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Abstract

Chinese Checkers, a traditional game played on a star-shaped board by 2-6

players, has been a domain for game AI research and has been strongly solved

up to a 6×6 board with 6 pieces per player in a two-player game. In this work,

we apply the AlphaZero algorithm, known for its success in perfect informa-

tion, two-player deterministic games like Chess, Shogi, and Go, to Chinese

Checkers. Our implementation involved training a custom AlphaZero agent

on a 4 × 4 board with 3 pieces and a 5 × 5 board with 6 pieces. The pri-

mary contributions include a parallelized version of AlphaZero, an evaluation

of AlphaZero in perfect information games, exploration of the learning data

structure, assessment of learning accuracy on training data, and measurements

of generalization on states both similar and random to those observed. While

AlphaZero agents have achieved superhuman performance in certain domains,

recent analysis on KataGo revealed vulnerabilities to certain strategies that

human players would not fall for, indicating potential performance gaps in

AlphaZero. Our work studies the nature of training and evaluating agents

in simplified variants of Chinese Checkers, identifying a decrease in the accu-

racy of AlphaZero’s learned policy on states outside the training set. Even in

smaller variants of Chinese Checkers, adversarial policies were able to lever-

age these shortcomings, leading to policy mistakes by AlphaZero agent during

play. We propose a combination of supervised and self-play training to alle-

viate these exploitations, aiming to enhance the AlphaZero agent’s resilience

against adversarial strategies.
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Chapter 1

Introduction

John McCarthy defined the term artificial intelligence as “the science and en-

gineering of making intelligent machines” [22]. These machines are now com-

monplace, evident in computers, mobile devices, smartwatches, and beyond.

Today’s progress in AI, attributed to advanced algorithms and hardware evo-

lution, originated from game-based experiments.

1.1 Games in Artificial Intelligence (AI)

In AI research, games are referred as the “Drosophila of AI” [21]. Analogous

to how the fruit fly, Drosophila, aids genetic research due to its study-friendly

attributes, games act as a tangible yet complex framework for AI study. Games

allow the calibration of AI capabilities, from basic tasks to intricate problem-

solving.

Claude Shannon’s 1950 work on Chess [25] laid the groundwork for using

games to study computational logic and pattern recognition. The finite pos-

sibilities in Chess gave researchers a platform to prototype algorithms that

attempted to mimic human thinking. This research trajectory extended to

other games such as Checkers [24], Connect Four [1], and Go [26], with each

presenting distinct challenges and necessitating different algorithmic strate-

gies.

AlphaGo’s 2016 success was not merely a high point in AI’s game-playing

endeavors. It signified strides made in machine learning and neural networks

[26]. Given its extensive possibilities, the game of Go was was perceived as a
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challenge for computers. Yet, AlphaGo’s win against Lee Sedol, the Go world

champion, showed that current AI systems can manage high complexities by

merging computational power and strategic subtleties [26].

Games serve dual purposes in AI research: as platforms to test algorithms

and as tools to probe the depth of the games themselves. A notable illustration

is AlphaGo’s Move 37 in its second match against the world champion. During

the game, on move 37, AlphaGo (playing as white) placed a stone on the fifth

line, which is commonly referred to as a “shoulder hit” on a black stone [19].

This was an unusual move, especially at that point in the game. Traditionally,

professional Go players would expect a move on the third or fourth lines, which

are closer to the edge. The fifth line move was viewed as aggressive and non-

traditional for the particular board situation. This unexpected move, initially

deemed suboptimal by human standards, ultimately secured its victory. It

highlighted both the boundaries of human understanding of the game and the

potential insights AI can bring.

This dynamic reveals a mutual influence: games refine AI capabilities,

and in turn, AI innovations influence game design and understanding. This

interplay fosters progress in both domains.

One of the games that we are interested in is Chinese Checkers.

1.2 Chinese Checkers

Chinese Checkers, a classic board game widely known for its distinctive star-

shaped board, dates back to the late 19th century. It is a derivative of the

game Halma, which was invented around 1883-1884 [5]. Unlike Halma, which

is played on a square board, Chinese Checkers is played on a star-shaped board

and can accommodate between 2 to 6 players. The primary objective of the

game is to be the first to move all of your pieces across the board into the

opposing player’s starting position, a task that requires careful strategy and

planning. A commonly used Chinese Checkers board is illustrated in Figure

1.1.

Our interest in Chinese Checkers stems from its classification as a two-
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Figure 1.1: Standard 9 x 9 Chinese Checkers Board

player perfect information game. This category of games, which includes

renowned games such as Connect-Four [1], Go [26], Checkers [24], and Hex

[13], has been the focus of extensive research and study over the years. In

these games, all information is available to all players, there is no chance in-

volved, and players take turns, making them good testbed for strategic analysis

and algorithmic solutions.

Next

Next

Figure 1.2: The figure on the left is 4 × 4 board size with 3 pieces, and the
figure on the right is 5× 5 board size with 6 pieces. There are two players in
each marked by red and blue colors. The player whose turn it is to move next
is indicated in the top-left corner of each board.

Chinese Checkers, in particular, presents a compelling case for study. A

typical board size for the game boasts 1.73 × 1024 states, suggesting that it

could potentially be weakly solvable [28]. However, despite this theoretical
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possibility, the task of devising a robust proof strategy has proven to be a

formidable challenge. This gap in knowledge and understanding forms the

first part of our motivation: we seek to contribute to the ongoing tradition of

solving perfect information games but aim to do so in a more robust manner

for Chinese Checkers. Specifically, our aim is to study smaller solved versions

of the game, thereby deepening our understanding of the game’s nature and

complexity. In this thesis, we looked at 4× 4 and 5× 5 board sizes with only

two players. A starting state of each of the board sizes can be seen in Figure

1.2.

1.3 AlphaZero

The advent of machine learning and, more specifically, the development of the

AlphaZero algorithm, have opened up new possibilities for studying and mas-

tering deterministic two-player games with perfect information. AlphaZero’s

unique approach to learning and decision-making, which combines deep neu-

ral networks with Monte Carlo Tree Search, has shown remarkable success in

games such as Chess, Shogi, and Go [27]. Given that Chinese Checkers also

falls into the category of deterministic two-player games with perfect informa-

tion, it is reasonable to posit that the AlphaZero approach could be success-

fully applied to this game. This forms the second part of our motivation: we

aim to adapt and test the AlphaZero algorithm on Chinese Checkers, thereby

contributing to our understanding of the game while simultaneously provid-

ing valuable insights into the effectiveness and adaptability of the AlphaZero

learning approach.

1.4 Problem Statement and Research Ques-

tions

While Chinese Checkers has been recognized as a perfect information game and

potentially weakly solvable, there is a lack of robust proof strategies and prac-

tical solutions for playing the game optimally. Moreover, the application of

advanced machine learning algorithms, such as AlphaZero, to Chinese Check-
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ers has yet to be extensively explored. Therefore, the central problem our

research intends to address is to develop a custom-built AlphaZero algorithm

and examine its performance and learning process.

The primary research questions guiding our study are:

1. How can AlphaZero be customized and optimized for Chinese Checkers?

2. What is the value of ground truth data in training and evaluating the

AlphaZero model for Chinese Checkers?

3. How well does the AlphaZero model generalize to unseen boards or data

in Chinese Checkers?

4. How robust is the AlphaZero model against adversarial attacks in the

context of Chinese Checkers?

1.4.1 AlphaZero Customization for Chinese Checkers

To address the questions above, our research aims to create a version of Alp-

haZero that is designed and optimized for Chinese Checkers. We hypothesize

that this custom-built version will outperform generic versions of AlphaZero

when applied to Chinese Checkers, particularly in terms of processing speed

and game performance.

1.4.2 The Value of Ground Truth Data

Ground truth data, which refers to information provided by direct observation

as opposed to inferred from a model, is invaluable in the context of our research.

4×4 and 5×5 Chinese Checkers board sizes are strongly solved [28]; as such we

have access to a perfect solver. It serves as the benchmark against which our

model’s predictions are evaluated. In the context of Chinese Checkers, ground

truth data include the outcomes of games or optimal moves for a given state

determined by existing solvers. The accuracy, reliability, and detail of this

data are critical in training and evaluating the performance of our AlphaZero

model.
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1.4.3 Generalization to Unseen Data

An essential aspect of our research is to assess how well our trained AlphaZero

agent generalizes to unseen boards or data in Chinese Checkers. This involves

testing the model on new scenarios, or states, that it has not encountered

during training. The model’s ability to generalize is key to its practical ap-

plicability, as it needs to effectively handle a wide range of game scenarios to

play Chinese Checkers successfully.

1.4.4 Robustness Against Adversarial Attacks

Finally, we will examine the robustness of our AlphaZero model against ad-

versarial attacks. In the context of game playing, an adversarial attack could

involve manipulating the game state or the model’s perception of the game

state to mislead the model or degrade its performance. Although self play

algorithms like AlphaZero have been widely studied, far less work has been

done to quantify strengths and weaknesses in AlphaZero learning. Perhaps

unsurprisingly, recent work has shown that an agent reliably learn to exploit

an AlphaZero agents [31]. But, while this analysis shows that AlphaZero can

be exploited, it does not characterize the nature of the original learning, where

the weaknesses arise, and whether there is a deeper explanation for the sys-

tematic weaknesses in play. We will measure where the weakness arise, exploit

those weaknesses, and devise ways to patch them.

1.5 The Importance of this Research

Our research is designed to assess the performance of AlphaZero in the context

of perfect information games, with Chinese Checkers serving as the central

game environment. This study will not only identify AlphaZero’s strengths and

vulnerabilities but also enhance our comprehension of Chinese Checkers as a

strategic game, thereby enriching the existing literature on perfect information

games.

Our work involves creating different versions of AlphaZero that are specifi-

cally designed and optimized for Chinese Checkers. This endeavor is expected

6



to yield a comprehensive analysis of the game in 4× 4 and 5× 5 board sizes.

We begin Chapter 2 with background concepts and works related to Chi-

nese Checkers and AlphaZero. This is followed by Chapter 3, with a description

of the approach taken in the research and implementation details of AlphaZero

in Chinese checkers.

In Chapter 4, we provide the results and analysis of our work. Finally, we

conclude in Chapter 5 with a summary of our work and future directions of

our research.
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Chapter 2

Background and Related Work

In this chapter we discuss some of the background materials that are important

to our work. Since game research mainly involves solving a game, in the first

section, we discuss what it means to solve a game. In the second section, we

introduce classical game-solving strategies like MiniMax, Alpha-Beta pruning

and Monte Carlo Tree search. In the third section, we discuss deep learning

and reinforcement learning algorithms. Finally, in the last section, we delve

into the rules of Chinese Checkers and solver-specific definitions for win, draw,

and illegal states.

2.1 Solved Games

Perfect play is the behavior or strategy of a player that leads to the best pos-

sible outcome for that player, regardless of the opponent’s response. However,

a perfect play is conditioned on the fact that the game itself is solved. Allis et

al. [1] divides solved games into three categories:

1. Ultra-weakly solved: In ultra-weakly solved game, game theoretic

value of initial position is known. In other words, given a perfect play,

what is the best outcome the first player can achieve from the initial

position of the game (win, loss or draw). However, the strategy for

achieving such a goal is not required to be specified. For example, Hex

on any N × N board is ultra-weakly solved by the strategy stealing

argument.
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2. Weakly solved: A weakly solved game is one where, for the initial

position of the game, a strategy has been determined to obtain at least

the game-theoretical value of the game for both players. Checkers is one

of the weakly solved games. In Checkers, it has shown that there is an

strategy that can lead to draw under optimal play [24].

3. Strongly solved: A strongly solved game requires a strategy to be

identified to obtain the game-theoretic value for all position of the board.

In a strongly solved game, a player should be able to play optimally even

if mistakes has been made in the past. Chinese Checkers up to 6 × 6

board sizes and with six pieces has been strongly solved [28].

2.2 Classic Game-Solving Strategies

Classical game-solving algorithms form the bedrock of AI’s success in many

traditional board games. These strategies rely on exploring game trees, eval-

uating potential moves, and predicting opponent responses. They provided a

structured way to make decisions in deterministic environments, setting the

stage for more advanced techniques in modern AI gaming.

2.2.1 Minimax

The Minimax algorithm is a decision-making algorithm that is used for decision

making in game theory and artificial intelligence [23]. The algorithm assumes

a zero-sum game, where one player’s gain is another player’s loss. It is used to

determine the optimal move for a player, assuming that the opponent is also

playing optimally.

Figure 2.1 illustrates a directed acyclic graph that represents possible lines

of play of a particular game. In Minimax, two participants, MAX and MIN,

sequentially alternate in the multi-layered graph. Every node signifies a state

of the game, while each connection between the nodes symbolizes a move. The

top layer of the graph comprises a single node owned by MAX, signifying the

game’s initiation.
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Nodes situated at the termini of the graph paths are referred to as leaf

nodes. Each leaf node is assigned a utility score for the MAX player. The

scoring calculation for non-leaf nodes depends on whether the node is classified

as a MAX node or a MIN node. For nodes under the MAX category, the score

is the highest score amongst its direct descendants. Conversely, for nodes

classified as MIN, the score is governed by the lowest score from its direct

descendants. This scoring procedure is formally expressed in Equation 2.1.

v(s) =











eval(s) if s is a leaf

maxs′ v(s
′) if s is a MAX node

mins′ v(s
′) if s is a MIN node

(2.1)

In Figure 2.1, the optimal action in the graph for the maximizing player

is to move left towards 3, followed by left again, and then right. However,

it’s crucial to note that in the context of Minimax, the objectives of the two

participants are fundamentally opposed. The maximizing player (MAX) seeks

to achieve the highest score, while the minimizing player (MIN) aims to min-

imize the score. Therefore, optimal actions for the min player would be those

that lead to the lowest possible score. The optimal strategy sequence, which is

known as the principal variation, is determined based on the assumption that

both players evaluate the leaf nodes of the game tree accurately and make de-

cisions that optimally advance their respective objectives—maximization for

the max player and minimization for the min player.

2.2.2 Alpha-Beta pruning

Alpha-beta pruning is a search strategy designed to reduce the number of

nodes the minimax algorithm must examine in its search tree [23]. In the best

case, the exponent of the minimax game tree complexity can be cut in half.

In the alpha-beta pruning procedure, two values known as alpha and beta

are used. Alpha signifies the lowest guaranteed score for the player maximizing

their score, while beta represents the highest guaranteed score for the player

minimizing their score. Initially, alpha is set to negative infinity and beta to

positive infinity.

10







left side. As a result, it can explore twice as deeply as the minimax

algorithm within the same time frame. The time complexity in this

optimal case is O(bm/2) [23].

Therefore, it is advantageous to order the nodes in the tree to check the

best node first. An example is in a game of Chess where a pawn capturing a

piece is often a beneficial move and should be explored as a priority [23].

2.2.3 Monte Carlo Tree Search (MCTS)

Another widely used algorithm in game theory is Monte Carlo tree search [4].

MCTS has made impressive progress in Go [7], Chess, Shogi [27], and Hex [13].

It is a heuristic search algorithm utilized primarily in problems characterized

by finite and discrete combinatorial spaces.

Figure 2.3: Monte Carlo Tree Search has four steps: action selection, state
expansion, game simulation and value back-propagation. The step is repeated
until a constraint is reached.

The MCTS algorithm revolves around four key phases: selection, expan-

sion, simulation, and backpropagation.

1. Selection: The process begins at the root node and traverses the tree

based on a policy, such as UCT [16], until it reaches a leaf node of the

search tree.
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2. Expansion: Upon reaching a leaf node, the algorithm extends the search

tree by generating one (or more) child nodes unless the leaf node is a

terminal game state.

3. Simulation: Following the creation of the new node, the algorithm

conducts a simulated playout under a certain policy (which could be

random) until it reaches a terminal state, yielding a resulting value.

4. Backpropagation: The simulated result is subsequently propagated

back up the tree, updating the node statistics, such as visit count and

cumulative value, from the newly expanded node to the root node.

The algorithm iteratively repeats these four steps for a specified compu-

tational budget. The budget could be a time limit or number of repetitions.

Once the budget is exhausted, it selects the move leading to the most visited

node from the root.

Monte Carlo Tree Search (MCTS) algorithm has an inherent mechanism to

strike a balance between exploration and exploitation. Exploration, which in-

volves the search for new and potentially advantageous moves, is implemented

through the expansion and simulation stages of the algorithm. In contrast,

exploitation, moves with the current highest score, is executed in the selection

stage of the algorithm.

This balance is achieved using the Upper Confidence Bound 1 (UCB 1) ap-

plied to Trees (UCT) policy [16], a strategy that helps the algorithm to decide

whether to explore a less-known but potentially beneficial path (expansion and

simulation) or to exploit a path that has already been identified as providing

a good return (selection). This aspect of the MCTS algorithm makes it par-

ticularly well-suited to decision-making processes in game playing. The UCT

formula to select the action is in Equation 2.2.

UCT =
wi

ni

+ C

√

lnNi

ni

(2.2)
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where,

wi is the number of wins after the i-th move,

ni is the number of simulations after the i-th move,

Ni is the total number of simulations after all moves,

C is the exploration parameter.

The UCT policy is designed to explore less-visited nodes to search for high-

reward actions. This is crucial for ensuring that most of the states in a search

tree are visited and that the algorithm doesn’t prematurely converge on a

suboptimal solution.

MCTS works with little or no domain knowledge [4]. However, it has been

shown that its effectiveness can often be significantly enhanced through the

incorporation of domain knowledge, as well as through improved child node

selection and leaf node evaluation strategies [9].

Many improvements have been made to MCTS. One of the significant im-

provements was by Gelly et al. [10]. They introduced the Rapid Action Value

Estimation (RAVE) heuristic, which offers notable advantages in terms of ac-

celerated statistics accumulation and improved performance. Particularly in

games where the values of moves exhibit minimal dependence on their order of

play, the RAVE heuristic proves highly effective. It can also be effectively par-

allelized by employing multiple threads or processes to execute it concurrently.

Some of the techniques are listed below:

• Leaf parallelization: This approach involves executing multiple play-

outs in parallel from a single leaf node within the game tree [6]

• Root parallelization: In this method, independent game trees are

constructed in parallel, and the move selection is based on the branches

at the root level across these trees [6].

• Tree parallelization: This technique entails the parallel construction

of the same game tree. To ensure data integrity during simultaneous

writes, various synchronization mechanisms can be employed, such as a

15



single global mutex, multiple mutexes, or non-blocking synchronization

[6].

2.3 Deep Learning and Reinforcement Learn-

ing in Games

In this section, we move away from search algorithms to learning algorithms.

We briefly discuss Deep Learning and Reinforcement learning before studying

how they have been used in Chinese Checkers.

2.3.1 Deep Learning

Deep learning uses neural networks to process data and create patterns used

for decision making [11]. Deep learning models are composed of multiple layers

of artificial neural networks, hence the term ‘deep.’ Each layer contributes to

interpreting the data at different levels of abstraction [17], thereby enabling

the model to process complex data. One particular Deep Learning architecture

that we are most interested is Convolutional Neural Network (CNN) [20].

A CNN is composed of one or more convolutional layers, often followed by

pooling (also known as subsampling or down-sampling) layers, fully connected

layers, and normalization layers in various combinations. The convolutional

layers are designed to automatically and adaptively learn spatial hierarchies of

features, which makes CNNs very efficient for tasks like image classification.

The “convolutional” aspect of the CNN refers to the mathematical oper-

ation applied to the input data. This operation involves the use of a filter

or kernel, a small matrix of weights, which is passed over the input data to

produce what’s known as a feature map or convolved feature. Figure 2.4 shows

a simple convolution process. During the training process, these weights are

learned so that the network can identify important features necessary for the

task at hand. More importantly, the same kernel is applied to every patch.

Pooling layers serve to reduce the spatial dimensions (height and width,

not depth) of the input volume. It decreases the computational complexity,

controls overfitting, and makes the network invariant to small transformations,
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2.3.2 Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning where the learn-

ing happens when an agent interacts with an environment.

In reinforcement learning, the agent’s environment is modeled by a Markov

Decision Process (MDP). An MDP formalizes sequential decision making,

where an action influences not just the immediate reward but also the sub-

sequent state and future reward [30]. Mathematically, an MDP can be rep-

resented as a 5-tuple (S,A, P, r, µ0), where S is a finite set of states, A is a

finite set of possible actions, P is a transition probability distribution, r is a

scalar value reward that an agent receives while transitioning from one state

to another, and µ0 is the agent’s initial state distribution. In an MDP, at each

time step, an agent is at state s, and chooses an action a according to some

policy π. Selecting an action a transitions the agent to a new state s′ and the

agent receives a real valued scalar reward r. The policy refers to a mapping

from state to action π : S → A, suggesting which action to take in a given

state. The goal of reinforcement learning is to find an optimal policy, one that

maximizes the possible sum of rewards, which we generally refer to as return.

Contrary to search algorithms, which focus on investigating a limited seg-

ment of a space graph, the goal of RL is to find the exact value of each state

based on learned experience. In MDPs, the basis for RL is the set of Bellman

Equations [30]. The Bellman equation for the value of a state is defined as

follows:

vπ(s) =
∑

a

π(s, a)
∑

s′

Pr(s′|s, a)(r(s, a, s′) + γvπ(s
′)) (2.3)

where:

• vπ(s) represents the value of a state s under policy π.

• π(s, a) represents the probability of taking action a in state s under

policy π.

• Pr(s′|s, a) represents the probability of transitioning to state s′ given

that the current state is s and action a is taken.
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• r(s, a, s′) represents the immediate reward received after transitioning to

state s′ from state s due to action a.

• γ is the discount factor which determines the present value of future

rewards.

• vπ(s
′) is the value of the new state s′ under policy π.

The Bellman equation for action-value function is defined as:

qπ(s, a) =
∑

s′

Pr(s′|s, a)(r(s, a, s′) + γvπ(s
′)) (2.4)

where:

• qπ(s, a) represents the value of an action a in state s under policy π.

Both Bellman equations serve as the foundational elements for the pro-

cess of policy evaluation, the objective of which is to accurately compute the

value function associated with a designated policy π. The Optimal Bellman

Equation is a recursive relation for the optimal policy:

v∗(s) = max
a

∑

s′

Pr(s′|s, a)(r(s, a, s′) + γv∗(s
′)) (2.5)

q∗(s, a) =
∑

s′

Pr(s′|s, a)(r(s, a, s′) + γmax
a′

q∗(s
′, a′)) (2.6)

Two core approaches in reinforcement learning are value iteration and pol-

icy iteration.

Value Iteration is predicated upon the explicit storage of state values, with

the iteratively updated values gradually converging to the optimal state values.

More formally, Value Iteration methodically utilizes the Bellman Optimality

Equation 2.5 to update the value function for each state in each iteration. As

this iterative process progresses, the value function approaches the optimal

value function v∗, and the policy derived from these optimal state values is the

optimal policy.
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Alternatively, Policy Iteration involves an intertwined process of policy

evaluation and policy improvement. Policy Evaluation refers to the computa-

tion of the value function for a given policy, as represented by Equation 2.3,

the Bellman Expectation Equation for state-value functions. Subsequent to

this, the computed value function is utilized in the Policy Improvement step,

indicated by Equation 2.5, the Bellman Optimality Equation for state-value

functions. In this step, the policy is improved by making it greedy with re-

spect to the evaluated value function. The entire evaluation and improvement

process is repeated until the policy converges to the optimal policy.

Both these algorithms have been proven to converge on the optimal policy

under certain conditions [30], and they represent key approaches in the toolkit

of reinforcement learning methods.

2.4 Chinese Checkers

In this section, we discuss the rules of Chinese Checkers and the rules defined

in the Chinese Checkers solver used in our work.

2.4.1 Rules of Chinese Checkers

On a player’s turn in Chinese Checkers, they must move one piece. This

movement can be a single step into an adjacent empty spot, a jump over one

adjacent piece into an empty spot, or a series of multiple jumps. Figure 2.5

shows a sequence of steps starting from initial positions.

Next Next Next

Figure 2.5: Sequence of adjacent moves starting from an initial position.

The second type of move is hops or jumps. These jumps can be over a
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player’s own pieces or those of other players. Each jump in a multi-jump move

must jump over only one piece and land in an empty spot. A piece cannot leap

over two or more consecutive pieces, but zig-zag jumps over multiple pieces

are allowed. Figure 2.6 shows a single hop from the initial position. Figure

2.7 shows a sequence of hops for the red player.

Next Next

Figure 2.6: Single hop from an initial position.

Next Next

Figure 2.7: Sequence of hops from the red player from the position on the left.

Although the standard board is star-shaped, players are unable to move

into the corners of the board, except for their designated start and goal corners.

As such, the main gameplay focuses on the center diamond of the board, which

can be represented as an m × m grid as in Figures 2.5, 2.6 and 2.7.

2.4.2 Chinese Checkers Solver

In the standard rules of Chinese Checkers, a player achieves victory by success-

fully moving all of their pieces into their designated goal area on the opposite

side of the board. However, for comprehensive analysis and strategic exam-

ination, it is necessary to establish a more precise definition of the winning
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conditions. Notably, it has been observed that a player can strategically leave

one piece behind in their start area, effectively blocking their opponent from

reaching their own goal area.

To handle such situations, Sturtevant proposes two definitions of rules for

wins and illegal states to force an end to the game in his solver [28]. We use

his solver in our work. As such, it is important to go over these solver specific

definitions.

Win definition: A state in Chinese Checkers is won for player n if player

n’s goal area is filled with pieces, and at least one of the pieces belongs to player

n. [28]

Next

Figure 2.8: Winning position for red player under win definition.

According to this definition, if a player opts to keep some of their pieces in

their goal area, the opposing player can strategically surround and navigate

around those pieces to secure a victory in the game. However, it’s worth

noting that in certain instances, particularly in smaller versions of the game,

this approach can lead to unintended outcomes, as depicted in Figure 2.8.

Such shallow goal states are not found in larger boards. So, such shallow goal

states are acceptable.

Still there are some conditions this definition cannot catch when there are

six pieces on the board. As such, some board positions are declared illegal.

Illegal states: (Part 1) A state in Chinese Checkers is illegal for player n

if the winning condition is met for player n, and it is player n’s turn to move.

[28]

Under this definition, if the winning state is already reached by player n,

and it’s player’s n’s turn to move, then it is an illegal state. One such example
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Next

Figure 2.9: Illegal position in the game under part 1 definition.

is presented in 2.9. In the figure, the red player is already at the goal state,

and it is red’s turn to move. Moving the red piece anywhere else would be

a suicidal move causing the other player to win the game. However, it has

been shown that this rule is still inadequate and doesn’t encompass all states

marked illegal.

Illegal states: (Part 2) A state in Chinese Checkers is illegal if there are

one or more unoccupied locations in player n’s goal area that are unreachable

by player n due to another player’s pieces. [28]

Next

Figure 2.10: Illegal position in the game under part 2 definition

This definition describes board positions where a player blocks spots in

the goal area by leaving them empty and surrounding them with their pieces,

preventing the opponent from reaching the goal area. In Figure 2.10, the blue

player surrounds the bottom tip with its own pieces, and the red player can

never get to the bottom tip. Such types of illegal states are seen in larger

board sizes with larger numbers of pieces.
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Draws: A game of Chinese Checkers is considered a draw if any board

state is repeated during play. [28]

This rule states a game is a draw if the same board state is repeated during

the game. While Sturtevant argues [28] that one repetition of the board state

suffices to declare a game draw, we permit six repetitions during training before

declaring it so.

2.5 Why is Chinese Checkers interesting?

Our primary focus is on 4×4 and 5×5 board sizes. While a 6×6 board with 2

trillion states have been strongly solved, we used smaller board sizes to allow

extensive experimentation in reasonable time frame with available hardware

resources. For 4× 4 board with 3 pieces, there are 320,320 legal states and for

5× 5 board with 6 pieces, there are 9,610,154,400 states. The number of legal

board position for the board size can be calculated by using formula below:

(

n

k

)

×

(

n− k

k

)

× 2 (2.7)

where, n represents the number of all board positions, k represents the

number of pieces available for each player. The term
(

n
k

)

represents the number

of ways the first player can place their k pieces on n positions on the board.

The second term
(

n−k
k

)

calculates the number of ways the second player can

place their k pieces on the remaining n − k positions. The whole equation is

multiplied by two to account for two possible sequences of play. Either the

first or the second player could be the one to place their pieces on the board

first.

Despite the smaller size, both boards are important because there are still

strategically interesting choices to be made. In the states observed during

training in the 5× 5 board game, there were in average 12.79 moves to choose

from, of which 2.98 were winning moves, 9.70 were losing moves, and 0.14 were

draw moves. In other words, most of the move choices are losing moves, and it

would be interesting and difficult for an agent to choose winning moves every

single time. This would be true for larger board sizes as well. Hence, training
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and evaluating agents in smaller board sizes are meaningful.

In this chapter, we discussed some of the background works related to our

thesis. In the first section, we discussed Minimax algorithm and an optimiza-

tion to it in the form of Alpha-Beta pruning. We also introduced the inner

working of MCTS tree, which is core to the success of AlphaZero. In Sec-

tion 2.3, we discussed the use of learning algorithms like deep learning and

reinforcement learning. In the last section, we presented the rules of Chinese

Checkers, and the solver specific definitions of win, draw, and illegal states.
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Chapter 3

AlphaZero applied to Chinese
Checkers

In this chapter, we discuss implementation details of the AlphaZero architec-

ture, overall self-play, and the training process. However, before delving into

AlphaZero architecture, we take a closer look at the AlphaZero architecture

as described in the paper where it was first introduced [27].

AlphaZero has two main process. First is a self play stage. In the self play

stage, multiple games are played to generate tuples of the form (S, π, z), where

S refers to a state, π refers to a policy and z refers to the outcome of the game.

Second, when AlphaZero reaches a certain threshold, a model is trained using

the saved tuples. The process is repeated until training converges, or a time

limit is reached.

3.1 Self Play Stage

During the self play stage, games are played to generate series of (S, π, z)

tuples, which are then used to train the model. We start a game in an initial

position S0 of the board as suggested in Figure 3.1. From the state, a search

is performed using Monte Carlo Tree Search (MCTS). We discuss details of

how search is performed in the next paragraph. After the search is complete,

an action a0 from the position S0 is selected. Only forward actions were

considered because if backward moves were allowed, it might result in moving

into the same states multiple times, causing the game to end in a draw. A
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a = argmax
a

Q(s, a) + cpuct · P (s, a) ·

√

N(s)

1 +N(s, a)
(3.1)

where cpuct is an exploration constant greater than 0. The entire expression

cpuct∗P (s, a)∗sqrt(N(s))/(1+N(s, a)) forms an exploration term that adjusts

the degree to which unexplored actions are favored. The exploration term is

denoted as U in Figure 3.2. The more an action has been explored (i.e., the

larger N(s, a)), the smaller this term becomes, reducing the tendency to select

this action purely for exploration. Conversely, if P (s, a) (the network’s prior

belief in the value of the action) is high, or the state s has been visited many

times (N(s) is large), the term increases, encouraging the selection of action

a. Thus, the PUCT formula represents a trade-off between exploiting actions

known to be good and exploring less certain ones to potentially discover better

strategies.

When a new state-action pair with zero visits (N(sL, a) = 0) is traversed,

the successor state s′ is added as a child node. The leaf node in the tree

is represented as sL. Then, fθ runs an inference on the state s′, where fθ

represents a parameterized function, a convolutional neural network. This

step can be seen in step b of Figure 3.2 and is denoted by fθ(s
′) = (P, v). The

edge statistics of the legal actions from s are initialized as follows: N(s, a) =

0, Q(s, a) = 0, P (s, a) = pa, where pa is the probability of taking an action a

from state s
′

as given by the policy network P .

The value estimate is backed up to the pairs traversed in that iteration,

updating their action values. Their edge statistics are updated as follows:

N(s, a)← N(s, a) + 1, (3.2)

Q(s, a)← Q(s, a) +
1

N(s, a)
(v −Q(s, a)). (3.3)

Q(s, a) represents an average of the value estimates, denoted by v, from

all states in the subtree rooted at the state-action pair (s, a). Essentially, it

predicts the expected outcome from the pair (s, a) by considering the value

estimates from the most probable future states that follow this pair. This step

is denoted by step c in Figure 3.2.

28





Here, fromCell and toCell are the grid indices, and mapping[fromCell ]

and mapping[toCell ] convert these indices to the one-dimensional distribution

array. The array element corresponding to a move transition is updated state

visit counts N(s, a). The distribution array then is normalized so that its sum

equals 1.

3.2 Implementation of Self Play games

The self-play process of AlphaZero can be implemented in various ways. In

this section, we discuss four approaches we implemented it.

3.2.1 Single Self-play Implementation

One of the naive ways to implement AlphaZero is by playing one game at a

time, generating data, and training the model when a certain number of games

is played. A high level visual representation of this implementation is shown

in Diagram 3.3. In the diagram, a model in the i-th iteration is used to play

n games. Each game generates a set of tuples of form (S, π, z), and after n

games are played, these tuples are collected into a single dataset. The model

i is then trained using this latest dataset and updated to model i + 1. This

updated model is used in the subsequent game plays in i + 1 iteration. The

dataset from iteration i is discarded. Instead, a new dataset is created as new

games start in the (i+1)th iteration. This process continues until the training

time is exceeded.

3.2.2 Single Self-play Implementation with Replay Buffer

One improvement over this naive approach is to introduce a replay buffer

[8]. In RL, a replay buffer is a memory storage technique used to store the

experiences of an agent as it interacts with an environment. A replay buffer has

a fixed length of size N . We fill the buffer with (S, π, z) as they are available

from self play games. After we have filled the buffer with N (S, π, z) tuple, we

circle back to the first element in the buffer and insert the new (S, π, z) tuple

with probability p. In other words, after the buffer is full, the old data are

30



Game 1 Game 2 Game 3 Game n...

(S, 𝜋, z) (S, 𝜋, z) (S, 𝜋, z) (S, 𝜋, z)

Training
Model 

i+1

Game 1

Model 
i

(S, 𝜋, z)

...

i iteration i+1 iteration

Figure 3.3: Single self play implementation

kept with probability (1− p). This process has a few advantages:

1. Data Efficiency: Each experience collected during the interaction of

the agent with the environment can be used more than once, increasing

the data efficiency of the learning process.

2. Reducing Correlation: By storing and randomly sampling experi-

ences, a replay buffer can reduce the correlation between consecutive

training samples. This helps improve the stability of the learning pro-

cess, as neural networks generally perform better on uncorrelated data.

3. Balancing Exploration and Exploitation: By revisiting old states,

the replay buffer allows for more balanced exploration and exploitation,

facilitating the agent’s ability to generalize its learned policy.

4. Off-policy Learning: The replay buffer facilitates off-policy learning,

where the agent can learn from the experiences of past policies. This can

be useful when exploring various strategies or approaches in game play.

Figure 3.4 shows the architecture of the AlphaZero process with an intro-

duction of the replay buffer. A single replay buffer is maintained, and a single

game is played. After the game is over, the (S, π, z) tuple is available, and

stored in the replay buffer. When the replay buffer reaches a certain thresh-

old, we take a random sample of data from the buffer, and send it for training.
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Game 1 Game 2 Game 3 ...

(S, 𝜋, z) (S, 𝜋, z) (S, 𝜋, z)

Training
Model 

i+1

Game 1

Model 
i

(S, 𝜋, z)

(S, 𝜋, z), (S, 𝜋, z), (S, 𝜋, z), (S, 𝜋, z), ...

i iteration i+1 iteration

when no. of new_data > s

Game 1 ...

(S, 𝜋, z)

Figure 3.4: Single self play implementation with replay buffer

In our implementation, the threshold was whenever x new (S, π, z) tuples are

replaced in the replay buffer. The buffer queue does not have to be full in

order to send it for training. However, if the buffer is full, new data are added

with probability p from the start of the queue. This process is repeated until

a constraint is reached, for example the number of iterations, or time.

Although this approach is an improvement over the naive self play imple-

mentation, it is still inefficient. In both approaches, only one game is played

at a time, and this approach is slow and under-utilizes computing resources.

Most modern computers can run multiple processes, and as such, we can play

multiple games at a given time. This is where parallelization comes in.

3.2.3 Self-play Games in Parallel

As discussed above, multiple games can be played at the same time. This pro-

cess ensures that training data is generated faster, and by extension, training

can happen more frequently. Figure 3.5 gives a high level implementation of

the parallelization of self play games. The figure shows that n games are played

in parallel. As soon as the games are finished, available (S, π, z) are stored in

the replay buffer. Since we are playing multiple games in parallel, these data

are available sooner compared to the single self play implementation. The

process is then similar to the single self play implementation.

Although this approach significantly improves upon single self play im-

plementation, we can optimize it by introducing parallelization during the

inference in the MCTS search.
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Game 1 Game 2 Game 3 Game n...

Training
Model 

i+1

Game 1

Model 
i

...

i iteration i+1 iteration

(S, 𝜋, z), (S, 𝜋, z), (S, 𝜋, z), (S, 𝜋, z), ...

when no. of new_data > s

Figure 3.5: Parallel self play implementation with replay buffer

3.2.4 Self-play Games in Parallel with Inference Queue

In step b of Diagram 3.2, only one state of the game is sent to the model for an

inference. Inference is a time consuming-process, and we are running inference

on just one state at a time. But GPUs can efficiently run inference on many

states once.

We optimize the previous approach by introducing a process queue and an

inference queue. This is depicted in Figure 3.6. Games are played in parallel,

and as such, multiple searches are going on simultaneously. For each game, a

local process queue is maintained, as indicated by green box in the Figure 3.6.

Also, a global inference queue is maintained, indicated by blue box, which can

be accessed by all processes.

While at state SL, where N(sL, a) = 0 in search, instead of sending the

state to inference as in earlier implementations, it is sent it to an inference

queue. Once the length of the inference queue equals the number of games,

or a certain time limit is reached, all states (S) are batched and sent to the

inference process. As inference is a blocking process, playing fewer parallel

games allows for quicker dispatch to the inference process, thereby accelerating

the overall game play.

The inference process runs an inference model (AlphaZero model) and out-

puts an array of outcomes (z) and policy distributions (π). The inference
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3.3.1 Neural Network

AlphaZero employs a deep residual neural network with convolutional lay-

ers to learn state and policy evaluation. This neural network, denoted as

fθ(s) = (p, v) in Figure 3.2, is structured similarly to the state-of-the-art

deep convolutional networks employed in image recognition. It is adaptable

to multiple games due to its general parameters, and it can represent intricate

non-linear relationships of the input features.

The network input is a feature vector x, representing a game state s. A

game state of Chinese Checkers is represented as a vector, the index of which

corresponds to a player’s position on the board. For example, a starting posi-

tion on a 4× 4 board with 3 pieces would be represented as [1, 1, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 2, 2, 2]. This state is represented by a stack of two binary matrices,

each with dimensions matching the (n×n) dimensions of the board. The first

matrix corresponds to the locations of current players pieces, and the second

matrix corresponds to the locations of the other player. For consistency, the

current player to play is always represented as the first matrix.

The model then goes through a few convolutional blocks, which includes

batch normalization and nonlinear activation function, and multiple residual

blocks. Residual blocks, also called ResNet blocks, consist of two sequential

convolutional blocks connected via a skip connection. After the resnet blocks

are complete, the model branches into two heads: a policy head and a value

head.

The value head is formed by flattening the output from the earlier network.

The output then goes through a linear layer of 256 dimensions, ReLU, and a

final linear layer that outputs a scalar. The scalar value is passed through the

tanh function to get the output of the game, indicated by z; either win, draw

or loss. We consider anything above 0 to be a win (+1), 0 a draw (0), and

anything below 0 a loss (-1).

The policy head is formed of a convolutional block and a fully connected

layer, outputting a vector of logits over the actions. To generate a vector

of action probabilities p, illegal actions are masked, and a Softmax function

35



is applied to the residual vector of logit probabilities. Thus, the elements

pa = Pr(a|s) of p determine the probability of selecting action a from state s,

and thereby approximating the policy π.

In a specific training sample, represented as (S, π, Z), the neural network

utilizes π (the tree policy) as the learning objective for the policy head, and z

(the outcome of the self-play match) as the learning target for the value head.

Both of these targets are applied to the input s. The parameters of the neural

network θ are updated via Adam on the loss function:

L = (z − v)2 − πT log p+ c||θ||2 (3.4)

where,

• L: the total loss

• z: the actual outcome of the game (1 for win, 0 for draw, -1 for loss)

• v: the predicted outcome by the value head of the network

• (z−v)2: the mean squared error between the predicted and actual game

outcome

• π: the search probabilities from the MCTS

• p: the move probabilities predicted by the policy head of the network

• πT log p: the cross-entropy between the predicted move probabilities and

the search probabilities

• c: a regularization coefficient

• θ: the parameters of the neural network

• c∥θ∥2: the L2 regularization term

This procedure optimizes the network’s performance by incrementally re-

ducing the loss, or the difference between the network’s prediction and the

actual result.
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After the training process is complete, the updated model is used to play

the next iteration of self play games.

3.4 Hyper-parameters in the AlphaZero

The effectiveness of the AlphaZero algorithm is highly dependent on the hy-

perparameters that guide its learning process. Hyperparameters used in the

learning process are as follows:

1. Simulation Count for MCTS: This is the number of simulations per-

formed for each move, which affects the depth and breadth of the game

tree that is explored before a move is selected. Higher values can lead

to better decision-making but increase computation time.

2. Exploration Constant (Cpuct): Cpuct is used in the PUCT formula 3.1

within MCTS to balance exploration and exploitation, higher values of

C lead to more exploration.

3. Dirichlet Noise Parameter (α): This is used to promote exploration

during the self-play phase [26].

At the root of the Monte Carlo Tree Search (MCTS), dirichlet noise

is added to the policy probabilities of the network. This nudges the

algorithm towards unexplored actions that might not be chosen under

the original probabilities, thus ensuring a variety of gameplay.

The strength and nature of the perturbation are governed by the Dirich-

let noise parameter α. With higher α, more exploration is introduced

into the system.

This mechanism aids in creating a diverse dataset for training the deep

neural network, contributing to the robustness and generalization ability

of the AlphaZero system.

4. Temperature Parameter (τ): This controls the level of exploration

during the search process.
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At each leaf node, AlphaZero uses the probabilities from policy network

to guide its search. After performing a certain number of Monte Carlo

Tree Search (MCTS) simulations, it generates a new probability distri-

bution over the actions based on the number of times each action was

visited during the search.

The temperature parameter comes into play when converting this distri-

bution into a final move. If τ is set to a high value, the move selection will

be more random, allowing for a higher level of exploration. If τ is close

to zero, the move selection will be almost deterministic, meaning the

move with the highest visit count is almost always chosen, emphasizing

exploitation of the known good moves.

Specifically, during training, AlphaZero uses a temperature of τ = 1 for

the first n moves to promote diverse gameplay and then τ is set close

to 0 for the remaining moves. This variation in τ in gameplay during

training provides a balance between exploring various strategies early on

and then exploiting the most promising moves later in the game.

5. Learning Rate (η): This parameter affects how quickly or slowly the

model learns from new information. Higher values can lead to faster

learning but risk overshooting the optimal solution, while smaller values

can lead to more stable learning but risk slow convergence.

6. Batch Size: This is the number of game positions used in each training

step. Larger batch sizes can lead to more stable learning but require

more memory.

7. Number of Training Steps: The number of training steps taken for

each learning iteration. More steps can lead to deeper learning but re-

quire more computation time.

8. L2 Regularization Parameter (λ): This helps prevent overfitting by

adding a penalty to the loss function based on the size of the weights.

9. Momentum (β): Gradient descent algorithms function by iteratively
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adjusting the model parameters in the direction of the steepest decrease

of the cost (loss) function. However, these algorithms can sometimes

be slow to converge, especially in situations where the surface of the

loss function is shaped like a shallow ravine with steep sides and a slow,

gentle gradient along the bottom. In such cases, the algorithm tends to

oscillate across the steep sides of the ravine while only slowly progressing

down along the bottom toward the minimum.

Momentum helps address this issue by adding a fraction β of the up-

date vector of the past time step to the current update vector [29]. The

momentum hyperparameter β usually takes a value between 0 (no mo-

mentum) and 1 (maximum momentum). A common value for β is 0.9.

The model converges faster when the momentum hyperparameter is set

to high values. However, if the momentum is too high, the algorithm

might overshoot the optimal solution, especially near the end of opti-

mization.

In this chapter, we first introduced the overall architecture of AlphaZero.

We then discussed ways it can be implemented: single self-play games, single

self-play games with replay buffer, and parallel-play games with replay buffer

and inference queues. We then discussed the training stage of AlphaZero, and

the hyper parameters used in the process. In the next chapter, we will dis-

cuss the results of our experiments after we train AlphaZero agent in Chinese

Checkers, and evaluate it in novel ways.
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Chapter 4

Experiments

In the last chapter, we discussed implementations of various AlphaZero agents,

and outlined the rules of the Chinese Checkers game. In this chapter, we

discuss the results when we applied AlphaZero in Chinese Checkers.

Experiments were done on three variations of AlphaZero: single self play

without replay buffer, single self play with a replay buffer, and parallel play

with a replay buffer and inference queue. All of the above experiments were

performed on two different Chinese Checkers board sizes: 4× 4 with 3 pieces

and 5×5 with 6 pieces. Both sizes were chosen because they have been strongly

solved [28]. The 4× 4 board has 320,320 legal board positions, and 5× 5 has

9,610,154,400 legal board positions [28]. For all the experiments, only forward

moves were considered during the self play stage.

In this chapter, we outline the hardware and software configurations for our

experiments. We then explore the experiments conducted using single-thread

self-play and parallel-thread self-play games. We then examine evaluations

of the learned agent against fixed opponents, and ground truth data. Fur-

thermore, we identify states where AlphaZero performs poorly, and design an

adversarial agent that exploits this vulnerability and pushes AlphaZero agent

into losing games. Lastly, we design an experiment to mitigate this vulnera-

bility.
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4.1 Experiment Hardware and Software Setup

All variations of AlphaZero code were written on Python 3.8, and the Chinese

Checkers board environment was written in C++. Although we wrote the

custom implementation of AlphaZero, we used an existing Chinese Checkers

environment. The only code added in the C++ implementation was a function

named list to ccstate that changed state representation from a Python list to

the C++ CCState class. We used PyBind11 to create Python bindings of the

Chinese Checkers C++ code environment.

We used Jax as our primary deep learning framework. Two main reasons

to use Jax over other frameworks were:

1. Composable Transformations: Jax enables more sophisticated pro-

gram transformations like autodifferentiation, vectorization, and paral-

lelization. It makes it easier to apply transformations to parts of com-

putations, providing flexibility in optimization strategies [3]. We have

vectorized our code as much as possible and used Jax’s automatic par-

allelization to distribute work to the GPU for inference and training.

2. Just-In-Time Compilation: Jax uses XLA for just-in-time (JIT) com-

pilation, which enables efficient execution on accelerators [3]. JIT func-

tions are particularly beneficial when dealing with complex mathematical

computations and reduces runtime overhead. We have used JIT func-

tions whenever possible.

In addition to Jax, we also used Jax-based libraries like Haiku to con-

struct neural networks, Optax for optimizers, and Chex for Jax based utility

functions. Additionally, we used Python’s default multiprocessing module to

spawn multiple processes during self play and training.

Finally, we used the Scalene profiler to optimize our implementation. It

was used to identify memory leaks in our code, measure the performance of

jitted functions, and reduce the number of variable copies.

Most experiments for the 4× 4 board were run on a Mac M1 with 8 CPU

cores. At the time of the research we were unable to utilize M1 GPU for
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calculations. For the 5 × 5 board, the experiments were run on a lab server

which has 32 AMD CPU cores and 2 NVIDIA GeForce RTX 2080 Ti GPUs.

4.2 How do we measure learning?

There are two different ways to measure whether or not the AlphaZero agent

is learning. First, we play the learned agent against fixed opponents. The

win rate against the opponent can give us a way to measure whether an agent

has learned over the training. In our experiments, the AlphaZero agent com-

peted against versions of itself, a random player, and a UCT-based player with

various sample sizes, a UCT player with distance evaluation function, and a

perfect player. This gives us a robust way to measure learning over iterations.

Second, we study and evaluate how well the trained agent generalizes over

unseen states. Previous work on solved Chess endgames has suggested that

we could measure the learning progression of AlphaZero [12]. We extend this

concept to solved versions of Chinese Checkers. For this step, we take the

learned model at regular iteration steps and evaluate it against states that

were seen during training as well as carefully chosen unseen states.

4.3 Does the model have capacity to learn?

Since AlphaZero employs residual neural network with convolutions layers to

learn value and policy functions, we wanted to verify weather the model itself is

capable to learning or not. For this, we trained on ground truth in 5×5 board

in iterations. For each iteration we randomly sampled 10,000 states from the

state space, and trained on their game theoretic values as a supervised learning

target. This model was trained for 3,667 iterations (36,670,000 states) over

a period of 72 hours. Many random states are uninteresting, with a clear

winner that has no losing moves, so the final model was evaluated against

states seen by AlphaZero during training, achieving an accuracy of 94%. This

experiment gave us concrete evidence that the model is able to learn, and thus

was employed during the training.
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player, Figure 4.1 shows that the AlphaZero agent, after the first training

iteration, wins 80 games against random player, and 4 games against a UCT

player with 100 samples per move. However, after the 10th iteration, it won 100

games against a random player and 98 games against a UCT player. Figure

4.2 shows that the AlphaZero agent, as a second player, wins 81 games against

random player, and 6 games against UCT player with 100 samples in the first

iteration. However after 10th iteration, it won 100 games against a random

player, and 88 games against a UCT player. The increasing win rate against

fixed opponents suggested that the AlphaZero agent was able to learn over

time. Since Chinese Checkers is a first player win, it also suggests both random,

and UCT players are weak players.

4.5 Parallel-thread Self Play Experiments

In this section, we discuss experiments done using the parallel-thread self play

architecture. First, we analyze learning progression over training iterations.

Second, we play learned agents against fixed opponents. Lastly, we evaluate

the learning generalization of the learned agent. All of the three experiments

were done on both on both 4× 4 and 5× 5 board sizes.

4.5.1 Experiments on 4× 4 Board Size

For this experiment, we ran parallel self-play games on the 4 × 4 Chinese

Checkers board with 3 pieces, and we also introduced a buffer queue and an

inference queue. For this experiment, we used a Mac M1 with 8 CPU cores. We

used six cores to spawn up six processes for self play games, and the remaining

two were used for inference and training, as described in Section 3.2.4.

Figures 4.3, 4.4, 4.5 and 4.6 show key metrics during parallel-thread self

play game during training. The blue line in Figure 4.3 shows the average time

to play a single game across all iterations. As we can see, the time taken to

finish the game goes down across iterations. This suggests that the agent is

able to find better policies such that it is able to finish the game faster.

Figure 4.4 shows the number of games played over 50 iterations. In sub-
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sequent experiments, an iteration is defined as the completion of training on

a new set of (S, z, π) tuples, drawn from replay buffer. As we can see, the

game count increases over time. This behaviour is expected as fewer states

are visited and inserted into the queue, we need more states to reach constant

k. As such, it needs to play more games in order to generate more (S, π, z)

tuples.

Figure 4.5 shows the the average number of states visited in a game across

iterations. During earlier iterations, more states are visited per game. How-

ever, as learning progresses, lesser states are visited per game. It suggests that

fewer states are visited in a game, and games are ending faster and in less time

as seen in Figure 4.1.

Figure 4.6 shows the player win rates during the self-play process of Alp-

haZero. The blue line signifies player 1 wins, the yellow line indicates player

2 wins, and the green line represents draws. Before the 5th iteration, player 2

won most of the games. After the 5th iteration, player 1 won the majority of

the games against player 2. However, at the 40th iteration, player 2 wins most

games against player 1. Yet, player 1 fights back after the 40th to win most

games. This “dance” between win rate among players in certain intervals can

be seen more vividly in 5×5 board. No draws were observed during game-play.

Further evaluations on parallelism will be presented in the section 4.6.

4.5.2 Learned Agent against Fixed Opponent in 4 × 4
Board

We evaluated the post-training performance of the parallel-thread trained

agent against several fixed opponents: UCT-based players with varying sample

sizes (100, 200, 1000, 2000), UCT based players that utilizes distance evalua-

tion function with two different sample sizes (1000 and 2000), and a perfect

player. We measured the win rate as both player 1 and player 2. Performance

metrics were collected every 5th iteration. In Tables 4.1 and 4.3, the number

accompanying “UCT” indicates the sample size of the UCT based player. In

Tables 4.2 and 4.4, “D” refers to UCT based player that utilizes distance eval-

uation function instead of rollouts in MCTS and the number associated with

47



it refers to the MCTS search samples used by the UCT player. A total of 100

games were played, and backward moves were disallowed in all games.

Rollouts, as utilized by a UCT player in MCTS, involve playing out the

game to completion from a leaf node of the MCTS tree using random forward

moves. The result of this simulated game (win, loss, or draw) is then used to

inform the statistical models that govern decision-making, with the outcome

being propagated back up the MCTS tree. In contrast, a distance evaluation

function, employed by a ‘D player’, offers an alternative to rollouts. Rather

than simulating the game to the end, this function estimates the distance to

the goal or terminal state from any given board state. This is advantageous

because it provides a direct measurement of progress toward the game’s ob-

jective. Propagating these distance estimates back through the MCTS tree

can result in a more accurate policy for tree expansion and move selection.

Furthermore, the use of a distance evaluation function can significantly reduce

computational demands compared to executing full rollouts.

“PP” (perfect player) refers to a player that uses the solver described in

[28] to choose optimal moves, with the associated number indicating the search

sample used by the AlphaZero agent. As both 4×4 and 5×5 boards are solved,

a perfect player will always make an optimal move from a winning position,

i.e., transitioning to a state that also guarantees a win. However, in a losing

position where no available moves lead to a win, the perfect player opts for a

random move. It does not employ search in such situations.

The reason why the perfect player does not need to search when in a

losing position is that in solved game scenarios, like 4 × 4 and 5 × 5 boards,

the outcomes of all possible moves are already known to the perfect player.

Therefore, if a perfect player is in a losing position and there are no moves

that lead to a win, there is no benefit to searching for an optimal move. In

such cases, any move will inevitably lead to the same outcome - a loss.

Table 4.1 displays the win rate of a parallel-thread AlphaZero agent as the

first player against UCT players with sample sizes of 100, 200, 1000, and 2000.

It is noted that in the initial iteration, the AlphaZero agent loses most games

against all UCT players. However, after only 15 iterations, the AlphaZero
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Iteration UCT 100 UCT 200 UCT 1000 UCT 2000

1 31 27 10 8
5 96 90 76 64
10 97 97 89 82
15 99 98 94 95
20 99 100 99 96
25 99 100 96 96
30 98 98 99 98
35 100 99 97 96
40 100 98 95 88
45 98 98 98 97
50 100 99 99 98

Table 4.1: Performance of Parallel AlphaZero as Player 1 vs. UCT players
(100, 200, 1000, 2000 samples)

Iteration D 1000 D 2000 PP 128 PP 512 PP 2048

1 2 0 27 32 30
5 44 28 60 65 59
10 55 42 58 61 69
15 64 63 65 68 69
20 73 61 61 67 59
25 77 79 62 63 92
30 84 82 68 61 68
35 88 78 65 70 68
40 69 65 54 59 65
45 86 83 63 62 71
50 91 86 66 69 88

Table 4.2: Performance of Parallel AlphaZero (Player 1) against UCT players
with distance evaluation (1000, 2000 samples) and a perfect player.
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Iteration UCT 100 UCT 200 UCT 1000 UCT 2000

1 31 21 7 8
5 89 80 59 55
10 93 94 74 72
15 99 96 92 87
20 100 92 90 86
25 94 97 92 77
30 97 99 93 84
35 99 96 86 84
40 77 81 73 69
45 99 98 88 94
50 99 98 91 94

Table 4.3: Performance of Parallel AlphaZero as Player 2 vs. UCT players
(100, 200, 1000, 2000 samples)

Iteration D 1000 D 2000 PP 128

1 1 0 0
5 12 10 0
10 28 17 0
15 27 37 0
20 37 41 0
25 56 49 0
30 51 38 0
35 57 45 0
40 48 33 0
45 66 50 0
50 71 55 0

Table 4.4: Performance of Parallel AlphaZero (Player 2) against UCT players
with distance evaluation (1000, 2000 samples) and a perfect player.
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agent manages to win 95 games. By the 50th iteration, the learned agent is

capable of defeating all UCT players, even winning 98 out of 100 games against

the strongest UCT player. Nonetheless, as discussed in Section 4.4, the UCT

players are considered weak opponents. There was a need for stronger agents

for comparison with the learned agent.

Table 4.2 presents the win rate of a parallel-thread AlphaZero agent as the

first player against stronger agents, namely UCT with a distance evaluation

function (UCT D), and a perfect player. As anticipated, UCT D outperforms

the UCT with rollouts, even winning all games against the first iteration of the

learned agent. Interestingly, the perfect player performs worse than UCT D

against earlier iterations of the AlphaZero agent. However, later iterations of

the learned agent significantly increase their wins against both UCT D and

the perfect player.

However, as discussed earlier, in Chinese Checkers, the first player has

an inherent advantage, and the AlphaZero agent, as the first player, benefits

from this. How does the learned agent fare when playing as the second player?

Tables 4.3 and 4.4 answer this question. Table 4.3 indicates that the learned

agent still manages to win almost all games against the weaker UCT players.

Table 4.4 reveals that UCT D players perform better as the second player

against the learned agent, with UCT D winning 45 games compared to only

14 wins as the first player. The perfect player wins all games against the

learned agent, which is expected because, on the solved 4× 4, a perfect player

starts from a theoretically winning game state and always makes the optimal

move.

4.5.3 Evaluation against Ground Truth

In this experiment, we evaluated the generalization property of the learned

agent. The aim of this evaluation is to study how learning takes place in

AlphaZero. Since the game on the 4 × 4 board is strongly solved, we had

access to a solver [28]. With access to this solver, given a state, and the

player, we can get the accurate outcome of the game from the solver.

For this experiment, we made three distinct datasets.
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• Seen state dataset: This dataset encompasses all states that were

experienced directly during the self-play training stage, comprising 7,632

unique states. However, only states whose children have two different

possible outcome were sampled. Such states represented a more complex

scenario where the model can make mistakes. The aim of evaluating the

model on this dataset is to check its capability to remember and apply

the knowledge acquired during training. We also wanted to study the

inaccuracies in training data and whether the model is able to learn

despite these inaccuracies.

• Neighboring state dataset: This dataset consists of 30,317 unique

neighboring states derived from all the states observed during training.

A neighboring state is defined as one that can be reached by executing

a single action from any state within our training database. Similar to

seen state dataset, only states whose children have two different possible

outcome were sampled. None of these neighboring states were directly

observed during training. However, they share close relations to the

states that were seen. By evaluating the model on this dataset, we aim

to assess its ability to generalize to new, yet similar, states.

• Random state dataset: Contrary to its name, this dataset is not

completely random. It consists of states selected randomly from the

game space, but only those where the outcomes of child states differ

from their parent states; that is, these are states that are won for the

player to move, but they have the potential to make a losing move. If all

moves lead to a win or a loss, there are no interesting decisions to make.

Also, these states are less frequently seen during gameplay and represent

more complex scenarios. Recent work has trained adversarial policies

that cause AlphaZero to make serious blunders [31]. These blunders

would eventually lead AlphaZero system to lose the game. By evaluating

the model on these “hard” states, we aim to test the robustness and

adaptability of the AI to unexpected game scenarios. Additionally, this

dataset includes states not represented in the seen state or neighboring
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state datasets. For 4×4 board size, this dataset contained 10,000 unique

states.

We then assessed the agent’s accuracy in predicting game outcomes from

states in each dataset. We sampled all states from the training dataset, and

10,000 states from the neighboring and random datasets and compared the

AlphaZero value function (z) to the actual outcome from the solver. This

allowed us to determine the percentage of accurate evaluations by the model.

Figure 4.7 illustrates the results: the blue line indicates accuracy on seen

states, the yellow line on neighboring states, green line on random states.

Each state was evaluated from the perspectives of both Player 1 and Player 2.

For rest of the figures, the left image represents Player 1’s perspective, while

the right image represents Player 2’s.

As learning progresses over training iterations, it can be observed that the

model is able to learn the outcome of the seen states, as indicated by increasing

blue line. This is expected because it is trained on these data. If the model

is learning, it should be increasingly accurate about the outcome of the game

from a given state.

Additionally, the orange line denotes outcome accuracy on neighboring

states. Unlike seen states, these states were never encountered during training.

However, since they are the neighbors of the seen states, it can be assumed

that these are closely related to the seen states. The orange line indicates

that this assumption might be true. Although the model has never seen these

states, it is able to be increasingly accurate about the outcome of the game

state. However, it stays below the seen state line because we expect the model

to learn more about the seen states rather than unseen states.

The random state accuracy against ground truth is denoted by a green

line. The accuracy of random stays increases over iterations. However it stays

below the accuracy of seen and neighboring states.

The red line in the Figure 4.7 represents training data accuracy against

ground truth. Remember that the training state data is represented as a

(S, π, z) tuple. That means for each state, we have access to its outcome from

53













Hour D 1000 D 2000 PP 128 PP 512 PP 2048

10 55 52 34 74 99
20 95 90 80 80 94
30 97 93 93 90 88
40 92 94 84 76 74
50 94 98 89 95 98
60 99 98 82 85 81
70 100 99 96 100 99

Table 4.6: Performance of Parallel AlphaZero (Player 1) against UCT players
with distance evaluation (1000, 2000 samples) and a perfect player.

Hour Single AZ UCT 100 UCT 200 UCT 1000 UCT 2000

10 93 94 83 79 75
20 100 98 99 83 80
30 100 100 98 92 87
40 100 98 98 94 90
50 100 99 100 96 90
60 100 100 100 95 93
70 100 100 100 97 95

Table 4.7: Performance of Parallel AlphaZero as Player 2 vs. Single-thread
AlphaZero and UCT players (100, 200, 1000, 2000 samples)

The dataset for this experiment is similar to the one described in section

4.5.3. However, there are a few differences.

• Seen state dataset: This dataset encompasses all states that were ex-

perienced directly during the self-play training stage, comprising 412,570

unique states.

• Neighboring state dataset: This dataset consists of 4,568,133 unique

neighboring states derived from all the states observed during training.

• Random state dataset: It consists of states selected randomly from

the game space, but only those where the outcomes of child states differ

from their parent states. These states are less frequently seen during

gameplay and represent more complex scenarios. We randomly sampled

10,000 such states from the game space.
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Hour UCT Dist 1000 UCT Dist 2000 Perfect Player

10 44 40 0
20 87 78 0
30 89 85 0
40 86 89 0
50 92 91 0
60 96 90 0
70 98 92 0

Table 4.8: Performance of Parallel AlphaZero (Player 2) against UCT players
with distance evaluation (1000, 2000 samples) and a perfect player.

We then assessed the agent’s accuracy in predicting game outcomes from

a given state. We sampled 10,000 states from each datasets and compared

the AlphaZero value function (z) to the actual outcome from the solver. Only

states whose children have two different possible outcome were sampled. Fig-

ure 4.13 illustrates the results: the blue line indicates accuracy on seen states,

the green line on neighboring states, and the red line on random states.

Similar to Section 4.5.3, training states accuracy outperform neighboring

ones, which in turn are more accurate than random states. The training data

accuracy is 74%. Figure 4.14 shows the training data accuracy for cumulative

states observed up to the current iteration over the course of training iterations.

In the figure, we observe an increase in the accuracy of the training data

over these iterations. Although the training accuracy increases, it can be

seen that its still lower than the outcome accuracy of seen and neighboring

states. Despite evaluating in challenging states, the model is increasingly able

to evaluate the outcome of the game. However, it can be seen that the model

accuracy decreases after 100 iterations. This can be attributed to the fact that

the model performs poorly from 100-160 iterations. This can be seen in Figure

4.13. However, we ran a second run of the same experiment, and we did not

see the dip. The result is shown in A.4.

For the second part of our experiment, we evaluated the accuracy of Al-

phaZero policies. For this experiment, we sampled 1,000 random states from

each of the datasets. The results of this experiment are displayed in Figures
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Search Sample Total Seen Neighboring Other (NW)

32 16.82 5.41 5.57 5.84 (4.69)
64 16.91 5.73 5.17 6.01 (4.86)
128 16.82 5.34 5.56 5.92 (4.58)
256 16.83 5.32 5.31 6.2 (4.63)
512 16.53 5.96 3.8 6.77 (5.45)
1024 17.57 5.89 4.61 7.07 (4.92)
2048 16.4 5.1 4.98 6.32 (4.22)

Table 4.10: Average number of states visited by AlphaZero agent (player 1)
against an adversarial player in a game, and whether the states are in training
set, neighboring set, or neither. NW refers to states in Other states where all
legal moves are not win states for player 1.

Search Samples Total Seen Neighboring Other

32 56 (13) 4 (3) 44 (4) 8 (6)
64 41 (11) 4 (2) 28 (3) 9 (6)
128 45 (11) 0 (0) 35 (2) 10 (9)
256 12 (6) 5 (2) 0 (0) 7 (4)
512 14 (7) 0 (0) 3 (1) 11 (6)
1024 7 (6) 1 (1) 1 (1) 5 (4)
2048 7 (4) 3 (1) 0 (0) 4 (3)

Table 4.11: Number of states where AlphaZero agent made mistakes against
an adversarial player, summed across all games. Numbers inside parenthesis
refer to unique states. For example, the 6 (3) in Seen refers to 6 seen states
(among which 3 were unique), where Player 1 made a move that led it to a
losing state.

NW) column. The AlphaZero agent only errs in four unique states: once in

a seen state and thrice in other states as indicated in 4.12. However, despite

these errors, the UCT agent fails to capitalize on them, allowing AlphaZero to

recover later in the game.

4.8 Supervised Learning and Self-play Train-

ing

In previous section, we were able to create an adversarial agent that was able

to push AlphaZero agent into states from where its likely to lose the game.

Can we train AlphaZero agent in such way that it is more robust from making
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Metric Total Seen Neighboring Other 1-NW

States Visited 14.14 2.6 1.44 12.1 9.69
Mistakes Made 6 (4) 3 (1) 0 (0) 3 (3) 0 (0)

Table 4.12: Summary of AlphaZero agent’s performance against UCT player.
The first row represents the average number of states visited by the AlphaZero
agent. The second row represents the number of states where AlphaZero agent
made mistakes summed across all games.

such mistakes?

One approach is to initialize the model’s weights during the first iteration

of the game using a pre-trained model. Remember earlier we made a seen state

dataset that comprised of states the AlphaZero agent has been trained on. We

did a supervised learning on those states using ground truth from solver. We

trained a supervised model till 100th iteration, and used the models weight

to initialize the first iteration of self-play during AlphaZero training. All the

parameters were kept same as before during training.

Search Samples P1 win % P2 win % Draws

32 73± 9 24± 8 3
64 71± 9 26± 9 3
128 91± 6 9± 6 0
256 86± 7 12± 6 2
512 87± 6 10± 6 4
1024 88± 6 70± 5 5
2048 87± 7 10± 6 3

Table 4.13: Pre-trained AlphaZero agent (P1) vs Adversarial agent (P2)

Table 4.13 shows that the AlphaZero agent, when initialized with super-

vised model weights, is able to win significantly more games with smaller

searches. While increasing the number of search samples did improve the

win rates against an adversarial player, the improvement was not significantly

greater than that of an agent that did not utilize supervised learning model

weights. Although this approach did not address the vulnerability, it suggests

that supervised learning, followed by using the learned model weights to ini-

tialize the AlphaZero model, can slightly improve the agent’s performance.
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Moreover, it also suggests this method might improve the agents performance

while doing transfer learning from smaller board size to larger board sizes. One

can do supervised learning on smaller boards like 5 × 5, and use the models

weights to initialize self-play training in 9× 9 board.

4.9 Discussion

In this section, we discuss the key findings of our experiments.

1. Parallel-thread self-play training is proportional to the num-

ber of self-play games: In Section 4.5, we observed that the parallel

play implementation was significantly faster than the single play imple-

mentation. After a week of training, the parallel play reached the 301st

iteration, while the single play reached only the 10th iteration. This ratio

reflects the number of CPU cores utilized to play the games, showing that

the number of iterations is directly tied to the available computational

resources.

2. AlphaZero learns despite inaccuracies in the training set: In

Sections 4.5.3 and 4.6.2, we measured that only approximately 75% of

the training data was accurate. Yet, AlphaZero was able to learn and

win against all opponents (excluding adversarial player) as both the first

and second player.

3. Search contributes to the accuracy of the model: In Sections 4.5.3

and 4.6.2, we also measured that increasing search sample in the game

increased the accuracy of the model.

4. There are states where AlphaZero performs poorly: We verified

through our experiments in Sections 4.5.3 and 4.6.2 that there are certain

states where AlphaZero performs poorly.

5. We designed an adversarial agent to exploit AlphaZero vulner-

ability: In Section 4.7, we designed an adversarial agent that would
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push AlphaZero agent into poor preforming states. As a result, the ad-

versarial agent, as a second player, was able to win a significant number

of games compared to other agents.

6. Supervised learning before AlphaZero training can help im-

prove model’s performance against adversarial attacks: We showed

in Section 4.8 that performance of the model could be improved when

we utilize the seen states to do a supervised learning with ground truth

value from solver. We then used the supervised trained model to ini-

tialize the AlphaZero model during self-play and training. We showed

that the AlphaZero agent, even with smaller search samples, is able to

improve its win rates.

In this chapter, we covered the hardware and software setup for the ex-

periment. We defined the concept of learning and discussed experiments on

single-thread and parallel-thread self-play on 4×4 and 5×5 board sizes. Addi-

tionally, we designed an adversarial agent to exploit AlphaZero vulnerability,

and experimented with a mix of supervised and AlphaZero training to create

more robust AlphaZero agent.
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Chapter 5

Conclusion

In this thesis, our primary motivation was to evaluate AlphaZero in a strongly

solved game. We did this by using Chinese Checkers as our primary game

environment.

First, we built and trained a custom AlphaZero agent for 4× 4 and 5× 5

Chinese Checker boards. We created three versions of AlphaZero, namely

AlphaZero with single-thread self-play, single-thread self-play with an inference

queue, and parallel-thread self-play with an inference queue.

Second, we measured how the learning progressed over time during training

in AlphaZero. We did this by taking the learned agent and playing it against

fixed opponents. We evaluated the win rate of the learned agent against a

random player, a UCT player with various sample sizes, UCT with a distance

evaluation function, and a perfect player. The win rate against these opponents

gave us a way to measure whether the agent was learning over time.

Third, we measured the value of ground truth data in training and evaluat-

ing the AlphaZero model for Chinese Checkers. Since our work was primarily

focused on solved 4× 4 and 5× 5 board sizes, we had access to a solver from

which we could obtain the accurate outcome of a given game state. Access

to this solver allowed us to implement a perfect player, against whom we

evaluated the learned AlphaZero agent. Additionally, we created a dataset

comprising states seen during training, neighboring states of the seen states,

and carefully chosen random states, and we evaluated these against the ground

truth values obtained from the solver. We then assessed the accuracy of the
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agent in predicting the outcome of a given state. This was followed by evalu-

ation of game policy both with and without search.

Lastly, we identified states where AlphaZero performs poorly, and designed

an adversarial agents that pushed the AlphaZero agent into those states. We

then devised a way to patch this vulnerability.

Important findings of our work are listed below:

1. Parallel-thread self-play training is proportional to the number of self-

play games.

2. AlphaZero learns despite inaccuracies in the training set.

3. Search contributes to the accuracy of the model

4. There are states where AlphaZero performs poorly.

5. We designed an adversarial agent to exploit AlphaZero vulnerability.

6. Supervised learning before AlphaZero training can help improve model’s

performance against adversarial attacks.

5.1 Future work

Our work primarily focused on two board sizes: 4 × 4 and 5 × 5. Chinese

Checkers is strongly solved up to a 6 × 6 board. As such, future work could

extend our study to include this board. Also, future works can extend the

work to commonly played board sizes like 7× 7 and 9× 9.

Although our intent was to evaluate the speed and performance of our

custom AlphaZero implementation against other standard versions, we en-

countered a lack of open-source benchmarks for Chinese Checkers. Our inves-

tigation included OpenSpiel, a comprehensive set of tools for reinforcement

learning research [18]. Unfortunately, an implementation of Chinese Checkers

in OpenSpiel was not available at the time of our research. It is, however, on

their development roadmap, allowing future studies to benchmark our method

against their forthcoming implementation.
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Since we identified and measured AlphaZero’s poor performance in certain

game states, designed an adversarial agent to exploit this vulnerability, and

devised a way to patch this vulnerability, we could not win 100% of the games.

Future work can investigate other approaches to mitigate this issue.
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Figure A.4: Outcome accuracy on second run of experiment on 5× 5 board.

4× 4 board 5× 5 board

Hours 5 72
Parallel self-play games 6 29

Replay buffer size 1,000 10,000
MCTS search sample 128 128

s in % 100 50
Batch size 64 128

Learning rate 1× 10−5 1× 10−5

Momentum rate 0.9 0.9
Weight decay 0.0001 0.0001

Table A.1: Hyper-parameters used during self play games and training.
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