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Abstract

Explosive instabilities in plasmas are one of the most frequent, yet least understood phenom

ena in physics. In this thesis we present a method of investigating non-linear (explosive) 

plasma instabilities based on the combination of a variational approach with differential 

geometry. This method makes it possible to resolve questions about non-linear stability 

without solving the full non-linear dynamical equations. We demonstrate this method for 

the case of ideal magnetohydrodynamics (MHD) which is an excellent approximation of 

plasma behavior for many physical systems. At the end we apply this method to two ex

amples of plasma instability investigation, in rectilinear, and in a curved magnetic field 

topology.

In the first example, plasma in a box, we know apriori that the system must be stable in 

the absence of gravity, since there is no source of free energy that could drive the instability. 

This simple example illustrates the simplicity of the method we developed.

The second example deals with plasma in a curvilinear, stretched magnetic field topol

ogy. Since the stretching of the field lines provides a source of free energy, it is possible for 

an instability to develop. In the case we present we demonstrate that initial linear instabil

ity evolves into an explosive behavior on a very short time scale. This result is consistent 

with the results obtained from global MHD modeling.

Possible applications for this method are space weather prediction, and the improvement 

in our understanding of explosive processes in magnetically confined plasmas.
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Chapter 1

Introduction

One of the most challenging topics in the physics of plasmas is the understanding of non

linear instabilities responsible for rapid energy redistribution in plasmas. This is especially 

true in magnetically confined plasmas that are found in both space and laboratory plasmas. 

Examples of nonlinear instabilities that have explosive behavior can be found in both, space 

plasmas (solar flares, Fig. 1.1, magnetic substorms, Fig. 1.2, 1.5) and in laboratory plasmas 

(core crashes in TOKAMAKs). In this context we use the term ” explosive” for instabilities 

tha t have Alfvenic time scales. In the E arth’s magnetosphere the instability develops faster 

than the information propagates via shear Alfven waves to the ionosphere. Despite the 

prevalence of these instabilities, our understanding of the physics of these processes is very 

limited. This situation is partially due to limited experimental data, since the temporal 

scale of the dynamics of the instabilities is often beyond the time resolution of present 

observations, particularly in space-based experiments. Furthermore, the equations describ

ing the plasma processes are often very complicated and do not allow a simple analysis. 

However, the importance of understanding plasma behavior during explosive instabilities, 

especially our ability to predict these explosions, is increasing due to the technological use 

of near-earth space and the demand for new energy sources through magnetic confinement 

fusion. For instance, core crashes are one of the main obstacles in performing controlled 

thermo-nuclear fusion, which would provide an abundant source of energy for society. Mag- 

netospheric substorms can have damaging effects on many man-made devices (satellites) in 

space (Fig. 1.3), and they can also negatively influence ground based telecommunication 

and broadcast networks, including malfunctioning of GPS systems and damage to power 

lines and pipeline systems. Fig. 1.4 shows a map of the power outages in North America 

caused by the magnetic storm in March 1989.

A most promising method for the investigation of nonlinear and explosive plasma insta-

1
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bilities appears to be a variational approach [Tlginois and Pastukhov, 2000]. In this work we 

present a new method for the investigation of non-linear plasma instabilities. This method 

combines a variational and perturbation approach. In the calculations we employ differen

tial geometry which simplifies the algebra significantly, and provides us with compact results 

tha t can be readily used for investigation of various plasma configurations. We will illus

trate the efficiency of our method by looking at instabilities in the near Earth magnetotail 

during the explosive phases of auroral and magnetospheric, substorms.

Figure 1.1: Solar flares are one of the most violent events in solar system. (Photograph 
courtesy NASA.)

Figure 1.2: A view of aurora australis - southern lights from the Space Shuttle Discovery. 
(Photograph courtesy of NASA.)
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Figure 1.3: Space Shuttle Atlantis. Satellites and shuttles can be seriously damaged by the 
electro-magnetic disturbances due to explosive instabilities in magnetosphere. (Photograph 
courtesy NASA.)

Figure 1.4: Map of the power outages in North America due to the magnetic storm in March 
1989. (Map courtesy EPRI.)

3
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1.1 M od elin g  o f  P la sm a  In stab ilities

Modeling of the instabilities in magnetically confined plasmas brings many challenges. No 

m atter what description is used, whether kinetic or fluid, the description always involves 

sets of coupled non-linear equations. In the case of small perturbations and reasonably slow 

processes, these equations can usually be linearized. Nevertheless, even the linear equations 

are rather complicated and additional assumptions, as are for instance special geometry 

or harmonic dependence of certain component, are often needed to solve them. There is, 

however, rather good understanding of many processes that can be described within a linear 

theory. On the other hand, if the processes involved in the phenomena of interest happen 

too rapidly or involve large gradients of plasma parameters, non-linear behavior is often 

important, and cannot be easily ignored. Then it is necessary to use some restrictions on 

the system that might be physically justifiable to convert the problem into a form for which 

solution might be known. This is called the method of analogs and is based on the fact that 

mathematically equivalent equations will have the same solutions no m atter what physical 

system they describe. For detailed treatm ent of this method see e.g. the excellent work 

by Feynman et. al. [1977]. Many times, as we shall show in this thesis, a completely 

new mathematical approach might be required. But even then the problem may be too 

complicated to be fully resolved, and computational models are needed.

The understanding of the dynamics of explosive instabilities is clearly of the utmost 

importance in many areas of plasma physics. Even an ability to predict, with high accuracy, 

when and where the instability will start would be a big step forward in our understanding 

of the plasma dynamics, and would open new opportunities for many applications in space 

and laboratory plasmas.

1.2 C ore C rashes in Tokam aks

As an example of explosive, non-linear instabilities core-crash events in TOKAMAKs are 

an important problem in the physics of fusion. They are characterized by [Itoh et al., 1998]

• sudden onset of symmetry breaking perturbations

• bursts of energy, momentum and particles across magnetic surfaces

• avalanches of collapse events (A disruption starts in a localized area, but it propagates 

to surrounding areas and disrupts them [Cowley and Artun , 1997]. These areas can 

then become the source of new disruptions.)

4
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• unpredictability

These events cannot be described within linear theory, although a lot of work, including 

the introduction of various dissipation mechanisms has been done in attem pts to match 

observations and theory [Itoh, et al., 1998 ]. The crash events usually start with the sudden 

growth of one of the plasma modes, which then causes disruption of the whole system. 

Time-scales of these processes are extremely short, much shorter than the collision times in 

the plasma. Sometimes the system recovers after the crash and then the crash can repeat 

itself. At other times the disruption is on a global scale, and the system does not recover.

Since the crash phenomena are limiting the possibilities of the use of toroidal plasmas, 

they are one of the essential problems of magnetic confinement studies. Due to the rapid 

time scales and non-local disruptions of the ambient plasmas, the full description of these 

processes is one of the great challenges for the physics of non-equilibrium plasma [Itoh et 

al, 1998 ].

1.3 M agn etosp h eric  S ub storm s

Although the applicability of the physics involved in the description of the explosive instabil

ities is very wide [Ortolani and Schnack, 1993], our focus is primarily on the understanding 

of magnetospheric substorms (see e.g [Rostoker et. a l, 1980]). The situation in space plas

mas is slightly more complicated than in laboratory plasmas, since the system is not closed 

and external factors contribute to the dynamics of the system. However, we believe that the 

fundamental nature of the instabilities in the magnetosphere is the same as in laboratory 

plasmas. In this work we are not trying to develop a full dynamic description of the ex

plosive instability in the magnetosphere. We limit ourselves to the development of a model 

tha t allows the identification of explosively unstable plasma configurations in the magneto

sphere, and thus when and where we can expect the onset of substorm intensification and 

expansive phase.

The term magnetospheric substorm describes a process of storage of solar wind energy in 

the E arth ’s magnetosphere, particularly the magnetotail, and then the sudden release of this 

energy causing auroral and magnetic disturbances. These disturbances are responsible for 

the brightening of auroral arcs (Fig. 1.5). Some auroral arcs are thought to be produced by 

ultra low frequency (1-4 mHz) shear Alfven modes that lead to explosive instabilities in the 

night-side magnetosphere [Samson et. al., 1992]. An example of the near Earth magnetotail 

configuration just prior to the substorm is shown in Fig. 1.6. The topology is ’’stretched”
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Figure 1.5: A photograph of auroral arcs (Photograph courtesy of NASA).

beyond the dipolar configuration indicating a storage of energy. This ” stretched” field 

topology plays an im portant role in the onset of explosive, nonlinear MHD instabilities.

The magnetic substorm has five phases:

i. Growth Phase (duration IDs of minutes)

ii. Precursor Phase (duration minutes)

iii. Intensification Phase (duration 10s of seconds)

iv. Expansion Phase (duration 10s to 100s of seconds)

v. Recovery (lobe flux reconnection) (duration minutes)

During the growth phase, the interaction between solar wind and magnetosphere leads 

to slow adiabatic storage of energy in the magnetotail with the stretching of tail field lines 

and an increase in the open flux connected to the interplanetary magnetic field. Strong 

plasma pressure gradients develop near the Earthward edge of the plasma sheet. In line

with this slow growth, the configuration of the magnetotail remains linearly or near linearly 

stable.

In the precursor phase an auroral arc forms on field lines threading the Earthward edge 

of the plasma sheet. This arc then forms azimuthally periodic vortex structures with an 

azimuthal wavelength of about 100-200 km. Ballooning modes might play an important 

role in the formation of these vortices | Voronkov et. al., 1997]. This instability can trigger

t;
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the substorm intensification, but does not always do so. When the substorm intensification 

and expansive phase do not occur, then we can refer to the process as a pseudo breakup.

During the intensification phase the auroral arc brightens and develops large scale vortex 

structures, followed by the poleward expansion of the auroral surge, and enhanced elec.tro- 

jets. The time scales (10s of seconds) of the surge formation and explosive cross tail current 

growth are comparable to Alfvenic time scales in the near Earth magnetotail, indicating 

an explosive and nonlinear instability, possibly ballooning. This process is likely to be 

connected with the explosive growth phase in the near Earth cross tail current [Ohtani et 

al., 1992]. Another possible mechanism leading to this nonlinear ballooning phase is the 

detonation model ([Cowley and Artun , 1997] and [Hurricane et a l, 1997]). The detonation 

model does not require a precursor mode to push the system into a nonlinearly unstable 

regime.

In the expansion stage the energy accumulated in the tail is released. Ballooning leads 

to a highly stretched tail magnetic field topology near the Earth, with enhanced cross 

tail currents. The increased effective Hall conductivity of the plasma leads to a hybrid 

ballooning- tearing mode or a region of localized reconnection, and the beginning of the 

dipolarization of magnetic field lines in the near Earth region.

The time scales of the intensification and expansion phases are very short (Alfvenic time 

scale) [Friedrich et a l, 2001 ]. This suggests tha t the plasma dynamics involved in these 

processes is explosively non-linear. The last stage of the substorm is the recovery (lobe flux 

reconnection) phase. It begins when the region of localized tearing or reconnection reaches 

lobe field lines. Then closure of open field flux begins. This phase is compatible with the 

near Earth neutral line (NENL) model of substorm expansion [Baker et a l, 1996]. Optical 

data indicate tha t this might occur at about 15-30 Earth radii down the magnetotail. The 

recovery phase can sometimes overlap with another growth phase.

Optical measurements of auroral emissions associated with a magnetospheric substorm 

are shown in Fig. 1.7. The growth phase lasts from 03:00 to just after 04:30. The equator- 

ward motion of H-f3 emission (486.1 rim) is due to equator-ward motion of energetic H+ 

precipitation due to energy storage and stretching of field lines in the near Earth magne

totail. The onset of the intensification and expansive phase is clearly visible in the middle 

part of the figure, occurring at about 04:35. Here the explosive onset and release of energy 

is associated with the dipolarization of near Earth field lines, leading to poleward motion 

of energetic H+ precipitation.

In terms of space weather prediction one of the great challenges is to decide when and
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where the substorm intensification will occur. This ability would give us an opportunity to 

possibly protect the most sensitive space based and ground based systems from the adverse 

effects due to the electro-magnetic, perturbations and energetic particles. To do that, it is 

important to be able to classify possibly unstable configurations of the magnetosphere. Al

though linear stability criteria can be defined for general curvilinear coordinates [Liu, 1997], 

we have very limited understanding of the non-linear instabilities which are responsible for 

substorm onset. We shall address this issue in this thesis.

One of the possible applications of the method we present in this thesis can be testing of 

data (or simulation) based equilibrium models for potentially explosively unstable regions. 

Ideally, these tests could be incorporated into global MHD models and serve for space 

weather prediction.

8
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Figure 1.6: Magnetospheric configuration prior to the substorm onset phase as constructed 
from optical data constraints [Wanliss et al., 2000]. Figures a) and b) show magnetotail at 
two different times during the growth phase of the same event.
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09/02/1995. A long period of growth phase is followed by an extremely fast disruption. 
[ Wanliss et al., 2000]

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4 O u tlin e o f  th e  M eth o d

In this thesis we are not attem pting to resolve the full non-linear dynamics of the substorm 

intensification and expansion phase. This full description will have to include a kinetic 

description since the timescales in the magnetotail (the region of destabilization) are on 

the order of, or shorter than the ion gyroperiod (10s of seconds). Furthermore, the full dy

namics presents an extremely complicated problem, possibly ranking as a ” grand challenge 

problem” in plasma physics. Instead, we present a method of investigating the conditions 

for the onset of explosive instabilities in an arbitrary magnetic field configuration, without 

the need to solve the non-linear equations. It is based on a method using analogies between 

different physical systems obeying similar equations, and therefore exhibiting qualitatively 

similar behavior [Feynman et al., 1977]. This method provide a means of bypassing the 

complicated calculations contained in the full dynamics.

Our method uses a variational approach which seems to be very effective in the iden

tification of nonlinearly unstable plasma configurations [Pfirsch and Sudan, 1993; Ilginois 

and Pastukhov, 2000]. Also, the use of differential geometry, namely use of a component 

formalism and transformation rules, as a mathematical tool greatly simplifies the otherwise 

extremely complicated expressions found by using vector analysis. This combination of a 

variational and geometrical approach leads to a much more tractible model for the analysis 

of non-linear instabilities particularly in magnetospheric plasmas.

Key points of this method are:

• T he use o f a Lagrangian o f th e  system  - the Lagrangian is a scalar quantity and 

therefore it has the same form in any coordinate system.

• A nalogy w ith  m echanics - here we utilize the fact tha t equivalent equations have 

equivalent solutions. As an example consider the equation a = —a. This equation 

yields a solution a = aq exp(it) with no regard for the meaning of the symbol a. It can 

be a displacement in mechanics or an electric field. Usually mechanical systems are 

more intuitive and easier to understand than the dynamics of a magnetized charged 

fluid. Also, it is generally much easier to find solutions for mechanical systems than 

for plasmas, and by finding similar mathematical description for plasma and for me

chanical system, we can describe the qualitative behavior of the plasma using the 

behavior of the mechanical system tha t we are often able to resolve.

11
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• P erturbation  is treated  as a coordinate change - this is the method commonly 

used in the theory of elasticity. It eliminates the need for the use of additional equa

tions connecting perturbations in different physical quantities. Instead, we can easily 

obtain expressions for perturbed quantities in terms of coordinate shifts from conser

vation laws (constraints in the Lagrangian).

• T he use o f differential geom etry. This includes the use of a component formalism 

instead of a traditional vector analysis, and also the use of transformation rules for 

the coordinates. The component formalism significantly simplifies notation, plus it 

makes possible the derivation in an arbitrary geometry, so the results are equally 

valid for a box, for stretched field lines in the magnetosphere and for the toroidal 

fields in TOKAMAKs. The use of the transformation rules that have a simple form in 

terms of geometry helps us to limit requirements for additional physical assumptions. 

For more details on approaches using differential geometry see e.g. [Flanders, 1963; 

Schutz, 1980].

To summarize, our method can be outlined in following steps:

i. Define Lagrangian of the system.

ii. Calculate perturbation up to the third order in plasma displacement.

iii. Derive linear equation of motion.

iv. Define initial parameters for the plasma.

v. Calculate plasma displacement in linear approximation.

vi. Calculate the second and the third order potential energies using results from the 

linear model.

vii. Identify possible unstable behavior.

We demonstrate the application of this geometrical method using ideal magnetohydro

dynamics (MHD). This approximation is rich enough to contain non-trivial physics, but 

still simple enough to demonstrate the beauty of this method, without getting lost in com

plicated algebra. Then we investigate the non-linear stability of several different plasma 

configurations within the framework of ideal MHD in order to demonstrate the use of this 

method on real problems, including the magnetospheric substorm.

12
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Chapter 2

Lagrangian Formulation of 
Non-linear Stability Criteria: 
Theory

2.1 S itu a tio n  in C lassical M echanics

The behavior of an object in classical mechanics is fully defined by specifying forces F(x, v)  

acting on the object and the position x  and velocity v of the object at some time. For 

a more detailed treatm ent of classical mechanics see e.g. [Landau and Lifshitz, 1976]. In 

many situations it is reasonable to assume that the force is a function of coordinates only 

(F(x,v)  =  Fix)).  Then the force can be alternatively described by a potential U(x)  such 

tha t F(x, v)  = —dU(x,v) /dx.  The system can be described by the Lagrangian

L(x,v)  =  -  U(x),  (2.1)

where m is mass of the object, and we assume kinetic energy in the form T  = m v 2 / 2. 

Here we ignore for instance systems including a Lorentz force. The potential U(x)  can be 

expanded around some arbitrary point xq as

U{x) = U{xo) +  dÛ  (x -  3?o) +  \  *o) 2 +

+  ]{. d ~ ^o)3 +  ° ( ( x ~  ^o)4)- (2-2)

Since a constant potential has no effect on the dynamics of the system, we can assume it 

is equal to zero. Also, we can choose a coordinate system such that xq =  0 . Then the 

potential (2 .2 ) can be written as

U(x)  =  j x  T ^ a x 2 +  ^J3x3 +  0(;r4), (2.3)
Z O
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where a, f> and 7  are constants that correspond to the coefficients of the Taylor expansion 

(2.2), and the Lagrangian (2.1) can be written in the form

L(x,v)  = m l-v2 — j x  -  ^rax2 — ̂ rfix3 +  0(a;4), (2.4)
Zi Zj rj

corresponding to the equation of motion in the form

m =  ~ 7 ~~ aX ~~ ^ ^  ^

If a  =  fi =  0 this equation describes uniform acceleration a =  —7 . If 7  =  /3 = 0 this 

equation takes the form

rn~- — —ax, (2 .6 )
at,

with the solution

x = xo exp(± i\/a ./rn t)  (2.7)

which describes either a harmonic oscillator of an exponentially decaying or growing system, 

depending on the sign of a  (wave propagation and damped and growing modes in plasmas). 

If a  =  7  =  0 the system is described by the equation

m%  -/3',E2, 2̂'8^

which has a singular solution

'■*3 Sr
Since this solution is singular, from a certain point it must grow faster than exponential. 

Similar solutions for plasma configurations correspond to explosive instabilities in plasmas.

Behavior due to the second and the third order terms can also be understood qualita

tively from Figure (2.1). In the case of a quadratic dependence of the potential energy, a 

ball is either in a valley where it will roll from one side to the other, which corresponds to 

a harmonic oscillator, or it is on a hill, where it will eventually roll down. In the case of 

a cubic dependence there is no well, the ball has a stationary point at x  — 0 , but once it 

starts moving, it will always end up rolling down the hill. If the potential energy is a mix 

of comparable second and third order contributions, the ball can either roll down the hill, 

or can stay trapped in the well. It is necessary to solve the equation of motion for each 

specific situation. However, if the initial push is strong enough, or the system is not closed 

and can experience additional smaller pushes, eventually there is a great chance that the 

ball will end up rolling down the hill.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X -

Figure 2.1: Qualitative sketch of the second and the third order potential energy. Pure 
second order allows either stable or unstable solutions (the ball is either on the top of a hill 
or in a well). Pure third order energy always lead to a singular solution (no m atter what 
the ball does, it will eventually roll downhill). Mixed energy requires full information about 
the dynamics to decide the motion.

So far we dealt only with the one dimensional problem. The situation in more dimensions 

will be similar, but richer. The motion can be stable in one direction and unstable in the 

other direction, or can be linearly unstable in one direction and explosive in the other 

direction. However, the general characteristics remain the same (Figure 2.2).

2.2 P la sm a  In stab ilities

2.2.1 General M ethodology

As we mentioned, our method provides us with a tool for the investigation of plasma suscep

tibility to explosive instabilities. This method works for any model describing plasmas, for 

which a Lagrangian can be defined. Also, we show that the use of a component formalism 

makes this method more practical than a vector formalism, since the amount of algebra is 

significantly reduced compared to traditional approaches, and also the results are in a very 

efficient form which makes further calculations much easier.

The form of the geometrical approach is, in fact, very simple. In analogy with the 

mechanical systems discussed in the previous section, we assume that if in some local 

domain in the plasma the third order potential energy dominates over the second order, the 

plasma in this domain is explosively unstable. Once the instability starts, if there is enough 

free energy in the system, it can eventually also perturb the surrounding plasma that was

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.2: Qualitative sketch of the second and third order potential energy in 2-
dimensions. This situation is similar to the Tdimensional case, but more possibilities exist. 
A situation stable in one direction and unstable in the other direction, and a situation 
linearly unstable in one direction and explosive in the other one is shown.

originally metastable, leading to further growth of the unstable region [.Hurricane et al., 

1999 ]. Also, if the second and the third order potential energies are comparable, we cannot 

predict the behavior of the plasma without resolving the full dynamics. We can, however, 

expect that due to an additional push, from the solar wind or field-line resonances (FLR) in 

the magnetosphere (see [Samson et. al., 1992], for instance), an instability can start. Also, 

in linearly unstable regions with comparable second and third order energies, an originally 

linear instability can trigger an explosive behavior. If the second order potential energy 

dominates everywhere, the system is well described by the linear equations and we do not 

expect an explosive instability to occur.

The method we developed consists of four main steps

• Define the Lagrangian of the system (MHD, two-fluid, kinetic) and all the additional 

constraints. These constraints are necessary, otherwise the Lagrangian would describe 

only a trivial solution. Also, these constraints define transformation properties of the 

physical q u a n t i t i e s  involved.

• Calculate the perturbed Lagrangian up to the third order in the plasma displacement 

£{x , t)  which is defined as the coordinate shift

x  =  x  +  £(t, x),  (2 .1 0 )

where the displacement £ is a function of the original coordinates x,  and time /;. Also,
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we assume that the displacement £ is small enough so that we can use it as the ordering 

quantity for a perturbation treatm ent of the plasma. Here the use of the component 

formalism and of the apparatus of differential geometry helps to reduce significantly 

the amount of algebra needed as compared to traditional vector approaches, used for 

instance by Pfirsch and Sudan [1993 ]. Also the results are in very compact form and 

are ready for further calculations.

• The first order term yields the equilibrium condition for the unperturbed quantities

L(1) = J  dVC (1) =  0. (2.11)

The condition for the second order term

r p l  = j  dVC (2) =  0 (2.12)

yields the linear equation of motion for the plasma within the chosen model. This 

linear equation will have the form of a wave equation, and it is the most general linear 

equation that can be derived for the plasma. Applying additional assumptions to this 

equation makes it possible to obtain many classical results, as will be shown in the 

next part. Solving this linear equation for a chosen plasma configuration yields the 

class of possible displacements as a function of the coordinates. Here we assume that 

the linear solution is a reasonable approximation for the plasma displacement, since 

we are not trying to describe the actual dynamics of the non-linear stage (we only 

want to be able to predict possible instability onset). For instance we can expect 

that the growth phase of the magnetospheric. substorm is well described by the linear 

equations all the way until the onset of the substorm intensification and expansive 

phase.

• The last step is to calculate maps of both the second and the third order potential 

energy densities ( W ^  and VF̂ 3)). Then the regions where these energy densities 

are comparable, or the third order dominates must be identified. These regions are 

possible sources of explosive instability in the plasma. After the unstable domains

with <  IF ®  are determined, we can assume that explosive behavior starts.

Also, in the areas with W ^  ~  that are linearly unstable, we can assume that 

the linear instability triggers explosive behavior which will eventually dominate.

By following this procedure we can resolve the question of the possible beginning of the 

explosive instability by solving the equations describing the linear dynamics of the system.
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2.2.2 The Fourth Order Term

The question can be raised about the influence of the fourth order term in the Lagrangian 

on the dynamics of the instability. We will show tha t this term does not influence the 

dynamics of the system at the point of the explosive instability onset. This term can affect 

the nonlinear stage of the dynamics, but this phase is beyond the objective of our model. 

We will treat the problem of the fourth order term in two steps. First, we estimate the 

magnitude of the fourth order coefficient and compare it to the lower orders. Then we will 

show that the general requirement of the perturbation calculations requires that the fourth 

order term  be initially much smaller than the second and third order terms.

To estimate the value of the fourth order coefficient, we must return to the transforma

tion properties of the ambient physical quantities in terms of the plasma displacement £. 

A general quantity X  transforms as

Jt = T ( £ ) - X ,  (2.13)

where is T  is a matrix transforming quantity X .  In other words, the dependence on the 

plasma displacement is limited to the transformation matrix, and therefore the expan

sion must be limited to this matrix as well. Also, the expansion coefficients must contain 

unperturbed physical quantities as were contained in the original Lagrangian to preserve 

dimensions of the expansion terms. This defines the scale of the expansion terms, and the 

differences in their values can originate only from the expansion of the matrix T.

Since the matrix T  is connected to the coordinate change (2.10), it must contain the 

Jacobian matrix J j =  (dx1 /dx i)  and the Jacobian J  =  det(Jj) of the transformation (2.10). 

Since the transformation (2.10) is linear in the displacement, the Jacobian matrix must be 

of the form of a power function in the plasma displacement £. Therefore the transformation 

matrix T  will have the shape of a rational function. The coefficients in the expansion will be 

either approximately the same for all the orders, or, more likely, they will have decreasing 

values such that the n-th  term will be a factor 1 j n  smaller than the (n — l)-st term. This 

means that the fourth order coefficient will be no greater than the lower order coefficients, 

and likely will be smaller by a factor of four.

For the Taylor expansion to converge we must require the gradients of the plasma 

displacement (2.10) £*• < <  1 [Svcc et al, 1987]. Otherwise they would not be suitable as 

the ordering quantity. Therefore, initially the ordering of the terms

L (0)(l) > >  L (1)(£) »  L (2)(£2) »  L (3)(£3) »  L(4)(£4) > >  ... (2.14)
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must hold.

Naturally, the dynamic behavior of the system can be such tha t the gradients of plasma 

displacement £*• would grow and eventually the ordering (2.14) will be violated. When this 

happens, the higher order terms are becoming important. At this point the linear approxi

mation ceases to be valid, and we are looking at the onset of non-linear behavior. However, 

continuity of the expanded Lagrangian requires that the higher order terms become impor

tant with a time sequence corresponding to their order. Therefore, at least for a limited 

time, the third order term  will govern the dynamics of the system. This phase corresponds 

to an onset of explosive instability. At a later stage the fourth order term can possibly cause 

saturation of the system, but this is beyond the goal of this model. The purpose of this 

model is to be able to identify the onset of explosive behavior, and thus identify explosively 

unstable plasma configurations.

There are systems with the special symmetries with the third order term identically 

zero. Under these circumstances our method does not work, and they must be investigated 

using alternative methods.

>. 0 ttt:

-2

-1.5 -0.5 0.5
x

Figure 2.3: Comparison of terms of polynomial —x 2 +  x :i f  x 4.

Figures 2.3 and 2.4 show comparison between a second, third and fourth order polynomi

als around Xo =  0. Note the short interval of the third order term dominance in cases where 

all the terms have equal coefficients, but the long interval when a more restrictive condition 

is applied. Also, in this case the fourth order term  causes the appearance of a double well, 

but in this situation this well is strongly asymmetric. This example demonstrates the fact

1 0
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-2

—x
-X2 + 1/3x3
- x 2 + 1/3x3 + 1/1 2 x'

- 3 ^
-1.5 ■0.5 0.5

x

Figure 2.4: Comparison of terms of polynomial — x 2 +  l/3ar5 +  l/12:c4.

tha t we can safely identify explosive onset without consideration of the fourth order term.

There is one more thing we should consider in the ordering. Each of the higher orders in 

the expansion means analysis of the dynamics on shorter and shorter spatial scales. There

fore, to analyze higher order terms, these small scale effects (for instance Larmor radius 

effects) would have to be incorporated into the Lagrangian of the system we investigate. 

To conclude, since we are interested only in the identification of the onset of explosive in

stability, we do not need to consider the fourth order term in our analysis. After the third 

order term becomes dominant the pert urbation ordering is violated and analysis of the full 

nonlinear dynamics is needed. This is beyond the objective of our model.

2.3  Ideal M agn etoh yd rod yn am ics

Here we demonstrate an application of this general method in ideal MHD. Then in the next 

chapter we will show practical demonstrations of the investigation of non-linear instabilities 

in both Cartesian and curvilinear coordinates. We used standard notation common in 

literature, the detailed list of the symbols used is in the Appendix.

2.3.1 Lagrangian in Ideal M agnetohydrodynam ics

Although ideal MHD (see for instance [Nicholson, 1983]) is one of the simplest approxi

mations of plasmas, it still describes some very interesting physical features of the plasma. 

Due to the relative simplicity of this description it is a useful tool for the development of
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new formalisms that can be extended beyond ideal MHD. The Lagrangian of ideal MHD 

has the form

(2.i5)

This Lagrangian needs to be supplemented with constraints in order to yield non-trivial 

behavior. The commonly used constraints are mass conservation (2.16), magnetic, flux 

conservation (2.17), and the adiabatic condition (2.18):

j  pdV  =  const, (2.16)

j B - d S  = const, (2.17)

P p -7  =  const. (2.18)

In the Lagrangian (2.15) we introduce the plasma displacement in the form of a coordinate 

shift (2.10), which is function of coordinates and time. Then the whole perturbation calculus 

can be performed in a geometrical framework, without introducing any new physical con

straints on the system. Using the geometrical approach also brings the advantage that the 

results are independent of the coordinate system and hold for any geometry. Furthermore, 

this approach does not limit the physics beyond limitations introduced by ideal MHD.

2.3.2 K inetic Energy

The perturbed velocity has the same form v *= dx /d t  as the unperturbed velocity, with the 

difference that the plasma displacement is also an explicit function of x  and therefore total 

differentiation is necessary. Taking into account the mass conservation law (2.16), and the 

fact that

dV  = JdV,  (2.19)

one obtains a density transformation rule of the form

p = p/J ,  (2.20)

where J  is the Jacobian of the coordinate change (2.10). Then the perturbed kinetic energy 

has the form

#  =  /  dV^p{v  +  dii  + vj dj^j . (2 .21)

In the absence of ambient convection the first and the third terms in brackets vanish and 

the kinetic energy is simply

k  = I  dV^p(dtZ)2. (2.22)

This will be the form of the kinetic, energy used throughout the rest of our work.
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2.3.3 Therm al and M agnetic Energy

Since the mass conservation (2.16) combined with the rule for the transformation of a

volume element (2.19) yields expression (2.20) for plasma density, applying the adiabatic

condition (2.18), which connects density and pressure, the expression

P = P J~ 7 (2.23)

for the transformation of the pressure is obtained.

Similarly, since a surface element d S  transforms as

dSi = A{dSj,  (2.24)

where

4  =  (2-25)

and =  x ab is the Jacobian matrix of the transformation (2.10), magnetic flux conservation 

(2.17) yields

IV (,1 1 )'•/*' (2.26)

for the transformation of the magnetic field. The derivation of expression (2.24) is shown 

in section 2.3.5. Consequently, the potential energy terms are

r p / i - 7
E r  = /  d V   (2.27)

. /  7  ~  1

for the thermal component, and

E m  = j  d l '^ / / / , (l.l ' ) i l i l:{A 1)j II1 (2.28)

for the magnetic part. The term gVJ is the metric tensor of the coordinate system and is 

necessary for the scalar product in the magnetic energy term.

2.3.4 Perturbed Lagrangian

Therefore, combining expressions (2.22), (2.27), and (2.28), the perturbed Lagrangian in 

the absence of convection is

/
/ I  P / l " 7  1 N

d V ( - p ( d t£ ) 2 -  -  - ./p ,y(.l 'Y , lP(A  1 ) / / ^) -  (2.29)

So far our results are consistent with those derived by Pfirsch and Sudan [1993]. How

ever, our method of derivation of the Jacobian and the matrix A  differs significantly. The 

method we will present in the next section is self consistent, purely geometrical, and does
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not require any additional physical assumptions. The use of the component formalism and 

the use of generalized Kronecker deltas and Levi-Civita symbols ensures a very compact 

form of the results making further calculations much simpler. Also, Pfirsch and Sudan 

made the error of assuming tha t the inverse matrix A 1 is second order in the plasma 

displacement. Although this is true for the matrix A, it is not true for the matrix A-1 . 

Due to the omission of these terms, their expression for the third order perturbation in the 

Lagrangian (2.29) cannot be generally correct. In the situations with special symmetries 

(as were those that Pfirsch and Sudan discussed), the third order term is trivial, and also 

all these additional terms that they must have omitted are zero as well. However, due to 

the very complicated expression for the third order energy in their paper, direct comparison 

of their results with ours is extremely difficult. A major advantage of the formalism we use 

is that in situations with special symmetries many terms disappear due to their symmetry 

properties, reducing the complexity of calculations.

2.3.5 Transformation of Volum e and Surface

Starting from the definition of the Jacobian J  — del, (x'y..). and using the definition of the 

determinant utilizing generalized Kronecker delta (see Section 2.4)

det Af, =  5(n) A  • • • A, (2.30)
n

the expression

j  =  C , ( « L d ) ( * r + o « + a >  =

=  1 +  C,i +- +  C[,i^j(,kk] (2-31)

for the Jacobian of the transformation (2.10) is obtained.

The surface element is defined as

dSi =  €ijkdx^dxk. (2.32)

Using this definition for the perturbed surface and noting that

dx3 =  (S3k + £3k)dxk, (2.33)

and using the fact that a product of a symmetric and an antisymmetric tensor is zero, the 

expression

dSi = 3

= 3^yferi(^ -1 )m(Jr_1)n =  A.lidSl (2.34)
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for the transformation of a surface element is obtained. However, for the transformation of 

the magnetic energy the inverse matrix A ~ ] is needed. This inverse matrix has the same 

form as the matrix A

(2.35)

The inverse Jacobian matrix is by definition expressed as

(2.36)

Expanded up to the third order it takes the form

( r 1)) = s) -  §  + cWj -  + o(e4). (2.37)

It is trivial to show that J  ■ J  1 =  1. Substituting this definition into (2.35) and expanding 

the results up to the desired order one can obtain the inverse matrix A~ 1 to arbitrary 

accuracy. The expansion up to the third order yields

Again, it is trivial to show that A • A = 1.

Equivalent results for the transformation of the magnetic field could be obtained in 

this special case by using the Lundquist identity, which can be written in the form D ‘ = 

ttHAj i i ' j ) /  J  [Lundquist, 1951]. Instead, we derived this relation directly from the magnetic 

flux conservation to demonstrate this method in its most general sense, with the direct use 

of the constraint to the Lagrangian (2.15).

2.3.6 Expansion of Potential Energy

Since the kinetic energy term  in the Lagrangian (2.29) is second order, it is necessary to 

expand only the potential energy term. We substitute expressions for the Jacobian (2.31) 

and A 1 (2.38) into the expressions for the thermal (2.27) and the magnetic energies (2.28). 

Substituting expression (2.31) into expression (2.27) and using a Taylor series expansion

(1 +  j ) 1'”7 =  1 +  (1 -  7 )j -  (1/2)7(1 -  7 ) j2 +  (1/6)7 (1 -  72b 3 (2-39)
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in (2.27), we obtain the expression for the thermal component of the potential energy up 

to third order in the form

E'P =  

+

J
dV- P

7 -  1 
7(7 -  1)

i +<1 - 7 )1 3 + $ 3 + < S & 2 )  +

( ? : 4 + 2 < : : 4 4 )  + 7 ( 1  -  7 2) a  4 (2.40)

The magnetic component of the potential energy doesn’t contain any additional terms. 

After substituting expressions (2.31) and (2.38) into (2.28) we obtain for the magnetic 

energy

E m  = j d V  i f i 2( l  - Q  +  +  ( £ 4 $ ,  + 4 * 4 4 )  +

+ j/B'JsJIl - + (%($) + 4454;,“ - 4i4j„Cf) +

(2.41)

The magnetic energy contains two components, the first one is due to magnetic pressure, 

the second one is due to curvature. Unlike the use of a traditional vector formalism, use 

of the component notation prevents us from having terms that cancel or add. These terms 

can add much complexity to a vector formalism as in this formalism it is often not clear 

just which terms cancel or add. Therefore the number of terms is significantly reduced in 

the geometrical formalism, and also the expressions are in ” ready to use" form. Also, this 

notation immediately distinguishes between the terms due to the magnetic pressure and the 

terms due to the curvature.

2.3.7 Expansion of Lagrangian, Interpretation of Terms

Using the expressions (2.22), (2.40), and (2.41) it is possible to expand the Lagrangian 

(2.29) with respect to the plasma displacement as

L =  I d V [ £ "  +  C l ( 0  +  £ 2(£2) +  C \ e )  + (2.42)

where C denotes Lagrangian density.
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The terms £° - £ 3 are:

£ (0)  --- —  - ^ B 2, (2.43)
7  — 1 2

£ (1) =  ( p + l- B 2y % - ~ Qij& B lep  (2-44)

£ (2) =  ^ [ p ( ^ ) 2 - P ( ( 7  “ 1 ) C ^ +  G C ) -

~  ^ 2( C 4  +  0 ^ ' ) ] ,  (2-45)

£ (3) = p ( £ & 3  -  7 $ # $  +  -

-  \ b 2 +  d d d )  +  \g i3BkB % ( * g a -

- 9̂  (dad+dad - dad) • (2-4(j)
Using the variational principle in the first and the second order terms of the Lagrangian

(2.42) it is possible to derive equations governing dynamics of the plasma in a linear ap

proximation (the equilibrium condition and the equation of motion). The condition

I
d V £ m  = 0 (2.47)

yields the equilibrium condition for ideal MHD in the form

- ( p + I jB2^  f  ^ M | .  =  0. (2.48)

This is a standard equation relating the sum of gradients of thermal and magnetic pressure 

and pressure due to field-line curvature. Often, it is highly non-trivial to find equilibrium 

solution satisfying condition (2.48).

The condition

d V £ ( 2) =  0 (2.49)/■
yields the equation of motion for plasma in a linear approximation in the form

pdaCi = di -  g i k B ^ d ^ i e u v  -  e s 1)) +

+  B ldi ( Z L W * *  -  e B j )) -  (diBl) ^ d p y / g ( ? B p -  ? B i )  +

+  (diBi -  d t B ^ — d v ^ B ' 1’ -  e B 1)).  (2.50)

Equation (2.50) is a wave equation describing a linear wave propagating in a plasma, for 

which ideal MHD is a reasonable approximation. There are no further restrictions on the
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direction of propagation nor on the configuration of the ambient quantities for this equation 

to hold. The only restrictions on the validity of the equation (2.50) are that the amplitude 

of the perturbation, and the gradients of the perturbation be small enough for a linear 

approximation to be reasonable. However, by applying certain restrictions to this equation, 

it is possible to derive dispersion relations for specific plasma configurations, as we will show 

next. The same equation can also be derived directly from the ideal MHD equations using 

a formalism of differential forms as we show at the end of this chapter.

2.3.8 Exam ples of Linear Plasm a Behavior in Ideal M agnetohydrody
namics

In this section we present a derivation of several dispersion relations for specific plasma con

figurations to demonstrate the simplicity of the use of equation (2.50), and also consistency 

of this formalism with previous work in this area.

W aves in H om ogeneous P lasm a

In the case of a homogeneous magnetic field, and assuming harmonic time and space de

pendence, equation (2.50) becomes

U]2e  = C 2s k'lk t l -  -  CpB j ) +  — kikp(C B p -  e B ' 1). (2.51)
POPO PoPo

Since we have freedom in the choice of coordinates, we choose them such that

B  = (Bx, B y, 0), 

k  =  ( f c ,0 ,0).

Equation (2.51) splits into one equation for the displacement perpendicular to the ambient 

magnetic field and two equations for the displacement in the plane of the magnetic field. 

The latter two equations can then be combined into one equation. So the final two equations 

are:

0  =

0 =

27

( V s + V l y )  1

(2.52)

1,2 y-2 . p"2 y 2& V A \  y Ax Ay ,2L_TA2i \  
W2 J + or

(2.53)
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where

'*V P
(2.54)

(2.55)

(2.56)

The first equation (2.52) yields the dispersion relation for the shear Alfven wave, the second 

one (2.53) describes the fast and slow compressional modes. This result agrees with Landau 

and Lifshitz [1992 ].

Field Line R esonances

In the case of a rectilinear magnetic field the natural choice for the coordinates is a Cartesian 

coordinate system. Then the metric tensor

9 ij = diag(l, 1,1), (2.57)

and the vectors and covectors are identical. The equilibrium condition (2.48) takes the 

simple form

(P  +  B 2/2),i =  0. (2.58)

Applying condition (2.58) to equation (2.50), and assuming a harmonic time dependence, 

a momentum equation in the form

pu2C = ({yP  +  B 2)diil -  B j B pd p ^  -

-  B l8idp(C B p -  ( pB i) -  (d jBl)dp{Zj B p -  f B j ) (2.59)

is obtained. We now assume an orientation of the axes such that the z-fix is is along magnetic

field lines, and the variation of ambient quantities is along the x-axis. Then

B  =  (0 , 0 , £ (* )) , (2.60)

and all the derivatives of P, B,  and p except dx vanish. Assuming also that the displacement 

is harmonic along the y  and z  directions

£(«) =  £(x) exp i(kyy + kzz), (2.61)

equation (2.59) can be further reduced to

p{u2 - k 2zV f t t x  =  P A P U V I L ) .  (2.62)
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where the function F(x)  is defined as

F( r]  = p (“ 2 ~  % v t ) ( » 2v 2 -  v M ®  (263)
{ > cv2(u;2 - V 2k 2) + k 2k 2V 2V 2 ’ 1 j

(2.64)

where

V l = B 2/p, (2.65)

v'i =  7 P /Pi (2 .6 6 )

v'2 = v l  + v l (2.67)

k2 = ky +  k 2.

This result is consistent with the expression obtained by Harold and Samson [1992 ]. Equa

tion (2.62) yields two turning points and two resonances [Stix, 1992], In the case of a cold

plasma expression (2.63) reduces to

F M  pV'a (
F{ I )  -■ ( 1

This equation has only one turning point and one resonance at the point where

uj2 = k2z V'2. (2.69)

The occurrence of this resonance is due to the coupling between a compressional Alfven 

wave and a shear Alfven wave of the same frequency. Since there is no curvature, and 

we considered only the situation with no gravity, a ballooning mode cannot evolve in this 

configuration, and thus this mode cannot be explosively unstable. We will give more details 

on ballooning models in the next section. In the next chapter we will show results from 

numerical models of the FLRs including also the energy transfer in this mode as a simple 

example of a stability investigation.

Linear B allooning M ode

A more interesting model assumes a general curved magnetic field, with the orthonormal 

coordinate system defined

e = b i b , (2.70)

n = R ce ■ Ve, (2.71)

(j> =  e x  fi. (2.72)
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Here again the metric is <jr:! — diag(l, 1 ,1), and vectors and covectors are identical. Intro

ducing the definitions

kp =  h  • V In P, (2.73)

Kb = h - V l n H ,  (2.74)

«c =  n ■ (e ■ V)e  (2.75)

the equilibrium condition (2.48) can be written in components as

d\\P =  0, (2.76)

=  kc -  (2.77)
1 VA

d4>P  -  0. (2.78)

Assuming no azimuthal dependence (of/, == 0) of the ambient field, the problem reduces 

to two dimensions. Equation (2.50) can be split into components in the parallel and radial 

directions. Assuming that the ambient magnetic field changes slowly along the field lines, 

and consequently assuming a harmonic dependence of the displacement along the field lines 

(i.e. cf|| —> 'iA:|j), and in time (i.e. <4/ —> —iw), the parallel component of equation (2.50) is 

simplified to

*11 =  - r t ' A w 1- (2-79)II II

Subsequently, assuming very small scale sizes in the azimuthal direction (k(p —> oo), which 

is equivalent to averaging the total perturbation pressure Pj  = Sp + B  ■ S B  to zero [Liu, 

1997], which in the terms of equation 2.50 is

Pr  = 7P d £  + Z'diP -  Bidp t fB *  -  ? B l) =  0, (2.80)

and using equation (2.79) the equation

y 2 y 2 f c 2

( y |  +  V 2 _  =  - 2 KcV fe n, (2.81)

connecting compressional and shear Alfven wave, is obtained.

The radial component of equation (2.50) in the absence of the perturbation pressure is 

simply

^  ~  — 2 V % K c (Kb  +  k c ) £n =

o f  ^ N N  •2KcV j ( l -  - j j r j d j e -  (2.82)
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This equation describes the generation of the shear Alfven wave by the compressional wave.

Equations (2.81) and (2.82) describe a linear ballooning mode, and are consistent with 

results obtained by Liu [1997].

The examples above illustrate that our geometrical method leads easily to several classic 

results in MHD. Later we consider more interesting non-linear problems.

2.4  Ideal M agn etoh yd rod yn am ics and D ifferentia l Form s

2 .4 .1  D ifferen tia l F orm s

There is also an alternative way of introducing differential geometry into fluid dynamics 

and MHD. The behavior of the fluid can be easily described in terms of differential forms, 

see Flanders [1963], pg 188. In the following paragraphs we provide a brief description of 

differential forms and operators acting on the space of forms. For more detailed treatment 

see e.g [Schutz, 1980].

D efin ition  o f D ifferential Forms

A differential form is defined as the multilinear mapping from the vector space L  x • • • x L  —» 

R ,  antisymmetric in all its components, where L is an arbitrary vector space and R  is the 

space of real numbers. The differential form is usually called a p-form, where p is the rank 

of the form. It is obvious that in an n-dimensional space all the p-forms with p > n  must be 

zero. It is also clear tha t in an n-dimensional space only one linearly independent n-form 

can exist. This form is often called the form of volume and has the general definition

The exact meaning definition of the operator A is explained later in the subsection on 

operators on differential form. In case of a metric space (which is usually the case with 

physical problems) the form of volume (2.83) becomes

where g = det(gij) is the determinant of the metric tensor and is the fully antisymmetric 

unit tensor.

(2.83)

uj =  y/'get...jdx‘' A . . .  A dx3, (2.84)
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G eneralized Kronecker D eltas

In analogy with the Kronecker delta one can introduce a tensor <5“'"  ̂ working on differ

ential forms the same way as S'j works on tensors:

C . W - b  =  a c...d, (2.85)

where a  is an arbitrary differential form. Since differential forms are antisymmetric, it is 

cleai- that must be an antisymmetric combination of the ordinary deltas:

=  (2-86)

It is sufficient to perform the antisymmetrization in the lower (upper) indices. Due to the 

form of Kronecker delta it will also be antisymmetric in the upper (lower) indices. We can 

also prove tha t the generalized delta is connected to the fully antisymmetric tensor f,,,../, as

€i= (2-87)

Often, instead of writing all the indices, a short form of the generalized delta, 5(p), where 

p denotes number of either lower or upper indices, is used.

Also, contractions of generalized deltas, can be treated very easily. These con

tractions are especially useful in the case of multi crossproducts. The contraction of 5(p) 

in k  indices in n-dimensional space is

s f \ (P ~ W  (n -  (p -  k))\
h (p )  =  ( n , p) , d(P -  k )• (2 .8 8 )

The generalized deltas are also very useful in dealing with determinants and inverse 

matrices. The expression for a determinant of an n  x n  matrix A  is

det A = S(n) A..A,  (2.89)
n

and the expression for an inverse matrix is

i T) 1
24 =  7-------------  7S(n) • (2-90)(n — 1)! det A  v v 1

n —1

We have used both these expressions in the derivation of the transformation properties of 

the surface and the volume in the derivation of the perturbed Lagrangian (2.42).
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O perators for D ifferential Forms

Here we present several useful operators in the space of differential forms.

• The wedge product (sometimes called the outer product) which is a generalization of 

the cross-product in the vector analysis

a A p = (P +  ? ):A lt(a® 0 ), (2.91)
p'.ql

a  and [’> are p and q forms respectively, and Alt denotes antisymmetrization in all 

components.

• The inner product %■„ is defined as

(iv a) ( [ / , - - - ,  W) = a  (V, U, • • • , IF) . (2.92)
n.   v  ■ S  S  V  ^

\ p

In the other words it is a contraction of p-form a  with vector V.  So if a  is p-form, 

iyot is (p — l)-form.

• The outer derivative d is defined as

h /T );;..., ( W ’ip ; 1)7;,...,.,. (2.93)

which is an analogy of the gradient and curl. Obviously

dda =  0 (2.94)

for any a  since the second derivative is symmetric.

• Another differential operator, working not only on differential forms, but on tensors in

general, that proves to be very useful in fluid dynamics, is the Lie derivative. This is

defined as the rate at which some quantity changes along the integral curves of some 

vector (for instance stream lines). The notation for the Lie derivative we use is £ y .

£ y T  = ! ( * T ) ( 7 (t)), (2.95)

where 7 (t) is an integral curve of the vector V  and * denotes here pull-back of the 

tensor T  (Lie image of the tensor T  a t the origin of the curve 7 ) .

• The operator star (*) can be defined as the application of the form of volume lo (2.83) 

on an arbitrary tensor

*T = u(T) .  (2.96)

This operator allows the definition of divergence for differential forms.
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These operators are defined without metric structure on the manifold we are dealing 

with. This makes these operators very universal and makes it possible to deal with the 

MHD equations without any knowledge of the geometry of the magnetic field. However, 

most of the real physical systems can be described by a metric geometry.

2 .4 .2  M a g n eto h y d ro d y n a m ics  in  T erm s o f  D ifferen tia l F orm s  

Basic Equations

Now it is relatively straightforward to write equations for ideal MHD in terms of differential 

forms. To simplify the final expressions, we assume a metric space with the metric tensor 

g i j .  Then it is possible to introduce a notation T  for vectors and tensors with upper indices 

and B  for differential forms. The connection between them is

Flanders [1963] presents expressions for the fluid dynamics (equations (2.99) and (2.102), 

and the non-magnetic part of equation (2.101)). It is straightforward to extend these 

expressions for the case of magnetized fluid. Also the equation describing the generation of 

magnetic fields by the flow of the fluid must be added. The MHD equations can then be 

w ritten as:

This equation can be easily connected to the integral form of the continuity equation using 

the identity

=  g lk ■ ■ ■ gj lTkl, 

I) j  = gik ■ ■ ■ gjiTkl.

(2.97)

(2.98)

(dt +  £ v )  * p  =  0, (2.99)

(2 .100)

(2 .101)

(2 .102 )

dtB  =  *d(*v f\B) ,

p(dt + £ v ) v  = - d P  + - d v 2 — - * B A  (*dB),

Equation (2.99) is the conservation of the mass

*p =  pdV. (2.103)

' =  dt \. ~ +  t\ 'd: (2.104)

and the generalized Stokes theorem

(2.105)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where a  is an arbitrary form, d is an outer derivative, E is some closed submanifold, and 

<9E is a boundary of the submanifold E.

Equation (2.100) is the induction equation where we just substituted a wedge product 

instead of a vector product. The third equation (2.101) is the momentum equation in which 

we substituted £%v for v .V v .  However, the Lie derivative contains additional term v.(Vv) 

which we had to subtract from the equation. The last equation is the equation of state.

In the physics of the near-Earth magnetosphere it is often reasonable to assume adiabatic

processes and then the equation of state is simply

S K ’ H -  (2.106)

Linear W ave Equation

Linearizing equations (2.99) - (2.101) and (2.106) a linear wave equation in the form

( ‘JPq +  * d * £ + £ PPo +  —  (iTi?o)
\  2 p 0 ' ^ Mo ^

+ £ § 0X  ~ *X  A (  * d2?0) , (2.107)

where

X  =  —  * d * (£ A i?o)
Mo

- —  (i^ J5 0 +  Bo(*d *

pQdttl = d

X  =
Mo

is obtained. The first term on the right-hand-side now represents a gradient of the total 

perturbation pressure which is due to the flux of plasma (the first part) and a change of 

the background Pq and B q along the displacement (the second part). The second term 

on the right-hand-side is a change of the magnetic field (perturbation plus a change of the 

unperturbed field) along the field line, this term  contains the force due to field-line curvature. 

The last term  is the Amperean force. X  represents the change of the background field B q 

due to the plasma displacement £.

Equation (2.107) can be rewritten in coordinates as

poduC = 9lJdj ( jPo-^=diy/g^ + ^diPoJ -

- ^ g j i — dr^pdpy /g ieBP  -  e s j ) +  - d i ^ p d ^ i C B V  -  CpB ‘) -  
m o  Vg m o  \fg

/  B3 B  l \  1
(glldi gjldi —  )y/ggm dQ- — C B s(gjrgp, -  gprgjS)- (2.108)
v  M o  M o '  sjg

This equation agrees with equation (2.50) obtained from the Lagrangian of ideal MHD using 

variational calculus.
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Chapter 3

Num erical M odeling o f the  
Instability Criteria

In this chapter we show an application of the ideal MHD model, developed in Chapter 2, 

to two plasma configurations in order to demonstrate the effectiveness of our method and 

its applicability not only at a theoretical level, but at a practical level as well.

3.1 D iscu ssio n  o f  N u m erica l A pproach

Both examples follow the same format:

• Initial equilibrium configuration is defined, so that equation (2.48) holds.

• Linear wave equation (2.50) is solved for the plasma displacement £.

• The second and the third order potential energy density is calculated using numerical 

solutions for plasma displacement and these energies are compared.

• Possible unstable areas are identified.

In both examples we used a cold plasma approximation (P  = 0). We have done this 

to simplify the determination of an initial equilibrium. This is very helpful especially in 

curvilinear coordinates, where finding an initial equilibrium often presents quite a challenge. 

The components of equation (2.50) to be solved can be written in a general form

<T(, =

dtut = F ( B , p - Z , d t , d 20 ,  

i = 1,2,3.

(3.1)

(3.2)
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£ and u are functions of two spatial variables and of time. The choice of coordinate system 

and form of equations (3.1) and (3.2) for different coordinates are discussed separately for 

a box and curvilinear systems.

We use 2-dimensional models. We assume a harmonic dependence of the plasma dis

placement in one direction and solve differential equations in the remaining two directions. 

This does not limit the physics too significantly, since most real physical systems, including 

those in magnetospheric plasmas, will have some kind of symmetry. This assumption also 

allows us to obtain results from computational models using reasonable resources.

The most effective numerical method for our problem proved to be a simple predictor 

- corrector method of the second order (for detailed description see [Rickard and Wright, 

1994]). We also tried fourth order Runge-K utta methods and staggered leapfrog methods, 

but these two methods were extremely inefficient for our problems, requiring approximately 

1 ,0 0 0  to 1 0 ,0 0 0  times smaller time-step, compared to predictor-corrector, to keep the solu

tion stable. This puts unreasonable stresses on the computational resources that are needed. 

For the detailed discussion of these methods see e.g. [Press et. al., 1992].

We use an implicit time scheme, and centered differentiation

d} _  }n-in -  /ft- 1

dx ~  2A x  [ ' ’

for spatial derivatives.

3.2 P la sm a  in a Box: F ield  L ine R eson an ces

In this section we present an example of a negative case of non-linear plasma instability 

investigation. In the absence of magnetic field curvature, and in the absence of gravity, it is 

impossible for ballooning modes to evolve (see e.g. [Hameiri et. al., 1991] and [Ohtani and 

Tamao, 1993]). Therefore this example provides a test for our method in a configuration 

where the results are known apriori. As was already mentioned, we confined ourselves to 

an investigation of cold plasma due to the simplicity of the initial equilibrium.

3 .2 .1  B a sic  E q u a tio n s

In the absence of field-line curvature the linear wave equation (2.50) simplifies significantly. 

Assuming axes orientation such tha t the ambient magnetic field B  is directed along the 

z-axis, the equation describing wave propagation in a cold plasma in a box can be written
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in components

di£i = Ui, x, y, z,

d tux =  \ \(>.r(<lCr ■ ''A/C'/) • Kf'WC-

d tuy =  v l d y (dxi x +  dyQ  +  v l d l ziy,

d tuz =  0,

(3.4)

(3.5)

(3.6)

(3.7)

where the Alfven velocity is defined as V \  =  B 2/ p. The perpendicular dynamics is decou

pled from the parallel. Since the motion along a field line is constant, we can safely assume 

=  0. The configuration of the plasma box is shown in Fig. 3.1.

Figure 3.1: Configuration for the plasma in a box. The 2 -axis is directed along magnetic 
field.

FLR’s occur when the compressional wave and the shear Alfven wave are coupled. From 

equations (3.5) to (3.7) it follows tha t this coupling is only possible when the azimuthal 

wave number is non-zero. The system of equations (3.4) to (3.7) was solved in the ajy-plane. 

The initial configuration was chosen to match the one used by Rickard and Wright [1994], 

so that we would be able to test our results by a comparison with their results.

Initial C onfiguration

We used a box 0 < x  < 1 and 0 < y  < 15 with a grid 64 (x direction) x 128 (y direction). 

The time-step was chosen to be dt = 0.001 and the runtime 0 < /, < 25. The wave-number 

along field lines was kz =  7r. The ambient quantities were magnetic field D = 1 and plasma 

density defined as po /V 2 w ith po = 1, and Va = 1 — x /p ;  p  =■ 1.3. (See Figures 3.2 and 

3.3.) In the simulation we used open boundary conditions, where derivatives of the plasma 

displacement and velocity were put to zero. In fact, the boundary condition at the far end 

of the box in the ^/-direction is not important, since the range of y values was chosen to be 

large enough so that the perturbation would not reach the end of the box.
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X̂P-5
>

0
0 0.5 1

x

Figure 3.2: Alfven velocity profile for the box for the FLRs example.

The initial displacement and velocity were chosen to be

&o = o, % =  X, y,z,

U'iO = o, i = y,
( 2 t: x  \

1 +  cos
"ny

U-xO = A sin
( J T y

U x  0 = o, y > i,

2, and L» =  1 - (See Figure 3.4.

V < 1 ,

(3.8)

(3.9)

(3.10)

(3.11)
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20

p =  1 /(1-X /1.3)'

0 0.5 1
x

Figure 3.3: Corresponding plasma density profile for a linear Alfven velocity dependence.

t = 0.000

10 o x
y

Figure 3.4: Initial radial velocity (ux ) profile.
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R esults

Our results match those obtained by Rickard and Wright [1994], The comparison was 

done for the shape and magnitude for corresponding cross sections of the velocity. We also 

compared the frequency of the eigenmodes using Fourier analysis of the velocity, and the 

position of the resonance. All these results matched the results obtained by Rickard and 

Wright. The evolution of the modes is illustrated in Figures 3.5 and 3.6.

Using the numerical solutions of equations (3.4) to (3.7) in the expressions for energy 

density from the Lagrangian (2.42), maps of the second and the third order potential energy 

density were obtained. Examples of maps for t, = 25 are shown in Fig. 3.7. Figures 3.8 and 

3.9 present profiles of the energy density at y — 0.83 (maximum value of energy density) 

at times t — 5 and t, = 25. The energy density evolves to a localized region at the point 

of resonance, and the second order energy dominates at all times for the temporal interval 

we investigated. Since the values of the energy density in each order are of the same order 

of magnitude, and the slight increase is to be ascribed to the localization of the peak, we 

can assume that the relation W  ■:!-1 holds at all times. Thus the system is stable as

predicted.

Though this example is extremely simple, it serves to illustrate the fact that our deriva

tion of the Lagrangian (2.15) up to the third order when used in numerical models gives 

robust results. Although it has not provided any new physical insights, this test is very 

im portant for the evaluation of the met hod when used with more complicated models where 

the result is not apriori known.
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t =  10.000

10 o 10 o

^=0.5-

10 o

Figure 3.5: Velocity and displacement; of the plasma at t — 10. The resonance has just 
appeared.

t = 25.000

10 0 10 o

10 o 10 o

Figure 3.6: Velocity and displacement of the plasma at t = 25.
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t = 25.000

Figure 3.7: Maps of the plasma energy density at t = 25.
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Figure 3.8: Profiles of the plasma energy density at t =  5 and y  =  0.83. The coarseness is 
caused by the omission of the grid points in the plot.
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y = 0.83
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Figure 3.9: Profiles of the plasma energy density at t =  25 and y = 0.83. The coarseness is 
caused by the omission of the grid points in the plot.
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3.3 P la sm a  in a C urvilinear M agn etic  F ield: C urvature-G rad ien t 
In sta b ility  in S tretch ed  F ield  Line T opology

Though box models are a useful simplification for many physical systems on a local scale, 

to investigate plasma instabilities in realistic configurations, the modeling of a plasma in 

curvilinear coordinates is needed. This is mainly because many interesting features of the 

plasma behavior, for instance ballooning modes, need curved magnetic field lines to occur 

in the absence of gravity. Here we present an example of the instability investigation in 

a curvilinear magnetic field. Since our focus is primarily magnetospheric instabilities, we 

limited ourselves to a stretched magnetic field line configuration, similar to the one during 

substorm growth phase in the near Earth magnetotail.

3 .3 .1  B a sic  E q u a tio n s

The MHD wave equation (2.50) we derived in Chapter 2 has already been written in a 

form that works in any geometry and in any coordinate system. For modeling purposes 

we used coordinates (aq, X2 , £ 3 ), such that the coordinate x \ is directed along field lines, 

the coordinate ay is in the direction of the radius of curvature, and the coordinate ay 

is in the azimuthal direction (see Fig. 3.10). If the coordinate system (aq, ay. #3 ) is not 

normalized (metric tensor differs from diag(l, 1 , 1 )), we will denote such a coordinate system 

with bar over the letters (aq, ay, S3 ). Also, in magnetospheric physics, especially in dipolar 

coordinates, or coordinates close to dipolar, a notation (fj,, u, <fi) can be used instead of (aq, 

X-2, X - i ) .

Figure 3.10: Sketch of curvilinear' coordinates for the magnetospheric setting.
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In this coordinate system equation (2.50) can be written for a cold plasma in the form

=  — $2 
922

pdttt, i =  0 ,

d2 ( V a B & b  +  &&)) + ^ ~2 d i ( 9 2 2 m $ 2 )

(3.12)

(3.13)

pdu& =  — d-i 
933

d-2 ^ 2  + d3 6 )) +  (9 3 3 ^ 1  £3 ) (3.14)

where gij is metric tensor of the orthogonal coordinate system (x 1 , £ 2 , £ 3 ), and g =  det(9 y). 

However, for computational purposes it is more effective to work in normalized coordi

nates instead. This is because the ambient quantities in orthonormal coordinates, corre-

Lamme coeficients are given by the metric tensor in the coordinate basis (x 1, x ->. X3 ), 

gij = diag(/rf, /) |, /13), and therefore have much smaller gradients close to the boundary. In 

these normalized basis (x i,X 2 ,x^), equations (3.12) to (3.14) have the form

This result is consistent in a cold plasma approximation with the expression obtained by 

Voronkov [1998] for a dipolar field. However, equations (3.15) to (3.17) are valid in any 

plasma system where coordinates are defined consistently with Fig. 3.10. The coefficients 

h.\, h ‘2 and /13  contain the information of the geometry of the system.

We limited ourselves to a 2-dimensional problem in the x z  plane. The grid we use is 

uniform in spherical coordinates r and 0. We then transformed this grid into coordinates 

x\ and .7;2 - Figures 3.11 and 3.12 show the grid used in our model, and the comparison 

between dipolar coordinates and the stretched topology we used, respectively. Since this 

system contains free energy in a form of gradients and curvature of the magnetic field, it is 

possible for this system to be unstable.

At first we made several runs for a dipolar magnetic field where we know that the system 

must be stable since, for cold plasma, a dipolar field is the lowest energy state and therefore 

it does not contain any free energy. Indeed we observed consistently stable solutions for 

different initial conditions.

Then we changed topology to a stretched magnetic field lines similar to the magneto

spheric configuration during the substorm growth phase. Even in the simple case of cold

sponding to their counterparts in a orthogonal system, are =  hiX i, where the

d z i d z B h ^  + dzBh2&) + d\ ,

pdit€i =  0, (3.15)

(3.16)

(3.17)
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Figure 3.11: Grid used in the curvilinear coordinates.

plasma there is a free energy stored in the curvature of the field lines, and in currents 

[Ortolani and Schnack, 1993].

Voronkov et. al. [2000] discuss the stability of the equatorial region in the stretched 

field topology with respect to the ballooning modes. Their expression for the ballooning 

mode frequency in the equatorial plane simplifies for a cold plasma to

where Va is Alfven velocity, 13 is the magnitude of magnetic field, R  is the radius of curvature 

of field lines, and 13' is the radial derivative of magnetic field. It is obvious that this result 

allows the growth of a linear instability, even for cold plasmas.

3 .3 .2  In it ia l C on fig u ra tio n

To specify the initial equilibrium magnetic field we used the definition of the normalized 

coordinate along field lines X\ =  B /B .  Since we know that the magnetic field must be 

by definition of X\ along this coordinate, and the relation between normalized base vectors 

and coordinate basis, where ei corresponds to cfy and B % = M (=  const), x l =  h.Lx L, the 

magnetic field can be simply defined as B\ =  M jh \  where M  is the magnetic moment.

(3.18)
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Figure 3.12: Comparison between dipolar topology and the stretched field line topology we 
used. Numbers denote corresponding field lines.

However, to satisfy condition V • B  =  0 components of the metric tensor must satisfy the 

relation h\ =  /12/13 . An example of this type of coordinate system is dipolar coordinates.

At first we have performed several test runs with a zero azimuthal wave number. In 

this instance wave modes are not coupled and the ballooning mode cannot evolve. Indeed, 

we observed stable behavior of the system, with the fast evolution of the eigenmodes from 

the near-eigenmode initial impulse. These runs served to verify if there are no numerical 

instabilities introduced into the system by the boundary conditions.

Then we allowed non-zero azimuthal wave number k ,̂ in other words we allowed coupling 

between different modes. We introduced an initial compressional wave into the system in 

the form of a narrow Gaussian peak. This mode was coupled to the azimuthal component 

of the displacement through non-zero k(>t.

The ionospheric boundary is assumed to be reflective, with , ut — 0, i — 1,2,3, and 

is localized at r =  4 to avoid steep gradients in ambient quantities for lower r. At the 

equator the field lines ranged from r =  11 to r =  13. Across field lines we assumed an open 

boundary =  0, =  0, i , j  — 1,2,3 to allow for wave propagation in this direction. We

used a grid 256 (along field lines) x 128 (across field lines). This spatial resolution was the 

same as we used for the dipolar model and the stretched magnetic, field topology with zero 

azimuthal wave number. The time step dt -- 0.00001 and we ran for 0 < I, < 1000 which 

allowed sufficient time for possible interesting features to develop. The ambient magnetic 

field and plasma density are defined as B  — M /h i ,  where M  = 0.05, and p =  poj sin8 9 , with 

po = 10 5. Figure 3.13 shows the ambient magnetic field and plasma density, and Figure 

3.14 shows the Alfven velocity dependence. The azimuthal wave number was Ag, =  2.
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Figure 3.13: Ambient stretched magnetic field and plasma density.
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Figure 3.14: Alfven velocity dependence in a stretched field line topology.

The initial displacement and velocity were

&0 =  0, i =  1,2,3, (3.19)

Ui o =  0, i =  1,3, (3.20)

u2o =  A exp ^ ^  ) exp (  ~ ^  ) ’ (3-21)

where A =  0.0005, r’o =  12, 8  =  0.2, #o =  vr/2, and a =  0.015. Figure 3.15 shows the

initial velocity profile. This choice of initial velocity corresponds to introducing an initial 

compressional wave into the system.

D ynam ics o f th e  System

Due to the presence of a non-zero azimuthal wave-number the initial impulse generates a 

shear Alfven wave along field lines. This coupling sends an impulse from the equatorial 

region toward the ionosphere. Figures 3.16 to 3.21 show the overall behavior of the plasma

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x 1Cf4x 10~4 Initial Radial Velocity

0.070.08 
v (at |x = 0)

0.090.03 N -0.03
H (at v -  0.75)

x 1Cf4

-5
x

Figure 3.15: Initial radial impulse introduced into the system. Due to a non-zero azimuthal 
wave number this impulse generated shear Alfven waves.

displacement and velocity at times t  =  20(1, t — 600, and t — 1000. We can clearly 

distinguish propagation of the impulse toward the ionosphere, and profiles in the equatorial 

plane exhibit earthward drift of the plasma waves.

Also, we can observe the exponential growth of the amplitude of both, compressional, 

and shear Alfven wave, in other words we observe a linear curvature-gradient instability. 

Before the wave packet reaches the ionospheric boundary, the exponential growth saturates 

and the system goes eventually into an oscillatory mode. Time evolution of the magnitude 

of the plasma displacement in the equatorial plane is illustrated in Fig. 3.22. The energy 

source for this system is in the stretching, and therefore changing curvature, of the field 

lines, and in gradients of currents that are present due to coupling between modes.

Using the energy analysis, discussed in Chapter 2, this behavior can be explained very 

easily, in an analogy with a mechanical system. Fig. 3.23 illustrates the dynamics of an 

object in a potential field of the form U =  a x ‘! +  /9:r3 (the non-linear slide in Fig. 3.24). We 

can see the initial exponential growth that eventually saturates (slows down into virtually 

zero), but as soon as the object passes a threshold, its behavior becomes singular. However, 

if we omitted the cubic part of the energy (quadratic well in Fig. 3.24) from the description 

of the system, the singular phase would not. occur, instead, after the initial exponential 

phase, the object would start to oscillate in the potential well between the two points with
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the highest altitude it reached during the initial stage.

Similarly, the plasma waves exhibit initial exponential growth which corresponds to a 

ball rolling down the hill in the quadratic well. As it reaches the top of its trajectory, it 

slows down, and then starts to oscillate. Also the amplitude of the ballooning mode evolves 

through the exponential growth and saturation (growth slows down to zero) into oscillations 

with the amplitude equal to the maximum amplitude during the instability. However, as we 

shall see from the analysis of the energy density, the real plasma behavior in this topology 

corresponds to a non-linear phase, and the short period of zero growth would be an onset 

of singular growth.

A nalysis o f th e  Energy

The linear approximation used to derive equation of motion (2.50) that we have used in 

modeling the dynamics of the system assumes a negligible cubic term  in the expansion of 

the energy. Calculation of the energy density reveals that this term becomes important 

during the linear stage of instability. Neglecting this term causes the occurrence of the 

oscillatory mode instead of the nonlinear instability in the system. At this point the linear 

approximation is no longer correct.

Figures 3.25 to 3.27 show maps of the energy density at times t, =  200, t =  600, and 

t = 1000. The small figures are energy density profiles in the equatorial plane. Since the 

energy density is a function of the gradient of displacement, the original double peak shape 

along the field lines is a result of the original impulse introduced into the system. These 

figures illustrate a steady increase in the energy density due to the linear instability in the 

plasma.

Figures 3.28 and 3.29 show the time evolution of the energy densities in the equatorial 

plane in normal and logarithmic scales. Here we can observe that during the exponential 

growth stage the second order energy dominates. The beginning of the saturation stage cor

responds to time when the second and the third order terms in energy become comparable, 

and thus the linear approximation ceases to be adequate. When the third order term starts 

to dominate we are looking at the onset of explosive behavior and the linear treatm ent is 

fully inadequate.
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Figure 3.16: Plasma displacement and velocity perpendicular to field lines at t = 200.
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Figure 3.17: Azimuthal component of the plasma displacement and velocity at t =  200.
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Figure 3.18: Plasma displacement and velocity perpendicular to field lines at t = 000.
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Figure 3.19: Azimuthal component of the plasma displacement and velocity at t = GOO.
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Figure 3.20: Plasma displacement and velocity perpendicular to field lines at t = 1000.
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Figure 3.21: Azimuthal component of the plasma displacement and velocity at t — 1000.
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Figure 3.22: Time evolution of the magnitude of the plasma displacement at the equator.
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Figure 3.23: Dynamic of a mechanical system with energy — 2x2 — x 3.
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Figure 3.24: Comparison between the non-linear slide (potential energy is a combination of 
quadratic and cubic parts), and the quadratic well.
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Figure 3.25: Energy density at time t =  200. The second order energy dominates the 
system.
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Figure 3.26: Energy density at time t =  600. The second and the third order terms are 
comparable.
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Figure 3.27: Energy density at time t = 1000. Now the third order energy dominates and 
the linear description is no more valid.
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Figure 3.28: Time evolution of the energy density in the equatorial plane.
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Figure 3.29: Time evolution of the energy density in the equatorial plane, logarithmic scale.
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3.3.3 D iscussion

The situation with a stretched, curved magnetic field topology proved to be an interesting 

example of an explosive instability evolving from an initially linear instability.

We have compared our results with the results of the non-linear numerical modeling of 

ideal MHD using an ADI code [Voronkov et. al., 2000]. The system dynamics obtained from 

the nonlinear simulation is in Fig. 3.30 which shows a time dependence of the maximum 

of vorticity. Originally the system is in the equilibrium state that is disturbed by a small 

perturbation of the radial component of the velocity. This gives a start of the linear stage 

of the instability. Saturation occurs due to magnetic field compression that tends to bring 

the system into an oscillatory mode. However at this stage, the nonlinear terms begin to 

play a dominant role, providing onset of the explosive stage. This is in a good qualitative 

agreement with the results obtained from our model.

It is also interesting to compare our results with observations. It appears that the 

intensification of an auroral arc starts with a linear stage (the intensity of the arc grows 

exponentially), and eventually it evolves into an explosive disruption of the arc (breakup) 

[Voronkov et. al.. 2002]. Again, this is in a qualitative agreement with the results obtained 

from our model, which allow evolution of explosive behavior from an initial linear instability.

300 -

o
o>

100 -

0 60 120 180 240 300 360
time, s

Figure 3.30: The time evolution of the plasma from the ADI code [Voronkov et al., 2000].
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To conclude, our model provided us with results which suggest that in a stretched field 

line topology it is possible to trigger explosively unstable behavior by a short phase of initial 

linear’ instability growth. This result is in a good agreement with both observations and 

non-linear MHD modeling, for similar plasma configurations.

This agreement between our method and the results of non-linear numerical modeling 

and observational data confirms the usefulness and robustness of our method for non-trivial 

plasma configuration. The results we were able to obtain are encouraging for the future 

study of explosive phases of magnetospheric substorms, and also for the investigation of 

stability of toroidal plasmas. It appears that ballooning modes might be responsible for 

triggering the explosive stage of the substorm. However, further studies including models 

with more realistic, data based hot plasma configurations are needed for more reliable 

results.
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Chapter 4

Conclusion

A description of an explosive behavior of magnetized plasmas is probably one of the grand 

challenges of modern physics. Despite the very common occurrence of this phenomenon, we 

have very limited understanding of the underlying processes due in part to very short time- 

scales and complicated non-linear equations needed to describe these phenomena. Also, 

because of the short time-scales involved, kinetic theory needs to be included in the full 

description of explosive instabilities, since fluid description requires low-frequency processes 

(id <  iloion)- However, a fluid theory can often be a reasonable description for various 

physical systems during times preceding an instability (For detailed treatm ent of the appli

cability of MHD to magnetospheric. problems (collisionless plasmas) see \Chew et al, 1956]).

We have presented a method for the investigation of the possibility tha t a magnetized 

plasma configuration can evolve into art explosively unstable state. This method is based on 

a variational approach and eliminates the need to solve non-linear equations. The variational 

approach is combined with a geometrical treatm ent of plasma perturbations, leading to 

considerable simplification in the governing equations. Clearly, the variational approach is a 

very promising tool in dealing with plasma instabilities (see for instance [Pfirsch and Sudan, 

1993 ] and [Ilginois and Pastukhov, 2000 ]). The application of geometry in perturbation 

calculations significantly simplifies the algebra and also leads to results that are in a very 

compact form, and immediately suitable for further calculations.

Our method is also based on an analogy with classical mechanics, and utilizes the 

principle that equivalent equations must yield equivalent solutions. Mechanical systems are 

much more intuitive and are also well understood for many non-linear models. In mechanics, 

if the potential energy of the system has a cubic dependence, the corresponding momentum 

equation has a singular, explosive solution. In analogy with this result, we assume that 

plasma systems with dominant third order potential energy will be explosively unstable.
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We have demonstrated this method for an ideal MHD system, which is a simple, yet rather 

rich approximation of a plasma behavior leading to an excellent tool for the testing of new 

theoretical approaches. However, our method will work for any description of plasmas, 

where we can define a Lagrangian of the system.

After building a theoretical framework for ideal MHD we applied this theory to two 

different types of plasma configurations. In one of them, the magnetic field was rectilinear 

and in the other the magnetic field topology was curvilinear. To avoid problems with the 

initial equilibrium we considered only cold plasma approximations, for which the equilibrium 

was easy to find. Our purpose was to show that this method is relatively simple and 

quite practical, and can be applied to explosive instability investigations in realistic plasma 

configurations, including the stretched field topology of the E arth ’s magnetotail.

We obtained both negative and positive results for different systems. Systems with 

rectilinear and dipolar fields were stable. This is a reasonable result, since in a rectilinear 

field ballooning modes cannot evolve due to the absence of curvature forces, and a dipolar 

field is a stable configuration, since it is the lowest energy state. Nevertheless, these examples 

serve to illustrate simple applications of our method and indicate that the method leads to 

accurate results.

The stretched topology model led to very interesting results. A very small initial pertur

bation initiated a linear curvature-gradient instability that quickly evolved into an explo

sively unstable phase over an interval of about 1000 dimensionless time units, corresponding 

to few minutes of real time. These computations were performed for a cold plasma, and we 

assume that the presence of a thermal pressure gradient could enhance this instability.

The time-scale of this instability corresponds to the timescales for the onset of the 

substorm expansive phase. This would leave the possibility that the onset of the expansion 

phase of the substorm could be caused by small fluctuations in a plasma evolving through a 

short linear phase to an explosive phase. This would also limit the need for external trigger 

mechanism for substorm onset and would confirm that the processes beyond core crashes 

in toroidal plasmas and substorm onset are caused by the same type of generic plasma 

relaxation process [Ortolani and Schnack, 1993].

Future work in this area should involve the inclusion of a Hall term, which would make 

possible the consideration of reconnection processes (tearing mode), and the development 

of numerical models for tests for nonlinear instabilities in various plasma configurations, 

including systems with negative curvature and toroidal systems. The ability to detect 

unstable plasma configurations in advance would be a great asset in our struggle for the 

understanding of the fundamental processes in plasmas in a wide variety of areas.
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N o t a t i o n

L Lagrangian

C Lagrangian density (L  =  f  d V £)

x({) x-tli order quantity

X perturbed quantity X  (X  = X  + <)X)

w Potential energy density

B ambient magnetic field

P ambient pressure

P plasma density

V plasma velocity

7 isotropic coefficient

e plasma displacement

9ij metric tensor

g =  det (gij)

1 unit matrix

eijk Levy - Civita symbol

fjk
Imri generalized Kronecker delta (product of

am antisymmetrization in i,j indices

a,i =  did

aib‘ = E i aib%

a? vector

a-i covector (object such that is scalar)
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