

Measurement of Regional Deformation and Volume Change of Donor Lungs during Ex

Vivo Lung Perfusion Using a Stereo Vision Method

by

Jason Riley Der

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

University of Alberta

©Jason Riley Der, 2022

ii

Abstract

Lung transplant is a critical treatment that remains the only option for patients with end-state

pulmonary illness. This treatment is underutilized because of a shortage of suitable donor lungs,

leading to patients succumbing to illness while on the waitlist. Supply is limited by overly

conservative rejections of possible donors. Also, transplantation is limited by hypothermic

storage, the conventional preservation method, which is restricted to transplant windows of six

hours. Shorter preservation periods ensure rates of primary graft dysfunction do not rise

exponentially, possibly leading to recipient fatality. However, this limits transplant services to

regional operations and can lead to last minute rejections as the donor lung degrade over time.

Ex-vivo lung perfusion (EVLP) preserves and monitors donor lungs at a near physiological state

through mechanical ventilation, blood perfusion, and pharmaceutical treatment. The technique

has the potential to improve donor lung utilization. Its measurements can accurately determine

transplant viability to prevent conservative rejections. In studies, it has been shown to revitalize

previously rejected donor lungs into a transplant viable condition. Also, maintaining the donor

lung with mechanical ventilation and blood perfusion prevents ischemia and increases

preservation periods. However, EVLP could be improved as it could host additional diagnostic

sensors.

EVLP introduces the risk of ventilation induced lung injury (VILI) that could injury the lung and

jeopardize transplant viability. Also, conventional EVLP diagnostic system measurements are

scalar, thus are unable to differentiate the individual performance of the left and right lung, or

measure asynchrony. Also, these systems would be unable to measure localized over-inflation

due to heterogeneity in the donor lung’s compliance.

iii

A non-invasive camera-based processing scheme was developed to evaluate donor lung

performance during EVLP treatment. The camera sensor methodology was evaluated by

comparing its measurements to clinical diagnostic systems. A commercial active stereo vision

system was used to measure the surface deformation of three donor lung surrogates during

positive pressure mechanical ventilation at different tidal volumes. The camera system’s depth

measurements were used to reconstruct the lung surfaces to calculate plethysmography metrics,

such as tidal volume through surface integration. Also, these metrics were derived from

measurements that were simultaneously captured with a combined MEMS, or a Venturi flow rate

and pressure sensor that are integrated into the clinical ventilation units. These paired

measurements were used to compare the two methods, which were found to have high

correlation, but poor agreement with significant systematic and proportional error relative to

ventilation tidal volume. The camera-based system performed other calculations.

The camera-based system measured the left and right lung separately using image segmentation.

Also, the surface deformation was scanned for peaks or troughs that would correlate with

localized over-inflation and under-inflation. Peak detection was performed on surface

measurements analogous to tidal volume and dynamic compliance. Lastly, the surface shape of

the donor lung surrogates was characterized over one respiratory cycle by averaging all sampled

cycles.

These results suggest that the camera-based method is measuring changes in donor lung surface

shape with respects to respiratory cycles, however, it is currently unsuitable for plethysmography

measurement. Also, a limitation of the study was that the surface deformation measurements and

detected peaks were not directly validated, since the reference method did not measure regional

iv

performance. However, the left and right lung measurements matched observations that the left

lung failed to distend. Furthermore, in several cases the plethysmography systematic and

proportional error of the camera method was linearly modelled with high coefficient of

determination. With improvements, the method could be utilized as an additional evaluation tool

to assess donor lung surface condition and health.

v

Acknowledgements

I am indebted to my family for their unconditional love and support. Without them, I would not

have been able to accept this opportunity or persist through its challenges.

I would like to acknowledge Tevosol for co-funding this research through the Mitacs Accelerate

program. Also, I will be forever grateful to their engineering team: Katie, Steve, and Calvin, for

their technical guidance, mentorship, and arranging all key project experiments.

I would like to acknowledge my supervisor Dr. David Nobes for his continuous support

throughout this project. Also, I would like to recognize my co-supervisor Dr. Reza Sabbagh.

Lastly, I would like to thank my fellow graduate students and the post doctorates in my lab for

their camaraderie.

vi

Table of Contents

Abstract ... ii

Acknowledgements ... v

Table of Contents ... vi

List of Tables ... xi

List of Figures .. xiv

List of Symbols ... xxv

1 Introduction ... 1

 Motivation .. 1

 Hypothesis .. 2

 Objectives ... 5

2 Plethysmography Fundamentals ... 6

3 Fundamentals of Active Stereo Vision ... 9

 ASV Modelling .. 10

 ASV Calibration ... 17

 Image Pair Rectification ... 19

 Digital Image Matching ... 20

 Projected Light Pattern ... 23

 Depth Estimation Triangulation ... 24

 Stereo Vision Limitations... 25

 Fundamentals of Active Stereo Vision Conclusion ... 27

4 Intel RealSense D435 Active Stereo Vision Platform .. 29

 Calibration and Depth Evaluation .. 31

 Data Acquisition ... 33

vii

 Intel RealSense D435 Conclusion .. 34

5 Deformation and Plethysmography Processing Scheme .. 35

 Image Segmentation ... 36

 Edge-Based Segmentation .. 37

 Region-Based Segmentation ... 38

 Deprojection ... 39

 Surface Reconstruction .. 41

 Reconstructed Surface Measurement ... 45

 Surface Integration ... 46

 Surface Deformation and Regional Measurement ... 49

 Processing Scheme Conclusion .. 52

6 Validation of Displacement Measurement.. 53

 Experiment Equipment ... 54

 Calibration and Data Acquisition ... 57

 Experiment Cases.. 57

 Description of the EVLP ... 58

 Data Acquisition using the Intel RealSense D435 .. 59

 Processing Scheme for Active Stereo Vision Plethysmography of the Ventilator Test

Lung 60

 Depth Map Segmentation ... 61

 Point Cloud Processing ... 74

 Plethysmography Measurements .. 80

 Surface Measurements .. 86

 Comparison of Measurements .. 88

 Reference and Competing Measurements .. 88

viii

 Measurement Distribution .. 92

 Correlation of the Ventilator Test Lung ASV and EVLP Measurements 99

 ASV and EVLP Measurement Agreement of the Ventilator Test Lung 109

 Discussion .. 116

 Sources of Error .. 116

 ASV Method Limitations .. 118

 Conclusion .. 121

7 Active Stereo Vision Method in a Clinical Setting ... 122

 Experiment Equipment ... 123

 Calibration and Data Acquisition ... 127

 Image Processing Scheme for Clinical Cases .. 131

 Color Image and Depth Map Segmentation .. 131

 Point Cloud Processing ... 136

 Surface Reconstruction of the Porcine Lung .. 138

 Plethysmography Measurements of a Porcine Lung .. 140

 Regional Measurements of a Porcine Lung .. 143

 Comparison of Measurements .. 146

 Preparation of Measurements for Comparison ... 146

 Measurement Distribution of the ASV and Ventilator Systems 146

 Correlation and Linearity of the ASV and Ventilator System 152

 Agreement of the ASV and Ventilator System ... 162

 Porcine Lung Discussion .. 171

 Porcine Lung Conclusion ... 172

8 Clinical Validation and Region Measurement .. 173

 Experiment Equipment ... 173

ix

 Calibration and Data Acquisition ... 174

 Processing Scheme ... 177

 Human Lung Segmentation .. 178

 Left and Right Human Lung Segmentation .. 178

 Human Lung Point Cloud Processing ... 186

 Surface Reconstruction of the Rejected Human Lung .. 187

 Plethysmography Measurements of a Rejected Human Lung 190

 Regional Measurements of a Rejected Human Lung ... 191

 Rejected Human Lung Discussion ... 193

 Rejected Human Lung Conclusion .. 194

9 Conclusion and Future Work .. 195

 Conclusion .. 195

 Future Work ... 196

Works Cited .. 197

Appendix A Mechanical Drawings .. 208

Appendix B MATLAB Code... 209

B1 Data Acquisition ... 209

B1.1 rs2ReadRosbag ... 209

B1.2 countRosbagFrames .. 212

B2 Image Segmentation ... 220

B2.1 segmentLungs ... 220

B2.2 Point Cloud Processing ... 232

B3 Surface Reconstruction .. 238

B3.1 interpolateSurface ... 238

B3.2 interpolateSurfaceColor .. 240

x

B3.3 interpolateSurfaceRegion .. 241

B4 Measurement .. 242

B4.1 measurePorcineLung... 242

B4.2 estimateSurfaceParams ... 253

B4.3 create_avg_cycle ... 256

B4.4 compare_to_avg_cycle ... 257

B4.5 estimateRegionAsychrony .. 259

Appendix C Ventilator Test Lung Data Acquisition Settings ... 262

Appendix D Porcine Lung Data Acquisition Settings ... 263

xi

List of Tables

Table 5.1 Measurement Method Feature Comparison .. 52

Table 6.1 Ventilation test lung experiment cases ... 57

Table 6.2 Mean and standard deviation of the ventilator test lung ASV and EVLP measurements

of case 1 .. 93

Table 6.3 Kurtosis and skewness of the case 1 ASV and EVLP measurement of the ventilator test

lung ... 94

Table 6.4 Kurtosis and skewness of the case 1 ASV and EVLP measurement of the ventilator test

lung ... 95

Table 6.5 Shapiro Wilk test of the case 1 ASV and EVLP measurements of the ventilator test

lung ... 96

Table 6.6 Linearity of all experiment case ASV and EVLP measurements of the ventilator test

lung ... 102

Table 6.7 Correlation of all experiment cases ASV and EVLP measurements of the ventilator test

lung ... 103

Table 6.8 Passing-Bablok regression parameters of the ASV and EVLP measurements from all

experiment cases combined of the ventilator test lung ... 104

Table 6.9 Residual mean of Passing-Bablok regression for all valid cases of the ventilator test

lung ... 107

Table 6.10 Intra-Class Correlation of the ventilator test lung ASV and EVLP measurements of

all valid cases .. 110

Table 6.11 Shapiro-Wilk normality of the ventilator test lung ASV and EVLP measurement

differences of all valid cases ... 110

xii

Table 6.12 Bland-Altman analysis mean, confidence interval, and limits of agreement of the

ASV and EVLP measurements from all valid cases for the ventilator test lung 114

Table 6.13 Bland-Altman analysis normalized mean and limits of agreement of the ASV and

EVLP measurements from all valid cases of the ventilator test lung ... 115

Table 7.1 Porcine lung experiment cases .. 130

Table 7.2 Porcine lung ventilator settings... 131

Table 7.3 Measurement distribution mean error of the ASV and ventilator systems for the

porcine lung .. 147

Table 7.4 Mean and standard deviation of the porcine lung tidal volume and dynamic compliance

measurements from the ASV and ventilator for all experiment cases .. 148

Table 7.5 Shapiro Wilk hypothesis test for normality and p-value for the measurement

distribution of inspiratory tidal volume and dynamic compliance of the porcine lung 149

Table 7.6 Kurtosis and skewness of the porcine lung tidal volume and dynamic compliance

measurements from the ASV and ventilator for all experiment cases .. 149

Table 7.7 Tailedness and symmetry of the porcine lung tidal volume and dynamic compliance

measurements from the ASV and ventilator for all experiment cases .. 150

Table 7.8 Pearson correlation coefficient, correlation and linearity statistical significance of the

porcine lung tidal volume and dynamic compliance measurements from the ASV and ventilator

systems .. 153

Table 7.9 Passing-Bablok regression slope and intercept, and coefficient of determination, for

steady and transient state cases for inspiratory tidal volume and dynamic compliance of the

porcine lung .. 154

Table 7.10 Passing-Bablok regression residual means of the porcine lung tidal volume and

dynamic compliance ... 160

xiii

Table 7.11 Intra-Class Correlation of the ASV and ventilator system measurements of the

porcine lung .. 162

Table 7.12 Shapiro-Wilk normality test of ASV and ventilator error .. 163

Table 7.13 Bland Altman of the tidal volume and dynamic compliance measurements from the

ASV and ventilator system for the porcine lung ... 163

Table 7.14 Normalized Bland Altman analysis mean and limits of agreement of the tidal volume

and dynamic compliance from the ASV and ventilator of the porcine lung 169

Table 8.1 Human lung constant ventilation settings ... 176

Table 8.2 Human lung experiment case tidal volume levels and change 177

xiv

List of Figures

Figure 2.1. Schematic of volume signal segmentation and metrics .. 6

Figure 2.2. Schematic of flow rate signal segmentation and metrics ... 7

Figure 2.3. Schematic of a respiratory cycle Lissajous curve flow-loop of volume and flow rate 8

Figure 3.1. Schematic of the components for active stereo vision ... 9

Figure 3.2. Schematic of a simplified camera... 10

Figure 3.3 Schematic of the pinhole model and relationship between coordinate systems. 11

Figure 3.4. Schematic of the optical center intrinsic camera parameter 12

Figure 3.5. Schematic of the skew coefficient intrinsic camera parameter 13

Figure 3.6. Schematic of (a) negative radial distortion or barrel distortion and (b) positive radial

distortion or pin cushion distortion ... 15

Figure 3.7. Schematic of tangential distortion .. 16

Figure 3.8. Schematic of checkerboard pattern calibration .. 17

Figure 3.9 Schematic of epipolar geometry .. 19

Figure 3.10. Schematic of image rectification .. 20

Figure 3.11. Schematic of digital image matching correspondence search 21

Figure 3.12. Image of active stereo vision with projected light pattern in the scene.................... 23

Figure 3.13. Schematic of stereo vision triangulation .. 24

Figure 3.14. Schematic of the false boundary problem from curved surface 25

Figure 3.15. Schematic of depth resolution .. 27

xv

Figure 4.1. Annotated image of the Intel RealSense D435... 29

Figure 4.2. Screenshot of the Intel RealSense Dynamic Calibration application 31

Figure 4.3. Screenshot of the Intel RealSense Depth Quality Tool .. 32

Figure 4.4. Screenshot of the Intel RealSense Viewer application ... 33

Figure 5.1. Flow chart of the processing scheme.. 36

Figure 5.2. Schematic of deprojection geometry .. 40

Figure 5.3. Schematic of box grid filter .. 42

Figure 5.4. Schematic of Delaunay criterion .. 43

Figure 5.5. Schematic of scattered point interpolation ... 44

Figure 5.6. Schematic of scattered point interpolation at uniform grid points 45

Figure 5.7. Schematic of parameterized triangular surface mesh for volume integration using the

Divergence Theorem. .. 46

Figure 5.8. Schematic of respiratory cycle average volume ... 48

Figure 5.9. Schematic for tidal displacement map calculation ... 50

Figure 5.10. Schematic of peak detection of a surface annotated for peak and trough detection. 51

Figure 6.1 Annotated image of the ventilator test lung .. 54

Figure 6.2 Annotated image of the ventilation test lung inside a development EVLP 55

Figure 6.3 Annotated image of the Intel RealSense D435 mounted above the ventilator test lung

... 56

Figure 6.4 Plots of EVLP flow rate, pressure, tidal volume, and dynamic compliance

measurements .. 58

xvi

Figure 6.5 Screenshot of the ventilation test lung (a) color, (b) left and (c) right infrared, and (d)

colorized depth map video stream using the Intel RealSense Viewer .. 59

Figure 6.6 Annotated depth map, which has been spatial and temporal smoothed, of the

ventilator test lung inside the EVLP chamber .. 61

Figure 6.7 Annotated edge map of the ventilator test lung inside the EVLP chamber 62

Figure 6.8 Image of the edge map of the ventilator test lung (a) before and (b) after pre-linking

morphological operations.. 63

Figure 6.9 Annotated image of the edge map of the ventilator test lung after edge-linking 64

Figure 6.10 Annotated image of the edge map of the ventilator test lung after a 45 rotation and

edge-linking .. 65

Figure 6.11 Image of the ventilator test lung edge map after edge thinning skeletonization, with

removed edges in red and the remainder in white .. 66

Figure 6.12 Annotated image of the ventilator test lung edge map after removing small

connected components with an areal filter, with removed edges in red and the remainder in white

... 67

Figure 6.13 Annotated image of the ventilator test lung edge map with an interactively drawn

vertical line to enclose the lung region ... 68

Figure 6.14 Annotated image of the ventilator test lung edge map with the interactively drawn

cropping rectangle centered around the lung .. 69

Figure 6.15 Annotated image of the complement of the edge map within the interactively

cropped region .. 70

Figure 6.16 Image of the ventilator test lung binary map after hole filling post-processing 71

Figure 6.17 Plot of the area of each ventilator test lung region map for outlier detection 72

xvii

Figure 6.18 Annotated mage of the depth map of the ventilator test lung and EVLP chamber with

the lung segmented ... 73

Figure 6.19 3D plot of the ventilator test lung point cloud ... 74

Figure 6.20 3D plot of the ventilator test lung and EVLP chamber point cloud in the Intel

RealSense Viewer ... 75

Figure 6.21 3D plot of the ventilator test lung point cloud before and after transformation 76

Figure 6.22 Annotated 3D plot of the ventilator test lung point cloud, with outliers annotated .. 77

Figure 6.23 3D plot of the ventilator test lung point cloud after 3D box averaging filtering 78

Figure 6.24 3D plot of the ventilator test lung Delaunay triangulation surface mesh 79

Figure 6.25 Plot of the ventilator test lung displacement before and after signal filtering 80

Figure 6.26 Plot of the ventilator test lung displacement and displacement rate 81

Figure 6.27 Plot of the ventilator test lung ASV displacement segmented for the inhale and

exhale points from case 1 for the first three breaths ... 82

Figure 6.28 Plots of the ventilator test lung ASV displacement and tidal volume from case 1 ... 83

Figure 6.29 Plot of the EVLP airway pressure, PIP, and PEEP ... 84

Figure 6.30 Plot of the cyclic average displacement of the porcine lung 85

Figure 6.31. 3D plot of surface map of the ventilator test lung .. 86

Figure 6.32. Plot of the surface tidal displacement of the ventilator test lung 87

Figure 6.33 Plot of the ASV and EVLP dynamic compliance of the ventilator test lung from case

6... 89

xviii

Figure 6.34 Plot of the ASV and EVLP dynamic compliance of the ventilator test lung from case

1... 90

Figure 6.35 Plots of the ventilator test lung tidal volume from case 3 ... 91

Figure 6.36 Plots of the ventilator test lung tidal volume from case 9 ... 92

Figure 6.37 Plots of the ventilator test lung EVLP inspiratory tidal volume measurements from

case 1, (a) normal probability and (b) histogram annotated with the mean = 136.52 and 95%

confidence intervals [88.52,184.52] .. 97

Figure 6.38 Plots of the ventilator test lung ASV inspiratory tidal volume measurements from

case 1, (a) probability and (b) histogram annotated with the mean = 226.05, red line, and 95%

confidence interval [155.67,296.43], blue dashed lines .. 98

Figure 6.39 Plot of Passing-Bablok regression of the case 1 ASV and EVLP inspiratory tidal

volume of the ventilator test lung ... 100

Figure 6.40 Plot of Passing-Bablok regression of the EVLP test lung inspiratory tidal volume

from cases 1, 4, and 7.. 101

Figure 6.41 Plot of Passing-Bablok regression of the ASV and EVLP inspiratory tidal volume

measurements of the ventilator test lung .. 105

Figure 6.42 Plot of Passing-Bablok regression of the ASV and EVLP inspiratory time

measurements from all cases of the ventilator test lung ... 106

Figure 6.43 Plot of Passing-Bablok regression residuals versus predicted ventilator test lung

inspiratory tidal volume from all experiment cases .. 108

Figure 6.44 Plots of the difference of the ASV and EVLP inspiratory tidal volume measurements

from all experiment cases as (a) probability and as (b) histogram annotated with the mean and

confidence intervals .. 111

xix

Figure 6.45 Plot of the Bland-Altman analysis of the ASV and EVLP measurements of

inspiratory tidal volume of the ventilator test lung ... 112

Figure 6.46 Plot of the Bland-Altman analysis of the ASV and EVLP normalized measurements

of inspiratory tidal volume of the ventilator test lung... 113

Figure 6.47 Schematic of the ventilator test lung distending in all directions, lifting the entire

lung ... 116

Figure 6.48. Schematic of the effect of ASV angle on surface integration 117

Figure 6.49 Image of the depth map of the ventilator test lung with depth holes that outline the

lung ... 118

Figure 6.50 Image of the ventilator test lung edge map with circles from small regions of

occlusion in the depth map ... 119

Figure 6.51 Image of the edge map of the ventilator test lung with erroneous spurs and sub-

regions ... 120

Figure 7.1 Annotated image of a porcine lung inside an open EVLP .. 123

Figure 7.2 Annotated image of the porcine lung inside an EVLP with the Intel RealSense D435

... 124

Figure 7.3 Annotated image of the Draeger Evita XL ventilator and laptop for Vital Signs

Capture .. 125

Figure 7.4 Annotated image of the Draeger Evita XL touchscreen GUI 126

Figure 7.5 Annotated image of the porcine lung experimental setup ... 127

Figure 7.6 Images of the porcine lung from the Intel RealSense D435 (a) color and (b) depth map

streams .. 128

xx

Figure 7.7 Plot of the tidal volume and dynamic compliance of the porcine lung during

ventilation from the Draeger Evita XL obtained using Vital Signs Capture 129

Figure 7.8 Annotated color image from the Intel RealSense D435 of the porcine lung with

interactively marked foreground and background for segmentation .. 133

Figure 7.9 Color image of the porcine lung oversegmented into super pixels 134

Figure 7.10 Image of a binary map segmented from the porcine lung color images (a) before and

(b) after morphological closing ... 134

Figure 7.11 Image of a binary map segmented from the porcine lung color images (a) after

temporal filtering and (b) the original color image segmented by the binary map 135

Figure 7.12 Images of (a) the depth thresholded binary map of the porcine lung and (b) the depth

map masked by the threshold binary map ... 136

Figure 7.13 3D plot of the reconstructed surface of the porcine lung as (a) point cloud and (b) the

point cloud colorized using the color images ... 137

Figure 7.14 3D plots of the downsampled and transformed porcine lung (a) point cloud and (b)

colored point cloud ... 137

Figure 7.15 Plot of the surface map of the porcine lung ... 138

Figure 7.16 3D Plot of the Delaunay triangulation meshed surface map of the porcine lung 139

Figure 7.17 Plots of (a) the colored surface map of the porcine lung as a 2D plot and (b) 3D plot

... 139

Figure 7.18 Plot of the ASV displacement of the porcine lung sampled from case 1 140

Figure 7.19 Plot of the ASV and ventilator porcine lung tidal volume and dynamic compliance of

case 1 ... 141

Figure 7.20 Plot of the cyclic average displacement of the porcine lung of case 1 142

xxi

Figure 7.21 Plot of the displacement and cyclic average deviation of the porcine lung from case 1

... 143

Figure 7.22 3D plot of surface tidal displacement of the porcine lung from case 1 144

Figure 7.23 Plots of (a) the surface deviation from cyclic average displacement of the porcine

lung from case 1 for peak detection (a) as an image and (b) as a surface mesh 145

Figure 7.24 Probability plots and histograms of the inspiratory tidal volume measurement

distribution from the ventilator(a) and b) and ASV (c) and (d) system from experiment case 1 151

Figure 7.25 Plot of Passing-Bablok regression between the ventilator and ASV systems

measurements of inspiratory tidal volume of the porcine lung during experiment case 1 155

Figure 7.26 Plot of Passing-Bablok regression between the ventilator and ASV systems’

measurements of inspiratory tidal volume of the porcine lung from experiment case 1, 2, and 3

... 156

Figure 7.27 Plot of Passing-Bablok regression between ventilator and ASV inspiratory dynamic

compliance of the porcine lung from experiment cases 1, 2, and 3 .. 157

Figure 7.28. Plot of Passing-Bablok regression between the ventilator and ASV inspiratory tidal

volume of the porcine lung from experiment cases 4, 5, and 6 .. 158

Figure 7.29 Plot of Passing-Bablok regression between the ventilator and ASV inspiratory

dynamic compliance of the porcine lung from experiment case 4, 5, and 6 159

Figure 7.30 Plot of the inspiratory tidal volume Passing-Bablok regression residuals versus

model predictions of the porcine lung for experiment case 4, 5, and 6 161

Figure 7.31 Plot of the Bland-Altman analysis of inspiratory tidal volume difference of the ASV

and ventilator measurements from cases 1, 2, and 3 of the porcine lung 165

Figure 7.32 Plot of the Bland-Altman analysis of inspiratory dynamic compliance error of the

ASV and ventilator system paired measurements from cases 1, 2, and 3 of the porcine lung ... 166

xxii

Figure 7.33 Plot of the Bland-Altman analysis of inspiratory tidal volume error of the ASV and

ventilator system paired measurements from cases 4, 5, and 6 of the porcine lung 167

Figure 7.34 Plot of the Bland-Altman analysis of inspiratory dynamic compliance error of the

ASV and ventilator system paired measurements from cases 4, 5, and 6 of the porcine lung ... 168

Figure 7.35 Plot of the normalized Bland-Altman analysis of the porcine lung inspiratory tidal

volume of the porcine lung from the ASV and ventilator system for cases 4, 5, and 6 170

Figure 7.36 Plot of the normalized Bland-Altman analysis of the porcine lung inspiratory tidal

volume of the porcine lung from the ASV and ventilator system for cases 1, 2, and 3 171

Figure 8.1 Annotated image of a human lung in an EVLP ... 173

Figure 8.2 Annotated image of the human lung experimental setup .. 175

Figure 8.3 Images of the human lung from the Intel RealSense D435 (a) color and (b) depth map

streams .. 176

Figure 8.4 Image of a depth map segmented for the rejected human lung 178

Figure 8.5 Images of (a) the segmented and (b) the quantized depth map of the rejected human

lung ... 179

Figure 8.6 Image of the quantized and segmented depth map of the rejected human lung with the

left and right lung seed regions in magenta .. 180

Figure 8.7 Image of the gradient magnitude of the segmented depth map of the rejected human

lung ... 181

Figure 8.8 Images of the labeled (a) depth map and (b) color image of the rejected human lung

segmented for the left and right lung, and the background region ... 181

Figure 8.9 Annotated label maps of the left and right human lung segmentation with switching

labels ... 182

xxiii

Figure 8.10 Annotated image of the label map of the left and right human lung segmentation

with (a) segmentation errors and with (b) the left lung oversegmented 182

Figure 8.11 Line plot of the area of the label map regions of the human lung clustered using K-

means, where K = 3 clusters ... 183

Figure 8.12 Annotated image of the label map of the left and right human lung segmentation

after region merging and watershed line removal ... 183

Figure 8.13 Image of the label map for left and right human lung segmentation without

watershed lines .. 184

Figure 8.14. Plot of the region size of the whole lung in the label maps before and after temporal

filtering .. 185

Figure 8.15 3D plot of the porcine lung point cloud (a) colorized by depth, (b) the point cloud

colorized by left and right lung label, and (c) the point cloud colorized by the color image 186

Figure 8.16 Plots of an alpha shape of the human lung (a) from a top-down view and (b) a close-

up view showing which query points are within the alphas ... 187

Figure 8.17 Images of the human lung (a) alpha shape binary map, (b) the surface map colorized

by depth, (c) the surface label map, and (d) the human lung colored surface map 188

Figure 8.18. 3D plot of the human lung (a) surface map depth, (b) surface map colorized by left

and right lung labels, and (c) the surface map colorized by the appearance of the human lung 189

Figure 8.19. Plot of the displacement of the whole, left, and right lung of the human lung over

three cycles.. 190

Figure 8.20. 3D plot of the surface tidal displacement of the whole human lung 191

Figure 8.21. Plots of (a) the deviation from the surface cyclic average displacement of the human

lung from case 1 for peak detection (b) as an image and (c) as a surface mesh where red indicates

xxiv

a local maxima and blue indicates a local minima outside of the deviation 95% confidence

interval .. 192

Figure 8.22 Schematic of the volume difference from surface integration with a compliant

surface versus a steady state, flat plane datum ... 193

xxv

List of Symbols

Term Symbol Unit

Active Stereo Vision ASV

Airway Pressure P [cmH20]

Depth Error Δz [m]

Disparity Error ΔD [pixels]

Displacement d [mL]

Displacement Cycle Average dcycle [mL]

Displacement Rate �̇� [mL/s]

Dynamic Compliance Cdyn [mL/cmH20]

Expiratory Dynamic Compliance Cdyne [mL/cmH20]

Expiratory Tidal Flow at 50% of Tidal Volume TEF50 [mL/s] or [LPM]

Expiratory Tidal Volume VTe [mL]

Expiratory Time tE [s]

Ex-Vivo Lung Perfusion EVLP

Focal Length f [m]

Inspiratory Dynamic Compliance Cdyni [mL/cmH20]

Inspiratory Expiratory Time Ratio tIE

Inspiratory Tidal Flow at 50% of Tidal Volume TIF50 [mL/s] or [LPM]

Inspiratory Tidal Volume VTi [mL]

Inspiratory Time tI [s]

Inspiratory to Expiratory Flow Ratio IE50

Inspiratory Total Time Ratio tITot

Negative Pressure Ventilation NPV

Peak Tidal Expiratory Flow PTEF [mL/s] or [LPM]

Peak Inspiratory Pressure PIP [cmH20]

Peak Tidal Inspiratory Flow PTIF [mL/s] or [LPM]

Peak Tidal Flow PTF [mL/s] or [LPM]

Positive End-Expiratory Pressure PEEP [cmH20]

Positive Pressure Ventilation PPV

Region of Interest ROI

Respiratory Rate, RR [bpm]

Software Development Kit SDK

Stereo Baseline b [m]

Stereo Depth z [m]

Stereo Disparity d [pixels]

Stereo Vision SV

Surface Displacement D [mL]

Surface Displacement Cycle Average Dcycle [mL]

Surface Displacement Cycle Average Deviation DDeviation [mL]

Tidal Volume VT [mL]

Time to Peak Tidal Expiratory Flow tPTEF [s]

Time to Peak Tidal Inspiratory Flow tPTIF [s]

Total Time tTot [s]

Ventilation Induced Lung Injury VILI

1

1 Introduction

 Motivation

Lung transplant is a critical treatment that remains the only option for patients with end-stage

pulmonary illness [1]. In 2019, the U.S. performed 2759 lung transplants with a 7.6% yearly

increase in operations [2]. Although donation rates have increased, demand outstrips supply as in

the same year, there were 3243 new candidates [2]. This supply-demand mismatch has led to 316

candidates succumbing to illness while on the waitlist [2]. The gap in supply and demand is

partly due to the underutilization of the existing donor pool [3].

In 2019, 6.4% of procured lungs were not utilized [2] which could have saved the life of a

waitlist candidate recipient. Also, 85% of potential donors are rejected, despite 41%, in a sample

group, being found suitable for transplant [4]. These viable donors were erroneously rejected

using a historically based evaluation method that mainly checks for contraindication such as

presence of infections, donor age, and history of smoking [3],[5]. These transplant criteria have

been questioned [4], and do not consider qualitative measurements of donor lung performance,

which would be difficult to obtain for a donation after circulatory death (DCD). Also, donor

lungs utilization is restricted by conventional hypothermic storage preservation, in which the

donor lung is maintained below 4 ⁰C to reduce cell metabolism [6]. The donor lung is ischemic

during this time which exponentially increases rates of primary graft dysfunction (PGD) past six

hours [7], which could lead to transplant recipient fatality. Also, the limited preservation time

causes regional heterogeneity in transplant services. To address these issues, many techniques

have been explored to extend the donor pool such as using ex-vivo lung perfusion (EVLP) [6].

EVLP is a preservation technique that maintains donor lungs at a near physiological state using

mechanical ventilation, blood perfusion, and pharmaceutical treatment [8]–[10]. This technique

prevents ischemia, reducing the risk of PGD, and has been shown to have longer preservation

times than hypothermic storage. During preservation, lung performance is monitored [11]–[13]

allowing more accurate transplant viability evaluations that could prevent conservative

rejections. Also, EVLP has been shown to revitalize previously rejected lungs [14]–[16],

improving their health into a transplant viable condition. Therefore, EVLP could expand the

2

existing donor pool and improving patient outcomes. However, the system could be improved, as

it has been predicted to be a treatment platform that could host additional diagnostic sensors [8].

One limitation of EVLP is that it introduces the risk of ventilation induced lung injury (VILI)

[17], jeopardizing transplant viability and patient well-being. Conventional plethysmography and

pressure measurements such as tidal volume and positive expiratory-end pressure (PEEP) are

used to predict VILI [18], [19]. However, VILI can be caused by excessive stretching or tearing

from improper ventilation and exposure to high concentrations of oxygen [20]. Ultimately these

method are not capable of measuring the real mechanism of VILI, lung stress and strain [17],

[18], [21]–[23]. Another limitation of conventional EVLP diagnostic systems is that

measurements are scalar. Therefore, they are unable to differentiate the individual performance

of the left and right lung, thus are unable to measure asynchrony. Also, these systems would be

unable to identify the location of localized over-inflation due to heterogeneity in the donor lung’s

compliance. To address these issues, an additional diagnostic sensor could be added to the EVLP

device to measure full field physical distension, strain, or stress of the donor lung.

 Hypothesis

A diagnostic sensor for measuring full field performance of a donor lung inside an EVLP device

would have several design constraints. For example, the system can not interfere with the EVLP

device or invasively contact the donor lung which would jeopardize transplant viability. Also, an

ideal system would provide real-time measurements with accuracy and repeatability equal or

greater than the existing EVLP plethysmography system. Lastly, it would be beneficial if the

technological basis was well established so it could be more easily approved by the FDA.

There are several existing plethysmography techniques that could be implemented for this

application. Optical reflectance (OR) motion analysis [24], [25] and respiratory inductive

plethysmography [26] could provide full field stress and strain of the donor lung. However, they

are entirely invasive, as reflective markers or sensors would be attached directly to the donor

lung. Non-contact alternatives such as MRI and MDCT [27], [28] could interfere with the EVLP

device, and is computationally and financially expensive, even when disregarding feasibility of

the size of the system. Lastly, respirometers such as spirometers and pneumotachograph [29] are

3

essentially already implemented in the EVLP device. The methods so far are either invasive or

would interfere with the EVLP device. However, there have been imaging techniques that have

been successfully tested on in-vivo patients. For example, digital image correlation (DIC) was

used to non-invasively measure the full field stress and strain of an in-vivo heart, during an open-

heart surgery [30], [31]. Also, structured light plethysmography (SLP) was used to measure chest

wall deformation of a patient to calculate tidal parameters [32]–[34], which was found to be

comparable to clinical measurement techniques [35]. These are some examples of

photogrammetry techniques that could be used to monitor the donor lung during EVLP [36].

Photogrammetry, the measurement of physical objects from images [37], is a good candidate for

improving EVLP diagnostics. Imaging techniques require few pieces of equipment, often they

use one or multiple cameras, optionally with either a light projector or surface markers. They can

measure the shape of an environment non-invasively such as stereo vision (SV) and structured

light 3D scanning (SL) [38], [39]. Also, shape measurements can be used to derive other metrics

such as strain and stress when using DIC, plethysmography with SLP, and volume measurement

[40], [41] . These measurements can be obtained in real-time for certain approaches such as SV

and SLP [38], [42]. However, other techniques must post-process images for measurements like

DIC. Other limitations are mainly imposed by their processing scheme and available

computational processing power, rather than hardware. For example, cheap commercial

webcams can be used for SV [43] and do-it-yourself SL when used with a laser pointer [44].

However, camera quality and resolution still directly impact accurate and precision. Lastly, a

camera-based systems are software flexible since multiple photogrammetry processing schemes

can utilize the same type of images. For example, color images could be processed using

Eulerian video magnification to measure blood flow [45]–[47], while simultaneously using scene

flow to measure a 3D displacement field [48]. Therefore, photogrammetry offers several

development benefits and non-invasive options to measure donor lung performance during

EVLP.

Photogrammetry techniques were reviewed to select a technique for this research project. Several

techniques were considered, mainly DIC, SLP, and SV. DIC is ideal for this application because

it provides full-field deformation, strain, and stress measurements. The technique requires

multiple high-resolution cameras and a speckle pattern on the object of interest to track its

4

surface position and deformation. However, these requirements are not ideal in this application.

DIC is practically limited to small FOV scales, and its measurement require a computationally

intensive post-processing method, making real-time results difficult to achieve [49]. Lastly,

while the surface markers were acceptable in the study for open heart surgery [30], [31],

obtaining FDA approval to apply markers on a donor lung may still prove difficult.

Initially, SLP seemed promising for this application. The technique non-invasively provides real-

time plethysmography and a surface model that could be used to identify localized performance.

However, the EVLP optically transparent chamber cover would interfere with the SLP calibrated

structured light pattern, deviating the light pattern in the image from its calibrated state. As a

result, SLP would render invalid measurements of the donor lung when imaging through the

EVLP cover.

Lastly, SV was considered and selected for this application. The method has been proven reliable

in various fields, including medicine for radiotherapy targeting [50], anthropometry [51], [52],

and laparoscopy in-vivo measurement [53]. It only requires two cameras, provides real-time

depth or shape measurement, and several commercial research and development platforms are

available for a reasonable price. Also, the plethysmography processing techniques used in SLP

and OEP could be adapted for SV measurements. Also, the optical distortions caused by the

EVLP cover could be corrected for using existing methods [54], [55]. The only drawback is that

it is not capable of strain and stress measurement or tracking surface stretching or shear.

Hypothesis Statement:

It is hypothesized that a stereo vision system could be used as an additional diagnostic

sensor for monitoring a donor lung during EVLP.

Ideally, the system would provide real-time surface shape measurements of the donor lung for

whole lung and regional plethysmography, and to detect localized over-inflation. This research

project will evaluate the potential benefits and identify possible obstacles of implementing this

SV based diagnostic system.

5

 Objectives

The objective of this research project is to develop an SV based diagnostic system to measure

surface deformation of a donor lung during EVLP treatment. The development process will

include technique and hardware selection, design of a data acquisition protocol, and outline a

data processing scheme. Also, the research project should evaluate the accuracy and repeatability

of the developed system. Lastly, experiments with donor lungs or surrogates should be

performed to quantify the system’s measurement behavior. In summary, the scope of the

research project is as follows:

1. Review the fundamentals of plethysmography of the EVLP.

2. Review the fundamentals and limitations of stereo vision.

3. Select and review a commerically available imaging system as the diagnostic sensor.

4. Develop a processing scheme for plethysmography and regional surface deformation

measurement.

5. Evaluate the stereo vision diagnostic system experimentally with donor lung surrogates

using method comparison analysis with a clinical ventilation measurement system.

6. Summarize findings from experiment results and provide recommendations.

Notably, some practical issues such as obtaining valid measurements through the EVLP

transparent cover are not included in the scope of this research. The research project will focus

on identifying the potential benefits and obstacles of an SV based diagnostic system, rather than

developing a system ready for implementation. Also, the project scope will focus on the EVLP

device configuration developed by the company Tevosol, since they co-funded and technically

supported this research.

6

2 Plethysmography Fundamentals

Plethysmography is the measurement of volume change in the body. In this case, an objective of

this research is to perform pulmonary plethsymosgraphy, or measure lung volume change during

a respiratory cycle or breath, which is measured during EVLP. Conventionally, pulmonary

plethysmography is performed using respirometry that uses airflow rate and pressure sensors.

This technique is used to calculate metrics such as tidal volume and dynamic compliance to

evaluate the performance of the donor lung. In this chapter, plethysmography metrics are

reviewed to define measurements obtained during EVLP, which the ASV method should be able

to measure. The following approach is most applicable to ASV since it is based on SLP.

Figure 2.1. Schematic of volume signal segmentation and metrics

Local maxima and minina points in the volume signal are used to identify the beginning and end

of each respiratory cycle, inhale, and exhale phase, as seen in Figure 2.1. Tidal volumes were

found using these local extrema points. Tidal volume is the change in volume of the lung,

measured as the volume of air inhaled or exhaled during a breath. Also, the timing characteristics

of each respiratory cycle [35], [56], or breath, can be measured such as inspiratory time, tI,

Time, t [s]

Volume,

V [mL]

ExhaleInhale

Total breath time, tTot

Inspiratory time, tI Expiratory time, tELocal minima

Tidal

Volume,

VT

Local maxima

7

expiratory time, tE, and total respiratory cycle time, tTot. Typically, these metrics are used to

obtain respiratory rate, RR, as the inverse of the tTot, and the ratios tI / tTot and tI / tE [35].

 𝐶𝑑𝑦𝑛 =
∆𝑉

∆𝑃
=

𝑉𝑇

𝑃𝐼𝑃 − 𝑃𝐸𝐸𝑃
 (2-1)

If given pressure measurements, tidal volume could be used to find dynamic compliance, which

is the dynamic elasticity of the lung. In (3-7), PIP and PEEP are the peak inspiratory and end-

expiratory pressures within a respiratory cycle [19]. They can be found at the local extrema

points of the pressure signal.

Figure 2.2. Schematic of flow rate signal segmentation and metrics

Similar metrics can be taken from the flow rate signal, as seen in Figure 2.2. The peak tidal

inspiratory and expiratory flow, PTIF and PTEF, are found as the peak flow values within the

inhale and exhale phases. The time to these points, tPTIF and tPTEF, are taken with respects to

the start of the inhale and exhale phases [35].

Time, t [s]

Flow Rate,

q [mL/s]

ExhaleInhale

tPTIF tPTEF

Peak Tidal

Inspiratory

Flow, PTIF

Peak Tidal

Expiratory

Flow, PTEF

8

Figure 2.3. Schematic of a respiratory cycle Lissajous curve flow-loop of volume and flow rate

The performance of a patient, or donor lung, can be visually characterized by a respiratory cycle

flow-loop, or Lissajous curve, that plots volume versus flow rate, as seen in Figure 2.3 [35].

Also, defining metrics are measured such as inspiratory and expiratory tidal flow at 50% of tidal

volume, TIF50 and TEF50, and the inspiratory to expiratory flow ratio, IE50 = TIF50 / TEF50

[35].

TEF50

Exhale

Inhale

PTIF

VT

Volume, V [mL]

Flow Rate, q

[mL/s]

TIF50

VT

PTEF

9

3 Fundamentals of Active Stereo Vision

In 1960, Larry Roberts first discussed the extraction of 3D measurements from images, a

technique now known as photogrammetry [37]. Since then, photogrammetry has been an active

field of research, as many techniques have been developed using an assortment of camera

configurations and algorithms [57]. Stereo vision is one of the more established techniques in

this fields.

Figure 3.1. Schematic of the components for active stereo vision

Stereo vision is a depth estimation technique that uses two cameras to imitate stereopsis, as seen

in Figure 3.1 [58]. There are four fundamental steps: calibration, rectification, digital image

matching, and triangulation. Calibration finds the parameters needed to model the relationship

between an image and the physical world. Rectification and digital image matching simplify and

solves the correspondence problem, which is finding matching pixels in both camera images that

correspond to the same point in the real world. Triangulation uses the difference in matching

pixel positions, or disparity, to calculate the distance of the object. This process generates a 2D

image that encodes the distance of a scene, called a depth map. Approaches to improve stereo

Camera 2

Camera 1

Object in Scene
Light Projector

Field of

View

Projected Light Rays

10

vision performance have been investigated, which includes using a light projector to enhance the

digital image matching step, called active stereo vision [59]. In this chapter, the fundamentals of

active stereo vision are reviewed to better understand the limitations and strengths of the

technique.

 ASV Modelling

Image Sensor

Focal Length, f

Focal PointLens

Figure 3.2. Schematic of a simplified camera

A camera has two main components: a lens, or series of lenses that forms an optical system, and

an image sensor, often a CCD or CMOS, as seen in Figure 3.2. The optical system focuses light

reflected from the environment to the image sensor, converting the light into a discrete digital

signal to form an image. Light is focused through a single point, called the focal point, a known

distance from the image sensor, the focal length, f. To perform photogrammetry, this camera

system must be modelled to relate the pixels in an image and the physical world, commonly

achieved using the pinhole model [60].

11

Figure 3.3 Schematic of the pinhole model and relationship between coordinate systems.

The pinhole model simplifies a camera into an image plane for the CCD sensor, and an optical

center for the focal point, as seen in Figure 3.3. Light reflecting off a point in physical space is

modelled as a ray that intersects the optical center and image plane. This relationship projects the

point in the physical global system onto the image plane [61], [62]. The pinhole model is defined

by intrinsic and extrinsic parameters that allow a 3D point to be represented in different

coordinate systems, which is defined as:

 [

𝑥
𝑦
𝑧
1

] = 𝐾𝑅𝑇 [

𝑋
𝑌
𝑍
1

] (3-1)

where

x, y, z are the coordinates of the pixel in the image coordinate system

X, Y, Z are the coordinates of the point in the physical coordinate system

In the pinhole model (3-1), K is the intrinsic matrix, and the rotation matrix, R, and the

translation matrix, T, are the extrinsic parameters that give position and orientation. The vectors

on both sides of equation (3-1) are augmented to perform a homogenous matrix transformation.

12

Notably, all points lie on the image plane, so z is equal to one. The five intrinsic parameters

define the position of the image plane relative to the optical center [63].

Figure 3.4. Schematic of the optical center intrinsic camera parameter

The position of the optical center, cx and cy, are two of the intrinsic parameters as seen in Figure

3.4. Both parameters are measured in pixels and are typically half the image resolution [64].

Optical Center

(cx,cy)

Image Plane Origin

(x0,y0)

Projection of Optical Center onto Image Plane

13

Figure 3.5. Schematic of the skew coefficient intrinsic camera parameter

The skew coefficient, s, measures the angle of skew when the pixels are not perfectly

perpendicular, as seen in Figure 3.5. Typically, the pixels are perfect rectangles where s is zero

[64].

The K matrix is defined as:

 𝐾 = [
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] (3-2)

where

fx is the focal length in the x direction

fy is the focal length in the y direction

Five intrinsic parameters, seen in (3-2), define the relationship between the image coordinate

system and the focal point. In an ideal pinhole model, the fx and fy are equal [64]..

α

Skew coefficient, 𝑠 = 𝑓𝑥 α

Pixel Size in World Units, Px

Py Skewed Pixel

14

 𝑅𝑇 = [

𝑟 𝑟 𝑟 3 𝑡𝑥
𝑟 𝑟 𝑟 3 𝑡𝑦
𝑟3 𝑟3 𝑟33 𝑡𝑧
0 0 0 1

] (3-3)

The 12 extrinsic parameters in (3-3) describe the physical orientation and position of the focal

point relative to the global coordinate system. In a stereo vision configuration, the extrinsic

parameters will define the position and orientation of one camera relative to the other camera,

which will be the origin for depth measurements [64].

The 17 intrinsic and extrinsic parameters do not account for optical, alignment, and

manufacturing imperfections, which cause distortions and modelling errors. There are four

common types of distortion: radial, tangential, thin prism, and total distortion [64], [65],[61].

15

(a) (b)

Figure 3.6. Schematic of (a) negative radial distortion or barrel distortion and (b) positive radial

distortion or pin cushion distortion

Radial distortion is image magnification that depends on radial distance from the optical center.

Pincushion and barrel distortion, as seen in Figure 3.6, are respectively caused by positive and

negative radial distortion [61], [66].

16

Figure 3.7. Schematic of tangential distortion

Tangential distortion is cause by the lens and image plane not being parallel, as seen in Figure

3.7. Thin prism distortion is caused by manufacturing imperfections of the lens. Total distortion

is the summation of the three previously listed types of distortion [61], [66].

Undistorted Image Sensor

Focal

Point

Lens

Tangential

Distorted Image

Sensor

P

Pd

Pu

Projected Optical

Center (cx ,cy)

17

 ASV Calibration

Figure 3.8. Schematic of checkerboard pattern calibration

Calibration is the process of solving for camera intrinsic and extrinsic parameters, along with the

distortion coefficients. Typically, photogrammetric calibration is performed, in which images are

taken of an object with a geometric pattern and known dimensions, in various positions and

orientations. Commonly the object is a rectangular checkerboard pattern of black and white

squares, as seen in Figure 3.8. The calibration images are used to solve for the camera

parameters, by fitting the position of the checkerboard corners, acting as feature points, in the

image to the real world using the known geometry of the pattern [57], [67], [68].

There are several calibration algorithms that commonly use the error between the projected 2D

images and the known 3D calibration feature points. There are three main types of calibration

algorithm [64], [65], [68], [69]:

1. Iterative non-linear optimization

2. Closed form linear

3. Hybrid, two-stage

Image Plane

Optical Center

Global Coordinate

System

Calibration Checkerboard Pattern

Checkerboard

Corner Point

Checkerboard

Length, h

h

Image Coordinate

System

(Xi,Yi)

(xi,yi)

18

Iterative non-linear calibration methods iteratively minimize a cost function to solve for the

camera parameters and distortions. Typically, the cost function depends on the error between the

model’s current prediction and the known 3D location of feature points identified in the

calibration scene. This approach requires a good initial guess and sufficient iterations to reach

convergence, but usually provide a good result [65].

Closed form calibration methods directly solve the camera matrix. For example, the Hall and

Faugeras-Toscani methods [65] compute the camera parameters based on the least-squares

between the projected 2D image points and known 3D points. This approach is simple and fast to

implement. However, it is less accurate than iterative methods and does not consider lens

distortion [65].

Two-stage calibration methods use both the iterative and closed form approaches to solve

different camera parameters. Typically, the closed form method is used to obtain a good initial

guess for the iterative non-linear which almost guarantees convergence [65].

These methods can be used to calibrate any camera configuration, including stereo vision

systems, in which the extrinsic parameters relate the position of the two cameras.

19

 Image Pair Rectification

Figure 3.9 Schematic of epipolar geometry

Image rectification projects images from two cameras onto the same plane to improve the speed

of digital image matching. This step is not required for stereo vision, however, it is common

because it is impractical to have a camera configuration with perfect co-planarity [67], [70]–[74].

The method is derived from epipolar geometry, as seen in Figure 3.9.

Epipolar geometry describes a situation where two cameras see the same 3D point, P. A plane

forms between the optical centers of the left, OL, and right, OR, cameras and the 3D point, which

is called the epipolar plane. The projections of the optical centers and the 3D point onto the left

and right image planes lie on this epipolar plane. These points include the epipoles, eL and eR are

the projections of the optical centers onto the other camera’s image plane. Also, the projections

of the 3D point onto the left, PL, and right, PR, image planes lie on the projected line of the

epipolar plane. This projected line, called the epipolar line, intersects the epipolar plane, image

plane, and the projected points. This is true for all points along the epipolar plane such as PRi.

20

Figure 3.10. Schematic of image rectification

Rectification uses the epipolar geometry relationship to define a linear algebra transformation

that can be solved to vertically align the epipolar lines of the images by projecting the images

onto the same plane, as seen in Figure 3.10. The rectified images allow the digital image

matching step to find matching pixels only by horizontally scanning the same image row, instead

of the original skewed epipolar lines [67], [70], [75].

 Digital Image Matching

Digital image matching solves where parts of an image correspond to another image, which is

the correspondence problem. It is arguably the most important step of stereo vision, as it is the

most non-trivial problem, and directly influences the depth estimation accuracy [76].

21

Figure 3.11. Schematic of digital image matching correspondence search

Ideally, digital image matching would find the correspondence between individual pixels.

However, this is nearly impossible because they do not provide enough robust information.

Instead, matching is performed between sub-regions, or search windows, to include the

information of neighboring pixels, as seen in Figure 3.11. The corresponding match can be found

by either searching the entire image, or only searching near the original’s location [77]–[79]. A

match can be found using a line search, along the epipolar line, if the image pair has been

rectified [75], [80].

Epipolar Line

Search WindowxL

xRi

x

y

Rectified Image, Left Rectified Image, Right

Similarity Match

E.g. Sum of Squared Difference

Search for Match

y’

x’

22

A match is determined by measuring the similarity between the original and candidate windows,

using metrics such as sum of squared differences using:

 𝑠 = ∑ 𝐼 [𝑥, 𝑦] − 𝐼 [𝑥, 𝑦]

 𝑥,𝑦 𝜖𝐼

 (3-4)

where I1 and I2 are the pixel intensity of the left and right image of the windows. Correspondence

is decided by the highest similarity. Since similarity depends on absolute pixel intensity, the

method is sensitive to distortions, noise, and illumination. Also, featureless, and low contrast

scenes lead to poor or failed matches.

Alternative matching algorithms perform cost function minimization on the similarity metrics

[81], or feature detection such as least squares matching, which are more robust to distortions

and feature orientation.

Regardless of the matching algorithm, they all calculate the difference in pixel position between

corresponding matches, to generate a disparity map. The disparity map is used as an input for

depth estimation using triangulation.

23

 Projected Light Pattern

Figure 3.12. Image of active stereo vision with projected light pattern in the scene

Active stereo vision uses a projected light pattern to create features and increase contrast in the

scene to improve image matching, as seen in Figure 3.12. The projection can either be a speckle

pattern, or a calibrated structured light. This allows active stereo vision to overcome common

problems such as curved or smoothed surfaces, called the false boundary problem [80]. Stereo

vision without the projector, is also known as passive stereo vision.

24

 Depth Estimation Triangulation

Figure 3.13. Schematic of stereo vision triangulation

Triangulation calculates the distance, Z, of 3D points, P, using trivial geometry and the pixel

disparity found using digital image matching, as seen in Figure 3.13 [70]. The 3D point intersects

the left and right image planes at PL and PR, which respectively have pixel x coordinates xL and

xR in their own coordinate system. The optical centers of the left, OL, and right, OR, are

horizontally spaced by a baseline, b, distance, and their camera axis align. In the simplest cases,

the cameras have the same focal length, f.

𝑍 − 𝑓

𝑍
=

𝑏 − 𝑥𝐿 − 𝑥𝑅

𝑏
 (3-5)

The triangulation equation is derived using similar triangles. The denominators of (3-5) are from

the triangle formed by OL, OR, and P, while the nominators are from the triangle formed by PL,

PR, and P. Notably, xR is negative because of the sign convention of the right camera’s

coordinate system for x’.

f

Baseline, b

Optical

Center, OL

PRPL

Optical

Center, OR

Z

xL xR

P

x

z

Image

Plane Left

Image

Plane Right

x’

z’

25

 𝑍 =
𝑓𝑏

 𝑥𝐿 − 𝑥𝑅
=

𝑓𝑏

𝑑
 (3-6)

Equation (3-6) is obtained from (3-5) after solving for the depth, Z, in the left camera relative to

the optical center of the left camera, OL. The focal length, f, and baseline, b, are found from

calibration, while the disparity, d, is found from digital image matching.

While stereo vision is a powerful technique for depth estimation, it has limitations as it requires

non-trivial modelling of the camera system, calibration, and matching. Also, the technique

dependents on having a direct line of sight by both cameras, and various lighting phenomena can

trick the matching algorithm.

 Stereo Vision Limitations

Figure 3.14. Schematic of the false boundary problem from curved surface

There are several well-known limitations with passive and active stereo vision that cause invalid

depth measurement. Since the technique is dependent on pixel intensity to determine matches, it

is sensitive to the reflectivity of surfaces, environmental illumination, and any image distortion

f

Baseline, b

Optical

Center, OL

Optical

Center, OR

Real Edge,

Obscured

x

z

Image

Plane Left

Image

Plane Right

x’

z’

False Edge,

Tangent to Surface

Solid Object

26

such as noise [82]. For example, a smooth reflective surface with uniform lighting will have no

global or local features for the matching algorithm to solve the correspondence problem, called

matching ambiguity [83]. Another example is when an edge in light intensity is created by

lighting conditions instead of a physical edge. This situation causes a false edge to be detected,

called the false boundary problem [77], [82]. Also, a false can be detected when the edge of an

object can be obscured around a curved surface, for one camera as seen in Figure 3.13. ASV

position and orientation can cause other issues, such as occlusion, which is when a surface is not

visible to both cameras [83]. In this case, the depth map will have a hole at this location, which is

a pixel without a depth measurement [83].

 ∆𝑧 =
𝑧

𝑏 ∗ 𝑓
∆𝐷 (3-7)

where

z is depth

Δz is depth error

b is baseline

f is focal length

ΔD is disparity error

Depth estimation error is derived from (3-6). Equation (3-7), shows that depth error increases

quadratically with distance and linearly with disparity error [84], [85]. Therefore, depth error is

reduced when measurements are taken at a close range, and the matching algorithm disparity

error directly contributes to depth error.

27

Figure 3.15. Schematic of depth resolution

The depth resolution is determined by distance, sensor resolution, and baseline as seen in Figure

3.15 [52]. Depth uncertainty, like depth resolution, is non-trivial to model, thus is typically

obtained experimentally [86]–[89], [90]. Thus, depth resolution is finer at closer ranges, with a

larger baseline and focal length, and a higher sensor resolution.

 Fundamentals of Active Stereo Vision Conclusion

This chapter reviewed the components, mechanics, and limitations of stereo vision. Stereo vision

is a photogrammetry technique for depth estimation. In its simplest form, passive stereo vision

uses two aligned cameras, with the same focal length, that are horizontally separated by a

baseline distance. Active stereo vision improves this system configuration with a light projector

to add a non-invasive speckle pattern or calibrated structured pattern to the scene. The pinhole

model is used to relate images to the physical world, which requires calibration to obtain intrinsic

and extrinsic parameters. The correspondence problem is solved using a global or local area

based matching algorithm, simplified to a line search by rectification, to find the disparity

between matching pixels. Triangulation uses the camera parameters and disparity to estimate the

f

Baseline, b

Optical

Center, OL

Optical

Center, OR

Depth Resolution

P2

x

z
Image

Plane Left

Image

Plane Right

x’

z’

Adjacent Pixels

P1

28

distance of objects in a scene. Depth error quadratically increases with distance, and linearly with

disparity error. Depth resolution is dependent on the camera configuration baseline, focal length,

sensor resolution, and distance.

29

4 Intel RealSense D435 Active Stereo Vision Platform

The Intel RealSense D435 active stereo-vision system was selected for this project, after

surveying commercially available vision systems. It was qualitatively determined to be the best

development platform for this application, because it fit the technical requirements of the project.

The depth accuracy, field of view, and effective range were suitable to measure a donor lung

inside an EVLP device. Also, the Intel RealSense D435 was the only surveyed system with

software tools and usability features supported by the manufacturer [91], [92].

Figure 4.1. Annotated image of the Intel RealSense D435

The Intel RealSense D435 performs ASV using a depth sensor, composed of two infrared

imagers and projector and has an auxiliary color camera, as seen in Figure 4.1. Notably, it has a

USB 3.0 port and threaded mounting holes for a tripod and machine screws, shown in the

mechanical drawing in Appendix A. An onboard depth processing unit provides real-time depth

30

maps at the same frame rate as the imagers. The infrared, color and depth images can be

accessed at different resolutions and frame rates, up to 1920 × 1080 and 90 fps, limited by the

transfer rate of the selected USB cable. The generated depth maps provide measurements in a

87° × 58° × 95° field of view with a depth error below 2% within two meters [93]. All data and

configurations can be accessed programmatically using provided Intel Realsense software tools.

The entire Intel Realsense camera series has access to a software development kit (SDK) with

MATLAB compatibility using a C++ wrapper that provides access to low level device functions.

The SDK is documented on several sources such as GitHub, whitepapers, and its own dedicated

website [92]. Also, the documentation provides example scripts that were used as templates to

programmatically access images and set camera configurations using MATLAB. Notably, there

is an active forum community of developers and customers that supports troubleshooting.

The SDK can be used to develop a custom application for the Intel RealSense D435. The

manufacturer provides functional example applications to interface with the Intel RealSense

D435. They were used throughout this research project to calibrate the device camera

parameters, evaluate its depth accuracy [94], [95], and perform data acquisition.

31

 Calibration and Depth Evaluation

Figure 4.2. Screenshot of the Intel RealSense Dynamic Calibration application

The Intel RealSense D435 intrinsic camera parameters are calibrated by the manufacturer using a

high precision calibration target. As a safety feature, the intrinsic properties are typically not

configurable since they are assumed non-mutable. However, the extrinsic parameters are

expected to change when the individual cameras shift position and orientation inside the case.

Therefore, the Intel Realsense Dynamic Calibration application [96] calibrates for the infrared

and color cameras’ extrinsic parameters using images of a calibration pattern, as seen in Figure

4.2. In this project, the pattern was printed onto a standard paper page and glued to a sheet of

acrylic. Alternatively, Intel offers a mobile phone application that displays a calibration target

[96].

32

Figure 4.3. Screenshot of the Intel RealSense Depth Quality Tool

The calibrated extrinsic parameters were evaluated by measuring the overall depth quality of the

Intel RealSense D435 using the Intel Realsense Depth Quality Tool. The depth map

measurements of a flat wall, at a known distance and within a region of interest (ROI), as seen in

Figure 4.3, were used to calculate five depth quality metrics. If they do not fall within

recommended values, then the manufacturer suggests re-calibrating the device. The five depth

quality metrics are:

1. Z-Accuracy

2. Fill Rate

3. RMS Error

4. Temporal Noise

5. Sub-Pixel Error

Before calculating the metrics, the ROI depth measurements are rotated to align with a fitted

plane, to correct for the relative orientation of the camera to the flat surface. The z-accuracy is

the percentage error between the median of the aligned ROI depth measurements and the ground

truth. The fill rate is a percentage of pixels with a valid depth measurement, non-zero and not an

outlier. The root mean square (RMS) error is calculated between the rotated depth measurements

33

and the nearest point on the fitted plane. The temporal noise is the variance in depth

measurement between frames. Lastly, the sub-pixel error is estimated based on the RMS error

[94]. Notably, the depth measurements are relative to the depth origin of the Intel RealSense

D435 that is located at the front of the left infrared camera [93].

 Data Acquisition

Figure 4.4. Screenshot of the Intel RealSense Viewer application

The Intel Realsense Viewer application, as seen in Figure 4.4, was used to interface with the

Intel RealSense D435 through a laptop and USB 3.0 cable. The top two images in Figure 4.4 are

from the left and right infrared cameras, from left to right. The bottom left image is the depth

map generated from active stereo vision. The bottom right image is the color image from the

Intel RealSense D435 auxiliary color camera. The application uses the SDK to configure the

device, including resolution and fps, and save data to a ROS bag file that is accessed in

MATLAB [97].

The MATLAB ROS toolbox was used to read the Intel Realsense Viewer files for images and

metadata such as timestamps. The images are post-processed using the SDK to synthetically

replay the videos and apply fundamental image filters for temporal and spatial smoothing [97],

[98]. Also, the SDK can perform projective transformation on the depth maps to align them with

34

the color images [97], [98]. These steps are performed using the custom function

rs2ReadRosbag() that can be found in Appendix B. The post-processed images and metadata are

saved to mat files for future processing.

 Intel RealSense D435 Conclusion

The Intel RealSense D435 active stereo vision system was selected for this research project

because it met all technical and financial requirements. Also, it comes with software tools such

as a software development kit (SDK) and pre-made applications for camera calibration, depth

evaluation, and data acquisition. The SDK was used to read videos recorded from the Intel

RealSense D435 into MATLAB for future post-processing to measure donor lung performance.

35

5 Deformation and Plethysmography Processing Scheme

A processing scheme was developed to measure whole lung plethysmography and regional

surface deformation of a donor lung using depth maps from active stereo vision. In this research

project, the method was implemented using MATLAB toolboxes for image and point cloud

processing. Also, it was improved over a series of experiments. However, the fundamental steps

remained the same and should be applicable to other photogrammetry techniques. The general

approach has five steps:

1. Stereo Vision to Acquire Depth Maps

2. Image Segmentation to find the Lungs from Depth Maps

3. Deprojection of Segmented Lung from Depth Maps

4. Surface Reconstruction from the Point Clouds to create Surface Maps

5. Measure Surface Maps for Global and Regional Plethysmography Metrics

36

Figure 5.1. Flow chart of the processing scheme

These steps are summarized by the flow chart in Figure 5.1. This chapter explains the problems

and possible solutions of each step. In this research project, the depth maps were acquired using

the method described in Chapter 4.2 .

 Image Segmentation

Image segmentation is the process of identifying region(s) of interest inside an image. Regions

must be homogeneous, continuous, and do not overlap, but their union covers the entire image.

These regions are defined in a labelling image, or binary map, with the same dimensions as the

segmented image [99]. The pixels belonging to a given region are labelled a logical true, while

outside the region are logical false. These conditions are summarized in five rules [99], [100]:

1. Union of all partitions is the entire region of the image

2. Regions are continuous

3. Regions are disjoint

4. Similar pixels are of the same region

5. Pixels that are not similar must not be of the same region

Stereo Vision

Image
Segmentation

Deprojection

Surface
Reconstruction

Surface
Integration

Tidal Volume Distension Rate

Surface
Measurement

Peak Detection
Regional Tidal

Distension

Depth Map

Binary Map

Point Cloud

Surface Map

Volume Estimation / Distension

37

In this project, image segmentation was used to select only the depth measurements of the donor

lung in the depth maps. This was achieved by segmenting any of the aligned images such as the

depth, left infrared, or color images since their binary maps are interchangeable. Several

established segmentation methods were explored, which are broadly categorized into edge-based

and region-based methods [101].

 Edge-Based Segmentation

The edge-based methods identify the edges of objects, as borders of regions, to partition an

image. Often, these methods are sensitive to noise and need to find an appropriate edge

threshold, which is a non-trivial problem, however, they are computationally simple and fast.

Typically, these methods have three main steps [100]:

1. Edge Detection

2. Edge Linking

3. Edge Localization / Thinning

Edge detection is the process of finding edges as abrupt changes in pixel intensity using first or

second derivative operators, called edge detectors, creating gradient images [100], [102]. For

digital functions, such as images, derivatives are approximated using finite Taylor’s Series

expansions [100]. Edges are detected by binarizing the gradient images through thresholding.

An example of edge detection is the Canny edge detection method that uses a first derivative of

Gaussian operator to find the gradient of an image. This is followed by a step called non-

maximal suppression that smooths the gradient image to remove noise. Finally, two thresholds

are used to identify “strong” and “weak” edges in the gradient image, which is called hysteresis

thresholding [100], [101], [103].

Edge linking ensures edges are continuous by linking neighboring edges in a binary map. Most

methods only link edges that have similar gradient magnitude and or direction [100], [104].

Edge localization or thinning ensures the edges are one pixel thick [100]. This can be achieved

using morphological operations such as skeletonization or erosion [100], [105].

38

Edges could be found in depth maps based on differences in height. Alternatively, edges could

be found by distinguishing the lung from the background by differences in color.

 Region-Based Segmentation

Region-based segmentation methods identify and grow regions, and eventually define region

boundaries once dissimilar regions meet [101]. In most methods, some pixels are assigned to

continuous regions, while many pixels are left unlabeled. Pixels neighboring labelled regions are

measured for similarity [106] to determine if they similar enough to belong with that region, or if

a region border should be formed when they are dissimilar. Also, two regions may merge if their

region similarity is above a threshold. These methods are robust to noise but cost more time and

memory since they often involve iterative steps [95].

Lazy snapping is an example of a region-based segmentation method developed by Microsoft

Research Asia [107]. It is an interactive graph cut method intended for color images, similar in

function to Photoshop’s Magnetic Lasso tool. The method has four interactive and automatic

steps [107].

1. Automatic pre-segmentation to improve computational efficiency

2. Interactive foreground and background seed region labelling

3. Automatic region growing through Gibbs Energy minimization

4. Interactive boundary editing for pixel accurate boundaries

In the first step, the image is segmented into many regions. In this state the image is unsuitable

for depth map segmentation. However, it allows the lazy snapping method to merge these groups

instead of growing regions from pixels. In the second step, the user interactive draws roughly

where the foreground and background are in the image, labelling these pixels as seed regions.

The third step is uses Gibbs Energy to measure similarity between neighboring pixels, grow

regions, and define region borders. Lastly, the user is prompted to add or remove pixels along the

region boundaries to manually refine the results [107]. This last step is not implemented by the

MATLAB function.

39

The watershed method is another region-based segmentation method that requires seed locations

and iteratively grows from the seed regions. The method is likened to the topographical concept

of a watershed and basin, where all the water in a region flows towards a regional minima. The

segmentation method identifies a watershed region for each seed location that is defined, which

includes the background. The boundaries between the watershed regions are called watershed

lines. The metric of similarity is based on the geodesic distance that measures the relative

intensity of the segmented image, similar to the height in topographic maps [108]–[110].

 Deprojection

Deprojection is the process of transforming an image into 3D points [89], [111], which was used

to obtain a collection of 3D points, called a point cloud, of the surface of the lung from a

segmented depth map. Since each depth map pixel and 3D point are paired, information such as

color and region label can be inherited by the point. After some processing, the point clouds can

be used to measure displacement of the lung.

40

Figure 5.2. Schematic of deprojection geometry

Deprojection is derived from the pinhole model, as seen in Figure 5.2, using similar triangles. A

triangle is formed from points P, O, and Pca, and the second one is from points O, c, and Pi [89],

[111]. The depth, Z, and pixel coordinate, x, is taken from the depth map, while the optical center

pixel coordinate, cx, is from calibration.

 𝑋 =
𝑥 − 𝑐𝑥

𝑓𝑥
𝑍 (5-1)

The x coordinate, X, of the point, P is solved from the similar triangles for (5-1).

𝑌 =
𝑦 − 𝑐𝑦

𝑓𝑦
𝑍 (5-2)

The same approach used for (5-1), can be used to derive the y coordinate of the 3D point as

shown in (5-2). Equations (5-1) and (5-2) are derived from an ideal case, without imperfections

such as radial and tangential distortions [89], [111]. The inverse Brown-Conrady distortion

f

Optical

Center, O

Pi

Z

cx

P

x0

z0

Image

Coordinate

System

X

xi

Camera Axis

x

Optical Center on

Image Plane, c

Point on Camera

Axis, Pca

Depth Origin

41

model [112] can be used to correct for these errors in the pixel coordinates, x and y, before using

(5-1) and (5-2).

 𝑟 = 𝑥𝑑
 + 𝑦𝑑

 (5-3)

 𝑛 = 1 + 𝑘 𝑟
 + 𝑘 𝑟

4 + 𝑘3𝑟
6 (5-4)

Radial distortion is modelled using (5-3) to model the radial distance, r, using the distorted pixel

coordinates, xd and yd, and (5-4) as the high order distortion model with three distortion

coefficients, k1, k2, and k3 [112].

 𝑥𝑢 = 𝑥𝑑𝑛 + 2𝑝 𝑥𝑑𝑦𝑑 + 𝑝 𝑟
 + 2𝑥𝑑

 (5-5)

 𝑦𝑢 = 𝑦𝑑𝑛 + 2𝑝 𝑥𝑑𝑦𝑑 + 𝑝 𝑟
 + 2𝑦𝑑

 (5-6)

The tangential distortion is modelled by the second and third terms in (5-5) and (3-7), with

distortion coefficients p1 and p2. The radial distortion are accounted for in (5-5) and (3-7) with

the terms, xdf and ydf, to find the undistorted coordinates, xu and yu [112]. However, all the

distortion coefficients were set to zero because Intel found this to improve the accuracy of the

Intel RealSense D435 [113].

 Surface Reconstruction

The deprojected depth map provides a point cloud of 3D points along the surface of the donor

lung. However, the point cloud cannot be used for measurements because it does not have

surfaces. To reconstruct the surface of the donor lung, and obtain measurements, the point clouds

are meshed to define linear triangular element surfaces [57].

Before surface meshing, the point clouds must be down sampled, because they are needlessly

dense for this application. A standard point cloud will have over 9000 points when the depth map

is at its lowest depth map resolution, 240 × 480, on the Intel RealSense D435. Therefore, the

42

point clouds are down sampled to about 800 points to improve the speed and reduce memory

requirements for future processing steps, while smoothing the extracted surface like a low pass

filter.

Figure 5.3. Schematic of box grid filter

The point clouds are down sampled using a box grid filter [114], as seen in Figure 5.3. The point

cloud domain is segmented into 3D grids where each unit is a cube, or voxel. Each voxel returns

a single averaged point with coordinates that are the average of all points inside the voxel. Box

filtering has the same effects as a low pass filter, mitigating noise and smoothing the results. The

effect of the box filtering is defined by the size of the voxels, density of points, and size of the

domain.

Y

X

Z

Voxel

Averaged Point

Point cloud voxel

sample point

43

Figure 5.4. Schematic of Delaunay criterion

After down sampling, the point clouds are used to create 2D surface meshes using Delaunay

triangulation. The surface mesh should be “well-shaped” because the linear triangular elements

satisfy the Delaunay criterion, where no vertices are inside the circumcircle of an element, as

shown in Figure 5.4 [115].

Several Delaunay triangulation algorithms exist [116], however, the MATLAB implementation

is unknown because it is not stated in their public documentation. 2D surface meshes were

formed using the x and y coordinates of a point cloud, then using the resultant triangulation on

the 3D points.

Vertices inside

circumcircle

circumcircle

vertices

element

Meets Delaunay criterion Fails Delaunay criterion
Y

X

44

Figure 5.5. Schematic of scattered point interpolation

The point cloud data inherits limitations from active stereo vision such as not being able to track

the surface of the donor lung. As a result, the number of 3D points and their x and y coordinates

will be different between frames, making it difficult to compare the surface between frames.

Also, some areas of the lung may be occluded creating low-resolution regions in the point cloud.

To mitigate these problems, the surface mesh is refined using scattered point interpolation [117],

[118]. MATLAB interpolates scattered data for height by finding the intersection of the query

point and the Delaunay triangulation surface, as seen in Figure 5.5 [117]. The color and labelling

data are interpolated separately using different methods but using the same neighboring points.

Y

X

Z

Query point (xq,yq)

Delaunay linear

triangular elementInterpolated point (xq,yq,z)

intersection of element

and query point

45

Figure 5.6. Schematic of scattered point interpolation at uniform grid points

New surfaces were interpolated from the down sampled point at query points on a uniform grid

in the XY plane, as seen in Figure 5.6. As a result, the interpolated z coordinates have the same

data structure as an image. This allows all interpolated images, or surface maps, to reuse of the

same Delaunay triangulation. Also, their data structure allows arithmetic operations between

surface maps, which allows the method to find the change in the donor lung’s shape over time.

Lastly, the interpolated surface maps can be enhanced using image processing methods such as a

low pass filter for smoothing.

 Reconstructed Surface Measurement

The reconstructed surface of the donor lung can be used to measure whole lung plethysmography

metrics and to measure regional surface deformation. For instance, the lung’s volume with

respects to time can be estimated using the Divergence Theorem [32]. Although, this volume

signal may be inaccurate, it can be used to track global surface displacement and derive standard

plethysmography metrics such as tidal volume and inspiratory time. These methods provide

similar measurements as the airway sensors used by EVLP devices.

Scattered Data PointInterpolation Grid Point Delaunay Triangulation Mesh

46

Donor lung measurement can be extended by identifying areas of under and over inflation as

peaks in the lung’s reconstructed surface map. Also, the same approach can be used with surface

maps analogous to tidal volume and dynamic compliance. Lastly, this method allows for the

measurement of a typical breath for the donor lung, giving another option to track changes over

EVLP treatment.

 Surface Integration

Whole lung plethysmography metrics can be derived from the estimated volume of the donor

lung using the reconstructed surface. De Boer et al proposed the Divergence Theorem to

estimate the lung volume of patients by integrating the volume between the patient’s anterior and

posterior chest walls [32].

Figure 5.7. Schematic of parameterized triangular surface mesh for volume integration using the

Divergence Theorem.

This problem can be modelled with two triangular surfaces, which is like the mesh elements of

the reconstructed surface, as seen in Figure 5.7. De Boer et al. assumed that the posterior chest

wall was flat, modelled by a plane, because they measured patients with their backs against a

wall. The bottom element is assumed to be on the XY plane, or base plane in Figure 5.7. This

implies its three points have the same x and y coordinates as the points directly above them, p0,

47

p1 and p2, that define the top element, Ti. The surface vectors u and v are found as the difference

between points, p1-p0 and p2-p0. The element’s normal vector, �̂�, is the cross product of these two

parameters. Volume integration is performed for each triangular element of the surface mesh,

and the sum is taken as the lung volume.

 ∫ �⃑� ∙ �̂� 𝑑𝑆
𝑇

= �⃑⃑� 𝑥 �⃑� ∙ [
𝑝0

2
+

�⃑⃑� + �⃑�

6
 ∙ �̂�] �̂� (5-7)

De Boer et al [32] proposed the closed-form solution to the volume integration of this problem

(5-7), where k is the basis vector for z cartesian coordinates.

 𝑉 =
1

6
∑ [𝑢𝑖⃑⃑⃑⃑ 𝑥 𝑣𝑖⃑⃑⃑ ⃑ ∙ 𝑇𝑖0𝑧 + 𝑇𝑖 𝑧 + 𝑇𝑖 𝑧]

𝑁𝑇

𝑖=
 (5-8)

Equation (3-7) is the discretized form of (5-7) implemented to calculate total lung volume, V,

where Ti0z, Ti1z, and Ti2z are the z coordinates of points p0, p1, and p2 that form the mesh element

Ti, and 𝑁𝑇 is the number of elements.

The volume signal is not expected to be equal to the total lung volume because, in this

application, the method has several limitations. Only the top surface of the donor lung is

reconstructed because it is the only surface visible to the stereo vision system. Therefore, the

method ignores the side and bottom surfaces of the lung. Donor lungs are expected to have a

complex and asymmetric shape that requires accurate reconstruction to obtain a reasonable

volume estimate. Also, any lung movement will change the volume signal, including any

horizontal and vertical displacement not caused by inflation. Lasty, the integration base plane is

assumed to be static, which is likely not true because the donor lungs are suspended on a

compliant surface. Therefore, the volume signal should be referred to instead as a scalar or

global displacement signal of the lung since it tracks the displacement of the lung.

The displacement signal is expected to track the changes in the donor lung with respects to time

and have a proportional change in magnitude with the actual lung volume. Therefore, the

displacement signal was treated as a volume signal for plethysmography measurements.

48

The displacement signal was filtered to improve the signal quality. A low pass filter [119] was

used to remove noise above the frequency of the breathing rate of the lung. Also, outliers were

removed using the Hampel filter [120], followed by Savitzky-Golay [121] filtering to smooth the

signal.

The derivative of the displacement, or displacement rate, found from this method, was found to be

an estimate of the airway flowrate when normalized [35]. A differentiator filter was selected for

this task to introduce minimal noise [122]. The flowrate signal was processed with the same filters

as the volume signal. The displacement and displacement rate signals were used to measure

plethysmography metrics described in Chapter 2.

Figure 5.8. Schematic of respiratory cycle average volume

The performance of the donor lung can be characterized as an average respiratory cycle found

from the displacement signal. The average respiratory cycle is found by sampling the displacement

of each cycle at normalized points in time, as seen in Figure 5.8. Average cycles were found using

create_avg_cycle() in Appendix B.

Time, t [s] Normalized

Time, nt

[%]

1st Cycle 2nd Cycle

Time Interval
Averaged Point

Averaged Cycle

49

Also, the average respiratory cycle can be used to measure any changes in the donor lung’s cycle

by finding the difference between the sampled points and the average cycle. Furthermore,

measuring this deviation from the average respiratory cycle can be used to track the long-term

performance of the donor lung, as an alternative to tidal volume and dynamic compliance. This

deviation was found using compare_to_avg_cycle() in Appendix B.

The surface map can be used to measure plethysmography, as described above, and changes across

the surface of the lung by taking advantage of its data structure.

 Surface Deformation and Regional Measurement

The surface map can be used to measure regional performance of the donor lung and identify

localized over-inflation. Its data structure is like an image, with an intensity value at a point on a

uniform grid, or matrix. This coincidence allows the surface map to be enhanced using digital

image processing methods such as digital filters for smoothing [123] and noise removal. Also,

other algorithms could be used for pre-processing such as non-maximal suppression from Canny

edge detection. These processes prepare the surface map for peak detection and regional

displacement measurement.

50

Figure 5.9. Schematic for tidal displacement map calculation

Regional measurements can be obtained from the surface maps through arithmetic operations

between images. For example, the pixel-wise difference of two surface maps measures the

regional displacement in that time frame, treated as an estimate of regional inflation. Therefore,

the difference of surface maps taken at the start of inhale and exhale gives regional inflation akin

to tidal volume, as seen in Figure 5.9. This surface tidal displacement can be used to identify

where and how much the donor lung distends. Also, surface dynamic compliance can be found

by scaling the surface tidal displacement by the peak pressure change in the respiratory cycle,

just like scalar tidal volume.

The surface maps can be used to characterize the donor lung by its average surface shape during

a respiratory cycle. This method is like the average respiratory cycle displacement described in

Chapter 5.5 except applied to all the query points of the surface map. Any differences from this

average respiratory cycle surface map would indicate changes to the donor lung’s performance.

The respiratory cyclic average could be calculated by sampling the height of each point in the

reconstructed surface at normalized time intervals within each respiratory cycle. These samples

1

2

2

1

51

would be averaged at each point, and each point in the respiratory cycle to get the averaged

surface.

Figure 5.10. Schematic of peak detection of a surface annotated for peak and trough detection

In an ideal case, surface tidal displacement will be a flat surface, indicating the donor lung has

homogeneous performance. However, if regions with different displacement form, then this

indicates the donor lung has heterogenic performance. If a peak in performance forms, then it

may indicate localized over-inflation, or the onset of ventilation induced lung injury (VILI).

Also, these regions will exist in the surface dynamic compliance. These regions, peaks, and

troughs, can be detected using image processing methods, as seen in Figure 5.10.

Peaks can be detected in the regional measurements using digital image processing techniques

including the image segmentation described in Chapter 5.1 . For example, segmented regions

with a high average intensity could be identified as peak regions. Another example would be

local maxima [124] and minima [125] detection. The simplest method would be thresholding

height, or the surface map intensity. These methods could be categorized into global and local

methods.

Peak

Trough

52

The surface map takes on the shape of the donor lung, therefore, will have local and global

variation that would be difficult to account for when globally searching for peaks. Therefore, the

surface map should be searched using a local method such as an area-based digital filter for

outlier detection. The surface tidal displacement and dynamic compliance are suitable for both

local and global methods since they are ideally flat with no local variation. Lastly, region and

peak detection could be performed on other surface metrics such as mesh curvature.

 Processing Scheme Conclusion

Table 5.1 Measurement Method Feature Comparison

Measurements EVLP ASV

Airway Flow Rate ✓ 

Airway Pressure ✓ 

Tidal Volume ✓ ✓

Displacement Signal  ✓

Displacement Rate  ✓

Surface Shape  ✓

Surface Tidal Displacement  ✓

Surface Displacement Cycle Average  ✓

Surface Local Minima and Maxima Detection  ✓

A processing scheme was developed to measure global and regional performance of a donor lung

using depth maps from the Intel RealSense D435. The method’s measurements are contrasted

with the key EVLP measurements in Table 5.1. The depth maps were segmented to select depth

measurements of the lung’s surface. These measurements were deprojected into 3D points along

the surface of the lung, called a point cloud. The lung’s surface was reconstructed by performing

scattered point interpolation and Delaunay triangulation on the point clouds. The reconstructed

surface, or surface maps, was integrated to estimate lung volume and derive plethysmography

metrics such as tidal volume and dynamic compliance. The volume signal is not expected to be

an accurate estimate of total lung volume due to method limitations. However, it is expected to

change with respects to lung inflation and displacement in time, allowing it to be treated like

volume for plethysmography. Changes in the surface maps with time are measured by finding

the difference between frames to obtain surface metrics that are like tidal volume and dynamic

compliance. Also, the surface maps can be scanned to identify peaks that may be localized over-

inflation and the onset of VILI.

53

6 Validation of Displacement Measurement

A ventilator test lung was measured to evaluate the active stereo vision plethysmography system

by comparing its measurements with an EVLP respirometer system. The ventilator test lung was

used as a testing surrogate for donor lungs because it distends with ventilation and is designed to

be mechanically ventilated. Measurements were taken during positive pressure mechanical

ventilation, performed by the EVLP. Global and regional plethysmography measurements were

derived from the depth maps from the Intel RealSense D435. However, only the scalar

measurements, such as tidal volume, were compared to the EVLP to measure correlation and

agreement. If these measurements have a high correlation and agreement, it may suggest the

regional measurements are valid as well.

54

 Experiment Equipment

The ventilator test lung, shown in Figure 6.1, is a latex balloon filled with a dense foam intended

to test the performance of ventilators. Its capacity is approximately one liter, and it comes with a

standard 22mm ID connector pressure port to connect with ventilators.

The ventilator test lung was selected for this experiment because it is an acceptable substitute for

a real lung because it deforms with inflation and has a complex surface shape. Also, the test lung

Figure 6.1 Annotated image of the ventilator test lung

Ventilator

Test Lung

Restrictive

Band

Airway

Connection

55

is convenient to operate with a ventilator, as it is intended to measure ventilator performance.

Notably, it is flat when fully collapsed, and has a restrictive band around its mid-section creating

two lobes. The test lung was ventilated using Tevosol’s development EVLP device for the study.

The development EVLP is designed to perform negative pressure ventilation. This is achieved by

connecting the lung to a flow loop inside a sealed pressure chamber. The EVLP is operated using

custom software, which receives feedback from a combined volume flow rate and pressure

sensor imbedded in the flow loop. This device was selected for this study because its velocity

and pressure measurements can be used to calculate plethysmography metrics that can validate

the active stereo vision method measurements.

Figure 6.2 Annotated image of the ventilation test lung inside a development EVLP

As shown in Figure 6.2, the test lung was directly connected to the EVLP airway through a

standard pressure port, resting inside the EVLP’s chamber. To measure the ventilator test lung’s

surface displacment with the active stereo vision system, the EVLP’s chamber cover was lifted.

As a result, negative pressure ventilation could not be performed. Instead, the ventilator test lung

was positive pressure ventilated by the EVLP by modifying its operating procedure to perform

constant positive airway pressure ventilation.

Ventilator Test

Lung

EVLP Cover

EVLP Chamber

56

Figure 6.3 Annotated image of the Intel RealSense D435 mounted above the ventilator test lung

The Intel RealSense D435 was mounted facing downward directly above the ventilator test lung

using a tripod, horizontal beam, and a custom 3D printed mount, as shown in Figure 6.3. Also,

this mount supported the USB cable that connects the Intel RealSense D435 to a laptop that was

used to operate the system and store measurements. Notably, the horizontal beam was leveled

prior to calibration and data acquisition.

Ventilator

Test Lung

Intel D435 Mount

Intel D435

Intel D435-

Laptop Cable

57

 Calibration and Data Acquisition

The ventilator test lung was measured by the EVLP and Intel RealSense D435, during

ventilation. The EVLP measured flow rate and pressure, and the Intel RealSense D435

performed active stereo vision to estimate the distance of the lung’s surface, providing its shape.

 Experiment Cases

Measurements were taken in multiple experiment cases to measure performance in a range of

conditions. Tidal volume was varied between experiment cases, since the Intel RealSense D435

can only measure surface changes, such as inflation, of the ventilator test lung. Tidal volume was

controlled indirectly by changing the EVLP blower rate setting, which controls the flow rate

during the inspiratory phase of each breath. A tidal volume setting does not exist on the EVLP

because it was modified to perform positive pressure ventilation from negative pressure

ventilation with constant positive airway pressure. Also, camera height was varied to evaluate

the effect of spatial resolution on the final measurements. The height was manually adjusted

using a tripod.

Table 6.1 Ventilation test lung experiment cases

Experiment Case ASV Height [mm] Airway Flow Rate [%]

1 200 20

2 200 24

3 200 28

4 330 20

5 330 24

6 330 28

7 370 20

8 370 24

9 370 28

The nine experiment cases, as seen in Table 6.1, are combinations of three levels of camera

height and blower rate. The blower rate is measured as a percentage of the maximum possible

flow rate. The camera height was measured using a ruler between the EVLP chamber and Intel

RealSense D435 depth origin. Other settings remained constant between experiment cases,

tabulated in Appendix C, so they do not affect the measurement comparison.

58

 Description of the EVLP

The EVLP uses a flow sensor to monitor tidal volume and dynamic compliance. The sensor is a

Siargo FS6122 that measures flow rate, pressure, temperature, and humidity using integrated

MEMS sensors. The data sheet reports the total error band in percentage of full scale (FS) for

flow rate ± (2.5 + 0.5 FS) % and pressure ± 1.0 % FS. Also, the sensor has a response time of 1.8

ms [126].

Both the airway flow rate and pressure were recorded during all experiment cases, as seen in

Figure 6.4. They were used to calculate plethysmography measurements such as tidal volume

and dynamic compliance.

Figure 6.4 Plots of EVLP flow rate, pressure, tidal volume, and dynamic compliance measurements

59

Tidal volume was calculated by integrating the airway flow rate measurements, summing the

integrated volume between the start and end of each cycle. The dynamic compliance was

calculated by dividing the tidal volume by the PIP and PEEP of each breath, using (3-7). The

PIP and PEEP were identified in the pressure measurements based on their definitions. Other

plethysmography measurements, such as inspiratory time and respiratory, were calculated based

on their definitions discussed in Chapter 5. Notably, the calculations were performed by the

EVLP custom software, and were provided along with the airway flow rate and pressure

measurements.

 Data Acquisition using the Intel RealSense D435

The Intel RealSense Dynamic Calibration application with a checkerboard calibration plate was

used to calibrate the extrinsic parameters of the Intel RealSense D435. Also, the Intel Realsense

Depth Quality Tool was used to evaluate the depth measurements of the Intel RealSense D435.

Both software applications were used as described in Chapter 4. The intrinsic parameters,

extrinsic parameters, and depth quality metrics from calibration are listed in Appendix C.

Figure 6.5 Screenshot of the ventilation test lung (a) color, (b) left and (c) right infrared, and (d)

colorized depth map video stream using the Intel RealSense Viewer

60

The Intel RealSense D435 was operated using the Intel RealSense Viewer to record the depth

map stream, as seen in Figure 6.5 (d), and metadata such as timestamps and camera intrinsic

parameters. Also, the depth maps were spatially and temporally filtered using the Intel RealSense

SDK. The color stream, Figure 6.5 (a), and the left and right infrared camera streams, Figure 6.5

(b) and (c), were not recorded due to memory limitations. For all experiment configurations, the

depth map resolution was 480 × 848 pixels, and the sampling rate was 30 fps. Approximately 5

minutes of data was recorded for each configuration, sampling about 40 cycles, as the test lung

was ventilated at a rate of 8 breaths per minute.

 Processing Scheme for Active Stereo Vision Plethysmography

of the Ventilator Test Lung

The experimental data obtained from the Intel RealSense D435 was processed to measure the

displacement of the ventilator test lung. The processing scheme outlined in Chapter 5 was

performed in MATLAB. This process begins with obtaining the depth maps from the rosbag files

saved by the Intel RealSense Viewer, as described in Chapter 4.

61

Figure 6.6 Annotated depth map, which has been spatial and temporal smoothed, of the ventilator test

lung inside the EVLP chamber

The depth maps and metadata, including timestamps, were accessed in MATLAB using the Intel

SDK MATLAB wrapper. When accessed, the depth maps were smoothed using the SDK

temporal and spatial post-processing filters, as shown in Figure 6.6. The post-processed depth

maps have depth holes, zero depth black pixels, which define borders between objects, such as

the transparent hose below the test lung and EVLP chamber ribbing. These depth holes, caused

by occlusion, can be utilized to segment the test lung from the image.

 Depth Map Segmentation

The ventilator test lung was segmented from the depth map using a three-step edge-based

segmentation method. The three main steps were: edge detection and linking, interactive

segmentation followed by morphological operations, and outlier rejection with binary map

temporal smoothing.

Ventilator Test

Lung

EVLP Chamber

Ribbing

EVLP

Hose Depth Hole

62

Figure 6.7 Annotated edge map of the ventilator test lung inside the EVLP chamber

The Canny edge detector was used on Figure 6.6 to obtain an edge map, as seen in Figure 6.7.

Generally, the edge map are only the edges of the depth holes but do provide an outline of the

ventilator test lung. However, the edges do not enclose the test lung region, as there are some

unconnected edges along the bottom edge of the test lung near the airway connection. Also, the

end of the test lung at the airway connection is not clearly defined. Therefore, to enclose the test

lung region, edge linking was performed to connect neighboring edges. A simplified algorithm

for edge linking was adapted from [100]:

1. Scan a row of the edge map for edges with a gap smaller than a threshold, fill these gaps

2. Repeat step 1 for each row in the edge map

3. Rotate the image by a desired angle, then repeat steps 1 and 2, then rotate back

4. Repeat steps 1-3 for all desired angles

Ventilator Test

Lung Outline

Unconnected

Lung Edges

Unconnected

Airway Edges

63

(a) (b)

Figure 6.8 Image of the edge map of the ventilator test lung (a) before and (b) after pre-linking

morphological operations

Morphological operations were used to improve the linking results before edge linking, as seen

in Figure 6.8 (a) and (b). The pre-linking steps were edge thickening, diagonal fill, and the

majority filter. The detected edges are mostly one pixel thin. Thickening the edges before linking

allows edge linking between adjacent rows. Also, edges were linked diagonally using a

morphological operation to reduce the reliance on the rotation step. Lastly, isolated points were

removed using the majority morphological operation.

64

Figure 6.9 Annotated image of the edge map of the ventilator test lung after edge-linking

As mentioned, horizonal gaps are filled between edges if the gap is smaller than a threshold, as

seen in Figure 6.9. This step improves segmentation by connecting the discontinuous edges

along the bottom of the ventilator test lung outline. However, the first edge linking step did not

fully enclose the outline because it did not vertically link the airway connection.

A

A

Horizontal Linking

65

Figure 6.10 Annotated image of the edge map of the ventilator test lung after a 45 rotation and edge-

linking

The edge linking algorithm was repeated three more times, each time after rotating the edge map

by 45, -45, or 90. Rotating the image crops the corners of the edge map, as seen in Figure

6.10. The rotated edge map is horizontally edge linked before rotating it in the opposite direction

to return the edge map to its original orientation and size. This process allows rough edge linking

in multiple directions.

Cropped

Region

45º

Rotated Image Frame
Cropped

Region

66

Figure 6.11 Image of the ventilator test lung edge map after edge thinning skeletonization, with removed

edges in red and the remainder in white

Morphological operations were used on the edge maps after edge linking to perform edge

thinning, as seen in Figure 6.11. Skeletonization removed the red pixels, leaving only the white

pixels in Figure 6.11. In most edge maps, the remaining edges enclose the lung region. The edge

maps were post-processed to remove artifacts such as spurs, isolated edges, and branch like

structures extending from the lung outline.

Remainder of

Skeletonization

A

A

Removed by

Edge Thinning

67

Figure 6.12 Annotated image of the ventilator test lung edge map after removing small connected

components with an areal filter, with removed edges in red and the remainder in white

An areal filter removed small bodies from the edge map, leaving only the white pixels in Figure

6.12. Notably, the corners of the edge map were cropped during the edge linking rotations.

However, the ventilator test lung outline was not cropped because it at the center of the edge

map.

Stray Body Removed

by Area Filter

68

Figure 6.13 Annotated image of the ventilator test lung edge map with an interactively drawn vertical line

to enclose the lung region

The airway connection is inconsistently edge linked using the above steps. As a substitute, an

interactively drawn line is added to all edge maps to consistently enclose the lung region, as seen

in Figure 6.13. The interactively drawn vertical line near the airway connection encloses the lung

region defined by the lung outline. Notably, when the segmented depth map is used to measure

displacement, if the airway connection is segmented it should not affect the tidal volume or

dynamic compliance, since it does not distend during ventilation.

Interactively Drawn

Vertical Line

Test Lung

Airway

Test Lung Outline

69

Figure 6.14 Annotated image of the ventilator test lung edge map with the interactively drawn cropping

rectangle centered around the lung

Inside the ventilator test lung outline is the lung region that can be selected by taking the largest

region in the complement of the edge map. The edge map was cropped interactively to simplify

removing this search, removing insignificant regions, as seen in Figure 6.14. The interactively

drawn cropping rectangle is centered on the lung region and is large enough to enclose the lung

when fully distended. Notably, this region of interest is only drawn once, and is used for all edge

maps.

Interactively

Drawn Region

of Interest

Test Lung

Outline

70

Figure 6.15 Annotated image of the complement of the edge map within the interactively cropped region

The lung was segmented as the largest region found within the complement of the edge map, as

seen in Figure 6.15. The complement of the edge map is a binary map, where regions are white

and black indicates borders. The labeled green region is the region with the most pixels assumed

to be lung region. This region has various problems, such as spurs, and holes created during the

edge detection process. These artifacts were filled using morphological operations.

Lung Region as Largest

Connected Component

Region inside

Edges

Edges

71

Figure 6.16 Image of the ventilator test lung binary map after hole filling post-processing

The spurs and holes in the binary map were filled using morphological closing, as seen in Figure

6.16. This binary map still had issues, namely the extrusion coming out of its perimeter that are

not physically related to the lung. Outlier detection and temporally smoothing were performed to

remove invalid frames and to remove these extrusions.

72

Figure 6.17 Plot of the area of each ventilator test lung region map for outlier detection

A Hampel digital filter was used to detect outlier frames based on the number of binary true

pixels in each binary map. The number of true pixels per binary map formed a signal, as seen in

Figure 6.17. The Hampel filter uses a moving window to calculate the local median and mean. A

point is marked as an outlier if that data point is outside three times the local median from the

mean. These outlier points were rejected before temporal smoothing of the binary maps.

After the outlier frames are discarded, the binary region maps are temporally averaged. The

moving mean of each pixel is found, creating a set of grayscale images with the same number of

frames and dimensions as the region maps. The grayscale moving mean images are binarized by

a threshold value, between zero and one.

The result of this process are temporally smoothed binary maps of the lung region. This process

can be interpreted as a low pass filter for each pixel between frames individually. The values of

the moving mean images can be interpreted as the number of times a particular pixel is occupied

within the span of the moving mean window. In this situation, the threshold is the cut-off for

73

how often a pixel must be occupied to remain in the binary map. If the sampling rate is known,

this interpretation can be quantified in seconds.

Figure 6.18 Annotated mage of the depth map of the ventilator test lung and EVLP chamber with the lung

segmented

The temporally filtered binary maps are still cropped to the size of the interactively drawn

rectangle. The last step is to insert the cropped binary maps into an image of the same size as the

depth maps. These final binary maps were used to segment the ventilator test lung in the depth

maps, as seen in Figure 6.18.

74

 Point Cloud Processing

As described in Chapter 5, deprojection was used to convert the segmented depth map into a set

of 3D points, called a point cloud. These points are along the surface of the test lung as seen in

Figure 6.19. Each point corresponds to a single pixel in the depth map. The shape of the test lung

can be extracted from this point cloud, to measure change in shape with respect to time.

However, the point clouds are difficult to compare between image frames because they are

composed of scattered points that are at different positions between frames. This scattered

behavior can cause holes to form in the point cloud, along with unfavorable positioning of the

Intel RealSense D435 causing occlusion, as seen in Figure 6.19. Furthermore, the coordinate

system of the point cloud is not ideal for the measurement processing scheme.

 Figure 6.19 3D plot of the ventilator test lung point cloud

75

Figure 6.20 3D plot of the ventilator test lung and EVLP chamber point cloud in the Intel RealSense

Viewer

The point cloud’s coordinates are relative to the Intel RealSense D435, causing the top surface of

the lung to have a lower height, or z coordinate, than its bottom, as seen in Figure 6.20. For the

Divergence Theorem measurement method, ideally the point cloud’s coordinate system is

aligned with the height of the lung, measuring displacement in the positive z direction. If the z-

axis datum of the coordinate system was the EVLP chamber floor the estimated volume would

be closer to the actual lung volume. The z-axis datum can be arbitrary because it does not affect

measurements of change such as tidal volume.

76

Figure 6.21 3D plot of the ventilator test lung point cloud before and after transformation

Three rigid transformations were performed on the ventilator test lung point clouds to move them

into a new coordinate system, as seen in Figure 6.21. The point clouds were rotated 180⁰ about x-

axis, mirrored about the YZ plane, then translated the distance measured between the Intel

RealSense D435 depth origin and the EVLP chamber floor. It was assumed that the Intel

RealSense D435 and EVLP chamber floor were parallel since the tripod was leveled. Notably,

the point clouds in Figure 6.21 are overly dense, as each have around 38,000 points.

77

Figure 6.22 Annotated 3D plot of the ventilator test lung point cloud, with outliers annotated

The point clouds are dense and have some stray points circled in red, as seen in Figure 6.22. This

high point resolution is expected to improve surface reconstruction only marginally, while

drastically increasing computational time and memory cost for any future steps. Both problems

were solved by downsampling to reduce the number of points and remove outliers like the stray

points.

Error

Error Error

78

Figure 6.23 3D plot of the ventilator test lung point cloud after 3D box averaging filtering

A 3D box averaging filter was used to downsample the ventilator test lung point clouds, as seen

in Figure 6.23. The box averaging filter splits the XYZ domain into cubes, called voxels, then

returns the average coordinates of all the points within each voxel. It has the properties of a low

pass filter in the spatial domain, smoothing the surface. The desired effect was to reduce the

number of points in each point cloud, about 38,000 to 800 points, while preserving the shape of

the ventilator test lung surface. Also, small groups of points, called clusters were removed from

the point cloud to remove the stray points if they remained after box average filtering. These

steps prepared the point clouds to extract a surface model of the ventilator test lung for

displacement measurement.

79

Figure 6.24 3D plot of the ventilator test lung Delaunay triangulation surface mesh

The point clouds were meshed using Delaunay triangulation to obtain a model of the surface of

the ventilator test lung, as seen in Figure 6.23. Specifically, the mesh was found using the x and y

coordinates of the 3D points of the point cloud.

The point clouds were not interpolated to obtain surface maps, as described in Chapter 5,

because the ventilator test lung moved during ventilation. As a result, the regional measurements

were not useful since they do not track the lung’s surface. Therefore, the interpolation step was

skipped because it was unnecessary to calculate the scalar plethysmography measurements.

80

 Plethysmography Measurements

Figure 6.25 Plot of the ventilator test lung displacement before and after signal filtering

The volume between each surface mesh and the XY plane was measured using the integration

method derived from the Divergence Theorem described in Chapter 5 [32]. This produced a raw

volume signal for each experiment configuration, as seen in Figure 6.25 for one cycle. The

volume signal was denoised and smoothed using a low pass frequency filter and a Savitzky-

Golay digital filter to obtain a filtered signal, as seen in Figure 6.25. Notably, the low pass filter

cut-off frequency was set just above the ventilation rate of 8 breaths per minute.

81

Figure 6.26 Plot of the ventilator test lung displacement and displacement rate

The displacement signal was used to derive other measurements, such as an analogous signal to

flow rate, as described by [35]. The first derivative of the displacement curve was found using a

FIR differentiator filter, as seen in Figure 6.26. The differentiator filter was designed by defining

the filter order, pass band frequencies, stop band frequency, and sampling rate as inputs for the

designfilt() MATLAB function. The differentiator filter gives better results than finding the

instantaneous difference between digital measurements, which amplifies noise [127]. Also, the

displacement signal was used to calculate the tidal parameters described in Chapter 5 based on

their definitions.

82

Figure 6.27 Plot of the ventilator test lung ASV displacement segmented for the inhale and exhale points

from case 1 for the first three breaths

Mechanical ventilation imitates the inhale and exhale phases of tidal breathing. The points where

inhale transitions to exhale, and vice versa, can be found as the local extrema points of the

displacement signal. These points were found using the MATLAB function findpeaks() which

uses the zero-crossing method [128], along with several outlier detection methods. These inhale-

exhale points can be used to segment the displacement signal into breaths, allowing the

measurement of breath specific metrics including tidal volume, and dynamic compliance.

Figure 6.27 shows the ventilator test lung displacement curve for the first three breaths with the

identified inhale-exhale points. The first breath can be segmented as the displacement curve

between the first to third inhale-exhale points. Similarly, the first inhale phase is the

displacement between the first and second inhale-exhale points, and the first exhale phase is

between the second and third points. These segmentation processes can be replicated with the

knowledge that every other point is the start of inhale, or end of exhale, while every even order

point is the end of inhale or start of exhale.

83

Figure 6.28 Plots of the ventilator test lung ASV displacement and tidal volume from case 1

The inspiratory and expiratory tidal volume can be found as the displacement difference of pairs

of inhale-exhale points, as seen in Figure 6.28. Notably, the first tidal volume is an outlier

because the sudden increase in pressure at the start of ventilation. Afterwards, the ventilator test

lung is ventilated at a higher-pressure range. Tidal volume can be used to find dynamic

compliance with the EVLP pressure measurements if they are synchronized with the Intel

RealSense D435.

84

Figure 6.29 Plot of the EVLP airway pressure, PIP, and PEEP

The EVLP and Intel RealSense D435 measurements were synchronized by interpolating the

EVLP to the Intel RealSense D435 sample times. Both sets of measurements were recorded with

timestamps, with the same datum. The EVLP was interpolated instead of the Intel RealSense

D435 measurements because the Intel RealSense D435 had a higher sampling rate, and the Intel

RealSense D435 recorded measurements before and after the EVLP for each experiment case.

Synchronizing the measurements allows them to be compared. Also, the interpolated EVLP

pressure measurements were used to calculate dynamic compliance from the Intel RealSense

D435 tidal volume. PIP and PEEP were found based on the Intel RealSense D435 displacement

signal inhale-exhale points. PIP and PEEP were found as the EVLP airway pressure at the

inhale-exhale points from the Intel RealSense D435 displacement signal, as seen in Figure 6.29.

Dynamic compliance was measured using (3-7). The tidal parameters listed in Chapter 5 were

calculated for each experiment case from the displacement and displacement rate signals

including inspiratory time, PTEF, and IE ratio.

85

Figure 6.30 Plot of the cyclic average displacement of the porcine lung

As previously mentioned, the baseline performance of the porcine lung could be measured as a

cyclic average of the displacement curve, as seen in Figure 6.30. This processing scheme

averages all the segmented breaths, into an averaged volume relative to a normalized time within

a cycle. The displacement average cycle was found using the create_avg_cycle() function in the

appendix.

The cyclic averaging was performed by interpolating displacement of each cycle, at the same

locations within each cycle. The time between points is normalized by the period of each cycle.

This means, the first sample location for each cycle is at the same normalized time relative to the

start of each cycle. The displacement of each normalized point is averaged across all cycles, into

one cyclic average cycle.

86

 Surface Measurements

Figure 6.31. 3D plot of surface map of the ventilator test lung

The surface maps of the ventilator test lung were found using the method described in Chapter

5.4 , as seen in Figure 6.31. They were used to find the surface cyclic averages in similar method

to the cyclic average displacement in Figure 6.30. Also, the surface maps were used to calculate

surface tidal displacement and surface dynamic compliance. However, these regional

measurements were invalid.

87

Figure 6.32. Plot of the surface tidal displacement of the ventilator test lung

As previously mentioned, the ventilator test lung moved during ventilation. Since active stereo

vision does not track the lung’s surface, the regional measurements from the surface maps were

invalid. Specifically, the surface tidal displacement and dynamic compliance had multiple

regions, outlining where the lung was at the start and end of inhale, as seen in Figure 6.32. The

ventilator test lung moves to the yellow region at peak inhale, and then moves into the blue

region at the end of exhale. The regions between them are common between the ends of inhale

and exhale. As a result, the common region is blurred by the ventilator test lung moving across it,

distorting the surface shape. Also, the inhale and exhale exclusive regions are global and local

peaks and troughs in the regional measurements. Therefore, these regional measurements and

peak detection are not informative.

88

 Comparison of Measurements

The ASV method was evaluated by comparing its plethysmography measurements with the

EVLP system. This analysis evaluated measurement distribution, correlation, and agreement.

The difference in measurement distribution mean and standard deviation provides a preliminary

error analysis of the ASV method. Correlation and linearity were evaluated to identify if the two

methods measured the same changes in the ventilator test lung at the same time. High correlation

would suggest the ASV method is measuring the ventilator test lung. Agreement was measured

to determine if the ASV measured these changes with the same accuracy as the EVLP. Also,

high agreement may suggest the methods are interchangeable for plethysmography.

 Reference and Competing Measurements

The plethysmography measurements were used to compare the ASV and EVLP measurement

methods. The differences in the tidal volume and dynamic compliance measurements were the

focus of the studies. Respiratory cycle timing parameters such as inspiratory time were compared

too. However, displacement rate was not compared with the airway flow rate because they are

expected to have significantly different magnitudes. Lastly, pressure measurements were not

compared because the ASV method only measures surface displacement. Notably, parameters

such as IE50 and tTEF50 were excluded because they could not be determined from the EVLP

system measurements.

The EVLP method had erroneous dynamic compliance measurements that were several

magnitudes greater than the recorded tidal volume and pressure measurements. These

measurements were ignored and recalculated in MATLAB using the recorded tidal volume,

pressure, and the inhale-exhale points found from the breath state signal.

89

Figure 6.33 Plot of the ASV and EVLP dynamic compliance of the ventilator test lung from case 6

The ASV and EVLP measurements were taken with different sampling rates. To compare them,

the ELVP measurements were temporally aligned and interpolated at the same time stamps as the

ASV measurements. This process provided paired measurements for all plethysmography

metrics, one pair for each respiratory cycle. Any pairs with not-a-number (Nan) or infinity based

on MATLAB arithmetic were removed from the comparison analysis. Lastly, the EVLP

measurements were used as the reference values in all comparisons.

All experimental cases were processed using this method. In some cases, the ASV method was

found to have lower dispersion than the EVLP measurements, as seen in Figure 6.33. Cases 4, 5,

6, and 8 showed this behavior. Also, the ASV measurements were found to be immune to

erroneous pressure measurements.

90

Figure 6.34 Plot of the ASV and EVLP dynamic compliance of the ventilator test lung from case 1

Outliers from inaccurate flow rate and pressure measurements are ignored by the ASV method

since it measures physical displacement. The outlier peak in the inspiratory dynamic compliance

of the EVLP was ignored by the ASV method, as seen in Figure 6.34. This outlier was caused by

an instantaneous spike in pressure.

91

Figure 6.35 Plots of the ventilator test lung tidal volume from case 3

Case 3 had an erroneous displacement signal that invalided all other metrics, as seen in Figure

6.35. Specifically, the erratic behavior of the displacement signal led to poor respiratory cycle

segmentation that impacted all measurements. It is hypothesized that this was caused by

erroneous depth map segmentation. Measurements from case 3 were excluded from the

comparison analysis.

92

Figure 6.36 Plots of the ventilator test lung tidal volume from case 9

Case 9 was another case with noticeable ASV measurement error. The respiratory cycle

segmentation was erroneously caused bimodal tidal volume measurements, as seen in Figure

6.36. Specifically, a lower secondary peak was detected for some breaths in the displacement

signal. Also, the EVLP measurements had issues too.

 Measurement Distribution

The ASV and EVLP measurement distributions centers and variance were compared as a

preliminary error analysis. Mean was assumed to be an appropriate center metric for comparison.

Also, the methods’ measurement distribution were compared relative to normality using kurtosis

and skewness scores and checking for normality using the Shapiro-Wilk hypothesis test. Lastly,

the ASV and EVLP measurement distributions were visualized to observe their behaviour and

validate any observations from the distribution properties.

93

Table 6.2 Mean and standard deviation of the ventilator test lung ASV and EVLP measurements of case 1

Parameter
Mean Standard Deviation

ASV EVLP Error [%] ASV EVLP Error [%]

Inspiratory Tidal Volume,

VTi [mL]
226.05 136.52 65.58 35.91 29.56 21.48

Expiratory Tidal Volume,

VTe [mL]
225.18 145.82 54.42 33.95 37.99 -10.63

Inspiratory Dynamic

Compliance, Cdyni

[mL/cmH20]

29.52 17.62 67.54 3.16 3.59 -11.98

Expiratory Dynamic

Compliance, Cdyne

[mL/cmH20]

29.28 19.22 52.34 2.68 4.79 -44.05

Time to Peak Tidal

Inspiratory Flow, tPTIF [s]
0.75 0.58 29.31 0.16 0.08 100.00

Time to Peak Tidal

Expiratory Flow, tPTEF [s]
1.48 1.35 9.63 0.67 0.39 71.79

Inspiratory Time, tI [s] 2.61 2.48 5.24 0.35 0.15 133.33

Expiratory Time, tE [s] 4.88 5.01 -2.59 0.43 0.17 152.94

Total Time, tTot [s] 7.48 7.49 -0.13 0.32 0.13 146.15

Inspiratory Total Time

Ratio, tITot
0.35 0.33 6.06 0.05 0.02 150.00

Inspiratory Expiratory Time

Ratio, tIE
0.54 0.50 8.00 0.12 0.04 200.00

Respiratory Rate, RR [bpm] 8.03 8.02 0.12 0.38 0.14 171.43

The mean and standard deviation of the ASV and EVLP measurements were measured to

evaluate the ASV method’s performance relative to the EVLP, Table 6.2. The ASV tidal volume

and dynamic compliance means are significantly larger than the EVLP measurements. On the

other hand, the timing metrics have low error. The mean error of the pressure metrics is

unexpected because they are derived from the same signal, measured by the EVLP. Also, the low

error of the timing parameters could indicate that the ventilator test lung is distending in sync

with ventilation, and the ASV method measures these changes within reasonable accuracy.

Notably, the ASV method for most parameters has more variance than the EVLP, except for tidal

volume and dynamic compliance.

94

Table 6.3 Kurtosis and skewness of the case 1 ASV and EVLP measurement of the ventilator test lung

Parameter

ASV

Excess

Kurtosis

EVLP

Excess

Kurtosis

ASV

Skewness

EVLP

Skewness

Inspiratory Tidal Volume, VTi [mL] 2.13 23.91 0.46 1.09

Expiratory Tidal Volume, VTe [mL] -0.76 8.74 -0.60 3.38

Inspiratory Dynamic Compliance, Cdyni

[mL/cmH20]
7.46 7.12 0.57 -0.94

Expiratory Dynamic Compliance, Cdyne

[mL/cmH20]
-0.26 2.35 0.54 -2.17

Time to Peak Tidal Inspiratory Flow, tPTIF

[s]
1.02 2.86 0.27 0.85

Time to Peak Tidal Expiratory Flow, tPTEF

[s]
-1.21 -0.05 0.28 0.28

Inspiratory Time, tI [s] 2.97 4.87 -0.88 -1.65

Expiratory Time, tE [s] -1.19 31.99 0.21 4.89

Total Time, tTot [s] 15.42 -0.91 3.91 0.50

Inspiratory Expiratory Time Ratio, tIE 1.21 2.71 0.35 0.53

Inspiratory Total Time Ratio, tITot 15.37 16.32 -1.23 -2.90

Respiratory Rate, RR [bpm] 6.29 37.41 1.33 4.96

Kurtosis and skewness of both methods’ measurement distributions for all parameters and

experiment cases were found to quantify they shape. Kurtosis is a measure of tailedness, or how

the distribution at its extremes deviates from the normal distribution [129]–[131]. Distributions

with higher kurtosis have thinner but wider tails with a higher probability of outliers [130]. A

standard normal distribution has a kurtosis of three, for convenience, scores can be offset so a

normal distribution has a score of zero. This score convention is called excess kurtosis [129].

Skewness is a measure of asymmetry of a distribution [131]. A standard normal distribution has

perfect symmetry, with a skewness score of zero where the mean, mode, and median align with

the center of the distribution. A right skew, with a positive skewness, has a right tail and a left

peak. The opposite is true for a left skew, with a negative skewness. For the right and left skew

distributions, the mode is found at the peak, the median at the center of the range, and the mean

near the tail [131].

In general, the kurtosis and skewness of measurements from case 1 are representative of the

other cases, as seen in Table 6.3. Based on the skewness scores, most of the parameters from the

ASV method are approximately symmetric, with their mean at the center of their distribution.

Some examples are the expiratory dynamic compliance distributions with a skewness of 0.54.

95

Also, their excess kurtosis scores suggest slight tailedness. For expiratory dynamic compliance,

excess kurtosis was -0.26. However, the EVLP does not share the same distribution shape as the

ASV for most parameters.

The ASV had kurtosis and skewness scores closer to normality than the EVLP. However, the

EVLP seems to be more prone to outliers since it has a higher kurtosis. This is unexpected since

the EVLP standard deviations are narrower than the ASV method. Also, the ASV and EVLP

measurements have less skew than the EVLP for the same metrics. Notably, there are several

parameters with extreme kurtosis and skewness scores such as inspiratory time. In general, these

results are difficult to derive conclusions from. To simplify this evaluation, the distributions were

categorized based on their kurtosis and skewness scores for tailedness and symmetry.

Table 6.4 Kurtosis and skewness of the case 1 ASV and EVLP measurement of the ventilator test lung

Parameter
Tailedness Symmetry

ASV EVLP ASV EVLP

Inspiratory Tidal Volume, VTi [mL] Platykurtic Platykurtic Zero skew Right-Tailed

Expiratory Tidal Volume, VTe [mL] Mesokurtic Platykurtic Zero skew Right-Tailed

Inspiratory Dynamic Compliance, Cdyni

[mL/cmH20]
Platykurtic Platykurtic Zero skew Zero skew

Expiratory Dynamic Compliance, Cdyne

[mL/cmH20]
Mesokurtic Platykurtic Zero skew Right-Tailed

Inspiratory Time, tI [s] Platykurtic Platykurtic Zero skew Left-Tailed

Expiratory Time, tE [s] Leptokurtic Platykurtic Zero skew Right-Tailed

Total Time, tTot [s] Platykurtic Leptokurtic Right-Tailed Zero skew

Inspiratory Expiratory Time Ratio, tIE Platykurtic Platykurtic Zero skew Zero skew

Inspiratory Total Time Ratio, tITot Platykurtic Platykurtic Left-Tailed Left-Tailed

Respiratory Rate, RR [bpm] Platykurtic Platykurtic Right-Tailed Right-Tailed

Time to Peak Tidal Inspiratory Flow, tPTIF

[s]
Platykurtic Platykurtic Zero skew Zero skew

Time to Peak Tidal Expiratory Flow,

tPTEF [s]
Leptokurtic Mesokurtic Zero skew Zero skew

Distributions can be categorized as mesokurtic, leptokurtic, or platykurtic, based on excess

kurtosis scores. Mesokurtic refers to a normal distribution, with an excess kurtosis score of

between -1 and 1. Leptokurtic and platykurtic, also known as light-tailed and heavy-tailed, are

distributions with a negative and positive excess kurtosis score below and above -1 and 1,

respectively. Platykurtic distribution are more prone to have outliers, found in their tails, than

leptokurtic distributions [129], [130].

96

The parameter tailedness and symmetry were evaluated by categorizing their excess kurtosis and

skewness scores, as seen in Table 6.4. The EVLP was typically platykurtic, with either a zero or

right tailed asymmetry. The ASV measured parameters were mostly symmetric with all three

types of tailedness. In general, the ASV and EVLP do not have matching tailedness except for

the time parameters such as inspiratory time that are platykurtic. Only a few parameters had

symmetry and tailedness of a normal distribution.

Table 6.5 Shapiro Wilk test of the case 1 ASV and EVLP measurements of the ventilator test lung

Parameter
ASV

Normality

EVLP

Normality

ASV

p-Value

EVLP

p-Value

Inspiratory Tidal Volume, VTi [mL]   1.33E-10 4.21E-05

Expiratory Tidal Volume, VTe [mL]   6.22E-04 9.00E-12

Inspiratory Dynamic Compliance,

Cdyni [mL/cmH20]
  1.69E-10 8.66E-07

Expiratory Dynamic Compliance,

Cdyne [mL/cmH20]
  6.31E-04 3.79E-12

Inspiratory Time, tI [s]   1.04E-02 2.10E-04

Expiratory Time, tE [s]   1.85E-07 6.13E-07

Total Time, tTot [s]   3.19E-11 3.15E-08

Inspiratory Total Time Ratio, tITot   2.51E-03 2.12E-04

Inspiratory Expiratory Time Ratio, tIE   5.49E-04 1.99E-05

Time to Peak Tidal Expiratory Flow,

tPTEF [s]
  2.29E-05 4.23E-10

Time to Peak Tidal Inspiratory Flow,

tPTIF [s]
  2.69E-11 2.31E-04

Respiratory Rate, RR [bpm]   7.29E-12 7.63E-09

The distribution normalities of all parameters were check using the Shapiro-Wilk normality test.

The normality and p-values of these test for case 1 are summarized in Table 6.5. This is

somewhat unexpected, considering some parameters had excess kurtosis and skewness scores

within -1 and 1, indicating a normal distribution.

97

(a) (b)

Figure 6.37 Plots of the ventilator test lung EVLP inspiratory tidal volume measurements from case 1, (a)

normal probability and (b) histogram annotated with the mean = 136.52 and 95% confidence intervals

[88.52,184.52]

The ASV and EVLP measurements were plotted to observe their measurement distributions. The

EVLP inspiratory tidal volume measurements from case 1 were visualized using a probability

plot, Figure 6.37 (a), and a histogram, Figure 6.37 (b). The probability shows the shape of the

distribution relative to a standard normal distribution, the red line. The histograms are annotated

with the mean, the red vertical line, and their 95% confidence intervals, the two dashed blue

lines. These plots show that the EVLP case 1 tidal volume measurements have a near normal

distribution. The probability plot follows the red normal distribution line, except below 5% and

above 90% probability. Also, the histogram shows that the distribution is centered on the mean

with a bell curve shape, perhaps with low tailedness. Lastly, both indicate that the measurements

below 5% probability are outliers. The ASV measurements from case 1 were examined in the

same way.

98

(a) (b)

Figure 6.38 Plots of the ventilator test lung ASV inspiratory tidal volume measurements from case 1, (a)

probability and (b) histogram annotated with the mean = 226.05, red line, and 95% confidence interval

[155.67,296.43], blue dashed lines

The ASV tidal volume measurements from case 1 are less consistent and normal in shape than

the EVLP. The probability plot does not closely follow normality, as seen in Figure 6.38 (a).

Also, the histogram does not have a bell curve shape. Instead, it is flat with a peak near the mean,

as seen in Figure 6.38 (b). These features suggest the distribution is left-tailed but have less

outliers than the EVLP.

In general, the ASV and EVLP measurements do not have the same distribution shape or

properties as demonstrated by comparing the case 1 tidal volume distributions. Specifically, they

have significantly different means and the EVLP seems to have more repeatability because its

confidence interval is narrower, and its shape is taller than wide. These results match the excess

kurtosis and skewness scores. Although, the measurement distribution behavior varies between

parameters and methods, most are centered on their means.

99

In summary, the ASV and EVLP measurement distributions are non-normal with significant

mean error with varying distribution symmetry and tailedness. Also, the EVLP has a smaller

standard deviation than the ASV. Lastly, the low mean error of the timing parameters suggests

that the ASV is measuring physical displacement of the ventilator test lung along with the EVLP

ventilation.

 Correlation of the Ventilator Test Lung ASV and EVLP Measurements

The ASV and EVLP measurement correlation was measured to determine if the ASV

measurements are dependent on the ventilator test lung displacement. If the ASV and EVLP are

measuring the lung displacement, they are expected to have good correlation, and ideally a linear

relationship. Therefore, correlation was measured using the Pearson correlation coefficient [132],

and an adapted Kolmogorov-Smirnov hypothesis test was used to measure linearity [133]–[135].

Also, Passing-Bablok regression was used to create linear models for each tidal parameter using

the ASV and EVLP paired measurements. The method makes no assumptions about the data’s

distribution, allows both sets of data to have measurement error, and is robust against outliers

[135]. However, the Passing-Bablok regression is only applicable for continuous variables and

assumes the data has a linear relationship [135]. Assuming that the model fits the sample data

well, the slope and intercept of the model can be used to estimate the proportional and systematic

bias between the systems [136], [137].

100

Figure 6.39 Plot of Passing-Bablok regression of the case 1 ASV and EVLP inspiratory tidal volume of

the ventilator test lung

The experiment cases were individually measured for correlation and linearity, then modelled

using Passing-Bablok regression. However, when the models and data were plotted, they were

found to cluster around a single value. This tendency can be seen in the case 1 regression plot, as

seen in Figure 6.39. Also, the measurements show more variance along the ASV axis. This trend

occurs cases are when modeled individually for all parameters.

It is hypothesized that this distribution occurs because each case is an experimental configuration

of two variables: the Intel RealSense D435 height, and the EVLP ventilation blower rate, which

indirectly controls the tidal volume and airway pressure. Tidal volume, pressure, and dependent

metrics would have target values that remain constant within cases but would change between

cases. For all other parameters, their ventilation setting did not change between or within any

experiment cases. If this is the case, then the regression figures and models are centered on these

ventilation targets.

The Passing-Bablok regression method assumes that the samples are from a continuous

distribution. Since the paired samples centre on the ventilation target values, this is not

101

achievable with the data from any case individually. As a result, the method and data are not

expected to provide a strong correlation between the paired samples, and their population.

To mitigate this issue, regression models for each parameter were created using the paired

samples from multiple cases. This step would not address the problem for any of the parameters

with constant ventilation target values between cases. However, this approach will create

multiple clusters for the tidal volume. This step will broaden the range of measurements, making

it closer to a continuous dataset.

Accumulating data from multiple case will bias the regression model, as it will likely form a

linear relationship that passes through the cluster centers. Likewise, the constant parameters will

remain biased to having no significant relationship.

Figure 6.40 Plot of Passing-Bablok regression of the EVLP test lung inspiratory tidal volume from cases

1, 4, and 7

Six regression models were obtained for the groups of cases with the same experimental

configurations levels, three for each level of the blower rate and three for each level of Intel

RealSense D435 height. As see in Figure 6.40, the inspiratory tidal volume paired samples from

102

cases 1, 4, and 7 cluster around one point. Each case was taken at the same tidal volume but

different Intel RealSense D435 heights. This may indicate that the Intel RealSense D435 height

did not have a significant effect on the distribution of the measurements. This behavior was

found in the combined regression models and other parameters. As a result, all nine experiment

cases were measured as one combined dataset.

Table 6.6 Linearity of all experiment case ASV and EVLP measurements of the ventilator test lung

Parameter
Linearity

Significant

Maximum

Cumulative

Sum Rank

Difference

Critical

Value

Inspiratory Tidal Volume, VTi [mL]  69.00 36.34

Expiratory Tidal Volume, VTe [mL]  71.00 36.34

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20]  43.33 36.11

Expiratory Dynamic Compliance, Cdyne [mL/cmH20]  79.37 36.16

Time to Peak Tidal Inspiratory Flow, tPTIF [s]  58.00 25.66

Time to Peak Tidal Expiratory Flow, tPTEF [s]  47.00 25.52

Inspiratory Time, tI [s]  36.00 25.66

Expiratory Time, tE [s]  26.00 25.44

Total Time, tTot [s]  44.00 25.37

Inspiratory Total Time Ratio, tITot  40.00 25.37

Inspiratory Expiratory Time Ratio, tIE  40.00 25.37

Respiratory Rate, RR [bpm]  50.00 25.37

The ASV and EVLP paired measurements were found to be non-linear for all parameters, as seen

in Table 6.6. As previously mentioned, linearity and correlation are prerequisites for Passing-

Bablok regression [135] and Pearson correlation is valid for measuring linear relationships [132].

Therefore, it is unlikely that the Passing-Bablok regression models and Pearson correlation

coefficient will be valid.

103

Table 6.7 Correlation of all experiment cases ASV and EVLP measurements of the ventilator test lung

Parameter

Pearson

Correlation

Coefficient

Correlation

Significant

Correlation

p-value

Inspiratory Tidal Volume, VTi [mL] 0.3918 ✓ 1.31E-27

Expiratory Tidal Volume, VTe [mL] 0.3727 ✓ 6.08E-25

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] -0.0534 ✓ 1.57E-01

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 0.1736 ✓ 3.42E-06

Time to Peak Tidal Inspiratory Flow, tPTIF [s] -0.0087 ✓ 8.70E-01

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.0332 ✓ 5.34E-01

Inspiratory Time, tI [s] 0.1310 ✓ 1.33E-02

Expiratory Time, tE [s] 0.1727 ✓ 1.18E-03

Total Time, tTot [s] 0.3430 ✓ 4.55E-11

Inspiratory Total Time Ratio, tITot 0.1376  0.27

Inspiratory Expiratory Time Ratio, tIE 0.1229  0.26

Respiratory Rate, RR [bpm] 0.4042  1.03

The Pearson correlation coefficient was measured between the ASV and EVLP paired

measurements for all parameters and cases. For all data sets, most parameters were found to

represent the population correlation, as seen in Table 6.7. It is hypothesized that the methods

have poor correlation because of the significant difference in measurement variance, which was

evaluated in Chapter 6.4.2. Despite the measurements having poor correlation and being non-

linear, Passing-Bablok regression was used to further evaluate their relationship.

104

Table 6.8 Passing-Bablok regression parameters of the ASV and EVLP measurements from all

experiment cases combined of the ventilator test lung

Parameter

Coefficient of

Determination,

R2

Intercept Slope

95% Confidence

Interval

Slope Intercept

Inspiratory Tidal Volume, VTi

[mL]
-0.02 18.40 0.50 0.46 0.54 7.62 28.09

Expiratory Tidal Volume, VTe

[mL]
-0.02 0.14 0.62 0.56 0.67

-

13.86
13.37

Inspiratory Dynamic Compliance,

Cdyni [mL/cmH20]
-1.86 -27.97 1.50 1.30 1.74

-

35.21

-

22.14

Expiratory Dynamic Compliance,

Cdyne [mL/cmH20]
-1.41 -40.66 1.97 1.70 2.29

-

50.30

-

32.65

Time to Peak Tidal Inspiratory

Flow, tPTIF [s]
-25.76 -2.30 4.00 3.00 5.00 -3.00 -1.60

Time to Peak Tidal Expiratory

Flow, tPTEF [s]
-0.03 1.23 0.05 0.03 0.08 1.19 1.27

Inspiratory Time, tI [s] -0.45 1.72 0.29 0.22 0.37 1.52 1.88

Expiratory Time, tE [s] -0.29 3.79 0.25 0.18 0.33 3.37 4.13

Total Time, tTot [s] -1.63 -0.01 1.00 1.00 1.33 -2.49 0.00

Inspiratory Total Time Ratio, tITot -0.47 0.24 0.27 0.21 0.35 0.21 0.26

Inspiratory Expiratory Time Ratio,

tIE
-0.82 0.35 0.26 0.20 0.34 0.31 0.38

Respiratory Rate, RR [bpm] -1.99 -0.22 1.03 1.00 1.29 -2.35 0.03

Passing-Bablok regression was used to model the linear relationship between the ASV and

EVLP paired measurements for all tidal parameter and experiment cases. The slope, intercept,

and coefficient of determination, R2, was measured for each model. Also, the lower and upper

95% confidence intervals for the slope and intercept were found.

For case 1, the R2
 values indicates the data does not fit any of the models except for PIP, as seen

in Table 6.8. These results match the correlation and linearity tests in Table 6.7. A slope of one

and an intercept of zero are not within the confidence intervals of most parameters. Therefore,

the 95% confidence intervals indicate that for most parameters, there is systematic and

proportional bias. These biases are measured as the slope and intercept values. For all

parameters, except the pressure metrics, the slope and intercept significantly deviate from one

and zero and are substantial errors. The Passing-Bablok regression plots were examined to

understand how and why the data is not linear and has a poor correlation.

105

Figure 6.41 Plot of Passing-Bablok regression of the ASV and EVLP inspiratory tidal volume

measurements of the ventilator test lung

The Passing-Bablok regression plots are scatter plots of the paired ASV and EVLP

measurements of a tidal parameter for a specific case. They are annotated with a 95% confidence

interval, the trend line, and the trend line of a perfectly linear relationship. The paired tidal

volume measurements from all cases were regressed together, as seen in Figure 6.41. The plots

show that combining datasets from different blower rate experiment configurations expanded the

tidal volume dataset range, allowing the regression to model a linear trend.

Despite, the poor correlation and coefficient of determination, the regression model fits the data

as it passes through the center of the measurement distribution. Also, the dataset is linear but

with many outlier data points and significant dispersion. Lastly, this plot confirms that the ASV

method is overestimating the EVLP by a significant amount. The dynamic compliance regression

plot looks the same as the tidal volume plot. This is unexpected, since the compliance of the

ventilator test lung property should be constant. However, this relationship suggests that the

ventilator test lung became more compliant with higher tidal volumes, or over the course of

multiple experiment cases. The other parameters did not have this trend though.

106

Figure 6.42 Plot of Passing-Bablok regression of the ASV and EVLP inspiratory time measurements from

all cases of the ventilator test lung

The data points of most parameters form a single cluster, like in the regression plot of all

measurements of inspiratory time from all experiment cases, as seen in Figure 6.42. Despite the

data points clustering, the ASV and EVLP measurements form a linear relationship with poor

correlation and coefficient of determination. This trend formed because of the ASV method has a

larger variance than the EVLP. As a result, the data points are spread across the x-axis, almost

forming a horizontal line.

107

Table 6.9 Residual mean of Passing-Bablok regression for all valid cases of the ventilator test lung

Parameter
Residual

Mean

Normalized

Residual Mean [%]

Inspiratory Tidal Volume, VTi [mL] -2.59 -0.08

Expiratory Tidal Volume, VTe [mL] -2.76 -0.07

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] -0.05 -0.01

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 0.43 0.06

Time to Peak Tidal Inspiratory Flow, tPTIF [s] -0.10 -0.21

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.05 0.14

Inspiratory Time, tI [s] 0.01 0.04

Expiratory Time, tE [s] 0.01 0.05

Total Time, tTot [s] 0.00 0.01

Inspiratory Total Time Ratio, tITot 0.01 0.04

Inspiratory Expiratory Time Ratio, tIE 0.00 -0.03

Respiratory Rate, RR [bpm] -0.01 -0.04

The Passing-Bablok regression was followed by residual analysis to identify outliers and to

evaluate if the regression provided an adequate fit for the sample set. Two types of residual plots,

residual and standardized residual, were made for each parameter. The residual means for both

types of plots for all cases when combined are summarized in Table 6.9 Residual mean of

Passing-Bablok regression for all valid cases of the ventilator test lung. These residual means

suggest that the regression models fit the data well since both types of means are low. The plots

themselves were examined for any trends, specifically tidal volume since it is one of the only

parameters that has a wider measurement range.

108

Figure 6.43 Plot of Passing-Bablok regression residuals versus predicted ventilator test lung inspiratory

tidal volume from all experiment cases

The residual plots show the regression model trend lines pass through the center of the

measurement distributions since they means are near zero. Also, they show few trends as most

data points follow the horizontal residual mean line, as seen in Figure 6.43 for inspiratory tidal

volume of all experiment cases. For other parameters, the residual plots are similar except the

data points form a cluster centered on the residual mean. Also, the normalized residual plots

show the same trends as the original residual plots, except the units are scaled by the

distribution’s standard deviation. Overall, these residual plots suggest the regression models fit

well to the data, but the paired measurements have large dispersion and have many outliers

causing poor model performance.

In summary, the ASV and EVLP paired measurements have poor correlation and do not have

statistically significant linearity. This is supported by the coefficient of determination of the

Passing-Bablok regression models. However, the regression and residual plots show that the

regression passes through the center of the paired measurement distributions. As a result, the

109

regression fits well with the data, but performance is poor because of the large variance of the

ASV measurements and several outlier points.

 ASV and EVLP Measurement Agreement of the Ventilator Test Lung

Agreement was measured between the ASV and EVLP measurements, to determine if the ASV

method was interchangeable with the EVLP system. Agreement is a measure of concordance

between different assessments [132] that is often measured using intra-class correlation [132],

[138]–[140] and Bland-Altman analysis [137], [140], [141]. The ASV and EVLP agreement was

measured using all the experiment case data, for the same reasons as in Chapter 6.4.3.

Intra-class correlation (ICC) is a quantitative measure of agreement and correlation, which

ranges between zero and one, where one indicates perfect agreement [132], [138]–[140]. There

are several types based on the application [138], but the Absolute Case 2 type was selected for

this application. Also, an F-test where the null hypothesis is that ICC is equal to zero, was

performed on the paired samples to determine if the results are significant [138].

Bland-Altman analysis examines the distribution of the differences of two methods by plotting

them against the mean of each pair of measurements [137], [140], [141]. The differences can be

normalized to remove proportional bias. Also, the differences can be plotted against the

reference method’s measurements, which in this case is the EVLP. However, it is considered

controversial as this imposes a relationship between the differences and magnitude [137].

Bland-Altman assumes that the differences of the two methods are normally distributed, and a

linear relationship is present. Also, the method is only applicable for continuous variables. It is

useful for identifying a systematic bias between the methods based on their mean difference.

Also, different relationships in the two methods can be identified by visualizing the differences

[137], [140], [141]. Lastly, limits of agreement can be interpreted by medical professionals to

determine if it is acceptable to interchange methods [137].

110

Table 6.10 Intra-Class Correlation of the ventilator test lung ASV and EVLP measurements of all valid

cases

Parameter
Intra-Class

Correlation

Significant

ICC
p-value

Inspiratory Tidal Volume, VTi [mL] 0.081  0.200

Expiratory Tidal Volume, VTe [mL] 0.110  0.176

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] -0.007  0.763

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 0.030  0.210

Time to Peak Tidal Inspiratory Flow, tPTIF [s] -0.004  0.563

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.021  0.333

Inspiratory Time, tI [s] 0.080  0.061

Expiratory Time, tE [s] 0.103 ✓ 0.024

Total Time, tTot [s] 0.303 ✓ 0.000

Inspiratory Total Time Ratio, tITot 0.079  0.065

Inspiratory Expiratory Time Ratio, tIE 0.057  0.136

Respiratory Rate, RR [bpm] 0.341 ✓ 0.000

The ICC and F-test results for paired samples from all experiment cases are summarized in Table

6.10. All parameters were found to have poor ICC. Also, only three parameters were found to

have non-zero ICC based on the F-test. Overall, these results indicate the ASV and EVLP do not

agree. Agreement was examined using the Bland-Altman method.

Table 6.11 Shapiro-Wilk normality of the ventilator test lung ASV and EVLP measurement differences of

all valid cases

Parameter
Method Difference

Normality
p-value

Inspiratory Tidal Volume, VTi [mL]  5.55E-16

Expiratory Tidal Volume, VTe [mL]  2.13E-13

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20]  0.00E+00

Expiratory Dynamic Compliance, Cdyne [mL/cmH20]  0.00E+00

Time to Peak Tidal Inspiratory Flow, tPTIF [s]  0.00E+00

Time to Peak Tidal Expiratory Flow, tPTEF [s]  1.41E-06

Inspiratory Time, tI [s]  7.77E-16

Expiratory Time, tE [s]  6.44E-15

Total Time, tTot [s]  0.00E+00

Inspiratory Total Time Ratio, tITot  1.11E-15

Inspiratory Expiratory Time Ratio, tIE  0.00E+00

Respiratory Rate, RR [bpm]  0.00E+00

A prerequisite for Bland-Altman analysis is that the differences have a normal distribution. The

normality of the difference of the ASV and EVLP measurements for all tidal parameters were

found using the Shapiro-Wilk test, as seen in Table 6.11. All parameters were found to have a

111

non-normal distribution. This invalidates the Bland-Altman limits of agreement, as they are

computed with this assumption.

(a) (b)

Figure 6.44 Plots of the difference of the ASV and EVLP inspiratory tidal volume measurements from all

experiment cases as (a) probability and as (b) histogram annotated with the mean and confidence

intervals

The differences were visualised using probability and histogram plots to identify how the

distributions deviated from normality. The inspiratory tidal volume difference plots show that the

distribution looks normal, since it follows a normal probability, as seen in Figure 6.44 (a). Also,

the histograms have a bell curve shape, as seen in Figure 6.44 (b). Therefore, the limits of

agreement may not be valid.

112

Figure 6.45 Plot of the Bland-Altman analysis of the ASV and EVLP measurements of inspiratory tidal

volume of the ventilator test lung

For the reasons described in Chapter 6.4.3, the Bland-Altman analysis was performed on the

paired measurements from all experiment cases combined. The mean of the differences is shown

as a horizontal red line, along with the lower and upper limits of agreement as blue lines. The

limits of agreement are found as the 95% confidence intervals of a normal distribution,

calculated from standard deviation [137], [141].

The Bland-Altman plots for most of the parameters formed a single cluster, like in the regression

plots in Chapter 6.4.3. The inspiratory tidal volume and dynamic compliance Bland-Altman plot

were the exception. The data points clustered around three points in the Bland-Altman plot in

Figure 6.45, just as it was seen in Chapter 6.4.3. It is hypothesized these three clusters are

centered on the tidal volume achieved from the three blower rate settings in the different

experiment configurations. Also, the differences slightly decrease with respect to the mean of the

paired measurements, indicating proportional bias. The mean of the differences can be used as an

estimate of the systematic bias between paired measurements. Outliers can be identified as being

outside the limits of agreement.

113

Figure 6.46 Plot of the Bland-Altman analysis of the ASV and EVLP normalized measurements of

inspiratory tidal volume of the ventilator test lung

The inspiratory tidal volume differences were normalized and plotted, as seen in Figure 6.46.

Also, the mean and limits of agreement are normalized. In this case, Figure 6.46 shows the same

behaviour as Figure 6.45 without the proportional bias. Another difference is that the normalized

plot shows the outliers more clearly below the limits of agreement.

114

Table 6.12 Bland-Altman analysis mean, confidence interval, and limits of agreement of the ASV and

EVLP measurements from all valid cases for the ventilator test lung

Parameter
Mean

Difference

Mean

Difference 95%

Confidence

Interval

Limit of

Agreement

Inspiratory Tidal Volume, VTi [mL] 111.46 108.43 114.48 15.38 207.53

Expiratory Tidal Volume, VTe [mL] 100.85 97.60 104.10 -2.41 204.10

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] 13.07 12.75 13.38 3.18 22.95

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 11.40 11.10 11.70 1.78 21.02

Time to Peak Tidal Inspiratory Flow, tPTIF [s] 0.16 0.15 0.17 -0.12 0.44

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.27 0.19 0.36 -1.56 2.11

Inspiratory Time, tI [s] 0.07 0.04 0.11 -0.71 0.86

Expiratory Time, tE [s] -0.07 -0.11 -0.04 -0.88 0.73

Total Time, tTot [s] -0.01 -0.02 0.01 -0.35 0.33

Inspiratory Total Time Ratio, tITot 0.01 0.01 0.01 -0.09 0.11

Inspiratory Expiratory Time Ratio, tIE 0.03 0.02 0.05 -0.26 0.33

Respiratory Rate, RR [bpm] 0.01 -0.01 0.03 -0.38 0.40

The Bland-Altman analysis results are summarized in Table 6.12. The results include the mean

of the residual, the confidence intervals for the mean of the residual, and the limits of agreement.

These results validate the ICC measurements, indicating that the ASV and EVLP have poor

agreement. Ideally, the mean of the residual is zero, indicating no systematic bias. As seen in

Table 6.12, most of the tidal volume and flow rate derived metrics have significant residual

means, indicating systematic bias. For example, the inspiratory tidal volume difference mean is

111.46. Also, systematic bias is present because the confidence intervals do not include zero.

Furthermore, the limits of agreement indicate poor agreement because they are very wide. For

reference, the EVLP sensor has a flow rate total error band of ± (2.5 + 0.5 FS) % while the ASV

inspiratory tidal volume limits of agreement are ± 96.14. It is very unlikely this performance

would be an acceptable substitute for clinical application. The timing and pressure metrics have

low residual means, as seen in Table 6.12. However, the timing residual means might be

significant for the scale of its measurements. The residual means were normalized to determine

they have significant systematic bias relative to the scale of the measurements.

115

Table 6.13 Bland-Altman analysis normalized mean and limits of agreement of the ASV and EVLP

measurements from all valid cases of the ventilator test lung

Parameter
Normalized Mean

Difference

Normalized Limit of

Agreement

Inspiratory Tidal Volume, VTi [mL] 0.56 0.09 1.03

Expiratory Tidal Volume, VTe [mL] 0.50 -0.04 1.04

Inspiratory Dynamic Compliance, Cdyni [mL/cmH20] 0.57 0.03 1.11

Expiratory Dynamic Compliance, Cdyne [mL/cmH20] 0.49 0.02 0.96

Time to Peak Tidal Inspiratory Flow, tPTIF [s] 0.24 -0.13 0.61

Time to Peak Tidal Expiratory Flow, tPTEF [s] 0.05 -1.06 1.17

Inspiratory Time, tI [s] 0.02 -0.28 0.31

Expiratory Time, tE [s] -0.02 -0.20 0.16

Total Time, tTot [s] 0.00 -0.05 0.05

Inspiratory Total Time Ratio, tITot 0.02 -0.27 0.31

Inspiratory Expiratory Time Ratio, tIE 0.04 -0.41 0.48

Respiratory Rate, RR [bpm] 0.00 -0.05 0.05

The normalized results are a percentage relative to the mean of the paired samples, giving

measures of performance that are independent of the order of magnitude. The normalized Bland-

Altman analysis results are summarized in Table 6.13. The confidence interval was not

normalized because the normal confidence intervals already confirmed the presence of

systematic bias. The normalized residual means validate that there is significant systematic bias.

Tidal volume derived metrics were found to have normalized residual means around 50%.

However, the timing derived metrics were found to have low normalized residual means that

indicate around a 5% error. Lastly, the normalized limits of agreement indicates poor agreement,

supporting previous measurements.

In summary, the ASV and EVLP methods have poor agreement based on intra-class correlation

measurements and Bland-Altman analysis. The tidal volume derived metrics were found to have

large systematic error based on the confidence intervals of residual means, the residual means,

and limits of agreement. However, the timing metrics were found to sometimes have reasonable

agreement, high ICC, and low residual means.

116

 Discussion

 Sources of Error

The Bland Altman and Passing-Bablok analysis found significant systematic and proportional

bias in the tidal volume measurements between the ASV and EVLP methods. However, the ASV

and EVLP methods had reasonable agreement in measuring respiratory cycle timing parameters

such as respiratory rate and expiratory time. Furthermore, the ASV method has a slightly smaller

measurement standard deviation than the EVLP for tidal volume and dynamic compliance. This

implies that the ASV method was able to consistently measure the ventilator test lung’s

displacement, especially the timing, but with an inaccurate intensity.

Figure 6.47 Schematic of the ventilator test lung distending in all directions, lifting the entire lung

It is hypothesized when the ventilator test lung inflates in all directions, it lifts the entire lung

including its top surface. Therefore, instead of the ASV method just measuring the displacement

of the top surface, it is measuring this systematic and proportional offset in surface height

causing the tidal volume measurements to increase. In this case, the distance between the center

of the ventilator test lung and the datum would increase during ventilation, as seen in Figure

6.47. This would lift the entire ventilator test lung, in addition to the displacement of the top

surface, increasing the measured displacement using the surface integration method.

117

The curved surface of the ventilator test lung might have caused the occlusion of one or both

infrared ASVs in the Intel RealSense D435. As a result, depth holes formed along the perimeter

of the ventilator test lung. This effect might be more prominent at higher tidal volumes because

the surface curvature would increase with displacement. Therefore, this occlusion could have

systematically and proportionally decreased the estimated volume of the ventilator test lung. This

effect would impact the tidal volume and dynamic compliance.

Figure 6.48. Schematic of the effect of ASV angle on surface integration

The Intel RealSense D435 perspective could have caused another issue. The surface integration

method could have been impacted by any misalignment between the EVLP and Intel RealSense

D435. Any angular deviation from perpendicularity between the ventilator test lung and Intel

RealSense D435 would cause the integration method to estimate a different volume, as seen in

Figure 6.48. This is an issue because the ventilator test lung and Intel RealSense D435 are

assumed to be perpendicular. This assumption is used to transform the surface point cloud from

the Intel RealSense D435 perspective into another more favorable coordinate system.

X

Z

Surface

Camera aligned

with surface

Camera angled

with surface

Camera axis

Angled

projection

Aligned

projection

Base Plane

118

 ASV Method Limitations

The main limitation of the ASV method is that it does not track the surface of the ventilator test

lung, as described in Chapter 6.3.4. The regional measurements are distorted by the ventilator

test lung as it moves to a different position throughout the respiratory cycle. As a result, the

surface tidal displacement and surface dynamic compliance do not represent the displacement of

the lung across its surface. Also, the regional measurements cannot be used for peak detection

because the ventilator test lung’s movement enforces maxima and minima regions that are

correlated to localized over-inflation.

Figure 6.49 Image of the depth map of the ventilator test lung with depth holes that outline the lung

The edge-based segmentation method was another limitation of the ASV method in this

experiment. Specifically, the segmentation method was found to be dependent on the depth holes

caused by occlusion to create a valid edge map to segment the ventilator test lung, as seen in

Figure 6.49. The occlusion created depth holes that outline the ventilator test lung and other

objects.

119

Figure 6.50 Image of the ventilator test lung edge map with circles from small regions of occlusion in the

depth map

The Canny edge detection method only returned edges along the perimeter of depth holes, as

seen in Figure 6.50. It is hypothesized it only returned depth hole edges because they were the

only “strong” edges found using hysteresis thresholding. This could be due to the occlusion

edges being significantly greater than the other edges, raising the parametric upper and lower

thresholds above the other edges. As a result, the edge map of the ventilator test lung has many

circles formed by the depth holes seen in Figure 6.49. The isolated circles that were removed by

the processing scheme are colored in magenta. Also, dependence on these edges makes the

segmentation method vulnerable to stray objects in the scene, and limits which edges in the depth

map will be used for edge-linking.

120

Figure 6.51 Image of the edge map of the ventilator test lung with erroneous spurs and sub-regions

During edge linking, the edges from the small regions of depth hole form sub-regions inside the

lung, and create spurs along the lung’s perimeter, as seen in Figure 6.51. This edge map is

covered in erroneous spurs and sub-regions that will either cause segmentation failure or will

lead to erroneous segmentation of the ventilator test lung. This segmentation error caused the

experiment case 3 dataset to have an inaccurate displacement signal from surface integration,

which resulted in invalid plethysmography measurements

The segmented region will not accurately represent the ventilator test lung. These problems

could be mitigated with another segmentation method, that is less sensitive to occlusion, or by

removing the depth holes in the depth maps. However, other segmentation approaches were

attempted, such as depth thresholding, were found to be difficult to implement.

121

 Conclusion

The surface displacement of a ventilator test lung was measured by the Intel RealSense D435

during mechanical ventilation performed by an EVLP. The Intel RealSense D435 measurements

were used to obtain plethysmography and regional measurements using the processing scheme

described in Chapter 5. Also, the EVLP derived the same plethysmography measurements from

its flow rate and pressure measurements. The ASV measurement system was evaluated by

comparing its measurements with the EVLP method.

The individual experiment case datasets were found to cluster around a single point that was

dependent on ventilation tidal volume. Analyzing an individual experiment case led to invalid

results because they do not have a wide measurement range. Therefore, all samples from all

experiment cases were combined into one data to compare the methods.

Correlation was measured using Pearson correlation coefficient and Passing-Bablok regression.

The ASV and EVLP methods were found to have poor a Pearson correlation coefficient. The

regression models’ confidence intervals, slope, and intercept indicate the methods have

systematic and proportional error. Also, the regression models were found to have a poor

coefficient of determination despite the models passing through the center of the measurement

distribution. It was hypothesized that the models performed poorly because the ASV

measurements have high dispersion.

Agreement was measured using intra-class correlation and Bland-Altman analysis. The ASV and

EVLP methods were found to have poor intra-class correlation. Also, the residual means of the

Bland-Altman plots were large for the tidal volume derived metrics, indicating poor agreement

due to systematic error. However, the residual means were small for the timing metrics

suggesting the ASV measured the same respiratory cycle changes as the EVLP.

122

7 Active Stereo Vision Method in a Clinical Setting

The study in Chapter 6 provides a general idea of the method’s performance. However, the

ventilator test lung and human lung are dissimilar in shape, scale, and most importantly

compliance, as elastomer does not perfectly mimic tissue. Also, the EVLP was repurposed for

the study, as it was not intended to perform positive pressure ventilation.

A better human lung surrogate are porcine lungs, which are commonly used in medical studies.

A pair of porcine lungs were acquired, from another EVLP study, and ventilated with a clinical

ventilator unit to perform another method comparison analysis. The porcine lung was measured

with the Intel RealSense D435 and ventilator unit system. The data was processed for

plethysmography measurements using the previously described processing scheme. However, a

different image segmentation method was used than the method used in Chapter 6. Also, only a

few plethysmography measurements were accessible from the ventilator unit, limiting the scope

of the method comparison analysis.

123

 Experiment Equipment

Figure 7.1 Annotated image of a porcine lung inside an open EVLP

The porcine lung, seen in Figure 7.1, was excised from a 75 kg donor for another EVLP study

for 12 hours. As part of this previous experiment, the porcine lung was sealed within an EVLP,

resting on top of the EVLP compliant trampoline seen in Figure 7.1. Also, the lung was intubated

to form an airway connection to the EVLP. To access the trachea for intubation, the rough face

of the porcine lung was faced upward, resting the smooth face directly on the trampoline.

Intubation

Airway

Porcine Lung EVLP Trampoline

124

Figure 7.2 Annotated image of the porcine lung inside an EVLP with the Intel RealSense D435

The equipment and setup from the previous experiment was re-used for this study. Specifically,

the porcine lung remained on top of the EVLP trampoline, and the intubated airway was reused

for ventilation. Similarly, the same tripod for the Intel RealSense D435 from Chapter 6 was

reused. However, some parts of the previous experiment setup were modified for this

experiment. The EVLP cover was removed to give the Intel RealSense D435 a direct line of

sight to the porcine lung from above, as seen in Figure 7.2. Also, the EVLP was not used to

ventilate the porcine lung.

Intel

D435

Porcine

Lung

EVLP

Tripod

125

Figure 7.3 Annotated image of the Draeger Evita XL ventilator and laptop for Vital Signs Capture

The Draeger Evita XL, seen in Figure 7.3, was used to ventilate the porcine lung. It is a clinical

ventilation unit for long term intensive care intended for adults, children, and neonates. The

ventilator supports full mechanical ventilation or can assist spontaneous breathing. Ventilation

can be performed in several different ventilation modes, including constant mandatory

ventilation (CMV) which delivers breaths based on set variables, while regulating others. The

mode, and breathing parameters are set using a touchscreen in a GUI. Additionally, it monitors

metrics such as airway pressure, expiratory minute volume, and inspiratory tidal volume.

The Draeger Evita XL uses a proprietary encoding method, the Medibus protocol, for exporting

data. Typically, specialized communication units are required to decode and display the

ventilator’s measurements and settings, however, the encoding method is publicly available. An

open-source software called Vital Signs Capture, or VSCapture, was used to read measurements

from the Draeger Evita XL using a StarTech RS232 to USB adapter to connect to a laptop as see

in Figure 7.3.

Laptop for Vital Signs

Capture software

Draeger Evita XL

126

Figure 7.4 Annotated image of the Draeger Evita XL touchscreen GUI

The Draeger Evita XL uses a touchscreen and graphical user interface that is divided into three

main sections, as shown in Figure 7.4. The first section at the bottom left of the screen allows the

user to set ventilator settings, and the ventilation mode. The Draeger Evita XL is set in the CMV

mode with six setting variables. The main ventilator settings shown are tidal volume (VT),

inspiratory time (Tinsp), breaths per minute (f), and slope, the time it takes to reach peak volume

during inspiration. The second section, in the top right of the screen, provides real-time

measurements including the expiratory tidal volume, average tidal volume, minute volume, and

breathing rate. The last section, the top left of the screen, shows the airway pressure and flow

rate curves. Other parameters are monitored, but not shown.

127

Figure 7.5 Annotated image of the porcine lung experimental setup

For this experiment, the Draeger Evita XL was connected to the porcine lung through the EVLP

and intubated airway, as seen in Figure 7.5. It had several advantages for this experiment such as

being mobile and having a publicly available manual. Also, most of its ventilation modes allow

direct control over tidal volume, which the EVLP does not.

 Calibration and Data Acquisition

Before data acquisition, the Intel RealSense D435 was calibrated using the same methods

described in Chapter 4 and 6.2 . The intrinsic parameters, extrinsic parameters, and depth quality

metrics from calibration are listed in Appendix D.

Draeger Evita XL
EVLP

Airway

Intel D435

Porcine Lung

128

(a) (b)

Figure 7.6 Images of the porcine lung from the Intel RealSense D435 (a) color and (b) depth map streams

The color and depth map streams, as seen in Figure 7.6 (a) and (b), from the Intel RealSense

D435 were recorded at 240 × 424 pixels and 30 fps, using the same methods described in

Chapter 6.2 . Projective transformation was performed on the depth map to be aligned with the

color image as seen in Figure 7.6. Additionally, the depth maps were spatially and temporally

filtered using the Intel Realsense SDK 2.0. Default ASV settings were used in the Intel

Realsense Viewer application. Notably, the image resolution was set to 240 × 424 because of the

Intel Realsense Viewer would crash at higher resolutions likely due to memory limitations.

129

Figure 7.7 Plot of the tidal volume and dynamic compliance of the porcine lung during ventilation from

the Draeger Evita XL obtained using Vital Signs Capture

The Draeger Evita XL measurements and set variables were recorded using a laptop running the

Vital Signs Capture software in its real time mode, updating measurements every second. This

includes tidal volume and dynamic compliance, as seen in Figure 7.7. The data was exported as

three csv tables, listing information against timestamps, including ventilation mode, monitored

metrics, and settings. Draeger Evita XL measurements did not include pressure or volume;

however, PIP and PEEP were recorded.

Data was acquired from the Intel RealSense D435 and the Draeger Evita XL for several

experiment cases with different ventilation settings. Experiment cases were designed to test the

regional measurements and provide a larger range of values than the study in Chapter 6.

130

Table 7.1 Porcine lung experiment cases

Case Experiment Type Tidal Volume [mL/kg] Tidal Volume [mL]

1 Steady state 4 300

2 Steady state 6 450

3 Steady state 8 600

4 Gradual Fall 8,7,6,5, and 4 600, 520, 450, 380, and 300

5 Gradual Rise 4,5,6,7, and 8 300, 380, 450, 520, and 600

6 Switch 4 to 8 to 4 … 300 to 600 to 300 …

Tidal volume was the only ventilation parameter to change between and within the six

experiment cases, as seen Table 7.1. As mentioned in Chapter 6, it was assumed that only tidal

volume would meaningfully change the measurements of the Intel RealSense D435, because it

only measures the physical displacement of the porcine lung.

For cases 1, 2, and 3, the ventilation tidal volume remained constant to measure baseline

performance. The tidal volume settings were selected based on the weight of the lung donor,

which is common practice for mechanical ventilation [22], [142]. Typically, human lungs are

ventilated with a low tidal volume between 6-8 mL per kg donor weight [142], with 12-15 mL

per kg as a historic high [22]. These ventilation limits were used as a reference when the tidal

volume levels were selected to avoid visual under inflation and over inflation of the porcine lung.

Therefore, the tidal volume setting was found by multiplying the weight of the donor, 75 kg, by a

tidal volume per weight.

The tidal volume changed within the other three experiment cases to measure changes in

performance. They were designed to collect data to measure a wide range of tidal volume values,

and measure changes with time. For Case 4 the tidal volume gradually decreased from 8 mL/kg

to 4 mL/kg in 1 mL/kg increments, as seen in Table 7.1. Case 5 is the reverse of case 4, where

the tidal volume was increased gradually from 4 mL/kg to 8 mL/kg. In case 6, the tidal volume

was switched between 4 mL/kg and 8 mL/kg without incremental steps.

Since the Draeger Evita XL is controlled by setting a discrete target tidal volume, the tidal

volume was manually changed for each increment in the experiment cases. However, the

ventilator was found to take approximately 45 seconds to reaches a new target tidal volume after

changing the setting. Therefore, data was recorded for about five minutes for each case, spending

about 45 seconds at each tidal volume level when multiple levels existed.

131

Table 7.2 Porcine lung ventilator settings

Parameter Setting

Inspiratory Time, [s] 2.0

f, [bpm] 8.0

Slope, [-] 0.90

PEEP, [cmH20] 10

O2, [%] 21

These experiment cases were implemented by using the CMV auto-flow ventilation mode on the

Draeger Evita XL. The CMV mode is entirely mechanical ventilation that strives to achieve set

variables, while regulating others. The set variables include tidal volume, inspiratory time,

breathing rate, slope, PEEP, and O2 concentration by percentage. The set variables, except for

tidal volume, remained the same between all experiment cases, as outlined in Table 7.2. Notably,

the O2 concentration setting was irrelevant because only pressurized air was connected to the

Draeger Evita XL.

Typically, the ventilator is connected to pressurized medical grade oxygen and carbon dioxide

using a gas mixer. The ventilator regulates this input airflow to achieve desired pressures or tidal

volumes. However, for this experiment the ventilator was connected to pressurized air, and

atmospheric air to simply pressurize the lungs, and achieve physiological displacement during

breathing. Both medical grade oxygen and carbon dioxide were not needed or available, to

achieve porcine lung displacement and gas exchange in tandem with blood perfusion.

 Image Processing Scheme for Clinical Cases

 Color Image and Depth Map Segmentation

In chapter 4, an edge-based method was used to segment the ventilator test lung, however, it was

not re-used for the porcine lung. It was hypothesized that the edge-based method would fail to

segment the porcine lung because its edges are not distinct in the depth map, as seen in Figure

7.6 (b). Also, the edge-based method in Chapter 6 was found to be dependent on depth holes

caused by occlusion to separate the lung and the background, which the porcine lung depth maps

lack. As an alternative, a region-based segmentation method was tested on the depth maps.

However, this method was found to be inconsistent because the porcine lung and EVLP

132

trampoline are found at similar depths. Therefore, the other image streams from the Intel

RealSense D435 were considered for segmentation.

The color image stream was the natural choice as an alternative image to segment the porcine

lung. The edge and regions between the porcine lung and background are distinct based on color,

as seen in Figure 7.6 (a). Therefore, both edge-based and region-based image segmentation

methods were feasible. Also, projective transformation was performed on the depth maps to

align them with the color images. Since they are aligned, the porcine lung will be in the same

pixel locations in both images. Therefore, the segmentation binary map obtained from a color

image can be used directly to segment the depth maps.

Through trial and error, the lazy snapping segmentation method was selected to segment the

porcine lung in the color images. As described in Chapter 5, lazy snapping is a semi-automatic

region-based method that segments an image into a foreground and background. It requires seed

locations for the foreground and background that are interactively drawn shapes on top of the

image.

133

Figure 7.8 Annotated color image from the Intel RealSense D435 of the porcine lung with interactively

marked foreground and background for segmentation

Foreground and background seed regions were interactively drawn on the color images, as seen

in Figure 7.8. The foreground seed region is centered on and only includes the porcine lung. The

background seed region selects the entire left side of the color image, not including the porcine

lung. This section of the image includes the floor, EVLP trampoline and chamber, and the

intubated airway connection. The foreground and background are only drawn once and reused to

segment all color images in an experiment case.

To improve lazy snapping segmentation, the color images are contrast enhanced using histogram

equalization [100], and the unsharp mask technique [100] to create more distinct edges. Also, the

color images were oversegmented into sub-regions to improve computational performance [107].

Foreground

Background

134

Figure 7.9 Color image of the porcine lung oversegmented into super pixels

Oversegmentation was performed on the color images using the super pixels method, which are

semi-large groups of similar pixels [143], [144], as seen in Figure 7.9. Instead of lazy snapping

each pixel, the method evaluates each super pixel as part of the foreground or background.

Notably, the super pixels have edges that follow the perimeter of the lung, and other objects.

(a) b)

Figure 7.10 Image of a binary map segmented from the porcine lung color images (a) before and (b) after

morphological closing

The porcine lung was segmented using lazy snapping with the super pixels on the color images,

providing a binary map of the lung, as seen in Figure 7.10 (a). The binary lung retained the shape

of the super pixels, which is visible along the lung’s perimeter. However, the super pixels only

135

roughly match the outline of the porcine lung, creating spurs in the binary map. Also, the blood

on the EVLP trampoline seen in Figure 7.8 was segmented along with the lung. To correct for

these errors the binary maps were post-processed using four steps:

1. Object removal

2. Hole filling

3. Morphological smoothing

4. Temporal smoothing

In the first step, all bodies were removed from the binary maps, except the largest that was

assumed to be the porcine lung. This step removed speckles of blood that were on the EVLP

trampoline. However, this did not remove the blood right beside the lung. The second step was to

fill any holes in the remaining body.

The third and fourth steps performed spatial and temporal smoothing, like the Intel RealSense

SDK depth map filters. Spatial smoothing was performed using morphological closing with a

circle structural element. This smoothed the perimeter of the porcine lung in the binary maps,

removing the green pixels in Figure 7.10 (b).

(a) (b)

Figure 7.11 Image of a binary map segmented from the porcine lung color images (a) after temporal

filtering and (b) the original color image segmented by the binary map

Temporal smoothing was performed by finding the pixel-wise average across multiple binary

maps, forming an image, then binarizing the result by thresholding. This method was used in

Chapter 6.

136

The temporal smoothing process is repeated for all the binary maps with a moving window that

selects images. If the sampling rate is known, the moving window size, moving average values,

and threshold can be viewed in terms of seconds instead of frames. As a result, the binary maps

only retain pixels that are consistently segmented, removing the magenta pixels in Figure 7.11

(a). These three parameters were adjusted through trial and error to obtain acceptable results. The

temporally smoothed binary maps can be used to segment the porcine lung in the color images as

seen in Figure 7.11 (b).

(a) (b)

Figure 7.12 Images of (a) the depth thresholded binary map of the porcine lung and (b) the depth map

masked by the threshold binary map

To use the binary maps on the depth maps, pixels below a threshold in the depth maps are

removed from binary maps. This step mostly removes pixels with depth holes, as seen in Figure

7.12 (a) and (b). The depth threshold was measured before the experiment, as the distance from

the Intel RealSense D435 to the EVLP trampoline.

 Point Cloud Processing

The same procedure described in Chapter 6.3.2 was performed on the porcine lung data.

137

(a) (b)

Figure 7.13 3D plot of the reconstructed surface of the porcine lung as (a) point cloud and (b) the point

cloud colorized using the color images

The segmented depth maps were deprojected into point clouds, providing points on the surface

of the porcine lung, as seen in Figure 7.13 (a). Also, the color image data was inherited by the

point cloud, allowing the point cloud to be colored as seen in Figure 7.13 (b).

(a) b)

Figure 7.14 3D plots of the downsampled and transformed porcine lung (a) point cloud and (b) colored

point cloud

The point clouds were downsampling using a box averaging filter to make it sparser, remove

outliers, and denoise the surface. Also, the point clouds were transformations to align the point

clouds with the EVLP trampoline, as see in Figure 7.14 (a) and Figure 7.14 (b).

138

 Surface Reconstruction of the Porcine Lung

Figure 7.15 Plot of the surface map of the porcine lung

The porcine lung’s surface was reconstructed from its point clouds, as described in Chapter 5.

The spatial and color information was interpolated at the same grid points on the xy plane, for all

frames from the down sampled point clouds, as seen in Figure 7.15.

139

Figure 7.16 3D Plot of the Delaunay triangulation meshed surface map of the porcine lung

The interpolated points were meshed using Delaunay triangulation. Since the query grid points’ x

and y coordinates are constant between frames, the mesh is constant between frames, as seen in

Figure 7.16.

(a) (b)

Figure 7.17 Plots of (a) the colored surface map of the porcine lung as a 2D plot and (b) 3D plot

The surface map can be colored using the interpolated color information, as seen in Figure 7.17

(a) and (b). The surface maps can be treated like images, allowing arithmetic operations within

and between frames, thus digital image processing. Also, the surface maps can be used to

measure whole lung plethysmography measurements such as displacement using the Divergence

Theorem.

140

 Plethysmography Measurements of a Porcine Lung

Figure 7.18 Plot of the ASV displacement of the porcine lung sampled from case 1

The same processing method described Chapter 5 and implemented in Chapter 6 were used to

derive plethysmography measurements from the interpolated surfaces of the porcine lung. The

volume, or displacement, of the porcine lung was estimated using the Divergence Theorem

described in Chapter 5. From this signal, the inhale and exhale local extrema points can be

segmented using the second derivative zero-crossing method. Figure 7.18 is the estimated

volume of the porcine lung from the interpolated surfaces, with the segmented inhale-exhale

local extrema points. This allows for the calculation of metrics such as tidal volume, and

inspiratory time.

141

Figure 7.19 Plot of the ASV and ventilator porcine lung tidal volume and dynamic compliance of case 1

The Draeger Evita XL PIP and PEEP measurements were used to calculate dynamic compliance

from the tidal volume measurements. To combine the ventilator and Intel RealSense D435

measurements, the ventilator measurements were interpolated to match the timestamps of the

Intel RealSense D435 data, as seen in Figure 7.19. Notably, the PIP and PEEP were constant for

the steady state experiment cases, explaining the similarity between the calculated tidal volume

and dynamic compliance. The results showed that the ASV method had significantly more

variance than the ventilator, as seen in Figure 7.19.

142

Figure 7.20 Plot of the cyclic average displacement of the porcine lung of case 1

The baseline performance of the porcine lung was measured as a cyclic average of the

displacement signal, as seen in Figure 7.20. This processing scheme averages all the segmented

breaths, into an averaged volume relative to a normalized time within a cycle. These results

characterized the porcine lung displacement to measure deviations in performance.

143

Figure 7.21 Plot of the displacement and cyclic average deviation of the porcine lung from case 1

The change in performance of the porcine lung can be tracked by measuring the deviation from

the cyclic average displacement. This deviation was found using compare_to_avg_cycle() in

Appendix B. As seen in Figure 7.21, this deviation provides feedback like a trend line, but allows

the user to understand if the lung is under or over performing relative to its average

displacement. In general, this trend line showed the same ventilation patterns for each case as

described in Table 7.1.

 Regional Measurements of a Porcine Lung

The interpolated surfaces, in Chapter 7.3.3, were used to measure shape change of the porcine

lung. They were used to create surfaces that effectively measure standard plethysmography

measurements like tidal volume and dynamic compliance.

144

Figure 7.22 3D plot of surface tidal displacement of the porcine lung from case 1

The surface tidal displacement of the porcine lung was found as the difference between surface

maps, as seen in Figure 7.22. For most cases, the porcine lung was found to have a consistent

surface tidal displacement shape, as the magnitude in displacement increased with ventilation

tidal volume. These surfaces indicated that the porcine lung had generally uniform regional

displacement except for the peaks of the left and right lung lobes in yellow, and the local minima

in blue that are likely artifacts caused by horizontal motion of the entire lung.

The surface dynamic compliance was found by scaling the surface tidal displacement by the

difference of the PIP and PEEP. The performance and health of the lung for a region, can be

measured by the surface dynamic compliance.

145

(a)

(b) (c)

Figure 7.23 Plots of (a) the surface deviation from cyclic average displacement of the porcine lung from

case 1 for peak detection (a) as an image and (b) as a surface mesh

The surface deviation, seen in Figure 7.23 (a), from the surface cycle average displacement of

the porcine lung was found using the method described in Chapter 5. The surface tidal

displacement and deviation were checked for local minima and maxima to identify potential

locations of over and under inflation. In case 1, a local maxima was found in the surface

deviation marked as red in Figure 7.23 (b) and (c), where blue indicates not a minima or maxima.

These results indicate that the porcine lung may have localized over-inflation.

146

 Comparison of Measurements

The same method comparison analysis in Chapter 6.4 was used with the porcine lung

measurements. The ASV method was evaluated based on measurement distribution, correlation,

and agreement.

Unlike Chapter 6, data was collected from transient state cases, in which the tidal volume setting

changed periodically. These transient cases provided a range of measurements that were valid for

correlation and agreement analysis, which was a limitation in Chapter 6.4 . Also, the study was

limited to only comparing tidal volume and dynamic compliance measurements.

 Preparation of Measurements for Comparison

The inspiratory tidal volume and dynamic compliance were the only measurements used to

compare the two methods. As previously mentioned, the VSCapture software did not record any

other mutual measurements. Also, it did not record pressure, volume, or flow rate that could have

been used to derive other plethysmography metrics.

The six experiment cases were analyzed individually, and as two groups. The steady state group

was comprised of cases 1, 2, and 3, while the transient state group was cases 4, 5, and 6. Some

cases or groupings were omitted depending on the analysis step. Invalid measurements, such as

NAN and INF values in MATLAB, were removed before any analysis. Also, VSCapture

recorded less measurements, one per breath, than the Intel RealSense Viewer, despite VSCapture

and Intel Realsense Viewer starting data acquisition at the same time. This means some

measurements from the ventilator were missing, so there are unpaired ASV measurements. To

correct for this error, the unpaired measurements were removed from all analysis.

 Measurement Distribution of the ASV and Ventilator Systems

The measurement behavior of the ASV and ventilator systems were evaluated and compared for

each experiment case. Specifically, their measurement means were compared to the tidal volume

setting, and each other. Also, the ASV method’s repeatability was evaluated by measuring its

standard deviation. Kurtosis and skewness, accompanied by tailedness and symmetry, of the two

systems were found to identify any tendencies. These findings were compared to observations

147

made from their histograms and probability plots. Lastly, the data sets were checked for

normality using the Shapiro-Wilk tests.

Table 7.3 Measurement distribution mean error of the ASV and ventilator systems for the porcine

lung

Experiment

Case

Inspiratory Tidal

Volume Setting,

VTi [mL]

VTi Mean [mL] Error Relative to VTi Setting [%]

ASV Ventilator ASV Ventilator ASV - Ventilator

1 300 291.99 300.21 -2.67 0.07 -2.74

2 450 607.57 480.96 35.02 6.88 26.38

3 600 920.54 627.70 53.42 4.62 48.81

4 450 772.57 505.35 71.68 12.30 59.38

5 450 665.20 443.16 47.82 -1.52 49.34

6 450 725.53 471.80 61.23 4.84 56.38

To evaluate the accuracy of the VSCapture measurements, its means were compared to

ventilation tidal volume set for each steady state case. The relative error for cases 1, 2, and 3

suggest that the VSCapture measurements are overestimating, or the ventilation is overshooting

by 5%, as seen in Table 7.3. This suggests the ventilator measurements are close to the true

values and can be used to evaluate the ASV method. In comparison, the ASV’s error suggests it

has error up to 50% and proportional bias, since error increases with ventilation tidal volume.

The mean error analysis was performed on the transient cases as well.

Since the ventilation tidal volume changes within each transient case, the median of the

ventilation setting range, 450 mL, was approximated as its mean. This assumption should be

valid if the porcine lung was ventilated at each tidal volume setting for the same duration. The

error for the transient cases showed no pattern, except that the ventilator has much lower error

than the ASV, as seen in Table 7.3.

148

Table 7.4 Mean and standard deviation of the porcine lung tidal volume and dynamic compliance

measurements from the ASV and ventilator for all experiment cases

Parameter
Experiment

Case

Mean Standard Deviation

ASV Ventilator Error [%] ASV Ventilator Error [%]

Inspiratory

Tidal

Volume,

VTi [mL]

1 291.99 300.21 -2.74 14.46 2.69 438.10

2 607.57 480.96 26.32 55.58 2.28 2335.03

3 920.54 627.70 46.65 65.91 3.64 1710.56

4 772.57 505.35 52.88 199.77 115.28 73.30

5 665.20 443.16 50.11 204.01 116.52 75.08

6 725.53 471.80 53.78 232.00 133.69 73.53

Inspiratory

Dynamic

Compliance,

Cdyni

[mL/cmH20]

1 20.86 24.18 -13.73 1.03 0.22 378.17

2 24.34 20.77 17.18 2.22 0.23 859.54

3 23.58 17.68 33.35 1.70 0.14 1143.44

4 31.27 22.67 37.92 5.97 4.25 40.34

5 32.04 24.34 31.64 7.05 4.30 64.06

6 30.94 23.26 33.04 7.04 5.00 40.64

The mean and standard deviation error was measured for tidal volume and dynamic compliance

between the ASV and ventilator measurements for all individual cases, as seen in Table 7.4. The

steady and transient state case mean error results suggest the ASV system has a large mean

offset, between 30% and 50% error. Also, the steady state case error increases with ventilation

tidal volume, indicating proportional bias for both metrics. These results match the results in

Table 7.3.

The standard deviation errors suggest the ASV has poor repeatability relative to the ventilator,

since it is up to 20 times greater, as seen in Table 7.4. Also, the ASV system was observed to

have proportional standard deviation, unlike the ventilator system.

Overall, the errors suggest the ASV has significant error and proportional bias. Also, the tidal

volume mean errors were greater than the dynamic compliance, but this is the reverse for

standard deviation errors. Lastly, case 1 always had the lowest error for each metric and

parameter combination.

149

Table 7.5 Shapiro Wilk hypothesis test for normality and p-value for the measurement distribution of

inspiratory tidal volume and dynamic compliance of the porcine lung

Experiment Case
Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni

ASV Ventilator ASV Ventilator

1 ✓  ✓ 

2    ✓

3 ✓ ✓  ✓

4    

5    

6    ✓

To identify any measurement tendencies, Shapiro-Wilk hypothesis tests checked the

measurement distributions for normality, as seen in Table 7.5. Most experiment cases were non-

normal with a few exceptions that showed no patterns.

Table 7.6 Kurtosis and skewness of the porcine lung tidal volume and dynamic compliance measurements

from the ASV and ventilator for all experiment cases

Parameter
Experiment

Case

Excess Kurtosis Skewness

ASV Ventilator Error [%] ASV Ventilator Error [%]

Inspiratory

Tidal

Volume,

VTi [mL]

1 -0.43 -0.82 -47.15 -0.06 -0.35 -83.37

2 2.99 2.23 34.24 1.77 -0.75 -337.42

3 2.70 -0.48 -664.99 -0.72 0.04 -1728.33

4 -1.41 -1.26 11.69 -0.20 -0.34 -40.93

5 -1.04 -1.34 -22.33 0.19 0.28 -31.71

6 -1.60 -1.71 -6.60 0.07 -0.01 -765.14

Inspiratory

Dynamic

Compliance,

Cdyni

[mL/cmH20]

1 -0.43 0.87 -149.93 -0.06 1.01 -105.80

2 2.95 -0.49 -703.43 1.75 -0.09 -2061.14

3 2.50 0.02 10354.64 -0.68 -0.42 62.02

4 0.81 -0.92 -187.29 1.21 0.55 120.80

5 0.62 -1.42 -143.41 0.88 -0.03 -3194.69

6 -0.18 -1.71 -89.60 0.40 0.19 102.93

Kurtosis and skewness were measured for tailedness and symmetry to compare with any trends

observed in the histograms and probability plots. Excess kurtosis and skewness measurements, as

seen in Table 7.6, which shows the ASV would tend to have more outliers and is more left-tailed

than the ventilator since it has higher values for both metrics. Also, these results suggest that the

ASV deviates more from normality than the ventilator.

150

Table 7.7 Tailedness and symmetry of the porcine lung tidal volume and dynamic compliance

measurements from the ASV and ventilator for all experiment cases

Parameter
Experiment

Case

Tailedness Symmetry

ASV Ventilator ASV Ventilator

Inspiratory

Tidal Volume,

VTi [mL]

1 Mesokurtic Mesokurtic Symmetric Symmetric

2 Leptokurtic Leptokurtic Left-Tailed Symmetric

3 Leptokurtic Mesokurtic Symmetric Symmetric

4 Platykurtic Platykurtic Symmetric Symmetric

5 Platykurtic Platykurtic Symmetric Symmetric

6 Platykurtic Platykurtic Symmetric Symmetric

Inspiratory

Dynamic

Compliance,

Cdyni

[mL/cmH20]

1 Mesokurtic Mesokurtic Symmetric Left-Tailed

2 Leptokurtic Mesokurtic Left-Tailed Symmetric

3 Leptokurtic Mesokurtic Symmetric Symmetric

4 Mesokurtic Platykurtic Left-Tailed Symmetric

5 Mesokurtic Platykurtic Symmetric Symmetric

6 Mesokurtic Platykurtic Symmetric Symmetric

When each case is classified by excess kurtosis and skewness, as seen in Table 7.7, it shows that

the ASV and ventilator have similar tailedness and symmetry. One of the few exceptions is the

ASV’s dynamic compliance tailedness for the transient cases, which is oddly mesokurtic or has a

similar tailedness to a normal distribution.

151

(a) (b)

(c) (d)

Figure 7.24 Probability plots and histograms of the inspiratory tidal volume measurement distribution

from the ventilator(a) and b) and ASV (c) and (d) system from experiment case 1

152

The probability and histogram plots suggest the ASV and ventilator have three main differences,

as seen in Figure 7.24. Firstly, the systems had different measurement distribution shapes, for the

same parameter and experiment case. Secondly, the ASV measurements deviated from normality

more than the ventilator based on the probability plots, but most did not appear to be normally

distributed. Thirdly, the two systems had significant mean offset and different ranges for the

same parameter. Of all these observations, most concur with the previous distribution analysis

steps.

In this sub-section the ASV and ventilator measurement distributions were evaluated and

compared in several different analysis. First, the distribution means and standard deviations were

measured, and when compared suggests that the ASV has a large amount of dispersion, mean

offset, and proportional bias. Next, normality was tested for using Shapiro-Wilk hypothesis tests

that found most were not normal with no pattern. Excess kurtosis and skewness were measured,

which found the ASV system to be most likely leptokurtic and left-tailed for steady state cases,

while both systems were typically symmetric. Lastly, the distributions were visualized using

histograms and probability plots to observe any measurement tendencies, which matched the

results of the other analysis steps.

 Correlation and Linearity of the ASV and Ventilator System

Correlation was measured between the ASV and ventilator measurements. A high correlation

would indicate the ASV system measures the same changes as the ventilator. However,

correlation does not indicate they have a relationship. Therefore, the methods were evaluated for

linearity, checked using a modified Kolmogorov-Smirnov cumulative sum test. In case they have

a linear relation, the slope and intercept were found using Passing-Bablok regression. Also, the

confidence interval of the slope and intercept were used to identify if the methods have

significant systematic and proportional bias. The regression models were evaluated with residual

plots.

153

Table 7.8 Pearson correlation coefficient, correlation and linearity statistical significance of the

porcine lung tidal volume and dynamic compliance measurements from the ASV and ventilator

systems

Experiment

Case

Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni

Pearson

Correlation

Coefficient

Correlation

Significant

Linearity

Significant

Pearson

Correlation

Coefficient

Correlation

Significant

Linearity

Significant

1 0.19   -0.28  ✓

2 -0.08  ✓ 0.14  ✓

3 0.34 ✓ ✓ 0.21  ✓

4 0.95 ✓ ✓ 0.85 ✓ 

5 0.89 ✓  0.61 ✓ 

6 0.88 ✓ ✓ 0.78 ✓ 

Steady

(1,2,3)
0.98 ✓  -0.47 ✓ 

Transient

(4,5,6)
0.91 ✓ ✓ 0.73 ✓ 

The Pearson correlation coefficient was calculated for each experiment case, followed by a

hypothesis test for a non-zero correlation coefficient, as seen in Table 7.8. These results found

that all the individual and combined transient cases had high correlation coefficients that were

statistically significant. One exception was the combined steady state case for dynamic

compliance that had a negative Pearson coefficient. Also, it was observed that the dynamic

compliance Pearson coefficients were lower than the tidal volume coefficients for the same

cases. These results suggest that the ASV and ventilator systems are correlated and are

measuring the same phenomenon. Notably, the steady state cases had low correlation coefficients

and insignificant correlation, as seen in Table 7.8. This may be due to the large difference in

variance between the ASV and ventilator that was measured in Chapter 7.4.2.

The modified Kolmogorov-Smirnov linearity tests found that most experiment cases were linear,

as seen in Table 7.8. However, there does not seem to be any pattern to linearity, except that all

the dynamic compliance transient cases were non-linear.

These results suggest only the tidal volume for case 4, 6, and the combined transient cases are

linear and are strongly correlated. In general, these results are unexpected, as the tidal volume

and dynamic compliance properties do not match. Interpreting the regression models and plots

may explain these results.

154

Table 7.9 Passing-Bablok regression slope and intercept, and coefficient of determination, for steady and

transient state cases for inspiratory tidal volume and dynamic compliance of the porcine lung

Parameter Case R2 Slope
Slope 95%

Confidence Interval
Intercept

Intercept 95%

Confidence Interval

Inspiratory

Tidal

Volume,

VTi [mL]

1 -0.29 0.14 0.07 0.23 259.10 233.12 279.76

2 0.01 0.00 -0.01 0.00 482.10 477.96 488.16

3 -4.28 44.01 27.42 94.75 -26693.5 -58552.82 -16282.66

4 0.87 1.86 1.70 2.00 -191.36 -267.78 -97.81

5 0.76 1.92 1.74 2.09 -188.70 -262.33 -97.12

6 0.72 1.83 1.60 2.07 -111.45 -235.87 -9.70

Steady

(1,2,3)
0.95 2.10 2.02 2.19 -380.10 -438.16 -333.74

Transient

(4,5,6)
0.81 1.83 1.74 1.93 -152.84 -198.62 -102.22

Inspiratory

Dynamic

Compliance,

Cdyni

[mL/cmH20]

1 -0.19 0.03 -0.01 0.10 23.46 21.94 24.43

2 -0.12 0.05 0.02 0.09 19.54 18.59 20.38

3 -9.97 41.85 22.31 226.36 -716.90 -3982.55 -370.74

4 0.72 1.30 1.09 1.50 1.92 -2.36 6.12

5 0.13 1.53 1.19 1.82 -3.09 -9.95 4.01

6 0.43 1.60 1.25 2.09 -4.95 -15.69 2.65

Steady

(1,2,3)
-0.70 0.41 0.15 0.79 14.96 7.47 20.05

Transient

(4,5,6)
0.45 1.41 1.26 1.58 -0.82 -4.26 2.72

Passing-Bablok regression was performed on the paired measurements of tidal volume and

dynamic compliance for all individual and combined cases, as seen in Table 7.9. The coefficient

of determination, slope, intercept and the 95% confidence intervals for the slope and intercept

were measured for each regression model.

The coefficient of determinations shows that only the transient and combined case models for

tidal volume reasonably fit the data. Of the other models, the individual static cases had the worst

coefficient of determination that were either negative or near zero. These findings indicate a

horizontal line would fit the data better than the regression models. The large difference in

variance between the ASV and ventilator, measured in Chapter 7.4.2, in the static cases are likely

the cause of the low coefficient of determination.

The regression model slopes and intercepts show the tidal volume and dynamic compliance

measurements have the same trends. This behavior is unexpected, since dynamic compliance is

155

derived from tidal volume. Also, the transient case models have similar slopes and intercepts,

suggesting these models are measuring the same repeatable phenomenon.

The slope and intercept confidence intervals indicate that there is systematic and proportional

bias. Specifically, the slope confidence intervals never included one, and the intercept confidence

intervals never included zero. The slope and intercept values are estimates of these biases, but do

not explain why this relationship exists. Therefore, the regression plots were interpreted to

explain the trends seen in Table 7.9.

Figure 7.25 Plot of Passing-Bablok regression between the ventilator and ASV systems measurements of

inspiratory tidal volume of the porcine lung during experiment case 1

The individual steady case Passing-Bablok regression plots show that these models were invalid,

as seen in Figure 7.25. This occurred in Chapter 6 for the same reason, because they do not

measure a wide range, and the ASV’s measurement variance forms vertical lines. Passing-

Bablok regression is not equipped to handle this type of data, but they had linearity because they

formed a vertical line. Therefore, this data produces invalid regression models with poor Pearson

correlation and coefficient of determination.

156

Figure 7.26 Plot of Passing-Bablok regression between the ventilator and ASV systems’ measurements of

inspiratory tidal volume of the porcine lung from experiment case 1, 2, and 3

The tidal volume combined steady case model had the highest Pearson correlation coefficient

and coefficient of determination, despite the individual cases having poor performance. Its

regression plot shows the trend line passes through the center of each cluster, from the individual

cases, as shown in Figure 7.26. Despite the high dispersion along the y-axis, which seems to be

proportional, the model is linear. Also, the slope could be lower because the trend line passes

through the bottom of the first cluster. If this is the case, this model would be closer to the

transient state case regression models.

157

Figure 7.27 Plot of Passing-Bablok regression between ventilator and ASV inspiratory dynamic

compliance of the porcine lung from experiment cases 1, 2, and 3

The dynamic compliance regression plot, shown in Figure 7.27, explains the odd behavior seen

in Table 7.9. The ASV does not measure any significant change in dynamic compliance between

individual steady state cases, while the ventilator does. It is likely the Passing-Bablok regression

was unable to make a suitable model for this horizontal relationship that conflicts with the linear

relationships seen in the transient case regression plots. It is unclear why the ASV did not

measure change in dynamic compliance with the ventilator.

158

Figure 7.28. Plot of Passing-Bablok regression between the ventilator and ASV inspiratory tidal volume

of the porcine lung from experiment cases 4, 5, and 6

The individual and combined transient cases have acceptable correlation and coefficient of

determination in Table 7.9. The combined transient case regression plot shows that the ventilator

and ASV indeed follow a linear relationship with a relatively tight dispersion, Figure 7.28. The

regression model slopes and intercepts indicate systematic and proportional bias, where the ASV

overestimates tidal volume relative to the ventilator.

159

Figure 7.29 Plot of Passing-Bablok regression between the ventilator and ASV inspiratory dynamic

compliance of the porcine lung from experiment case 4, 5, and 6

The regression plot for the combined transient case dynamic compliance explains why it has a

poor coefficient of determination and correlation coefficient. The data points fan out from a

single point to a vertical line at the minima and maxima along the x-axis, as seen in Figure 7.29.

The other dynamic compliance regression plots have a similar proportional dispersion. Also, the

datasets seem to outlier data points near and outside the 95% confidence interval that decreases

the fit of the models. The regression residual plots were examined to confirm these points are

outliers, and any trends, to further evaluate the fit of the models.

160

Table 7.10 Passing-Bablok regression residual means of the porcine lung tidal volume and dynamic

compliance

Experiment

Case

Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni

Residual [mL]
Normalized

Residual [%]

Residual

[mL/cmH20]

Normalized

Residual [%]

1 -0.10 -0.03 0.06 0.28

2 0.00 0.00 -0.03 -0.11

3 -11.27 -0.07 0.30 0.05

4 23.92 0.35 -0.22 -0.07

5 4.60 0.05 -2.37 -0.40

6 -27.17 -0.23 -1.42 -0.28

Steady (1,2,3) -1.78 -0.03 -0.43 -0.15

Transient (4,5,6) 4.88 0.05 -0.94 -0.20

The residuals between the regression model predictions and the ASV measurements were used

evaluated the fit of the models to the data. The residual means were measured, as seen in Table

7.10. Also, the residual means were normalized to allow comparison between the tidal volume

and dynamic compliance models.

The regression models do not perfectly fit the data, based on the residual means. For most cases,

the residual means were not near zero that indicates the distributions are above or below the

trend lines. The only pattern shown in the table is that the steady state cases tended to have lower

residual means than the transient cases. Also, based on the normalized residual means the

dynamic compliance models fit the data less than the tidal volume measurements. The residual

plots were examined to identify any trends to better understand residual distribution.

161

Figure 7.30 Plot of the inspiratory tidal volume Passing-Bablok regression residuals versus model

predictions of the porcine lung for experiment case 4, 5, and 6

In general, the residual plots show the regression models passed through the center of the

residual distributions, as seen in Figure 7.30. Also, the residual plots have outliers, points far

away from the mean that are likely caused by the dispersion of the ASV measurements. Case 3

was the only exception, which had a linear trend. However, this is not significant considering

that the steady state cases have invalid models because these cases do not measure performance

over a range of tidal volumes.

In summary, the ASV and ventilator were found to have high correlation and linearity for tidal

volume and dynamic compliance measurements for all transient state cases. Also, the regression

plots indicate that the methods have significant systematic and proportional bias. These results

suggest that the ASV method is measuring changes in the porcine lung with respects to

ventilation. However, the ASV method is not equivalent to the ventilator’s measurement system

due to systematic and proportional bias.

162

 Agreement of the ASV and Ventilator System

Agreement was measured between the ASV and ventilator measurement systems using intra-

class correlation. Good agreement would suggest that the ASV system measurements are

equivalent to the ventilator system. This was followed by checking if the difference in the ASV

and ventilator paired measurements are normally distributed, a prerequisite for Bland-Altman

analysis. The mean bias and limits of agreement from the Bland-Altman analysis were used to

evaluate the agreement between the systems and if systematic bias exists.

Table 7.11 Intra-Class Correlation of the ASV and ventilator system measurements of the porcine lung

Experiment

Case

Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni

Intra-Class

Correlation

p-

value

Significant

ICC

Intra-Class

Correlation
p-value

Significant

ICC

1 0.05 0.28  -0.01 0.74 

2 -1.08E-03 0.52  8.26E-03 0.40 

3 1.82E-03 0.38  2.56E-03 0.39 

4 0.35 0.14  0.34 0.14 

5 0.41 0.12  0.29 0.10 

6 0.40 0.12  0.41 0.10 

Steady (1,2,3) 0.64 0.02 ✓ -0.34 0.99 

Transient (4,5,6) 0.39 0.12  0.34 0.12 

Intra-class correlation was measured for each individual and combined case, followed by a

hypothesis test for significance, shown in Table 7.11. These results indicate only the combined

steady state case had a statistically non-zero intra-class correlation of 0.64. All the other cases

had statistically insignificant intra-class correlations that were below 0.41, with most of the

steady state cases having a near zero value. These results strongly suggest that the ASV and

ventilator systems have poor or no agreement.

163

Table 7.12 Shapiro-Wilk normality test of ASV and ventilator error

Experiment Case
Inspiratory Tidal Volume, VTi Inspiratory Dynamic Compliance, Cdyni

Normality p-value Normality p-value

1 ✓ 0.89 ✓ 0.64

2  6.09E-08  3.43E-08

3  2.34E-04  3.24E-04

4  5.21E-03  2.91E-05

5  5.98E-03  2.90E-02

6 ✓ 0.08 ✓ 0.06

Steady (1,2,3)  6.98E-10  3.99E-08

Transient (4,5,6)  1.34E-03  2.45E-05

The normality of the difference between the paired measurements from the ASV and ventilator

was found using Shapiro-Wilk hypothesis tests, as seen in Table 7.12. The tests found that the

differences were normal for only case 1 and case 6, for both tidal volume and dynamic

compliance. This means that it is possible the Bland-Altman analysis limits of agreement are

invalid for all cases, except for case 1 and 6. Despite this, Bland-Altman analysis was performed.

Table 7.13 Bland Altman of the tidal volume and dynamic compliance measurements from the ASV and

ventilator system for the porcine lung

Parameter
Experiment

Case

Residual

Mean

Residual Mean 95% CI Limit of Agreement

Lower Upper Lower Upper

Inspiratory

Tidal

Volume,

VTi [mL]

1 -8.23 -11.01 -5.44 -36.05 19.59

2 126.61 116.41 136.80 17.22 235.99

3 292.03 279.81 304.24 165.04 419.02

4 267.22 249.14 285.30 75.57 458.87

5 223.24 203.37 243.11 0.95 445.52

6 253.72 223.46 283.99 -4.12 511.57

Steady (1,2,3) 140.32 126.13 154.51 -116.80 397.44

Transient (4,5,6) 246.36 233.78 258.93 22.95 469.76

Inspiratory

Dynamic

Compliance,

Cdyni

[mL/cmH20]

1 -3.32 -3.54 -3.10 -5.50 -1.14

2 3.57 3.17 3.97 -0.74 7.87

3 5.88 5.56 6.19 2.58 9.17

4 8.60 8.00 9.19 2.29 14.91

5 7.54 6.58 8.50 -3.23 18.31

6 7.69 6.66 8.71 -1.05 16.42

Steady (1,2,3) 2.21 1.76 2.67 -6.03 10.46

Transient (4,5,6) 7.96 7.45 8.46 -16.84 0.93

The mean, the 95% confidence intervals of the means, and limits of agreement were measured

from the Bland-Altman analysis for all cases, as seen in Table 7.13. All the means were found to

be positive and significantly greater than zero, except for case 1 for both parameters, indicating

164

that the ASV was overestimating the ventilator. Also, it is possible that in the steady state cases

the ASV was overestimating the ventialtor with a proportional bias because the mean increases

with ventilation tidal volume for both parameters. Unsurprisingly, the mean of the combined

steady case is near the average of the three individual steady state case means. On the other hand,

no trend can be discerned from the mean of the transient cases and combined transient case,

since they are around the same value and their true distribution mean is not known.

The means’ confidence intervals suggest that systematic bias exists, since all intervals did not

include zero. For all cases and parameters, the limits of agreement had a broad range, especially

for the tidal volume error, which suggests the two systems are not interchangeable. Notably, the

steady state cases’ limit of agreement ranges increases proportionally with the ventilation tidal

volume, or case number, and are smaller than in the transient cases. The Bland-Altman plots

were examined to identify any trends or behaviour that explain the error distribution.

The Bland-Altman plots were evaluated to discern any trends and confirm speculation based on

the mean, mean confidence intervals, and limits of agreement in Table 7.13. Overall, the Bland-

Altman plots show that the ASV and ventilator do not have good agreement because they have

systematic and proportional error.

165

Figure 7.31 Plot of the Bland-Altman analysis of inspiratory tidal volume difference of the ASV and

ventilator measurements from cases 1, 2, and 3 of the porcine lung

For the combined steady state cases each cluster is the data from one of the three steady state

cases, as seen in Figure 7.31. Normally, the paired measurements of the steady state cases form a

vertical line, as see in Figure 7.26. However, they get stretched out into a linear relationship in

the Bland-Altman plots because their mean, which is on the x-axis, increases with the ASV

measurements, as seen in Figure 7.31. As noticed from the means in Table 7.13, cases 2 and 3

have a large systematic error.

166

Figure 7.32 Plot of the Bland-Altman analysis of inspiratory dynamic compliance error of the ASV and

ventilator system paired measurements from cases 1, 2, and 3 of the porcine lung

Similar to Figure 7.31, systematic error is shown in the Bland-Altman plot of dynamic

compliance for the combined steady state cases, as seen in Figure 7.32. However, the means of

each case decreases with ventilation tidal volume for dynamic compliance. This behaviour is

unexpected, and its cause is unknown. However, it is hypothesized that the dynamic compliance

of the porcine lung decreased with time, over the course of the experiments. Also, the linear

trend for the dynamic compliance is steeper than the tidal volume. This linear trend is caused by

the same reason described for Figure 7.31.

167

Figure 7.33 Plot of the Bland-Altman analysis of inspiratory tidal volume error of the ASV and ventilator

system paired measurements from cases 4, 5, and 6 of the porcine lung

The combined transient state Bland-Altman plot shows the transient state cases have more tidal

volume dispersion than the steady state cases, seen in Figure 7.33. Also, they have systematic

and proportional bias since they form a linear trend line with a non-zero mean.

When the transient cases are examined separately, the cases have different distribution shapes,

despite having the same ventilation range. The diagonal line of points in Figure 7.33 at 300 mL

to 500 mL on the x-axis are from case 5. Also, the line between 750 mL and 850 mL is from case

4. Lastly, case 5 has a smaller error range and minimum than cases 4 and 6 but share the same

maximum at 450 mL. Case 5 error starts at 10 mL then increases proportionally, while case 4

and 6 start at 100 mL.

168

Figure 7.34 Plot of the Bland-Altman analysis of inspiratory dynamic compliance error of the ASV and

ventilator system paired measurements from cases 4, 5, and 6 of the porcine lung

The dynamic compliance error of the combined transient cases does not have the same shape as

the tidal volume error, as seen in Figure 7.34. Instead, the dynamic compliance error increases

proportionally with the x-axis and disperses in both the negative and positive y-direction. This

shape is formed by the individual transient cases where the ASV dynamic compliance did not

change with the ventilator measurements. As a result, their data points form diagonal lines just

like in Figure 7.31 and Figure 7.32. Lastly, there are some notable outliers at the bottom left

corner of Figure 7.34.

169

Table 7.14 Normalized Bland Altman analysis mean and limits of agreement of the tidal volume and

dynamic compliance from the ASV and ventilator of the porcine lung

Parameter
Experiment

Case

Normalized

Residual Mean [%]

Normalized Limit of Agreement [%]

Lower Upper

Inspiratory

Tidal

Volume,

VTi [mL]

1 -0.21 -0.37 -0.05

2 0.24 0.11 0.39

3 0.37 0.24 0.51

4 0.41 0.23 0.59

5 0.39 0.09 0.69

6 0.41 0.10 0.72

Steady (1,2,3) 0.20 -0.15 0.55

Transient (4,5,6) 0.40 0.14 0.66

Inspiratory

Dynamic

Compliance,

Cdyni

[mL/cmH20]

1 -0.33 -0.49 -0.18

2 0.32 0.19 0.45

3 0.28 0.14 0.42

4 0.32 0.14 0.50

5 0.26 -0.08 0.60

6 0.28 -0.03 0.59

Steady (1,2,3) 0.10 -0.27 0.48

Transient (4,5,6) 0.28 0.04 0.56

The Bland-Altman plots were normalized by the pair mean on the x-axis, changing the y-axis

from measurement units to percentage, to remove proportional error, summarized in Table 7.14.

The normalized means indicate the ASV method overestimates by a significant percentage of

ASV and ventilator mean. For example, the case 3 normalized mean for inspiratory tidal volume

and dynamic compliance are 37% and 28%, while approximately 5% would have been

acceptable. Also, the normalized limits of agreement indicate a large dispersion since the steady

state cases have limits of agreement with a 30% range. The transient state and combined case

limits of agreement are, as expected, large since they measure displacement across multiple tidal

volume levels for ventilation.

170

Figure 7.35 Plot of the normalized Bland-Altman analysis of the porcine lung inspiratory tidal volume of

the porcine lung from the ASV and ventilator system for cases 4, 5, and 6

In general, the normalized plots just removed proportional bias seen in Figure 7.33, especially

for the transient cases as seen in Figure 7.35. This made it obvious that systematic error was

present, and it made it easier to identify outliers outside of the limits of agreement.

171

Figure 7.36 Plot of the normalized Bland-Altman analysis of the porcine lung inspiratory tidal volume of

the porcine lung from the ASV and ventilator system for cases 1, 2, and 3

The combined stead state case Bland-Altman plots for both parameters are different when

normalized. For the tidal volume, the linear trend lines of each cluster become steeper, as seen in

Figure 7.36. Also, each cluster, or case, has a noticeably different slope that increases with the x-

axis. For example, the cluster from case 1 is nearly vertical, while the cluster from case 3 looks

diagonal in Figure 7.36.

Overall, the ASV and ventilator measurements were found to have no or poor agreement since

the ASV overestimates the ventilator due to systematic and proportional error. Also, the dynamic

compliance error and Bland-Altman suggests that the ASV system did not measure any

meaningful change in dynamic compliance.

 Porcine Lung Discussion

Measurement of the porcine lung had the same issue as the ventilator test lung in Chapter 6. For

example, surface integration likely overestimated volume due to the porcine lung inflating in all

directions, raising its top surface while the surface was distending. Also, the several regions of

172

the porcine lung were occluded in the Intel RealSense D435 images because of the porcine

lung’s irregular shape. As a result, surface shape information was missing and had to be

interpolated to reconstruct the surface. However, the interpolated regions may not match the

actual surface shape, leading to volume estimation error. Notably, the tidal volume

measurements of the ASV method overestimated the ventilator. However, the ASV method

observed no significant change in dynamic compliance, while the ventilator recorded a

proportional increase with tidal volume.

 Porcine Lung Conclusion

For six experiment cases, a porcine lung was ventilated by a Draeger Evita XL and measured by

an Intel RealSense D435 to obtain depth map and color image video recordings. Surface

measurements, analogous to tidal volume and dynamic compliance, were derived from these

video recordings to identify localized over inflation and under inflation. Also, plethysmography

measurements derived from the Intel RealSense D435 and measured by the Draeger Evita XL,

were compared to evaluate the ASV method and indirectly validate the surface measurements.

The comparison discovered the ASV overestimates the ventilator, with systematic and

proportional error, and has worse repeatability. Also, the two systems have poor agreement,

indicating they’re not interchangeable. However, their measurements have strong correlation and

have statistically significant linearity, which suggests that the ASV method observes the same

changes as the ventilator and that the surface measurements are valid.

173

8 Clinical Validation and Region Measurement

A human lung rejected for transplant was measured using the developed ASV method, providing

the closest conditions to a clinical study amongst all the experiments. A processing scheme for

segmenting and measuring the left and right lungs separately, was implemented, in addition to

processing methods described in the previous chapters. Also, the surface interpolation method

described in Chapter 7.3.3 was improved by using an alpha shape to determine the true outline of

the lung. This experiment represents the finalized processing scheme developed during this

research project.

 Experiment Equipment

Figure 8.1 Annotated image of a human lung in an EVLP

A human lung, rejected for transplant, was acquired by Tevosol for EVLP development testing.

The donor was approximately 60 kg, had a history of smoking, and other medical history

174

concerns that failed transplant viability checks. After 6 hours of EVLP treatment the lung was

submitted for this experiment. Tevosol’s experiment ended prematurely because the left lung

was performing poorly. The left lung’s poor condition provided an opportunity to compare the

left and right lung performance using the processing scheme.

The rejected human lung was mechanically ventilated by the Draeger Evita XL using the existing

airway connection between the human lung and EVLP, as seen in Figure 8.1. All equipment,

except the lung and EVLP, described in Chapter 7.1 were reused for this experiment using the

same procedures. Notably, the human lung’s anterior surface is facing upwards in contrast to the

porcine lung in Chapter 7.

 Calibration and Data Acquisition

The Intel RealSense D435 was not calibrated in between the porcine lung and rejected human

lung experiments. Therefore, the intrinsic and extrinsic camera parameters are the same as in

Appendix D. Also, the data acquisition settings for the porcine lung experiment were re-used for

the human lung using the Intel RealSense Viewer. Similarly, the Draeger Evita XL was operated

using the same method as in Chapter 6.2 . However, the ventilation settings were different to

achieve visually satisfactory physiological displacement.

175

Figure 8.2 Annotated image of the human lung experimental setup

The Intel RealSense D435 was positioned above the human lung, as seen in Figure 8.2. The ASV

system had a direct line of sight to the human lung, as the EVLP cover was raised. Also, the

Draeger Evita XL was connected to the EVLP airway line to perform positive pressure

ventilation on the human lung.

176

(a) (b)

Figure 8.3 Images of the human lung from the Intel RealSense D435 (a) color and (b) depth map streams

The color and depth map streams, as seen in Figure 8.3 (a) and (b), were recorded using the same

methods and settings as described in Chapter 7.2 . The streams were recorded with a resolution

of 240 × 424 pixels at 30 fps. Projective transformation was performed on the depth map to be

aligned with the color image. Also, the depth maps were spatially and temporally filtered using

the Intel Realsense SDK 2.0. Default ASV settings were used in the Intel Realsense Viewer

application.

Table 8.1 Human lung constant ventilation settings

Parameter Setting

Inspiratory Time, [s] 3.7

f, [bpm] 8.0

Slope, [-] 0.90

PEEP, [cmH20] 7

O2, [%] 21

The same Draeger Evita XL was ventilated using the CMV auto-flow mode, just like the porcine

lung experiment. However, the ventilation settings, summarized in Table 8.1, for the human lung

were different than the settings for the porcine lung. The ventilation settings were adjusted to

achieve visible physiological displacement of the human lung.

177

Table 8.2 Human lung experiment case tidal volume levels and change

Case Experiment Type Tidal Volume [mL/kg] Tidal Volume [mL]

1 Steady state 8 480

2 Steady state 10 600

3 Steady state 6 360

4 Gradual Rise 6,7,8,9, and 10 360, 420, 480, 540, and 600

5 Rise 6 to 10 360 to 600

6 Gradual Fall 10,9,8,7, and 6 600, 540, 480, 420, and 360

Six experiment cases, each approximately five minutes long, were conducted for the rejected

human lung. Only the tidal volume per donor weight was changed between cases. The first three

cases were steady state, with a constant tidal volume of 6 mL, 8 mL, or 10 mL per kg donor.

Tidal volume per donor weight was dynamically changed within Case 4, 5, and 6. Case 4 had

increasing intervals of tidal volume per donor weight. Case 5 had a large step from 6 mL to 10

mL per kg donor weight. Case 6 had decreasing intervals of tidal volume per donor weight. The

steady state trials are intended to provide a measurement of baseline performance, so outliers

could be identified in the dynamic trials. The tidal volume changes between and within cases are

tabulated in Table 8.2.

 Processing Scheme

The whole rejected human lung was segmented using the interactive lazy snapping method

described in Chapter 7. Also, the left and right lung were segmented individually using

watershed segmentation.

178

 Human Lung Segmentation

Figure 8.4 Image of a depth map segmented for the rejected human lung

The segmentation method described in Chapter 7 was used to segment the rejected human lung

in the depth maps. Lazy snapping followed by post-processing were used to obtain binary maps

of the rejected human lung from the aligned color images, as seen in Figure 8.4.

 Left and Right Human Lung Segmentation

The left and right lung were segmented separately to measure their performance independently.

Comparing their performance could help identify regions of failure and allows left and right

asynchrony measurement. The left and right can be distinguished based on their topography.

Therefore, the watershed method was used to segment the left and right lungs in the depth maps.

As described in Chapter 5, the watershed method is a region-based segmentation method. Often,

the method is compared to the concept of topographical watershed where all water in a region

flows to the same topographical minima, or basin. The segmentation method determines what

regions, or watersheds, service each seed location acting as basins. The watershed method was

implemented in three main steps:

179

1. Programmatically define seed regions for the left and right lung, and the background

2. Watershed segmentation of all three regions for label maps

3. Post-process the label maps for consistent results

To implement the watershed method, seed regions were automatically determined from the depth

maps. Afterwards, the watershed method was used to segment the left and right lung, and the

background. This process produces label maps that identify the three regions in the depth maps.

Finally, the segmentation method was inconsistent, so the label maps were post-processed with

spatial and temporal filtering, as well as outlier detection.

(a) (b)

Figure 8.5 Images of (a) the segmented and (b) the quantized depth map of the rejected human lung

The complement of the lazy snapping binary map was taken as the background seed region. The

left and right lung seed regions were obtained from the segmented depth map of the rejected

human lung, as seen in Figure 8.5(a). Any depth holes in the depth map were filled using bi-

linear interpolation. The segmented depth map was categorized into one of several levels, or

ranges, defined by depth, as seen in Figure 8.5 (b). This step was implemented using the

imquantize() function in MATLAB. The darkest regions in Figure 8.5 (b) are found at the top of

each lung because they are the closest regions to the Intel RealSense D435 during data

acquisition.

180

Figure 8.6 Image of the quantized and segmented depth map of the rejected human lung with the left and

right lung seed regions in magenta

The minima regions were used as the seed locations for the left and right lung for watershed

segmentation, as highlighted in magenta in Figure 8.6. However, through trial and error, these

regions were found to be inconsistent and would provide erroneous segmentations. To solve this

issue, the next depth quantization level was included as part of each seed region, or the

quantization settings were adjusted. Lastly, the seed regions were morphologically eroded to

ensure that they do not overlap with the background.

181

Figure 8.7 Image of the gradient magnitude of the segmented depth map of the rejected human lung

Watershed segmentation was implemented using the watershed() MATLAB function. The

function segmented the gradient magnitude of the segmented depth map, as seen in Figure 8.7.

All minima were removed from the gradient magnitude image, before imposing the three seed

regions as new minima.

(a) (b)

Figure 8.8 Images of the labeled (a) depth map and (b) color image of the rejected human lung

segmented for the left and right lung, and the background region

Watershed segmentation produced label maps that identify the three regions in the depth maps

and color images, as seen in Figure 8.8 (a) and (b). Notably, the right lung was not fully

segmented along its perimeter because of the depth holes in the depth map in that area. Also, a

182

section of the right lung found at the same height as the EVLP trampoline was not segmented.

This region was not segmented when using lazy snapping because it did not distend during

ventilation, thus should not affect the plethysmography measurements. In general, the watershed

segmentation was successful. However, there were several issues with the label maps that were

corrected with post-processing.

The label maps use integers to identify regions. One issue with the label maps was the left and

right lung swapping labelling integers between frames, as seen in Figure 8.9 (a) and (b).

(a) (b)

Figure 8.10 Annotated image of the label map of the left and right human lung segmentation with (a)

segmentation errors and with (b) the left lung oversegmented

The watershed method sometimes had segmentation errors, where the left lung region was

included in the right lung, as seen in Figure 8.10 (a). Also, the left lung sometimes was over-

segmented into two different regions, as seen in Figure 8.10 (b).

Segmentation

Error

Left Lung

Region 1
Left Lung

Region 2

Right Lung Region
Background

Region

(a) (b)

Figure 8.9 Annotated label maps of the left and right human lung segmentation with switching labels

Background

Label = 3

Left Lung

Label = 2

Right Lung

Label = 1
Left and Right

Lung Swap Label

Background

Label = 3

Left Lung

Label = 1

Right Lung

Label = 2Left and Right

Lung Swap Label

183

Figure 8.11 Line plot of the area of the label map regions of the human lung clustered using K-means,

where K = 3 clusters

Many label map issues were resolved by segmenting regions by pixel area with K-means

clustering, as seen in Figure 8.11. Clustering was performed across all regions and frames. All

regions were re-assigned region labels according to their cluster.

Figure 8.12 Annotated image of the label map of the left and right human lung segmentation after region

merging and watershed line removal

K-means clustering had the effect of merging over-segmented regions, specifically the left lung,

and obtaining consistent region labels across all frames, as seen in Figure 8.12. However, the

watershed lines between the over-segmented regions and other regions remained.

Cluster 2Cluster 1 Cluster 3

Watershed Line Separating

Merged Regions

Left Lung

Region 1

Left Lung

Region 2

Right Lung Region

184

Figure 8.13 Image of the label map for left and right human lung segmentation without watershed lines

The watershed lines, including between the over-segmented regions, were removed from the

labelling images using a majority filter with the modefilt() MATLAB function. The majority

filter re-assigns a pixel to the most common value within its neighbourhood. Since, all watershed

lines are one pixel thick, they are always replaced, as seen in Figure 8.13.

After removing the watershed lines, the left and right lung regions were re-assigned specific

label integers. The watershed method initially assigns regions a random integer label. However,

this is inconvenient for a future interpolation step because it could cause the left or right lung to

be interpolated as the background. Therefore, the regions in each label map were sorted by pixel

area and re-assigned a label integer based on their order in size using the sortLabels() function in

Appendix B. For example, the smallest region in each label was re-assigned the label integer “1”.

It was assumed the relative size of the regions, and their order in size of region, was constant, to

determine the region. The last label map post-processing step was temporal filtering the left lung

region, using the same method described in Chapters 6.3 and 7.3 .

185

Figure 8.14. Plot of the region size of the whole lung in the label maps before and after temporal filtering

The temporal filtering significantly improved the stability of the segmentation results, especially

the left lung region, as seen in Figure 8.14. The left lung region size in pixels, before temporal

filtering, shows significant noise, while after filtering its size signal is denoised and has a clear

periodic pattern. However, the temporal filtering of the label maps was found to not affect the

right human lung region significantly.

186

 Human Lung Point Cloud Processing

(a)

(b) (c)

Figure 8.15 3D plot of the porcine lung point cloud (a) colorized by depth, (b) the point cloud colorized

by left and right lung label, and (c) the point cloud colorized by the color image

The segmented depth maps of the human lung were processed into point clouds, as seen in

Figure 8.15 (a), using the same procedure described in Chapter 6.3.2. Also, the color and region

labels were added to the point clouds, as seen in Figure 8.15 (b) and (c). The point clouds were

downsampled to denoise and remove outliers and erroneous points using a box averaging filter.

187

 Surface Reconstruction of the Rejected Human Lung

(a) (b)

Figure 8.16 Plots of an alpha shape of the human lung (a) from a top-down view and (b) a close-up view

showing which query points are within the alphas

The point clouds were interpolated to obtain surface maps of the human lung, using the same

methods described in Chapter 7. However, this method has the drawback of losing the 2D outline

of the lung since the scattered data interpolation fills in concave curves in the lung’s outline. To

preserve the lung’s outline in the surface maps, an alphaShape() object was constructed for each

frame, as seen in Figure 8.16 (a). The 2D alpha shape is formed using the x and y coordinates of

the sparse point clouds. The green regions are mesh faces, which are inside the outline of the

lung. The alphaShape() objects have a function, called inShape(), to determine which

interpolation query points are within the alpha shape, as seen in Figure 8.16 (b). The blue circles

are the interpolation query points. The query points that overlap the green alpha shape are within

the outline of the lung.

188

(a) (b)

(c) (d)

Figure 8.17 Images of the human lung (a) alpha shape binary map, (b) the surface map colorized by

depth, (c) the surface label map, and (d) the human lung colored surface map

The grid points within the alpha shape were labelled, as seen in Figure 8.17 (a). The grid points

within the alpha shape are marked using a binary map, visualized with respects to their x and y

coordinates. This binary map can be used to identify which grid points preserve the lung’s

outline for any of the interpolated data types. The binary map from the alpha shape was used to

filter the interpolated surface maps for depth, color, and region labelling, as seen in Figure 8.17

(b), (c), and (d).

189

(a)

(b) (c)

Figure 8.18. 3D plot of the human lung (a) surface map depth, (b) surface map colorized by left and right

lung labels, and (c) the surface map colorized by the appearance of the human lung

The surface maps can be represented as surface meshes, as seen in Figure 8.18. As previously

mentioned, the Delaunay triangulation is shared between all frames because each frame shares

the same dimensions. Also, these plots were obtained using the binary maps from the alpha

shape.

190

 Plethysmography Measurements of a Rejected Human Lung

Figure 8.19. Plot of the displacement of the whole, left, and right lung of the human lung over three

cycles

The surface maps were used to estimate the volume of the rejected human lung, using the

previously described methods. This method was applied to the left and right lung regions

separately to obtain their individual performance, as seen in Figure 8.19. The left lung did not

significantly distend during ventilation, instead it was found to provide a systematic bias that

summed with the cyclic displacement of the right lung to provide the whole human lung

displacement. As a result, the left lung displacement signal could not be scanned for local

extrema points to identify the start and end of each respiratory cycle. However, cycle

segmentation was successful for the whole and right lung displacement signals. Also,

plethysmography measurements were measured, such as tidal volume and inspiratory time, for

the whole lung and right lung region. In addition, the cyclic average displacement was measured

for the whole lung and right lung region.

Asynchrony could have been measured between the left and right lungs since their displacement

signals can be compared. This metric was measured using the estimateRegionAsynchrony()

191

function in Appendix BB4. However, it was impossible to measure asynchrony since the left

lung could not be segmented for respiratory cycles.

 Regional Measurements of a Rejected Human Lung

Figure 8.20. 3D plot of the surface tidal displacement of the whole human lung

Regional measurements were derived from the surface maps of the rejected human lung, as

described in Chapter 7. The surface tidal displacement shows the left lung distended about 10

mm less than the right lung, as seen in Figure 8.20. Also, the plot shows the left lung has troughs

along the left and right lung boundary. The surface cyclic average displacement was measured as

well. However, dynamic compliance could not be found without the VSCapture pressure

measurements.

192

(a)

(b) (c)

Figure 8.21. Plots of (a) the deviation from the surface cyclic average displacement of the human lung

from case 1 for peak detection (b) as an image and (c) as a surface mesh where red indicates a local

maxima and blue indicates a local minima outside of the deviation 95% confidence interval

The human lung was found to consistently distend during ventilation since the surface deviation

from the cyclic average had a flat shape and an insignificant displacement that was at most 3

mm, as seen in Figure 8.21. Notably, there were peak regions in the surface deviation located

near the front of the lung and along the left and right lung boundary. Peak detection could be

used to identify the location and magnitude of these peaks. However, these peaks are

inconsequential because of their small deviation in cycle average displacement.

193

 Rejected Human Lung Discussion

The VSCapture files that record the Draeger Evita XL measurements were corrupted. As a result,

method comparison was not possible for this experiment. Also, the left lung did not distend

during ventilation, limiting plethysmography measurements to the whole and right lung.

However, the left lung was observed not distending during this experiment, and the previous

experiment with Tevosol. Additionally, Tevosol ended their experiment prematurely because the

left lung failed to ventilate properly. These observations match the measured performance of the

left lung determined using the ASV method. However, it is still expected that the ASV method

faced the same problems encountered in Chapter 7.

Figure 8.22 Schematic of the volume difference from surface integration with a compliant surface versus

a steady state, flat plane datum

An additional issue encountered in this experiment is that the surface integration method

assumes that the datum is a flat steady state plane, as seen in Figure 8.22. The human lung rests

on a compliant surface that distends upward or downward during ventilation. In addition, the

EVLP trampoline is not a flat surface, as its elasticity causes it to have a curved shape like the

bottom of the human lung due to its weight. This invalidates the flat datum plane assumption of

the surface integration method. As a result, the estimated volume is expected to have systematic

and proportional error equal to the changing volume between the datum, EVLP trampoline, and

the actual bottom surface of the human lung, as seen in Figure 8.22.

194

 Rejected Human Lung Conclusion

This chapter demonstrates that the ASV method might be feasible in a clinical setting for

regional measurement of donor lungs. A human lung rejected for transplant was measured using

the ASV method. Plethysmography and regional measurements were obtained using surface

integration and surface reconstruction. Also, the left and right lung were segmented separately to

independently measure and compare their performance. However, the left lung did not

significantly distend with ventilation since its displacement signal was constant. As a result, only

the right lung and the whole lung displacement signals were used to derive plethysmography

measurements. Also, left, and right lung asynchrony could not be measured.

Notably, Tevosol conducted an EVLP test using the same rejected human lung prior to data

acquisition with the ASV method. They concluded the left lung performed poorly, which led

them to prematurely end their experiment. Also, the left lung did not visibility distend during

data acquisition with the Intel RealSense D435. Therefore, the ASV derived left lung

measurements are likely valid since they match the results of an independent experiment and

physical observations. Lastly, the ASV method results could not be compared with the ventilator

because the VSCapture files were corrupted.

195

9 Conclusion and Future Work

 Conclusion

A non-invasive active stereo vision method was developed for measuring donor lung

performance during EVLP treatment to identify localized over and under inflation. The

processing scheme creates an image of donor lung surface shape to measure standard

plethysmography metrics, and regional metrics of tidal volume, dynamic compliance, and a

respiratory cyclic average surface. The method’s measurement behavior was evaluated using

experimental data from a synthetic, porcine, and human lung. Also, the method was compared to

spirometry-based plethysmography systems to measure correlation and agreement to assess the

validity of its measurements. However, this comparison was limited to standard scalar

plethysmography, as no comparable surface deformation measurements were obtained.

The method was found to correlate well with the established methods, however, has significant

systematic and proportional bias resulting in poor agreement. These results suggest the active

stereo vision method is measuring the respiratory cycle of the donor lung, and that the surface

deformation metrics could be used to identify localized under and over inflation, and regional

performance. However, the method requires further development before implementation during

EVLP treatment.

196

 Future Work

The main limitation of this study was that the regional measurements were not directly validated

or compared with another method. In the future, this could be achieved with a controlled surface

experiment, where the surface distends with a known geometry. Also, the main measurement

limitation encountered in this study was that ASV does not track the position of points along the

surface of the lungs. As encountered with the ventilator test lung experiment, the regional

measurements were invalid because the entire lung moved within its respiratory cycle. Also, this

limits measurement to displacement, without full field strain or stress. However, the method has

several technical limitations to overcome before implementation.

The EVLP cover was raised in all experiments during this project, as imaging through the cover

would introduce glare and optical warping. It is recommended that a digital or optical filter be

used to mitigate glare, and a suitable ASV position be located to mitigate these effects [145].

Alternatively, a refractive stereo vision method could be used to measure through the EVLP

cover [54], [146]. Also, the systematic and proportional bias in the plethysmography

measurements was hypothesized to be caused by the rising of the entire donor lung along with its

top surface displacement. It might be possible to correct for these biases using the developed

regression models or by estimating these effects based on the donor lung’s weight and size. In

the porcine lung test, occlusion due to irregular surface shape left gaps in the depth map. The

entire lung surface could be measured, to remove occlusion, using multiple ASVs at different

angles to reconstruct a single complete surface through registration [147], [148]. Registration

could be aided with fiducial markers [149] to track the position of the EVLP, and by association

the donor lung. Once these limitations have been overcome, several established image processing

methods could be used with the existing images to obtain other measurements.

The color and infrared images from the Intel RealSense D435 could be processed with other

digital image processing methods to obtain metrics, other than surface deformation. Eulerian

video magnification could be used on the color images to measure regional blood flow [45].

Also, scene flow could be used to measure the 3D displacement field of the lung’s surface to

measure strain [48]. With these improvements, the developed method could be a useful tool for

evaluating donor lung regional performance and transplant viability.

197

Works Cited

[1] M. K. Shear, “State of the Art Lung Transplantation,” Dialogues Clin Neurosci, vol. 14,

no. 7, pp. 119–128, 2012.

[2] M. Valapour et al., “OPTN/SRTR 2019 Annual Data Report: Lung,” Am. J. Transplant.,

vol. 21, no. S2, pp. 441–520, 2021, doi: 10.1111/ajt.16495.

[3] A. Courtwright and E. Cantu, “Evaluation and Management of the Potential Lung Donor,”

Clin. Chest Med., vol. 38, no. 4, pp. 751–759, 2017, doi: 10.1016/j.ccm.2017.07.007.

[4] L. B. Ware et al., “Assessment of lungs rejected for transplantation and implications for

donor selection,” Lancet, vol. 360, no. 9333, pp. 619–620, Aug. 2002, doi:

10.1016/S0140-6736(02)09774-X.

[5] D. Van Raemdonck et al., “Lung donor selection and management,” Proc. Am. Thorac.

Soc., vol. 6, no. 1, pp. 28–38, 2009, doi: 10.1513/pats.200808-098GO.

[6] J. Reeb, S. Keshavjee, and M. Cypel, “Expanding the lung donor pool: Advancements and

emerging pathways,” Curr. Opin. Organ Transplant., vol. 20, no. 5, pp. 498–505, 2015,

doi: 10.1097/MOT.0000000000000233.

[7] D. C. Nguyen, G. Loor, P. Carrott, and A. Shafii, “Review of donor and recipient surgical

procedures in lung transplantation,” J. Thorac. Dis., vol. 11, no. 4, pp. S1810–S1816,

2019, doi: 10.21037/jtd.2019.06.31.

[8] A. Ali and M. Cypel, “Ex-vivo lung perfusion and ventilation: Where to from here?,”

Curr. Opin. Organ Transplant., vol. 24, no. 3, pp. 297–304, 2019, doi:

10.1097/MOT.0000000000000647.

[9] M. T. Buchko et al., “Clinical transplantation using negative pressure ventilation ex situ

lung perfusion with extended criteria donor lungs,” Nat. Commun., vol. 11, no. 1, pp. 1–5,

2020, doi: 10.1038/s41467-020-19581-4.

[10] J. G. Y. Luc, K. Jackson, J. G. Weinkauf, D. H. Freed, and J. Nagendran, “Feasibility of

Lung Transplantation From Donation After Circulatory Death Donors Following Portable

Ex Vivo Lung Perfusion: A Pilot Study,” Transplant. Proc., vol. 49, no. 8, pp. 1885–

1892, 2017, doi: 10.1016/j.transproceed.2017.04.010.

[11] T. N. Machuca and M. Cypel, “Ex vivo lung perfusion,” J. Thorac. Dis., vol. 6, no. 8, pp.

1054–1062, 2014, doi: 10.3978/j.issn.2072-1439.2014.07.12.

[12] M. Takahashi et al., “Twenty-Four Hour Ex Vivolung Perfusion: Strategies to Stabilize

Extended EVLP in a Pig Model,” J. Hear. Lung Transplant., vol. 37, no. 4, p. S223, 2018,

doi: 10.1016/j.healun.2018.01.552.

198

[13] J. G. Y. Luc, K. Jackson, J. G. Weinkauf, D. H. Freed, and J. Nagendran, “Feasibility of

Lung Transplantation From Donation After Circulatory Death Donors Following Portable

Ex Vivo Lung Perfusion: A Pilot Study,” Transplant. Proc., vol. 49, no. 8, pp. 1885–

1892, 2017, doi: 10.1016/j.transproceed.2017.04.010.

[14] E. J. Charles et al., “Donation After Circulatory Death Lungs Transplantable Up to Six

Hours After Ex Vivo Lung Perfusion,” Ann. Thorac. Surg., vol. 102, no. 6, pp. 1845–

1853, 2016, doi: 10.1016/j.athoracsur.2016.06.043.

[15] G. Jiao, “Evolving Trend of EVLP: Advancements and Emerging Pathways,” SN Compr.

Clin. Med., vol. 1, no. 4, pp. 287–303, 2019, doi: 10.1007/s42399-019-0046-7.

[16] J. G. Y. Luc, S. J. Bozso, D. H. Freed, and J. Nagendran, “Successful repair of donation

after circulatory death lungs with large pulmonary embolus using the lung organ care

system for ex vivo thrombolysis and subsequent clinical transplantation,” Transplantation,

vol. 99, no. 1, pp. e1–e2, 2015, doi: 10.1097/TP.0000000000000485.

[17] P. P. Terragni et al., “Ventilatory management during normothermic ex vivo lung

perfusion: Effects on clinical outcomes,” Transplantation, vol. 100, no. 5, pp. 1128–1135,

2016, doi: 10.1097/TP.0000000000000929.

[18] J. Retamal et al., “Does Regional Lung Strain Correlate With Regional Inflammation in

Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An

Experimental Porcine Study,” Crit. Care Med., vol. 46, no. 6, pp. e591–e599, 2018, doi:

10.1097/CCM.0000000000003072.

[19] D. R. Hess, “Respiratory mechanics in mechanically ventilated patients,” Respir. Care,

vol. 59, no. 11, pp. 1773–1794, 2014, doi: 10.4187/respcare.03410.

[20] L. Gattinoni, E. Carlesso, and P. Caironi, “Stress and strain within the lung,” Curr. Opin.

Crit. Care, vol. 18, no. 1, pp. 42–47, 2012, doi: 10.1097/MCC.0b013e32834f17d9.

[21] J. J. Marini, “Evolving concepts for safer ventilation,” Crit. Care, vol. 23, no. Suppl 1, pp.

1–7, 2019, doi: 10.1186/s13054-019-2406-9.

[22] L. Gattinoni, E. Carlesso, and T. Langer, “Towards ultraprotective mechanical

ventilation,” Curr. Opin. Anaesthesiol., vol. 25, no. 2, pp. 141–147, 2012, doi:

10.1097/ACO.0b013e3283503125.

[23] D. Chiumello et al., “Lung stress and strain during mechanical ventilation for acute

respiratory distress syndrome,” Am. J. Respir. Crit. Care Med., vol. 178, no. 4, pp. 346–

355, 2008, doi: 10.1164/rccm.200710-1589OC.

[24] T. R. Pieber et al., “Chest wall and lung volume estimation by optical reflectance motion

analysis,” vol. 0585, pp. 401–408, 2008.

[25] M. Nozoe, K. Mase, and A. Tsutou, “Regional chest wall volume changes during various

199

breathing maneuvers in normal men,” J. Japanese Phys. Ther. Assoc., vol. 14, no. 1, pp.

12–18, 2011, doi: 10.1298/jjpta.Vol14_002.

[26] S. Chadha et al., “Validation of respiratory inductive plethysmography using different

calibration procedures,” Am. Rev. Respir. Dis., vol. 125, no. 6, pp. 644–649, 1982.

[27] N. Jahani, Y. Yin, E. A. Hoffman, and C. L. Lin, “Assessment of regional non-linear

tissue deformation and air volume change of human lungs via image registration,” J.

Biomech., vol. 47, no. 7, pp. 1626–1633, 2014, doi: 10.1016/j.jbiomech.2014.02.040.

[28] S. Hirsch, O. Posnansky, S. Papazoglou, T. Elgeti, J. Braun, and I. Sack, “Measurement of

vibration-induced volumetric strain in the human lung,” Magn. Reson. Med., vol. 69, no.

3, pp. 667–674, 2013, doi: 10.1002/mrm.24294.

[29] N. Mandal, “Respirometers including spirometer, pneumotachograph and peak flow

meter,” Anaesth. Intensive Care Med., vol. 7, no. 1, pp. 1–5, 2006, doi:

10.1383/anes.2006.7.1.1.

[30] A. Soltani, J. Lahti, K. Järvelä, J. Laurikka, V. T. Kuokkala, and M. Hokka,

“Characterization of the anisotropic deformation of the right ventricle during open heart

surgery,” Comput. Methods Biomech. Biomed. Engin., vol. 23, no. 3, pp. 103–113, 2020,

doi: 10.1080/10255842.2019.1703133.

[31] P. Ferraiuoli et al., “Full-field analysis of epicardial strain in an in vitro porcine heart

platform,” J. Mech. Behav. Biomed. Mater., vol. 91, no. November 2018, pp. 294–300,

2019, doi: 10.1016/j.jmbbm.2018.11.025.

[32] W. H. De Boer et al., “SLP: A zero-contact non-invasive method for pulmonary function

testing,” Br. Mach. Vis. Conf. BMVC 2010 - Proc., pp. 1–12, 2010, doi: 10.5244/C.24.85.

[33] S. Motamedi-Fakhr, R. C. Wilson, and R. Iles, “Tidal breathing patterns derived from

structured light plethysmography in COPD patients compared with healthy subjects,”

Med. Devices Evid. Res., vol. 10, pp. 1–9, 2017, doi: 10.2147/MDER.S119868.

[34] G. Elshafie, P. Kumar, S. Motamedi-Fakhr, R. Iles, R. C. Wilson, and B. Naidu,

“Measuring changes in chest wall motion after lung resection using structured light

plethysmography: A feasibility study,” Interact. Cardiovasc. Thorac. Surg., vol. 23, no. 4,

pp. 544–547, 2016, doi: 10.1093/icvts/ivw185.

[35] S. Motamedi-Fakhr et al., “Evaluation of the agreement of tidal breathing parameters

measured simultaneously using pneumotachography and structured light

plethysmography,” Physiol. Rep., vol. 5, no. 3, pp. 1–16, 2017, doi: 10.14814/phy2.13124.

[36] K. Miller, Computational biomechanics for medicine, vol. 27, no. 3. 2011.

[37] T. S. Huang, “Computer Vision: Evolution and Promise,” Report, 1997.

[38] S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,”

200

Opt. Lasers Eng., vol. 106, no. December 2017, pp. 119–131, 2018, doi:

10.1016/j.optlaseng.2018.02.017.

[39] S. Giancola, M. Valenti, and R. Sala, A survey on 3D cameras: Metrological comparison

of time-of-flight, structured-light and active stereoscopy technologies. 2018.

[40] E. Rundgren, “Automatic Volume Estimation of Timber from Multi-View Stereo 3D

Reconstruction,” 2017.

[41] Z. T. Jia and Y. F. Han, “Volume Measurement of Deposits Based on Stereo Vision and

SURF,” Appl. Mech. Mater., vol. 743, pp. 533–536, 2015, doi:

10.4028/www.scientific.net/amm.743.533.

[42] L. Yu and B. Pan, “Full-frame, high-speed 3D shape and deformation measurements using

stereo-digital image correlation and a single color high-speed camera,” Opt. Lasers Eng.,

vol. 95, no. April, pp. 17–25, 2017, doi: 10.1016/j.optlaseng.2017.03.009.

[43] M. A. Mahammed, A. I. Melhum, and F. A. Kochery, “Object Distance Measurement by

Stereo Vision,” 2013 Int. J. Sci. Appl. Inf. Technol., vol. 2, no. 2, pp. 5–8, 2013.

[44] G. Taubin, D. Moreno, and D. Lanman, 3D scanning for personal 3D printing: Build your

own desktop 3D scanner. 2014.

[45] H. Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. Freeman, “Eulerian video

magnification for revealing subtle changes in the world,” ACM Trans. Graph., vol. 31, no.

4, 2012, doi: 10.1145/2185520.2185561.

[46] X. He, R. A. Goubran, and X. P. Liu, “Wrist pulse measurement and analysis using

Eulerian video magnification,” 3rd IEEE EMBS Int. Conf. Biomed. Heal. Informatics, BHI

2016, pp. 41–44, 2016, doi: 10.1109/BHI.2016.7455830.

[47] H. Lauridsen et al., “Extracting physiological information in experimental biology via

Eulerian video magnification,” BMC Biol., vol. 17, no. 1, pp. 1–26, 2019, doi:

10.1186/s12915-019-0716-7.

[48] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade, “Three-dimensional scene

flow,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3, pp. 475–480, 2005, doi:

10.1109/TPAMI.2005.63.

[49] M. Palanca, G. Tozzi, and L. Cristofolini, “The use of digital image correlation in the

biomechanical area: A review,” Int. Biomech., vol. 3, no. 1, pp. 1–21, 2016, doi:

10.1080/23335432.2015.1117395.

[50] C. Bert, K. G. Metheany, K. Doppke, and G. T. Y. Chen, “A phantom evaluation of a

stereo-vision surface imaging system for radiotherapy patient setup,” Med. Phys., vol. 32,

no. 9, pp. 2753–2762, 2005, doi: 10.1118/1.1984263.

[51] J. J. Lee, J. H. Freeland-Graves, M. R. Pepper, W. Yu, and B. Xu, “Efficacy of thigh

201

volume ratios assessed via stereovision body imaging as a predictor of visceral adipose

tissue measured by magnetic resonance imaging,” Am. J. Hum. Biol., vol. 27, no. 4, pp.

445–457, 2015, doi: 10.1002/ajhb.22663.

[52] J. J. Lee, J. H. Freeland-Graves, M. R. Pepper, M. Yao, and B. Xu, “Predictive equations

for central obesity via anthropometrics, stereovision imaging and MRI in adults,” Obesity,

vol. 22, no. 3, pp. 852–862, 2014, doi: 10.1002/oby.20489.

[53] B. Tamadazte et al., “Multi-View Vision System for Laparoscopy Surgery,” 2014.

[54] M. Cassidy et al., “Refractive Multi-view Stereo,” 2020.

[55] S. Yoon, T. Choi, and S. Sull, “Depth estimation from stereo cameras through a curved

transparent medium,” Pattern Recognit. Lett., vol. 129, pp. 101–107, 2020, doi:

10.1016/j.patrec.2019.11.012.

[56] H. Hmeidi et al., “Tidal breathing parameters measured using structured light

plethysmography in healthy children and those with asthma before and after

bronchodilator,” Physiol. Rep., vol. 5, no. 5, pp. 1–12, 2017, doi: 10.14814/phy2.13168.

[57] F. Remondino and S. El-hakim, “Image-based 3D modelling: A review,” Photogramm.

Rec., vol. 21, no. 115, pp. 269–291, 2006, doi: 10.1111/j.1477-9730.2006.00383.x.

[58] U. R. Dhond and J. K. Aggarwal, “Structure from Stereo—A Review,” IEEE Trans. Syst.

Man Cybern., vol. 19, no. 6, pp. 1489–1510, 1989, doi: 10.1109/21.44067.

[59] S. Giancola, M. Valenti, and R. Sala, A survey on 3D cameras: Metrological comparison

of time-of-flight, structured-light and active stereoscopy technologies. 2018.

[60] G. Kamberova and R. Bajcsy, “Sensor Errors and Uncertainties in Stereo Reconstruction,”

Empir. Eval. Tech. Comput. Vis., pp. 96–116, 1998.

[61] J. Weng, P. J. Cohen, and M. Herniou, “Camera calibration with distortion models and

accuracy evaluation. (Computer Vision and Image Analysis),” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 14, no. 10, p. 965, 1992.

[62] G. Di Leo and A. Paolillo, “Uncertainty evaluation of camera model parameters,” Conf.

Rec. - IEEE Instrum. Meas. Technol. Conf., pp. 598–603, 2011, doi:

10.1109/IMTC.2011.5944307.

[63] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 22, no. 11, pp. 1330–1334, 2000, doi: 10.1109/34.888718.

[64] J. Weng, P. Cohen, and M. Herniou, “Camera Calibration with Distortion Models and

Accuracy Evaluation.” 1992.

[65] J. Salvi, X. Armangué, and J. Batlle, “A comparative review of camera calibrating

methods with accuracy evaluation,” Pattern Recognit., vol. 35, no. 7, pp. 1617–1635,

202

2002, doi: 10.1016/S0031-3203(01)00126-1.

[66] W. Faig, “Calibration of Close-Range Photogrammetric Systems: Mathematical

Formulation.,” Photogramm. Eng. Remote Sensing, vol. 41, no. 12, pp. 1479–1486, 1975.

[67] H. H. P. Wu and Y. H. Yu, “Projective rectification with reduced geometric distortion for

stereo vision and stereoscopic video,” J. Intell. Robot. Syst. Theory Appl., vol. 42, no. 1,

pp. 71–94, 2005, doi: 10.1007/s10846-004-3023-6.

[68] A. Gruen and T. S. Huang, Calibration and Orientation of Cameras With Computer.

2001.

[69] Q. Wang, L. Fu, and Z. Liu, “Review on camera calibration,” 2010 Chinese Control

Decis. Conf. CCDC 2010, pp. 3354–3358, 2010, doi: 10.1109/CCDC.2010.5498574.

[70] D. V. Papadimitriou and T. J. Dennis, “Epipolar line estimation and rectification for stereo

image pairs,” IEEE Trans. Image Process., vol. 5, no. 4, pp. 672–676, 1996, doi:

10.1109/83.491345.

[71] C. Loop and Z. Zhang, “Computing rectifying homographies for stereo vision,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, pp. 125–131, 1999, doi:

10.1109/cvpr.1999.786928.

[72] K. Bin Lim, D. Wang, and W. L. Kee, “Virtual camera rectification with geometrical

approach on single-lens stereovision using a biprism,” J. Electron. Imaging, vol. 21, no. 2,

p. 023003, 2012, doi: 10.1117/1.jei.21.2.023003.

[73] A. Fusiello, E. Trucco, and A. Verri, “Compact algorithm for rectification of stereo pairs,”

Mach. Vis. Appl., vol. 12, no. 1, pp. 16–22, 2000, doi: 10.1007/s001380050120.

[74] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, “Real-time stereo vision

system using semi-global matching disparity estimation: Architecture and FPGA-

implementation,” Proc. - 2010 Int. Conf. Embed. Comput. Syst. Archit. Model. Simulation,

IC-SAMOS 2010, pp. 93–101, 2010, doi: 10.1109/ICSAMOS.2010.5642077.

[75] R. Deriche, Z. Zhang, Q. T. Luong, and O. Faugeras, “Robust recovery of the epipolar

geometry for an uncalibrated stereo rig,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 800 LNCS, pp. 567–576, 1994, doi:

10.1007/3-540-57956-7_64.

[76] K. Aggarwal, “Structure from Stereo-A Review,” vol. 19, no. 6, 1989.

[77] M. Lemmens, “A survey on stereo matching techniques,” Int. Arch. Photogramm. Remote

…, vol. 27, no. 1, pp. 11–23, 1988.

[78] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald, “Review of stereo vision

algorithms and their suitability for resource-limited systems,” J. Real-Time Image

Process., vol. 11, no. 1, pp. 5–25, 2016, doi: 10.1007/s11554-012-0313-2.

203

[79] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo vision algorithms:

From software to hardware,” Int. J. Optomechatronics, vol. 2, no. 4, pp. 435–462, 2008,

doi: 10.1080/15599610802438680.

[80] A. Orriordan, T. Newe, G. Dooly, and D. Toal, “Stereo vision sensing: Review of existing

systems,” Proc. Int. Conf. Sens. Technol. ICST, vol. 2018-Decem, pp. 178–184, 2019, doi:

10.1109/ICSensT.2018.8603605.

[81] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo vision algorithms:

From software to hardware,” Int. J. Optomechatronics, vol. 2, no. 4, pp. 435–462, 2008,

doi: 10.1080/15599610802438680.

[82] A. Orriordan, T. Newe, G. Dooly, and D. Toal, “Stereo vision sensing: Review of existing

systems,” Proc. Int. Conf. Sens. Technol. ICST, vol. 2018-Decem, pp. 178–184, 2019, doi:

10.1109/ICSensT.2018.8603605.

[83] A. Kadambi, A. Bhandari, and R. Raskar, “3D depth cameras in vision: Benefits and

limitations of the hardware with an emphasis on the first-and second-generation kinect

models,” Adv. Comput. Vis. Pattern Recognit., vol. 67, pp. 3–26, 2014, doi: 10.1007/978-

3-319-08651-4_1.

[84] D. Gallup, J. Frahm, P. Mordohai, M. Pollefeys, and C. Hill, “Variable Baseline /

Resolution Stereo.”

[85] M. Kytö, M. Nuutinen, and P. Oittinen, “Method for measuring stereo camera depth

accuracy based on stereoscopic vision,” Three-Dimensional Imaging, Interact. Meas., vol.

7864, no. January 2011, p. 78640I, 2011, doi: 10.1117/12.872015.

[86] W. Sankowski, M. Włodarczyk, D. Kacperski, and K. Grabowski, “Estimation of

measurement uncertainty in stereo vision system,” Image Vis. Comput., vol. 61, pp. 70–

81, 2017, doi: 10.1016/j.imavis.2017.02.005.

[87] H. Sahabi and A. Basu, “Analysis of Error in Depth Perception with Vergence and

Spatially Varying Sensing,” Comput. Vis. Image Underst., vol. 63, no. 3, pp. 447–461,

1996, doi: 10.1006/cviu.1996.0034.

[88] G. Di Leo and A. Paolillo, “Uncertainty evaluation of camera model parameters,” Conf.

Rec. - IEEE Instrum. Meas. Technol. Conf., pp. 598–603, 2011, doi:

10.1109/IMTC.2011.5944307.

[89] G. Di Leo, C. Liguori, and A. Paolillo, “Propagation of uncertainty through stereo

triangulation,” 2010 IEEE Int. Instrum. Meas. Technol. Conf. I2MTC 2010 - Proc., pp.

12–17, 2010, doi: 10.1109/IMTC.2010.5488057.

[90] G. Di Leo, C. Liguori, and A. Paolillo, “Propagation of uncertainty through stereo

triangulation,” 2010 IEEE Int. Instrum. Meas. Technol. Conf. I2MTC 2010 - Proc., pp.

12–17, 2010, doi: 10.1109/IMTC.2010.5488057.

204

[91] A. Liberati et al., “Intel RealSense Stereoscopic Depth Cameras,” Nature, vol. 388. pp.

539–547, 2018.

[92] BDTi, “Evaluating Intel’s RealSense SDK 2.0 for 3D Computer Vision Using the

RealSense D415 / D435 Depth Cameras,” no. May, pp. 1–8, 2018, [Online]. Available:

https://www.bdti.com/bdti-publications-and-presentations.

[93] Intel Corporation, “Intel®RealSense - Product Family D400 Series: Datasheet,” no. June,

pp. 1–121, 2020, [Online]. Available: https://www.intelrealsense.com/wp-

content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf.

[94] I. Corporation, “Intel ® RealSense TM Camera: Depth testing methodology,” New

Technol. Group, Intel Corp., pp. 1–18, 2018, [Online]. Available:

https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-

realsense-technology/RealSense_DepthQualityTesting.pdf.

[95] Intel, “Camera depth testing methodology,” pp. 1–18, 2018, [Online]. Available:

www.intel.com/design/literature.htm.

[96] I. Corporation, “Intel ® RealSense TM Depth Module D400 Series Custom Calibration,”

no. January, 2018.

[97] I. Corporation, “Intel Realsense D400 Series / SR300 Viewer: User guide,” no. May,

2018.

[98] A. Grunnet-Jepsen, J. N. Sweetser, and J. Woodfill, “Best-Known-Methods for Tuning

Intel® RealSenseTM D400 Depth Cameras for Best Performance,” vol. 16, p. 1, 2018,

[Online]. Available: https://realsense.intel.com/intel-realsense-downloads/#cal.

[99] X. Ma, X. Liu, Y. Gao, and X. Jin, “A Review on Image Segmentation Techniques,”

Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal Comput. Des. Comput. Graph., vol.

29, no. 10, pp. 1767–1775, 2017.

[100] R. C. Gonzalez and R. E. (Richard E. Woods, Digital image processing. .

[101] H. G. Kaganami and Z. Beiji, “Region-based segmentation versus edge detection,” IIH-

MSP 2009 - 2009 5th Int. Conf. Intell. Inf. Hiding Multimed. Signal Process., pp. 1217–

1221, 2009, doi: 10.1109/IIH-MSP.2009.13.

[102] R. Muthukrishnan and M. Radha, “Edge Detection Techniques For Image Segmentation,”

Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 6, pp. 259–267, Dec. 2011, doi:

10.5121/ijcsit.2011.3620.

[103] L. Xuan and Z. Hong, “An improved canny edge detection algorithm,” Proc. IEEE Int.

Conf. Softw. Eng. Serv. Sci. ICSESS, vol. 2017-Novem, no. 2, pp. 275–278, 2018, doi:

10.1109/ICSESS.2017.8342913.

[104] A. A. Farag and E. J. Delp, “Edge linking by sequential search,” Pattern Recognit., vol.

205

28, no. 5, pp. 611–633, 1995, doi: 10.1016/0031-3203(94)00131-5.

[105] A. Mathematics and S. Review, “Mathematical Morphology : A Modern Approach in

Image Processing Based on Algebra and Geometry Author (s): Henk J . A . M .

Heijmans Published by : Society for Industrial and Applied Mathematics Stable URL :

http://www.jstor.org/stable/2132751 .,” vol. 37, no. 1, pp. 1–36, 2011.

[106] R. Unnikrishnan and M. Hebert, “Measures of Similarity.”

[107] Y. Li, J. Sun, C.-K. Tang, H.-Y. Shum, and H. Kong, “Lazy Snapping,” 2004.

[108] F. Meyer, “Topographic distance and watershed lines,” 1994.

[109] S. Beucher and C. Lantuejoul, “Use of Watersheds in Contour Detection,” International

Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation. pp.

12–21, 1979, [Online]. Available: http://www.citeulike.org/group/7252/article/4083187.

[110] F. Meyer, “The watershed concept and its use in segmentation : a brief history,” Feb.

2012, [Online]. Available: http://arxiv.org/abs/1202.0216.

[111] L. Fernandez, V. Avila, and L. Gonçalves, “A Generic Approach for Error Estimation of

Depth Data from (Stereo and RGB-D) 3D Sensors,” Preprints, no. May, pp. 1–12, 2017,

doi: 10.20944/preprints201705.0170.v1.

[112] BROWN DC, “Close- range camera calibration,” Photogramm Eng, vol. 37, no. 8. pp.

855–866, 1971.

[113] “rs2_intrinsics coeffs[] all 0 by default,” [Online]. Available:

https://github.com/IntelRealSense/librealsense/issues/1430.

[114] MATLAB, “pcdownsample.”

https://www.mathworks.com/help/vision/ref/pcdownsample.html.

[115] MATLAB, “Working with Delaunay Triangulations.”

https://www.mathworks.com/help/matlab/math/delaunay-triangulation.html.

[116] D. T. Lee and B. J. Schachter, “Two algorithms for constructing a Delaunay

triangulation,” Int. J. Comput. Inf. Sci., vol. 9, no. 3, pp. 219–242, 1980, doi:

10.1007/BF00977785.

[117] MATLAB, “Interpolating Scattered Data.”

https://www.mathworks.com/help/matlab/math/interpolating-scattered-data.html.

[118] MATLAB, “scatteredInterpolant.”

https://www.mathworks.com/help/matlab/ref/scatteredinterpolant.html.

[119] MATLAB, “lowpass.” https://www.mathworks.com/help/signal/ref/lowpass.html.

206

[120] MATLAB, “hampel.” https://www.mathworks.com/help/signal/ref/hampel.html.

[121] MATLAB, “sgolayfilt.” https://www.mathworks.com/help/signal/ref/sgolayfilt.html.

[122] MATLAB, “Taking Derivatives of a Signal.”

https://www.mathworks.com/help/signal/ug/take-derivatives-of-a-signal.html.

[123] MATLAB, “medfitl2.” https://www.mathworks.com/help/images/ref/medfilt2.html.

[124] MATLAB, “imregionalmax.”

https://www.mathworks.com/help/images/ref/imregionalmax.html.

[125] MATLAB, “imregionalmin.”

https://www.mathworks.com/help/images/ref/imregionalmin.html.

[126] Siargo Ltd., “Model FS6122 Integrated Sensors for CPAP Applications,” Santa Clara, CA

95054, 2018.

[127] MATLAB, “designfilt.” https://www.mathworks.com/help/signal/ref/designfilt.html.

[128] MATLAB, “findpeaks.” https://www.mathworks.com/help/signal/ref/findpeaks.html.

[129] K. P. Balanda and H. L. Macgillivray, “Kurtosis: A critical review,” Am. Stat., vol. 42, no.

2, pp. 111–119, 1988, doi: 10.1080/00031305.1988.10475539.

[130] P. H. Westfall, “Kurtosis as Peakedness, 1905–2014. R.I.P.,” Am. Stat., vol. 68, no. 3, pp.

191–195, 2014, doi: 10.1080/00031305.2014.917055.

[131] P. Royston, “Which measures of skewness and kurtosis are best?,” Stat. Med., vol. 11, no.

3, pp. 333–343, 1992, doi: 10.1002/sim.4780110306.

[132] J. Liu, W. Tang, G. Chen, Y. Lu, C. Feng, and X. M. Tu, “Correlation and agreement:

overview and clarification of competing concepts and measures,” Shanghai Arch.

Psychiatry, vol. 28, no. 2, pp. 115–120, 2016, doi: 10.11919/j.issn.1002-0829.216045.

[133] F. J. Massey, “The Kolmogorov-Smirnov Test for Goodness of Fit,” J. Am. Stat. Assoc.,

vol. 46, no. 253, pp. 68–78, 1951, doi: 10.1080/01621459.1951.10500769.

[134] K. Rani Das, “A Brief Review of Tests for Normality,” Am. J. Theor. Appl. Stat., vol. 5,

no. 1, p. 5, 2016, doi: 10.11648/j.ajtas.20160501.12.

[135] J. L. Hintze, “Passing-Bablok Regression for Method Comparison,” User’s Guid. III

Regres. Curve Fitting, pp. 1–12, 2007.

[136] “Lessons in biostatistics Comparison of methods: Passing and Bablok regression,” vol. 21,

no. 3, pp. 49–52, 2011.

[137] D. Giavarina, “Understanding Bland Altman analysis,” Biochem. Medica, vol. 25, no. 2,

207

pp. 141–151, 2015, doi: 10.11613/BM.2015.015.

[138] K. O. McGraw and S. P. Wong, “Forming Inferences about Some Intraclass Correlation

Coefficients,” Psychol. Methods, vol. 1, no. 1, pp. 30–46, 1996, doi: 10.1037/1082-

989X.1.1.30.

[139] D. Liljequist, B. Elfving, and K. S. Roaldsen, Intraclass correlation – A discussion and

demonstration of basic features, vol. 14, no. 7. 2019.

[140] P. Ranganathan, C. Pramesh, and R. Aggarwal, “Common pitfalls in statistical analysis:

Measures of agreement,” Perspect. Clin. Res., vol. 8, no. 4, pp. 187–191, 2017, doi:

10.4103/picr.PICR_123_17.

[141] J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,”

Stat. Med., vol. 32, no. 29, pp. 5156–5171, 2013, doi: 10.1002/sim.5955.

[142] D. R. Hess, “Recruitment maneuvers and PEEP titration,” Respir. Care, vol. 60, no. 11,

pp. 1688–1704, 2015, doi: 10.4187/respcare.04409.

[143] X. Ren and J. Malik, “Learning a classification model for segmentation,” Proc. IEEE Int.

Conf. Comput. Vis., vol. 1, no. c, pp. 10–17, 2003, doi: 10.1109/iccv.2003.1238308.

[144] D. Stutz, A. Hermans, and B. Leibe, “Superpixels: An evaluation of the state-of-the-art,”

Comput. Vis. Image Underst., vol. 166, pp. 1–27, 2018, doi: 10.1016/j.cviu.2017.03.007.

[145] J. Sweetser and A. Grunnet-jepsen, “Optical Filters for Intel ® RealSense TM Depth

Cameras D400,” p. 27.

[146] J. Gedge, M. Gong, and Y. H. Yang, “Refractive epipolar geometry for underwater stereo

matching,” Proc. - 2011 Can. Conf. Comput. Robot Vision, CRV 2011, pp. 146–152, 2011,

doi: 10.1109/CRV.2011.26.

[147] A. Grunnet-jepsen, A. Takagi, J. Sweetser, T. Khuong, and D. Tong, “External

Synchronization of Intel ® RealSense TM Depth cameras 2 . Principles of Operation,” pp.

0–7.

[148] X. Gu, X. Wang, and Y. Guo, “A Review of Research on Point Cloud Registration

Methods,” IOP Conf. Ser. Mater. Sci. Eng., vol. 782, no. 2, 2020, doi: 10.1088/1757-

899X/782/2/022070.

[149] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez,

“Automatic generation and detection of highly reliable fiducial markers under occlusion,”

Pattern Recognit., vol. 47, no. 6, pp. 2280–2292, 2014, doi:

10.1016/j.patcog.2014.01.005.

208

Appendix A Mechanical Drawings

Below is the mechanical drawing of the Intel RealSense D435 provided by Intel in their data

sheet for the D400 series [93].

209

Appendix B MATLAB Code

B1 Data Acquisition

Data acquisition with the Intel RealSense D435 was performed using the following MATLAB

functions and the Intel SDK 2.0 in the MATALB a C++ library wrapper. Specifically, the Intel

RealSense D435 saved data to rosbag files that were read in MATLAB using the rs2ReadRosbag

function. This function reads the rosbag file for data and converts it into a usable format. For

example, the images are encoded as a vector that must be formatted and type cast into a numeric

matrix. Also, the timestamps are stored as UTC 16-bit variables that are converted into date time

using international standards. The rs2ReadRosbag function uses the SDK to post-process the

depth maps. Primarily, the SDK is used to perform spatial and temporal filtering of the depth

maps. Also, the SDK was used to align the color images and depth maps through projective

transformation. All processed data is stored into a compressed .mat file for future use.

B1.1 rs2ReadRosbag

function[depthMap,colorImg,leftImg,rightImg,time,timestamp,depthIntrinsics,ma

tFilename,depthScale] =

rs2ReadRosbag(bagFilename,align,decParams,spatParams,tempParams,holeParams)
%% read .bag file from Intel Realsense Viewer recording for images and other

data
% function requires realsense+ library (MATLAB wrapper) for SDK 2.0
% countRosbagFrames() requires MATLAB ROS Toolbox
%
% EXAMPLE USEAGE
%
% % define absolute folder path to .bag file :
% bagFilename = 'D:\Masters\Research\Data\Mechanical Lung 2021-04-

09\Mechanical Lung ROS bag 2021-04-09\trial1.bag';
%
% % define optional inputs (spatParams and decParams use is recommended, and

is used by default):
% align = 'color';
% decParams = 2;
% spatParams = [0.5,20,2,0];
% tempParams = [0.4,20,3];
% holeParams = 1;
%
% [...] = rs2ReadRosbag(bagFilename); or any combination of optional inputs
% [...] =

rs2ReadRosbag(bagFilename,align,decParams,spatParams,tempParams,holeParams);

or
% [...] = rs2ReadRosbag(bagFilename,'',decParams,[],tempParams);
%
% INPUTS

210

%
% bagFilename = absolute folder path to .bag file with ASV recording
% align = optional input to return a synthetic image from a different ASV

persepctive
%
% % read for filter details : https://dev.intelrealsense.com/docs/post-

processing-filters
% decParams = optional input to use SDK 2.0 decimation filter on depth maps
% spatParams = optional input to use SDK 2.0 edge-preserving spatial

smoothing filter on depth maps
% tempParams = optional input to use SDK 2.0 temporal smoothing filter on

depth maps
% holeParams = optional input to use SDK 2.0 hole filling filter on depth

maps
%
% INTERMEDIATES
%
% the most ambiguous intermediates are the rs2 objects used for replaying the

recording
% read documentation for details :

https://intelrealsense.github.io/librealsense/doxygen/classrs2_1_1frame.html
% alternatively read example MATLAB scripts in realsense+ library :

https://dev.intelrealsense.com/docs/matlab-wrapper
% ie. cfg = SDK 2.0 configuration object that defines settings of device or

file interface
%
% OUTPUTS
%
% depthMap = stack of unscaled depth maps with dimensions [R1,C1,N] uint16
% colorImg = stack of RGB images with dimensions [R2,C2,3,N] uint8
% leftImg = stack of left ASV infrared images with dimensions [R1,C1,N] uint8
% rightImg = stack of right ASV infrared images with dimensions [R1,C1,N]

uint8
% time = backend time of when images were taken [N,1] double
% timestamp = datetime of when images were taken [N,1] datetime
% depthIntrinsics = struct of depth map ASV intrinsics for deprojection {1x1

struct}
% matFilename = folder path to compressed mat file with all results {string}
% depthScale = scaling for depth maps for : scaledDepthMap =

depthScale*double(depthMap);
%
% PROCESSING STEPS
%
% 1. create empty variables for images and data using the ROS Toolbox
% 2. replay .bag file using SDK 2.0
% 3. assign images and other data to memory
% 4. end replay once all frames have been read
% 5. remove dropped frames from all data types
% 6. save data to compressed mat file version 7.3
%
% NOTES
%
% bagFilename MUST BE ABSOLUTE FOLDER PATH does not work with relative
% updated version of rs2_rosbag_streams()
% alternative function is readRosbag() but it has memory issues and can not

use SDK filters

211

% known problem with rs2 replay feature is inconsistent frame dropping
% when using readRosbag notice that different ASVs have different number of

frames, but are the same when replaying
%
% Jason Der
% September 3, 2021 updated Feb 3, 2022 for efficiency and readibility
arguments
 bagFilename % needs full file path
 align char = 'notAligned' % 'color' or 'depth' or otherwise
 decParams = []
 spatParams = [0.5,20,2,0]
 tempParams = [0.4,20,3]
 holeParams = [] % enumerations
end
%% replay and read video
% initialize variables
[depthMap,leftImg,rightImg,colorImg,time,timestamp,nFrames] =

countRosbagFrames(bagFilename);
% check if frames are empty
depthEmpty = isempty(depthMap);
leftEmpty = isempty(leftImg);
rightEmpty = isempty(rightImg);
colorEmpty = isempty(colorImg);
% configure PIPe and replay
cfg = realsense.config();
Pipe = realsense.Pipeline();
cfg.enable_device_from_file(bagFilename,false);
profile = Pipe.start(cfg); % replay
depth_sensor = profile.get_device.first('depth_sensor');
playback = profile.get_device().as('playback');
playback.set_real_time(false);
% capture streams
frameDropped = false;
for iFrame = 1:nFrames
 try
 % if playback stopping
 if playback.current_status == 'stopped'
 fprintf('processed %.0i/%.0i frames\n',(iFrame-1),nFrames);
 frameDropped = true;
 break
 end
 % obtain streams from frameset
 [A,B,C,D,E,F,depthIntrinsics,colorIntrinsics,depthScale] = ...
 rs2PIPeStreams(PIPe,depth_sensor,align,...
 decParams,spatParams,tempParams,holeParams);
 % manage frameset output assignment
 if ~depthEmpty && ~isempty(A) depthMap(:,:,iFrame) = A; end
 if ~colorEmpty && ~isempty(B) colorImg(:,:,:,iFrame) = B; end
 if ~leftEmpty && ~isempty(C) leftImg(:,:,iFrame) = C; end
 if ~rightEmpty && ~isempty(D) rightImg(:,:,iFrame) = D; end
 % assign time and stamps without restriction
 time(iFrame) = E;
 timestamp(iFrame) = F;
 catch % error catch
 fprintf('processed %.0i/%.0i frames\n',(iFrame-1),nFrames);
 frameDropped = true;

212

 break
 end
 if iFrame == nFrames
 % exit loop, replay behaviour is not well understood
 % just a safety feature
 break
 end
end
% stop replay
PIPe.stop();
%% remove dropped frames
if frameDropped % if frame[s] dropped
% check which frames are blank images
depthBlank = ~squeeze(any(depthMap,[1 2]));
colorBlank = ~squeeze(any(colorImg,[1 2 3]));
leftBlank = ~squeeze(any(leftImg,[1 2]));
rightBlank = ~squeeze(any(rightImg,[1 2]));
timeBlank = ~any(time,2);
% common dropped frames
droppedFrames = depthBlank & colorBlank & leftBlank & rightBlank & timeBlank;
% assign empty to frames that are blank
depthMap(:,:,droppedFrames) = [];
colorImg(:,:,:,droppedFrames) = [];
leftImg(:,:,droppedFrames) = [];
rightImg(:,:,droppedFrames) = [];
time(droppedFrames) = [];
timestamp(droppedFrames) = [];
end
%% save to .mat file
% offset to zero
t = (time - time(1))/1000;
% convert datetime into numeric, then offset
T = datenum(timestamp)-datenum(timestamp(1));
% generate mat file name
[path,name] = fileparts(bagFilename);

if strcmp(align,'color') || strcmp(align,'depth')
 streamName = [name 'Aligned' align '.mat'];
else
 streamName = [name '.mat'];
end
matFilename = fullfile(path,streamName);
% save
save(matFilename,'matFilename','colorImg','leftImg','rightImg','depthMap',...

'time','timestamp','t','T','depthIntrinsics','colorIntrinsics','depthScale','

-v7.3');
End

B1.2 countRosbagFrames

function [depthMap,leftImg,rightImg,colorImg,time,timestamp,nFrames] =

countRosbagFrames(filename)

213

%% read ROS bag file for number for frames
% requires ROS bag Toolbox
% was called frameCount_Rosbag changed Feb 18, 2022
% Jason Der
% April 7, 2021 updated Febuary 3, 2022 to read frame size too and
% initialzie frameset
% based on: another personal custom function [readRosbag]
 % source: https://community.intel.com/t5/Items-with-no-label/Converting-

bag-video-to-raw-frames/m-p/509808
 % alternative : https://github.com/UnaNancyOwen/rs_bag2image
% based on:

https://github.com/IntelRealSense/librealsense/issues/6887#issuecomment-

662310354
% Displays information in the command window. Use bagInfo = rosbag('info',

'file.bag') to get the information as a structure in a script. See

https://github.com/IntelRealSense/librealsense/blob/master/src/media/readme.m

d%23under-the-hood

https://github.com/IntelRealSense/librealsense/blob/master/src/media/readme.m

d# under-the-hood for explanations.
% Select a specific topic from the above information. It should end with

/image/data if you want the frames.
%% read frame data topics
arguments
 filename char % absolute path to .bag file
end
% Load the rosbag into object
bag = rosbag(filename);
% read topics
leftTopic = select(bag, 'Topic', '/device_0/sensor_0/Infrared_1/image/data');
rightTopic = select(bag, 'Topic',

'/device_0/sensor_0/Infrared_2/image/data');
colorTopic = select(bag, 'Topic', '/device_0/sensor_1/Color_0/image/data');
depthTopic = select(bag, 'Topic', '/device_0/sensor_0/Depth_0/image/data');
% read number of msgs as number of frames
leftFrameCount = leftTopic.NumMessages;
rightFrameCount = rightTopic.NumMessages;
colorFrameCount = colorTopic.NumMessages;
depthFrameCount = depthTopic.NumMessages;
% read image msgs for image size
if depthFrameCount ~= 0
 depthMsgs = readMessages(depthTopic,1);
 depthFrameSize = [depthMsgs{1}.Height,depthMsgs{1}.Width];
else depthFrameSize = [0 0]; end
if colorFrameCount ~= 0
 colorMsgs = readMessages(colorTopic,1);
 colorFrameSize = [colorMsgs{1}.Height,colorMsgs{1}.Width];
else colorFrameSize = [0 0]; end
if leftFrameCount ~= 0
 leftMsgs = readMessages(leftTopic,1);
 leftFrameSize = [leftMsgs{1}.Height,leftMsgs{1}.Width];
else leftFrameSize = [0 0]; end
if rightFrameCount ~= 0
 rightMsgs = readMessages(rightTopic,1);
 rightFrameSize = [rightMsgs{1}.Height,rightMsgs{1}.Width];
else rightFrameSize = [0 0]; end
clear leftTopic rightTopic colortopic depthTopic bag

214

% determine number of frames to initialize
nFrames =

max([depthFrameCount,colorFrameCount,leftFrameCount,rightFrameCount]);
if nFrames > 16000
 % limit based on 15.9 GB allocation limit per variable
 % depthMap will hit this limit first around 16000 frames using uint16 at

848 x 480
 disp(fprintf('nFrames %.0i would cause allocation error, set to

4000\n',nFrames));
 nFrames = 16000;
end
% initialize images
depthMap = zeros([depthFrameSize,nFrames],'uint16');
leftImg = zeros([leftFrameSize,nFrames],'uint8');
rightImg = zeros([rightFrameSize,nFrames],'uint8');
colorImg = zeros([colorFrameSize,3,nFrames],'uint8');
time =

datetime(zeros(nFrames,1),0,0,'TimeZone','America/Denver','Format','yyyy-MM-

dd HH:mm:ss.SSS');
timestamp =

datetime(zeros(nFrames,1),0,0,'TimeZone','America/Denver','Format','yyyy-MM-

dd HH:mm:ss.SSS');
end

B1.2.1 rs2pipeStreams

function[depthMap,colorImg,leftImg,rightImg,time,timestamp,depthIntrinsics,co

lorIntrinsics,depthScale] =

rs2PIPeStreams(PIPe,depth_sensor,align,decParams,spatParams,tempParams,holePa

rams)
%% read pipe object for image and property data
% Jason Der
% September 3, 2021
% NOTE:
 % better version of rs2_streams()
 % requires realsense SDK 2.0
arguments
 pipe
 depth_sensor
 align = 'color'
 decParams = []
 spatParams = []
 tempParams = []
 holeParams = []
end
% get frameset
fs = PIPe.wait_for_frames();
% read and process frameset
alignedFs = rs2AlignFrameset(fs,align);
[depth,color,left,right,time,timestamp] = rs2ReadFrameset(alignedFs);
filtered = rs2FilterDepth(depth,decParams,spatParams,tempParams,holeParams);
% read depth frame
try depthIntrinsics = rs2DepthIntrinsics(filtered); depthScale =

depth_sensor.get_depth_scale();
depthMap = rs2FrameImg(filtered,'depth'); % depthMap = depthScale .*

depthMap;
catch depthIntrinsics = []; depthMap = []; end

215

% read color frame
try colorIntrinsics = rs2DepthIntrinsics(color); colorImg =

rs2FrameImg(color,'color');
catch colorIntrinsics = []; colorImg = []; end
% read infrared frame
try leftImg = rs2FrameImg(left,'infrared'); catch leftImg = []; end
try rightImg = rs2FrameImg(right,'infrared'); catch rightImg = []; end
end

B1.1.1.1 rs2AlignFrameset

function [aligned] = rs2AlignFrameset(fs,align)
%% synthetically align frameset to color or depth persepctive
% Jason Der
% September 3, 2021
% NOTE:
 % align == 'color' or 'depth', otherwise no alignment
 % requires intelRealSense SDK 2.0
arguments
 fs
 align
end
% align frameset to selected ASV
switch align
 case 'color'
 colorAlign = realsense.align(realsense.stream.color);
 aligned = colorAlign.process(fs);
 case 'depth'
 depthAlign = realsense.align(realsense.stream.depth);
 aligned = depthAlign.process(fs);
 otherwise
 aligned = fs;
end
end

B2.1.1.1 rs2ReadFrameset

function [depth,color,left,right,time,timestamp] = rs2ReadFrameset(fs)
%% read rs2 PIPe object for enabled streams frame objects, frame time, and

frame timestamp
% back end timestamp is taken from depth
% Jason Der
% September 3, 2021
% NOTE:
 % requires intelRealSense SDK 2.0
 %

https://intelrealsense.github.io/librealsense/doxygen/classrs2_1_1frameset.ht

ml
 %

https://intelrealsense.github.io/librealsense/doxygen/rs__frame_8h.html#a91f1

9a01f5bf2abadc30959a8d3109c9
% READ
 % frame.get_timestamp - explains timestamps
 % frame.get_frame_metadata(metadatavalue) - other timestamps are available

in meta data
 % meta data value chart - list of meta data including timestamps
% frame.get_timestamp() will dynamically choose most appropriate timestamp
 % it will choose between timestamps at device and host level

216

 % use get_frame_timestamp_domain to identify which it selected
% timestamps available under meta data
 % metadata_frame_timestamp
 % metadata_sensor_timestamp
 % metadata_time_of_arrival
 % metadata_backened_timestamp
% timestamp domains and enumerators
 % 1 - hardware clock
 % 2 - system time
 % 3 - global time
 % also - domain count - number of enuermation values (NOT A VALID INPUT)

arguments
 fs
end

%% get frameset and time properties
left = fs.get_infrared_frame(1);
right = fs.get_infrared_frame(2);
color = fs.get_color_frame();
depth = fs.get_depth_frame();

%% get time properties
% timestamps are milliseconds
% automatically selected appropriate timestamp
time = fs.get_timestamp();
time = datetime(time,'TimeZone','UTC',...
 'ConvertFrom','epochtime','TicksPerSecond',1000, 'Format', 'yyyy-MM-dd

HH:mm:ss.SSS');
time.TimeZone = 'America/Denver';
% backend timestamp
try
 backend_timestamp =

depth.get_frame_metadata(realsense.frame_metadata_value.backend_timestamp);
catch
 backend_timestamp =

left.get_frame_metadata(realsense.frame_metadata_value.backend_timestamp);
end
timestamp = datetime(backend_timestamp,'TimeZone','UTC',...
 'ConvertFrom','epochtime','TicksPerSecond',1000, 'Format', 'yyyy-MM-dd

HH:mm:ss.SSS');
timestamp.TimeZone = 'America/Denver';

end

B1.2.2 rs2FilterDepth

function [filtered] =

rs2FilterDepth(depth,decParams,spatParams,tempParams,holeParams)
%% post process depth frame object
% Jason Der
% September 3, 2021
% NOTE:
 % to exclude filter set argument setting = []
 % requires intelRealSense SDK 2.0

217

 arguments
 depth
 decParams = []
 spatParams = []
 tempParams = []
 holeParams = []
 end

%% post process depth frame object with filter blocks
 [decimation,spatial,temporal,hole,depth_to_disparity,disparity_to_depth] =

rs2_filters(decParams,spatParams,tempParams,holeParams);
 filtered = depth;
 % decimation filter
 if ~isempty(decParams)
 filtered = decimation.process(filtered);
 end
 % spatial and temporal filter in disparity domain
 if (~isempty(spatParams) || ~isempty(tempParams)) &&...
 (~isempty(depth_to_disparity) && ~isempty(disparity_to_depth))
 filtered = depth_to_disparity.process(filtered);
 if ~isempty(spatParams)
 filtered = spatial.process(filtered);
 end
 if ~isempty(tempParams)
 filtered = temporal.process(filtered);
 end
 filtered = disparity_to_depth.process(filtered);
 end
 % hole filling filter
 if ~isempty(holeParams)
 filtered = hole.process(filtered);
 end
 % ensure object is realsense.depth_frame
 if ~strcmp(class(filtered),'realsense.depth_frame')
 filtered = filtered.as('depth_frame');
 end

end

B1.2.2.1 rs2_filters

function

[decimation,spatial,temporal,hole,depth_to_disparity,disparity_to_depth] =

rs2_filters(dec_mag,spat_settings,temp_settings,hole_settings)
%% create and configure
% Jason Der
% June 10, 2021
% NOTE: to exclude a filter set settings argument = []

%% function argument validation
 arguments
 dec_mag {mustBeReal,mustBeFinite} = 2
 spat_settings {mustBeReal,mustBeFinite} = [0.5,20,2,0]
 temp_settings {mustBeReal,mustBeFinite} = [0.4,20,3]
 hole_settings {mustBeReal,mustBeFinite} = 0
 end

218

%% initialization of post-processing filters for depthmap
 decimation = realsense.decimation_filter;
 spatial = realsense.spatial_filter;
 temporal = realsense.temporal_filter;
 hole = realsense.hole_filling_filter;
 depth_to_disparity = realsense.disparity_transform(true);
 disparity_to_depth = realsense.disparity_transform(false);

%% configure filters
 % if decimation filter exists
 if ~isempty(decimation) && ~isempty(dec_mag)
 % configure decimation filter linear scale factor
 decimation.set_option(realsense.option.filter_magnitude,dec_mag);
 end

 % if spatial filter exists
 if ~isempty(spatial) && ~isempty(spat_settings)
 % configure spatial filter factor for exponential moving average

spatial.set_option(realsense.option.filter_smooth_alpha,spat_settings(1));
 % configure spatial filter step size boundary, threshold to preserve

edges

spatial.set_option(realsense.option.filter_smooth_delta,spat_settings(2));
 % configure spatial filter filter iterations
 spatial.set_option(realsense.option.filter_magnitude,spat_settings(3));
 % configure spatial filter rectify minor artefacts
 spatial.set_option(realsense.option.holes_fill,spat_settings(4));
 end

 % if temporal filter exists
 if ~isempty(temporal) && ~isempty(temp_settings)
 % configure temporal filter factor for exponential moving average

temporal.set_option(realsense.option.filter_smooth_alpha,temp_settings(1));
 % configure temporal filter step size boundary, threshold to preserve

edges

temporal.set_option(realsense.option.filter_smooth_delta,temp_settings(2));
 % configure temporal filter governs hole filling based on historic pixel

value
 temporal.set_option(realsense.option.holes_fill,temp_settings(3));
 end

 % if hole filling filter exists
 if ~isempty(hole) && ~isempty(hole_settings)
 % configure hole filling filter filling type
 hole.set_option(realsense.option.holes_fill,hole_settings);
 end

end

B1.2.3 rs2DepthIntrinsics

function [intrinsics] = rs2DepthIntrinsics(depth)

219

%% get depth frame object intrinsics
% Jason Der
% September 3, 2021

 arguments
 depth
 end

%% get intrinsics property
 profile = depth.get_profile();
 video_profile = profile.as('video_stream_profile');
 intrinsics = video_profile.get_intrinsics();

end

B1.2.4 rs2FrameImg

function [img] = rs2FrameImg(frame,type)
%% create image from frame object
% Jason Der
% September 3, 2021
% NOTE:
 % requires intelRealSense SDK 2.0
 % if depth, need to multiply img by depthScale
 %

https://intelrealsense.github.io/librealsense/doxygen/classrs2_1_1frame.html
 % realsense.frame does not have get_width, get_height methods
 % these methods are inherited from realsense.video_frame
 % realsense.video_frame is used for infrared and color
 % realsense.depth_frame is used for depth
 % realsense.frame is used for filtered realsense.depth_frame

 arguments
 frame
 type = []
 end

%% create image, format based on data size
 try
 % ensure object is realsense.video_frame or realsense.depth_frame
 if strcmp(class(frame),'realsense.depth_frame') ||

strcmp(class(frame),'realsense.video_frame')
 try
 frame = frame.as('video_frame');
 catch
 frame = frame.as('depth_frame');
 end
 end
 % identify missing format type
 if isempty(type)
 profile = frame.get_profile;
 streamType = profile.stream_type;
 switch streamType
 case 1
 type = 'depth';
 case 2

220

 type = 'color';
 case 3
 type = 'infrared';
 end
 end
 % format frame data into image
 switch type
 case 'infrared' % uint8
 img =

permute(reshape(frame.get_data()',[frame.get_width(),frame.get_height()]),[2

1]);
 case 'color' % uint8
 img =

permute(reshape(frame.get_data()',[3,frame.get_width(),frame.get_height()]),[

3 2 1]);
 case 'depth' % save as uint16, float(uint16) x depthScale for actual

use
 img = (transpose(reshape(frame.get_data(),

[frame.get_width(),frame.get_height()])));
 end
 % entire process try-catch
 catch
 img = [];
 end
end

B2 Image Segmentation

The various experiment lungs were segmented from the depth maps using an edge-based or

region-based segmentation method. The segmentMechanicalLung function performed edge-

based segmentation of the ventilator test lung depth maps. The segmentLungs function

performed the interactive region-based segmentation of the porcine lung and rejected human

lung using the projective transformed color images. Also, the left and right lung segmentation of

the human lung was performed using the segmentRegions function. Segmentation allowed the

isolation of the experiment lungs in the depth maps for only their depth measurements. Also, the

label and color maps were segmented using the segmentation binary maps.

B2.1 segmentLungs

function [segmentationMatFilename] =

segmentLungs(streamsMatFilename,depthThreshold)
%% segment color image for lung, then remove invalid data from segmented

depthMap
% Jason Der
% October 29, 2021
arguments
 streamsMatFilename
 depthThreshold = [] % set based on foreground and background
end

221

% color image segmentation
load(streamsMatFilename,'-mat','colorImg');
[colorMask,forePosition,backPosition] = roiSegmentationVectorized(colorImg);
objectMask = largestRegion(colorMask);
refinedMask = refineMask(objectMask);
temporalMask = temporalFilterMask(refinedMask);
clear colorImg
% depthMap segmentation
load(streamsMatFilename,'-mat','depthMap');
if isempty(depthThreshold)
 depthThreshold = graythresh(depthMap(:,:,1));
end
depthMask = segmentDepth(depthMap,temporalMask,depthThreshold);
clear depthMap
% save and clear variables
[file,name,ext] = fileparts(streamsMatFilename);
segmentationMatFilename = fullfile(file,[name 'Segmentation' ext]);
%

save(segmentationMatFilename,'colorMask','objectMask','refinedMask','temporal

Mask','depthMask');
save(segmentationMatFilename,'colorMask','objectMask','refinedMask',...
 'temporalMask','depthMask','forePosition','backPosition','depthThreshold');
end

B2.1.1 roiSegmentationVectorized

function [mask,forePosition,backPosition] =

roiSegmentationVectorized(img,foreground,background,type,labelSuperPixels,com

pactness,nIterations)
%% segment color image
% Jason Der
% September 14, 2021
% NOTES:
 % consider using 3D volumetric image processing:
 % https://www.mathworks.com/help/images/3d-volumetric-image-

processing.html?s_tid=CRUX_lftnav
 % consider using sparse for masks, even though logical data is small
 % use imfilter and fspecial for enhancement

 arguments
 img
 foreground = []
 background = []
 type = 'color' % or depth
 labelSuperPixels (1,1) {mustBePositive} = 500
 compactness (1,1) {mustBePositive} = 10
 nIterations (1,1) {mustBePositive} = 10
 end

%% interactively define foreground and background
 switch type
 case 'depth'
 previewImg = img(:,:,1);
 case 'color'
 previewImg = img(:,:,:,1);
 end
 if isempty(foreground) || isempty(background)

222

 % open first image in figure
 f = figure;
 set(gcf,'color','w');
 imshow(rescale(previewImg,0,1));
 title('first color image - select ROI with only foreground');
 foreROI = drawrectangle(gca);
 forePosition = foreROI.Position;
 foreground = createMask(foreROI);
 title('first color image - select ROI with only background');
 backROI = drawrectangle(gca);
 backPosition = backROI.Position;
 background = createMask(backROI);
 close(f);
 end

%% enhance images
 img = imadjustn(img);
 filter = fspecial('unsharp');
 img = imfilter(img,filter);

%% segment images
 switch type
 case 'depth'
 mask = false(size(img));
 for i = 1:size(img,3)
 [labelImg,~] =

superpixels(img(:,:,i),labelSuperPixels,'Compactness',compactness,'NumIterati

ons',nIterations);
 mask(:,:,i) =

lazysnapping(img(:,:,i),labelImg,foreground,background);
 end
 case 'color'
 mask = false(size(img,1,2,4));
 for j = 1:size(img,4)
 [labelImg,~] =

superpixels(img(:,:,:,j),labelSuperPixels,'Compactness',compactness,'NumItera

tions',nIterations);
 mask(:,:,j) =

lazysnapping(img(:,:,:,j),labelImg,foreground,background);
 end
 end

end

B2.1.2 largestRegion

function [bw] = largestRegion(BW)
bw = BW;
for ii = 1:size(BW,3)
 bw(:,:,ii) = bwpropfilt(BW(:,:,ii),'Area',1);
end

B2.1.3 refineMask

function [maskOut] = refineMask(maskIn)
%% refine binary segmentation mask
% Jason Der

223

% September 9, 2021, updated September 14, 2021 for ND masks
 arguments
 maskIn
 end
%% initializations
 s = strel('disk',3,8);
 n = size(maskIn,3);
 maskOut = false(size(maskIn));
%% refine mask
 for i = 1:n
% % remove regions that contact image border
% mask = imclearborder(maskIn(:,:,i));
 % morphological operations
 mask = bwmorph(maskIn(:,:,i),'fill');
 mask = bwmorph(mask,'clean');
 mask = imerode(mask,s);
 mask = bwmorph(mask,'thin');
 mask = bwmorph(mask,'hbreak');
 mask = bwmorph(mask,'spur');
 mask = bwmorph(mask,'clean');
 maskOut(:,:,i) = imdilate(mask,s);
 end
end

B2.1.4 temporalFilterMask

function [maskOut] = temporalFilterMask(maskIn,window,threshold)
%% use temporal moving average mask
% takes any type of image, but outputs a logical mask
% Jason Der
% September 22, 2021
% other options are imfilter, or filter, and fspecial
 % fspecial could use 'motion', 'average', 'gaussian'

arguments
 maskIn
 window (1,1) {mustBePositive} = floor(0.01*size(maskIn,3))
 threshold (1,1) {mustBeNonnegative} = 0.5 % larger, more sensitive to

change
end

%% filter through frames
[~,~,i,j] = size(maskIn);
if i == 3 && j ~=1 && all(class(maskIn) == 'uint8') % color image
 n = 4;
else % grayscale or binary
 n = 3;
end
maskOut = movmean(maskIn,window,n,'omitnan') > threshold;
end

B2.1.5 segmentDepth

function [depthMask] = segmentDepth(depth,colorMask,threshold,direction)
%% segment depthMap for depthMap where AND(color image mask, above/below

threshold, continuous object)
% Jason Der
% October 31, 2021

224

arguments
 depth double
 colorMask logical
 threshold = abs(mean(depth.*colorMask,'all') +

2*std(depth.*colorMask,0,'all'))
 direction logical = true % default find depth less than threshold
end
% segment depthMap, and find continuous objects
depthSeg = depth.*colorMask;
object = largestRegion(depthSeg & colorMask);
% find depth above/below threshold
if direction % depth greater than threshold
 maskThreshold = ~(depthSeg > threshold);
else % depth less than threshold
 maskThreshold = depthSeg < threshold;
end
% binary mask meeting all three conditions
depthMask = depthSeg & maskThreshold & object;
% return largest contiguous regions
depthMask = largestRegion(depthMask);
end

B2.1.6 segmentMechanicalLungEVLP

function [bwFilename] = segmentMechanicalLungEVLP(matFilename,line,rect)
%% segment mechanical lung from depth maps
% uses edge based method and edge linking from Digital Image Processing 4th

Ed.
% edge localization by bwG(:,:,ii) =

gradientEdge(depthMap(:,:,ii),0.95,60,90)
% or edge(depthMap(:,:,ii),'canny') or edge(depthMap(:,:,ii),'log')
% other methods covered by edge() could be used but these are recommended

% method is finicky
% depends on small body filtering threshold
 % only used on trials 4-6 limits = [15 inf]
 % trials 1-3 dont need it
 % trials 7-9 need the small bodies
% depends on location of drawline and drawrect
 % trials 1-3 vertical line good
 % trials 4-6 needed close diagonal line or else it would not enclose lung
% depends on linking distance
 % trials 1-3 threshold = 10 was good
 % trials 4-6 threshold = 10 with area filt prior okay
 % trials 7-9 threshold = 10 lost > 5% of frames

% Jason Der
% February 17, 2022
arguments
 matFilename
 line = []
 rect = []
end
% load depthmaps
load(matFilename,'depthMap');
[file,name,ext] = fileparts(matFilename);
bwFilename = fullfile(file,[name 'BW' ext]);

225

[row,col,nFrames] = size(depthMap);
% edge localization and linking
bwCanny = false(row,col,nFrames);
parfor iFrame = 1:nFrames
 bwCanny(:,:,iFrame) = edge(imadjust(depthMap(:,:,iFrame)),'canny');
end
% remove small edges
% for trial 4 aimed at occlusion holes scattered throughout image
% for trial 4 lower limit ~ 15, above will remove too many that are needed
% for enclose the lung, at ~ 10 it has no effect
% bwAreaFilt = false(row,col,nFrames);
% for i = 1:nFrames
% bwAreaFilt(:,:,i) = bwareafilt(bwCanny(:,:,i),[15 inf]);
% end
save(bwFilename,'bwCanny','-v7.3');
clear file name ext matFilename
bwLinked = false(row,col,nFrames);
parfor jFrame = 1:nFrames
 bwLinked(:,:,jFrame) = fastLocalEdgeLinking(bwCanny(:,:,jFrame),10,[0 45 -

45 90]);
end
% save
save(bwFilename,'bwLinked','-append'); % change based on edge detector
clear bwAreaFilt .
% define boundaries of mechanical lung airline and crop
if isempty(line) || isempty(rect)
 [line,rect] = drawMechanicalLungBounds(bwLinked(:,:,1));
end
% find mechanical lung within cropped image
bwCrop = false(rect(4)+1,rect(3)+1,nFrames);
for kFrame = 1:nFrames
 bwCrop(:,:,kFrame) =

mechanicalLungRegionInsideBounds(bwLinked(:,:,kFrame),line,rect);
end
clear bwLinked
% outlier detection
bwCount = squeeze(sum(bwCrop,[1 2]));
bwOutlier = isoutlier(bwCount,'movmedian',0.01*length(bwCount));
bwValid = bwCrop(:,:,~bwOutlier);
save(bwFilename,'bwCrop','bwOutlier','rect','line','-append');
clear bwCrop bwCount bwOutlier line
% bw temporal filtering on cropped binary images
bwCropFilt = temporalFilterMask(bwValid,10,0.5); % or temporalFilterImg
% check if outlier removal and temporal smoothing worked
% bwFiltCount = squeeze(sum(bwCropFilt,[1 2]));
% bwFiltOutlier =

isoutlier(bwFiltCount,'movmedian',0.01*length(bwFiltCount));
% insert cropped binary images into full sized images
mValidFrames = size(bwCropFilt,3);
bw = false(row,col,mValidFrames);
for kFrame = 1:mValidFrames
 bw(rect(2):rect(4)+rect(2),rect(1):rect(3)+rect(1),kFrame) =

bwCropFilt(:,:,kFrame);
end
% save
save(bwFilename,'bw','bwCropFilt','-append');

226

end

B2.1.6.1 fastLocalEdgeLinking

function [bwE] = fastLocalEdgeLinking(bwG,L,theta)
%% perform local processing edge linking
% based on simplified algorithm described in Digital Image Processing 4th Ed.

pg. 736
% find bwG using any edge detector such as gradientEdge()
% inputs
 % bwG binary image from edge detection
 % L edge linking distance threshold
 % theta desired edge angles to link
% intermediates
 % n number of nonzero pixels in row(ii) of bwG
 % ind linear indices of nonzero pixels in row(ii) of bwG
 % dist number of pixels between nonzero pixels in row(ii) of bwG
% outputs
 % bwE binary image with linked edges
% Jason Der
% February 16, 2022
arguments
 bwG
 L = 15
 theta = [0 45 -45 90]
end
% pre-edge linking using morphological operations
bwG = bwmorph(bwG,'thicken');
bwG = bwmorph(bwG,'diag');
bwG = bwmorph(bwG,'majority');
% fill gaps shorter than L for each row
bwE = bwG;
for kk = 1:length(theta)
 % rotate so theta(kk) angle is horizontal
 bwE = imrotate(bwE,theta(kk),'crop');
 bwG = imrotate(bwG,theta(kk),'crop');
 for ii = 1:height(bwG) % rows
 % find nonzero pairs and their distances
 n = nnz(bwG(ii,:));
 ind = find(bwG(ii,:));
 dist = diff(ind);
 for jj = 1:n-1 % nonzero pairs
 if dist(jj) <= L % threshold pair distance
 % fill gaps between nonzero pair
 bwE(ii,ind(jj):ind(jj+1)) = true;
 end
 end
 end
 % rotate back
 bwE = imrotate(bwE,-theta(kk),'crop');
 bwG = imrotate(bwG,-theta(kk),'crop');
end
% edge thinning
bwE = bwmorph(bwE,'diag');
bwE = bwmorph(bwE,'skel',inf);
% remove small bodies
bwE = bwareafilt(bwE,[50 inf]);

227

end

B2.1.7 segmentRegions

function [segmentationMatFilename] =

segmentRegions(streamsMatFilename,segmentationMatFilename)
%% segment lung for regions, left and right lungs
% Jason Der
% October 29, 2021
% updated November 17, 2021 with clusterLabels
arguments
 streamsMatFilename
 segmentationMatFilename
end
% load variables
load(segmentationMatFilename,'depthMask');
load(streamsMatFilename,'depthMap');
% segment regions
[r,c,n] = size(depthMap);
L = ones(r,c,n,'uint8');
parfor i = 1:n
 [L(:,:,i)] = segmentRegionsImquantize(depthMap(:,:,i),8,depthMask(:,:,i));
end
clear depthMap depthMask
% post process regions
Lc = clusterLabels(L,3);
Lw = removeLabelIdx(Lc);
Ls = sortLabels(Lw);
% temporal filter region
% Lf = filterRegion(Ls);
Lf = filterLeftRightLungLabels(Ls,[2 3 1],0.03);
% save to mat file
save(segmentationMatFilename,'L','Lc','Lw','Ls','Lf','-append');
end

B2.1.7.1 segmentRegionsImquantize

function [L] = segmentRegionsImquantize(img,nLevels,mask)
%% segment regions from result of imquantize to seed watershed method
% Jason Der
% November 2, 2021
% updated November 17, 2021 with multithresh, default nLevels = 9 from 10
arguments
 img
 nLevels = 8
 mask = []
end
% prepare image for quantization
if ~isempty(mask)
 seg = img.*imfill(mask,'holes');
else
 seg = img;
end
nonZero = imfill(seg);
nonZero(nonZero==0) = max(seg,[],'all');
% quantize image into nLevels
thresh = multithresh(nonZero,nLevels);
% levels = linspace(min(nonZero,[],'all'),max(nonZero,[],'all'),nLevels);

228

quant = imquantize(nonZero,thresh);
% find watershed seed regions, foreground and background
minima = imhmin(quant,2);
foreground = bwmorph(imregionalmin(minima),'clean');
foreground = imerode(foreground,strel('disk',3));
 if ~isempty(mask)
 background = ~imfill(mask,'holes');
 else
 maxima = imhmax(quant,1);
 background = bwmorph(imregionalmax(maxima),'clean');
 end
%gradient image with imposed minima
smooth = imnlmfilt(imsharpen(nonZero));
gmag = imgradient(smooth);
gmag2 = imimposemin(gmag,foreground|background);
% watershed segmentation
L = watershed(gmag2);
end

B2.1.7.2 clusterLabels

function [clusterLabel] = clusterLabels(L,nClusters,attribute)
%% ensure the same regions have the same labels between frames
% also combines oversegmented regions
% identify unique regions by clustering based on a metric
% metrics could be any supported regionprops attributes (choosen is Area)
% attribute input is case sensitive
% k-means function is set to use replicates = 3
% Jason Der
% November 16, 2021 updated March 4, 2022 to use Area instead of Centroid
arguments
 L
 nClusters = 3
 attribute = 'Area'
end
% initialize variables
[r,c,n] = size(L);
s = cell(n,1);
frameID = cell(n,1);
labelID = cell(n,1);
clusterLabel = zeros(r,c,n,'uint8');
% regionprops for each frame
for ii = 1:n
 % regionprops ignores zero label
 % zero label is watershed line (between regions)
 s{ii} = regionprops(L(:,:,ii),attribute);
 frameID{ii} = repmat(ii,length(s{ii}),1);
 labelID{ii} = uint8(repmat(1:length(s{ii}),1))';
end
% measure dimensions of attribute
attributeLength = length(s{1}(1).(attribute));
% create matching arrays to clusterID that tells you the frame and label
frameID = cell2mat(frameID);
labelID = cell2mat(labelID);
% identify number of k-mean clusters
if isempty(nClusters)
 labels = uint8(unique(L));

229

 labels(labels==0) = []; % remove watershed lines
 nClusters = length(labels);
end
% identify cluster for each region for each frame
regionProperties =

reshape(cell2mat(struct2cell(cell2mat[s])),attributeLength,[])';
clusterID = uint8(kmeans(regionProperties,nClusters,'Replicates',3));
% create label matrix for cluster ID regions
for jj = 1:length(clusterID)
 frame = frameID(jj);
 label = labelID(jj);
 cluster = clusterID(jj);
 clusterLabel(:,:,frame) = clusterLabel(:,:,frame) +

cluster.*uint8(L(:,:,frame)==label);
end
end

B2.1.7.3 removeLabelIdx

function [Lw] = removeLabelIdx(Lc,filtSz,watershedLabel,backgroundLabel)
%% remove watershed lines between regions
% Jason Der
% December 9, 2021
arguments
 Lc
 filtSz = 9
 watershedLabel = 0
 backgroundLabel = 3
end
% apply majority filter to label image
majority = modefilt(Lc,[filtSz filtSz 1]);
% use majority filter results for pixels are equal to watershedIdx
Lw = Lc;
loc = Lc == watershedLabel;
Lw(loc) = majority(loc);
% remove any remaining watershed pixels
locw = (Lw == watershedLabel);
if any(locw,'all')
Lw(locw) = backgroundLabel; % take as background label
end

B2.1.7.4 sortLabels

function [Ls] = sortLabels(L)
%% change region labels by sorting them by pixel count / frequency
% intended to avoid pcdownsampling a background label
% utility assumes that background has larger count than foreground
% as a result, the background label is always known and interpolation
% between foreground labels when rounded always gives a foreground label
% Jason Der
% March 5, 2022
arguments
 L
end
% sort labels in first labelling image
firstFrame = L(:,:,1);
[groupCount,groupLabels] = groupcounts(firstFrame(:));
[~,I] = sort(groupCount);

230

sortedLabels = groupLabels(I);
% sort all labelling images based on sorted groups
Ls = zeros(size(L),'uint8');
for iGroup = 1:length(groupLabels)
 Ls(L==sortedLabels(iGroup)) = groupLabels(iGroup);
end
end

B2.1.7.5 filterLeftRightLungLabels

function [Lf] = filterLeftRightLungLabels(Ls,labels,windowPercent)
%% temporal filter left and right lungs in labelling image
% Jason Der
% March 14, 2022
arguments
 Ls
 labels = [1 2 3]
 windowPercent = 0.03
end
% initialization
[r,c,n] = size(Ls);
window = floor(windowPercent*n);
leftLabel = labels(1);
rightLabel = labels(2);
backLabel = labels(3);
% moving mean of left and right lung
leftMean = movmean(Ls==leftLabel,window,3,'omitnan');
rightMean = movmean(Ls==rightLabel,window,3,'omitnan');
% assign foreground as either left or right lung
Lf = zeros(r,c,n,'uint8');
Lf(leftMean<=rightMean) = rightLabel;
Lf(leftMean>rightMean) = leftLabel;
% assign background
Lf(Ls==backLabel) = backLabel;
% find isolated bodies and replace for left lung
[ccIsolatedLeft,~] = findIsolatedLabels(Lf,leftLabel);
Lf(vertcat(ccIsolatedLeft{:})) = rightLabel;
% find isolated bodies and replace for right lung
[ccIsolatedRight,~] = findIsolatedLabels(Lf,rightLabel);
Lf(vertcat(ccIsolatedRight{:})) = leftLabel;
% replace any remaining isolated bodies as background
[ccIsolatedLeftRemainder,~] = findIsolatedLabels(Lf,leftLabel);
[ccIsolatedRightRemainder,~] = findIsolatedLabels(Lf,rightLabel);
Lf(vertcat(ccIsolatedLeftRemainder{:})) = backLabel;
Lf(vertcat(ccIsolatedRightRemainder{:})) = backLabel;
end

B2.1.7.5.1 findIsolatedLabels

function [ccSmall,ccLarge] = findIsolatedLabels(Lf,targetLabel)
%% find isolated connected components in binary map and return indices
% Jason Der
% March 10, 2022
arguments
 Lf
 targetLabel
end
% find connected components for target labels

231

ccStruct = bwconncomp(Lf == targetLabel,8);
nCC = ccStruct.NumObjects;
% find the frame (index) of each body using implicit expansion
[nRow,nCol,nFrames] = size(Lf);
ccFirstIdx = cellfun(@(x) x(1),ccStruct.PixelIdxList);
ccFrame = ceil(ccFirstIdx/(nRow*nCol));
% alternative method to find frame index
 % frameLimits = nRow*nCol:nRow*nCol:nRow*nCol*nFrames';
 % [~,ccFrame] = max(ccFirstIdx <= frameLimits(:),[],1);
% find frames with mulitple bodies
[frameCount,frameIdxList] = groupcounts(ccFrame');
frameMultipleCC = frameCount > 1;
idxFrames = frameIdxList(frameMultipleCC); % equivalent to

find(frameMultipleCC)
ccMultiple = ismember(ccFrame,idxFrames);
multipleFrame = ccFrame(ccMultiple);
% find number of pixels per body in frames with multiple connected components
multipleSize = cellfun('length',ccStruct.PixelIdxList(ccMultiple));
% cell for pixel indices of large and small bodies
ccLarge = cell(nFrames,1);
ccLarge(~frameMultipleCC) = ccStruct.PixelIdxList(~ccMultiple);
ccSmall = cell(nCC-nFrames,1);
ccSmallIdx = 0; % start counter
% find pixel indices of large and small bodies
% search frames with multiple connected components
for iFrame = 1:length(idxFrames)
 % connected components to check
 iFrameIdx = idxFrames(iFrame); % frame to check
 multipleIdx = find(multipleFrame==iFrameIdx); % indices for list of

multipleCC
 iFrameSizes = multipleSize(multipleIdx); % number of pixels for each cc to

check
 idx = find(ismember(ccFrame,iFrameIdx)); % cc indices
 % large body indices
 [~,multipleIdxMax] = max(iFrameSizes);
 % large body pixel list
 ccLarge(idxFrames(iFrame)) = ccStruct.PixelIdxList(idx(multipleIdxMax));
 % small body indices
 smallIdx = find(multipleIdx);
 smallIdx(multipleIdxMax) = [];
 % cc small body indices, based on relationship between counter and group

length
 idxChange = length(idx)-1; % number of bodies per frame - 1
 ccSmallIdx = ccSmallIdx + idxChange; % last index in ccSmall to assign too,

update each iteration
 ccSmallArray = ccSmallIdx - idxChange + 1:ccSmallIdx; % indices in ccSmall
 % small body pixel list
 ccSmall(ccSmallArray) = ccStruct.PixelIdxList(idx(smallIdx));
end
end

232

B2.2 Point Cloud Processing

The segmented depth maps were deprojected into point clouds using the follow functions. The

deprojectLungs function performs deprojection and some data management. The

vertices2PointCloud function performs the post-processing steps such as box average filtering

and more data management to convert the deprojected points into point cloud objects. The depth,

color, and label data from the images were transferred to the point clouds.

B2.2.1 deprojectLungs

function [verticesMatFilename] =

deprojectLungs(streamsMatFilename,segmentationMatFilename,D)
%% deproject lung XYZ and RGB
% Jason Der
% October 30, 2021 updated March 4, 2022 to mirror XYZ about YZ
arguments
 streamsMatFilename
 segmentationMatFilename
 D = 0.38 % depth threshold / distance of EVLP floor to depth origin
end
% load variables
load(streamsMatFilename,'colorImg','depthMap','intrinsics','depthIntrinsics')

;
load(segmentationMatFilename,'tform','Lf','depthMask');
if ~exist('tform','var')
 trans = [0 0 D];
 rot = [-1 0 0;0 1 0;0 0 -1];
 tform = rigid3d(rot,trans);
end
% deproject lung XYZ and RGB data
if ~exist('intrinsics','var')
 intrinsics = depthIntrinsics;
end
[XYZ] = deprojectDepthMap(depthMask.*depthMap,intrinsics);
XYZ = transformPointsForward(tform,XYZ);
XYZ = [-XYZ(:,1),XYZ(:,2:3)];
spatialLimits = [min(XYZ(:,1)),max(XYZ(:,1));
 min(XYZ(:,2)),max(XYZ(:,2));
 min(XYZ(:,3)),max(XYZ(:,3))];
XYZ = formatVertices(XYZ,depthMask); % default is cell per frame
% if color image have been segmented
if exist('colorImg','var')
 RGB = formatColorImg(colorImg,depthMask); % default is cell per frame
end
% if regions have been segmented
if exist('Lf','var')
 R = formatLabels(Lf,depthMask);
end
% save results to mat file
[file,name,ext] = fileparts(streamsMatFilename);
verticesMatFilename = fullfile(file,[name 'Vertices' ext]);

233

save(verticesMatFilename,'XYZ','spatialLimits','tform','-v7.3');
% if regions have been segmented
if exist('R','var')
 save(verticesMatFilename,'R','-append');
end
if exist('RGB','var')
 save(verticesMatFilename,'RGB','-append');
end

B2.2.1.1 deprojectDepthMap

function [vertices] = deprojectDepthMap(depthMap,intrinsics)
%% convert depth map[s] into 3D points using pinhole model and inverse Brown-

Conrady distortion model
% Inputs
 % depthMap - depth map[s] with [R,C,N] dimensions
 % intrinsics - ASV intrinsics
 % ppx - physical to pixel scaling in y direction
 % ppy - physical to pixel scaling in x direction
 % fx - focal length in x direction
 % fy - focal length in y direction
% Intermediates
 % ind - linear indices of nonzero depth values
 % sz - size of depthMap = [R,C,N]
 % X - x coordinates in pixels of nonzero depth values
 % Y - y coordinates in pixels of nonzero depth values
 % Z - nonzero depth values
 % x - x coordinates in physical dimensions on image plane (not depth

scaled)
 % y - y coordinates in physical dimensions on image plane (not depth

scaled)
 % ux - x coordinates undistorted (not depth scaled)
 % uy - y coordinates undistorted (not depth scaled)
 % f - a brown conrady distortion coefficient
 % r2 - a brown conrady distortion coefficient
% Outputs
 % vertices - XYZ 3D points in physical space in [N,3] list
% Notes
 % size() provides XY dimensions in opposite order of intrinsics
 % Jason Der
 % October 30, 2021
arguments
 depthMap
 intrinsics
end
% preprocessing
ind = find(depthMap);
sz = size(depthMap);
[Y,X,~] = ind2sub(sz,ind); % FLIP b/c row = y and column = x
Z = depthMap(ind);
clear depthMap
% calculate x and y coorinates
x = (X - intrinsics.ppx) / intrinsics.fx;
y = (Y - intrinsics.ppy) / intrinsics.fy;
% inverse brown conrady model
r2 = x.*x + y.*y;

234

f = 1 + intrinsics.coeffs(1) .* r2 + intrinsics.coeffs(2) .* r2.*r2 +

intrinsics.coeffs(5) .* r2.*r2.*r2;
ux = x .* f + 2 * intrinsics.coeffs(3) .* x .* y + intrinsics.coeffs(4) .*

(r2 + 2 .* x .* x);
uy = y .* f + 2 * intrinsics.coeffs(4) .* x .* y + intrinsics.coeffs(3) .*

(r2 + 2 .* y .* y);
% scale x and y coordinates
clear x y f r Y X ind
% vertices = single([Z .* uy,Z .* ux,Z]); <---------- BIG MISTAKE ---------
vertices = single([Z .* ux,Z .* uy,Z]);
end

B2.2.1.2 formatVertices

function [formatted] = formatVertices(vertices,bw,format)
%% convert [N,3] list of vertices (XYZ) into desired format while separating

list into frames
% Steps
 % determine which frames each vertices point belongs to
 % format into desired format: {cell, pointCloud stack, or ndSparse}
% Inputs
 % vertices - XYZ points in [N,3] list
 % bw - black_white (binary images) image format (including zeros) of

vertices
 % format - string that defines desired format using switch case
% Intermediates
 % ind - linear indices of nonzero pixels in bw
 % bwSize - dimension size of bw [~,~,nFrames]
 % nFrames - number of image frames
 % frame - frame coordinates for nonzero pixels in bw
 % 'x'Frame - index of frame 'x' for looping through frames
 % 'x'FrameChg - indices of when vertices change frames
 % 'x'FramePoints - indices of vertices that are part of frame 'x'Frame
% Outputs
 % formatted - vertices formatted into desired format
% Notes
 % requires ndSparse on FileExchange for ndSparse format option
 % https://www.mathworks.com/matlabcentral/answers/36563-reshaping-2d-

matrix-into-3d-specific-ordering
 % Jason Der
 % November 3, 2021
arguments
 vertices
 bw
 format = 'cell' % 'cell','ndSparse',or 'pc'
end
% determine vertices' dimensions as an image
ind = find(bw);
bwSize = size(bw);
try nFrames = bwSize(3); catch nFrames = 1; end
[~,~,frame] = ind2sub(bwSize,ind);
% format vertices
switch format
 case 'cell'
 % initialize cell array
 formatted = cell(nFrames,1);
 % find when points change frames

235

 iFrameChg = [0;find(diff(frame));length(frame)];
 for iFrame = 1:length(iFrameChg)-1
 iFramePoints = iFrameChg(iFrame)+1:iFrameChg(iFrame+1);
 formatted{iFrame} = vertices(iFramePoints,:);
 end
 case 'pc'
 % initialize pointCloud stack
 formatted(1:nFrames,1) = pointCloud([0,0,0]);
 % find when points change frames
 jFrameChg = [0;find(diff(frame));length(frame)];
 for jFrame = 1:nFrames
 jFramePoints = jFrameChg(jFrame)+1:jFrameChg(jFrame+1);
 formatted(jFrame) = pointCloud(vertices(jFramePoints,:));
 end
 case 'ndSparse' % reshape list into sparse frames
 formatted =

ndSparse(permute(reshape(vertices',[3,numel(bw)/nFrames,nFrames]),[2,1,3]));
 otherwise % error message
 disp('invalid format\n');
end
end

B2.2.1.3 formatColorImg

function [RGB] = formatColorImg(colorImg,depthMask,format)
%% format RGB data into list, matching vertices
% Jason Der
% November 3, 2021
% https://www.mathworks.com/matlabcentral/answers/36563-reshaping-2d-matrix-

into-3d-specific-ordering
% ndSparse option needs work
arguments
 colorImg
 depthMask
 format = 'cell'
end

%% colorImg dimensions and segmentation
 sz = size(colorImg);
 n = sz(1)*sz(2);

%% format segmented colorImg
 switch format
 case 'cell'
 RGB = cell(sz(4),1);
 for i = 1:sz(4)
 colorFrame =

colorImg(:,:,:,i).*repmat(uint8(depthMask(:,:,i)),[1,1,3]);
 ind = find(depthMask(:,:,i));
 RGB{i} = reshape(colorFrame([ind;ind+n;ind+2*n]),[],3);
 end
% case 'ndSparse'
% RGB =

ndSparse(permute(reshape(colorSeg',[3,n/sz(4),sz(4)]),[2,1,3]));
 otherwise
 disp('invalid format\n');
 end

236

end

B2.2.1.4 formatLabels

function [R] = formatLabels(L,depthMask)
%% format labelling images into vertices list for point cloud
% replace formatRegions and formatPointCloudIntensityRegion
% just use integer labels in L, use depthMask to identify valid pixels
% Jason Der
% March 4, 2022
arguments
 L
 depthMask
end
% initializations
[~,~,numFrames] = size(depthMask);
R = cell(numFrames,1);
for iFrame = 1:numFrames
% assign region labels to cell as list
labels = L(:,:,iFrame);
R{iFrame} = labels(depthMask(:,:,iFrame));
end
end

B2.2.2 vertices2PointCloud

function [pointCloudMatFilename] =

vertices2PointCloud(streamsMatFilename,verticesMatFilename,gridStep)
%% prepare XYZ, and associated data (RGB and Regions) for surface

interpolation and integration
% removes invalid points, noise, and ROI outliers
% ROI removal is optional
% Jason Der
% November 7, 2021
% March 4, 2022 added pcdownsample and removed ROI
arguments
 streamsMatFilename
 verticesMatFilename
 gridStep = 0.005
end
% load variables
load(verticesMatFilename,'XYZ','RGB','R');
if ~exist('R','var')
 R = [];
end
% create pointCloud array
pointCloudRGBDI = createPointCloudRGBDI(XYZ,RGB,R);
clear XYZ RGB R
% filter pointCloud array
nFrames = length(pointCloudRGBDI);
pc(1:nFrames,1) = pointCloud([0 0 0]);
for ii = 1:nFrames
 pc(ii) = pcdownsample(pointCloudRGBDI(ii),'gridAverage',gridStep);
 pc(ii) = pcdenoise(pc(ii),'NumNeighbors',10,'Threshold',3);
end
% spatial limits of all valid points
pcSpatialLimits = spatialLimitsPointCloudArray(pc);

237

% save data
[file,name,ext] = fileparts(streamsMatFilename);
pointCloudMatFilename = fullfile(file,[name 'PC' ext]);
save(pointCloudMatFilename,'pc','pointCloudRGBDI','pcSpatialLimits','-v7.3');
end

B2.2.2.1 createPointCloudRGBDI

function [pointCloudMatFilename] =

vertices2PointCloud(streamsMatFilename,verticesMatFilename,gridStep)
%% prepare XYZ, and associated data (RGB and Regions) for surface

interpolation and integration
% removes invalid points, noise, and ROI outliers
% ROI removal is optional
% Jason Der
% November 7, 2021
% March 4, 2022 added pcdownsample and removed ROI
arguments
 streamsMatFilename
 verticesMatFilename
 gridStep = 0.005
end
% load variables
load(verticesMatFilename,'XYZ','RGB','R');
if ~exist('R','var')
 R = [];
end
% create pointCloud array
pointCloudRGBDI = createPointCloudRGBDI(XYZ,RGB,R);
clear XYZ RGB R
% filter pointCloud array
nFrames = length(pointCloudRGBDI);
pc(1:nFrames,1) = pointCloud([0 0 0]);
for ii = 1:nFrames
 pc(ii) = pcdownsample(pointCloudRGBDI(ii),'gridAverage',gridStep);
 pc(ii) = pcdenoise(pc(ii),'NumNeighbors',10,'Threshold',3);
end
% spatial limits of all valid points
pcSpatialLimits = spatialLimitsPointCloudArray(pc);
% save data
[file,name,ext] = fileparts(streamsMatFilename);
pointCloudMatFilename = fullfile(file,[name 'PC' ext]);
save(pointCloudMatFilename,'pc','pointCloudRGBDI','pcSpatialLimits','-v7.3');
end

B2.2.2.2 spatialLimitsPointCloudArray

function [spatialLimits] = spatialLimitsPointCloudArray(pointCloud)
%% find spatial limits of entire pointCloud array
% Jason Der
% November 14, 2021
arguments
 pointCloud
end
% limits of array elements
X = cell2mat(arrayfun(@(pc) pc.XLimits,pointCloud,'UniformOutput',false));
Y = cell2mat(arrayfun(@(pc) pc.YLimits,pointCloud,'UniformOutput',false));
Z = cell2mat(arrayfun(@(pc) pc.ZLimits,pointCloud,'UniformOutput',false));

238

% limits of array
spatialLimits = [min(X(:,1)),max(X(:,2));
 min(Y(:,1)),max(Y(:,2));
 min(Z(:,1)),max(Z(:,2))];

end

B3 Surface Reconstruction

The point clouds were used to reconstruct the surface of the experiment lungs using the

following functions. The interpolateSurface function reconstructed the surface using the 3D

coordinates from the point clouds. The interpolateSurfaceColor interpolated the surface map

color from the point clouds. The interpolateSurfaceRegion function interpolated the region labels

for the left and right lung from the point clouds to the surface map.

B3.1 interpolateSurface

function [surfaceMatFilename] =

interpolateSurface(streamsMatFilename,pointCloudMatFilename)
%% interpolate vertices data into surface image
% use primarily griddata() with different interpolation methods
% outputs images for each at query points defined by X and Y
% Jason Der
% developed October 30, 2021 to November 8, 2021
arguments
 streamsMatFilename
 pointCloudMatFilename
end
% load variables
load(pointCloudMatFilename,'pc','pcSpatialLimits');
% surface grid
[X,Y] = interpolationGrid(pcSpatialLimits);
X = double(X);
Y = double(Y);
% initialization
n = length(pc);
[r,c] = size(X);
Z = zeros(r,c,n);
BW = false(r,c,n);
% interpolate at grid points
for ii = 1:n
 % frame XYZ coordinates
 x = double(pc(ii).Location(:,1));
 y = double(pc(ii).Location(:,2));
 z = double(pc(ii).Location(:,3));
 % alpha shape
 shp = alphaShape(x,y,'HoleThreshold',20);
 BW(:,:,ii) = inShape(shp,X,Y);
 % interpolant
 F = scatteredInterpolant(x,y,z,'natural','none');
 % interpolate z coordinates
 Z(:,:,ii) = F(X,Y);
end

239

% post-process
Zs = filterSurface(Z);
[DT,validElements,~] = meshSurfaceImg(BW);
% save variables
[file,name,ext] = fileparts(streamsMatFilename);
surfaceMatFilename = fullfile(file,[name 'Surface' ext]);
save(surfaceMatFilename,'BW','Zs','Z','X','Y','DT','validElements','-v7.3');
end

B3.1.1 filterSurface

function [Zs] = filterSurface(Z,nhood)
%% post process surface
% Jason Der
% December 2, 2021
arguments
 Z
 nhood = [5 5]
end
% initialize
[r,c,n] = size(Z);
Zs = zeros(r,c,n);
% smooth
for ii = 1:n
 [Zs(:,:,ii),~] = wiener2(Z(:,:,ii),nhood);
end
% fill missing
Zs(isnan(Zs)) = 0;
Zs = imfill(Zs,conndef(2,'maximal'));
Zs(Zs == 0) = nan;
end

B3.1.2 meshSurfaceImg

function [DT,validElements,validNodes] = meshSurfaceImg(Z)
%% create mesh for uniform image
% Jason Der
% September 9, 2021
% made to replace mesh_surfaceImg
arguments
 Z
end
% create general DT for each image
[r,c,n] = size(Z);
[x,y] = meshgrid(1:r,1:c); % X and Y mesh assumed same size as Z
DT = delaunay(x,y); % mesh connectivity
validNodes = reshape(and(Z ~= 0,~isnan(Z)),r*c,n,1); % node is neither 0 or

Nan
validElements = false(size(DT,1),n);
% identify valid elements and nodes for each image in DT
for i = 1:n % ideally vectorize loop
 ind = find(validNodes(:,i));
 validElements(:,i) = all(ismember(DT,ind),2);
end
end

240

B3.2 interpolateSurfaceColor

function [surfaceMatFilename] =

interpolateSurfaceColor(surfaceMatFilename,pointCloudMatFilename)
%% interpolate vertices data into surface image
% use primarily griddata() with different interpolation methods
% outputs images for each at query points defined by X and Y
% Jason Der
% developed October 30, 2021 to November 8, 2021
% updated March 4, 2022 to use scattered interpolant + replacing samples
arguments
 surfaceMatFilename
 pointCloudMatFilename
end
% load variables
load(pointCloudMatFilename,'pc','pcSpatialLimits');
% surface grid
[X,Y] = interpolationGrid(pcSpatialLimits);
X = double(X);
Y = double(Y);
% initialization
nFrames = length(pc);
[r,c] = size(X);
C = zeros(r,c,3,nFrames);
% interpolate at grid points
for iFrame = 1:nFrames
 % sample data fo
 xii = double(pc(iFrame).Location(:,1));
 yii = double(pc(iFrame).Location(:,2));
 cii = double(pc(iFrame).Color);
 % interpolate nearest neighbour for RGB color channels
 for jChannel = 1:3
 if jChannel == 1
 % generate scattered interpolant object
 F = scatteredInterpolant(xii,yii,cii(:,jChannel),'nearest','none');
 else
 % change sample values
 F.Values = cii(:,jChannel);
 end
 C(:,:,jChannel,iFrame) = reshape(F(X,Y),r,c);
 end
end
C = uint8(C);
% save variables
save(surfaceMatFilename,'C','-append');
end

B3.2.1 interpolationGrid

function [X,Y] = interpolationGrid(spatialLimits,nBins)
%% create X and Y grid for interpolation using meshgrid
% determine evenly spaced sample locations using spatial limits and grid

dimensions
% Steps
 % determine distance between sample points based on limits and number of

points
 % determine coordinates of sample points

241

% Inputs
 % spatialLimits - pointCloud XYZ limits
 % nBins - dimensions of interpolation grid in x and y
% Intermediates
 % xWidth and yWidth - distance between sample points in x and y coordinates
 % xSample and ySample - x and y coordinates of sample points
% Outputs
 % X and Y - x and y coordinates of sample points as matrices
% Notes
 % has known problem with non-square nBins input when interpolating
 % problem might be caused by this function
 % Jason Der
 % November 7, 2021
arguments
 spatialLimits (3,2) {mustBeFinite}
 nBins (1,2) {mustBeInteger} = [200,200]
end
% distance between sample points
xWidth = (spatialLimits(1,2) - spatialLimits(1,1))/(nBins(1));
yWidth = (spatialLimits(2,2) - spatialLimits(2,1))/(nBins(2));
% sample points as array
xSample = spatialLimits(1,1) + xWidth/2 : xWidth : spatialLimits(1,2) -

xWidth/2;
ySample = spatialLimits(2,1) + yWidth/2 : yWidth : spatialLimits(2,2) -

yWidth/2;
[X,Y] = meshgrid(xSample,ySample);
end

B3.3 interpolateSurfaceRegion

function [surfaceMatFilename] =

interpolateSurfaceRegion(surfaceMatFilename,pointCloudMatFilename)
%% interpolate vertices data into surface image
% use primarily griddata() with different interpolation methods
% outputs images for each at query points defined by X and Y
% Jason Der
% developed October 30, 2021 to November 8, 2021
arguments
 surfaceMatFilename
 pointCloudMatFilename
end
% load variables
load(pointCloudMatFilename,'pc','pcSpatialLimits');
% surface grid
[X,Y] = interpolationGrid(pcSpatialLimits);
X = double(X);
Y = double(Y);
% initialization
nFrames = length(pc);
[r,c] = size(X);
R = zeros(r,c,nFrames);
% interpolate at grid points
for iFrame = 1:nFrames
 xii = double(pc(iFrame).Location(:,1));
 yii = double(pc(iFrame).Location(:,2));
 rii = double(pc(iFrame).Intensity);
 F = scatteredInterpolant(xii,yii,rii,'nearest','none');

242

 R(:,:,iFrame) = reshape(F(X,Y),r,c);
end
% convert to uint8
Lz = uint8(R);
% save variables
save(surfaceMatFilename,'Lz','-append');
end

B4 Measurement

The surface maps were used to measure plethysmography metrics using the measurePorcineLung

function or a similar function for the other experiment lungs. Most measurements such as tidal

volume were derived a displacement signal obtained from surface integration using the

Divergence Theorem. Also, the estimateSurfaceParams function was used to measure regional

measurements of surface tidal displacement. The create_avg_cycle function was used to obtain a

plethysmography and regional respiratory cycle average displacement. The

compare_to_avg_cycle function measured deviation from the respiratory cycle average.

B4.1 measurePorcineLung

function [metricsMatFilename] =

measurePorcineLung(streamsMatFilename,surfaceMatFilename,VSCaptureMatFilename

)
%% estimate tidal volume and flow measurements from uniformly interpolated

surface
% Jason Der
% November 8, 2021, last updated December 8, 2021
arguments
 streamsMatFilename
 surfaceMatFilename
 VSCaptureMatFilename
end
% load variables
load(streamsMatFilename,'t','timestamp');
load(surfaceMatFilename,'X','Y','Zs','DT','BW');
load(VSCaptureMatFilename,'measureTableSync');
Time = t;
Timestamp = timestamp;
% volume
[Distension,~] = integrateSurfaceGrid(X,Y,Zs.*BW,DT);
Distension = 1000000*Distension; % m^3 to mL
DistensionSmooth = preprocessSignal(Distension,0.2,30);
% local extremas and tidal volume
[Local extremas,Local extremaTF] = findLocal extremas(DistensionSmooth);
[IEpts] = findLocal extremaChangePoints(Local extremas,Local extremaTF);
[VTi,VTe] = estimateTidalVolume(DistensionSmooth,IEpts);
% flow rate and flow time
[FlowRate,FlowTime,FlowFilterDelay] = flowRate(DistensionSmooth,Time);
% find dynamic compliance
PIP = measureTableSync.Peak_inspiratory_pressure(IEpts);

243

PEEP = measureTableSync.Positive_endexpiratory_pressure(IEpts);
[Cdyni,Cdyne] = estimateDynamicCompliance(VTi,VTe,PIP,PEEP,IEpts);
% volume and flow parameters
[PTF,PTFpts] = findCyclePeaks(FlowRate,IEpts,'cycle');
[PTIF,PTIFpts] = findCyclePeaks(FlowRate,IEpts,'inhale');
[PTEF,PTEFpts] = findCyclePeaks(FlowRate,IEpts,'exhale');
[tPTIF,tPTEF] = findTimePeakTidalFlow(Time,IEpts,PTIFpts,PTEFpts);
[tTIF50,tTEF50] = findTimeTidalFlow50(Time,DistensionSmooth,IEpts);
[TIF50,TEF50,IE50] = findTidalFlow50(FlowRate,Time,tTIF50,tTEF50);
[tI,tE,tTot,tITot,tIE,RR] = tidalBreathingTiming(Time,IEpts);
% convert parameters per cycle to an array the length of the signal
[~,CycleLabels] = paramCycles2Array(IEpts,IEpts,length(Time));
[~,FlowCycleLabels] = paramCycles2Array(PTFpts,PTFpts,length(Time));
% distension table
distensionFlowTable = table(...
 Timestamp,Time,Distension,DistensionSmooth,...
 VTi,VTe,Cdyni,Cdyne,CycleLabels,...
 FlowRate,FlowCycleLabels);
% param table
paramTable = table(PTF,PTIF,PTEF,PTFpts,PTIFpts,PTEFpts,...
 tPTIF,tPTEF,tTIF50,tTEF50,TIF50,TEF50,IE50,tI,tE,tTot,tITot,tIE,RR);
% tidal table
VTi = VTi(IEpts); Cdyni = Cdyni(IEpts);
VTe = VTe(IEpts); Cdyne = Cdyne(IEpts);
pts =

struct('IEpts',IEpts,'PTFpts',PTFpts,'PTIFpts',PTIFpts,'PTEFpts',PTEFpts);
tidalTable = table(VTi,VTe,Cdyni,Cdyne);
% vscapture tidal table
VTi = measureTableSync.Tidal_volume(IEpts); VTe = VTi;
Cdyni = measureTableSync.Dynamic_compliance(IEpts); Cdyne = Cdyni;
vsTidalTable = table(VTi,VTe,Cdyni,Cdyne);
% save variables to MAT file
[file,name,ext] = fileparts(streamsMatFilename);
metricsMatFilename = fullfile(file,[name 'Metrics' ext]);
save(metricsMatFilename,'distensionFlowTable','paramTable','vsTidalTable','ti

dalTable','pts','FlowTime','FlowFilterDelay');
end

B4.1.1 estimate_volume

function [volume,elementVolume] = estimate_volume(points,DT)
%% Jason Der
% January 2, 2021
% estimates the volume under the surface tri-mesh
% inputs: MATLAB delaunay triangulation object
% outputs: total volume, volume, and volume per element, elementVolume
% updated september 15, 2021 arugment names

%% math references
% same method as pneumacare
% similar method here: https://rosenzweig.io/blog/hilariously-fast-volume-

computation-with-the-divergence-theorem.html
% engineering paper, similar algorithm:

http://chenlab.ece.cornell.edu/Publication/Cha/icip01_Cha.pdf
% gauss theorem (divergence = flux) with vector field F(x,y,z) = z, div*F = 1
% only in z unit direction, only surfaces with projection onto xy plane
% simplifies gauss theorem to volume = flux from z vector

244

%% function argument validation
 arguments
 points (:,3) double {mustBeReal}
 DT (:,3) double {mustBeNonnegative,mustBeReal} = delaunay(points(1:2,:))
 end

%% initialization
 elementVolume = zeros(length(DT),1);
 volume = 0;

%% calculate volume via gauss theorem
 % per triangluar element in mesh
 for i = 1:length(DT)
 % triangluar element vertices
 p0 = points(DT(i,1),:);
 p1 = points(DT(i,2),:);
 p2 = points(DT(i,3),:);
 % triangluar element z components
 z0 = points(DT(i,1),3);
 z1 = points(DT(i,2),3);
 z2 = points(DT(i,3),3);
 % surface function, parameter partial derivatives
 r1 = p1 - p0; r2 = p2 - p0;
 % triangle integral
 integral = cross(r1,r2)*[0;0;(z0+z1+z2)];
 % volume of triangular element i
 elementVolume(i) = integral/6;
 % summate integral to volume
 volume = volume + integral;
 end
 volume = volume/6;

end

B4.1.2 estimateTidalVolume

function [vT1,vT2,vT] = estimateTidalVolume(v,IEpts)
%% find tidal volume
% does not know which tidal volume is inspiratory or expiratory
% just provides them in order of occurence, odd first, even second
% Jason Der
% September 27, 2021 updated from estimate_tidal_volume from Feb 18, 2021
% updated November 9, 2021
arguments
 v % volume signal
 IEpts % indices of local extrema points
end
% tidal volume
vT = diff(v(IEpts));
% initialize tidal volume arrays
vT1 = zeros(length(v),1);
vT2 = zeros(length(v),1);
% loop through cycles
for ii = 1:2:length(vT)-1
 % cycle indices

245

 cycleInd = IEpts(ii):IEpts(ii+2);
 % assign tidal volumes to matching cycles in array
 vT1(cycleInd) = abs(vT(ii));
 vT2(cycleInd) = abs(vT(ii+1));
end
end

B4.1.3 integrateSurfaceGrid

function [v,vDT] = integrateSurfaceGrid(X,Y,Z,DT)
%% integrate surface mesh for volume curve
% Jason Der
% October 30, 2021 - November 9, 2021
arguments
 X (:,:,1) % surface meshgrid x coordinates
 Y (:,:,1) % surface meshgrid y coordinates
 Z (:,:,:,1) % surface meshgrid z coordinates
 DT (:,:,1) % surface meshgrid connectivity
end
% initialize variables
x = X(:);
y = Y(:);
[r,c,n] = size(Z);
v = zeros(n,1);
vDT = cell(n,1);
% integrate surface for volume
for ii = 1:n
 z = reshape(Z(:,:,ii),r*c,1);
 zValid = find(~isnan(z));
 dtValid = all(ismember(DT,zValid),2);
 [v(ii),vDT{ii}] = estimate_volume([x,y,z],DT(dtValid,:));
end
end

B4.1.4 preprocessSignal

function [smooth,outliers,denoise] =

preprocessSignal(signal,Fpass,Fs,windowSize,nsigma)
%% pre-process signal
% Jason Der
% December 3, 2021
arguments
 signal
 Fpass = 0.2 % band pass frequency,
 % respiratory rate 8 breaths/min = 0.13...Hz -> 0.2 Hz with buffer
 Fs = 30 % sampling frequency (30fps)
 windowSize = min(0.01*length(signal),Fs) % default to 1% of length, max at

Fs
 nsigma = 3
end
% denoise
denoise = lowpass(signal,Fpass,Fs);
% replace outliers
windowSize = ceil(windowSize); % must be integer
outliers = hampel(denoise,windowSize,nsigma);
% window size must be odd for sgolayfilt
if ~mod(windowSize,2)
 windowSize = windowSize+1;

246

end
% smooth using savitzsky-golay method
smooth = sgolayfilt(outliers,3,windowSize);
end

B4.1.5 flowRate

function [signalDT,timeDT,filterDelay] =

flowRate(signal,time,Fpass,Fstop,Forder)
%% find first derivative of signal using differential filter
% use to find analogous 'flow rate' as the first derivative of distension
% also find transient filter delay
% Jason Der
% August 26, 2021
% NOTES:
 % based on MATLAB tutorial for differentiator filter
 % https://www.mathworks.com/help/signal/ug/take-derivatives-of-a-

signal.html
arguments
 signal
 time
 Fpass = 1 % band pass frequency
 Fstop = 1.2 % stop frequency
 Forder = 10 % filter order
end
% sampling frequency and time interval
Fs = 1/(time(2)-time(1));
dt = time(2)-time(1);
% design derivative filter
d = designfilt('differentiatorfir',...
 'FilterOrder',Forder, ...
 'PassbandFrequency',Fpass,...
 'StopbandFrequency',Fstop, ...
 'SampleRate',Fs);
% differentiate
signalDT = filter(d,signal)/dt;
filterDelay = mean(grpdelay(d)); % transient delay from filter
timeDT = time(1:end - filterDelay);
% signalDT(1:filterDelay) = []; % remove delay
end

B4.1.6 findLocal extremas

function [local extremas,pksTrsTF] = findLocal

extremas(signal,minHeight,minDistance,method)
%% find and sort local extremas
% can use findLargestLocal extremas or findChangePointLocal extremas to

filter
% local extrema selection, however, just smoothing signal is a simple

solution
% Jason Der
% August 27, 2021
%% change log
% updated September 16, 2021
 % determine arguments and one local extrema per group
 % intended for noisy ventilation signals: typical signal shape is flat-

sharp 'S'-plateau-immedidate drop-repeat
 % intended to find start and end of inspiratory and expiratory phases

247

% formatted November 11, 2021
% updated November 15, 2021
 % returns viepts starting with inspiratory / trough, ignores expiratory

start
% updated November 30, 2021
 % use islocalmin and islocalmax instead of findpeaks
 % findpeaks does not work for data with trend
 % separated into findLocal extremas and findBreathLocal extremas
%% program
arguments
 signal
 minHeight = []
 minDistance = 0
 method = 'findpeaks'
end
% remove outliers, and detrend
% fillSignal = filloutliers(signal,'nearest');
dt = detrend(signal);
% estimate MinHeight
if isempty(minHeight) && all(method=='findpeaks')
 minHeight = mean(dt);
end
% estimate peaks and troughs
switch method
 case 'findpeaks'
 % findpeaks
 [~,pks] =

findpeaks(dt,'MinPeakHeight',minHeight,'MinPeakDistance',minDistance);
 [~,trs] = findpeaks(-dt,'MinPeakHeight',-

minHeight,'MinPeakDistance',minDistance);
 case 'islocal'
 % islocal
 pks = find(islocalmax(dt));
 trs = find(islocalmin(dt));
end
% sorted inspiratory-expiratory local extrema point indices
[local extremas,sortOrder] = sort([pks;trs]); % linear
% logical array identifying local extremas as peaks or troughs
pksTrsTF = [true(length(pks),1);false(length(trs),1)]; % logical
pksTrsTF = pksTrsTF(sortOrder); % logical sorted
end

B4.1.7 findLocal extremaChangePoints

function [vieptsPaired,pksInd,trsInd,viepts] = findLocal

extremaChangePoints(local extremas,pksTrsTF)
%% find filter local extremas for breath start-end local extremas
% remove repeated peaks and troughs
 % identify which local extrema points neighbor the opposite phase
 % where inspiratory changes to expiratory, visa versa
 % use to ignore insipratory to inspiratory, visa versa
 % ie. local extremas = [i i e e i i] -> [i i e e i i e] -> [0 1 0 1 0 1]
 % end padded to identify inspiratory at end
% Jason Der
% November 30, 2021
arguments
 local extremas % linear indices for local extremas

248

 pksTrsTF logical % identifies local extrema [i e] -> [1 0]
end
% find change point between peaks and troughs
ieInd = [diff(pksTrsTF)~=0;true]; % logical, diff is end padded
% final local extrema indices
viepts = local extremas(ieInd); % linear
% truncate first and/ or last indice[s] if expiratory to create complete IE

pairs
vieptsPaired = viepts;
ieTF = pksTrsTF(ieInd); % logical, T -> expiratory, F -> inspiratory
% truncate first indice if expiratory
if ieTF(1)
 vieptsPaired = vieptsPaired(2:end);
end
% truncate last indice if expiratory
if ieTF(end)
 vieptsPaired = vieptsPaired(1:end-1); % linear
end
% signal value at inhale-exhale points
pksInd = local extremas(and(ieInd,pksTrsTF)); % linear
trsInd = local extremas(and(ieInd,~pksTrsTF)); % linear
end

B4.1.8 findChangePeaks

function [Peaks,PeaksInd] = findCyclePeaks(signal,IEpts,type)
%% find signal max values per cycle and indices
%
% STEPS
%
% initialize outputs
% find cycle range indices
% loop through inhales and find max pressure
%
% INPUTS
%
% pressure = pressure signal
% IEpts = linear indices of both inhale-exhale points in paired order
% type =
%
% INTERMEDIATES
%
% cycleStartInd =
% cycleEndInd =
% numCycles =
%
% OUTPUTS
%
% Peaks =
% PeaksInd =
%
% EXAMPLE
%
% NOTES
%
% Jason Der
% February 21, 2022

249

arguments
 signal
 IEpts
 type = 'cycle'
end
% initialize outputs based on desired usage
switch type
 case 'inhale' % use to find PIP from pressure
 cycleStartInd = IEpts(1:2:end);
 cycleEndInd = IEpts(2:2:end);
 case 'exhale' % use to find PEEP from pressure
 cycleStartInd = IEpts(2:2:end);
 cycleEndInd = IEpts(3:2:end);
 signal = -signal;
 case 'cycle' % use to find peak flow rate
 cycleStartInd = IEpts(1:2:end);
 cycleEndInd = IEpts(3:2:end);
 otherwise
 disp('invalid type variable\n');
 return
end
% initialize outputs
numCycles = floor((length(IEpts)-1)/2);
Peaks = zeros(numCycles,1);
PeaksInd = zeros(numCycles,1);
% loop through cycles
for xCycle = 1:numCycles
 % find inhale range
 cycleIndices = cycleStartInd(xCycle):cycleEndInd(xCycle);
 % find max signal and indices within cycle
 cycleSignal = (signal(cycleIndices));
 [~,ind] = max(cycleSignal,[],'all','linear','omitnan');
 PeaksInd(xCycle) = ind + cycleStartInd(xCycle);
 Peaks(xCycle) = signal(PeaksInd(xCycle));
end
end

B4.1.9 findTimePeakTidalFlow

function [tPTIF,tPTEF] = findTimePeakTidalFlow(Time,IEpts,PTIFpts,PTEFpts)
%% find tidal breathing parameter 'time to peak tidal flow'
% find for both inspiratory and expiratory phases
% parameter is time between start of phase and peak flow
% the code was modified from tidalBreathingFlow()
% Jason Der
% November 15, 2021
% updated February 22, 2022
arguments
 Time
 IEpts
 PTIFpts
 PTEFpts
end
% time at start of cycle
cycleStartTime = Time(IEpts);
% time at peak flow
peakTidalInspiratoryFlowTime = Time(PTIFpts);

250

peakTidalExpiratoryFlowTime = Time(PTEFpts);
% time to peak tidal flow
tPTIF = peakTidalInspiratoryFlowTime - cycleStartTime(1:2:end-1);
tPTEF = peakTidalExpiratoryFlowTime - cycleStartTime(2:2:end);
end

B4.1.10 findTimeTidalFlow50

function [tTIF50,tTEF50] = findTimeTidalFlow50(time,volume,IEpts)
%% find the tidal breathing parameters TIF50,TEF50,IE50,tTIF50,tTEF50
% TIF50,TEF50 is the flow when volume is at 50% of the tidal volume
% IE50 is a ratio between TIF50 and TEF50
% tTIF50, tTEF50 is the time between the start of a breath to TIF50,TEF50
% the code was modified from tidalBreathingFlow()
% Jason Der
% November 15, 2021
arguments
 time
 volume
 IEpts
end
% tidal volume
% 50% tidal volume per cycle
% linear indices of 50% tidal volume per cycle <----- interpolation
% flow rate at 50% tidal volume per cycle <---- interpolation
tidalVolumeIE = diff(volume(IEpts));
volumeIE50 = tidalVolumeIE/2 + volume(IEpts(1:end-1)); % volume at 50% tidal

volume
timeTidalVolumeIE50 = zeros(length(volumeIE50),1); % pre-allocate
% interpolate time at volume when 50% tidal volume
for i = 1:length(volumeIE50)
 indicesRange = IEpts(i) : IEpts(i+1);
 timeRange = time(indicesRange);
 volumeRange = volume(indicesRange);
 volumeSearch = volumeIE50(i);
 [~,search] = min(abs(volumeRange-volumeSearch));
 timeTidalVolumeIE50(i) = timeRange(search);
end
% time of TEF50, TIF50, IE50 for plotting
tTIF50 = timeTidalVolumeIE50(1:2:end);
tTEF50 = timeTidalVolumeIE50(2:2:end);
end

B4.1.11 findTidalFlow50

function [TIF50,TEF50,IE50] = findTidalFlow50(flow,time,tTIF50,tTEF50)
%% find tidal breathing parameters TIF50,TEF50,IE50
% parameters are the flow when volume is at 50% of tidal volume
% code is modified from estimateTidalBreathing
% Jason Der
% November 15, 2021
arguments
 flow
 time
 tTIF50
 tTEF50
end
try

251

% could upsample flow and time then use method 'nearest'
% interpolate flow at IE50 times
TEF50 = interp1(time,flow,tTIF50,'spline');
TIF50 = interp1(time,flow,tTEF50,'spline');
catch
% alternative method
[~,idx] = min(abs(time-tTIF50'));
TIF50 = flow(idx);
[~,idx] = min(abs(time-tTEF50'));
TEF50 = flow(idx);
end
% find IE50 as ratio between TIF50 and TEF50
IE50 = TIF50 ./ TEF50;
end

B4.1.12 tidalBreathingTiming

function [tI,tE,tTot,tITot,tIE,RR] = tidalBreathingTiming(time,IEPts)
%% calculate tidal breathing parameters derived from timing indices
% STEPS
% perform basic equations
% INPUTS
% time = time signal
% IEPts = inhale-exhale points (local extrema points in distension signal)
% INTERMEDIATES
% numBreath = number of breaths
% OUTPUTS
% tI = inspiratory time
% tE = expiratory time
% tTot = total time per breath
% tITot = inspiratory / total time ratio
% tIE = inspiratory / expiratory time ratio
% RR = respiratory rate
% EXAMPLE
% time = repelem([1 0],10,1);
% IEPts = [1;find(diff(time));length(time)];
% [tI,tE,tTot,tITot,tIE,RR] = tidalBreathingTiming(time,IEPts);
% NOTES
% read : Reference equations for tidal breathing parameters using structured

light plethysmography
% read : Tidal breathing patterns derived from structured light

plethysmography in COPD patients compared with healthy subjects
% read : Tidal breathing parameters measured using structured light

plethysmography in healthy children and those with asthma before and after

bronchodilator
% Jason Der
% July 1, 2021 from tidal_breathing_parameters
% Rewritten on August 25, 2021 and February 22, 2021
arguments
 time (:,1)
 IEPts (:,1)
end
% find timing characteristics
timeIE = diff(time(IEPts));
tI = timeIE(1:2:end);
tE = timeIE(2:2:end);
tTot = diff(time(IEPts(1:2:end)));

252

numBreath = length(tTot);
tIE = tI(1:numBreath)./tE(1:end);
tITot = tI(1:numBreath)./tTot;
RR = 60./tTot;
end

253

B4.2 estimateSurfaceParams

function [metricsMatFilename] =

estimateSurfaceParams(surfaceMatFilename,metricsMatFilename,VSCaptureMatFilen

ame)
%% estimate surface measurements
% Jason Der
% November 8, 2021
arguments
 surfaceMatFilename
 metricsMatFilename
 VSCaptureMatFilename = []
end
% load variables
load(surfaceMatFilename,'X','Y','Zs');
load(metricsMatFilename,'distensionTable','pts');
t = distensionTable.Time;
IEpts = pts.IEpts;
% surface metrics
[SamplePoints,nSamplePoints] = findBaselineSamplePoints(t,IEpts);
[BaselineSurface] = calculateSurfaceBaseline(Zs,SamplePoints,nSamplePoints);
[DeviationSurface] =

calculateSurfaceDeviation(Zs,BaselineSurface,SamplePoints,nSamplePoints);
[VTiSurface,VTeSurface] = calculateSurfaceTidalVolume(Zs,IEpts);
if ~isempty(VSCaptureMatFilename)
 load(VSCaptureMatFilename,'measureTableSync');
 PIP = measureTableSync.('Peak_inspiratory_pressure')(IEpts(2:2:end));
 PEEP =

measureTableSync.('Positive_endexpiratory_pressure')(IEpts(2:2:end));
 [CdyniSurface,CdyneSurface] =

calculateSurfaceCompliance(VTiSurface,VTeSurface,PIP,PEEP);
 save(metricsMatFilename,'CdyniSurface','CdyneSurface','-append');
end
% save variables
save(metricsMatFilename,'SamplePoints','nSamplePoints','X','Y',...
 'BaselineSurface','DeviationSurface','VTiSurface','VTeSurface','-append');
end

B4.2.1 findBaselineSamplePoints

function [samplePoints,nSamplePoints] =

findBaselineSamplePoints(t,viepts,nSamplePoints)
%% find surface grid baseline sample points
% find time interval between sample points
% equal number of sample points between inspiratory and expiratory phases
% sample points should be always taken at local extrema points
% search for the nearest time element to ideal sample point times
% take indices of these nearest time elements
% Jason Der
% November 11, 2021
arguments
 t (:,1) % sample data matching time
 viepts (:,1) % linear indices identifying local extrema points
 nSamplePoints (1,1) {mustBeNonnegative,mustBeInteger} = 19 % must be odd
end
% ensure nSamplePoints is odd
if ~rem(nSamplePoints,2) % if even

254

 nSamplePoints = nSamplePoints + 1; % add one, making it odd
end
% number of intervals between sample points per (inspiratory or expiratory)

phase
nPhaseIntervals = (nSamplePoints - 1)/2;
% time length of (inspiratory or expiratory) phases
phaseTimeIntervals = diff(t(viepts));
% time interval between sample points per (inspiratory or expiratory) phase
samplePointTimeIntervals = phaseTimeIntervals / nPhaseIntervals;
% repeat nrptDelta m times
samplePointTime = [samplePointTimeIntervals(1);

cumsum(repelem(samplePointTimeIntervals,nPhaseIntervals)) +

samplePointTimeIntervals(1)];
% indices of closet points to ideal sample points
samplePoints = dsearchn(t,samplePointTime);
% replicate every nSamplePoints so each cycle is complete
samplePoints = sort([samplePoints;samplePoints(nSamplePoints:nSamplePoints-

1:end-1)]);
end

B4.2.2 calculateSurfaceBaseline

function [zBaseline] = calculateSurfaceBaseline(Z,samplePoints,nSamplePoints)
%% create average cycle, averaged reference point data set from samples
% Jason Der
% November 11, 2021
arguments
 Z % surface grid image stack
 samplePoints % linear indices
 nSamplePoints = 19 % number of sample points
end
zSample = Z(:,:,samplePoints);
[r,c] = size(Z(:,:,1));
missingSamplePoints = nSamplePoints -

rem(length(samplePoints),nSamplePoints); % ... from last breath
if missingSamplePoints > 0
 % pad reference image data with NaN images
 zSample = cat(3,zSample,nan(r,c,missingSamplePoints));
end
% reshape 4D array into 3D array and average over reference images
zBaseline = squeeze(mean(reshape(zSample,r,c,nSamplePoints,[]),4,'omitnan'));
end

B4.2.3 calculateSurfaceDeviation

function [zDeviation] =

calculateSurfaceDeviation(Z,zBaseline,samplePoints,nSamplePoints)
%% find deviation from surface baseline
% Jason Der
% November 11, 2021
arguments
 Z double {mustBeNumeric(Z)} % data to compare against average cycle
 zBaseline double {mustBeNumeric(zBaseline)} % average cycle dataset of

length nrptsN, either vector or 3D array
 samplePoints (:,1) double {mustBeNumeric(samplePoints)} % linear indices of

reference points in reference cycle
 nSamplePoints (1,1) {mustBeNonnegative,mustBeInteger} = 19
end

255

nSampleBreaths = length(samplePoints)/nSamplePoints;
zSample = Z(:,:,samplePoints);
zBaselineReplicate = repmat(zBaseline,1,1,nSampleBreaths);
BW = (zSample~=0) & (zBaselineReplicate~=0); % where both are true
zDeviation = BW .* (zSample - zBaselineReplicate);
end

B4.2.4 calculateSurfaceTidalVolume

function [VTiSurface,VTeSurface,VTSurface] =

calculateSurfaceTidalVolume(Z,IEpts)
%% find tidal surface distension
% Jason Der
% July 22, 2022
arguments
 Z % surface
 IEpts % distension local extrema indices
end
% define pairs
if rem(length(IEpts),2) == 0 % if even
 endInd = length(IEpts);
else % if odd
 endInd = length(IEpts)-1;
end
% surface tidal volume where surfaces are common
VTSurface = diff(Z(:,:,IEpts),1,3);
% surface tidal volume inspiratory-expiratory
VTiSurface = VTSurface(:,:,1:2:endInd);
VTeSurface = VTSurface(:,:,2:2:endInd);
end

B4.2.5 calculateSurfaceCompliance

function [CdyniSurface,CdyneSurface] =

calculateSurfaceCompliance(VTiSurface,VTeSurface,PIP,PEEP)
%% scale surface tidal volume by PIP and PEEP for surface dynamic compliance
% Jason Der
% July 22, 2022
arguments
 VTiSurface
 VTeSurface
 PIP
 PEEP
end
% length of arrays
nVTi = size(VTiSurface,3);
nVTe = size(VTeSurface,3);
nPIP = length(PIP);
nPEEP = length(PEEP);
if (nVTi == nVTe) && (nPIP == nPEEP)
 % initialize
 CdyniSurface = zeros(size(VTiSurface));
 CdyneSurface = zeros(size(VTeSurface));
 % pressure differential
 deltaP = PIP - PEEP;
 % loop through frames
 for iFrame = 1:nVTi
 CdyniSurface(:,:,iFrame) = VTiSurface(:,:,iFrame) ./ deltaP(iFrame);

256

 CdyneSurface(:,:,iFrame) = VTeSurface(:,:,iFrame) ./ deltaP(iFrame);
 end
else
 disp('error');
end

B4.3 create_avg_cycle

function [avg_cycle,ind] =

create_avg_cycle(sampleData,sampleTime,iepts,nrpts)
%% create average cycle, averaged reference point data set from samples
% Jason Der
% June 4, 2021
% does not have validation protection against m x n where m && n ~= 1
% updated September 27, 2021 to separate oultiers replacement and correct 'm'

%% function argument validation
 arguments
 sampleData % sample data, either vector or 3D array for images
 sampleTime (:,1) % sample data matching time
 iepts (:,1) % linear indices identifying local extrema points
 nrpts (1,1) {mustBeNonnegative(nrpts)} = 19
 % number of reference points per cycle (including iepts)
 % must be odd, if even then round up
 end

%% round up even nrpts
 % if nrpts even
 if rem(nrpts,2) == 0
 % increase nrpts by one to be odd
 nrpts = nrpts + 1;
 end

%% find reference points time vector
 % number of spaces between reference points, between local extrema points
 n = (nrpts - 1)/2;
 % time at local extrema points
 ieTime = sampleTime(iepts);
 % time difference between neighbouring local extrema points
 ieTimeDiff = diff(ieTime);
 % time separation for reference points between local extrema points
 nrptDelta = ieTimeDiff / n;
 % repeat nrptDelta m times
 nrptTime = [ieTime(1); cumsum(repelem(nrptDelta,n)) + ieTime(1)];

%% find points nearest to reference points in sample time
 % search for nearest sample data for each reference point
 ind = dsearchn(sampleTime,nrptTime);
 % replicate every nrpt indices in ind so each cycle is complete
 ind = sort([ind;ind(nrpts:nrpts-1:end-1)]);

%% find average for each reference point in sample data
 % last cycle incomplete, need m points to be complete
% m = rem(length(ind),nrpts);
 m = ceil(length(ind)/nrpts)*nrpts - length(ind);
 % if sample data is a matrix (vector)

257

 if ismatrix(sampleData)
 % take reference point data at ind
 refData = sampleData(ind);
 % if m is greater than zero
 if m > 0
 % pad reference point data with NaN
 refData = [refData;repelem(nan,m,1)];
 end
 % reshape into matrix to average over reference points
 avg_cycle = mean(reshape(refData,nrpts,[]),2,'omitnan');

 % if sample data 3D array
 elseif ~ismatrix(sampleData)
 % take reference images at ind
 refData = sampleData(:,:,ind);
 % size of images
 [r,c] = size(sampleData(:,:,1));
 % if m is greater than zero
 if m > 0
 % pad reference image data with NaN images
 % refData = cat(3,refData,repmat(nan(r,c),m,1));
 refData = cat(3,refData,nan(r,c,m));
 end
 % reshape 4D array into 3D array and average over reference images
 avg_cycle = squeeze(mean(reshape(refData,r,c,nrpts,[]),4,'omitnan'));
 end

end

B4.4 compare_to_avg_cycle

function [diff_cycle] =

compare_to_avg_cycle(sampleData,avg_cycle,ind,sampleTime,iepts)
%% compare data to average cycle set
% Jason Der
% June 4, 2021
% updated September 27, 2021 to correct 'm'

%% function argument validation
 arguments
 sampleData double {mustBeNumeric(sampleData)} % data to compare against

average cycle
 avg_cycle double {mustBeNumeric(avg_cycle)} % average cycle dataset of

length nrptsN, either vector or 3D array
 ind (:,1) double {mustBeNumeric(ind)} = [] % linear indices of reference

points in reference cycle
 sampleTime (:,1) double {mustBeNonnegative(sampleTime)} = [] % matching

time vector to data
 iepts (:,1) double {mustBeNonnegative(iepts)} = [] % linear indices for

local extrema points in data and time
 end

%% prepare data
 % replace Nan with zero
 sampleData(isnan(sampleData)) = 0;
 avg_cycle(isnan(avg_cycle)) = 0;

258

%% initializations
 % if vector
 if ismatrix(sampleData)
 % number of normalized reference points
 nrpts = length(avg_cycle);
 % else is 3D array (images)
 else
 % number of normalized reference points
 [~,~,nrpts] = size(avg_cycle);
 end

%% shortcut if ind given
 % if ind is empty
 if isempty(ind)

 %% find reference points time vector
 % number of spaces between reference points, between local extrema points
 n = (nrpts - 1)/2;
 % time at local extrema points
 ieTime = sampleTime(iepts);
 % time difference between neighbouring local extrema points
 ieTimeDiff = diff(ieTime);
 % time separation for reference points between local extrema points
 nrptDelta = ieTimeDiff / n;
 % repeat nrptDelta m times
 nrptTime = [ieTime(1); cumsum(repelem(nrptDelta,n)) + ieTime(1)];

 %% find points nearest to reference points in sample time
 % search for nearest sample data for each reference point
 ind = dsearchn(sampleTime,nrptTime);
 % replicate every nrpt indices in ind so each cycle is complete
 ind = sort([ind;ind(nrpts:nrpts-1:end-1)]);

 end

%% compare sample data to reference cycle
 % number of avg_cycle replications to get same length as refData
% k = (length(ind)-m)/nrpts;
 k = ceil(length(ind)/nrpts);
 % last cycle incomplete, need m points to be complete
% m = rem(length(ind),nrpts);
 m = abs(length(ind) - nrpts*k)-1;
 % if sample data is a matrix (vector)
 if ismatrix(sampleData)
 % take reference point data at ind
 refData = sampleData(ind);
 % replicate avg_cycle to same length as refData
 avgData = repmat(avg_cycle,k,1);
 % if m is greater than zero
 if m > 0
 % remove last m entries
 avgData(end-m:end) = [];
 end
 % AND operation between avgData and refData (where both nonzero)

259

 nonzero = refData & avgData;
 % subtract data from reference cycle, and use nonzero mask to filter
 diff_cycle = nonzero .* (refData - avgData);

 % if sample data 3D array
 elseif ~ismatrix(sampleData)
 % take reference images at ind
 refData = sampleData(:,:,ind);
 % replicate avg_cycle to same length as refData, k times
 avgData = repmat(avg_cycle,1,1,k);
 % if m is greater than zero
 if m > 0
 % remove last m entries
 avgData(:,:,end-m:end) = [];
 end
 % AND operation between avg_cycle and refData (where both nonzero)
 nonzero = refData & avgData;
 % subtract avgData from refData and use nonzero mask to filter
 diff_cycle = nonzero .* (refData - avgData);
 end

end

B4.5 estimateRegionAsychrony

function [tidalMetricsMatFilename] =

estimateRegionAsynchrony(tidalMetricsMatFilename)
%% estimate region tidal breathing asynchrony
% Jason Der
% November 11, 2021
arguments
 tidalMetricsMatFilename
end
% load variables
load(tidalMetricsMatFilename,'lungParams','regionParams');
% find combintations for asyncrhony
nRegions = length(regionParams);
if nRegions >= 2
 regionComs = nchoosek(1:nRegions,2);
else
 fprintf('zero or one regions detected \n');
 return;
end
% loop through combinations
for ii = 1:size(regionComs,2)
 % select combination of regions
 v1 = regionParams(regionComs(ii,1)).Volume;
 v2 = regionParams(regionComs(ii,2)).Volume;
 local extremas = regionParams(regionComs(ii,1)).VolumeIEIndicesPaired;
 % estimate asynchrony between regions
 [phaseAngleDegrees] = paradoxicalBreathingAsynchrony(v1,v2,local extremas);
 [IP] = paradoxicalBreathingTiming(lungParams,regionParams(ii));
 % save variables to struct variable
 asynchronyParams(ii) =

struct('SelectedRegions',regionComs(ii,:),'PhaseAngle',phaseAngleDegrees,'Ins

piratoryParadoxTime',IP);

260

end
% save to MAT file
save(tidalMetricsMatFilename,'asynchronyParams');
end

B4.5.1 paradoxicalBreathingAsynchrony

function [phaseAngleDegrees] = paradoxicalBreathingAsynchrony(v1,v2,local

extremas)
%% calculate signal asynchrony
% Jason Der
% August 25, 2021, debugged Sept 2, 2021
% NOTES:

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216641
% November 16, 2021
 % outputs complex numeb
 arguments
 v1 % volume signal of region 1
 v2 % volume signal of region 2
 local extremas % local extrema indices of volume signal of region 1
 end

%% determine inspiratory-expiratory order
 check = v1(local extremas(2)) > v1(local extremas(1));
 if check % inhale start
 in = 1; ex = 2; % indices of first inhale and exhale start local extrema
 elseif ~check % exhale start
 in = 2; ex = 3; % indices of first inhale and exhale start local extrema
 end
 nCycles = length(local extremas(in:2:end))-1;

%% lung wall tidal volumes
 % find tidal volume of region 1 per breath
 tidalVolumeIE1 = diff(v1(local extremas(in:in+2*nCycles)));
 s = max(abs(reshape(tidalVolumeIE1,2,[])))';
 % find 50% tidal volume of region 2 for region 1 breath
 volume50 = zeros(nCycles,1);
 for i = 1:nCycles
 indSearchRange = local extremas(in+((i-1)*2)):local extremas(in+(2*i));
 maxRange = max(v2(indSearchRange));
 deltaV2 = maxRange - min(v2(indSearchRange));
 volume50(i) = maxRange - deltaV2/2;
 end

%% degree of asynchrony
 m = zeros(nCycles,1);
 inspiratoryIntercept = zeros(nCycles,1);
 expiratoryIntercept = zeros(nCycles,1);
 for j = 1:nCycles
 % start and end indices of breath k
 inspiratoryIndRange = local extremas(in+((j-1)*2)):local

extremas(in+1+((j-1)*2));
 expiratoryIndRange = local extremas(ex+((j-1)*2)):local

extremas(ex+1+((j-1)*2));
 % inspiratory and expiratory volume data to interpolate
 [~,in1] = unique(v1(inspiratoryIndRange),'stable');

261

 [~,in2] = unique(v2(inspiratoryIndRange),'stable');
 [~,ex1] = unique(v1(expiratoryIndRange),'stable');
 [~,ex2] = unique(v2(expiratoryIndRange),'stable');
 % unique pairs
 inspiratoryVolumeRange1 = v1(inspiratoryIndRange(intersect(in1,in2)));
 inspiratoryVolumeRange2 = v2(inspiratoryIndRange(intersect(in1,in2)));
 expiratoryVolumeRange1 = v1(expiratoryIndRange(intersect(ex1,ex2)));
 expiratoryVolumeRange2 = v2(expiratoryIndRange(intersect(ex1,ex2)));
 % interpolate for volume in region 1 when volume in region 2 = 50% of

tidal volume
 inspiratoryIntercept(j) =

interp1(inspiratoryVolumeRange2,inspiratoryVolumeRange1,volume50(j),'spline')

;
 expiratoryIntercept(j) =

interp1(expiratoryVolumeRange2,expiratoryVolumeRange1,volume50(j),'spline');
 m(j) = inspiratoryIntercept(j) - expiratoryIntercept(j);
 end
 phaseAngleDegrees = asind(abs(m)./s);

end

B4.5.2 paradoxicalBreathingTiming

function [IP] = paradoxicalBreathingTiming(lungParams,regionParams)
%% find inspiratory paradox time for each region
% Jason Der
% created Sept 2, 2021, found tidal breathing parameters, lung and regions,

within script
% updated November 11, 2021 to recieve structs for lung and region tidal

breathing parameters
arguments
 lungParams struct % entire lung tidal breathing parameters
 regionParams struct % struct region tidal breathing parameters
end
% inspiratory times
regionInTime = regionParams.InspiratoryTime;
lungInTime = lungParams.InspiratoryTime;
% length of inspiratory times
nRegions = length(regionInTime);
nLung = length(lungInTime);
% correct if number of inspiratory times match
if nRegions ~= nLung
 % find start time of each breath
 regionIETime = regionParams.Time(regionParams.VolumeIEIndicesPaired);
 lungIETime = lungParams.Time(lungParams.VolumeIEIndicesPaired);
 % select matching breath inspiratory times
 regionInTime = [];
 lungInTime = [];
end
% inspiratory paradox time
IP = 100 * (lungInTime - regionInTime)./lungInTime;
end

262

Appendix C Ventilator Test Lung Data Acquisition

Settings

Table C.1 Ventilation test lung experiment ASV calibration intrinsic parameters

Parameters Left Infrared Right Infrared RGB

Resolution 1280 × 800 1280 × 800 1920 × 1080

Focal Length [
638.065002
637.815002

] [
641.018982
640.336975

] [
1379.920044
1380.84997

]

Principal

Point
[
639.348999
400.669006

] [
634.036011
404.847992

] [
953.692017
545.323975

]

Distortion

[

−0.056679
0.063950
0.000533
−0.000361
−0.020585]

[

−0.057750
0.065349
−0.000502
−0.001087
 −0.020886]

[

0
0
0
0
0]

Table C.2 Ventilation test lung experiment ASV calibration extrinsic parameters

Sensor Rotation to Left Infrared
Translation to Left

Infrared

Left Infrared n/a n/a

Right Infrared [
0.999896 −0.001195 −0.014369
0.001178 0.999999 −0.001225
0.014371 0.001208 0.999896

] [
−50.158493
−0.049040
−0.190886

]

RGB [
0.999781 0.018581 −0.009628
−0.018548 0.999822 0.003496
0.009691 −0.003316 0.999948

] [
14.404202
−0.117552
0.546147

]

Table C.3 Ventilation test lung experiment depth quality metrics

Metrics Depth Quality

Resolution 848 × 480

Frame Rate 30

Region of Interest 40 %

Fill Rate 100%

Z-Accuracy -0.03 %

Plane Fit RMS Error 0.33 %

Subpixel RMS Error 0.00 pixels

263

Appendix D Porcine Lung Data Acquisition Settings

Table D.1 Porcine test lung experiment ASV calibration intrinsic parameters

Parameters Left Infrared Right Infrared RGB

Resolution 1280 × 800 1280 × 800 1920 × 1080

Focal Length [
638.065002
637.815002

] [
641.018982
640.336975

] [
1379.920044
1380.84997

]

Principal

Point
[
639.348999
400.669006

] [
634.036011
404.847992

] [
953.692017
545.323975

]

Distortion

[

−0.056679
0.063950
0.000533
−0.000361
−0.020585]

[

−0.057750
0.065349
−0.000502
−0.001087
 −0.020886]

[

0
0
0
0
0]

Table D.2 Porcine test lung experiment ASV calibration extrinsic parameters

Sensor Rotation to Left Infrared Translation to Left Infrared

Left Infrared n/a n/a

Right Infrared [
0.999896 −0.001195 −0.014369
0.001178 0.999999 −0.001225
0.014371 0.001208 0.999896

] [
−50.158493
−0.049040
−0.190886

]

RGB [
0.999781 0.018581 −0.009628
−0.018548 0.999822 0.003496
0.009691 −0.003316 0.999948

] [
14.404202
−0.117552
0.546147

]

Table D.3 Porcine test lung experiment depth quality metrics

Metrics Depth Quality

Resolution 848 × 480

Frame Rate 30

Region of Interest 40 %

Fill Rate 100%

Z-Accuracy -0.03 %

Plane Fit RMS Error 0.33 %

Subpixel RMS Error 0.00 pixels

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Objectives

	2 Plethysmography Fundamentals
	3 Fundamentals of Active Stereo Vision
	3.1 ASV Modelling
	3.2 ASV Calibration
	3.3 Image Pair Rectification
	3.4 Digital Image Matching
	3.5 Projected Light Pattern
	3.6 Depth Estimation Triangulation
	3.7 Stereo Vision Limitations
	3.8 Fundamentals of Active Stereo Vision Conclusion

	4 Intel RealSense D435 Active Stereo Vision Platform
	4.1 Calibration and Depth Evaluation
	4.2 Data Acquisition
	4.3 Intel RealSense D435 Conclusion

	5 Deformation and Plethysmography Processing Scheme
	5.1 Image Segmentation
	5.1.1 Edge-Based Segmentation
	5.1.2 Region-Based Segmentation

	5.2 Deprojection
	5.3 Surface Reconstruction
	5.4 Reconstructed Surface Measurement
	5.5 Surface Integration
	5.6 Surface Deformation and Regional Measurement
	5.7 Processing Scheme Conclusion

	6 Validation of Displacement Measurement
	6.1 Experiment Equipment
	6.2 Calibration and Data Acquisition
	6.2.1 Experiment Cases
	6.2.2 Description of the EVLP
	6.2.3 Data Acquisition using the Intel RealSense D435

	6.3 Processing Scheme for Active Stereo Vision Plethysmography of the Ventilator Test Lung
	6.3.1 Depth Map Segmentation
	6.3.2 Point Cloud Processing
	6.3.3 Plethysmography Measurements
	6.3.4 Surface Measurements

	6.4 Comparison of Measurements
	6.4.1 Reference and Competing Measurements
	6.4.2 Measurement Distribution
	6.4.3 Correlation of the Ventilator Test Lung ASV and EVLP Measurements
	6.4.4 ASV and EVLP Measurement Agreement of the Ventilator Test Lung

	6.5 Discussion
	6.5.1 Sources of Error
	6.5.2 ASV Method Limitations

	6.6 Conclusion

	7 Active Stereo Vision Method in a Clinical Setting
	7.1 Experiment Equipment
	7.2 Calibration and Data Acquisition
	7.3 Image Processing Scheme for Clinical Cases
	7.3.1 Color Image and Depth Map Segmentation
	7.3.2 Point Cloud Processing
	7.3.3 Surface Reconstruction of the Porcine Lung
	7.3.4 Plethysmography Measurements of a Porcine Lung
	7.3.5 Regional Measurements of a Porcine Lung

	7.4 Comparison of Measurements
	7.4.1 Preparation of Measurements for Comparison
	7.4.2 Measurement Distribution of the ASV and Ventilator Systems
	7.4.3 Correlation and Linearity of the ASV and Ventilator System
	7.4.4 Agreement of the ASV and Ventilator System

	7.5 Porcine Lung Discussion
	7.6 Porcine Lung Conclusion

	8 Clinical Validation and Region Measurement
	8.1 Experiment Equipment
	8.2 Calibration and Data Acquisition
	8.3 Processing Scheme
	8.3.1 Human Lung Segmentation
	8.3.2 Left and Right Human Lung Segmentation
	8.3.3 Human Lung Point Cloud Processing
	8.3.4 Surface Reconstruction of the Rejected Human Lung
	8.3.5 Plethysmography Measurements of a Rejected Human Lung
	8.3.6 Regional Measurements of a Rejected Human Lung

	8.4 Rejected Human Lung Discussion
	8.5 Rejected Human Lung Conclusion

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work

	Works Cited
	Appendix A Mechanical Drawings
	Appendix B MATLAB Code
	B1 Data Acquisition
	B1.1 rs2ReadRosbag
	B1.2 countRosbagFrames
	B1.2.1 rs2pipeStreams
	B1.1.1.1 rs2AlignFrameset
	B2.1.1.1 rs2ReadFrameset

	B1.2.2 rs2FilterDepth
	B1.2.2.1 rs2_filters

	B1.2.3 rs2DepthIntrinsics
	B1.2.4 rs2FrameImg

	B2 Image Segmentation
	B2.1 segmentLungs
	B2.1.1 roiSegmentationVectorized
	B2.1.2 largestRegion
	B2.1.3 refineMask
	B2.1.4 temporalFilterMask
	B2.1.5 segmentDepth
	B2.1.6 segmentMechanicalLungEVLP
	B2.1.6.1 fastLocalEdgeLinking

	B2.1.7 segmentRegions
	B2.1.7.1 segmentRegionsImquantize
	B2.1.7.2 clusterLabels
	B2.1.7.3 removeLabelIdx
	B2.1.7.4 sortLabels
	B2.1.7.5 filterLeftRightLungLabels
	B2.1.7.5.1 findIsolatedLabels

	B2.2 Point Cloud Processing
	B2.2.1 deprojectLungs
	B2.2.1.1 deprojectDepthMap
	B2.2.1.2 formatVertices
	B2.2.1.3 formatColorImg
	B2.2.1.4 formatLabels

	B2.2.2 vertices2PointCloud
	B2.2.2.1 createPointCloudRGBDI
	B2.2.2.2 spatialLimitsPointCloudArray

	B3 Surface Reconstruction
	B3.1 interpolateSurface
	B3.1.1 filterSurface
	B3.1.2 meshSurfaceImg

	B3.2 interpolateSurfaceColor
	B3.2.1 interpolationGrid

	B3.3 interpolateSurfaceRegion

	B4 Measurement
	B4.1 measurePorcineLung
	B4.1.1 estimate_volume
	B4.1.2 estimateTidalVolume
	B4.1.3 integrateSurfaceGrid
	B4.1.4 preprocessSignal
	B4.1.5 flowRate
	B4.1.6 findLocal extremas
	B4.1.7 findLocal extremaChangePoints
	B4.1.8 findChangePeaks
	B4.1.9 findTimePeakTidalFlow
	B4.1.10 findTimeTidalFlow50
	B4.1.11 findTidalFlow50
	B4.1.12 tidalBreathingTiming

	B4.2 estimateSurfaceParams
	B4.2.1 findBaselineSamplePoints
	B4.2.2 calculateSurfaceBaseline
	B4.2.3 calculateSurfaceDeviation
	B4.2.4 calculateSurfaceTidalVolume
	B4.2.5 calculateSurfaceCompliance

	B4.3 create_avg_cycle
	B4.4 compare_to_avg_cycle
	B4.5 estimateRegionAsychrony
	B4.5.1 paradoxicalBreathingAsynchrony
	B4.5.2 paradoxicalBreathingTiming

	Appendix C Ventilator Test Lung Data Acquisition Settings
	Appendix D Porcine Lung Data Acquisition Settings

