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Abstract

Explosive instabilities in plasmas are one of the most frequent, yet least understood phenom-
ena in physics. In this thesis we present a method of investigating non-linear (explosive)
plasma instabilities based on the combination of a variational approach with differential
geometry. This method makes it possible to resolve questions about non-linear stability
without solving the full non-linear dynamical equations. We demonstrate this method for
the case of ideal magnetohydrodynamics (MHD) which is an excellent approximation of
plasma behavior for many physical systems. At the end we apply this method to two ex-
amples of plasma instability investigation, in rectilinear, and in a curved magnetic field
topology.

In the first example, plasma in a box, we know apriori that the system must be stable in
the absence of gravity, since there is no source of free energy that could drive the instability.
This simple example illustrates the simplicity of the method we developed.

The second example deals with plasma in a curvilinear, stretched magnetic field topol-
ogy. Since the stretching of the field lines provides a source of free energy, it is possible for
an instability to develop. In the case we present we demonstrate that initial linear instabil-
ity evolves into an explosive behavior on a very short time scale. This result is consistent
with the results obtained from global MHD modeling.

Possible applications for this method are space weather prediction, and the improvement

in our understanding of explosive processes in magnetically confined plasmas.
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Chapter 1

Introduction

One of the most challenging topics in the physics of plasmas is the understanding of non-
linear instabilities responsible for rapid energy redistribution in plasmas. This is especially
true in magnetically confined plasmas that are found in both space and laboratory plasmas.
Examples of nonlinear instabilities that have explosive behavior can be found in both, space
plasmas (solar flares, Fig. 1.1, magnetic substorms, Fig. 1.2, 1.5) and in laboratory plasmas
(core crashes in TOKAMAKS). In this context we use the term "explosive” for instabilities
that have Alfvénic time scales. In the Karth’s magnetosphere the instability develops faster
than the information propagates via shear Alfvén waves to the ionosphere. Despite the
prevalence of these instabilities, our understanding of the physics of these processes is very
limited. This situation is partially due to limited experimental data, since the temporal
scale of the dynamics of the instabilities is often beyond the time resolution of present
observations, particularly in space-based experiments. Furthermore, the equations describ-
ing the plasma processes are often very complicated and do not allow a simple analysis.
However, the importance of understanding plasma behavior during explosive instabilities,
especially our ability to predict these explosions, is increasing due to the technological use
of near-earth space and the demand for new energy sources through magnetic confinement
fusion. For instance, core crashes are one of the main obstacles in performing controlled
thermo-nuclear fusion, which would provide an abundant source of energy for society. Mag-
netospheric substorms can have damaging effects on many man-made devices (satellites) in
space (Fig. 1.3), and they can also negatively influence ground based telecommunication
and broadcast networks, including malfunctioning of GPS systems and damage to power
lines and pipeline systems. Fig. 1.4 shows a map of the power outages in North America
caused by the magnetic storm in March 1989.

A most promising method for the investigation of nonlinear and explosive plasma insta-
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bilities appears to be a variational approach [llginots and Pastukhov, 2000]. In this work we
present a new method for the investigation of non-linear plasma instabilities. This method
combines a variational and perturbation approach. In the calculations we employ differen-
tial geometry which simplifies the algebra significantly, and provides us with compact results
that can be readily used for investigation of various plasma configurations. We will illus-
trate the efficiency of our method by looking at instabilities in the near Earth magnetotail

during the explosive phases of auroral and magnetospheric substorms.

Figure 1.1: Solar flares are one of the most violent events in solar system. (Photograph
courtesy NASA.)

Figure 1.2: A view of aurora australis - southern lights from the Space Shuttle Discovery.
(Photograph courtesy of NASA.)
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Figure 1.3: Space Shuttle Atlantis. Satellites and shuttles can be seriously damaged by the
electro-magnetic disturbances due to explosive instabilities in magnetosphere. (Photograph
courtesy NASA.)

Figure 1.4: Map of the power outages in North America due to the magnetic storm in March
1989. (Map courtesy EPRI.)
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1.1 Modeling of Plasma Instabilities

Modeling of the instabilities in magnetically confined plasmas brings many challenges. No
matter what description is used, whether kinetic or fluid, the description always involves
sets of coupled non-linear equations. In the case of small perturbations and reasonably slow
processes, these equations can usually be linearized. Nevertheless, even the linear equations
are rather complicated and additional assumptions, as are for instance special geometry
or harmonic dependence of certain component, are often needed to solve them. There ig,
however, rather good understanding of many processes that can be described within a linear
theory. On the other hand, if the processes involved in the phenomena of interest happen
too rapidly or involve large gradients of plasma parameters, non-linear behavior is often
important, and cannot be easily ignored. Then it is necessary to use some restrictions on
the system that might be physically justifiable to convert the problem into a form for which
solution might be known. This is called the method of analogs and is based on the fact that
mathematically equivalent equations will have the same solutions no matter what physical
system they describe. For detailed treatment of this method see e.g. the excellent work
by Feynman et. al. [1977]. Many times, as we shall show in this thesis, a completely
new mathematical approach might be required. But even then the problem may be too
complicated to be fully resolved, and computational models are needed.

The understanding of the dynamics of explosive instabilities is clearly of the utmost
importance in many areas of plasma physics. Even an ability to predict, with high accuracy,
when and where the instability will start would be a big step forward in our understanding
of the plasma dynamics, and would open new opportunities for many applications in space

and laboratory plasmas.

1.2 Core Crashes in Tokamaks

As an example of explosive, non-linear instabilities core-crash events in TOKAMAKSs are

an important problem in the physics of fusion. They are characterized by [Itoh et al., 1998]
» sudden onset of symmetry breaking perturbations
e bursts of energy, momentum and particles across magnetic surfaces

e avalanches of collapse events (A disruption starts in a localized area, but it propagates
to surrounding areas and disrupts them [Cowley and Artun, 1997]. These areas can

then become the source of new disruptions.)
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e unpredictability

These events cannot be described within linear theory, although a lot of work, including
the introduction of various dissipationi mechanisms has been done in attempts to match
observations and theory [Itoh et al., 1998 ]. The crash events usually start with the sudden
growth of one of the plasma modes, which then causes disruption of the whole system.
Time-scales of these processes are extremely short, much shorter than the collision times in
the plasma. Sometimes the system recovers after the crash and then the crash can repeat
itself. At other times the disruption is on a global scale, and the system does not recover.
Since the crash phenomena are limiting the possibilities of the use of toroidal plasmas,
they are one of the essential problems of magnetic confinement studies. Due to the rapid
time scales and non-local disruptions of the ambient plasmas, the full description of these
processes is one of the great challenges for the physics of non-equilibrium plasma [Itoh et

al., 1998 ].

1.3 Magnetospheric Substorms

Although the applicability of the physics involved in the description of the explosive instabil-
ities is very wide [Ortolani and Schnack, 1993], our focus is primarily on the understanding
of magnetospheric substorms (see e.g [Rostoker et. al., 1980]). The situation in space plas-
mas is slightly more complicated than in laboratory plasmas, since the system is not closed
and external factors contribute to the dynamiés of the system. However, we believe that the
fundamental nature of the instabilities in the magnetosphere is the same as in laboratory
plasmas. In this work we are not trying to develop a full dynamic description of the ex-
plosive instability in the magnetosphere. We limit ourselves to the development of a model
that allows the identification of explosively unstable plasma configurations in the magneto-
sphere, and thus when and where we can expect the onset of substorm intensification and
expansive phase.

The term magnetospheric substorm describes a process of storage of solar wind energy in
the Earth’s magnetosphere, particularly the magnetotail, and then the sudden release of this
energy causing auroral and magnetic disturbances. These disturbances are respousible for
the brightening of auroral arcs (Fig. 1.5). Some auroral arcs are thought to be produced by
ultra low frequency (1-4 mHz) shear Alfvén modes that lead to explosive instabilities in the
night-side magnetosphere [Samson et. al., 1992]. An example of the near Earth magnetotail

configuration just prior to the substorm is shown in Fig. 1.6. The topology is ”stretched”
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Figure 1.5: A photograph of auroral arcs (Photograph courtesy of NASA).

beyond the dipolar configuration indicating a storage of energy. This ”stretched” field
topology plays an important role in the onset of explosive, nonlinear MHD instabilities.

The magnetic substorm has five phases:
1. Growth Phase (duration 10s of minutes)

i. Precursor Phase (duration minutes)

o

iil. Intensification Phase (duration 10s of seconds)
iv. Expansion Phase (duration 10s to 100s of seconds)
v. Recovery (lobe flux reconnection) (duration minutes)

During the growth phase, the interaction between solar wind and magnetosphere leads
to slow adiabatic storage of energy in the magnetotail with the stretching of tail field lines
and an increase in the open flux connected to the interplanetary magnetic field. Strong
plasma, pressure gradients develop near the Earthward edge of the plasma sheet. In line
with this slow growth, the configuration of the magnetotail remains linearly or near linearly
stable.

In the precursor phase an auroral arc forms on field lines threading the Earthward edge
of the plasma sheet. This arc then forms azimuthally periodic vortex structures with an
azimuthal wavelength of about 100-200 km. Ballooning modes might play an important

role in the formation of these vortices |Voronkov ef. al., 1997]. This instability can trigger

6
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the substorm intensification, but does not always do so. When the substorm intensification
and expansive phase do not occur, then we can refer to the process as a pseudo breakup.

During the intensification phase the auroral arc brightens and develops large scale vortex
structures, followed by the poleward expansion of the auroral surge, and enhanced electro-
jets. The time scales (10s of seconds) of the surge formation and explosive cross tail current
growth are comparable to Alfvénic time scales in the near Earth magnetotail, indicating
an explosive and nonlinear instability, possibly ballooning. This process is likely to be
connected with the explosive growth phase in the near Earth cross tail current [Ohtani et
al., 1992]. Another possible mechanism leading to this nonlinear ballooning phase is the
detonation model ([Cowley and Artun, 1997] and [Hurricane et al., 1997]). The detonation
model does not require a precursor mode to push the system into a nonlinearly unstable
regime.

In the expansion stage the energy accumulated in the tail is released. Ballooning leads
to a highly stretched tail magnetic field topology near the Earth, with enhanced cross
tail currents. The increased effective Hall conductivity of the plasma leads to a hybrid
ballooning- tearing mode or a region of localized reconnection, and the beginning of the
dipolarization of magnetic field lines in the near Earth region.

The time scales of the intensification and expansion phases are very short (Alfvenic time
scale) [Friedrich et al., 2001 |. This suggests that the plasma dynamics involved in these
processes is explosively non-linear. The last stage of the substorm is the recovery (lobe flux
reconnection) phase. It begins when the region of localized tearing or reconnection reaches
lobe field lines. Then closure of open field flux begins. This phase is compatible with the
near Earth neutral line (NENL) model of substorm expansion [Baker ¢t al., 1996]. Optical
data indicate that this might occur at about 15-30 Earth radii down the magnetotail. The
recovery phase can sometimes overlap with another growth phase.

Optical measurements of auroral emissions associated with a magnetospheric substorm
are shown in Fig. 1.7. The growth phase lasts from 03:00 to just after 04:30. The equator-
ward motion of H-f# emission (486.1 nm) is due to equator-ward motion of energetic H
precipitation due to energy storage and stretching of field lines in the near Earth magne-
totail. The onset of the intensification and expansive phase is clearly visible in the middle
part of the figure, occurring at about 04:35. Here the explosive onset and release of energy
is associated with the dipolarization of near Earth field lines, leading to poleward motion
of energetic H precipitation.

In terms of space weather prediction one of the great challenges is to decide when and
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where the substorm intensification will occur. This ability would give us an opportunity to
possibly protect the most sensitive space based and ground based systems from the adverse
effects due to the electro-magnetic perturbations and energetic particles. To do that, it is
important to be able to classify possibly unstable configurations of the magnetosphere. Al-
though linear stability criteria can be defined for general curvilinear coordinates [ Liu, 1997],
we have very limited understanding of the non-linear instabilities which are responsible for
substorm onset. We shall address this issue in this thesis.

One of the possible applications of the method we present in this thesis can be testing of
data (or simulation) based equilibrium models for potentially explosively unstable regions.
Ideally, these tests could be incorporated into global MHD models and serve for space

weather prediction.
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Figure 1.6: Magnetospheric configuration prior to the substorm onset phase as constructed
from optical data constraints [ Wanliss et al., 2000]. Figures a) and b) show magnetotail at
two different times during the growth phase of the same event.
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Figure 1.7: Example of the substorm as seen in CANOPUS data. This event happened on

09/02/1995. A long period of growth phase is followed by an extremely fast disruption.
[Wanliss et al., 2000]
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1.4 Outline of the Method

In this thesis we are not attempting to resolve the full non-linear dynamics of the substorm
intensification and expansion phase. This full description will have to include a kinetic
description since the timescales in the magnetotail (the region of destabilization) are on
the order of, or shorter than the ion gyroperiod (10s of seconds). Furthermore, the full dy-
namics presents an extremely complicated problem, possibly ranking as a "grand challenge
problem” in plasma physics. Instead, we present a method of investigating the conditions
for the onset of explosive instabilities in an arbitrary magnetic field configuration, without
the need to solve the non-linear equations. It is based on a method using analogies between
different physical systems obeying similar equations, and therefore exhibiting qualitatively
similar behavior [Feynman et al., 1977]. This method provide a means of bypassing the
complicated calculations contained in the full dynamics.

Our method uses a variational approach which seems to be very effective in the iden-
tification of nonlinearly unstable plasma configurations [Pfirsch and Sudan, 1993; Ilginois
and Pastukhov, 2000]. Also, the use of differential geometry, namely use of a component
formalism and transformation rules, as a mathematical tool greatly simplifies the otherwise
extremely complicated expressions found by using vector analysis. This combination of a
variational and geometrical approach leads to a much more tractible model for the analysis
of non-linear instabilities particularly in magnetospheric plasmas.

Key points of this method are:

e The use of a Lagrangian of the system - the Lagrangian is a scalar quantity and

therefore it has the same form in any coordinate system.

¢ Analogy with mechanics - here we utilize the fact that equivalent equations have
equivalent solutions. As an example consider the equation ¢ = —a. This equation
yields a solution ¢ = ag exp(ét) with no regard for the meaning of the symbol a. 1t can
be a displacement in mechanics or an electric field. Usually mechanical systems are
more intuitive and easier to understand than the dynamics of a magnetized charged
fluid. Also, it is generally much easier to find solutions for mechanical systems than
for plasmas, and by finding similar mathematical description for plasma and for me-
chanical system, we can describe the qualitative behavior of the plasma using the

behavior of the mechanical system that we are often able to resolve.

11
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e Perturbation is treated as a coordinate change - this is the method commonly
used in the theory of elasticity. It eliminates the need for the use of additional equa-
tions connecting perturbations in different physical quantities. Instead, we can easily
obtain expressions for perturbed quantities in terms of coordinate shifts from conser-

vation laws (constraints in the Lagrangian).

e The use of differential geometry. This includes the use of a component formalism
instead of a traditional vector analysis, and also the use of transformation rules for
the coordinates. The component formalism significantly simplifies notation, plus it
makes possible the derivation in an arbitrary geometry, so the results are equally
valid for a box, for stretched field lines in the magnetosphere and for the toroidal
fields in TOKAMAKSs. The use of the transformation rules that have a simple form in
terms of geometry helps us to limit requirements for additional physical assumptions.
For more details on approaches using differential geometry see e.g. [Flanders, 1963;

Schutz, 1980].
To summarize, our method can be outlined in following steps:
i. Define Lagrangian of the system.
ii. Calculate perturbation up to the third order in plasma displacement.
iii. Derive linear equation of motion.
iv. Define initial parameters for the plasma.
v. Calculate plasma displacement in linear approximation.

vi. Calculate the second and the third order potential energies using results from the

linear model.
vii. Identify possible unstable behavior.

We demonstrate the application of this geometrical method using ideal magnetohydro-
dynamics (MHD). This approximation is rich enough to contain non-trivial physics, but
still simple enough to demonstrate the beauty of this method, without getting lost in com-
plicated algebra. Then we investigate the non-linear stability of several different plasma,
configurations within the framework of ideal MHD in order to demonstrate the use of this

method on real problems, including the magnetospheric substorm.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Lagrangian Formulation of
Non-linear Stability Criteria:
Theory

2.1 Situation in Classical Mechanics

The behavior of an object in classical mechanics is fully defined by specifying forces F(z,v)
acting on the object and the position z and velocity v of the object at some time. For
a more detailed treatment of classical mechanics see e.g. [Landau and Lifshitz, 1976]. In
many situations it is reasonable to assume that the force is a function of coordinates only
(F(z,v) = F(z)). Then the force can be alternatively described by a potential U(z) such
that F(xz,v) = —dU(z,v)/dx. The system can be described by the Lagrangian

1.
L(x,v) = 77151)2 - U(z), (2.1)

where m is mass of the object, and we assume kinetic energy in the form 7' = mwv?/2.
Here we ignore for instance systems including a Lorentz force. The potential U(z) can be

expanded around some arbitrary point zy as

Ulz) = U(zo)+ _dﬁjo) (z — x0) + —;——dQZLSO) (z — 20)® +
317 (2 _
%%Q(x —2)*+ 0 ((x _ ;1;0)4). (2.2)

Since a constant potential has no effect on the dynamics of the system, we can assume it
is equal to zero. Also, we can choose a coordinate system such that zog = 0. Then the
potential (2.2) can be written as

U(z) = vz -+ %am‘z + %,Bax‘3 + O(z4), (2.3)

13
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where «, f# and « are constants that correspond to the coefficients of the Taylor expansion

(2.2), and the Lagrangian (2.1) can be written in the form

1. 1 . 1 .
L(z,v) = mivz -y — §a$2 - 5633‘3 + O(z*), (2.4)

corresponding to the equation of motion in the form

d : .
md—;} =~y —ax — fz? + O(z?). (2.5)
If &« = B = 0 this equation describes uniform acceleration ¢ = —v. If v = # = 0 this
equation takes the form
d
'mg? = —az, (2.6)
with the solution
z = xgexp(iv/afmt) (2.7)

which describes either a harmonic oscillator or an exponentially decaying or growing system,
depending on the sign of « (wave propagation and damped and growing modes in plasmas).

If = 7y = 0 the system is deseribed by the equation

dv 9
Me— = —f: 2.8
m— Bx*, (2.8)
which has a singular solution
—6m
r=—-—-—-m: 2.9
i - 0)? 29

Since this solution is singular, from a certain point it must grow faster than exponential.
Similar solutions for plasma configurations correspond to explosive instabilities in plasmas.

Behavior due to the second and the third order terms can also be understood qualita-
tively from Figure (2.1). In the case of a quadratic dependence of the potential energy, a
ball is either in a valley where it will roll from one side to the other, which corresponds to
a harmonic oscillator, or it is on a hill, where it will eventually roll down. In the case of
a cubic dependence there is no well, the ball has a stationary point at x = 0, but once it
starts moving, it will always end up rolling down the hill. If the potential energy is a mix
of comparable second and third order contributions, the ball can either roll down the hill,
or can stay trapped in the well. It is necessary to solve the equation of motion for each
specific situation. However, if the initial push is strong enough, or the system is not closed
and can experience additional smaller pushes, eventually there is a great chance that the

ball will end up rolling down the hill.
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Figure 2.1: Qualitative sketch of the second and the third order potential energy. Pure
second order allows either stable or unstable solutions (the ball is either on the top of a hill
or in a well). Pure third order energy always lead to a singular solution (no matter what
the ball does, it will eventually roll downhill). Mixed energy requires full information about
the dynamics to decide the motion.

So far we dealt only with the one dimensional problem. The situation in more dimensions
will be similar, but richer. The motion can be stable in one direction and unstable in the
other direction, or can be linearly unstable in one direction and explosive in the other

direction. However, the general characteristics remain the same (Figure 2.2).

2.2 Plasma Instabilities
2.2.1 General Methodology

As we mentioned, our method provides us with a tool for the investigation of plasma suscep-
tibility to explosive instabilities. This method works for any model describing plasmas, for
which a Lagrangian can be defined. Also, we show that the use of a component formalism
makes this method more practical than a vector formalism, since the amount of algebra is
significantly reduced compared to traditional approaches, and also the results are in a very
efficient form which makes further calculations much easier.

The form of the geometrical approach is, in fact, very simple. In analogy with the
mechanical systems discussed in the previous section, we assume that if in some local
domain in the plasma the third order potential energy dominates over the second order, the
plasma in this domain is explosively unstable. Once the instability starts, if there is enough

free energy in the system, it can eventually also perturb the surrounding plasma that was
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Figure 2.2: Qualitative sketch of the second and third order potential energy in 2-
dimensions. This situation is similar to the 1-dimensional case, but more possibilities exist.
A situation stable in one direction and unstable in the other direction, and a situation
linearly unstable in one direction and explosive in the other one is shown.

originally metastable, leading to further growth of the unstable region [Hurricane et al.,
1999 |. Also, if the second and the third order potential energies are comparable, we cannot
predict the behavior of the plasma without resolving the full dynamics. We can, however,
expect that due to an additional push, from the solar wind or field-line resonances (FLR) in
the magnetosphere (see [Samson et. al., 1992], for instance), an instability can start. Also,
in linearly unstable regions with comparable second and third order energies, an originally
linear instability can trigger an explosive behavior. If the second order potential energy
dominates everywhere, the system is well described by the linear equations and we do not
expect an explosive instability to occur.

The method we developed consists of four main steps

e Define the Lagrangian of the system (MHD, two-fluid, kinetic) and all the additional
constraints. These constraints are necessary, otherwise the Lagrangian would describe
only a trivial solution. Also, these constraints define transformation properties of the

physical quantities involved.

e Calculate the perturbed Lagrangian up to the third order in the plasma displacement

&(x,t) which is defined as the coordinate shift
E=x+E&(tx), (2.10)

where the displacement £ is a function of the original coordinates &, and time 7. Also,
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