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Abstract

Given a finite valused convex function, f, the U-Lagrangian, as defined
by Lemaréchal, Qustr-y, and Sagastizdbal, provides an envelcpe of f that
maintains these propemties. By selecting the appropriate UV decomposition
on R" one can also enswure that the U-Lagrangian is not only continuous at thé
origin, but differentiabele there. This thesis extends these properties to prox-
regular functions by creating a new envelope which we call the Quadratic Sub-
Lagrangian. In furthem exploration of this envelope it will be demonstrated
how to use a quadratic expansion of the Quadratic Sub-Lagrangian to create
a quadratic expansion: for the original function. Finally some properties
that guarantee such am expansion for the Quadratic Sub-Lagrangian will be

developed.
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Chapter 1

Introduction and Background

St quid calumnietur levinus esse quam decet theologum,
aut mordacitus quam deceat Christianum —
non Ego, sed Dionysos dizit. !

Laurence Sterne

1.1 Introduction

The theory of Optimization may be said to have begun in late 1620’s, when
Fermat solved the problem of finding the maximum of zy given the constraint
condition that z +y = 10. Amazingly he accomplished this twenty years
before either Newton or Leibniz were born (1642 and 1646 respectively), and
sixty years before Calculus was first presented to the public view. In fact
Fermat died in 1665, almost twenty years before Leibniz first published his
new methods for solving maxima and minima problems in 1684 ([9], pp. 396,
430, 461, 473, 477).

Unlike in Fermat’s time, the study of optimization today has a fully de-
veloped field of Calculus to support it. Therefore the question of optimizing a
differentiable function is mote; so, we turn our attention to non-differentiable
functions. Since the area of differentiable functions is so well developed one
of the primary goals in non-differentiable optimization is to determine ways
of estimating non-differentiable functions via differentiable ones. We call

If anyone falsely accuses that this is more light-hearted than becomes a theologian, or
more biting than becomes a Christian — not I, but Dionysos wrote it.



such estimations envelope functions and in this thesis we will focus on the
development of a new one.

Until recently, much of the research in optimization was directed towards
convex fumnctions. The reasons for this are plentiful, but largely based on
the fact that convex functions usually obtain their minimum. The drawback
of convex functions is that they are not dense in the space of measurable
functions. This prompted the development of a new set of functions, known
as prox-regular (see Section 1.4 below), which are dense in the measurable
function space. In this thesis we shall generalize some the results of envelopes
of convex functions to the broader set of functions known as prox-regular.

1.2 Basic Definitions

Before approaching the subject of this thesis it is prudent to ensure that
some basic background material is covered.

1.2.1 Lower Semi-Continuity, and Proper Functions

We assume that the reader is familiar with the greatest lower bound axiom
of the extended real numbers, and the definition of ig}t; f(z). From here we

begin by defining the liminf and limsup of a function f at the point Z as:

lim inf f(z) == lUm] inf F(z)],

limsup f(z) := lim[ sup f(z)]
T ™0 zeB ()

Although we shall deal mostly with liminf it will be important in several
circumstances to know limsup as well. Most importantly we note that
liminf f = —limsup(—f), so most statements on liminf can be easily in-
verted to statement on limsup.

It is clear that the liminf of f at Z is always less than or equal to f(Z)
since Ze B, (Z) for all 7 > 0. Thus we are lead to our first important definition,
lower semi-continuity (or Isc). We call a function lower semi-continuous at
if

liminf f(z) = f(Z),
and say the function is lower semi-continuous if this holds for all Z ¢ R™.
Conversely upper semi-continuity (usc) corresponds to limsup f(z) = f(z).
T—+T
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It can be shown that a function is continuous if and only if it is both upper and
lower semi-continuous ([8] Example, 1.12). Since the study of optimization
generally focuses on the achievement of minimums, lower semi-continuity will
play a much larger role than that of upper semi-continuity.

Next we call a function, f, proper if f is not constantly infinity and
f(z) # —oo for all z € R*. That is inff is a real number when examined
over any compact set. The study of Optimization often focuses on proper
lower semi-continuous functions because of the remarkable fact that these
functions always obtain their infimum when examined cver any compact set
which intersects their domain ([8], Corollary 1.10).

Justifying the examination of proper functions is not difficult, as if the
function is not proper one finds li?(fp f(z) is not a real number whenever

p becomes sufficently large. To justify the focus on lower semi-continuous
functions, the concept of lower semi-continuity shall be examined a little
more closely.

For any function, f, the epi-graph of f is the set of all points lying on or
above the graph of f. More rigorously we define the epigraph of f by

epi(f) == {(z,a) eR" x R: a > f(z)}.

The importance of this set is made clear by the fact that f is lower semi-
continuous if and only if the epigraph of f is a closed subset of R* x R
([8], Theorem 1.6). Thus given any proper function one can create it's lower
semi-continuous regularization (or closure) by defining f to be the function
associated with the closure of the epigraph of f. This new function is not
only lower semi-continuous, it is maximal in the set of lower semi-continuous
functions, g, such that g < £ ([8], p. 14).

1.2.2 The Geometry of Functions

In the previous section we showed that by viewing function geometrically
new properties of the function could be established. This thesis will make
strong use of the association between a function, its graph, and its epigraph.
'To understand these relations we shall need some background in Variational
Geometry.

We will assume that the reader is familiar with the concept of an inte-
rior, and use that to build the definition of a relative interior. Given C,
a nonempty subset of R™, there is no guarantee that the interior of C is

3



nonempty; so, we seek a more general concept. To begin we define an affine
subset of ®™ to be any translation of a subspace of . Thus every affine
subset has associated with it a well defined dimension. (For example any line
in R™ is an affine set with dimension equal to 1, while R™ is an affine set with
dimension equal to n). Returning to C we note that every subset of R™ is
contained at least one affine set (namely R" itself). We call the smallest affine
set containing C the affine hull of C. Lastly we define the relative interior
of C to be the interior of C relative to it’s affine hull, and denote it rintC.
To clarify the definition let us consider the case C = {56} x [714,755] C R2.
The affine hull of C is the line {(z,y) : £ = 56,y ¢ R}, which has dimension
1. Thus the relative interior of C is the set {56} x (714,755) C ®2.

Before establishing some basic geometry we must briefly return our at-
tention to functions. We call a map, S : R* — R™, set valued if S(z) is a
set in R™ for each z e R™. By relating points to the singleton sets and Too to
the empty set we note that all functions are set valued. Thus in seeking to
create the idea of continuity for a set valued map we should extend the logic
used previously. Therefore, once again we begin by creating a limsup and
liminf functions, this time with regards to set valued mappings. Specifically,

limsup S(z) := {u : zx — T, ur — v with ug € S(zx)},

=T
HgifnfS’(z) = {u :Vzr = T, Jup — v withug € S(ze)}-

Similar to the case of functions we find limsupS O S, and liminfS C S
always hold true, thus prompting definitions for outer semi-continuous (osc)
and inner semi-continuous (isc). Specifically S is outer semi-continuous if
limsup S C S, and iuner semi-continuous if liminfS 2 5. Inspiration from
the single valued case leads us to define a mapping as continuous if it is both
outer semi-continuous and inner semi-continuous.

With this background we can now define the remainder of our geometrical
definitions. The first of these will be the concept of Normal and Tangent
cones to a set. Intuitively to say w is a tangent vector to C at T means that
some sequence in C converges to Z from the direction of w. It is from this
intuition we provide the definition of a tangent cone; if C is a subset of "
and ¥ ¢ C then we define the tangent cone of C at T as

C—-z

Te(z) = lim\ix)lp —




Continuing with this intuition we would like to provide a concept of a vector
normal to the set by taking the vectors normal to the tangent cone. This
leads to the following two definitions. If C is a subset of R*, and Z€C, then
we say w € R" is normal to C at Z in the regular sense if for any z — # with
z € C one has

(w,z — &) < of|z — z1),

o(jlx—Z

where o(|z — Z|) refers to a term such that ==z > 0asz — . We call
the set of all such vectors the regular normal cone to C at Z, and denote it
Ne (z). We define w as normal to C at Z in the general sense if there exists
sequences zy — Z, and wy — w with zx € C, and wi € Ng(zx). We denote
the set of all such vectors Ngo(Z), and call No(Z) the normal cone of C at
Z. In all three of these definitions we note the term cone is not misused, as
multiplying a given vector by a positive constant will not affect any of these
properties.

The last geometrical notion we shall require for this thesis is that of epi-
convergence. Suppose fi is a sequence of functions on ", then we define the
lower epi-limit (e — liminf) as the function whose epigraph corresponds to
liin sup epi( fi). Similarly the upper epi-limit (e-limsup) is defined such that

—0c0

epi(e — limsup fi) = liminf epi(fi)-
k—oo k—oo

If these two functions agree and equal f then we say fi epi-converges to f,
and write e — lim fr = f.
- k_’m - - - - - 3 .
The main use of epi-convergence will be in the examination of epi-deriv-
atives. We will call a function epi-differentiable at Z for @ if the epi-limit of
[EETH)J(E) oxists as T decreases to 0. We call a function twice epi-different-

T

iable at £ for w if £ (i”g)_lfr(f)_r("_"’) epi-converges to
2

f(Z+62') — f(Z) — é6(w, 2')
1

1 . .
= p(2) = liminf
Fhia(2) ==limis
z'>z
as 7 converges to 0 from above, in which case we call [z the second epi-

derivative of f. The uses of second epi-derivatives will be explored further
in Chapter 4.



1.2.3 Subgradients, Subderivatives, and Strict Differ-
entiability

We have seen how it is reasonable to assume a given function is proper and
lower semi-continuous; however, it would be too large of an assumption to
presume that a given function was differentiable. To provide generalizations
of differentiability we introduce the notions of subgradients, and subdifferen-
tiability.

Consider a function, f : ®* — R, and a point Z at which f(Z) is finite.
Then we say w is a regular subgradient of f at T if

f(z) 2 f(Z) + (w, e — Z) + of|z - 3),

and denote the set of all regular subgradients of f at Z by bf(%). Alternately
if one wanted to avoid the ‘little o’ notation, one could write w €0 f(Z) if and
only if

i FE) = f@) — w2 =)
=22 |z — Z|

Having established this we denote the set of all subgradients of f at Z as
df(Z), and define them by w e 8f(Z) if and only if there exists zx — Z, and
wg € Of(zg) with wx — w, and f(zx) — f(Z). The final condition here
(f(zx) — f(%)) is usually referred to as f-attentive convergence. To simplify
notion we shall henceforth write z —; Z to mean z — Z and f(z) — f(Z).
This concept will play a role in the next definition.

A related, but different notion of subdifferentiable is that of a subderiva-
tive. Once again we begin with a function f, and a point Z at which f(Z) is
finite. Given these we define regular subderivatives,

df(z,-) := e — limsup fe+ T:) — f(:c)’

N0
T+ ¢ Z

where e — lim sup refers to the epi-graphical convergence described in subsec-
tion 1.2.2. Fortunately this definition will be of much less use than that of
simpler formula for general subderivatives (henceforth called subderivatives):

f(@ +7w) — £(5)

T

df (Z,w) := lim inf
N0

w—rw



By the definition it is clear that subderiwatives can be viewed as directional
derivatives for a function at a point. I'ndeed it is true that a function is
differentiable at Z if and only if the subderivative function at Z is linear.
That is df (%, -) is of the form df(Z, ) = ( A,-), in which case A = V f(Z) ([8],
Exercise 8.20).

Much of this thesis relies on the intesraction between subgradients, sub-
derivatives and their regular counterpar&s. To facilitate this interaction we
shall define a function to be subdifferemtially regular at Z if it is locally
lower semi-continuous and the normal csone of epif at (Z, f(Z)) is equal to
the regular normal cone there. Two im-portant results on subdifferentially
regular functions are that a lower semi—continuous function is subdifferen-
tially regular at Z if and only if df(Z,-) = df(Z, -) which is true if and only
if 6f(z) = 8f(%) ([8], Theorems 8.9 ana 8.19). As a result if f is subdif-
ferentially regular at Z then 9f(Z) is a -convex subset of £ ([8], Theorem
8.6). Thus requiring a function to be subdifferentially regular is equivalent
to asking that the subderivatives and subgradients are well behaved.

In one final notion regarding the differ-entiability of a function we examine
strict differentiability. Recall a function is differentiable at £ with gradient

V(@) =wif

i [@) = £(@) — @, - 3)

T Ig; — :_l;l
exists and is equal to 0. We call the functtion strictly differentiable at Z with
gradient V f(Z) = w if this limit can be l-oosened to

(&) = f(&) = (00— =)
z:,t:;:'&;lé |z — 2’|

One can immediately see how this is a much stronger notion than ordinary
differentiability. This will be examined further in Fact 3.6 where a list of
equivalent conditions is given.

1.3 Moreau Envelopes and U-Lagrangians

The major focus of this thesis will be thie construction and properties of a
new envelope called the Quadratic Sub-Lagrangian. The inspiration of this
envelope came from a combination of Momeau envelopes and U-Lagrangians.
Therefore it will be useful to discuss these two envelopes and some of their
properties before we continue.



1.3.1 Moreau Envelopes

We begin by examining the first of the two concepts, Moreau envelopes.
Moreau first developed the idea of this envelope in 1963 in the paper enti-
tled “Propriétés des applications “prox”” [3]. However, most of the results
attributed to Moreau come from his paper “Proximité et dualité dans un
espace hilbertien” [4] where he generalized most of his results to Hilbert
spaces, and developed many new ones. Before we discuss these results, we
need the definition of a Moreau envelope; if f : R* — R is a proper lower
semi-continuous function, and A > 0, then we define the Moreau envelop e, f,
and it’s related Proximal mapping P\ f by,

exf(®) == mf {f(z) + 55l — 5%}

Pof(z) == argmin{ (=) + 7=lz — 5%},

Where the argmin function refers to the argument of the minimum, and is
defined:

{£¢C: /() = inf f(=)} inf f(a) £0

arg Iﬁgl f(z) = { 0 otherwise

The concept, of a Moreau envelope is to use minimization as a means of
defining one function in terms of another. Of course the primary desire of
such an envelope function is that it is proper. Since our original function,
f, was proper and e, f(Z) < f(Z) everywhere, we know that e,f is not
constantly infinity. It can be shown that if there exists some Ay > 0 such
that ey, f(Z) > —oo for some Z € R" then e, f(z) A f(z) for all z as A \, 0
([8], Theorem 1.25). If f has such a Aq then we say f is prox-bounded, and
call the supremum of the set of all such )\ the threshold of prox-boundedness
for f. It follows that if f is prox-bounded with threshold As then for any
A €(0,Ay), one has e,f is not only proper, but finite valued ([8], Theorem
1.25).

One of the more interesting results in the theory of Moreau envelopes is
that the Moreau envelope of a proper lower semi-continuous prox-bounded
function is actually continuous for sufficiently small A. In fact if A f is the
threshold of prox-boundedness then e, f is continuous for any X e (0, As) ([8],
Theorem 1.25). This result sets one of the major themes in the development
of new envelope functions, that the envelope should have properties above
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and beyond that of the original function. In Chapter 4 we shall see that the
Quadratic Sub-Lagrangian can satisfies this requirement, in that the envelope
can be twice epi-differentiable at a point where the original function was not.

1.3.2 Lagrangians, and the U-Lagrangian

Before tackling the concept of a U-Lagrangian we should examine the con-
struction of a Lagrangian.

In 1788, Joseph Louis Lagrange published his most famous result in “An-
alytical Mechanics”, stating that problems in mechanics can generally be
solved by reducing them to the theory of ordinary and partial differential
equations. Most of his work centered around this idea, and therefore the
study of partial differential equations, however he is also credited with the
development of the Lagrangian function ([9], p. 331). In 1973 Rockafellar
published “The Multiplier Method of Hestenes and Powell Applied to Convex
Programming” in which he combined recent results of Hestenes and Powell
to show how the Lagrangian function could be used in the problem of opti-
mizing a convex function [7]. Although many variations of the Lagrangian
exist generally the Lagrangian of a function f : R x R™ — R is accepted to
be defined by

[. F"x®R™ - R
(fB, y) = ule%,fn{f(x: ’U,) - (’LL, y)}

In a recently published paper by Lemaréchal, Oustry, and Sagastizdbal,
entitled “The U-Lagrangian of a Convex Function”, the concept of a La-
grangian was modified to create the definition of a U-Lagrangian [2]. There
are three major difference in the creation of U-Lagrangians from that of
the Lagrangian. The first and greatest difference is instead of being given
a function on R" x ™ Lemaréchal, Oustry, and Sagastizdbal began with
a function f : " — R, and from it created a decomposition on R" into
two perpendicular subspaces U, and V ([2], Definition 3.1). The second
is that instead of centering the Lagrangian at 0, Lemaréchal, Oustry, and
Sagastizdbal selected an arbitrary z € domf. Lastly, in the case of a U-La-
grangian the vector corresponding to the y is the usual Lagrangian is fixed.
Thus the U-Lagrangian of f : 8 — R, at % for 0 is defined:

Ly(w) := f{f(Z + (u +v)) — (@, v)}.

To explain further let us briefly discuss projections and perpendicular
subspaces of ™. To begin with we should note that if U is a subspace of ®"

9



then there exists an unique subspace V C R" such that U is perpendicular
toV and U@ V = R". That is for any v e U and v e V one finds (u,v) =0,
and for each zeR™ there are elements z; and z, in ™ such that z;eU , Lo €V
and z = z;+ 3. Furthermore for any fixed z e R*, z; and z, will be unique
with |z]? = |21]* 4 |z2[%. In this thesis we shall denote this decomposition by
T = T, + T,. Lastly note that since (i,,v) = (w,v), we can (and will) write
the former as a reminder that only the V subspace of R" is being considered.

To relate the U-Lagrangian to the construction of an ordinary Lagran-
gian consider the function f defined on ™ x R™. One can easily consider the
function to be instead defined on R™*™ by the of the projection mappings
Py(z) = zy and Py(z) = z,. Using these maps we can create f (z) =
f(Pu(z), Pv(z)), where z e R™" U = R" x {0}™, V = {0}" x R™, and the
zero elements of Pr(z) and Py(z) are ignored. In doing this we immediately
note that the opposite is also true. That isif f : R* — R, where n = n, +ng,
and ni,ny > 1, then we can consider f to be a function on ®™ x R®™2. To
show this we consider the function defined by, f(z;,z2) = f((z1,0,0, 0) +
(0,0,...0,z2)), where there are n; 0’s inserted at the end of the z; term, and
ny O’s inserted at the beginning of the z, term. In fact this technique can be
used equally well to consider f : R® — R to be a functionof f: Ux V — R
where U and V are any perpendicular decomposition of R™.

Taking this inio consideration we examine the usual Lagrangian on a
function f: R x R™ — R,

l(a;)y) = uleggn{f(z)u) - <u': y)}

If we consider the related f : Rr+m — R, with U and V to be the subspaces
corresponding to R" and R™ respectively then we can rewrite this as,

i(z,y) := inf{f(z +v) — (v,9)}.

Thus by fixing y = weV we have the U -Lagrangian of f at £ = 0 for w, and
see the direct relation between the two concepts.

In “The U-Lagrangian of a Convex Function”, Lemaréchal, Oustry, and
Sagastizdbal showed that given a proper convex function and selecting a
proper choice in the UV decomposition one can guarantee the U -Lagrangian
will be well behaved. Specifically they demonstrated that if we rintd f (Z), and
U = Npy(z)(@) then the U-Lagrangian will also be a proper convex function.
Moreover the U-Lagrangian will be differentiable at 0 with VLy(0) =w,. In
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examining the higher order behaviour of the U-Lagrangian, Lemaréchal, Qus-
try, and Sagastizdbal showed a relationship between second order expansions
of the U-Lagrangian and those of the Moreau envelope of f centered at Z+w
when examined in the U direction ([2], Proposition 5.3). Lemaréchal, Ous-
try, and Sagastizdbal justified the appeal of this result further by showing a
second order expansion of the U-Lagrangian could be used (to a degree) as
a second order expansion of the original function ([2], Theorem 3.9). In this
thesis we will extend these results to the broader class of functions known as
prox-regular (described in the next section), while simultaneously exploring
why the subspace Ny (z)(w)was chosen for the UV decomposition.

1.4 Prox-Regularity

The concept of prox-regularity was first introduced by Poliquin and Rock-
afellar in 1996, by the paper entitled “Prox-Regular Functions in Variational
Analysis” [6]. Poliquin and Rockafellar have showed that prox-regularity is
in many ways the natural extension of the limited class of functions called
convex. To begin with, the very definition is focused around the ability to
bound functions from below by quadratics. Specifically they defined a func-
tion, f : " — R, to be prox-1egular at Z for wedf(z) if f is a locally lower
semi-continuous there, and there exists € > 0 and p > 0 such that

f(&) > f(z) + (w, % — z) — p|z — z|?/2

whenever |T —z| <¢, |z —Z| <e, z #Z, |f(z)— f(Z)] <, and |lw—w| < ¢
with w €9 f(z). We call a function prox-regular at z if it is prox-regular at Z
for all W eJf(Z), and call a function prox-regular if this holds for all Z ¢ R
[6].

Since convex functions can be thought of as those functions which can be
bounded below by affine functions this appears to be the natural evolution. In
the paper, “Generalized Hessian Properties of Regularized Nonsmooth Func-
tions”, Poliquin and Rockafellar showed that a proper lower semi-continuous
function, f, is prox-regular if and only if the f-attentive e-localization of sub-
gradient map is pre-monotone ([5], Theorem 2.2). By this second condition
we mean that if I is the identity mapping then

S :{ {wedf(z) : lw| <e} if |z] <e|f(z) - f(0)] <e
€ - 1)

otherwise
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has the property that S. + rI is monotone for sufficently large r. This is the
natural extension of convex functions, which can be shown to be the proper
lower semi-continuous functions whose subgradient map is monotone ([§],
Theorem 12.17). Having noted this relationship with convex functions, it is
not surprising that the set of all prox-regular functions include all convex
functions. Moreover, prox-regularity covers two other broad classes of func-
tions, strongly amenable functions and lower-C? functions ([6], Proposition
2.5 and Example 2.7).

A function, f : R® — R, is strongly amenable at Z if there exists a
neighbourhood of £ on which f can be written as f(z) = g(F(z)), where
g is a proper lower semi-continuous function of 8™ — R, and F : ®* —
R™ is C? such that if D is the closure of the domain of g then the only
vector y € Np(F(z)) with VF(zZ)'y = 0 is y = 0. We call the function
strongly amenable if this property holds for all Z ¢ R". Lower-C* functions
are functions, f, that can be written in the form

f(z) := max fi(z)

where f; are C* functions, and T is a compact index set. It has been shown
that for £ > 2 the class of lower-C* functions is indistinguishable from the
class of lower-C? functions ([8], Corollary 10.34). Since the definition of prox-
regularity is based on local properties one also finds that if either property
occurs locally then the function is locally prox-regular as well.

Of course since all C? functions are lower-C? it follows that any smooth
function is prox-regular. This demonstrates the powerful fact that any mea-
surable function (i.e. £* functions) can be approximated by prox-regular
functions, a property that convex functions do not share. This property
makes it desirable to generalize the results of Lemaréchal, Oustry, and Sagas-
tizdbal to prox-regular functions. In this thesis we shall see how by altering
the U-Lagrangian slightly we can create a new envelope, deemed the Quadra-
tic Sub-Lagrangian. We shall begin by showing this envelope is generally well
behaved, and a better estimate of the original function than the Moreau en-
velope. Next we shall show that there is an optimal UV decomposition, and
in applying it the Quadratic Sub-Lagrangian will have many of the proper-
ties of the U-Lagrangian. Lastly we shall examine the properties of a second
order expansion of the Quadratic Sub-Lagrangian; showing that it can act as
a second order expansion of the original function, and demonstrate several
properties that will lead to its existence.
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Chapter 2

The Quadratic Sub-Lagrangian
and its Basic Properties

Non enim ezcursus hic ejus, sed opus ipsum ets. !

Pliny the Younger

2.1 The Quadratic Sub-Lagrangian

In chapter 1 we examined the U-Lagrangian of a convex function, as devel-
oped by Lemaréchal, C., Qustry, F. and, Sagastizdbal, C., in "The U-La-
grangian of a Convex Function” [2]. In this thesis we shall see how many of
their results can be applied to the more general class of functions known as
prox-regular. To do this we shall create a new envelope function, called the
Quadratic Sub-Lagrangian, as follows.

Let f: R" — R be a proper function with z edom(f), and wedf(z). Let
U be a subspaces of R, and V = UL. We shall denote by ®g the Quadratic
Sub-Lagrangian of f with respect to Z, w, R and Uj; and by Wy it’s related
proximal map. More specifically:

@a(u) = If{/(@ + (u-+v)) = (B0,0) + T} (2.1)
We(u) = argmin{f( + (u+0) ~ (@o,0) + T} (22)

For this is not a digression from it, but the work itself.
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where z, and z, are the projections of £ onto the U and V subspaces respec-
tively, for example @w = (w0, + @,). The inspiration for this definition comes
from “The U-Lagrangian of a Convex Function”, where Lemaréchal, Ous-
try, and Sagastizdbal show that for convex functions, this envelope agreeds
with the U-Lagrangian at O up to second order ([2], Lemma 5.1). Before we
continue we simplify notation by defining,

ha(,v) == f(& + (u+v)) = (@,,9) + ol (23)

In examining the formation of the Quadratic Sub-Lagrangian one can see
aspects of both the U-Lagrangian function and the Moreau envelope. Like
the U-Lagrangian the Quadratic Sub-Lagrangian has a linear term ({@,, v))
inserted to shift the interior function (hg) so that 0e¢8hg(0). It will be shown
later (Corollary 2.13) that this shift will force @, € 8®g(0). The Quadratic
term (£|v|?) follows the same purpose as that of the Quadratic term in
a Moreau envelope, it helps the envelope to be a proper function. When
we apply this term to prox-regular functions that are bounded below by a
Quadratic we shall see that for sufficiently large R the Quadratic Sub-La-
grangian is not only a proper function (Theorem 2.6), but whenever ®z(u) <
oo the infimum is actually obtained (Proposition 2.7). When apnlying the
Quadratic Sub-Lagrangian to convex functions this term can be taken to be
arbitrarily small, and if f is strictly convex, R can actually be taken to be 0.
This will follow from thinking of convex functions as functions that can be
bounded below by linear functions instead of Quadratics. Thus, in the case
of strictly convex functions, this thesis will provide alternate proofs to many
of Lemaréchal, Oustry, and Sagastizdbal’s theorems.

2.2 Basic Properties of the Quadratic Sub-
Lagrangian

The first question one should ask of any envelope function is does the envelope
form a good estimate of the original function? In the case of the Quadratic
Sub-Lagrangian ®p is defined only on the U subspace of ®", so the question
can be phrased does RlLrgo ®r(u) = f(Z + (v +0))? In showing this is true we
shall also see that the Quadratic Sub-Lagrangian forms a better estimate of
f(Z + (v +0)) than the Moreau envelope, further justifying its examination.
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Proposition 2.1 Let ®r be the Quadratic sub-Lagrangian of f with respect
to Z, wedf(Z), R, and a subspace U. Let e(u) be the Moreau envelope of
f=Ff- (W, -) centered at T and restricted to the subspace { with parameter
%. That is,

e(w) ==eyr f(Z+ (u+0)).

Then ®p(u) > e(u) + (0, Z + (v +0)) forallueU.

Proof:

Let f(z) = f(z) — (w, ), therefore,

e(w) = e f(z+(u+0)

nf {f(z) + 312 + (u+0) — z|*}
inf{f(Z + (@ + 0)) + £l(@+9) — (u+0)[%}
(2 + (u+0) + 2107}
RE(f(E + (u +9)) ~ (@, (u +9)) + Z52} — (2, 5)
Dr(u) — (Wy, u) — (T, Z)

Il

IN

&

Corollary 2.2 Let f : R® — R be a proper Isc function that is proz-reqular
at T for w e O f(ZT)with respect to p and e, and bounded below by a Quadratic
there also with respect to p. Let fu(u) = f(Z + (u + 0)), and ®p be the
Quadratic Sub-Lagrangian of f with respect to %, w, R, and a subspace U.
Then as R — oo one finds ®r converges to fy pointwise.

Proof:
Again, let f(z) = f(z) — (@, z). By the prox-regularity of f at Z we know
that locally
f(@) 2 f(2) + (@,2 ~5) - o — 22

Since we have f bounded below by a Quadratic at Z we may assume that
this inequality holds for all z e R™. Rewriting at £ = Z + (u + v) we note for
all (u+v)eUdV =R,
f@+@+v)—@z2+ (u+v) 2 (&)~ (0,Z) — &l(u+v)?
f@+@+v) 2 (&) - @,2) - §l(u+v)?
Therefore,
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e fE+u+0) = mf {f(e) + £+ (u+0) -z}
= DH{fE+@+9)+flw-a-9)P}

veV

> nf{f(&) — (@,2) — §l(@+0)[* + &|(u— @ — 7))
eV

> inf{£lu —a? - glal?* + E252} + £(2) — (,z)
veV

Provided R > p, then (£|u — @|? — £|G|2) + @Iﬁlz is strictly convex in
4, and ¥. Therefore the infimum is obtained, and we have e i f@+ (u+0)) >

—o0. So we find that f(z) = f(z) — (&, z) is prox-bounded at Z + (u +0) for
any we U with threshold A7 = %. Applying this fact we note that e % fA f
pointwise for £ + (v + 0),u e U as R — oo. Thus

ey fE+u+0)+ (@, 2+ (u+0)) 2 f(Z+ut0)+ (D, 5+ (u+0)) = f(Z+u+0)

as R — oo. By Proposition 2.1 and the squeeze theorem we have: ®g(u)
converges pointwise to f(Z + (v + 0)) as R — oo.

¢

Next we address the question of whether or not this inequality can in fact
be strict (with the exception of at f(Z) of course). The answer turns out to
be yes, as the next example will demonstrate.

Example 2.3
Consider the function f(z,y) = —z2 + |y|. Then
87(0,0) = {0} x [-1,1],
so w = (0,0) € 3f(0,0). Lastly we select

U==Rx {0}
V={0} xR
Then,
exf(u+0) = Inf{f(@+o)+ Flu—a+£o/%}
veV
= inf{-@ + §(u - @)® + || + §0%}
veV

= nf{-@+ §(u— %)%}
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Assuming R > 2 we find that infimum is unique and obtained at & =

'E}E—zu' So
. u Ru Ru 2 Ru?
e%f(u—{—O):—R[(R__z)‘*' 5 ‘(3_2)] =_(R—2).

Comparing this to &z we note,
. R
Dp(u) = E{f(u+v)+ 5%}
inf{—u? + ol + o’}
= —u

= flu+0) = fu(u)

Thus ®p is a strictly better estimate of fyy than e L flu+0).

@

In the above example we found ®g(u) = f(Z + (v + 0)) for any R > 2
and v e U. We now see that this is not a coincidence, but will always occur
when the equation is variable separable along the UV decomposition.

Proposition 2.4 Suppose f: R" — R is a proper Isc function that is proz-
regqular at T for wed f (Z)with respect to p ande, and bounded below by a Quad-
ratic also with respect to p. Suppose also that f is of the form f(T+ (u+v)) =
fu(u) + fv(v) + f(Z), where fy : U - Rand fy : V = R, and U and
V are perpendicular subspaces of R™. Then for some R sufficiently large,
a(u) = £(% + (u+0)).

Proof:

First note that without loss of generality we may assume fi;(0) = f/(0) =
0. Indeed if this is not true then we may create fu(u) = fu(u) — fu(0), and
fv(v) = fv(v) — fv(0). Clearly these satisfy fi;(0) = fi/(0) = 0. Moreover
by assumption we have

f(@) = f(Z) + fu(0) + fv(0),

so fu(0) = —fv(0). Therefore we have
@) + fuw) + fr(v) = f(Z) + fu(u) - fu(0) + fv{w) — fr(0)
= f(@) + fu(w) + fv(v)
f(Z + (u+v)),
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as desired. Returning to ®r(u) we see:

@a(u) = BH{F(Z + (2,9)) — (B,0) + TJof?)

Dr(w) = £(@) + fulw) + EHF ) — @o,0) + S0P (24)

Since f is bounded below by a Quadratic at #, and prox-regular there for

W wWe may assume,
flz) =2 f(@)+(D,z-3) - &lz—zZ|
[E+0+v) > £(@)+ (@) - £lo]
fr(v) — (@y,v) + Eju|> > 0.
So for any R > p we have fv (v) — (i, v) + £[v|? > 0, and since fi-(0) =0
we have,

inf{fu(v) — (@, ) + ?lvlz} ~0. (2.5)
Combining equation (2.4) and (2.5) we see
Qr(u) = fu(u) + f(Z) = f(Z + (w +0)).
¢

Immediately, this raises the question: does the Quadratic Sub-Lagran-
gian differ from the function fy = f(Z + (- +0)). Although it would be
difficult to believe the two functions to always be the same, Proposition 2.4
showed that for many equations the two are indeed the same. The answer,
(fortunately), is that ®p and fir can be almost entirely different as the next
example will show.

Example 2.5

Consider the function f : ®2 — R defined by f(z,y) = |z|¥I+F + 3v2,
where k is a fixed constant greater than 1.
First we show @ := (0,0) € 8 f(0,0). Indeed

liminf £$%:%) = £(0,0) — (@, (z,y)) _ |z|WitE 4 12

lim inf
) z, (@) —(0,0) z
(:z:,;)-,-’-(0,0) I( y)l (:,;) #(g"(’)) I(z,y)]
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Since both the numerator and denominator in the above limit are positive,
it follows that

lim inf f(xxy) — f(0,0) —— (u_): (.’I:, y)) >0,

(=) =(0,0) T,
(=) #(0,0) (2 9)l

so w := (0,0) e §£(0,0) C 85(0,0).

Next we note that f is prox-regular at £ and bounded below by a Quad-
ratic there, in fact f(z,y) > 0 for all (z,y) € R2, so the quadratic can be
take to be the constant function g = 0. Lastly we select U = R x {0} and
V = {0} x R. Since this is the decomposition under which the function was
defined we shall relax the notation considering U and V to simply be R.

We begin by showing that ®g(u) # f(u,0) for all u # 0:

Sa(u) = mf{f(uv)+Ejl?}
= BE(ul + 2oy
= inf{ju]"** + BfLy%}

First we note that if w = 0 then the infimum is obtained at v = 0 as
expected. Next notice that for any » > 0 the function inside the infimum is
differentiable, and strictly convex in v in the critical area (v > 0). Indeed for
u >0,

d
-(E([ul”“‘ + %vz) = lnu(u’**) + (R + 1)v,

and
R+1

2

The second derivative test therefore shows that (Ju[*** 4+ £+4y2?) is strictly
convex for any u > 0. Therefore for any v > 0 we know the minimum will
occur at the unique point for which Z(|u|*** + £H42) = 0. Solving this
equality we find

d2 v v
(" + v?) = (lnu)?(w’**) + R+ 1.

2 (ups + B Ly —,

(In ful)(Jul***) + (R + 1)v = 0.

Thus v is required to satisfy

R+1

=
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and this is not satisfied at v = 0. Since the infimum is obtained at a unique
point, and v = 0 is not that point, it becomes clear that ®r(u) cannot be
equal to f(u,0) = uF.

®

Our next desire for the Quadratic Sub-Lagrangian is to show it maintains
some of the basic properties of the original function. First we shall show ® R
is proper, and from there show Wg(u) is nonempty whenever ®p(u) < co.

Theorem 2.6 Let f: R™ — R be a proper Isc function that is subdifferentially
regular at T, proz-regular there for w € 8f(Z), with respect to p and £, and
bounded below by a Quadratic (also with respect to p). Let U and V be
perpendicular subspaces of R*. Then ®p as defined in (2.1) is proper for any
R > p. Moreover ®(0) = f(Z), and Wgr(0) = {0}.

Proof:
First we note that since f is proper, ®g(u) # oo for at least one value of
u. Thus we need only show a lower bound of hg(u,v) for any given u e U.
By the prox-regularity of f at Z we know that locally

1(2) 2 (@) + (@,5 —7) - LJo — 2P
Since we have f bounded below by a Quadratic at  we may assume that
this inequality holds for all z e R". Rewriting with z = z + (u,v) we note for
all (u+v)eUV =R,
F@+(mtv) > f(Z)+ (@, (u+v)) — §(u+v)?

FE@+ (u+v) = (@o,0)) + 40> > F(F) + (@u,u) — Lluf?]
Thus for any R > p and (u +v) eU & V with v # 0 we find,

FE+ (ot ) = (@u,0) + S0P > F@) + @) - Dl (26)
Therefore for any R > p and u e U,
LA+ (u+9)) = (B0,0) + 0} 2 £(@) + (Bus ) — Lful?

Ba(w) 2 F() + (B, u) ~ EJul? > —oo, (2.7)

proving ®pg is proper.
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Equation (2.7) above also shows ®z(0) > f(Z). Since the definition of
®@p clearly shows ®r(0) < f(Z) equality is established. Lastly by equation
(2.6) applied to u =0, we see Wr(0) = {0}.

&

Besides showing that whenever ®p(u) < oo one can take ®g(u) to be
Iﬁl‘}l{ f(Z + (u 4 v)) — (@Dy,v) + £Jv|?}, the next proposition provides two
very important equations regarding Wx and ®p. The first, equation (2.8),
will be often referred to in order to show that |Wg(u)| — 0 as w — 0. The
second, equation (2.9), regards a technique of shifting f by a linear function
so that 0€d f(Z). This shift will often be used to split proofs into two simpler
components. The comparison of the original Quadratic Sub-Lagrangian, to
the Quadratic Sub-Lagrangian of the shifted function will therefore become
very important in many theorems.

Proposition 2.7 Let f: R* — R be a proper lsc function that is subdiffer-
entially regular at Z, proz-regular there for w € 8f(Z), and bounded below by
a Quadratic. Let U and V be perpendicular subspaces of R*. Then whenever
R is sufficiently large, Wg is nonempty for any u in the domain of ®p.

Proof: Case I, w = 0.
Let § > 0 and u e dom(®@g) be given, then there exists v € V such that.

F@+ (u+v)) + Tl < Bafu) + 5

Since f(z) is bounded below by a Quadratic we have, for appropriate p,
f@) —§lw+v)? < f(Z+ (u+v))
f(Z) = gl +v)]2+ Eu|2 < Pp(u) +4.
Which yields the useful inequality,

(Rz— O < @a(u) + Ll —f@)+6  v&>o. (2.8)
As § — 0 we see;
Wr(u) = argmin{f(&+ (u+v)) + £vf?}

= argmin{f(Z + (v +v)) + Zjv2 : v e (VN B,(0))}
where ¢ := [(—Ri—ﬁ(ég(u) + Llul? — f(Z))]V/2
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Since VN B,(0) is a compact in R* and hgr(u,v) is Isc we know the
argmin is obtained. Thus Wg(u) is nonempty for any u in the domain of ®p
as desired.

Case II, general w. _

Let f(z) := f(z) — (z, ), and let 5 and Wk be the Quadratic Sub-La-
grangian and its related proximal map for f with respect to R and U. Then
®r and Wy satisfy all the conditions required for Case I. Moreover,

$a(w) = E(F(E+ (wtu)) + D’}
= m(E+ ) — (@5 + (et v) + 2l

i _ _ R _ _
= WI{fE + (u+v) — (@0,v) + S} = @,8) — (@, ).
Yielding the following useful equation:

Bp(u) = ®r(uw) — (@, Z) — (WBy, u) (2.9)
Therefore Wg(u) # 0§ < Wg(u) # 0, and we conclude the result for all .
&

Having now shown the Quadratic Sub-Lagrangian maintains the most
basic propzrty of the original function, we seek to show that it is lower semi-
continuous. As a result, we shall also learn that the related proximal mapping
is outer semi-continuous with respect to 5 attentive convergence. To do this
we shall apply the following facts to hpg.

Fact 2.8 (/8), Theorem 1.17 part (a) and Theorem 7.41 parts (a) and (b))
Let f: R™ x R™ — R be a proper lower semi-continuous function, and

p(w) :=inf f(wv),  P(u) = argmip f(u,v).

If f is level-bounded in v locally uniformly in wu then:

i) p is a lower semi-continuous function of R* — R.

it) P is a compact-valued mapping that is outer semi-continuous with
respect to p attentive convergence.

i) If also one has f continuous at @ e R™ and P(@) # 0, then P is outer
semi-continuous (not just in the p-attentive sense) at .

By f is level-bounded in v locally uniformly in © we mean that for each
#eR™ and o e R there is a neighborhood N of @ with a bounded set B C R

22



such that {v : f(u,v) < o} C BforallueN. Instead of using this complicated
definition we shall make use of Fact 2.9 in showing hg is level-bounded in v
locally uniformly in u. Before stating this, we first note that since U and V
are perpendicular subspaces of ", we may, through a change of basis, apply
Fact 2.8 to ®p.

Fact 2.9 (/8], Ezample 5.17 (b)) For a function f : U® V — R, one has
f(u,v) is level-bounded in u locally uniformly in v if and only if for each e R
the mapping

ur{v: f(u,v) < a}

s locally bounded.

By v+ {v: f(u,v) < a} locally bounded we mean that given any u e U
there exists some § > 0 such that Bs(u) is mapped to a bounded set. In
Lemma 2.10 we shall actually show a stronger result for hgr, that for any
6 > 0 one finds Bs(u) is mapped to a bounded set. Using this we conclude
that hp is level bounded in v locally uniformly in u, and from there gain the
lower semi-continuity and outer semi-continuity results we desire.

Lemma 2.10 Let f: R — R be a proper Isc function that is subdifferen-
tially regular at Z, proz-regular there for w e Of(Z)with respect to p and e,
and bounded below by a Quadratic also with respect to p. Let U and V be
perpendicular subspaces of R™.

Then hp is level bounded in v locally uniformly in w for any R>p .

Proof:
By the prox-regularity of f we may assume that the Quadratic bounding
f from below is of the form

f@+ (w+) 2 1(@) + (@, (u+v)) - S+ o)

Let Sa(u) :={veV : hp(u,v) < a}. Therefore for any u e U we find,
Sa(u) = {veV:hgp(u,v) <o}

{veV: f(Z + (u+v)) — (D, v) + £} < o}

{veV: f(z) + FA W - 2luf® + (@, u) < o)

{veV: EAWE < —£(2) + 8lul? ~ (@, u) + a}.

Thus for any § > 0 we have,

NN |l

#%eBs(u

Sa(Bs(u)) C {v eV (1:‘2;’%;12 <o f@) + max (., @) + §|a|2}}
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which is a bounded set.
Thus S, is locally bounded, so by fact 2.9 we have hr is level bounded
in v locally uniformly in .

Y

Corollary 2.11 Let f: R — R be a proper Isc function that is subdifferen-
tially regular at Z, proz-regular there for w e 0 f(Z)with respect to p and ¢,
and bounded below by a Quadratic also with respect to p. Let U and V be
perpendicular subspaces of R*. Then ®g is lower semi-continuous, and Wg
s outer semi-continuous with respect to Pr attentive convergence.

Proof: Since hpr is proper, lower semi-continuous and level-bounded in v
locally uniformly in u, we may apply Fact 2.8 parts (i) and (ii).

)

2.3 Subgradient Properties

Having now established some of the basic properties of the Quadratic Sub-
Lagrangian, we turn our attentior to its subgradient mapping. To begin we
show that by projecting the subgradients of f(Z) from a neighbourhood of w
onto U one can find a subset of the regular subgradients of ®r(0). We then
approach the question frorn the other side showing that the subgradients of
®r(u) are the projections of subgradients of f(Z 4 (u + 0)). This is not
sufficient to show equality in the two sets, but it does give an excellent feel
for the behaviour of 0®px.

Proposition 2.12 Let f: R™ — R be a proper Isc function that is subdiffer-
entially regular at T, proz-regular there for wedf(Z), with respect to p and ¢,
and bounded below by a Quadratic. Let U be any subspace of R™ and R > p.
Let ®r(u) be the Quadratzc sub-Lagrangian of f with respect to T, w, U and
R. Then if w e 0f(Z)with jw — w| < € then w, e IPr(0). In fact:

Py (9(£(2))( B=(w)) € §@r(0) (2.10)
Where Py is the projection map of R™ onto U.



Proof:
By the prox-regularity of f, for |(v + v)| < £ we have for any R > p,
fE+@+v) > f(Z)+ (w, (u+v) — £|(u+v)?
FE+@+v) — (wy,v) + Z2 > f(ZF) + (wu, u) — £]ul?
Pr(u) = Pr(0) + (wy,u) — Flul?
®r(u) > Pr(0) + (wy,u) + o(|ul)
Therefore w, € §® r(0) € 0®z(0), as desired.

L

Corollary 2.13 Let f: R* — R be a proper Isc function that is subdifferen-
tially regular at T, proz-regular there for w € 8f(Z), with respect to p and e,
and bounded below by a Quadratic. Let U be any subspace of ™ and R > p.
Let ®p(u) be the Quadratic sub-Lagrangian of f with respect to T, w, U and
R. Then,

1, €dPg(0)

Proof: This follows directly from equation (2.10).
&

It is worth noting here that since Lemma 2.12, and Corollary 2.13 both
apply to any R > p, they both generalize perfectly to the convex case by
letting R = 0 and € — oo. This will be important in Chapter 3 where we
shall use these results to show the existence of a maximal subspace, U, for
which the Quadratic Sub-Lagrangian is differentiable (see Theorem 3.12).
Since these results can be generalized perfectly to the convex case with the
U-Lagrangian, it will follow that the same subspace is maximal in the set of
choices for U for which the U-Lagrangian is differentiable.

Returning our attention to the question of subgradients we require the
following fact:

Fact 2.14 (/8], Theorem 10.13) If f(u,u) is a proper lsc function from U &
V =R" into R that is level bounded in v locally uniformly in u, with p(u) =
E;Ielt;{f(u’ v)} and P(u) = arg mi‘;l{f(u,v)} then:

pw) C () {wueU:wedf(u,v)} (2.11)
veP(u)

Op(u) € () {wueU:wedf(y,v)} (2.12)
veP(u)
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Theorem 2.15 Let f: R — R be a proper Isc function that is subdifferen-
tially regular at %, proz-regular there for w e 8 f(Z)with respect to p and e,
and bounded below by a Quadratic also with respect to p. Let U and V be
perpendicular subspaces of R*, and Py be the projection map of R* — U.
Then: ) )

O®r(u) € Py(0f(Z + (v +v))) YV veWr(u) (2.13)

0®r(u) C Py(0f(Z + (u +v))) V veWg(u) (2.14)

Proof:
By Lemma 2.10 we have hg is level bounded in v locally uniformly in u.
Since hp is a proper lsc function we may ~apply Fact 2.14.

6(1nfh3('u, v)) € [\ {w.:wedhp(u,v)}

veWg(u)

02p(u) C [ {wu:wed[f(Z+ut)) — (@, v) + 2]}
veWgr(u)

8®p(w) C N {we:wedf(z+u+v)—{@,}+ Rv}
veWgr(u)

5 wy © (Wy +w, + Ty — Ru) €8f(Z + (u +v))

0®p(u) C Y v e Wr(u) }

O0®r(u) € Pu(8f(E + (u+v))) V veWg(u)
The only change in the proof of equation (2.14) is the replacement of the
regular subgradient map with the subgradient map.

@

Besides the intrinsic value of this theorem, it provides some insight into
one use of the Quadratic Sub-Lagrangian. Specifically, if « minimizes ®p
then 0€9Pp(z). Theorem 2.15 then shows that 0e Py (8f(Z + (u+wv))) for all
veWgr(uw). As a result we have if 0 is not in ®(u) then f is not minimized
at T + (u + v) for any v e Wr(u).



Chapter 3

Results for “Good” UV
Decompositions

Just as Finstein observed that space was mot an absolute, but
depended on the observer’s movement in space, and that time
was not an absolute, but depended on the observer’s movement
in time, so it is now realized that numbers are not absolute,
but depend on the observer’s movement in restaurants.

Douglas Adams

It Chapter 2 we discussed the properties that the Quadratic Sub-Lagran-
gian retained regardless of the UV decomposition. We found many strong
results, including lower semi-continuity and similarities in the subgradient
maps of f(Z + (-« +0)) and ®x. In this Chapter we shall turn our attention
to the question of what is the “best” UV decomposition. In order to define
best we must decide what extra properties we desire ®r to have. Since $p
is lower semi-continuous, the next step would be to determine when ®p is
continuous at 0. Later we shall find a stronger result, namely that there is
a subspace for which the Quadratic Sub-Lagrangian is not only continuous
at 0, but differentiable there (see Theorem 3.8). For now we begin with a
simpler result, showing that for any subspace, U, for which f(Z + (-, + 0))
is continuous at 0 we have the Quadratic Sub-Lagrangian prox-regular and
continuous at O for sufficiently large R.
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3.1 UV Decompositions and Smoothness of
the Quadratic Sub-Lagrangian

It is not surprising that there exists a subspace for which the Quadratic
Sub-Lagrangian of f is continuous and prox-regular. Indeed, one needs only
consider the trivial case of U = {0} to confirm that such a subspace exists.
A more interesting result will be that this subspace is often non-trivial. To
begin with we examine any subspace on which f(Z + (-, +0)) is continuous at
0, later we shall show that this subspace is a superset of Nj fz)(W) whenever
W € rintdf(Z) (see Lemma 3.4, and Theorem 3.7), and can therefore often
be taken to be non-trivial. Before we continue with this result we shall need
the following fact.

Fact 3.1 (/6/, Theorem 3.2) If f is locally Isc at Z, then the following are
equivalent.

t) f is proz-regular at T for .

i) The vector W is a prozimal subgradient to f at Z, and there is an f-
attentive d-localization, T, of Of at (Z,W) with a constant r > O such that
T + 71 is monotone.

Theorem 3.2 Let f: R — R be a proper Isc function that is subdifferentially
reqular at Z, proz-regular there for w e 8f(Z)with respect to p and e, and
bounded below by a Quadratic also with respect to p. Let U be a subspace on
which fy(u) := f(Z+(u,0)) is continuous at 0, and V = U+. Then whenever
R > p one finds, ®p is continuous at 0, and proz-regular there for w,.

Proof: Case I w = 0.
By the prox-regularity of f we may assume without loss of generality that
for all z ¢ R" one finds f(z) > f(Z) — £|z — %|?. Thus for any ueU,v eV,
fE+@+v) = f(Z)—4(ut+0)?
fE+@+v)+3® = f(3) - 5ul?
r(u) = f(Z)— &ul?
R
Moreover, ®g(u) = 11,151‘g<[f(:f: + (u+v) + —2—]v|2} < f(Z + (u+0)).
So we have the estimates; f(Z) — §|u|? < ®r(u) < fu(u). Where fy(u) =
f(Z + (u +0)). By the squeeze theorem we have ®x continuous at 0.

In showing the prox-regularity of ®p at 0 for 1, we note @, e 38z (0) by
Corollary 2.13. Now we shall demonstrate Fact 3.1 can be applied to ®g.
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Since f is prox-regular at T for 0, there exists (by Fact 3.1) § > 0 and
7 > 0 such that T+ 7] is monotone, where T is the f-attentive d-localization
of 8f at (Z,0).

Let S;-be the ®g-attentive §-localization of @5 at (0,0), that is;

g .o { {wed®r(w) : lw| <8} if lul <§,|r(u) — BR(0)] <&
® @

otherwise

If Py is the projection map of ™ — U, then by showing the existence of
some & > 0 such that S;(u) € Py(T(w,v)) for all u and v e Wg(u), we will
have S; + rI monotone. Thus Fact 3.1 will show ®g prox-regular at 0 for 0
(recall ®p is lower semi-continuous by Corollary 2.11).

So we turn our efforts to showing & exists as required. First note;

|@r(x) — @r(0)| <& = |f(Z+ (u+v))+ 5>~ F(@) <4,
VYue WR(u)
= |f@+@+v) = f@)| <5+ 3l
Y v e Wgr(u)
From Proposition 2.7, (equation (2.8)) and the fact ®p(u) < f(Z+(u+0))

22 < AR“” w2 (®r(u) — £(Z) + §lul?)
2 (f@+ (w+0) = £(2) + §lul?) ]
Now fy is contmuous near T, we have the existence of some 6 > 0 such

that,
S(R—p)
2R

Without loss of generality § < 1, so we also have 62 < 5. Thus we find for
any |u| <4,

R 2 R 6(R—p) P 12\ _ R P2 _9 R pd
iy -y p< or T ) =\F=5) M <3t m=5) 3

So,

lul <8 = |f(Z+ (u+0)~ f(2)] <

@R (w) — ®a(0)] <5 = |£(& — (u+v)) - F(7)| < (1 + RR—_p) 2

Selecting & sufficiently small we can assure that § < £ 2 and, ) (l—i——L) <$.
(In fact the later implies the first).
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Therefore,

S = {w ed®p(u) : jw| <8} |u| <4,|®r(w) — Br(0)] <&
A ) otherwise
s {w €0®p(u) : jw| <8} |u| <4,|®r(u) —Pr(0)] <&
¢ = 0 otherwise
[ [ wePy(8f(z +u+v)):
{ lw|<5} lu| < 4,
c |®r(v) — 2r(0)] < 6,
veWg(u)
L 0 otherwise
([ [ wePy(0f(z +u+v)):
{ [w|<<5} lul] < 6,
c |£(E+u+v) - £(2)] <8,
v € Wg(u)
0 otherwise

S Py(T(u+v))
Case II, general . _ :

Let f(z) = f(z) ~ (w,z). Let @ be f's corresponding Quadratic sub-
Lagrangian. Then f satisfies the requirements of case I, and as shown in
equation (2.9), )

Pr(u) = @r(u) — (W0, Z) — (Wy,u)
Dp(u) — (D,Z) = Qr(u) + (@y,u)
So ®r(u) is continuous at 0, and is prox-regular there for ,.

&

This yields an interesting corollary that will be of use later.

Corollary 3.3 Let f: R" — R be a proper Isc function that is subdifferen-
tially reqular at Z, proz-regular there for w e rintd f (Z)with respect to p and
€, and bounded below by a Quadratic (also with respect to p). Let U be a
subspace on which f(Z + (u 4+ 0)) s continuous at 0, and R > p. Then Wpx
as defined in equation (2.2) is outer semi-continuous at 0.

Proof: By Lemma 2.10 and Theorem 3.2 we have hp level-bounded in v
locally uniformly in u, and @z continuous at 0, therefore we apply Fact 2.8
part (iii) and the proof is complete.

¢
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3.2 Effects of UV Decomposition on f

Theorem 3.2 shows us that for any subspace, U, along which f is continu-
ous the Quadratic Sub-Lagrangian is continuous and prox-regular; however,
it gives us very little idea what these subspaces look like. Our next goal
therefore is to examine less vague possibilities for the subspace U. In “The
U-Lagrangian of a Convex Function”, Lemaréchal, Oustry, and Sagastizébal,
used U = Njf(z) (), where @ € rintd f(Z), from which we draw inspiration.
Lemaréchal, Oustry, and Sagastizdbal, found that on this subspace the U-La-
grangian was differentiable at 0 ([2], Theorem 3.3 (ii)). They did not mention
in their paper how they chose this subspace, but in exploring this subspace
further we shall show that it is maximal in the set of all subspaces for which
@ is strictly differentiable.

Lemma 3.4 Let f: R - R be a proper lsc function that is subdifferentially
reqular at T. Let W e rintdf(Z). Then the following subspaces are equal to
Nas(z)(w):

i) Uy := The subspace perpendicular to the affine plane of of(%,)

i) Up = {deR" : ,d) = inf (w,d)},
%) Uz := {de S (wd) = tof (w,d)}

iii) Uy := {deR™ : df (%, d) = —df (7, —d)},
w) Uy := {deR™ : (w,d) = (w,d) V wedf(z)}.

In order to prove lemma 3.4 we will make use of the following fact:

Fact 3.5 (/8], Theorem 8.80) If f : R" > R is subdifferentially reqular at =
then one finds,
df(z,d) = sup (w,d).
wedf(x)
We may now proceed with the proof in question.
Proof of Lemma 3.4:

We begin by examining U;. Since f is subdifferentially regular at £ we
have Naf(z) (1) is convex. Therefore, since we rintdf(z), we have deN; 72y (W)
if and only if d satisfies (w —w,d) = 0 Y wedf(F). Which is true if and only
if (w —W,d) =0 = (wy —B,d) V wy,wy € 0f(z). That is (d,w; — wy) =
0 VY wy,wy € 8f(Z). Therefore U; = Nj ¢z ().

It is clear that U, = Uy, so next we show that these are equal to Nyg(z) (D).
Suppose d € Uy then (w — w,d) =0V w e 3f (%), hence d e Ny sz ().
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Conversely, suppose d €Nysz)(@w) and wedf(Z) then we shall show
(w—w,d) = 0, making d € Uy.

If w = @ the result is trivial, so we examine the case where w — @ # 0.
Since f is'subdifferentially regular at #, we have §f(z) = 8f(z), so f(Z)
is convex. Thus w — w is parallel to the affine hull of df(Z). Hence there
exists some v > 0 such that for all 0 < 7 < v we have v = (w — @) satisfies
W+ nuedf(Z) and w —nv edf(Z). So, by definition of Naf(z)(w) we have,

d -
lim sup {dw=a) -w)
w—w Iw h 'UJI

wED

wed f ()

<a.

Thus,
lim(d, o —w) <0
lim(d, @ + v — ) <
im(d,w — nv —w) < 0.
km{d, o —7v — ) <
Therefore, for small but positive  we find (d,7v) < 0 and (d,—nmv) < 0.
Which shows (d,w — @) = 0.
We now turn our attention to Us. Since f is subdifferentially regular at
T we may apply Fact 3.5 yielding for any d € Us,

—df(f),d) = df(:fx _d) = Sup (’LU, _d)
wedf(E)

df(z,d) = inf d).
f(@d) = igf_(w,d)

So,

inf (w,d) =df(z,d)= sup (w,d) = U; C U,.
w e df(E) w e B f(x)

Conversely if d € Uy then

df (z,d) = sup (w,d) = inf (w,d)=- sup (w,—d)= —df(z, —d)
wedf(x) wedf(z) we df(z)

Thus d € U, and the proof is complete.
Q@

Having now established a greater understanding of Nps(z) (@) we can be-
gin to examine how f(Z+(-,+0)) behaves when U = N, £(z)(W). Interestingly,
we shall find not only is f(Z + (-» 4 0)) continuous at O for this subspace, but
it is actually strictly differentiable at 0. To achieve this we shall need one
more fact.
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Fact 3.6 (/8/, Theorem 9.18) Let % € dom(f), and f* R* — R. Then the
following are equivalent to f being strictly differentiable at z:

t) f is Lipschitz continuous at T and has at most one subgradient there,

it) f is continuous near Z, and f and -f are subdifferentially regular func-
tions,

@) f is locally lower semi-continuous at %, and df (Z,-) is a linear func-
tion,

w) f is locally lower semi-continuous at T and df(Z, d) = —df(z,—d) for
all de R™.

It should be noted here that f Lipschitz continuous at Z refers to the ex-
istence of some neighbourhood, N, of Z and some K > 0 such that whenever
z € N one finds |f(z) ~ f(Z)| < K|z —Z|, we then refer to K as the Lipschitz
constant of f.

Theorem 3.7 Let f: R™ — R be a proper Isc function that is subdifferentially
regular at T. Let w e rintdf(Z)and U = Nafz)(@). Define fy : U — R™ as
fu(u) = f(Z + (v +0)). Then fy is strictly differentiable at 0, and therefore
continuous there. In fact this is true for U any subspace of N 7@ ().

Proof:
By Lemma 3.4, U = {deR" : df(%,d) = —df(z, —d)}. Furthermore, since
f is subdifferentially regular at Z we have df (z) = df (Z). Therefore we find

dfy(0,d) = dfy(0, d) = ~dfy(0, —d) = —d (0, —d) VdeU

Since f is Isc if follows that fy is, and Fact 3.6 completes the proof.
é

3.3 UV Decomposition and First Order Be-
haviour of the Quadratic Sub-Lagrangian

Having now discovered a subspace on which f (Z + (-« + 0)) is continuous
at 0, we seek to examine what further properties this subspace has in the
construction of Quadratic Sub-Lagrangians. In this section we shall turn our
attention to how the Quadratic Sub-Lagrangian behaves under the circum-
stance of U being a subspace of Njy(z) (). We begin with the very interesting
result that, (for this choice of subspace U), ®p is strictly differentiable at 0.
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Theorem 3.8 Let f: R* — R be a proper Isc function that is subdifferentially
reqular at T, proz-reqular there for w € rintd f(Z) with respect to p and €, and
bounded below by a Quadratic. Let U be any subspace of Nasz)(w), and R
> p. If ®r is the Quadratic Sub-Lagrangian with respect to f, U, and R
then ®g s Lipschitz continuous at 0, and strictly differentiable there with
{V@R(O)} = {W,} = 0P (0).

Proof: Case I, w = 0.

Let fy(u) = f(Z+ (u+0)). First we note that, just as in Theorem 3.2, we
have f(Z) — &ul* < ®g(u) < fu(u). By Theorem 3.7, and Fact 3.6 we have
Ju is Lipschitz continuous at 0. Since f(Z)—£|ul|? is also Lipschitz continuous
there we may simply take the larger of the two Lipschitz constants to provide
a Lipschitz constant for ®p. Therefore &5 is Lipschitz continuous at 0.

In order to apply Fact 3.6 we now turn our attention to showing ® z(0)
is the singleton {w%,}. We know w, € ®g(0) by Corollary 2.13, so only have
to show its uniqueness.

Suppose w € 9®r(0), then by Theorem 2.15, equation (2.14), combined
with Theorem 2.6 we have w e Py f(Z). Therefore w = Py(w + ,) for some
w, € V such that @ + W, € 0f(Z). By Lemma 3.4 we have U is the subspace
perpendicular to vhe affine hull of 8f(Z), therefore V is the subspace parallel
tc the affine hull of 8f(Z). Therefore for any w e §f(Z) we have w —we V,
thus (@ + w,) — we V. It follows that,

Py((@ +wy) —w) = {0}
W, — W, = {0}
Wy = Wy,
and we conclude 0®g(0) = {wy}-
Case II, general .

Let f(z) = f(z) — (W, z). We first show that U = Nyy(z) (@) = Nj7z(0)-

Indeed by Lemma 3.4 Ny z) () we equivalent to the space normal to the
affine plane of 8f(Z). By the same proof N, 7(z)(0) is the space normal to
the affine place of 8f(0) = 8(f(z) — (@, z)) = 8f(z) — {w}. Clearly these to
subspaces are equivalent.

Next, let &z be f’s Quadratic Sub-Lagrangian with respect to U, then f
satisfies the requirements of Case I. Moreover

Br(u) = Pr(u) + (@,8) + (@y, u),

as shown in equation (2.9). Therefore we have ®x Lipschitz continuous at 0,
as the addition of a linear factor does not effect this property.
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Furthermore we have,
88 a(w) = A(@r(u) — (B,) — (4, ) = OBa(u) — {B.}.
Thus, 0Pr(0) is the singleton {@w,} and Fact 3.6 completes the proof.
&

Theorem 3.8 shows immediately that any U C Nyjz) () forms a good
choice for the base of our UV decomposition. With the addition of one
previously known Proposition we can further strengthen the appeal of U C
Nasz)() by showing that for this decomposition ®x gains the further prop-
erties of being subdifferentially regular at 0, and a lower-C2? function near 0.

Fact 3.9 (/8/, Proposition 13.83) If f is proz-regular at a point T where it
is strictly differentiable, it must be lower-C? around .

Corollary 3.10 Let f: " — R be a proper Isc function that is subdifferen-
tially regular at Z, proz-regular there for w € rintd f(Z) with respect to p and
g, and bounded below by a Quadratic. Let U be any subspace of Ny fz) (@),
and R > p. If ®p is the Quadratic Sub-Lagrangian with respect to f, U, and
R then ®p is subdifferentially regular at 0, and lower-C? around this point.

Proof:

By Theorem 3.8 we have 99g(0) = {wy}. Since @, € §®x(0) (by Corol-
lary 2.13) and §®x(0) C 8B r(0) we have equality of the regular and general
subgradient maps. Corollary 2.11 shows &g is lower semi-continuous, and
therefore ®p is subdifferentially regular at 0.

Next Theorem 3.2 shows ®p is prox-regular at 0 for w,. Since 8P r(0) =
{u‘zu} we can restate this as g is prox-regular at 0. Fact 3.9 and Theorem 3.8
therefore complete the proof.

®

We have now shown that Nyg(z)(w) is an excellent choice for the subspace
U, so have an understanding as to why Lemaréchal, Oustry, and Sagastizdbal
selected it. But the question of whether it is the “best” subspace still arises.
In the next theorem we see that Nj 7z)(W) is the largest subspace for which
the Quadratic Sub-Lagrangian is differentiable at 0. Besides answering the
question of the “best” subspace for U, Theorem 3.12 provides us with two
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interesting results. First whenever ®p is differentiable at 0 it is strictly differ-
entiable there, and lower-C? in a neighbourhood of 0. Secondly Theorem 3.12
generalizes perfectly to the convex case, since for convex functions one can
take R = p = 0; therefore Lemaréchal, Oustry, and Sagastizdbal used, for
their choice of U, the largest subspace for which their results would hold.
Before proving this final result for Chapter 3, we require one simple fact.

Fact 3.11 (/8/, Ezercise 8.8) A
If f is differentiable at Z, then 0f(Z) = {Vf(Z)}

Theorem 3.12 Iff: R* — R is a proper Isc function that is subdifferentially
regular at T, proz-regular there for w € rintdf(Z) with respect to p and e, and
bounded below by a Quadratic. Then for any R > p, U = Npgz)(w) is
mazimal in the set of all subspaces for which the Quadratic Sub-Lagrangian
of f with respect to R and U is differentiable at 0.

Proof:

Suppose U is not contained in Nag(z) (@), then U NTasz) (@) # 0. Since
W € rintd f(Z) = rintdf(Z) there exists some @ e U such that @ # @, (@ +
Wy) €0f(Z), and |(w +w,) —w| < €. By Lemma 2.12 we notice Py (0 +wy,) =
W e 5BR(0). Since ¥ # 1, = VPr(0), we have §®(0) # {VSx(0)}, and the
contrapositive of Fact 3.11 shows that ®» cannot be differentiable at 0.

¢
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Chapter 4

Second Order Properties of the
Quadratic Sub-Lagrangian

And out of the confusion,
where the river meets the sea,
something new will arrive,
something better will arrive.

Sting

So far we have focused on studying the first order behaviour of the Quad-
ratic Sub-Lagrangian. We began by showing that the Quadratic Sub-La-
grangian was a well defined envelope function. From there we demonstrated
that by the correct UV decomposition we could ensure that this envelope
was well behaved near the origin. We even went to the point where we could
ensure strict differentiability there and showing that ®5 is lower-C? near 0.
We now turn our attention to the second order behavior of the Quadratic
Sub-Lagrangian.

We say a function has a quadratic expansion at Z if it is differentiable at
Z and there is an operator A : * — R™ such t hat

f(z) = £(@) + (V)5 - 2) + 3z — 3, Az — 2)) + ol|z — 7,

o(|z—Z|?

s 0 as

where o(|]z — Z|?) refers to a term with the pxoperty that
z — Z. If A has the additional property that

Vi(z) =Vf(E)+ A(z — ) + o]z — Z|)
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for z in the domain of V f then we say f is twice differentiable at Z. In such
a case A is necessarily unique so we label it by V2 f(Z) and refer to it as the
Hessian of f. It would be too much to expect the Quadratic Sub-Lagran-
gian to always provide us with a quadratic expansion at 0, so next we seek
situations for which this occurs. Before developing some of these properties
we shall provide some inspiration for the search. More precisely we shall
show that a Quadratic expansion of ®5 can be used (to a degree) to create
a quadratic expansion of the original function.

4.1 Definition of Hp

Once again we begin with a proper lower semi-continuous function, f :
R — R, that is subdifferentially regular at Z, prox-regular there for w €
rintd f(Z)with respect to p and e, and bounded below by a Quadratic also
with respect to p. Let U = V* be subspaces of ®* and R > p. Suppose g
has a quadratic expansion at 0; i.e.,

2a(w) = B(0) + (V2R(0), u) + (v, Au) +o(fuf?),

where A : U — U. Immediately we note that Theorem 3.12 forces U -
N3f(z)(). We shall define Hg by

Hp:= UV — UesV

(u+v) — (Au— Rv). (4.1)

Since Wgr(u) is set valued, we shall encounter some difficulty in notation;
to avoid this we create a selection function for Wgr. That is we define w :
U — VU{oo} to be any veWg(u) when Wx(x) is nonempty and oo whenever
Wr(u) = 0. This actually creates a family of functions from U into v,
but for our purposes we consider w to be any fixed one of them. Now we
note that by Theorem 3.8 we have V®z(0) = 10,, and by Proposition 2.7,
Wg(u) # 0 for any u in the domain of ®z. Since a quadratic expansion of
@ implies differentiability of ®z, which in turn implies continuity of &5, we
have w(u) # co when u is sufficently close to 0. Therefore we find:

F@+ b o)) = (@, () + (@) = F(2) + () + £, An) +oful?),
F@ute(w)) = F(E)+, (urtw @)+ 3 ((utew), (Au-Ru@w))+o(lul),
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f@+utw(u) = f(Z)+(w, (u+W(U)))+%((U+W(U)), Hp(u+w(u)))+o(jul®).

Lastly we note that 3%:—“-;2 — 0 as u — 0 implies ¢ °+?;zu)| —0asu—0.

‘Therefore we may replace the o(Ju|?) with o(ju|? + |w(w)|2) = o(ju + w(w)|?),
yielding

f(2)=f@) + @,z -2)+ -;-(w — &, Hp(z — 7)) + of|z — z°),

where z is of the form = = Z + (v + w(u)). Although this is not a quadratic
expansion of f itself, it does provide a quadratic expansion of f along the
manifold defined by {Z + (u +v) : ue U,v e Wg(u)}.

4.2 Existence of Quadratic Expansions of &p

Having now established a purpose for our search we shall seek some properties
that ensure a quadratic expansion for ®z. To begin we provide an alternate
approach to the problem.

Fact 4.1 ({5], Theorem 3.1) Suppose that f is proz-regular at T for w. Then
f is differentiable at T and has a second order ezpansion at Z if and only if f
s twice epi-differentiable at Z and ff ; is finite everywhere.

This fact inspires the next major result (Theorem 4.4) in which we develop
an if and only if statement of when the Quadratic Sub-Lagrangian is twice
epi-differentiable. Although this is weaker than a quadratic expansion it
shall provide a base for our final results. In order to achieve this goal we
shall apply the following fact.

Fact 4.2 (/6], Theorem 6.5) Let f be proz-reqular at T = O for @ = 0 with
respect to € and p, and let A € (0, %) Then f is twice epi-differentiable at 0
for 0 if and only if e, is twice epi-differentiable at 0 for 0.

With this fact in mind we proceed to examine the Moreau envelope of the
Quadratic Sub-Lagrangian. In effect we will take an envelope of an envelope
in order to see when the later is twice epi-differentiable.
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Lemma 4.3 Let f: R* — R be a proper Isc function that is subdifferentially
regular at T, proz-regular there for w € 8f(Z)with respect to p and €, and
bounded below by a Quadratic. Let U and V be any perpendicular subspaces
of R™, then

5, 1
et f(Z+ (u+ %)) =e1 Pr(u) + 55 5R @, |2.
Proof:
er f(Z+ % + (u+0)
(@) + 2@+ % + (w+0) —af?)
= Dilinf{fE+ @+ ) + 2% + (w+0) — @+ )}
= f{inf{f(Z+ (2 +9)) + §|% — 9*} + §lu— 3%}
= If{inf{f(Z + (@ + 7)) + 5510 [* = (@0, B) + £[5?} + §lu— @f?}
- 11135{@3(“) + 2R|wv|2 Iflu u|2}
Therefore: & 1
e%f(:f:—i-(u—}-#)) =e1 Pp(u) + 2R|w,,|2 (4.2)
&

Theorem 4.4 Let f R™ — R be a proper Isc function that is subdifferentia’ly
regular at Z, proz-regular there for w e 8f(Z)with respect to p and €, and
bounded below by a Quadratic. Let U be any subspace along which fy =
f(Z + (u+0)) is continuous at 0, and V = U*. Then for sufficently large
R, ®p is twice epi-differentiable at 0 for b, if and only zfe1 FE+(u+%))
has this property.

Proof: Case I: if Z = 0, and w = 0.

- By Theorem 3.2 we have @5 is prox-regular at % = 0 for @, = 0 with
respect to R = (R — p)/2. Then R > R’, (which is true for any R > 2p)
implies % € (0, #)- Therefore we may apply Fact 4.2 to note ®y is twice
ep1—d1fferent1able at 0 for w, if and only if e L ®pr has this property. From
equation (4.2) we have ®p is twice epi- dlfferentlable at 0 for O if and only if
e1 f(Z + (-u + %)) is twice epi-differentiable at 0 for 0, which proofs case I.

ase II: ~genera1 f

Let f(z) = f(Z +z) — (w, z), then by similar calculations used in 2.7 (see
equation (2.9)), we see

Bp(u) = ég(u) + (W, u),
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which is twice epi-differentiable if and only if ®r maintains this property.
Case I then completes the proof.

¢

Having now established an if and only if statement of twice epi-different-
lability for the Quadratic Sub-Lagrangian we have reduced the problem to
showing when the second epi-derivative is finite valued. Qur next concern
will be to show that if fy = f(Z + (- + 0)) has a second order expansion,
then the Quadratic Sub-Lagrangian maintains this property. While proving
this result we shall also show several other cases which guarantee a Quadratic
expansion for ®g5.

Theorem 4.5 Let f: R — R be a proper Isc function that is subdifferentially
reqular at T, proz-regular there for w e Tintd f (Z)with respect to p and €, and
bounded below by a Quadratic. Let U C Npsz) (W) be a subspace, and V be
it’s perpendicular subspace. Let fy = f(Z + (-» +0)). Ifes f(Z+ (ut+ ) is
twice epi-differentiable at 0 for w, then any of the followzng conditions tmply
®r has a second order expansion at 0:

1) f, or fu has a quadratic ezpansion at T,

) fza5 o (fu)is s finite everywhere,

ii) f eClY, or fy eC'*t on some neighbourhood of Z,

i) fu is bounded above by a quadratic on some neighbourhood of Z,

v) There ezists some r > 0, and m > 2 fized such that for any we U one
can find v e V' such that hp(u +v) < f(Z) + rlu|™,

vi) Condition (v) is true on some neighbourhood of 0.

Proof:

Since e Lf (Z + (-u + Z¢)) is twice epi-differentiable at 0 for w,,, we have
&p is twice ep1-d1ﬁerent1able there. Thus by Fact 4.1 &z has a second order
expansion if and only if (®r)g 5, is finite everywhere. Since (®r)§ 5, is proper
we need only show an upper bound for (®r)g 4, in each case. As usual we
begin with the case w = 0,

Case L w =0

Notice,

(Br)s5.(d) = e~ 9\0 Pp(rd) — = ®r(0)
AR frd +0)) — f(2)
- 1'\,0 57.2

(4.3)
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i) If f has a quadratic expansion then we may apply the approxima-
tion f(Z + (7d + 0)) = f(Z) + (Vf(Z))u, 7d) + (7d, ATd) + o(|7d|?), where
(Vf(%))y = Wy, = 0. Therefore equation (4.3) yields,

(®r)! ;. (d) < e— lim (rd, Ard) + o(|7d|?)

1.2
™N\0 27‘

thus (®r)g 4, (d) is bounded above by 2(d, Ad) < oco. The same proof works
for the case of fiy having a quadratic expansion at Z.

i) If f7 5, or (fu)%s is finite everywhere, we need only notice that equa-
tion (4.3) shows (@2)he,(d) < (£)40(d) or (@R (d) < (fr)ho(d) as ap-
propriate.

iii) If feC'* on some neighbourhood of Z, then by the mean value theorem
we note for all 7deU there exists some =, = Z+nd,n€(0,7) and w,€0f(z,) =

V f(z-) such that

= 2(d, Ad),

f(Z +71d) - f(Z) = (wr, d).
Since f € C'* we have the existence of some K > 0 such that |w,| < K|rd],
when 7 is sufficiently small. Thus (4.3) becomes,

2
(W, 7d) < e— lim Kll'r;il
=T

174 s
(@R)O,u':u (d) <e }}% %Tg = 5

=2K|d| < oo.
The proof for fyy eC!* is identical.

iv), v), and vi) It will suffice in this case to prove vi), as iv) and v) can be
thought of as less generalized cases of vi). Note without loss of generality the
v € V such that such that Ar(u + v) < r|u|™, can be considered to converge
to 0 as u — 0O (see equation (2.8)). Therefore applying the assumption of vi)
to (®r)g,q, (d) we see,

(®r)0z,(d) = e—lim @r(rd) — 2r(0)

N0 l7'2
. hr(td+v) — f(Z)
= e—11_1§m0 T , Ve Wr(7d)
S e — ]_im le-—dl

Case II, general w.

Let f(z) := f(z) — (@, z), and ® be its Quadratic sub-Lagrangian. Then
by equation (2.9) we note that ®p has a second order expansion if and only
if @ has one. Since Pp satisfies case I the proof is complete.

Y%



Chapter 5

Conclusion, and Further Areas
of Exploration

Still, round the corner there may wait
A new road or a secret gate;

J. R. R. Tolkien

5.1 Summary of Results

The purpose of this thesis was to develop a new envelope function that could
be applied to the broad range of functions known as prox-regular. To do
this we combined two previously developed envelopes, the U-Lagrangian and
the Moreau envelope. The first of these, the U -Lagrangian, was developed
recently by Lemaréchal, Qustry, and Sagastizébal, in their paper entitled
“The U-Lagrangian of a Convex Function” [2]. This paper provided a base
for this thesis and much of the inspiration on the results regarding “good”
UV decompositions. The second envelope used, the Moreau envelope, was
developed in 1963 by J. J. Moreau [3] [4], and later extended to prox-regular
equations by R. A. Poliquin and R. T. Rockafellar in 1996 [5]. These works
were used as tools in the study of Quadratic Sub-Lagrangian.

‘The work of Lemaréchal, Oustry, and Sagastizabal provided three major
results on the U-Lagrangian. The first of these was given a finite valued con-
vex function the U-Lagrangian is also a finite valued convex function. Next
they showed that the U-Lagrangian was differentiable at 0, with derivative
related to the subgradient used in it’s definition. Lastly they developed some
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second order theory for the U-Lagrangian. In this they showed how a 2nd
derivative of the U-Lagrangian could be used as a second order expansion of
the original function, and provide an if and only if proof regarding when the
U-Lagrangian was twice differentiable.

In extending the first major result we sought to show first that the
Quadratic Sub-Lagrangian of a proper prox-regular function was also proper
and prox-regular. Unlike Lemaréchal, Oustry, and Sagastizdbal, who as-
sumed a specific UV decomposition, we showed this was indeed true when-
ever the original function was continuous along the U portion of the de-
composition. This not only extended their result, as the UV decomposition
they selected forced this criterion to be true; but, formed the stronger result
that when using this broad range of decompositions the Quadratic Sub-La-
grangian was continuous at 0. Although they demonstrated the for their
particular choice of UV decomposition the U-Lagrangian we differentiable at
0, they never explored the question of what other subspaces would provide
continuity there.

To extend their second result we sought to discover for what UV decom-
positions the Quadratic Sub-Lagrangian was differentiable at 0. In doing
this, we turned to the work of Lemaréchal, Qustry, and Sagastizdbal for in-
spiration. In exXamining their choice of UV decomposition we showed that it
provided a satisfactory decomposition to ensure the Quadratic Sub-Lagran-
gian was differentiable at 0. More than that we showed it maximized the
subspace U in the UV decomposition. By this we mean if the Quadratic
Sub-Lagrangian was differentiable at 0, then U had to be a subspace of the
one used in Lemaréchal, Oustry, and Sagastizdbal’s decomposition. One of
the interesting points about this result was that it generalized perfectly to
the U-Lagrangian as applied to convex functions since the quadratic factor
could then be taken to be 0, yielding the U-Lagrangian. Whether or not
Lemaréchal, Oustry, and Sagastizdbal were aware of this fact is unknown.
Another interesting result that came out of this section was that every sub-
differentially regular prox-regular function has a subspace along which it is
strictly differentiable and this subspace is related to the relative interior of
the subgradient mapping.

To generalize the last result of Lemaréchal, Oustry, and Sagastizdbal we
examined the quadratic expansions of the Quadratic Sub-Lagrangian at 0.
We first showed that, like the U-Lagrangian, these expansions could be used
to provide quadratic expansions of the original function. This was slightly
more general than the U-Lagrangian case, as they focused on the existence of
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a Hessian matrix. However, Lemaréchal, Oustry, and Sagastizdbal’s results
were stronger in the end as they were able to find an if and only if proof
for the existence of such Hessians with regards to f, whereas we were only
able to provide an if and only if statements regarding when the Quadratic
Sub-Lagrangian was twice epi-differentiable at 0.

In extending these major results we also showed many smaller, but none-
theless important, results for the Quadratic Sub-Lagrangian. One of the
more useful ones was that the Quadratic Sub-Lagrangian’s related proximal
map was nonempty whenever the Quadratic Sub-Lagrangian was finite. In
. showing this result we also proved two very useful equations. The first showed
a norm bound for the proximal mapping of the Quadratic Sub-Lagrangian.
This was very useful as it showed that if u converged to 0 and v was in the
proximal map of the Quadratic Sub-Lagrangian evaluated at u, then v also
converged to 0. This fact was used in various proofs including the proof of
prox-regularity of the Quadratic Sub-Lagrangian at 0.

The second equation showed a relation between the Quadratic Sub-La-
grangian of a function and the Quadratic Sub-Lagrangian of the function
after linear adjustments. By showing this we provided the ability to break
down the proofs into simpler sections. This allowed us to begin most proofs
assuming that the function was prox-regular at Z for 0, then extend the result
to prox-regularity for any w in the subgradient map of the function. This two
step process made proofs easier to follow by removing much of the excessive
notation that would be required for direct proofs.

As mentioned before, the other key envelope in the development of the
Quadratic Sub-Lagrangian was the Moreau envelope. Unlike the U-Lagran-
gian, the Moreau envelope was used more as a tool than an inspiration.
Other than showing the Quadratic Sub-Lagrangian formed a closer envelope
than the Moreau envelope we did not expand on results regarding Moreau
envelopes and prox-regular functions. Instead we made use of these results
to gain a better understanding of the Quadratic Sub-Lagrangian.

The first fact discussed about Moreau envelopes was a very basic one,
namely that Moreau envelopes converge to the original function as the en-
velope factor gets larger. Since the Quadratic Sub-Lagrangian was squeezed
between the two functions it was a simple corollary that it too converged
towards the original function.

We did not involve Moreau envelopes again until Chapter four where they
were of some use in examining the second order behaviour of the Quadratic
Sub-Lagrangian. More specifically we showed that the Quadratic Sub-La-
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grangian is twice epi-differentiable if and only if the Moreau envelope of the
original function, examined along the subspace U, has this property. As a
simple result from this, we learn that if f is twice epi-differentiable then
it’s Quadratic Sub-Lagrangian is also twice epi-differentiable. In the case of
Moreau envelopes this is an if and only if condition so our result is weaker
in that respect. However, one could view this as a stronger property since
the Quadratic Sub-Lagrangian doesn’t require f to be twice epi-differentiable
in order for it to have this property. The question of what happens when
fv = f(Z + (-« + 0)) is twice epi-differentiable has yet to be determined.
In fact there are several areas for future research in the field of Quadratic
Sub-Lagrangians, as the next section will relate.

9.2 Future Areas of Study

There are two clear directions for future exploration in the area of Quadratic
Sub-Lagrangians. The first is to extend the space for which they are defined,
the second is to examine the class of functions for which the theorems of this
thesis hold.

Since Quadratic Sub-Lagrangians are defined in terms of subgradients,
inner products, and perpendicular subspaces the definition can be extended
to any space for which these things are well defined. Specifically Quadratic
Sub-Lagrangians are well defined in any Hilbert space.

Like Quadratic Sub-Lagrangians the concept of prox-regularity is defined
in terms of subgradients and inner products, so it too can be examined in
general Hilbert spaces. In S. K. Boralugoda’s Ph.D. thesis, “Prox-Regular
Functions in Hilbert Spaces”, the idea of a prox-regular function was devel-
oped for Hilbert spaces [1]. Using the definitions and theorems of this work
it may be possible to extend this thesis to Hilbert spaces as well.

Although on the surface most of the theorems in this thesis appear to be
adaptable to Hilbert spaces, they are not. The problem occurs in Proposi-
tion 2.7 where we showed that for any u in the domain of ®5 that Wy is
nonempty. In proving this we showed that kg achieved it’s infimum inside of
a closed ball. Since, in ®", closed balls are compact, and hp was lower semi-
continuous we were able to change this infimum to a minimum, and conclude
that Wz was nonempty. Unfortunately closed balls are not compact in any
infinite dimensional Hilbert space.

This is not the end of the difficulties in extending Quadratic Sub-Lagran-

46



gians to Hilbert spaces. Although not cited directly many other thecrems
applied Proposition 2.7 in their proofs. Any theorem that used equation
(2.8) to state that v converged to 0 as u converged to 0, (Theorem 3.2, and
its Corollary for example), also used the fact that v existed for any w im the
domain of ®r. Therefore, if Proposition 2.7 cannot be extended to Hilbert
spaces then these theorems would have to be redone in another way. Since
Theorem 3.2 states when the Quadratic Sub-Lagrangian is continuous and
prox-regular, one of the key results of this thesis, it could not be ignored in
extending this envelope to infinite dimensional Hilbert spaces.

Further challenge occurs in that some of the facts used in this thesis are
not yet extended to Hilbert spaces. Fact 4.2 for example is not yet extended
to Hilbert spaces [1]. Since this fact is used in proofs of Corollary 4.4 and
Theorem 4.5 one would either have to show this fact holds true in gemeral
Hilbert spaces, or reexamine the proofs in which they were used.

In extending the thesis in the other direction, one could examine how the
results of this thesis extend to broader classes of functions. As mentioned be-
fore the question of what occurs when f(Z+ (-, +0)) is twice epi-different iable
has yet to be resolved. As a second example, given a function on f : R* — R,
a point Z where f is finite, @ e  f(Z), and a UV decomposition along which
fu = f(Z + (~u + 0)) is continuous, is it true that the Quadratic Sub-La-
grangian is continuous? (The answer to this appears to be no, but fuxther
exploration would be required to provide a counter example). Another ques-
tion is, what do we have to add to the above conditions to force &g to be
continuous, or prox-regular? Would it suffice to have the function boumded
below by a quadratic, or perhaps bounded below by any continuous function?

In answering these questions one should keep in mind that prox-regular
functions are dense in the space of measurable functions on ®". Thus any
function can be approximated within £ by a prox-regular one. So another
question is how can this be used? That is, if one takes a sequence of prox-
regular functions converging to a given function, then what can be said about
the corresponding Quadratic Sub-Lagrangians? And, what additional prop-
erties does the function have to have in order for this convergence to be of
use? Unlike the problem of extending Quadratic Sub-Lagrangians to HiEbert
spaces, the problems that will be encountered in enlarging the function elass
used are not obvious, and only future study will reveal them.
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5.3 Conclusion

The study of Optimization has come a long way since Fermat entered into
the field in the 1620s ([9], p. 430). The development of calculus alone
provided vast insight into the study of local minimums and maximums. Cal-
culus yielded many powerful results such as the mean value theorem and the
derivative test for convexity of functions. Unfortunately calculus was limited
to differentiable functions, so the study of Optimization was far from com-
plete. Although most functions do not fall into the category of differentiable,
it is well know that every function can be approximated to any degree by a
differentiable function. So the major question in Optimization today is how
to find these approximations. This thesis provided one method through the
development of a new envelope function we called the Quadratic Sub-Lagran-
gian. It also showed how this envelope forms a more accurate estimate of a
given function than the Moreau envelope and behaves well when applied to
the broad range of functions known as prox-regular. However development
of the Quadratic Sub-Lagrangian is far from complete. The questions of gen-
eralizing these results to Hilbert spaces and to broader ranges of functions
are still unanswered. Undoubtedly answering these questions will only lead
to further questions, and perhaps other envelopes. And so, like all fields of
mathematics, Opt:mization was a short time in creation, but will be a long
time in completion.
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