and 

troughs, can be detected using image processing methods, as seen in Figure 5.10.  

Peaks can be detected in the regional measurements using digital image processing techniques 

including the image segmentation described in Chapter 5.1 . For example, segmented regions 

with a high average intensity could be identified as peak regions. Another example would be 

local maxima [124] and minima [125] detection. The simplest method would be thresholding 

height, or the surface map intensity. These methods could be categorized into global and local 

methods.  

Peak

Trough
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The surface map takes on the shape of the donor lung, therefore, will have local and global 

variation that would be difficult to account for when globally searching for peaks. Therefore, the 

surface map should be searched using a local method such as an area-based digital filter for 

outlier detection. The surface tidal displacement and dynamic compliance are suitable for both 

local and global methods since they are ideally flat with no local variation. Lastly, region and 

peak detection could be performed on other surface metrics such as mesh curvature.  

 Processing Scheme Conclusion 

Table 5.1 Measurement Method Feature Comparison 

Measurements EVLP ASV 

Airway Flow Rate ✓  

Airway Pressure ✓  

Tidal Volume ✓ ✓ 

Displacement Signal  ✓ 

Displacement Rate  ✓ 

Surface Shape  ✓ 

Surface Tidal Displacement  ✓ 

Surface Displacement Cycle Average  ✓ 

Surface Local Minima and Maxima Detection  ✓ 

A processing scheme was developed to measure global and regional performance of a donor lung 

using depth maps from the Intel RealSense D435. The method’s measurements are contrasted 

with the key EVLP measurements in Table 5.1. The depth maps were segmented to select depth 

measurements of the lung’s surface. These measurements were deprojected into 3D points along 

the surface of the lung, called a point cloud. The lung’s surface was reconstructed by performing 

scattered point interpolation and Delaunay triangulation on the point clouds. The reconstructed 

surface, or surface maps, was integrated to estimate lung volume and derive plethysmography 

metrics such as tidal volume and dynamic compliance. The volume signal is not expected to be 

an accurate estimate of total lung volume due to method limitations. However, it is expected to 

change with respects to lung inflation and displacement in time, allowing it to be treated like 

volume for plethysmography. Changes in the surface maps with time are measured by finding 

the difference between frames to obtain surface metrics that are like tidal volume and dynamic 

compliance. Also, the surface maps can be scanned to identify peaks that may be localized over-

inflation and the onset of VILI.   
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6 Validation of Displacement Measurement  

A ventilator test lung was measured to evaluate the active stereo vision plethysmography system 

by comparing its measurements with an EVLP respirometer system. The ventilator test lung was 

used as a testing surrogate for donor lungs because it distends with ventilation and is designed to 

be mechanically ventilated. Measurements were taken during positive pressure mechanical 

ventilation, performed by the EVLP. Global and regional plethysmography measurements were 

derived from the depth maps from the Intel RealSense D435. However, only the scalar 

measurements, such as tidal volume, were compared to the EVLP to measure correlation and 

agreement. If these measurements have a high correlation and agreement, it may suggest the 

regional measurements are valid as well.  
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 Experiment Equipment 

The ventilator test lung, shown in Figure 6.1, is a latex balloon filled with a dense foam intended 

to test the performance of ventilators. Its capacity is approximately one liter, and it comes with a 

standard 22mm ID connector pressure port to connect with ventilators.  

The ventilator test lung was selected for this experiment because it is an acceptable substitute for 

a real lung because it deforms with inflation and has a complex surface shape. Also, the test lung 

 
Figure 6.1 Annotated image of the ventilator test lung 
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is convenient to operate with a ventilator, as it is intended to measure ventilator performance. 

Notably, it is flat when fully collapsed, and has a restrictive band around its mid-section creating 

two lobes. The test lung was ventilated using Tevosol’s development EVLP device for the study. 

The development EVLP is designed to perform negative pressure ventilation. This is achieved by 

connecting the lung to a flow loop inside a sealed pressure chamber. The EVLP is operated using 

custom software, which receives feedback from a combined volume flow rate and pressure 

sensor imbedded in the flow loop. This device was selected for this study because its velocity 

and pressure measurements can be used to calculate plethysmography metrics that can validate 

the active stereo vision method measurements.  

 
Figure 6.2 Annotated image of the ventilation test lung inside a development EVLP 

As shown in Figure 6.2, the test lung was directly connected to the EVLP airway through a 

standard pressure port, resting inside the EVLP’s chamber. To measure the ventilator test lung’s 

surface displacment with the active stereo vision system, the EVLP’s chamber cover was lifted. 

As a result, negative pressure ventilation could not be performed. Instead, the ventilator test lung 

was positive pressure ventilated by the EVLP by modifying its operating procedure to perform 

constant positive airway pressure ventilation. 
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Figure 6.3 Annotated image of the Intel RealSense D435 mounted above the ventilator test lung 

The Intel RealSense D435 was mounted facing downward directly above the ventilator test lung 

using a tripod, horizontal beam, and a custom 3D printed mount, as shown in Figure 6.3. Also, 

this mount supported the USB cable that connects the Intel RealSense D435 to a laptop that was 

used to operate the system and store measurements. Notably, the horizontal beam was leveled 

prior to calibration and data acquisition. 
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 Calibration and Data Acquisition 

The ventilator test lung was measured by the EVLP and Intel RealSense D435, during 

ventilation. The EVLP measured flow rate and pressure, and the Intel RealSense D435 

performed active stereo vision to estimate the distance of the lung’s surface, providing its shape. 

 Experiment Cases 

Measurements were taken in multiple experiment cases to measure performance in a range of 

conditions. Tidal volume was varied between experiment cases, since the Intel RealSense D435 

can only measure surface changes, such as inflation, of the ventilator test lung. Tidal volume was 

controlled indirectly by changing the EVLP blower rate setting, which controls the flow rate 

during the inspiratory phase of each breath. A tidal volume setting does not exist on the EVLP 

because it was modified to perform positive pressure ventilation from negative pressure 

ventilation with constant positive airway pressure. Also, camera height was varied to evaluate 

the effect of spatial resolution on the final measurements. The height was manually adjusted 

using a tripod.  

Table 6.1 Ventilation test lung experiment cases 

Experiment Case ASV Height [mm] Airway Flow Rate [%] 

1 200 20 

2 200 24 

3 200 28 

4 330 20 

5 330 24 

6 330 28 

7 370 20 

8 370 24 

9 370 28 

The nine experiment cases, as seen in Table 6.1, are combinations of three levels of camera 

height and blower rate. The blower rate is measured as a percentage of the maximum possible 

flow rate. The camera height was measured using a ruler between the EVLP chamber and Intel 

RealSense D435 depth origin. Other settings remained constant between experiment cases, 

tabulated in Appendix C, so they do not affect the measurement comparison.  
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 Description of the EVLP 

The EVLP uses a flow sensor to monitor tidal volume and dynamic compliance. The sensor is a 

Siargo FS6122 that measures flow rate, pressure, temperature, and humidity using integrated 

MEMS sensors. The data sheet reports the total error band in percentage of full scale (FS) for 

flow rate ± (2.5 + 0.5 FS) % and pressure ± 1.0 % FS. Also, the sensor has a response time of 1.8 

ms [126]. 

Both the airway flow rate and pressure were recorded during all experiment cases, as seen in 

Figure 6.4. They were used to calculate plethysmography measurements such as tidal volume 

and dynamic compliance. 

 
Figure 6.4 Plots of EVLP flow rate, pressure, tidal volume, and dynamic compliance measurements 
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Tidal volume was calculated by integrating the airway flow rate measurements, summing the 

integrated volume between the start and end of each cycle. The dynamic compliance was 

calculated by dividing the tidal volume by the PIP and PEEP of each breath, using (3-7). The 

PIP and PEEP were identified in the pressure measurements based on their definitions. Other 

plethysmography measurements, such as inspiratory time and respiratory, were calculated based 

on their definitions discussed in Chapter 5. Notably, the calculations were performed by the 

EVLP custom software, and were provided along with the airway flow rate and pressure 

measurements. 

 Data Acquisition using the Intel RealSense D435 

The Intel RealSense Dynamic Calibration application with a checkerboard calibration plate was 

used to calibrate the extrinsic parameters of the Intel RealSense D435. Also, the Intel Realsense 

Depth Quality Tool was used to evaluate the depth measurements of the Intel RealSense D435. 

Both software applications were used as described in Chapter 4. The intrinsic parameters, 

extrinsic parameters, and depth quality metrics from calibration are listed in Appendix C. 

 
Figure 6.5 Screenshot of the ventilation test lung (a) color, (b) left and (c) right infrared, and (d) 

colorized depth map video stream using the Intel RealSense Viewer 
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The Intel RealSense D435 was operated using the Intel RealSense Viewer to record the depth 

map stream, as seen in Figure 6.5 (d), and metadata such as timestamps and camera intrinsic 

parameters. Also, the depth maps were spatially and temporally filtered using the Intel RealSense 

SDK. The color stream, Figure 6.5 (a), and the left and right infrared camera streams, Figure 6.5 

(b) and (c), were not recorded due to memory limitations. For all experiment configurations, the 

depth map resolution was 480 × 848 pixels, and the sampling rate was 30 fps. Approximately 5 

minutes of data was recorded for each configuration, sampling about 40 cycles, as the test lung 

was ventilated at a rate of 8 breaths per minute. 

 Processing Scheme for Active Stereo Vision Plethysmography 

of the Ventilator Test Lung 

The experimental data obtained from the Intel RealSense D435 was processed to measure the 

displacement of the ventilator test lung. The processing scheme outlined in Chapter 5 was 

performed in MATLAB. This process begins with obtaining the depth maps from the rosbag files 

saved by the Intel RealSense Viewer, as described in Chapter 4.  
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Figure 6.6 Annotated depth map, which has been spatial and temporal smoothed, of the ventilator test 

lung inside the EVLP chamber 

The depth maps and metadata, including timestamps, were accessed in MATLAB using the Intel 

SDK MATLAB wrapper. When accessed, the depth maps were smoothed using the SDK 

temporal and spatial post-processing filters, as shown in Figure 6.6. The post-processed depth 

maps have depth holes, zero depth black pixels, which define borders between objects, such as 

the transparent hose below the test lung and EVLP chamber ribbing. These depth holes, caused 

by occlusion, can be utilized to segment the test lung from the image. 

 Depth Map Segmentation 

The ventilator test lung was segmented from the depth map using a three-step edge-based 

segmentation method. The three main steps were: edge detection and linking, interactive 

segmentation followed by morphological operations, and outlier rejection with binary map 

temporal smoothing. 
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Figure 6.7 Annotated edge map of the ventilator test lung inside the EVLP chamber 

The Canny edge detector was used on Figure 6.6 to obtain an edge map, as seen in Figure 6.7. 

Generally, the edge map are only the edges of the depth holes but do provide an outline of the 

ventilator test lung. However, the edges do not enclose the test lung region, as there are some 

unconnected edges along the bottom edge of the test lung near the airway connection. Also, the 

end of the test lung at the airway connection is not clearly defined. Therefore, to enclose the test 

lung region, edge linking was performed to connect neighboring edges. A simplified algorithm 

for edge linking was adapted from [100]: 

1. Scan a row of the edge map for edges with a gap smaller than a threshold, fill these gaps 

2. Repeat step 1 for each row in the edge map 

3. Rotate the image by a desired angle, then repeat steps 1 and 2, then rotate back 

4. Repeat steps 1-3 for all desired angles 
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(a) (b) 

Figure 6.8 Image of the edge map of the ventilator test lung (a) before and (b) after pre-linking 

morphological operations 

Morphological operations were used to improve the linking results before edge linking, as seen 

in Figure 6.8 (a) and (b). The pre-linking steps were edge thickening, diagonal fill, and the 

majority filter. The detected edges are mostly one pixel thin. Thickening the edges before linking 

allows edge linking between adjacent rows. Also, edges were linked diagonally using a 

morphological operation to reduce the reliance on the rotation step. Lastly, isolated points were 

removed using the majority morphological operation.  



64 

 
Figure 6.9 Annotated image of the edge map of the ventilator test lung after edge-linking  

As mentioned, horizonal gaps are filled between edges if the gap is smaller than a threshold, as 

seen in Figure 6.9. This step improves segmentation by connecting the discontinuous edges 

along the bottom of the ventilator test lung outline. However, the first edge linking step did not 

fully enclose the outline because it did not vertically link the airway connection.  
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Figure 6.10 Annotated image of the edge map of the ventilator test lung after a 45 rotation and edge-

linking 

The edge linking algorithm was repeated three more times, each time after rotating the edge map 

by 45, -45, or 90. Rotating the image crops the corners of the edge map, as seen in Figure 

6.10. The rotated edge map is horizontally edge linked before rotating it in the opposite direction 

to return the edge map to its original orientation and size. This process allows rough edge linking 

in multiple directions.  
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Figure 6.11 Image of the ventilator test lung edge map after edge thinning skeletonization, with removed 

edges in red and the remainder in white 

Morphological operations were used on the edge maps after edge linking to perform edge 

thinning, as seen in Figure 6.11. Skeletonization removed the red pixels, leaving only the white 

pixels in Figure 6.11. In most edge maps, the remaining edges enclose the lung region. The edge 

maps were post-processed to remove artifacts such as spurs, isolated edges, and branch like 

structures extending from the lung outline. 
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Figure 6.12 Annotated image of the ventilator test lung edge map after removing small connected 

components with an areal filter, with removed edges in red and the remainder in white 

An areal filter removed small bodies from the edge map, leaving only the white pixels in Figure 

6.12. Notably, the corners of the edge map were cropped during the edge linking rotations. 

However, the ventilator test lung outline was not cropped because it at the center of the edge 

map. 
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Figure 6.13 Annotated image of the ventilator test lung edge map with an interactively drawn vertical line 

to enclose the lung region 

The airway connection is inconsistently edge linked using the above steps. As a substitute, an 

interactively drawn line is added to all edge maps to consistently enclose the lung region, as seen 

in Figure 6.13. The interactively drawn vertical line near the airway connection encloses the lung 

region defined by the lung outline. Notably, when the segmented depth map is used to measure 

displacement, if the airway connection is segmented it should not affect the tidal volume or 

dynamic compliance, since it does not distend during ventilation. 
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Figure 6.14 Annotated image of the ventilator test lung edge map with the interactively drawn cropping 

rectangle centered around the lung 

Inside the ventilator test lung outline is the lung region that can be selected by taking the largest 

region in the complement of the edge map. The edge map was cropped interactively to simplify 

removing this search, removing insignificant regions, as seen in Figure 6.14. The interactively 

drawn cropping rectangle is centered on the lung region and is large enough to enclose the lung 

when fully distended. Notably, this region of interest is only drawn once, and is used for all edge 

maps. 
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Figure 6.15 Annotated image of the complement of the edge map within the interactively cropped region 

The lung was segmented as the largest region found within the complement of the edge map, as 

seen in Figure 6.15. The complement of the edge map is a binary map, where regions are white 

and black indicates borders. The labeled green region is the region with the most pixels assumed 

to be lung region. This region has various problems, such as spurs, and holes created during the 

edge detection process. These artifacts were filled using morphological operations.  
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Figure 6.16 Image of the ventilator test lung binary map after hole filling post-processing 

The spurs and holes in the binary map were filled using morphological closing, as seen in Figure 

6.16. This binary map still had issues, namely the extrusion coming out of its perimeter that are 

not physically related to the lung. Outlier detection and temporally smoothing were performed to 

remove invalid frames and to remove these extrusions.  
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Figure 6.17 Plot of the area of each ventilator test lung region map for outlier detection 

A Hampel digital filter was used to detect outlier frames based on the number of binary true 

pixels in each binary map. The number of true pixels per binary map formed a signal, as seen in 

Figure 6.17. The Hampel filter uses a moving window to calculate the local median and mean. A 

point is marked as an outlier if that data point is outside three times the local median from the 

mean. These outlier points were rejected before temporal smoothing of the binary maps. 

After the outlier frames are discarded, the binary region maps are temporally averaged. The 

moving mean of each pixel is found, creating a set of grayscale images with the same number of 

frames and dimensions as the region maps. The grayscale moving mean images are binarized by 

a threshold value, between zero and one.  

The result of this process are temporally smoothed binary maps of the lung region. This process 

can be interpreted as a low pass filter for each pixel between frames individually. The values of 

the moving mean images can be interpreted as the number of times a particular pixel is occupied 

within the span of the moving mean window. In this situation, the threshold is the cut-off for 
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how often a pixel must be occupied to remain in the binary map. If the sampling rate is known, 

this interpretation can be quantified in seconds.  

 
Figure 6.18 Annotated mage of the depth map of the ventilator test lung and EVLP chamber with the lung 

segmented 

The temporally filtered binary maps are still cropped to the size of the interactively drawn 

rectangle. The last step is to insert the cropped binary maps into an image of the same size as the 

depth maps. These final binary maps were used to segment the ventilator test lung in the depth 

maps, as seen in Figure 6.18.  
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 Point Cloud Processing 

As described in Chapter 5, deprojection was used to convert the segmented depth map into a set 

of 3D points, called a point cloud. These points are along the surface of the test lung as seen in  

Figure 6.19. Each point corresponds to a single pixel in the depth map. The shape of the test lung 

can be extracted from this point cloud, to measure change in shape with respect to time. 

However, the point clouds are difficult to compare between image frames because they are 

composed of scattered points that are at different positions between frames. This scattered 

behavior can cause holes to form in the point cloud, along with unfavorable positioning of the 

Intel RealSense D435 causing occlusion, as seen in  Figure 6.19. Furthermore, the coordinate 

system of the point cloud is not ideal for the measurement processing scheme.  

 
 Figure 6.19 3D plot of the ventilator test lung point cloud 
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Figure 6.20 3D plot of the ventilator test lung and EVLP chamber point cloud in the Intel RealSense 

Viewer 

The point cloud’s coordinates are relative to the Intel RealSense D435, causing the top surface of 

the lung to have a lower height, or z coordinate, than its bottom, as seen in Figure 6.20. For the 

Divergence Theorem measurement method, ideally the point cloud’s coordinate system is 

aligned with the height of the lung, measuring displacement in the positive z direction. If the z-

axis datum of the coordinate system was the EVLP chamber floor the estimated volume would 

be closer to the actual lung volume. The z-axis datum can be arbitrary because it does not affect 

measurements of change such as tidal volume. 
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Figure 6.21 3D plot of the ventilator test lung point cloud before and after transformation 

Three rigid transformations were performed on the ventilator test lung point clouds to move them 

into a new coordinate system, as seen in Figure 6.21. The point clouds were rotated 180⁰ about x-

axis, mirrored about the YZ plane, then translated the distance measured between the Intel 

RealSense D435 depth origin and the EVLP chamber floor. It was assumed that the Intel 

RealSense D435 and EVLP chamber floor were parallel since the tripod was leveled. Notably, 

the point clouds in Figure 6.21 are overly dense, as each have around 38,000 points. 
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Figure 6.22 Annotated 3D plot of the ventilator test lung point cloud, with outliers annotated 

The point clouds are dense and have some stray points circled in red, as seen in Figure 6.22. This 

high point resolution is expected to improve surface reconstruction only marginally, while 

drastically increasing computational time and memory cost for any future steps. Both problems 

were solved by downsampling to reduce the number of points and remove outliers like the stray 

points. 
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Figure 6.23 3D plot of the ventilator test lung point cloud after 3D box averaging filtering 

A 3D box averaging filter was used to downsample the ventilator test lung point clouds, as seen 

in Figure 6.23. The box averaging filter splits the XYZ domain into cubes, called voxels, then 

returns the average coordinates of all the points within each voxel. It has the properties of a low 

pass filter in the spatial domain, smoothing the surface. The desired effect was to reduce the 

number of points in each point cloud, about 38,000 to 800 points, while preserving the shape of 

the ventilator test lung surface. Also, small groups of points, called clusters were removed from 

the point cloud to remove the stray points if they remained after box average filtering. These 

steps prepared the point clouds to extract a surface model of the ventilator test lung for 

displacement measurement. 
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Figure 6.24 3D plot of the ventilator test lung Delaunay triangulation surface mesh 

The point clouds were meshed using Delaunay triangulation to obtain a model of the surface of 

the ventilator test lung, as seen in Figure 6.23. Specifically, the mesh was found using the x and y 

coordinates of the 3D points of the point cloud.  

The point clouds were not interpolated to obtain surface maps, as described in Chapter 5, 

because the ventilator test lung moved during ventilation. As a result, the regional measurements 

were not useful since they do not track the lung’s surface. Therefore, the interpolation step was 

skipped because it was unnecessary to calculate the scalar plethysmography measurements.  
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 Plethysmography Measurements 

 
Figure 6.25 Plot of the ventilator test lung displacement before and after signal filtering 

The volume between each surface mesh and the XY plane was measured using the integration 

method derived from the Divergence Theorem described in Chapter 5 [32]. This produced a raw 

volume signal for each experiment configuration, as seen in Figure 6.25 for one cycle. The 

volume signal was denoised and smoothed using a low pass frequency filter and a Savitzky-

Golay digital filter to obtain a filtered signal, as seen in Figure 6.25. Notably, the low pass filter 

cut-off frequency was set just above the ventilation rate of 8 breaths per minute.   
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Figure 6.26 Plot of the ventilator test lung displacement and displacement rate 

The displacement signal was used to derive other measurements, such as an analogous signal to 

flow rate, as described by [35]. The first derivative of the displacement curve was found using a 

FIR differentiator filter, as seen in Figure 6.26. The differentiator filter was designed by defining 

the filter order, pass band frequencies, stop band frequency, and sampling rate as inputs for the 

designfilt() MATLAB function. The differentiator filter gives better results than finding the 

instantaneous difference between digital measurements, which amplifies noise [127]. Also, the 

displacement signal was used to calculate the tidal parameters described in Chapter 5 based on 

their definitions. 
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Figure 6.27 Plot of the ventilator test lung ASV displacement segmented for the inhale and exhale points 

from case 1 for the first three breaths 

Mechanical ventilation imitates the inhale and exhale phases of tidal breathing. The points where 

inhale transitions to exhale, and vice versa, can be found as the local extrema points of the 

displacement signal. These points were found using the MATLAB function findpeaks() which 

uses the zero-crossing method [128], along with several outlier detection methods. These inhale-

exhale points can be used to segment the displacement signal into breaths, allowing the 

measurement of breath specific metrics including tidal volume, and dynamic compliance. 

Figure 6.27 shows the ventilator test lung displacement curve for the first three breaths with the 

identified inhale-exhale points. The first breath can be segmented as the displacement curve 

between the first to third inhale-exhale points. Similarly, the first inhale phase is the 

displacement between the first and second inhale-exhale points, and the first exhale phase is 

between the second and third points. These segmentation processes can be replicated with the 

knowledge that every other point is the start of inhale, or end of exhale, while every even order 

point is the end of inhale or start of exhale.  
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Figure 6.28 Plots of the ventilator test lung ASV displacement and tidal volume from case 1 

The inspiratory and expiratory tidal volume can be found as the displacement difference of pairs 

of inhale-exhale points, as seen in Figure 6.28. Notably, the first tidal volume is an outlier 

because the sudden increase in pressure at the start of ventilation. Afterwards, the ventilator test 

lung is ventilated at a higher-pressure range. Tidal volume can be used to find dynamic 

compliance with the EVLP pressure measurements if they are synchronized with the Intel 

RealSense D435. 
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Figure 6.29 Plot of the EVLP airway pressure, PIP, and PEEP 

The EVLP and Intel RealSense D435 measurements were synchronized by interpolating the 

EVLP to the Intel RealSense D435 sample times. Both sets of measurements were recorded with 

timestamps, with the same datum. The EVLP was interpolated instead of the Intel RealSense 

D435 measurements because the Intel RealSense D435 had a higher sampling rate, and the Intel 

RealSense D435 recorded measurements before and after the EVLP for each experiment case.  

Synchronizing the measurements allows them to be compared. Also, the interpolated EVLP 

pressure measurements were used to calculate dynamic compliance from the Intel RealSense 

D435 tidal volume. PIP and PEEP were found based on the Intel RealSense D435 displacement 

signal inhale-exhale points. PIP and PEEP were found as the EVLP airway pressure at the 

inhale-exhale points from the Intel RealSense D435 displacement signal, as seen in Figure 6.29. 

Dynamic compliance was measured using (3-7). The tidal parameters listed in Chapter 5 were 

calculated for each experiment case from the displacement and displacement rate signals 

including inspiratory time, PTEF, and IE ratio.  
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Figure 6.30 Plot of the cyclic average displacement of the porcine lung 

As previously mentioned, the baseline performance of the porcine lung could be measured as a 

cyclic average of the displacement curve, as seen in Figure 6.30. This processing scheme 

averages all the segmented breaths, into an averaged volume relative to a normalized time within 

a cycle. The displacement average cycle was found using the create_avg_cycle() function in the 

appendix. 

The cyclic averaging was performed by interpolating displacement of each cycle, at the same 

locations within each cycle. The time between points is normalized by the period of each cycle. 

This means, the first sample location for each cycle is at the same normalized time relative to the 

start of each cycle. The displacement of each normalized point is averaged across all cycles, into 

one cyclic average cycle.  
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 Surface Measurements 

 
Figure 6.31. 3D plot of surface map of the ventilator test lung   

The surface maps of the ventilator test lung were found using the method described in Chapter 

5.4 , as seen in Figure 6.31. They were used to find the surface cyclic averages in similar method 

to the cyclic average displacement in Figure 6.30. Also, the surface maps were used to calculate 

surface tidal displacement and surface dynamic compliance. However, these regional 

measurements were invalid.  
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Figure 6.32. Plot of the surface tidal displacement of the ventilator test lung   

As previously mentioned, the ventilator test lung moved during ventilation. Since active stereo 

vision does not track the lung’s surface, the regional measurements from the surface maps were 

invalid. Specifically, the surface tidal displacement and dynamic compliance had multiple 

regions, outlining where the lung was at the start and end of inhale, as seen in Figure 6.32. The 

ventilator test lung moves to the yellow region at peak inhale, and then moves into the blue 

region at the end of exhale. The regions between them are common between the ends of inhale 

and exhale. As a result, the common region is blurred by the ventilator test lung moving across it, 

distorting the surface shape. Also, the inhale and exhale exclusive regions are global and local 

peaks and troughs in the regional measurements. Therefore, these regional measurements and 

peak detection are not informative.  
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 Comparison of Measurements 

The ASV method was evaluated by comparing its plethysmography measurements with the 

EVLP system. This analysis evaluated measurement distribution, correlation, and agreement. 

The difference in measurement distribution mean and standard deviation provides a preliminary 

error analysis of the ASV method. Correlation and linearity were evaluated to identify if the two 

methods measured the same changes in the ventilator test lung at the same time. High correlation 

would suggest the ASV method is measuring the ventilator test lung. Agreement was measured 

to determine if the ASV measured these changes with the same accuracy as the EVLP. Also, 

high agreement may suggest the methods are interchangeable for plethysmography. 

 Reference and Competing Measurements 

The plethysmography measurements were used to compare the ASV and EVLP measurement 

methods. The differences in the tidal volume and dynamic compliance measurements were the 

focus of the studies. Respiratory cycle timing parameters such as inspiratory time were compared 

too. However, displacement rate was not compared with the airway flow rate because they are 

expected to have significantly different magnitudes. Lastly, pressure measurements were not 

compared because the ASV method only measures surface displacement. Notably, parameters 

such as IE50 and tTEF50 were excluded because they could not be determined from the EVLP 

system measurements. 

The EVLP method had erroneous dynamic compliance measurements that were several 

magnitudes greater than the recorded tidal volume and pressure measurements. These 

measurements were ignored and recalculated in MATLAB using the recorded tidal volume, 

pressure, and the inhale-exhale points found from the breath state signal.  
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Figure 6.33 Plot of the ASV and EVLP dynamic compliance of the ventilator test lung from case 6 

The ASV and EVLP measurements were taken with different sampling rates. To compare them, 

the ELVP measurements were temporally aligned and interpolated at the same time stamps as the 

ASV measurements. This process provided paired measurements for all plethysmography 

metrics, one pair for each respiratory cycle. Any pairs with not-a-number (Nan) or infinity based 

on MATLAB arithmetic were removed from the comparison analysis. Lastly, the EVLP 

measurements were used as the reference values in all comparisons.  

All experimental cases were processed using this method. In some cases, the ASV method was 

found to have lower dispersion than the EVLP measurements, as seen in Figure 6.33. Cases 4, 5, 

6, and 8 showed this behavior. Also, the ASV measurements were found to be immune to 

erroneous pressure measurements.  
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Figure 6.34 Plot of the ASV and EVLP dynamic compliance of the ventilator test lung from case 1 

Outliers from inaccurate flow rate and pressure measurements are ignored by the ASV method 

since it measures physical displacement. The outlier peak in the inspiratory dynamic compliance 

of the EVLP was ignored by the ASV method, as seen in Figure 6.34. This outlier was caused by 

an instantaneous spike in pressure.  
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Figure 6.35 Plots of the ventilator test lung tidal volume from case 3 

Case 3 had an erroneous displacement signal that invalided all other metrics, as seen in Figure 

6.35. Specifically, the erratic behavior of the displacement signal led to poor respiratory cycle 

segmentation that impacted all measurements. It is hypothesized that this was caused by 

erroneous depth map segmentation. Measurements from case 3 were excluded from the 

comparison analysis.  
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Figure 6.36 Plots of the ventilator test lung tidal volume from case 9 

Case 9 was another case with noticeable ASV measurement error. The respiratory cycle 

segmentation was erroneously caused bimodal tidal volume measurements, as seen in Figure 

6.36. Specifically, a lower secondary peak was detected for some breaths in the displacement 

signal. Also, the EVLP measurements had issues too.  

 Measurement Distribution 

The ASV and EVLP measurement distributions centers and variance were compared as a 

preliminary error analysis. Mean was assumed to be an appropriate center metric for comparison. 

Also, the methods’ measurement distribution were compared relative to normality using kurtosis 

and skewness scores and checking for normality using the Shapiro-Wilk hypothesis test. Lastly, 

the ASV and EVLP measurement distributions were visualized to observe their behaviour and 

validate any observations from the distribution properties.  
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Table 6.2 Mean and standard deviation of the ventilator test lung ASV and EVLP measurements of case 1  

Parameter 
Mean Standard Deviation 

ASV EVLP Error [%] ASV EVLP Error [%] 

Inspiratory Tidal Volume, 

VTi [mL] 
226.05 136.52 65.58 35.91 29.56 21.48 

Expiratory Tidal Volume, 

VTe [mL] 
225.18 145.82 54.42 33.95 37.99 -10.63 

Inspiratory Dynamic 

Compliance, Cdyni 

[mL/cmH20] 

29.52 17.62 67.54 3.16 3.59 -11.98 

Expiratory Dynamic 

Compliance, Cdyne 

[mL/cmH20] 

29.28 19.22 52.34 2.68 4.79 -44.05 

Time to Peak Tidal 

Inspiratory Flow, tPTIF [s] 
0.75 0.58 29.31 0.16 0.08 100.00 

Time to Peak Tidal 

Expiratory Flow, tPTEF [s] 
1.48 1.35 9.63 0.67 0.39 71.79 

Inspiratory Time, tI [s] 2.61 2.48 5.24 0.35 0.15 133.33 

Expiratory Time, tE [s] 4.88 5.01 -2.59 0.43 0.17 152.94 

Total Time, tTot [s] 7.48 7.49 -0.13 0.32 0.13 146.15 

Inspiratory Total Time 

Ratio, tITot 
0.35 0.33 6.06 0.05 0.02 150.00 

Inspiratory Expiratory Time 

Ratio, tIE 
0.54 0.50 8.00 0.12 0.04 200.00 

Respiratory Rate, RR [bpm] 8.03 8.02 0.12 0.38 0.14 171.43 

The mean and standard deviation of the ASV and EVLP measurements were measured to 

evaluate the ASV method’s performance relative to the EVLP, Table 6.2. The ASV tidal volume 

and dynamic compliance means are significantly larger than the EVLP measurements. On the 

other hand, the timing metrics have low error. The mean error of the pressure metrics is 

unexpected because they are derived from the same signal, measured by the EVLP. Also, the low 

error of the timing parameters could indicate that the ventilator test lung is distending in sync 

with ventilation, and the ASV method measures these changes within reasonable accuracy. 

Notably, the ASV method for most parameters has more variance than the EVLP, except for tidal 

volume and dynamic compliance.  



94 

Table 6.3 Kurtosis and skewness of the case 1 ASV and EVLP measurement of the ventilator test lung 

Parameter 

ASV 

Excess 

Kurtosis 

EVLP 

Excess 

Kurtosis 

ASV 

Skewness 

EVLP 

Skewness 

Inspiratory Tidal Volume, VTi [mL] 2.13 23.91 0.46 1.09 

Expiratory Tidal Volume, VTe [mL] -0.76 8.74 -0.60 3.38 

Inspiratory Dynamic Compliance, Cdyni 

[mL/cmH20] 
7.46 7.12 0.57 -0.94 

Expiratory Dynamic Compliance, Cdyne 

[mL/cmH20] 
-0.26 2.35 0.54 -2.17 

Time to Peak Tidal Inspiratory Flow, tPTIF 

[s] 
1.02 2.86 0.27 0.85 

Time to Peak Tidal Expiratory Flow, tPTEF 

[s] 
-1.21 -0.05 0.28 0.28 

Inspiratory Time, tI [s] 2.97 4.87 -0.88 -1.65 

Expiratory Time, tE [s] -1.19 31.99 0.21 4.89 

Total Time, tTot [s] 15.42 -0.91 3.91 0.50 

Inspiratory Expiratory Time Ratio, tIE 1.21 2.71 0.35 0.53 

Inspiratory Total Time Ratio, tITot 15.37 16.32 -1.23 -2.90 

Respiratory Rate, RR [bpm] 6.29 37.41 1.33 4.96 

Kurtosis and skewness of both methods’ measurement distributions for all parameters and 

experiment cases were found to quantify they shape. Kurtosis is a measure of tailedness, or how 

the distribution at its extremes deviates from the normal distribution [129]–[131]. Distributions 

with higher kurtosis have thinner but wider tails with a higher probability of outliers [130]. A 

standard normal distribution has a kurtosis of three, for convenience, scores can be offset so a 

normal distribution has a score of zero. This score convention is called excess kurtosis [129].  

Skewness is a measure of asymmetry of a distribution [131]. A standard normal distribution has 

perfect symmetry, with a skewness score of zero where the mean, mode, and median align with 

the center of the distribution. A right skew, with a positive skewness, has a right tail and a left 

peak. The opposite is true for a left skew, with a negative skewness. For the right and left skew 

distributions, the mode is found at the peak, the median at the center of the range, and the mean 

near the tail [131]. 

In general, the kurtosis and skewness of measurements from case 1 are representative of the 

other cases, as seen in Table 6.3. Based on the skewness scores, most of the parameters from the 

ASV method are approximately symmetric, with their mean at the center of their distribution. 

Some examples are the expiratory dynamic compliance distributions with a skewness of 0.54. 



95 

Also, their excess kurtosis scores suggest slight tailedness. For expiratory dynamic compliance, 

excess kurtosis was -0.26. However, the EVLP does not share the same distribution shape as the 

ASV for most parameters.  

The ASV had kurtosis and skewness scores closer to normality than the EVLP. However, the 

EVLP seems to be more prone to outliers since it has a higher kurtosis. This is unexpected since 

the EVLP standard deviations are narrower than the ASV method. Also, the ASV and EVLP 

measurements have less skew than the EVLP for the same metrics. Notably, there are several 

parameters with extreme kurtosis and skewness scores such as inspiratory time. In general, these 

results are difficult to derive conclusions from. To simplify this evaluation, the distributions were 

categorized based on their kurtosis and skewness scores for tailedness and symmetry. 

Table 6.4 Kurtosis and skewness of the case 1 ASV and EVLP measurement of the ventilator test lung 

Parameter 
Tailedness Symmetry 

ASV EVLP ASV EVLP 

Inspiratory Tidal Volume, VTi [mL] Platykurtic Platykurtic Zero skew Right-Tailed 

Expiratory Tidal Volume, VTe [mL] Mesokurtic Platykurtic Zero skew Right-Tailed 

Inspiratory Dynamic Compliance, Cdyni 

[mL/cmH20] 
Platykurtic Platykurtic Zero skew Zero skew 

Expiratory Dynamic Compliance, Cdyne 

[mL/cmH20] 
Mesokurtic Platykurtic Zero skew Right-Tailed 

Inspiratory Time, tI [s] Platykurtic Platykurtic Zero skew Left-Tailed 

Expiratory Time, tE [s] Leptokurtic Platykurtic Zero skew Right-Tailed 

Total Time, tTot [s] Platykurtic Leptokurtic Right-Tailed Zero skew 

Inspiratory Expiratory Time Ratio, tIE Platykurtic Platykurtic Zero skew Zero skew 

Inspiratory Total Time Ratio, tITot Platykurtic Platykurtic Left-Tailed Left-Tailed 

Respiratory Rate, RR [bpm] Platykurtic Platykurtic Right-Tailed Right-Tailed 

Time to Peak Tidal Inspiratory Flow, tPTIF 

[s] 
Platykurtic Platykurtic Zero skew Zero skew 

Time to Peak Tidal Expiratory Flow, 

tPTEF [s] 
Leptokurtic Mesokurtic Zero skew Zero skew 

Distributions can be categorized as mesokurtic, leptokurtic, or platykurtic, based on excess 

kurtosis scores. Mesokurtic refers to a normal distribution, with an excess kurtosis score of 

between -1 and 1. Leptokurtic and platykurtic, also known as light-tailed and heavy-tailed, are 

distributions with a negative and positive excess kurtosis score below and above -1 and 1, 

respectively. Platykurtic distribution are more prone to have outliers, found in their tails, than 

leptokurtic distributions [129], [130].  
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The parameter tailedness and symmetry were evaluated by categorizing their excess kurtosis and 

skewness scores, as seen in Table 6.4. The EVLP was typically platykurtic, with either a zero or 

right tailed asymmetry. The ASV measured parameters were mostly symmetric with all three 

types of tailedness. In general, the ASV and EVLP do not have matching tailedness except for 

the time parameters such as inspiratory time that are platykurtic. Only a few parameters had 

symmetry and tailedness of a normal distribution.  

Table 6.5 Shapiro Wilk test of the case 1 ASV and EVLP measurements of the ventilator test lung 

Parameter 
ASV 

Normality 

EVLP 

Normality 

ASV 

p-Value 

EVLP 

p-Value 

Inspiratory Tidal Volume, VTi [mL]   1.33E-10 4.21E-05 

Expiratory Tidal Volume, VTe [mL]   6.22E-04 9.00E-12 

Inspiratory Dynamic Compliance, 

Cdyni [mL/cmH20] 
  1.69E-10 8.66E-07 

Expiratory Dynamic Compliance, 

Cdyne [mL/cmH20] 
  6.31E-04 3.79E-12 

Inspiratory Time, tI [s]   1.04E-02 2.10E-04 

Expiratory Time, tE [s]   1.85E-07 6.13E-07 

Total Time, tTot [s]   3.19E-11 3.15E-08 

Inspiratory Total Time Ratio, tITot   2.51E-03 2.12E-04 

Inspiratory Expiratory Time Ratio, tIE   5.49E-04 1.99E-05 

Time to Peak Tidal Expiratory Flow, 

tPTEF [s] 
  2.29E-05 4.23E-10 

Time to Peak Tidal Inspiratory Flow, 

tPTIF [s] 
  2.69E-11 2.31E-04 

Respiratory Rate, RR [bpm]   7.29E-12 7.63E-09 

The distribution normalities of all parameters were check using the Shapiro-Wilk normality test. 

The normality and p-values of these test for case 1 are summarized in Table 6.5. This is 

somewhat unexpected, considering some parameters had excess kurtosis and skewness scores 

within -1 and 1, indicating a normal distribution.  
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(a) (b) 

Figure 6.37 Plots of the ventilator test lung EVLP inspiratory tidal volume measurements from case 1, (a) 

normal probability and (b) histogram annotated with the mean = 136.52 and 95% confidence intervals 

[88.52,184.52] 

The ASV and EVLP measurements were plotted to observe their measurement distributions. The 

EVLP inspiratory tidal volume measurements from case 1 were visualized using a probability 

plot, Figure 6.37 (a), and a histogram, Figure 6.37 (b). The probability shows the shape of the 

distribution relative to a standard normal distribution, the red line. The histograms are annotated 

with the mean, the red vertical line, and their 95% confidence intervals, the two dashed blue 

lines. These plots show that the EVLP case 1 tidal volume measurements have a near normal 

distribution. The probability plot follows the red normal distribution line, except below 5% and 

above 90% probability. Also, the histogram shows that the distribution is centered on the mean 

with a bell curve shape, perhaps with low tailedness. Lastly, both indicate that the measurements 

below 5% probability are outliers. The ASV measurements from case 1 were examined in the 

same way.  
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(a) (b) 

Figure 6.38 Plots of the ventilator test lung ASV inspiratory tidal volume measurements from case 1, (a) 

probability and (b) histogram annotated with the mean = 226.05, red line, and 95% confidence interval 

[155.67,296.43], blue dashed lines 

The ASV tidal volume measurements from case 1 are less consistent and normal in shape than 

the EVLP. The probability plot does not closely follow normality, as seen in Figure 6.38 (a). 

Also, the histogram does not have a bell curve shape. Instead, it is flat with a peak near the mean, 

as seen in Figure 6.38 (b). These features suggest the distribution is left-tailed but have less 

outliers than the EVLP.  

In general, the ASV and EVLP measurements do not have the same distribution shape or 

properties as demonstrated by comparing the case 1 tidal volume distributions. Specifically, they 

have significantly different means and the EVLP seems to have more repeatability because its 

confidence interval is narrower, and its shape is taller than wide. These results match the excess 

kurtosis and skewness scores. Although, the measurement distribution behavior varies between 

parameters and methods, most are centered on their means.  
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In summary, the ASV and EVLP measurement distributions are non-normal with significant 

mean error with varying distribution symmetry and tailedness. Also, the EVLP has a smaller 

standard deviation than the ASV. Lastly, the low mean error of the timing parameters suggests 

that the ASV is measuring physical displacement of the ventilator test lung along with the EVLP 

ventilation.  

 Correlation of the Ventilator Test Lung ASV and EVLP Measurements 

The ASV and EVLP measurement correlation was measured to determine if the ASV 

measurements are dependent on the ventilator test lung displacement. If the ASV and EVLP are 

measuring the lung displacement, they are expected to have good correlation, and ideally a linear 

relationship. Therefore, correlation was measured using the Pearson correlation coefficient [132], 

and an adapted Kolmogorov-Smirnov hypothesis test was used to measure linearity [133]–[135]. 

Also, Passing-Bablok regression was used to create linear models for each tidal parameter using 

the ASV and EVLP paired measurements. The method makes no assumptions about the data’s 

distribution, allows both sets of data to have measurement error, and is robust against outliers 

[135]. However, the Passing-Bablok regression is only applicable for continuous variables and 

assumes the data has a linear relationship [135]. Assuming that the model fits the sample data 

well, the slope and intercept of the model can be used to estimate the proportional and systematic 

bias between the systems [136], [137].  
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Figure 6.39 Plot of Passing-Bablok regression of the case 1 ASV and EVLP inspiratory tidal volume of 

the ventilator test lung 

The experiment cases were individually measured for correlation and linearity, then modelled 

using Passing-Bablok regression. However, when the models and data were plotted, they were 

found to cluster around a single value. This tendency can be seen in the case 1 regression plot, as 

seen in Figure 6.39. Also, the measurements show more variance along the ASV axis. This trend 

occurs cases are when modeled individually for all parameters.  

It is hypothesized that this distribution occurs because each case is an experimental configuration 

of two variables: the Intel RealSense D435 height, and the EVLP ventilation blower rate, which 

indirectly controls the tidal volume and airway pressure. Tidal volume, pressure, and dependent 

metrics would have target values that remain constant within cases but would change between 

cases. For all other parameters, their ventilation setting did not change between or within any 

experiment cases. If this is the case, then the regression figures and models are centered on these 

ventilation targets. 

The Passing-Bablok regression method assumes that the samples are from a continuous 

distribution. Since the paired samples centre on the ventilation target values, this is not 
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achievable with the data from any case individually. As a result, the method and data are not 

expected to provide a strong correlation between the paired samples, and their population.  

To mitigate this issue, regression models for each parameter were created using the paired 

samples from multiple cases. This step would not address the problem for any of the parameters 

with constant ventilation target values between cases. However, this approach will create 

multiple clusters for the tidal volume. This step will broaden the range of measurements, making 

it closer to a continuous dataset. 

Accumulating data from multiple case will bias the regression model, as it will likely form a 

linear relationship that passes through the cluster centers. Likewise, the constant parameters will 

remain biased to having no significant relationship. 

  
Figure 6.40 Plot of Passing-Bablok regression of the EVLP test lung inspiratory tidal volume from cases 

1, 4, and 7 

Six regression models were obtained for the groups of cases with the same experimental 

configurations levels, three for each level of the blower rate and three for each level of Intel 

RealSense D435 height. As see in Figure 6.40, the inspiratory tidal volume paired samples from 
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cases 1, 4, and 7 cluster around one point. Each case was taken at the same tidal volume but 

different Intel RealSense D435 heights. This may indicate that the Intel RealSense D435 height 

did not have a significant effect on the distribution of the measurements. This behavior was 

found in the combined regression models and other parameters. As a result, all nine experiment 

cases were measured as one combined dataset. 

Table 6.6 Linearity of all experiment case ASV and EVLP measurements of the ventilator test lung 

Parameter 
Linearity 

Significant 

Maximum 

Cumulative 

Sum Rank 

Difference 

Critical 

Value 

Inspiratory Tidal Volume, VTi [mL]  69.00 36.34 

Expiratory Tidal Volume, VTe [mL]  71.00 36.34 

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20]  43.33 36.11 

Expiratory Dynamic Compliance, Cdyne [mL/cmH20]  79.37 36.16 

Time to Peak Tidal Inspiratory Flow, tPTIF [s]  58.00 25.66 

Time to Peak Tidal Expiratory Flow, tPTEF [s]  47.00 25.52 

Inspiratory Time, tI [s]  36.00 25.66 

Expiratory Time, tE [s]  26.00 25.44 

Total Time, tTot [s]  44.00 25.37 

Inspiratory Total Time Ratio, tITot  40.00 25.37 

Inspiratory Expiratory Time Ratio, tIE  40.00 25.37 

Respiratory Rate, RR [bpm]  50.00 25.37 

The ASV and EVLP paired measurements were found to be non-linear for all parameters, as seen 

in Table 6.6. As previously mentioned, linearity and correlation are prerequisites for Passing-

Bablok regression [135] and Pearson correlation is valid for measuring linear relationships [132]. 

Therefore, it is unlikely that the Passing-Bablok regression models and Pearson correlation 

coefficient will be valid. 
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Table 6.7 Correlation of all experiment cases ASV and EVLP measurements of the ventilator test lung 

Parameter 

Pearson 

Correlation 

Coefficient 

Correlation 

Significant 

Correlation 

p-value 

Inspiratory Tidal Volume, VTi [mL] 0.3918 ✓ 1.31E-27 

Expiratory Tidal Volume, VTe [mL] 0.3727 ✓ 6.08E-25 

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] -0.0534 ✓ 1.57E-01 

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 0.1736 ✓ 3.42E-06 

Time to Peak Tidal Inspiratory Flow, tPTIF [s] -0.0087 ✓ 8.70E-01 

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.0332 ✓ 5.34E-01 

Inspiratory Time, tI [s] 0.1310 ✓ 1.33E-02 

Expiratory Time, tE [s] 0.1727 ✓ 1.18E-03 

Total Time, tTot [s] 0.3430 ✓ 4.55E-11 

Inspiratory Total Time Ratio, tITot 0.1376  0.27 

Inspiratory Expiratory Time Ratio, tIE 0.1229  0.26 

Respiratory Rate, RR [bpm] 0.4042  1.03 

The Pearson correlation coefficient was measured between the ASV and EVLP paired 

measurements for all parameters and cases. For all data sets, most parameters were found to 

represent the population correlation, as seen in Table 6.7. It is hypothesized that the methods 

have poor correlation because of the significant difference in measurement variance, which was 

evaluated in Chapter 6.4.2. Despite the measurements having poor correlation and being non-

linear, Passing-Bablok regression was used to further evaluate their relationship.  
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Table 6.8 Passing-Bablok regression parameters of the ASV and EVLP measurements from all 

experiment cases combined of the ventilator test lung  

Parameter 

Coefficient of 

Determination, 

R2 

Intercept Slope 

95% Confidence 

Interval 

Slope Intercept 

Inspiratory Tidal Volume, VTi 

[mL] 
-0.02 18.40 0.50 0.46 0.54 7.62 28.09 

Expiratory Tidal Volume, VTe 

[mL] 
-0.02 0.14 0.62 0.56 0.67 

-

13.86 
13.37 

Inspiratory Dynamic Compliance, 

Cdyni [mL/cmH20] 
-1.86 -27.97 1.50 1.30 1.74 

-

35.21 

-

22.14 

Expiratory Dynamic Compliance, 

Cdyne [mL/cmH20] 
-1.41 -40.66 1.97 1.70 2.29 

-

50.30 

-

32.65 

Time to Peak Tidal Inspiratory 

Flow, tPTIF [s] 
-25.76 -2.30 4.00 3.00 5.00 -3.00 -1.60 

Time to Peak Tidal Expiratory 

Flow, tPTEF [s] 
-0.03 1.23 0.05 0.03 0.08 1.19 1.27 

Inspiratory Time, tI [s] -0.45 1.72 0.29 0.22 0.37 1.52 1.88 

Expiratory Time, tE [s] -0.29 3.79 0.25 0.18 0.33 3.37 4.13 

Total Time, tTot [s] -1.63 -0.01 1.00 1.00 1.33 -2.49 0.00 

Inspiratory Total Time Ratio, tITot -0.47 0.24 0.27 0.21 0.35 0.21 0.26 

Inspiratory Expiratory Time Ratio, 

tIE 
-0.82 0.35 0.26 0.20 0.34 0.31 0.38 

Respiratory Rate, RR [bpm] -1.99 -0.22 1.03 1.00 1.29 -2.35 0.03 

Passing-Bablok regression was used to model the linear relationship between the ASV and 

EVLP paired measurements for all tidal parameter and experiment cases. The slope, intercept, 

and coefficient of determination, R2, was measured for each model. Also, the lower and upper 

95% confidence intervals for the slope and intercept were found.  

For case 1, the R2
 values indicates the data does not fit any of the models except for PIP, as seen 

in Table 6.8. These results match the correlation and linearity tests in Table 6.7. A slope of one 

and an intercept of zero are not within the confidence intervals of most parameters. Therefore, 

the 95% confidence intervals indicate that for most parameters, there is systematic and 

proportional bias. These biases are measured as the slope and intercept values. For all 

parameters, except the pressure metrics, the slope and intercept significantly deviate from one 

and zero and are substantial errors. The Passing-Bablok regression plots were examined to 

understand how and why the data is not linear and has a poor correlation.  
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Figure 6.41 Plot of Passing-Bablok regression of the ASV and EVLP inspiratory tidal volume 

measurements of the ventilator test lung  

The Passing-Bablok regression plots are scatter plots of the paired ASV and EVLP 

measurements of a tidal parameter for a specific case. They are annotated with a 95% confidence 

interval, the trend line, and the trend line of a perfectly linear relationship. The paired tidal 

volume measurements from all cases were regressed together, as seen in Figure 6.41. The plots 

show that combining datasets from different blower rate experiment configurations expanded the 

tidal volume dataset range, allowing the regression to model a linear trend.  

Despite, the poor correlation and coefficient of determination, the regression model fits the data 

as it passes through the center of the measurement distribution. Also, the dataset is linear but 

with many outlier data points and significant dispersion. Lastly, this plot confirms that the ASV 

method is overestimating the EVLP by a significant amount. The dynamic compliance regression 

plot looks the same as the tidal volume plot. This is unexpected, since the compliance of the 

ventilator test lung property should be constant. However, this relationship suggests that the 

ventilator test lung became more compliant with higher tidal volumes, or over the course of 

multiple experiment cases. The other parameters did not have this trend though.  
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Figure 6.42 Plot of Passing-Bablok regression of the ASV and EVLP inspiratory time measurements from 

all cases of the ventilator test lung  

The data points of most parameters form a single cluster, like in the regression plot of all 

measurements of inspiratory time from all experiment cases, as seen in Figure 6.42. Despite the 

data points clustering, the ASV and EVLP measurements form a linear relationship with poor 

correlation and coefficient of determination. This trend formed because of the ASV method has a 

larger variance than the EVLP. As a result, the data points are spread across the x-axis, almost 

forming a horizontal line.  
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Table 6.9 Residual mean of Passing-Bablok regression for all valid cases of the ventilator test lung 

Parameter 
Residual 

Mean 

Normalized 

Residual Mean [%] 

Inspiratory Tidal Volume, VTi [mL] -2.59 -0.08 

Expiratory Tidal Volume, VTe [mL] -2.76 -0.07 

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] -0.05 -0.01 

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 0.43 0.06 

Time to Peak Tidal Inspiratory Flow, tPTIF [s] -0.10 -0.21 

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.05 0.14 

Inspiratory Time, tI [s] 0.01 0.04 

Expiratory Time, tE [s] 0.01 0.05 

Total Time, tTot [s] 0.00 0.01 

Inspiratory Total Time Ratio, tITot 0.01 0.04 

Inspiratory Expiratory Time Ratio, tIE 0.00 -0.03 

Respiratory Rate, RR [bpm] -0.01 -0.04 

The Passing-Bablok regression was followed by residual analysis to identify outliers and to 

evaluate if the regression provided an adequate fit for the sample set. Two types of residual plots, 

residual and standardized residual, were made for each parameter. The residual means for both 

types of plots for all cases when combined are summarized in Table 6.9 Residual mean of 

Passing-Bablok regression for all valid cases of the ventilator test lung. These residual means 

suggest that the regression models fit the data well since both types of means are low. The plots 

themselves were examined for any trends, specifically tidal volume since it is one of the only 

parameters that has a wider measurement range.  
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Figure 6.43 Plot of Passing-Bablok regression residuals versus predicted ventilator test lung inspiratory 

tidal volume from all experiment cases  

The residual plots show the regression model trend lines pass through the center of the 

measurement distributions since they means are near zero. Also, they show few trends as most 

data points follow the horizontal residual mean line, as seen in Figure 6.43 for inspiratory tidal 

volume of all experiment cases. For other parameters, the residual plots are similar except the 

data points form a cluster centered on the residual mean. Also, the normalized residual plots 

show the same trends as the original residual plots, except the units are scaled by the 

distribution’s standard deviation. Overall, these residual plots suggest the regression models fit 

well to the data, but the paired measurements have large dispersion and have many outliers 

causing poor model performance. 

In summary, the ASV and EVLP paired measurements have poor correlation and do not have 

statistically significant linearity. This is supported by the coefficient of determination of the 

Passing-Bablok regression models. However, the regression and residual plots show that the 

regression passes through the center of the paired measurement distributions. As a result, the 
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regression fits well with the data, but performance is poor because of the large variance of the 

ASV measurements and several outlier points.  

 ASV and EVLP Measurement Agreement of the Ventilator Test Lung 

Agreement was measured between the ASV and EVLP measurements, to determine if the ASV 

method was interchangeable with the EVLP system. Agreement is a measure of concordance 

between different assessments [132] that is often measured using intra-class correlation [132], 

[138]–[140] and Bland-Altman analysis [137], [140], [141]. The ASV and EVLP agreement was 

measured using all the experiment case data, for the same reasons as in Chapter 6.4.3. 

Intra-class correlation (ICC) is a quantitative measure of agreement and correlation, which 

ranges between zero and one, where one indicates perfect agreement [132], [138]–[140]. There 

are several types based on the application [138], but the Absolute Case 2 type was selected for 

this application. Also, an F-test where the null hypothesis is that ICC is equal to zero, was 

performed on the paired samples to determine if the results are significant [138].  

Bland-Altman analysis examines the distribution of the differences of two methods by plotting 

them against the mean of each pair of measurements [137], [140], [141]. The differences can be 

normalized to remove proportional bias. Also, the differences can be plotted against the 

reference method’s measurements, which in this case is the EVLP. However, it is considered 

controversial as this imposes a relationship between the differences and magnitude [137].  

Bland-Altman assumes that the differences of the two methods are normally distributed, and a 

linear relationship is present. Also, the method is only applicable for continuous variables. It is 

useful for identifying a systematic bias between the methods based on their mean difference. 

Also, different relationships in the two methods can be identified by visualizing the differences 

[137], [140], [141]. Lastly, limits of agreement can be interpreted by medical professionals to 

determine if it is acceptable to interchange methods [137]. 



110 

Table 6.10 Intra-Class Correlation of the ventilator test lung ASV and EVLP measurements of all valid 

cases 

Parameter 
Intra-Class 

Correlation 

Significant 

ICC 
p-value 

Inspiratory Tidal Volume, VTi [mL] 0.081  0.200 

Expiratory Tidal Volume, VTe [mL] 0.110  0.176 

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] -0.007  0.763 

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 0.030  0.210 

Time to Peak Tidal Inspiratory Flow, tPTIF [s] -0.004  0.563 

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.021  0.333 

Inspiratory Time, tI [s] 0.080  0.061 

Expiratory Time, tE [s] 0.103 ✓ 0.024 

Total Time, tTot [s] 0.303 ✓ 0.000 

Inspiratory Total Time Ratio, tITot 0.079  0.065 

Inspiratory Expiratory Time Ratio, tIE 0.057  0.136 

Respiratory Rate, RR [bpm] 0.341 ✓ 0.000 

The ICC and F-test results for paired samples from all experiment cases are summarized in Table 

6.10. All parameters were found to have poor ICC. Also, only three parameters were found to 

have non-zero ICC based on the F-test. Overall, these results indicate the ASV and EVLP do not 

agree. Agreement was examined using the Bland-Altman method.  

Table 6.11 Shapiro-Wilk normality of the ventilator test lung ASV and EVLP measurement differences of 

all valid cases 

Parameter 
Method Difference 

Normality 
p-value 

Inspiratory Tidal Volume, VTi [mL]  5.55E-16 

Expiratory Tidal Volume, VTe [mL]  2.13E-13 

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20]  0.00E+00 

Expiratory Dynamic Compliance, Cdyne [mL/cmH20]  0.00E+00 

Time to Peak Tidal Inspiratory Flow, tPTIF [s]  0.00E+00 

Time to Peak Tidal Expiratory Flow, tPTEF [s]  1.41E-06 

Inspiratory Time, tI [s]  7.77E-16 

Expiratory Time, tE [s]  6.44E-15 

Total Time, tTot [s]  0.00E+00 

Inspiratory Total Time Ratio, tITot  1.11E-15 

Inspiratory Expiratory Time Ratio, tIE  0.00E+00 

Respiratory Rate, RR [bpm]  0.00E+00 

A prerequisite for Bland-Altman analysis is that the differences have a normal distribution. The 

normality of the difference of the ASV and EVLP measurements for all tidal parameters were 

found using the Shapiro-Wilk test, as seen in Table 6.11. All parameters were found to have a 
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non-normal distribution. This invalidates the Bland-Altman limits of agreement, as they are 

computed with this assumption.  

 
(a) (b) 

Figure 6.44 Plots of the difference of the ASV and EVLP inspiratory tidal volume measurements from all 

experiment cases as (a) probability and as (b) histogram annotated with the mean and confidence 

intervals 

The differences were visualised using probability and histogram plots to identify how the 

distributions deviated from normality. The inspiratory tidal volume difference plots show that the 

distribution looks normal, since it follows a normal probability, as seen in Figure 6.44 (a). Also, 

the histograms have a bell curve shape, as seen in Figure 6.44 (b). Therefore, the limits of 

agreement may not be valid. 
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Figure 6.45 Plot of the Bland-Altman analysis of the ASV and EVLP measurements of inspiratory tidal 

volume of the ventilator test lung 

For the reasons described in Chapter 6.4.3, the Bland-Altman analysis was performed on the 

paired measurements from all experiment cases combined. The mean of the differences is shown 

as a horizontal red line, along with the lower and upper limits of agreement as blue lines. The 

limits of agreement are found as the 95% confidence intervals of a normal distribution, 

calculated from standard deviation [137], [141]. 

The Bland-Altman plots for most of the parameters formed a single cluster, like in the regression 

plots in Chapter 6.4.3. The inspiratory tidal volume and dynamic compliance Bland-Altman plot 

were the exception. The data points clustered around three points in the Bland-Altman plot in 

Figure 6.45, just as it was seen in Chapter 6.4.3. It is hypothesized these three clusters are 

centered on the tidal volume achieved from the three blower rate settings in the different 

experiment configurations. Also, the differences slightly decrease with respect to the mean of the 

paired measurements, indicating proportional bias. The mean of the differences can be used as an 

estimate of the systematic bias between paired measurements. Outliers can be identified as being 

outside the limits of agreement. 
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Figure 6.46 Plot of the Bland-Altman analysis of the ASV and EVLP normalized measurements of 

inspiratory tidal volume of the ventilator test lung  

The inspiratory tidal volume differences were normalized and plotted, as seen in Figure 6.46. 

Also, the mean and limits of agreement are normalized. In this case, Figure 6.46 shows the same 

behaviour as Figure 6.45 without the proportional bias. Another difference is that the normalized 

plot shows the outliers more clearly below the limits of agreement.  
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Table 6.12 Bland-Altman analysis mean, confidence interval, and limits of agreement of the ASV and 

EVLP measurements from all valid cases for the ventilator test lung 

Parameter 
Mean 

Difference 

Mean 

Difference 95% 

Confidence 

Interval 

Limit of 

Agreement 

Inspiratory Tidal Volume, VTi [mL] 111.46 108.43 114.48 15.38 207.53 

Expiratory Tidal Volume, VTe [mL] 100.85 97.60 104.10 -2.41 204.10 

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] 13.07 12.75 13.38 3.18 22.95 

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 11.40 11.10 11.70 1.78 21.02 

Time to Peak Tidal Inspiratory Flow, tPTIF [s] 0.16 0.15 0.17 -0.12 0.44 

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.27 0.19 0.36 -1.56 2.11 

Inspiratory Time, tI [s] 0.07 0.04 0.11 -0.71 0.86 

Expiratory Time, tE [s] -0.07 -0.11 -0.04 -0.88 0.73 

Total Time, tTot [s] -0.01 -0.02 0.01 -0.35 0.33 

Inspiratory Total Time Ratio, tITot 0.01 0.01 0.01 -0.09 0.11 

Inspiratory Expiratory Time Ratio, tIE 0.03 0.02 0.05 -0.26 0.33 

Respiratory Rate, RR [bpm] 0.01 -0.01 0.03 -0.38 0.40 

The Bland-Altman analysis results are summarized in Table 6.12. The results include the mean 

of the residual, the confidence intervals for the mean of the residual, and the limits of agreement. 

These results validate the ICC measurements, indicating that the ASV and EVLP have poor 

agreement. Ideally, the mean of the residual is zero, indicating no systematic bias. As seen in 

Table 6.12, most of the tidal volume and flow rate derived metrics have significant residual 

means, indicating systematic bias. For example, the inspiratory tidal volume difference mean is 

111.46. Also, systematic bias is present because the confidence intervals do not include zero. 

Furthermore, the limits of agreement indicate poor agreement because they are very wide. For 

reference, the EVLP sensor has a flow rate total error band of ± (2.5 + 0.5 FS) % while the ASV 

inspiratory tidal volume limits of agreement are ± 96.14. It is very unlikely this performance 

would be an acceptable substitute for clinical application. The timing and pressure metrics have 

low residual means, as seen in Table 6.12. However, the timing residual means might be 

significant for the scale of its measurements. The residual means were normalized to determine 

they have significant systematic bias relative to the scale of the measurements. 
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Table 6.13 Bland-Altman analysis normalized mean and limits of agreement of the ASV and EVLP 

measurements from all valid cases of the ventilator test lung 

Parameter 
Normalized Mean 

Difference 

Normalized Limit of 

Agreement 

Inspiratory Tidal Volume, VTi [mL] 0.56 0.09 1.03 

Expiratory Tidal Volume, VTe [mL] 0.50 -0.04 1.04 

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] 0.57 0.03 1.11 

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 0.49 0.02 0.96 

Time to Peak Tidal Inspiratory Flow, tPTIF [s] 0.24 -0.13 0.61 

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.05 -1.06 1.17 

Inspiratory Time, tI [s] 0.02 -0.28 0.31 

Expiratory Time, tE [s] -0.02 -0.20 0.16 

Total Time, tTot [s] 0.00 -0.05 0.05 

Inspiratory Total Time Ratio, tITot 0.02 -0.27 0.31 

Inspiratory Expiratory Time Ratio, tIE 0.04 -0.41 0.48 

Respiratory Rate, RR [bpm] 0.00 -0.05 0.05 

The normalized results are a percentage relative to the mean of the paired samples, giving 

measures of performance that are independent of the order of magnitude. The normalized Bland-

Altman analysis results are summarized in Table 6.13. The confidence interval was not 

normalized because the normal confidence intervals already confirmed the presence of 

systematic bias. The normalized residual means validate that there is significant systematic bias. 

Tidal volume derived metrics were found to have normalized residual means around 50%. 

However, the timing derived metrics were found to have low normalized residual means that 

indicate around a 5% error. Lastly, the normalized limits of agreement indicates poor agreement, 

supporting previous measurements.  

In summary, the ASV and EVLP methods have poor agreement based on intra-class correlation 

measurements and Bland-Altman analysis. The tidal volume derived metrics were found to have 

large systematic error based on the confidence intervals of residual means, the residual means, 

and limits of agreement. However, the timing metrics were found to sometimes have reasonable 

agreement, high ICC, and low residual means.  
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 Discussion 

 Sources of Error 

The Bland Altman and Passing-Bablok analysis found significant systematic and proportional 

bias in the tidal volume measurements between the ASV and EVLP methods. However, the ASV 

and EVLP methods had reasonable agreement in measuring respiratory cycle timing parameters 

such as respiratory rate and expiratory time. Furthermore, the ASV method has a slightly smaller 

measurement standard deviation than the EVLP for tidal volume and dynamic compliance. This 

implies that the ASV method was able to consistently measure the ventilator test lung’s 

displacement, especially the timing, but with an inaccurate intensity.  

 
Figure 6.47 Schematic of the ventilator test lung distending in all directions, lifting the entire lung 

It is hypothesized when the ventilator test lung inflates in all directions, it lifts the entire lung 

including its top surface. Therefore, instead of the ASV method just measuring the displacement 

of the top surface, it is measuring this systematic and proportional offset in surface height 

causing the tidal volume measurements to increase. In this case, the distance between the center 

of the ventilator test lung and the datum would increase during ventilation, as seen in Figure 

6.47. This would lift the entire ventilator test lung, in addition to the displacement of the top 

surface, increasing the measured displacement using the surface integration method.  
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The curved surface of the ventilator test lung might have caused the occlusion of one or both 

infrared ASVs in the Intel RealSense D435. As a result, depth holes formed along the perimeter 

of the ventilator test lung. This effect might be more prominent at higher tidal volumes because 

the surface curvature would increase with displacement. Therefore, this occlusion could have 

systematically and proportionally decreased the estimated volume of the ventilator test lung. This 

effect would impact the tidal volume and dynamic compliance.  

 
Figure 6.48. Schematic of the effect of ASV angle on surface integration   

The Intel RealSense D435 perspective could have caused another issue. The surface integration 

method could have been impacted by any misalignment between the EVLP and Intel RealSense 

D435. Any angular deviation from perpendicularity between the ventilator test lung and Intel 

RealSense D435 would cause the integration method to estimate a different volume, as seen in 

Figure 6.48. This is an issue because the ventilator test lung and Intel RealSense D435 are 

assumed to be perpendicular. This assumption is used to transform the surface point cloud from 

the Intel RealSense D435 perspective into another more favorable coordinate system. 
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 ASV Method Limitations 

The main limitation of the ASV method is that it does not track the surface of the ventilator test 

lung, as described in Chapter 6.3.4. The regional measurements are distorted by the ventilator 

test lung as it moves to a different position throughout the respiratory cycle. As a result, the 

surface tidal displacement and surface dynamic compliance do not represent the displacement of 

the lung across its surface. Also, the regional measurements cannot be used for peak detection 

because the ventilator test lung’s movement enforces maxima and minima regions that are 

correlated to localized over-inflation.  

 
Figure 6.49 Image of the depth map of the ventilator test lung with depth holes that outline the lung 

The edge-based segmentation method was another limitation of the ASV method in this 

experiment. Specifically, the segmentation method was found to be dependent on the depth holes 

caused by occlusion to create a valid edge map to segment the ventilator test lung, as seen in 

Figure 6.49. The occlusion created depth holes that outline the ventilator test lung and other 

objects.  
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Figure 6.50 Image of the ventilator test lung edge map with circles from small regions of occlusion in the 

depth map 

The Canny edge detection method only returned edges along the perimeter of depth holes, as 

seen in Figure 6.50. It is hypothesized it only returned depth hole edges because they were the 

only “strong” edges found using hysteresis thresholding. This could be due to the occlusion 

edges being significantly greater than the other edges, raising the parametric upper and lower 

thresholds above the other edges. As a result, the edge map of the ventilator test lung has many 

circles formed by the depth holes seen in Figure 6.49. The isolated circles that were removed by 

the processing scheme are colored in magenta. Also, dependence on these edges makes the 

segmentation method vulnerable to stray objects in the scene, and limits which edges in the depth 

map will be used for edge-linking.  
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Figure 6.51 Image of the edge map of the ventilator test lung with erroneous spurs and sub-regions 

During edge linking, the edges from the small regions of depth hole form sub-regions inside the 

lung, and create spurs along the lung’s perimeter, as seen in Figure 6.51. This edge map is 

covered in erroneous spurs and sub-regions that will either cause segmentation failure or will 

lead to erroneous segmentation of the ventilator test lung. This segmentation error caused the 

experiment case 3 dataset to have an inaccurate displacement signal from surface integration, 

which resulted in invalid plethysmography measurements 

The segmented region will not accurately represent the ventilator test lung. These problems 

could be mitigated with another segmentation method, that is less sensitive to occlusion, or by 

removing the depth holes in the depth maps. However, other segmentation approaches were 

attempted, such as depth thresholding, were found to be difficult to implement.  
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 Conclusion 

The surface displacement of a ventilator test lung was measured by the Intel RealSense D435 

during mechanical ventilation performed by an EVLP. The Intel RealSense D435 measurements 

were used to obtain plethysmography and regional measurements using the processing scheme 

described in Chapter 5. Also, the EVLP derived the same plethysmography measurements from 

its flow rate and pressure measurements. The ASV measurement system was evaluated by 

comparing its measurements with the EVLP method.  

The individual experiment case datasets were found to cluster around a single point that was 

dependent on ventilation tidal volume. Analyzing an individual experiment case led to invalid 

results because they do not have a wide measurement range. Therefore, all samples from all 

experiment cases were combined into one data to compare the methods. 

Correlation was measured using Pearson correlation coefficient and Passing-Bablok regression. 

The ASV and EVLP methods were found to have poor a Pearson correlation coefficient. The 

regression models’ confidence intervals, slope, and intercept indicate the methods have 

systematic and proportional error. Also, the regression models were found to have a poor 

coefficient of determination despite the models passing through the center of the measurement 

distribution. It was hypothesized that the models performed poorly because the ASV 

measurements have high dispersion.  

Agreement was measured using intra-class correlation and Bland-Altman analysis. The ASV and 

EVLP methods were found to have poor intra-class correlation. Also, the residual means of the 

Bland-Altman plots were large for the tidal volume derived metrics, indicating poor agreement 

due to systematic error. However, the residual means were small for the timing metrics 

suggesting the ASV measured the same respiratory cycle changes as the EVLP.  
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7 Active Stereo Vision Method in a Clinical Setting 

The study in Chapter 6 provides a general idea of the method’s performance. However, the 

ventilator test lung and human lung are dissimilar in shape, scale, and most importantly 

compliance, as elastomer does not perfectly mimic tissue. Also, the EVLP was repurposed for 

the study, as it was not intended to perform positive pressure ventilation. 

A better human lung surrogate are porcine lungs, which are commonly used in medical studies. 

A pair of porcine lungs were acquired, from another EVLP study, and ventilated with a clinical 

ventilator unit to perform another method comparison analysis. The porcine lung was measured 

with the Intel RealSense D435 and ventilator unit system. The data was processed for 

plethysmography measurements using the previously described processing scheme. However, a 

different image segmentation method was used than the method used in Chapter 6. Also, only a 

few plethysmography measurements were accessible from the ventilator unit, limiting the scope 

of the method comparison analysis.  
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 Experiment Equipment 

 
Figure 7.1 Annotated image of a porcine lung inside an open EVLP 

The porcine lung, seen in Figure 7.1, was excised from a 75 kg donor for another EVLP study 

for 12 hours. As part of this previous experiment, the porcine lung was sealed within an EVLP, 

resting on top of the EVLP compliant trampoline seen in Figure 7.1. Also, the lung was intubated 

to form an airway connection to the EVLP. To access the trachea for intubation, the rough face 

of the porcine lung was faced upward, resting the smooth face directly on the trampoline. 

Intubation

Airway

Porcine Lung EVLP Trampoline
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Figure 7.2 Annotated image of the porcine lung inside an EVLP with the Intel RealSense D435 

The equipment and setup from the previous experiment was re-used for this study. Specifically, 

the porcine lung remained on top of the EVLP trampoline, and the intubated airway was reused 

for ventilation. Similarly, the same tripod for the Intel RealSense D435 from Chapter 6 was 

reused. However, some parts of the previous experiment setup were modified for this 

experiment. The EVLP cover was removed to give the Intel RealSense D435 a direct line of 

sight to the porcine lung from above, as seen in Figure 7.2. Also, the EVLP was not used to 

ventilate the porcine lung. 
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Figure 7.3 Annotated image of the Draeger Evita XL ventilator and laptop for Vital Signs Capture 

The Draeger Evita XL, seen in Figure 7.3, was used to ventilate the porcine lung. It is a clinical 

ventilation unit for long term intensive care intended for adults, children, and neonates. The 

ventilator supports full mechanical ventilation or can assist spontaneous breathing. Ventilation 

can be performed in several different ventilation modes, including constant mandatory 

ventilation (CMV) which delivers breaths based on set variables, while regulating others. The 

mode, and breathing parameters are set using a touchscreen in a GUI. Additionally, it monitors 

metrics such as airway pressure, expiratory minute volume, and inspiratory tidal volume. 

The Draeger Evita XL uses a proprietary encoding method, the Medibus protocol, for exporting 

data. Typically, specialized communication units are required to decode and display the 

ventilator’s measurements and settings, however, the encoding method is publicly available. An 

open-source software called Vital Signs Capture, or VSCapture, was used to read measurements 

from the Draeger Evita XL using a StarTech RS232 to USB adapter to connect to a laptop as see 

in Figure 7.3. 

Laptop for Vital Signs 

Capture software

Draeger Evita XL
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Figure 7.4 Annotated image of the Draeger Evita XL touchscreen GUI 

The Draeger Evita XL uses a touchscreen and graphical user interface that is divided into three 

main sections, as shown in Figure 7.4. The first section at the bottom left of the screen allows the 

user to set ventilator settings, and the ventilation mode. The Draeger Evita XL is set in the CMV 

mode with six setting variables. The main ventilator settings shown are tidal volume (VT), 

inspiratory time (Tinsp), breaths per minute (f), and slope, the time it takes to reach peak volume 

during inspiration. The second section, in the top right of the screen, provides real-time 

measurements including the expiratory tidal volume, average tidal volume, minute volume, and 

breathing rate. The last section, the top left of the screen, shows the airway pressure and flow 

rate curves. Other parameters are monitored, but not shown. 
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Figure 7.5 Annotated image of the porcine lung experimental setup 

For this experiment, the Draeger Evita XL was connected to the porcine lung through the EVLP 

and intubated airway, as seen in Figure 7.5. It had several advantages for this experiment such as 

being mobile and having a publicly available manual. Also, most of its ventilation modes allow 

direct control over tidal volume, which the EVLP does not.  

 Calibration and Data Acquisition 

Before data acquisition, the Intel RealSense D435 was calibrated using the same methods 

described in Chapter 4 and 6.2 . The intrinsic parameters, extrinsic parameters, and depth quality 

metrics from calibration are listed in Appendix D.  

Draeger Evita XL
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Airway

Intel D435

Porcine Lung
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(a) (b) 

Figure 7.6 Images of the porcine lung from the Intel RealSense D435 (a) color and (b) depth map streams 

The color and depth map streams, as seen in Figure 7.6 (a) and (b), from the Intel RealSense 

D435 were recorded at 240 × 424 pixels and 30 fps, using the same methods described in 

Chapter 6.2 . Projective transformation was performed on the depth map to be aligned with the 

color image as seen in Figure 7.6. Additionally, the depth maps were spatially and temporally 

filtered using the Intel Realsense SDK 2.0. Default ASV settings were used in the Intel 

Realsense Viewer application. Notably, the image resolution was set to 240 × 424 because of the 

Intel Realsense Viewer would crash at higher resolutions likely due to memory limitations. 
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Figure 7.7 Plot of the tidal volume and dynamic compliance of the porcine lung during ventilation from 

the Draeger Evita XL obtained using Vital Signs Capture 

The Draeger Evita XL measurements and set variables were recorded using a laptop running the 

Vital Signs Capture software in its real time mode, updating measurements every second. This 

includes tidal volume and dynamic compliance, as seen in Figure 7.7. The data was exported as 

three csv tables, listing information against timestamps, including ventilation mode, monitored 

metrics, and settings. Draeger Evita XL measurements did not include pressure or volume; 

however, PIP and PEEP were recorded. 

Data was acquired from the Intel RealSense D435 and the Draeger Evita XL for several 

experiment cases with different ventilation settings. Experiment cases were designed to test the 

regional measurements and provide a larger range of values than the study in Chapter 6.  
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Table 7.1 Porcine lung experiment cases 

Case Experiment Type Tidal Volume [mL/kg] Tidal Volume [mL] 

1 Steady state 4 300 

2 Steady state 6 450 

3 Steady state 8 600 

4 Gradual Fall 8,7,6,5, and 4 600, 520, 450, 380, and 300 

5 Gradual Rise 4,5,6,7, and 8 300, 380, 450, 520, and 600 

6 Switch 4 to 8 to 4 … 300 to 600 to 300 … 

Tidal volume was the only ventilation parameter to change between and within the six 

experiment cases, as seen Table 7.1. As mentioned in Chapter 6, it was assumed that only tidal 

volume would meaningfully change the measurements of the Intel RealSense D435, because it 

only measures the physical displacement of the porcine lung. 

For cases 1, 2, and 3, the ventilation tidal volume remained constant to measure baseline 

performance. The tidal volume settings were selected based on the weight of the lung donor, 

which is common practice for mechanical ventilation [22], [142]. Typically, human lungs are 

ventilated with a low tidal volume between 6-8 mL per kg donor weight [142], with 12-15 mL 

per kg as a historic high [22]. These ventilation limits were used as a reference when the tidal 

volume levels were selected to avoid visual under inflation and over inflation of the porcine lung. 

Therefore, the tidal volume setting was found by multiplying the weight of the donor, 75 kg, by a 

tidal volume per weight.  

The tidal volume changed within the other three experiment cases to measure changes in 

performance. They were designed to collect data to measure a wide range of tidal volume values, 

and measure changes with time. For Case 4 the tidal volume gradually decreased from 8 mL/kg 

to 4 mL/kg in 1 mL/kg increments, as seen in Table 7.1. Case 5 is the reverse of case 4, where 

the tidal volume was increased gradually from 4 mL/kg to 8 mL/kg. In case 6, the tidal volume 

was switched between 4 mL/kg and 8 mL/kg without incremental steps. 

Since the Draeger Evita XL is controlled by setting a discrete target tidal volume, the tidal 

volume was manually changed for each increment in the experiment cases. However, the 

ventilator was found to take approximately 45 seconds to reaches a new target tidal volume after 

changing the setting. Therefore, data was recorded for about five minutes for each case, spending 

about 45 seconds at each tidal volume level when multiple levels existed. 
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Table 7.2 Porcine lung ventilator settings 

Parameter Setting 

Inspiratory Time, [s] 2.0 

f, [bpm] 8.0 

Slope, [-] 0.90 

PEEP, [cmH20] 10 

O2, [%] 21 

These experiment cases were implemented by using the CMV auto-flow ventilation mode on the 

Draeger Evita XL. The CMV mode is entirely mechanical ventilation that strives to achieve set 

variables, while regulating others. The set variables include tidal volume, inspiratory time, 

breathing rate, slope, PEEP, and O2 concentration by percentage. The set variables, except for 

tidal volume, remained the same between all experiment cases, as outlined in Table 7.2. Notably, 

the O2 concentration setting was irrelevant because only pressurized air was connected to the 

Draeger Evita XL. 

Typically, the ventilator is connected to pressurized medical grade oxygen and carbon dioxide 

using a gas mixer. The ventilator regulates this input airflow to achieve desired pressures or tidal 

volumes. However, for this experiment the ventilator was connected to pressurized air, and 

atmospheric air to simply pressurize the lungs, and achieve physiological displacement during 

breathing. Both medical grade oxygen and carbon dioxide were not needed or available, to 

achieve porcine lung displacement and gas exchange in tandem with blood perfusion. 

 Image Processing Scheme for Clinical Cases 

 Color Image and Depth Map Segmentation 

In chapter 4, an edge-based method was used to segment the ventilator test lung, however, it was 

not re-used for the porcine lung. It was hypothesized that the edge-based method would fail to 

segment the porcine lung because its edges are not distinct in the depth map, as seen in Figure 

7.6 (b). Also, the edge-based method in Chapter 6 was found to be dependent on depth holes 

caused by occlusion to separate the lung and the background, which the porcine lung depth maps 

lack. As an alternative, a region-based segmentation method was tested on the depth maps. 

However, this method was found to be inconsistent because the porcine lung and EVLP 
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trampoline are found at similar depths. Therefore, the other image streams from the Intel 

RealSense D435 were considered for segmentation. 

The color image stream was the natural choice as an alternative image to segment the porcine 

lung. The edge and regions between the porcine lung and background are distinct based on color, 

as seen in Figure 7.6 (a). Therefore, both edge-based and region-based image segmentation 

methods were feasible. Also, projective transformation was performed on the depth maps to 

align them with the color images. Since they are aligned, the porcine lung will be in the same 

pixel locations in both images. Therefore, the segmentation binary map obtained from a color 

image can be used directly to segment the depth maps.  

Through trial and error, the lazy snapping segmentation method was selected to segment the 

porcine lung in the color images. As described in Chapter 5, lazy snapping is a semi-automatic 

region-based method that segments an image into a foreground and background. It requires seed 

locations for the foreground and background that are interactively drawn shapes on top of the 

image. 
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Figure 7.8 Annotated color image from the Intel RealSense D435 of the porcine lung with interactively 

marked foreground and background for segmentation  

Foreground and background seed regions were interactively drawn on the color images, as seen 

in Figure 7.8. The foreground seed region is centered on and only includes the porcine lung. The 

background seed region selects the entire left side of the color image, not including the porcine 

lung. This section of the image includes the floor, EVLP trampoline and chamber, and the 

intubated airway connection. The foreground and background are only drawn once and reused to 

segment all color images in an experiment case. 

To improve lazy snapping segmentation, the color images are contrast enhanced using histogram 

equalization [100], and the unsharp mask technique [100] to create more distinct edges. Also, the 

color images were oversegmented into sub-regions to improve computational performance [107].  

Foreground

Background
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Figure 7.9 Color image of the porcine lung oversegmented into super pixels 

Oversegmentation was performed on the color images using the super pixels method, which are 

semi-large groups of similar pixels [143], [144], as seen in Figure 7.9. Instead of lazy snapping 

each pixel, the method evaluates each super pixel as part of the foreground or background. 

Notably, the super pixels have edges that follow the perimeter of the lung, and other objects.  

  
(a) b) 

Figure 7.10 Image of a binary map segmented from the porcine lung color images (a) before and (b) after 

morphological closing 

The porcine lung was segmented using lazy snapping with the super pixels on the color images, 

providing a binary map of the lung, as seen in Figure 7.10 (a). The binary lung retained the shape 

of the super pixels, which is visible along the lung’s perimeter. However, the super pixels only 
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roughly match the outline of the porcine lung, creating spurs in the binary map. Also, the blood 

on the EVLP trampoline seen in Figure 7.8 was segmented along with the lung. To correct for 

these errors the binary maps were post-processed using four steps: 

1. Object removal 

2. Hole filling 

3. Morphological smoothing 

4. Temporal smoothing 

In the first step, all bodies were removed from the binary maps, except the largest that was 

assumed to be the porcine lung. This step removed speckles of blood that were on the EVLP 

trampoline. However, this did not remove the blood right beside the lung. The second step was to 

fill any holes in the remaining body.  

The third and fourth steps performed spatial and temporal smoothing, like the Intel RealSense 

SDK depth map filters. Spatial smoothing was performed using morphological closing with a 

circle structural element. This smoothed the perimeter of the porcine lung in the binary maps, 

removing the green pixels in Figure 7.10 (b). 

  
(a) (b) 

Figure 7.11 Image of a binary map segmented from the porcine lung color images (a) after temporal 

filtering and (b) the original color image segmented by the binary map 

Temporal smoothing was performed by finding the pixel-wise average across multiple binary 

maps, forming an image, then binarizing the result by thresholding. This method was used in 

Chapter 6.  
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The temporal smoothing process is repeated for all the binary maps with a moving window that 

selects images. If the sampling rate is known, the moving window size, moving average values, 

and threshold can be viewed in terms of seconds instead of frames. As a result, the binary maps 

only retain pixels that are consistently segmented, removing the magenta pixels in Figure 7.11 

(a). These three parameters were adjusted through trial and error to obtain acceptable results. The 

temporally smoothed binary maps can be used to segment the porcine lung in the color images as 

seen in Figure 7.11 (b). 

  
(a) (b) 

Figure 7.12 Images of (a) the depth thresholded binary map of the porcine lung and (b) the depth map 

masked by the threshold binary map 

To use the binary maps on the depth maps, pixels below a threshold in the depth maps are 

removed from binary maps. This step mostly removes pixels with depth holes, as seen in Figure 

7.12 (a) and (b). The depth threshold was measured before the experiment, as the distance from 

the Intel RealSense D435 to the EVLP trampoline.  

 Point Cloud Processing 

The same procedure described in Chapter 6.3.2 was performed on the porcine lung data.  
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(a) (b) 

Figure 7.13 3D plot of the reconstructed surface of the porcine lung as (a) point cloud and (b) the point 

cloud colorized using the color images 

The segmented depth maps were deprojected into point clouds, providing points on the surface 

of the porcine lung, as seen in Figure 7.13 (a). Also, the color image data was inherited by the 

point cloud, allowing the point cloud to be colored as seen in Figure 7.13 (b). 

  
(a) b) 

Figure 7.14 3D plots of the downsampled and transformed porcine lung (a) point cloud and (b) colored 

point cloud 

The point clouds were downsampling using a box averaging filter to make it sparser, remove 

outliers, and denoise the surface. Also, the point clouds were transformations to align the point 

clouds with the EVLP trampoline, as see in Figure 7.14 (a) and Figure 7.14 (b). 
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 Surface Reconstruction of the Porcine Lung 

 
Figure 7.15 Plot of the surface map of the porcine lung 

The porcine lung’s surface was reconstructed from its point clouds, as described in Chapter 5. 

The spatial and color information was interpolated at the same grid points on the xy plane, for all 

frames from the down sampled point clouds, as seen in Figure 7.15.  
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Figure 7.16 3D Plot of the Delaunay triangulation meshed surface map of the porcine lung 

The interpolated points were meshed using Delaunay triangulation. Since the query grid points’ x 

and y coordinates are constant between frames, the mesh is constant between frames, as seen in 

Figure 7.16.  

  
(a) (b) 

Figure 7.17 Plots of (a) the colored surface map of the porcine lung as a 2D plot and (b) 3D plot 

The surface map can be colored using the interpolated color information, as seen in Figure 7.17 

(a) and (b). The surface maps can be treated like images, allowing arithmetic operations within 

and between frames, thus digital image processing. Also, the surface maps can be used to 

measure whole lung plethysmography measurements such as displacement using the Divergence 

Theorem.  
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 Plethysmography Measurements of a Porcine Lung 

 
Figure 7.18 Plot of the ASV displacement of the porcine lung sampled from case 1 

The same processing method described Chapter 5 and implemented in Chapter 6 were used to 

derive plethysmography measurements from the interpolated surfaces of the porcine lung. The 

volume, or displacement, of the porcine lung was estimated using the Divergence Theorem 

described in Chapter 5. From this signal, the inhale and exhale local extrema points can be 

segmented using the second derivative zero-crossing method. Figure 7.18 is the estimated 

volume of the porcine lung from the interpolated surfaces, with the segmented inhale-exhale 

local extrema points. This allows for the calculation of metrics such as tidal volume, and 

inspiratory time.  
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Figure 7.19 Plot of the ASV and ventilator porcine lung tidal volume and dynamic compliance of case 1 

The Draeger Evita XL PIP and PEEP measurements were used to calculate dynamic compliance 

from the tidal volume measurements. To combine the ventilator and Intel RealSense D435 

measurements, the ventilator measurements were interpolated to match the timestamps of the 

Intel RealSense D435 data, as seen in Figure 7.19. Notably, the PIP and PEEP were constant for 

the steady state experiment cases, explaining the similarity between the calculated tidal volume 

and dynamic compliance. The results showed that the ASV method had significantly more 

variance than the ventilator, as seen in Figure 7.19. 
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Figure 7.20 Plot of the cyclic average displacement of the porcine lung of case 1 

The baseline performance of the porcine lung was measured as a cyclic average of the 

displacement signal, as seen in Figure 7.20. This processing scheme averages all the segmented 

breaths, into an averaged volume relative to a normalized time within a cycle. These results 

characterized the porcine lung displacement to measure deviations in performance.  
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Figure 7.21 Plot of the displacement and cyclic average deviation of the porcine lung from case 1 

The change in performance of the porcine lung can be tracked by measuring the deviation from 

the cyclic average displacement. This deviation was found using compare_to_avg_cycle() in 

Appendix B. As seen in Figure 7.21, this deviation provides feedback like a trend line, but allows 

the user to understand if the lung is under or over performing relative to its average 

displacement. In general, this trend line showed the same ventilation patterns for each case as 

described in Table 7.1. 

 Regional Measurements of a Porcine Lung 

The interpolated surfaces, in Chapter 7.3.3, were used to measure shape change of the porcine 

lung. They were used to create surfaces that effectively measure standard plethysmography 

measurements like tidal volume and dynamic compliance. 
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Figure 7.22 3D plot of surface tidal displacement of the porcine lung from case 1 

The surface tidal displacement of the porcine lung was found as the difference between surface 

maps, as seen in Figure 7.22. For most cases, the porcine lung was found to have a consistent 

surface tidal displacement shape, as the magnitude in displacement increased with ventilation 

tidal volume. These surfaces indicated that the porcine lung had generally uniform regional 

displacement except for the peaks of the left and right lung lobes in yellow, and the local minima 

in blue that are likely artifacts caused by horizontal motion of the entire lung.  

The surface dynamic compliance was found by scaling the surface tidal displacement by the 

difference of the PIP and PEEP. The performance and health of the lung for a region, can be 

measured by the surface dynamic compliance. 
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(a) 

  
(b) (c) 

Figure 7.23 Plots of (a) the surface deviation from cyclic average displacement of the porcine lung from 

case 1 for peak detection (a) as an image and (b) as a surface mesh 

The surface deviation, seen in Figure 7.23 (a), from the surface cycle average displacement of 

the porcine lung was found using the method described in Chapter 5. The surface tidal 

displacement and deviation were checked for local minima and maxima to identify potential 

locations of over and under inflation. In case 1, a local maxima was found in the surface 

deviation marked as red in Figure 7.23 (b) and (c), where blue indicates not a minima or maxima. 

These results indicate that the porcine lung may have localized over-inflation.   
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 Comparison of Measurements 

The same method comparison analysis in Chapter 6.4 was used with the porcine lung 

measurements. The ASV method was evaluated based on measurement distribution, correlation, 

and agreement.  

Unlike Chapter 6, data was collected from transient state cases, in which the tidal volume setting 

changed periodically. These transient cases provided a range of measurements that were valid for 

correlation and agreement analysis, which was a limitation in Chapter 6.4 . Also, the study was 

limited to only comparing tidal volume and dynamic compliance measurements.  

 Preparation of Measurements for Comparison 

The inspiratory tidal volume and dynamic compliance were the only measurements used to 

compare the two methods. As previously mentioned, the VSCapture software did not record any 

other mutual measurements. Also, it did not record pressure, volume, or flow rate that could have 

been used to derive other plethysmography metrics.  

The six experiment cases were analyzed individually, and as two groups. The steady state group 

was comprised of cases 1, 2, and 3, while the transient state group was cases 4, 5, and 6. Some 

cases or groupings were omitted depending on the analysis step. Invalid measurements, such as 

NAN and INF values in MATLAB, were removed before any analysis. Also, VSCapture 

recorded less measurements, one per breath, than the Intel RealSense Viewer, despite VSCapture 

and Intel Realsense Viewer starting data acquisition at the same time. This means some 

measurements from the ventilator were missing, so there are unpaired ASV measurements. To 

correct for this error, the unpaired measurements were removed from all analysis. 

 Measurement Distribution of the ASV and Ventilator Systems 

The measurement behavior of the ASV and ventilator systems were evaluated and compared for 

each experiment case. Specifically, their measurement means were compared to the tidal volume 

setting, and each other. Also, the ASV method’s repeatability was evaluated by measuring its 

standard deviation. Kurtosis and skewness, accompanied by tailedness and symmetry, of the two 

systems were found to identify any tendencies. These findings were compared to observations 
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made from their histograms and probability plots. Lastly, the data sets were checked for 

normality using the Shapiro-Wilk tests.  

Table 7.3 Measurement distribution mean error of the ASV and ventilator systems for the porcine 

lung  

Experiment 

Case 

Inspiratory Tidal 

Volume Setting, 

VTi [mL] 

VTi Mean [mL] Error Relative to VTi Setting [%] 

ASV Ventilator ASV Ventilator ASV - Ventilator 

1 300 291.99 300.21 -2.67 0.07 -2.74 

2 450 607.57 480.96 35.02 6.88 26.38 

3 600 920.54 627.70 53.42 4.62 48.81 

4 450 772.57 505.35 71.68 12.30 59.38 

5 450 665.20 443.16 47.82 -1.52 49.34 

6 450 725.53 471.80 61.23 4.84 56.38 

To evaluate the accuracy of the VSCapture measurements, its means were compared to 

ventilation tidal volume set for each steady state case. The relative error for cases 1, 2, and 3 

suggest that the VSCapture measurements are overestimating, or the ventilation is overshooting 

by 5%, as seen in Table 7.3. This suggests the ventilator measurements are close to the true 

values and can be used to evaluate the ASV method. In comparison, the ASV’s error suggests it 

has error up to 50% and proportional bias, since error increases with ventilation tidal volume. 

The mean error analysis was performed on the transient cases as well.  

Since the ventilation tidal volume changes within each transient case, the median of the 

ventilation setting range, 450 mL, was approximated as its mean. This assumption should be 

valid if the porcine lung was ventilated at each tidal volume setting for the same duration. The 

error for the transient cases showed no pattern, except that the ventilator has much lower error 

than the ASV, as seen in Table 7.3.  



148 

Table 7.4 Mean and standard deviation of the porcine lung tidal volume and dynamic compliance 

measurements from the ASV and ventilator for all experiment cases 

Parameter 
Experiment 

Case 

Mean Standard Deviation 

ASV Ventilator Error [%] ASV Ventilator Error [%] 

Inspiratory 

Tidal 

Volume, 

VTi [mL] 

1 291.99 300.21 -2.74 14.46 2.69 438.10 

2 607.57 480.96 26.32 55.58 2.28 2335.03 

3 920.54 627.70 46.65 65.91 3.64 1710.56 

4 772.57 505.35 52.88 199.77 115.28 73.30 

5 665.20 443.16 50.11 204.01 116.52 75.08 

6 725.53 471.80 53.78 232.00 133.69 73.53 

Inspiratory 

Dynamic 

Compliance, 

Cdyni 

[mL/cmH20] 

1 20.86 24.18 -13.73 1.03 0.22 378.17 

2 24.34 20.77 17.18 2.22 0.23 859.54 

3 23.58 17.68 33.35 1.70 0.14 1143.44 

4 31.27 22.67 37.92 5.97 4.25 40.34 

5 32.04 24.34 31.64 7.05 4.30 64.06 

6 30.94 23.26 33.04 7.04 5.00 40.64 

The mean and standard deviation error was measured for tidal volume and dynamic compliance 

between the ASV and ventilator measurements for all individual cases, as seen in Table 7.4. The 

steady and transient state case mean error results suggest the ASV system has a large mean 

offset, between 30% and 50% error. Also, the steady state case error increases with ventilation 

tidal volume, indicating proportional bias for both metrics. These results match the results in 

Table 7.3.  

The standard deviation errors suggest the ASV has poor repeatability relative to the ventilator, 

since it is up to 20 times greater, as seen in Table 7.4. Also, the ASV system was observed to 

have proportional standard deviation, unlike the ventilator system. 

Overall, the errors suggest the ASV has significant error and proportional bias. Also, the tidal 

volume mean errors were greater than the dynamic compliance, but this is the reverse for 

standard deviation errors. Lastly, case 1 always had the lowest error for each metric and 

parameter combination. 
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Table 7.5 Shapiro Wilk hypothesis test for normality and p-value for the measurement distribution of 

inspiratory tidal volume and dynamic compliance of the porcine lung 

Experiment Case 
Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni 

ASV Ventilator ASV Ventilator 

1 ✓  ✓   

2    ✓  

3 ✓ ✓  ✓  

4      

5      

6    ✓  

To identify any measurement tendencies, Shapiro-Wilk hypothesis tests checked the 

measurement distributions for normality, as seen in Table 7.5. Most experiment cases were non-

normal with a few exceptions that showed no patterns. 

Table 7.6 Kurtosis and skewness of the porcine lung tidal volume and dynamic compliance measurements 

from the ASV and ventilator for all experiment cases 

Parameter 
Experiment 

Case 

Excess Kurtosis Skewness 

ASV Ventilator Error [%] ASV Ventilator Error [%] 

Inspiratory 

Tidal 

Volume, 

VTi [mL] 

1 -0.43 -0.82 -47.15 -0.06 -0.35 -83.37 

2 2.99 2.23 34.24 1.77 -0.75 -337.42 

3 2.70 -0.48 -664.99 -0.72 0.04 -1728.33 

4 -1.41 -1.26 11.69 -0.20 -0.34 -40.93 

5 -1.04 -1.34 -22.33 0.19 0.28 -31.71 

6 -1.60 -1.71 -6.60 0.07 -0.01 -765.14 

Inspiratory 

Dynamic 

Compliance, 

Cdyni 

[mL/cmH20] 

1 -0.43 0.87 -149.93 -0.06 1.01 -105.80 

2 2.95 -0.49 -703.43 1.75 -0.09 -2061.14 

3 2.50 0.02 10354.64 -0.68 -0.42 62.02 

4 0.81 -0.92 -187.29 1.21 0.55 120.80 

5 0.62 -1.42 -143.41 0.88 -0.03 -3194.69 

6 -0.18 -1.71 -89.60 0.40 0.19 102.93 

Kurtosis and skewness were measured for tailedness and symmetry to compare with any trends 

observed in the histograms and probability plots. Excess kurtosis and skewness measurements, as 

seen in Table 7.6, which shows the ASV would tend to have more outliers and is more left-tailed 

than the ventilator since it has higher values for both metrics. Also, these results suggest that the 

ASV deviates more from normality than the ventilator.  
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Table 7.7 Tailedness and symmetry of the porcine lung tidal volume and dynamic compliance 

measurements from the ASV and ventilator for all experiment cases 

Parameter 
Experiment 

Case 

Tailedness Symmetry 

ASV Ventilator ASV Ventilator 

Inspiratory 

Tidal Volume, 

VTi [mL] 

1 Mesokurtic Mesokurtic Symmetric Symmetric 

2 Leptokurtic Leptokurtic Left-Tailed Symmetric 

3 Leptokurtic Mesokurtic Symmetric Symmetric 

4 Platykurtic Platykurtic Symmetric Symmetric 

5 Platykurtic Platykurtic Symmetric Symmetric 

6 Platykurtic Platykurtic Symmetric Symmetric 

Inspiratory 

Dynamic 

Compliance, 

Cdyni 

[mL/cmH20] 

1 Mesokurtic Mesokurtic Symmetric Left-Tailed 

2 Leptokurtic Mesokurtic Left-Tailed Symmetric 

3 Leptokurtic Mesokurtic Symmetric Symmetric 

4 Mesokurtic Platykurtic Left-Tailed Symmetric 

5 Mesokurtic Platykurtic Symmetric Symmetric 

6 Mesokurtic Platykurtic Symmetric Symmetric 

When each case is classified by excess kurtosis and skewness, as seen in Table 7.7, it shows that 

the ASV and ventilator have similar tailedness and symmetry. One of the few exceptions is the 

ASV’s dynamic compliance tailedness for the transient cases, which is oddly mesokurtic or has a 

similar tailedness to a normal distribution.  
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(a) (b) 

 
(c) (d) 

Figure 7.24 Probability plots and histograms of the inspiratory tidal volume measurement distribution 

from the ventilator(a) and b) and ASV (c) and (d) system from experiment case 1 
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The probability and histogram plots suggest the ASV and ventilator have three main differences, 

as seen in Figure 7.24. Firstly, the systems had different measurement distribution shapes, for the 

same parameter and experiment case. Secondly, the ASV measurements deviated from normality 

more than the ventilator based on the probability plots, but most did not appear to be normally 

distributed. Thirdly, the two systems had significant mean offset and different ranges for the 

same parameter. Of all these observations, most concur with the previous distribution analysis 

steps.  

In this sub-section the ASV and ventilator measurement distributions were evaluated and 

compared in several different analysis. First, the distribution means and standard deviations were 

measured, and when compared suggests that the ASV has a large amount of dispersion, mean 

offset, and proportional bias. Next, normality was tested for using Shapiro-Wilk hypothesis tests 

that found most were not normal with no pattern. Excess kurtosis and skewness were measured, 

which found the ASV system to be most likely leptokurtic and left-tailed for steady state cases, 

while both systems were typically symmetric. Lastly, the distributions were visualized using 

histograms and probability plots to observe any measurement tendencies, which matched the 

results of the other analysis steps. 

 Correlation and Linearity of the ASV and Ventilator System 

Correlation was measured between the ASV and ventilator measurements. A high correlation 

would indicate the ASV system measures the same changes as the ventilator. However, 

correlation does not indicate they have a relationship. Therefore, the methods were evaluated for 

linearity, checked using a modified Kolmogorov-Smirnov cumulative sum test. In case they have 

a linear relation, the slope and intercept were found using Passing-Bablok regression. Also, the 

confidence interval of the slope and intercept were used to identify if the methods have 

significant systematic and proportional bias. The regression models were evaluated with residual 

plots.  
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Table 7.8 Pearson correlation coefficient, correlation and linearity statistical significance of the 

porcine lung tidal volume and dynamic compliance measurements from the ASV and ventilator 

systems 

Experiment 

Case 

Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni 

Pearson 

Correlation 

Coefficient 

Correlation 

Significant 

Linearity 

Significant 

Pearson 

Correlation 

Coefficient 

Correlation 

Significant 

Linearity 

Significant 

1 0.19   -0.28  ✓ 

2 -0.08  ✓ 0.14  ✓ 

3 0.34 ✓ ✓ 0.21  ✓ 

4 0.95 ✓ ✓ 0.85 ✓  

5 0.89 ✓  0.61 ✓  

6 0.88 ✓ ✓ 0.78 ✓  

Steady 

(1,2,3) 
0.98 ✓  -0.47 ✓  

Transient 

(4,5,6) 
0.91 ✓ ✓ 0.73 ✓  

The Pearson correlation coefficient was calculated for each experiment case, followed by a 

hypothesis test for a non-zero correlation coefficient, as seen in Table 7.8. These results found 

that all the individual and combined transient cases had high correlation coefficients that were 

statistically significant. One exception was the combined steady state case for dynamic 

compliance that had a negative Pearson coefficient. Also, it was observed that the dynamic 

compliance Pearson coefficients were lower than the tidal volume coefficients for the same 

cases. These results suggest that the ASV and ventilator systems are correlated and are 

measuring the same phenomenon. Notably, the steady state cases had low correlation coefficients 

and insignificant correlation, as seen in Table 7.8. This may be due to the large difference in 

variance between the ASV and ventilator that was measured in Chapter 7.4.2.  

The modified Kolmogorov-Smirnov linearity tests found that most experiment cases were linear, 

as seen in Table 7.8. However, there does not seem to be any pattern to linearity, except that all 

the dynamic compliance transient cases were non-linear.  

These results suggest only the tidal volume for case 4, 6, and the combined transient cases are 

linear and are strongly correlated. In general, these results are unexpected, as the tidal volume 

and dynamic compliance properties do not match. Interpreting the regression models and plots 

may explain these results.  
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Table 7.9 Passing-Bablok regression slope and intercept, and coefficient of determination, for steady and 

transient state cases for inspiratory tidal volume and dynamic compliance of the porcine lung 

Parameter Case R2 Slope 
Slope 95% 

Confidence Interval 
Intercept 

Intercept 95% 

Confidence Interval 

Inspiratory 

Tidal 

Volume, 

VTi [mL] 

1 -0.29 0.14 0.07 0.23 259.10 233.12 279.76 

2 0.01 0.00 -0.01 0.00 482.10 477.96 488.16 

3 -4.28 44.01 27.42 94.75 -26693.5 -58552.82 -16282.66 

4 0.87 1.86 1.70 2.00 -191.36 -267.78 -97.81 

5 0.76 1.92 1.74 2.09 -188.70 -262.33 -97.12 

6 0.72 1.83 1.60 2.07 -111.45 -235.87 -9.70 

Steady 

(1,2,3) 
0.95 2.10 2.02 2.19 -380.10 -438.16 -333.74 

Transient 

(4,5,6) 
0.81 1.83 1.74 1.93 -152.84 -198.62 -102.22 

Inspiratory 

Dynamic 

Compliance, 

Cdyni 

[mL/cmH20] 

1 -0.19 0.03 -0.01 0.10 23.46 21.94 24.43 

2 -0.12 0.05 0.02 0.09 19.54 18.59 20.38 

3 -9.97 41.85 22.31 226.36 -716.90 -3982.55 -370.74 

4 0.72 1.30 1.09 1.50 1.92 -2.36 6.12 

5 0.13 1.53 1.19 1.82 -3.09 -9.95 4.01 

6 0.43 1.60 1.25 2.09 -4.95 -15.69 2.65 

Steady 

(1,2,3) 
-0.70 0.41 0.15 0.79 14.96 7.47 20.05 

Transient 

(4,5,6) 
0.45 1.41 1.26 1.58 -0.82 -4.26 2.72 

Passing-Bablok regression was performed on the paired measurements of tidal volume and 

dynamic compliance for all individual and combined cases, as seen in Table 7.9. The coefficient 

of determination, slope, intercept and the 95% confidence intervals for the slope and intercept 

were measured for each regression model.  

The coefficient of determinations shows that only the transient and combined case models for 

tidal volume reasonably fit the data. Of the other models, the individual static cases had the worst 

coefficient of determination that were either negative or near zero. These findings indicate a 

horizontal line would fit the data better than the regression models. The large difference in 

variance between the ASV and ventilator, measured in Chapter 7.4.2, in the static cases are likely 

the cause of the low coefficient of determination.  

The regression model slopes and intercepts show the tidal volume and dynamic compliance 

measurements have the same trends. This behavior is unexpected, since dynamic compliance is 
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derived from tidal volume. Also, the transient case models have similar slopes and intercepts, 

suggesting these models are measuring the same repeatable phenomenon. 

The slope and intercept confidence intervals indicate that there is systematic and proportional 

bias. Specifically, the slope confidence intervals never included one, and the intercept confidence 

intervals never included zero. The slope and intercept values are estimates of these biases, but do 

not explain why this relationship exists. Therefore, the regression plots were interpreted to 

explain the trends seen in Table 7.9. 

 
Figure 7.25 Plot of Passing-Bablok regression between the ventilator and ASV systems measurements of 

inspiratory tidal volume of the porcine lung during experiment case 1 

The individual steady case Passing-Bablok regression plots show that these models were invalid, 

as seen in Figure 7.25. This occurred in Chapter 6 for the same reason, because they do not 

measure a wide range, and the ASV’s measurement variance forms vertical lines. Passing-

Bablok regression is not equipped to handle this type of data, but they had linearity because they 

formed a vertical line. Therefore, this data produces invalid regression models with poor Pearson 

correlation and coefficient of determination.  



156 

 
Figure 7.26 Plot of Passing-Bablok regression between the ventilator and ASV systems’ measurements of 

inspiratory tidal volume of the porcine lung from experiment case 1, 2, and 3 

The tidal volume combined steady case model had the highest Pearson correlation coefficient 

and coefficient of determination, despite the individual cases having poor performance. Its 

regression plot shows the trend line passes through the center of each cluster, from the individual 

cases, as shown in Figure 7.26. Despite the high dispersion along the y-axis, which seems to be 

proportional, the model is linear. Also, the slope could be lower because the trend line passes 

through the bottom of the first cluster. If this is the case, this model would be closer to the 

transient state case regression models.  
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Figure 7.27 Plot of Passing-Bablok regression between ventilator and ASV inspiratory dynamic 

compliance of the porcine lung from experiment cases 1, 2, and 3 

The dynamic compliance regression plot, shown in Figure 7.27, explains the odd behavior seen 

in Table 7.9. The ASV does not measure any significant change in dynamic compliance between 

individual steady state cases, while the ventilator does. It is likely the Passing-Bablok regression 

was unable to make a suitable model for this horizontal relationship that conflicts with the linear 

relationships seen in the transient case regression plots. It is unclear why the ASV did not 

measure change in dynamic compliance with the ventilator.  
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Figure 7.28. Plot of Passing-Bablok regression between the ventilator and ASV inspiratory tidal volume 

of the porcine lung from experiment cases 4, 5, and 6 

  

The individual and combined transient cases have acceptable correlation and coefficient of 

determination in Table 7.9. The combined transient case regression plot shows that the ventilator 

and ASV indeed follow a linear relationship with a relatively tight dispersion, Figure 7.28. The 

regression model slopes and intercepts indicate systematic and proportional bias, where the ASV 

overestimates tidal volume relative to the ventilator.  
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Figure 7.29 Plot of Passing-Bablok regression between the ventilator and ASV inspiratory dynamic 

compliance of the porcine lung from experiment case 4, 5, and 6 

The regression plot for the combined transient case dynamic compliance explains why it has a 

poor coefficient of determination and correlation coefficient. The data points fan out from a 

single point to a vertical line at the minima and maxima along the x-axis, as seen in Figure 7.29. 

The other dynamic compliance regression plots have a similar proportional dispersion. Also, the 

datasets seem to outlier data points near and outside the 95% confidence interval that decreases 

the fit of the models. The regression residual plots were examined to confirm these points are 

outliers, and any trends, to further evaluate the fit of the models.  
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Table 7.10 Passing-Bablok regression residual means of the porcine lung tidal volume and dynamic 

compliance 

Experiment 

Case 

Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni 

Residual [mL] 
Normalized 

Residual [%] 

Residual 

[mL/cmH20] 

Normalized 

Residual [%] 

1 -0.10 -0.03 0.06 0.28 

2 0.00 0.00 -0.03 -0.11 

3 -11.27 -0.07 0.30 0.05 

4 23.92 0.35 -0.22 -0.07 

5 4.60 0.05 -2.37 -0.40 

6 -27.17 -0.23 -1.42 -0.28 

Steady (1,2,3) -1.78 -0.03 -0.43 -0.15 

Transient (4,5,6) 4.88 0.05 -0.94 -0.20 

The residuals between the regression model predictions and the ASV measurements were used 

evaluated the fit of the models to the data. The residual means were measured, as seen in Table 

7.10. Also, the residual means were normalized to allow comparison between the tidal volume 

and dynamic compliance models. 

The regression models do not perfectly fit the data, based on the residual means. For most cases, 

the residual means were not near zero that indicates the distributions are above or below the 

trend lines. The only pattern shown in the table is that the steady state cases tended to have lower 

residual means than the transient cases. Also, based on the normalized residual means the 

dynamic compliance models fit the data less than the tidal volume measurements. The residual 

plots were examined to identify any trends to better understand residual distribution. 
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Figure 7.30 Plot of the inspiratory tidal volume Passing-Bablok regression residuals versus model 

predictions of the porcine lung for experiment case 4, 5, and 6 

In general, the residual plots show the regression models passed through the center of the 

residual distributions, as seen in Figure 7.30. Also, the residual plots have outliers, points far 

away from the mean that are likely caused by the dispersion of the ASV measurements. Case 3 

was the only exception, which had a linear trend. However, this is not significant considering 

that the steady state cases have invalid models because these cases do not measure performance 

over a range of tidal volumes.  

In summary, the ASV and ventilator were found to have high correlation and linearity for tidal 

volume and dynamic compliance measurements for all transient state cases. Also, the regression 

plots indicate that the methods have significant systematic and proportional bias. These results 

suggest that the ASV method is measuring changes in the porcine lung with respects to 

ventilation. However, the ASV method is not equivalent to the ventilator’s measurement system 

due to systematic and proportional bias.  
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 Agreement of the ASV and Ventilator System 

Agreement was measured between the ASV and ventilator measurement systems using intra-

class correlation. Good agreement would suggest that the ASV system measurements are 

equivalent to the ventilator system. This was followed by checking if the difference in the ASV 

and ventilator paired measurements are normally distributed, a prerequisite for Bland-Altman 

analysis. The mean bias and limits of agreement from the Bland-Altman analysis were used to 

evaluate the agreement between the systems and if systematic bias exists. 

Table 7.11 Intra-Class Correlation of the ASV and ventilator system measurements of the porcine lung 

Experiment 

Case 

Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni 

Intra-Class 

Correlation 

p-

value 

Significant 

ICC 

Intra-Class 

Correlation 
p-value 

Significant 

ICC 

1 0.05 0.28  -0.01 0.74  

2 -1.08E-03 0.52  8.26E-03 0.40  

3 1.82E-03 0.38  2.56E-03 0.39  

4 0.35 0.14  0.34 0.14  

5 0.41 0.12  0.29 0.10  

6 0.40 0.12  0.41 0.10  

Steady (1,2,3) 0.64 0.02 ✓ -0.34 0.99  

Transient (4,5,6) 0.39 0.12  0.34 0.12  

Intra-class correlation was measured for each individual and combined case, followed by a 

hypothesis test for significance, shown in Table 7.11. These results indicate only the combined 

steady state case had a statistically non-zero intra-class correlation of 0.64. All the other cases 

had statistically insignificant intra-class correlations that were below 0.41, with most of the 

steady state cases having a near zero value. These results strongly suggest that the ASV and 

ventilator systems have poor or no agreement.  
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Table 7.12 Shapiro-Wilk normality test of ASV and ventilator error  

Experiment Case 
Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni 

Normality p-value Normality p-value 

1 ✓ 0.89 ✓ 0.64 

2  6.09E-08  3.43E-08 

3  2.34E-04  3.24E-04 

4  5.21E-03  2.91E-05 

5  5.98E-03  2.90E-02 

6 ✓ 0.08 ✓ 0.06 

Steady (1,2,3)  6.98E-10  3.99E-08 

Transient (4,5,6)  1.34E-03  2.45E-05 

The normality of the difference between the paired measurements from the ASV and ventilator 

was found using Shapiro-Wilk hypothesis tests, as seen in Table 7.12. The tests found that the 

differences were normal for only case 1 and case 6, for both tidal volume and dynamic 

compliance. This means that it is possible the Bland-Altman analysis limits of agreement are 

invalid for all cases, except for case 1 and 6. Despite this, Bland-Altman analysis was performed.  

Table 7.13 Bland Altman of the tidal volume and dynamic compliance measurements from the ASV and 

ventilator system for the porcine lung 

Parameter 
Experiment 

Case 

Residual 

Mean 

Residual Mean 95% CI Limit of Agreement 

Lower Upper Lower Upper 

Inspiratory 

Tidal 

Volume, 

VTi [mL] 

1 -8.23 -11.01 -5.44 -36.05 19.59 

2 126.61 116.41 136.80 17.22 235.99 

3 292.03 279.81 304.24 165.04 419.02 

4 267.22 249.14 285.30 75.57 458.87 

5 223.24 203.37 243.11 0.95 445.52 

6 253.72 223.46 283.99 -4.12 511.57 

Steady (1,2,3) 140.32 126.13 154.51 -116.80 397.44 

Transient (4,5,6) 246.36 233.78 258.93 22.95 469.76 

Inspiratory 

Dynamic 

Compliance, 

Cdyni 

[mL/cmH20] 

1 -3.32 -3.54 -3.10 -5.50 -1.14 

2 3.57 3.17 3.97 -0.74 7.87 

3 5.88 5.56 6.19 2.58 9.17 

4 8.60 8.00 9.19 2.29 14.91 

5 7.54 6.58 8.50 -3.23 18.31 

6 7.69 6.66 8.71 -1.05 16.42 

Steady (1,2,3) 2.21 1.76 2.67 -6.03 10.46 

Transient (4,5,6) 7.96 7.45 8.46 -16.84 0.93 

The mean, the 95% confidence intervals of the means, and limits of agreement were measured 

from the Bland-Altman analysis for all cases, as seen in Table 7.13. All the means were found to 

be positive and significantly greater than zero, except for case 1 for both parameters, indicating 
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that the ASV was overestimating the ventilator. Also, it is possible that in the steady state cases 

the ASV was overestimating the ventialtor with a proportional bias because the mean increases 

with ventilation tidal volume for both parameters. Unsurprisingly, the mean of the combined 

steady case is near the average of the three individual steady state case means. On the other hand, 

no trend can be discerned from the mean of the transient cases and combined transient case, 

since they are around the same value and their true distribution mean is not known.  

The means’ confidence intervals suggest that systematic bias exists, since all intervals did not 

include zero. For all cases and parameters, the limits of agreement had a broad range, especially 

for the tidal volume error, which suggests the two systems are not interchangeable. Notably, the 

steady state cases’ limit of agreement ranges increases proportionally with the ventilation tidal 

volume, or case number, and are smaller than in the transient cases. The Bland-Altman plots 

were examined to identify any trends or behaviour that explain the error distribution. 

The Bland-Altman plots were evaluated to discern any trends and confirm speculation based on 

the mean, mean confidence intervals, and limits of agreement in Table 7.13. Overall, the Bland-

Altman plots show that the ASV and ventilator do not have good agreement because they have 

systematic and proportional error.  
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Figure 7.31 Plot of the Bland-Altman analysis of inspiratory tidal volume difference of the ASV and 

ventilator measurements from cases 1, 2, and 3 of the porcine lung 

For the combined steady state cases each cluster is the data from one of the three steady state 

cases, as seen in Figure 7.31. Normally, the paired measurements of the steady state cases form a 

vertical line, as see in Figure 7.26. However, they get stretched out into a linear relationship in 

the Bland-Altman plots because their mean, which is on the x-axis, increases with the ASV 

measurements, as seen in Figure 7.31. As noticed from the means in Table 7.13, cases 2 and 3 

have a large systematic error.  
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Figure 7.32 Plot of the Bland-Altman analysis of inspiratory dynamic compliance error of the ASV and 

ventilator system paired measurements from cases 1, 2, and 3 of the porcine lung 

Similar to Figure 7.31, systematic error is shown in the Bland-Altman plot of dynamic 

compliance for the combined steady state cases, as seen in Figure 7.32. However, the means of 

each case decreases with ventilation tidal volume for dynamic compliance. This behaviour is 

unexpected, and its cause is unknown. However, it is hypothesized that the dynamic compliance 

of the porcine lung decreased with time, over the course of the experiments. Also, the linear 

trend for the dynamic compliance is steeper than the tidal volume. This linear trend is caused by 

the same reason described for Figure 7.31.  
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Figure 7.33 Plot of the Bland-Altman analysis of inspiratory tidal volume error of the ASV and ventilator 

system paired measurements from cases 4, 5, and 6 of the porcine lung 

The combined transient state Bland-Altman plot shows the transient state cases have more tidal 

volume dispersion than the steady state cases, seen in Figure 7.33. Also, they have systematic 

and proportional bias since they form a linear trend line with a non-zero mean.  

When the transient cases are examined separately, the cases have different distribution shapes, 

despite having the same ventilation range. The diagonal line of points in Figure 7.33 at 300 mL 

to 500 mL on the x-axis are from case 5. Also, the line between 750 mL and 850 mL is from case 

4. Lastly, case 5 has a smaller error range and minimum than cases 4 and 6 but share the same 

maximum at 450 mL. Case 5 error starts at 10 mL then increases proportionally, while case 4 

and 6 start at 100 mL. 
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Figure 7.34 Plot of the Bland-Altman analysis of inspiratory dynamic compliance error of the ASV and 

ventilator system paired measurements from cases 4, 5, and 6 of the porcine lung 

The dynamic compliance error of the combined transient cases does not have the same shape as 

the tidal volume error, as seen in Figure 7.34. Instead, the dynamic compliance error increases 

proportionally with the x-axis and disperses in both the negative and positive y-direction. This 

shape is formed by the individual transient cases where the ASV dynamic compliance did not 

change with the ventilator measurements. As a result, their data points form diagonal lines just 

like in Figure 7.31 and Figure 7.32. Lastly, there are some notable outliers at the bottom left 

corner of Figure 7.34.  
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Table 7.14 Normalized Bland Altman analysis mean and limits of agreement of the tidal volume and 

dynamic compliance from the ASV and ventilator of the porcine lung 

Parameter 
Experiment 

Case 

Normalized 

Residual Mean [%] 

Normalized Limit of Agreement [%] 

Lower Upper 

Inspiratory 

Tidal 

Volume, 

VTi [mL] 

1 -0.21 -0.37 -0.05 

2 0.24 0.11 0.39 

3 0.37 0.24 0.51 

4 0.41 0.23 0.59 

5 0.39 0.09 0.69 

6 0.41 0.10 0.72 

Steady (1,2,3) 0.20 -0.15 0.55 

Transient (4,5,6) 0.40 0.14 0.66 

Inspiratory 

Dynamic 

Compliance, 

Cdyni 

[mL/cmH20] 

1 -0.33 -0.49 -0.18 

2 0.32 0.19 0.45 

3 0.28 0.14 0.42 

4 0.32 0.14 0.50 

5 0.26 -0.08 0.60 

6 0.28 -0.03 0.59 

Steady (1,2,3) 0.10 -0.27 0.48 

Transient (4,5,6) 0.28 0.04 0.56 

The Bland-Altman plots were normalized by the pair mean on the x-axis, changing the y-axis 

from measurement units to percentage, to remove proportional error, summarized in Table 7.14. 

The normalized means indicate the ASV method overestimates by a significant percentage of 

ASV and ventilator mean. For example, the case 3 normalized mean for inspiratory tidal volume 

and dynamic compliance are 37% and 28%, while approximately 5% would have been 

acceptable. Also, the normalized limits of agreement indicate a large dispersion since the steady 

state cases have limits of agreement with a 30% range. The transient state and combined case 

limits of agreement are, as expected, large since they measure displacement across multiple tidal 

volume levels for ventilation.  
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Figure 7.35 Plot of the normalized Bland-Altman analysis of the porcine lung inspiratory tidal volume of 

the porcine lung from the ASV and ventilator system for cases 4, 5, and 6 

In general, the normalized plots just removed proportional bias seen in Figure 7.33, especially 

for the transient cases as seen in Figure 7.35. This made it obvious that systematic error was 

present, and it made it easier to identify outliers outside of the limits of agreement.  
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Figure 7.36 Plot of the normalized Bland-Altman analysis of the porcine lung inspiratory tidal volume of 

the porcine lung from the ASV and ventilator system for cases 1, 2, and 3 

The combined stead state case Bland-Altman plots for both parameters are different when 

normalized. For the tidal volume, the linear trend lines of each cluster become steeper, as seen in 

Figure 7.36. Also, each cluster, or case, has a noticeably different slope that increases with the x-

axis. For example, the cluster from case 1 is nearly vertical, while the cluster from case 3 looks 

diagonal in Figure 7.36.  

Overall, the ASV and ventilator measurements were found to have no or poor agreement since 

the ASV overestimates the ventilator due to systematic and proportional error. Also, the dynamic 

compliance error and Bland-Altman suggests that the ASV system did not measure any 

meaningful change in dynamic compliance.  

 Porcine Lung Discussion 

Measurement of the porcine lung had the same issue as the ventilator test lung in Chapter 6. For 

example, surface integration likely overestimated volume due to the porcine lung inflating in all 

directions, raising its top surface while the surface was distending. Also, the several regions of 
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the porcine lung were occluded in the Intel RealSense D435 images because of the porcine 

lung’s irregular shape. As a result, surface shape information was missing and had to be 

interpolated to reconstruct the surface. However, the interpolated regions may not match the 

actual surface shape, leading to volume estimation error. Notably, the tidal volume 

measurements of the ASV method overestimated the ventilator. However, the ASV method 

observed no significant change in dynamic compliance, while the ventilator recorded a 

proportional increase with tidal volume.  

 Porcine Lung Conclusion 

For six experiment cases, a porcine lung was ventilated by a Draeger Evita XL and measured by 

an Intel RealSense D435 to obtain depth map and color image video recordings. Surface 

measurements, analogous to tidal volume and dynamic compliance, were derived from these 

video recordings to identify localized over inflation and under inflation. Also, plethysmography 

measurements derived from the Intel RealSense D435 and measured by the Draeger Evita XL, 

were compared to evaluate the ASV method and indirectly validate the surface measurements.  

The comparison discovered the ASV overestimates the ventilator, with systematic and 

proportional error, and has worse repeatability. Also, the two systems have poor agreement, 

indicating they’re not interchangeable. However, their measurements have strong correlation and 

have statistically significant linearity, which suggests that the ASV method observes the same 

changes as the ventilator and that the surface measurements are valid. 
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8 Clinical Validation and Region Measurement 

A human lung rejected for transplant was measured using the developed ASV method, providing 

the closest conditions to a clinical study amongst all the experiments. A processing scheme for 

segmenting and measuring the left and right lungs separately, was implemented, in addition to 

processing methods described in the previous chapters. Also, the surface interpolation method 

described in Chapter 7.3.3 was improved by using an alpha shape to determine the true outline of 

the lung. This experiment represents the finalized processing scheme developed during this 

research project.  

 Experiment Equipment 

 
Figure 8.1 Annotated image of a human lung in an EVLP 

A human lung, rejected for transplant, was acquired by Tevosol for EVLP development testing. 

The donor was approximately 60 kg, had a history of smoking, and other medical history 
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concerns that failed transplant viability checks. After 6 hours of EVLP treatment the lung was 

submitted for this experiment. Tevosol’s experiment ended prematurely because the left lung 

was performing poorly. The left lung’s poor condition provided an opportunity to compare the 

left and right lung performance using the processing scheme.  

The rejected human lung was mechanically ventilated by the Draeger Evita XL using the existing 

airway connection between the human lung and EVLP, as seen in Figure 8.1. All equipment, 

except the lung and EVLP, described in Chapter 7.1 were reused for this experiment using the 

same procedures. Notably, the human lung’s anterior surface is facing upwards in contrast to the 

porcine lung in Chapter 7. 

 Calibration and Data Acquisition 

The Intel RealSense D435 was not calibrated in between the porcine lung and rejected human 

lung experiments. Therefore, the intrinsic and extrinsic camera parameters are the same as in 

Appendix D. Also, the data acquisition settings for the porcine lung experiment were re-used for 

the human lung using the Intel RealSense Viewer. Similarly, the Draeger Evita XL was operated 

using the same method as in Chapter 6.2 . However, the ventilation settings were different to 

achieve visually satisfactory physiological displacement.  
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Figure 8.2 Annotated image of the human lung experimental setup 

The Intel RealSense D435 was positioned above the human lung, as seen in Figure 8.2. The ASV 

system had a direct line of sight to the human lung, as the EVLP cover was raised. Also, the 

Draeger Evita XL was connected to the EVLP airway line to perform positive pressure 

ventilation on the human lung.  
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(a) (b) 

Figure 8.3 Images of the human lung from the Intel RealSense D435 (a) color and (b) depth map streams 

The color and depth map streams, as seen in Figure 8.3 (a) and (b), were recorded using the same 

methods and settings as described in Chapter 7.2 . The streams were recorded with a resolution 

of 240 × 424 pixels at 30 fps. Projective transformation was performed on the depth map to be 

aligned with the color image. Also, the depth maps were spatially and temporally filtered using 

the Intel Realsense SDK 2.0. Default ASV settings were used in the Intel Realsense Viewer 

application.  

Table 8.1 Human lung constant ventilation settings 

Parameter Setting 

Inspiratory Time, [s] 3.7 

f, [bpm] 8.0 

Slope, [-] 0.90 

PEEP, [cmH20] 7 

O2, [%] 21 

The same Draeger Evita XL was ventilated using the CMV auto-flow mode, just like the porcine 

lung experiment. However, the ventilation settings, summarized in Table 8.1, for the human lung 

were different than the settings for the porcine lung. The ventilation settings were adjusted to 

achieve visible physiological displacement of the human lung. 
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Table 8.2 Human lung experiment case tidal volume levels and change 

Case Experiment Type Tidal Volume [mL/kg] Tidal Volume [mL] 

1 Steady state 8 480 

2 Steady state 10 600 

3 Steady state 6 360 

4 Gradual Rise 6,7,8,9, and 10 360, 420, 480, 540, and 600 

5 Rise 6 to 10 360 to 600 

6 Gradual Fall 10,9,8,7, and 6 600, 540, 480, 420, and 360 

Six experiment cases, each approximately five minutes long, were conducted for the rejected 

human lung. Only the tidal volume per donor weight was changed between cases. The first three 

cases were steady state, with a constant tidal volume of 6 mL, 8 mL, or 10 mL per kg donor. 

Tidal volume per donor weight was dynamically changed within Case 4, 5, and 6. Case 4 had 

increasing intervals of tidal volume per donor weight. Case 5 had a large step from 6 mL to 10 

mL per kg donor weight. Case 6 had decreasing intervals of tidal volume per donor weight. The 

steady state trials are intended to provide a measurement of baseline performance, so outliers 

could be identified in the dynamic trials. The tidal volume changes between and within cases are 

tabulated in Table 8.2. 

 Processing Scheme 

The whole rejected human lung was segmented using the interactive lazy snapping method 

described in Chapter 7. Also, the left and right lung were segmented individually using 

watershed segmentation.  
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 Human Lung Segmentation 

 
Figure 8.4 Image of a depth map segmented for the rejected human lung 

The segmentation method described in Chapter 7 was used to segment the rejected human lung 

in the depth maps. Lazy snapping followed by post-processing were used to obtain binary maps 

of the rejected human lung from the aligned color images, as seen in Figure 8.4. 

 Left and Right Human Lung Segmentation 

The left and right lung were segmented separately to measure their performance independently. 

Comparing their performance could help identify regions of failure and allows left and right 

asynchrony measurement. The left and right can be distinguished based on their topography. 

Therefore, the watershed method was used to segment the left and right lungs in the depth maps. 

As described in Chapter 5, the watershed method is a region-based segmentation method. Often, 

the method is compared to the concept of topographical watershed where all water in a region 

flows to the same topographical minima, or basin. The segmentation method determines what 

regions, or watersheds, service each seed location acting as basins. The watershed method was 

implemented in three main steps: 
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1. Programmatically define seed regions for the left and right lung, and the background 

2. Watershed segmentation of all three regions for label maps 

3. Post-process the label maps for consistent results 

To implement the watershed method, seed regions were automatically determined from the depth 

maps. Afterwards, the watershed method was used to segment the left and right lung, and the 

background. This process produces label maps that identify the three regions in the depth maps. 

Finally, the segmentation method was inconsistent, so the label maps were post-processed with 

spatial and temporal filtering, as well as outlier detection.  

  
(a) (b) 

Figure 8.5 Images of (a) the segmented and (b) the quantized depth map of the rejected human lung 

The complement of the lazy snapping binary map was taken as the background seed region. The 

left and right lung seed regions were obtained from the segmented depth map of the rejected 

human lung, as seen in Figure 8.5(a). Any depth holes in the depth map were filled using bi-

linear interpolation. The segmented depth map was categorized into one of several levels, or 

ranges, defined by depth, as seen in Figure 8.5 (b). This step was implemented using the 

imquantize() function in MATLAB. The darkest regions in Figure 8.5 (b) are found at the top of 

each lung because they are the closest regions to the Intel RealSense D435 during data 

acquisition.  



180 

 
Figure 8.6 Image of the quantized and segmented depth map of the rejected human lung with the left and 

right lung seed regions in magenta 

The minima regions were used as the seed locations for the left and right lung for watershed 

segmentation, as highlighted in magenta in Figure 8.6. However, through trial and error, these 

regions were found to be inconsistent and would provide erroneous segmentations. To solve this 

issue, the next depth quantization level was included as part of each seed region, or the 

quantization settings were adjusted. Lastly, the seed regions were morphologically eroded to 

ensure that they do not overlap with the background. 
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Figure 8.7 Image of the gradient magnitude of the segmented depth map of the rejected human lung 

Watershed segmentation was implemented using the watershed() MATLAB function. The 

function segmented the gradient magnitude of the segmented depth map, as seen in Figure 8.7. 

All minima were removed from the gradient magnitude image, before imposing the three seed 

regions as new minima.  

  
(a) (b) 

Figure 8.8 Images of the labeled (a) depth map and (b) color image of the rejected human lung 

segmented for the left and right lung, and the background region 

Watershed segmentation produced label maps that identify the three regions in the depth maps 

and color images, as seen in Figure 8.8 (a) and (b). Notably, the right lung was not fully 

segmented along its perimeter because of the depth holes in the depth map in that area. Also, a 
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section of the right lung found at the same height as the EVLP trampoline was not segmented. 

This region was not segmented when using lazy snapping because it did not distend during 

ventilation, thus should not affect the plethysmography measurements. In general, the watershed 

segmentation was successful. However, there were several issues with the label maps that were 

corrected with post-processing.  

The label maps use integers to identify regions. One issue with the label maps was the left and 

right lung swapping labelling integers between frames, as seen in Figure 8.9 (a) and (b).  

  
(a) (b) 

Figure 8.10 Annotated image of the label map of the left and right human lung segmentation with (a) 

segmentation errors and with (b) the left lung oversegmented 

The watershed method sometimes had segmentation errors, where the left lung region was 

included in the right lung, as seen in Figure 8.10 (a). Also, the left lung sometimes was over-

segmented into two different regions, as seen in Figure 8.10 (b). 

Segmentation 
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Left Lung 
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Right Lung Region
Background 
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(a) (b) 

Figure 8.9 Annotated label maps of the left and right human lung segmentation with switching labels 
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Figure 8.11 Line plot of the area of the label map regions of the human lung clustered using K-means, 

where K = 3 clusters 

Many label map issues were resolved by segmenting regions by pixel area with K-means 

clustering, as seen in Figure 8.11. Clustering was performed across all regions and frames. All 

regions were re-assigned region labels according to their cluster.  

 
Figure 8.12 Annotated image of the label map of the left and right human lung segmentation after region 

merging and watershed line removal 

K-means clustering had the effect of merging over-segmented regions, specifically the left lung, 

and obtaining consistent region labels across all frames, as seen in Figure 8.12. However, the 

watershed lines between the over-segmented regions and other regions remained.  
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Figure 8.13 Image of the label map for left and right human lung segmentation without watershed lines 

The watershed lines, including between the over-segmented regions, were removed from the 

labelling images using a majority filter with the modefilt() MATLAB function. The majority 

filter re-assigns a pixel to the most common value within its neighbourhood. Since, all watershed 

lines are one pixel thick, they are always replaced, as seen in Figure 8.13.  

After removing the watershed lines, the left and right lung regions were re-assigned specific 

label integers. The watershed method initially assigns regions a random integer label. However, 

this is inconvenient for a future interpolation step because it could cause the left or right lung to 

be interpolated as the background. Therefore, the regions in each label map were sorted by pixel 

area and re-assigned a label integer based on their order in size using the sortLabels() function in 

Appendix B. For example, the smallest region in each label was re-assigned the label integer “1”. 

It was assumed the relative size of the regions, and their order in size of region, was constant, to 

determine the region. The last label map post-processing step was temporal filtering the left lung 

region, using the same method described in Chapters 6.3 and 7.3 .  
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Figure 8.14. Plot of the region size of the whole lung in the label maps before and after temporal filtering   

The temporal filtering significantly improved the stability of the segmentation results, especially 

the left lung region, as seen in Figure 8.14. The left lung region size in pixels, before temporal 

filtering, shows significant noise, while after filtering its size signal is denoised and has a clear 

periodic pattern. However, the temporal filtering of the label maps was found to not affect the 

right human lung region significantly. 
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 Human Lung Point Cloud Processing 

 
(a) 

  
(b) (c) 

Figure 8.15 3D plot of the porcine lung point cloud (a) colorized by depth, (b) the point cloud colorized 

by left and right lung label, and (c) the point cloud colorized by the color image 

The segmented depth maps of the human lung were processed into point clouds, as seen in 

Figure 8.15 (a), using the same procedure described in Chapter 6.3.2. Also, the color and region 

labels were added to the point clouds, as seen in Figure 8.15 (b) and (c). The point clouds were 

downsampled to denoise and remove outliers and erroneous points using a box averaging filter.  
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 Surface Reconstruction of the Rejected Human Lung 

  
(a) (b) 

Figure 8.16 Plots of an alpha shape of the human lung (a) from a top-down view and (b) a close-up view 

showing which query points are within the alphas 

The point clouds were interpolated to obtain surface maps of the human lung, using the same 

methods described in Chapter 7. However, this method has the drawback of losing the 2D outline 

of the lung since the scattered data interpolation fills in concave curves in the lung’s outline. To 

preserve the lung’s outline in the surface maps, an alphaShape() object was constructed for each 

frame, as seen in Figure 8.16 (a). The 2D alpha shape is formed using the x and y coordinates of 

the sparse point clouds. The green regions are mesh faces, which are inside the outline of the 

lung. The alphaShape() objects have a function, called inShape(), to determine which 

interpolation query points are within the alpha shape, as seen in Figure 8.16 (b). The blue circles 

are the interpolation query points. The query points that overlap the green alpha shape are within 

the outline of the lung.  
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(a) (b) 

  
(c) (d) 

Figure 8.17 Images of the human lung (a) alpha shape binary map, (b) the surface map colorized by 

depth, (c) the surface label map, and (d) the human lung colored surface map 

The grid points within the alpha shape were labelled, as seen in Figure 8.17 (a). The grid points 

within the alpha shape are marked using a binary map, visualized with respects to their x and y 

coordinates. This binary map can be used to identify which grid points preserve the lung’s 

outline for any of the interpolated data types. The binary map from the alpha shape was used to 

filter the interpolated surface maps for depth, color, and region labelling, as seen in Figure 8.17 

(b), (c), and (d).  
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(a) 

  
(b) (c) 

Figure 8.18. 3D plot of the human lung (a) surface map depth, (b) surface map colorized by left and right 

lung labels, and (c) the surface map colorized by the appearance of the human lung 

The surface maps can be represented as surface meshes, as seen in Figure 8.18. As previously 

mentioned, the Delaunay triangulation is shared between all frames because each frame shares 

the same dimensions. Also, these plots were obtained using the binary maps from the alpha 

shape.  
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 Plethysmography Measurements of a Rejected Human Lung 

 
Figure 8.19. Plot of the displacement of the whole, left, and right lung of the human lung over three 

cycles 

  

The surface maps were used to estimate the volume of the rejected human lung, using the 

previously described methods. This method was applied to the left and right lung regions 

separately to obtain their individual performance, as seen in Figure 8.19. The left lung did not 

significantly distend during ventilation, instead it was found to provide a systematic bias that 

summed with the cyclic displacement of the right lung to provide the whole human lung 

displacement. As a result, the left lung displacement signal could not be scanned for local 

extrema points to identify the start and end of each respiratory cycle. However, cycle 

segmentation was successful for the whole and right lung displacement signals. Also, 

plethysmography measurements were measured, such as tidal volume and inspiratory time, for 

the whole lung and right lung region. In addition, the cyclic average displacement was measured 

for the whole lung and right lung region.  

Asynchrony could have been measured between the left and right lungs since their displacement 

signals can be compared. This metric was measured using the estimateRegionAsynchrony() 
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function in Appendix BB4. However, it was impossible to measure asynchrony since the left 

lung could not be segmented for respiratory cycles.  

 Regional Measurements of a Rejected Human Lung 

 
Figure 8.20. 3D plot of the surface tidal displacement of the whole human lung   

Regional measurements were derived from the surface maps of the rejected human lung, as 

described in Chapter 7. The surface tidal displacement shows the left lung distended about 10 

mm less than the right lung, as seen in Figure 8.20. Also, the plot shows the left lung has troughs 

along the left and right lung boundary. The surface cyclic average displacement was measured as 

well. However, dynamic compliance could not be found without the VSCapture pressure 

measurements. 
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(a)   

  

  

(b) (c)   

Figure 8.21. Plots of (a) the deviation from the surface cyclic average displacement of the human lung 

from case 1 for peak detection (b) as an image and (c) as a surface mesh where red indicates a local 

maxima and blue indicates a local minima outside of the deviation 95% confidence interval 

   

The human lung was found to consistently distend during ventilation since the surface deviation 

from the cyclic average had a flat shape and an insignificant displacement that was at most 3 

mm, as seen in Figure 8.21. Notably, there were peak regions in the surface deviation located 

near the front of the lung and along the left and right lung boundary. Peak detection could be 

used to identify the location and magnitude of these peaks. However, these peaks are 

inconsequential because of their small deviation in cycle average displacement. 
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 Rejected Human Lung Discussion 

The VSCapture files that record the Draeger Evita XL measurements were corrupted. As a result, 

method comparison was not possible for this experiment. Also, the left lung did not distend 

during ventilation, limiting plethysmography measurements to the whole and right lung. 

However, the left lung was observed not distending during this experiment, and the previous 

experiment with Tevosol. Additionally, Tevosol ended their experiment prematurely because the 

left lung failed to ventilate properly. These observations match the measured performance of the 

left lung determined using the ASV method. However, it is still expected that the ASV method 

faced the same problems encountered in Chapter 7. 

 
Figure 8.22 Schematic of the volume difference from surface integration with a compliant surface versus 

a steady state, flat plane datum 

An additional issue encountered in this experiment is that the surface integration method 

assumes that the datum is a flat steady state plane, as seen in Figure 8.22. The human lung rests 

on a compliant surface that distends upward or downward during ventilation. In addition, the 

EVLP trampoline is not a flat surface, as its elasticity causes it to have a curved shape like the 

bottom of the human lung due to its weight. This invalidates the flat datum plane assumption of 

the surface integration method. As a result, the estimated volume is expected to have systematic 

and proportional error equal to the changing volume between the datum, EVLP trampoline, and 

the actual bottom surface of the human lung, as seen in Figure 8.22. 
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 Rejected Human Lung Conclusion 

This chapter demonstrates that the ASV method might be feasible in a clinical setting for 

regional measurement of donor lungs. A human lung rejected for transplant was measured using 

the ASV method. Plethysmography and regional measurements were obtained using surface 

integration and surface reconstruction. Also, the left and right lung were segmented separately to 

independently measure and compare their performance. However, the left lung did not 

significantly distend with ventilation since its displacement signal was constant. As a result, only 

the right lung and the whole lung displacement signals were used to derive plethysmography 

measurements. Also, left, and right lung asynchrony could not be measured.  

Notably, Tevosol conducted an EVLP test using the same rejected human lung prior to data 

acquisition with the ASV method. They concluded the left lung performed poorly, which led 

them to prematurely end their experiment. Also, the left lung did not visibility distend during 

data acquisition with the Intel RealSense D435. Therefore, the ASV derived left lung 

measurements are likely valid since they match the results of an independent experiment and 

physical observations. Lastly, the ASV method results could not be compared with the ventilator 

because the VSCapture files were corrupted.  
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9 Conclusion and Future Work 

 Conclusion 

A non-invasive active stereo vision method was developed for measuring donor lung 

performance during EVLP treatment to identify localized over and under inflation. The 

processing scheme creates an image of donor lung surface shape to measure standard 

plethysmography metrics, and regional metrics of tidal volume, dynamic compliance, and a 

respiratory cyclic average surface. The method’s measurement behavior was evaluated using 

experimental data from a synthetic, porcine, and human lung. Also, the method was compared to 

spirometry-based plethysmography systems to measure correlation and agreement to assess the 

validity of its measurements. However, this comparison was limited to standard scalar 

plethysmography, as no comparable surface deformation measurements were obtained.  

The method was found to correlate well with the established methods, however, has significant 

systematic and proportional bias resulting in poor agreement. These results suggest the active 

stereo vision method is measuring the respiratory cycle of the donor lung, and that the surface 

deformation metrics could be used to identify localized under and over inflation, and regional 

performance. However, the method requires further development before implementation during 

EVLP treatment. 
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 Future Work 

The main limitation of this study was that the regional measurements were not directly validated 

or compared with another method. In the future, this could be achieved with a controlled surface 

experiment, where the surface distends with a known geometry. Also, the main measurement 

limitation encountered in this study was that ASV does not track the position of points along the 

surface of the lungs. As encountered with the ventilator test lung experiment, the regional 

measurements were invalid because the entire lung moved within its respiratory cycle. Also, this 

limits measurement to displacement, without full field strain or stress. However, the method has 

several technical limitations to overcome before implementation.  

The EVLP cover was raised in all experiments during this project, as imaging through the cover 

would introduce glare and optical warping. It is recommended that a digital or optical filter be 

used to mitigate glare, and a suitable ASV position be located to mitigate these effects [145]. 

Alternatively, a refractive stereo vision method could be used to measure through the EVLP 

cover [54], [146]. Also, the systematic and proportional bias in the plethysmography 

measurements was hypothesized to be caused by the rising of the entire donor lung along with its 

top surface displacement. It might be possible to correct for these biases using the developed 

regression models or by estimating these effects based on the donor lung’s weight and size. In 

the porcine lung test, occlusion due to irregular surface shape left gaps in the depth map. The 

entire lung surface could be measured, to remove occlusion, using multiple ASVs at different 

angles to reconstruct a single complete surface through registration [147], [148]. Registration 

could be aided with fiducial markers [149] to track the position of the EVLP, and by association 

the donor lung. Once these limitations have been overcome, several established image processing 

methods could be used with the existing images to obtain other measurements. 

The color and infrared images from the Intel RealSense D435 could be processed with other 

digital image processing methods to obtain metrics, other than surface deformation. Eulerian 

video magnification could be used on the color images to measure regional blood flow [45]. 

Also, scene flow could be used to measure the 3D displacement field of the lung’s surface to 

measure strain [48]. With these improvements, the developed method could be a useful tool for 

evaluating donor lung regional performance and transplant viability.   
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Appendix A Mechanical Drawings 

Below is the mechanical drawing of the Intel RealSense D435 provided by Intel in their data 

sheet for the D400 series [93].  
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Appendix B MATLAB Code 

B1 Data Acquisition 

Data acquisition with the Intel RealSense D435 was performed using the following MATLAB 

functions and the Intel SDK 2.0 in the MATALB a C++ library wrapper. Specifically, the Intel 

RealSense D435 saved data to rosbag files that were read in MATLAB using the rs2ReadRosbag 

function. This function reads the rosbag file for data and converts it into a usable format. For 

example, the images are encoded as a vector that must be formatted and type cast into a numeric 

matrix. Also, the timestamps are stored as UTC 16-bit variables that are converted into date time 

using international standards. The rs2ReadRosbag function uses the SDK to post-process the 

depth maps. Primarily, the SDK is used to perform spatial and temporal filtering of the depth 

maps. Also, the SDK was used to align the color images and depth maps through projective 

transformation. All processed data is stored into a compressed .mat file for future use.  

B1.1 rs2ReadRosbag 

function[depthMap,colorImg,leftImg,rightImg,time,timestamp,depthIntrinsics,ma

tFilename,depthScale] = 

rs2ReadRosbag(bagFilename,align,decParams,spatParams,tempParams,holeParams) 
%% read .bag file from Intel Realsense Viewer recording for images and other 

data  
% function requires realsense+ library (MATLAB wrapper) for SDK 2.0 
% countRosbagFrames() requires MATLAB ROS Toolbox  
%  
% EXAMPLE USEAGE 
%  
% % define absolute folder path to .bag file : 
% bagFilename = 'D:\Masters\Research\Data\Mechanical Lung 2021-04-

09\Mechanical Lung ROS bag 2021-04-09\trial1.bag'; 
% 
% % define optional inputs (spatParams and decParams use is recommended, and 

is used by default):  
% align = 'color'; 
% decParams = 2; 
% spatParams = [0.5,20,2,0]; 
% tempParams = [0.4,20,3]; 
% holeParams = 1; 
%  
% [...] = rs2ReadRosbag(bagFilename); or any combination of optional inputs 
% [...] = 

rs2ReadRosbag(bagFilename,align,decParams,spatParams,tempParams,holeParams); 

or  
% [...] = rs2ReadRosbag(bagFilename,'',decParams,[],tempParams); 
% 
% INPUTS 
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% 
% bagFilename = absolute folder path to .bag file with ASV recording 
% align = optional input to return a synthetic image from a different ASV 

persepctive 
%  
% % read for filter details : https://dev.intelrealsense.com/docs/post-

processing-filters 
% decParams = optional input to use SDK 2.0 decimation filter on depth maps 
% spatParams = optional input to use SDK 2.0 edge-preserving spatial 

smoothing filter on depth maps 
% tempParams = optional input to use SDK 2.0 temporal smoothing filter on 

depth maps 
% holeParams = optional input to use SDK 2.0 hole filling filter on depth 

maps  
% 
% INTERMEDIATES 
%  
% the most ambiguous intermediates are the rs2 objects used for replaying the 

recording 
% read documentation for details : 

https://intelrealsense.github.io/librealsense/doxygen/classrs2_1_1frame.html 
% alternatively read example MATLAB scripts in realsense+ library : 

https://dev.intelrealsense.com/docs/matlab-wrapper 
% ie. cfg = SDK 2.0 configuration object that defines settings of device or 

file interface 
% 
% OUTPUTS 
%  
% depthMap = stack of unscaled depth maps with dimensions [R1,C1,N] uint16 
% colorImg = stack of RGB images with dimensions [R2,C2,3,N] uint8 
% leftImg = stack of left ASV infrared images with dimensions [R1,C1,N] uint8 
% rightImg = stack of right ASV infrared images with dimensions [R1,C1,N] 

uint8 
% time = backend time of when images were taken [N,1] double 
% timestamp = datetime of when images were taken [N,1] datetime 
% depthIntrinsics = struct of depth map ASV intrinsics for deprojection {1x1 

struct} 
% matFilename = folder path to compressed mat file with all results {string} 
% depthScale = scaling for depth maps for : scaledDepthMap = 

depthScale*double(depthMap);  
% 
% PROCESSING STEPS 
%  
% 1. create empty variables for images and data using the ROS Toolbox 
% 2. replay .bag file using SDK 2.0  
% 3. assign images and other data to memory  
% 4. end replay once all frames have been read  
% 5. remove dropped frames from all data types  
% 6. save data to compressed mat file version 7.3 
% 
% NOTES 
% 
% bagFilename MUST BE ABSOLUTE FOLDER PATH does not work with relative 
% updated version of rs2_rosbag_streams()   
% alternative function is readRosbag() but it has memory issues and can not 

use SDK filters 
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% known problem with rs2 replay feature is inconsistent frame dropping 
% when using readRosbag notice that different ASVs have different number of 

frames, but are the same when replaying 
%  
% Jason Der 
% September 3, 2021 updated Feb 3, 2022 for efficiency and readibility 
arguments 
  bagFilename % needs full file path 
  align char = 'notAligned' % 'color' or 'depth' or otherwise 
  decParams = []  
  spatParams = [0.5,20,2,0] 
  tempParams = [0.4,20,3]  
  holeParams = [] % enumerations 
end 
%% replay and read video  
% initialize variables 
[depthMap,leftImg,rightImg,colorImg,time,timestamp,nFrames] = 

countRosbagFrames(bagFilename); 
% check if frames are empty  
depthEmpty = isempty(depthMap);  
leftEmpty = isempty(leftImg);  
rightEmpty = isempty(rightImg);  
colorEmpty = isempty(colorImg);  
% configure PIPe and replay  
cfg = realsense.config(); 
Pipe = realsense.Pipeline(); 
cfg.enable_device_from_file(bagFilename,false); 
profile = Pipe.start(cfg); % replay  
depth_sensor = profile.get_device.first('depth_sensor');    
playback = profile.get_device().as('playback'); 
playback.set_real_time(false);   
% capture streams 
frameDropped = false; 
for iFrame = 1:nFrames 
  try  
    % if playback stopping 
    if playback.current_status == 'stopped'   
      fprintf('processed %.0i/%.0i frames\n',(iFrame-1),nFrames); 
      frameDropped = true; 
      break 
    end 
    % obtain streams from frameset  
    [A,B,C,D,E,F,depthIntrinsics,colorIntrinsics,depthScale] = ... 
      rs2PIPeStreams(PIPe,depth_sensor,align,... 
      decParams,spatParams,tempParams,holeParams); 
    % manage frameset output assignment 
    if ~depthEmpty && ~isempty(A) depthMap(:,:,iFrame) = A; end 
    if ~colorEmpty && ~isempty(B) colorImg(:,:,:,iFrame) = B; end 
    if ~leftEmpty && ~isempty(C) leftImg(:,:,iFrame) = C; end 
    if ~rightEmpty && ~isempty(D) rightImg(:,:,iFrame) = D; end 
    % assign time and stamps without restriction 
    time(iFrame) = E;  
    timestamp(iFrame) = F;   
  catch % error catch 
    fprintf('processed %.0i/%.0i frames\n',(iFrame-1),nFrames); 
    frameDropped = true; 
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    break 
  end 
  if iFrame == nFrames 
    % exit loop, replay behaviour is not well understood 
    % just a safety feature 
    break 
  end 
end 
% stop replay 
PIPe.stop();  
%% remove dropped frames 
if frameDropped % if frame[s] dropped     
% check which frames are blank images 
depthBlank = ~squeeze(any(depthMap,[1 2])); 
colorBlank = ~squeeze(any(colorImg,[1 2 3]));  
leftBlank = ~squeeze(any(leftImg,[1 2]));  
rightBlank = ~squeeze(any(rightImg,[1 2])); 
timeBlank = ~any(time,2);  
% common dropped frames 
droppedFrames = depthBlank & colorBlank & leftBlank & rightBlank & timeBlank; 
% assign empty to frames that are blank  
depthMap(:,:,droppedFrames) = []; 
colorImg(:,:,:,droppedFrames) = []; 
leftImg(:,:,droppedFrames) = []; 
rightImg(:,:,droppedFrames) = []; 
time(droppedFrames) = [];  
timestamp(droppedFrames) = []; 
end 
%% save to .mat file  
% offset to zero  
t = (time - time(1))/1000;  
% convert datetime into numeric, then offset  
T = datenum(timestamp)-datenum(timestamp(1)); 
% generate mat file name 
[path,name] = fileparts(bagFilename); 

  
if strcmp(align,'color') || strcmp(align,'depth') 
  streamName = [name 'Aligned' align '.mat']; 
else 
  streamName = [name '.mat']; 
end 
matFilename = fullfile(path,streamName); 
% save 
save(matFilename,'matFilename','colorImg','leftImg','rightImg','depthMap',... 
  

'time','timestamp','t','T','depthIntrinsics','colorIntrinsics','depthScale','

-v7.3');   
End 

 

B1.2 countRosbagFrames 

function [depthMap,leftImg,rightImg,colorImg,time,timestamp,nFrames] = 

countRosbagFrames(filename) 
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%% read ROS bag file for number for frames 
% requires ROS bag Toolbox 
% was called frameCount_Rosbag changed Feb 18, 2022 
% Jason Der 
% April 7, 2021 updated Febuary 3, 2022 to read frame size too and 
% initialzie frameset  
% based on: another personal custom function [readRosbag] 
  % source: https://community.intel.com/t5/Items-with-no-label/Converting-

bag-video-to-raw-frames/m-p/509808 
  % alternative : https://github.com/UnaNancyOwen/rs_bag2image 
% based on: 

https://github.com/IntelRealSense/librealsense/issues/6887#issuecomment-

662310354 
% Displays information in the command window. Use bagInfo = rosbag('info', 

'file.bag') to get the information as a structure in a script. See 

https://github.com/IntelRealSense/librealsense/blob/master/src/media/readme.m

d%23under-the-hood 

https://github.com/IntelRealSense/librealsense/blob/master/src/media/readme.m

d# under-the-hood for explanations. 
% Select a specific topic from the above information. It should end with 

/image/data if you want the frames. 
%% read frame data topics 
arguments  
  filename char % absolute path to .bag file  
end 
% Load the rosbag into object 
bag = rosbag(filename);  
% read topics 
leftTopic = select(bag, 'Topic', '/device_0/sensor_0/Infrared_1/image/data');  
rightTopic = select(bag, 'Topic', 

'/device_0/sensor_0/Infrared_2/image/data'); 
colorTopic = select(bag, 'Topic', '/device_0/sensor_1/Color_0/image/data'); 
depthTopic = select(bag, 'Topic', '/device_0/sensor_0/Depth_0/image/data'); 
% read number of msgs as number of frames 
leftFrameCount = leftTopic.NumMessages; 
rightFrameCount = rightTopic.NumMessages; 
colorFrameCount = colorTopic.NumMessages; 
depthFrameCount = depthTopic.NumMessages; 
% read image msgs for image size 
if depthFrameCount ~= 0  
  depthMsgs = readMessages(depthTopic,1);  
  depthFrameSize = [depthMsgs{1}.Height,depthMsgs{1}.Width]; 
else depthFrameSize = [0 0]; end 
if colorFrameCount ~= 0  
  colorMsgs = readMessages(colorTopic,1);  
  colorFrameSize = [colorMsgs{1}.Height,colorMsgs{1}.Width]; 
else colorFrameSize = [0 0]; end 
if leftFrameCount ~= 0 
  leftMsgs = readMessages(leftTopic,1); 
  leftFrameSize = [leftMsgs{1}.Height,leftMsgs{1}.Width]; 
else leftFrameSize = [0 0]; end 
if rightFrameCount ~= 0  
  rightMsgs = readMessages(rightTopic,1); 
  rightFrameSize = [rightMsgs{1}.Height,rightMsgs{1}.Width]; 
else rightFrameSize = [0 0]; end 
clear leftTopic rightTopic colortopic depthTopic bag 
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% determine number of frames to initialize 
nFrames = 

max([depthFrameCount,colorFrameCount,leftFrameCount,rightFrameCount]); 
if nFrames > 16000 
  % limit based on 15.9 GB allocation limit per variable 
  % depthMap will hit this limit first around 16000 frames using uint16 at 

848 x 480 
  disp(fprintf('nFrames %.0i would cause allocation error, set to 

4000\n',nFrames)); 
  nFrames = 16000;  
end 
% initialize images 
depthMap = zeros([depthFrameSize,nFrames],'uint16'); 
leftImg = zeros([leftFrameSize,nFrames],'uint8'); 
rightImg = zeros([rightFrameSize,nFrames],'uint8'); 
colorImg = zeros([colorFrameSize,3,nFrames],'uint8'); 
time = 

datetime(zeros(nFrames,1),0,0,'TimeZone','America/Denver','Format','yyyy-MM-

dd HH:mm:ss.SSS');  
timestamp = 

datetime(zeros(nFrames,1),0,0,'TimeZone','America/Denver','Format','yyyy-MM-

dd HH:mm:ss.SSS');  
end 

B1.2.1 rs2pipeStreams 

function[depthMap,colorImg,leftImg,rightImg,time,timestamp,depthIntrinsics,co

lorIntrinsics,depthScale] = 

rs2PIPeStreams(PIPe,depth_sensor,align,decParams,spatParams,tempParams,holePa

rams) 
%% read pipe object for image and property data 
% Jason Der 
% September 3, 2021 
% NOTE:  
  % better version of rs2_streams() 
  % requires realsense SDK 2.0 
arguments 
  pipe 
  depth_sensor 
  align = 'color' 
  decParams = [] 
  spatParams = [] 
  tempParams = [] 
  holeParams = [] 
end 
% get frameset 
fs = PIPe.wait_for_frames(); 
% read and process frameset 
alignedFs = rs2AlignFrameset(fs,align);   
[depth,color,left,right,time,timestamp] = rs2ReadFrameset(alignedFs); 
filtered = rs2FilterDepth(depth,decParams,spatParams,tempParams,holeParams); 
% read depth frame 
try depthIntrinsics = rs2DepthIntrinsics(filtered); depthScale = 

depth_sensor.get_depth_scale();  
depthMap = rs2FrameImg(filtered,'depth'); % depthMap = depthScale .* 

depthMap; 
catch depthIntrinsics = []; depthMap = []; end 
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% read color frame 
try colorIntrinsics = rs2DepthIntrinsics(color); colorImg = 

rs2FrameImg(color,'color'); 
catch colorIntrinsics = []; colorImg = []; end 
% read infrared frame 
try leftImg = rs2FrameImg(left,'infrared'); catch leftImg = []; end     
try rightImg = rs2FrameImg(right,'infrared'); catch rightImg = []; end 
end  

B1.1.1.1 rs2AlignFrameset 

function [aligned] = rs2AlignFrameset(fs,align) 
%% synthetically align frameset to color or depth persepctive 
% Jason Der 
% September 3, 2021 
% NOTE:  
  % align == 'color' or 'depth', otherwise no alignment 
  % requires intelRealSense SDK 2.0 
arguments 
  fs 
  align 
end   
% align frameset to selected ASV  
switch align 
  case 'color' 
    colorAlign = realsense.align(realsense.stream.color); 
    aligned = colorAlign.process(fs);  
  case 'depth' 
    depthAlign = realsense.align(realsense.stream.depth); 
    aligned = depthAlign.process(fs);  
  otherwise 
    aligned = fs; 
end 
end 

B2.1.1.1 rs2ReadFrameset 

function [depth,color,left,right,time,timestamp] = rs2ReadFrameset(fs) 
%% read rs2 PIPe object for enabled streams frame objects, frame time, and 

frame timestamp 
% back end timestamp is taken from depth  
% Jason Der 
% September 3, 2021 
% NOTE:  
  % requires intelRealSense SDK 2.0 
  % 

https://intelrealsense.github.io/librealsense/doxygen/classrs2_1_1frameset.ht

ml 
  % 

https://intelrealsense.github.io/librealsense/doxygen/rs__frame_8h.html#a91f1

9a01f5bf2abadc30959a8d3109c9 
% READ  
  % frame.get_timestamp - explains timestamps 
  % frame.get_frame_metadata(metadatavalue) - other timestamps are available 

in meta data 
  % meta data value chart - list of meta data including timestamps 
% frame.get_timestamp() will dynamically choose most appropriate timestamp 
  % it will choose between timestamps at device and host level 
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  % use get_frame_timestamp_domain to identify which it selected 
% timestamps available under meta data 
  % metadata_frame_timestamp 
  % metadata_sensor_timestamp 
  % metadata_time_of_arrival 
  % metadata_backened_timestamp 
% timestamp domains and enumerators 
  % 1 - hardware clock 
  % 2 - system time 
  % 3 - global time 
  % also - domain count - number of enuermation values (NOT A VALID INPUT) 

  
arguments 
  fs 
end 

   
%% get frameset and time properties 
left = fs.get_infrared_frame(1); 
right = fs.get_infrared_frame(2);   
color = fs.get_color_frame(); 
depth = fs.get_depth_frame(); 

   
%% get time properties 
% timestamps are milliseconds  
% automatically selected appropriate timestamp  
time = fs.get_timestamp();  
time = datetime(time,'TimeZone','UTC',... 
      'ConvertFrom','epochtime','TicksPerSecond',1000, 'Format', 'yyyy-MM-dd 

HH:mm:ss.SSS'); 
time.TimeZone = 'America/Denver';     
% backend timestamp 
try  
  backend_timestamp = 

depth.get_frame_metadata(realsense.frame_metadata_value.backend_timestamp); 
catch  
  backend_timestamp = 

left.get_frame_metadata(realsense.frame_metadata_value.backend_timestamp); 
end 
timestamp = datetime(backend_timestamp,'TimeZone','UTC',... 
      'ConvertFrom','epochtime','TicksPerSecond',1000, 'Format', 'yyyy-MM-dd 

HH:mm:ss.SSS'); 
timestamp.TimeZone = 'America/Denver';     

  
end 

B1.2.2 rs2FilterDepth 

function [filtered] = 

rs2FilterDepth(depth,decParams,spatParams,tempParams,holeParams) 
%% post process depth frame object  
% Jason Der 
% September 3, 2021 
% NOTE:  
  % to exclude filter set argument setting = [] 
  % requires intelRealSense SDK 2.0 
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  arguments 
    depth 
    decParams = [] 
    spatParams = []  
    tempParams = [] 
    holeParams = [] 
  end 

   
%% post process depth frame object with filter blocks 
  [decimation,spatial,temporal,hole,depth_to_disparity,disparity_to_depth] = 

rs2_filters(decParams,spatParams,tempParams,holeParams);   
  filtered = depth;   
  % decimation filter 
  if ~isempty(decParams) 
    filtered = decimation.process(filtered); 
  end 
  % spatial and temporal filter in disparity domain 
  if (~isempty(spatParams) || ~isempty(tempParams)) &&... 
     (~isempty(depth_to_disparity) && ~isempty(disparity_to_depth)) 
    filtered = depth_to_disparity.process(filtered); 
    if ~isempty(spatParams)  
      filtered = spatial.process(filtered); 
    end 
    if ~isempty(tempParams) 
      filtered = temporal.process(filtered); 
    end 
    filtered = disparity_to_depth.process(filtered); 
  end 
  % hole filling filter 
  if ~isempty(holeParams)  
    filtered = hole.process(filtered); 
  end 
  % ensure object is realsense.depth_frame 
  if ~strcmp(class(filtered),'realsense.depth_frame') 
    filtered = filtered.as('depth_frame'); 
  end 

   
end 

B1.2.2.1 rs2_filters 

function 

[decimation,spatial,temporal,hole,depth_to_disparity,disparity_to_depth] = 

rs2_filters(dec_mag,spat_settings,temp_settings,hole_settings) 
%% create and configure  
% Jason Der  
% June 10, 2021 
% NOTE: to exclude a filter set settings argument = [] 

  
%% function argument validation 
  arguments 
    dec_mag {mustBeReal,mustBeFinite} = 2 
    spat_settings {mustBeReal,mustBeFinite} = [0.5,20,2,0] 
    temp_settings {mustBeReal,mustBeFinite} = [0.4,20,3]     
    hole_settings {mustBeReal,mustBeFinite} = 0 
  end 
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%% initialization of post-processing filters for depthmap   
  decimation = realsense.decimation_filter; 
  spatial = realsense.spatial_filter; 
  temporal = realsense.temporal_filter;   
  hole = realsense.hole_filling_filter; 
  depth_to_disparity = realsense.disparity_transform(true); 
  disparity_to_depth = realsense.disparity_transform(false); 

   
%% configure filters 
  % if decimation filter exists 
  if ~isempty(decimation) && ~isempty(dec_mag) 
    % configure decimation filter linear scale factor 
    decimation.set_option(realsense.option.filter_magnitude,dec_mag); 
  end 

   
  % if spatial filter exists 
  if ~isempty(spatial) && ~isempty(spat_settings)     
    % configure spatial filter factor for exponential moving average 
    

spatial.set_option(realsense.option.filter_smooth_alpha,spat_settings(1)); 
    % configure spatial filter step size boundary, threshold to preserve 

edges 
    

spatial.set_option(realsense.option.filter_smooth_delta,spat_settings(2)); 
    % configure spatial filter filter iterations 
    spatial.set_option(realsense.option.filter_magnitude,spat_settings(3)); 
    % configure spatial filter rectify minor artefacts 
    spatial.set_option(realsense.option.holes_fill,spat_settings(4)); 
  end 

   
  % if temporal filter exists 
  if ~isempty(temporal) && ~isempty(temp_settings) 
    % configure temporal filter factor for exponential moving average 
    

temporal.set_option(realsense.option.filter_smooth_alpha,temp_settings(1)); 
    % configure temporal filter step size boundary, threshold to preserve 

edges 
    

temporal.set_option(realsense.option.filter_smooth_delta,temp_settings(2)); 
    % configure temporal filter governs hole filling based on historic pixel 

value 
    temporal.set_option(realsense.option.holes_fill,temp_settings(3)); 
  end 

   
  % if hole filling filter exists 
  if ~isempty(hole) && ~isempty(hole_settings) 
    % configure hole filling filter filling type  
    hole.set_option(realsense.option.holes_fill,hole_settings); 
  end 

   
end 

B1.2.3 rs2DepthIntrinsics 

function [intrinsics] = rs2DepthIntrinsics(depth) 
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%% get depth frame object intrinsics  
% Jason Der 
% September 3, 2021 

  
  arguments 
    depth 
  end 

   
%% get intrinsics property 
  profile = depth.get_profile(); 
  video_profile = profile.as('video_stream_profile'); 
  intrinsics = video_profile.get_intrinsics(); 

   
end 

B1.2.4 rs2FrameImg 

function [img] = rs2FrameImg(frame,type) 
%% create image from frame object  
% Jason Der 
% September 3, 2021 
% NOTE:  
  % requires intelRealSense SDK 2.0 
  % if depth, need to multiply img by depthScale 
  % 

https://intelrealsense.github.io/librealsense/doxygen/classrs2_1_1frame.html 
  % realsense.frame does not have get_width, get_height methods 
  % these methods are inherited from realsense.video_frame 
  % realsense.video_frame is used for infrared and color 
  % realsense.depth_frame is used for depth 
  % realsense.frame is used for filtered realsense.depth_frame 

  
  arguments 
    frame 
    type = [] 
  end 

   
%% create image, format based on data size 
  try 
    % ensure object is realsense.video_frame or realsense.depth_frame 
    if strcmp(class(frame),'realsense.depth_frame') || 

strcmp(class(frame),'realsense.video_frame') 
      try 
        frame = frame.as('video_frame'); 
      catch 
        frame = frame.as('depth_frame'); 
      end 
    end 
    % identify missing format type 
    if isempty(type) 
    profile = frame.get_profile; 
    streamType = profile.stream_type; 
      switch streamType 
        case 1 
          type = 'depth'; 
        case 2  
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          type = 'color'; 
        case 3  
          type = 'infrared'; 
      end 
    end 
    % format frame data into image 
    switch type 
      case 'infrared' % uint8 
        img = 

permute(reshape(frame.get_data()',[frame.get_width(),frame.get_height()]),[2 

1]); 
      case 'color' % uint8 
        img = 

permute(reshape(frame.get_data()',[3,frame.get_width(),frame.get_height()]),[

3 2 1]); 
      case 'depth' % save as uint16, float(uint16) x depthScale for actual 

use 
        img = (transpose(reshape(frame.get_data(), 

[frame.get_width(),frame.get_height()])));             
    end  
  % entire process try-catch 
  catch 
    img = []; 
  end   
end 

B2 Image Segmentation 

The various experiment lungs were segmented from the depth maps using an edge-based or 

region-based segmentation method. The segmentMechanicalLung function performed edge-

based segmentation of the ventilator test lung depth maps. The segmentLungs function 

performed the interactive region-based segmentation of the porcine lung and rejected human 

lung using the projective transformed color images. Also, the left and right lung segmentation of 

the human lung was performed using the segmentRegions function. Segmentation allowed the 

isolation of the experiment lungs in the depth maps for only their depth measurements. Also, the 

label and color maps were segmented using the segmentation binary maps.  

B2.1 segmentLungs 

function [segmentationMatFilename] = 

segmentLungs(streamsMatFilename,depthThreshold) 
%% segment color image for lung, then remove invalid data from segmented 

depthMap 
% Jason Der 
% October 29, 2021 
arguments 
  streamsMatFilename 
  depthThreshold = [] % set based on foreground and background  
end     
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% color image segmentation 
load(streamsMatFilename,'-mat','colorImg');  
[colorMask,forePosition,backPosition] = roiSegmentationVectorized(colorImg); 
objectMask = largestRegion(colorMask); 
refinedMask = refineMask(objectMask); 
temporalMask = temporalFilterMask(refinedMask); 
clear colorImg 
% depthMap segmentation  
load(streamsMatFilename,'-mat','depthMap'); 
if isempty(depthThreshold) 
  depthThreshold = graythresh(depthMap(:,:,1)); 
end 
depthMask = segmentDepth(depthMap,temporalMask,depthThreshold);  
clear depthMap 
% save and clear variables 
[file,name,ext] = fileparts(streamsMatFilename); 
segmentationMatFilename = fullfile(file,[name 'Segmentation' ext]); 
% 

save(segmentationMatFilename,'colorMask','objectMask','refinedMask','temporal

Mask','depthMask');  
save(segmentationMatFilename,'colorMask','objectMask','refinedMask',... 
  'temporalMask','depthMask','forePosition','backPosition','depthThreshold');    
end 

B2.1.1 roiSegmentationVectorized 

function [mask,forePosition,backPosition] = 

roiSegmentationVectorized(img,foreground,background,type,labelSuperPixels,com

pactness,nIterations) 
%% segment color image  
% Jason Der 
% September 14, 2021 
% NOTES: 
  % consider using 3D volumetric image processing:  
    % https://www.mathworks.com/help/images/3d-volumetric-image-

processing.html?s_tid=CRUX_lftnav 
  % consider using sparse for masks, even though logical data is small 
  % use imfilter and fspecial for enhancement 

  
  arguments 
    img 
    foreground = [] 
    background = [] 
    type = 'color' % or depth 
    labelSuperPixels (1,1) {mustBePositive} = 500 
    compactness (1,1) {mustBePositive} = 10 
    nIterations (1,1) {mustBePositive} = 10 
  end 

     
%% interactively define foreground and background 
  switch type 
    case 'depth' 
      previewImg = img(:,:,1); 
    case 'color' 
      previewImg = img(:,:,:,1); 
  end 
  if isempty(foreground) || isempty(background) 
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    % open first image in figure 
    f = figure; 
    set(gcf,'color','w'); 
    imshow(rescale(previewImg,0,1)); 
    title('first color image - select ROI with only foreground'); 
    foreROI = drawrectangle(gca); 
    forePosition = foreROI.Position; 
    foreground = createMask(foreROI); 
    title('first color image - select ROI with only background'); 
    backROI = drawrectangle(gca); 
    backPosition = backROI.Position; 
    background = createMask(backROI); 
    close(f); 
  end   

   
%% enhance images 
  img = imadjustn(img); 
  filter = fspecial('unsharp'); 
  img = imfilter(img,filter); 

   
%% segment images  
  switch type 
    case 'depth' 
      mask = false(size(img)); 
      for i = 1:size(img,3) 
        [labelImg,~] = 

superpixels(img(:,:,i),labelSuperPixels,'Compactness',compactness,'NumIterati

ons',nIterations); 
        mask(:,:,i) = 

lazysnapping(img(:,:,i),labelImg,foreground,background);  
      end 
    case 'color' 
      mask = false(size(img,1,2,4)); 
      for j = 1:size(img,4)       
        [labelImg,~] = 

superpixels(img(:,:,:,j),labelSuperPixels,'Compactness',compactness,'NumItera

tions',nIterations); 
        mask(:,:,j) = 

lazysnapping(img(:,:,:,j),labelImg,foreground,background);     
      end 
  end     

   
end 

B2.1.2 largestRegion 

function [bw] = largestRegion(BW) 
bw = BW; 
for ii = 1:size(BW,3) 
  bw(:,:,ii) = bwpropfilt(BW(:,:,ii),'Area',1); 
end 

B2.1.3 refineMask 

function [maskOut] = refineMask(maskIn) 
%% refine binary segmentation mask  
% Jason Der 
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% September 9, 2021, updated September 14, 2021 for ND masks 
  arguments 
    maskIn 
  end 
%% initializations 
  s = strel('disk',3,8);  
  n = size(maskIn,3); 
  maskOut = false(size(maskIn)); 
%% refine mask  
  for i = 1:n 
%     % remove regions that contact image border 
%     mask = imclearborder(maskIn(:,:,i)); 
    % morphological operations 
    mask = bwmorph(maskIn(:,:,i),'fill'); 
    mask = bwmorph(mask,'clean'); 
    mask = imerode(mask,s); 
    mask = bwmorph(mask,'thin'); 
    mask = bwmorph(mask,'hbreak');     
    mask = bwmorph(mask,'spur'); 
    mask = bwmorph(mask,'clean'); 
    maskOut(:,:,i) = imdilate(mask,s); 
  end 
end 

B2.1.4 temporalFilterMask 

function [maskOut] = temporalFilterMask(maskIn,window,threshold) 
%% use temporal moving average mask 
% takes any type of image, but outputs a logical mask 
% Jason Der 
% September 22, 2021 
% other options are imfilter, or filter, and fspecial 
  % fspecial could use 'motion', 'average', 'gaussian' 

  
arguments 
  maskIn  
  window (1,1) {mustBePositive} = floor(0.01*size(maskIn,3)) 
  threshold (1,1) {mustBeNonnegative} = 0.5 % larger, more sensitive to 

change 
end 

  
%% filter through frames 
[~,~,i,j] = size(maskIn);  
if i == 3 && j ~=1 && all(class(maskIn) == 'uint8') % color image 
  n = 4; 
else % grayscale or binary 
  n = 3; 
end 
maskOut = movmean(maskIn,window,n,'omitnan') > threshold;    
end 

B2.1.5 segmentDepth 

function [depthMask] = segmentDepth(depth,colorMask,threshold,direction) 
%% segment depthMap for depthMap where AND(color image mask, above/below 

threshold, continuous object) 
% Jason Der 
% October 31, 2021 
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arguments 
  depth double 
  colorMask logical 
  threshold = abs(mean(depth.*colorMask,'all') + 

2*std(depth.*colorMask,0,'all')) 
  direction logical = true % default find depth less than threshold 
end 
% segment depthMap, and find continuous objects 
depthSeg = depth.*colorMask; 
object = largestRegion(depthSeg & colorMask); 
% find depth above/below threshold 
if direction % depth greater than threshold 
  maskThreshold = ~(depthSeg > threshold); 
else % depth less than threshold 
  maskThreshold = depthSeg < threshold; 
end 
% binary mask meeting all three conditions 
depthMask = depthSeg & maskThreshold & object;  
% return largest contiguous regions 
depthMask = largestRegion(depthMask);  
end 

B2.1.6 segmentMechanicalLungEVLP 

function [bwFilename] = segmentMechanicalLungEVLP(matFilename,line,rect) 
%% segment mechanical lung from depth maps  
% uses edge based method and edge linking from Digital Image Processing 4th 

Ed. 
% edge localization by bwG(:,:,ii) = 

gradientEdge(depthMap(:,:,ii),0.95,60,90) 
% or edge(depthMap(:,:,ii),'canny') or edge(depthMap(:,:,ii),'log') 
% other methods covered by edge() could be used but these are recommended 

  
% method is finicky  
% depends on small body filtering threshold 
  % only used on trials 4-6 limits = [15 inf] 
  % trials 1-3 dont need it 
  % trials 7-9 need the small bodies  
% depends on location of drawline and drawrect 
  % trials 1-3 vertical line good 
  % trials 4-6 needed close diagonal line or else it would not enclose lung 
% depends on linking distance 
  % trials 1-3 threshold = 10 was good 
  % trials 4-6 threshold = 10 with area filt prior okay 
  % trials 7-9 threshold = 10 lost > 5% of frames 

  
% Jason Der 
% February 17, 2022 
arguments 
  matFilename 
  line = []  
  rect = [] 
end 
% load depthmaps 
load(matFilename,'depthMap'); 
[file,name,ext] = fileparts(matFilename);  
bwFilename = fullfile(file,[name 'BW' ext]); 
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[row,col,nFrames] = size(depthMap); 
% edge localization and linking 
bwCanny = false(row,col,nFrames);  
parfor iFrame = 1:nFrames 
  bwCanny(:,:,iFrame) = edge(imadjust(depthMap(:,:,iFrame)),'canny');  
end 
% remove small edges 
% for trial 4 aimed at occlusion holes scattered throughout image 
% for trial 4 lower limit ~ 15, above will remove too many that are needed 
% for enclose the lung, at ~ 10 it has no effect 
% bwAreaFilt = false(row,col,nFrames);  
% for i = 1:nFrames 
%   bwAreaFilt(:,:,i) = bwareafilt(bwCanny(:,:,i),[15 inf]); 
% end 
save(bwFilename,'bwCanny','-v7.3');  
clear file name ext matFilename 
bwLinked = false(row,col,nFrames);   
parfor jFrame = 1:nFrames 
  bwLinked(:,:,jFrame) = fastLocalEdgeLinking(bwCanny(:,:,jFrame),10,[0 45 -

45 90]);  
end 
% save  
save(bwFilename,'bwLinked','-append'); % change based on edge detector 
clear bwAreaFilt . 
% define boundaries of mechanical lung airline and crop 
if isempty(line) || isempty(rect) 
  [line,rect] = drawMechanicalLungBounds(bwLinked(:,:,1)); 
end 
% find mechanical lung within cropped image 
bwCrop = false(rect(4)+1,rect(3)+1,nFrames); 
for kFrame = 1:nFrames 
  bwCrop(:,:,kFrame) = 

mechanicalLungRegionInsideBounds(bwLinked(:,:,kFrame),line,rect);  
end 
clear bwLinked 
% outlier detection 
bwCount = squeeze(sum(bwCrop,[1 2])); 
bwOutlier = isoutlier(bwCount,'movmedian',0.01*length(bwCount));  
bwValid = bwCrop(:,:,~bwOutlier); 
save(bwFilename,'bwCrop','bwOutlier','rect','line','-append'); 
clear bwCrop bwCount bwOutlier line 
% bw temporal filtering on cropped binary images 
bwCropFilt = temporalFilterMask(bwValid,10,0.5); % or temporalFilterImg 
% check if outlier removal and temporal smoothing worked 
% bwFiltCount = squeeze(sum(bwCropFilt,[1 2]));  
% bwFiltOutlier = 

isoutlier(bwFiltCount,'movmedian',0.01*length(bwFiltCount));  
% insert cropped binary images into full sized images 
mValidFrames = size(bwCropFilt,3);  
bw = false(row,col,mValidFrames); 
for kFrame = 1:mValidFrames 
  bw(rect(2):rect(4)+rect(2),rect(1):rect(3)+rect(1),kFrame) = 

bwCropFilt(:,:,kFrame);  
end 
% save  
save(bwFilename,'bw','bwCropFilt','-append'); 
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end 

B2.1.6.1 fastLocalEdgeLinking 

function [bwE] = fastLocalEdgeLinking(bwG,L,theta) 
%% perform local processing edge linking 
% based on simplified algorithm described in Digital Image Processing 4th Ed. 

pg. 736 
% find bwG using any edge detector such as gradientEdge() 
% inputs 
  % bwG binary image from edge detection 
  % L edge linking distance threshold 
  % theta desired edge angles to link 
% intermediates 
  % n number of nonzero pixels in row(ii) of bwG 
  % ind linear indices of nonzero pixels in row(ii) of bwG 
  % dist number of pixels between nonzero pixels in row(ii) of bwG 
% outputs  
  % bwE binary image with linked edges 
% Jason Der 
% February 16, 2022 
arguments 
  bwG 
  L = 15 
  theta = [0 45 -45 90] 
end 
% pre-edge linking using morphological operations 
bwG = bwmorph(bwG,'thicken'); 
bwG = bwmorph(bwG,'diag');  
bwG = bwmorph(bwG,'majority'); 
% fill gaps shorter than L for each row  
bwE = bwG; 
for kk = 1:length(theta) 
  % rotate so theta(kk) angle is horizontal 
  bwE = imrotate(bwE,theta(kk),'crop'); 
  bwG = imrotate(bwG,theta(kk),'crop'); 
  for ii = 1:height(bwG) % rows 
    % find nonzero pairs and their distances 
    n = nnz(bwG(ii,:));  
    ind = find(bwG(ii,:));  
    dist = diff(ind);  
    for jj = 1:n-1 % nonzero pairs 
      if dist(jj) <= L % threshold pair distance  
        % fill gaps between nonzero pair 
        bwE(ii,ind(jj):ind(jj+1)) = true; 
      end 
    end 
  end 
  % rotate back 
  bwE = imrotate(bwE,-theta(kk),'crop'); 
  bwG = imrotate(bwG,-theta(kk),'crop'); 
end 
% edge thinning 
bwE = bwmorph(bwE,'diag');  
bwE = bwmorph(bwE,'skel',inf);  
% remove small bodies 
bwE = bwareafilt(bwE,[50 inf]); 
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end 

B2.1.7 segmentRegions 

function [segmentationMatFilename] = 

segmentRegions(streamsMatFilename,segmentationMatFilename) 
%% segment lung for regions, left and right lungs 
% Jason Der 
% October 29, 2021 
% updated November 17, 2021 with clusterLabels 
arguments 
  streamsMatFilename 
  segmentationMatFilename   
end 
% load variables 
load(segmentationMatFilename,'depthMask'); 
load(streamsMatFilename,'depthMap');    
% segment regions 
[r,c,n] = size(depthMap);  
L = ones(r,c,n,'uint8');  
parfor i = 1:n 
  [L(:,:,i)] = segmentRegionsImquantize(depthMap(:,:,i),8,depthMask(:,:,i)); 
end 
clear depthMap depthMask   
% post process regions 
Lc = clusterLabels(L,3);   
Lw = removeLabelIdx(Lc);  
Ls = sortLabels(Lw); 
% temporal filter region 
% Lf = filterRegion(Ls); 
Lf = filterLeftRightLungLabels(Ls,[2 3 1],0.03); 
% save to mat file   
save(segmentationMatFilename,'L','Lc','Lw','Ls','Lf','-append'); 
end   

B2.1.7.1 segmentRegionsImquantize 

function [L] = segmentRegionsImquantize(img,nLevels,mask) 
%% segment regions from result of imquantize to seed watershed method 
% Jason Der 
% November 2, 2021 
% updated November 17, 2021 with multithresh, default nLevels = 9 from 10 
arguments 
  img 
  nLevels = 8 
  mask = [] 
end 
% prepare image for quantization 
if ~isempty(mask) 
  seg = img.*imfill(mask,'holes'); 
else  
  seg = img; 
end 
nonZero = imfill(seg);  
nonZero(nonZero==0) = max(seg,[],'all');  
% quantize image into nLevels  
thresh = multithresh(nonZero,nLevels);  
% levels = linspace(min(nonZero,[],'all'),max(nonZero,[],'all'),nLevels); 
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quant = imquantize(nonZero,thresh);      
% find watershed seed regions, foreground and background 
minima = imhmin(quant,2); 
foreground = bwmorph(imregionalmin(minima),'clean'); 
foreground = imerode(foreground,strel('disk',3));  
  if ~isempty(mask) 
    background = ~imfill(mask,'holes'); 
  else 
  maxima = imhmax(quant,1); 
  background = bwmorph(imregionalmax(maxima),'clean'); 
  end   
%gradient image with imposed minima  
smooth = imnlmfilt(imsharpen(nonZero));  
gmag = imgradient(smooth);  
gmag2 = imimposemin(gmag,foreground|background);  
% watershed segmentation 
L = watershed(gmag2);   
end 

B2.1.7.2 clusterLabels 

function [clusterLabel] = clusterLabels(L,nClusters,attribute) 
%% ensure the same regions have the same labels between frames 
% also combines oversegmented regions 
% identify unique regions by clustering based on a metric 
% metrics could be any supported regionprops attributes (choosen is Area) 
% attribute input is case sensitive 
% k-means function is set to use replicates = 3 
% Jason Der 
% November 16, 2021 updated March 4, 2022 to use Area instead of Centroid 
arguments 
  L 
  nClusters = 3 
  attribute = 'Area' 
end 
% initialize variables 
[r,c,n] = size(L);  
s = cell(n,1); 
frameID = cell(n,1); 
labelID = cell(n,1); 
clusterLabel = zeros(r,c,n,'uint8'); 
% regionprops for each frame 
for ii = 1:n 
  % regionprops ignores zero label  
  % zero label is watershed line (between regions) 
  s{ii} = regionprops(L(:,:,ii),attribute); 
  frameID{ii} = repmat(ii,length(s{ii}),1); 
  labelID{ii} = uint8(repmat(1:length(s{ii}),1))'; 
end 
% measure dimensions of attribute  
attributeLength = length(s{1}(1).(attribute)); 
% create matching arrays to clusterID that tells you the frame and label 
frameID = cell2mat(frameID);  
labelID = cell2mat(labelID);  
% identify number of k-mean clusters 
if isempty(nClusters) 
  labels = uint8(unique(L)); 
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  labels(labels==0) = []; % remove watershed lines 
  nClusters = length(labels);  
end 
% identify cluster for each region for each frame 
regionProperties = 

reshape(cell2mat(struct2cell(cell2mat[s])),attributeLength,[])';  
clusterID = uint8(kmeans(regionProperties,nClusters,'Replicates',3)); 
% create label matrix for cluster ID regions 
for jj = 1:length(clusterID) 
  frame = frameID(jj); 
  label = labelID(jj); 
  cluster = clusterID(jj); 
  clusterLabel(:,:,frame) = clusterLabel(:,:,frame) + 

cluster.*uint8(L(:,:,frame)==label); 
end 
end 

B2.1.7.3 removeLabelIdx 

function [Lw] = removeLabelIdx(Lc,filtSz,watershedLabel,backgroundLabel) 
%% remove watershed lines between regions 
% Jason Der 
% December 9, 2021 
arguments 
  Lc 
  filtSz = 9 
  watershedLabel = 0 
  backgroundLabel = 3 
end 
% apply majority filter to label image 
majority = modefilt(Lc,[filtSz filtSz 1]); 
% use majority filter results for pixels are equal to watershedIdx 
Lw = Lc;  
loc = Lc == watershedLabel;  
Lw(loc) = majority(loc); 
% remove any remaining watershed pixels 
locw = (Lw == watershedLabel); 
if any(locw,'all') 
Lw(locw) = backgroundLabel; % take as background label  
end 

B2.1.7.4 sortLabels 

function [Ls] = sortLabels(L) 
%% change region labels by sorting them by pixel count / frequency 
% intended to avoid pcdownsampling a background label 
% utility assumes that background has larger count than foreground 
% as a result, the background label is always known and interpolation 
% between foreground labels when rounded always gives a foreground label 
% Jason Der 
% March 5, 2022 
arguments 
  L 
end 
% sort labels in first labelling image 
firstFrame = L(:,:,1); 
[groupCount,groupLabels] = groupcounts(firstFrame(:));  
[~,I] = sort(groupCount); 
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sortedLabels = groupLabels(I); 
% sort all labelling images based on sorted groups 
Ls = zeros(size(L),'uint8'); 
for iGroup = 1:length(groupLabels) 
  Ls(L==sortedLabels(iGroup)) = groupLabels(iGroup);  
end 
end 

B2.1.7.5 filterLeftRightLungLabels 

function [Lf] = filterLeftRightLungLabels(Ls,labels,windowPercent) 
%% temporal filter left and right lungs in labelling image 
% Jason Der 
% March 14, 2022 
arguments 
  Ls 
  labels = [1 2 3] 
  windowPercent = 0.03 
end 
% initialization 
[r,c,n] = size(Ls); 
window = floor(windowPercent*n); 
leftLabel = labels(1);  
rightLabel = labels(2);  
backLabel = labels(3);  
% moving mean of left and right lung 
leftMean = movmean(Ls==leftLabel,window,3,'omitnan'); 
rightMean = movmean(Ls==rightLabel,window,3,'omitnan');  
% assign foreground as either left or right lung 
Lf = zeros(r,c,n,'uint8');  
Lf(leftMean<=rightMean) = rightLabel; 
Lf(leftMean>rightMean) = leftLabel; 
% assign background  
Lf(Ls==backLabel) = backLabel;  
% find isolated bodies and replace for left lung 
[ccIsolatedLeft,~] = findIsolatedLabels(Lf,leftLabel); 
Lf(vertcat(ccIsolatedLeft{:})) = rightLabel;  
% find isolated bodies and replace for right lung 
[ccIsolatedRight,~] = findIsolatedLabels(Lf,rightLabel); 
Lf(vertcat(ccIsolatedRight{:})) = leftLabel;  
% replace any remaining isolated bodies as background  
[ccIsolatedLeftRemainder,~] = findIsolatedLabels(Lf,leftLabel); 
[ccIsolatedRightRemainder,~] = findIsolatedLabels(Lf,rightLabel); 
Lf(vertcat(ccIsolatedLeftRemainder{:})) = backLabel;  
Lf(vertcat(ccIsolatedRightRemainder{:})) = backLabel;  
end 

B2.1.7.5.1 findIsolatedLabels 

function [ccSmall,ccLarge] = findIsolatedLabels(Lf,targetLabel) 
%% find isolated connected components in binary map and return indices 
% Jason Der 
% March 10, 2022 
arguments 
  Lf 
  targetLabel 
end 
% find connected components for target labels 



231 

ccStruct = bwconncomp(Lf == targetLabel,8); 
nCC = ccStruct.NumObjects; 
% find the frame (index) of each body using implicit expansion 
[nRow,nCol,nFrames] = size(Lf);  
ccFirstIdx = cellfun(@(x) x(1),ccStruct.PixelIdxList);  
ccFrame = ceil(ccFirstIdx/(nRow*nCol));  
% alternative method to find frame index 
  % frameLimits = nRow*nCol:nRow*nCol:nRow*nCol*nFrames'; 
  % [~,ccFrame] = max(ccFirstIdx <= frameLimits(:),[],1);  
% find frames with mulitple bodies 
[frameCount,frameIdxList] = groupcounts(ccFrame'); 
frameMultipleCC = frameCount > 1; 
idxFrames = frameIdxList(frameMultipleCC); % equivalent to 

find(frameMultipleCC) 
ccMultiple = ismember(ccFrame,idxFrames); 
multipleFrame = ccFrame(ccMultiple);  
% find number of pixels per body in frames with multiple connected components 
multipleSize = cellfun('length',ccStruct.PixelIdxList(ccMultiple)); 
% cell for pixel indices of large and small bodies 
ccLarge = cell(nFrames,1); 
ccLarge(~frameMultipleCC) = ccStruct.PixelIdxList(~ccMultiple); 
ccSmall = cell(nCC-nFrames,1); 
ccSmallIdx = 0; % start counter 
% find pixel indices of large and small bodies  
% search frames with multiple connected components 
for iFrame = 1:length(idxFrames) 
  % connected components to check 
  iFrameIdx = idxFrames(iFrame); % frame to check 
  multipleIdx = find(multipleFrame==iFrameIdx); % indices for list of 

multipleCC 
  iFrameSizes = multipleSize(multipleIdx); % number of pixels for each cc to 

check 
  idx = find(ismember(ccFrame,iFrameIdx)); % cc indices 
  % large body indices 
  [~,multipleIdxMax] = max(iFrameSizes);   
  % large body pixel list 
  ccLarge(idxFrames(iFrame)) = ccStruct.PixelIdxList(idx(multipleIdxMax)); 
  % small body indices 
  smallIdx = find(multipleIdx); 
  smallIdx(multipleIdxMax) = [];  
  % cc small body indices, based on relationship between counter and group 

length 
  idxChange = length(idx)-1; % number of bodies per frame - 1 
  ccSmallIdx = ccSmallIdx + idxChange; % last index in ccSmall to assign too, 

update each iteration 
  ccSmallArray = ccSmallIdx - idxChange + 1:ccSmallIdx; % indices in ccSmall 
  % small body pixel list 
  ccSmall(ccSmallArray) = ccStruct.PixelIdxList(idx(smallIdx)); 
end 
end 
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B2.2 Point Cloud Processing 

The segmented depth maps were deprojected into point clouds using the follow functions. The 

deprojectLungs function performs deprojection and some data management. The 

vertices2PointCloud function performs the post-processing steps such as box average filtering 

and more data management to convert the deprojected points into point cloud objects. The depth, 

color, and label data from the images were transferred to the point clouds. 

B2.2.1 deprojectLungs 

function [verticesMatFilename] = 

deprojectLungs(streamsMatFilename,segmentationMatFilename,D) 
%% deproject lung XYZ and RGB 
% Jason Der 
% October 30, 2021 updated March 4, 2022 to mirror XYZ about YZ 
arguments 
  streamsMatFilename 
  segmentationMatFilename 
  D = 0.38 % depth threshold / distance of EVLP floor to depth origin 
end 
% load variables 
load(streamsMatFilename,'colorImg','depthMap','intrinsics','depthIntrinsics')

; 
load(segmentationMatFilename,'tform','Lf','depthMask'); 
if ~exist('tform','var')  
  trans = [0 0 D];  
  rot = [-1 0 0;0 1 0;0 0 -1]; 
  tform = rigid3d(rot,trans); 
end 
% deproject lung XYZ and RGB data   
if ~exist('intrinsics','var') 
  intrinsics = depthIntrinsics; 
end 
[XYZ] = deprojectDepthMap(depthMask.*depthMap,intrinsics); 
XYZ = transformPointsForward(tform,XYZ); 
XYZ = [-XYZ(:,1),XYZ(:,2:3)]; 
spatialLimits = [min(XYZ(:,1)),max(XYZ(:,1)); 
                 min(XYZ(:,2)),max(XYZ(:,2)); 
                 min(XYZ(:,3)),max(XYZ(:,3))]; 
XYZ = formatVertices(XYZ,depthMask); % default is cell per frame 
% if color image have been segmented 
if exist('colorImg','var') 
  RGB = formatColorImg(colorImg,depthMask); % default is cell per frame 
end 
% if regions have been segmented 
if exist('Lf','var') 
  R = formatLabels(Lf,depthMask); 
end 
% save results to mat file 
[file,name,ext] = fileparts(streamsMatFilename); 
verticesMatFilename = fullfile(file,[name 'Vertices' ext]); 
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save(verticesMatFilename,'XYZ','spatialLimits','tform','-v7.3'); 
% if regions have been segmented  
if exist('R','var') 
  save(verticesMatFilename,'R','-append'); 
end 
if exist('RGB','var') 
  save(verticesMatFilename,'RGB','-append');   
end 

B2.2.1.1 deprojectDepthMap 

function [vertices] = deprojectDepthMap(depthMap,intrinsics) 
%% convert depth map[s] into 3D points using pinhole model and inverse Brown-

Conrady distortion model 
% Inputs 
  % depthMap - depth map[s] with [R,C,N] dimensions 
  % intrinsics - ASV intrinsics 
    % ppx - physical to pixel scaling in y direction 
    % ppy - physical to pixel scaling in x direction 
    % fx - focal length in x direction 
    % fy - focal length in y direction 
% Intermediates 
  % ind - linear indices of nonzero depth values 
  % sz - size of depthMap = [R,C,N] 
  % X - x coordinates in pixels of nonzero depth values  
  % Y - y coordinates in pixels of nonzero depth values 
  % Z - nonzero depth values 
  % x - x coordinates in physical dimensions on image plane (not depth 

scaled) 
  % y - y coordinates in physical dimensions on image plane (not depth 

scaled) 
  % ux - x coordinates undistorted (not depth scaled) 
  % uy - y coordinates undistorted (not depth scaled) 
  % f - a brown conrady distortion coefficient 
  % r2 - a brown conrady distortion coefficient 
% Outputs 
  % vertices - XYZ 3D points in physical space in [N,3] list  
% Notes 
  % size() provides XY dimensions in opposite order of intrinsics  
  % Jason Der 
  % October 30, 2021 
arguments  
  depthMap    
  intrinsics 
end 
% preprocessing 
ind = find(depthMap); 
sz = size(depthMap); 
[Y,X,~] = ind2sub(sz,ind); % FLIP b/c row = y and column = x 
Z = depthMap(ind);   
clear depthMap 
% calculate x and y coorinates 
x = (X - intrinsics.ppx) / intrinsics.fx; 
y = (Y - intrinsics.ppy) / intrinsics.fy; 
% inverse brown conrady model 
r2 = x.*x + y.*y; 
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f = 1 + intrinsics.coeffs(1) .* r2 + intrinsics.coeffs(2) .* r2.*r2 + 

intrinsics.coeffs(5) .* r2.*r2.*r2; 
ux = x .* f + 2 * intrinsics.coeffs(3) .* x .* y + intrinsics.coeffs(4) .* 

(r2 + 2 .* x .* x); 
uy = y .* f + 2 * intrinsics.coeffs(4) .* x .* y + intrinsics.coeffs(3) .* 

(r2 + 2 .* y .* y);   
% scale x and y coordinates 
clear x y f r Y X ind 
% vertices = single([Z .* uy,Z .* ux,Z]); <---------- BIG MISTAKE --------- 
vertices = single([Z .* ux,Z .* uy,Z]);   
end 

B2.2.1.2 formatVertices 

function [formatted] = formatVertices(vertices,bw,format) 
%% convert [N,3] list of vertices (XYZ) into desired format while separating 

list into frames 
% Steps 
  % determine which frames each vertices point belongs to 
  % format into desired format: {cell, pointCloud stack, or ndSparse} 
% Inputs 
  % vertices - XYZ points in [N,3] list 
  % bw - black_white (binary images) image format (including zeros) of 

vertices 
  % format - string that defines desired format using switch case 
% Intermediates 
  % ind - linear indices of nonzero pixels in bw  
  % bwSize - dimension size of bw [~,~,nFrames] 
  % nFrames - number of image frames  
  % frame - frame coordinates for nonzero pixels in bw 
  % 'x'Frame - index of frame 'x' for looping through frames 
  % 'x'FrameChg - indices of when vertices change frames 
  % 'x'FramePoints - indices of vertices that are part of frame 'x'Frame 
% Outputs 
  % formatted - vertices formatted into desired format 
% Notes 
  % requires ndSparse on FileExchange for ndSparse format option 
  % https://www.mathworks.com/matlabcentral/answers/36563-reshaping-2d-

matrix-into-3d-specific-ordering 
  % Jason Der 
  % November 3, 2021 
arguments 
  vertices 
  bw 
  format = 'cell' % 'cell','ndSparse',or 'pc' 
end 
% determine vertices' dimensions as an image 
ind = find(bw); 
bwSize = size(bw); 
try nFrames = bwSize(3); catch nFrames = 1; end 
[~,~,frame] = ind2sub(bwSize,ind);   
% format vertices  
switch format 
  case 'cell' 
    % initialize cell array     
    formatted = cell(nFrames,1);  
    % find when points change frames 
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    iFrameChg = [0;find(diff(frame));length(frame)];  
    for iFrame = 1:length(iFrameChg)-1 
      iFramePoints = iFrameChg(iFrame)+1:iFrameChg(iFrame+1); 
      formatted{iFrame} = vertices(iFramePoints,:); 
    end 
  case 'pc' 
    % initialize pointCloud stack 
    formatted(1:nFrames,1) = pointCloud([0,0,0]); 
    % find when points change frames 
    jFrameChg = [0;find(diff(frame));length(frame)];  
    for jFrame = 1:nFrames 
      jFramePoints = jFrameChg(jFrame)+1:jFrameChg(jFrame+1); 
      formatted(jFrame) = pointCloud(vertices(jFramePoints,:)); 
    end 
  case 'ndSparse' % reshape list into sparse frames 
    formatted = 

ndSparse(permute(reshape(vertices',[3,numel(bw)/nFrames,nFrames]),[2,1,3])); 
  otherwise % error message 
    disp('invalid format\n'); 
end   
end 

B2.2.1.3 formatColorImg 

function [RGB] = formatColorImg(colorImg,depthMask,format) 
%% format RGB data into list, matching vertices  
% Jason Der 
% November 3, 2021 
% https://www.mathworks.com/matlabcentral/answers/36563-reshaping-2d-matrix-

into-3d-specific-ordering 
% ndSparse option needs work  
arguments 
  colorImg 
  depthMask 
  format = 'cell' 
end 

  
%% colorImg dimensions and segmentation 
  sz = size(colorImg); 
  n = sz(1)*sz(2); 

   
%% format segmented colorImg 
  switch format 
    case 'cell' 
      RGB = cell(sz(4),1); 
      for i = 1:sz(4) 
        colorFrame = 

colorImg(:,:,:,i).*repmat(uint8(depthMask(:,:,i)),[1,1,3]); 
        ind = find(depthMask(:,:,i)); 
        RGB{i} = reshape(colorFrame([ind;ind+n;ind+2*n]),[],3); 
      end 
%     case 'ndSparse' 
%       RGB = 

ndSparse(permute(reshape(colorSeg',[3,n/sz(4),sz(4)]),[2,1,3])); 
    otherwise 
      disp('invalid format\n'); 
  end 
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end 

B2.2.1.4 formatLabels 

function [R] = formatLabels(L,depthMask) 
%% format labelling images into vertices list for point cloud  
% replace formatRegions and formatPointCloudIntensityRegion 
% just use integer labels in L, use depthMask to identify valid pixels 
% Jason Der 
% March 4, 2022 
arguments 
  L 
  depthMask 
end 
% initializations 
[~,~,numFrames] = size(depthMask);  
R = cell(numFrames,1);  
for iFrame = 1:numFrames 
% assign region labels to cell as list 
labels = L(:,:,iFrame);  
R{iFrame} = labels(depthMask(:,:,iFrame));  
end 
end 

B2.2.2 vertices2PointCloud 

function [pointCloudMatFilename] = 

vertices2PointCloud(streamsMatFilename,verticesMatFilename,gridStep) 
%% prepare XYZ, and associated data (RGB and Regions) for surface 

interpolation and integration 
% removes invalid points, noise, and ROI outliers 
% ROI removal is optional 
% Jason Der 
% November 7, 2021 
% March 4, 2022 added pcdownsample and removed ROI 
arguments 
  streamsMatFilename 
  verticesMatFilename 
  gridStep = 0.005 
end 
% load variables 
load(verticesMatFilename,'XYZ','RGB','R'); 
if ~exist('R','var') 
  R = [];  
end 
% create pointCloud array 
pointCloudRGBDI = createPointCloudRGBDI(XYZ,RGB,R); 
clear XYZ RGB R 
% filter pointCloud array  
nFrames = length(pointCloudRGBDI);  
pc(1:nFrames,1) = pointCloud([0 0 0]);  
for ii = 1:nFrames 
  pc(ii) = pcdownsample(pointCloudRGBDI(ii),'gridAverage',gridStep);  
  pc(ii) = pcdenoise(pc(ii),'NumNeighbors',10,'Threshold',3);  
end 
% spatial limits of all valid points 
pcSpatialLimits = spatialLimitsPointCloudArray(pc); 
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% save data 
[file,name,ext] = fileparts(streamsMatFilename); 
pointCloudMatFilename = fullfile(file,[name 'PC' ext]); 
save(pointCloudMatFilename,'pc','pointCloudRGBDI','pcSpatialLimits','-v7.3'); 
end 

B2.2.2.1 createPointCloudRGBDI 

function [pointCloudMatFilename] = 

vertices2PointCloud(streamsMatFilename,verticesMatFilename,gridStep) 
%% prepare XYZ, and associated data (RGB and Regions) for surface 

interpolation and integration 
% removes invalid points, noise, and ROI outliers 
% ROI removal is optional 
% Jason Der 
% November 7, 2021 
% March 4, 2022 added pcdownsample and removed ROI 
arguments 
  streamsMatFilename 
  verticesMatFilename 
  gridStep = 0.005 
end 
% load variables 
load(verticesMatFilename,'XYZ','RGB','R'); 
if ~exist('R','var') 
  R = [];  
end 
% create pointCloud array 
pointCloudRGBDI = createPointCloudRGBDI(XYZ,RGB,R); 
clear XYZ RGB R 
% filter pointCloud array  
nFrames = length(pointCloudRGBDI);  
pc(1:nFrames,1) = pointCloud([0 0 0]);  
for ii = 1:nFrames 
  pc(ii) = pcdownsample(pointCloudRGBDI(ii),'gridAverage',gridStep);  
  pc(ii) = pcdenoise(pc(ii),'NumNeighbors',10,'Threshold',3);  
end 
% spatial limits of all valid points 
pcSpatialLimits = spatialLimitsPointCloudArray(pc); 
% save data 
[file,name,ext] = fileparts(streamsMatFilename); 
pointCloudMatFilename = fullfile(file,[name 'PC' ext]); 
save(pointCloudMatFilename,'pc','pointCloudRGBDI','pcSpatialLimits','-v7.3'); 
end 

B2.2.2.2 spatialLimitsPointCloudArray 

function [spatialLimits] = spatialLimitsPointCloudArray(pointCloud) 
%% find spatial limits of entire pointCloud array  
% Jason Der 
% November 14, 2021 
arguments 
  pointCloud 
end 
% limits of array elements   
X = cell2mat(arrayfun(@(pc) pc.XLimits,pointCloud,'UniformOutput',false));  
Y = cell2mat(arrayfun(@(pc) pc.YLimits,pointCloud,'UniformOutput',false));  
Z = cell2mat(arrayfun(@(pc) pc.ZLimits,pointCloud,'UniformOutput',false));  
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% limits of array  
spatialLimits = [min(X(:,1)),max(X(:,2)); 
                 min(Y(:,1)),max(Y(:,2)); 
                 min(Z(:,1)),max(Z(:,2))]; 

end 

B3 Surface Reconstruction 

The point clouds were used to reconstruct the surface of the experiment lungs using the 

following functions. The interpolateSurface function reconstructed the surface using the 3D 

coordinates from the point clouds. The interpolateSurfaceColor interpolated the surface map 

color from the point clouds. The interpolateSurfaceRegion function interpolated the region labels 

for the left and right lung from the point clouds to the surface map.  

B3.1 interpolateSurface 

function [surfaceMatFilename] = 

interpolateSurface(streamsMatFilename,pointCloudMatFilename) 
%% interpolate vertices data into surface image  
% use primarily griddata() with different interpolation methods  
% outputs images for each at query points defined by X and Y 
% Jason Der 
% developed October 30, 2021 to November 8, 2021 
arguments  
  streamsMatFilename 
  pointCloudMatFilename 
end 
% load variables  
load(pointCloudMatFilename,'pc','pcSpatialLimits'); 
% surface grid  
[X,Y] = interpolationGrid(pcSpatialLimits); 
X = double(X);  
Y = double(Y); 
% initialization 
n = length(pc); 
[r,c] = size(X); 
Z = zeros(r,c,n); 
BW = false(r,c,n); 
% interpolate at grid points 
for ii = 1:n 
  % frame XYZ coordinates 
  x = double(pc(ii).Location(:,1)); 
  y = double(pc(ii).Location(:,2)); 
  z = double(pc(ii).Location(:,3)); 
  % alpha shape  
  shp = alphaShape(x,y,'HoleThreshold',20);  
  BW(:,:,ii) = inShape(shp,X,Y); 
  % interpolant 
  F = scatteredInterpolant(x,y,z,'natural','none'); 
  % interpolate z coordinates 
  Z(:,:,ii) = F(X,Y);   
end 
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% post-process 
Zs = filterSurface(Z); 
[DT,validElements,~] = meshSurfaceImg(BW);     
% save variables 
[file,name,ext] = fileparts(streamsMatFilename); 
surfaceMatFilename = fullfile(file,[name 'Surface' ext]); 
save(surfaceMatFilename,'BW','Zs','Z','X','Y','DT','validElements','-v7.3');    
end 

B3.1.1 filterSurface 

function [Zs] = filterSurface(Z,nhood) 
%% post process surface 
% Jason Der 
% December 2, 2021 
arguments 
  Z 
  nhood = [5 5]  
end 
% initialize 
[r,c,n] = size(Z);  
Zs = zeros(r,c,n); 
% smooth  
for ii = 1:n 
  [Zs(:,:,ii),~] = wiener2(Z(:,:,ii),nhood); 
end 
% fill missing 
Zs(isnan(Zs)) = 0; 
Zs = imfill(Zs,conndef(2,'maximal')); 
Zs(Zs == 0) = nan;  
end 

B3.1.2 meshSurfaceImg 

function [DT,validElements,validNodes] = meshSurfaceImg(Z) 
%% create mesh for uniform image  
% Jason Der 
% September 9, 2021 
% made to replace mesh_surfaceImg 
arguments 
  Z 
end    
% create general DT for each image 
[r,c,n] = size(Z); 
[x,y] = meshgrid(1:r,1:c); % X and Y mesh assumed same size as Z 
DT = delaunay(x,y); % mesh connectivity  
validNodes = reshape(and(Z ~= 0,~isnan(Z)),r*c,n,1); % node is neither 0 or 

Nan 
validElements = false(size(DT,1),n); 
% identify valid elements and nodes for each image in DT   
for i = 1:n % ideally vectorize loop  
  ind = find(validNodes(:,i)); 
  validElements(:,i) = all(ismember(DT,ind),2); 
end   
end 
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B3.2 interpolateSurfaceColor 

function [surfaceMatFilename] = 

interpolateSurfaceColor(surfaceMatFilename,pointCloudMatFilename) 
%% interpolate vertices data into surface image  
% use primarily griddata() with different interpolation methods  
% outputs images for each at query points defined by X and Y 
% Jason Der 
% developed October 30, 2021 to November 8, 2021 
% updated March 4, 2022 to use scattered interpolant + replacing samples 
arguments    
  surfaceMatFilename 
  pointCloudMatFilename 
end 
% load variables  
load(pointCloudMatFilename,'pc','pcSpatialLimits'); 
% surface grid  
[X,Y] = interpolationGrid(pcSpatialLimits); 
X = double(X);  
Y = double(Y); 
% initialization 
nFrames = length(pc); 
[r,c] = size(X); 
C = zeros(r,c,3,nFrames); 
% interpolate at grid points 
for iFrame = 1:nFrames 
  % sample data fo  
  xii = double(pc(iFrame).Location(:,1)); 
  yii = double(pc(iFrame).Location(:,2)); 
  cii = double(pc(iFrame).Color);  
  % interpolate nearest neighbour for RGB color channels 
  for jChannel = 1:3 
    if jChannel == 1 
      % generate scattered interpolant object 
      F = scatteredInterpolant(xii,yii,cii(:,jChannel),'nearest','none');  
    else  
      % change sample values 
      F.Values = cii(:,jChannel);  
    end 
    C(:,:,jChannel,iFrame) = reshape(F(X,Y),r,c); 
  end 
end 
C = uint8(C); 
% save variables 
save(surfaceMatFilename,'C','-append');    
end 

B3.2.1 interpolationGrid 

function [X,Y] = interpolationGrid(spatialLimits,nBins) 
%% create X and Y grid for interpolation using meshgrid 
% determine evenly spaced sample locations using spatial limits and grid 

dimensions 
% Steps 
  % determine distance between sample points based on limits and number of 

points 
  % determine coordinates of sample points 
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% Inputs 
  % spatialLimits - pointCloud XYZ limits 
  % nBins - dimensions of interpolation grid in x and y 
% Intermediates 
  % xWidth and yWidth - distance between sample points in x and y coordinates 
  % xSample and ySample - x and y coordinates of sample points 
% Outputs  
  % X and Y - x and y coordinates of sample points as matrices 
% Notes 
  % has known problem with non-square nBins input when interpolating 
  % problem might be caused by this function 
  % Jason Der 
  % November 7, 2021 
arguments 
  spatialLimits (3,2) {mustBeFinite} 
  nBins (1,2) {mustBeInteger} = [200,200] 
end 
% distance between sample points  
xWidth = (spatialLimits(1,2) - spatialLimits(1,1))/(nBins(1)); 
yWidth = (spatialLimits(2,2) - spatialLimits(2,1))/(nBins(2)); 
% sample points as array  
xSample = spatialLimits(1,1) + xWidth/2 : xWidth : spatialLimits(1,2) - 

xWidth/2; 
ySample = spatialLimits(2,1) + yWidth/2 : yWidth : spatialLimits(2,2) - 

yWidth/2; 
[X,Y] = meshgrid(xSample,ySample);   
end 

B3.3 interpolateSurfaceRegion 

function [surfaceMatFilename] = 

interpolateSurfaceRegion(surfaceMatFilename,pointCloudMatFilename) 
%% interpolate vertices data into surface image  
% use primarily griddata() with different interpolation methods  
% outputs images for each at query points defined by X and Y 
% Jason Der 
% developed October 30, 2021 to November 8, 2021 
arguments    
  surfaceMatFilename 
  pointCloudMatFilename  
end 
% load variables  
load(pointCloudMatFilename,'pc','pcSpatialLimits'); 
% surface grid  
[X,Y] = interpolationGrid(pcSpatialLimits); 
X = double(X);  
Y = double(Y); 
% initialization 
nFrames = length(pc); 
[r,c] = size(X); 
R = zeros(r,c,nFrames); 
% interpolate at grid points 
for iFrame = 1:nFrames 
  xii = double(pc(iFrame).Location(:,1)); 
  yii = double(pc(iFrame).Location(:,2)); 
  rii = double(pc(iFrame).Intensity); 
  F = scatteredInterpolant(xii,yii,rii,'nearest','none');  
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  R(:,:,iFrame) = reshape(F(X,Y),r,c);       
end 
% convert to uint8  
Lz = uint8(R); 
% save variables 
save(surfaceMatFilename,'Lz','-append');    
end 

B4 Measurement 

The surface maps were used to measure plethysmography metrics using the measurePorcineLung 

function or a similar function for the other experiment lungs. Most measurements such as tidal 

volume were derived a displacement signal obtained from surface integration using the 

Divergence Theorem. Also, the estimateSurfaceParams function was used to measure regional 

measurements of surface tidal displacement. The create_avg_cycle function was used to obtain a 

plethysmography and regional respiratory cycle average displacement. The 

compare_to_avg_cycle function measured deviation from the respiratory cycle average.  

B4.1 measurePorcineLung 

function [metricsMatFilename] = 

measurePorcineLung(streamsMatFilename,surfaceMatFilename,VSCaptureMatFilename

) 
%% estimate tidal volume and flow measurements from uniformly interpolated 

surface 
% Jason Der 
% November 8, 2021, last updated December 8, 2021 
arguments 
  streamsMatFilename 
  surfaceMatFilename 
  VSCaptureMatFilename 
end 
% load variables 
load(streamsMatFilename,'t','timestamp'); 
load(surfaceMatFilename,'X','Y','Zs','DT','BW'); 
load(VSCaptureMatFilename,'measureTableSync');  
Time = t;  
Timestamp = timestamp; 
% volume 
[Distension,~] = integrateSurfaceGrid(X,Y,Zs.*BW,DT); 
Distension = 1000000*Distension; % m^3 to mL 
DistensionSmooth = preprocessSignal(Distension,0.2,30);   
% local extremas and tidal volume 
[Local extremas,Local extremaTF] = findLocal extremas(DistensionSmooth); 
[IEpts] = findLocal extremaChangePoints(Local extremas,Local extremaTF); 
[VTi,VTe] = estimateTidalVolume(DistensionSmooth,IEpts); 
% flow rate and flow time 
[FlowRate,FlowTime,FlowFilterDelay] = flowRate(DistensionSmooth,Time); 
% find dynamic compliance  
PIP = measureTableSync.Peak_inspiratory_pressure(IEpts); 



243 

PEEP = measureTableSync.Positive_endexpiratory_pressure(IEpts); 
[Cdyni,Cdyne] = estimateDynamicCompliance(VTi,VTe,PIP,PEEP,IEpts); 
% volume and flow parameters 
[PTF,PTFpts] = findCyclePeaks(FlowRate,IEpts,'cycle'); 
[PTIF,PTIFpts] = findCyclePeaks(FlowRate,IEpts,'inhale'); 
[PTEF,PTEFpts] = findCyclePeaks(FlowRate,IEpts,'exhale'); 
[tPTIF,tPTEF] = findTimePeakTidalFlow(Time,IEpts,PTIFpts,PTEFpts); 
[tTIF50,tTEF50] = findTimeTidalFlow50(Time,DistensionSmooth,IEpts); 
[TIF50,TEF50,IE50] = findTidalFlow50(FlowRate,Time,tTIF50,tTEF50); 
[tI,tE,tTot,tITot,tIE,RR] = tidalBreathingTiming(Time,IEpts); 
% convert parameters per cycle to an array the length of the signal  
[~,CycleLabels]  = paramCycles2Array(IEpts,IEpts,length(Time)); 
[~,FlowCycleLabels]  = paramCycles2Array(PTFpts,PTFpts,length(Time)); 
% distension table 
distensionFlowTable = table(... 
  Timestamp,Time,Distension,DistensionSmooth,... 
  VTi,VTe,Cdyni,Cdyne,CycleLabels,... 
  FlowRate,FlowCycleLabels); 
% param table 
paramTable = table(PTF,PTIF,PTEF,PTFpts,PTIFpts,PTEFpts,... 
  tPTIF,tPTEF,tTIF50,tTEF50,TIF50,TEF50,IE50,tI,tE,tTot,tITot,tIE,RR);  
% tidal table 
VTi = VTi(IEpts); Cdyni = Cdyni(IEpts); 
VTe = VTe(IEpts); Cdyne = Cdyne(IEpts); 
pts = 

struct('IEpts',IEpts,'PTFpts',PTFpts,'PTIFpts',PTIFpts,'PTEFpts',PTEFpts); 
tidalTable = table(VTi,VTe,Cdyni,Cdyne); 
% vscapture tidal table 
VTi = measureTableSync.Tidal_volume(IEpts); VTe = VTi;  
Cdyni = measureTableSync.Dynamic_compliance(IEpts); Cdyne = Cdyni;  
vsTidalTable = table(VTi,VTe,Cdyni,Cdyne); 
% save variables to MAT file 
[file,name,ext] = fileparts(streamsMatFilename);  
metricsMatFilename = fullfile(file,[name 'Metrics' ext]);  
save(metricsMatFilename,'distensionFlowTable','paramTable','vsTidalTable','ti

dalTable','pts','FlowTime','FlowFilterDelay');  
end 

B4.1.1 estimate_volume 

function [volume,elementVolume] = estimate_volume(points,DT) 
%% Jason Der 
% January 2, 2021 
% estimates the volume under the surface tri-mesh 
% inputs: MATLAB delaunay triangulation object 
% outputs: total volume, volume, and volume per element, elementVolume 
% updated september 15, 2021 arugment names 

  
%% math references 
% same method as pneumacare 
% similar method here: https://rosenzweig.io/blog/hilariously-fast-volume-

computation-with-the-divergence-theorem.html 
% engineering paper, similar algorithm: 

http://chenlab.ece.cornell.edu/Publication/Cha/icip01_Cha.pdf  
% gauss theorem (divergence = flux) with vector field F(x,y,z) = z, div*F = 1 
% only in z unit direction, only surfaces with projection onto xy plane 
% simplifies gauss theorem to volume = flux from z vector 
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%% function argument validation 
  arguments 
    points (:,3) double {mustBeReal} 
    DT (:,3) double {mustBeNonnegative,mustBeReal} = delaunay(points(1:2,:)) 
  end 

  
%% initialization    
  elementVolume = zeros(length(DT),1); 
  volume = 0;   

   
%% calculate volume via gauss theorem  
  % per triangluar element in mesh  
  for i = 1:length(DT) 
    % triangluar element vertices 
    p0 = points(DT(i,1),:);  
    p1 = points(DT(i,2),:);  
    p2 = points(DT(i,3),:); 
    % triangluar element z components  
    z0 = points(DT(i,1),3); 
    z1 = points(DT(i,2),3); 
    z2 = points(DT(i,3),3); 
    % surface function, parameter partial derivatives  
    r1 = p1 - p0; r2 = p2 - p0; 
    % triangle integral   
    integral = cross(r1,r2)*[0;0;(z0+z1+z2)]; 
    % volume of triangular element i 
    elementVolume(i) = integral/6; 
    % summate integral to volume  
    volume = volume + integral; 
  end 
  volume = volume/6; 

  
end 

B4.1.2 estimateTidalVolume 

function [vT1,vT2,vT] = estimateTidalVolume(v,IEpts) 
%% find tidal volume 
% does not know which tidal volume is inspiratory or expiratory  
% just provides them in order of occurence, odd first, even second 
% Jason Der 
% September 27, 2021 updated from estimate_tidal_volume from Feb 18, 2021 
% updated November 9, 2021 
arguments 
  v % volume signal  
  IEpts % indices of local extrema points 
end 
% tidal volume   
vT = diff(v(IEpts)); 
% initialize tidal volume arrays 
vT1 = zeros(length(v),1);  
vT2 = zeros(length(v),1); 
% loop through cycles   
for ii = 1:2:length(vT)-1 
  % cycle indices  
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  cycleInd = IEpts(ii):IEpts(ii+2); 
  % assign tidal volumes to matching cycles in array  
  vT1(cycleInd) = abs(vT(ii));   
  vT2(cycleInd) = abs(vT(ii+1)); 
end 
end     

B4.1.3 integrateSurfaceGrid 

function [v,vDT] = integrateSurfaceGrid(X,Y,Z,DT) 
%% integrate surface mesh for volume curve 
% Jason Der 
% October 30, 2021 - November 9, 2021 
arguments 
  X (:,:,1) % surface meshgrid x coordinates 
  Y (:,:,1) % surface meshgrid y coordinates 
  Z (:,:,:,1) % surface meshgrid z coordinates 
  DT (:,:,1) % surface meshgrid connectivity  
end 
% initialize variables 
x = X(:); 
y = Y(:); 
[r,c,n] = size(Z); 
v = zeros(n,1); 
vDT = cell(n,1); 
% integrate surface for volume 
for ii = 1:n 
  z = reshape(Z(:,:,ii),r*c,1); 
  zValid = find(~isnan(z)); 
  dtValid = all(ismember(DT,zValid),2); 
  [v(ii),vDT{ii}] = estimate_volume([x,y,z],DT(dtValid,:)); 
end 
end 

B4.1.4 preprocessSignal 

function [smooth,outliers,denoise] = 

preprocessSignal(signal,Fpass,Fs,windowSize,nsigma) 
%% pre-process signal  
% Jason Der 
% December 3, 2021 
arguments 
  signal 
  Fpass = 0.2 % band pass frequency,  
  % respiratory rate 8 breaths/min = 0.13...Hz -> 0.2 Hz with buffer 
  Fs = 30 % sampling frequency (30fps) 
  windowSize = min(0.01*length(signal),Fs) % default to 1% of length, max at 

Fs 
  nsigma = 3 
end 
% denoise 
denoise = lowpass(signal,Fpass,Fs); 
% replace outliers 
windowSize = ceil(windowSize); % must be integer 
outliers = hampel(denoise,windowSize,nsigma); 
% window size must be odd for sgolayfilt 
if ~mod(windowSize,2) 
  windowSize = windowSize+1; 
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end 
% smooth using savitzsky-golay method  
smooth = sgolayfilt(outliers,3,windowSize); 
end 

B4.1.5 flowRate 

function [signalDT,timeDT,filterDelay] = 

flowRate(signal,time,Fpass,Fstop,Forder) 
%% find first derivative of signal using differential filter 
% use to find analogous 'flow rate' as the first derivative of distension  
% also find transient filter delay 
% Jason Der 
% August 26, 2021 
% NOTES: 
  % based on MATLAB tutorial for differentiator filter 
  % https://www.mathworks.com/help/signal/ug/take-derivatives-of-a-

signal.html 
arguments 
  signal 
  time 
  Fpass = 1 % band pass frequency  
  Fstop = 1.2 % stop frequency  
  Forder = 10 % filter order 
end   
% sampling frequency and time interval 
Fs = 1/(time(2)-time(1));  
dt = time(2)-time(1); 
% design derivative filter  
d = designfilt('differentiatorfir',... 
  'FilterOrder',Forder, ... 
  'PassbandFrequency',Fpass,... 
  'StopbandFrequency',Fstop, ... 
  'SampleRate',Fs); 
% differentiate 
signalDT = filter(d,signal)/dt;  
filterDelay = mean(grpdelay(d)); % transient delay from filter 
timeDT = time(1:end - filterDelay);  
% signalDT(1:filterDelay) = []; % remove delay     
end 

B4.1.6 findLocal extremas 

function [local extremas,pksTrsTF] = findLocal 

extremas(signal,minHeight,minDistance,method) 
%% find and sort local extremas 
% can use findLargestLocal extremas or findChangePointLocal extremas to 

filter 
% local extrema selection, however, just smoothing signal is a simple 

solution 
% Jason Der 
% August 27, 2021  
%% change log 
% updated September 16, 2021  
  % determine arguments and one local extrema per group 
  % intended for noisy ventilation signals: typical signal shape is flat-

sharp 'S'-plateau-immedidate drop-repeat 
  % intended to find start and end of inspiratory and expiratory phases 
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% formatted November 11, 2021 
% updated November 15, 2021 
  % returns viepts starting with inspiratory / trough, ignores expiratory 

start 
% updated November 30, 2021 
  % use islocalmin and islocalmax instead of findpeaks 
  % findpeaks does not work for data with trend 
  % separated into findLocal extremas and findBreathLocal extremas 
%% program  
arguments 
  signal 
  minHeight = [] 
  minDistance = 0 
  method = 'findpeaks' 
end          
% remove outliers, and detrend  
% fillSignal = filloutliers(signal,'nearest');  
dt = detrend(signal); 
% estimate MinHeight 
if isempty(minHeight) && all(method=='findpeaks') 
  minHeight = mean(dt); 
end 
% estimate peaks and troughs  
switch method 
  case 'findpeaks' 
    % findpeaks  
    [~,pks] = 

findpeaks(dt,'MinPeakHeight',minHeight,'MinPeakDistance',minDistance);  
    [~,trs] = findpeaks(-dt,'MinPeakHeight',-

minHeight,'MinPeakDistance',minDistance); 
  case 'islocal' 
    % islocal  
    pks = find(islocalmax(dt));  
    trs = find(islocalmin(dt));  
end 
% sorted inspiratory-expiratory local extrema point indices  
[local extremas,sortOrder] = sort([pks;trs]); % linear 
% logical array identifying local extremas as peaks or troughs 
pksTrsTF = [true(length(pks),1);false(length(trs),1)]; % logical 
pksTrsTF = pksTrsTF(sortOrder); % logical sorted 
end 

B4.1.7 findLocal extremaChangePoints 

function [vieptsPaired,pksInd,trsInd,viepts] = findLocal 

extremaChangePoints(local extremas,pksTrsTF) 
%% find filter local extremas for breath start-end local extremas 
% remove repeated peaks and troughs 
  % identify which local extrema points neighbor the opposite phase 
  % where inspiratory changes to expiratory, visa versa  
  % use to ignore insipratory to inspiratory, visa versa 
  % ie. local extremas = [i i e e i i] -> [i i e e i i e] -> [0 1 0 1 0 1] 
  % end padded to identify inspiratory at end 
% Jason Der 
% November 30, 2021 
arguments 
  local extremas % linear indices for local extremas 
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  pksTrsTF logical % identifies local extrema [i e] -> [1 0]  
end 
% find change point between peaks and troughs 
ieInd = [diff(pksTrsTF)~=0;true]; % logical, diff is end padded 
% final local extrema indices 
viepts = local extremas(ieInd); % linear 
% truncate first and/ or last indice[s] if expiratory to create complete IE 

pairs  
vieptsPaired = viepts; 
ieTF = pksTrsTF(ieInd); % logical, T -> expiratory, F -> inspiratory 
% truncate first indice if expiratory 
if ieTF(1) 
  vieptsPaired = vieptsPaired(2:end);  
end 
% truncate last indice if expiratory  
if ieTF(end) 
  vieptsPaired = vieptsPaired(1:end-1); % linear  
end 
% signal value at inhale-exhale points  
pksInd = local extremas(and(ieInd,pksTrsTF)); % linear 
trsInd = local extremas(and(ieInd,~pksTrsTF)); % linear 
end 

B4.1.8 findChangePeaks 

function [Peaks,PeaksInd] = findCyclePeaks(signal,IEpts,type) 
%% find signal max values per cycle and indices 
% 
% STEPS 
% 
% initialize outputs 
% find cycle range indices 
% loop through inhales and find max pressure 
% 
% INPUTS 
% 
% pressure = pressure signal 
% IEpts = linear indices of both inhale-exhale points in paired order 
% type =  
% 
% INTERMEDIATES 
% 
% cycleStartInd =  
% cycleEndInd =  
% numCycles = 
% 
% OUTPUTS 
% 
% Peaks =  
% PeaksInd =  
% 
% EXAMPLE 
% 
% NOTES 
% 
% Jason Der 
% February 21, 2022 
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arguments 
  signal 
  IEpts 
  type = 'cycle' 
end       
% initialize outputs based on desired usage 
switch type  
  case 'inhale' % use to find PIP from pressure 
    cycleStartInd = IEpts(1:2:end); 
    cycleEndInd = IEpts(2:2:end); 
  case 'exhale' % use to find PEEP from pressure 
    cycleStartInd = IEpts(2:2:end); 
    cycleEndInd = IEpts(3:2:end); 
    signal = -signal; 
  case 'cycle' % use to find peak flow rate  
    cycleStartInd = IEpts(1:2:end); 
    cycleEndInd = IEpts(3:2:end); 
  otherwise 
    disp('invalid type variable\n'); 
    return 
end 
% initialize outputs 
numCycles = floor((length(IEpts)-1)/2); 
Peaks = zeros(numCycles,1); 
PeaksInd = zeros(numCycles,1); 
% loop through cycles 
for xCycle = 1:numCycles 
  % find inhale range  
  cycleIndices = cycleStartInd(xCycle):cycleEndInd(xCycle); 
  % find max signal and indices within cycle 
  cycleSignal = (signal(cycleIndices));  
  [~,ind] = max(cycleSignal,[],'all','linear','omitnan');  
  PeaksInd(xCycle) = ind + cycleStartInd(xCycle); 
  Peaks(xCycle) = signal(PeaksInd(xCycle));  
end    
end 

B4.1.9 findTimePeakTidalFlow 

function [tPTIF,tPTEF] = findTimePeakTidalFlow(Time,IEpts,PTIFpts,PTEFpts) 
%% find tidal breathing parameter 'time to peak tidal flow'  
% find for both inspiratory and expiratory phases 
% parameter is time between start of phase and peak flow 
% the code was modified from tidalBreathingFlow() 
% Jason Der 
% November 15, 2021 
% updated February 22, 2022 
arguments 
  Time 
  IEpts 
  PTIFpts 
  PTEFpts 
end 
% time at start of cycle  
cycleStartTime = Time(IEpts); 
% time at peak flow  
peakTidalInspiratoryFlowTime = Time(PTIFpts); 
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peakTidalExpiratoryFlowTime = Time(PTEFpts); 
% time to peak tidal flow  
tPTIF = peakTidalInspiratoryFlowTime - cycleStartTime(1:2:end-1); 
tPTEF = peakTidalExpiratoryFlowTime - cycleStartTime(2:2:end);   
end 

B4.1.10 findTimeTidalFlow50 

function [tTIF50,tTEF50] = findTimeTidalFlow50(time,volume,IEpts) 
%% find the tidal breathing parameters TIF50,TEF50,IE50,tTIF50,tTEF50 
% TIF50,TEF50 is the flow when volume is at 50% of the tidal volume 
% IE50 is a ratio between TIF50 and TEF50 
% tTIF50, tTEF50 is the time between the start of a breath to TIF50,TEF50 
% the code was modified from tidalBreathingFlow() 
% Jason Der 
% November 15, 2021 
arguments 
  time 
  volume 
  IEpts 
end 
% tidal volume 
% 50% tidal volume per cycle 
% linear indices of 50% tidal volume per cycle <----- interpolation 
% flow rate at 50% tidal volume per cycle <---- interpolation 
tidalVolumeIE = diff(volume(IEpts)); 
volumeIE50 = tidalVolumeIE/2 + volume(IEpts(1:end-1)); % volume at 50% tidal 

volume 
timeTidalVolumeIE50 = zeros(length(volumeIE50),1); % pre-allocate  
% interpolate time at volume when 50% tidal volume 
for i = 1:length(volumeIE50) 
  indicesRange = IEpts(i) : IEpts(i+1); 
  timeRange = time(indicesRange); 
  volumeRange = volume(indicesRange); 
  volumeSearch = volumeIE50(i); 
  [~,search] = min(abs(volumeRange-volumeSearch));  
  timeTidalVolumeIE50(i) = timeRange(search); 
end 
% time of TEF50, TIF50, IE50 for plotting  
tTIF50 = timeTidalVolumeIE50(1:2:end); 
tTEF50 = timeTidalVolumeIE50(2:2:end); 
end 

B4.1.11 findTidalFlow50 

function [TIF50,TEF50,IE50] = findTidalFlow50(flow,time,tTIF50,tTEF50) 
%% find tidal breathing parameters TIF50,TEF50,IE50 
% parameters are the flow when volume is at 50% of tidal volume 
% code is modified from estimateTidalBreathing 
% Jason Der 
% November 15, 2021 
arguments 
  flow 
  time  
  tTIF50 
  tTEF50 
end 
try  
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% could upsample flow and time then use method 'nearest' 
% interpolate flow at IE50 times  
TEF50 = interp1(time,flow,tTIF50,'spline'); 
TIF50 = interp1(time,flow,tTEF50,'spline'); 
catch  
% alternative method 
[~,idx] = min(abs(time-tTIF50'));  
TIF50 = flow(idx); 
[~,idx] = min(abs(time-tTEF50')); 
TEF50 = flow(idx); 
end 
% find IE50 as ratio between TIF50 and TEF50 
IE50 = TIF50 ./ TEF50; 
end 

B4.1.12 tidalBreathingTiming 

function [tI,tE,tTot,tITot,tIE,RR] = tidalBreathingTiming(time,IEPts) 
%% calculate tidal breathing parameters derived from timing indices 
% STEPS 
% perform basic equations 
% INPUTS 
% time = time signal 
% IEPts = inhale-exhale points (local extrema points in distension signal) 
% INTERMEDIATES 
% numBreath = number of breaths 
% OUTPUTS 
% tI = inspiratory time 
% tE = expiratory time 
% tTot = total time per breath 
% tITot = inspiratory / total time ratio 
% tIE = inspiratory / expiratory time ratio 
% RR = respiratory rate 
% EXAMPLE 
% time = repelem([1 0],10,1); 
% IEPts = [1;find(diff(time));length(time)];  
% [tI,tE,tTot,tITot,tIE,RR] = tidalBreathingTiming(time,IEPts); 
% NOTES 
% read : Reference equations for tidal breathing parameters using structured 

light plethysmography 
% read : Tidal breathing patterns derived from structured light 

plethysmography in COPD patients compared with healthy subjects 
% read : Tidal breathing parameters measured using structured light 

plethysmography in healthy children and those with asthma before and after 

bronchodilator 
% Jason Der 
% July 1, 2021 from tidal_breathing_parameters 
% Rewritten on August 25, 2021 and February 22, 2021 
arguments 
  time (:,1) 
  IEPts (:,1) 
end   
% find timing characteristics 
timeIE = diff(time(IEPts)); 
tI = timeIE(1:2:end); 
tE = timeIE(2:2:end); 
tTot = diff(time(IEPts(1:2:end)));   
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numBreath = length(tTot);  
tIE = tI(1:numBreath)./tE(1:end); 
tITot = tI(1:numBreath)./tTot; 
RR = 60./tTot; 
end 
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B4.2 estimateSurfaceParams 

function [metricsMatFilename] = 

estimateSurfaceParams(surfaceMatFilename,metricsMatFilename,VSCaptureMatFilen

ame) 
%% estimate surface measurements  
% Jason Der 
% November 8, 2021 
arguments 
  surfaceMatFilename 
  metricsMatFilename 
  VSCaptureMatFilename = [] 
end 
% load variables 
load(surfaceMatFilename,'X','Y','Zs'); 
load(metricsMatFilename,'distensionTable','pts'); 
t = distensionTable.Time; 
IEpts = pts.IEpts; 
% surface metrics 
[SamplePoints,nSamplePoints] = findBaselineSamplePoints(t,IEpts); 
[BaselineSurface] = calculateSurfaceBaseline(Zs,SamplePoints,nSamplePoints); 
[DeviationSurface] = 

calculateSurfaceDeviation(Zs,BaselineSurface,SamplePoints,nSamplePoints); 
[VTiSurface,VTeSurface] = calculateSurfaceTidalVolume(Zs,IEpts); 
if ~isempty(VSCaptureMatFilename) 
  load(VSCaptureMatFilename,'measureTableSync'); 
  PIP = measureTableSync.('Peak_inspiratory_pressure')(IEpts(2:2:end)); 
  PEEP = 

measureTableSync.('Positive_endexpiratory_pressure')(IEpts(2:2:end)); 
  [CdyniSurface,CdyneSurface] = 

calculateSurfaceCompliance(VTiSurface,VTeSurface,PIP,PEEP); 
  save(metricsMatFilename,'CdyniSurface','CdyneSurface','-append'); 
end 
% save variables 
save(metricsMatFilename,'SamplePoints','nSamplePoints','X','Y',... 
  'BaselineSurface','DeviationSurface','VTiSurface','VTeSurface','-append'); 
end 

B4.2.1 findBaselineSamplePoints 

function [samplePoints,nSamplePoints] = 

findBaselineSamplePoints(t,viepts,nSamplePoints) 
%% find surface grid baseline sample points  
% find time interval between sample points 
% equal number of sample points between inspiratory and expiratory phases 
% sample points should be always taken at local extrema points  
% search for the nearest time element to ideal sample point times  
% take indices of these nearest time elements  
% Jason Der 
% November 11, 2021 
arguments 
  t (:,1) % sample data matching time 
  viepts (:,1) % linear indices identifying local extrema points 
  nSamplePoints (1,1) {mustBeNonnegative,mustBeInteger} = 19 % must be odd 
end 
% ensure nSamplePoints is odd 
if ~rem(nSamplePoints,2) % if even 
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  nSamplePoints = nSamplePoints + 1; % add one, making it odd   
end 
% number of intervals between sample points per (inspiratory or expiratory) 

phase 
nPhaseIntervals = (nSamplePoints - 1)/2; 
% time length of (inspiratory or expiratory) phases 
phaseTimeIntervals = diff(t(viepts)); 
% time interval between sample points per (inspiratory or expiratory) phase 
samplePointTimeIntervals = phaseTimeIntervals / nPhaseIntervals; 
% repeat nrptDelta m times 
samplePointTime = [samplePointTimeIntervals(1); 

cumsum(repelem(samplePointTimeIntervals,nPhaseIntervals)) + 

samplePointTimeIntervals(1)]; 
% indices of closet points to ideal sample points 
samplePoints = dsearchn(t,samplePointTime); 
% replicate every nSamplePoints so each cycle is complete 
samplePoints = sort([samplePoints;samplePoints(nSamplePoints:nSamplePoints-

1:end-1)]);  
end 

B4.2.2 calculateSurfaceBaseline 

function [zBaseline] = calculateSurfaceBaseline(Z,samplePoints,nSamplePoints) 
%% create average cycle, averaged reference point data set from samples 
% Jason Der 
% November 11, 2021 
arguments 
  Z % surface grid image stack 
  samplePoints % linear indices 
  nSamplePoints = 19 % number of sample points 
end 
zSample = Z(:,:,samplePoints); 
[r,c] = size(Z(:,:,1)); 
missingSamplePoints = nSamplePoints - 

rem(length(samplePoints),nSamplePoints); % ... from last breath 
if missingSamplePoints > 0        
  % pad reference image data with NaN images 
  zSample = cat(3,zSample,nan(r,c,missingSamplePoints)); 
end 
% reshape 4D array into 3D array and average over reference images  
zBaseline = squeeze(mean(reshape(zSample,r,c,nSamplePoints,[]),4,'omitnan'));  
end 

B4.2.3 calculateSurfaceDeviation 

function [zDeviation] = 

calculateSurfaceDeviation(Z,zBaseline,samplePoints,nSamplePoints) 
%% find deviation from surface baseline 
% Jason Der 
% November 11, 2021 
arguments 
  Z double {mustBeNumeric(Z)} % data to compare against average cycle 
  zBaseline double {mustBeNumeric(zBaseline)} % average cycle dataset of 

length nrptsN, either vector or 3D array 
  samplePoints (:,1) double {mustBeNumeric(samplePoints)} % linear indices of 

reference points in reference cycle 
  nSamplePoints (1,1) {mustBeNonnegative,mustBeInteger} = 19  
end 
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nSampleBreaths = length(samplePoints)/nSamplePoints; 
zSample = Z(:,:,samplePoints); 
zBaselineReplicate = repmat(zBaseline,1,1,nSampleBreaths); 
BW = (zSample~=0) & (zBaselineReplicate~=0); % where both are true  
zDeviation = BW .* (zSample - zBaselineReplicate); 
end 

B4.2.4 calculateSurfaceTidalVolume 

function [VTiSurface,VTeSurface,VTSurface] = 

calculateSurfaceTidalVolume(Z,IEpts) 
%% find tidal surface distension  
% Jason Der 
% July 22, 2022 
arguments 
  Z % surface  
  IEpts % distension local extrema indices 
end  
% define pairs 
if rem(length(IEpts),2) == 0 % if even 
  endInd = length(IEpts); 
else % if odd 
  endInd = length(IEpts)-1; 
end 
% surface tidal volume where surfaces are common 
VTSurface = diff(Z(:,:,IEpts),1,3); 
% surface tidal volume inspiratory-expiratory 
VTiSurface = VTSurface(:,:,1:2:endInd);  
VTeSurface = VTSurface(:,:,2:2:endInd); 
end 

B4.2.5 calculateSurfaceCompliance 

function [CdyniSurface,CdyneSurface] = 

calculateSurfaceCompliance(VTiSurface,VTeSurface,PIP,PEEP) 
%% scale surface tidal volume by PIP and PEEP for surface dynamic compliance 
% Jason Der 
% July 22, 2022 
arguments 
  VTiSurface 
  VTeSurface 
  PIP 
  PEEP 
end 
% length of arrays 
nVTi = size(VTiSurface,3); 
nVTe = size(VTeSurface,3); 
nPIP = length(PIP); 
nPEEP = length(PEEP); 
if (nVTi == nVTe) && (nPIP == nPEEP) 
  % initialize  
  CdyniSurface = zeros(size(VTiSurface)); 
  CdyneSurface = zeros(size(VTeSurface)); 
  % pressure differential  
  deltaP = PIP - PEEP; 
  % loop through frames 
  for iFrame = 1:nVTi 
    CdyniSurface(:,:,iFrame) = VTiSurface(:,:,iFrame) ./ deltaP(iFrame); 
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    CdyneSurface(:,:,iFrame) = VTeSurface(:,:,iFrame) ./ deltaP(iFrame); 
  end 
else 
  disp('error'); 
end 

B4.3 create_avg_cycle 

function [avg_cycle,ind] = 

create_avg_cycle(sampleData,sampleTime,iepts,nrpts) 
%% create average cycle, averaged reference point data set from samples 
% Jason Der 
% June 4, 2021 
% does not have validation protection against m x n where m && n ~= 1 
% updated September 27, 2021 to separate oultiers replacement and correct 'm' 

  
%% function argument validation 
  arguments 
    sampleData % sample data, either vector or 3D array for images  
    sampleTime (:,1) % sample data matching time 
    iepts (:,1) % linear indices identifying local extrema points 
    nrpts (1,1) {mustBeNonnegative(nrpts)} = 19 
      % number of reference points per cycle (including iepts) 
      % must be odd, if even then round up 
  end 

   
%% round up even nrpts 
  % if nrpts even 
  if rem(nrpts,2) == 0 
    % increase nrpts by one to be odd 
    nrpts = nrpts + 1; 
  end 

   
%% find reference points time vector 
  % number of spaces between reference points, between local extrema points 
  n = (nrpts - 1)/2; 
  % time at local extrema points 
  ieTime = sampleTime(iepts); 
  % time difference between neighbouring local extrema points 
  ieTimeDiff = diff(ieTime); 
  % time separation for reference points between local extrema points 
  nrptDelta = ieTimeDiff / n; 
  % repeat nrptDelta m times 
  nrptTime = [ ieTime(1); cumsum(repelem(nrptDelta,n)) + ieTime(1)]; 

  
%% find points nearest to reference points in sample time   
  % search for nearest sample data for each reference point 
  ind = dsearchn(sampleTime,nrptTime); 
  % replicate every nrpt indices in ind so each cycle is complete 
  ind = sort([ind;ind(nrpts:nrpts-1:end-1)]); 

   
%% find average for each reference point in sample data   
  % last cycle incomplete, need m points to be complete 
%   m = rem(length(ind),nrpts); 
  m = ceil(length(ind)/nrpts)*nrpts - length(ind); 
  % if sample data is a matrix (vector) 
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  if ismatrix(sampleData) 
    % take reference point data at ind 
    refData = sampleData(ind); 
    % if m is greater than zero 
    if m > 0 
      % pad reference point data with NaN 
      refData = [refData;repelem(nan,m,1)];       
    end 
    % reshape into matrix to average over reference points 
    avg_cycle = mean(reshape(refData,nrpts,[]),2,'omitnan'); 

     
  % if sample data 3D array 
  elseif ~ismatrix(sampleData) 
    % take reference images at ind 
    refData = sampleData(:,:,ind); 
    % size of images 
    [r,c] = size(sampleData(:,:,1)); 
    % if m is greater than zero  
    if m > 0        
      % pad reference image data with NaN images 
      % refData = cat(3,refData,repmat(nan(r,c),m,1)); 
      refData = cat(3,refData,nan(r,c,m)); 
    end 
    % reshape 4D array into 3D array and average over reference images  
    avg_cycle = squeeze(mean(reshape(refData,r,c,nrpts,[]),4,'omitnan')); 
  end 

     
end 

B4.4 compare_to_avg_cycle 

function [diff_cycle] = 

compare_to_avg_cycle(sampleData,avg_cycle,ind,sampleTime,iepts) 
%% compare data to average cycle set 
% Jason Der 
% June 4, 2021 
% updated September 27, 2021 to correct 'm' 

  
%% function argument validation 
  arguments 
    sampleData double {mustBeNumeric(sampleData)} % data to compare against 

average cycle 
    avg_cycle double {mustBeNumeric(avg_cycle)} % average cycle dataset of 

length nrptsN, either vector or 3D array 
    ind (:,1) double {mustBeNumeric(ind)} = [] % linear indices of reference 

points in reference cycle 
    sampleTime (:,1) double {mustBeNonnegative(sampleTime)}  = [] % matching 

time vector to data 
    iepts (:,1) double {mustBeNonnegative(iepts)}  = [] % linear indices for 

local extrema points in data and time 
  end 

   
%% prepare data 
  % replace Nan with zero  
  sampleData(isnan(sampleData)) = 0;   
  avg_cycle(isnan(avg_cycle)) = 0; 
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%% initializations 
  % if vector 
  if ismatrix(sampleData) 
    % number of normalized reference points 
    nrpts = length(avg_cycle); 
  % else is 3D array (images) 
  else 
    % number of normalized reference points  
    [~,~,nrpts] = size(avg_cycle);  
  end 

  
%% shortcut if ind given 
  % if ind is empty  
  if isempty(ind) 

   
  %% find reference points time vector  
    % number of spaces between reference points, between local extrema points 
    n = (nrpts - 1)/2; 
    % time at local extrema points 
    ieTime = sampleTime(iepts); 
    % time difference between neighbouring local extrema points 
    ieTimeDiff = diff(ieTime); 
    % time separation for reference points between local extrema points 
    nrptDelta = ieTimeDiff / n; 
    % repeat nrptDelta m times 
    nrptTime = [ ieTime(1); cumsum(repelem(nrptDelta,n)) + ieTime(1)]; 

  
  %% find points nearest to reference points in sample time   
    % search for nearest sample data for each reference point 
    ind = dsearchn(sampleTime,nrptTime); 
    % replicate every nrpt indices in ind so each cycle is complete 
    ind = sort([ind;ind(nrpts:nrpts-1:end-1)]); 

     
  end 

   
%% compare sample data to reference cycle   
  % number of avg_cycle replications to get same length as refData 
%   k = (length(ind)-m)/nrpts; 
  k = ceil(length(ind)/nrpts); 
  % last cycle incomplete, need m points to be complete 
%   m = rem(length(ind),nrpts);   
  m = abs(length(ind) - nrpts*k)-1; 
  % if sample data is a matrix (vector) 
  if ismatrix(sampleData) 
    % take reference point data at ind 
    refData = sampleData(ind); 
    % replicate avg_cycle to same length as refData 
    avgData = repmat(avg_cycle,k,1); 
    % if m is greater than zero 
    if m > 0 
      % remove last m entries 
      avgData(end-m:end) = [];       
    end 
    % AND operation between avgData and refData (where both nonzero) 
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    nonzero = refData & avgData; 
    % subtract data from reference cycle, and use nonzero mask to filter 
    diff_cycle = nonzero .* (refData - avgData); 

     
  % if sample data 3D array 
  elseif ~ismatrix(sampleData) 
    % take reference images at ind 
    refData = sampleData(:,:,ind); 
    % replicate avg_cycle to same length as refData, k times 
    avgData = repmat(avg_cycle,1,1,k); 
    % if m is greater than zero  
    if m > 0        
      % remove last m entries 
      avgData(:,:,end-m:end) = [];    
    end 
    % AND operation between avg_cycle and refData (where both nonzero) 
    nonzero = refData & avgData; 
    % subtract avgData from refData and use nonzero mask to filter 
    diff_cycle = nonzero .* (refData - avgData); 
  end 

   
end   

B4.5 estimateRegionAsychrony 

function [tidalMetricsMatFilename] = 

estimateRegionAsynchrony(tidalMetricsMatFilename) 
%% estimate region tidal breathing asynchrony 
% Jason Der 
% November 11, 2021 
arguments 
  tidalMetricsMatFilename 
end 
% load variables  
load(tidalMetricsMatFilename,'lungParams','regionParams');  
% find combintations for asyncrhony  
nRegions = length(regionParams);  
if nRegions >= 2  
  regionComs = nchoosek(1:nRegions,2);    
else 
  fprintf('zero or one regions detected \n');  
  return; 
end 
% loop through combinations 
for ii = 1:size(regionComs,2) 
  % select combination of regions 
  v1 = regionParams(regionComs(ii,1)).Volume; 
  v2 = regionParams(regionComs(ii,2)).Volume; 
  local extremas = regionParams(regionComs(ii,1)).VolumeIEIndicesPaired; 
  % estimate asynchrony between regions 
  [phaseAngleDegrees] = paradoxicalBreathingAsynchrony(v1,v2,local extremas); 
  [IP] = paradoxicalBreathingTiming(lungParams,regionParams(ii)); 
  % save variables to struct variable  
  asynchronyParams(ii) = 

struct('SelectedRegions',regionComs(ii,:),'PhaseAngle',phaseAngleDegrees,'Ins

piratoryParadoxTime',IP); 
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end 
% save to MAT file 
save(tidalMetricsMatFilename,'asynchronyParams'); 
end 

B4.5.1 paradoxicalBreathingAsynchrony 

function [phaseAngleDegrees] = paradoxicalBreathingAsynchrony(v1,v2,local 

extremas) 
%% calculate signal asynchrony  
% Jason Der 
% August 25, 2021, debugged Sept 2, 2021 
% NOTES: 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216641 
% November 16, 2021 
  % outputs complex numeb 
  arguments 
    v1 % volume signal of region 1 
    v2 % volume signal of region 2 
    local extremas % local extrema indices of volume signal of region 1 
  end 

   
%% determine inspiratory-expiratory order 
  check = v1(local extremas(2)) > v1(local extremas(1)); 
  if check % inhale start 
    in = 1; ex = 2; % indices of first inhale and exhale start local extrema 
  elseif ~check % exhale start 
    in = 2; ex = 3; % indices of first inhale and exhale start local extrema 
  end 
  nCycles = length(local extremas(in:2:end))-1; 

   
%% lung wall tidal volumes 
  % find tidal volume of region 1 per breath  
  tidalVolumeIE1 = diff(v1(local extremas(in:in+2*nCycles))); 
  s = max(abs(reshape(tidalVolumeIE1,2,[])))'; 
  % find 50% tidal volume of region 2 for region 1 breath 
  volume50 = zeros(nCycles,1); 
  for i = 1:nCycles 
    indSearchRange = local extremas(in+((i-1)*2)):local extremas(in+(2*i)); 
    maxRange = max(v2(indSearchRange)); 
    deltaV2 = maxRange - min(v2(indSearchRange)); 
    volume50(i) = maxRange - deltaV2/2; 
  end 

     
%% degree of asynchrony     
  m = zeros(nCycles,1); 
  inspiratoryIntercept = zeros(nCycles,1); 
  expiratoryIntercept = zeros(nCycles,1); 
  for j = 1:nCycles  
    % start and end indices of breath k 
    inspiratoryIndRange = local extremas(in+((j-1)*2)):local 

extremas(in+1+((j-1)*2)); 
    expiratoryIndRange = local extremas(ex+((j-1)*2)):local 

extremas(ex+1+((j-1)*2)); 
    % inspiratory and expiratory volume data to interpolate 
    [~,in1] = unique(v1(inspiratoryIndRange),'stable'); 
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    [~,in2] = unique(v2(inspiratoryIndRange),'stable'); 
    [~,ex1] = unique(v1(expiratoryIndRange),'stable'); 
    [~,ex2] = unique(v2(expiratoryIndRange),'stable'); 
    % unique pairs  
    inspiratoryVolumeRange1 = v1(inspiratoryIndRange(intersect(in1,in2))); 
    inspiratoryVolumeRange2 = v2(inspiratoryIndRange(intersect(in1,in2))); 
    expiratoryVolumeRange1 = v1(expiratoryIndRange(intersect(ex1,ex2))); 
    expiratoryVolumeRange2 = v2(expiratoryIndRange(intersect(ex1,ex2))); 
    % interpolate for volume in region 1 when volume in region 2 = 50% of 

tidal volume 
    inspiratoryIntercept(j) = 

interp1(inspiratoryVolumeRange2,inspiratoryVolumeRange1,volume50(j),'spline')

; 
    expiratoryIntercept(j) = 

interp1(expiratoryVolumeRange2,expiratoryVolumeRange1,volume50(j),'spline'); 
    m(j) = inspiratoryIntercept(j) - expiratoryIntercept(j); 
  end 
  phaseAngleDegrees = asind(abs(m)./s); 

     
end 

B4.5.2 paradoxicalBreathingTiming 

function [IP] = paradoxicalBreathingTiming(lungParams,regionParams) 
%% find inspiratory paradox time for each region 
% Jason Der 
% created Sept 2, 2021, found tidal breathing parameters, lung and regions, 

within script  
% updated November 11, 2021 to recieve structs for lung and region tidal 

breathing parameters  
arguments 
  lungParams struct % entire lung tidal breathing parameters 
  regionParams struct % struct region tidal breathing parameters 
end 
% inspiratory times 
regionInTime = regionParams.InspiratoryTime;  
lungInTime = lungParams.InspiratoryTime; 
% length of inspiratory times 
nRegions = length(regionInTime);  
nLung = length(lungInTime);  
% correct if number of inspiratory times match  
if nRegions ~= nLung  
  % find start time of each breath  
  regionIETime = regionParams.Time(regionParams.VolumeIEIndicesPaired);  
  lungIETime = lungParams.Time(lungParams.VolumeIEIndicesPaired);  
  % select matching breath inspiratory times  
  regionInTime = [];  
  lungInTime = [];  
end 
% inspiratory paradox time  
IP = 100 * (lungInTime - regionInTime)./lungInTime; 
end 
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Appendix C Ventilator Test Lung Data Acquisition 

Settings 

Table C.1 Ventilation test lung experiment ASV calibration intrinsic parameters 

Parameters Left Infrared Right Infrared RGB 

Resolution 1280 × 800 1280 × 800 1920 × 1080 

Focal Length [
638.065002
637.815002

] [
641.018982
640.336975

] [
1379.920044
1380.84997

] 

Principal 

Point 
[
639.348999
400.669006

] [
634.036011
404.847992

] [
953.692017
545.323975

] 

Distortion 

[
 
 
 
 
−0.056679
0.063950
0.000533
−0.000361
−0.020585]

 
 
 
 

 

[
 
 
 
 
−0.057750
0.065349
−0.000502
−0.001087
 −0.020886]

 
 
 
 

 

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

 

 

Table C.2 Ventilation test lung experiment ASV calibration extrinsic parameters 

Sensor Rotation to Left Infrared 
Translation to Left 

Infrared 

Left Infrared n/a n/a 

Right Infrared [
0.999896 −0.001195 −0.014369
0.001178 0.999999 −0.001225
0.014371 0.001208 0.999896

] [
−50.158493
−0.049040
−0.190886

] 

RGB [
0.999781 0.018581 −0.009628
−0.018548 0.999822 0.003496
0.009691 −0.003316 0.999948

] [
14.404202
−0.117552
0.546147

] 

 

Table C.3 Ventilation test lung experiment depth quality metrics 

Metrics Depth Quality 

Resolution 848 × 480 

Frame Rate 30 

Region of Interest 40 % 

Fill Rate 100% 

Z-Accuracy -0.03 % 

Plane Fit RMS Error 0.33 % 

Subpixel RMS Error 0.00 pixels 
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Appendix D Porcine Lung Data Acquisition Settings 

Table D.1 Porcine test lung experiment ASV calibration intrinsic parameters 

Parameters Left Infrared Right Infrared RGB 

Resolution 1280 × 800 1280 × 800 1920 × 1080 

Focal Length [
638.065002
637.815002

] [
641.018982
640.336975

] [
1379.920044
1380.84997

] 

Principal 

Point 
[
639.348999
400.669006

] [
634.036011
404.847992

] [
953.692017
545.323975

] 

Distortion 

[
 
 
 
 
−0.056679
0.063950
0.000533
−0.000361
−0.020585]

 
 
 
 

 

[
 
 
 
 
−0.057750
0.065349
−0.000502
−0.001087
 −0.020886]

 
 
 
 

 

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

 

 

Table D.2 Porcine test lung experiment ASV calibration extrinsic parameters 

Sensor Rotation to Left Infrared Translation to Left Infrared 

Left Infrared n/a n/a 

Right Infrared [
0.999896 −0.001195 −0.014369
0.001178 0.999999 −0.001225
0.014371 0.001208 0.999896

] [
−50.158493
−0.049040
−0.190886

] 

RGB [
0.999781 0.018581 −0.009628
−0.018548 0.999822 0.003496
0.009691 −0.003316 0.999948

] [
14.404202
−0.117552
0.546147

] 

 

Table D.3 Porcine test lung experiment depth quality metrics 

Metrics Depth Quality 

Resolution 848 × 480 

Frame Rate 30 

Region of Interest 40 % 

Fill Rate 100% 

Z-Accuracy -0.03 % 

Plane Fit RMS Error 0.33 % 

Subpixel RMS Error 0.00 pixels 
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